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Introduction

Thank you for purchasing Professional ADO.NET 2. We know you have a lot of options when selecting a
programming book and are glad that you have chosen ours. We’re sure you will be pleased with the 
relevant content and high quality you have come to expect from the Wrox Press line.

What This Book Is About
A few years ago, Microsoft released the 1.0 Framework of ADO.NET and revolutionized the way we
access data. It was a drastic change that took some getting used to, but for the most part, developers
who made the switch love it. It’s now over three years later, and ADO.NET 2.0 is here. It provides all the
same features that we’ve come to love in ADO.NET 1.0 and adds some new ones to provide even more
functionality and make repetitive, mundane tasks much simpler. Throughout this book, we dig deeply
into many of these new features.

As you start reading, you’ll notice that several chapters go beyond ADO.NET, focusing more on
Microsoft SQL Server 2005. This is because the two are very tightly related. Many of the new features in
ADO.NET 2.0 are designed to be used with Microsoft SQL Server 2005, and many of the new features
found in SQL 2005 require ADO.NET 2.0 to get the most benefit from them. It wouldn’t be practical to
speak strictly about ADO.NET without providing some basic working knowledge about what’s new in
SQL 2005. Most people will likely move to both technologies around the same time, so this additional
information should be very beneficial.

Who Should Buy This Book
As mentioned previously, this book contains information about both ADO.NET 2.0 and Microsoft 
SQL Server 2005. It is useful for a wide variety of people, including IS managers, project managers,
developers, database administrators, system architects, business analysts, and software testers. Of
course, because it focuses on developing applications using ADO.NET, software developers will benefit
most from it.

Because this book focuses primarily on the new features of ADO.NET 2.0, prior knowledge of ADO.NET
1.0, general .NET development, and Microsoft SQL Server is assumed. In order to completely use the
information in this book, you will need a copy of Visual Studio 2005 and Microsoft SQL Server 2005.
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Introduction

How to Use This Book
To provide consistency throughout the book and help you quickly identify important pieces of 
information, several standards have been used. We recognize that many developers have their own
naming conventions. However, we are using the naming conventions recommended by Microsoft, at
http://msdn.microsoft.com/library/en-us/cpgenref/html/cpconnamingguidelines.asp,
which should also be compatible with the default rules in Fx Cop.

We have employed a standard format for highlighting code. Any time a code example is presented for
the first time, it appears with a gray background, like this:

Private Sub HelloWorld()
Response.Write(“Hello World”)

End Sub

Any time a section of code is presented again, it appears without the gray background:

Private Sub HelloWorld()
Response.Write(“Hello World”)

End Sub

We highlight important information by having it appear in a box, like this:

Notes or tips appear in italics, like this: 

This is a note. 

Because this is a book written by programmers for programmers, it includes a lot of code samples. If you
want to download these samples, you can do so from our Web site, at www.wrox.com. The code samples
in the book are provided in VB.NET, but C# samples are also available for download from the Web site.

We tried our best to ensure that this book was error-free, but every once in a while, errors slip through.
To keep you informed of necessary corrections, you can find the complete errata on our Web site. If you
discover an error that hasn’t been reported yet, please let us know by going to www.wrox.com.

What This Book Covers
The following list provides a breakdown of the topics covered in each chapter:

❑ Chapter 1—A brief history of data access technologies so you can see why some of the 
features are needed. It also touches on the major design goals of ADO.NET 2.0 and highlights
what is covered in the rest of the book.

This is an important fact.
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❑ Chapter 2—Basic database design concepts, primarily in Microsoft SQL Server 2005. It also cov-
ers creating databases, tables, and views following third normal form and the importance of pri-
mary and foreign keys. It shows you how to optimize performance using indexes and other
methods, and in general provides you with a solid foundation for developing database-driven
applications.

❑ Chapter 3—The basics of creating a connection, executing a query, and returning a result. It also
digs deeply into many of these areas, showing best practices and techniques for optimizing
your code. It covers scenarios for which it may or may not be appropriate to use features such 
as DataSets and DataViews. It also covers the various options for persisting data back to a
database, and introduces new techniques in ADO.NET 2.0. Finally, it introduces the new APIs
available for schema discovery and connection pooling.

❑ Chapter 4—Delves into the new data types available in the 2.0 Framework, and discusses the
appropriate situations in which to use them.

❑ Chapter 5—Covers many of the new features available for XML integration. It offers a brief
overview of how XML evolved, the numerous designer enhancements and new features avail-
able in XmlReader and XmlWriter, and introduces the XPathDocument as the new standard for
storing XML documents. It details new validation features and highlights many of the perfor-
mance gains available in this framework, and provides a roadmap to where XML technologies
are heading.

❑ Chapter 6—Looks into the new transactional capabilities available in the ADO.NET 2.0
Framework and how to integrate them with Microsoft SQL Server 2005 and other data sources.
It covers locking, replication, and other design issues.

❑ Chapter 7—Covers the details of data binding. It shows how to use the ADO.NET 2.0 design
time programmability features in Visual Studio.NET. It also shows off the new TableAdapters
and DataConnectors. You will see how you can data bind not only to database queries, but to
Web services, business objects, and other sources.

❑ Chapter 8—In this chapter, you learn how to create a custom ADO.NET managed provider. Step
by step, you’ll create your own provider, including the various interfaces for creating connec-
tions, commands, readers, and adapters.

❑ Chapter 9—Shows the new TSQL language enhancements available in Microsoft SQL Server
2005. It also covers how these new features tightly integrate with the ADO.NET 2.0 Framework.

❑ Chapter 10—Covers the details of integrating the new Microsoft SQL Server 2005 features into a
client application using ADO.NET 2.0. In this chapter, you learn about the new asynchronous
support features, the capability to return multiple result sets from a query, and how to initiate
bulk copies. You also learn how to use the new caching features, create your own user-defined
data types, and explore various new APIs for working with Microsoft SQL Server 2005.

❑ Chapter 11—Shows how to use many of the new CLR capabilities of Microsoft SQL Server 2005.
You’ll learn how to create CLR code in stored procedures, how to use CLR objects for data
types, and how to debug your CLR code in Microsoft SQL Server 2005.

❑ Chapter 12—Provides a detailed description of how to create a Notification Services application
in Microsoft SQL Server 2005. It starts from the beginning, assuming no prior experience with
notification services, and shows how to create an application from the ground up, including
how to interface with that application from custom .NET code.
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xxviii

Introduction

❑ Chapter 13—Shows off the message queuing functionality in the .NET 2.0 Framework by intro-
ducing the Service Broker. It covers the feature set and the various options and describes how to
use them to develop scalable applications.

❑ Chapter 14—Displays how to use the full text search capabilities of Microsoft SQL Server 2005.
It provides a background on full text searches, covers the new features available and how to
enable them, and describes the best practices for using them.

❑ Chapter 15—Many tools are available for retrieving data and presenting it in various ways. This
chapter covers some of the most common tools, such as Crystal Reports, Microsoft SQL
Reporting Services, OLAP, and other business analysis tools, and shows how to best use them
with Microsoft SQL Server 2005.

❑ Chapter 16—MySQL is an option for data storage that is rapidly growing in popularity. In this
chapter, you examine the new provider available for MySQL and learn how to best utilize it to
maximize performance and scalability.

❑ Chapter 17—Shows how to best use Oracle in the ADO.NET Framework. It shows off the fea-
tures specific to the Oracle Managed provider in ADO.NET 2.0. It covers topics such as blobs,
clobs, bfiles, packages, and transactions.

Providing Feedback
This book wouldn’t have been possible without the hard work of many people. We know our readers
work hard for their money and have high expectations regarding the quality of the books they purchase.
We have strived to exceed those expectations, but are always looking for ways we can improve. We would
love to hear your feedback. If you would like to report an error, let us know what you did and did not like
about various sections, or suggest what you’d like to see in future versions, please contact us via our Web
site, at www.wrox.com. Once again, thank you for your purchase and we hope you enjoy the book.
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History of Data Access

Over the years, many APIs have been released, all of which work toward the goal of providing 
universal data access. Universal data access is the concept of having a single code base for accessing
data from any source, from any language. 

Having universal data access is important for four reasons: First, developers can easily work on
applications targeting different data stores without needing to become experts on each one. Second,
developers can have a common framework for data access when switching between programming
languages, making the transition to new languages easier. This is especially important in the .NET
Framework, in which developers are expected to be able to easily switch between VB.NET and C#.
Third, it enables developers to more easily write a single application that can be deployed against
multiple data stores. Finally, it provides a level of abstraction between the application and direct
communication to the database to simplify the code the average developer needs to write.

Microsoft has conducted surveys to determine which key factors companies are looking for in a
data access layer. They came back with four main points, which they have tried to implement in
their databases and data access components: 

❑ High performance — As any developer knows, performance can make or break almost
any application. No matter how much a data access layer may simplify accessing the data,
it absolutely must perform nearly as well or better than the alternatives before it becomes
a viable solution for the majority of applications.

❑ High reliability — If a component consumed by an application is buggy or occasionally
stops working, it is perceived by the users as an error in that application. In addition to
being a liability and annoyance to the company that implemented the application, it also
reflects very poorly on the developer(s) who wrote the application. Any issues, such as
memory leaks, that cause unreliable results are unacceptable to the development community.
It’s also very important to the support personnel that it be fairly maintenance-free. No one
wants to have to reboot a server on a regular basis or constantly apply patches just to keep
an application running.
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❑ Vendor commitment — Without the widespread buy-in of vendors to build drivers/providers
for their products, any universal data access model wouldn’t be universal. Microsoft could 
provide the drivers for some of the most common vendor products, but it really takes an open,
easily extensible model in order to gain widespread acceptance. No matter how much companies
try to avoid it, almost all of them become “locked-in” to at least a handful of vendors. Switching
to a vendor that supports the latest data access components is not really an option, so without
widespread buy-in from vendors, a data access model cannot succeed.

❑ Broad industry support — This factor is along the same lines as vendor commitment, but
includes a wider arena. It takes more than the data access model to be able to easily create good
applications with it; it also requires good tools that can work with the data access model.
Furthermore, it requires backing by several big players in the industry to reassure the masses. It
also requires highly skilled people available to offer training. Finally, of course, it requires willing
adoption by the development community so employers can find employees with experience.

Steady progress has been made, improving databases and universal data access over the last few
decades. As with any field, it’s important to know where we’ve come from in database and data access
technologies in order to understand where the fields are heading. The following section looks at some
early achievements.

The Early Days
In the 1950s and early 1960s, data access and storage was relatively simple for most people. While more
advanced projects were under development and in use by a limited number of people, the majority of
developers still stored data in flat text files. These were usually fixed-width files, and accessing them
required no more than the capability to read and write files. Although this was a very simple technique
for storing data, it didn’t take too long to realize it wasn’t the most efficient method in most cases. 

CODASYL
As with the Internet, databases as we know them today began with the U.S. Department of Defense. In
1957, the U.S. Department of Defense founded the Conference on Data Systems Languages, commonly
known as CODASYL, to develop computer programming languages. CODASYL is most famous for the
creation of the COBOL programming language, but many people don’t know that CODASYL is also
responsible for the creation of the first modern database. 

On June 10, 1963, two divisions of the U.S. Department of Defense held a conference titled
“Development and Management of a Computer-Centered Data Base.” At this conference, the term
database was coined and defined as follows:

A set of files (tables), where a file is an ordered collection of entries
(rows) and an entry consists of a key or keys and data.

Two years later, in 1965, CODASYL formed a group called the List Processing Task Force, which later
became the Data Base Task Group. The Data Base Task Group released an important report in 1971 out-
lining the Network Data Model, also known as the CODASYL Data Model or DBTG Data Model. This data
model defined several key concepts of a database, including the following:
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❑ A syntax for defining a schema

❑ A syntax for defining a subschema

❑ A data manipulation language

These concepts were later incorporated into the COBOL programming language. They also served as a
base design for many subsequent data storage systems.

IMS
During the same period CODASYL was creating the Network Data Model, another effort was under
way to create the first hierarchical database. During the space race, North American Rockwell won the
contract to launch the first spacecraft to the moon. In 1966, members of IBM, North American Rockwell,
and Caterpillar Tractor came together to begin the design and development of the Information Control
System (ICS) and Data Language/I (DL/I). This system was designed to assist in tracking materials
needed for the construction of the spacecraft.

The ICS portion of this system was the database portion responsible for storing and retrieving the data,
while the DL/I portion was the query language needed to interface with it. In 1968, the IBM portion of
this system (ICS) was renamed to Information Management System, or IMS. Over time, the DL/I portion
was enhanced to provide features such as message queuing, and eventually became the transaction
manager portion of IMS. IMS continued to evolve and was adopted by numerous major organizations,
many of which still use it today.

Relational Databases
Both the Network Data Model from CODASYL and IMS from IBM were major steps forward because
they marked the paradigm shift of separating data from application code, and they laid the framework
for what a database should look like. However, they both had an annoying drawback: They expected
programmers to navigate around the dataset to find what they wanted — thus, they are sometimes
called navigational databases.

In 1970, Edgar Codd, a British computer scientist working for IBM, released an important paper called
“A Relational Model of Data for Large Shared Data Banks” in which he introduced the relational model. 
In this model, Codd emphasized the importance of separating the raw, generic data types from the
machine-specific data types, and exposing a simple, high-level query language for accessing this data.
This shift in thinking would enable developers to perform operations against an entire data set at once
instead of working with a single row at a time.

Within a few years, two systems were developed based on Codd’s ideas. The first was an IBM project
known as System R; the other was Ingres from the University of California at Berkeley. During the course
of development for IBM’s System R, a new query language known as Structured Query Language (SQL)
was born. While System R was a great success for proving the relational database concept and creating
SQL, it was never a commercial success for IBM. They did, however, release SQL/DS in 1980, which was
a huge commercial success (and largely based on System R).
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The Ingres project was backed by several U.S. military research agencies and was very similar to System R
in many ways, although it ran on a different platform. One key advantage that Ingres had over System R
that led to its longevity was the fact that the Ingres source code was publicly available, although it was later
commercialized and released by Computer Associates in the 1980s.

Over the next couple of decades, databases continued to evolve. Modern databases such as Oracle,
Microsoft SQL Server, MySQL, and LDAP are all highly influenced by these first few databases. They
have improved greatly over time to handle very high transaction volume, to work with large amounts of
data, and to offer high scalability and reliability.

The Bir th of Universal Data Access
At first, there were no common interfaces for accessing data. Each data provider exposed an API or other
means of accessing its data. The developer only had to be familiar with the API of the data provider he
or she used. When companies switched to a new database system, any knowledge of how to use the old
system became worthless and the developer had to learn a new system from scratch. As time went on,
more data providers became available and developers were expected to have intimate knowledge of 
several forms of data access. Something needed to be done to standardize the way in which data was
retrieved from various sources.

ODBC
Open Database Connectivity (ODBC) helped address the problem of needing to know the details of each
DBMS used. ODBC provides a single interface for accessing a number of database systems. To accom-
plish this, ODBC provides a driver model for accessing data. Any database provider can write a driver
for ODBC to access data from their database system. This enables developers to access that database
through the ODBC drivers instead of talking directly to the database system. For data sources such as
files, the ODBC driver plays the role of the engine, providing direct access to the data source. In cases
where the ODBC driver needs to connect to a database server, the ODBC driver typically acts as a 
wrapper around the API exposed by the database server.

With this model, developers move from one DBMS to another and use many of the skills they have
already acquired. Perhaps more important, a developer can write an application that doesn’t target a
specific database system. This is especially beneficial for vendors who write applications to be consumed
by multiple customers. It gives customers the capability to choose the back-end database system they
want to use, without requiring vendors to create several versions of their applications.

ODBC was a huge leap forward and helped to greatly simplify database-driven application development.
It does have some shortfalls, though. First, it is only capable of supporting relational data. If you need to
access a hierarchical data source such as LDAP, or semi-structured data, ODBC can’t help you. Second, it
can only handle SQL statements, and the result must be representable in the form of rows and columns.
Overall, ODBC was a huge success, considering what the previous environment was like.
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OLE-DB
Object Linking and Embedding Database (OLE-DB) was the next big step forward in data providers, and it
is still widely used today. With OLE-DB, Microsoft applied the knowledge learned from developing
ODBC to provide a better data access model. OLE-DB marked Microsoft’s move to a COM-based API,
which made it easily consumable by most programming languages, and the migration to a 32-bit OS
with the release of Windows 95.

As with any code, ODBC became bulky through multiple revisions. The OLE-DB API is much cleaner and
provides more efficient data access than ODBC. Oddly enough, the only provider offered with its initial
release was the ODBC provider. It was just a wrapper of the ODBC provider and offered no performance
gain. The point was to get developers used to the new API while making it possible to access any existing
database system they were currently accessing through ODBC. Later, more efficient providers were 
written to access databases such as MS SQL Server directly, without going through ODBC.

OLE-DB Providers
OLE-DB is also much less dependent upon the physical structure of the database. It supports both rela-
tional and hierarchical data sources, and does not require the query against these data sources to follow
a SQL structure. As with ODBC, vendors can create custom providers to expose access to their database
system. Most people wouldn’t argue with the belief that it is far easier to write an OLE-DB provider than
an ODBC driver. A provider needs to perform only four basic steps:

1. Open the session.

2. Process the command.

3. Access the data.

4. Prepare a rowset.

OLE-DB Consumers
The other half of the OLE-DB framework is the OLE-DB consumer. The consumer is the layer that speaks
directly to the OLE-DB providers, and it performs the following steps:

1. Identify the data source.

2. Establish a session.

3. Issue the command.

4. Return a rowset.

Figure 1-1 shows how this relationship works.
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Figure 1-1

Data Access Consumers
Developers who use languages that support pointers — such as C, C++, VJ++, and so on — can speak
directly to the ODBC and OLE-DB APIs. However, developers using a language such as Visual Basic
need another layer. This is where the data access consumers such as DAO, RDO, ADO, and ADO.NET
come into play.

DAO
With the release of Visual Basic 2.0, developers were introduced to a new method for accessing data,
known as Data Access Objects (DAO). This was Microsoft’s first attempt to create a data consumer API.
Although it had very humble beginnings, and when first released only supported forward-only opera-
tions against ODBC data sources, it was the beginning of a series of libraries that would lead developers
closer to the ideal of Universal Data Access. It also helped developers using higher-level languages such
as Visual Basic to take advantage of the power of ODBC that developers using lower-level languages
such as C were beginning to take for granted.

DAO was based on the JET engine, which was largely designed to help developers take advantage of the
desktop database application Microsoft was about to release, Microsoft Access. It served to provide
another layer of abstraction between the application and data access, making the developer’s task sim-
pler. Although the initial, unnamed release with Visual Basic 2.0 only supported ODBC connections, the
release of Microsoft Access 1.0 marked the official release of DAO 1.0, which supported direct communi-
cation with Microsoft Access databases without using ODBC. Figure 1-2 shows this relationship.

DAO 2.0 was expanded to support OLE-DB connections and the advantages that come along with it. It
also provided a much more robust set of functionality for accessing ODBC data stores through the JET
engine. Later, versions 2.5 and 3.0 were released to provide support for ODBC 2.0 and the 32-bit OS
introduced with Windows 95.
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Figure 1-2

The main problem with DAO is that it can only talk to the JET engine. The JET engine then communicates
with ODBC to retrieve the data. Going through this extra translation layer adds unnecessary overhead
and makes accessing data through DAO slow.

RDO
Remote Data Objects (RDO) was Microsoft’s solution to the slow performance created by DAO. For talk-
ing to databases other than Microsoft Access, RDO did not use the JET engine like DAO; instead, it com-
municated directly with the ODBC layer. Figure 1-3 shows this relationship.

Removing the JET engine from the call stack greatly improved performance to ODBC data sources. The JET
engine was only used when accessing a Microsoft Access Database. In addition, RDO had the capability to
use client-side cursors to navigate the records, as opposed to the server-side cursor requirements of DAO.
This greatly reduced the load on the database server, enabling not only the application to perform better,
but also the databases on which that application was dependant.

RDO was primarily targeted toward larger, commercial customers, many of whom avoided DAO due to
the performance issues. Instead of RDO replacing DAO, they largely co-existed. This resulted for several
reasons: First, users who developed smaller applications, where performance wasn’t as critical, didn’t
want to take the time to switch over to the new API. Second, RDO was originally only released with the
Enterprise Edition of Visual Basic, so some developers didn’t have a choice. Third, with the release of
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ODBCDirect, a DAO add-on that routed the ODBC requests through RDO instead of the JET engine, the
performance gap between the two became much smaller. Finally, it wasn’t long after the release of RDO
that Microsoft’s next universal access API was released.

Figure 1-3

ADO
Microsoft introduced ActiveX Data Objects (ADO) primarily to provide a higher-level API for working
with OLE-DB. With this release, Microsoft took many of the lessons from the past to build a lighter, 
more efficient, and more universal data access API. Unlike RDO, ADO was initially promoted as a
replacement for both DAO and RDO. At the time of its release, it (along with OLE-DB) was widely
believed to be a universal solution for accessing any type of data — from databases to e-mail, flat text
files, and spreadsheets.

ADO represented a major shift from previous methods of data access. With DAO and RDO, developers
were expected to navigate a tree of objects in order to build and execute queries. For example, to execute
a simple insert query in RDO, developers couldn’t just create an rdoQuery object and execute it. Instead,
they first needed to create the rdoEngine object, then the rdoEnvironment as a child of it, then an
rdoConnection, and finally the rdoQuery. It was a very similar situation with DAO. With ADO, 

Non-
Access DB

Application

DAO

ODBC

JET Engine

MS Access
DB

8

Chapter 1

03_584375 ch01.qxd  10/28/05  10:49 PM  Page 8



however, this sequence was much simpler. Developers could just create a command object directly, pass-
ing in the connection information and executing it. For simplicity and best practice, most developers
would still create a separate command object, but for the first time the object could stand alone.

As stated before, ADO was primarily released to complement OLE-DB; however, ADO was not limited
to just communicating with OLE-DB data sources. ADO introduced the provider model, which enabled
software vendors to create their own providers relatively easily, which could then be used by ADO to
communicate with a given vendor’s data source and implement many of the optimizations specific to
that data source. The ODBC provider that shipped with ADO was one example of this. When a devel-
oper connected to an ODBC data source, ADO would communicate through the ODBC provider instead
of through OLE-DB. More direct communication to the data source resulted in better performance and
an easily extensible framework. Figure 1-4 shows this relationship.

Figure 1-4

In addition to being a cleaner object model, ADO also offered a wider feature set to help lure developers
away from DAO and RDO. These included the following:

❑ Batch Updating — For the first time, users enjoyed the capability to make changes to an entire
recordset in memory and then persist these changes back to the database by using the
UpdateBatch command.

❑ Disconnected Data Access — Although this wasn’t available in the original release, subsequent
releases offered the capability to work with data in a disconnected state, which greatly reduced
the load placed on database servers.

❑ Multiple Recordsets — ADO provided the capability to execute a query that returns multiple
recordsets and work with all of them in memory. This feature wasn’t even available in
ADO.NET until this release, now known as Multiple Active Result Sets (MARS).
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In addition to all of the great advancements ADO made, it too had some shortcomings, of course. For
example, even though it supported working with disconnected data, this was somewhat cumbersome.
For this reason, many developers never chose to use this feature, while many others never even knew it
existed. This standard practice of leaving the connection open resulted in heavier loads placed on the
database server.

The developers who did choose to close the connection immediately after retrieving the data faced
another problem: having to continually create and destroy connections in each method that needed to
access data. This is a very expensive operation without the advantages of connection pooling that
ADO.NET offers; and as a result, many best practice articles were published advising users to leave a
single connection object open and forward it on to all the methods that needed to access data.

ADO.NET
With the release of the .NET Framework, Microsoft introduced a new data access model, called ADO.NET.
The ActiveX Data Object acronym was no longer relevant, as ADO.NET was not ActiveX, but Microsoft
kept the acronym due to the huge success of ADO. In reality, it’s an entirely new data access model 
written in the .NET Framework.

ADO.NET supports communication to data sources through both ODBC and OLE-DB, but it also offers
another option of using database-specific data providers. These data providers offer greater performance
by being able to take advantage of data-source-specific optimizations. By using custom code for the data
source instead of the generic ODBC and OLE-DB code, some of the overhead is also avoided. The original
release of ADO.NET included a SQL provider and an OLE-DB provider, with the ODBC and Oracle
providers being introduced later. Many vendors have also written providers for their databases since.
Figure 1.5 shows the connection options available with ADO.NET.

Figure 1-5
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With ADO.NET, the days of the recordset and cursor are gone. The model is entirely new, and consists of
five basic objects:

❑ Connection — The Connection object is responsible for establishing and maintaining the 
connection to the data source, along with any connection-specific information.

❑ Command — The Command object stores the query that is to be sent to the data source, and any
applicable parameters.

❑ DataReader — The DataReader object provides fast, forward-only reading capability to quickly
loop through the records.

❑ DataSet — The DataSet object, along with its child objects, is what really makes ADO.NET
unique. It provides a storage mechanism for disconnected data. The DataSet never communicates
with any data source and is totally unaware of the source of the data used to populate it. The best
way to think of it is as an in-memory repository to store data that has been retrieved.

❑ DataAdapter — The DataAdapter object is what bridges the gap between the DataSet and the
data source. The DataAdapter is responsible for retrieving the data from the Command object
and populating the DataSet with the data returned. The DataAdapter is also responsible for
persisting changes to the DataSet back to the data source.

ADO.NET made several huge leaps forward. Arguably, the greatest was the introduction of truly discon-
nected data access. Maintaining a connection to a database server such as MS SQL Server is an expensive
operation. The server allocates resources to each connection, so it’s important to limit the number of
simultaneous connections. By disconnecting from the server as soon as the data is retrieved, instead of
when the code is done working with that data, that connection becomes available for another process,
making the application much more scalable.

Another feature of ADO.NET that greatly improved performance was the introduction of connection
pooling. Not only is maintaining a connection to the database an expensive operation, but creating and
destroying that connection is also very expensive. Connection pooling cuts down on this. When a 
connection is destroyed in code, the Framework keeps it open in a pool. When the next process comes
around that needs a connection with the same credentials, it retrieves it from the pool, instead of 
creating a new one.

Several other advantages are made possible by the DataSet object. The DataSet object stores the data
as XML, which makes it easy to filter and sort the data in memory. It also makes it easy to convert the
data to other formats, as well as easily persist it to another data store and restore it again.

ADO.NET 2.0
Data access technologies have come a long way, but even with ADO.NET, there’s still room to grow. The
transition to ADO.NET 2.0 is not a drastic one. For the most part, Microsoft and the developers who use
ADO.NET like it the way it is. In the 2.0 Framework, the basic design is the same, but several new features
have been added to make common tasks easier, which is very good for backward compatibility. ADO.NET
2.0 should be 100% backwardly compatible with any ADO.NET 1.0 code you have written.

With any 2.0 product, the primary design goal is almost always to improve performance. ADO.NET 1.0
does not perform poorly by any means, but a few areas could use improvement, including XML serial-
ization and connection pooling, which have been reworked to provide greater performance.
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In the 2.0 Framework, Microsoft has also been able to improve performance by introducing several new
features to reduce the number of queries that need to be run and to make it easier to run multiple
queries at once. For example, the bulk insert feature provides the capability to add multiple rows to a
database with a single query, instead of the current method of inserting one at a time. This can greatly
reduce the amount of time it takes to insert a large number of rows.

Another example is the capability to be notified when data changes and to expire the cache only when
this happens. This eliminates the need to periodically dump and reload a potentially large amount of
data just in case something has changed. The introduction of Multiple Active Result Sets (MARS) provides
the capability to execute multiple queries at once and receive a series of results. Removing the back and
forth communication that is required by executing one query at a time and waiting for the results greatly
improves the performance of an application that needs this functionality. If you prefer to do other work
while waiting for your data to return, you also have the option of firing an asynchronous command.
This has been greatly simplified in the 2.0 Framework.

Another major design goal is to reduce the amount of code necessary to perform common tasks. The buzz
phrase we all heard with the release of .NET Framework 1.0 was “70 percent less code” than previous
methods. The goal with the .NET 2.0 Framework is the same: to reduce the amount of code needed for
common tasks by 70% over .NET 1.0. We’ll leave the decision as to whether this goal was met or not to you,
but after reading this book and using ADO.NET for awhile, you should notice a significant decrease in the
amount of code needed to write your application.

The rest of the enhancements are primarily new features. For example, there is now a database discovery
API for browsing the schema of a database. Also offered is the option of writing provider-independent
database access code. This is very beneficial if you sell applications to customers who want to run it against
numerous data sources. Keep in mind that the queries you write still must match that provider’s syntax.

Summary
Now that you know some of the history behind how technologies such as ADO.NET and Microsoft SQL
Server have evolved, you should have a clearer vision of where these technologies are heading.
Throughout this book, we will cover the new features of these technologies in great depth and lay out
the roadmap describing where many of them are heading. This release is just another major stepping-
stone on the path to efficient universal data access.

For More Information
To complement the information in this chapter, take a look at the following resources:

❑ Funding a Revolution: Government Support for Computing Research, by the Computer Science
and Telecommunications Board (CSTB), National Research Council. Washington, D.C.: National
Academy Press, 1999. www.nap.edu/execsumm/0309062780.html.

❑ Network (CODASYL) Data Model (Course Library) —http://coronet.iicm.edu/
wbtmaster/allcoursescontent/netlib/library.htm

❑ “Technical Note — IMS Celebrates 30 Years as an IBM Product,” by Kenneth R. Blackman.
www.research.ibm.com/journal/sj/374/blackman.html.
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Standardized Database
Objects and Design

Database design is probably one of the most misunderstood areas of database work. It’s also one of
the most vital. In this chapter, we’ll share our experiences and the lessons we’ve learned working
with both large and small projects. We’ll cover the basics of maintainable, normalized design, 
and offer general guidelines, including useful tips and tricks. You won’t find much code in this
chapter — just a lot of very useful advice.

Creating Databases
Before you delve into your favorite database editor and start banging out tables left, right, and
center, it’s important to understand the job at hand. If you’ve reached the stage in application
development where you’re ready to start building the databases, then you already have a good
idea of what the job entails. This section explains how you should go about initially laying out
your tables once you understand the structure of your applications and their requirements.

In an ideal world, every database would be fully normalized, optimized for speed, and designed
to make security integral to the structure. Of course, we don’t live in an ideal world. Many of the
databases out there are slow, unmanageable lumps of goo. Never fear. Together, we can make 
the world a better place by designing resilient databases that easily cope with the evils of feature
creep, the inane promises of our marketing teams, and the abysmal quality of the data that many
users seem to think is production-ready.

The key to keeping your life simple is to do the work up front. Because the database is usually the
most vital part of any application, it’s important to set it up correctly now — to avoid heartache
later. Trying to make changes to a long-standing database is incredibly difficult and usually results
in breaking other systems. Once a database is in production use, it becomes very difficult to change.
In other words, any mistakes made during design will be there weeks, months, and even years
down the line, which doesn’t do much for the original developer’s reputation.
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Before you start work on a database, make sure you possess all of the facts regarding the applications
that will be using it. The more information you can gather about the uses for the database, the better you
can design it to suit those needs. Here are some of the questions you should ask before proceeding:

❑ Do you understand all of the logical units (objects) of the applications using the database?

❑ What are the ways in which people will want to query/manage the data now?

❑ Does the data structure support all of the functionality needed in your applications?

❑ Where are the applications going in their next versions, and do you need to make provisions for
that now?

Once you have the answers to these questions, you’ll be nearly ready to jump in and run some CREATE
commands against your database server. First, though, you should lay out all the logical units (objects)
of your solution on paper to show how they will be represented as objects in your applications and
tables in your database. You’ll learn more about this in greater detail later, in the section called
“Normalizing.”

Figure 2-1 shows a portion of the table structure for the Northwind database, which ships with SQL
Server 2000, viewed as a Database Diagram.

Figure 2-1

By first creating the design on paper, you’ll be able to identify and solve numerous problems and 
challenges. Then, after you have the design, run through the preceding questions again to ensure that
you have covered all the bases.
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Naming Conventions
Just as important as a solid database design is the naming of your tables, views, and stored procedures.
Misnaming or poorly naming your database objects can result in a lot of heartache for both yourself and
anyone who has to maintain your applications later.

While choosing a naming convention is a personal decision, we’ll show you the conventions we use and
explain why we use them. That way, you can make an informed decision about which convention to
adopt. Keep in mind, however, that the most important rule in naming conventions is consistency. In the
following sections, we’ll go into detail about naming tables and stored procedures; for now, however,
here are a few general rules regarding all database objects:

❑ Do use Pascal Case.

❑ Don’t let the name get too long. Remember: You’ll have to read it and type it.

❑ Don’t use Hungarian notation — in other words, don’t prefix objects such as tables with “tbl”.

❑ Don’t abbreviate or use acronyms.

Tables
Naming your tables can be very difficult, and if it’s not done correctly, it can result in much confusion
down the line. Always use Pascal Case when naming your tables. This means that the first letter of each
word is capitalized (for example, CustomerOrders and IntranetUsers). This is the best way to 
differentiate between SQL keywords such as SELECT, UPDATE, and DELETE in your SQL statements and
your table names, which will always be in Pascal Case, and it makes all your queries very easy to 
understand at a glance.

Hungarian notation should not be used when naming your tables. It’s easy to discover what type an object
represents in your database server — for example, a table can only be a table, so why bother to name it as
such? Tables should be named with plurals, such as Orders instead of Order. Treat each row of a table as
an individual thing, such as an order. The table is the bucket for all these individual rows, so it’s named
plurally. When a table has multiple words, only the last word should be plural. For example, OrderItems
is preferable to OrdersItems, as the table contains a list of Order Items, not a list of Orders Items.

All tables should be named in relation to their scope. This is especially important if the tables are located
in a shared database. Name your tables so they relate to the application in which they will be used or to
the functionality that they control. For example, a table of users for an intranet should be named
IntranetUsers.

Table names should never contain numbers. If you find yourself considering the creation of a table with
numbers in the name, it’s likely your design is not normalized; consider moving the “number” into a
new column within the table itself. A good example of this would be a table listing sales items, which
could be grouped together by year. The wrong way to do this would be to name the tables Sales2003,
Sales2004, and so on. Instead, a column should be added to a generic Sales table called Year, and the
values 2003 and 2004 should be placed against the relevant records.
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Ensure that no underscores or spaces find their way into your table names. Using Pascal Case for your
tables negates the need for underscores in table names, and spaces are only supported by some database
servers, so they should be avoided at all costs. Observing these rules will enable you to easily move your
entire database schema among many different relational database management servers (just in case you
ever get bored).

The following few sections will walk you through naming conventions for every part of a table’s structure
and its associated objects. Just to clarify what we’re talking about, here’s the CREATE script for a table in
SQL Server:

CREATE TABLE [Customers] (
[CustomerId] [int] IDENTITY (1, 1) NOT FOR REPLICATION  NOT NULL ,
[CustomerName] [nvarchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[CustomerAddress] [nvarchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL
CONSTRAINT [PK_CustomersFirstForm] PRIMARY KEY  CLUSTERED 
(
[CustomerId]

)  ON [PRIMARY] 
) ON [PRIMARY]
GO

Columns
When naming the columns in your tables, keep in mind that the columns already belong to a table, so it
is not necessary to include the table name within the column names.

That said, the primary keys in any table should be the only exception to the preceding rule of not includ-
ing the table name in a column. If your table is IntranetUsers, then the primary key column should 
be named IntranetUsersId. This helps avoid any ambiguity in any queries written subsequently. 
The location of Id in your column name can appear at either the beginning or the end of the name, so
IdIntranetUsers would also be acceptable. Use whichever you prefer — just remember to be 
consistent throughout your entire database schema.

Foreign keys should match the column they’re referencing exactly, so if you had a column in your
IntranetUserSettings table that referred to the primary key IntranetUsersId in the
IntranetUsers table, then you would name it IntranetUsersId. Carefully consider the naming of
other columns that just store data and not keys.

Any Boolean fields should pose a question, such as IsPhotographed or HasOwnTeeth, to which True
or False provides a clear answer. (We’ll ignore NULL because that’s just awkward.) 

DateTime fields should contain the word DateTime, so a field for storing the Created DateTime for a row
should be called CreatedDateTime. If a column is only storing a Time, then it should be named appro-
priately (CreatedTime, for example).

It is not necessary to use the word “number” in columns of type integer and other numeric columns,
as their data type should show this. This rule can be ignored if names seem ambiguous within the scope
of your table. In addition, string columns should not have “string” or “text” in their name. 

Columns storing ambiguous data such as time periods or speeds should also contain within the name
the measurements used for the units, such as PriceUSDollars, SpeedMilesPerHour, or
LeaveRemainingInDays.
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Triggers
Triggers should always have a prefix to distinguish them from stored procedures and tables. Choose a
self-explanatory prefix you’re comfortable with, such as Trig.

All trigger names should include both the table name they’re referencing and the events on which
they’re fired. For example, a trigger on the IntranetUsers table that needs to be fired on both an
INSERT and a DELETE would be called TrigIntranetUsersInsertDelete:

CREATE TRIGGER TrigIntranetUsersInsertDelete
ON IntranetUsers
FOR INSERT, UPDATE, DELETE 
AS

EXEC master..xp_sendmail ‘Security Monkey’, 
‘Make sure the new users have been added to the right roles!’

GO

Here is a reference table you can use to check your triggers for conformance to the naming conventions.

Table Insert Update UpdateInsert

Customers TrigCustomers TrigCustomer TrigCustomers
Insert Update UpdateInsert

IntranetUsers TrigIntranet TrigIntranet TrigIntranetUsers
UsersInsert UsersUpdate UpdateInsert

Stored Procedures
Everyone likes to do things their own way, and the practice of naming stored procedures is no different.
Still, there are some things to keep in mind when naming stored procedures. Use the following questions
to create the best possible stored procedure names: 

❑ Will the name be easy to find within the database, both now and when there are a lot more
procedures?

If the procedure is specific to the application that’s using it, then it’s in the right place and doesn’t
need to be named specifically. However, if the procedure is in a general or shared database, then it
should be named with respect to the application it’s related to by prefixing the procedure with the
name of the application, such as ReportingSuite, EcommerceWebsite or Intranet.

It’s important to take into account not only the names of the columns, but also the
data type assigned to them. Only use what’s nessesary. If you’re storing smaller 
numbers in SQL Server, use the tinyint or smallint data types instead of the int 
data type.
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❑ Does the name relate to the object on which the actions are being performed?

The scope of the procedure is the most vital part of its name. If the procedure is adding 
customers to a table, then it should contain the word Customer in its name. If the procedure is
referring to invoices, then it would include the name Invoice.

❑ Has the procedure been named in a way in which its action can be identified?

Whether the stored procedure is performing a simple SELECT, INSERT, UPDATE, or DELETE, or
whether it’s performing a more complicated task, you need to pick a name for the action it’s
performing. 

For example, if you’re inserting rows into the Customer table, you would use, say, Add or
Insert. However, if the procedure is performing a more complicated task, such as validating a
username and password, then it would include the word Validate in its name.

A procedure that would insert a new record into the Customers table via the Intranet
application should be called IntranetCustomerAdd or CustomerAdd depending on whether
it’s inside the Intranet database or in a shared/generic database. The procedure to validate the
username and password of an intranet user should be called IntranetUserValidate.

A procedure that’s selecting a specific customer from the intranet should be called
IntranetCustomerSelect or IntranetCustomerGet, depending on your preferences.

If you were to write a procedure for the Accounting application that needed to return a report
of all the invoices for a certain customer, it should be called IntranetCustomerInvoiceGet, as
shown in the following example:

CREATE PROC [IntranetCustomerInvoiceGet]
(

@CustomerId Int
)
AS
SELECT *
FROM CustomerInvoices 
WHERE CustomerId = @CustomerId
GO

If you’re working in a multicompany environment, it can also be a good idea to prefix all of your stored
procedures with the name of your company, such as BadgerCorp_IntranetCustomerAdd (this is one
of the few circumstances in which underscores could be used).

If you’re using SQL Server, do not prefix your stored procedures with “sp_” or “xp_”
as this is what SQL Server uses for its internal stored procedures. Not only will this
make it difficult to differentiate your custom stored procedures from the database-
generated ones, but it will also slow down your applications, as SQL Server checks
inside the “Master” database for anything prefixed with “sp_” or “xp_” before 
looking inside the specified database. If you’re using another database server, make
sure your procedure names will not clash with any system-specific names.
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The following list provides some examples of well-named procedures. These are some of the stored 
procedures from the ASP.NET 2.0 SQL Server Provider. Although they violate some of the rules 
mentioned earlier (there’s a rather liberal use of underscores, for example), they do show how clarity can
easily be achieved when simple rules are followed in even the most complicated of schemas:

aspnet_Membership_ChangePasswordQuestionAndAnswer
aspnet_Membership_CreateUser
aspnet_Membership_FindUsersByEmail
aspnet_Membership_FindUsersByName
aspnet_Membership_GetAllUsers
aspnet_Membership_GetNumberOfUsersOnline
aspnet_Membership_GetPassword
aspnet_Membership_GetUserByEmail
aspnet_Membership_GetUserByName
aspnet_Membership_ResetPassword
aspnet_Membership_SetPassword
aspnet_Membership_UpdateLastLoginAndActivityDates
aspnet_Membership_UpdateUser
aspnet_Roles_CreateRole
aspnet_Roles_DeleteRole
aspnet_Roles_GetAllRoles
aspnet_Users_CreateUser
aspnet_Users_DeleteUser

The following table provides a quick reference for the naming conventions of stored procedures.

Table Select Insert Delete Update Custom

Customers Customer CustomerAdd Customer CustomerUp Customer
Get date Delete Custom

IntranetUsers Intranet Intranet IntranetUser IntranetUser Intranet
UserGet UserAdd Delete Update UserCustom

Primary Keys
Every table has a primary key (or at least should have one). A primary key enables each row to be
uniquely identified by a column or combination of columns.

As already stated, a primary key identifies a row of data in a table, but it does more than that. It also
enforces constraints upon the table, enabling checks to be made by the database server to ensure that the
data in a row is unique among the other rows in the table by having a different primary key.

The primary key can be defined on just one column or across several and can be set on different data
types. Primary keys are usually assigned a numeric data type, although some people also use unique
identifiers such as GUIDs. To create a primary key, take a look at the following code sample:

CREATE TABLE jobs
(

job_id  smallint
IDENTITY(1,1)
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PRIMARY KEY CLUSTERED,
job_desc        varchar(50)     NOT NULL

DEFAULT ‘New Position - title not formalized yet’,
min_lvl tinyint NOT NULL

CHECK (min_lvl >= 10),
max_lvl tinyint NOT NULL

CHECK (max_lvl <= 250)
)

Here’s a sample for creating a GUID primary key on a table:

CREATE TABLE Globally_Unique_Data
(guid uniqueidentifier 

CONSTRAINT Guid_Default 
DEFAULT NEWID(),

Employee_Name varchar(60),
CONSTRAINT Guid_PK PRIMARY KEY (Guid)
)

When the primary key is only on one column, then things are quite straightforward. It’s not possible to
have two rows with the same value within the primary key column. 

If the primary key is made up of multiple columns, it’s the combination of values in each column
defined as a primary key on the row that make up the unique key. It’s possible for values to be repeated
within the same primary key column; however, the combination of values across all the primary key
columns has to be unique.

Foreign Keys
When you have multiple tables in a database, it’s more than likely that they’re related in some way, and
databases control relationships between tables with foreign keys. A foreign key normally matches a 
primary key in a table. The table of the primary key can be a different table or the same table.

Here’s an example of a primary key/foreign key relationship. Suppose you have two tables, Customers
and CustomerPets, and inside the Customers table is a column named CustomerId, which is a numeric
data type and is set as the primary key of the Customers table. Inside the CustomerPets table is a
CustomerPetId column, which is the primary key of that table, but there is also a CustomerId column.
The CustomerId column in the CustomerPets table is joined to the Customers table via a relationship,
with the primary key being in Customers and the foreign key being in CustomerPets, as shown in
Figure 2-2.

Try to avoid using GUIDs within your primary keys; they are slower to search for
than numeric fields such as Int. GUIDs are primarily used in replication scenarios in
which an identity must remain unique so that data may be merged successfully.
Moreover, it’s easier to remember to type 1 than it is to remember to type
77B3E758-36D1-4890-A4A7-130A71FA07D5.
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Figure 2-2

Unlike single-column primary keys, it’s possible for foreign key columns to have duplicate entries; 
this enables the formation of one-to-many relationships, and enables us, as in the previous example, to
associate a customer with more than one pet.

As stated previously, it’s possible for a foreign key to reference the primary key in the same table. This is
especially useful when your table lists parent/child relationships. For example, it would be quite simple
to build a family tree from a single table of People that has a primary key of PersonId and two foreign
keys of MotherId and FatherId, as shown in Figure 2-3.

Figure 2-3

If you normalize your databases, you will already have many foreign keys; they are, if you’ll excuse the
pun, the key to normalization.

Creating a foreign key is very simple. This code shows how to create a key between Customers and
CustomerPets:

ALTER TABLE Customers 
ADD CONSTRAINT fk_customer 
FOREIGN KEY (CustomerId) 
REFERENCES CustomerPets (CustomerId)
GO
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Indexes
While indexes are not essential to database design, they are something worth considering. Indexes
enable the database server to quickly scan your tables for information, making search operations much
faster than the same tables without indexes.

When designing your tables, you need to think about how they will be used, especially which tables will
be heavily searched or joined into extensively. Once you’ve worked this out, it’s relatively easy to go into
the tables and assign indexes to the columns that are heavily used.

Indexes enable the database to search only a small part of the data, rather than the entire table. Thus,
they make searching tables much faster, and the benefits can be huge in terms of performance. Keep in
mind that tables with indexes will be slower when calling the INSERT, UPDATE, and DELETE statements,
so indexes should only be added to tables that really need fast access.

The columns that should have indexes are those referenced in JOIN or WHERE statements. Primary keys
in SQL Server automatically have indexes assigned to them, but not on foreign keys, so you’ll need to
assign these manually. When you’re ready to optimize your current or new systems, always try to apply
some indexes to your tables. You could well see dramatic increases in performance.

Views
More often than not, you’ll be working with a normalized database schema; and when working with a
normalized schema, one of the major drawbacks is the complexity of queries. Views are a great way to
hide that complexity by presenting your code with clean, tidy result sets. 

Views enable you to look at a table, or a number of tables, in whatever way you want. They act like
tables in terms of running CRUD operations against them, but the underlying data might not actually
exist in the format in which it’s represented. Views enable you to easily abstract your data from the real
database layout or to present compiled views of data.

Views also enable you to encapsulate complex queries across many tables and return just the data you
need, which can be very useful when you have a fully normalized database and wish to retrieve data
that’s ready for the presentation layer (after all, you don’t need all those primary and foreign keys if
you’re just showing some search results). 

Help with Normalization
You can use Views to normalize data that’s all mashed together in the same tables, such as using a
SELECT DISTINCT on a textual column of a table that’s not normalized to give you a lookup table of the
values within: 

Create View AllCustomerTypes

As

Select Distinct CustomerType
From Customers

Go
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Performing a select on all of the columns in the AllCustomerTypes query returns a normalized list of
all possible Customer Types:

CustomerType                                       
-------------------------------------------------- 
Adored
Beloved
Tolerated

Enforcing Security
By only allowing access to your database with views, you can completely control the data that your
users are allowed to see, while hiding the real data and database schema from them. An example of this
might be allowing your sales assistants to see what type of pets someone has, but not the customer’s
address:

Create View ViewCustomersListPets

As

Select CustomerId, P.PetName
From CustomerPets CP

Join Pets P
On P.PetId = CP.PetId

Go

In this example, anyone searching for information on the customer can only gain access to the view and
thus only the information exposed by the view. The salespeople can only run queries like this:

Select CustomerId, PetName
From ViewCustomersListPets 
Where CustomerId = 1

The query would return data like the following:

CustomerId  PetName                                            
----------- -------------------------------------------------- 
1           Dog
1           Rat

As you can see, views can be used to lock down the kind of access you provide to your applications,
making your database a much safer environment to let users loose on.

Creating Compiled Views of Data (Reports)
Views are great for creating compiled sets of data from your database. For example, if you wish to know
the percentage of your customers that have a cat, then it’s quite easy to throw a query together to do
this, but there’s no need to repeat this SQL in every statement that needs the percentages:
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Create View CustomerPetPercentages

As

Select PetName, (Convert(Numeric(5,2),Count(PetName))/(Select
Convert(Numeric(5,2),Count(PetName)) From Pets)) * 100 AS ‘Percentage’
From dbo.CustomerPets CP

Join dbo.Pets P
On P.PetId = CP.PetId

Group By PetName

Go

Running a SELECT on the view returns a compiled “View” of the data in both the CustomerPets table
and the Pets table. It also performs some calculations, and it’s all wrapped up in the view:

PetName                                            Percentage          
-------------------------------------------------- ------------------- 
Badger                                             20.00000000
Dog                                                20.00000000
Giraffe                                            20.00000000
Rat                                                40.00000000

In conclusion, views can be very useful for encapsulating business logic and compiling data to make it
more user-friendly in a reusable fashion. They can be used liberally with no impact on your database
schema in terms of a small performance hit.

Normalizing
This is a topic that is often overcomplicated, but is actually quite simple when you understand it. The
best way to describe normalizing a database is think of it as breaking your data down to its logical units,
i.e., the smallest possible objects that make up your data. Then, for each one of them, you need to make
sure that it lives in it’s own table, that the data is not replicated, and that the table in some way relates to
other tables where appropriate.

Why Normalize Data?
Normalization isn’t just a fad — it’s probably the most important part of database design. Without it, you
can get into a real mess — if not right now, when you need to make changes to your schema by adding
more functionality or by fixing design flaws.

Data should be normalized to remove repeated or redundant data. Doing this instantly reduces the
amount of space your databases need to occupy, as well as speeds up scans of your tables — with the
free bonuses of gaining increased maintainability and scalability.

By reducing the amount of repeated data, the chance of finding errors in your data is dramatically
decreased simply because there is less data to contain errors.

24

Chapter 2

04_584375 ch02.qxd  10/28/05  10:47 PM  Page 24



Types of Normalization
There are many different degrees of normalization in both academic and real-world settings. In most
cases, the different levels of normalization are linear — for example, there are the nth Normal Forms,
whereby First Normal Form is the simplest, and the Third Normal Form is more complicated.

There are four main forms of normalization. Each one represents a different level of normalization —
from not normalized at all to the nirvana of normalization.

First Normal Form 
With the first form, the goal is to remove any repeated groups of data from any tables. That’s an easy 
concept to grasp: If you’ve got the same few text labels appearing in a table, then they need to be normalized
into their own table, and a foreign key should be added to the table that is storing your data. In addition,
if you have multiple columns in a table storing the same type of information, this should also be hived off
to a separate table. Remove repeated groups of data.

Second Normal Form
Using the second form, all rows containing the same information should have that information hived
out to separate tables with foreign keys linking the data.

Third Normal Form
When trying to achieve the third normal form, all columns in the table that are not directly dependant
on the primary key should be removed and placed in their own tables, with foreign keys creating relation-
ships between the tables.

Domain\key Normal Form
This form is the nirvana of normalization. As mentioned previously, databases cannot be more normalized
than they are when they’re in the Domain\key normal form. Each row of every table has its own 
identifying column.

Real-world Normalization
Outside of the academic world, there is one form of normalization: The one that works for you for the
current project in the allowed time frame.

If you’re a masochist and have been given enough time to use the Domain\key model, give it a whirl.
However, if your boss is breathing down your neck with a mandate to finish the application yesterday,
sometimes it’s better to just go with what works with the least amount of effort, and deal with the 
consequences later.

In 99 percent of the cases, the Second Normal Form is the level you should try to achieve in your 
projects. It offers the best level of maintenance without too much of a compromise on performance.
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Designing a Normalized Database
To create a normalized database, you first need to understand the applications that will be using your
database and how they need to work, their feature sets, and any further modifications or features that
are to be implemented with future releases. Once you understand the applications, you can begin to
map out the database structure. 

First, write down a list of all the “things” in your applications, be they customers, pets, products or
countries — each of these items will need their own table. Second, work out the different ways in which
you need to pull all the data together to provide the kind of information you will need. For example, 
if you want to know which of your customers in England have a pet badger and bought your kitten
warmers, you must have a Purchases table. If you don’t, you’ll need to add one. Third, map out all of
your tables on paper or using a database design tool, such as the diagram tool in SQL Server 2000
Enterprise Manager. Fourth, sit down with each of the application-specification documents again, going
through each of the features you require and making sure your database can provide it. If you identify
any feature that the database can’t fulfill, rethink your design so that it can. Once you’ve gone through
the fourth step a few times, you should be ready to start creating your tables, so dive in, remember the
rules, and follow your design.

Ensuring Quality Data
While the primary focus of this chapter has been on the physical structure of database schemas, it’s
equally important to ensure that the data you’re storing is of as high a quality as possible, and that the
data you’re storing is what you actually need (or will need in the future) — the schema is just a way of
holding it.

If you’re at the beginning of a project and you’re about to start putting the database together, look carefully
at your application design document (if there is one that bears any relation to the actual application, and not
just the sales teams’ interpretation), and make sure you understand the functionality required inside out. 

Run through each feature and try to visualize the database; you’ll soon see where you need one-to-many
relationships, where you’ll need fast tables to search, and where you’ll need to version your records. All of
this needs to be factored into your schema before you dive in and put the database together.

Validating the quality of your data is probably the most important aspect of database design after the
layout of your tables. If your data is corrupted or has invalid values, then all of the applications running
off the database are susceptible to unknown outcomes, and potentially could crash. 

We once wrote a Web application that was built on top of a company’s existing product database. The
application worked perfectly for months until all of a sudden errors started to occur whenever a search
was run against the database server. It became apparent that one of the products on the system had been
entered with a ridiculous price of several billion dollars, and the search query (which was doing a bit of
price manipulation) didn’t like it one bit. 

The erroneous data took the application down. If that data had been validated before it went into the
database, the crash would never have occurred; and a site would not have been offline for several hours.
You know that validation is important, but how can you go about mapping out the validation routines?
Basically, you need to ask questions about every column in the database that isn’t a primary or foreign key. 
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Consider some hypothetical examples: Could you let someone put any type of date into a Purchases
table? (Were you selling computers in 1930?) Could you have sold them in the future? (Do your cus-
tomers own a time machine?)

Similarly, what are the realistic prices for your product range if you have one. Would you really sell one of
your supercomputers for $29.99? (You may have seen the “bargains” on Amazon occasionally when the
odd electrical item is accidentally priced at less than a dollar, causing panic buying and much merriment
among the technology community.)

You should perform similar checks against data in the e-mail address column. (For example, you shouldn’t
have an address without the “@” character in them.) All of these checks and more should be built into your
applications, but they should also be in your database server. Check constraints can enforce any business
rule you like on whatever columns you like in your tables.

For example, in the following table of products, we don’t want any products on the database that are
priced less than $10,000 or greater than $1,000,000. You can see the check constraint called
CK_ProductPrice that shows this business rule:

CREATE TABLE [Products] (
[ProductId] [int] IDENTITY (1, 1) NOT NULL ,
[ProductName] [nvarchar] (50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
[ProductPrice] [money] NULL ,
CONSTRAINT CK_ProductPrice CHECK (ProductPrice >= 10000 And ProductPrice <=

100000),
CONSTRAINT [PK_Products] PRIMARY KEY  CLUSTERED 
(

[ProductId]
)  ON [PRIMARY] 

) ON [PRIMARY]
GO

Now suppose someone tried to insert a row into the database that doesn’t pass our check constraint,
such as the following:

Insert Into Products
(ProductName,ProductPrice)
Values
(‘My Socks’,5)

The database will very helpfully throw out a check constraint conflict error message, preventing those
socks from ever appearing in the products list:

INSERT statement conflicted with COLUMN CHECK constraint ‘CK_ProductPrice’. The
conflict occurred in database ‘ADO.NET’, table ‘Products’, column ‘ProductPrice’.

The statement has been terminated.

To summarize, the database should be designed around the data and required functionality of your
applications. That way, you’ll get the database that you need, and your boss will shower you with lavish
praise.
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Making a Flat Database Normalized
More often than not, you’ll find databases or portions of a database that are not normalized and which
look a lot more like a spreadsheet than something on which you’d base your company’s future. 

If it’s possible to change the way in which the database is structured without seriously affecting the
applications that depend on it, and it’s cost-effective, then you can reap the benefits of converting a flat
design to a relational design.

So where do you begin with the conversion? It all depends on the circumstances. Some designs can be
easily changed over if they’re not used by other applications, whereas others will be tightly integrated
with applications, which will need all their data access operations abstracted away from the database
itself before you can make any changes. 

When there are no dependent applications sucking the data out of your database, then changing the way
your tables are structured is quite easy. You can create a new schema and have it run in parallel to your
existing design, or you can migrate the existing design over to a new schema. 

When running in parallel, you’ll need to duplicate the changes in the one database to ensure that they
are reflected in the other.

Abstracting away from your databases is the best way in which a parallel system can be managed. One
way in which this can be achieved is by creating stored procedures for all of your data access methods and
having those stored procedures feed in to both of your databases at the same time, thereby abstracting from
the actual tables. In other words, you can have the legacy applications continue to work fine with the old
database until you have the time to migrate them to the new database, while any new applications can take
advantage of the new database schema and all the loveliness it provides.

Figure 2-4 shows this system design.

Migrating from one schema to another is much more difficult to achieve successfully because not only
do you have to ensure that the schema is spot-on, you also have to ensure that all of the applications
dependant on your database are happy living on the new schema and that they work as expected.

While migrating the schema can be very challenging, it’s nothing compared to reshaping your data,
which is very difficult.

Be aware that migrating database schemas is a very expensive operation to 
undertake, especially if nothing is currently broken. 

Before any migration is even considered, consider the popular adage “If it’s not 
broken, don’t fix it.”

Not only do you have to design the new schema, you also need to migrate any old
data, in addition to redesigning, deploying, and testing dependant applications. 

Migration is no small or easy job.
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Figure 2-4

Performing data migration requires an explicit knowledge of the data within your database. Once you
understand all the ways in which the data is used, you can begin to work out the best way to migrate it
to any new schema. Keep in mind that dependencies might exist on data that you don’t think relevant at
the time, so proceed carefully and begin the migration with the most important (top-level) tables first,
and then work your way down.

The easiest way to perform the migration is to write a SELECT statement for each of the “objects” in your
new schema that extracts the existing data from the current database, enabling you to easily drop it into
your new schema:

Insert Into NewDatabase.Customers
( Id, FirstName, LastName )
Select CustomerId, Firstname, Lastname –Other 50 columns not needed in new schema!
From OldDatabase.Customers

Some other ways in which this can be done include using Data Transformation Services (DTS) or the
Bulk Copy Program (BCP). Once you’ve decided how you want to perform the migration, it’s a good
idea to script it all up so that the process can not only be automated, but also tested heavily.

The basic rules are as follows:

1. Define all of the objects in your application(s) design.

2. Create a normalized schema from your object list to represent the new database.

3. Migrate data from the old database to the new database.

4. Create a clean set of stored procedures to access your new schema, with the option of simultan-
eously maintaining the data in your old schema if it’s needed.

5. Test until your fingers are bleeding and your applications squeak with glee.

To summarize our brief tour of migration, keep in mind that it is difficult, and often costs more than
sticking with what you’ve got.

Old API

Old DB

New API New
DB
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A Black Cloud on the Horizon
While you’re normalizing your tables, it’s a good idea to keep performance in the back of your mind. For
every table you normalize, you’ll be adding overhead to your queries and slowing down any applications
that will use your database. 

You should Draw the line at a few things. For example, there’s little point to normalizing data that is
incidental to the rows in which it’s stored. An example of this is the AddressLine2 column in the
Customers table. It could be moved out into its own table, and just referenced with a foreign key in 
the Customers table. This would make the table more normalized, but at a cost: Every time you need to
get the full address of a customer, you have to reference two tables instead of just one, so the gain is too
small to justify normalizing it.

After you’ve normalized your database, there is a performance hit, but that can be worked around with
some clever trickery. One thing you can do is have denormalized versions of your data in separate
tables, using triggers on the normalized tables to maintain (insert, update, and delete) records in the
denormalized table. 

Add all the indexes that are appropriate and search directly against the denormalized table to get the Ids
for the records you need. It’s also useful to only keep “live” data in the denormalized table. This way,
your working set (what’s in the table) is smaller, which will make searching against the table much faster.

This may not be the most “normalized” way of designing databases, but in the real world, performance
is typically much more important than academic design principals. This way, you get the best of both
worlds.

In short, normalize where it makes sense, denormalize if you need performance, and don’t be afraid to
play around with indexes on your tables — they will give you massive increases in performance for
many of your tables.

Working with Someone Else’s Database
More often than not, you won’t be able to choose the database structure you’re using, so you need to be
able to make the best of a bad situation. We recently worked on a project for which we were hired to
develop a fully interactive Web site on top of an existing database. Upon receiving some samples of the
database tables, we were horrified to realize that there was no schema — not a bad one, but none at all.

One of the tables had over 260 columns. It even had multiples of some columns inside the same table. This
is an extreme example, but tables are often allowed to grow larger over time with no thought given to
maintenance or the amount of data, and thus, hard disk space, they are using up. In this case, it was almost
as though someone had taken an Excel sheet and placed it into a database server, hoping for the best.

The following sections explain some of the ways you can get around bad database design and ensure
that your applications don’t creak in the same way that the database might.
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Don’t Make It Worse 
It’s easy to fall in to the trap of “going along” with what’s already in place — in fact, sometimes you
might not have a choice, but if do have any control over the shape of the data your working with and the
objects within a database, try not to compound the problem.

As tempting as it might be to just add one more column, think long and hard before doing so. Before you
know it, you’ll have a table like the monstrosity described in the preceding section, with hundreds of
columns, all just added on as “one more column.”

One very simple way you can avoid making this mistake is by making sure the structure you’re adding
is going into its own normalized tables where appropriate, using the primary key in the “bad” tables (if
it’s got one) to join into your normalized tables.

Abstraction is the way to get around making things any worse. Leave the database alone if you can and
move outside of the database server and into your code. Views, DataSets, and custom business objects
all help achieve this, as described in the following sections.

Using Views for Database Abstraction
Views are provided to enable subsets or compiled pages of data. They can be used to return whatever
“schema” you wish from the existing schema.

By placing views that impersonate a highly normalized schema between your applications and a 
badly designed database, you gain all of the benefits of normalization with an almost insignificant 
performance cost.

An example of this would be combining the “CustomerPet1” and “CustomerPet2” columns from the
“Customers” table to retrieve a distinct list of all of the Pets on the database:

Create View CustomerPets

As

Select DISTINCT CustomerPet1 As PetName
From dbo.Customers
Where Not CustomerPet1 Is Null
Union
Select DISTINCT CustomerPet2 As PetName
From dbo.Customers
Where Not CustomerPet2 Is Null

Go

Running a SELECT on the CustomerPets view would return a ResultSet something like this:

PetName                  
---------- 
Badger
Dog
Giraffe
Kitten
Llama
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As you can see, you’ve gained a normalized view of the data without a normalized database — it’s
cheating, but sometimes it’s the only way to get what you want.

Using ADO.NET to Create a Normalized View of the Data
The ADO.NET DataSet is a very powerful object that can be used to create a full in-memory representation
of your database schema, or any database schema you wish. This enables you to abstract a poor database
design into a tidy normalized in-memory DataSet.

Creating a DataSet with multiple tables and relationships is achieved by using DataRelation objects
with constraints enforced by UniqueConstraint and ForeignKeyConstraint objects, enabling you to
build a fully relational database, all in-memory. Figure 2-5 shows the structure of a DataSet.

Figure 2-5

By using ADO.NET DataSets, not only do you get a normalized version of your data, you also get loads
of other cool features, which are covered in depth throughout Chapter 3.

In ADO.NET 1.0 and 1.1, the DataSet is very large and slow. For ADO.NET 2.0, many optimizations
have been added under the hood to make the DataSet a real contender in the framework for both speed
and features, including a new indexing engine and the option to use binary serialization. You can find
more detailed explanations of using the new ADO.NET 2.0 DataSet features in Chapter 3.

DataSet

DataRelationCollection

ExtendedProperties

DataTableCollection

ChildRelations

ParentRelations

Constraints

ExtendedProperties

DataColumnCollection

ExtendedProperties

DataTable

DataView

PrimaryKey

DataColumn

DataRowCollection

DataRow
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Building Strongly Typed Business Objects
It will often be the case that you’ll have no control over the database, meaning the only area of the 
applications that you can edit is the code itself. Other times, changes may be planned for the database
but are not yet in place, so all you can do is prepare from them.

By using strongly typed business objects, you can build a consistent, highly normalized schema for your
data, no matter what data source it’s originating from. In addition, you can enforce a structured API to
work against, as well as house all the business rules inside your objects.

As the business objects exist separately from the databases from which their data is being retrieved, they
can take any form of schema you wish — they can match the database exactly or be completely different.

For example, you may have a flat table in the database with two columns containing a pet. However,
your object model can represent the data in a different way; for example, there would be nothing to stop
your Customers from having a Collection of Pet objects.

Figure 2-6 shows a denormalized table.

Figure 2-6

It’s quite simple to expand this denormalized design into a fully normalized in-code representation of
the objects as so:

‘This is the Representation of our Customers
Public Class Customer

‘Our Customers can have as many pets as they like in
‘this pet collection
Private _Pets As PetCollection
Public Property Pets() As PetCollection

Get
Return _Pets

End Get
Set(ByVal value As PetCollection)

_Pets = value
End Set

End Property

End Class

‘Here is the Pet object, even though there isn’t one in 
‘the database
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Public Class Pet

Private _Name As String
Public Property Pets() As String

Get
Return _Name

End Get
Set(ByVal value As String)

_Name = value
End Set

End Property

End Class

‘This is a collection for the Pets
Public Class PetCollection

Inherits System.Collections.CollectionBase

Public Overridable Function Add(ByVal value As Pet) As Integer
MyBase.List.Add(value)

End Function

Default Public Overridable Property Item(ByVal index As Integer) As Pet
Get

Return DirectCast(MyBase.List.Item(index), Pet)
End Get
Set(ByVal value As Pet)

MyBase.List.Item(index) = value
End Set

End Property

End Class

Bringing Them Together
Once you have your custom Views feeding data into the ADO.NET DataSet(s), from which your business
objects are then reading their data via a well-structured API, you can forget that underneath all your code
there’s a mess lurking in the darkness (the Database from Heck), or rather, you can forget about it for now.

Going back to the database from Hades introduced at the beginning of this section, we used the methods
outlined in this chapter to normalize the single table into 14 separate tables. This was achieved by taking
the data in its raw format, parsing it out, placing the values into a custom business object (with all of the
business rules in place to validate the data), and then injecting them into the clean database schema. 

By abstracting away from the database itself, you achieve a level of separation that lends itself to N-Tier
design. After all, what’s the good of a perfectly normalized database without applications that can talk to it?

Your ultimate goal when working around bad database design is to make it as easy as possible to
migrate the old design to a new design with as little impact as possible on your applications. Ideally, you
should not have to change your applications, other than switching their connection strings or data
sources to a normalized version of your database when the time arises.
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As hard as a job might look, you can normalize anything, given enough time and enough effort. It’s usu-
ally worth it for the sake of your sanity if nothing else.

To Delete or Not to Delete . . .
When a record is deleted, it’s clear that the data it represents is irretrievably lost without the use of
restoring database backups. In many circumstances, it’s not a problem that the data has been removed,
but as soon as you’re asked to report on data that is no longer there, you’ll be in a pickle.

Some laws require that certain types of data be stored indefinitely, and other laws require aspects of data
to be deleted when it’s no longer relevant. Be sure to check with your appropriate departments if there is
any risk of running afoul of the law.

There are several ways in which you can ensure that you never delete your records, thereby ensuring
that they’re always available to be reported on and queried.

Archiving the data into a different database is a simple way to ensure your current working sets of data
are kept clean by only storing the most recent data. By maintaining another database with the same
schema as your current set, you can easily transfer data across and maintain it for full reporting and
queries.

Compiling your data into statistics where appropriate and just storing the compiled statistics instead of
the raw data is another very easy way to ensure that all of your data is kept intact as you remove old
information from the live tables.

Other ways in which you can preserve data is by versioning records, via version numbers, Boolean (bit)
fields indicating the current row, or by using date spans that indicate a range of dates in which the data 
is valid. This method can be somewhat cumbersome because your tables never actually shrink in size;
nothing is ever deleted, not to mention the fact that you have extra columns storing versioning information.

Getting at the Data from Your Code
There is one additional area that needs to be covered before we close this chapter: how your applications
should access the databases and schemas you’ve slaved over.

Don’t lock your applications into specific databases if you don’t have to — you never know when you
might be forced to switch to Oracle, DB2, or even ... Progress(!). 

Luckily, ADO.NET 2.0 offers some fantastic new features that enable you to write database-independent
code, meaning that you can get on with writing your applications while the Oracle guy can work out its
oddities and the DB2 girl can decipher the ways of that Database server; your code needn’t care.

Using the Abstract Factory model to write your code instantly decouples your applications from the
database they’re talking to with next to no cost. This completes the “good design” model that you’re
implementing within your databases and extends it into your business logic tiers.

The interfaces in ADO.NET 2.0 are shown in the following table with their SqlClient implementations.
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SqlClient Class Base Class Generic Interface

SqlConnection DbConnection IDbConnection

SqlCommand DbCommand IDbCommand

SqlDataReader DbDataReader IDataReader/IDataRecord

SqlTransaction DbTransaction IDbTransaction

SqlParameter DbParameter IDbDataParameter

SqlParameterCollection DbParameterCollection IDataParameter
Collection

SqlDataAdapter DbDataAdapter IDbDataAdapter

SqlCommandBuilder DbCommandBuilder

SqlConnectionStringBuilder DbConnectionStringBuilder

SqlPermission DBDataPermission

Using interfaces in your code means that you’re decoupling from the data source. However, a slight cost
is incurred, and that cost is one of changing the way you write any ADO.NET code — for example, this
SqlClient code:

Dim Conn As SqlConnection = New SqlConnection(“connstring”)
Dim Comm As SqlCommand = New SqlCommand(Conn, “commandtorun”)
Comm.Connection = Conn
Comm.CommandText = “commandtorun”
Comm.CommandType = CommandType.StoredProcedure
Dim DS As DataSet = New DataSet()
Dim SqlDataAdapter DA = New SqlDataAdapter(Comm)
Conn.Open()
DA.Fill(DS)
Conn.Close()
Conn.Dispose

After being rewritten to take advantage of the Abstract Factory approach, it would look like the following:

Dim Conn As IDbConnection = GetConnection()
Dim Comm As IDbCommand = New IDbCommand()
Comm.Connection = Conn
Comm.CommandText = “commandtorun”
Comm.CommandType = CommandType.StoredProcedure
Dim DS As DataSet = New DataSet()
Dim IDbDataAdapter DA = New IDbDataAdapter(Comm)
Conn.Open()
DA.Fill(DS)
Conn.Close()
Conn.Dispose
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The second example doesn’t use any classes from the System.Data.SqlClient namespace, meaning
it’s completely generic and can be pointed at any database server just by changing what connection is
loaded up from the GetConnection() method. We cover this in much more detail in Chapter 3.

Summary
This chapter has covered a very large area, so it has necessarily sacrificed depth for breadth. The infor-
mation contained here should provide the building blocks you need to meet your own design chal-
lenges. As you do more research to determine which methodologies and techniques best suit your own
situation, keep the following points in mind:

❑ Only use the advice in this chapter if it’s relevant to you and your business needs. The rules out-
lined here are only general guidelines. You need to work out what is best suited for your business.

❑ Be consistent in whatever you do, be it naming conventions or schema design.

❑ Once you pick a direction, you’ll be stuck with it, so think long and hard before you do anything.

❑ If it’s not broken, don’t fix it. Rather, if it’s not going to break, don’t fix it!

❑ Remember that you’re not (usually) paid to write good code but to write code within the deadline.

Now that the design is out of the way, it’s time to get your hands dirty and write some code. Chapter 3 is
a whistle-stop tour of all the basic ADO.NET features out there and how to best use them.

For More Information
To complement the information in this chapter, take a look at the following resources: 

❑ MSDN library, “Normalization” —http://msdn.microsoft.com/
library/default.asp?url=/library/en-us/createdb/cm_8_des_02_2oby.asp

❑ Wikipedia, “Normalization” —http://en.wikipedia.org/wiki/Database_normalization

❑ Database Knowledge Base, “Database Design” —http://database.ittoolbox.com/nav/
t.asp?t=349&p=349&h1=349
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ADO.NET Essentials

In this chapter, we delve into the essential ADO.NET features and explore the best practices 
surrounding them. We do all of this in a provider-independent way; the code and principles 
covered here should work for SQL Server, Access, Oracle, MySQL and a whole host of other
database servers.

As you move through the chapter, you’ll be taken through the code to build a basic Data Access
Layer, or Helper, before you actually move on to implementing many ADO.NET features.

Each point in this chapter is presented to you in the form of a self contained method. Each method
not only shows you how to do something, it also proves to you that it works, and it even lets you
change the settings to point to your own databases and providers to test the sample code against
them. This chapter should be worked through in a linear manner, as the initial base classes need to
be built to provide a platform on which all of the other methods reside.

As you read this chapter, you may notice that we stray somewhat from the subject of ADO.NET.
This is because development as a whole needs to be taken into consideration when creating
ADO.NET code. 

Not Another ADO Release!
Autumn (or fall, depending on which side of the Atlantic you live on) 2005 marks the arrival of the
.NET Framework 2.0. In the past, new releases of ADO meant immense amounts of hair-tearing,
tears, and murderous thoughts at the prospect of uprooting your existing code and rewriting it in
the new format. 

Your code can still be specific to the provider you are using. The code in this chapter
has been written in a provider-independent way so it can be applied to any of the
providers. You don’t have to switch all your code around!
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Never fear, this release of ADO.NET won’t force you to rewrite anything. Your old code should work
under the new Framework (unless you’re still using any of the bugs they’ve fixed — but you wouldn’t
do that . . . would you?).

No Revolutions
The new ADO.NET API is the same as before; it hasn’t been turned upside down. In fact, the existing
API has been carefully extended so that the code and applications you’ve written in 1.0 or 1.1 should
continue to work without any change. 

All of the features introduced in ADO.NET 2.0 can be used incrementally. In other words, if you want to
use one of the new features, all you need to do is add on to your existing code; you don’t have to switch
to a whole new API model. In general, you can preserve your existing code base, only adding the things
you need for one particular feature in one part of your application.

We’re telling the truth — the API still works!

Obsolete APIs 
With every release of .NET, Microsoft has a bit of a spring clean, and this release is no different. They’ve
killed off a few of the methods, types, and properties. What we said earlier still applies, however: Any
old code you have with methods or types that have been deprecated or made obsolete will continue to
run under ADO.NET 2.0, even if it has references to APIs that have been removed in .NET Framework
2.0. There is one catch: You can’t recompile those applications with obsolete APIs under .NET 2.0 with
the references remaining.

For example, take something simple, such as this Console application, which was originally built in
.NET 1.0 under Visual Studio 2002. It instantiates the System.Data.OleDb.OleDbPermission class
with a blank constructor, which was made obsolete in .NET 1.1 and remains obsolete in .NET 2.0:

namespace DotNetHosting
{
Sub UseObcoleteClass

Dim ODP As New System.Data.OleDb.OleDbPermission

End Sub
}

The preceding code compiled (and still compiles) in .NET 1.0 without any problems. If, however, you
attempt to compile the same code under .NET 1.1 or 2.0, the compiler will not be particularly nice to
you, presenting you with a rather colorful compilation error:

‘Public Sub New()’ is obsolete: ‘OleDbPermission() has been deprecated.  Use the
OleDbPermission(PermissionState.None) constructor.

When you run into that kind of exception and you want to compile your application under that version of
the Framework, you must change your code to bypass the compiler errors. In the case of the preceding
example, you can see that the compiler error that was thrown also describes the fix you should perform.
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This issue only exists, however, if you wish to recompile your applications. You don’t need to recompile
them, of course, just to have them run under a new version of the Framework. In fact, if you’ve already
installed .NET 2.0, it’s likely that many of your .NET applications are already running under it. (You can
confirm this by checking the value of System.Environment.Version.ToString(). It will tell you the
version of the Framework under which your applications are running.)

As long as you don’t recompile your applications, they will continue to work fine under any version of
the Framework. You can force an application to run under a specific version of the Framework very easily
with the addition of an entry to the application’s configuration file (app.config/web.config) that
defines the version of the Framework the application is to run under:

<startup> 
<supportedRuntime version=”v1.1.4322” /> 

</startup>

In short, you don’t need to recompile your existing applications to take advantage of the 2.0 release of
the .NET Framework. In fact, you’re probably already running existing applications that were developed
in .NET 1.0 and 1.1 under .NET 2.0. Moreover, if you need to recompile your existing applications in
.NET 2.0, you’ll have to clean up anything that has been removed from the Framework.

Try your applications under .NET 2.0. You might find they work flawlessly and that you can take complete
advantage of the performance increases in both ADO.NET 2.0 and the Framework in general at no cost.

APIs in Their Twilight Months 
As well as dealing with types and methods that have been removed in .NET 2.0 or previous incarnations of
the Framework, .NET 2.0 introduces changes of its own, marking many types and methods as obsolete —
in other words, they won’t work in future versions of the Framework.

In the past, Microsoft has dealt harshly with the deprecation of members and types. In the transition
between .NET 1.0 and .NET 1.1, types and members marked as obsolete would not compile under 1.1.
With .NET 2.0, types and methods that have the mark of death placed on them by the Microsoft Grim
Reaper are not being blocked outright. Rather, the compiler will provide warnings, informing developers
of the API’s impending death.

What this means for you, the developer, is that you can continue to use the APIs that have been placed
on death row. However, you already know that the code won’t compile in .NET 2.0, so be forewarned.

A full list of all the changes between all versions of the .NET Framework can be found at www.gotdotnet
.com/team/changeinfo/default.aspx.

We can’t guarantee your code will work. Microsoft says it should, but of course, we
all know their track record on that point — it means they may be writing some
future notes of their own.
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As an example of this deprecation and warning system, take a look at the following code, which uses the
SqlParameterCollection.Add(string,string) method signature that has been marked as obsolete
in .NET 2.0:

Sub SqlSqlCommandAddParameter()

Dim SqlComm As New System.Data.SqlClient.SqlCommand

SqlComm.Parameters.Add(“@Socks”, “Smelly”);

End Sub

By default, the code will compile and run without any issues under .NET 2.0, but the compiler will 
output a warning that indicates the method signature has been marked as obsolete. The warning looks
like this:

‘Public Function Add(parameterName As String, value As Object) As
System.Data.SqlClient.SqlParameter’ is obsolete: ‘Add(String parameterName, Object
value) has been deprecated.  Use AddWithValue(String parameterName, Object value). 

Think of the warning as a death knoll ringing on the APIs that have been marked as obsolete.

To be completely accurate, the preceding code may or may not compile, depending on the settings of your
build environment and whether warnings are treated as errors. If it doesn’t compile cleanly, you’ll need to
change the code to use new or alternative methods suggested by the compiler in the error message.

If you find yourself receiving compiler warnings, change your code. It’s not worth the hassle down the
line after you’ve forgotten all about the code and then find yourself needing to change its functionality or
fix a bug (not that our code ever has any. . .), or discovering that it won’t even compile on future versions
of .NET.

The Generic Factory Model
If you don’t know what the Generic Factory Model is and you develop against different database servers,
then you’re in for a real treat. Microsoft has outdone themselves with ADO.NET 2.0 and come to the 
rescue of all multiplatform database developers.

One day you might be developing against a SQL server; the next you might be developing against an
Oracle server. It’s possible down the line you’ll be asked to develop against a fridge freezer. Whatever your
data source, ADO.NET 2.0 gives you a provider-agnostic platform on which to build your applications,
meaning you can write your code once and have it work on any data source you wish. 

The Generic Factory Model is an architecture that enables access to any database, from one set of code.
ADO.NET 2.0 has that architecture plumbed right into the Framework, so you can use it too.

Inside the System.Data.Common namespace are some lovely new classes that enable us to make 
platform-independent code very easily, but before we get our hands dirty, we’ll quickly run through the
Generic Factory Model.
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Providers
During the Dark Ages (when our only Framework was .NET 1.0), there were three providers in the form
of the following namespaces:

❑ System.Data.SqlClient

❑ System.Data.Odbc

❑ System.Data.OleDb

In those days, we were encouraged by samples all across the Internet, in books, and by our peers to
directly use the most appropriate set of classes from the correct namespace. Doing this was problematic,
however, because after a specific provider such as SqlClient was hard-coded into the application, the
code could no longer be used to look at an Oracle database server using the OracleClient provider. In
other words, we were locked into a single provider, and when our bed was made — as the saying goes —
we had to lie in it.

If you wanted to write platform-agnostic code in the olden days (nearly three long years ago), you’d
have to use a bit of black magic, interfaces, and a switch statement:

Public ReadOnly Property Connection() As System.Data.IDbConnection
Get

Select Case OldGenericFactoryHelper.Provider
Case “SqlClient”

Return New System.Data.SqlClient.SqlConnection
Case “Odbc”

Return New System.Data.Odbc.OdbcConnection
Case “SqlClient”

Return New System.Data.OleDb.OleDbConnection
Case Else

Return Nothing
End Select

End Get
End Property

As you can see, the method returns an interface of type IDbConnection, which is a generic implementa-
tion of the Connection class that all provider-specific classes implement (SqlConnection,
OdbcConnection, and so on). This approach enabled you to code against the interfaces, rather than the
specific providers, but it always felt a little dirty. 

Any application employing this approach had a design that was completely platform-independent. The
data access architecture is shown in Figure 3-1.
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Figure 3-1

One of the main problems with this model was that each time a provider was added to the system, the
switch statement had to be altered. The fun didn’t stop there, though. You also needed switch statements
for all of the other provider-specific classes, such as those that implement IDbCommand, so that your 
applications could retrieve the right Command class (SqlCommand, OleDbCommand, OdbcCommand, 
and so on).

Although this wasn’t a massive problem, and the approach generally worked well, the ADO.NET 2.0
team at Microsoft came up with a much better solution, called the Generic Factory Model, described in
the next section.

ADO.NET to the Rescue
ADO.NET 2.0 solves the aforementioned problem by introducing Factories into the Framework. Just like a
real factory, a Factory takes in raw materials and produces fully working products. In this case, the raw
materials are the providers we want to use, and the products are the provider-independent classes we need.

The provider-independent classes include DbConnection, DbCommand, and DbParameter, as well as a
whole host of other classes. The way they are used is very similar to the way they were used in the old
model, but they come from a Factory built into the Framework — you don’t have to write the code yourself.

The new architecture is shown in Figure 3-2.

Your Application

SqlConnection OdbcConnection

OracleConnectionOleDbConnection

SqlClient OleDb Odbc Oracle Shoe Box

ShoeBoxConnection

IDbConnection

Switch Statement
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Figure 3-2

In other words, you no longer have to code any switch statements. Better yet, the .NET Framework will
do all the hard work for you. For example, if you want a SqlClient connection object, all you need is the
following:

Public Shared Function GetConnection(ByVal providerName As String)
Return

System.Data.Common.DbProviderFactories.GetFactory(providerName).CreateConnection()
End Function

If you want a command object, then it’s as simple as calling CreateCommand() on the Factory returned
by GetFactory(). This code is much cleaner and self-maintaining. You never have to modify it, even to
use new providers — they just appear to your code automatically.

See how all of this makes life easier? We’re speaking one language only, that of the provider-agnostic
class implementations. Now let’s go into a little more detail regarding the real-world implementation of
ADO.NET 2.0 Provider Factories.

DbConnection

IDbConnection

Your Application

SqlConnection OdbcConnection

OracleConnectionOleDbConnection

SqlClient OleDb Odbc Oracle Shoe Box

ShoeBoxConnection

Provider Factory
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DbProviderFactories
The Factory is the key to the Generic Factory Model; without it, there would be no model. It’s the creator
of all of your classes, and it’s the place where all of the real work happens.

The .NET Framework is shipped with a bundle of Factory implementations in the box. They’re defined
in the machine.config file inside the Framework folders. You can access the machine.config file and take
a look for yourself:

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\CONFIG\machine.config

There are five providers out of the box, but as with everything else in the .NET Framework, this is 
customizable — you can easily add your own providers to extend the list on any machine with the
Framework installed. The five built-in providers are listed in the following table.

Name Invariant Type

Odbc Data Provider System.Data.Odbc System.Data.Odbc
.OdbcFactory

OleDb Data Provider System.Data.OleDb System.Data.OleDb
.OleDbFactory

OracleClient Data Provider System.Data.OracleClient System.Data
.OracleClient
.OracleClientFactory

SqlClient Data Provider System.Data.SqlClient System.Data
.SqlClient
.SqlClientFactory

SQL Server CE Data Provider Microsoft.SqlServerCe Microsoft.SqlServerCe
.Client .Client.SqlCeClient

Factory

As mentioned previously, it’s very easy to add your own providers. There are various places where you
can define a provider so it can be used, including the machine.config, app.config, and web.config files.
Just add a small section to one of the configuration files (and have the provider installed on the
machines in question!):

<DbProviderFactories>
<add name=”Odbc Data Provider” invariant=”System.Data.Odbc” description=”.Net

Framework Data Provider for Odbc” type=”System.Data.Odbc.OdbcFactory, System.Data,
Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089” />
</DbProviderFactories>

Extensibility is the operative word here. The Generic Factory Model is easy to use, easy to implement,
and very easy to justify.
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Generic Factory versus Specific Providers
Decisions, decisions. The new features thrown at the feet of .NET developers in ADO.NET 2.0 are exten-
sive and formidable, so in order to help you decide if the shift is worth it, we’ll briefly run through the
pros and cons of the Generic Factory Model (in comparison to directly accessing a provider such as
SqlClient).

Pros
Here are some reasons to use the Generic Factory Model: 

❑ Even if you just use one provider today, your code can be moved to another provider without
any effort later, saving you and your company both time and money.

❑ The potential market for your applications is massively increased. Some shops will only use
Oracle or DB2, for example. By giving your client the option of any provider, you widen your
scope to customers that are currently outside your reach.

❑ You and your development team only need to know one API; the specifics of each provider can
be abstracted away, enabling you and your colleagues to concentrate on the applications. Plus,
using the Generic Factory Model will leave loads of room in your head to watch Internet Flash
animations relating to woodland creatures and fungi.

Cons
Of course, there are always some disadvantages too:

❑ There’s a good chance you already know your data provider inside out. If you work with SQL
Server, you’ll know the SqlClient namespace. If you decide to move to the provider model,
you’ll have to learn an entirely new data access API.

❑ If your current applications contain data access code that is not provider-agnostic (generic) and
you decide to go the generic provider route, you’ll have to either rewrite all your existing data
access code or maintain both the old provider-specific code and any new provider-generic code.

❑ While the majority of your data Access code in ADO.NET 2.0 can be provider-agnostic, huge
swathes of your applications are still not generic. For example, any exception thrown from a
database server will still be specific to the provider from which it’s been thrown, meaning you
have to deal with all the “special cases” for every provider manually.

Applications can be weighed against one another in terms of maintainability, security, and performance.
For some people, maintainable code is more important than secure code, whereas for others, security is
the primary concern. For the majority of developers, however, performance is the only thing they need
to worry about — in other words, the only thing the boss will notice.
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Writing a Helper Class
While it’s perfectly possible to add data access code everywhere you need to access the database server in
your applications, it’s much better practice to encapsulate all of your data access code inside some form of
Data Access Layer, which we will explore by building a Helper class for all of our data access code.

Beginning with this section, proceed in a linear fashion through the chapter. The Helper Class created in
this section is used throughout the rest of the chapter to illustrate many aspects of ADO.NET 2.0. 

If you don’t like the idea of reading the code in this section, download the source code from the Web site
and load the Chapter 3 solution into Visual Studio. Then play to your heart’s content.

The first thing we need to do is create a class to store our Generic Factory Helper. Ours is called
GenericFactoryHelper and it started out in life looking just as shown here:

Imports System
Imports System.Data
Imports System.Data.Common

Namespace CodeSamples

Public Class GenericFactoryHelper

End Class

End Namespace

Our Generic Factory is designed to run through static properties and methods, meaning that applications
need not instantiate our Factory to gain access to its functionality. In addition, you may notice that the
class has included the System.Data.Common namespace. This is where all the generic functionality is
encapsulated in the .NET Framework.

The following property returns a list of all the possible Factories as defined in the Machine and
Application configuration files:

Public Shared ReadOnly Property AllFactories() As DataTable
Get

Return DbProviderFactories.GetFactoryClasses()
End Get

End Property

As you can see, the type of data that this returns is a data table. Inside that data table are several
columns.

While it’s nice to be able to retrieve a list of the available providers, it’s much more useful to retrieve an
instantiation of a Generic Factory from a specific provider. The following property gets the current
Factory. At the moment, this is specified (hard-coded) in the property as a string. However, it could be
fed from a configuration entry somewhere, or even from the user interface, enabling users to specify the
type of database system to which they wish to connect.

Public Shared ReadOnly Property CurrentFactory() As String
Get

Return “System.Data.SqlClient”
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End Get
End Property

The next method combines the CurrentFactory property we’ve already created with a call to
DbProviderFactories.GetFactory(). This method actually returns the Factory for use in our 
applications — in this case, an instance of the SqlClientFactory:

Public Shared ReadOnly Property Factory() As DbProviderFactory
Get

Return DbProviderFactories.GetFactory(CurrentFactory)
End Get

End Property

In addition to the preceding method, we offer a way to create a specific Factory from a provider name,
like this:

Public Shared ReadOnly Property GetFactory(ByVal providerName As String) As
DbProviderFactory

Get
Return DbProviderFactories.GetFactory(providerName)

End Get
End Property

Having an instance of a Factory is all well and good, but we need more from our Factory Helper. We
need it to produce connections, commands, parameters, and many more objects. Luckily for us, it’s just a
simple matter of calling the correct method on the Factory to retrieve an instantiated, fully functional
provider generic class.

To retrieve an instance of DbConnection, which is actually just a wrapper for our provider-specific 
connection class (SqlConnection), we can create a method that enables us to specify a provider name
and returns the appropriate DbConnection class:

Public Shared ReadOnly Property GetConnection(ByVal proverName As String)
As DbConnection

Get
Return

GenericFactoryHelper.GetFactory(proverName).CreateConnection()
End Get

End Property

The next method call is simply used to return a provider-specific DbConnectionStringBuilder class.
It returns this from the factory specified in CurrentFactory:

Public Shared ReadOnly Property ConnectionStringBuilder() As
DbConnectionStringBuilder

Get
Return Factory.CreateConnectionStringBuilder()

End Get
End Property

49

ADO.NET Essentials 

05_584375 ch03.qxd  10/28/05  10:53 PM  Page 49



As you’ll see, the next method we implement does something a little bit more interesting than just
returning an instantiated class. It actually returns the correct connection string for the provider we’re
using. 

Because each database server likes its connection strings its own way, the following method uses the
type of the Factory class currently being used to determine which connection string to return via a
switch statement. It then uses a provider-specific DbConnectionStringBuilder from the preceding
method to create a connection string. 

For more information on connection string builders, see the section entitled “Intelligent Connection
Strings.”

For each of the providers you wish to support, add your connection details where appropriate. The 
following section of code shows a Property that dynamically returns the correct connection string, based
on the Provider being used.

Public Shared ReadOnly Property ConnectionString() As String
Get

Dim Csb As New DbConnectionStringBuilder
Select Case Factory.ToString()

Case “System.Data.SqlClient.SqlClientFactory”
Csb.Add(“Server”, “localhost”)
Csb.Add(“Integrated Security”, “SSPI”)

Case “System.Data.Odbc.OleDbFactory”
Csb.Add(“Provider”, “sqloledb”)
Csb.Add(“Data Source”, “localhost”)
Csb.Add(“User Id”, “myUsername”)
Csb.Add(“Password”, “myPassword”)

Case Else
Throw New System.NotImplementedException(“The Provider was

not catered for, try adding your provider into the switch.”)
End Select
Return Csb.ToString()

End Get
End Property

Once we have our Factory, we can start using it to get all the operation-specific classes. The following
method uses the Factory to return a new instantiated DbConnection class:

Public Shared ReadOnly Property Connection() As DbConnection
Get

Return Factory.CreateConnection()
End Get

End Property

What good is a connection if we can’t send commands to it? The following method uses the Factory to
return a provider-generic DbCommand object:

For more information on connection strings, see the section entitled “Connection
Strings.”
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Public Shared ReadOnly Property Command() As DbCommand
Get

Return Factory.CreateCommand()
End Get

End Property

Occasionally, we’ll need to populate a DataSet using a DataAdapter, or save data to a database via a
DataAdapter. This method returns a generic DbDataAdapter from the Factory to be used in your 
applications:

Public Shared ReadOnly Property DataAdapter() As DbDataAdapter
Get

Return Factory.CreateDataAdapter()
End Get

End Property

It’s also quite useful to have a CommandBuilder for dynamically building commands:

Public Shared ReadOnly Property CommandBuilder() As DbCommandBuilder
Get

Return Factory.CreateCommandBuilder()
End Get

End Property

Of course, any command worth its salt needs parameters. This method returns a generic DbParameter
object back to the application:

Public Shared ReadOnly Property Parameter() As DbParameter
Get

Return Factory.CreateParameter()
End Get

End Property

Data Sources
It’s all well and good knowing we can connect to whatever platform we desire with only the flick of a
switch, but we really need to know what we can connect to — what’s on the network around us.

Using some of the new features baked into ADO.NET 2.0 — specifically, the GetDataSources method —
we can get a full listing of all the data sources available to us.

On a machine with the SQL Server client tools, you can manually list all the SQL Server instances on the
network, like this:

At the moment, the only provider that actually implements GetDataSources() is
the SqlClientFactory. Implementations for OdbcFactory, OleDbFactory, and
OracleFactory are currently not available.
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C:\>osql -L

Servers:
(local)
Badger\BadgerBadger
Mushroom

C:\>

While that’s useful, keep in mind that you can’t guarantee that a user will have the SQL Client tools
installed on his or her machine. Thus, the ADO.NET team has come up with a way for you to get this
information directly from the Framework, using the DbDataSourceEnumerator.

It’s quite simple to get a list of all the available data sources for each provider by using the
DbDataSourceEnumerator. In the following example, we run through each of the Factories and then,
for each one, we print out all the available data sources:

Sub EnumerateSources()

Dim Dt As DataTable = CodeSamples.GenericFactoryHelper.AllFactories
Dim Dr As DataRow

For Each Dr In Dt.Rows

Try

Dim Dbp As DbProviderFactory =
DbProviderFactories.GetFactory(Dr(“InvariantName”).ToString())

Debug.WriteLine(Dr(“InvariantName”).ToString())

If Dbp.CanCreateDataSourceEnumerator Then

Dim Dse As DbDataSourceEnumerator =
Dbp.CreateDataSourceEnumerator()

Dim DataSources As DataTable = Dse.GetDataSources()
Dim DataSource As DataRow
Dim source As String = String.Empty

For Each DataSource In DataSources.Rows

source = DataSource(“ServerName”).ToString()
If Not DataSource(“InstanceName”) Is Nothing Then

source = source & “\” &
DataSource(“InstanceName”).ToString()

End If
If Not DataSource(“Version”) Is Nothing And Not

DataSource(“Version”).ToString() = String.Empty Then
source = source & “ - Version “ &

DataSource(“Version”).ToString()
End If
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Debug.WriteLine(source)

Next
End If

Catch ex As Exception
End Try

Next

End Sub

What this shows on our network is a list of all the different SQL Servers. Of course, what you see will
depend on the makeup of your network. You may see nothing, or you may see hundreds of database
server instances:

System.Data.Odbc
System.Data.OleDb
System.Data.OracleClient
System.Data.SqlClient
Badger\BadgerBadger - Version 8.00.194
Mushroom\ - Version 8.00.194
Snake\

Why is it useful to know the different database servers?

You can use the preceding code to create a “poor man’s cluster,” whereby you can check each of the
entries in a specific provider, looking for a database server that is online or contains the information
you’re looking for, enabling your applications to be resilient to servers being taken offline.

You could also build a server selection into your applications. For example, you may have development
and live servers. By giving your test team the capability to quickly change the database servers they’re
connected to, they can look after themselves without the necessity of developer involvement.

Enumeration for SQL Server 2005 is turned off by default. For more information, check out the section
covering Server Enumeration in Chapter 10.

Connection Strings
Everybody needs connection strings at one time or another, and while they’re incredibly simple to construct
and use, they’re also often misunderstood.

ADO.NET offers three ways to create your connection strings. First, you can specify a simple string, like this:

Dim ConnectionString As String = “server=localhost;uid=Phil;pwd=ItsASecret;Initial
Catalog=MyDb”

The second way is by using the new ConnectionStringBuilder classes built into each of the
providers (the rest of this section focuses on this topic). The third way is to use the
ConnectionStringCollection and the ConnectionStrings section of ConfigurationSettings.
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Before moving on, it’s important to understand the different options open to you regarding the connection
strings for your provider. Familiarize yourself with the documentation for your chosen provider.

A very comprehensive list of connection strings is available from the following Web site: www
.carlprothman.net/Default.aspx?tabid=81.

Connection String Collection
With .NET 2.0, there’s a new way to store and use your connection strings in the Framework. Microsoft
has brought together the configuration files (app.config and web.config), as well as the managed
System.Configuration API to give us a really neat way of loading our connection strings.

Under the Configuration section in the config files is a new element called connectionStrings. This is
where all the connection strings for your applications can live:

<connectionStrings>
<add name=”UserDatabase” 

providerName=”SqlClient” 
connectionString=”server=localhost;uid=myuser;pwd=mypassword”

/>
</connectionStrings>

Once your connection strings are stored inside the configuration files, it’s simple to actually get at them.
The following line of code shows the retrieval of a connection string:

ConfigurationManager.ConnectionStrings(“UserDatabase”).ToString()

The ConfigurationManager class lives inside the System.Configuration namespace.

Remember: Before you create another entry in the appSettings section of your configuration files, if
you’re adding a connection string, create it in the connectionStrings section.

Always try to encrypt your connection strings. That way, if someone does manage to take a peek inside
your configuration files, they still have to decrypt the strings before they can be used.

Intelligent Connection Strings
The first thing to remember with the ConnectionStringBuilder classes is that they do their own
thing. What you tell them you want is not necessarily what you get.

This disobedience can be demonstrated quite easily with a small amount of code. In the following 
listing, three parameters are passed into the ConnectionStringBuilder for the SqlClient class:
“Server”, “uid”, and “pwd”. What actually comes out of the ConnectionStringBuilder, however,
are “Data Source”, “User ID”, and “Password”, respectively: 
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Sub ShowStringBuilderManipulation()

If CodeSamples.GenericFactoryHelper.CurrentFactory.ToString() <>
“System.Data.SqlClient” Then

Throw New Exception(“This test requires the Factory to be running from the
System.Data.SqlClient provider, it’s currently running as “ +
CodeSamples.GenericFactoryHelper.CurrentFactory)

End If

Dim Csb As DbConnectionStringBuilder =
CodeSamples.GenericFactoryHelper.ConnectionStringBuilder

Csb.Add(“Server”, “localhost”)
Csb.Add(“uid”, “myUsername”)
Csb.Add(“pwd”, “myPassword”)

Dim actual As String = Csb.ConnectionString
Dim expected As String = “Data Source=localhost;User

ID=myUsername;Password=myPassword”

If expected <> actual Then
Throw New Exception(“The expected does not match the actual!”)

End If

End Sub

This happens because the ConnectionStringBuilder for the SqlClientFactory knows which
parameters are optimal for its performance, and it changes the values we used, converting them to the
right version.

Provider-Specific Connection Strings
Each database server allows connections in different ways, and while they all share common features
such as “username” and “password,” the way those features are implemented varies among providers.
Some common examples of differences for the four main providers are listed in the following table.

Odbc OleDb SqlClient OracleClient

Database Server Server Data Source Server or Server or “Data 
“Data Source” Source”

Username UID User ID UID or User ID User ID

Password PWD Password PWD or Password Password

Should Integrated Trusted_ Integrated Trusted_Connection Integrated 
Security Be Used? Connection Security or “Integrated Security

Security”

Table continued on following page
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Odbc OleDb SqlClient OracleClient

Database/Catalog Database Initial Catalog Database or Initial 
to Connect to Catalog

Use Connection OLE DB 
Pooling Services Pooling Pooling

Table courtesy of http://msdn.microsoft.com/library/en-us/dnvs05/html/vsgenerics.asp?frame=true#vsgene_topic6.

If you need to support multiple providers from the same code base, it’s a pretty simple procedure to
have code dynamically build the appropriate connection string for your providers, as shown here:

Public Shared Function LoadTheRightConnectionString() As String

Dim Actual As String = String.Empty
Dim Expected As String = String.Empty
Dim Csb As DbConnectionStringBuilder =

CodeSamples.GenericFactoryHelper.ConnectionStringBuilder

Select Case CodeSamples.GenericFactoryHelper.Factory.ToString()

Case “System.Data.SqlClient.SqlClientFactory”

Csb.Add(“Server”, “localhost”)
Csb.Add(“uid”, “myUsername”)
Csb.Add(“pwd”, “myPassword”)
Expected = “Data Source=localhost;User

ID=myUsername;Password=myPassword”

Case “System.Data.OleDb.OleDbFactory”
Csb.Add(“Provider”, “sqloledb”)
Csb.Add(“Data Source”, “localhost”)
Csb.Add(“User Id”, “myUsername”)
Csb.Add(“Password”, “myPassword”)
Expected = “Provider=sqloledb;Data

Source=localhost;Password=myPassword;User ID=myUsername”

Case Else

Throw New Exception(“The provider is not supported!”)

End Select

If Expected <> Actual Then

Throw New Exception(“The Value does not match that which was expected.”)
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End If

Return Nothing

End Function

Conditionally Adding Connection String Parameters
It’s quite common to want to dynamically construct the connection string, and it’s simple to do using the
ConnectionStringBuilder, as shown in the following example:

Public Sub ConditionallyAddParameters()
Dim Csb As System.Data.Common.DbConnectionStringBuilder =

CodeSamples.GenericFactoryHelper.ConnectionStringBuilder

If Csb(“Initial Catalog”).ToString = String.Empty Then
Csb.Add(“Initial Catalog”, “Northwind”)

End If

Dim actual As Boolean = (Csb.ContainsKey(“Initial Catalog”) AndAlso
(Csb(“Initial Catalog”).ToString = “Northwind”))

Dim expected As Boolean = True

If expected <> actual Then
Throw New Exception(“Did not return the expected value.”)

End If
End Sub}

As you can see by using a conditional statement and the Add method, it’s a trivial matter to add any
parameters that you require, combining the flexibility of a dynamically constructed connection string
with the power and intelligence of the ConnectionStringBuilder classes.

Provider-Specific Connection String Parameters
In the previous section, you saw how parameters can be conditionally added to your stored procedures.
It’s worth noting, however, that the individual providers have sets of parameters that are added by
default and cannot be removed at runtime. This can be seen in the following code sample, which builds
on top of our Factory Helper class.

The following method clears all of the parameters from the ConnectionStringBuilder and manually
removes both the pwd and password parameters. The ContainsKey method is then called against pwd,
which has not been added, but explicitly removed. However, the value still returns true.

Public Sub ShowDefaultParametersAlwaysExist()

If Not (CodeSamples.GenericFactoryHelper.CurrentFactory =
“System.Data.SqlClient”) Then
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Throw New Exception(“This test requires the Factory to be running from the
System.Data.SqlClient provider, it’s currently running as “ +
CodeSamples.GenericFactoryHelper.CurrentFactory)

End If

Dim Csb As System.Data.Common.DbConnectionStringBuilder =
CodeSamples.GenericFactoryHelper.ConnectionStringBuilder

Csb.Clear()
Csb.Remove(“pwd”)
Csb.Remove(“Password”)
Dim actual As Boolean = Csb.ContainsKey(“pwd”)
Dim expected As Boolean = True

If expected <> actual Then
Throw New Exception(“Did not return the expected value.”)

End If
End Sub

The reason why the preceding code always returns true is because the SqlClient Connection-
StringBuilder has some default parameters that are always available. You can easily produce a full list
of these default parameters using our Factory Helper and the following code:

Public Sub PrintAllDefaultParameters()
Dim Dt As System.Data.DataTable = CodeSamples.GenericFactoryHelper.AllFactories

For Each Dr As System.Data.DataRow In Dt.Rows
Dim Dbp As System.Data.Common.DbProviderFactory =

System.Data.Common.DbProviderFactories.GetFactory(Dr(“InvariantName”).ToString)

Dim Csb As System.Data.Common.DbConnectionStringBuilder =
Dbp.CreateConnectionStringBuilder

Console.WriteLine(Dbp.ToString)

For Each Key As String In Csb.Keys
Console.WriteLine(Key + “ = “ + Csb(Key))

Next
Next

End Sub

For your convenience, the following table lists all of the default parameters and values for each of the
Factories shipped with ADO.NET 2.0.

SqlClientFactory OracleClientFactory

Data Source Data Source

Failover Partner Persist Security Info False

AttachDbFilename Integrated Security False

Initial Catalog User ID

Integrated Security False Password
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SqlClientFactory OracleClientFactory

Persist Security Info False Enlist True

User ID Pooling True

Password Min Pool Size 0

Enlist True Max Pool Size 100

Pooling True Unicode False

Min Pool Size 0 Load Balance Timeout 0

Max Pool Size 100 Workaround Oracle Bug 914652 False

Asynchronous Processing False

Connection Reset True OleDbFactory

MultipleActiveResultSets True File Name

Replication False Provider

Connect Timeout 15 Data Source

Encrypt False Persist Security Info False

Load Balance Timeout 0 OLE DB Services -13

Network Library

Packet Size 8000 OdbcFactory

Application Name .Net SqlClient Data Dsn
Provider

Current Language Driver

Workstation ID

User Instance False

Context Connection False

Because of the provider-specific implementations of the ConnectionStringBuilder, you can’t just add
any old rubbish to the connection string. If you do, it will complain bitterly:

Public Sub AddIllegalParameters()
Dim Csb As System.Data.Common.DbConnectionStringBuilder =

CodeSamples.GenericFactoryHelper.ConnectionStringBuilder
Dim ExpectedError As String = String.Empty
Dim ActualError As String = String.Empty

Try
Csb.Add(“My”, “Socks”)

Catch Ex As System.ArgumentException
ActualError = Ex.Message
ExpectedError = (“Keyword not supported: ‘My’.”)
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End Try

If ExpectedError <> ActualError Then
Throw New Exception(“The error thrown was not one we expected.”)

End If
End Sub

Alas, our socks are rejected from the database connection string and cast into cyber-oblivion.

Connections
The first code sample in this section should probably be called “Hello Database” because that’s essentially
what you’re doing when you open a connection to a database — you’re introducing yourself, shaking
hands, and preparing for a lengthy discussion.

ADO.NET enables you to make introductions to the databases around you in a very easy manner,
regardless of what they are.

Opening a Connection (and Making Sure It’s Open)
Before you do any database work, it’s likely you’ll need to open a connection to the database in question.
Here’s how to do it:

Public Sub OpenConnection()
Dim Conn As System.Data.Common.DbConnection =

CodeSamples.GenericFactoryHelper.Connection
Dim actual As System.Data.ConnectionState
Using Conn

Try
Conn.ConnectionString =

CodeSamples.GenericFactoryHelper.ConnectionString
Conn.Open()
actual = Conn.State
Conn.Close()

Finally
End Try

End Using

Dim expected As System.Data.ConnectionState = System.Data.ConnectionState.Open

If expected <> actual Then
Throw New Exception(“Did not return the expected value.”)

End If

End Sub
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When you’re doing any database work, it’s important to only have the connection open as long as it’s
absolutely necessary so that it can be used by others when needed. Get in, do your stuff, and get right
out again.

Closing a Connection (and Making Sure It’s Closed)
Many developers don’t give a thought to closing their connections, but closing a connection is just as
important — if not more so — than opening one. If your code for closing connections is buggy or faulty,
you might run out of available connections and your applications can grind to a halt under heavy use.

The following code example does its utmost to ensure that a connection is closed, returned to the 
connection pool (where it’s in use), and has its managed and unmanaged resources released so that
the garbage collector can do its thing:

Public Sub CloseConnection()
Dim Conn As System.Data.Common.DbConnection =

CodeSamples.GenericFactoryHelper.Connection
Dim actual As System.Data.ConnectionState = System.Data.ConnectionState.Closed
Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Using Conn

Try
Try

Conn.Open()

If Conn.State <> System.Data.ConnectionState.Open Then
Throw New Exception(“Connection nott opened”)

End If

Catch Ex As System.Data.Common.DbException
Throw New Exception(Ex.Message)

Finally
If Not (Conn.State = System.Data.ConnectionState.Closed) Then

Conn.Close()
actual = Conn.State

End If
End Try

Finally
End Try

End Using

Dim expected As System.Data.ConnectionState =
System.Data.ConnectionState.Closed

A bug in .NET 1.0 affected the calling of .Dispose() on the Connection object: It
did not always internally call the .Close() method. This meant that applications
that were not explicitly calling .Close() were leaving open connections left, right,
and center. Fortunately, the bug was eradicated in .NET 1.1 and has not resurfaced in
.NET 2.0.

61

ADO.NET Essentials 

05_584375 ch03.qxd  10/28/05  10:53 PM  Page 61



If expected <> actual Then

Throw New Exception(“Did not return the expected value.”)

End If
End Sub

The preceding code creates a Connection object and assumes everything went well with that creation,
and then moves into a using() statement, which ensures that the object specified will be disposed 
of when we are finished with it. Once inside the using() statement, the code is wrapped with a
Try...Catch...Finally... statement, which enables us to catch any errors that might have occurred
and enforce the closing of the connection. 

Even if you don’t do anything else, always make sure that you close and dispose of your connection
objects when you’re finished with them; this will return the connections to a pool (if one’s being used)
and release any unmanaged resources the instance is using. As we’ve just shown, the easiest way to do
this is by employing a Using statement that will call Dispose() when we’re finished with the objects in
question. 

If you employ the Using object statement, the .NET Framework will ensure that the object is 
disposed of even if an exception is thrown inside the Using object statement, meaning your instance
will always be cleaned up.

Managing Exceptions 
Yes, they happen, even in your code.

When using ADO.NET, it’s possible to get errors from all over the place, especially from your databases,
so it’s very important to have robust and extensive error reporting built into your applications.

Each provider in the Framework offers its own set of information. For example, the SqlException
offers the Procedure property, which gives you the Sql that has been run that caused the exceptions.

In the following example, you can see how it’s possible to collect detailed error information from the
SqlException class (take particular note of the bold section):

Public Sub HandleAProviderException()
Dim Conn As System.Data.Common.DbConnection =

CodeSamples.GenericFactoryHelper.Connection
Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Dim Comm As System.Data.Common.DbCommand = Conn.CreateCommand
Comm.CommandText = (“NORTHWIND.dbo.RaiseAnError”)
Comm.CommandType = System.Data.CommandType.StoredProcedure
Conn.Open()
Dim Dt As System.Data.DataTable = New System.Data.DataTable
Try

Dt.Load(Comm.ExecuteReader)
Catch Ex As System.Data.SqlClient.SqlException

Dim ExceptionDetails As String = String.Empty
Console.WriteLine(“Class: “ + Ex.Class)
Console.WriteLine(“Data: “)
For Each Key As String In Ex.Data.Keys
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Console.WriteLine(Key + “ = “ + Ex.Data(Key).ToString)
Next
Console.WriteLine(“ErrorCode: “ + Ex.ErrorCode)
Console.WriteLine(“Procedure: “ + Ex.Procedure)
Console.WriteLine(“Server: “ + Ex.Server)
Console.WriteLine(“State: “ + Ex.State)
Console.WriteLine(“Message: “ + Ex.Message)
Console.WriteLine(“HelpLink: “ + Ex.HelpLink)

End Try
Conn.Close()

End Sub

The preceding code calls a stored procedure that is primed to throw an exception, as shown here:

CREATE PROCEDURE [dbo].[RaiseAnError] AS

RAISERROR( ‘This is an Exception’, 16, 1)

GO

On encountering a SqlException, the code inspects the SqlException and pulls out all the details it
can from inside the exception:

Class: 16
Data: 
HelpLink.ProdName = Microsoft SQL Server
HelpLink.ProdVer = 08.00.0194
HelpLink.EvtSrc = MSSQLServer
HelpLink.EvtID = 50000
HelpLink.BaseHelpUrl = http://go.microsoft.com/fwlink
HelpLink.LinkId = 20476
ErrorCode: -2146232060
Procedure: RaiseAnError
Server: localhost
State: 1
Message: This is an Exception
HelpLink:

The Class property shows how valuable this information can be; it exposes information that enables the
application to give users more detailed error messages.

The following table shows the varying levels of severity at which errors can occur in SQL Server.

Severity Level Connection Is Closed Generates SqlException Meaning

10 and below No No Informational messages
that do not necessarily
represent error 
conditions.

Table continued on following page

63

ADO.NET Essentials 

05_584375 ch03.qxd  10/28/05  10:53 PM  Page 63



Severity Level Connection Is Closed Generates SqlException Meaning

11–16 No Yes Errors that can be 
corrected by the user —
for example, by retrying 
the operation with 
amended input data.

17–19 No Yes Resource or system errors

20–25 Yes Yes Fatal system errors
(including system errors)

Table courtesy of http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/daag.asp.

When you’re using the Generic Factory approach, you have two options when catching exceptions: Either
you can make do with a generic exception class, which enables you to step into the provider-specific
exception layers via the InnerException property of the Exception class, or you can interact directly
with the provider-specific exceptions, as shown here:

Public Sub CatchAGenericException()
Dim Conn As System.Data.Common.DbConnection =

CodeSamples.GenericFactoryHelper.Connection
Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Dim Comm As System.Data.Common.DbCommand = Conn.CreateCommand
Comm.CommandText = (“SELECT * FROM NORTHWIND.dbo.TableDoesntExist”)
Comm.CommandType = System.Data.CommandType.Text
Conn.Open()
Dim Dt As System.Data.DataTable = New System.Data.DataTable
Try

Dt.Load(Comm.ExecuteReader)
Catch Ex As System.Data.Common.DbException

Throw New Exception(“A DbExeption was thrown with the message ‘“ +
Ex.Message + “‘“)

Catch Ex As System.Exception
Throw New Exception(“An Exception was thrown with the message ‘“ +

Ex.Message + “‘“)
End Try
Conn.Close()

End Sub

While the exception might be of type DbException, it still contains all the information you would
expect from the provider-specific exception. An example that shows this is detailed here:

Public Sub CatchAGenericExceptionInDetail()
Dim Conn As System.Data.Common.DbConnection =

CodeSamples.GenericFactoryHelper.Connection
Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Dim Comm As System.Data.Common.DbCommand = Conn.CreateCommand
Comm.CommandText = (“SELECT * FROM NORTHWIND.dbo.TableDoesntExist”)
Comm.CommandType = System.Data.CommandType.Text
Conn.Open()
Dim Dt As System.Data.DataTable = New System.Data.DataTable
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Try
Dt.Load(Comm.ExecuteReader)

Catch Ex As System.Data.Common.DbException
Console.WriteLine(Ex.GetType.ToString)
Console.WriteLine(Ex.Message)
Console.WriteLine(Ex.StackTrace)
Console.WriteLine(String.Empty)

Catch Ex As System.Exception
Throw New Exception(“An Exception was thrown with the message ‘“ +

Ex.Message + “‘“)
End Try
Conn.Close()

End Sub

What this generates is very detailed error information directly from the provider, but wrapped up in a
neat little package, DbException:

System.Data.SqlClient.SqlException
Invalid object name ‘NORTHWIND.dbo.TableDoesntExist’.

at System.Data.SqlClient.SqlConnection.OnError(SqlException exception, Boolean
breakConnection)

at System.Data.SqlClient.SqlInternalConnection.OnError(SqlException exception,
Boolean breakConnection)

at System.Data.SqlClient.TdsParser.ThrowExceptionAndWarning(TdsParserStateObject
stateObj)

at System.Data.SqlClient.TdsParser.Run(RunBehavior runBehavior, SqlCommand
cmdHandler, SqlDataReader dataStream, BulkCopySimpleResultSet bulkCopyHandler,
TdsParserStateObject stateObj)

at System.Data.SqlClient.SqlDataReader.ConsumeMetaData()
at System.Data.SqlClient.SqlDataReader.get_MetaData()
at System.Data.SqlClient.SqlCommand.FinishExecuteReader(SqlDataReader ds,

RunBehavior runBehavior, String resetOptionsString)
at System.Data.SqlClient.SqlCommand.RunExecuteReaderTds(CommandBehavior

cmdBehavior, RunBehavior runBehavior, Boolean returnStream, Boolean async)
at System.Data.SqlClient.SqlCommand.RunExecuteReader(CommandBehavior

cmdBehavior, RunBehavior runBehavior, Boolean returnStream, String method,
DbAsyncResult result)

at System.Data.SqlClient.SqlCommand.RunExecuteReader(CommandBehavior
cmdBehavior, RunBehavior runBehavior, Boolean returnStream, String method)

at System.Data.SqlClient.SqlCommand.ExecuteReader(CommandBehavior behavior,
String method)

at System.Data.SqlClient.SqlCommand.ExecuteDbDataReader(CommandBehavior
behavior)

at System.Data.Common.DbCommand.ExecuteReader()
at CodeSampleTests.Exceptions.CatchAGenericExceptionInDetail()

As the preceding code is quite generic, it might not give you what you need when trapping exceptions,
so it’s important to note you can still catch provider-specific exceptions before falling back on generic
methods. The following code briefly details the way in which you can build a comprehensive exception
trap for exceptions that originate from each of the providers you want to support.

The importance of this can’t be underestimated; oftentimes, you get very similar sorts of errors occurring
on different database systems, and it’s very handy to group them together so your front-end users see a
neat, consistent error regardless of the provider they’re using. Here’s the code:
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Public Sub CatchAProviderSpecificException()
Dim Conn As System.Data.Common.DbConnection =

CodeSamples.GenericFactoryHelper.Connection
Dim Comm As System.Data.Common.DbCommand = Conn.CreateCommand
Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Comm.CommandText = (“SELECT * FROM NORTHWIND.dbo.TableDoesntExist”)
Comm.CommandType = System.Data.CommandType.Text
Conn.Open()
Dim Dt As System.Data.DataTable = New System.Data.DataTable
Try

Dt.Load(Comm.ExecuteReader)
Catch Ex As System.Data.SqlClient.SqlException

Throw New Exception(“A SqlException was thrown with the message ‘“ +
Ex.Message + “‘“)

Catch Ex As System.Exception
Throw New Exception(“An Exception was thrown with the message ‘“ +

Ex.Message + “‘“)
End Try
Conn.Close()

End Sub

Trapping exceptions can be quite easy, and developers find them vital for debugging applications
throughout the development cycle. Remember, however, that most users won’t know what the excep-
tions mean, so it’s generally best to hide them from end users unless you know they’re qualified to deal
with them.

Provider-Specific Features
We know we have a connection and we’ve introduced ourselves. Now we want a little bit more informa-
tion. We’re using the Provider Model, though, so we don’t actually know what we’re dealing with. We
can, however, by using a little forethought, build a degree of intelligence into our code so that any
provider-specific functionality is still available to us:

Public Sub GetSqlConnectionStatistics()
If Not (CodeSamples.GenericFactoryHelper.CurrentFactory =

“System.Data.SqlClient”) Then
Throw New Exception(“This test requires the Factory to be running from the

System.Data.SqlClient provider, it’s currently running as “ +
CodeSamples.GenericFactoryHelper.CurrentFactory)

End If
Dim SqlConn As System.Data.SqlClient.SqlConnection =

CType(CodeSamples.GenericFactoryHelper.Connection,
System.Data.SqlClient.SqlConnection)

Dim Stats As System.Collections.Hashtable
Using SqlConn

SqlConn.ConnectionString =
CodeSamples.GenericFactoryHelper.ConnectionString

SqlConn.Open()
Stats = CType(SqlConn.RetrieveStatistics, System.Collections.Hashtable)
SqlConn.Close()

For Each Key As String In Stats.Keys
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Console.WriteLine(Key + “ = “ + Stats(Key).ToString)
Next

End Using

Dim actual As Integer = Stats.Count
Dim expected As Integer = 18

If actual <> expected Then

Throw New Exception(“Did not return the expected value.”)

End If

End Sub

The output of this method looks something like this:

NetworkServerTime = 0
BytesReceived = 0
UnpreparedExecs = 0
SumResultSets = 0
SelectCount = 0
PreparedExecs = 0
ConnectionTime = 0
ExecutionTime = 0
Prepares = 0
BuffersSent = 0
SelectRows = 0
ServerRoundtrips = 0
CursorOpens = 0
Transactions = 0
BytesSent = 0
BuffersReceived = 0
IduRows = 0
IduCount = 0

What’s really cool about this is that while you can generally use a provider-generic solution, there’s
nothing to stop you from using provider-specific code within your generic application so long as you
understand that it might not work with all providers. Obviously, the preceding code is just a sample. The
possibilities are endless — from exception trapping all the way to using database-specific object types.

For more provider-specific code, check out Chapters 9, 10, 11, 16, and 17.

Schema Metadata
While it’s possible to directly access many database servers and check the schema (layout) of their
databases, each database server — be it Oracle or SQL Server — gets information in different ways. The
ADO.NET schema metadata system provides the application developer with easy access to the schemas
with a consistent provider-agnostic API.
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This section covers schema information in great detail, describing the different types of information you
can retrieve and showing some ways in which it can best be used. 

Available Information
There is a good deal of variation between the different providers, both in how they implement T-SQL
and how they fit together. With the schema metadata system, you can query for schema information and
interrogate the different database servers regarding their layout.

The metadata information available depends entirely on the way each provider has been implemented. In
SQL Server, for example, it’s possible to get quite a bit of information, ranging from the structure of tables
(columns and data types) to the reserved words for the Server. In other providers, you can get similar
information, but it might not be in the same format. The thing to remember with schema metadata is that
it can very well be different for each provider.

To produce a list of what is available for all the providers installed on your system, you can run the 
following code in conjunction with the GenericFactoryHelper defined previously. What this code
does is run through each provider, querying the schema metadata, retrieving the list of metadata 
collections that are available, and then displaying them to the console:

Public Sub SchemasAvaliable()
Dim Dt As System.Data.DataTable = CodeSamples.GenericFactoryHelper.AllFactories
For Each Dr As System.Data.DataRow In Dt.Rows

Dim Dbp As System.Data.Common.DbProviderFactory =
System.Data.Common.DbProviderFactories.GetFactory(Dr(“InvariantName”).ToString)

Try
Dim Conn As System.Data.Common.DbConnection = Dbp.CreateConnection
Dim Schema As System.Data.DataTable
Using Conn

Conn.ConnectionString =
CodeSamples.GenericFactoryHelper.ConnectionString

Conn.Open()
Schema =

Conn.GetSchema(System.Data.Common.DbMetaDataCollectionNames.MetaDataCollections)
Conn.Close()

End Using

Console.WriteLine(Dbp.ToString)
For Each SchemaRow As System.Data.DataRow In Schema.Rows

Console.WriteLine(SchemaRow(0).ToString)
Next

Catch Ex As Exception
Console.WriteLine(“Failed for “ + Dbp.ToString + “ - “ + Ex.Message)

End Try
Next

End Sub

Here you can see the list that the SqlClientFactory returns. The items listed can be queried individually
to reveal more information about the data to which they pertain. 
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SqlClientFactory

MetaDataCollections

DataSourceInformation

DataTypes

Restrictions

ReservedWords

Users

Databases

Tables

Columns

Views

ViewColumns

ProcedureParameters

Procedures

ForeignKeys

IndexColumns

Indexes

This table shows all the top-level information that is available for the SqlClientFactory provider. As
you can see, there is a wealth of information. The following sections describe some areas you might find
useful. 

DataTypes
The mapping for each data type is stored in the metadata, too, with all of the properties that the
Framework and database servers need to translate between .NET-specific types and provider-specific
types.

DataSourceInformation
Inside this section of the schema, you’ll find information used by the provider-specific DbCommandBuilder
to construct T-SQL (Transact-SQL) commands and add parameters to queries. Other information can also
be contained within this section, but for now we’ll just cover the default information returned by the main
providers and briefly discuss what each one means.

CompositeIdentifierSeparatorPattern
This represents the separator when referencing the different objects on the server — for example, a table
called Publishers owned by Phil in a database called Northwind on a server called Badger on SQL
Server is expressed like this:
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Badger.Northwind.Phil.Publishers

The separator pattern identifies the “.” used to break up the individual elements. The entry for this value
inside the SQL Server schema is as follows:

<CompositeIdentifierSeparatorPattern>\.</CompositeIdentifierSeparatorPattern>

DataSourceProductName
This is more of a label than anything that’s actually used; it contains what you expect it to — the name of
the type of server to which you’re connected. The SQL Server entry is as follows:

<DataSourceProductName>Microsoft SQL Server</DataSourceProductName>

GroupByBehavior
This is a direct reflection of the System.Data.Common.GroupByBehavior enumerator. The possible
values are shown in the following table.

ExactMatch 4

MustContainAll 3

NotSupported 1

Unknown 0

Unrelated 2

The SqlClient Provider defaults to Unrelated, as shown here:

<GroupByBehavior>2</GroupByBehavior> 

IdentifierCase
The case sensitivity of identifiers is controlled by this property and it maps straight into the enumerator
System.Data.Common.IdentifierCase, whose values are shown in the following table.

Insensitive 1

Unknown 0

Sensitive 2

The default value for Sql Client is as follows:

<IdentifierCase>1</IdentifierCase> 
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IdentifierPattern
This is a regular expression that specifies the pattern to which the provider requires its identifiers to 
conform.

The SQL Server provider has a regular expression that looks like this:

<IdentifierPattern>(^\[\p{Lo}\p{Lu}\p{Ll}_@#][\p{Lo}\p{Lu}\p{Ll}\p{Nd}@$#_]*$)|(^\[
[^\]\0]|\]\]+\]$)|(^\”[^\”\0]|\”\”+\”$)</IdentifierPattern>

OrderByColumnsInSelect
This is a normal Boolean value that signifies whether SELECT statements should also perform an ORDER
BY, which mirrors each of the values in the SELECT statement. For example, a SELECT with
OrderByColumnsInSelect set to true might look like this:

SELECT Badger, Mushroom, Snake
FROM Internet
ORDER BY Badger, Mushroom, Snake

The default behavior in the SQL Server provider is false:

<OrderByColumnsInSelect>false</OrderByColumnsInSelect> 

ParameterMarkerFormat
This is a string that identifies a mask for parameters:

<ParameterMarkerFormat>@{0}</ParameterMarkerFormat> 

ParameterMarkerPattern
Each database server prefixes its parameters in a specific way; this regular expression checks the 
parameter name with its prefix attached (an “@” character in the case of the SQL Server provider):

<ParameterMarkerPattern>@[\p{Lo}\p{Lu}\p{Ll}\p{Lm}_@#][\p{Lo}\p{Lu}\p{Ll}\p{Lm}\p{N
d}\uff3f_@#\$]*(?=\s+|$)</ParameterMarkerPattern>

ParameterNameMaxLength
This does exactly what you’d expect it to do from its name. The default SQL Server value for this one is
as follows:

<ParameterNameMaxLength>128</ParameterNameMaxLength>

ParameterNamePattern
This is another regular expression that tells the DbCommandBuilder the format in which parameter
names must appear. For SQL Server, the default is as follows:

<ParameterNamePattern>^[\p{Lo}\p{Lu}\p{Ll}\p{Lm}_@#][\p{Lo}\p{Lu}\p{Ll}\p{Lm}\p{Nd}
\uff3f_@#\$]*(?=\s+|$)</ParameterNamePattern>
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QuotedIdentifierPattern
Yep — another regular expression. This one confirms that the identifiers inside the DbCommandBuilder
conform to the format the provider needs. In the case of SQL Server, this is [Identifier] and is
expressed like this:

<QuotedIdentifierPattern>(([^\[]|\]\])*)</QuotedIdentifierPattern>

QuotedIdentifierCase
The case sensitivity of parameters is controlled by this property and maps straight into the enumerator
System.Data.Common.IdentifierCase, where all the values are as follows:

Insensitive 1

Unknown 0

Sensitive 2

The default value for Sql Client is shown here:

<QuotedIdentifierCase>1</QuotedIdentifierCase> 

StatementSeparatorPattern
Almost all database servers enable the user to execute multiple statements in the same execution. This
option lets the command builder split those individual statements in a larger execution. SQL Server uses
the semicolon (;) character, as shown here:

<StatementSeparatorPattern>;</StatementSeparatorPattern>

StringLiteralPattern
Literal strings are required all over the place. For example, they make this query work and distinguish
between operators and strings:

Select Badger From Internet Where Annoyance = ‘Massive’

On SQL Server, this is expressed with apostrophes and enforced with the following regular expression:

<StringLiteralPattern>’(([^’]|’’)*)’</StringLiteralPattern>

SupportedJoinOperators
This translates into one of the values for the System.Data.Common.SupportedJoinOperators enu-
merated type, which has several options:

FullOuter 8

Inner 1

LeftOuter 2

72

Chapter 3

05_584375 ch03.qxd  10/28/05  10:53 PM  Page 72



None 0

RightOuter 4

The value for SQL Server is 15, which means it’s a combination of the enumerated types above (8 + 1 + 2 +
0 + 4), as shown here:

<SupportedJoinOperators>15</SupportedJoinOperators> 

Restrictions
While having the metadata is useful, it’s pointless if you can’t search it. With restrictions, you can query
the schema information, searching for specific entries just as you would search for data in your database
tables.

Each object type in the database has different items you can search against. To get a full list of each type
and its associated number, run the following code:

Public Sub ListAllRestrictionsAvaliable()
Dim Dt As System.Data.DataTable = CodeSamples.GenericFactoryHelper.AllFactories
For Each Dr As System.Data.DataRow In Dt.Rows

Dim Dbp As System.Data.Common.DbProviderFactory = Nothing
Try

Dbp =
System.Data.Common.DbProviderFactories.GetFactory(Dr(“InvariantName”).ToString)

Dim Conn As System.Data.Common.DbConnection = Dbp.CreateConnection
Dim Schema As System.Data.DataTable
Using Conn

Conn.ConnectionString =
CodeSamples.GenericFactoryHelper.ConnectionString

Conn.Open()
Schema =

Conn.GetSchema(System.Data.Common.DbMetaDataCollectionNames.Restrictions)
Conn.Close()

End Using

Console.WriteLine(Dbp.ToString)
For Each Column As System.Data.DataColumn In Schema.Columns

Console.Write(Column.ColumnName)
Console.Write(“” & Microsoft.VisualBasic.Chr(9) & “”)

Next
Console.WriteLine(String.Empty)
For Each SchemaRow As System.Data.DataRow In Schema.Rows

For Each Column As System.Data.DataColumn In Schema.Columns
Console.Write(SchemaRow(Column.ColumnName).ToString)
Console.Write(“” & Microsoft.VisualBasic.Chr(9) & “”)

Next
Console.WriteLine(String.Empty)

Next
Catch Ex As Exception

If Not (Dbp Is Nothing) Then
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Console.WriteLine(“Failed for “ + Dbp.ToString + “ - “ +
Ex.Message)

End If
End Try

Next
End Sub

This code returns a lot of information, but we’ll focus on just one piece of it for the moment. Following
are the results for tables in the Sql Server Provider, detailing the columns available to us for querying.

RestrictionName RestrictionDefault RestrictionNumber

Catalog TABLE_CATALOG 1

Owner TABLE_SCHEMA 2

Table TABLE_NAME 3

TableType TABLE_TYPE 4

As you can see from the results produced in the preceding table, we can query the database in which
tables are stored (TABLE_CATALOG), the owner of the table (TABLE_SCHEMA) and the table name
(TABLE_NAME), as well as the table type (TABLE_TYPE), be it user or system created.

We don’t actually write a SELECT statement to do this. Rather, we change the way in which we call the
GetSchema() method to tell it what we’re looking for and which objects to search by, passing in a string
array of appropriate restrictions. For example, if we want to determine whether the pubs database 
contains a table called publishers, we’d set up a string array, like this:

Dim Restrictions(4) As String
Restrictions(0) = “pubs” ‘TABLE_CATALOG
Restrictions(1) = Nothing ‘TABLE_SCHEMA
Restrictions(2) = “publishers” ‘TABLE_NAME
Restrictions(3) = Nothing ‘TABLE_TYPE

The indexes of the string array directly relate to the RestrictionNumber shown in the preceding table
(+1, as we’re in 0-based arrays). 

Once we have the string array, we can actually run the query, but our GetSchema() method call has
changed slightly to include the keyword “Tables”, which could easily be replaced by any of the items
returned from SchemasAvailable() above:

Schema = Conn.GetSchema(“Tables”,Restrictions)

What this then returns is a list of every table that matches our restrictions. In this case, there’s only one:

TABLE_CATALOG     TABLE_SCHEMA     TABLE_NAME     TABLE_TYPE

pubs              dbo              publishers     BASE TABLE
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What happened behind the scenes was that the Framework actually queried the SQL Server with the 
following:

select TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE from
INFORMATION_SCHEMA.TABLES where TABLE_CATALOG = ‘pubs’ and TABLE_SCHEMA =
TABLE_SCHEMA and TABLE_NAME = ‘publishers’ and TABLE_TYPE = TABLE_TYPE

Notice how for each of the restrictions we specified, the SQL was added; and for the ones we ignored,
the default value was used instead, due to some intelligence baked into the Framework. The .NET
Framework takes the query specified in the Schema Metadata file, as shown below, and converts it into
the desired query, as shown above. If you inspect the following query, you’ll see that the parameters are
specified as {n}, which is why it’s important to pass in your restrictions in the right order:

select TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME, TABLE_TYPE from
INFORMATION_SCHEMA.TABLES where TABLE_CATALOG = {0} and TABLE_SCHEMA = {1} and
TABLE_NAME = {2} and TABLE_TYPE = {3}

If you don’t care about a particular item in the query, you can just set its parameter to null. If it follows
the highest number you do care about, just omit it completely. For example, if you wanted only the
tables in the pubs database, your restrictions could look like this:

Dim Restrictions(1) As String
Restrictions(0) = “pubs” ‘TABLE_CATALOG

To summarize, if you ever need to query the schema information, it’s a good idea to use restrictions to
limit your results to only what you need.

Reserved Words
All database languages have words that are operational or expressional. A very small sample of the
reserved words in SQL Server includes the following:

EXCEPT
PERCENT
ALL
EXEC
PLAN
ALTER
EXECUTE
PRECISION
EXISTS

Yawn! There are a lot of these. Using the schema metadata, you can query the reserved words to identify
which ones should not be used when constructing queries or picking names for your database provider.
To query the data, it’s a simple matter of taking the preceding code and changing the query request to
the following:

Schema = Conn.GetSchema(“ReservedWords”)

This query has already been written for you and can be found in the sample code called
“AllReservedWords”.
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Source of the Schema Information
The schema information is pulled directly from the database server to which the provider you’re using is
pointing. The queries are tucked away inside the provider itself, enabling information to be looked up
from the database server. 

The .NET providers for SqlClient, OleDb, and ODBC have these queries and other information embedded
as resources inside the System.Data.dll stored in C:\WINDOWS\Microsoft.NET\Framework\v2.0.50215.
OracleClient information is inside the System.Data.OracleClient.dll in the same location.

Each provider has its own XML file inside its associated assembly, which details how all the schema
information is retrieved from the database server:

❑ System.Data.SqlClient.SqlMetaData.xml

❑ System.Data.OleDb.OleDbMetaData.xml

❑ System.Data.Odbc.OdbcMetaData.xml

❑ System.Data.OracleClient.OracleMetaData.xml

The following table shows the queries sent to the different servers to get both a list of tables and a list of
views for each provider.

SqlMetaData.xml OracleMetaData.xml

Tables select TABLE_CATALOG, SELECT OWNER, TABLE_NAME,
TABLE_SCHEMA, DECODE(OWNER, ‘SYS’, ‘System’,

‘SYSTEM’, ‘System’, ‘SYSMAN’,
TABLE_NAME, ‘System’,’CTXSYS’,

‘System’,’MDSYS’,
TABLE_TYPE ‘System’,’OLAPSYS’, ‘System’,

‘ORDSYS’, ‘System’,’OUTLN’,
from INFORMATION_SCHEMA.TABLES ‘System’, ‘WKSYS’,
where TABLE_CATALOG = {0} and ‘System’,’WMSYS’, ‘System’,’XDB’,
TABLE_SCHEMA = {1} and ‘System’,’ORDPLUGINS’,
TABLE_NAME = {2} and ‘System’,’User’) AS Type FROM
TABLE_TYPE = {3} ALL_TABLES WHERE OWNER={0} AND

TABLE_NAME={1} ORDER BY OWNER,
TABLE_NAME

Views select TABLE_CATALOG, SELECT * FROM ALL_VIEWS WHERE
TABLE_SCHEMA, TABLE_NAME, OWNER={0} AND VIEW_NAME = {1}
CHECK_OPTION, IS_UPDATABLE
from INFORMATION_SCHEMA.VIEWS
where TABLE_CATALOG = {0} and
TABLE_SCHEMA = {1} and
TABLE_NAME = {2} order by
TABLE_CATALOG, TABLE_SCHEMA,
TABLE_NAME

76

Chapter 3

05_584375 ch03.qxd  10/28/05  10:53 PM  Page 76



As you can see, different providers are configured to return similar data, but in a very different structure.
When using the schema information, it’s important to understand that the different providers offer 
different levels and quality of information.

Uses for Schema Metadata
Schema information offers many possible uses, from custom reporting solutions to object relationship
mappers.

It’s now possible in a platform-independent way to query the layout of databases and then use the 
information to build visual representations of that data either as reports or by constructing user interface
elements.

You can also use the schema information to discover the constraints applied to columns of data, such as
the allowed length and data format, to automatically validate data in your user interface before even
attempting to pass it through to the database.

Commands
Once you have an open connection to the database server of your choice, the next step is to simply run
some SQL against the server. To do this, as you’re probably aware, you need to use Command objects. 

Commands are the vehicle by which the majority of your database work happens, so it’s worth getting
very familiar with them. The following sections go through the basics of getting a Command object and
then using it, and detail some of the modifications made to the Command object in ADO.NET 2.0.

DbCommand from a Factory
When using the Factory Model, it’s important to get the right Command object, and the simplest way to
do that is to call the CreateCommand() object, which will return a DbCommand:

Public Sub CheckCommandFromProvider()
Dim actual As String = CodeSamples.GenericFactoryHelper.Command.ToString
Dim expected As String =

CodeSamples.GenericFactoryHelper.GetFactory(CodeSamples.GenericFactoryHelper.Curren
tFactory).CreateCommand.ToString

If expected <> actual Then
Throw New Exception(“The values do not match”)

End If
End Sub

It’s always a good idea when using GetSchema() to cache your results where 
possible. That way, you can greatly increase the performance of your applications.

77

ADO.NET Essentials 

05_584375 ch03.qxd  10/28/05  10:53 PM  Page 77



DbCommand from a DbConnection
It’s also possible to create a Command object directly from a DbConnection object, meaning you can get a
provider-specific implementation of a Command object while keeping the provider-agnostic approach
and references:

Public Sub CheckCommandFromConnection()
Dim actual As String =

CodeSamples.GenericFactoryHelper.Connection.CreateCommand.ToString
Dim expected As String =

CodeSamples.GenericFactoryHelper.GetFactory(CodeSamples.GenericFactoryHelper.Curren
tFactory).CreateCommand.ToString

If expected <> actual Then
Throw New Exception(“Did not return the expected value.”)

End If
End Sub

Make sure you use this approach to create a command when you have a connection available.

Provider-Specific Commands
If you’re not using the Factory Model, it’s perfectly possible to grab a Command object from the provider
of your choice — for example, the SqlCommand if you’re using the SqlClient provider:

Public Sub GetCommandFromProvider()
Dim Comm As System.Data.SqlClient.SqlCommand = New

System.Data.SqlClient.SqlCommand
If Comm Is Nothing Then

Throw New Exception(“The Command object was null.”)
End If

End Sub

While it’s easy to do this, please try to avoid it if possible and use the provider-independent (Generic
Factory Model) approach.

QuoteIdentifier and UnquotedIdentifier
Quoted identifiers help database servers know when you’re talking about objects, such as tables and
columns, and when you’re talking about literal strings.

In SQL Server, there are two types of quoted identifier: [Square Brackets] and “Quotation Marks.” The
quotation marks are used differently depending on whether QUOTED_IDENTIFIER is set to On or Off.
When set to On, anything inside quotation marks is treated as an object, such as a table or column; when
set to Off, characters inside quotation marks are treated as literal strings, such as “Phil”.

Why does this matter to you as a developer? Well, depending on the settings of your queries, you may
need to quote any objects so that they’re not mixed up with their literal string representations. ADO.NET
2.0 provides a couple of methods that hang off the Command object to enable you to do this.
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Hidden away in the Schema Metadata files for your provider, buried within the DataSourceInformation
section, there is an entry for QuotedIdentifierPattern. In the case of the SqlServer provider, this is
(([^\[]|\]\])*), a regular expression specifying that the string passed in to it should be surrounded by
[square brackets]. What the QuoteIdentifier method does is take in our string “Phil” and use the 
regular expression to output a properly formatted string:

Public Sub UseQuoteIdentifier()
Dim CommB As System.Data.Common.DbCommandBuilder =

CodeSamples.GenericFactoryHelper.CommandBuilder
Dim actual As String = CommB.QuoteIdentifier(“Phil”)
Dim expected As String = (“[Phil]”)
If expected <> actual Then

Throw New Exception(“Values do not match”)
End If

End Sub

As well as being able to quote identifiers, it’s also possible to remove any quote mark characters from
the identifiers, meaning that you can translate both ways (Database → UI and UI → Database) for any
parameters or keywords you wish to use:

Public Sub UseUnquoteIdentifier()
Dim CommB As System.Data.Common.DbCommandBuilder =

CodeSamples.GenericFactoryHelper.CommandBuilder
Dim actual As String = CommB.UnquoteIdentifier(“[Phil]”)
Dim expected As String = (“Phil”)
If expected <> actual Then

Throw New Exception(“Values do not match”)
End If

End Sub

Using QuoteIdentifier and UnquoteIdentifer enables you to dynamically build compliant SQL
statements with very little effort. What use they have outside the world of dynamic SQL, however, is not
yet known. 

Adding DbParameters to a DbCommand
Creating and adding parameters using the Factory Model is relatively simple. It’s just a matter of calling
the CreateParameter() method on the Command object and then assigning the parameters any relevant
values before appending it to the Parameters collection on the Command object:

Public Sub CreateAndAddParameter()
Dim Comm As System.Data.Common.DbCommand =

CodeSamples.GenericFactoryHelper.Connection.CreateCommand
Dim Prm As System.Data.Common.DbParameter = Comm.CreateParameter
Prm.ParameterName = CodeSamples.GenericFactoryHelper.FormatParameter(“Socks”)
Prm.Value = (“Smelly”)
Comm.Parameters.Add(Prm)
Dim expectedCount As Integer = 1
If expectedCount <> Comm.Parameters.Count Then

Throw New Exception(“Did not return the expected count.”)
End If
Dim expectedValue As String = (“Smelly”)
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If expectedValue <> Comm.Parameters(0).Value Then
Throw New Exception(“Did not return the expected value.”)

End If
End Sub

You might think it’s odd that this section has been included in the book, but it’s important to understand
how ADO.NET and specifically adding parameters has changed with .NET 2.0.

When adding a parameter now, you should never add it through the Add(string,object) signature.
That method has been deprecated. Instead, add parameters to a ParameterCollection object via the
Add(DbParameter) overload.

Parameters Are Not Generic
Different providers take their parameters in different ways, and coding for each eventuality can be quite
difficult. 

The providers use each database’s native syntax and positioning information for laying out their 
parameters. Some are positional (that is, the index to which they are added in the Parameters collection
directly correlates to where in the SQL statement they will be used), and others are named (a named
parameter goes to a specific place).

The following table lists each of the default providers, with positioning and marker information.

Provider Named/Positional Parameter Marker

SqlClient Named @parmname

OracleClient Named :parmname (or parmname)

OleDb Positional ?

Odbc Positional ?

Table courtesy of http://msdn.microsoft.com/library/en-us/dnvs05/html/vsgenerics.asp?frame=true#vsgene_topic4.

When you are writing a system that should be database-independent, it’s important to remember the
preceding table. You have to code for these differences in parameters.

Fortunately, it’s very easy with the schema information for a provider to format the parameter automati-
cally. The parameter marker is stored inside the ParameterMarkerFormat field of the
DataSourceInformation section.

Here is a method that demonstrates automatically formatting a parameter with the correct marker:

Public Shared Function FormatParameter(ByVal ParameterName As String) As String
Dim Conn As DbConnection = Connection
Conn.ConnectionString = ConnectionString
Dim ParameterMarkerFormat As String
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Using Conn

Conn.Open()
ParameterMarkerFormat =

Conn.GetSchema(“DataSourceInformation”).Rows(0)(“ParameterMarkerFormat”).ToString
Conn.Close()

End Using
Return String.Format(ParameterMarkerFormat, ParameterName)

End Function

An example showing the exact use of the preceding code follows. Here, you can see a parameter name
being passed into FormatParamater, and a string delimited with @ being returned from it:

Public Sub ProviderSpecificParameter()
Dim Comm As System.Data.Common.DbCommand =

CodeSamples.GenericFactoryHelper.Connection.CreateCommand
Dim Prm As System.Data.Common.DbParameter = Comm.CreateParameter
Prm.ParameterName = CodeSamples.GenericFactoryHelper.FormatParameter(“Socks”)
Prm.Value = (“Smelly”)
Comm.Parameters.Add(Prm)
Dim expectedCount As Integer = 1
If expectedCount <> Comm.Parameters.Count Then

Throw New Exception(“Did not return the expected count.”)
End If
Dim expectedValue As String = (“Smelly”)
If expectedValue <> Comm.Parameters(0).Value Then

Throw New Exception(“Did not return the expected value.”)
End If

End Sub

As you can see, by using the built-in Schema Metadata, we can infer the marker and actually place it into
our parameters dynamically at runtime, depending on the provider we’re using.

Now that markers have been dealt with, we turn to the positional side of things. There’s just one simple
rule to follow here: Make sure the order of the parameters never changes and that all of the positional
SQL you write takes parameters in the same order.

ExecuteNonQuery
While much of your ADO.NET code will be retrieving data from data sources, it’s also quite useful to be
able to push data into the database in the form of inserts and updates. This is exactly what
ExecuteNonQuery is for.

ExecuteNonQuery can be used in conjunction with output parameters and return codes, as detailed 
in the section “Output Parameters, Return Codes, Scalars, and DataReaders,” and it offers the added
functionality of returning the number of rows affected by any commands executed with it.

ExecuteReader
You’ll often just need a load of data to display onscreen, such as search results or the items for a 
drop-down list; and the ExecuteReader method is meant for such scenarios. It offers the best and
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fastest approach for reading large amounts of data. Here is a sample showing the use of
ExecuteReader:

Private Shared Sub DoReader()
Using Conn As System.Data.SqlClient.SqlConnection = New

System.Data.SqlClient.SqlConnection
Using Comm As System.Data.SqlClient.SqlCommand = New

System.Data.SqlClient.SqlCommand
Using Reader As System.Data.SqlClient.SqlDataReader =

Comm.ExecuteReader
While Reader.Read

‘Do Stuff
End While

End Using
End Using

End Using
End Sub

Make sure that you’re using a Reader and not a DataSet when you just need forward-only read access
to data.

Filling a DataSet or DataTable without a DataAdapter
There is now fantastic support in the Framework for filling DataTables and DataSets directly from
Readers. No longer do you need a DataAdapter just to get information from your SQL Server tables to
an in-memory DataSet.

Here is a brief example showing the population of a DataTable with a Reader:

Private Shared Sub FillDataTable()
Using Conn As System.Data.SqlClient.SqlConnection = New

System.Data.SqlClient.SqlConnection
Using Comm As System.Data.SqlClient.SqlCommand = New

System.Data.SqlClient.SqlCommand
Using Reader As System.Data.SqlClient.SqlDataReader =

Comm.ExecuteReader
Dim Dt As New DataTable
Dt.Load(Reader)

End Using
End Using

End Using
End Sub

System.Data.CommandBehavior
When calling an ExecuteReader, there’s an overload that takes in one of the CommandBehavior
enumerated types and acts accordingly. The different options are described in the following sections.

CloseConnection
When you employ the CloseConnection option on creation of a Reader, you’ll ensure the connection is
cleaned up after the Reader has been disposed of, but remember that you need to close your Reader in
order for it to close the connection!
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Default
Surprisingly enough, Default is what you get if you haven’t specified a value. It’s also one of the
options you can choose.

KeyInfo
When KeyInfo is specified, ADO.NET will return all the primary key information, along with the tables
in the Reader.

SchemaOnly
The SchemaOnly enumerated type does exactly what it says on the can — it just returns information
about the columns in the tables that are used in the queries.

SequentialAccess
This option should only be selected when reading binary data from databases, as it allows for the
streaming of files from columns in the database.

SingleRow
If you’re just bringing one row back from the database, choose this option. Some of the .NET providers
actually optimize the query to take advantage of the low volume of data being moved around.

SingleResult
When this option is specified, just one result set is returned.

ExecuteScalar
Quite commonly, all you’ll want is a single value from the database, as when you select a field for a
record based on its identifier. When all you need is one value, use ExecuteScalar. 

An object of type System.Object is returned from ExecuteScalar, and you must cast the value out to
the appropriate type (that is, the one you’re expecting, such as int or string):

Private Shared Sub ExecuteScalar()
Using Conn As System.Data.SqlClient.SqlConnection = New

System.Data.SqlClient.SqlConnection
Using Comm As System.Data.SqlClient.SqlCommand = New

System.Data.SqlClient.SqlCommand
Dim o As Object
o = Comm.ExecuteScalar()

End Using
End Using

End Sub

Make sure that all single-field, single-row selects use ExecuteScalar when writing your ADO.NET code.
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Output Parameters, Return Codes, Scalars, and
DataReaders

More often than not, you want to get something from the database server, be it the ID of a newly added
record or an error code from a statement. Four options are open to you as an ADO.NET developer, and
we’ll run through them in the following sections, detailing where they are best used and where they are
best avoided.

Three of the options — Output, InputOutput, and ReturnCode — are detailed in the System.Data
.ParameterDirection enumerated type. The fourth is the DataReader.

Output Parameters
Output parameters act just like normal parameters on the Command object. However, the database can
specify the value to return with them. It’s possible to have multiple output parameters on commands,
and using them precludes the need to return a ResultSet of information (a row of data) from the
database and place it into a DataReader or DataTable to get at the values. Output parameters are best
used to return IDs from newly added rows or to return several values at once where only one row of
data is being referenced. Here’s an example:

Public Sub OuputParameter()
Dim Comm As System.Data.Common.DbCommand =

CodeSamples.GenericFactoryHelper.Connection.CreateCommand
Comm.CommandType = System.Data.CommandType.StoredProcedure
Comm.CommandText = “Northwind.dbo.AddEmployee”
Dim FirstName As System.Data.Common.DbParameter = Comm.CreateParameter
FirstName.ParameterName =

CodeSamples.GenericFactoryHelper.FormatParameter(“FirstName”)
FirstName.Value = (“Phil”)
FirstName.Direction = System.Data.ParameterDirection.Input
Comm.Parameters.Add(FirstName)
Dim LastName As System.Data.Common.DbParameter = Comm.CreateParameter
LastName.ParameterName =

CodeSamples.GenericFactoryHelper.FormatParameter(“LastName”)
LastName.Value = (“Winstanley”)
LastName.Direction = System.Data.ParameterDirection.Input
Comm.Parameters.Add(LastName)
Dim EmployeeID As System.Data.Common.DbParameter = Comm.CreateParameter
EmployeeID.ParameterName =

CodeSamples.GenericFactoryHelper.FormatParameter(“EmployeeID”)
EmployeeID.Direction = System.Data.ParameterDirection.Output
Comm.Parameters.Add(EmployeeID)
Using Conn As System.Data.Common.DbConnection =

CodeSamples.GenericFactoryHelper.Connection
Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Comm.Connection = Conn
Comm.Connection.Open()
Comm.ExecuteNonQuery()
Comm.Connection.Close()

End Using

Dim ActualObject As Object = Comm.Parameters(“EmployeeID”).Value
Dim ActualValue As Integer = 0
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If (Not (ActualObject Is Nothing)) Then
ActualValue = CType(ActualObject, Integer)

End If
Dim ValueWeDontWant As Integer = 0
If ValueWeDontWant = ActualValue Then

Throw New Exception(“The values match!”)
End If

End Sub

The corresponding SQL looks like this:

Alter Proc AddEmployee
(
@EmployeeID int = Null Output,
@FirstName nVarChar(20),
@LastName nVarChar(20)

)
As
Insert Into Northwind.dbo.Employees
(
FirstName, 
LastName

)
Values
(
@FirstName,
@LastName

)
Set @EmployeeID = Scope_Identity()
Go

Return Codes
Return codes are very similar to output parameters in that they’re accessible via a parameter. However,
there can be only one return code per command, meaning they’re best used to report on the status of an
execution. For example, when updating a record, it would be prudent to have three return codes:

1 = Success

2 = Record Not Found

3 = Unexpected Error

Using the value retrieved by the return code, you can then act accordingly within your applications by
either throwing specific exceptions or alerting the user to what has happened:

Public Sub ReturnCode()
Dim Comm As System.Data.Common.DbCommand =

CodeSamples.GenericFactoryHelper.Connection.CreateCommand
Comm.CommandType = System.Data.CommandType.StoredProcedure
Comm.CommandText = “Northwind.dbo.UpdateEmployee”
Dim FirstName As System.Data.Common.DbParameter = Comm.CreateParameter
FirstName.ParameterName =

CodeSamples.GenericFactoryHelper.FormatParameter(“FirstName”)
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FirstName.Value = (“Phil”)
FirstName.Direction = System.Data.ParameterDirection.Input
Comm.Parameters.Add(FirstName)
Dim LastName As System.Data.Common.DbParameter = Comm.CreateParameter
LastName.ParameterName =

CodeSamples.GenericFactoryHelper.FormatParameter(“LastName”)
LastName.Value = (“Winstanley”)
LastName.Direction = System.Data.ParameterDirection.Input
Comm.Parameters.Add(LastName)
Dim EmployeeId As System.Data.Common.DbParameter = Comm.CreateParameter
EmployeeId.ParameterName =

CodeSamples.GenericFactoryHelper.FormatParameter(“EmployeeId”)
EmployeeId.Value = (1)
EmployeeId.Direction = System.Data.ParameterDirection.Input
Comm.Parameters.Add(EmployeeId)
Dim ReturnValue As System.Data.Common.DbParameter = Comm.CreateParameter
EmployeeID.ParameterName =

CodeSamples.GenericFactoryHelper.FormatParameter(“ReturnValue”)
EmployeeID.Direction = System.Data.ParameterDirection.ReturnValue
Comm.Parameters.Add(EmployeeID)
Using Conn As System.Data.Common.DbConnection =

CodeSamples.GenericFactoryHelper.Connection

Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Comm.Connection = Conn
Comm.Connection.Open()
Comm.ExecuteNonQuery()
Comm.Connection.Close()

End Using

Dim ActualObject As Object = Comm.Parameters(“ReturnValue”).Value
Dim ActualValue As Integer = 0
If (Not (ActualObject Is Nothing)) Then

ActualValue = CType(ActualObject, Integer)
End If
Dim ValueWeDontWant As Integer = 0
If ValueWeDontWant <> ActualValue Then

Throw New Exception(“The values don’t match”)
End If

End Sub

The preceding code executes the following SQL:

Create Proc UpdateEmployee
(

@EmployeeID int,
@FirstName nVarChar(20),
@LastName nVarChar(20)

)
As
--Check for the Records Existence
If Not Exists (Select Null From Employees Where EmployeeID = @EmployeeID)
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Return 2; -- Record Doesn’t Exist!

--Update the record
Update Employees
Set FirstName = @FirstName,
LastName = @LastName
Where EmployeeId = @EmployeeId

--Make sure it was updated
If @@RowCount = 1

Return 1; -- Success! 
--If the Procedure got to here, something went very wrong....
Return 3

Go

Scalars
Scalars are a bit trickier to classify because, unlike output parameters and return codes, they’re not tied
into parameters. Rather, they are actually a single value returned in a result set from the database server
returned from a SELECT statement. The code looks like this:

Public Sub ExecuteScalarSingleValue()
Dim Comm As System.Data.Common.DbCommand =

CodeSamples.GenericFactoryHelper.Connection.CreateCommand
Comm.CommandType = System.Data.CommandType.StoredProcedure
Comm.CommandText = “Northwind.dbo.ExecuteScalarSingleValue”
Dim ActualObject As Object = Nothing
Using Conn As System.Data.Common.DbConnection =

CodeSamples.GenericFactoryHelper.Connection

Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Comm.Connection = Conn
Comm.Connection.Open()
ActualObject = Comm.ExecuteScalar
Comm.Connection.Close()

End Using
Dim ActualValue As Integer = 0
If (Not (ActualObject Is Nothing)) Then

ActualValue = CType(ActualObject, Integer)
End If
Dim ValueWeDontWant As Integer = 0
If ValueWeDontWant <> ActualValue Then

Throw New Exception(“The Values don’t match”)
End If

End Sub

The preceding code runs the following SQL:

CREATE PROC ExecuteScalarSingleValue
As
Select 1
Go

87

ADO.NET Essentials 

05_584375 ch03.qxd  10/28/05  10:53 PM  Page 87



DataReaders
The fourth option available to you is to use a DataReader to return the values. The advantage of
DataReaders is that many developers are familiar with them, although they seem a bit like overkill for
just one or two values:

Public Sub ExecuteReaderSingleValue()
Dim Comm As System.Data.Common.DbCommand =

CodeSamples.GenericFactoryHelper.Connection.CreateCommand
Comm.CommandType = System.Data.CommandType.StoredProcedure
Comm.CommandText = “Northwind.dbo.ExecuteScalarSingleValue”
Dim reader As System.Data.Common.DbDataReader = Nothing
Dim ActualValue As Integer = 0
Using Conn As System.Data.Common.DbConnection =

CodeSamples.GenericFactoryHelper.Connection

Conn.ConnectionString = CodeSamples.GenericFactoryHelper.ConnectionString
Comm.Connection = Conn
Comm.Connection.Open()
reader = Comm.ExecuteReader(System.Data.CommandBehavior.SingleRow)
Using reader

While reader.Read
ActualValue = reader.GetInt32(0)

End While
End Using
Comm.Connection.Close()

End Using
Dim ValueWeDontWant As Integer = 0
If ValueWeDontWant <> ActualValue Then

Throw New Exception(“The Values don’t match”)
End If

End Sub

In terms of performance, all of the preceding options operate at a very similar speed, so the choice is not
one of performance but personal preference and appropriateness to the code you’re writing.

For more information on performance comparisons, view this guide at MSDN: http://msdn
.microsoft.com/library/en-us/dnbda/html/bdadotnetarch031.asp?frame=
true#bdadotnetarch031_topic5

DataSet
The ADO.NET Framework has the DataSet. If you’re a hardened .NET developer already, you probably
hate the DataSet, but we implore you to read on. The DataSet is faster, meaner, and an all-around much
nicer chap than it used to be.

When writing code against databases, you’ll commonly want to have relationships between tables and
chunks of data. The ADO.NET DataSet enables you to represent data in memory in a rich relational
model, supporting relationships, key constraints, and a whole host of other features.
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In our experience, we’ve seen the DataSet misused more often than not. Keep in mind that it is not meant
for all data usage in the Framework, that it does have some overhead, and that if you just need to pull
data from a database and display it to a user without any form of data manipulation, you do not need to
use the DataSet.

Having a DataSet is all well and good, but you’ve got to put some data inside it to make it useful. In this
section, we briefly discuss the three ways you can populate a DataSet: manually, with DataAdapters,
and with DataReaders.

Manually Populating a DataSet
It’s perfectly possible, although generally ill advised, to populate a DataSet manually by adding
columns and rows to the DataSet tables in code.

An example of when you might want to populate a DataSet manually is a scenario in which no Reader
or DataAdapter is available for the data source. For example, if you’re reading values from a custom
hardware device, you may grab values via the serial interface and then need to store them in a bucket
somewhere. The DataSet is a great general bucket for data, so by using the Rows.Add(DataRow)
method, you can use the DataSet to hold your information without any Reader or Adapter:

Public Shared Sub AddRowToDataSet()
Dim Ds As DataSet = New DataSet
Ds.Tables.Add(New DataTable)
Ds.Tables(0).Columns.Add(New DataColumn(“Id”))
Ds.Tables(0).Columns.Add(New DataColumn(“Name”))
Dim Dr As DataRow = Ds.Tables(0).NewRow
Dr(“Id”) = 0
Dr(“Name”) = “Phil”
Ds.Tables(0).Rows.Add(Dr)

End Sub

If a DataAdapter or DataReader is available for your data source, don’t add rows manually or we’ll send
the programming police around to arrest you for crimes against common sense.

When you find yourself in a situation that requires you to add rows manually to a DataSet and you
think it would be worthwhile, consider writing your own Data Adapter, which you can reuse.

Using DataAdapters 
More often than not, your data sources will operate in a very complex manner, meaning that a level of
translation needs to occur to convert the provider-specific chunks of data into .NET-compatible DataRows
and DataTables. The DataAdapter for a given provider will do all the hard work for you.

Each provider that ships with the .NET Framework has its own DataAdapter, which converts provider-
specific data into a .NET version.

An example of using a DataAdapter to populate a DataSet is shown here:

Public Shared Sub DoAdapter()
Dim Ds As New DataSet
Using Conn As New System.Data.SqlClient.SqlConnection
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Using Comm As New System.Data.SqlClient.SqlCommand
Dim Da As New System.Data.SqlClient.SqlDataAdapter(Comm)
Da.Fill(Ds)

End Using
End Using

End Sub

It’s worth noting that a DataAdapter does much more than simply convert data source mush into a
DataSet; it also hosts a whole range of features for shoving the DataSet back into the provider-specific
mush.

Using DataReaders
A new addition to ADO.NET is the capability to populate DataSets directly from DataReaders. With this
new functionality, the clearly defined lines between using DataReaders and using DataSets have become
somewhat blurred. The best practices to follow when using these objects remains to be seen.

Here is a quick code snippet showing how to populate a DataSet using only a DataReader:

Public Sub LoadFromReader()
Dim table As New DataTable(“Orders”)
Using Conn As DbConnection = CodeSamples.GenericFactoryHelper.Connection

Dim Comm As DbCommand = CodeSamples.GenericFactoryHelper.Command
Comm.CommandText = (“Select * From Orders”)
Using Reader As DbDataReader =

Comm.ExecuteReader(CommandBehavior.CloseConnection)
table.Load(Reader)

End Using
End Using

End Sub

DataTable
In previous versions of ADO.NET, the DataTable was the “poor relative” of the DataSet, a smaller and less
powerful version with quite a few problems. In ADO.NET 2.0, however, the DataTable is now a first-class
citizen within the Framework. It can operate completely independently of the DataSet.

Most of the time when people are creating DataSets, they’re only populating one table within that
DataSet. It’s quite common to only want a flat representation of data, so it didn’t make sense to use a
DataSet every time you needed to grab a flat set of data. Now, under ADO.NET 2.0, you can use the
DataTable all by itself.

Under 1.0 and 1.1, the developer had to jump through rings of fire just to get a DataTable into its simplest
form, XML. The new Framework has made this much easier.

Bear in mind that while you can now expose the DataTable as a parameter, or return a value for a Web
Service, only .NET 2.0 clients will be able to use DataSets with XML serialization.
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RowState
While it goes completely against all best practices and defies most of the rules laid down by the
ADO.NET team, people often want a way to manually set the RowState for specific rows in their
DataTables. In ADO.NET 2.0, new methods have been added to enable this.

You now have explicit control for RowState using the SetAdded() and SetModified() methods,
meaning you can override the DataRow’s default behavior.

The following example shows this new explicit control and how you can use it:

Public Sub SetModified()
Dim OrigonalTable As System.Data.DataTable = New System.Data.DataTable
OrigonalTable.TableName = “InternetSightings”
OrigonalTable.Columns.Add(“AnimalOrFungiName”)
OrigonalTable.Columns.Add(“TimesSpotted”)
Dim BadgerRow As System.Data.DataRow = OrigonalTable.NewRow
BadgerRow(“AnimalOrFungiName”) = “Badger”
BadgerRow(“TimesSpotted”) = “More than you can possibly imagine.”
OrigonalTable.Rows.Add(BadgerRow)
OrigonalTable.AcceptChanges()
If System.Data.DataRowState.Unchanged <> OrigonalTable.Rows(0).RowState Then

Throw New Exception(“Not Equal”)
End If
OrigonalTable.Rows(0).SetModified()
If System.Data.DataRowState.Modified <> OrigonalTable.Rows(0).RowState Then

Throw New Exception(“Not Equal”)
End If

End Sub

DataView
It’s now possible to take the data from a DataView and convert it directly to a standalone DataTable
object, which reflects exactly the schema and content of the DataView. To achieve this, you use the
ToTable() method of the DataView:

Public Sub ToTable()
Dim OrigonalTable As System.Data.DataTable = New System.Data.DataTable
OrigonalTable.TableName = “InternetSightings”
OrigonalTable.Columns.Add(“AnimalOrFungiName”)
OrigonalTable.Columns.Add(“TimesSpotted”)
Dim BadgerRow As System.Data.DataRow = OrigonalTable.NewRow
BadgerRow(“AnimalOrFungiName”) = “Badger”
BadgerRow(“TimesSpotted”) = “More than you can possibly imagine.”
OrigonalTable.Rows.Add(BadgerRow)
Dim MushroomRow As System.Data.DataRow = OrigonalTable.NewRow
MushroomRow(“AnimalOrFungiName”) = “Mushroom”
MushroomRow(“TimesSpotted”) = “Just the twice, normally after spotting

Badgers.”
OrigonalTable.Rows.Add(MushroomRow)
Dim SnakeRow As System.Data.DataRow = OrigonalTable.NewRow
MushroomRow(“AnimalOrFungiName”) = “Snake”
MushroomRow(“TimesSpotted”) = “Just the once, and crikey, what a scare I had!”
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OrigonalTable.Rows.Add(SnakeRow)
Dim Dv As System.Data.DataView = New System.Data.DataView
Dv.Table = OrigonalTable
Dv.RowFilter = “AnimalOrFungiName = ‘Badger’”
Dim ToTableTable As System.Data.DataTable = Dv.ToTable
Dim expected As Integer = 1
Dim actual As Integer = ToTableTable.Rows.Count
If expected <> actual Then

Throw New Exception(“The number of rows returned was not the number
expected.”)

End If

If “Badger” <> ToTableTable.Rows(0)(“AnimalOrFungiName”).ToString Then
Throw New Exception(“The AnimalOrFungiName was not the value we expected.”)

End If
End Sub

The preceding example shows you how to create a table from a DataView. This, in and of itself, isn’t very
useful, but the table can then be used anywhere else, such as on a Web service or saved to disk.

Serialization
The ADO.NET team has finally paid attention to the crying and whimpering of ADO.NET developers
around the world. In ADO.NET 1.0 and 1.1, DataSets would always serialize into an XML text format,
even when you explicitly told them to binary serialize. In ADO.NET 2.0, the Framework now listens to
your demands as a developer and actually binary serializes the DataSets when you tell it to.

The benefits of this serialization format are massive, especially in the areas of remoting and Web services,
where it is quite common to pass DataSets between endpoints across the wire. There is less processing
time at both ends, but the greatest gain is on the receiving end of any transfer, as it does not need to be
parsed and is deserialized directly into memory.

In addition to experiencing reduced processing time, less memory is used both at runtime and when
saving DataSets to disk. This is because the footprint of the DataSet is much smaller when expressed in a
binary format.

Because the DataSet is smaller in its binary serialized format, it will clearly use less bandwidth when it’s
moved over the wire than it would XML Serialization. This is true in almost all real-world scenarios;
however, be aware that this is not always the case.

Binary serialization will actually make the DataSet larger when serialized than with XML Serialization
when you have a single-row, single-table DataSet. The majority of the information that is serialized in
this case is metadata describing the structure of the DataSet and its tables.

In general, using binary serialization makes it possible to get about 80 times the current performance
from the same applications, depending on the amount of data they move across the wire.

Keep in mind that you don’t have to use binary serialization. In fact, the default will still be XML so that
all of your existing .NET 1.0 and 1.1 applications continue to work even when hosted under the .NET 2.0
Framework.
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Here’s an example that shows how to binary serialize a DataSet and then read back the serialized file:

Dim ds As DataSet = New DataSet
Dim FileName As String = (“C:\testbinary.bin”)
Dim cs As String = “Data Source=localhost;Integrated Security=SSPI;Initial
Catalog=Northwind”
Dim sql As String = “SELECT * FROM Employees”
Dim cn As System.Data.SqlClient.SqlConnection = New
System.Data.SqlClient.SqlConnection(cs)
Dim cmd As System.Data.SqlClient.SqlCommand = New
System.Data.SqlClient.SqlCommand(sql, cn)
Dim da As System.Data.SqlClient.SqlDataAdapter = New
System.Data.SqlClient.SqlDataAdapter(cmd)
da.Fill(ds, “TestTable”)
ds.RemotingFormat = SerializationFormat.Binary
Dim myFormatter As System.Runtime.Serialization.IFormatter = New
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
Dim myStream As System.IO.Stream = New System.IO.FileStream(FileName,
System.IO.FileMode.Create)
myFormatter.Serialize(myStream, ds)
Dim ds1 As DataSet = New DataSet
ds1.RemotingFormat = SerializationFormat.Binary
Dim myFormatter1 As System.Runtime.Serialization.IFormatter = New
System.Runtime.Serialization.Formatters.Binary.BinaryFormatter
Dim myStream1 As System.IO.Stream = New System.IO.FileStream(FileName,
System.IO.FileMode.Open)
ds1 = CType((myFormatter1.Deserialize(myStream1)), DataSet)

Whenever you need to move large DataSets across the wire, it’s certainly worthwhile to tweak the code a
little so that it moves binary serialized DataSets across and not XML serialized DataSets.

DataTableReader
Microsoft has come up with a little class called the DataTableReader, which is essentially a very thin
object sitting on top of the DataTable; it’s a representation of the table’s data as a DbDataReader, meaning
you can stream data straight out of a DataTable.

Streaming
With the new streaming functionality built into the DataTable, not only can you stream into a DataTable
using the Load(IDataReader) method:

myDataTable.Load(Reader)

but you can also get a DataReader out of a DataTable, enabling you to stream in and out of tables:

Warning: If you try to send a binary serialized DataSet to an application hosted
under .NET 1.0 or .NET 1.1, the process will fail. Those Frameworks cannot 
deserialize binary format DataSets!
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Dim Reader As DbDataReader = myDataTable.CreateDataReader()

There’s no longer a need to use a StreamReader in your code when dealing with DataTables.

Namespace Qualified Tables
In ADO.NET 1.0 and 1.1, it was not possible to add multiple tables with the same name into different
namespaces, even though it should have been. In ADO.NET 2.0, this bug has been fixed, so you can now
perform the operation, like this:

Public Sub NamespaceQualifiedTables()
Dim Ds As System.Data.DataSet = New System.Data.DataSet
Dim TheTable As System.Data.DataTable = New

System.Data.DataTable(“TheSameTableName”)
TheTable.Namespace = (“OneNamespace”)
Ds.Tables.Add(TheTable)
TheTable = New System.Data.DataTable(“TheSameTableName”)
TheTable.Namespace = (“AnotherNamespace”)
Ds.Tables.Add(TheTable)
Dim expected As Integer = 2
Dim actual As Integer = Ds.Tables.Count
If expected <> actual Then

Throw New Exception(“The number of tables found was not the number
expected.”)

End If
End Sub

If you tried to run the preceding code under .NET 1.1, the Framework would run the following error at
runtime:

A DataTable named ‘TheSameTableName’ already belongs to this DataSet.

What this means is that you can have many tables with the same name inside the same DataSet as long
as they are all contained in different namespaces. This is useful when dealing with XML, where it’s quite
common to find many instances of the same schema repeated throughout an XML document.

Indexing Engine
When using ADO.NET 2.0, you get a warm, fuzzy feeling like something good is about to happen 
but you’re not quite sure what. You notice this feeling the most when it comes to the speed of your 
applications.

One place where performance has been increased is with the indexing engine, which has been completely
rewritten for ADO.NET 2.0. The changes aren’t visible in terms of the API, but you will notice them in
your applications’ speed.
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You’ll see the greatest increase in performance when performing inserts into DataTables. In ADO.NET
1.0 and 1.1, the indexing worked perfectly well for small DataSets, but as larger DataSets were thrown at
the engine, it started to creak a little because the method of indexing didn’t scale very well.

All this has changed in ADO.NET 2.0. The method is now much faster and causes a reduced number of
allocations, meaning you’ll see much less garbage collection and less tree allocations through the Garbage
Collector. In addition, memory usage is lower and the amount of information added to the large object
heap has been greatly reduced as the segments are reused to store row and index information.

Other areas in the Framework that have greatly benefited from changes made to the indexing engine
include any tables with constraints and relationships, any tables with primary keys, and DataViews
when sorting.

In all, you should see a significant increase in performance by just hosting your existing 1.0 and 1.1
applications under the .NET 2.0 Framework.

DataSet, DataTable, DataReader,
or an Object?

Use the right tool for the right job — that’s been the mantra in engineering shops for many years, and the
same applies to the world of ADO.NET.

The DataSet is almost always larger than a collection of objects that match the DataSet’s structure in
memory.

To help you choose the right tool for the right job, we’ve drawn up a simple task-oriented guide.

Showing Data to Users without any Manipulation
Use a Reader if all you need to do is bind data up to a grid or show the details of a product. Why bother
with a bulky DataSet? You don’t need relationships, you don’t need state management (changes to
rows), and you certainly don’t need multiple tables. A simple forward-only Reader will do the job in the
most efficient way.

Editing Data That Lives in One Table
This one isn’t quite as clear-cut. If you don’t really need the change management that the DataSet offers,
and usually you won’t, then just use a Reader to get the data back from your data source and use
ExecuteNonQuery() to update any data that the user changes.

Editing Data Spread across More Than One Table
Use a DataSet. It’s exactly what it was designed for — managing the complex relationships between
many tables and their respective rows of data.
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Editing Continuously Updated Data for Which the Chance
of Collisions Is High

Again, use the DataSet. It has very cool change management and tracking systems built into it. Combine
a DataSet with the DataAdapter and you’ll be laughing all the way to the bank.

Getting One Value from a Database
Use an object, employ the use of ExecuteScalar(), or use an output parameter to get your value.
There’s no need for a DataReader or a DataSet. The extra code they both require isn’t worth considering
for a single value, not to mention the fact that DataSets are usually slower.

Basically, don’t use a battering ram when there’s a doorbell!

Summary
You should take away a few key points from this chapter. First, learn the ADO.NET 2.0 API. Make sure
you understand all of the different classes and what they are meant for. If you understand the basics,
then you will be in the right position to use the new features to their fullest.

Second, remember to keep the schema in mind when you are asked to create reports. The simple way in
which you can interrogate the schema means that it’s very easy to build flexible reporting applications.

Last, get to know the Web. While this book delves deeply into many ADO.NET topics, there are always
more out there. 

For More Information
To complement the information in this chapter, take a look at the following resources:

❑ Microsoft Data Access and Storage Developer Center —http://msdn.microsoft.com/data/

❑ Microsoft DataWorks Blog —http://blogs.msdn.com/dataaccess/

❑ Angel Saenz-Badillos’ Blog (member of the ADO.NET team at Microsoft) —http://blogs
.msdn.com/angelsb/

❑ Microsoft SQL Server FAQ, an online SQL Server community —www.sqlserverfaq.com/

❑ SQL Server Community, another great online community —www.sqlservercentral.com/
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Standard Data Types

In the course of development, data-oriented programmers, even when they have no formal training
in data types, quickly become familiar with them — or at least an integral subset that they use on a
day-to-day basis. Among these, the most common is by far the string. This is because virtually every
other data type can be expressed in this format, as is easily evidenced in XML. Not far after that
come the integer and the Boolean. 

These three data types make up the vast majority of data types used in data-oriented programming.
This is mostly because data-oriented applications are driven by information that is most often
expressed using a human language. Human language, written human language, uses strings of
characters as a medium for communicating information, so it is only natural that a data-driven
computer application would mimic that by storing information as strings of characters.

Integers are a natural runner-up because the most basic applications of mathematics involve 
integers — counting, adding, subtracting, and so on. And the Boolean type springs from a basic
fundamental of human existence: truth or non-truth. Similarly, computers again mimic the human
understanding of the world in making use of these core means of expression.

Of course, we are also fascinated by the concept of time; humans started measuring and recording
it early in our history, so we also often need and find ways to represent measurements of time and
date in our applications. In addition to time, we have to deal with a few other kinds of data, some
of which relate to human life and some of which are peculiar to computing.

This chapter describes how these and other data types are handled by Microsoft’s SQL Server,
which is the de facto relational database system for Microsoft programmers. We’ll then consider
the System.Data.SqlTypes namespace’s use of data types and compare how standard .NET
data types interact with these and ADO.NET in general to facilitate communication with a data
storage system.
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Data Types in SQL Server
First we’ll consider the ways in which SQL Server stores character data. There are two basic variations in
this type, fixed-length and variable-length storage, but there is a bit more to it than that. In this and the
following sections, specifications relate to SQL 2005; however, most of the statements hold true for the
existing, equivalent SQL 2000 types. Where available, the equivalent SQL-92 specification synonym is
provided in parentheses next to the SQL Server type.

CHAR (CHARACTER)
The character (CHAR) type indicates fixed-length storage, meaning that the length you specify for it will
be used for all of the values stored in a column or variable of that type. For example, if you specified
CHAR(20), every row in a table containing that column would use 20 characters, regardless of whether
you only specified two characters — the remaining 18 would be stored as blank spaces. 

In terms of storage size, each character equates to 1 byte, so if you had 100 rows using the 20-character 
column just described, you would be using 4,000 bytes. Usage of this type is specified by CHAR followed 
by an optional length indicator in parentheses. If no length is specified, except in CAST statements, 
one-character length is assumed. In CAST statements, 30-character length is assumed. The maximum length
for this type is 8,000.

This column is rarely used except when all of the values for a column are expected to have the same
length. For example, if you had a two-letter code for each row, then you might choose CHAR(2), as is
often done when storing U.S. state abbreviations. In most cases, however, character data is variable, so
you would use the next type.

VARCHAR (CHAR VARYING or CHARACTER VARYING)
VARCHAR is probably the most useful type in SQL Server. This is because it stores character data, which can
represent most data, and because it doesn’t waste unnecessary space for data that varies considerably in
length from row to row. As the name suggests, VARCHAR is used when you wish to declare that a column or
variable will contain a variable length of characters.

To use the type, you specify the name followed by the maximum length allowed in parentheses. 
For example, VARCHAR(1024) indicates a maximum length of 1,024 characters. It also has the same 
presumed length as CHAR does if you omit the length specification. The beauty of VARCHAR, though, is
that it will only use the space actually required by values, instead of padding values with trailing spaces
as CHAR does. This means that, while more difficult to estimate actual storage size, you can optimize the
space used and you won’t have to bother with trimming blank spaces from stored strings when using
the values in code. 

“If you store this” in a VARCHAR(50), only 19 bytes would actually be stored. If you’re studious, you
might notice that there are only 17 characters in that string. The reason why 19 bytes are used to store it
is because SQL Server uses 2 extra bytes to store the actual length of the row’s data for that column. This
doesn’t mean you can only put 48 characters in the column — it just means that if you fill it up, 52 bytes
will be used, not 50.

VARCHAR, like CHAR, has a maximum length of 8,000, which is good for all but the most verbose of us.
But if you need storage larger than 8,000 characters, you’ll have to supersize your type to the one 
covered next.
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TEXT and VARCHAR(MAX) 
Traditionally, in SQL Server, the TEXT type is what has been used to handle those potentially very large
bunches of characters that you need to store, such as, for instance, this book (or even this chapter). In cases
where you expect your requisite storage for a single row to exceed 8,000 characters, choose this type.

Of course, to mix things up, the SQL Server team decided to do a switcheroo on us with 2005. For some
reason, perhaps because it makes sense, they’ve created the VARCHAR(MAX) type, which is, for all intents
and purposes, the same thing as the TEXT type. Both are used to store highly variable, potentially large
character data up to 2 GB — well, actually 1 byte less than that (231-1, that is, 2,147,483,647 bytes). 

In fact, the VARCHAR(MAX) type is intended to replace the TEXT type. This means that, likely in the next 
version (after 2005), if applications are still using TEXT, they will not be directly portable without 
modification. Keep this in mind while developing new applications on SQL Server 2005.

National Character Storage
If you are a developer who is already familiar with SQL Server, then you are probably wondering why
we have not mentioned national (international, really) character storage. It is usually covered with the
corresponding non-Unicode types. We felt that, since the Unicode (national) types are the same as their
related non-Unicode types, with the one caveat that (owing to the fact that Unicode uses 2 bytes per
character) you are limited to half as many characters as their non-Unicode brethren, there is really no
need to go over them in depth — you can simply look at the non-Unicode types and know that the
Unicode are the same with the caveat just mentioned.

Said another way, NCHAR and NVARCHAR are limited to 4,000 characters, and NTEXT— now NVARCHAR(MAX)
— is limited to about one billion (230-1, aka 1,073,741,823) characters. Why, oh, why would you want to cut
your storage size in half? The answer is in the SQL-92 synonyms for these types — the keyword “national.”
These types store characters in Unicode format, which allows sufficient combinations of bits to represent all
written languages’ characters. 

As you can see, you will want to use these types when you will be globalizing your application. Some 
people recommend always using national types, but sometimes we know that an application is never
going to be globalized, so there really is no reason to over-engineer your application to provide for a 
situation that will never happen.

INT (INTEGER)
INT is for numbers what VARCHAR is for characters — that is, it is far and away the most commonly 
used numerical type. This is because it serves as an integer (great for counting and other whole-number
operations) and can represent a range of possible numbers that is large enough for most needs and still
small enough to not be a storage problem.

INT is a 32-bit (4-byte) number type. As such, it can represent numbers from negative two billion (-231) to
positive two billion (231-1).
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BIGINT
This type is the big brother to all of the other integer types. Being a 64-bit number (8 bytes), it can represent
from about negative nine quintillion to positive nine quintillion (-263 to 263-1). Clearly, you need to use this
type when you expect your integer data to represent integer numbers larger than two billion. If you need
something larger than nine quintillion, well, then you’re out of luck. It is hoped that the national deficit
won’t grow that big for a while yet.

SMALLINT
If BIGINT is the big brother, SMALLINT is the middle sibling. Being a 16-bit (2-byte) number has its
advantages, but these days, it just seems to get overlooked. Everybody’s always talking about 32-bit this
and 64-bit that, but what about good ol’ 16 bit? Unfortunately, the range of numbers for this type is too
restrictive for most applications; at one time, negative to positive 32,000 (-215 to 215-1) was considered
plenty, but not anymore.

TINYINT
The baby brother, this 1-byte integer is so small that it is only useful for numbers up to 255. It’s great for
those situations in which you have a well-known, limited number of values, such as, for instance, when
you are storing the numerical representation of constant enumeration values.

DATETIME (TIMESTAMP)
The DATETIME type is another one of those indispensable types you find yourself using in almost every
table, almost certainly every database, if for nothing else but logging purposes. It is obvious how this
type is used. The key thing to note is the difference between this type and its smaller sister, covered next.

DATETIME is stored as two 4-byte integers (that pesky INT shows up again). The first integer accounts for
the number of days before or after the system base date, which is the first of January, 1900. The last 32-bit
number keeps track of the number of milliseconds after zero hundred hours. 

Valid dates for this type range from January 1, 1753, all the way to the last day of the year in 9999, and its
tracking of milliseconds gives it an accuracy to 3.33 milliseconds, rounding to increments of .000, .003,
and .007 seconds. When you need to keep accurate time logs or keep dates far into the future or past,
this is the type you need.

SMALLDATETIME
SMALLDATETIME differs from its big sister in two key ways — precision and range. Because it is stored as
two 2-byte integers (so there is a use for 16-bit integers after all!), it only keeps a precision down to the
minute and can only store dates between January 1, 1900 and June 6, 2079. It uses the first 2 bytes to
store the days after 1900 and the latter 2 to watch the minutes after midnight.

You will want to use this type anytime you know its range will not be overshot and when you need
precision to the minute only. As a rule of thumb, opt for the type requiring smaller storage when it
makes sense to do so.

100

Chapter 4

06_584375 ch04.qxd  10/28/05  10:51 PM  Page 100



REAL (FLOAT(24)) and FLOAT (FLOAT and DOUBLE
PRECISION)

REAL and FLOAT are both floating-point data types. As such, any values within their ranges cannot be
represented exactly; hence, they are called approximate numbers. The n in the FLOAT(n) syntax stands
for the number of bits used to store the mantissa of the float number in scientific notation. 

In both SQL Server 2000 and 2005, SQL Server uses n to determine storage size. If n is less than or equal
to 24, then SQL Server stores and treats it as a four-byte number, precise up to seven digits. If n is greater
than 24, then it is treated as an 8-byte number with precision up to 15 digits. Because the range of these
numbers is most precisely and easily expressed in scientific notation, they are listed in the following
table.

Type Range

FLOAT - 1.79E + 38 to -2.23E - 38, 0 and 2.23E -38 to 1.79E + 38

REAL -1.18E - 38, 0 and 1.18E - 38 to 3.40E + 38

NUMERIC and DECIMAL (DEC and DEC(p,s))
Apart from the name, NUMERIC and DECIMAL are pretty much the same thing, so it is really just a matter of
personal choice, although to more closely resemble the SQL-92 standard, you may want to stick with 
DECIMAL. In addition, DECIMAL is what the corresponding types are called in both the SqlTypes
namespace and the .NET primitive.

The syntax for both enables you to specify the precision, which is the total number of digits to the left and
right of the decimal point. The second number you can optionally specify when declaring one of these is
the scale, which is a way to limit the number of digits to the right of the decimal point. The maximum 
precision is 38; the maximum value of the scale is limited to the specified precision. Thus, DECIMAL(14,
7) would give a precision of up to 14 digits, only 7 of which can be on the right side of the decimal.

In terms of storage, these types vary based on the precision. Starting with 5 bytes for a precision up to 9,
the storage space increases 4 bytes for every additional nine to ten digits. The range of these numbers is
proportional to the precision as well, being about 10 to the power of the precision, so if we consider the
default value, 18, for the precision and the default scale of zero, that would give you a range of about plus
or minus one quintillion, using 9 bytes to store it. Following is a table showing the relation of precision to
range and storage size:

Precision Maximum Range Storage Size (in Bytes)

1-9 -10^9 + 1 to 10^9 – 1 5

10-19 -10^19 + 1 to 10^19 – 1 9

20-28 -10^28 + 1 to 10^28 – 1 13

29-38 -10^38 + 1 to 10^38 - 1 17
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As you can see, DECIMAL gives you the broadest range of numbers with the greatest degree of accuracy,
but this comes at the price of hefty storage requirements (for a number, anyway). To use this number
type appropriately, you have to consider what you need in terms of precision and scale. 

If you are a business developer, you will rarely need this type because for smaller, less precise non-integer
numbers, you can use a small float and save space. For the most part, the only time you really need 
precise and accurate decimal storage is when you are dealing with money, in which case you have the
money types that SQL Server provides, which provide a friendly abstraction to the DECIMAL type. 

MONEY and SMALLMONEY
Despite the names, the MONEY and SMALLMONEY are just handy exact numeric types. MONEY is roughly
equivalent to DECIMAL(16,4) in range, precision, and scale, but it does save you a byte in storage and
gives you a friendly way to deal with numbers in that category. Of course, you shouldn’t abuse this type —
only use it when you are storing monetary values to prevent potential confusion. 

Having a range that spans negative to positive 9.22 trillion should pretty much cover any monetary
numbers you will come across, unless you are dealing with the U.S. government. Conversely, you would
think that Microsoft would have to up the range with the next release after 2005 or maybe come up with
a BIGMONEY type that roughly corresponds to the BIGINT range.

SMALLMONEY, ironically named, will give you, roughly, a range of plus or minus 215,000, just enough to
buy a license or two of SQL Server. This type would be an adequate salary column for many of us — of
course, you couldn’t keep track of CEOs or senators with it. For both MONEY and SMALLMONEY, SQL
Server keeps track to four decimal places, or to one ten-thousandth of the applicable unit of currency.

BINARY, VARBINARY, IMAGE, and VARBINARY(MAX)
(BINARY VARYING)

Many developers (especially those without a computer science degree) are afraid of binary storage. This is
probably because it is an unknown, at least in terms of standards and readability. If you don’t have a 
program that understands the bits, it is just a bunch of numerical gibberish. Put another way, you can’t
open it in NotePad. (Well, you can, but it usually won’t mean much to you unless you’re into Kabbalah.) 
It is a black box, and you can’t look at it very meaningfully in Query Analyzer or easily pull reports from it.

On the other hand, your computer likes it. The computer doesn’t require any special extra information to
store or process it. It is the lingua franca of computers today, the only thing they speak natively. It’s simple
and efficient, and we kind of like it for that reason as well. There are no complicated decisions to make, no
worrying about code pages, globalization, floating points, precision, ranges, or scale. The only decision to
be made is how many bytes to permit. 

You see, binary storage isn’t so bad, and it certainly has its place in your computing environment. Probably
the most common use of these types is to store images, Word, and PDF documents. For any scenario in
which you have an application that stores data in a proprietary data format, you can use one of these types
to store it in the database. In fact, if you are feeling particularly obtuse, you could store a string in this type,
but only do that if you don’t care to read it back out easily. The point is that it is the most versatile type
because, ultimately, anything that can be stored in a computer can be stored in this type.
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As you might expect, BINARY and VARBINARY differ only in that the former is a fixed-length type and
the latter is a variable-length type. In that sense, it is exactly like CHAR and VARCHAR. In fact, the analogy
extends further to the IMAGE and VARBINARY(MAX) types. Just like TEXT and VARCHAR(MAX), IMAGE and
VARBINARY(MAX) differ only in name.

For BINARY and VARBINARY, the maximum size is 8,000 bytes. For BINARY, the storage size is exactly the
same as the specified size. For VARBINARY and IMAGE (now VARBINARY(MAX)), the actual storage size will
be the actual number of bytes provided plus 2 bytes to record that length (just like the variable character
data). And, again, use IMAGE/VARBINARY(MAX) in cases where storage will vary to be greater than 8,000
bytes.

Using BINARY to Store Flags
Another handy use for the BINARY type is persisting bit flags, such as a .NET flags enumeration. In case
you’re not aware of it, .NET enables you to apply the Flags attribute to an enumeration so that developers
can combine different values of the enumeration; without the Flags attribute, enumeration members are
mutually exclusive constants. 

Internally, a flags enumeration is stored as a set of bits, where each place in the binary number can be
used as one flag. Because the default underlying type for enumerations is Int32, you can have up to 32
flags for a typical flags enumeration (one flag per bit). Of course, you can use an Int64 if you need more
flags. In any case, you can store these kinds of enumerations directly into a BINARY(4) column in SQL
Server, as that will directly store the value of those 32 bits for you.

A typical enumeration (non-flags) might look something like this:

Public Enum NoFlags
Option1 = 1
Option2 = 2
Option3 = 3

End Enum

A flags enumeration would look something like this:

<Flags()> _
Public Enum FlagsEnum

None = 0
Place1 = 1
Place2 = 2
Place3 = 4
Place4 = 8
Place5 = 16
Place6 = 32
Place7 = 64
Place8 = 128
NamedCombo = Place1 Or Place2 Or Place3

End Enum

If you were going to store these enumerations in SQL Server, you could use a BINARY(4) column for 
the flags enumeration and a VARCHAR(20) for the non-flags enumeration. Here’s some sample code to
illustrate how you might write such values to SQL Server given these options:
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Public Sub UpdateEnums()
Dim recsAffected As Integer = 0
Using conn As New SqlConnection(NorthwindConnString)

Using cmd As New SqlCommand()
cmd.Connection = conn
cmd.CommandText = “UPDATE Orders “ & _
“SET Flags = @Flags, SomeOption = @SomeOption “ & _
“WHERE OrderID = @OrderId”

Dim flags As New SqlParameter(“@Flags”, SqlDbType.Int)
flags.Value = DirectCast(FlagsEnum.Place7 Or _
FlagsEnum.NamedCombo, Int32)

Dim someOption As New SqlParameter(“@SomeOption”, SqlDbType.VarChar)
someOption.Size = 20
someOption.Value = NoFlags.Option2.ToString()
cmd.Parameters.Add(flags)
cmd.Parameters.Add(someOption)
cmd.Parameters.AddWithValue(“@OrderId”, 10262)
cmd.Connection.Open()
recsAffected = cmd.ExecuteNonQuery()

End Using
End Using
Console.WriteLine(“{0} Records Affected by Enums Update”, recsAffected)

End Sub

Note a few things about the preceding code. We’re using the Int SqlDbType, even though the column is
defined as BINARY(4). This is because we’re going to let SQL Server handle the conversion from the INT
value to BINARY. 

If you try, for instance, using the BitConverter class to convert the Int32 to bytes, it will work as far as
.NET is concerned, but the value will not be usable in SQL Server itself because the BitConverter.
GetBytes will get a 4-byte array with the bytes in reverse order from how they appear in the 
enumeration/integer — that is, byte one will be the rightmost 8 bits, byte two the next rightmost 8 bits,
and so on.

In the previous case, this comes out to be 0x47000000 in SQL Server instead of the correct 0x00000047.
That’s a huge difference because the flags are reversed, so we just pass the value to SQL Server as the
underlying integer value and SQL Server will correctly cast it to BINARY(4) for us. Besides that, it’s less
code this way.

When saving the non-flags enum, we chose to store the string named value instead of the underlying
integer value. This is just to make it easier to understand with database reporting and query tools.
System.Enum overloads the ToString method to return the named value.

Note a few of the new features of .NET 2.0. Visual Basic now has a Using statement that ensures (like the
using statement in C#) that Dispose is called on the objects being “used.” The SqlCommand
.Parameters.Add method has deprecated the overload that takes just the name of the SQL parameter
and a value in favor of a new method called AddWithValue, so you should use this when you want to
let ADO.NET infer the other details of a parameter.

Figure 4-1 shows what those columns might look like in Query Analyzer after running the preceding code.
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Figure 4-1

Note how Query Analyzer represents the binary column as a hexadecimal number. In this case, it is
0x00000047, which is 00000000 00000000 00000000 01000111 if we convert this number to its binary 
representation (broken down to bytes for readability). This is correct — the flags we set are Place1, Place2,
and Place3 (as the NamedCombo value), and the Place7 value. Remember that the places are read from
right to left.

Unfortunately, there’s no easy way to display the BINARY column values as the actual binary representa-
tion, but you can easily convert hexadecimal (base16) into binary (base2) using the Windows
Calculator’s scientific functions. Just select the Hex option, enter 47 (in our case), and then select the Bin
option to see the corresponding binary value.

Of course, the key here is that you can work with the Flags column using bitwise operators in SQL
Server as well, not just in .NET. The only difference (apart from syntax, of course) is that in .NET, you’ll
have the friendly named values of your flags enumeration to work with. In SQL Server, you’ll have to
check the flags by comparing the literal values (in hexadecimal form).

To read these values back out of SQL Server, the following code will suffice:

Public Sub ReadEnums()
Dim ourFlags As FlagsEnum
Dim ourOption As NoFlags
Using conn As New SqlConnection(NorthwindConnString)

Using cmd As New SqlCommand()
cmd.Connection = conn
cmd.CommandText = “SELECT CAST(Flags AS INT), SomeOption “ & _
“FROM Orders “ & _
“WHERE OrderID = @OrderId”
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cmd.Parameters.AddWithValue(“@OrderId”, 10262)
cmd.Connection.Open()
Dim dr As SqlDataReader = cmd.ExecuteReader()
If dr.Read() Then

ourOption = DirectCast(System.Enum.Parse(GetType(NoFlags), _
dr.GetString(1)), NoFlags)

ourFlags = DirectCast(dr.GetInt32(0), FlagsEnum)
End If
dr.Close()

End Using
End Using
Console.WriteLine(“Retrieved Option is {0}.”, ourOption.ToString())
Console.WriteLine(“NamedCombo is Set: {0}.”, _
((ourFlags And FlagsEnum.NamedCombo) <> 0))

Console.WriteLine(“Place7 is Set: {0}.”, _
((ourFlags And FlagsEnum.Place7) <> 0))

Console.WriteLine(“Place8 is Set: {0}.”, _
((ourFlags And FlagsEnum.Place8) <> 0))

End Sub

Note two things in this code. First, in our SELECT statement, we cast the Flags value as an INT. Again,
we’re letting SQL Server do the work of converting the binary value back into the underlying integer that
our enumeration uses. This way, we can simply directly cast that integer value to our flags enumeration.

Second, we use System.Enum.Parse in order to create our non-flags enumeration value from its string
named value. Note that there is an overload of that method that will let you specify case insensitivity.
You might want to use this overload if you are populating that column in SQL Server through other
means that might not get your enumeration values’ cases right.

As you can see, BINARY is a handy way to store flags values. In the examples here, we’ve contrasted it
with how you might choose to store a constants enumeration. In any case, it is fairly easy to persist such
values, and doing so makes them easy to work with both in SQL Server and in .NET. 

We should note here that you could simply store the Flags in an INT column. In fact, SQL Server won’t
allow two operands of a bitwise operator to be binary (as strange as that sounds), so you have to cast the
Flags column to an INT anytime you want to use it as part of a bitwise operation. Consider the following:

UPDATE Orders SET Flags = Flags | 0x00000008

This won’t work if Flags is of type BINARY, so you’d have to cast it like so:

UPDATE Orders SET Flags = CAST(Flags AS INT) | 0x00000008

If that’s enough to make you want to make the Flags column an INT, then we’d suggest at least creating
a user-defined type called FLAGS based on the INT type. That way, you can make the purpose of the 
column clear by its type while still getting the advantages of not having to cast it to an INT for bitwise
operations. Both options are included in the companion code samples.

Because we usually do more modification and comparison of our flags types in .NET code, we prefer to
store the flags as BINARY in order to make it immediately clear to anyone looking at the data that it is not
just another integer. Furthermore, it could be argued that visually converting hexadecimal into binary is
easier than converting from decimal into binary.
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BIT
Every attempt at categorization needs an “other” category. After all, it just doesn’t do to have a category
that contains only one specific. Accordingly, the next few sections represent our homage to that illustrious
compromise.

A bit is an exact numeric type, but from a programmer’s perspective, it is more of an “other” type because
it is most often used to represent a Boolean value. It could also be categorized under binary storage, as it
is the most basic binary unit. But we put it here to focus on common usage.

Apart from saying it is a very useful type, there’s not a whole lot more to say. Use it whenever you need a
single Boolean, yes/no, or on/off value (consider using flags, as shown previously, if you have multiple
bit values to store). Actually, if you make it nullable, it can serve as a trinary value, but that can cause
some complications when you are using it as a Boolean in your code, so if that is how you are using it,
don’t make it nullable and give it a meaningful default (stick with 0/false, if you are not sure). If you need
more options than a binary digit value provides, use a TINYINT instead.

Not only can these be represented as Booleans in your code outside of SQL Server, SQL Server also lets
you use True and False as symbols to represent 1 and 0, respectively. In addition, as its name implies, the
storage size for BIT is 1 bit, although SQL Server will allocate 1 byte for every eight BIT type columns in
a table (kind of its own internal flags storage).

TIMESTAMP
You may have noticed that the SQL-92 synonym listed for DATETIME in the preceding section is
TIMESTAMP. This is because TIMESTAMP in SQL Server does not comply with the SQL-92 standard; this
may change in the future, but for now just think of TIMESTAMP as simply a row version type. Its purpose is
just to provide a way to further distinguish two potentially identical sets of data, which can be useful in
code if you want to easily provide optimistic concurrency handling.

It is not useful to use as a key. While a primary key is used to identify a set of data as unique, it is also
often used as a foreign key in relationships. Although TIMESTAMP does help with the first purpose, it
greatly obstructs the second because every update to a row requires a corresponding update of all related
records. Therefore, do not use TIMESTAMP as part of a primary key, at least for referential purposes.

Books Online recommends using the synonym ROWVERSION for data type definition statements because
it’s possible that the meaning of TIMESTAMP will change in the future. Moreover, ROWVERSION serves the
purpose of the type better. This type uses 8 bytes of storage.

SQL_VARIANT
Simply put, do not use this type. There are very few situations in which it would be useful, far too many
caveats to list, and, ultimately, this type doesn’t offer much more than VARBINARY. If you need something
that functions as a variant that will work in most cases, use VARCHAR or NVARCHAR. After all, what is XML
if not character data? To report on data of this type, you will likely have to cast to VARCHAR anyway (it
shows up as <Binary> in Enterprise Manager if you don’t, for example).
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Apart from the various complications of using SQL_VARIANT (fully expounded in Books Online), there is
an ideological objection to using this type. You have numerous great alternatives that are optimized for
specific types of data, so unless you truly need a catch-all column, opt for the more specific type. It will
always be a better choice in the long run.

UNIQUEIDENTIFIER
You have to wonder why they didn’t just call this type GUID. Needless to say, that is exactly what it is,
and GUID is what most computer folks call a type of this definition. In any case, it is a 16-byte type with
32 characters, and we use that term (character) loosely because as you can guess, it obviously isn’t 32
characters in the 8-bit meaning of the word. This is because it is actually 32 hexadecimal digits (0–9, a–f),
each of which is represented by 4 bits.

You can create new values for it within SQL Server by using the NEWID function or by specifying a string
literal consisting of those 32 digits separated into five groups. The first group contains 8 digits, the second
through fourth contain 4 digits each, and the final group contains 12, like so: 3a5d99ef-ab3c-d4e5-f68a-
9203da93921b.

This type works great as an easy-to-use, guaranteed-unique identifier, so it is a good artificial primary key
when you may need to use the same schema in disparate databases and replicate data between them. If
you use an “identity” (or auto-number) integer value as your artificial primary key, you can easily run
into replication issues whereby multiple rows have the same integer value. GUIDs will always be unique,
so you won’t have this problem. 

Of course, they’re not quite as friendly to work with in code and do have other drawbacks. First, they are
four times larger than an INT IDENTITY column. Second, they are not efficiently sorted and cannot be used
in a GROUP BY or COUNT DISTINCT. Third, indices on these columns are significantly slower than those on
integers. To summarize, unless you need to ease replication in a distributed situation, you probably ought
to stick with using your typical integer identity column.

XML
A new feature of SQL Server 2005, the XML data type, enables SQL Server to work with XML in a much
more meaningful manner than in previous versions. This new type enables querying and modification
of XML in place in SQL Server. If an XML column has schemas specified, it can efficiently be used in
queries and joined upon. The maximum storage size for items in a column of this type is 2 GB.

TABLE and CURSOR
These last two types are only applicable in the database. Covering them in depth in an ADO.NET book
doesn’t really make sense. Suffice it to say that TABLE is a great type to use in a stored procedure to 
temporarily store a result set when you need to, for example, page data on the server side. CURSORs are
useful when you need to loop through a row set on the server, but with 2005, you’ll be able to do this
more efficiently using managed code. CURSORs should generally be avoided and used only as a last 
alternative.
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Data Types in ADO.NET and .NET
Now that we’ve looked at the types in SQL Server, let’s consider the types available to us in .NET and,
specifically, ADO.NET.

SqlTypes
The types in the SqlTypes namespace are what the SQL ADO.NET provider uses to work with data
within the managed environment. For instance, a SqlDataReader will read the bytes from SQL Server
into a SqlType when you request a column value from it. These types implement related explicit cast
operators to enable you to convert from, for example, a SqlString to a System.String with a state-
ment like this: 

myStringVar = DirectCast(dr(“SomeColumn), String)

Because of this capability, some advocate the use of SqlTypes in code that works with SQL Server using
ADO.NET. If your code uses SqlTypes, no casting will be needed between ADO.NET and your code, so
it would theoretically increase performance. Whether or not such an increase would be noticeable in
most applications is debatable. 

Another feature of these types is that they have a built-in “not set” option, even for those SqlTypes that
correspond to .NET value types. This is made possible by their implementation of the System.Data
.SqlTypes.INullable interface. This interface simply specifies that implementers provide a read-only
IsNull property. Ultimately, this means that, for instance, an integer can have a null (not set) value and
that you can check the IsNull property on SqlInt32 in order to determine whether the field has been
set. Taking this approach can reduce confusion when a particular field is nullable in the database but its
corresponding .NET type does not allow for nulls because it is a value type.

The only real objection we have with this approach, apart from the “Sql” name, is that it ties you to types
that are not primitive types in the .NET Framework. Any code for which you use your types would need
to account for that fact, and you’d have to give those types special handling all over the place, instead of
only when you are talking to ADO.NET. For instance, if you try to access the Value property on a
SqlType and the value is null, it will throw a SqlNullValueException, so anywhere you access the
values of your types, you’ll need to check the IsNull property first to ensure they’re not null. 

Furthermore, the great performance shown by many applications indicates that the performance impact
from converting to and from SqlTypes in your data layer must be negligible. If it really were a problem,
we’d all be using them. Therefore, unless you really need to squeeze that last drop out, we would not
use these types for performance reasons alone. 

On the other hand, if your application’s domain types are only used as data transfer objects, and you
want an easy way for value type values to be nullable, using SqlTypes might be a viable option for you.
It really depends on how you plan to use your types and whether you’re willing to work with casting
your type members or using the IsNull and Value properties when you need to use them as part of
code that expects .NET primitive types.

To illustrate the differences between using SqlTypes for your domain objects’ type members and using
primitive .NET types, consider the following examples. The first example shows an Order class using
standard, primitive .NET types:
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Public Class Order
Private _orderID As Int32
Public Property OrderID() As Int32

Get
Return _orderID

End Get
Set(ByVal value As Int32)

_orderID = value
End Set

End Property

Private _customerID As String
Public Property CustomerID() As String

Get
Return _customerID

End Get
Set(ByVal value As String)

_customerID = value
End Set

End Property

Private _orderDate As DateTime
Public Property OrderDate() As DateTime

Get
Return _orderDate

End Get
Set(ByVal value As DateTime)

_orderDate = value
End Set

End Property

Private _freight As Decimal
Public Property Freight() As Decimal

Get
Return _freight

End Get
Set(ByVal value As Decimal)

_freight = value
End Set

End Property

Private _shipName As String
Public Property ShipName() As String

Get
Return _shipName

End Get
Set(ByVal value As String)

_shipName = value
End Set

End Property
End Class
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Now consider the same class using SqlTypes:

Public Class SqlOrder
Private _orderID As SqlInt32
Public Property OrderID() As SqlInt32

Get
Return _orderID

End Get
Set(ByVal value As SqlInt32)

_orderID = value
End Set

End Property

Private _customerID As SqlString
Public Property CustomerID() As SqlString

Get
Return _customerID

End Get
Set(ByVal value As SqlString)

_customerID = value
End Set

End Property

Private _orderDate As SqlDateTime
Public Property OrderDate() As SqlDateTime

Get
Return _orderDate

End Get
Set(ByVal value As SqlDateTime)

_orderDate = value
End Set

End Property

Private _freight As SqlMoney
Public Property Freight() As SqlMoney

Get
Return _freight

End Get
Set(ByVal value As SqlMoney)

_freight = value
End Set

End Property

Private _shipName As SqlString
Public Property ShipName() As SqlString

Get
Return _shipName

End Get
Set(ByVal value As SqlString)

_shipName = value
End Set

End Property
End Class
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Not much is different between them. In fact, for the most part, you simply insert Sql somewhere into the
type name to work the magic — assuming, of course, that you have imported/used the System.Data
namespace in your file. The one exception, in this case, is SqlMoney. There is no money type in .NET, but
you can represent money using the System.Decimal type.

The real differences, however, become apparent when you begin using these types. The following code
illustrates this to some degree:

Sub WriteOrder(ByVal myDataReader As SqlDataReader)
Dim order As New Order
order.OrderID = myDataReader.GetInt32(0)
If Not myDataReader.IsDBNull(1) Then _
order.CustomerID = myDataReader.GetString(1)

If Not myDataReader.IsDBNull(2) Then _
order.OrderDate = myDataReader.GetDateTime(2)

If Not myDataReader.IsDBNull(3) Then _
order.Freight = myDataReader.GetDecimal(3)

If Not myDataReader.IsDBNull(4) Then _
order.ShipName = myDataReader.GetString(4)

Console.Write(order.OrderID & vbTab)
Console.Write(order.CustomerID & vbTab)
Console.Write(order.OrderDate.ToShortDateString() & vbTab)
Console.Write(order.Freight.ToString(“f2”) & vbTab)
Console.Write(order.ShipName)
Console.WriteLine()

End Sub

In this case, you can see that you have to check for DBNull before assigning types that might be null. If
any of these values are DBNull, you simply leave the default value that can be set when the class is
instantiated. For our purposes, these will be the default values for the types used, but you could specify
different ones in your class definitions.

Now look at the same functionality using our SqlOrder class:

Sub WriteSqlOrder(ByVal myDataReader As SqlDataReader)
Dim order As New SqlOrder
order.OrderID = myDataReader.GetSqlInt32(0)
order.CustomerID = myDataReader.GetSqlString(1)
order.OrderDate = myDataReader.GetSqlDateTime(2)
order.Freight = myDataReader.GetSqlMoney(3)
order.ShipName = myDataReader.GetSqlString(4)

Console.Write(order.OrderID.Value.ToString() & vbTab)
If Not order.CustomerID.IsNull Then _
Console.Write(order.CustomerID.Value.ToString() & vbTab)

If Not order.OrderDate.IsNull Then _
Console.Write(order.OrderDate.Value.ToString() & vbTab)

If Not order.Freight.IsNull Then _
Console.Write(order.Freight.Value.ToString() & vbTab)

If Not order.ShipName.IsNull Then _
Console.Write(order.ShipName.Value.ToString())

Console.WriteLine()
End Sub
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Note that we didn’t have to check for DBNull when we got the values from the SqlDataReader because
the data reader takes care of that for us. However, now we have to check the IsNull property prior to
using any properties that are nullable in the database. Anywhere that you use these values, you’ll need
to check that property beforehand if you want to avoid a possible SqlNullValueException. Granted,
in many cases where a property can validly have a not set value, you’ll probably want to do some 
special handling in the user interface to display something other than a default value, regardless of
whether or not you are using SqlTypes. 

Other Alternatives
Essentially, the advantage that these types offer, apart from easier and faster interaction with the data
layer, is a way to indicate that a value type is not set. You can achieve this same effect using primitive
types and boundary values. Primitive value types have a MinValue static property that returns the
lower boundary value for that type. In fact, DateTime instances are initialized to this value by default.
You can set your instances of other primitive value types to their respective MinValue values if you
want them to be not set by default. Then, in your data tier, you simply substitute DBNull.Value for
these when talking to the database.

Some might criticize this approach as the “magic number” approach, but it is reliable if you plan 
appropriately. Rarely do you actually need to store the lower boundary value of a type — if you are at 
the boundary under normal conditions, you need to upgrade the type. Therefore, the chances of ever
needing this value as a valid value for an instance are virtually non-existent, and even if you do have
unusual cases in which you anticipate that might happen, you can simply add extra handling, such as a
separate Boolean value to indicate whether a variable is set.

In fact, it is this last approach that the C# team is taking with their new support (in v2.0) for what they
call nullable types. They are introducing the capability to make any value type nullable using a new type
modifier (?). You can add this type modifier to any type name to indicate that you want it to be nullable.
Doing so gives it two new properties: HasValue and Value. Like SqlTypes, if you try to access Value
directly when it has not been set, it will throw an exception, but unlike SqlTypes, it is not limited to a
subset of value types and is not designed with SQL Server (or any particular database) in mind. 

The C# team has gone to great lengths to create meaningful operator overloads so that using nullable
types is almost as natural as using standard .NET types. One such feature that we particularly see great
use for is the new null coalescing operator, represented by a double question mark (??). This operator
works with reference types, too, so you could, using our previous example, account for null values very
easily, like so:

Console.WriteLine(order.CustomerID ?? “Unspecified”);

This is the same as saying if CustomerID is not set, print “Unspecified”; otherwise, print the value of
CustomerID. A similar effect can be achieved by using C#’s ?: operators or VB’s IIf function, but this
is much more compact. Furthermore, don’t forget that it works with those nullable value types using the
same syntax. Very cool!

If you’re not into C#, you can still use nullable types; they’re just not quite as snazzy and are far less easy
to use. Both VB and C# support generics, and the new Nullable<T> generic type in the Framework is
what underpins the new C# language features. The problem is that you’ll still have to do a lot of the same
handstands that you have to do with SqlTypes or using the magic number technique, i.e., the constant
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checking for HasValue/IsNull/Magic Number before you access the value. C# does nearly all of this
grunt work for you, which is possibly the best practical benefit that C# has going for it. To illustrate fur-
ther, the following code shows how you would use nullable types in VB:

Dim x As New Nullable(Of Integer)(125)
Dim y As New Nullable(Of Integer)(33)
Dim z As Nullable(Of Integer) = _
IIf(x.HasValue And y.HasValue, _
New Nullable(Of Integer)(x.Value + y.Value), _
New Nullable(Of Integer)())

The same thing in C# would be:

int? x = 125;
int? y = 33;
int? z = x + y;

As usual, VB keeps its reputation for being verbose, while C# keeps its reputation for being compact, even
obscure. Whether or not V3 of VB will come up with a new, more “readable” way to handle nullable types
is an open question. One thing’s for sure: Users who like C# already are going to like it even more because
of these features.

One final alternative for nullable types is an open-source code library called, believe it or not, nullable types
(http://nullabletypes.sourceforge.net/). This library enables nullable type support from V1.0 on;
and, as far as we can determine, it is Common Type Specification–compliant, so you could happily expose
those types in a public API without worrying about the less frequently used languages not being able to
handle them. If that is important to you, this library will definitely remain useful for you even after the
release of .NET 2.0. 

Ultimately, your decision as to what types you want to use in your .NET code (for interacting with your
database) depends largely on how you plan to use those types and, to a lesser extent, on whether or not
your database schema even allows for nulls. If you have a database helper layer or an object persistence
layer, the benefits of using SqlTypes over other alternatives are almost non-existent. However, if you’re
doing it by hand, it might save you some work to use SqlTypes to avoid dealing with the DBNull issue.
If all you are looking for is nullable value types, though, you should consider the other alternatives
given here.

Mapping SQL Server Data Types to .NET
Lastly, we thought it would be useful to provide a table that maps the SQL Server data types to their
.NET counterparts to help you choose what to use when writing your ADO.NET code.

SQL Server
Type SqlDbType DbType SqlType .NET Primitive

BIGINT BigInt SqlInt64 Int64 

BINARY Binary SqlBinary Byte[] 
SqlBytes
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SQL Server
Type SqlDbType DbType SqlType .NET Primitive

BIT Bit Boolean SqlBoolean Boolean 

CHAR Char AnsiString SqlString String
FixedLength SqlChars Char[] 

SqlStreamChars

DATETIME DateTime Date SqlDateTime DateTime 
DateTime
Time

DECIMAL Decimal Decimal SqlDecimal Decimal 
UInt32
UInt64
VarNumeric

FLOAT Float Double SqlDouble Double 

IMAGE Image SqlBinary Byte[] 
SqlBytes

INT Int Int32 SqlInt32 Int32 
UInt16

MONEY Money Currency SqlMoney Decimal 

NCHAR Nchar StringFixed SqlString String
Length SqlChars Char[] 

SqlStreamChars

NTEXT/ Ntext SqlString String
VARBINARY SqlChars Char[] 
(MAX) SqlStreamChars

NUMERIC Decimal SqlDecimal Decimal 

NVARCHAR NvarChar String SqlString String
SqlChars Char[] 
SqlStreamChars

REAL Real Single SqlSingle Single 

SMALL-
DATETIME SmallDateTime SqlDateTime DateTime 

SMALLINT SmallInt Int16 SqlInt16 Int16 
SByte

SMALLMONEY SmallMoney SqlMoney Decimal 

SQL_VARIANT Variant Object Object Object

SYSNAME NVarchar SqlString String

TEXT/ Text SqlString String 
VARCHAR(MAX) SqlChars Char[] 

Table continued on following page
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SQL Server
Type SqlDbType DbType SqlType .NET Primitive

TIMESTAMP Timestamp SqlBinary Byte[] 

TINYINT TinyInt Byte SqlByte Byte 

UNIQUE- UniqueIdentifier Guid SqlGuid Guid
IDENTIFIER

VARBINARY VarBinary Binary SqlBinary Byte[] 
SqlBytes

VARCHAR VarChar AnsiString SqlString String
SqlChars Char[] 

XML Xml SqlXml XmlDocument
XmlNode
XmlElement
String

Summary
This chapter described in detail the different types that are available to you in SQL Server, as well as the
various types that you can use within ADO.NET, including the caveats and benefits of different approaches
to dealing with data types in .NET. We looked at the most commonly used types, particularly variable 
character, integer, and date time types, but we also looked at less frequently used types. You learned about
using SqlTypes and nullable types and how they can make database development easier. In other 
chapters, you’ll see in more detail how you can use these data types in your code to work efficiently, both
during design and at runtime.

For More Information
To complement the information in this chapter, take a look at the following resources:

❑ SQL Server 2005 Books Online —http://go.microsoft.com/
fwlink/?LinkId=44375

❑ MSDN article, “System.Data.SqlTypes namespace” —http://msdn2
.microsoft.com/library/System.Data.SqlTypes

❑ MSDN article, “Nullable Types (C# Programmer’s Reference)” —http://msdn2
.microsoft.com/library/1t3y8s4s(en-us,vs.80).aspx
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ADO.NET Integration 
with XML

Extensible Markup Language, usually referred to as XML, is a very simple and flexible format for
defining data and data structures. It has been an important tool for developers for years and is
rapidly becoming the standard for exchanging data between applications and platforms due to its
extreme flexibility and the ease with which it can be consumed by any operating system.

What makes XML so flexible is the fact that it’s a metalanguage. Unlike ridged languages such as
HTML that follow a defined format, metalanguages describe the format of another language. By
providing a language to describe the format of the data, XML enables you to create an infinite
number of types of XML documents to store almost any type of data you may have.

In addition to the extremely flexible format, XML has another huge advantage over other data
storage formats: it is not application- or operating-system–specific. XML is typically stored as
seven-character ASCII text that can be interpreted by any platform or application. Compared to
other formats, it is easily readable by humans, and readers usually find that what the data ele-
ments represent is intuitive.

All of these advantages have led to XML being widely integrated into the .NET Framework. As 
a .NET developer, you see it everywhere. Sometimes you are explicitly working with it, such as
when working with configuration files or performing XSL transformations. Other times, it is being
used by the .NET Framework almost invisibly to you, such as when working with a dataset, or
when writing and calling XML Web Services. Either way, knowing how to work with XML and
how XML integrates with the .NET Framework are important skills and essential building blocks
for understanding how ADO.NET works.
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What This Chapter Covers
This chapter provides a brief overview of what XML features were available in the 1.x Framework. 
You will learn about enhancements to the XmlReader and XmlWriter objects that help simplify and
consolidate much of the functionality in the 1.0 Framework. You will also examine some of the designer
enhancements that help provide a better user experience, and then learn about the XPathDocument,
which is becoming the definitive object for working with and editing XML documents. Finally, you will
learn about the performance gains with the 2.0 Framework and what new features you can expect to see
in future releases of the .NET Framework.

You should have previous experience with XML before reading this chapter. In addition, in order to run
the examples provided, you will need a copy of Microsoft Visual Studio 2005. Most of the examples
build from the XML file and XSD schema that follow, which are also available for download from this
book’s Web site at www.wrox.com. The XML file is an XML representation of a few records from the
pubs sample database included with Microsoft SQL Server:

<?xml version=”1.0” encoding=”UTF-8”?>
<pubs>

<titles name=”The Busy Executive&apos;s Database Guide” pub_id=”1389”
price=”19.99”>

<authors au_lname=”Green” au_fname=”Marjorie”/>
<authors au_lname=”Bennet” au_fname=”Abraham”/>

</titles>
<titles name=”Cooking with Computers: Surreptitious Balance Sheets” pub_id=”1389” 

price=”11.95”>
<authors au_lname=”O’Leary” au_fname=”Michael”/>
<authors au_lname=”MacFeather” au_fname=”Stearns”/>

</titles>
<titles name=”You Can Combat Computer Stress!” pub_id=”0736” price=”2.99”>

<authors au_lname=”Green” au_fname=”Marjorie”/>
</titles>
<publishers pub_id=”0736” pub_name=”New Moon Books”/>
<publishers pub_id=”0877” pub_name=”Binnet &amp; Hardley”/>
<publishers pub_id=”1389” pub_name=”Algodata Infosystems”/>

</pubs>

<?xml version=”1.0”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
<xsd:element name=”pubs”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”titles” maxOccurs=”unbounded”/>
<xsd:element ref=”publishers” maxOccurs=”unbounded”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”titles”>

<xsd:complexType>
<xsd:sequence>

<xsd:element ref=”authors” maxOccurs=”unbounded”/>
</xsd:sequence>
<xsd:attribute name=”name” type=”xsd:string”/>
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<xsd:attribute name=”pub_id” type=”xsd:integer”/>
<xsd:attribute name=”price” type=”xsd:float”/>

</xsd:complexType>
</xsd:element>
<xsd:element name=”publishers”>

<xsd:complexType>
<xsd:attribute name=”pub_id” type=”xsd:integer”/>
<xsd:attribute name=”pub_name” type=”xsd:string”/>

</xsd:complexType>
</xsd:element>
<xsd:element name=”authors”>

<xsd:complexType>
<xsd:attribute name=”au_lname” type=”xsd:string”/>
<xsd:attribute name=”au_fname” type=”xsd:string”/>

</xsd:complexType>
</xsd:element>
</xsd:schema>

Where XML Is Today
When XML was first introduced to the majority of developers a few years ago, it was promoted as the
solution to every data storage and application interoperability problem. So far, it has fallen short of this
universal solution, but it has still proven itself very useful.

Data Exchange
Since XML was introduced, it has been applied to a wide variety of purposes. Probably the most signifi-
cant of these is a format for exchanging data between applications. Before XML, the standard means of
exchanging disconnected data was either a flat text file or some form of delimited text file such as CSV.
Often it was much worse, such as a propriety binary data format. Over the last few years, the standard
has been shifted to using XML. This greatly simplifies the process of exchanging data between apps by
providing a single standard that is easy to parse and easily human readable. It also provides a means to
easily convert the data from the format of one application to that of another by using stylesheets.

XML Web Services
Providing a standard format for exchanging data was a huge step forward, but that is only half of the
equation. The other half is providing a standard method for easily transmitting this data between appli-
cations. XML Web Services have expanded on these features to provide an easy way for applications 
to connect to one another and transfer data. This was very difficult to do before when the calling and
receiving applications were not written in the same programming language or running on the same
operating system. Because XML Web Services are typically run on top of a Web server using HTTP or
HTTPS, it is very easy for businesses to migrate to XML Web Services. They are now the standard means
for transmitting data across the Internet in real time.

The .NET Framework has abstracted away the details of calling XML Web Services to the point that you
don’t really even need to know XML to use them. It has done this by automatically generating the proxy
classes that handle all the work. To call a Web service, you simply add a Web reference and refer to it in
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code as if you were calling a local DLL. To write a Web service, you just add a few attributes to your
class and methods. This ease of use has made XML Web Services particularly appealing to .NET 
developers.

Configuration Files
Another area in which XML has been widely implemented is configuration files. In Windows 3.x, most
configuration settings were stored in flat configuration files. With the release of Windows 95, Microsoft
moved to storing all Windows and application settings in the system registry, enabling it to function as 
a single repository that could be accessed via common APIs. Unfortunately, as the registry’s size grows,
the performance degrades; and if the registry became corrupt, it was very difficult to recover. With the
introduction of the .NET Framework, Microsoft moved to using XML files as the primary store for con-
figuration settings. This combined the benefits of having an easily deployable, human readable text file
along with the capability to use common APIs to work with the data. It also cleaned up some security
holes by no longer requiring the application that needs to read the configuration files to have access to
the registry.

.NET developers have followed this model, storing their configuration settings as XML. This has been
accomplished in one of two ways. The first method stores them in default configuration files that are
automatically inherited by the application, such as app.config, machine.config, or web.config. The sec-
ond method stores them in separate configuration files that are then read by the application. With either
approach, customizing the application settings is much easier than previous methods.

Text Markup
XML is also commonly used to mark up text designed for display to make it easier to change the display
format. One example common to .NET developers is the use of XML comments, which enable develop-
ers to document their code in a structured format using XML. This XML is extracted during compilation
to produce an XML output file. This output file can be parsed via code or transformed using XSLT to
output the documentation in any format desired. A common tool for doing this is NDOC, an open-
source utility for producing MSDN and other styles of documentation from the XML file.

XML has also become very popular with the recent increase of Web logs, or blogs for short. Bloggers write
log entries that are stored as XML and can be easily presented on a Web site as HTML or consumed and
consolidated with other Web logs and presented in pretty much any format desired.

The preceding examples are just a few of the more popular uses of XML today. There are far too many
uses to list them all, and more are being invented every day. You can see how quickly it has gained pop-
ularity over the last few years and how important it is to understand how to work with it and where it
can be used.

Design Goals for System.Xml 2.0
A wide variety of changes have been made to System.Xml in the 2.0 release of the .NET Framework.
Most of these enhancements revolve around just a few design goals, which you’ll look at more closely
throughout the chapter:
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❑ Improved performance

❑ Improved schema support

❑ Enhanced security

❑ Better usability

XmlReader and XmlWriter
The XmlReader and XmlWriter classes introduced in the 1.0 version of the .NET Framework are
extremely valuable tools to most XML developers. They allow very quick, forward-only reading and
writing of XML files. In the 2.0 Framework, Microsoft has introduced some new features for these classes
that make working with them even easier.

Factory Methods
Some new static creation methods are available for both the XmlReader and XmlWriter classes. These
methods are designed for a number of purposes. One of these is to simplify development by not requir-
ing the developer to know which XmlReader and XmlWriter to use.

Currently, if you want to simply read an XML file with no special options, you don’t create an XmlReader;
you create an XmlTextReader. Similarly, you may create an XmlNodeReader or XmlValidatingReader.
Each of these XmlReaders are optimized to perform their specific tasks. If the same course is followed as
new optimizations are added, so are more classes, which overcomplicates working with XmlReaders.
The same is true for the XmlWriters. The static create methods have greatly simplified this. To read an
XML file from one source and write it to another, your code will now be as simple as this:

Dim reader As XmlReader
Dim writer As XmlWriter

reader = XmlReader.Create(“pubs.xml”)
writer = XmlWriter.Create(“output.xml”)

While reader.Read()
writer.WriteNode(reader, True)

End While

reader.Close()
writer.Close()

The preceding example is great for replacing the XmlTextReader, but it’s not really optimized for 
other tasks such as validation. The create methods are overloaded in order to handle these opti-
mizations. There is an XmlReaderSettings class for setting the options for the XmlReader, and an
XmlWriterSettings class for doing the same with the XmlWriter. Both of these have several proper-
ties you can set, ranging from validating the document or filtering out nodes, to simply formatting the
document the way you want it to appear. Following is an example of some of the tasks you can perform
by using these settings classes:
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Dim reader As XmlReader
Dim writer As XmlWriter
Dim readerSettings As New XmlReaderSettings()
Dim writerSettings As New XmlWriterSettings()

readerSettings.IgnoreComments = True
readerSettings.IgnoreInlineSchema = True
readerSettings.Schemas.Add(Nothing, “pubs.xsd”)
readerSettings.XsdValidate = True

writerSettings.OmitXmlDeclaration = True
writerSettings.Indent = True
writerSettings.NewLineOnAttributes = True

reader = XmlReader.Create(“pubs.xml”, readerSettings)
writer = XmlWriter.Create(“output.xml”, writerSettings)

While reader.Read()
writer.WriteNode(reader, True)

End While

reader.Close()
writer.Close()

This example tells the reader not to process any comments or inline schema information found within
the XML document by setting the corresponding properties. Similarly, it tells the writer not to write the
XML declaration line, to indent all of the XML elements, and to add line breaks for each attribute. Doing
this makes the XML output easier to read by humans, but increases the output size. You can use these
settings in any combination you desire to get the precise output you want.

One of these new settings that is particularly worthwhile is ConformanceLevel. In version 1.0 of the .NET
Framework, the XmlReader and XmlWriter were not conformant to the XML 1.0 standard by default.
With the 2.0 Framework, you can choose the conformance level by setting the ConformanceLevel prop-
erty. You can set this option to document or fragment conformance, or choose auto to have it auto-detect
depending on the nodes encountered.

Easier Object Serialization
Serializing objects to XML and deserializing them has become a lot easier with the introduction of two new
methods on the XmlReader and XmlWriter classes. The XmlWriter class now has the WriteFromObject
method, which will build an XML representation of the object. Of course, this can be combined with any of
the XmlWriter settings to custom format the document or validate it. 

Similarly, the XmlReader has the ReadAsObject method, which will read a block of XML as an object
once you specify the type. The return type of this method is an object, so usually you’ll need to cast it to
the type of object you desire before being able to use it. The following example creates a class of type
Title and sets the values of its properties. It then writes the contents to output.xml, stripping off the
XML declaration with the custom writer settings. Finally, it reads the XML back in to a new object and
casts it back to the type of Title, creating a second copy of the original Title object. This can be very
useful for situations in which you have a class that stores configuration information that you want to
allow the user to change via a config file:
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Dim reader As XmlReader
Dim writer As XmlWriter
Dim writerSettings As New XmlWriterSettings()
Dim title1, title2 As Title
Dim o As Object

title1 = New Title()
title1.Name = “The Busy Executive’s Database Guide”
title1.Pub_Id = 1389
title1.Price = 19.99

writerSettings.OmitXmlDeclaration = True
writer = XmlWriter.Create(“output.xml”, writerSettings)
writer.WriteFromObject(title1)
writer.Close()

reader = XmlReader.Create(“output.xml”)
reader.Read()
o = reader.ReadAsObject(GetType(Title))
reader.Close()
title2 = CType(o, Title)

Conversion Between XML Types and Framework Types
Converting between XML schema types and .NET Framework types is a fairly routine task that wasn’t as
simple as it could be in the 1.0 Framework. Before, it was necessary to use the XmlValidatingReader and
XmlConvert in order to perform the conversion. The 2.0 Framework simplifies this task with the introduc-
tion of several new ReadValueAs... methods. For example, to return the price of a book, you could use
ReadValueAsDouble to return the value without having to later convert it to a double. The following
example shows how you could calculate the total price of all of the books from the XML example provided
at the beginning of the chapter:

Dim reader As XmlReader
Dim totalPrice As Double = 0
reader = XmlReader.Create(“pubs.xml”)
While reader.Read()

If reader.IsStartElement() = True And reader.Name = “titles” Then
reader.MoveToAttribute(“price”)
totalPrice += reader.ReadValueAsDouble()

End If
End While

Of course, the same is true when using the XmlWriter. The Framework now has the capability to con-
vert between CLR data types and XML schema types. The following example shows how you can pro-
grammatically write out an XML document containing attributes of types string and double using the
new WriteValue() method:

Dim writer As XmlWriter
writer = XmlWriter.Create(“output.xml”)
writer.WriteStartDocument()
writer.WriteStartElement(“pubs”)
writer.WriteStartElement(“titles”)
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writer.WriteStartAttribute(“name”)
writer.WriteValue(“The Busy Executive&apos;s Database Guide”)
writer.WriteEndAttribute()
writer.WriteStartAttribute(“price”)
writer.WriteValue(19.99)
writer.WriteEndAttribute()
writer.WriteEndElement()
writer.WriteEndElement()
writer.Close()

Other XmlReader Enhancements
In addition to the items already mentioned, there are several other enhancements to the XmlReader.
Most of these aren’t revolutionary, but they will save you some time and are worth mentioning: 

❑ ReadSubTree — This method will return a new XmlReader instance containing the current
node and all of its child nodes. You can then call the Read method in it to loop through each
child node. Once the new XmlReader has been closed, the original XmlReader will advance to
the next node past the results of the subtree.

❑ ReadToDescendant — This method advances the current XmlReader to the descendent node
with the specified name if a match is found. It will also return a Boolean indicating whether the
match was found. This provides a much easier way of quickly getting to a specific node.

❑ ReadToNextSibling — This method provides an easy means for skipping over all of the child
nodes to access the next sibling node with the specified name.

Designer Enhancements
Several enhancements to the XML designer make it easier to use. These range from simple coloring of
the elements, attributes, and values to fully integrated XSL debugging. In this section, you will learn
how to use these features to work more efficiently.

XML Designer
Figure 5-1 shows many of the features that make working with the XML designer easy. Please note that
the color features mentioned do not appear in this black-and-white figure.

❑ XML nodes are now collapsible and expandable, much like .NET code or how Internet Explorer
renders XML.

❑ The open and close tags of the node being edited are bolded, as shown in the last titles node
in the figure.

❑ Any lines changed since the last time the XML document was saved are easily identifiable by
the yellow highlighting to the left of the line. This is indicated on the last titles node shown 
in the figure.

❑ Any lines saved since the XML document was opened in the editor are now highlighted in
green. See the first publishers node shown in Figure 5-1.
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Figure 5-1

❑ You can easily override the schema and stylesheets you wish to use for debugging without
modifying the actual XML document by setting the values in the document properties window.

❑ When you have specified a schema document to validate against, you will receive intellisense
indicating which elements and attributes are available.

❑ Real-time well-formedness checks are available, which indicate any errors with red squiggles
and an error in the error list.

❑ Real-time XSD validation is offered, indicating errors with blue squiggles and a warning in the
error list.

❑ You now have the capability to quickly jump between start and end XML tags by using CTRL+].

❑ There is a go to Definition option when right-clicking on a node for quickly hopping to the XSD
Schema.

❑ You can easily preview the XSL transformations by using the Show XSL Output option from the
XML menu.

XSL Debugging
Because an XSL document is also an XML document, you have all of the features mentioned previously
when working with XSL documents. You also have an extra feature that is very helpful: the capability to
debug XSL transformations.

To begin debugging an XSL document, open it in the designer. Then open the properties window and
specify the values for the input document and output document. After doing so, set a breakpoint in the
XSL document the same way you would in code. Notice in Figure 5-2 that only the xsl:value element
is highlighted. This is because the breakpoints are set at the node level, not the line level.

Once the breakpoint is set, click the Debug XSL option from the XML menu or click the run button from
the XSL toolbar to begin debugging. The debugger will begin running the transformation, showing the
output in a new window opened to the right of the XSL document. You then have the capability to step
into your transformation just as you would with code and see your XSL document as it is forming.
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Figure 5-2

XSD Enhancements
Just as with XSL, an XSD document is also an XML document, so the designer for XSD documents sup-
ports all of the same features as the XML designer. Other than this, there aren’t any enhancements to 
the XSD designer, but several features make working with XSD documents easier. Most of these revolve
around validating the XML document against a schema and were mentioned previously in the section
on XML designer features.

There is one feature we haven’t covered yet, however. You no longer need to manually write the XSD
document. If you already have an XML document but not an XSD, Visual Studio will generate one for
you. To do this, load the XML document in the designer and from the XML menu, choose Create Schema.
This will generate the XSD schema based upon the patterns detected in the XML document and auto-
matically associate the XML document with the newly generated XSD. It may still be necessary to open
the XSD schema and change or add some of the restrictions, but it is definitely a major time saver.
Already have a DTD or XDR schema associated with the document? No problem; it will convert it to
XSD for you.

126

Chapter 5

07_584375 ch05.qxd  10/28/05  10:49 PM  Page 126



Security
Security was not a major focus of the 1.0 release of System.Xml. As a result, a few vulnerabilities exist in
the 1.0 Framework. These have been corrected in the 2.0 release.

Denial of Service Attacks
In the 1.0 Framework, it is possible to launch a denial of service attack with DTDs using a method
known as internal entity expansion. This basically refers to performing a recursive definition of an entity,
as in the following example:

<!DOCTYPE myEntity [
<!ENTITY hw0 “Hello World”>
<!ENTITY hw1 “&hw0;&hw0;”>
<!ENTITY hw2 “&hw1;&hw1;”>
<!ENTITY hw3 “&hw2;&hw2;”>
...
<!ENTITY hw99 “&hw98;&hw98;”>
<!ENTITY hw100 “&hw99;&hw99;”>

]>
<myEntity>&hw100;</myEntity>

This will cause the words “Hello World” to be repeated 2^100 (1,267,650,600,228,229,401,496,703,205,376)
times, either causing extreme memory usage or completely taking down the server. Nonetheless, this is 
a completely legitimate DTD instruction, and any attempt to close this vulnerability would also likely
eliminate needed DTD capabilities. To compensate for this, the XmlReaderSettings class now contains
a ProhibitDTD property for disabling DTD parsing when it is not needed. This fix was released as a
patch for the 1.1 Framework in July 2004, but is now integrated with the 2.0 Framework.

Code Access Security
One of the components that makes the .NET Framework secure is Code Access Security (CAS). It enables
the machine administrator to set policies that define how much access a block of code has to the system,
based upon the source of that code.

CAS works by gathering evidence about the assembly and assigning it to a code group based upon that
evidence. Some examples of this evidence would be where the source document was loaded from — the
local machine, a network share, a URL, and so on. If it was loaded from a URL, another factor would be
that URL. By default, the code group to which an assembly is assigned is based on its security zone: Local
Machine, Local Intranet, Internet, Restricted, or Trusted. You can also define your own code groups.

Each code group is defined by a single membership condition. The zones listed previously are an exam-
ple of a membership condition, but additional ones include the following:

❑ All Code

❑ Application

❑ Application Directory

❑ Domain Application

❑ GAC (Global Assembly Cache)
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❑ Hash

❑ Publisher

❑ Site

❑ String Name

❑ URL

You can also define custom membership conditions. The final step is to define the permission set that the
code group has. This can range widely, from writing to the hard drive, printing, accessing the registry,
accessing the Web, and so on. You can configure these settings through the Framework Configuration
MMC by loading %Systemroot%\Microsoft.NET\Framework\v2.0.XXXXX\Mscorcfg.msc.

All of these same features available for code security are now available for XML security. For example,
when you load an XML document using the XmlReader, an Evidence property is populated with all of
the relevant information about where the document came from. The document is then prevented from
performing any actions that are not defined by the code group to which it is assigned, such as loading
malicious URLs. This evidence is passed up the chain of any classes using the XmlReader, ensuring code
access security throughout the XML classes.

XPathDocument
The XPathDocument is not new in version 2.0 of the Framework. It was the preferred data store for XML
data that was to be used to perform XPath queries or XSL transformations. There are several new fea-
tures to the XPathDocument in the 2.0 Framework, however, and this section covers some of the more
dramatic changes.

Editing
The reason why the XPathDocument was the preferred data store for XPath queries and XSL transforma-
tions in the 1.0 Framework is because it offered a significant performance gain over the XmlDocument
class. However, it was often necessary to edit the XML document in some way before performing the
transformation. When this situation arose, the best approach was typically to create an XmlDocument,
make the changes, and use it as the store for the query. By doing this, you would lose the performance
benefits associated with using the XPathDocument. This is no longer a problem.

What makes the XPathDocument so much faster is that is does not have the XML 1.0 serialization con-
straints, so it can treat the document as just data. A new API, the XPathEditableNavigator API, has
been added to extend cursor-style editing capabilities to the XPathDocument. It does this by reflecting
the data within the XPathDocument to manipulate the XML. By having this separate editor class, the
XPathDocument can continue to not be bound by these constraints, and deliver high performance while
still being fully editable.

This is a different approach from before and it takes some getting used to, but once you see a few examples
it should start to make sense. Let’s start by looking at a very simple example. Let’s rename the publisher
“New Moon Books” to “Full Moon Books”. Start by creating a new XPathDocument and loading the
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pubs.xml file we’ve been using for all of the examples. Use the SelectSingleNode method of this docu-
ment to select the publisher with pub_id of 0736. This query will return an XPathEditableNavigator
object. You can now use the SetValue method of this editor to change the value to “Full Moon Books”.
Finally, call the Save function on the original XPathDocument to save the results to the output file. Your
code should look something like this:

Dim doc As System.Xml.XPath.XPathDocument
Dim editor As System.Xml.XPath.XPathEditableNavigator

doc = New System.Xml.XPath.XPathDocument(“pubs.xml”)

editor = doc.SelectSingleNode(“/pubs/publishers[@pub_id=’0736’]/@pub_name”)
editor.SetValue(“Full Moon Books”)
doc.Save(“output.xml”)

Run the code and you’ll notice that the publisher’s name has been replaced. It was possible to do the same
thing with the XmlDocument class in the 1.0 version of the Framework, but you didn’t get the same perfor-
mance benefits. Moreover, the result in this case would have been an XmlNode or XmlNodeList if you used
the SelectNodes method, which does not offer all of the functions that the XPathEditableNavigator
does, such as the capability to run another query on the results.

Usually, the changes that need to be made to the XML document are not as simple as swapping out 
a value for a single property. For example, you may need to add a new publisher altogether. The
XPathEditableNavigator class makes this easy to do by exposing the AppendNodes method. This
method returns an instance of an XmlWriter object for writing new nodes. This is very convenient
because most developers should already be familiar with the XmlWriter, eliminating the need to learn 
a second method of writing nodes.

Let’s give it a try. Start out as you did in the previous example by creating a new XPathDocument and
loading the pubs.xml file. Again create an editor by calling the SelectSingleNode method, but this
time just select the “/pubs” node. Now call the AppendChild method of the editor object to create an
XmlWriter instance. With the writer, call the WriteStartElement method to create a new publishers
element. Then call the WriteAttributeString method to specify the pub_id and pub_name attributes,
and the WriteEndElement method to close the publishers element. Don’t forget to call the Close method
of the writer to push the changes back to the editor object. Finally, once again call the Save method of
the document to save the changes to the output file:

Dim doc As System.Xml.XPath.XPathDocument
Dim editor As System.Xml.XPath.XPathEditableNavigator
Dim writer As System.Xml.XmlWriter

doc = New System.Xml.XPath.XPathDocument(“pubs.xml”)
editor = doc.SelectSingleNode(“/pubs”)
writer = editor.AppendChild()
writer.WriteStartElement(“publishers”)
writer.WriteAttributeString(“pub_id”, “1234”)
writer.WriteAttributeString(“pub_name”, “Wrox Press”)
writer.WriteEndElement()
writer.Close()
doc.Save(“output.xml”)
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If you view the output, you should see the new publisher as the last child of the pubs element. If you
don’t want the new node to be added as the last child, alternatives are available to AppendChild,
including InsertBefore, InsertAfter, and PrependChild.

Now that you’ve learned how to replace a single value or insert a single node, let’s take a look at 
how to do a bulk change to a document. The SelectNodes method of the XPathDocument returns an
XPathNodeIterator that contains a collection of XPathNavigator objects, which can be converted to
an XPathEditableNavigator. This sounds more complicated than it is. Basically, it’s as simple as the
for each statement in the following example, which returns an XPathEditableNavigator for each
result of the original query. With this collection of XPathEditableNavigators, you can easily loop
through the results and make changes throughout the entire document.

That is exactly what the following example demonstrates. It shows how to find all of the titles written 
by Marjorie Green, remove any co-authors, and add a new co-author of Stearns MacFeather to each title.
Begin as you did for the other two examples by creating an XPathDocument and loading the pubs.xml
file. Then call the SelectNodes method to execute a query that returns all of the titles written by
Marjorie Green. Wrap a for each statement around that call to return an XPathEditableNavigator for
each result. With this editor, call the SelectSingleNode method to find a co-author that isn’t Green 
(if one exists), which will return a new XPathEditableNavigator. Ensure that you received a result
back by checking whether the new editor is null. If so, call the DeleteCurrent method of that editor 
to remove the co-author. Now all that is left to do is to add the co-author of Stearns MacFeather to each
title. The original editor is still pointing at the title node, so call the AppendChild as you did in the pre-
vious example to create a new authors node. Set the attributes, close the writer, and save the document.
Your code should like similar to this:

Dim doc As System.Xml.XPath.XPathDocument
Dim editor, editor2 As System.Xml.XPath.XPathEditableNavigator
Dim writer As System.Xml.XmlWriter

doc = New System.Xml.XPath.XPathDocument(“pubs.xml”)
doc.SelectNodes(“/pubs/titles[authors/@au_lname=’Green’]”)

For Each editor In doc.SelectNodes(“/pubs/titles[authors/@au_lname=’Green’]”)
editor2 = editor.SelectSingleNode(“authors[@au_lname!=’Green’]”)
If Not IsNothing(editor2) Then

editor2.DeleteCurrent()
End If

writer = editor.AppendChild()
writer.WriteStartElement(“authors”)
writer.WriteAttributeString(“au_lname”, “MacFeather”)
writer.WriteAttributeString(“au_fname”, “Stearns”)
writer.Close()

Next

doc.Save(“output.xml”)

Open the output file and notice that for every title for which Marjorie Green was an author, any 
co-authors have been removed and Stearns MacFeather has been added. The other title records were 
left untouched.
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Validation
Earlier, you learned how easily you can validate an XML document while reading it in by using the
XSDValidate property of the XmlReaderSettings class. Here, we’ll look at how you can validate 
an XML document that is being created while it is still in memory. This is accomplished by using the
Validate method exposed by the XPathEditableNavigator class.

XmlSchemaSet
Before we can look at validating XML output, we must first look at another new class in the 
2.0 Framework: the XmlSchemaSet class. In the 1.0 Framework, schemas were loaded into an
XmlSchemaCollection, which was used for storing schemas used by the XmlValidatingReader. 
In the 2.0 Framework, both the XmlSchemaCollection and XmlValidatingReader have been retired.
This accomplishes a number of things, including the following:

❑ Retiring support for the Microsoft XDR format — The XmlSchemaSet only supports W3C
XML Schemas now. The XmlSchemaCollection also supported the proprietary XDR format.

❑ Improving performance by reducing the number of compiles — The XmlSchemaCollection
would perform a compile after each schema was added. With the XmlSchemaCollection, a
single compile occurs by manually calling the Compile method after all of the schemas have
been added.

❑ Elimination of schema islands — The XmlSchemaCollection improperly handled multiple
schemas by treating them as separate “islands,” making all imports and includes only scoped 
to that particular schema. The XmlSchemaSet adds any imported schema to the schema set and
treats the whole set as one logical schema.

❑ Support of multiple schemas for a single namespace — With the XmlSchemaCollection, each
namespace could have only one schema. The XmlSchemaSet supports multiple schemas for the
same namespace as long as there are not any type conflicts.

Validating Output
Let’s start by loading the code from the previous example. In the declarations section, declare a new
XmlSchemaSet and ValidationEventHandler object. We’ll look at the XmlSchemaSet more closely in
a minute. At the bottom of the Button1_Click event, add new code to set the editor object to an editor
for the entire XML document by calling doc.CreateEditor. Next, define the XmlSchemaSet object as 
a new XmlSchemaSet, add the pubs.xsd schema to it, and compile the XmlSchemaSet. Point the vali-
dation event handler to a new method called ValidationCallback. Now call the Validate method 
of the editor, passing in the XmlSchemaSet and event handler. Finally, create a new method called
ValidationCallback to receive the event and output the message by referencing the Message prop-
erty on the EventArgs. Your code should look like the following:

Private Sub Button1_Click(ByVal sender As Object, ByVal e As EventArgs)
Dim doc As System.Xml.XPath.XPathDocument
Dim editor, editor2 As System.Xml.XPath.XPathEditableNavigator
Dim writer As System.Xml.XmlWriter
Dim schemaSet As System.Xml.Schema.XmlSchemaSet
Dim handler As System.Xml.Schema.ValidationEventHandler

doc = New System.Xml.XPath.XPathDocument(“pubs.xml”)
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doc.SelectNodes(“/pubs/titles[authors/@au_lname=’Green’]”)

For Each editor In doc.SelectNodes(“/pubs/titles[authors/@au_lname=’Green’]”)
editor2 = editor.SelectSingleNode(“authors[@au_lname!=’Green’]”)
If Not IsNothing(editor2) Then

editor2.DeleteCurrent()
End If

writer = editor.AppendChild()
writer.WriteStartElement(“authors”)
writer.WriteAttributeString(“au_lname”, “MacFeather”)
writer.WriteAttributeString(“au_fname”, “Stearns”)
writer.Close()

Next

editor = doc.CreateEditor
schemaSet = New System.Xml.Schema.XmlSchemaSet()
schemaSet.Add(Nothing, “pubs.xsd”)
schemaSet.Compile()
handler = New System.Xml.Schema.ValidationEventHandler(AddressOf _

ValidationCallback)
editor.Validate(schemaSet, handler)

doc.Save(“output.xml”)
End Sub

Public Sub ValidationCallback(ByVal sender As Object, ByVal e As _ 
System.Xml.Schema.ValidationEventArgs)
TextBox1.Text += e.Message + System.Environment.NewLine

End Sub

If you run this, you’ll notice that you receive the exact same results as the previous example. This is
because the document is valid, so the validation callback never gets called. To see the validation in
action, simply change one of the line’s output by the writer to output an invalid value, such as the
author’s last name:

writer.WriteAttributeString(“au_lname2”, “MacFeather”)

Run the code again and you’ll see two error messages stating the following: The ‘au_lname2’
attribute is not declared.

Schema Inference
Validating the XML output of your code is very important in most situations. Unfortunately, you don’t
always have an XSD document to validate against. When this is the case, you can do the next best thing
and allow the Framework to infer an XSD schema from an existing XML document. This is relatively
simple to do now using the Inference class — as simple as replacing the following two lines of code:

schemaSet = New System.Xml.Schema.XmlSchemaSet()
schemaSet.Add(Nothing, “pubs.xsd”)
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You need to first declare a new inference object and an XmlReader. At the location where you remove the
two preceding lines, add a line to load the XmlReader from the same pubs.xml file the XPathDocument is
reading. Set the inference object to a new instance of the Inference class and populate the schema set by
calling the InferSchema method of the inference object. Close your reader. You now have a schema you
can use to validate your new XML against. You should receive the same results as the previous example
after substituting the following lines:

Dim reader As System.Xml.XmlReader
Dim inf As System.Xml.Schema.Inference
reader = System.Xml.XmlReader.Create(“pubs.xml”)
inf = New System.Xml.Schema.Inference()
schemaSet = inf.InferSchema(reader)
reader.Close()

Change Notification
Whenever changes are made to the XPathDocument, events are raised to which you can add handlers to
perform custom actions. Examples might be altering the values of an item being inserted, sending notifi-
cations when an item is deleted, and so on. Six events are provided for handling these scenarios. The
first three are ItemDeleting, ItemInserting, and ItemUpdating. All three of these fire before the
change has taken place. They are useful for actions such as performing validation of the data before
allowing the change to take place. The other three are ItemDeleted, ItemInserted, and ItemUpdated.
When these events fire, it is too late to modify the data, but they are very useful for actions such as log-
ging. The following code builds upon the preceding example. You need to make the document declara-
tion global and add two new methods: one for ItemDeleted and another for ItemInserted. In each of
these, add a line to display the OuterXml of each node that was deleted:

Dim WithEvents doc As System.Xml.XPath.XPathDocument

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles Button1.Click
Dim editor, editor2 As System.Xml.XPath.XPathEditableNavigator
Dim writer As System.Xml.XmlWriter

doc = New System.Xml.XPath.XPathDocument(“pubs.xml”)
doc.SelectNodes(“/pubs/titles[authors/@au_lname=’Green’]”)

For Each editor In doc.SelectNodes(“/pubs/titles[authors/@au_lname=’Green’]”)
editor2 = editor.SelectSingleNode(“authors[@au_lname!=’Green’]”)
If Not IsNothing(editor2) Then

editor2.DeleteCurrent()
End If

writer = editor.AppendChild()
writer.WriteStartElement(“authors”)
writer.WriteAttributeString(“au_lname”, “MacFeather”)
writer.WriteAttributeString(“au_fname”, “Stearns”)
writer.Close()

Next

doc.Save(“output.xml”)
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End Sub

Public Sub doc_ItemDeleted(ByVal sender As Object, ByVal e As _
System.Xml.XPath.NodeChangedEventArgs) Handles doc.ItemDeleted
TextBox1.Text += “Deleted Item: “ + e.Item.OuterXml + 

System.Environment.NewLine
End Sub

Public Sub doc_ItemInserted(ByVal sender As Object, ByVal e As _
System.Xml.XPath.NodeChangedEventArgs) Handles doc.ItemInserted
TextBox1.Text += “Inserted Item: “ + e.Item.OuterXml + _ 

System.Environment.NewLine
End Sub

XSLT Improvements
As stated at the beginning of this chapter, one of the major design goals for this release of System.Xml is
improved performance. The XslTransform class has been completely rewritten with this goal in mind.
The 1.0 release of this class was written primarily based on MSXML 3.0. It performed pretty well, but
there was still a lot of room for improvement. Since then, MSXML 4.0 has been released, which intro-
duced several new optimizations to improve performance. A new XsltCommand object has been intro-
duced to include these optimizations and a few others.

The primary way it does this is by compiling the XSLT into IL code and using the Just In Time compiler
to compile and run the IL against the XML document. Doing this means it takes a little bit longer to com-
pile the XSLT stylesheet, but it runs much faster. In addition, by explicitly compiling the XSLT stylesheet
and then running it against the source document, you can compile it a single time and run it repeatedly.
This greatly improves performance when you need to transform numerous documents. The following
code shows how to create an XsltCommand, compile the stylesheet, and execute the conversion against
an XML document:

Dim xslt As System.Xml.Query.XsltCommand

xslt = New System.Xml.Query.XsltCommand()
xslt.Compile(“pubs.xslt”)
xslt.Execute(“pubs.xml”, “output.html”)

Performance
All of the features we’ve looked at so far have made working with XML much easier, but probably few
would disagree that the greatest improvement for XML in the 2.0 Framework is raw performance. We
already described the efforts made to improve performance in the previous sections, such as minor
tweaks made to optimize the most common code paths in all of the XML classes. You also saw how the
XSLT processor has been completely rewritten to provide far better performance. You can see the result
of all these efforts in Figure 5-3.
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Figure 5-3

Where XML Is Heading
It’s hard to know for sure where XML or any rapidly advancing technology is going to be in as little as
five years from now. The examples in this section describe some of the features and standards still in
development and a sample of what we’re likely to see in the next few years. These features are not
included in the .NET 2.0 release but will likely be included in the next version.

XPath 2.0
One of the standards that is right around the corner but wasn’t finalized in time to be added to the .NET 2.0
Framework is XPath 2.0. For those who aren’t already familiar with XPath, it is a query language for XML
that is designed for selecting a subset of the XML document. It uses a syntax very similar to a file path, but
with the capability to perform filters, calculate aggregates, and carry out other functions within it.

XPath 2.0 expands on these capabilities and introduces some new ones. The biggest change you’ll 
notice is that the syntax has moved away from a simple path definition to what is known as a FLWOR
(pronounced “flower”) statement. FLWOR stands for For, Let, Where, Order, Return. It’s very similar to
the Select, Where, and Order By clauses of a SQL statement. By moving to this syntax, it is much easier
to get the output you desire because it enables you to create and nest loops, store values in variables and
manipulate them, sort the results, and define the exact output format.

XSLT 2.0 and XQuery
XSLT 2.0 and XQuery are two new emerging formats that are supersets of XPath 2.0. They are somewhat
competing technologies, and currently it is looking like XQuery is going to become the new standard for
querying and manipulating XML data.
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One advantage XSLT 2.0 has is that it is built upon the XSLT 1.0 standard that many developers are cur-
rently using and have grown attached to. XSLT 2.0 does not have a lot of radical changes planned other
than support for XPath 2.0 statements. It is also XML-based, which can be a plus for dynamically gener-
ating queries.

XQuery, on the other hand, is not XML-based, although there is an XML form of it called XQueryX. The
XQuery syntax is much easier for most people to read, and with the current definition, it can perform all
of the same tasks as XSLT. XQuery offers one huge advantage, though: It can be used to query virtual-
ized data sources (that is, data sources such as SQL Server or objects in memory that are not stored as
XML by default but can be converted to XML on demand). Due to these advantages, Microsoft’s plans 
at the time this book was written are to focus on providing XQuery support and to continue to maintain
XSLT 1.0 support but not build XSLT 2.0 support in the .NET Framework.

XML Views
One problem when working with XML is that, typically, the data source from which you retrieve the
original data, or to which you want to save the data, is something other than XML, such as a SQL server.
Currently, you have to write code to query the database, parse the results, and build the XML. If you
plan to alter the XML document, you need to track the changes and then write code to perform the nec-
essary update, inserts, and deletes to the original data store. If this is an operation that is going to be
used frequently, you may choose to write this code as an XML Provider. Regardless of your approach,
you still have to write the code.

Wouldn’t it be nice if there were a generic component that could do this for you? That is exactly what
XML Views are designed to do. They use declarative maps to transform the data instead of requiring
custom code for each application. You create three maps: The first map is the XSD schema of the result-
ing XML you would like to work with. The second map defines your data source with information such
as the tables and fields you will use and their primary and foreign keys. The third map links the other
two maps together and provides the field-to-field mapping between them.

Now that all of these maps are defined, the XML View has everything it needs to enable you to query 
the original data store using XQuery and return the results as XML. It will also track any changes made
to the XML document and can persist them back to the data store — all of this without requiring you to
write the custom conversion code. As an added bonus, because the maps are in a declarative format,
they can be changed without recompiling the application.

ObjectSpaces
ObjectSpaces is what every developer can’t wait to get their hands on. It will allow you to declare your
business objects in code and create maps very similar to XML Views that allow you to relate your busi-
ness objects to database objects. You can probably guess what this means. No more writing data access
code! Of course it won’t be applicable in all situations, but it should significantly reduce the amount of
code that is necessary to write for standard business applications. Unfortunately ObjectSpaces is still a
ways away. It is currently planned for the Visual Studio Longhorn release.
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Summary
It is hoped that you can see how the many new features for working with XML in .NET 2.0 can save you
time and improve the performance, scalability, and security of your applications. XML is still rapidly
developing and new uses are found for it every day. The expanding use of XML as a standard means of
sharing data between application shows no sign of slowing down. XML Web Services are continuing to
evolve. Emerging technologies described in the previous section are going to expand the implementa-
tion of XML within the .NET Framework, and the current enterprise architecture techniques continue a
trend toward Service Oriented Architecture (SOA). All of these factors will help ensure the future expan-
sion of XML — and along with it, the need to be able to efficiently work with XML. The new features in
this release of the Framework and in future versions will continue to make it easier to perform everyday
tasks related to XML.

For More Information
❑ Microsoft XML Developer Center —http://msdn.microsoft.com/XML/default.aspx

❑ MSDN .NET Framework Class Library (System.XML Namespace) —http://msdn
.microsoft.com/library/en-us/cpref/html/frlrfsystemxml.asp

❑ Arpan Desai’s Weblog —http://blogs.msdn.com/arpande/
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Transactions

Many aspects of computing adhere to the old adage “the more things change, the more they 
stay the same.” Conceptually, this is a pretty good description of transaction processing in both
ADO.NET 2.0 and Yukon. Don’t get us wrong, there are some tremendous enhancements and
improvements in both areas, but fundamentally, transaction processing is very similar to what it
used to be like in the past. This time, though, the devil is in the details.

With respect to the enhancements in the 2.0 Framework, we’ll be blunt: Transactions pre–ADO.NET
2.0 left a little to be desired. Or, as Wintellect Member and .NET Guru Dino Esposito put it, most of
the new features under the 2.0 Framework are evolutionary, not revolutionary. 

Establishing client-side transactions was not that difficult, and the average developer could pick it up
in a few hours. Furthermore, a ton of resources were available and even Microsoft’s Data Access
Application Block included support for them. However, they were limited in many regards. You had
basic features such as savepoints, rollbacks, and other traditional features, but transactions often
occur on the database side, rather than the client side. That doesn’t change in the 2.0 Framework per
se. The really impressive changes are related to distributed transactions. Previously, if you wanted to
use distributed transactions (transactions that span more than one database), you had some work to
do. You had to dive deep into COM+, an area in which many .NET developers feared to tread. In the
2.0 Framework, the ADO.NET team has given us the System.Transactions namespace. At the
time of this writing, there are approximately 20 classes in this namespace, and several enumerations,
delegates, and interfaces. It has a companion namespace, System.Transactions.Configuration,
which is small (it contains only three classes in total), but it helps with configuration issues 
(something that was ostensibly the most difficult part of dealing with distributed transactions
under COM+).

Basic Concepts
Before we continue, you should familiarize yourself with a whole slew of concepts. The first is 
the basic notion of a transaction. Instead of giving you a textbook definition, let’s run through an
example. Suppose you’re updating a record composed of both parent and child information.
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Maybe you decide to add a new account at your bank and at the same time change your address. The
address information would be stored in the parent record and the new account information would be
stored as a new child record. Essentially, four scenarios are possible here: 

❑ The parent record commits but the child doesn’t.

❑ The child record commits but the parent doesn’t.

❑ They both commit.

❑ Neither of them commits.

If you built your tables with the proper constraints, the second scenario is off the table. However, there
will be situations in which tables have not been constructed the way you want them. Ideally, we need the
third or fourth scenario to occur, but how do you accomplish this? If you’re the “roll your own” type,
you start writing code and you keep on writing. And writing and writing. At the end of the day, your
solution will work a lot less well than if you did it the “right” way — using transactions. As such, let’s
define a transaction as a group of actions that we want to either succeed or fail together. 

A.C.I.D
You won’t get very far into any transaction discussion before the acronym A.C.I.D. comes up. Here’s
what the different parts of the acronym stand for:

❑ Atomicity — Everything is considered to be part of the same unit. In the preceding example, the
new account and the address update belong to the same unit, not two separate units (although
they are physically different).

❑ Consistency — This means simply that the state of the database is not unchanged if the transac-
tion does not complete. In other words, there are no half-committed transactions, orphaned
records, or the like.

❑ Isolation — This is not the same as isolation levels, although the two are related. This essentially
means that what goes on in this transaction doesn’t affect other transactions or processing.

❑ Durability — This is the notion that once the transaction has completed, it will be saved to the
database correctly.

When you hear about transactions, the most common example is how ATMs work. You insert your card
and make a request. Money is debited from one account and either credited to another or dispensed. 
If anything fails, you don’t get your money. If transaction processing didn’t occur in this scenario, you
could have some serious problems (or benefits, depending on the error). Suppose your account was deb-
ited but the other account wasn’t credited. You’d lose the withdrawal amount. If the reverse happened,
the other party(ies) (the banks) would lose the withdrawal amount. Either way, if this kind of mistake
happened a lot, confidence in ATMs would plummet and no one would use them. 

You can find a great Weblog entry that shows the flaw in this example (visit Scott Allen’s blog, at http://
odetocode.com/Blogs/scott/archive/2005/02/27/1061.aspx). What happened to Scott was that
the entire transaction processed, but the money never came out. However, the transaction was committed
and the money was deducted from his account. It’s not clear exactly what caused the failure, but from
Scott’s description, it sounds like a durability problem. Suffice it to say that all four characteristics of a suc-
cessful transaction are equally important. Each needs to occur in order for transactions to work.
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Let’s talk now about how to enlist a transaction. You can do this in two ways: through volatile enlistment
and through durable enlistment. These are fancy-sounding concepts, but they’re actually pretty straight-
forward. Volatile enlistment is a mechanism whereby nondurable resources will not be reclaimed. Durable
enlistment, conversely, is what occurs with resources that will need to be reclaimed. 

Conceptually, the difference is about the same as between NotePad® and Word XP®. If you are typing a
NotePad document and the power goes out, you will lose everything you’ve typed since the last time
you did a save. With newer versions of Word, when the system comes back up, it will inform you that
there was a problem and recover what you were doing to the state it was in when the power went out. 

Remember A.C.I.D.? Durability is the “D” in that acronym. If you can risk the durability, then volatile
enlistment is a good choice. If you’re wondering why you would want any risk, consider the fact that
true durability can be expensive in terms of hardware and resources, and in many situations you don’t
need ultradurable transactions.

On the other hand, if you need absolute assurance as far as durability, then your only option is durable
enlistment. One good example is a transactional file system, but you can probably think of others. In
most instances, volatile enlistment will suffice, but the distinction is worth mentioning. To have truly
durable transactions, well, as the old expression goes: “There’s no such thing as a free lunch.” Still, you
can get pretty close on the cheap.

Transaction Types
The next thing to understand in terms of background information is local or simple transactions versus
distributed transactions (transactions that span more that one data store). You can have transactional
processing in areas other than traditional RDBMS systems, but that’s where you see them the most.
Currently, Microsoft has added transaction support for Microsoft Message Queues (MSMQ) and may
well expand it to include file system support. Depending on where you work, you probably work with
more local transactions than distributed transactions. The distinction is pretty simple — if your trans-
action spans only one database or data store (Message Queues, for example, a cornerstone of Service
Oriented Architecture, are now often involved in transactions), then it’s a simple transaction. If it spans
more than one database, be it on one or many servers, then it’s a distributed transaction. 

In terms of complexity, local transactions are infinitely easier to work with than distributed transactions.
The reason should be readily evident. With one database, you are dealing with a very minimal set of
variables, whereas distributed transactions span many more. In its simplest form, a simple transaction
could be run against a database that resides on the same computer as the application. Accordingly, there
would be only one file and only one table. Because everything is on the same computer, the application
and database may or may not even be on a network. Conversely, in a distributed scenario, your applica-
tion could be running on x numbers of computers spanning y number of databases residing on z number
of networks.

In a distributed transaction, you may hit x number of databases, where security, network connectivity,
and everything else can cause problems. If you use distributed transactions, you’ll likely be amazed that
they actually work at all, let alone work as superbly as they do. (Think about it: Compare the number of
times the ATM has worked correctly from a transactional point of view — even if it didn’t give you any
money — compared with the number of times it hasn’t. Sure, glitches occur, but it’s very rare to have
problems with accounts being debited or credited.)
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Isolation Levels
Stated simply, an isolation level is the level at which any given transaction is isolated from any other trans-
action. There is an inverse relationship between isolation levels and data correctness. A lower isolation
level minimizes the problems associated with concurrency (namely, locking), but this is achieved at the
expense of correct data (phantom, nonrepeatable reads). The higher the isolation level, the more accurate
your data can be assumed to be, but the more risk you subject yourself to in regard to concurrency.

One of the really interesting features about IsolationLevel is that once you set it, you can change it 
at any time. If you specify a ConnectionString for instance, and have an open connection, you can’t
specify a change to it midstream and have the effects take. This is not the case with IsolationLevel.
Moreover, once the changes have been made, they don’t apply to anything that’s already been executed,
but they will apply to everything that happens afterward. To be perfectly honest, we’ve worked quite a
bit with transactions and have never had a need for this functionality. Still, it’s cool that it’s there.

At the time of this writing, six isolation levels are defined in the Transaction object, as specified in the
MSDN documentation:

Member Name Description Value

Chaos The pending changes from more highly isolated 16
Supported by the .NET transactions cannot be overwritten.
Compact Framework.

ReadCommitted Shared locks are held while the data is being read to 4096
Supported by the .NET avoid dirty reads, but the data can be changed before 
Compact Framework. the end of the transaction, resulting in nonrepeatable 

reads or phantom data.

ReadUncommitted A dirty read is possible, meaning that no shared locks 256
Supported by the .NET are issued and no exclusive locks are honored.
Compact Framework.

RepeatableRead Locks are placed on all data that is used in a query, 65536
Supported by the .NET preventing other users from updating the data. 
Compact Framework. Prevents nonrepeatable reads but phantom rows are 

still possible.

Serializable A range lock is placed on the dataset, preventing 1048576
Supported by the .NET other users from updating or inserting rows into the 
Compact Framework. dataset until the transaction is complete.

Unspecified An isolation level other than the one specified is –1
Supported by the .NET being used, but the level cannot be determined.
Compact Framework.

Remember that a given provider — OleDb, for example — doesn’t know what data source you’re connect-
ing to. Therefore, you can use OleDb for instance, to connect to a SQL Server or Oracle database and
because the back ends respectively support transactions, you can specify transactions and everything will
be fine. Comma-Separated Value files can also be connected via OleDb, and while NotePad is a very use-
ful tool in many instances, transactional support has never been one of its strong points. In other words,
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client-side transaction processing is only going to be as accessible and useful as the underlying data
source provides. We don’t think we’ve ever used a relational database that didn’t support transactions,
but they may be out there, so be forewarned to look into this before getting too deep into transactions.

Creating a Local Transaction
In its simplest form, creating and using transactions is very simple. The following example shows how
this is facilitated:

Imports System.Data
Imports System.Data.SqlClient

Dim tn as SqlTransaction
Dim sql as String = “INSERT INTO Employees1(EmpID) VALUES (@UserID)”;
Dim cn as new SqlConnection(CONNECTION_STRING)
Try
If  cn.State <> ConnectionState.Open Then

Cn.Open
End If

Catch ex As SqlException
Debug.Assert(False, ex.ToString())
tn = cn.BeginTransaction

Dim cmd as New SqlCommand(sql, cn, tn)
cmd.Paramaters.Add(“@UserID”, SqlDbType.Int)
cmd.Paramaters(0).Value = 314
Try
Dim I as Integer = cmd.ExecuteNonQuery
For x As Integer = 0 To 10

cmd.Parameters(“@UserID”).Value = 315 + x)
cmd.ExecuteNonQuery()

Next
tn.Commit

Catch ex as SqlException
tn.Rollback

End Try
End Try

Another question that comes up a lot has to do with save points. Save points are mechanisms by which
you can specify points in a transaction so that you can roll back to them. This is particularly helpful for
very long transactions in cases where you have a specific failure and you don’t want to rollback every-
thing, just a portion of it. To use a save point, it couldn’t be easier than this:

tx.Save(“SomeName”)

Now let’s look at a slightly more complex scenario. Suppose you had a dataset to update that you were
very sure would update without any problems. Afterward, you had another dataset that you weren’t so
sure about. In case of an exception, though, you want to only move past the first save point (admittedly,
we can’t come up with a scenario like this, but it works well for illustrative purposes):

Imports System.Data
Imports System.Data.SqlClient

Try
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tx.Save(“FirstSave”)
tx = cn.BeginTransaction()

da.AcceptChangesDuringUpdate = false
da.Update(ds)

tx.Save(“SecondSave”)
da.Update(SomeOtherDataSet)

tx.Commit()
Catch ex as SqlException

tx.Rollback(“SecondSave”)
System.Diagnostics.Debug.Assert(false, ex.ToString())

End Try

The preceding example is not the only way to accomplish local transactions though. SQL Server, for
instance, provides its own flavor of SQL with control statements included. This is known as T-SQL. Most
major RDBMS implementations have a similar language available. As such, you can set the SqlCommand
object’s CommandType property to Text and set the command text to the following to accomplish the
same result:

BEGIN TRANSACTION
--Perform everything here

COMMIT
IF @@ERROR <> 0  BEGIN

ROLLBACK
END

Functionally, you get to the exact same place. However, in the preceding example, all transaction logic is
handled on the server. Personally, we have a strong preference for the latter. It’s more force of habit than
anything else (along with some superstitious fear) because to date, we have yet to run into any real prob-
lems using the client-side transaction object. However, as a matter of comfort, it just seems like there’s a
lot (i.e., the Network) in between the client application and the database, and handling it on the database
is the safest way to go. Should you avoid client-side transaction processing? Hardly. David Sceppa,
author of the Microsoft ADO.NET (Core Reference), which is unquestionably the best book on the subject,
quotes Stevie Wonder in Chapter 10: “When you believe in things that you don’t understand, then you
suffer. Superstition ain’t the way.” Take Stevie’s advice.

The first version of Microsoft ADO.NET (Core Reference) covered the 1.0/1.1 Framework, and is abso-
lutely indispensable for those learning ADO.NET. The author dedicates a good portion of Chapter 11 
to distributed transactions. Another title that covers enterprise applications in .NET is Enterprise
Services with the .NET Framework: Developing Distributed Business Solutions with .NET
Enterprise Services, by Christian Nagel, which  covers a lot on the subject of distributed transactions.
We mention this because it used to be a real pain to work with distributed transactions but now it isn’t. 

Before we delve much further into the subject, we’ll give you one last warning: Things are winding
down with the 2.0 Framework and at the time of this writing, we don’t think any functional changes 
are on the table. However, if changes do occur, they will likely be rather pronounced, due to the com-
plexity of the subject matter. Bill Ryan, for example, wrote an article for “15 Seconds” in September 2004
(www.15seconds.com/issue/040914.htm) and as of this writing, it is completely outdated.

In order to show you how much easier things have gotten recently, we need a comparison point. Therein
lies a little bit of the problem. In order to do anything with distributed transactions in the previous ver-
sion of the Framework, we’d need to spend a good bit of time explaining what is happening and why.
Because much of what is available in the 2.0 Framework was put there precisely to address (alleviate is
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probably a more fitting word) the issues related to distributed transactions in the 1.0/1.1 Frameworks,
we don’t cover it here. Believe us, you aren’t missing much. If you’re a glutton for punishment, they’re
still available, but use them for a few hours and you’ll be a convert to the newer way of handling things.

Distributed Transactions
According to MSDN, distributed transaction processing systems are “designed to facilitate transactions
that span heterogeneous, transaction-aware resources in a distributed environment.” In practice, what
that typically means is that distributed transactions are transactions that span more than one data source.
Until recently, they were for the most part exclusive to database systems, but functionality has been
expanded to included other resources such as Microsoft Message Queues (MSMQ). Back in the days
when networks weren’t common and every computer in an office was effectively an isolated island, dis-
tributed transactions were unknown to most developers (and we’re not talking about all that long ago —
at least one of the authors of this book worked in a large office 10 years ago that had a majority of its
computers unlinked to a network). We’re not suggesting that no developers dealt with transactions 
(simple or distributed) back then, but it definitely was more the exception than the norm. However, 
that changed quickly as desktop databases or spreadsheets became major bottlenecks to productivity.
Network-available databases became a lot more affordable and an increasing number of developers/
companies started creating applications with networked databases.

Previously, for example, you might have had a few different software packages that were used by differ-
ent departments. Sales and Human Resources, for instance, might have used use two totally different pri-
mary software packages, both of which used different back-end databases, but data from one might have
been dependent on data in the other. Similarly, if a salesperson leaves a company and notifications aren’t
sent to the sales department, then it’s possible that someone in that department might assign a task to
them or give them credit for something. Although this is a fictitious example, it’s not hard to conceive of a
scenario you encountered in your own career where one database was dependent on another one.

As such, in a very short period of time, distributed transactions went from being something only a few,
very sophisticated developers had to deal with, to something that was pretty commonplace at most mid-
to large-size companies.

In the 1.x Framework, using a client-side transaction looks something like the following:

Imports System.Data
Imports System.Data.SqlClient

Private Function OldSchool() as Boolean
DIM  IsConsistent as BOOLEAN = false;
DIM oldSchoolTrans AS ICommittableTransaction = Transaction.Create()
Using (cn as  new SqlConnection(CONNECTION_STRING))

Dim sql as String = “DELTE CATEGORIES”
Dim cmd as new SqlCommand(sql, cn)
cn.Open()

cn.EnlistTransaction((ITransaction)oldSchoolTrans);
Try                

cmd.ExecuteNonQuery()
IsConsistent = true

Return true
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CATCH (ex as SqlException)

//You can specify additional error handling here
//This is where you’d rollback your transaction
Return (ex.ToString.Length < 1)

cn.Close()
End Try

End Using
End Function

This is an example of a “simple” transaction but it’s pretty much the standard approach you use with
simple transactions under the 1.x Framework. Why didn’t we show a distributed transaction example?
There’s a lot more involved in getting one working and there’s nothing simple about them, and because
this book is about ADO.NET 2.0, well, keep reading.

Distributed Transactions in ADO.NET 2.0
In most of the examples so far, we’ve referenced the System.Data.SqlClient library, which is the
native library for SQL Server. However, that library isn’t of much use in distributed transaction scenarios
because you probably aren’t working with SQL Server across the board. Do you think that if you called
an Oracle database it would have any clue what @@Error is? As such, the starting point here is the
System.Transactions namespace. Out of the box, this isn’t a referenced assembly, so you’ll need to
add a reference to it in order to use it. You can do this by selecting the Project menu item, then Add
Reference, and then System.Transactions under the .NET tab, as shown in Figure 6-1.

Figure 6-1

Note that at the time of this writing, Oracle, SQL Server, and MSMQ were the only data sources pro-
vided under the TransactionScope object. If you need to use another DB, then it’s COM+ for you —
although in all likelihood, it’s virtually assured that other vendors will provide support for it. 
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In order for distributed transactions to work correctly, remember to adhere to the following order:

1. Create Transaction.

2. Create Connection.

3. Dispose Connection.

4. Call TransactionScope’s Complete() method.

5. Dispose Transaction.

Here’s how you would create a simple transaction: 

Dim ConnectString as String = @”Data Source=.\SQLExpress;Integrated
Security=True;AttachDBFilename=C:\xxxxxxxxxxxxxxxx.mdf”;private void
btnTryTransaction_Click(object sender, EventArgs e)
{

TimeSpan ts = new TimeSpan(0, 0, 5);//Didin’t do this yet - should have taken it
out.

TransactionScope scopeObject = new TransactionScope();
string sql = “INSERT INTO tb_Customers(Customer_ID, Customer_FirstName,

Customer_LastName) VALUES (@CustID, @FirstName , @LastName)”;
using (scopeObject)
{

using (SqlConnection cn = new SqlConnection(ConnectString))
{

SqlCommand cmd = new SqlCommand(sql, cn);
cmd.Parameters.Add(“@CustID”, SqlDbType.Int, 4).Value = 8;
cmd.Parameters.Add(“@FirstName”, SqlDbType.VarChar,

50).Value = “William”;
cmd.Parameters.Add(“@LastName”, SqlDbType.VarChar,

50).Value = “Gates”;
cn.Open();
cmd.ExecuteNonQuery();
cmd.Parameters.Clear();
cmd.CommandText = “SELECT COUNT(*) FROM tb_Customers”;
System.Int32 Result = (int)cmd.ExecuteScalar();//7 Records

after Successful Insert
cn.Close();

//Open a connection to a Different Sql Server database,  MSMQ, Oracle etc and do
something there.

}
scopeObject.Complete(); //At this point, the transaction is

committed
}

MessageBox.Show(GetTotalCount().ToString());
}

Private Function GetTotalCount() As Integer
Dim cn As New SqlConnection(CONNECTION_STRING)
Dim cmd As New SqlCommand(“SELECT COUNT(*) FROM tb_Customers”, cn)
cn.Open()

Dim i As Integer = CType(cmd.ExecuteScalar, Int32)
cn.Close()
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Return i
End Function

Regarding the defaults — the default isolation that will be used is serializable, and the default timeout
on the transaction is 60 seconds, or 1 minute. However, you will probably come across scenarios in
which you want completely different settings. For this, the TransactionOptions class comes to save
the day:

Dim transactionOption as new TransactionOptions()
transactionOption.IsolationLevel = System.Transactions.IsolationLevel.Snapshot

‘Set the transaction timeout to 30 seconds
‘In reality, you’d probably want to get this from a .Config setting
‘For resource file
transactionOption.Timeout =   new TimeSpan(0, 0, 30);
Dim  ts =  new TransactionScope(TransactionScopeOption.Required,

transactionOption);

Other than Timeout and IsolationLevel, there isn’t much you can do with this, but it is a straightfor-
ward way to manipulate these settings.

Back when we first loaded the Alpha bits of Whidbey, things were a little more complex (hats off to
Angel Saenz-Badillos and the whole ADO.NET team for making it ever easier). Previously, there was a
property named Consistent (actually, the property is still there, but you don’t have to constantly set it).
At each pass through your code, you’d set it to false if something failed. At the end, when the code
exited the block and the scope was disposed, if the Consistent property was set to true, everything
would commit. If it was false, it would roll back. Compared to what you had to previously do, it was a
walk in the park, but it was still a little short on elegance. Now, when you are done and you are sure you
want to commit everything, you simply call the Complete method and voilà, everything is committed. 

Presently, you can and should call the  Complete method of the TransactionScope object to finish off the
transaction. You can still set the Consistent property, but the latest Whidbey build indicates that it has
already been deprecated.

One of the downsides to being an early adopter of new software is that features you spend time learning
change dramatically or are deprecated. Depending on the specific item, this can be pretty dramatic.
Author Bill Ryan, for instance, spent a lot of time writing articles and giving presentations on the
TransactionScope object, much of whose functionality was changed or deprecated even before the first
beta was released.

In the following example, only one data store is being used. As such, this transaction is operating as a
local transaction. However, suppose we make a slight modification to this code, such that another data
store were used:

Public Sub Test()
Dim cn As New SqlConnection(CONNECTION_STRING)
Dim sql = “SELECT COUNT(*) FROM SomeTable”
Dim cmd As New SqlCommand(sql, cn)
cmd.Parameters.Add(“@CustID”, SqlDbType.Int, 4).Value = 8
cmd.Parameters.Add(“@FirstName”, SqlDbType.VarChar, 50).Value = “William”
cmd.Parameters.Add(“@LastName”, SqlDbType.VarChar, 50).Value = “Gates”
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cn.Open()
cmd.ExecuteNonQuery()

Dim i As Integer = CType(cmd.ExecuteScalar, Integer)
cn.Close()

End Sub

What would happen is very interesting. At first, a local transaction would be created. When the second
connection was created and opened, it would be automatically enlisted into a distributed transaction.

If you don’t want to use the TransactionScope and you want to do things manually, a great new fea-
ture simplifies things:

IDBConnection.EnlistTransaction

Therefore, each derivation of this —SqlConnection, OracleConnection, and so on — has the capabil-
ity of manually enlisting the transaction, although as far as we know, System.Data.SqlClient is the
only provider in beta that has actually implemented it.

Monitoring Transactions and Their Performance
As mentioned previously, there’s an inverse relationship between performance and accuracy in respect
to isolation level. Another thing to remember is that distributed transactions require a lot more monitor-
ing, so there is obviously more overhead associated with them. At any rate, you will no doubt want to
monitor them at some point. 

The easiest way to accomplish this is visually. Select Start ➪ Control Panel ➪ Administrative Tools ➪

Component Services ➪ Component Services (Under Console Root) ➪ Computers ➪ My Computer ➪

Distributed Transaction Coordinator. You should see something like what is shown in Figure 6-2.

Figure 6-2
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From there, you can select either the Transaction List (which will show you all currently running dis-
tributed transactions), or Transaction Statistics (which will show you the performance statistics of any
given transaction). In most instances, the latter will be much more useful, as shown in Figure 6-3.

Figure 6-3

Keep in mind, however, that what you are viewing here are distributed transactions, not local ones. 
If a local transaction has been promoted/enlisted, then it will become visible. Remember that this is 
the “Distributed Transaction Coordinator” — hence, its use is for monitoring distributed (not local)
transactions.

How Does This Affect Local Data?
As a regular in most of the .NET-related newsgroups, author Bill Ryan sees questions about using System
.Data.DataSet objects and transactions just about every day. Many developers new to ADO.NET create 
a transaction, call Update on a IDBDataAdapter object, and somewhere before completion it fails. The
transaction in the database is rolled back, but the changes that were successfully updated in the DataSet
are lost. 

To understand why this is a problem, you need to understand how IDBDataAdapter objects work and
what the AcceptChanges method does to a given DataRow. More problems in ADO.NET have been cre-
ated by not understanding this than anything else we’ve seen, so we’re going to cover it in detail here. 

When you call Fill on a IDBDataAdapter object, the RowState of every row is Unchanged unless you
set AcceptChangesDuringFill to false. The default is true, which makes sense. If you aren’t familiar
with RowState or AcceptChanges, this may not be clear yet, but bear with us. 

When the Update method of an adapter is called, it walks through each row and looks at the row’s
RowState. Currently, the RowState enumeration is defined as follows in the MSDN Documentation:
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Member Name Description Value

Added— The row has been added to a DataRowCollection 4
Supported by the .NET and AcceptChanges has not been called.
Compact Framework.

Deleted— The row was deleted using the Delete method of the 8
Supported by the .NET DataRow.
Compact Framework.

Detached— The row has been created but is not part of any 1
Supported by the .NET DataRowCollection. A DataRow is in this state 
Compact Framework. immediately after it has been created and before it is 

added to a collection, or if it has been removed from 
a collection.

Modified— The row has been modified and AcceptChanges has 16
Supported by the .NET not been called.
Compact Framework.

Unchanged— The row has not changed since AcceptChanges was 2
Supported by the .NET last called.
Compact Framework.

As such, the default RowState of a row after calling Fill is Unchanged. If you delete it, it will change to
Deleted.

Many newcomers to ADO.NET often get confused with the Remove and Delete methods. Remove
physically takes the row out of the collection. For example, if you have 10 rows, call Remove on 10 of
them. You now have 0 rows. If you have 10 rows, call Delete on 10 of them — you still have 10 rows
until AcceptChanges is called. We’ve seen at least 50 people run into major problems removing rows
when they meant to delete them but didn’t and then wondered why their updates didn’t work.

If you create a new row and add it to a DataTable object, its RowState will be Added. If you change 
an existing row, its RowState will be set to Modified. If you create a new row but forget to add it to a
table’s Rows collection, then its RowState is Detached— and as such, isn’t part of the DataTable’s
Rows collection.

Moving on, when you call Update, the adapter iterates through the given table you specify. If you pass
in a DataSet to the adapter and don’t specify a DataTable, it will default to the one with the 0th index.
If you pass in just a DataRow, only it will be used. If you pass in an array of DataRows, then it will behave
just like a DataTable’s Rows collection.

At each iteration, the RowState is examined. For each RowState of Added, the UpdateCommand, if one 
is specified, is used. Note that you don’t have to specify a valid Update, Delete, or Insert command.
However, if you don’t have a valid command but a Rowstate is in the Collection that is Updated,
Modified, or Deleted, then an exception will be thrown. No exceptions will be thrown if you don’t add
one of those commands as long as you never call Update—or when you do, they aren’t needed. Otherwise,
they will throw an exception. That said, each row is examined, the corresponding command is examined,
and the adapter fires the respective command using the row provided. Upon successful completion, the
AcceptChanges method of the DataRow is called, which effectively resets its RowState to Unchanged.
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If the Rowstate was Deleted, then it is removed from the Collection. If it’s modified, the original val-
ues are now what the proposed values were just prior to the update. By default, if an exception is thrown,
then everything stops and no more attempts are made at updates.

Remember the old rule of “Where there’s smoke, there’s fire.” If you use any of the visual tools to config-
ure a IDBDataAdapter object and you get warnings at the end of the wizard (they typically will tell
you that one or more of the commands could not be generated), it’s unwise to ignore it (although many
people do). The most likely cause of this is that either the table used in the query lacks a primary key or
you are using a Join. (Many RDBMS purists will tell you that every table should always have a primary
key. While this is an extreme position, it’s hard to argue that ensuring each table has a key isn’t a good
habit. Sure, in some rare cases it may be unnecessary, but the downside to having a key when you don’t
need it is small, whereas the downside to not having a key when you should is huge.) If you need to join
data, it’s probably a much better idea to fill both tables and join them client side using a DataRelation
object (author Bill Ryan has an article on how to do this, available at www.knowdotnet.com/
articles/datarelation.html. Either way, if you get an error when trying to configure your
IDBDataAdapter object, you can’t count on calling the Adapter’s Update method and having it work.
It may, but chances are good some aspect of it won’t work. If this happens, take it as a canary in a coal
mine — somewhere out there, your database probably needs some attention.

However, there is a ContinueUpdateOnError property for each adapter implementation, which, if an
error is caused, will just proceed with the next row. For example, if you had 100 rows with a “changed”
RowState, and the row 98 caused an error, you’d have 97 successful changes in the database and only
three rows in your DataSet with changes (assuming you were not inside a transaction). If you specified
ContinueUpdateOnError, you’d have 99 successful updated records, but only 1 row with changes in it. 

However, if this occurred inside a transaction, you’d have a serious problem. From the client side, noth-
ing would be different, but in the first examples, you’d have 97 rows with AcceptChanges called on
them, which would reset their Rowstate to Unchanged, but when the transaction rolled back, no
changes would be present in the database, which would cause those changes to be effectively lost.

So how do you get around this? First, you need to use the GetChanges() method of a DataSet and 
then pass in the result to your IDBDataAdapter. If successful, commit your transaction and call
AcceptChanges on the entire DataSet. This has some potential problems because it’s possible that 
the power could go out between the commit statement and the AcceptChanges, but fortunately this 
all happens so fast that such a situation is highly unlikely. Here is an example of how to do this:

Private Sub Test()
Dim da As New SqlDataAdapter(“SELECT * FROM SOMETABLE”)
Dim ds As New DataSet

Dim dt As New DataTable
ds.Tables.Add(dt)

Dim cn As New SqlConnection(CONNECTION_STRING)
Dim tx As SqlTransaction
Try

tx = cn.BeginTransaction
da.Update(ds.GetChanges)
tx.Commit()
ds.AcceptChanges()

Catch ex As SqlException
tx.Rollback()
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System.Diagnostics.Debug.Assert(False, ex.ToString)

Finally
cn.Close()

End Try

End Sub

Now you can do away with the intermediate step of getting the changes, and just specify the
AcceptChangesDuringUpdate property of the adapter as false. This will prevent the adapter from 
calling AcceptChanges on each row as it updates them. Here’s an example of how this works:

Private Sub Test()
Dim da As New SqlDataAdapter(“SELECT * FROM SOMETABLE”)
Dim ds As New DataSet

Dim dt As New DataTable
ds.Tables.Add(dt)
Dim cn As New SqlConnection(CONNECTION_STRING)
Dim tx As SqlTransaction
Try

tx = cn.BeginTransaction
da.AcceptChangesDuringUpdate()
da.Update(ds.GetChanges)
tx.Commit()
ds.AcceptChanges()

Catch ex As SqlException
tx.Rollback()
System.Diagnostics.Debug.Assert(False, ex.ToString)

Finally
cn.Close()

End Try

End Sub

Nested Transactions
You can nest TransactionScope objects if you need to. There are two ways to do this. For lack of better
terminology, we’ll call these the “obvious” and the “less obvious” ways. The obvious way entails simply
creating another TransactionScope object inside the first one:

Dim transactionScope As New System.Transactions.TransactionScope
Using transactionScope

Try
da.Update(ds.Tables(0))
da2.OrdersTableAdapter.Update(ds)

transactionScope.Complete()
Using transactionScope2
Try

da3.Update(ds.Tables(0))
da4.OrdersTableAdapter.Update(ds)

transactionScope2.Complete()
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Finally
ds.Tables(0).SuspendValidation = False

End Try

End Using
Finally

ds.Tables(0).SuspendValidation = False
End Try

End Using

As you can see, you can do a single nesting but you can take it as deep as you want:

Dim transactionScope As New System.Transactions.TransactionScope
Using transactionScope
Try
da.Update(ds.Tables(0))
da2.OrdersTableAdapter.Update(ds)
transactionScope.Complete()
Using transactionScope2
Try
da3.Update(ds.Tables(0))
da4.OrdersTableAdapter.Update(ds)
transactionScope2.Complete()
Using transactionScope3
Try
da5.Update(ds.Tables(0))
da6.OrdersTableAdapter.Update(ds)
transactionScope3.Complete()

Finally
ds.Tables(0).SuspendValidation = False
End Try
End Using
Finally
ds.Tables(0).SuspendValidation = False
End Try

End Using
Finally
ds.Tables(0).SuspendValidation = False
End Try
End Using

The less obvious way entails using one scope, calling a function that in turn contains another scope:

Dim transactionScope As New System.Transactions.TransactionScope
Using transactionScope
Try
da.Update(ds.Tables(0))
da2.OrdersTableAdapter.Update(ds)
transactionScope.Complete()
ScopeExample()
Finally
ds.Tables(0).SuspendValidation = False
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End Try
End Using

Public Sub ScopeExample()

Dim transactionScope As New System.Transactions.TransactionScope
Using transactionScope

Try
da.Update(ds.Tables(0))
da2.OrdersTableAdapter.Update(ds)
transactionScope.Complete()

Finally
ds.Tables(0).SuspendValidation = False
End Try
End Using
End Sub

Transactions in Web Services
Without a doubt, one cool feature of transaction processing is the wrapping of Web Services as serviced
components. It makes sense if you think about it. We use Web Services to update data and retrieve it, so
why wouldn’t the requirements of transactions apply here if we were to use Web Services as a fully func-
tioning communications layer? We begin with an example of a Web Service and explain what it does:

<%@ WebService Language=”VB” Class=”TransactionSamples” %>
<%@ assembly name=”System.EnterpriseServices” %>

Imports System
Imports System.Data
Imports System.Data.SqlClient
Imports System.Web.Services
Imports System.Web.Util
Imports System.EnterpriseServices

Public Class TransactionSamples Inherits WebService

<WebMethod(TransactionOption := TransactionOption.RequiresNew)> _
Public Function InsertRecord(keyValue As Integer) As Integer

Dim sql As [ String = “INSERT INTO TESTTABLE(KeyField) VALUES (KEYVALUE)”
Dim cn As New SqlConnection(“Integrated

Security=SSPI;database=xxxxxxx;server=xxxxxxxxxx”)
Dim cmd As New SqlCommand(sql, cn)

cmd.Connection.Open()
Return myCommand.ExecuteNonQuery()

End Function

<WebMethod(TransactionOption := TransactionOption.RequiresNew)> _
Public Function DELETERecord(keyValue As Integer) As Integer

Dim sql As String = “DELETE FROM TestTable WHERE KeyField = keyvalue”
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Dim cn As New SqlConnection(“Integrated
Security=SSPI;database=xxxxxxx;server=xxxxxxxxxx”)

Dim cmd As New SqlCommand(sql, cn)

cmd.Connection.Open()
Return myCommand.ExecuteNonQuery()

End Function

<WebMethod(TransactionOption := TransactionOption.RequiresNew)> _
Public Function DELETERecord(keyValue As Integer) As Integer

Dim sql As String = “UPDATE TestTable SET LastUpdated = GetDate() WHERE
KeyField = keyvalue”

Dim cn As New SqlConnection(“Integrated
Security=SSPI;database=xxxxxxx;server=xxxxxxxxxx”)

Dim cmd As New SqlCommand(sql, cn)

cmd.Connection.Open()
Return myCommand.ExecuteNonQuery()

End Function
End Class

It’s hoped that you’re thinking this looks really simple. It is. Basically, you just need to add a reference 
to EnterpriseServices and then use some minor attributes. All you need in order to make a method
participate in a transaction is to add the <WebMethod(TransactionOption := TransactionOption
.RequiresNew)> attribute. Actually, you can use any of the TransactionOptions, but in this case,
RequiresNew makes the most sense. 

Flow-Through Transactions
One of the newest features that we’ve come across is what’s known as flow-through transactions. While 
a thorough discussion of these could alone span multiple chapters, it’s worth a brief discussion. With 
the advent of Yukon, database logic can now be hosted inside the database server and run through the
Common Language Runtime (CLR). Essentially, that means that anything you can write in VB.NET or
C# can be stored and used inside Yukon, so you could conceivably have a client-side transaction that
updates a database table and calls a CLR stored procedure, which in turn updates a totally different
database. CLR stored procedures run in different processes, so previously, even if you were to roll back
your client transaction, it would remain inaccessible as far as the CLR procedure was concerned and vice
versa. Although it’s a fairly complex mechanism, ADO.NET 2.0 will provide a way for transactions to
flow through so that a rollback or a commit will span the entire contents of the transaction, both the
client-side code and anything executed by the CLR routine.

Getting System.Transactions 
to Work Correctly

Along the way, we’ve had some problems getting the new distributed transactions to work, most of
which had little to do with the code itself and a lot to do with operating systems and service packs. The
following table provides a quick rundown of what is necessary as of the time of this writing:
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OS Requirements

Windows 2000 (Professional) Service Pack 4

Windows XP Distributed transactions are disabled by default. They will need
to be enabled in order to use System.Transactions fully. 

Windows XP SP2 Install Hotfix Q828758.

Windows 2003 (Server) Both COM+ and DTC support.

Summary
The ADO.NET Team has made life a lot easier for a lot of people. In the past, distributed transactions
were often reserved for the realm of 3:33t K0d3rz and the like. (This syntax is often used by Hackers to
avoid getting filtered by filtering software. 3:33t K0d3rz is ‘H4x0r’ for the Elite Coder.) Many developers
weren’t even aware that they were possible. Many developers tried “rolling their own” solutions, which
often created more problems than it solved. Many developers stuck their heads in the ground and pre-
tended that the problems didn’t even exist. Prior to COM+, distributed transactions were not much fun
to work with. COM+ made things a lot easier. Then .NET simplified the process somewhat but it also
complicated it in the sense that now you had to learn the behavior of ADO.NET objects like the DataSet
and IDbDataAdapter object.

Therefore, while much of the ADO.NET 2.0 features are evolutionary, the System.Transactions name-
space packs a lot of bang for the buck. Not only does it make a lot of previously excruciatingly difficult
functionality accessible to the common developer, System.Transactions also makes it pretty fun. By
having a consistent and intuitive interface for dealing with transactions and distributed transactions,
there will no doubt be a lot more people using them. Furthermore, Microsoft has expanded support for
providers such as Oracle and MSMQ, and the Windows file system is rumored to be in the pipeline.
There are similar rumors of other major players, such as IBM, extending this functionality to its popular
DB2 database. As such, dealing with transactions and distributed transactions is about to get a whole lot
more interesting.

Please check the Wrox Web site (at www.wrox.com) for updates to this chapter or for additional information. 

For More Information
To complement the information in this chapter, take a look at the following resources:

❑ DataWorks Weblog (straight from the ADO.NET Team) —http://blogs.msdn.com/
dataaccess/

❑ John Papa’s Blog —http://codebetter.com/blogs/john.papa/default.aspx

❑ Sahil Malik’s Blog —http://codebetter.com/blogs/sahil.malik/default.aspx

❑ Frans Bouma’s Blog —http://weblogs.asp.net/fbouma/

❑ Andres Aguilar’s Blog —http://weblogs.asp.net/aaguiar
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Data Binding

This chapter explores how data binding can be used to improve the quality of applications you
build and to increase the speed with which you develop them. Data binding has evolved signifi-
cantly over the past few releases of .NET as well as in the world of programming as a whole. The
.NET Framework, along with ASP.NET and Windows Forms, provide some of the most progres-
sive ideas regarding how to bind your user interface control to data, regardless of the data’s source.

Data binding defined: The programming task of retrieving data from a data source, gluing it to
a user interface control, allowing manipulation, including sorting and paging, and optionally
changing the data and the synchronization of such changes with the original data source. All of
this is accomplished with minimal code creation on the part of the developer.

In the past, data binding was limited to quick and dirty prototypes, literally binding data to the
database query result set that was returned from your database query. You still have that option,
but it is now possible to bind to your business objects (commonly called middle-tier), which enables
one or more layers of abstraction between the application and the database. This can be important
depending on the type of application you are building and your own architecture philosophies. 

This chapter describes how to use a variety of the mechanisms .NET provides for binding your
user interface to your data, and associated techniques to speed up your application development
using ADO.NET and Visual Studio. 

Windows Forms versus Web Applications
At some point, every developer has the same dream: You begin coding and regardless of your
choice of a Windows Forms application or an ASP.NET Web application, all of the things you have
learned work equally well in either environment. Usually the dream ends with either a sensation
of falling forever or the alarm clock going off. Those of us who have been around a while recog-
nize this as the holy grail of programming, although we realize that it is not likely to happen
because of the significant differences in the two development environments. 
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ASP.NET is almost completely stateless and more request/response-centric. Windows Forms applica-
tions, on the other hand, retain state in memory on the client and user interaction that is not request/
response-based. These differences lead to a divergence of techniques used in each of the environments.
This is definitely true for data binding, as you bring together the user interface with one or more data
sources.

As we make our way through data binding, not only will we discuss the capabilities of these two envi-
ronments, but we’ll also explore the differences between the two as well. We will try hard to not confuse
you with terms such as “data source” and “DataSource.” While they are similar, they are also very dif-
ferent. We will try to explain what we mean by that as we push forward through the two worlds of data
binding. 

In a perfect world, there would not be such a drastic difference between the programming styles of
Windows Forms applications and ASP.NET applications. Some of this can be attributed to environmen-
tal differences, some of it to differences in object models and concepts. Furthermore, we can’t overlook
the fact that some of this difference boils down to a lack of coordination between the different develop-
ment teams.

The Concept of Data Binding
Whether you use ASP.NET applications or Windows Forms, the high-level concept is the same. You get
data from somewhere — your database, a file that you load, XML, an application class that is a business
object, or from a far-off Web Service that exposes access to data hidden in a remote system. Regardless of
the source, you can generically refer to it as a data source.

Data is not very interesting unless you are doing something with it: displaying it, manipulating it, or
simply interworking it into a composite with other data. With respect to data binding, we are interested
in the visual display and manipulation by the end user of an application.

The ultimate goal of data binding is to provide an efficient way to “glue” a data source to user interface
controls that enable users to interact with the data without any knowledge of where the data resides,
and to automate, optimize, and reduce the amount of effort and code the developer must create to
accomplish the binding of data.

Options for Getting the Data
One of the difficult decisions you must make in developing your applications is which technique you
will use to define the interaction with your actual data source. Many would argue that you should pick
one and only use that one technique. Personally, we’re of the opinion that the world is not that black and
white, and it’s considerably valuable to think through your data access strategy. We think each of the
techniques has its place, which is why so many exist in the product. 

The following table highlights the salient pros and cons of each technique you can use to bind to your
data source. Use this table with the rest of the book and with your personal application architecture
beliefs when deciding what type of application you are building.
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Bind To? Pros Cons

Database via • Easy to build using drag and drop • SQL statements are embedded inside 
Dynamic SQL capabilities in Visual Studio. pages of the application and must be 

• Reduced deployment on the database duplicated if the same access is 
side compared with using stored required in multiple parts of the 
procedures. application.

• Security benefits of stored procedures 
are not obtained.

• It’s not possible to tune or modify 
SQL without deployment of the 
application.

• Syntax errors are not detected until 
runtime because they’re not 
precompiled by the SQL engine.

Database via • SQL statements are not embedded in • If business logic is required now or in 
SQL Stored each page, only the reference to the the future, it will have to be stored 
Procedures stored procedure is embedded in either on each page or in the stored 

each page. procedure, or the code will have to be 
• Depending on the SQL engine, some redesigned to accommodate the 

performance improvement may be business logic. It provides no 
obtained by the database engine’s capability to include “business logic” 
ability to precompile when a stored that is not repeated on each page. 
procedure is cataloged. If nothing Typically, the impact of this isn’t seen 
else, DBA or another performance during initial development but as the 
tuning expert can manipulate the application evolves and more rules 
query independent of code are developed.
modifications during performance • Deployment can be more complex 
tuning. because stored procedures must be 

• Minor database changes can be deployed at the same time as the code
hidden from the application by 
simple modification of the stored 
procedure, i.e., it doesn’t require an 
application change.

Table continued on following page
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Bind To? Pros Cons

Business • Provides a layer of abstraction on top • Typically takes longer to develop and 
Objects of a data source, enabling business can’t be created using simple drag 

rules to evolve as the application and drop techniques.
matures.

• Clean separation of the UI from the 
source of the data and tasks involved
in data management.

• Rules are consistently implemented 
and logic is not embedded in each 
page.

• Much of the business object code 
could be generated to reduce 
required development and to 
promote consistency.

• Allows use of language capabilities 
such as inheritance and partial 
classes to reduce the amount of code 
and ensure consistency.

Web Services • Like business objects, can provide a • Not drag and drop development.
higher level of abstraction from the • Can consume more time than typical 
ultimate data source. n-tier business object usage due to 

• Can be wrapped with business complexities involved in Web Service 
objects and the page or form would invocation and passing of data.
never know it was a remote service.

• Typically, not an all-or-nothing 
approach and adds nicely to an 
overall architecture, especially in a 
broader SOA (Service Oriented 
Architecture) approach to system 
integration and service aggregation 

XML Data • Can provide a rich capability to • XML does not reflect the same strict 
express hierarchical data and relational properties or achieve the 
associated relationships. same level of performance of 

• Great for readability and traditional relational data from a 
interoperability with other database.
applications and systems. Often 
used for storing things such as site 
maps.

• With increased support in the 
database to treat XML as a first-class 
citizen, more and more hybrid 
relational/XML-centric applications 
will be built.
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One-Way Binding versus Two-Way Binding
One-way data binding is easy — we’ve been doing that for years. Some would argue it has never been
robust enough for the high standards needed for enterprise applications. One-way data binding is sim-
ply retrieving data from a data source and gluing it to the user interface. Two-way data binding is where
it really starts to get interesting because you are taking data to the user interface and all the way back to
the data source after users have had a chance to manipulate the data.

Two-way data binding introduces new challenges that arise when a user starts editing (changing) data
and then tries to replace it in the data source, which other users are also trying to access for their pur-
poses. Data concurrency can become a major issue when you start trying to implement two-way data
binding. Retrieval of data is typically easier to accomplish than updating of data because the latter involves
things like default values for data and constraints that can occur on data (for example, you may want a
column to contain a value that’s within the valid range or a set of data defined by a constraint). All of
this has to be taken into consideration when you’re trying to synchronize backup data that was pre-
sented on the user interface from the one-way data binding. 

In some ways, Windows Forms applications have the upper hand because they’re typically allowed to
keep a lot more state information than an ASP.NET application. In a Windows Forms application, with-
out having to retrieve additional data, you can keep original data available for concurrency or a determi-
nation of what changed without the same concern that ASP.NET applications have about limiting the
amount of data they send to and from the client browser. ASP.NET applications are stateless, which
becomes a much bigger issue because now you have to decide where you do the determination of what
changed and concurrency checks in the application.

Writing a SELECT statement or something that retrieves data is easy. Dealing with inserts/updates with
the possibility of missing values not provided by the user, and values that need to be defaulted, is much
more complex. To ensure that we maintain the integrity of our data, we also have to include validation
to ensure that somewhere in the pipeline we are validating the data and communicating to the user what
needs to be corrected prior to allowing any modification to take place. 

As if all that is not enough, we also need a strategy for handling concurrent updates of the data and
making sure our strategy is imposed by the controls facilitating the update of the data. Should we just
allow overwrites of existing data regardless of whether it was changed by another user? Or do we
implement some form of concurrency testing to warn or prevent the new user from overwriting a
change? You will find that ADO.NET 2.0, along with the .NET Framework, goes a long way toward 
providing a set of capabilities that achieves the goal of two-way data binding without major coding on
the developer’s part.

Now that we’ve covered some of the high-level aspects of data binding, it’s appropriate to start examin-
ing the specific details of ASP.NET applications and Windows Forms applications. 

Data Binding in ASP.NET
ASP.NET has supported one-way data binding since version 1.x on many of its controls, such as DataGrid
and DataList. In version 1.x, you are left on your own when it comes to retrieving the data and binding
that to the control. If you have three controls on the page that need the same data, you are responsible
for getting each one to its own data.
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Often, data doesn’t need to be retrieved for each request. For example, product catalog information that
is the same for each request can be cached to reduce the number of times you have to go to the database.
Again, in version 1.x, all of that was left in your hands to code and to determine how best to ensure that
you wrote an efficient application.

ASP.NET 2.0 brings along a new set of controls, concepts, and strategies that can be used in data binding
in your Web application. The biggest change is a new control called a Data Source. The data source 
manifests itself in several derived classes/controls that we will be discussing here that provide access to
your data and provide the mechanism for dropping them on a page and binding your other controls to
the data source. These new data source controls become your facilitators for providing one- and two-way
data binding with the controls on your page. New controls such as DetailView, GridView, and others
combined with the Data Source controls now enable you to do everything declaratively using drag and
drop, properties, and markup. In addition, they don’t require writing any code in order to use them.
However, they all still support a rich programmable interface when required. These controls are ASP.NET
built-in controls, and they completely implement two-way data binding.

Benefits of the Data Source Concept
One of the benefits of the data source control concept is that it reduces the tendency that developers
have of retrieving the same data multiple times on the page. One of the challenges that people face when
they start componentizing their controls on a page, whether they are using server controls or user con-
trols, is how to manage data when multiple controls on the page need access to the same data. Whether
it’s customer information or product information, you need to retrieve that from the database. 

All too frequently, each control will independently go to the data source and retrieve that data. The data
source concept helps streamline that process by providing a consistent mechanism that enables the
application to drop the data source onto the page and tell it what data to get; then controls that need
access to that data simply assign that data source control as the DataSourceID for that visual control
(for example, DropDownList). 

Custom control developers need to learn how to enable their custom controls to be able to leverage the
new data source controls, so they don’t fall back on simply retrieving the data again. The advantage is
realized by using a consistent model, as well as sharing data sources across controls on a page as much
as possible. 

The data source concept also provides opportunities to be extended as appropriate. For example, you
might be able to make custom DataSource controls that are application specific to make it easier for your
development team to use them on the pages. The data source concept enables you to do this without
requiring new developers to learn a proprietary new concept. 

Data Source Controls Provided with ASP.NET 2.0
The following Data Source controls are provided out of the box with ASP.NET:
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Data Source Control Name Description

SqlDataSource Provides support for accessing and manipulating SQL relational
databases. This is not just Microsoft SQL Server–specific and will
work with other databases, including Oracle, IBM DB2, and
MySQL.

AccessDataSource Inherits from SqlDataSource and provides a specialized imple-
mentation for working with Microsoft Access databases. Provides
only retrieval access and no support for insert, update, or delete
operations. 

XmlDataSource Provides support for accessing XML data that is either tabular or
hierarchical. Support for Transformation and Xpath filtering is 
provided. Paging is not available, but caching is, and modification
support is provided by directly calling the Save method. 
Derives from HierarchicalDatasourceControl instead of
DataSourceControl.

ObjectDataSource Provides for interaction with your business objects that expose
properties and query/update style methods. Provides a business
layer abstraction on top of the true data source, which is typically 
a SQL engine from one of the vendors. Enables you to use data-
binding concepts while still maintaining an n-tier approach to
your architecture.

SiteMapDataSource Provides access to data managed by the Site Map Provider. 
Allows starting at a specific location in the Site Hierarchy, but 
does not support modification, sorting, paging, or caching. 
Derives from HierarchicalDatasourceControl instead of
DataSourceControl.

Passing Parameters to Data Source Controls
A lot of thought went into the passing of parameters to DataSource controls to supply the runtime
parameters for actions such as selecting, filtering, inserting, and deleting on a DataSource. For example,
if you have a grid that you want to fill with customers from a user-selected state only, you could have a
drop-down and use a ControlParameter to filter the grid. The recognition that not all data retrieval is
for every row in a data source, or that parameters from a client cookie, a query string, or other supported
parameter types would be useful, demonstrates the improved level of support and the reduced amount
of custom code required. 

In prior versions of ASP.NET most of this could not be done declaratively and required lots of custom
code to achieve the same results now possible. This capability will streamline parameter management
and it goes a long way toward the goal of reduction of hand-coded filters and other command strings
simply to pass along to a data source to ensure retrieval of the correct information.

Each of the DataSource controls uses parameters for some aspect of its operations. The most common uses
are for Select, Update, Delete, and Filter parameters. All Parameter types are inherited from the type
System.Web.UI.WebControls.Parameter and each is contained within a ParameterCollection. The
following table contains a list of the parameters that are provided with the framework.
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Parameter Type Description

ControlParameter This allows a simple method to get a parameter from a control on a
page by specification of the control id and the property of the control
to fetch. 

CookieParameter This allows pulling value from a cookie that is sent from the client on
the request.

SessionParameter This provides retrieval from the user’s session of a parameter value.

ProfileParameter This allows retrieval from a user’s profile.

QueryStringParameter This allows retrieval from the HTTP query string that was passed
with the request.

FormParameter This allows retrieval from posted form data or other properties on
the Request Object. For example this could pull the value from a 
hidden field.

Validation of Parameter Data
One of the shortfalls of parameters is that they don’t validate the data passed to them. For example, if
you need a value to be within a certain range, you must validate that on your own. In addition, this
must be done in the context of the type of DataSource control you are using. For example, if you are
using the SQLDataSource, you will validate by looking at the Parameters collection of the Command
instance that is passed in the event arguments:

protected void SqlDataSource1_Selecting(object sender,
SqlDataSourceSelectingEventArgs e)
{

if (e.Command.Parameters[“@CountryCode”].Value== null)
{
Response.Write(“You must pass a country”);
e.Cancel = true;
return;
}
if ((string) e.Command.Parameters[“@CountryCode”].Value != “US”)
{
Response.Write(“You must select US as the country”);
e.Cancel = true;
}
}

In the preceding example, we have implemented the Selecting event from the SQLDataSource con-
trol. Because the Selecting event gets control prior to the execution of the SelectCommand, you are
able to perform any type of pre-validation and, if necessary, prevent the query from running.  

The point of the example is not to prescribe a validation approach but to provide an example 
of how you would use the Selecting event and how you can use the Cancel property on the
SQLDatasourceSelectingEventArgs to indicate to the control that you wish to prevent the query
from being performed.
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Data Source Caching
Data Source caching enables the Data Source control to save a copy in the ASP.NET cache of the data
retrieved by the select command for future use. For example, if you had a Data Source control that was
used to load product category information into a drop-down, that information does not change frequently
so there is no need to have the database access performed each time the control is used. 

Using the caching option on the Data Source control means the data would be retained in the ASP.NET
cache for a period of time specified on the Data Source control and utilized by the controls on the page
without incurring a database access request.

A complete discussion of ASP.NET caching capabilities is beyond the scope of this book. It basically pro-
vides an application-wide, in-memory repository to store items for up to the life of the ASP.NET applica-
tion. Unlike a user session that is specific to single users, items stored in the ASP.NET Cache are available 
to all users of the application. The lifetime of items in the ASP.NET Cache is based on a number of factors,
including expiration policies established when the item was added. If you are on a Web farm (multiple
servers supporting a single application), each server on the Web farm has its own local ASP.NET Cache and
is not synchronized with the other servers on the farm.

Another important thing to understand is that these cached items are stored in the private cache area, not
in the public cache area that is accessible to your application. When it is stored in the cache by the Data
Source control, the cache key is generated to ensure that it is unique for the type of control being used.
For example, if you are using a SQL DataSource, the key will contain the SelectCommand that is used,
and if you are using an ObjectDataSource, it will contain the type name and the method.  

If you use a control on multiple pages with exactly the same settings, it will share the copy of the cached
data, as you might expect. Minor changes such as extra spaces in the SQL query can cause the Data Source
to keep a separate copy of the data in the cache.

Another scenario in which you end up with multiple DataSets in cache is when you use parameters — for
example, if you passed a country code to a Data Source control that was used to populate a drop-down list
of states. Regardless of whether you use it as a parameter to a SQLDataSource or an ObjectDataSource,
each different parameter value will result in a different dataset being put in the cache.

By default, caching is not enabled on the DataSource control. You must enable it by setting the
EnableCaching property to true. This is not appropriate for all types of data. For example, data that
changes frequently is not a good candidate to be cached by the DataSource control.  

You can control how long the data is stored in the Cache by using duration, expiration policies, and
events to tie it all the way to data in your SQL Server database. The following table describes some of the
key properties that control caching on the DataSource controls.

Property Description/Comments

CacheDuration Time in seconds that the Data Source control will keep the data in
ASP.NET Cache after the SelectMethod is invoked.

CacheExpirationPolicy Establishes whether the expiration is a sliding window or an 
absolute time.

Table continued on following page
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Property Description/Comments

CacheKeyDependency Used to define a key that is used by another cached object (Object #2),
so that if that object (Object #1) is removed from cache this object/
(Object #2) should be removed also. For example, if you had a 
CatalogData key that all other catalog data was dependent on and
you wanted to force a refresh of all data, you would merely delete
the CatalogData object from cache, and all dependent items
would be removed.

SQLCacheDependency Specifies a semicolon-delimited list of connection string/table name
pairs that define dependencies on a SQL database. 

Making Your Cache Dependent on SQL Data
SQLCacheDependency enables you to set up a cache dependency based on your SQL Server data. The
advantage of this is that it avoids having to refresh cache data at a specific time, regardless of whether
the source of the data has changed.

SQLCacheDependency will work with SQL 7, SQL 2000, and SQL 2005. In SQL 2005, it is optimized and
uses the full Notification Services capabilities of the database engine to perform the notification. 

In order to use SQLCacheDependency, you must enable it on both the database and the specific table.
There are currently two standard ways to accomplish this: You can use the aspnet_regsqlcache
command-line utility that ships with the Framework, or you can do it programmatically via the
SQLCacheDepenedencyAdmin class that is part of the System.Web.Caching namespace. 

Choosing a Caching Technique
A discussion on using the ASP.NET cache would not be complete without a discussion of when you
should use the different types of caching available in ASP.NET. In addition to the caching capabilities in
the DataSource control, ASP.NET also enables you to do different types of caching: page-level caching,
user-control caching, and programmatically by using the Cache object directly.

Page-level caching allows the same cached copy of a page to be delivered to requestors based on dura-
tion as well as query string to determine how long page contents are cached and how many different
instances of the page are kept. User-control caching allows the same style of control, but only for the
region that is rendered for that user control: all other content on the page is regenerated on each request.
Data Source caching provides the capability to store the raw data from a query and does not cache any
of the rendered output that the controls using the data create.

Type of Caching When to Use/Comments

Page-level This is great to use when all of the content on the page does not vary on a 
caching request-by-request basis. For example, if you present a product information

page, and no pricing or any other information varies by user, then you could
probably use page-level caching and vary your caching by the product ID to
enable each product to be cached.
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Type of Caching When to Use/Comments

User-control This approach is appropriate when only a region of a page contains content 
caching that is the same for each request.

Data Source This option is great for caching data that feeds a specific control on the page. 
caching The capability to turn on SQL Cache Dependency on a Data Source provides

a convenient way of refreshing the cached data if the underlying data source
changes.

Direct storage in This is great for data that is not necessarily used with a single control, or has 
ASP.NET Cache other reasons for existence. It requires additional code to load and to maintain

data in cache compared to other caching approaches.

One of the other features that page and user-control offer is vary by caching. This type of caching enables
you to keep multiple copies based on query string, session, or other custom methods.

The ASP.NET UI Controls
Regardless of the DataSource control that you choose, the end target is one of the many controls that come
standard with Visual Studio or one of those custom controls that choose to work with the DataSource
capabilities.

The following table describes some of the new controls in Visual Studio 2005 that are designed to lever-
age the capabilities of the Data Source concept for data binding:

Control Description/Comments

GridView GridView is the DataGrid all grown up. It picks up where DataGrid fell short
and provides robust capabilities to show a table of data. If the Data Source 
control supports it, it will provide sorting, paging, and even in-place editing of
the rows of data. This control should be considered for places where you used
DataGrid in prior versions.

DetailsView Making its debut appearance in ASP.NET 2.0, the DetailsView provides a
much needed capability to quickly provide a table view of a single row from a
data source. When enabled, it allows the adding and editing of data. Pair this
control up with the GridView to provide a master detail view of data.

FormView At first, we thought FormView existed simply to confuse us as to when to use
this instead of DetailsView. In reality, it provides more ability to control the
layout of the data. Like DetailsView, it can also be used to facilitate master–
detail scenarios.

In addition to the controls highlighted above, most of the standard controls such as DropDownList,
DataList, Repeater, and others have been upgraded to be able to take advantage of the data source
concept. You can also extend the concept into your own controls or extend the existing controls to add
capabilities that are required for your specific project. For example, you could easily define your own
class that inherits from DropDownList and adds special features that are relevant to your own project. 
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If you’re building a custom control from scratch, you could tie into the Data Source concept so users
would have a consistent way of binding data. A more complete discussion of this is beyond the scope of
this book.

SQLDataSource Control
The SQLDataSource provides the capability to interact with the database directly to either execute SQL
text commands or invoke stored procedures on the target database. Although the name suggests that
this control is applicable only for Microsoft SQL Server, that’s not the case at all. The SQLDataSource is
capable of interacting with any ADO.NET data provider.

Configuring the SQLDataSource Using the Wizard
After dragging a SQLDataSource onto your Web Form, the SQLDataSource Configuration Wizard will
start up and begin to prompt you for the options required to let the control know how to access the data.

All of the options you can set via the wizard you can also set programmatically, or from the properties
page, or simply on the element in the markup:

1. Configuring the ConnectionString: The first step in the wizard is establishing the connection to
your database. This is where you will be prompted to select an existing connection string or to
create a new one, as shown in Figure 7-1.

Figure 7-1

2. Configuring where to save the ConnectionString: The most important decision you will make
now is where to store the connection string (see Figure 7-2). You can either store the connection
string on the markup for the control, or have it update your application configuration (Web
.config) and insert an entry in the new <connectionStrings> section. The best practice here is
to utilize the configuration file to prevent duplication of the settings on each data source.
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Figure 7-2

If you were to peek into web.config after the wizard runs, you would see the connection string
that was added to the new <connectionString> section that is new for .NET 2.0, as shown in
Figure 7-3.

Figure 7-3

3. In this step, you will configure the columns of the SELECT statement that will be used or indi-
cate that you desire to use a custom query or stored procedure (see Figure 7-4).

Figure 7-4
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Keep in mind that if you select the columns here, the query will be embedded on the aspx page
markup and will be duplicated if you have other pages that use the same query.

Now is a good time to reiterate that using SQL embedded will ultimately result in increased
maintenance costs. It is recommended that larger applications, at a minimum, use stored proce-
dures or the ObjectDataSource with either your own business objects or typed datasets and
table adapters. 

Another important thing to consider here is that if you select “*”, you will get back every col-
umn for the table. If you only needed two of the columns, this would be wasting resources,
especially if you are enabling caching of the results. 

Additionally, if you are using a control like GridView and have the Auto Generate Columns
option turned on, the columns that appear on your page could change in the future simply by
someone adding a column to the table. While some might view that as a benefit to using the “*”
approach, you might expose some data that you did not intend to show the end user. Another
problem that might occur is that your page formatting might suffer when new fields are added.

4. Configuring the Custom Select, Insert, Update, or Delete: Either by typing in a SQL statement
or by using Query Builder, this page (see Figure 7-5) enables you to define the commands sepa-
rately for SELECT, UPDATE, INSERT, and DELETE. 

If you need to use parameters in your SQL statement, you must specify them as placeholders in
your query, as shown below:

Select eventid, eventtitle from event where eventid = @eventid

By specifying a placeholder for a parameter, the wizard will take you to a new page that enables
you to configure a source for the parameters you defined.

Alternatively, you can select the stored procedure radio button, which enables you to select from
existing stored procedures. If you have not defined any stored procedures in your database, this
list will not be enabled. You would have to add your stored procedures and then rerun the con-
figuration on the SQLDataSource control in order to see them.

Figure 7-5
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Configuring by Using the Property Page
Selecting one of the Query properties on the Property Page will bring up the dialog shown in Figure 7-6,
enabling you to modify the query. You can also use this dialog to establish and modify the parameters
that populate data for the query. 

Figure 7-6

You should pay particular attention to your parameters regardless of the type of DataSource control you
are using. Make sure you handle cases in which the value is not available, or have provided a default
value property setting for each parameter. If you fail to set the default value and the value is not avail-
able (null) you will receive an error in most cases if you do not handle it as part of your processing.

Dragging and Dropping a Table
Some do it on purpose, others do it by accident, but we all try dragging a table from Server Explorer
onto the Web form. When you drag a table from a database connection listed in Server Explorer (see
Figure 7-7) onto a Web form, Visual Studio automation will kick in.

Figure 7-7

After you drag and drop the Event table onto the Web form, Visual Studio will generate markup to add 
a GridView and a SQLDataSource to the form (see Figure 7-8). While convenient for demos or quick-
and-dirty prototypes, the significant drawback of this technique is that you end up with SQL sprinkled
throughout all of your pages. 
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Figure 7-8

This technique is best reserved for prototypes or what will later be converted to either stored procedure
or business objects.

Key Properties of the SQLDataSource
The following table describes a subset of the key properties of the SQLDataSource control and some
associated comments regarding their use. Consult the MSDN documentation for a complete list of every
property on the control.

Property Description/Comments

DataSourceMode Controls how the data is retrieved either in a DataSet or
using a DataReader. If controls that use the DataSource
require control over paging and sorting, DataSet is
required or it will generate an error. If you only require a
simple population of a control, using a DataSet would not
provide any advantage over using the DataReader and the
DataReader will typically perform better in this case.

CancelSelectOnNullParameter This gives you control if the Select should happen when
any value within the select parameter collection is null. This
can be powerful to control the query from happening but it
can also be tough to debug if you aren’t careful with your
selection of parameters. For example, if you have a state
and country drop-down, you don’t want to do the query if
the user hasn’t picked a country yet; therefore, if country is
null, you don’t want the Select query to fire.

ConflictDetection Only applies during Update or Delete operations and
specifies whether the control should try to detect changes in
the underlying data source. The default value is Overwrite
and will not do checks of the current values on the 
underlying data. 
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Property Description/Comments

ProviderName ProviderName enables you to specify a different ADO.NET
provider using the invariant name. This defaults to System
.Data.SqlClient, but it can be set to any registered
provider. For example, Oracle would be System.Data
.OracleClient.

Beware of Provider-Specific Syntax
The SelectCommand, UpdateCommand, InsertCommand, and DeleteCommand properties all provide the
SQL strings that are passed to the active provider set using the ProviderName property. These strings
are sensitive to the specific SQL syntax supported by the provider. For example, parameters are specified
to the SQLClient provider using “@MyParm”. However, if you were using ODBC or OleDb, the param-
eter would be specified with a placeholder of “?” instead of “@”. 

The provider-specific nature of the commands highlights an important disadvantage associated with
using the SQLDataSource in your applications, as it ties them directly to the provider you choose. Many
believe that this lack of abstraction on top of your data is reason enough to not use this type of control.
Conversely, on the positive side, because the syntax is specific to a provider, you can leverage provider
capabilities without having to dumb down your syntax to a common specification that typically would
preclude use of vendor-specific features. 

One way to partially mitigate some of your exposure to this problem is to define a library of DataSource
controls that inherit from SQLDataSource and are used by your developers. These controls can specify all
of the necessary provider-specific information. This would be more business-centric controls — for exam-
ple, ProductDataSource. While under the covers it is just a SQLDataSource, the developer could drag it
from the Toolbox and use it without setting any of the properties unless required to deviate from the typi-
cal settings. This is also a way to promote consistency across your pages and prevents specific SQL or SP
calls from littering the pages. An even more advanced version of this concept could be leveraged using
tools such as CodeSmith or other code-generation helpers to build these based on templates for all of the
data objects in your ultimate data source.

The following is a class that inherits from SQLDataSource and presets the values of several of the prop-
erties. If this is placed in a separate class library and referenced by an ASP.NET project, it will auto-
register in the toolbox and allow drag and drop onto the page preconfigured. This simple example only
begins to show some of the creative ways you can reduce redundancy. In the derived class, you could
easily check the provider and include variations of the SQL as necessary for the syntax of the database:

using System;
using System.Data;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.Configuration;
using System.Configuration;
using System.ComponentModel;
using System.Collections;
namespace testCacheLib
{
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//[ ToolboxData(“<{0}:EventListDataSource   runat=server></{0}:EventListDataSource
>”)]
[ToolboxData(“<{0}:EventListDataSource  runat=server></{0}:EventListDataSource>”)]
public class EventListDataSource : System.Web.UI.WebControls.SqlDataSource
{

public EventListDataSource()
{

this.SelectCommand = “SELECT [EventID], [Title], [EventDate] FROM [Events]”;

}

protected override void OnInit(EventArgs e)
{

try
{

ConnectionStringSettings conString =
WebConfigurationManager.ConnectionStrings[“ASPNETDBConnectionString1”];

this.ConnectionString = conString.ConnectionString;
this.ProviderName = conString.ProviderName;

}
catch
{ }

}

}
}

The following example shows what the markup would look like using a typical SQLDataSource. Note
that the query is inline. If this were used on more than one page, each one would have the redundant
query inline:

<asp:SqlDataSource ID=”SqlDataSource1” runat=”server” 
ConnectionString=”<%$ ConnectionStrings:ASPNETDBConnectionString1 %>”
ProviderName=”<%$ ConnectionStrings:ASPNETDBConnectionString1.ProviderName

%>”
SelectCommand=”SELECT [EventID], [Title], [EventDate] FROM [Events]”>

</asp:SqlDataSource>

The following code shows what the markup would look like using the custom control class derived from
a SQLDatasource, and has the queries specified in the class: 

<cc1:EventListDataSource ID=”eventDS1” runat=”server”>
</cc1:EventListDataSource>

As you can see from the preceding example, this can reduce the redundancy and centralize the settings.
It would also allow for many more creative things to be done inside the derived class. The fact that it
allows drag and drop from the toolbox preconfigured is also a plus.

ObjectDataSource Control
The ObjectDataSource is one of the most powerful feature additions to data binding in ASP.NET 2.0. It
provides a declarative method of using objects in your data binding. Previously, if you wanted to bind to
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objects, you did it either programmatically or via cryptic “eval” statements in your page HTML markup.
The ObjectDataSource control provides the glue, like all other Data Source controls, between your
object (the data source) and your UI elements, such as a GridView.

The ObjectDataSource provides the means to further abstract your application from the specifics of
your data storage strategy. With the SQLDataSource, if you want to insert business logic, you would
have to either write it in SQL or use a managed CLR object in the database. The ObjectDataSource,
however, enables you to create middle-tier objects to interact with, which can implement more sophisti-
cated business logic shared across all aspects of your user interface. This type of strategy is even more
important if you are building an application that might expose multiple UI faces — for example, an
application that has a Smart Client, a Web, and a Mobile client.

Like other DataSource controls, ObjectDataSource supports the full range of parameters to pass
information to selects, updates, and deletes. The ObjectDataSource also extends the capability to uti-
lize the Cache for information returned from the Select method. You can also still get access to the
powerful event model, which can be used to validate query parameters and handle errors that occurred
in the process of executing the queries.

Keep in mind that this control can be used for binding to almost any data object; it’s not limited to bind-
ing to only data retrieved from a database. You can bind to data that is calculated, generated, or pulled
from a remote Web Service. You can also use this control to call your own utility methods or pass through
to built-in methods. For example, using the new GetSchema support in ADO.NET, you can create a
drop-down of every table in your database. This would be appropriate for utility-type applications, and
demonstrates the value of being able to invoke a broad number of object methods and to facilitate bind-
ing to the data returned by them.

If your only excuse for not using the ObjectDataSource is that you feel overwhelmed by the thought
of using it or you think it might be overly complex, you are not alone. We had similar feelings when 
we first used it. After experimentation with all of the various options, however, we’re no longer intimi-
dated. Unless we were doing a simple throwaway application, it would be hard to justify not using the
ObjectDataSource over some of the other controls such as SQLDataSource. After all, remember that
some of the investment you make up front you gain back as you maintain your application over the
course of its life.

Several chapters could be written on the ObjectDataSource and the related philosophy on application
architecture, but here we will try to give you an idea of how it fits with the overall data-binding strategy
in Visual Studio, leaving those academic discussions for another time: 

<asp:ObjectDataSource ID=”ObjectDataSource1” runat=”server” CacheDuration=”600” 
EnableCaching=”True” SelectMethod=”GetData” TypeName=”MyBusinessObject”>

<SelectParameters>
<asp:QueryStringParameter DefaultValue=”US” Name=”state”

QueryStringField=”State” Type=”String” />
</SelectParameters>

</asp:ObjectDataSource>
<asp:GridView ID=”GridView1” runat=”server” DataSourceID=”ObjectDataSource1”/>

Key Properties of the ObjectDataSource Control
The following table describes a subset of the properties of the ObjectDataSource control and some
associated comments regarding their use. Consult the MSDN documentation for a complete list of all of
the properties on the control.
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Property Description/Comments

ConflictDetection Use to CompareAllValues or OverwriteChanges.

DataObjectTypeName Partially or fully qualified type string that specifies the data type
that can be used as a parameter for the various commands.

SelectMethod Identifies the method to be called when select action is invoked
on the data source control. This method can return an 
IEnumerable or a DataSet. 

If the method returns a DataSet, it can be cached using the 
automatic caching capability using EnableCaching=true.

UpdateMethod Identifies the method to be called when an update is required by
the data source. Parameters to this method are identified by the
UpdateParameters collection.

InsertMethod Method called to insert data; parameters are identified by the
InsertParameters property.

DeleteMethod Method called to delete data; parameters are identified by the
DeleteParameters property.

MaxiumRowsParameterName Identifies the parameter on the SelectMethod that will identify
the maximum number of rows to retrieve when data paging is
enabled.

SelectCountMethod Method that ObjectDataSource will call to get a count of rows.

Key Events on the ObjectDataSource
In order to allow you greater control over what happens on an ObjectDataSource, several events are
exposed that enable you to tap into the life cycle of the control. Events provide the necessary hooks to
enable you to capture, evaluate, and perform both preprocessing and post-processing actions during the
life cycle of the ObjectDataSource. The following table represents a subset of the public events on the
control:

Event Description/Comments

Deleted Occurs after the delete operation has already been completed.

Deleting Occurs before a delete operation happens.

Inserted Occurs after the new data has been inserted.

Inserting Occurs prior to the insert operation happening.

ObjectCreated Occurs after the object identified by TypeName is created.

ObjectCreating Occurs before the object identified by TypeName is created.

ObjectDisposing Allows notification that the TypeName object is being disposed.
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Event Description/Comments

Selecting Occurs before the select operation is performed. This would be a good
place to validate that parameters for select are valid. You can use 
the Cancel flag in the EventArgs if you need to cancel the query, as
demonstrated earlier in the SQLDataSource control.

Selected Occurs after the select operation has completed. This is a good place to
handle errors that were raised as a result of the query.

Updating Occurs before the update is invoked.

Updated Occurs after the update has occurred.

Note that events are only called if you are not using Static (shared in VB) methods. If you are using
static methods, then the events are not invoked as part of the processing life cycle. 

One way that you can use the events is to trap errors that occur during invocation of the methods. For
example, if the SelectMethod threw an exception, the user would receive the error on the page. Instead,
you can hook into the Selected event, which happens after the SelectMethod is attempted, and evalu-
ate the Exception parameter of the ObjectDataSourceStatusEventArgs that is passed to the event
handler. The following example simply forces it to ignore the error. However, you can add whatever
logic is appropriate for your application.

protected void ObjectDataSource1_Selected(object sender, 
ObjectDataSourceStatusEventArgs e)

{
if (e.Exception != null)

e.ExceptionHandled = true;
}

Supporting Paging
In order to support paging on an ObjectDataSource control, you must set the following properties on
the control:

Property Description/Comments

EnablePaging This must be set to true to indicate that you want to support
paging. Other conditions, below, must also be set up in order
for this to not produce an error.

StartRecordParameterName This is the name of the parameter for the SelectMethod that the
object will use to know what record to start at during execution
of the select method.

MaxRecordsParameterName Specifies the parameter on the SelectMethod that contains the
number of records that will be retrieved.

SelectCountMethod Used to retrieve a total row count when paging is enabled.
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Building a Class to Work with ObjectDataSource
The first order of business is understanding what can be the target of an ObjectDataSource control. The
target class can expose either static methods (shared in VB) or instance methods. If the class implements static
methods, an instance of the class is not required each time the data source is participating in the page life
cycle.

Objects invoked by the ObjectDataSource are not kept around for the life of the Web request. If you
require expensive startup or state information, you must find alternative methods to maintain or load
the information so it does not happen each time your object is instantiated by the ObjectDataSource
control.

In the following example, we are going to build a simple business object that will be implemented using
two classes. The first class will be a data class that contains public properties and operations that act on
those data elements. The second class will be our business object class, which implements the methods
we will use to select, update, insert, and delete data by our data source. We could also easily accomplish
this with one class, combining the two together. There are pros and cons for both approaches, which are
beyond the scope of this book. Keep in mind also that in a real application, these classes would contain
additional business rules that are excluded here because they are not required to illustrate how the
ObjectDataSource works.

C# Data Class Sample Code
The following class implements the data class and contains all the properties for the data object:

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

/// <summary>
/// Represents the data object for Events
/// </summary>
public class EventData
{

private int      m_EventID = 0;
private string   m_EventTitle = “”;

public EventData()
{

}

public int EventID
{

get
{

return m_EventID;
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}
set
{

m_EventID = value;
}

}

public string EventTitle
{

get
{

return m_EventTitle;
}
set
{

m_EventTitle = value;
}

}
}

C# Business Object Class Sample Code
The following class is an example of a database class that implements methods that will interact with
ADO.NET and return instances of the preceding data class or a DataTable as appropriate:

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

/// <summary>
/// Summary description for EventLogic
/// </summary>
public class EventLogic
{
public EventLogic()
{

}

public static DataTable SelectData()
{

return new DataTable();
}

public static EventData SelectData(int EventID)
{
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//*Go get data from somewhere here....

return new EventData();
}

public static void InsertData(EventData data)
{

//do insert of data to actual data source here
}

public static void UpdateData(EventData data)
{

//do update logic here
}

public static void DeleteData(int EventID)
{

//do delete logic here
}

}

Using Your Objects on the Page
Using your objects with an ObjectDataSource is just a drag-and-drop from the toolbox away. All 
you have to do is drag an ObjectDataSource onto the Web form and it will automatically start the
Configuration Wizard (see Figure 7-9).

Figure 7-9
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The Configuration Wizard will first prompt you to pick which class you want to use by presenting you
with a drop-down menu of all of the classes referenced by your project. For a large project, this list can
be rather tedious to wade through. It is hoped that a future release will provide more flexibility in how
you pick your class to avoid searching through hundreds of referenced classes. If this becomes too
tedious, you aren’t limited to using the wizard, as all of the options can be set via the properties page for
the ObjectDataSource, declaratively through markup, or programmatically in your code behind.

One thing to note is that unlike with the SQLDataSource, you do not have to specify any connection
string information. All of this is assumed to be managed by the object you are connecting to and is not
configured by the ObjectDataSource. 

Defining the Methods to Use 
Now that we have picked the object, the next step (see Figure 7-10) is to define which method we will use
for selecting data. The wizard makes this easy by providing a drop-down list of all the available methods.
If you’re like us, you will probably forget to mark a method as public and wonder why it doesn’t show up
in the list. Yes, each method shown must be public — keep in mind that ObjectDataSource uses reflec-
tion to invoke these methods.

Figure 7-10

You are not required to call your select method “select” and your delete method “delete” — you are free
to call your methods whatever is appropriate for your application. You can also have multiple methods
on an object and determine which one to use based on the setup of the ObjectDataSource. For exam-
ple, you could have a SelectByProductCategory and a SelectByProductManager— each having a
different audience and probably used on different pages.

Defining the Parameters
If your object requires one or more parameters, the next page in the wizard (see Figure 7-11) will help
you configure where the parameters will be passed. Remember from our prior discussion of Data Source
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parameters that these can come from a variety of sources, including a query string, another control, or a
cookie. Using the wizard, you can configure each parameter that is required by the object method. These
will be stored in the SelectParameters collection on the markup if you were to look at it on the source
view. One common thing you might do here is pull the value from another control on the page — for
example, a drop-down list that is used to filter a detail GridView. 

Figure 7-11

If your Insert or Update takes a data type object, it will most likely be able to identify that and set the
property for you as you go through the wizard. Otherwise, you must specify the DataObjectTypeName
manually via the property.

Modifications after the Wizard Completes
Don’t worry if you forget to specify something or the wizard closes before you are done — you can
access all of the settings later by either rerunning the configure data source or using the properties from
the Property panel, as shown in Figure 7-12.

Figure 7-12
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If you look under the hood at the markup generated by the wizard, as shown in Figure 7-13, you will see
it has added an ObjectDataSource, and each of the properties are set as you instructed via the wizard.

Figure 7-13

Binding to a Control
Regardless of the type of DataSource control you are using, the DataSource does not render any user
interface elements. In order for the data to show up, you must identify this data source on the DataSource
property of a UI element such as the GridView. Most likely, you have already done this because when you
add a GridView it will prompt you to find the DataSource or create a new one.

Table Adapter and Typed DataSets
The typed DataSet designer has been reinvented for Visual Studio 2005 and is now separate from the
XML Schema editor. While having a schema for the typed dataset is still a cornerstone of its implementa-
tion, it was important to enable the DataSet designer to evolve on a separate course.

Figure 7-14 shows the design view of two tables in a typed dataset.  Notice at the bottom of the table the
table adapter methods that have been defined for that table.

One of the architectural decisions you will make in building an application is whether you use typed
datasets in your application. In addition to the capability to define the DataSet and related tables, you
can now define a type-safe data access layer using TableAdapters. A simple way of looking at a table
adapter is to think of it as a type-safe DataAdapter. For example, if the SelectCommand were defined
to select by ProductID, a FillByProductID method would be defined and a typed parameter of
ProductID would be on the method. Like typed DataSets, the TableAdapters are designer-generated
by Visual Studio.

By default, the TableAdapter will inherit from Component and will encapsulate a Data Adapter. This
means that while it looks and smells like a Data Adapter, you will get an InvalidCastException if
you try to cast a TableAdapter to a DataAdapter object. Note that you can change the base class of the
generated TableAdapter to be a custom project-specific class that inherits from Component. You do this
by setting the base class property in Dataset Designer. Doing this in a project would allow common
capabilities to be shared across all of your TableAdapters. This is a great way to make sure your
favorite helper methods are always available.

When you add a DataSet to your project and select the Configure option on a table, the TableAdapter
Configuration Wizard will help you add methods to the Typed DataSet. If you already have a Dataset
defined you can still leverage the TableAdapter Configuration Wizard on existing datasets.
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Figure 7-14

Once configured and defined, a Typed Dataset can be utilized on a page by dragging an
ObjectDataSource onto the page and pointing it at the Typed Dataset.

From an architectural perspective, this technique provides one more layer of separation than is provided
by directly using the SQLDataSource. By having that layer of abstraction, you could also share your
typed datasets easily across projects and gain more continuity in data access. Without getting stuck on
the debate of whether an object or a typed dataset approach is better architecture, there is a general con-
sensus that using either is more robust than doing direct SQL queries from the page, as SQLDataSource
encourages.

DBDirect Methods
In addition to the InsertCommand, UpdateCommand, and DeleteCommand, a TableAdapter defines
type-safe methods that can be called to directly manipulate the database via Insert, Update, and Delete
calls. The Insert and Update methods will take as arguments all of the fields of a particular table. You
can turn off the creation of these methods by setting the GenerateDBDirectMethods property to
false. Figure 7-15 shows an example of an Insert DBDirect method.

Figure 7-15
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A word of caution with these methods: If you use these directly in your code, any change to add columns
to your table will require all calling applications to be updated to the new method signature, because they
require the full set of parameters. 

To avoid this, either define an overloaded method that takes the old number of arguments and defaults
the new values, or simply create a new public method that takes a row object instead of the individual
column values. Figure 7-16 shows an example.

Figure 7-16

In the preceding example, we create a partial class that will join together with our generated
TableAdapter. We add our own Insert method, which takes a StateRow instead of the individual
fields. This new method is simply a pass-through to the generated Insert method that Visual Studio
built and requires all the columns as individual parameters to the method. Because the new method we
defined takes a single parameter, the StateRow object will not be required to change any calling code if
we add a new column, as long as it has a default value defined.

Configuring the Connection
As you did when configuring a SQLDataSource, the first thing you will do is determine what connec-
tion string will be used to interact with the database for the TableAdapter method calls, as shown in
Figure 7-17.

Figure 7-17
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Configuring How to Get the Data
Next you will choose between using inline SQL statements or stored procedures, as shown in Figure 7-18. If
you select stored procedures, you can either use either existing stored procedures or have the wizard create
them for you.

Figure 7-18

Configuring Advanced Options
If you check the Generate Insert, Update, and Delete Statements option, as shown in Figure 7-19, the
wizard will attempt to generate Insert, Update, and Delete statements based on your select query. 

Refresh the Data Table will cause the data to be reloaded after insert and update statements. This may
not always be appropriate for every application, and in fact can lead to unnecessary overhead in applica-
tions for which the data is no longer needed after the insert or update is completed.

Figure 7-19

Configuring Stored Procedure Names
If you have decided to use existing stored procedures or create stored procedures, this panel (see Fig-
ure 7-20) will enable you to specify the names for each type of command. Additionally, you will be able
to view the script that will be used to define the stored procedures to the database.
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Figure 7-20

Configuring Methods to Generate
One task the wizard will do for you is define basic methods for your table, as shown in Figure 7-21. In
addition to these methods, you have the option of adding additional methods later.

Figure 7-21

Generating DataSource Controls
You might have noticed that the data source concept does a good job of reducing the amount of code
you have to write to get your data to show on the screen. It also provides the flexibility to choose an
approach that is appropriate for your application architecture. What you might not realize yet is that
there is very little out of the box that helps you avoid creating these data sources repeatedly. If you had
10 pages that needed a drop-down list containing states or countries, you would be defining 10 Data
Source controls, one on each page.

At first, this might not sound all that bad, and in fact it might not even be required all at once — it might
creep up on you during the maintenance of your application. Granted, some of this could be dealt with
by using User Controls to create page fragments that you reuse on each of the 10 pages, but that approach
is not always appropriate.
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One of the more powerful solutions you have for this problem is custom data sources in a library that
can be reused across the project. You can further enhance that idea by combining your custom data
sources with a powerful code generator such as Code Smith, or use other custom techniques — for exam-
ple, XML/XSLT or a custom application built to generate the controls. These could be configured using
metadata from either your object model or data model. 

Once you create this library, you could register it on the ToolBox and then your developers would have a
simple drag-and-drop approach to adding preconfigured DataSource controls to their pages. This would
reduce the redundant work, and it would promote consistency across the pages that use the same type
of control. The benefits would likely pay off the first time you had to do maintenance and only had to
change one control instead of 10 pages.

So what do we mean by code generation? Well, typically programmers are more and more developing
code that will go out and do the data access for you. You see a lot of this directly in Visual Studio 2005,
where the wizards are generating code that saves you time and yet still preserves the type-safe nature
that promotes quality code. 

If you are already using some form of code generation for your data access layer, you could expand the
capabilities of your code-generation process to also generate a DataSource class. For example, if you are
using SQLDataSource, you could generate a ProductDataSource that inherits from SQLDataSource
but also automatically sets its properties to be specific to a Product Data Source. This can then be added
to the ToolBox and less experienced developers could drag and drop them onto a page for use. This
would avoid having the developer reinvent the definition on each page where a similar Data Source is
used.

You don’t have to do code generation to use this concept. The key is building a common library that con-
tains customized versions of the data source controls, whether you are using a SQL data source, the XML
data source, or the object data source. These are then referenced and used in your ASP.NET applications.

Using this custom library, you can derive your own custom class from a SQL data source, a XML data
source, or any of the data source controls. Leverage the power of what was already created in terms of
the functionality of those controls, but name them in a way that would be meaningful to your develop-
ment team. Why would you want to do this? By promoting consistency and ease of use, you will see the
reward in a more maintainable system that gets to market faster.

By deriving your own classes, you can set the properties the way you want, you can assign meaningful
names, and you can enjoy a nice library of controls in the Toolbox, which enables you to simply drag
them onto the page. For example, suppose you had a product table and you wanted to have a product
data source. By default, a user would drag a SQL data source and repeatedly set the different properties
on that control.

By then deriving your own class, you can set those properties in the code (in the derived class); and
because it is available in the toolbox, all a user has to do to use the product data source is drag that onto
the page. No further manual setting of the properties is required. If you need to change some of the
properties on that control later, you have a simple place to do that — you aren’t hunting through the
code. We believe this is a best practice because simply putting a SQL data source on the page doesn’t
provide you with a data access layer.
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Windows Forms Applications
Windows Forms applications continue to evolve their data-binding strategy with .NET 2.0, including a
reduction in complexity, which enables a developer to more easily get the data to show on the form.
ASP.NET data binding focuses on binding only the data-oriented properties — Windows Forms enable
you to bind almost any property of a control to a data source property. This rich capability can be used
to control not only the data that is displayed, but the size, color, and many other aspects of the control. 

Keep in mind the differences between the execution environments for ASP.NET and a Windows Forms
application. These differences are most noticeable in the way that a Windows Forms application is built
on a nonrequest/response basis. This leverages the fact that it is allowed to maintain state easily between
user interactions with controls. 

Added to Visual Studio 2005 is a new Data Source window that will act as the focal point for all data
sources defined to your Windows Forms project. Using the Data Source Configuration Wizard, it is easy
to add new sources and configure them for your project. Sources for binding are very flexible, requiring
the minimal implementation of the IList interface or one of the ADO.NET data containers such as the
DataTable, DataView, etc. The Data Source Window is not just limited to Database-related binding, as
you will see when we describe further details about how it works.

It will be clear from your first impression that typed Datasets have improved considerably in the area 
of usability, and that they are here to stay. In fact, there is no equivalent to the ASP.NET SQLDataSource
control that encourages direct database access from your form. You are, however, encouraged to use the
Data Source window and to bind to data that is retrieved either via your own custom object or through 
a Data Component (a typed Dataset and a type-safe DataAdapter). 

BindingSource is a new component control that is designed to simplify binding to data, including
typed Datasets, Web Services, and custom business objects. Paired with the BindingSource is a new
control called the BindingNavigator that provides VCR-like navigation on your BindingSource. 

One major change in Windows Form applications is that designer-generated code is no longer intermixed
with your code, but instead placed in a formname.designer.cs file. This eliminates the problem in prior
versions whereby the generated code could possibly step on your custom code. This capability is sup-
ported thanks to the new support for partial classes that was added in .NET 2.0. If you are interested in
what happens under the hood, take a peek and browse through the file as you make changes to your
application. That can be a great way to understand how some of the parts work together.

Another area highlighting the differences between the capabilities of ASP.NET and Windows Forms
involves the loading and saving of data. In an ASP.NET application, the DataSource controls manage the
load and save of the data. The BindingSource, while it will pull data from the source, it expects that
you have loaded the data into it. Likewise, it expects you to manage the persistence of the data, because
you might not necessarily be binding to a persistable object. Ultimately, you are responsible for the code
to populate and load the object that is associated with the BindingSource that you are using.

As you start to explore how binding in Windows Forms works, remember that all of this happens in real
time and no request/response happens like it does in an ASP.NET application. With that in mind, let’s
start exploring the changes in more detail.
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Where Did My Data Components Go?
Prior to Visual Studio 2005, the toolbox used to have a Data section that contained SqlConnection,
SqlCommand, and so on. These low-level components are no longer available on the toolbox because
they promote use of untyped components and the Windows Forms team is pushing hard to convert 
people to the new model. You will notice that after you add a typed Dataset and Table Adapter to your
project, they will automatically show up in the toolbox after your next project build.

The underlying components such as SqlConnection and others are still around, and if you are an old
dog that can’t learn new tricks, you can add them back to your toolbox manually. Doing so, however,
would be like doing math with an abacus instead of a calculator. Using the typed capabilities or object
references, which are also typed, will promote more robust applications.

Dragging and Dropping a Table
You already saw in ASP.NET that if you drag a table from Server Explorer, it generates a bunch of code
for you, but it isn’t very robust or useful in production applications. The Windows Forms team took a
different approach. They decided not to provide this capability and instead want you to add a new Data
Source in the Data Source window. 

You can also drag and drop a table from the Server Explorer window onto the DataSet designer surface
and it will create the table in the DataSet and create an associated TableAdapter that contains the
basic Fill method. This will also cause it to show up in your Data Source window.

Once you have defined an item to the Data Source window, you then have the ability to drag and drop
that on a form, after which automation will kick in to add a DataGridView and associated binding
objects that are appropriate.

If you take a second and think about it, this is actually a much more logical process because not only
does it allow database-related Data Sources, it also allows for other sources to be corralled into a single
window that manages their binding options and allows for drag and drop onto a form.

Data Sources
The Data Source window is new in 2.0 and provides a central focal point for your Data Sources. Unlike
Server Explorer, which is not project-specific, the Data Source window only contains data sources that
are specific to your active project. 

If you are confused about how the Data Source window differs from the Server Explorer window, think
of Server Explorer as a list of all your raw database sources. This could be generated from multiple
servers. A table in a database on Server Explorer might contain 10 columns, of which only 5 are used 
on the data source when it is defined on the Data Source window. It is further possible that Table A and
Table B are joined together to create a single data source on the Data Source window, whereas they 
physically exist as two tables on the Server Explorer database list. Items that appear in the Data Source
Window are not just database-related data sources. They can also be objects or collections of objects that
were configured by the Data Source Configuration Wizard.
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Unlike ASP.NET, there is no set of “Data Source” controls that you drag onto your form. Data Sources
are interacted with using the new Data Source window, which enables you to drag and drop all or part
of a given Data Source onto your form surface. The following table describes the data source types 
supported:

Data Source Description/Comments

Database Allows binding via typed datasets to an SQL provider.

Web Service Allows for binding to a Web Service via adding a reference.

Object Allows for referencing an object and easy binding. 

In addition to simply keeping a list of the data sources, the Data Source Window also enables you to con-
figure how the source will be rendered when you drag it onto a form. We will discuss this in more detail
when we use the Data Source Configuration Wizard in the following section.

Selecting the Type of Data Source
Figure 7-22 shows the empty Data Sources window and the first step of the Data Source Configuration
Wizard, which walks you through the selection of a new source. The goal of this wizard is to define a new
Data Source that will be listed in your Data Source window and will be available for use in this project to
place on forms.

Figure 7-22

Adding and Using a Database Data Source
As shown in Figure 7-23, you choose from an existing connection or add a new connection. After input
of the connection options, it will save the connection in the list and you can choose to move ahead. This
is where you will choose the provider (e.g., SQL Server, Oracle, etc.). 

Next, you will be prompted to save the connection string in your application configuration file. This is
important because it will externalize the connection string from your code and allow it to be changed as
needed at runtime.
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Figure 7-23

Depending on which Data Source (Provider) you choose, the configuration screen options will vary. For
example, SQL Server Database File will look different from a typical SQL Server connection, which
would have prompted you for the name of the server instead of the name of the file.

Referencing a Local Database File
If the file you choose is a Local SQLExpress database file that is located outside the project, you will be
prompted to add the file to the project and modify the connection, as shown in Figure 7-24.

Figure 7-24

Make sure this is really what you want to do because it will take a copy of the database and place it in
your project directory. This means that if you have three applications that use the same file, you would
end up with three separate copies, and changes made in one project would not be reflected in the other
projects.

Choosing Your Database Objects
The next step in the configuration process is to choose what items you want to use from your database.
The dialog shown in Figure 7-25 enables you to select one or more tables, including the columns you
want included.

If you just created a new database that does not have any objects defined, you may get confused because
the panel will appear but you won’t have anything to select. You need to define your objects and then re-
enter the wizard in order to be able to select items.

After you complete this wizard, a new typed dataset will have been added to your project.
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Figure 7-25

Adding and Using an Object Data Source
Selecting Object as the Data Source type enables you to bind to the public properties of any class, or any
class that supports the IList interface (for example, DataView, Array, ArrayList, and Collection).
Figure 7-26 shows you the wizard dialog that will allow you to pick the object you wish to bind to.

Windows Forms are not able to bind to a DataReader or IEnumerable because they are forward only.

Figure 7-26
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Choosing the Type of Control for a Data Source
Now that you have a data source available in your Data Source window, you can customize it prior to
dragging it onto a form. Customization enables you to select how you want the item to render when it is
placed on a form — for example, a DataGridView or a Details. Figure 7-27 shows how, by using the
drop-down list on the Data Source window, you can make your selection.

Figure 7-27

Additionally, for each property, you can select how you want it to be displayed (or not displayed), as
shown in Figure 7-28.

Figure 7-28

You must have a form active in design mode; otherwise, you will not be prompted for these formatting/
display options. 

The options shown for each column are based on the item type. Visual Studio enables you to customize
that list by selecting the Customize option at the end of the list, and it will walk you through the avail-
able options. You can build and add custom controls to the list as long as they follow the specific inter-
face requirements. A full discussion of this is beyond the scope of this book, but it is covered in detail in
the MSDN documentation. This capability enables you to plug custom controls into your own applica-
tions and use them in an integrated manner with the data-binding capabilities of Visual Studio.
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The Windows Form UI Controls
The following table describes two of the new controls in Visual Studio 2005 that are designed to leverage
the capabilities of the Data Source concept for data binding:

Control Description/Comments

DataGridView Replaces the DataGrid control from previous versions and adds 
additional capabilities.

BindingNavigator The BindingNavigator control provides VCR-like controls for 
navigating through either a grid or detail view of the data.

BindingSource
The BindingSource control is a component control that is the workhorse of the data-binding engine in
a Windows Forms application. The BindingSource is the glue between a data source and the UI ele-
ment that it is binding to, and it acts as an intermediary to ensure a smooth two-way flow of data. The
BindingSource is a nonvisual control and does not render any user interface itself. 

By design, the BindingSource provides simplification by shielding you from having to deal directly
with concurrency management, change notification, and other services, which are encapsulated in the
BindingSource control.

If you were to try to find the ASP.NET equivalent, the closest you would get is the DataSource controls
(SqlDataSource, ObjectDataSource, etc.). These provide similar glue between the user interface ele-
ment and the item acting as the data source.

It’s possible you have used this control and didn’t even know it. Each time you drag a new item from
the Data Source window onto the form surface, Visual Studio 2005 will create a BindingSource object
instance for you and place it in the component area at the bottom of the form.

Notice in Figure 7-29 that a BindingNavigator instance was also created. As we briefly discussed pre-
viously, the BindingNavigator control was designed to interact with a BindingSource to provide
VCR-style navigation across the data.

Figure 7-29

If you were to look at the code that is generated or if you decide to programmatically add a
BindingSource instance to your code, you would see the following to establish the data source:

masterBS.DataSource = dsEvents;
masterBS.DataMember = “Event”;
childBS.DataSource = masterBS;
childBS.DataMember = “EventSessionRelation”;
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The following table describes some of the key properties of the BindingSource component:

Property Description/Comments

AllowNew True when the user is allowed to add new rows to the BindingSource. If the
data source implements IBindingList, the data source will determine the
value for this property. This is auto-set to false if the data source is read-only,
fixed-size, or does not have a default constructor.

Current Gets the current item from the data source.

Filter If the data source implements the IBindingListView, a filter string can be set
to filter the list. A NotSupported exception will be thrown if the data source
does not support filtering.

DataSource Establishes the actual data that will be managed by the BindingSource. If the
object referenced contains multiple lists (e.g., DataSet), you must also set the
DataMember property to indicate the specific list within the source you wish to
manage. 

DataMember Specifies the list within a data source that the BindingSource will manipulate.

BindingList
BindingList is a generic implementation of the IBindingList interface and focuses on making bind-
ing to business objects easier. Generics are a new feature in .NET 2.0 that enable building strongly typed
collections with less code. The following example code builds a BindingList specifically for the object
Event, and ensures that all instances returned or added to the collection are of that type:

VB

dim bindingList as BindingList(of Event)

C#

BindingList<Event> bindingList = new BindingList<Event>();

BindingNavigator
The BindingNavigator is a visual control that provides a consistent method to navigate data associated
with a BindingSource. The typical user interface for a BindingNavigator resembles VCR buttons. 

When a BindingNavigator is added to a form and associated with a BindingSource, several of the
common functions are tied to the BindingSource for you. For example, operations such as MoveFirst,
MoveNext, and so on will be connected, and happen without added coding required. 

While a BindingNavigator is convenient, you are not required to use it just because you want to navi-
gate through the data associated with the BindingSource. You can use other navigational controls (see
Figure 7-30) or simply call the methods on the binding source programmatically.

Figure 7-30
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Summary
Regardless of the controls you use, your choice of ASP.NET or Windows Forms, the capabilities to help
you bind data in .NET 2.0 far exceed the prior version, and, we believe, many of the competing products
on the market.

Use what you have learned here as the foundation for building more advanced data binding in your
applications. Take the opportunity of using controls such as the ObjectDataSource that abstract your
application from doing direct access to the database to build more robust and scalable applications, while
still maintaining the rapid development capabilities that data binding directly to the database provided
in past versions.

Use your creativity to extend the capabilities to make it work with your team and your specific business
application. Visual Studio 2005 and .NET 2.0 provide a rich foundation that can easily be extended.

For More Information
To complement the information in this chapter, take a look at the following resources:

❑ MSDN Data Access and Storage Developer Center, article titled “Bind Your Data in ASP.NET
Whidbey,” by Steven A. Smith —http://msdn.microsoft.com/data/dataaccess/
aspnet/default.aspx?pull=/library/en-us/dnaspp/html/aspnet-bindyourdata.asp

❑ MSDN Data Access and Storage Developer Center, article titled “ASP.NET 2.0 and Data-Bound
Controls: A New Perspective and Some New Practices,” by Dino Esposito —http://msdn
.microsoft.com/data/dataaccess/aspnet/default.aspx?pull=/library/en-us/
dnaspp/html/databound.asp
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Building a Custom 
ADO.NET Data Provider

Although most developers will find the out-of-the-box ADO.NET providers sufficient for most pro-
jects (because the major database vendors supply such providers and/or support the OLE DB or
ODBC technology for which there are 2.0 providers), it’s helpful to understand what goes into creat-
ing such a provider to better understand how best to use them. In addition, you will sometimes want
to get or store data in a data store for which there are currently no ADO.NET providers. This chapter
elucidates the seemingly dark details of how you might go about creating a provider for such a data
source.

For the purposes of demonstration, and because we think it could be darned useful, we chose to
implement a sample ADO.NET provider for Active Directory. Our own experience has been that
the API for ADSI, LDAP, and Active Directory in general is unfriendly, often obscure, and carries a
significant learning curve for developers who are not already familiar with it. It also seems that the
technology is somewhat of a stepchild for Microsoft. Yes, they provide it — even recommend it for
some applications — but the developer experience when using it versus other Microsoft technolo-
gies (such as ADO.NET and SQL Server) is unpleasant. The directory services API provided in the
.NET Framework only perpetuates this unfamiliar and difficult API.

We were hoping that Microsoft would create an ADO.NET provider for Active Directory with ver-
sion 2 of the Framework, but either they don’t think it should or needs to be done or they don’t see
a viable way of doing it. In any case, we chose to create one ourselves, not only to demonstrate the
process of creating a custom ADO.NET provider but also to inspire some motivated developers out
there to take the idea and run with it, improving it far beyond the simplistic implementation pro-
vided in this chapter. Nonetheless, even the simple implementation provided here could prove to
be useful for developers who only need to use Active Directory as a data store for user information.
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A Brief Overview
As you saw in Chapter 3, ADO.NET 2 has a few new, nice features that help programming against a
generic data source. Naturally, this means that builders of ADO.NET providers will have to support
these new features. In addition, the .NET Framework as a whole has moved away from interface-based
polymorphism to base class–based, and ADO.NET is no exception. The new System.Data.Common
namespace has all the base classes you need on which to base your custom provider. The following table
lists the key items that are part of our implementation. Also included are the related interfaces from ver-
sion 1, where applicable.

For those of you not familiar with Active Directory, it is a directory-based, extensible data store that
Microsoft provides. The most common use of Active Directory is for user authentication, authorization,
and profile information in a Microsoft domain. Along with this, it typically stores information about the
computers and printers in the domain and how they can interact with each other. However, other appli-
cations can extend it, defining custom schemas to store other information.

Provider Classes
ADO.NET Interface ADO.NET Base Class AdsProvider Class

IDbConnection DbConnection AdsConnection

IDbCommand DbCommand AdsCommand

IDataReader DbDataReader AdsDataReader

IDataAdapter DbDataAdapter AdsDataAdapter
IDbDataAdapter DataAdapter*

DbProviderFactory AdsFactory

DbConnectionStringBuilder AdsConnectionStringBuilder

IDataParameterCollection DbParameterCollection AdsParameterCollection

*Note that version 1 did have a base class for the DataAdapter, from which the new DbDataAdapter inherits.

In addition to the evolution from interfaces to base classes, ADO.NET 2 also provides a generic way to
discover metadata about your data source, as covered in the “Schema Metadata” section in Chapter 3.
As you may recall, it is the DbConnection class that provides the API to retrieve this metadata, so the
AdsConnection class provides implementations of those methods to retrieve metadata about the
AdsProvider.

That more or less covers the high-level items you need to think about when implementing a custom
provider. For the rest of this chapter, we’ll explore how each of these items were implemented in the
AdsProvider to further illustrate how this familiar, common API can be put into action for data sources
that don’t otherwise support it.
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AdsConnection
We’re starting with AdsConnection because all of the other classes depend upon it; therefore, any
ADO.NET provider should — no, must — implement it. Any data sources that don’t have an ADO.NET
provider will have some way of “connecting” to them and accessing the data that they contain. If one
were to create a file system–based provider, one might use the classes in the System.IO namespace as
the underlying technology to access the data source. If one were to use a data source that provided COM
servers for data access, one would likely use COM Interop to do the actual data access. If one had a
Win32 library as the only way to access the data source, one would likely create external API calls using
the extern or DllImportAttribute functionality of the .NET Framework. The point we’re illustrating
here is that unless you have an entirely new data source written in and for the .NET Framework, most
likely what you’ll be doing with your custom ADO.NET data provider is packaging up a previously
extant API in the friendly, familiar, and common API that ADO.NET provides.

What we’ve done with the AdsProvider is no different. Given that Microsoft has already provided a
.NET wrapper around ADSI with the System.DirectoryServices namespace, it seemed only natural
to package that API with our provider. Therefore, what we’ve done for the AdsConnection class is 
wrap binding to a DirectoryEntry object as the root object for any commands that are run against the
provider.

Back to the beginning. The first thing that you will need to do is create a class and derive from System
.Data.Common.DbConnection, like this:

Public NotInheritable Class AdsConnection
Inherits DbConnection

We’ve declared it as NotInheritable (sealed in C#) because we don’t want to allow anyone to subclass
it. When creating an API, you want to put some thought into these kinds of issues. While sealing it might
limit its extensibility, it also limits your support surface. In other words, you prevent a whole slew of
support issues that might crop up unexpectedly from a customer extending your API. In addition to
that, sealing your types or even just type members can improve performance in .NET.

Next, you will likely need a few fields on your connection to store any state you need during the lifetime
of the object: 

Private _connectionString As String
Private _rootPath As String
Private _username As String
Private _password As String
Private _persistSecurityInfo As Boolean = False
Private _integratedSecurity As Boolean = False
Private _root As DirectoryEntry
Private _state As ConnectionState = ConnectionState.Closed
Shared nameCategories As Specialized.ListDictionary = _

New Specialized.ListDictionary
Shared tableColumns As Specialized.ListDictionary = New Specialized.ListDictionary
Shared mdCols As Specialized.ListDictionary = New Specialized.ListDictionary
Private _disposed As Boolean

What we’ve done here is create fields for the various parts of the connection string (as well as the con-
nection string itself). In addition, you can see the root field that stores the root directory entry mentioned
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previously. The state field stores the current state of the connection, which you’ll need to implement
the State property and the ChangeState event. 

The Shared (static in C#) fields are used as caches for the metadata information to improve performance
retrieving that data. For most providers, this won’t be necessary, but because we use this data for each
command, we thought it more efficient to do it this way as opposed to retrieving it from our metadata
data source each time. Finally, the disposed field is there to simply support best practices when using
the disposable pattern.

While it is not required, you will likely want to support the familiar constructors for a connection object
as shown here:

Public Sub New()
Me.New(String.Empty)

End Sub

Public Sub New(ByVal connectionString As String)
MyBase.New()
Me.ConnectionString = connectionString

End Sub

Because the second constructor in the preceding code shows setting the ConnectionString property,
let’s take a quick look at that and some other properties:

Friend ReadOnly Property RootEntry() As DirectoryEntry
Get

Me.EnsureNotDisposed()
Return Me._root

End Get
End Property

Public Overrides Property ConnectionString() As String
Get

Me.EnsureNotDisposed()
Return Me._connectionString

End Get
Set(ByVal value As String)

Me.EnsureNotDisposed()
If (value Is Nothing) Then

Throw New ArgumentNullException(“ConnectionString”, _
“Connection string cannot be null.”)

End If
Me._connectionString = value

End Set
End Property

Public Overrides ReadOnly Property Database() As String
Get

Return Me._rootPath
End Get

End Property

Public Overrides ReadOnly Property State() As ConnectionState
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Get
Me.EnsureNotDisposed()
Return Me._state

End Get
End Property

Public Overrides ReadOnly Property DataSource() As String
Get

Me.EnsureNotDisposed()
Return Me._rootPath

End Get
End Property

Public Overrides ReadOnly Property ServerVersion() As String
Get

Return String.Empty
End Get

End Property

Public Overrides ReadOnly Property ConnectionTimeout() As Integer
Get

Return 0
End Get

End Property

As you can see, most of these properties override a property on the base class. Some of them may not 
be supported by your data source. You will have to decide the best way to handle those. What we have
decided to do is liken the data source and database to the root directory entry, so for the DataSource
and Database properties, we simply return the root path. In SQL Server, the DataSource is the server
instance and the Database is a database on the server instance. 

The ServerVersion property only makes partial sense for our provider (we could get, for example, the
OS version number, as Active Directory versions are tied to the OS), but we chose to just skip the prop-
erty for simplicity’s sake. We took a similar approach with the ConnectionTimeout property, just
returning zero. You could, of course, throw NotImplementedExceptions for such cases, but as a best
practice, we don’t throw an exception unless code could not meaningfully continue.

The State property is obvious, one to which we have already alluded. It simply returns the current state
for the connection. This provider only supports the Open and Closed option on that enumeration, but
that is managed elsewhere.

Of all the properties, the most significant is the ConnectionString because it has the most meaning in
differentiating one connection from another. It supplies all of the details needed for the connection to
connect to the data source. In the case of the AdsProvider, it is only necessary to specify the data source
(root path) and what credentials to use to connect to Active Directory. We tried to maintain a semblance
to SQL Server connection strings, so Data Source equates to the root path; User ID and Password are
used, as are Integrated Security and Persist Security Info. For example, to connect to the root user’s con-
tainer in a test Active Directory instance, you could use Data Source=CN=Users,DC=AdsTest,DC=
local;Integrated Security=SSPI and it would connect to that root path using the process identity. 
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Once you have a connection created and have set the connection string, the next thing you typically do is
open the connection; so we’ll look next at the implementation of the Open method in the
AdsConnection:

Public Overrides Sub Open()
Me.EnsureNotDisposed()
Me.ParseConnectionString(Me._connectionString)
If (Me._rootPath Is Nothing) Then

Throw New NullReferenceException(“Root path not set.”)
End If
Me._root = New DirectoryEntry((“LDAP://” + Me._rootPath))
If Not Me._integratedSecurity Then

Me._root.Username = Me._username
Me._root.Password = Me._password
Me._root.AuthenticationType = (AuthenticationTypes.Secure _

And AuthenticationTypes.Sealing)
End If
If Not Me._persistSecurityInfo Then

Me._username = Nothing
Me._password = Nothing

End If
Me.ChangeState(ConnectionState.Open)

End Sub
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Related Considerations
To further extend the standard database metaphor, you could probably let Data Source
be the domain controller to connect to and then use the Database property to specify a
root object on that DC. To the extent possible, we have tried to map directory concepts
to relational database concepts for this provider. The reasoning behind this goes back
to the introduction for this chapter — we think most .NET developers are familiar with
relational databases and ADO.NET, and are not familiar with Active Directory, LDAP,
ADSI, and other directorylike technologies. 

The point of the AdsProvider is to provide a familiar interface into an unfamiliar tech-
nology, thereby reducing the learning curve to start using that technology. Naturally,
there will be an impedance mismatch, much like there is between relational databases
and object-oriented technologies, that will limit our ability to do this. Some functional-
ity of both technologies will be sacrificed to achieve the common interface.

For the purposes of this book, we have attempted to provide an ADO.NET API to 
manage users and computers in Active Directory. While we understand that Active
Directory is the epitome of extensibility, its most common use tends to be managing
these kinds of objects, and because most applications that use Active Directory do so to
provide integrated security within the enterprise and a centralized user data store, we
have only bothered with supporting basic user management in this sample provider.

That’s not to say that this approach could not be extended. In fact, we’d love to see 
it extended and optimized, but our chief purpose here is to demonstrate a custom
ADO.NET provider, so the implementation provided is sufficient. 
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The first thing we did here was ensure that the connection has not been disposed of. Because it is essen-
tial to provide a mechanism to dispose of unmanaged resources that are used in managed components,
the DbConnection implements the IDisposable interface, which we’ll look at later. For now, we can
assume it has not been disposed, so the next operation is parsing the connection string. 

Assuming the connection string could be parsed correctly, the root object is then created from the root
path given in the connection string, and the security binding options are set for our connection to the
directory. Finally, the state of the instance is changed to Open; and at that point, the connection is ready
for use with a command.

Let’s look briefly at how the connection string was parsed:

Private Sub ParseConnectionString(ByVal value As String)
Dim connString As AdsConnectionStringBuilder = New AdsConnectionStringBuilder
connString.ConnectionString = value
Me._rootPath = connString.DataSource
Me._username = connString.UserId
Me._password = connString.Password
Me._integratedSecurity = ((Not (connString.IntegratedSecurity) Is Nothing) _

AndAlso (connString.IntegratedSecurity.ToUpper = “SSPI”))
Me._persistSecurityInfo = connString.PersistSecurityInfo

End Sub

When we first wrote the code for this method, we manually parsed out the connection string, which
worked fine. However, after we implemented a connection string builder for our provider, it was much
easier to simply use it to get the needed values out of the connection string, letting it handle the gory
details of parsing the string.

The other significant operation in the Open method is the first call to change the state of the connection:

Friend Sub ChangeState(ByVal newState As ConnectionState)
Dim preState As ConnectionState = Me._state
Me._state = newState
RaiseEvent StateChange(Me, New StateChangeEventArgs(preState, newState))

End Sub

As you can see, this is a simple matter of setting the current state of the connection and raising the
StateChange event to let any subscribers know whether the state was changed. Note here that the visibil-
ity is Friend (internal in C#). You do not want to let users of the connection change the state directly — it
should be something that happens organically as operations that are performed on the connection change
its state. However, you may want to let other types in your assembly change the state, as they work closely
with it (and you have complete control over that).

The next operation typically performed on a connection is closing and, often, disposing of it after the
client code is done using it:

Public Overrides Sub Close()
Me.EnsureNotDisposed()
If (Not (Me._root) Is Nothing) Then

Me._root.Close()
End If
Me.ChangeState(ConnectionState.Closed)

207

Building a Custom ADO.NET Data Provider

10_584375 ch08.qxd  10/28/05  10:54 PM  Page 207



End Sub

Protected Overrides Sub Dispose(ByVal disposing As Boolean)
If Not _disposed Then

If Not disposing Then
Me._connectionString = Nothing
Me._rootPath = Nothing
Me._username = Nothing

End If
If (Not (Me._root) Is Nothing) Then

Me._root.Dispose()
End If
Me._root = Nothing
Me._state = ConnectionState.Closed
Me._disposed = True

End If
MyBase.Dispose(disposing)

End Sub

The Close method closes the connection on the root Active Directory entry and then changes the state 
of the connection to Closed. The Dispose method does more or less the same thing, but it also nulls the
reference types and sets the connection state directly. 

Note that the dispose pattern is implemented on the base class, so it is only necessary to override the
Dispose method that takes a Boolean parameter. This is part of the dispose pattern — the Boolean value
indicates whether the method is being called from the implementation of IDisposable.Dispose (in
which case the argument is true) or whether it is being called from the destructor, in which case the
argument will be false and it will be unnecessary to null managed resources (because they’ll be immedi-
ately cleaned up anyway).

Those are the key, most frequently used methods on connection objects, but there are a few others you
need to think about when you’re implementing a provider:

Protected Overrides Function CreateDbCommand() As DbCommand
Me.EnsureNotDisposed()
Return New AdsCommand(String.Empty, Me)

End Function

Public Overrides Sub ChangeDatabase(ByVal databaseName As String)
Me.EnsureNotDisposed()
Me._rootPath = databaseName
If (Not (Me._root) Is Nothing) Then

Me._root.Path = databaseName
End If

End Sub

Protected Overrides Function BeginDbTransaction(ByVal isolationLevel As
IsolationLevel) As DbTransaction

Throw New NotSupportedException(“Transactions are not supported.”)
End Function

The CreateDbCommand is a new one. As you might imagine, it simply creates an instance of the provider’s
DbCommand implementation. Note that it is Protected, so it will only ever be called by the DbCommand
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type and its derived classes. What it does is force you to implement the IDbConnection.CreateCommand
method. By creating an abstract (MustOverride in VB) method, the DbConnection can implement the
IDbConnection interface for you and still force you to implement it.

The ChangeDatabase method should do whatever it takes to connect to a different database on your
source. In our case, we allow this to change the path on the root directory entry. The BeginDbTransaction
(much like the CreateDbCommand) forces you to do something with the BeginTransaction method. In
the case of the AdsProvider, we’re not supporting transactions, and because that is something that could
definitely interfere with expected semantics, we throw a NotSupportedException to let the consumer
know that this data source is not transactional.

That’s about it for the DbConnection, unless you want to support the new metadata discovery API that
ADO.NET 2 provides. If you do, you will need to implement three more methods:

Public Overloads Overrides Function GetSchema() As DataTable
Return Me.GetSchema(“MetaDataCollections”, Nothing)

End Function

Public Overloads Overrides Function GetSchema(ByVal collectionName As String) As
DataTable

Return Me.GetSchema(collectionName, Nothing)
End Function

Public Overloads Overrides Function GetSchema(ByVal collectionName As String, _
ByVal restrictionValues() As String) As DataTable

Return Nothing 
End Function

We’re not sure why the designers chose to force inheritors to implement all three, as the expected 
meaning of the first two will always be the same — that is, the one with no parameters returns the
MetaDataCollections schema with no restrictions, the one with the single string parameter returns
the requested schema with no restrictions, and the third returns the requested schema with the given
restrictions. In other words, the implementation for the first two should always be the same for all 
inheritors — to call the third implementation, which actually has the guts of the GetSchema operation.
But, alas, if you don’t override all three, the first two will throw NotImplementedExceptions.

In any case, we’ve omitted the code for the GetSchema method for brevity and because it is rather sim-
plistic in that all it does is use the DataSet’s ReadXmlSchema and ReadXml methods to load up some
static XML resources in the assembly that describe the requested metadata. It also sticks that metadata
into the mdCols Shared (static in C#) field to speed future retrieval.

Once you have implemented the properties and methods just covered, you should have a connection
implementation that will work with the ADO.NET 2.0 model. The next type we’ll cover is the connection
string builder, simply because it is often used directly in conjunction with setting up the connection itself.

AdsConnectionStringBuilder
Our implementation of the DbConnectionStringBuilder is fairly straightforward because the base
class does most of the hard work for you. All you need to do is add any strongly typed properties that
you would like users of the builder to have handy; however, there is one quirk. 
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By default, if you attempt to get a value out of the builder that has not been set, it will throw an excep-
tion. We’re not sure we buy this approach because it is out of sync with the other dictionary collections
in the Framework, which will simply return null. This may catch you off-guard if you’re not prepared
for it. The good news, we suppose, is that they provide you with a try method that you can use to
attempt to get a value out of it without causing an exception. This is the approach we used with the
accessors for the strongly typed properties we exposed.

Interestingly, we used Reflector to look at the SqlConnectionStringBuilder, and it has private fields
for each of the properties. You can see how this would improve performance (you don’t have to do a
lookup on the dictionary for each access), but as far as we could tell, if you set the connection string
directly, the fields were not being set, in which case you may have set a value in a connection string, but
it won’t show up by accessing those properties. 

For simplicity’s sake, we just stuck with using the TryGetValue method in our accessors. Note that to
remove a value, you just need to set it to null. The following code presents the complete class to give you
an idea of what you might want to do with this type:

Public Class AdsConnectionStringBuilder
Inherits Common.DbConnectionStringBuilder

Public Sub New()
Me.New(Nothing)

End Sub

Public Sub New(ByVal connectionString As String)
MyBase.New(False)
If (Not (connectionString) Is Nothing) Then

Me.ConnectionString = connectionString
End If

End Sub

Public Property DataSource() As String
Get

Dim o As Object = Nothing
MyBase.TryGetValue(“Data Source”, o)
Return CType(o, String)

End Get
Set(ByVal value As String)

MyBase.Item(“Data Source”) = value
End Set

End Property

Public Property UserId() As String
Get

Dim o As Object = Nothing
MyBase.TryGetValue(“User Id”, o)
Return CType(o, String)

End Get
Set(ByVal value As String)

MyBase.Item(“User Id”) = value
End Set

End Property

Public Property Password() As String
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Get
Dim o As Object = Nothing
MyBase.TryGetValue(“Password”, o)
Return CType(o, String)

End Get
Set(ByVal value As String)

MyBase.Item(“Password”) = value
End Set

End Property

Public Property PersistSecurityInfo() As Boolean
Get

Dim o As Object = Nothing
If MyBase.TryGetValue(“Persist Security Info”, o) Then

Return Convert.ToBoolean(o)
Else

Return False
End If

End Get
Set(ByVal value As Boolean)

MyBase.Item(“Persist Security Info”) = value
End Set

End Property

Public Property IntegratedSecurity() As String
Get

Dim o As Object = Nothing
MyBase.TryGetValue(“Integrated Security”, o)
Return CType(o, String)

End Get
Set(ByVal value As String)

MyBase.Item(“Integrated Security”) = value
End Set

End Property
End Class

AdsCommand
Next to the connection, the command type is the most integral to ADO.NET. You are up a creek without
a paddle if you don’t have the command type, so that’s what we’ll look at in this section.

As with the connection, you will need to inherit from the corresponding base class in System.Data
.Common, and you will probably want to provide constructors with the familiar signatures, as shown here:

Public NotInheritable Class AdsCommand
Inherits DbCommand

Public Sub New()
MyBase.New()

End Sub

Public Sub New(ByVal commandText As String)
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Me.New(commandText, Nothing)
End Sub

Public Sub New(ByVal commandText As String, ByVal connection As AdsConnection)
MyBase.New()
Me._commandText = commandText
Me._connection = connection

End Sub

Before proceeding, note some of the design decisions we made with the command class, as it is so inte-
gral to the entire show. First, we chose not to support parameters. We do not recommend this for a com-
mercial provider because ADO.NET is geared toward using them and best practices are to use them as
opposed to inline values. Our choice on this point was purely one of expediency. We did have to create
the AdsParameterCollection class all the same because the DataAdapter expects it to be there, but it
is nothing more than a placeholder that is always empty. It exists only to keep the DataAdapter happy.

Second, although we wanted to reduce the impedance mismatch as much as possible, we did not 
preserve standard SQL syntax for criteria statements, instead opting for what you must use with the
DirectorySearcher class, which is somewhat different, although not difficult to grasp. In addition, 
we have no quoted identifiers, so you can’t use a comma in a value. 

Again, both of these were matters of expediency; in a commercial implementation (or even in one devel-
oped for an internal production system), we would expect to see these difficulties overcome. The good
news is that if your data source supports these features by default (that is, you don’t have such an
impedance), then it is easier to implement the command.

If you want to support standard T-SQL syntax (at least as much as possible for your data source) and
your data source does not support it itself, you will need to write algorithms to parse the commands and
turn them into something meaningful for your data source. In the case of the AdsProvider, this means
parsing out the “columns” as properties on the DirectoryEntry. 

For the “table” in the command text, we interpret that to mean an arbitrary structure that we have defined
as part of our schema. In order to simplify interaction with Active Directory, we have defined a couple of
simple schemas based on two object categories in Active Directory: the user and the computer. Thus, there
is an abstract Users “table” that will operate against objects in Active Directory in the “user” object cate-
gory; similarly, there is a Computers “table” that will act on objects in the “computer” category. 

Thus, if you select from the Users table, we add objectCategory=user to the filter on the directory
searcher, and if you update something in the Computers table, we add objectCategory=computer to
the searcher we use to pull back the entries being updated. In this way, we hide the unfamiliar concepts
of object categories, entries, searchers, and so on from the users of the provider. Users can use familiar
command syntax working against what appear to be tables and columns that seem to make sense for
something they might have defined in a relational database themselves.

With these things in mind, let’s look at some of the code behind the AdsCommand and what you might
want to know when implementing a command type yourself:
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Public Overrides Property CommandText() As String
Get

Me.EnsureNotDisposed()
Return Me._commandText

End Get
Set(ByVal value As String)

Me.EnsureNotDisposed()
Me._commandText = value

End Set
End Property

Public Shadows Property Connection() As AdsConnection
Get

Me.EnsureNotDisposed()
Return Me._connection

End Get
Set(ByVal value As AdsConnection)

Me.EnsureNotDisposed()
Me._connection = CType(value, AdsConnection)

End Set
End Property

Protected Overrides Property DbConnection() As DbConnection
Get

Me.EnsureNotDisposed()
Return Me._connection

End Get
Set(ByVal value As DbConnection)

Me.EnsureNotDisposed()
Me._connection = CType(value, AdsConnection)

End Set
End Property

The preceding code shows some properties that are pretty essential to any meaningful use of the com-
mand type. You will need to use CommandText to know exactly what the user wants to do with the data.
You will need the Connection and DbConnection properties because they deal with connecting to the
data source. 

The interesting thing to note here is that Microsoft chose to keep the existing interface-based API while
adding the base class–based approach. By default, the base class exposes the IDbCommand.Connection
for you, and it provides you with the protected DbConnection property so that you can tell it what 
to return for the IDbCommand.Connection property. This is the same approach used with the
CreateCommand method on the connection. 

Note, however, that if you want to return a strongly typed command as an instance of your provider’s
connection type, you will need to hide (shadow) the base Connection property and expose one of your
own type, as we have done above (this is, by the way, the same approach that the SqlCommand takes). 

The beauty of this approach is that if you have a reference of type AdsCommand and you access the
Connection property, it will return a strongly typed AdsConnection, but if you have a reference 
of type DbCommand or IDbCommand and access the Connection property, it will still return the
AdsConnection; it just won’t be typed as an AdsConnection. Pretty nifty, eh?
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Other properties you will want to consider when implementing DbCommand are listed below:

Protected Overrides Property DbTransaction() As DbTransaction
Get

Throw New NotSupportedException(“The operation is not supported.”)
End Get
Set(ByVal value As DbTransaction)

Throw New NotSupportedException(“The operation is not supported.”)
End Set

End Property

Public Overrides Property CommandTimeout() As Integer
Get

Me.EnsureNotDisposed()
Return Me._commandTimeout

End Get
Set(ByVal value As Integer)

Me.EnsureNotDisposed()
Me._commandTimeout = value

End Set
End Property

Public Overrides Property CommandType() As CommandType
Get

Me.EnsureNotDisposed()
Return CommandType.Text

End Get
Set(ByVal value As CommandType)

Me.EnsureNotDisposed()
If (value <> CommandType.Text) Then

Throw New NotSupportedException(“Only text commands are supported.”)
End If

End Set
End Property

Public Overrides Property UpdatedRowSource() As UpdateRowSource
Get

Return UpdateRowSource.None
End Get
Set(ByVal value As UpdateRowSource)

If (value <> UpdateRowSource.None) Then
Throw New Exception(“Only UpdateRowSource.None is supported.”)

End If
End Set

End Property

Protected Overrides ReadOnly Property DbParameterCollection() As
DbParameterCollection

Get
Return New AdsParameterCollection

End Get
End Property

Public Overrides Property DesignTimeVisible() As Boolean
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Get
Return False

End Get
Set(ByVal value As Boolean)

End Set
End Property

Again, we disallow the DbTransaction property because we don’t support transactions. In our 
case, CommandType will always be Text, as we don’t support TableDirect or StoredProcedure.
UpdatedRowSource is mostly applicable to commands that support parameters, so we only support
None. We don’t want to support a design-time experience, so we set DesignTimeVisible to false. 

DbParameterCollection is the infamous property we mentioned previously — an always empty collec-
tion. Unfortunately, even though we don’t support parameters, we had to create our own parameter collec-
tion for this because there is no way to create one otherwise (well, you could probably use Reflection,
but it’s generally not a good idea to make your code dependent upon hidden members in types you
don’t control). 

Some of the ancillary methods that you will want to think about are as follows:

Public Overrides Sub Prepare()
Me.PrepareCommand()

End Sub

Public Overrides Sub Cancel()
End Sub

Protected Overrides Function CreateDbParameter() As DbParameter
Throw New NotSupportedException()

End Function

We’ve abused the meaning behind Prepare a bit because it is supposed to attempt to create a compiled
version of the command on the data source, which makes sense in the context of something like SQL
Server, where you might want to have the command prepared before executing it. In our case, we call
PrepareCommand, a private method we defined that does the actual parsing of the command text and
the creation of the DirectorySearcher that will be used (if necessary). In a sense, it is akin to what
Prepare might do on a relational data engine such as SQL Server.

For Cancel, we simply do nothing because the docs on the interface say, more or less, that Cancel
should not throw an exception if it fails. Because, in effect, it will always fail for the AdsCommand, we
take that to mean that we should not throw an exception; rather, we should just do nothing, as there is
no corresponding concept for our data source.

For CreateDbParameter, we do, in fact, throw an exception. We do this because it is more meaningful
than a NullReferenceException, which is what will be thrown if someone calls CreateParameter,
expecting it to return a parameter, and tries to act upon that reference. Instead, we want to let the user
know immediately that it is not supported. 

Naturally, if you are supporting parameters, you will simply return a new instance of your parameter
from this method, and you would want to hide the CreateParameter method in order to return a
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strongly typed parameter of your provider’s parameter type (as previously demonstrated with the
Connection property).

What follows are the key methods, without which a command type would be mostly useless. First, we’ll
look at the reader (select) methods:

Public Shadows Function ExecuteReader() As AdsDataReader
Return Me.ExecuteReader(CommandBehavior.Default)

End Function

Public Shadows Function ExecuteReader(ByVal behavior As CommandBehavior) As
AdsDataReader

Me.EnsureNotDisposed()
Me.EnsureConnectionOpen()
Me.PrepareCommand()
Return New AdsDataReader(Me)

End Function

Protected Overrides Function ExecuteDbDataReader(ByVal behavior As CommandBehavior)
As DbDataReader

Return Me.ExecuteReader(behavior)
End Function

Let’s point out immediately that we are, again, following the hiding pattern previously described. For
common methods for which you want to return your own type of data reader type, you need to hide
(shadow) the base class’s implementation and provide your own, strongly typed implementation. Yet,
again, we also override the base’s ExecuteDbDataReader in order for calls to the hidden methods to
work as well.

The implementation itself is rather simple, which may not be what you’d expect from this method. We
ensure that the command is not disposed, that the connection is open, and that the command is pre-
pared, and then we simply return a new data reader. It really is that simple because the data reader’s
Read method is what really does the funky stuff to read each row from the data source, as you’ll see in
the following section.

Public Overrides Function ExecuteScalar() As Object
Me.EnsureNotDisposed()
Me.EnsureConnectionOpen()
Me.PrepareCommand()
Dim result As SearchResult = Me._searcher.FindOne
Dim scalarValue As Object = Nothing
If (Not (result) Is Nothing) Then

Dim de As DirectoryEntry = CType(result.GetDirectoryEntry, DirectoryEntry)
scalarValue = de.Properties(Me._propertyLookup(0)).Value

End If
Return scalarValue

End Function

ExecuteScalar is nothing more than a request to get the first row’s left-most column value in the result
of the command. For AdsProvider, this means using the FindOne command on the DirectorySearcher
object that was set up in the PrepareCommand method and then getting the value of the first property
loaded.
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Now for the gooier commands: INSERT, UPDATE, and DELETE. For these, developers typically call the
ExecuteNonQuery method on the command, which is what we’ll look at next:

Public Overrides Function ExecuteNonQuery() As Integer
Dim rowsAffected As Integer = 0
Dim dr As AdsDataReader
Me.EnsureNotDisposed()
Me.EnsureConnectionOpen()
Me.PrepareCommand()
Select Case (Me.Type)

Case CommandTypeOption.Insert
Dim passwordIdx As Integer = Me.FindPasswordInProps, _

idIdx As Integer = Me.FindIdInProps
If (idIdx = -1) Then

Me.Missing(“the identifier for the object”)
End If
Dim isUserClass As Boolean = (Me._objectCategory = _

Me._connection.GetObjectCategory(“Users”))
If ((passwordIdx = -1) _

AndAlso isUserClass) Then
Me.Missing(“the password for the user”)

End If
Dim newItem As DirectoryEntry = _

Me._connection.RootEntry.Children.Add((Me._propertyLookup(idIdx) + _
(“=” + Me._values(idIdx))), Me._objectCategory)

Dim i As Integer
For i = 0 To Me._propertyLookup.Length - 1

If (Me.CanSetValue(Me._properties(i)) _
AndAlso ((Not (Me._values(i)) Is Nothing) _
AndAlso (Me._values(i) <> String.Empty))) Then

newItem.Properties(Me._propertyLookup(i)).Value = Me._values(i)
End If

Next
newItem.CommitChanges()
If isUserClass Then

‘ set password
newItem.Invoke(“SetPassword”, _

New Object() {Me._values(passwordIdx)})
‘ set account as normal/enabled
newItem.Properties(“userAccountControl”).Value = 512
newItem.CommitChanges()

End If
rowsAffected = 1

Case CommandTypeOption.Delete
dr = New AdsDataReader(Me)
While dr.Read

dr.CurrentEntry.DeleteTree()
rowsAffected += 1

End While
Case CommandTypeOption.Update

dr = New AdsDataReader(Me)
While dr.Read

Dim entry As DirectoryEntry = dr.CurrentEntry
Dim i As Integer
For i = 0 To Me._properties.Length - 1
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If Me.CanSetValue(Me._properties(i)) Then
entry.Properties(Me._propertyLookup(i)).Value = _

Me._values(i)
ElseIf ((Me._properties(i).ToUpper = “PASSWORD”) _

AndAlso (Not (Me._values(i)) Is Nothing)) Then
entry.Invoke(“SetPassword”, New Object() {Me._values(i)})

End If
Next
entry.CommitChanges()
rowsAffected += 1

End While
Case Else

Throw New InvalidOperationException(_
“Invalid command type for specified operation.”)

End Select
Return rowsAffected

End Function

Again, before starting any real operation with this method, we make sure that the command and connec-
tion are in a state that is valid for command execution. The next step, in the case of this provider, is to
determine the kind of command being executed, because these require distinct operations on the data
source. For a source such as SQL Server, which has built-in functionality to handle the commands itself,
this might be a simple call to ExecuteNonQuery on the data source. But for this provider, we are work-
ing against a data source that doesn’t understand these commands, so we have to parse them.

For the insert command, a couple of constraints are being checked. First, we require what our friendly
schema is calling “Id” — which actually maps to the common name (CN) in Active Directory, which is
the closest thing akin to an Id that objects have within their containers. Technically, the closest thing
would be the fully distinguished name of the object; however, we are abstracting that away from users
so that the object will be added to the root path specified in the connection string.  

For example, you might set the data source to CN=Users,DC=AdsTest,DC=local, in which case new
items would be added to the Users container; and within that container, it is only necessary to have a
CN that is unique within the container; hence, it is somewhat akin to a single-value artificial primary
key in a database table, which is often given the name “Id.”

In addition to the constraint to have an Id, if the item being inserted is inserted into the abstract Users
table we have defined (which maps to an object category of “user”), we require the calling code to spec-
ify a password as well. After looping through the other properties specified in the command and setting
them on the new directory entry, we invoke the SetPassword method to set the password for the user,
and we set the user control flags to normal. At that point, the user should be good to go.

Deletes were the easiest to write. The code uses the AdsDataReader to get the results from the specified
criteria, loops through, and deletes each one calling the DeleteTree, which might be dangerous if 
any objects that match the search are containers. However, because we set the object category to non-
container categories, this should not be a problem.

Updates, as usual, are a mishmash of deletes and inserts, though not in the same way that they are with,
say, SQL Server. In our case, the similarity with deletes is that we use the AdsDataReader to get the
records to update, and the similarity with inserts is that it loops through the properties derived from the
command text and sets them.
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Finally, just to clarify, the CommandTypeOption enumeration and Type property that we’re using to
determine the type of command to execute is something specific to this provider. The code for that enu-
meration, the PrepareCommand method, and other provider-specific implementation details can be
found in the downloadable code samples. We won’t be going over them here because they’re not terribly
pertinent to the chapter’s focus and are somewhat involved and lengthy, which would detract from the
purpose of this chapter. The curious can dig into the code.

AdsDataReader
In the preceding section, you saw that the ExecuteReader method basically just creates an instance of
the AdsDataReader. This is because the work of executing the reader itself falls within the scope of the
AdsDataReader type. The first thing we’ll look at here is the constructor for this type. Note that the
type, like the others, inherits from the appropriate base class:

Public Class AdsDataReader
Inherits Common.DbDataReader

Friend Sub New(ByVal command As AdsCommand)
MyBase.New()
If (command Is Nothing) Then

Throw New ArgumentNullException(“command”)
End If
Me._command = command
Me._results = Me._command.Searcher.FindAll
Me._reader = Me._results.GetEnumerator

End Sub

The constructor itself is declared as Friend (internal in C#), which means that only code in the
AdsProvider assembly can execute it. This is, in fact, what we want because users do not expect to be able
to directly instantiate a reader — that operation only makes sense in the context of a command executing it.

Note two things within the constructor. First, you see that the FindAll method is executed on the com-
mand’s directory searcher instance. Technically, a data reader should endeavor to only pull back one row
at a time from the data source, but for simplicity’s sake, we chose to simply get all of the results at once.
As far as users are concerned, they still have to use the reader in the same way they would otherwise —
we don’t give them access to the full results at once; they must use the Read method or get an enumera-
tor to loop through them.

Second, the code gets an enumerator from the SearchResultCollection returned by the FindAll
method. This makes it easy to provide the reader semantics, as it is basically a fancy enumerator for the
result set.

Now, if you were to type into Visual Studio 2005 that you wanted to inherit from DbDataReader, it
would prompt you to implement all of the abstract members of the base type. And if you did this, you
might easily be overwhelmed with the number of methods for which you have to provide implementa-
tions. Thankfully, most of these have very simple and similar implementations that involve getting 
the value of a column at a specified index and casting it to an appropriate type. These are the many
Get<Type>(ByVal ordinal As Integer), where <Type> is the name of some primitive .NET type. The
following code shows a subset of these to give you an example:
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Public Overrides Function GetBoolean(ByVal ordinal As Integer) As Boolean
Return Convert.ToBoolean(Me(ordinal))

End Function

Public Overrides Function GetByte(ByVal ordinal As Integer) As Byte
Return Convert.ToByte(Me(ordinal))

End Function

Public Overrides Function GetDateTime(ByVal ordinal As Integer) As DateTime
Return Convert.ToDateTime(Me(ordinal))

End Function

Public Overrides Function GetInt32(ByVal ordinal As Integer) As Integer
Return Convert.ToInt32(Me(ordinal))

End Function

Public Overrides Function GetString(ByVal ordinal As Integer) As String
Return Convert.ToString(Me(ordinal))

End Function

For each of these, the indexer is called. In this implementation, the indexer looks up the property name
at the specified index in the command text select list and gets the value of the property from the current
search result. The indexers (default properties in VB) are shown here:

Default Public Overloads Overrides ReadOnly Property _
Item(ByVal ordinal As Integer) As Object

Get
Dim name As String = Me._command.UserProperties(ordinal)
Return Me(name)

End Get
End Property

Default Public Overloads Overrides ReadOnly Property Item(ByVal name As String) _
As Object

Get
If (Me._reader.Current = Nothing) Then

Throw New InvalidOperationException(_
“There is no row at the current position.”)

End If
If Not Me._current.Contains(name) Then

Return Nothing
End If
Return Me._current(name)

End Get
End Property

The integer indexer gets the name of the user property from the command object (UserProperties is
an internal/Friend accessor to the string array that was parsed from the select list in the command’s
PrepareCommand method). It then calls the string indexer, which attempts to look up the property in the
_current field, which is actually a hash table that we put together for the current row (entry) in the
result set in the Read method. We’ll look at that next:
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Public Overrides Function Read() As Boolean
If Me._reader.MoveNext Then

Me.LoadRow(CType(Me._reader.Current, DirectoryServices.SearchResult))
Return True

Else
Return False

End If
End Function

Private Sub LoadRow(ByVal result As DirectoryServices.SearchResult)
Me._currentEntry = result.GetDirectoryEntry
If (Me._current Is Nothing) Then

Me._current = New Hashtable(Me._command.UserProperties.Length)
End If
Dim i As Integer
For i = 0 To Me._command.UserProperties.Length - 1

If (Not (Me._command.AdPropertyLookup(i)) Is Nothing) Then
Me._current(Me._command.UserProperties(i)) = _

Me._currentEntry.Properties(Me._command.AdPropertyLookup(i)).Value
End If

Next
End Sub

Because we’re relying on the built-in enumerator of the SearchResultCollection, all we have to do is
enumerate to its next entry using the MoveNext method. If it returns true, there is another result; other-
wise, we’re done. If there is another result, we load the row into the aforementioned hash table, using
the user-specified properties for keys. In either case, we return a Boolean value indicating, as the user of
a data reader would expect, whether the reader was able to read another row from the data source.

User Properties versus Active Directory Properties
It is important to use the user-specified property names because, in addition to defining an abstract table
for object categories, we have also created new, more user-friendly names for the properties. This is a
further attempt to familiarize an unfamiliar technology, so, for instance, instead of forcing users of the
provider to know that “l” stands for city/locality in Active Directory, we let them specify “City” and
map that to “l” for them. 

The complete schema that the provider supports can be discovered from the Tables and Columns meta-
data collections that this provider supports. We’ve listed both of the XML files for these below to give
you a good idea of how this mapping of abstract table and column (property) names to the actual Active
Directory schema occurs.

Tables
<?xml version=”1.0” encoding=”utf-8” ?>
<Tables>

<Tables>
<Name>Users</Name>
<ObjectCategory>user</ObjectCategory>
<Comment>User accounts.</Comment>

</Tables>
<Tables>
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<Name>Computers</Name>
<ObjectCategory>computer</ObjectCategory>
<Comment>Computers.</Comment>

</Tables>
</Tables>

Columns
<?xml version=”1.0” encoding=”utf-8”?>
<Columns>

<Columns>
<Table>Users</Table>
<FriendlyName>City</FriendlyName>
<AdName>l</AdName>
<AdsDbType>7</AdsDbType>
<Comment>City/locality.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>Password</FriendlyName>
<AdName>userPassword</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Password--write only.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>Country</FriendlyName>
<AdName>c</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Country.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>Department</FriendlyName>
<AdName>department</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Department/work group.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>Description</FriendlyName>
<AdName>description</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Description.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>DisplayName</FriendlyName>
<AdName>displayName</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Display Name</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>DistinguishedName</FriendlyName>
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<AdName>distinguishedName</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Fully-Qualified Hierarchical Name in ADS.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>EmailAddress</FriendlyName>
<AdName>mail</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Primary Email Address.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>FirstName</FriendlyName>
<AdName>givenName</AdName>
<AdsDbType>7</AdsDbType>
<Comment>First Name.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>Groups</FriendlyName>
<AdName>memberOf</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Comma-delimited group list.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>Id</FriendlyName>
<AdName>cn</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Common name unique identifier within object space.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>Initials</FriendlyName>
<AdName>initials</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Initials</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>LastName</FriendlyName>
<AdName>sn</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Last Name.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>LogonName</FriendlyName>
<AdName>userPrincipalName</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Windows 2000+ Logon Name</Comment>

</Columns>
<Columns>
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<Table>Users</Table>
<FriendlyName>MainPhone</FriendlyName>
<AdName>telephoneNumber</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Main telephone number.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>NTLogonName</FriendlyName>
<AdName>sAMAccountName</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Pre-Windows 2000 Logon Name</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>OfficeName</FriendlyName>
<AdName>physicalDeliveryOfficeName</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Name of physical location/office.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>State</FriendlyName>
<AdName>st</AdName>
<AdsDbType>7</AdsDbType>
<Comment>State/province.</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>StreetAddress</FriendlyName>
<AdName>streetAddress</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Mailing Street Address</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>Title</FriendlyName>
<AdName>title</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Job Title</Comment>

</Columns>
<Columns>

<Table>Users</Table>
<FriendlyName>Company</FriendlyName>
<AdName>company</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Company Name</Comment>

</Columns>
<Columns>

<Table>Computers</Table>
<FriendlyName>ComputerName</FriendlyName>
<AdName>cn</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Computer’s name.</Comment>
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</Columns>
<Columns>

<Table>Computers</Table>
<FriendlyName>Description</FriendlyName>
<AdName>description</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Computer’s description.</Comment>

</Columns>
<Columns>

<Table>Computers</Table>
<FriendlyName>DnsName</FriendlyName>
<AdName>dNSHostName</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Computer’s name in DNS.</Comment>

</Columns>
<Columns>

<Table>Computers</Table>
<FriendlyName>OSHotfixLevel</FriendlyName>
<AdName>operatingSystemHotfix</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Hotfix level for OS.</Comment>

</Columns>
<Columns>

<Table>Computers</Table>
<FriendlyName>OSName</FriendlyName>
<AdName>operatingSystem</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Operating system name.</Comment>

</Columns>
<Columns>

<Table>Computers</Table>
<FriendlyName>OSServicePack</FriendlyName>
<AdName>operatingSystemServicePack</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Service pack applied to OS.</Comment>

</Columns>
<Columns>

<Table>Computers</Table>
<FriendlyName>OSVersion</FriendlyName>
<AdName>operatingSystemVersion</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Operating system version.</Comment>

</Columns>
<Columns>

<Table>Computers</Table>
<FriendlyName>Role</FriendlyName>
<AdName>machineRole</AdName>
<AdsDbType>7</AdsDbType>
<Comment>Server, Workstation, or DC.</Comment>

</Columns>
</Columns>

As we see it, the column names that we use are more intuitive and “friendly” for a developer to use,
eliminating the need to look up the sometimes obscure property names in the Active Directory schema.
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You can see how a developer familiar with an RDBMS such as SQL Server could look at this schema and
know how to write an appropriate command in T-SQL syntax to perform some operation against the
Active Directory using the AdsProvider.

Other AdsDataReader Members
There are a few other DbDataReader members that implementers will need to think about. A few of
these are properties that should have fairly simple implementations:

Public Overrides ReadOnly Property Depth() As Integer
Get

Return 0
End Get

End Property

Public Overrides ReadOnly Property FieldCount() As Integer
Get

Return Me._command.UserProperties.Length
End Get

End Property

Public Overrides ReadOnly Property HasRows() As Boolean
Get

Return (Me._results.Count > 0)
End Get

End Property

Public Overrides ReadOnly Property IsClosed() As Boolean
Get

Return Me.disposed
End Get

End Property

Public Overrides ReadOnly Property RecordsAffected() As Integer
Get

Return Me._results.Count
End Get

End Property

Depth is supposed to return the depth of nesting for the current row. Because the AdsProvider is lim-
ited to single-table queries, the depth will always be zero. Field count is simply the number of fields 
in the result set, and for that, the length of the user properties string array is returned. The HasRows
and RecordsAffected properties simply get related values off of the search result collection, and the
IsClosed property should indicate whether or not the reader is in a readable state. For this implementa-
tion, the value is indicated by whether or not the reader has been disposed, which brings us to the other
methods for consideration:

Public Overrides Sub Close()
Me.Dispose(True)

End Sub 

Public Overrides Function GetDataTypeName(ByVal ordinal As Integer) As String
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Return Me.GetFieldType(ordinal).FullName
End Function

Public Overrides Function GetFieldType(ByVal ordinal As Integer) As Type
Me.LoadTypes()
Return Me._types(ordinal)

End Function

Public Overrides Function GetName(ByVal ordinal As Integer) As String
Return Me._command.UserProperties(ordinal)

End Function

Public Overrides Function GetOrdinal(ByVal name As String) As Integer
Dim i As Integer
For i = 0 To Me._command.UserProperties.Length - 1

If (name = Me._command.UserProperties(i)) Then
Return i

End If
Next
Return -1

End Function

Public Overrides Function GetSchemaTable() As DataTable
Throw New Exception(“The method or operation is not implemented.”)

End Function

Public Overrides Function GetValues(ByVal values() As Object) As Integer
If (values Is Nothing) Then

Throw New ArgumentNullException(“values”)
End If
Dim numValues As Integer
If (values.Length < Me._command.UserProperties.Length) Then

numValues = values.Length
Else

numValues = Me._command.UserProperties.Length
End If
Dim i As Integer = 0
For i = 0 to numValues - 1 

values(i) = Me(i)
Next
Return numValues

End Function

Public Overrides Function IsDBNull(ByVal ordinal As Integer) As Boolean
Return (Me.GetFieldType(ordinal) Is GetType(DBNull))

End Function

Public Overrides Function NextResult() As Boolean
Return Me.Read

End Function

Public Overrides Function GetEnumerator() As IEnumerator
Return New DirectoryEntryEnumerator(Me)

End Function
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The first method in the preceding code is the Close method. Obviously, this method should do what-
ever is meaningful for the provider to close itself. In the case of this provider, this means cleaning up the
result set, which is what Dispose will do. For this case, Close and Dispose do the same thing, as they
likely will in most readers, as there is no corresponding command to reopen it.

The next two methods listed are related to getting field type information about particular columns. To
get this information, which the data adapter uses, the AdsProvider queries the schema that we’ve
defined (shown previously) for the properties specified in the select list. Once it has that, it returns the
data type information for the requested field.

GetName and GetOrdinal are also two peas in a pod that perform the inverse of each other. GetName
will get the name of the column/property at the given ordinal. GetOrdinal gets the ordinal of the col-
umn/property with the given name.

GetSchemaTable returns a rather heavy table of schema information about the columns in the result set.
We chose not to implement it because many of the fields that are expected in this schema are not terribly
meaningful in the context of this provider — they’d be more meaningful for a relational data source. In
addition, it will more or less get a subset of what is provided through the connection’s GetSchema meth-
ods, so we did not see any real value in providing it.

GetValues will fill the given object array with values from the current row whose ordinals correspond
to the indices in the given array. Note that it will only ever get up to the number of fields in the result
set, regardless of the size of the given array. It will also return the actual number of values copied.

IsDbNull, as its name implies, will get whether or not the value of the column at the given ordinal is 
a DbNull. It never will be for this provider, but we provided a simple implementation all the same.

NextResult simply does what Read does — advances the reader to the next result. However, if your
provider supports batches of SQL statements, this should advance to the results of the next statement in
the batch.

Last, GetEnumerator is just an implementation of IEnumerable. In the case of this provider, we built a
simple enumerator that in essence does exactly the same thing as the reader itself, call Read on the cur-
rent reader when the MoveNext method on the enumerator is called. Because a reader is basically an
enumerator, this is something of a redundant operation, but it is good because it exposes the reader as
the more generic IEnumerable interface for things like data binding.

That wraps it up for what you need to do for the data reader. Unfortunately, most of it is just busywork,
implementing a ton of very simplistic methods for the sake of ease of use for the users. The most mean-
ingful methods are Read and Close, though certain others (such as GetFieldType) are important in
order for the data adapter to function.

AdsDataAdapter
At this point, you technically could quit and have a fairly useful provider, enabling the key common
data access APIs that ADO.NET provides; however, some would argue that the real value added for
ADO.NET is the built-in goo for dealing with data in the DataSet and DataAdapter objects. In fact,
DataAdapter was the only base class implementation that the 1.x versions of .NET provided. Therefore,
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if you want to make all the record set–oriented programmers happy (who probably make up the major-
ity of programmers today), you need to seriously consider implementing the data adapter.

Thankfully, the good folks at Microsoft have made implementing a data adapter very easy. In fact, you
could probably get away with implementing just one method, but to provide some other common fea-
tures, you’ll also want to do a few more things. First, you’ll want to create strongly typed properties for
the four commands the adapter deals with:

Public Shadows Property SelectCommand() As AdsCommand
Get

Return DirectCast(MyBase.SelectCommand, AdsCommand)
End Get
Set(ByVal value As AdsCommand)

MyBase.SelectCommand = value
End Set

End Property

Public Shadows Property InsertCommand() As AdsCommand
Get

Return DirectCast(MyBase.InsertCommand, AdsCommand)
End Get
Set(ByVal value As AdsCommand)

MyBase.InsertCommand = value
End Set

End Property

Public Shadows Property DeleteCommand() As AdsCommand
Get

Return DirectCast(MyBase.DeleteCommand, AdsCommand)
End Get
Set(ByVal value As AdsCommand)

MyBase.DeleteCommand = value
End Set

End Property

Public Shadows Property UpdateCommand() As AdsCommand
Get

Return DirectCast(MyBase.UpdateCommand, AdsCommand)
End Get
Set(ByVal value As AdsCommand)

MyBase.UpdateCommand = value
End Set

End Property

To do this, you just need to hide (shadow) the base class’s implementation of these properties and
expose your own, as shown in the preceding code. It is very straightforward — just declare them as your
provider’s command type and then set and get the same properties on the base class.

Next, you’ll want to offer the familiar constructors that developers have come to know and love:

Public Sub New()
MyBase.New()

End Sub

Public Sub New(ByVal selectCommand As AdsCommand)
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MyBase.New()
Me.SelectCommand = selectCommand

End Sub

Public Sub New(ByVal selectCommandText As String, ByVal connection As
AdsConnection)

Me.New(New AdsCommand(selectCommandText, connection))
End Sub

And let’s not forget to inherit from the new DbDataAdapter:

Public Class AdsDataAdapter
Inherits Common.DbDataAdapter

Finally, and most importantly, you will likely want to handle the OnRowUpdating event:

Protected Overrides Sub OnRowUpdating(ByVal value As Common.RowUpdatingEventArgs)
Dim row As DataRow = value.Row
Dim cmd As AdsCommand = DirectCast(value.Command, AdsCommand)
If Not row.Table.Columns.Contains(“Id”) Then

Throw New NotSupportedException(_
“Updates require an Id to be specified in the select list.”)

End If
Select Case (value.StatementType)

Case StatementType.Insert
Dim i As Integer
For i = 0 To cmd.Properties.Length - 1

If Not DBNull.Value.Equals(row(i)) Then cmd.SetValue(i, row(i))
Next

Case StatementType.Update
cmd.SetKeyFilter(DirectCast(row(“Id”), String))
Dim i As Integer
For i = 0 To cmd.Properties.Length - 1

If cmd.CanSetValue(cmd.Properties(i)) And Not _
DBNull.Value.Equals(row(i)) Then

cmd.SetValue(i, row(i))
End If

Next
Case StatementType.Delete

cmd.SetKeyFilter(DirectCast(row(“Id”, _
DataRowVersion.Original), String))

Case Else
Throw New NotSupportedException(String.Format(_

“Row updating statement type ‘’’{0}’’’ not supported.”, _
value.StatementType.ToString))

End Select
End Sub

In handling this event, you will want to do anything necessary to prepare the various commands to exe-
cute against the given data row. Notice that we say “prepare.” You do not want to actually execute the
commands in this method, as that will cause them to be executed twice. This event is raised prior to exe-
cuting the needed command for the data row.
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Without going into too much detail about this provider’s implementation, suffice it to say that for all 
of them, we have the artificial constraint that the commands use the single-value key constraint (“Id,”
mentioned earlier). This just makes it easy to find the entry that we want to update. A more sophisti-
cated implementation will possibly want to select based on the entire original row values in order to
implement the concurrency handling that is provided in the data adapter and data sets.

In addition, if you are supporting parameters with the data adapter, you will want to implement 
the DbCommandBuilder, which can be used to build a command based on the parameters of the
SelectCommand. Because we’re not supporting parameters, we didn’t implement that class, but we did
provide similar functionality by adding a BuildUpdateCommands method to the AdsDataAdapter:

Public Sub BuildUpdateCommands()
If (Me.SelectCommand Is Nothing) Then

Throw New NotSupportedException(“No select command has been specified.”)
End If
Me.InsertCommand = _

Me.SelectCommand.BuildAdapterCommand(AdsCommand.CommandTypeOption.Insert)
Me.UpdateCommand = _

Me.SelectCommand.BuildAdapterCommand(AdsCommand.CommandTypeOption.Update)
Me.DeleteCommand = _

Me.SelectCommand.BuildAdapterCommand(AdsCommand.CommandTypeOption.Delete)
End Sub

As you can see, the code calls the BuildAdapterCommand internal (Friend) method on the select com-
mand, which copies the properties specified in the select list for updating, and sets other values to pre-
pare each command for the type of statement it deals with.

Once you have done these few things, your provider should be ready to support the CRUD functionality
that the data adapter helps out with. Now you have a full-featured ADO.NET provider. If you want to
enable your provider to be used in generic coding, however, you still have a couple of steps to go.

AdsFactory
The first step is to implement the DbProviderFactory class. Luckily, this is the easiest of all the
provider classes to implement. You’ll probably be tired after implementing the others and be disap-
pointed that you still have more to do, but never fear, this one is a cake walk. First, as you’ve come to
expect, you will need to derive from the correct base:

Public NotInheritable Class AdsFactory
Inherits Common.DbProviderFactory

Next, you implement a handful of methods to get instances of your provider’s implementation:

Public Overrides Function CreateCommand() As Common.DbCommand
Return New AdsCommand

End Function

Public Overrides Function CreateConnection() As Common.DbConnection
Return New AdsConnection
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End Function

Public Overrides Function CreateConnectionStringBuilder() As
Common.DbConnectionStringBuilder

Return New AdsConnectionStringBuilder
End Function

Public Overrides Function CreateDataAdapter() As Common.DbDataAdapter
Return New AdsDataAdapter

End Function

Public Overrides Function CreateCommandBuilder() As Common.DbCommandBuilder
Throw New Exception(“The method or operation is not implemented.”)

End Function

Public Overrides Function CreateDataSourceEnumerator() As _  
Common.DbDataSourceEnumerator

Throw New NotSupportedException(“DataSource enumerator is not supported.”)
End Function

Public Overrides Function CreateParameter() As Common.DbParameter
Throw New NotSupportedException(“Parameters are not supported.”)

End Function

Public Overrides Function CreatePermission(ByVal state As _
Security.Permissions.PermissionState) As Security.CodeAccessPermission

Return New System.DirectoryServices.DirectoryServicesPermission(state)
End Function

Most of these are one-line operations. For the few things our provider doesn’t support, we throw excep-
tions. One thing we haven’t covered is the DataSourceEnumerator. If your provider supports enumer-
ating data sources, you will want to implement this class. It only has one method, GetDataSources,
which should return a DataTable describing the various data sources for your provider in your envi-
ronment. For instance, SQL Server will get instances running in the network domain, which can be used
in, for example, a drop-down list to select a particular data source.

The only other method that might not be obvious is CreatePermission— this method should create the
code access permission needed for your data source, if one is defined. In the case of the AdsProvider,
because we’re using Active Directory, we return a DirectoryServicesPermission. If nothing else, you
could return a SecurityPermission instance just to let a consuming application continue normally.

The last thing you need to do is declare a static (Shared) field in your factory class of the type of your
factory class, named “Instance.” It has to be static, public, and named “Instance”; otherwise, ADO.NET
won’t be able to use your factory. An example from AdsFactory follows:

Public Shared ReadOnly Instance As New AdsFactory
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Getting Ready for Use
Now that you have your factory all ready to go, you need to register it with ADO.NET so that it knows
how to load it. This means adding it to the DbProviderFactories element in machine.config, like so:

<add name=”Active Directory Data Provider” invariant=”System.Data.AdsProvider”
description=”.Net Framework Data Provider for Active Directory” 
type=”System.Data.AdsProvider.AdsFactory, System.Data.AdsProvider, 
Version=1.0.0.0, Culture=neutral, PublicKeyToken=null” />

(Note that the code lines here were wrapped due to page-width constraints.) The name is just a friendly
name for your provider, and the description is just informational as well. The invariant attribute is
what will need to be passed into the DbProviderFactories.GetFactory method to get the Instance
(mentioned above) of your provider’s factory. 

The type attribute needs to be the full type name, including assembly name, into which your provider 
is built. This is used to bind to it and load it up dynamically, so your assembly itself will need to be
where the runtime can locate it. For most shrink-wrapped providers, this will be in the Global Assembly
Cache. However, because the AdsProvider is not strongly signed, it can be in another binding location,
such as in the consuming application’s private executable directory (for example, the /bin directory for
ASP.NET apps or the same directory as the EXE for Windows Forms or console applications). 

Note that if you will be distributing your provider, you should give it a strong name and even build an
installer that will install it into the GAC and modify the machine.config file to add it as a registered
provider. Commercial providers may want to take it a step further and work on the design-time experience
for their components, and Microsoft has a good VSIP program (http://msdn.microsoft.com/
vstudio/extend/) to help such vendors integrate well into Visual Studio.

At this point, you should be able to use your provider as you would any other ADO.NET providers,
even using the new factory and discoverability features that ADO.NET 2.0 provides. Please refer back to
Chapter 3 for more information on how to take advantage of these key features. 

Summary
In this chapter, you examined the code we used to create a custom ADO.NET provider for ADO.NET 2.0.
The key takeaways are the implementation of DbConnection, DbCommand, and DbDataReader, though
providing support for the other base classes in the System.Data.Common namespace will make your
provider more fully featured.

The key features that this version of ADO.NET brings to the table for data providers are the new base
classes, the new metadata exploration API, and the connection string builder. All of these work together
to provide a much more compelling story for writing data-store agnostic code, which can easily take
advantage of standard data-access functionality from any number of providers, including those that may
not otherwise have a familiar .NET interface, such as Active Directory.
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For More Information
To complement the information in this chapter, take a look at the following resources:

❑ “Improving Managed Code Performance,” from Improving .NET Application Performance
and Scalability —http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dnpag/html/scalenetchapt05.asp

❑ Angel Saenz-Badillos’ Blog (member of the ADO.NET team at Microsoft) —http://
blogs.msdn.com/angelsb/

❑ SQL Server Community, another great online community —www.sqlservercentral.com/
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T-SQL Language and
Enhancements

Any discussion of Transact-SQL (T-SQL) would be incomplete without at least some background
on how it came to be. Over 30 years ago, a brilliant computer scientist named E. F. Codd embarked
upon a methodology that would enable people to uniformly and conveniently extract data from
data stores that fit his relational data model. Entire books have been dedicated to relational database
theory and Codd’s work, but suffice it to say that Structured Query Language (pronounced either
“See-quel” or “S-Q-L,” depending on who you ask) is the well from which T-SQL grew. 

For more information on the Structured Query Language Specification, please visit
www.faqs.org/docs/ppbook/c1164.htm.

SQL was vastly different from what we traditionally think of in terms of “programming languages,”
although there are certainly some differences. Specifically, in traditional programming languages,
you specified what you wanted to have happened one item at a time. Nothing (other than excep-
tions) happened that you didn’t instruct the program to do. A good illustration of this concept is
the story of the professor who conducts an exercise for each first-semester student. He takes a
pitcher of water and a bucket and sits them on top of his desk. He then instructs each student to
write down the process of pouring the water into the bucket. For each student, he then proceeds to
do exactly what that student has written down, nothing more and nothing less. Each year, a huge
mess is made. He does this because it precisely mimics the “procedural” language process. The
SQL equivalent would be to say “fill the bucket” and then let the students figure out how, and
then actually fill the bucket. Not exactly inverses but very close.

Perhaps the best illustration of this distinction was made by Dr. C. J. Date in his book What Not
How: The Business Rules Approach to Application Development (2000). Traditionally, programmers
write code that item by item issues instructions, which in turn issue other instructions, repeating
this process until a program is created. Ten different developers can easily achieve the exact same
result using 10 different methods because there are always different ways to get to a given result.
For instance, let’s say that the object at hand were to have the computer output the value 5. This
could be accomplished in any of the following ways:
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❑ You could declare some variables and add them together, like this:

Int32 a = 0;
Int32 b = 1;
Int32 c = 2;
Int32 d = 3;
Return a + b + c + d

(We simply added 0 for illustration purposes; in real life this would make little sense.)

❑ You could simply declare an Int32 variable and initialize with the value 5, and then you would
return that value:

Int32 d = 5;
Return d;

❑ Another approach might be to take a number greater than 5 and subtract whatever value is nec-
essary to get to 5, and then return that number:

Int32 a = 10;
Int32 b = 5;
Return a – b;

❑ Similarly, you could create a simple for loop:

Int32 i = 0;
for(i = 0; i < 5; i++){
)
return i;

❑ You could also use other loops, such as the while loop:

VB.NET

Dim i As Int32 = 0
While i < 5

i += 1
End While
Return i

C#

Int32 i = 0;
while(i < 5)

i++;
return i;

❑ In addition, just to reinforce the potential variety, you could use a recursive loop:

VB.NET

Dim i As System.Int32 = 0
i = Make5(i)
Private Shared Function Make5(ByVal i As System.Int32) As Int32
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If (i = 5) Then
Return i

Else
i += 1

Return Make5(i)
End If

End Function

C#

System.Int32 i = 0;
i = Make5(i);

private static System.Int32 Make5( System.Int32 i)
{

if(i == 5) return i;
else {

i++;
return Make5(i);

}
}

We could go on and on, but the point we’re trying to make is that with traditional language approaches,
there’s virtually an infinite number of ways to get to a given result. As such, these are, in Date’s terms,
“how” type approaches because they define very specifically how a given result is to be achieved. Each
one will yield the same result, but as you can see, how you get there varies greatly. 

SQL, conversely, while every bit a “real” programming language, takes essentially the opposite approach.
For instance, given a table called Items with one column, ItemValues, that contains 20 unique values,
one of which is equal to the number 5, there are only a few ways to get the value because you tell the
database what you want, and it determines how to get it for you. Essentially, you retrieve that value using
the following query:

SELECT Values FROM Items WHERE ItemValues = ‘5’

Because the Items table contains only one column, you could achieve the same result using the “*” char-
acter (which tells the database to SELECT every column value). In a production environment, you should
develop an aversion to using SELECT * queries unless you are absolutely positive you need the values
from all of the columns. While it’s certainly easier to use SELECT * instead of spelling out each column
name individually, it’s wasteful and inefficient if you don’t need the data.

Your two alternatives to retrieving the value 5 would be either

SELECT * FROM Items WHERE ItemValues = ‘5’

or

SELECT Values FROM Items WHERE ItemValues > ‘4’ AND Values < ‘6’

The key concept here is that SQL statements define what data you want returned — not how you go
about retrieving the data. SQL has matured greatly since its inception into a very powerful language.
However, some potential shortcomings with SQL need to be overcome in any viable relational database
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management system. The first problem is that not all vendors implement the specification precisely. For
instance, Microsoft Access(r) has an IsNull function that returns a Boolean value indicating whether or
not a given value is Null, while the IsNull implementation of other major vendors such as Microsoft
SQL Server and Oracle behaves completely differently. Moreover, because SQL only concerns itself with
the “what” aspect of the data, many control structures aren’t available to you. As such, absent a special-
ized subset of SQL such as Microsoft’s T-SQL or Oracle’s PL/SQL, many common processing tasks
would be impossible. For instance, ANSI SQL lacks support for such common programming tasks as
loops and/or control flow statements or variable declarations. It also lacks any straightforward mecha-
nism for implementing more advanced programming techniques such as recursion.

An In-Depth Look at T-SQL
As mentioned earlier, while ANSI SQL is very powerful, it’s not well suited to many programming 
tasks. T-SQL is Microsoft’s superset of SQL, providing the best of both worlds. You can use pure SQL
statements when that’s all you require, but for situations in which you need more power and flexibility,
T-SQL is there for you.

Most of us had a course or five on relational database theory when we were in college, and if our profes-
sors did their jobs right (and we did our homework), we learned to normalize our data. We also learned
about the concept of separating our applications into tiers. A typical midsize enterprise application has a
UI or Presentation layer, a business or API layer, a Data Access layer, and, depending on your design, a
back-end layer where stored procedures are stored. 

By and large, when people think of T-SQL, they invariably think of stored procedures. While it’s true
that T-SQL is very common in most developers’ stored procedure code, you do not need to use stored
procedures to use T-SQL. You can create a procedure with T-SQL using only the base SQL used in the
preceding example:

CREATE PROCEDURE usp_Return5FromItems
AS

SELECT * FROM Items WHERE Values = ‘5’

However, this would be a pretty lame stored procedure for more reasons than one. The worst thing
about it is that the value 5 is hard-coded, so if you need a procedure to return other numbers — say, 1 to
100 — you’d need 100 different procedures to accommodate this requirement. This would create a main-
tenance nightmare, take eons of extra time to code, and provide no real value other than isolation. This is
the first area in which T-SQL provides benefit — variable declaration.

Where and how these layers are drawn is the subject of endless debate. Stored pro-
cedure advocates recommend doing as much data access processing on the back-end
tier because changes can be made to the application without requiring that the
application be recompiled. Other reasons cited are security and performance, to
name a few. For a really interesting contrarious opinion, Frans Bouma has laid forth
a very thought-provoking “anti-stored” procedure argument that can be found at
http://weblogs.asp.net/fbouma/archive/2003/11/18/38178.aspx.
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To declare a variable in T-SQL, you create a name for it (beginning with the @ character), specify the
type, and, if you want to keep it real, add a size where applicable and the parameter direction. For
instance, if our Values column were Varchar 5 and we didn’t specify a length on the parameter, then
someone could pass in a 50-character string, which you can guess is going to cause problems. The fol-
lowing code cleans up the preceding procedure and makes it a little more flexible:

CREATE PROCEDURE usp_GetMatchingValues
@MatchValue VARCHAR(5)  INPUT

AS
SELECT ItemValues 
FROM Items
WHERE ItemValues = @Matchvalue

We just dramatically improved our query so that it accommodates virtually any varchar value that
could match our values in the database. If the user tries to pass in a value greater than five characters,
then there will be a match problem. The important point is that we just avoided having to write 100 dif-
ferent procedures, each of which would be virtually identical other than the hard-coded number. Let’s
improve it a little more. Suppose you want to let the user be able to select the approximate spelling of a
given last name. We’ll add a LastName column to a new People table. To facilitate this, all you’d need to
do is use the following:

CREATE PROCEDURE usp_GetCustomersByLastName
@LastName VARCHAR (50) INPUT

AS
SELECT LastName FROM People WHERE LastName LIKE @LastName%

This is enhanced somewhat, but if you wanted to have an “Exact search” and a “Like Search,” you’d
need two procedures to do it this way. Fortunately, you can create an additional parameter, and taking
advantage of two T-SQL features — variable declarations and flow-control statements — you can build a
really flexible search:

CREATE PROCEDURE usp_GetCustomersByLastName
@LastName VARCHAR (50) INPUT, -–Input is the default but we added it for

clarity
@UseWildcard VARCHAR(5) INPUT

AS
IF UPPER(@UseWildCard) = ‘TRUE’ BEGIN

SELECT LastName 
FROM People 
WHERE LastName 
LIKE @LastName%

END
ELSE BEGIN

SELECT LastName FROM People WHERE LastName = @LastName
END

As you can see, by simply adding some variables and using the flow control, we just made our stored
procedure a lot more possible. Now let’s take it up another level. Assume that our table had some addi-
tional columns, such as FirstName, SocialSecurityNumber, and DateOfBirth. Using essentially the
same logic used before, we could add a few other parameters and greatly expand what the user can
search for:
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CREATE PROCEDURE usp_CustomerSearch
@FirstName AS VARCHAR = NULL,
@LastName AS VARCHAR = NULL,
@DOB AS DATETIME = NULL,
@SSN AS DATETIME = NULL,
@CustomerID AS INT = NULL

AS
SELECT * 
FROM People
WHERE 
((FirstName = @FirstName) OR (@FirstName = NULL)) AND
((LastName = @LastName) OR (@LastName = NULL)) AND
((DOB = @DOB) OR (@DOB = NULL)) AND
((SSN = @SSN) OR (@SSN = NULL)) AND
((CustomerID = @CustomerID) OR (CustomerID = NULL))  

If you’re thinking that this is awfully complex just to pull in a few fields, we don’t blame you — it is.
However, there’s a definite method to our madness: We’re going to be referring to what we just did
shortly.

So what just happened? Essentially, what we did was enable the user to specify a value for any of the
given fields of the table. If the user passes in a value, the stored procedure will match only the field(s)
that match that value(s). Absent any field being present, no restriction will be used. We set a default
value for each parameter so that if the user calls the procedure without passing in a parameter, the query
will still succeed. 

Structured Exception Handling
In the past, we had very limited capabilities with respect to error handling. The notion of exception han-
dling per se was non-existent, and at best was awkward:

ALTER PROCEDURE usp_CustomerSearch
@FirstName AS VARCHAR      = NULL,
@LastName AS VARCHAR       = NULL,
@DOB AS DATETIME           = NULL,
@SSN AS DATETIME           = NULL,
@CustomerID AS INT         = NULL

AS
BEGIN TRY
IF(@DOB = ‘Bill’) Begin
PRINT ‘This should cause and Error’

END
END TRY
BEGIN CATCH

PRINT ‘Error - DateTime can not == Bill’
END CATCH

SELECT * 
FROM People
WHERE 

((FirstName = @FirstName) OR (@FirstName = NULL)) AND
((LastName = @LastName) OR (@LastName = NULL)) AND
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((DateOfBirth = @DOB) OR (@DOB = NULL)) AND
((SSN = @SSN) OR (@SSN = NULL)) AND
((CustomerID = @CustomerID) OR (CustomerID = NULL))

While this is a nonsensical example from a real-world perspective, it does illustrate how you use the TRY/
CATCH blocks in T-SQL. Essentially, they work pretty much as you’d expect them to if you mixed .NET
exception handling with T-SQL language constructs. The real power, of course, comes not from silly little
examples with PRINT commands, but from more advanced uses such as transaction processing:

ALTER PROCEDURE usp_CustomerSearch
@FirstName AS VARCHAR = NULL,
@LastName AS VARCHAR  = NULL,
@DOB AS DATETIME      = NULL,
@SSN AS DATETIME      = NULL,
@CustomerID AS INT    = NULL

AS
BEGIN TRY

BEGIN TRAN
IF(@DOB = ‘Bill’) Begin

PRINT ‘This should cause and Error’
END
ELSE BEGIN

UPDATE PEOPLE 
SET FirstName = @FirstName,

LastName = @LastName,
DateOfBirth = @DOB,

SSN = @SSN,
CustomerID = @CustomerID

END
COMMIT

END TRY
BEGIN CATCH

ROLLBACK
PRINT ‘Error - DateTime cant == Bill’

END CATCH

Although we discuss transaction processing in its own context in Chapter 6, structured exception han-
dlers and transactions are a match made in heaven. The following example shows how to handle trans-
action processing in its simplest form completely from client-side code:

VB.NET

Dim tn As SqlTransaction
Const sql As String = “INSERT INTO Employees1(EmpID) VALUES (@UserID)”
Dim cn As New SqlConnection(“data source=AUG-SQLSRV;initial
catalog=HumanResources;integrated security=SSPI”)
Try

If (cn.State <> ConnectionState.Open) Then
cn.Open()

End If
Catch ex As SqlException

Debug.Assert(False, ex.ToString)
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End Try
tn = cn.BeginTransaction
Dim cmd As New SqlCommand(sql, cn, tn)
cmd.Parameters.Add(“@UserId”, SqlDbType.Int).Value = 314

Try
Dim i As Int32 = cmd.ExecuteNonQuery
For x As Int32 = 0 To 5

cmd.Parameters(“@UserId”).Value = 314 + x
cmd.ExecuteNonQuery()

Next
cmd.Parameters(“@UserId”).Value = 325
cmd.ExecuteNonQuery()
tn.Commit()

Catch ex As SqlException
tn.Rollback()

Finally
cn.Close()

End Try

C#

SqlTransaction tn ;  //declare a transaction
const string sql = “INSERT INTO Employees1(EmpID) VALUES (@UserID)”;
SqlConnection cn = new SqlConnection(“data source=AUG-SQLSRV;initial
catalog=HumanResources;integrated security=SSPI”);

try{if(cn.State != ConnectionState.Open){
cn.Open();}
}
//If we throw an exception on Open, which is a ‘risky’ operation
//manually make the assertion fail by setting it to false and use

//ex.ToString() to get the information about the exception.
catch (SqlException ex){

Debug.Assert(false, ex.ToString());
}

//Instantiate command with CommandText and Connection and Transaction
tn = cn.BeginTransaction();
SqlCommand cmd = new SqlCommand(sql, cn,tn);
cmd.Parameters.Clear();
cmd.Parameters.Add(“@UserID”, SqlDbType.Int).Value = 314;

try
{            
//You can test for records affected, in this case we know it 

//would be at most one record.
int i = cmd.ExecuteNonQuery();

//If successful, commit the transaction
//Loop 5 times and just add the id’s incremented each time

for(int x=0; x<5; x++)<BR>       {
cmd.Parameters[“@UserID”].Value = (315 + x);
cmd.ExecuteNonQuery();
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}
cmd.Parameters[“@UserID”].Value = (325);
cmd.ExecuteNonQuery();

tn.Commit();
}

catch(SqlException ex){
Debug.Assert(false, ex.ToString());

//If it failed for whatever reason, rollback the //transaction
tn.Rollback();

//No need to throw because we are at a top level call and //nothing is handling
exceptions

}
finally{

//Check for close and respond accordingly
if(cn.State != ConnectionState.Closed){cn.Close();}
}

If you look at the behavior of both code snippets, it is readily apparent that the logic is identical in both
cases (for one, the Commit and Rollback are handled exclusively on the server, whereas for the other,
those behaviors are handled exclusively on the client). As such, you’d want to try a piece of code and
then, assuming that it completed successfully, you’d fire a Commit. However, if an exception is raised,
then it is skipped over and control proceeds to the catch block, where at a minimum you would roll
back your transaction. It’s important to understand the flow of control under structured exception han-
dling. In the following example, we’re forcing an exception to occur by trying to compare a DateTime
value to the literal ‘Bill’:

CREATE PROCEDURE usp_CustomerSearch
@FirstName AS VARCHAR     = NULL,
@LastName AS VARCHAR      = NULL,
@DOB AS DATETIME          = NULL,
@SSN AS DATETIME          = NULL,
@CustomerID AS INT        = NULL

AS
BEGIN TRY
IF(@DOB = ‘Bill’) Begin
PRINT ‘This should cause and Error’
PRINT ‘Neither of these lines ever gets to execute’
PRINT ‘AND AS SUCH, both are potentially unreachable’

END
END TRY
BEGIN CATCH

PRINT ‘Error - DateTime can not == Bill’
END CATCH

As such, because of the way it’s coded, you will never hit any of the following lines:

PRINT ‘This should cause and Error’
PRINT ‘Neither of these lines ever gets to execute’
PRINT ‘AND AS SUCH, both are potentially unreachable’

Instead, you will only get the following output:
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Error - DateTime can not == Bill

Why is this important? Well, depending on the way your procedure is written, you cannot count on cer-
tain lines of code executing. For instance, in the C# language specification, Section 8.1 (End Points and
Reachability) indicates that code is deemed reachable in the following manner:

The section continues and specifies a little more with respect to reachability:

While this may appear somewhat irrelevant, we bring it up for a specific reason. In Visual Basic .NET,
for instance, the rules of reachability are not the same as they are in C#. As such, you can have unreach-
able code and the compiler will still head over to the bar and have a few beers with you afterward. Many
consider this to be a “problem” with Visual Basic .NET (and the last thing we want to do is start that
debate again) and a superiority of C# — you need to remember that T-SQL behaves like Visual Basic in
this regard. We have potentially unreachable code throughout the code block specified in the previous
example and if you weren’t aware of reachability as an issue, you couldn’t count on the compiler to help
you out. In situations where you are using T-SQL Return Values or output parameters, or you are return-
ing data in one form or another, it’s important to account for the new flow of control that occurs within
structured exception handler blocks.

At this point, we weren’t sure where we should include a discussion of the InfoMessage event and how
to handle it, but within the context of structured exception handlers seems as good a place as any. 

According to the MSDN documentation on the SqlConnection object’s InfoMessage event, the fol-
lowing behavior will be observed:

“Clients that want to process warnings or informational messages sent by the server
should create an SqlInfoMessageEventHandler delegate to listen to this event.

The InfoMessage event fires when a message with a severity of 10 or less is returned
by SQL Server. Messages with a severity between 11 and 20 raise an error, and mes-
sages with a severity over 20 will cause the connection to close.”

“A warning is reported if the compiler determines that a statement is unreachable. It
is specifically not an error for a statement to be unreachable. To determine whether a
particular statement or end point is reachable, the compiler performs flow analysis
according to the reachability rules defined for each statement. The flow analysis
takes into account the values of constant expressions (Section 7.15) that control the
behavior of statements, but the possible values of non-constant expressions are not
considered. In other words, for purposes of control flow analysis, a non-constant
expression of a given type is considered to have any possible value of that type.”

“If a statement can possibly be reached by execution, the statement is said to be
reachable. Conversely, if there is no possibility that a statement will be executed, the
statement is said to be unreachable.”
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Consider now the following code. We’re creating a procedure that does pretty much nothing but run a
Print statement. Print statements, by the way, are treated as very low severity errors, so if you need to
start a dialogue between the client code and your stored procedure, trapping the InfoMessage event in
conjunction with Print statements is often an effective way to accomplish your goal:

ALTER PROCEDURE dbo.usp_TestProc
AS BEGIN TRY

DECLARE @Value DATETIME
SET @Value = ‘cuckoo’
PRINT ‘Cuckoo, Cuckoo’

END TRY
BEGIN CATCH

Print ‘Catch Cuckoo Exception’ 
END CATCH

RETURN 

As you can see, we’re intentionally causing an exception condition by converting the literal ‘cuckoo’ to
a DateTime. Now for the code:

SqlConnection cn = null;
private void Form1_Load(object sender, EventArgs e)
{
cn = new SqlConnection(@”Data Source=mycomputer\cuckoobird;Initial
Catalog=Cuckooz;Integrated Security=SSPI;” );

cn.InfoMessage += new SqlInfoMessageEventHandler(MessageHandler);
cn.Open();
SqlCommand cmd = new SqlCommand(“usp_TestProc”, cn);
cmd.CommandType = CommandType.StoredProcedure;
cmd.ExecuteNonQuery();
cn.Close();

}
private void MessageHandler(object sender, SqlInfoMessageEventArgs args)
{

MessageBox.Show(args.Message)
};

If you run this code, a MessageBox object should appear with “Catch Cuckoo Exception” as its text. This
is exactly what we’d expect because, as the comments indicate, we’re forcing an exception condition. 

By using the TRY/CATCH syntax, we can effectively get code to work that would otherwise cause the
application to bomb if the client code wasn’t handling the exceptions properly. We could probably write
a small book on exception management strategies in .NET alone — so much of it is beyond the scope of
what we’re discussing here. The point we want to make is that often, in your TRY/CATCH blocks, you’ll
try a piece of code that you know may have something predictably wrong with it and you respond to it.
In most .NET code, you typically try to respond to the exception, and you often use some sort of logging
mechanism. 

The Microsoft Exception Management Application Block is an excellent example of a fully featured 
logging mechanism that is used in conjunction with structured exception handling. For one thing, it
allows exception/error information to be transmitted to users via e-mail, published to event logs, stored
to a database, or written to file or even a message queue. Similarly, depending on the exception being
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raised, different people can be notified. If you think about it, this is an excellent way to handle such
problems. As developers, we have little control over the database going down, for instance (unless our
code is really bad), so a connection timeout is probably not something we need to know about — but 
the network administrator or DBA would need to be notified. Conversely, the DBA wouldn’t need to
know about a NullReferenceException caused because we failed to instantiate an object. You can
find more information at www.microsoft.com/downloads/details.aspx?displaylang=
en&FamilyID=8CA8EB6E-6F4A-43DF-ADEB-8F22CA173E02

Perhaps one of the most straightforward ways to simulate this sort of functionality is by using
InfoMessage and Print statements. Now for the obligatory caveats. As author Bill Ryan’s senior lead
technical architect — a man named Phil — wrote a while back in an e-mail message: “Never, never, never,
never, never, under any circumstances, catch an exception and do nothing with it unless you have an absolutely
compelling reason for doing so.” He went on to say that there are no compelling reasons to do so. Why? For
one thing, there’s overhead associated with catching exceptions, and many poorly designed applications
reflect the use of exception handling when they should have been coded correctly in the first place. A
bigger problem, however, is that if you catch/eat an exception and do nothing with it, you are very
likely introducing subtle bugs in your application that will be next to impossible to track down. If you
catch an exception and do nothing with it, you are effectively eliminating the symptom while leaving the
root problem broken. If you make a habit of eating exceptions and not doing anything with them, we
can pretty much guarantee that you’ll one day find yourself feeling really dumb because you didn’t
heed the advice in that e-mail message.

We should touch upon something else that was more or less glossed over earlier, and that’s addressing a
more real-world application of using structured exceptions. To accomplish this, we need to again discuss
exception handling “in general.” Exception handling should be limited to situations in which the code
block in question cannot perform its specific behavior. What it should not do is try to “handle” things
out of its intended duties or handle things by merely covering them up. To elaborate, consider the fol-
lowing code snippet. It looks like a very simple and very common way of handling things. For the time
being, let’s equate this sort of code with previous versions of T-SQL code:

Private Function ExceptionTest(ByVal divisor As System.Int32) As System.Int32
Dim Numerator As System.Int32 = 100
Dim CalculatedValue As System.Int32 = Numerator / divisor
Return CalculatedValue

End Function

Note first that the preceding code is very fragile because someone could pass in a 0 and the code would
break. A common way to fix such potential issues is by using a TRY/CATCH block but trapping an inap-
propriate exception:

Dim CalculatedValue As System.Int32
Try

Dim Numerator As System.Int32 = 100
CalculatedValue = Numerator / divisor

Catch ex As Exception
Return 0 ‘This is a random number chosen to represent an

‘error condition
End Try
Return CalculatedValue
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This code fixed the divide-by-zero problem, but there’s still a lot wrong with it. We blame part of the prob-
lem on the Visual Basic implementation in Visual Studio .NET. (This is not a shortcoming of the Visual
Basic language by any means, just a poor choice of implementation of the IDE.) What specific problem
are we talking about? We’re now trapping System.Exception, the most broad and all-encompassing 
of the exceptions. If the return of 0 is supposed to signify that a 0 was passed in, how would one differ-
entiate between a 0 being passed in as a parameter and an OutofMemory exception? Unfortunately,
when this point is raised, many people do a little research and then modify the code to trap System
.ApplicationException instead of System.Exception but change nothing else. 

Remember Phil’s rule. A better way to handle this scenario is to check for 0 before attempting to divide and
either raising an exception or doing whatever it is that you do when business rules are violated. A common
example might entail having some Debug assertions in your code, which will signal a problem during
smoke test builds but won’t compile into the production application. Alternately, you could include some
logging information, using something such as Log4Net or the Microsoft Exception Management Block. 

Log4Net is a superb open-source logging framework hosted by the Apache project. It is available at
http://logging.apache.org/log4net/.

We’ve belabored this point a little, but it’s a very big issue when coding outside of T-SQL, and it’s an
equally big issue when using the new T-SQL constructs. The point is that exception handling should do
two things: handle the exception, not just eat it, and do something useful with it. Whether this entails
logging it, providing user feedback in the form of a visual cue, supplying alternative values, or whatever
else the requirements may demand, the common denominator is that something of value should be done
with it. In order to do something of value, you need to be precise. Many of us can recall instances when
people complained of a problem and when asked what was wrong, simply replied, “It doesn’t work.”

Trapping System.Exception is essentially like answering “It didn’t work.” Okay, could we be more pre-
cise? “Uh, I was running the SEC Margin Requirement batch and it stopped working.” This is like trap-
ping an ApplicationException object. At least we know that it has something directly to do with our
application, but not much else. Trapping DivideByZero is like saying “When I was running the SEC
Margin Requirement process, we got an error that said it had already been run and it couldn’t run again
unless the previous values were cleared out, and I don’t know how to clear them out.” Now we finally
have something useful that we can work with. If you are ever tempted to trap System.Exception or trap
an exception less specific than necessary, think back to someone telling you, “It doesn’t work,” and pic-
ture yourself being on the other side of the equation — it’ll make you want to do the right thing quickly. 

Similarly, too often you’ll hear people say, “Well, I trap System.Exception because I know that under
no circumstances do I want the program to crash.” Fair enough. Neither do we. But if the program doesn’t
work correctly, and your strategy to keep it from crashing entails making it virtually impossible to track
down the bug in a timely manner, you aren’t helping the customer at all. Not too long ago, when Bill
Ryan was new to .NET, he trapped System.Exception in the deep inner recesses of a class library and
just ate the exception. Unfortunately, a problem he never anticipated was causing the routine to blow up,
but because he wasn’t doing anything meaningful and he was returning a 0, it looked just like it would
have if it were behaving normally. By the time he found the problem, after many wild goose chases, he
had wasted a lot of time and inconvenienced a lot of people. . . all in the name of never letting the pro-
gram crash as a convenience to the user.

So what does this have to do with T-SQL exception handling? Well, T-SQL’s ability to trap and handle
exceptions isn’t quite as powerful as .NET’s. On the other hand, it’s a lot more powerful than Goto state-
ments or looking for @@Error. In order to do “something useful,” you need to know what potential errors
can arise and look for them in particular. For instance, take the following simple SELECT statement:
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SELECT * 
FROM Customers

Is there any chance of raising a Constraint violation? Is there any chance that you’ll have a null value
violation? Of course not. Therefore, you need to look at the specific task at hand and trap accordingly.
This entails thinking about your code in a little more depth, as well as doing a little homework to find
the error numbers. Here is an example of what we mean:

ALTER PROCEDURE usp_CustomerSearch
@FirstName AS VARCHAR,
@LastName AS VARCHAR,
@DOB AS DATETIME,
@SSN AS DATETIME,
@CustomerID AS INT

AS
BEGIN TRY

BEGIN TRAN
UPDATE PEOPLE 
SET FirstName = @FirstName,

LastName = @LastName,
DateOfBirth = @DOB,
SSN = @SSN,
CustomerID = @CustomerID

COMMIT
END TRY
BEGIN CATCH

DECLARE @ErrorInfo INT
SET @ErrorInfo = @@error
ROLLBACK

IF @ErrorInfo = 515 BEGIN
PRINT ‘Cannot insert the value NULL into column ‘%.*ls’, table ‘%.*ls’; column

does not allow nulls. %ls fails.’
END
ELSE IF @ErrorInfo = 542 BEGIN

PRINT ‘An invalid datetime value was encountered. Value exceeds the year 9999.’
END

END CATCH

In SQL Server 97, 2000, and Yukon, you can define custom error numbers and messages. To get a full
list of the error numbers and corresponding messages that have been defined, you can query the sysmes-
sages table of the Master database (SELECT * FROM sysmessages). This will provide a complete list
that includes every system error as well as any that you have defined.

For this modified version of the original procedure, we aren’t specifying default values for our parame-
ters, so any of them could be null. It is hoped that our business rules on the client will prevent this con-
dition from ever happening, but you can’t control how someone uses your code, so you would want to
check this as well. Because we are also passing in a date and no longer checking to ensure the date is
valid, we could get a value like January 1, 2 B.C., which would cause an overflow. We could probably
come up with a few others, but two are enough to give you an idea of how to proceed. Anyway, by look-
ing up the error codes in the sysmessages table, we find that error 515 is raised when you try to insert 
a value into a column that doesn’t allow nulls. Similarly, if you try to insert a date that is greater than or
less than what can be held in a DateTime or SmallDateTime, then error 542 is raised. As far as handling
the exception, that again depends on your business rules. Author Bill Ryan is currently working on a
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project that includes building a system used by the state’s technical college system and ensuring that
student data is in a valid format. The data comes from several different vendors that have different imple-
mentations, but when it’s transmitted to the government, it has to be in a very precise format. As such,
there are certain generic rules in place, like “If someone’s birth date would make them less than 10 years
old or older than 100, we’ll use the default data of January 1, 1970.” The following example shows how
you might implement such a requirement (and truth be told, in this system and many others, dummy
values are often used when the real data can’t be accurately determined):

AS
BEGIN TRY

BEGIN TRAN
UPDATE PEOPLE 
SET FirstName = @FirstName,

LastName = @LastName,
DateOfBirth = @DOB,
SSN = @SSN,
CustomerID = @CustomerID

COMMIT
END TRY
BEGIN CATCH

DECLARE @ErrorInfo INT
SET @ErrorInfo = @@error
ROLLBACK

IF @ErrorInfo = 515 BEGIN
PRINT ‘Cannot insert the value NULL into column ‘%.*ls’, table ‘%.*ls’; column

does not allow nulls. %ls fails.’
END
ELSE IF @ErrorInfo = 542 BEGIN
UPDATE PEOPLE 

SET FirstName = @FirstName,
LastName = @LastName,
DateOfBirth = ‘01/01/1970’,
SSN = @SSN,
CustomerID = @CustomerID

END
END CATCH

We’d like to point out one more thing. When using @@error, every time you reference it, it resets itself.
Therefore, if you use PRINT @@Error PRINT @@Error when an error occurs, the first Print statement
will print out a value, whereas the second one won’t. This is why we created a temporary variable and
set it equal to @@Error at a given point in time. If you don’t do this, then you’ll never trap the exception
as expected because the value will reset itself.

OUTPUT
Without a doubt, one of our favorite new features is the output clause. If you look on the microsoft
.public.dotnet.framework.adonet newsgroup, you’ll see daily questions about retrieving newly
created @@Identity values. 

Bill Vaughn has an excellent article on this topic, called “Managing an @@Identity Crisis.” You can find
it at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnadonet/html/manidcrisis.asp
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To get around all the fancy footwork necessary to retrieve newly inserted values, the OUTPUT method is
used. In many ways, it resembles a trigger in that it has the inserted record that you can reference:

ALTER PROCEDURE usp_ShowHowOutPutWorks
@FirstName VARCHAR(50),
@LastName VARCHAR(50)

AS

DECLARE @TempVariable 
TABLE(    ConsultantID  INT,

FirstName      VARCHAR(50),
LastName       VARCHAR(50),

SSN            VARCHAR(50),
DateOfBirth    DATETIME,
ProjectHours   INT,
Award          BIT)

INSERT INTO dbo.PEOPLE (FirstName ,
LastName,
DateOfBirth,
SSN,
ConsultantId,
ProjectHours,
Award)

OUTPUT inserted.* INTO @TempVariable

VALUES(@FirstName,
@LastName,  
‘07/12/1975’,  
‘072150088’,
20,
100,
1)

SELECT * 
FROM @TempVariable

To call this, you’d simply use the following:

usp_ShowHowOutPutWorks ‘Jenna’, ‘Jameson’

Top X
The current version of T-SQL includes a TOP operator. To use it, you simply use a syntax such as this:

SELECT TOP 10(CustomerID)
FROM People

This would return the top 10 values of the CustomerID column if there were at least 10 records; and 
if there were fewer, it would return whatever values there were. This provides some pretty useful 
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functionality for many scenarios because you often use an Identity column, for instance, as a key, and
don’t know which 10 records you need. Consultants, for example, typically make their money by hourly
billing, so time tracking is critical. Each project typically includes a bonus pool. Cost overruns cause that
pool to dwindle. However, consultants are rewarded in part for how much they bill. Consequently, their
bonuses are based in part on who bills the most for a given project. Slightly modifying the first table we
used, imagine that the following table is used as part of our human resources program:

CREATE TABLE [dbo].[People](
[FirstName] [varchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[LastName] [varchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,

[DateOfBirth] [datetime] NULL,
[SSN] [varchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[ConsultantID] [int] IDENTITY(1,1) NOT NULL,
[ProjectHours] [money] NULL,

[Award] [bit],
CONSTRAINT [PK_People] 

PRIMARY KEY CLUSTERED

Now suppose that the powers that be decided we would give award money to the five consultants who
billed the most. In the current version of T-SQL, the query would be logically identical to the first query,
but how would they get that data in there? Previously, it would have taken some slightly fancy foot-
work, but in the current version of T-SQL, the following would work:

UPDATE TOP (5) PEOPLE
SET Award = 1

In addition to being able to specify the TOP command with UPDATEs, you can also use it with DELETE
statements and it works exactly as the UPDATE does except that you are using the word DELETE:

DELETE TOP (5) PEOPLE

As convenient as this is, though, an equally cool feature is the capability to specify a parameterized
value in the Top function. What that means is that you could use some formula specified in a variable
and use it in place of the hard-coded number: 

DECLARE @NumberOfEmployees  INT
DECLARE @Divisor            INT
DECLARE @TopFactor          INT
SELECT @NumberOfEmployees = COUNT(*) FROM People
SET @Divisor = 2
SELECT  @TopFactor = @NumberOfEmployees/@Divisor
SELECT TOP (@TopFactor) *
FROM PEOPLE

Assuming the values we started with at the beginning of this section, the following results will be output:

FirstName    LastName   DateOfBirth   SSN  ConsultantID ProjectHours          Award
William      Ryan        1971-08-06    166888888 2          200.00                1
John         Smith       1972-09-05    11111111  4          250.00                1

(2 row(s) affected)
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Similarly, you can do away with a little of the complexity and nest a complex (or, in this case, a relatively
straightforward) function call directly in the TOP command:

DECLARE @NumberOfEmployees  INT
DECLARE @Divisor            INT
DECLARE @TopFactor          INT
SELECT @NumberOfEmployees = COUNT(*) FROM People
SET @Divisor = 2

SELECT TOP ((SELECT COUNT(*) FROM PEOPLE)/@Divisor) *
FROM PEOPLE

Note that this query does effectively the same thing that the preceding one does. The main difference is that
it uses an abbreviated syntax by specifying a new SELECT clause and corresponding restriction statement
just as it would a declared variable. Again, the output from the above query outputs to the following:

FirstName                                          LastName
DateOfBirth             SSN
ConsultantID ProjectHours          Award
-------------------------------------------------- --------------------------------
------
William                                            Ryan
1971-08-06   166888888                                          1            200.00
1
John                                               Smith
1972-09-05   111111111                                          4            250.00
1

(2 row(s) affected)

Note one caveat to using any of the new versions of TOP: The value that you are using as the TOP param-
eter must be decorated with parentheses, like this:

UPDATE TOP (5) PEOPLE
SET Award = 1

The preceding code will parse and work as expected, whereas this

UPDATE TOP 5 PEOPLE
SET Award = 1

will not. It’s a seemingly trivial distinction, but when getting used to the new language construct, it’s an
easy thing to get wrong (which in our case led to us wasting about 20 mintues trying to figure out why it
wouldn’t parse).

Common Table Expressions
Common Table Expressions (CTEs) are another enhancement that get a full 100% cool factor rating.
Conceptually, they are similar to Temporary tables in current versions of T-SQL, but in our opinion they
are infinitely more elegant and intuitive. In addition to elegance, they afford one the luxury of using
recursion, a feature that we’ll discuss shortly.
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To use a CTE, you give it a name and then specify a command to populate it. Using the People table we
provided in the TOP section, here’s an example of how this would work:

WITH CTE_TABLE(FirstName, LastName)
AS
(SELECT FirstName, LastName
FROM PEOPLE)
SELECT FirstName, LastName 
FROM CTE_Table

This query will result in the following output:

FirstName                                          LastName
-------------------------------------------------- --------------------------------
------
William                                            Ryan
John                                               Smith
Beamer                                             Gregory
Wallace                                            McClure
Bill                                               Gates

(5 row(s) affected)

Because there is no restriction clause specified in the SELECT statement defining the CTE, the output will
be identical to running the statement SELECT * FROM People.

Now, in order to understand how recursive queries work, you need to understand the notion of a self
join. Here’s a fairly simple example. Assume a very simple schema that contains a Family Member
Number, a Family Member name, and a Parental ID, as shown in the following table: 

Family Member Number Family Member Parental ID

1 Mom NULL

2 Dad 1

3 Bill 1

4 Sparky 3

5 Rover 3

Given the information in this table, let’s say we want to print out who answers to whom. In order to
facilitate this, a self join would come in really handy:

SELECT  Fam.FamilyMember, Parent.ParentId
FROM FamilyMembers Fam, FamilyMembers Parent
WHERE Fam.FamilityMemberId = Parent.ParentId

To use a recursive query, you need two components, an anchor and a joinback. The anchor is the base
query that you’ll use; it essentially specifies the values that you’re looking for. The joinback has two
SELECT statements, the second of which references itself:

253

T-SQL Language and Enhancements

11_584375 ch09.qxd  10/28/05  11:10 PM  Page 253



WITH FAMILYCTE (FamilyMemberNumber, MemberName, ParentID)
AS

(SELECT Fam.FamilyMemberNumber, Fam.MemberName, Fam.ParentId
FROM FamilyMembers Fam
WHERE Fam.ParentID IS NULL
UNION ALL
SELECT Fam.FamilyMemberNumber, Fam.MemberName, Fam.ParentId
FROM FamilyMembers Fam

INNER JOIN FAMILYCTE ON FAMILYCTE.FamilyMemberNumber = FAM.ParentID
SELECT FamilyMemberNumber, MemberName, ParentID)
FROM FamilyCTE

In the preceding code, we began by specifying an anchor (represented by the first SELECT statement).
We then took this output as the basis for recursion. The final selection condition is the exit condition,
similar to that which is necessary to all recursive statements if you want them to end at any point.

PIVOT
Without a doubt, another features that gets a full 100% cool factor rating is the PIVOT function. To get a
feel for it, let’s use a typical scenario that most of us are probably familiar with: project management.
Assume for a second that we had the following table definition:

CREATE TABLE [dbo].[BillingSummary](
[Hours] [int] NULL,
[ProjectID] [varchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[BillingType] [varchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[BillingPeriod] [int] NULL

) ON [PRIMARY]

Now, for the sake of simplicity, assume that the following values are included in the table:

Hours       ProjectID           BillingType         BillingPeriod
----------- -------------------------------------------------- 
250         SCPPP             ProjManagement      1
280         SCPPP             ProjManagement      2
350         SCPPP             ProjManagement      3
125         SCPPP             ProjManagement      4
512         SCPPP             Development         1
645         SCPPP             Development         2
501         SCPPP             Development         4
655         GAPPP               ProjManagement      2
699         GAPPP             Development         2
988         GAPPP               ProjManagement      3
945         GAPPP             Development     3
699         SCPPP             Development         3
198         GAPPP               ProjManagement      1
256         GAPPP             Development         1
233         GAPPP        ProjManagement   4
298         GAPPP        Development      4

(16 row(s) affected)
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Now suppose that the boss wants to know how much we billed per service type, per billing period, per
project. In traditional T-SQL, it would be a pain in the you-know-what. But using the T-SQL PIVOT func-
tion, it’s a breeze. Examine the following query:

SELECT * FROM BillingSummary
PIVOT
(SUM(Hours)
FOR [ProjectId]
IN (SCPPP, GAPPP)
)
AS Results
GO

It will yield the following results:

BillingType                                   BillingPeriod      SCPPP       GAPPP
--------------------------------------------- -------------      ----------- ------
-----
Development                                        1             512         256
ProjManagement                                     1             250         198
Development                                        2             645         699
ProjManagement                                     2             280         655
Development                                        3             699         945
ProjManagement                                     3             350         988
Development                                        4             501         298
ProjManagement                                     4             125         233
(8 row(s) affected)

If we wanted to shift the entire focus to break it down by billing type, we could simply shift the opera-
tors around, as so:

SELECT * FROM BillingSummary
PIVOT
(SUM(Hours)
FOR [BillingType]
IN (Development, ProjManagement)
)
AS Results
GO

That modified query will result in the following output:

ProjectID                                          BillingPeriod Development
ProjManagement
-------------------------------------------------- ------------- ----------- ------
--------
GAPPP                                              1             256         198
SCPPP                                              1             512         250
GAPPP                                              2             699         655
SCPPP                                              2             645         280
GAPPP                                              3             945         988
SCPPP                                              3             699         350
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GAPPP                                              4             298         233
SCPPP                                              4             501         125

(8 row(s) affected)

UNPIVOT
UNPIVOT works the same way PIVOT does, just reversed. In a nutshell, UNPIVOT takes “PIVOTED” data
and turns the columns into rows. The only caveat that needs mentioning with UNPIVOT is how nulls are
treated. They aren’t. They are ignored. Therefore, you need to be well aware of this. Of course, if you
need the rows to come back, you can specify default values in cases of null.

SELECT * FROM BillingSummary
UNPIVOT
(Hours
FOR [BillingType]
IN (Development, ProjManagement)
)
AS Results

Ranking
Traditionally, if you wanted to check the row number of a result set, you’d need to use an Identity in
SQL Server. A similar way to get to the same result in ADO.NET was an Expression column in your
DataTable. This was accomplished by choosing a column and setting its Autoincrement property 
to true. You could then specify a Seed value (the value at which the sequence begins) as well as the
AutoIncrement value (so you could have everything increase by two or three or whatever). In Oracle,
this is roughly analogous to a sequence. In Yukon, there are two new ways to achieve a sequence in your
results (in addition, of course, to the previous methods just mentioned). Note that nothing has been
taken away; now you just have some more options, the first of which is the ROW_NUMBER function.

ROW_NUMBER()
ROW_NUMBER() is the first of the two new methods and it couldn’t be more straightforward to use.
Assuming the People table specified at the beginning of the chapter, you could use ROW_NUMBER like so:

SELECT  FirstName,
LastName,
ROW_NUMBER()
OVER (ORDER BY ConsultantID) AS IDValue FROM People

This would yield the following results:

FirstName                LastName                 IDValue
------------------------ ------------------------ --------------------
William                  Ryan                                               1
Wallace                  McClure                                            2
Beamer                   Gregory                                            3
John                     Smith                                              4
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Bill                     Gates                                              5

(5 row(s) affected)

The only caveat to using ROW_NUMBER is that you need to specify an ORDER BY clause. This is critical
because unlike using an Identify value or some other hard-coded value, this is virtual (which means it’s
calculated on the fly) and completely contingent upon the ORDER BY clause. To that end, the result is the
same as it would be if you were to use the Autoincrement column in a DataTable because using that
method, the values of each row/column combination would be virtual and only determined after the
query was in effect. You essentially get the same result using ROW_NUMBER. Therefore, by changing the
ORDER BY clause, the ROW_NUMBER value will change accordingly:

SELECT  FirstName,
LastName,
ROW_NUMBER()

OVER (ORDER BY ConsultantID DESC)
AS IDValue
FROM People

FirstName    LastName           IDValue
------------ ------------------ --------------------
Bill         Gates                                              1
John         Smith                                              2
Beamer       Gregory                                            3
Wallace      McClure                                            4
William      Ryan                                               5

(5 row(s) affected)

The obvious question that comes to mind is what happens when you use an ORDER BY clause that has
non-distinct values — namely, values that appear more than once. The answer is that you’ll get an unde-
fined (null) value. With this in mind, our previous statement that ROW_NUMBER results in the same result
sequence as an expression column in ADO.NET is not entirely true.

RANK()
The corollary to the ROW_NUMBER function is the RANK() function. Virtually identical to ROW_NUMBER, the
primary distinction between the two is that RANK() will yield the same value for similar items specified
in the ORDER BY clause:

SELECT  FirstName,
LastName,
RANK() OVER (ORDER BY ConsultantID DESC) AS IDValue

FROM People

FirstName    LastName           IDValue
------------ ------------------ --------------------
Bill         Gates                   1
John         Smith                   2
John         Smith                   2
John         Smith 2
William      Ryan                    5
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Dense_Rank()
If you examine the Rank() example results, you’ll see that the record with FirstName equal to John,
LastName equal to Smith, and IDValue equal to 2 appears three times. However, you’ll see that we go
from 1 to 2 to 5. There is not an uninterrupted sequence, which is what you may need. If you need an
uninterrupted sequence, then use Dense_Rank().

Assuming the same data that was used in the Rank() section, Dense_Rank() would look like this:

SELECT  FirstName,
LastName,
DENSE_RANK() OVER (ORDER BY ConsultantID DESC) AS IDValue

FROM People

This in turn would give you the following results:

FirstName    LastName           IDValue
------------ ------------------ --------------------
Bill         Gates                   1
John         Smith                   2
John         Smith                   2
John         Smith                   2
William      Ryan                    3

We’ve seen this explained in a very confusing manner in most sources, so we want to make sure you
understand what happened. The last record (William Ryan 3) has 3 for an IDValue in this example,
whereas it was 5 when we used the Rank() function alone. Each time the grouping switches, it will be
sequential using Dense_Rank, whereas it will increase with Rank() but there may be gaps depending
on the data.

NTile()
The NTile() function is similar to both Rank() and Dense_Rank(), but it has a slightly different pur-
pose. NTile() is essentially a mechanism by which you can assign effective percentiles to different 
values. You’ll often want to put people into percentiles. To accomplish this, you can use the NTile()
function, passing in whatever number you want to be used to “percentalize” things with (ideally, an
even number). In the preceding example, we’d use NTile() like this (we’re going to use 5 because there
are five different records).

SELECT  FirstName,
LastName,
NTILE(5) OVER (ORDER BY ConsultantID DESC) AS IDValue

FROM People

This would in turn yield the following:

FirstName    LastName           IDValue
------------ ------------------ --------------------
Bill         Gates                   1
John         Smith                   2
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John         Smith                   3
John         Smith                   4
William      Ryan                    5

If we used 100, it would break them up into similar percentiles, just as would 1,000 or 1,000,000 (cur-
rently, you can pass in anything up to the maximum of Yukon’s BIGINT value). What would happen if
you used one of these bigger numbers, a number that exceeded the count of records? Well, we can’t tell
you for sure, other than it will be weird and unpredictable. We’ve tried running the preceding query
using 1,000 and we got really strange values, but basically the highest number that resulted was 10.
Suffice it to say that if you use a number greater than the number of records, then the results will be
unpredictable.

TABLESAMPLE
In the spirit of the ranking functions just described, TABLESAMPLE is another really slick enhancement.
What this enables you to do is essentially select a subset of data in your query’s restriction. In many
business scenarios, decision-makers employ the use of statistical sampling to get a feel for how things
are running in their business. TABLESAMPLE makes doing this a lot easier.

SELECT FirstName,
LastName

FROM People
TABLESAMPLE (4 Rows)

FirstName                    LastName
---------------------------- --------------------------------------
William                      Ryan
John                         Smith
Beamer                       Gregory
Wallace                      McClure
Bill                       Gates

Does something look funny up there? If not, look again. You should notice that in the TABLESAMPLE
call, we specified four rows, yet five are returned in the query. (For the record, there are five rows in the
table.) More interestingly, if we specify the argument to be 3 instead of 4, we get 0 rows back:

SELECT FirstName,
LastName

FROM People 
TABLESAMPLE (3 Rows)

FirstName                    LastName
---------------------------- --------------------------------------
0 Rows Returned

Why is that? Well, we have yet to figure out the algorithm, but the number that is used is definitely an
approximation — so you aren’t sure exactly how many will be returned. You’d think that with five rows
in a table, any such restriction with a smaller number (in this case three, two, or one) would yield at least
a row or two, but it doesn’t. Well, at least it doesn’t some of the time. We ran the query multiple times
and, as the table shows, sometimes values were returned and sometimes they weren’t:
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Attempt Rows in Table Rows Specified Records Returned

1 5 5 5

1 5 4 5

1 5 3 5

1 5 2 0

1 5 1 0

2 5 5 5

2 5 4 5

2 5 3 0

2 5 2 0

2 5 1 0

3 5 5 5

3 5 4 0

3 5 3 0

3 5 2 0

3 5 1 0

This is particularly noteworthy because if you must have a minimum or specific sample size, you’ll have
to check the counts of the records returned manually.

Just as you can specify the number of rows to be used using the rows, you can specify percentage using,
you guessed it, PERCENT:

SELECT  FirstName,
LastName

FROM People
TABLESAMPLE( 100 PERCENT )

We used percentages down to 60% to get a feel for how things behaved under percent versus rows. With
five rows, 80% would roughly correlate to four rows, 60% to three rows, and 70% being in the middle.
However, the behavior was just as random, as shown in the following table:

Attempt Rows in Table Percentage Specified Records Returned

1 5 100 5

1 5 90 5

1 5 80 5

1 5 70 0
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Attempt Rows in Table Percentage Specified Records Returned

1 5 60 0

2 5 5 5

2 5 90 5

2 5 80 0

2 5 70 5

2 5 60 0

3 5 5 5

3 5 90 5

3 5 80 5

3 5 70 0

3 5 60 5

As we mentioned previously, not knowing how many rows will be returned may be a deal-breaker,
because in statistics, one of the critical components of the confidence interval is the sample size, and
many disciplines demand a given confidence interval in order for results to be considered valid. To
address this issue, there’s another tool at your disposal, the REPEATABLE modifier.

Using REPEATABLE is very simple in practice but it doesn’t work like you might guess. Take a look at the
following modification:

SELECT  FirstName,
LastName

FROM People
TABLESAMPLE( 10 PERCENT)
REPEATABLE (50000)

What is the 50,000 number? Well, the REPEATABLE function takes a BIGINT value and if you use the
same Seed value, your sample size will remain constant with one caveat: If the underlying table data
changes, then all bets are off. This makes sense, after all, because you can’t guarantee that the row count
will stay the same across queries if you can’t guarantee that the rows will even be there.

From what we can tell, if rows are modified but not added or deleted, then you can count on the sample
sizes to remain constant. We tried to determine whether we could identify any patterns for how things
would work if, for example, half the rows were deleted, but we didn’t detect any (that’s not to say there
aren’t any — just that we’ve been unable to identify any of them).

There’s one more word issue worth noting. In just about every context that we’ve come across in T-SQL
in SQL Server 2005, you can drive the functionality with parameters. If you can stick a parameter in
somewhere, you can usually get it to work. TABLESAMPLE and REPEATABLE seem to be exceptions to 
the rule, though. If you were to use either of the following constructs, the query would not parse:
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DECLARE @SeedValue BIGINT
SET @SeedValue = 50000
SELECT  FirstName,

LastName
FROM People
TABLESAMPLE( @SeedValue)
REPEATABLE (@SeedValue)

Msg 497, Level 15, State 1, Line 3
Variables are not allowed in the TABLESAMPLE or REPEATABLE clauses.

READPAST
In previous versions of SQL Server, the READPAST locking hint was available, but only for SELECT state-
ments. Although a full discussion about locking hints is beyond the scope of this chapter, we mention
READPAST in particular because of its applicability in scenarios such as using WAITFOR (discussed next).
SQL Server 2000’s Books Online defines READPAST as follows:

Currently, Yukon has added support for both UPDATE and DELETE statements using the READPAST hint.
Essentially, this enables multiple processes to handle unlocked rows while ignoring locked ones that
other processes are using. With UPDATE and DELETE statements, you can enable multiple parallel pro-
cesses to handle nonlocked rows and skip locked ones that other sessions are processing. 

WAITFOR
Although WAITFOR was available in pre-Yukon versions of SQL Server, it now boasts a few really cool
enhancements. WAITFOR in previous versions was defined as WAITFOR { DELAY ‘time’ | TIME ‘time’ }.
Now you can wait for some procedure to complete.

You could  use it to wait for x number of minutes/seconds, or you could have it wait until a fixed time in
the future. Traditionally, you’d use the WAITFOR command in either of these ways:

PRINT GETDATE()
WAITFOR DELAY ‘00:01:00’
PRINT GETDATE()

or

PRINT GETDATE()
WAITFOR TIME ‘00:13:00’
PRINT GETDATE()

In the first usage, the second PRINT would print a time that was one minute after the first one. In the sec-
ond, the process would wait until 13:00. This is analogous to calling Thread.Sleep(Interval) in .NET.

Skip locked rows. This option causes a transaction to skip rows locked by other trans-
actions that would ordinarily appear in the result set, rather than block the transaction
waiting for the other transactions to release their locks on these rows. The READPAST
lock hint applies only to transactions operating at READ COMMITTED isolation and will
read only past row-level locks. Applies only to the SELECT statement.
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Using the People table referenced in the preceding section, you can see some of the cool new features
available:

WHILE TRUE
PRINT GETDATE()
WAITFOR (DELETE FROM People  
WHERE LastName = ‘Ryan’)
PRINT GETDATE()

In this instance, we won’t know when the second PRINT statement will execute because it will depend
on the DELETE statement. With this particular example, it will wait until exactly one row has been
deleted. If there are no rows with the LastName of Ryan, then we’ll be waiting for a while. Obviously,
this is something that needs to be used judiciously with some forethought.

How else can it be used? Well, you can do the same for INSERT, SELECT, UPDATE, and RECEIVE. INSERT,
SELECT, and UPDATE are all probably intuitive in light of the preceding example, but RECEIVE may not
be. RECEIVE is used to accept a message from a queue. Again, this one should be used judiciously
because it has the potential to block for a long time if nothing is in the queue.

Combined with the new READPAST hint, this can be used safely in a very high-volume environment
while still maintaining performance. To accomplish this, only slight modifications are needed:

WHILE TRUE
PRINT GETDATE()
WAITFOR (DELETE FROM People WITH (READPAST)
WHERE LastName = ‘Ryan’)
PRINT GETDATE()

DDL Triggers
Without a doubt, one of the biggest features we’ve been given is DDL triggers. Every company we know
has had a need for these, and every developer we’ve spoken with has said they can’t wait for these to
come out. And the best part is, they’re easy to use.

For the complete newbie, a trigger is a mechanism that “fires” whenever an event occurs. Typically, you
could use triggers for items such as database inserts, updates, and deletes. These are critical features and
lifesavers for many tasks. For instance, if you need to create an audit trail for a given table, triggers enable
you to insert a new record into an audit trail table each time something happens to the table. This hap-
pens in such a way that it is invisible to end users (unless, of course, you want to notify them), so end
users never know the trigger is firing.

DDL triggers are great because they can be used to send a notification to the team each time someone
changes a table, or creates a table, or does anything else that typically would constitute a breaking
change. Now let’s look at a few. If you wanted to stop people from inserting tables (yes, this can be done
with permissions but it serves well for illustrative purposes), here’s how you’d do it:

CREATE TRIGGER DISALLOW_CREATES ON DATABASE FOR CREATE_TABLE
AS
RAISERROR(‘DATABASE TABLES CAN’T BE CREATED AT THIS TIME.’, 10, 1)
ROLLBACK
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To do the same but disallow drops, you’d just do the reverse:

CREATE TRIGGER DISALLOW_DROPS ON DATABASE FOR DROP_TABLE
AS
RAISERROR(‘DATABASE TABLES CAN’T BE DELETED AT THIS TIME.’, 10, 1)
ROLLBACK

There are so many uses for these that they are only limited by one’s imagination. For instance, you could
use these to log user login additions, which might indicate something fishy is going on. You could do it
when logons are dropped. You can use them when tables are changed. You can use them everywhere for
just about every conceivable DDL function and the syntax shown in the preceding example will work for
all of them (when in doubt, take your best guess about the event, such as DROP_TABLE, and chances are
good you’ll be right).

Summary
This chapter has provided you with a brief overview of the new features that are coming out with
Yukon. We’ve been given a huge new set of features to solve problems that were previously a real pain.
We can’t begin to tell you the number of times that we’ve needed a feature like PIVOT or DDL triggers.
Actually, we doubt there’s a company out there that hasn’t wished for DDL triggers.

To date, we have quite a few new features to look forward to. There may well be more coming down the
pike, but for now, we can definitely count on these — they’re very cool.

For More Information
For more information about the SQL Standard in general, or the T-SQL enhancements available in SQL
Server 2005, please refer to the links provided below:

❑ Chapter 3, “Understanding SQL”; Practical PostgreSQL —www.faqs.org/docs/ppbook/
c1164.htm

❑ MSDN SQL Server Developer Center article, “SQL Server 2005 Beta 2 Transact-SQL
Enhancements — http://msdn.microsoft.com/SQL/sqlreldata/TSQL/default
.aspx?pull=/library/en-us/dnsql90/html/sql_05tsqlenhance.asp
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ADO.NET Programming 
with SQL Server from 

a Client Application

Within the ADO.NET Framework, Microsoft has provided a high-performance data provider for
accessing a Microsoft SQL Server database. With the release of the .NET 2.0 Framework, Microsoft
has provided several new items:

❑ Asynchronous operations so that commands may be executed in a nonblocking fashion

❑ Increased data type–specific support in SQL Server

❑ Added support for .NET commands that were previously only available when using an
API-based interface, such as dealing with passwords

This chapter explores these and other new features in the SqlClient included in the .NET 2.0
System.Data.SqlClient.

SQL Server and ADO.NET
With the introduction of .NET Framework 1.0, Microsoft introduced a new mechanism to program
against SQL Server. This mechanism is called a .NET Data Provider. The SQL Server Data Provider
is the best tool to use to communicate with SQL Server when writing applications based on the
.NET Framework. It’s contained within the System.Data.SqlClient, which is in turn stored
within the System.Data.dll file. With the release of Microsoft .NET Framework Version 2.0,
Microsoft has included a new set of features specifically geared toward the Microsoft SQL Server
Database.
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The namespace System.Data.SqlClient is designed to communicate with SQL Server 7.0 or later. The
System.Data.SqlClient provides a complete set of classes and methods to communicate with SQL
Server.

Throughout this chapter, you will see notes regarding which version of SQL Server supports which fea-
ture in the ADO.NET namespace.

Asynchronous Commands in ADO.NET
Two of the most important goals of every application are to run as fast as it possibly can and to respond
to user requests and input. Single-threaded applications may tie up the user interface while background
operations are performed. Depending on the operations that are being run and how fast the back-end
database schema is set up to receive them, the users of an application may or may not like the perfor-
mance they are getting from an application. One way to increase application performance is to have the
application perform operations in the background, to avoid tying up the user interface. 

With classical COM-based ADO using Visual Basic, there was a mechanism for client-server applications
that enabled asynchronous operations to perform the asynchronous operations work in the background.
The user could continue inputting data and typing away on screens while the application performed
database operations in the background, outside of the user interface’s thread in a secondary thread that
was created by the classic COM-based ADO components. The same is possible with Visual C++ — a
thread can be either created explicitly or not. Unfortunately, asynchronous operations were not true
within classical ASP.

When ADO.NET shipped with the .NET 1.0 release, one of the things that did not ship was a mechanism
to directly perform database operations outside of the user interface’s thread. It was entirely possible to
simulate this activity with the use of the System.Threading namespace and a managed thread or a
thread-pool thread. The use of threads provided the same level of functionality that had existed with
classical COM-based ADO’s asynchronous operations when commands and recordsets were defined
with the WithEvents mechanism. Unfortunately, while providing the same type of functionality, the
threading approach was not very simple or elegant. The situation was exacerbated by the fact that
threading is a fairly complicated subject, and seemingly simple operations can become fairly compli-
cated due to the environment.

Another issue regarding the threading approach is that while this technically does not block the user
interface thread, the blocking is merely moved from the user interface thread to the thread created to
process the request. While this may work fine in a client-server application with a user interface, this
was not the best scenario for middle-tier-type applications.

To overcome this problem, Microsoft designed asynchronous command support into the .NET 2.0
Framework. Asynchronous commands enable multiple operations to occur at the same time. For exam-
ple, assume you have an ASP.NET application that must process several database commands at the same
time. With Classic ASP, each command would need to be processed one after the other in a serial fash-
ion. With Classic ADO, support for asynchronous operations was actually implemented by creating a
second thread and blocking on that second thread. With ASP.NET 1.x, it was possible to execute the 
various database commands independently of each other by using the threading support in the .NET
Framework; however, this might be complicated, given the skills of the developers, and it might be the
fact that this required another namespace to be used. With the asynchronous support in ADO.NET 2, the
support for asynchronous operations is built into the System.Data.SqlClient namespace, without the need
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to use the System.Threading namespace. ADO.NET 2 also provides true asynchronous operations.
Unlike creating a background thread and blocking the background thread, ADO.NET 2 implements
asynchronous operations by using IO Completion ports, which are built into the .NET Framework but
are truly asynchronous, with no secondary thread being created and blocked while the UI continues on.

The ADO.NET 2 solution follows the general look-and-feel for the other asynchronous commands
within the .NET Framework, as the method names use the standard calling syntax of BeginABC/EndABC.
The SqlCommand class provides support for asynchronous commands through the following methods:

❑ BeginExecuteNonQuery/EndExecuteNonQuery

❑ BeginExecuteReader/EndExecuteReader

❑ BeginExecuteXmlReader/EndExecuteXmlReader

These new methods in the SqlCommand class provide for a nonblocking implementation of asyn-
chronous commands. Let’s look at how to use these commands effectively.

To use asynchronous commands, you will need to add the async=true; parameter to the connection
string. Check the SqlConnectionStringBuilder class covered later in this chapter to properly set
the connection string.

Asynchronous commands are available using SQL 7 and SQL 2000 when not using the shared memory
provider. They are also available when using all of the protocols with SQL Server 2005. If the applica-
tion and the database are running on the same system and that system is not SQL Server 2005–based,
you will want to force a protocol, such as TCP/IP, by appending tcp: to the front of the server name.

BeginExecuteNonQuery
In many situations, it is necessary to merely perform a database operation that does not return any data
back to the calling method. With ADO.NET, ExecuteNonQuery() is the preferred method to call to exe-
cute a command that does not return any results. This method is used for INSERT, UPDATE, and DELETE
commands that do not return any values. With the BeginExecuteNonQuery()method, these commands
can now be performed asynchronously to the main user interface thread. Let’s take a look at some
source code for performing asynchronous commands.

There are two ways to call the BeginExecuteNonQuery(). The basic calling convention would be either
of the following: 

❑ BeginExecuteNonQuery(AsyncCallBackObject, StateObject). These are the full 
parameters for calling the BeginExecuteNonQuery method. The AsyncCallBackObject
is an object that is created by calling the function defined in AsyncCallBack(AddressOf
CallbackFunctionName). The StateObject is typically going to be the SQL command object
that is passed to the AsyncCallBackObject. This version of the method call is the full version
and will be useful if you want to perform some type of operation after the SQL command object
has finished executing the method on the database server.

❑ BeginExecuteNonQuery(). Using the BeginExecuteNonQuery() method with no parameters
will result in the method being called with no callback method. This calling convention will typ-
ically be used when multiple asynchronous commands are called and the program needs to
wait on all of them to finish.
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Along with the BeginExecuteNonQuery() method is an EndExecuteNonQuery() method. This method
is specifically called from within the AsyncCallBackObject method. Consider the following code:

‘private variables within the class
Private gsqlCm As SqlCommand
Private gsqlCn As SqlConnection
‘code within a method

Dim i As Integer = 0
Dim strSql As String
Dim strCn As String = “Initial Catalog=dbBookSampleChapter10;Data
Source=tcp:entrepid\sqlyukonbeta2;User Id=......;Password=.........;async=true;”
Dim iResult As IAsyncResult
gsqlCm = New SqlCommand()
gsqlCn = New SqlConnection(strCn)
gsqlCn.Open()
gsqlCm.Connection = gsqlCn
gsqlCm.CommandType = CommandType.Text
strSql = “insert into tblAsyncExecuteNonQuery ( ClientDateEntered) values (‘“ &
DateTime.Now.ToString() & “‘)”
gsqlCm.CommandText = strSql
iResult = gsqlCm.BeginExecuteNonQuery(New System.AsyncCallback(AddressOf
ExecuteNonQueryCallback), gsqlCm)
MsgBox(“Command done.”)’The callback method.
Private Sub ExecuteNonQueryCallback(ByVal iRes As IAsyncResult)

gsqlCm.EndExecuteNonQuery(iRes)
gSqlCm.Dispose();
gSqlCm = Nothing
if gSqlCn.State <> ConnectionState.Closed then

gSqlCn.Close()
end if
gSqlCn.Dispose()
gSqlCn = Nothing
End Sub

The first thing you will note in the preceding code that is different is the connection string used by the
connection object to communicate with the database. The connection string has a new parameter at the
end of the string: async=true;. This parameter turns on the asynchronous support when performing
commands against the database. Performing an asynchronous command requires some additional 
operations to set up communications within the database. These asynchronous operations incur an over-
head versus standard synchronous operations. If the async=true; parameter is not used and an asyn-
chronous command is attempted, an InvalidOperationException exception will be raised. With the
addition of the SqlConnectionStringBuilder, discussed later in this chapter, it is fairly easy to add
asynchronous capabilities. The specific property that should be set is .AsyncProcessing = True.

Due to increased overhead, the only time the async=true; option should be set in the connection
string is when asynchronous operations are actually needed. If asynchronous operations are not neces-
sary, it is best to not set them up in the connection string.

When the SQL command operation is completed and the callback function is executed, the method
EndExecuteNonQuery should be called on the SQL command object. This method is necessary to make the
results available to the caller and to clean up some system resources. In the case of EndExecuteNonQuery,
the results that are returned represent the number of rows affected by the operation. Failure to call the
EndExecuteNonQuery() method may result in a leakage of system resources.
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It is possible to call the EndExecuteNonQuery method immediately after calling the
BeginExecuteNonQuery method. This will effectively turn the operation into a synchronous 
operation at the application level. However, the operation will continue to be treated like an asyn-
chronous operation underneath the application.

BeginExecuteReader
The BeginExecuteNonQuery/EndExecuteNonQuery methods are great ways to asynchronously 
perform operations that do not actually query information from the database. When you do want 
to actually perform a query and get some data back from the database, the .NET 2.0 Framework’s
SqlClient provides the capability to perform a query asynchronously. The BeginExecuteReader()/
EndExecuteReader() set of methods are for performing asynchronous operations that return data.

The BeginExecuteReader method can be called with four different sets of parameters:

❑ BeginExecuteReader(AsyncCallBackObject, StateObject, CommandBehavior)— This is
the full set of objects for the BeginExecuteReader method. The AsyncCallBackObject is the
method that will be called when the command is completed on the server and the front end is
signaled that the command has been completed. The StateObject is the state that is handed to
the AsyncCallBackObject. The CommandBehavior is the behavior that the DataReader object
will perform after reading the final record. This is the same CommandBehavior used with a reg-
ular DataReader.

❑ BeginExecuteReader(AsyncCallBackObject, StateObject)— This method is the same 
as the preceding method with the difference that the DataReader is opened with the default
behavior.

❑ BeginExecuteReader(CommandBehavior)— This method opens the DataReader with the
option of having CommandBehavior specified. When this method is called, no asynchronous
object is called when the DataReader is returned to the calling application.

❑ BeginExecuteReader()— This method, like the one before it, merely opens the DataReader
with the default CommandBehavior.

Let’s take a look at some sample code for calling the BeginExecuteReader both with an asynchronous
callback object and without one.

Asynchronous Callback Object Version
The BeginExecuteReader() set of methods is useful for retrieving a DataReader from a database. The
following example calls BeginExecuteReader() and passes a callback object to the method:

Dim strSql As String
Dim strCn As String = gstrAsyncString
Dim iResult As IAsyncResult

sqlCm = New SqlCommand()
sqlCn = New SqlConnection(strCn)
sqlCn.Open()
sqlCm.Connection = sqlCn
sqlCm.CommandType = CommandType.Text
strSql = “select count(*) from tblAsyncExecuteNonQuery”
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sqlCm.CommandText = strSql
Me.gdtStart = GetTickCount()
iResult = sqlCm.BeginExecuteReader(New System.AsyncCallback(AddressOf
ExecuteDataReaderCallback), sqlCm, CommandBehavior.Default)

Private Sub ExecuteDataReaderCallback(ByVal iRes As IAsyncResult)
Dim sqlDr As SqlDataReader
Try

sqlDr = sqlCm.EndExecuteReader(iRes)
Me.gdtEnd = GetTickCount()
sqlDr.Read()
Me.giNum = Convert.ToInt32(sqlDr(0))
Dim cntDsplay As New DisplayCountDelegate(AddressOf DisplayCount)
Me.Invoke(cntDsplay)
sqlDr.Close()
sqlDr.Dispose()
sqlDr = Nothing

Catch sqlExc As SqlException
‘Perform some type of operation to notify someone that an error has occurred.
‘If an exception occurs, show it to the user.

Dim excDsplay As New DisplayErrorDelegate(AddressOf DisplayError)
Dim parameterArray(1) As Object
parameterArray(0) = CType(sqlExc, System.Object)
Me.Invoke(excDsplay, parameterArray)

Finally
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCn.Dispose()
sqlCn = Nothing
sqlCm.Dispose()
sqlCm = Nothing

End Try
End Sub

Asynchronous Operations with No Callback Object
The BeginExecuteReader() method allows for asynchronous operations to be called with no callback
object. While not necessarily the optimal way to call asynchronous commands, this may be necessary in
some situations. In the following example, the BeginExecuteReader() method is called with no call-
back object. The calling thread continues to run, and every 50 milliseconds the calling thread will check
to determine whether the asynchronous command has completed. The asynchronous operation is tested
by looking at the value of the IsCompleted property:

Dim iResult As IAsyncResult
Try

sqlCn.Open()
sqlCm.Connection = sqlCn
sqlCm.CommandType = CommandType.Text
strSql = “select count(*) from tblAsyncExecuteNonQuery”
sqlCm.CommandText = strSql
Me.gdtStart = GetTickCount()
iResult = sqlCm.BeginExecuteReader(CommandBehavior.Default)
While Not iResult.IsCompleted
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Thread.Sleep(50)
End While
sqlDr = sqlCm.EndExecuteReader(iResult)
sqlDr.Read()
MsgBox(“Number of Records: “ & Convert.ToString(sqlDr(0)))
sqlDr.Close()
sqlDr.Dispose()

Finally
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCn.Dispose()
sqlCn = Nothing
sqlCm.Dispose()
sqlCm = Nothing

End Try

BeginExecuteXMLReader
Much like BeginExecuteNonQuery and BeginExecuteReader, another set of commands enables the
return of XML-based results in SQL Server asynchronously. These commands will take a query result
from SQL Server in an XML format and return an XmlReader object to the program. Given a query to
send to the database, an XmlReader is returned.

There are a couple of different calling options for the BeginExecuteXMLReader method. These options
are very similar to the BeginExecuteNonQuery method’s calling syntax.

❑ BeginExecuteXMLReader(AsyncCallback, Object) — The AsyncCallback object is the
method that should be called when the Framework signals that the query has been completed.
The Object parameter is a user-defined state object that will be passed to the callback proce-
dure. As in the other asynchronous operations, this object may be accessed with the callback
procedure using the AsyncState property.

❑ BeginExecuteXMLReader()— This Initiates the asynchronous execution of the passed SQL
Command object.

Let’s take a look at some code:

Dim strSql As String
Dim strCn As String = gstrAsyncString
Dim iResult As IAsyncResult
sqlCm = New SqlCommand()
sqlCn = New SqlConnection(strCn)
sqlCn.Open()
sqlCm.Connection = sqlCn
sqlCm.CommandType = CommandType.Text
strSql = “select * from tblAsyncExecuteNonQuery FOR XML AUTO, XMLDATA”
sqlCm.CommandText = strSql
Me.gdtStart = GetTickCount()
iResult = sqlCm.BeginExecuteXmlReader(New System.AsyncCallback(AddressOf
ExecuteXMLReaderCallback), sqlCm)

Private Sub ExecuteXMLReaderCallback(ByVal iRes As IAsyncResult)
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Dim xmlR As XmlReader
Dim lsqlCm As SqlCommand
Try

lsqlCm = CType(iRes.AsyncState, SqlCommand)
xmlR = lsqlCm.EndExecuteXmlReader(iRes)
Me.gdtEnd = GetTickCount()
Dim cntDsplay As New DisplayCountDelegate(AddressOf DisplayCount)
Me.Invoke(cntDsplay)

Catch sqlExc As SqlException
‘Perform some type of operation to notify someone that an error has

occurred.
‘If an exception occurs, show it to the user.
Dim excDsplay As New DisplayErrorDelegate(AddressOf DisplayError)
Dim parameterArray(1) As Object
parameterArray(0) = CType(sqlExc, System.Object)
Me.Invoke(excDsplay, parameterArray)

Finally
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCn.Dispose()
sqlCn = Nothing
sqlCm.Dispose()
sqlCm = Nothing

End Try
End Sub

The preceding code is an example of how to get an XMLReader. You issue a command to get the XML
through the SQL Server command and begin the operation to get the XML result; and when the XML
result is returned, the callback method is called and the EndExecuteXmlReader() method is called to
end the asynchronous command.

Asynchronous Operations in ASP.NET
Now that you have had the opportunity to look at the basics of asynchronous operations in ADO.NET,
let’s look at a more serious example using ASP.NET. This example is derived from a real-world instance
related to a search engine system. In that scenario, the management team wanted the following actions
to occur after a user submitted a search:

❑ The domain from which the user entered the query would be stored in a database table for
future analysis.

❑ The referrer from which the user entered the query would be stored. While this is very similar
to the domain, it is not necessarily 100% the same. For example, if multiple domain names
pointed at the same search page and there were search pages on other Web sites that pointed to
the result pages, these results would not be guaranteed to be the same.

❑ The search term entered by the user for the query would be stored in a database table for future
analysis.

❑ Search results would be displayed to the user.
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Attempting to code this in classical ASP/COM was not easily done. Coding this type of operation in
ASP.NET 1.x was not that difficult. Several other threads could be created to handle operations to log data
and return search results. The only problem was that this required some relatively complex coding in 
setting up threads, getting results, waiting on the results, setting up delegates to communicate the results
back, and so on. With ADO.NET 2, using the asynchronous commands, an ASP.NET application can
bypass the need to explicitly use a managed thread or the thread pool. This feature is advantageous
because if threads from the thread pool are not used extensively, the thread pool provided by ASP.NET for
applications is not easily exhausted. The steps for performing the preceding operations are as follows:

1. Begin the ASP.NET request.

2. Create the ADO.NET objects and populate them appropriately.

3. Perform the operations asynchronously. In the following example, a database insertion and
query occur using BeginExecuteNonQuery() and BeginExecuteReader().

4. Wait for the results from an operation.

5. If the operation is the query result, display that in a grid.

Now that the logical steps have been laid out, let’s look at the source code necessary to perform the
operation in this manner:

Dim i As Integer
Dim strSql As String = String.Empty
Dim strCn As String = “............”
Dim sqlCnString As New SqlConnectionStringBuilder(strCn)
sqlCnString.AsynchronousProcessing = True
Dim sqlCnInsert As New SqlConnection(sqlCnString.ConnectionString)
Dim sqlCnQuery As New SqlConnection(sqlCnString.ConnectionString)
Dim sqlCmInsert As New SqlCommand()
Dim sqlCmQuery As New SqlCommand()
Dim sqlpmServer As New SqlParameter()
Dim sqlpmReferer As New SqlParameter()
Dim sqlpmSearchTerms As New SqlParameter()
Dim sqlpmDateEntered As New SqlParameter()
Dim sqlpmSearchTermsQuery As New SqlParameter()
Try

sqlCmInsert.Connection = sqlCnInsert
sqlCmQuery.Connection = sqlCnQuery
strSql = “insert into tblSearch (ServerName, Referer, SearchTerms, DateEntered)

values (@ServerName, @Referer, @SearchTerms, @DateEntered)”
sqlCmInsert.CommandText = strSql
sqlpmServer.SqlDbType = SqlDbType.VarChar
sqlpmServer.Size = 100
sqlpmServer.SqlValue = Request.ServerVariables(“Server_Name”).ToString()
sqlpmServer.Direction = ParameterDirection.Input
sqlpmServer.ParameterName = “@ServerName”
sqlCmInsert.Parameters.Add(sqlpmServer)
sqlpmReferer.SqlDbType = SqlDbType.VarChar
sqlpmReferer.SqlValue = Request.ServerVariables.Item(“Http_Referer”).ToString()
sqlpmReferer.Direction = ParameterDirection.Input
sqlpmReferer.ParameterName = “@Referer”
sqlCmInsert.Parameters.Add(sqlpmReferer)
sqlpmSearchTerms.SqlDbType = SqlDbType.VarChar
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sqlpmSearchTerms.Size = Me.txtSearchTerm.MaxLength
sqlpmSearchTerms.SqlValue = Me.txtSearchTerm.Text
sqlpmSearchTerms.Direction = ParameterDirection.Input
sqlpmSearchTerms.ParameterName = “@SearchTerms”
sqlCmInsert.Parameters.Add(sqlpmSearchTerms)
sqlpmDateEntered.SqlDbType = SqlDbType.DateTime
sqlpmDateEntered.SqlValue = DateTime.Now
sqlpmDateEntered.Direction = ParameterDirection.Input
sqlpmDateEntered.ParameterName = “@DateEntered”
sqlCmInsert.Parameters.Add(sqlpmDateEntered)
strSql = “select top 50 Searchurl from tblSearchResults where

contains(SearchText, ‘“”” & SqlEscape(Me.txtSearchTerm.Text) & “””’)”
sqlCmQuery.CommandText = strSql
sqlCnInsert.Open()
sqlCnQuery.Open()
Dim arInputs As IAsyncResult = sqlCmInsert.BeginExecuteNonQuery()
Dim arSearch As IAsyncResult = sqlCmQuery.BeginExecuteReader()
Dim whandles(1) As WaitHandle
whandles(0) = arInputs.AsyncWaitHandle
whandles(1) = arSearch.AsyncWaitHandle
For i = 0 To 1

Dim index As Integer = WaitHandle.WaitAny(whandles, 1000, False) ‘  secs
If i = 0 Then

sqlCmInsert.EndExecuteNonQuery(arInputs)
ElseIf i = 1 Then

Dim sqlDr As SqlDataReader = sqlCmQuery.EndExecuteReader(arSearch)
Me.gvResults.DataSource = sqlDr
Me.gvResults.DataBind()
sqlDr.Close()
sqlDr.Dispose()
sqlDr = Nothing

End If
Next
Me.pnlResults.Visible = True

Finally
If sqlCnInsert.State <> ConnectionState.Open Then

sqlCnInsert.Close()
End If
sqlCnInsert.Dispose()
If sqlCnQuery.State <> ConnectionState.Open Then

sqlCnQuery.Close()
End If
sqlCnQuery.Dispose()
sqlCnInsert = Nothing
sqlCnQuery = Nothing
sqlCmInsert.Dispose()
sqlCmQuery.Dispose()

End Try
Private Function SqlEscape(ByVal pstrTerm As String) As String

Dim strTemp As String = String.Empty
If Not (pstrTerm Is Nothing) Then

strTemp = pstrTerm.Replace(“‘“, “‘’”)
End If
Return (strTemp)

End Function
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You’ve just seen a complete working example of asynchronous operations in ADO.NET 2 being called
through ASP.NET. Figure 10-1 shows the output for a sample search criteria.

Figure 10-1

IAsyncResult
While not specifically a member of the System.Data.SqlClient namespace, the IAsyncResult interface
is important when dealing with asynchronous operations. With ADO.NET, the IAsyncResult interface
may be used to poll or wait for results, in addition to being called by the method that ends the asyn-
chronous operation. Overall, the IAsyncResult interface is used to represent the state of an asynchronous
operation. The following table shows the properties available to an IAsyncResult object.

IAsyncResult Members
Property Description

AsyncState Returns a user-defined object that contains information about an
asynchronous operation.

AsyncWaitHandle Returns a WaitHandle that is used to wait for an asynchronous
operation to finish. A WaitHandleis used to wait for exclusive
access to shared resources.

Table continued on following page
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IAsyncResult Members (continued)
Property Description

CompletedSynchronously Returns an indication of whether the asynchronous operation
completed synchronously.

IsCompleted Returns an indication of whether the asynchronous operation is
finished.

Final Words of Warning with Asynchronous Operations
Now that you are familiar with asynchronous operations in ADO.NET Version 2, note the following
items that must be monitored in a program because they can jump out and bite you if you’re not careful:

❑ Multiple commands on a connection — SQL Server 2005 will support multiple commands on
one connection. Previous versions of SQL Server do not support multiple commands on a single
connection.

❑ The connection and command objects are not thread safe — Great care must be taken when
making multiple calls, especially in a winforms application.

❑ Cleanup — Merely because an operation is asynchronous does not mean that commands and
connections should not be properly cleaned up.

Multiple Active Result Sets
With Classic ADO and ADO.NET 1.x, there has been a one-to-one relationship between commands and
connection objects. With the release of SQL Server 2005 and ADO.NET 2.0, Microsoft has added the
capability for multiple command objects to open on a single connection object when executing against a
SQL Server 2005 database. This capability is referred to as Multiple Active Result Sets (MARS). Let’s look
at some code:

Dim strSql1 As String = “select top 10 * from tblAsyncExecuteNonQuery”
Dim strSql2 As String = “select top 20 * from tblAsyncExecuteNonQuery”
Dim sqlCn As New SqlConnection(Me.gstrSyncString)
Dim sqlCm1 As New SqlCommand(strSql1, sqlCn)
Dim sqlCm2 As New SqlCommand(strSql2, sqlCn)
Dim sqlDr1 As SqlDataReader
Dim sqlDr2 As SqlDataReader
Dim dsData As New DataSet()
Try

If Not Page.IsPostBack Then
sqlCn.Open()
sqlDr1 = sqlCm1.ExecuteReader()
sqlDr2 = sqlCm2.ExecuteReader()
Me.ddl1.Items.Add(String.Empty)
Me.ddl2.Items.Add(String.Empty)
Me.ddl1.DataSource = sqlDr1
Me.ddl2.DataSource = sqlDr2
Me.ddl1.DataTextField = “ClientDateEntered”
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Me.ddl1.DataValueField = “tblAsyncExecuteNonQueryId”
Me.ddl2.DataTextField = “ClientDateEntered”
Me.ddl2.DataValueField = “tblAsyncExecuteNonQueryId”
Me.ddl1.DataBind()
Me.ddl2.DataBind()
If Not sqlDr1.IsClosed Then

sqlDr1.Close()
End If
If Not sqlDr2.IsClosed Then

sqlDr2.Close()
End If
sqlDr1.Dispose()
sqlDr2.Dispose()

End If
Me.lblError.Visible = False
Catch sqlEx As SqlException
‘Do something with this error. We are just going to show the message
‘ in a label control

Me.lblError.Text = “Error: “ & sqlEx.Message.ToString()
Me.lblError.Visible = True

Finally
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCn.Dispose()
sqlCn = Nothing

End Try

The interesting thing to note about the preceding code is that there is only one connection object, but two
open data readers on that object.

What Is MARS Useful For?
Now that you have seen the basics of MARS, let’s take a look at a common scenario in which MARS can
be used. ASP.NET includes a Page_Load event, which, along with the Page.IsPostback property, can
preload values for an ASP.NET page. For example, you might want to get the values for several drop-
down lists. To do so, several commands and connections will be made against a database. These connec-
tions may come from the connection pool, but they are still resources and processing that are used up.
With MARS, a single connection is opened to a database, and multiple commands are sent over that con-
nection and kept open for processing as necessary.

Technical Issues with MARS
MARS is a great feature, but developers should be careful of several things when using it:

❑ MARS operations are only supported with a .NET 2.0 (or later) front-end application when the
application is running with a SQL Server 2005 (or later) database.

❑ MARS operations are synchronous.

❑ MARS statements may contain data manipulation language and data definition language state-
ments. However, these statements must execute atomically, with the result that other MARS
statements will be blocked.
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❑ No other statements may execute while a WAITFOR statement is waiting.

❑ Connections with MARS enabled create a logical session that adds some amount of overhead.

❑ The logical sessions are cached by the SqlClient. The cache supports up to 10 MARS sessions.

❑ The cache is on a per-connection basis, and the sessions are not shared across connections.

❑ The sessions are only cleaned up when the associated connection is disposed.

❑ The session cache is not pre-loaded.

❑ MARS operations are not thread safe.

❑ MARS-enabled connections may be connection pooled. If some connections are MARS-enabled
and some have MARS disabled, the connections are pulled from different pools.

You need to be aware of these technical issues when working with MARS. As a programmer, you should
also be aware of an architectural issue: MARS is very similar to parallel operations, such as asynchronous
commands discussed earlier in this chapter. If you need the capability to perform operations in parallel,
then a better choice is to perform the necessary commands through the asynchronous commands dis-
cussed earlier in this chapter.

MARS is turned off by default. It may be turned on by using the connection string keyword or the
property of the SQL connection string builder object.

Enumerating SQL Servers
Have you ever wanted to create an application that knows about all of the database systems on your
company’s network? Perhaps you need to create an application for a set of database administrators for
your SQL Server databases so that they can see a list of all of the SQL Server databases in your company.
ADO.NET 2.0 provides this feature through the DbEnumerator base class in System.Data.Common.
When using the SqlDataSourceEnumerator and the DbDataSourceEnumerator, a DataTable is
returned.

The following code enumerates SQL Server servers on a network:

Dim sdsObj As DataTable = SqlDataSourceEnumerator.Instance.GetDataSources()
Dim src As DataRow
Me.lbServer.Items.Clear()
For Each src In sdsObj.Rows
Me.lbServer.Items.Add(src.Item(“ServerName”).ToString() & “-” & _

src.Item(“InstanceName”).ToString() & “-” & src.Item(“Version”).ToString())
Next src

The preceding code uses the SqlDataSourceEnumerator to obtain information about SQL Server 
running within the local network. The SqlDataSourceEnumerator class exposes the information 
programmatically.

In order to obtain the information correctly from SQL Server 2005, the SQL Server Browser service
must be running on the client system.
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To enumerate through all of the data providers on the network and the servers associated with them, the
DbProvider factory is used:

Dim t As DataTable = DbProviderFactories.GetFactoryClasses()
Dim r As DataRow
Dim servers As DataTable
Dim dbe As DbDataSourceEnumerator
Dim factory As DbProviderFactory
For Each r In DbProviderFactories.GetFactoryClasses().Rows

factory = DbProviderFactories.GetFactory(r)
dbe = factory.CreateDataSourceEnumerator()
If Not (dbe Is Nothing) Then
servers = dbe.GetDataSources()

For Each src In servers.Rows
Me.lbServer.Items.Add(src.Item(“ServerName”).ToString() & “-” &

src.Item(1).ToString() & “-” & src.Item(3).ToString())
Next

End If
Next r

This code works by enumerating the installed providers on the system.  With each provider, all data
sources are enumerated.  Each data provider and data source will have its own logic for performing enu-
meration.  Additional configuration may be required for additional database data providers.

Value Name Example/Typical Value

ServerName Machine name

InstanceName Name of the Instance. The default instance will return a System.DBNull for
value.

IsClustered Yes/No

Version 9.0.852

Enumerating servers will only find SQL Server 2000 and later versions of the database.

Connection Pooling
Connection pooling has been around for several iterations of data access technologies. ODBC has sup-
ported connection pooling for several versions. OleDb has supported a similar pooling mechanism,
called session pooling or resource pooling. With the release of COM+, Microsoft added more technology to
assist with connection and session pooling, along with the capability to create a pool of objects for its
own usage. With the release of the .NET 1.0 Framework, Microsoft included pooling with the SqlClient,
which provided users with some control over the minimum and maximum number of pooled database
connections. These values can be set through the MinClient (the default is zero) and MaxClient (the
default is 100) values that are passed through the connection string. 

With ADO.NET 2.0, Microsoft has added new capabilities to manage the client-side connection pool
with the SqlClient. Some new mechanisms clear the connection pool included with the SqlClient.
Let’s take a look at two of these methods:
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❑ ClearPool(ConnectionObject)— The ClearPool method is a shared (static with C#)
method that takes a SqlConnection object. When called, the connection pool within the cur-
rent app domain that would provide the connection object for the provided SqlConnection
has all connection objects marked as doomed:

Dim sqlCn As New SqlConnection()
sqlCn.ConnectionString = Me.gstrSyncString
sqlCn.ClearPool(sqlCn)

❑ ClearAllPools()— The ClearAllPools() method is a shared (static with C#) method that
takes no SqlConnection object as a parameter. Calling this method results in all connections on
every connection pool within the current app domain being marked as doomed: 

Dim sqlCn As New SqlConnection()
sqlCn.ConnectionString = Me.gstrSyncString
SqlConnection.ClearAllPools()

When a connection is marked as doomed, the connection is not immediately removed from the connec-
tion pool. A background process that runs every four to eight minutes will clean up any connections
marked as doomed.

There are some additional changes within ADO.NET Version 2.0 regarding how an application uses the
connection pool. Although these items are not changeable through a method or property in a class, they
still are valuable to know.

In ADO.NET 1.x, assume that you have a connection pool that is filled with good connections. For some
reason, the application loses connection with the SQL Server database and the sessions on the database
are reset. The application must go through each connection in the pool and attempt to connect, thus
draining the pool, until a new connection attempt can be made and a valid connection is made to the
database. Each time a “bad attempt” to connect is made, the connection pool is drained of an individual
connection. This may be confusing to the user because the application appears to fail until the connec-
tion pool is drained and the application mysteriously starts working.

Let’s look at the same scenario in ADO.NET 2. Once again, your application loses connection with the
SQL Server database and the sessions on the database are reset. The application will attempt to execute a
command on one of the invalid connection objects. An exception will be generated once again. However,
when this exception is generated, all connection objects within the pool are marked as doomed.

The result of these new features in the System.Data.SqlClient namespace is a more efficient usage of
the connection pool — and the capability for a programmer to twist a few knobs in regard to use of the
connection pool.

Password Management
Frequently during the course of an application’s lifetime, an administrator would like to change the
password for the application. With SQL Server 2000 and earlier, this required opening the SQL Server
Enterprise Manager to change the password of a user id.
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With SQL Server 2005 and ADO.NET 2.0, Microsoft has provided a shared (static in C#) method on the
SqlConnection object to change the password of a SQL Server user without the need to involve an
administrator. This method is named ChangePassword(). The ChangePassword method takes the fol-
lowing parameters: ChangePassword(ConnectionString, NewPassword). The ConnectionString
is literally a valid SQL connection string. The NewPassword is a string containing the new password for
the user specified within the ConnectionString. The ChangePassword method, when called, will con-
nect to the specified database, change the password, and then close the underlying connection, as shown
in the following code:

Dim sqlCn As New SqlConnection()
‘ Create a sqlconnectionstringbuilder object with the current
‘   connection string.
Dim scsbObj As New SqlClient.SqlConnectionStringBuilder(Me.gstrSyncString)
Try
scsbObj.Password = Me.txtPassword.Text
‘Calling the ChangePassword() method.
SqlConnection.ChangePassword(scsbObj.ConnectionString, Me.txtNewPassword.Text)
‘Change the values in the sqlconnectionstringbuilder object.
scsbObj.Password = Me.txtNewPassword.Text
‘Get the updated connection string from the sqlconnectionstringbuilder object.
sqlCn.ConnectionString = scsbObj.ConnectionString
sqlCn.Open()
‘Save the string into a private string variable.
‘   This activity is particular to this example.
Me.gstrSyncString = scsbObj.ConnectionString
MsgBox(“Succesful logon with a new password.”)
Catch sqlEx As SqlException
‘Do something with this error.
MsgBox(“Error: “ & sqlEx.Message.ToString())
Finally

‘Perform cleanup.
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCn.Dispose()
sqlCn = Nothing
End Try

This code changes a user’s password. Changing a password is a new feature that requires the .NET 2.0
Framework and SQL Server 2005. This code sample also uses a new feature in the .NET Framework
called the SqlConnectionStringBuilder.

The ChangePassword feature works only with SQL Server 2005 and later.

Building a SQL Connection with the
SqlConnectionStringBuilder Class

One interesting new feature in the System.Data.Common namespace is the
DBConnectionStringBuilder. From that, the SqlClient has implemented the class
SqlConnectionStringBuilder. This class will parse your connection string, enabling you to easily
make changes without having to go through all the drudgery of writing the parsing routines on your
own. The class has a number of very useful properties, described in the following table.
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Properties of the SqlConnectionStringBuilder
Property Description

ApplicationName Textual name of the application as presented to the database.

AsynchronousProcessing Boolean value that specifies whether the connection should be
set up to process commands asynchronously.

AttachDBFileName Textual path to the database file so that the database file may
be used as a database without having to explicitly attach to the
database engine.

BrowsableConnectionString Boolean value that specifies whether the connection string is
browsable by a visual designer.

ConnectionReset Boolean value that specifies whether the connection is reset.

ConnectionString Textual value representing the SQL Server connection string.

ConnectTimeout Integer value representing the number of seconds before an
error is raised.

Count Integer value representing the number of keys within the 
connection string maintained by instance.

CurrentLanguage Textual value representing the current language.

DataSource Textual value containing the data source value of the 
connection string.

Encrypt Boolean value that specifies whether encryption is used when
communicating between the client application and the database.

Enlist Boolean value that specifies whether commands associated
with the connection will enlist within a transaction.

FailoverPartner The failover partner.

InitialCatalog Textual value representing the InitialCatalog property of
the connection string.

IntegratedSecurity Boolean value that specifies whether integrated Security is used.

IsFixedSize Determines whether the SqlConnectionStringBuilder has a 
Fixed size. 

IsReadOnly Boolean read-only value that specifies whether the 
ConnectionStringBuilder object is read-only.

Item Gets or sets the value associated with the specified key.

Keys As ICollection that contains the keys in the 
SqlConnectionStringBuilder. 

LoadBalanceTimeout The minimum timeout value in seconds.

MaxPoolSize Integer value representing the maximum size of the connection
pool of database connections.
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Property Description

MinPoolSize Integer value representing the minimum size of the connection
pool of database connections.

MultipleActiveResultSets Boolean value that specifies whether multiple active result sets
(MARS) is available.

NetworkLibrary Textual representation of the network library that will be used
to communicate between the client application making the
database connection and the database itself.

PacketSize Integer value representing the packet size for network 
communications.

Password Textual value representing the Password value of the 
connection string.

PersistSecurityInfo Boolean value that specifies the Persist security value of a 
connection string.

Pooling Boolean value that specifies whether connection pooling is
enabled.

Replication Boolean value that indicates whether replication is supported
using the connection.

UserId Textual value representing the UserId value of a connection
string.

Values An ICollection that contains the value in the 
SqlConnectionStringBuilder.

WorkStationID Textual value representing the workstation id value of a 
connection string

As you can see, the properties of the SqlConnectionStringBuilder map to the values that can be
specified in the SQL connection string. 

The SqlConnectionStringBuilder is a simple class that is included with the SqlClient name-
space to provide an easy way to add and change values within a connection string that is passed to a
SqlConnection object. Let’s look at a simple example of a change from synchronous operations to
asynchronous operations:

Dim strCn As String = “...............”
Dim sqlCnString As New SqlConnectionStringBuilder(strCn)
sqlCnString.AsynchronousProcessing = True
Dim sqlCnInsert As New SqlConnection(sqlCnString.ConnectionString)

SQL Server Types (SqlTypes)
With the introduction of ADO.NET 1.x, Microsoft provided a set of classes for working with the native
data types within SQL Server. These classes are stored within the System.Data.SqlTypes namespace.
Using these classes will help in several areas:
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❑ Fewer errors because code will automatically know the data type it is using

❑ Fewer errors involving a loss of precision

❑ Faster code because the SqlTypes are already used behind the scenes and type conversions are
minimized

Structures 
Included in the System.Data.SqlTypes namespace are the basic structures for dealing with SQL
Server data types. These structures are described in the following table.

Overview of the System.Data.SqlTypes Namespace
SQL Server Structure Description of the SqlType Structure Equivalent 
Data Type Name SqlDbType

Binary SqlBinary The SqlBinary structure represents an Binary
unknown length binary data that is to 
be inserted or retrieved from a database. 
This binary data is stored in the form 
of a stream of binary data.

Bigint SqlInt64 The SqlInt64 structure maps to the BigInt
Bigint data type of SQL Server. It is a 
signed, 64-bit integer that has a valid 
range of –2^63 to 2^63 – 1.

boolean SqlBoolean The SqlBoolean structure represents  Bit
an integer with a value of either 1 or 0 
that is to be inserted or retrieved from 
the database.

char SqlString The SqlString structure represents Char
textual data.

datetime SqlDateTime The SqlDateTime represents a DateTime
standard DateTime data type.

decimal SqlDecimal The SqlDecimal structure maps to the Decimal
Decimal/Numeric of SQL Server. It has 
a fixed precision and scales between 
–10^38 –1 and 10^38 – 1 when inserted 
and selected from the SQL Server 
database.

float SqlDouble The SqlDouble structure maps to the Float
Double data type of SQL Server. It is a 
floating-point data type with a range 
of –1.79 10^308 to 1.79 10^308.

284

Chapter 10

12_584375 ch10.qxd  10/28/05  10:54 PM  Page 284



SQL Server Structure Description of the SqlType Structure Equivalent 
Data Type Name SqlDbType

image SqlBinary The SqlBinary structure represents an Image
unknown length binary data that is to 
be inserted or retrieved from a database. 
This binary data is stored in the form of 
a stream of binary data.

int SqlInt32 The SqlInt32 structure maps to the Int
int data type of SQL Server. It is a 
signed, 32-bit integer that has a valid 
range of –2147483647 to 2147483647.

money SqlMoney The SqlMoney structure maps to the Money
money data type of SQL Server. It has a 
valid range of –922,337,203,685,477.5808 
to 922,337,203,685,477.5807.

ntext SqlString The SqlString structure represents NText
several different string data types 
within SQL Server. 

nvarchar SqlString The SqlString structure represents  NVarChar
several different string data types 
within SQL Server.

numeric SqlDecimal The SqlDecimal structure maps to the Numeric
Decimal/Numeric of SQL Server. It has 
a fixed precision and scales between 
–10^38 -1 and 10^38 – 1 when inserted 
and selected from the SQL Server 
database.

real SqlSingle The SqlSingle is a single-precision Real
data type. 

smalldatetime SqlDateTime The SqlDateTime maps to a valid date SmallDateTime
between January 1, 1753 to December 
31, 9999, with an accuracy of 3.33 
milliseconds. Note that this is slightly 
different from the SQL Server 
smalldatetime, which maps to a valid
date between January 1, 1900, to June 6, 
2079, with an accuracy of a minute.

smallint SqlInt16 The SqlInt16 structure maps to the SmallInt
smallint data type of SQL Server. It is 
a signed, 16-bit integer that has a valid 
range of –32768 to 32767.

Table continued on following page

285

ADO.NET Programming with SQL Server from a Client Application

12_584375 ch10.qxd  10/28/05  10:54 PM  Page 285



Overview of the System.Data.SqlTypes Namespace (continued)
SQL Server Structure Description of the SqlType Structure Equivalent 
Data Type Name SqlDbType

smallmoney SqlMoney The SqlMoney structure maps to SmallMoney
a valid monetary value between 
–922,337,203,685,477.5808 and 
922,337,203,685,477.5807, with an 
accuracy to ten thousandths of a 
monetary value. This is larger than the 
necessary storage space for a small 
money structure, which is accurate 
between –214,748.3648 and 214,748.3647 
to ten thousandths of a monetary unit.

sql_variant Object The sql_variant maps to the generic Variant
Variant object.

sysname SqlString The SqlString structure represents VarChar
several different string data types 
within SQL Server. 

Text SqlString The SqlString structure represents Text
several different string data types 
within SQL Server. 

timestamp SqlBinary The SqlBinary structure represents a TimeStamp
binary stream of data.

Tinyint SqlByte The SqlByte structure represents an TinyInt
unsigned 8-bit integer.

varbinary SqlBinary The SqlBinary structure represents a VarBinary
binary stream of data.

Varchar SqlString The SqlString structure represents VarChar
several different string data types 
within SQL Server. 

uniqueidentifier SqlGuid The SqlGuid structure maps to the UniqueId
uniqueidentifier data type of SQL
Server. It is a 128-bit globally unique 
identifier.

With the release of .NET 2.0, it is possible to retrieve the SQL server data types of the column as defined
by System.Data.SqlTypes. The following code does just that:

Dim i As Integer
Dim strSql As String = “select * from tblTest where 1=2”
Dim scsbObj As New SqlConnectionStringBuilder(Me.gstrSyncString)
Dim sqlCn As New SqlConnection(scsbObj.ConnectionString)
Dim sqlCm As New SqlCommand(strSql, sqlCn)
Dim sqlDr As SqlDataReader
Try
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sqlCn.Open()
sqlDr = sqlCm.ExecuteReader()
sqlDr.Read()
For i = 0 To (sqlDr.FieldCount - 1)

MsgBox(sqlDr.GetName(i) + vbCrLf + “SqlType: “ + _
Convert.ToString(sqlDr.GetProviderSpecificFieldType(i)) + vbCrLf + _
“Database Type: “ + Convert.ToString(sqlDr.GetDataTypeName(i)) + vbCrLf + _
“.NET Type: “ + Convert.ToString(sqlDr.GetFieldType(i)))

Next
If Not (sqlDr.IsClosed = True) Then

sqlDr.Close()
End If
sqlDr.Dispose()
sqlDr = Nothing

Catch sqlExc As SqlException
MsgBox(“Error: “ & sqlExc.Message.ToString())

Finally
sqlCm.Dispose()
sqlCm = Nothing
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCn.Dispose()
sqlCn = Nothing

End Try

The methods to pay attention to are SqlDataReader.GetProviderSpecificFieldType() and the
SqlDataReader.GetDataTypeName(). 

The SqlDataReader.GetProviderSpecificFieldType() method will return the System.Data
.SqlType that the column is defined as. Valid return values are System.Data.SqlTypes.SqlInt32,
System.Data.SqlTypes.SqlString, and other SqlTypes as defined within the System.Data
.SqlTypes namespace. The SqlDataReader.GetDataTypeName() method will return the data type 
as defined within the database. Valid return values are int, varchar, and other data types as defined
within the SQL Server database.

While not necessary in this example, two important command behaviors may need to be passed within
the .BeingExecuteReader() method: CommandBehavior.KeyInfo and CommandBehavior
.SchemaOnly. For more information about these two CommandBehaviors, refer to the Appendix,
which describes the CommandBehavior enumeration.

Using SqlTypes
Let’s look at an example that uses the SqlTypes:

iVarCharOrdinal = sqlDr.GetOrdinal(“TestVarchar”)
While sqlDr.Read()

sqltString = sqlDr.GetSqlString(iVarCharOrdinal)
strSqlAsString = sqltString.ToString()

End While

The following table describes the methods that retrieve the SqlTypes from your data.
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Get Values as SqlTypes
Method Description

GetSqlBoolean(integer) Gets the value of the specified column as a SqlBoolean type.
The column that is specified must be the ordinal value of the
column desired.

GetSqlByte(integer) Gets the value of the specified column as a SqlByte type. The
column that is specified must be the ordinal value of the column
desired.

GetSqlBytes(integer) Gets the value of the specified column as SqlBytes. The column
that is specified must be the ordinal value of the column desired.

GetSqlChars(integer) Gets the value of the column as SqlChars. The column that is
specified must be the ordinal value of the column desired.

GetSqlDateTime(integer) Gets the value of the specified column as a SqlDateTime type.
The column that is specified must be the ordinal value of the
column desired.

GetSqlDecimal(integer) Gets the value of the specified column as a SqlDecimal type.
The column that is specified must be the ordinal value of the
column desired.

GetSqlDouble(integer) Gets the value of the specified column as a SqlDouble type. The
column that is specified must be the ordinal value of the column
desired.

GetSqlGuid(integer) Gets the value of the specified column as a SqlGuid type. The
column that is specified must be the ordinal value of the column
desired.

GetSqlInt16(integer) Gets the value of the specified column as a SqlInt16 type. The
column that is specified must be the ordinal value of the column
desired.

GetSqlInt32(integer) Gets the value of the specified column as a SqlInt32 type. The
column that is specified must be the ordinal value of the column
desired.

GetSqlInt64(integer) Gets the value of the specified column as a SqlInt64 type. The
column that is specified must be the ordinal value of the column
desired.

GetSqlMoney(integer) Gets the value of the specified column as a SqlMoney type. The
column that is specified must be the ordinal value of the column
desired.

GetSqlSingle(integer) Gets the value of the specified column as a SqlSingle type. The
column that is specified must be the ordinal value of the column
desired.
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Method Description

GetSqlString(integer) Gets the value of the specified column as a SqlString type. The
column that is specified must be the ordinal value of the column
desired.

GetSqlValue(integer) Gets the value of the specified column as an Object type. The
column that is specified must be the ordinal value of the column
desired.

GetSqlValues(values()) Gets the value of the specified column as a SqlBoolean type.
The parameter passed is an area of type object. If fewer values in
the array are passed than items in the row of data, the elements
returned are truncated to fit in the array. 

GetSqlXml(integer) Gets the value of the specified column as a SqlXml type. The
specified column must be the ordinal value of the column desired.

Except for the GetSqlValues() method, the preceding methods all take an integer as a parameter.
This integer represents the zero-based ordinal value of that column. The ordinal value may be obtained
by calling SqlDataReader.GetOrginal(ColumnName). This method call will return the ordinal
position of the column specified by the parameter ColumnName.

Let’s look at some example code:

Dim i As Integer
Dim iStart As Integer
Dim iEnd As Integer
Dim iVarCharOrdinal As Integer
Dim strSql As String = “select * from tblTest”
Dim scsbObj As New SqlConnectionStringBuilder(Me.gstrSyncString)
Dim sqlCn As New SqlConnection(scsbObj.ConnectionString)
Dim sqlCm As New SqlCommand(strSql, sqlCn)
Dim sqlDr As SqlDataReader
Dim sqltString As System.Data.SqlTypes.SqlString
Try

sqlCn.Open()
iStart = GetTickCount()
For i = 0 To Me.iLength - 1

sqlDr = sqlCm.ExecuteReader()
iVarCharOrdinal = sqlDr.GetOrdinal(“TestVarchar”)
While sqlDr.Read()

sqltString = sqlDr.GetSqlString(iVarCharOrdinal)
End While
If Not (sqlDr.IsClosed = True) Then

sqlDr.Close()
End If
sqlDr.Dispose()

Next
iEnd = GetTickCount()
MsgBox(sqltString.ToString())
MsgBox(“Time: “ & (iEnd - iStart).ToString())
sqlDr = Nothing
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Catch sqlExc As SqlException
MsgBox(“Error: “ & sqlExc.Message.ToString())

Finally
sqlCm.Dispose()
sqlCm = Nothing
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCn.Dispose()
sqlCn = Nothing

End Try

The preceding code shows a call using GetSqlString() to return a string within a routine to calculate
the amount of time to make that call in a loop. By calculating the amount of time, the user can perform
some performance analysis and determine any performance advantages of using GetSqlString().

Using SqlDbType
Now that you have looked at what the SqlTypes namespace is used for, let’s look at how to use
SqlTypes. Typically, the SqlType structures are used for calling stored procedures or prepared SQL
statements for which the data type is already known. The SqlTypes are used in conjunction with the
SqlParameter objects. Using the SqlParameters along with the SqlTypes, code will bypass some
extra conversions that are performed as a command is executed if a SqlType is not specified. An addi-
tional benefit of using the SqlParameter objects is that it will assist in protecting code from a SQL injec-
tion attack. Take a look at the following code samples:

Dim iReturn As Integer
Dim strSql As String = “spSimple”
Dim sqlCn As New SqlConnection(Me.gstrSyncString)
Dim sqlCm As New SqlCommand(strSql, sqlCn)
Dim sqlPmDate As New SqlParameter(“@pdtClientDate”, SqlDbType.DateTime)
Try

sqlPmDate.Direction = ParameterDirection.Input
sqlPmDate.IsNullable = False
sqlPmDate.Value = DateTime.Now
sqlCm.Parameters.Add(sqlPmDate)
sqlCm.CommandType = CommandType.StoredProcedure
sqlCn.Open()
iReturn = Convert.ToInt32(sqlCm.ExecuteScalar())
MsgBox(“Value returned: “ & iReturn.ToString())

Catch sqlExc As SqlException
MsgBox(“Error: “ & sqlExc.Message.ToString())

Finally
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCn.Dispose()
sqlCn = Nothing
sqlPmDate = Nothing
sqlCm.Dispose()
sqlCm = Nothing

End Try
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Why use the SqlDbType? The SqlDbType is very useful when used in conjunction with the
SqlParameter class. Together, the two objects provide for an optimized mechanism to communicate
with stored procedures and to properly remove illegal characters from a database operation. For exam-
ple, taken together, these classes will properly escape an input sequence containing the single apostro-
phe character, which is often used in a SQL injection attack.

Bulk Copy with SQL Server
Bulk copying of data to and from SQL Server databases is a relatively common practice. For example,
you may need to download or upload a large number of records from multiple hardware devices or pull
a large number of financial transactions out of a database.

Traditionally, the utility bcp.exe has been used to perform bulk-style operations. Underlying the
bcp.exe utility is the Bulk Copy API. This API exists at the NETLIB and ODBC levels. With the arrival
of ADO.NET 2.0, there is now a managed interface into this API. The managed interface is built into the
SqlClient namespace. Three classes are of interest. The primary class is SqlBulkCopy. Two additional
supporting classes are SqlBulkCopyColumnMapping and SqlBulkCopyColumnMappingCollection.

The following simple example takes data from one table and puts it into another:

Dim strSql As String
Dim sqlCn As New SqlConnection(Me.gstrSyncString)
Dim sqlBcp As New SqlBulkCopy(sqlCn)
Dim sqlDa As New SqlDataAdapter()
Dim sqlCm As New SqlCommand()
Dim dtData As New DataTable
Try

sqlCn.Open()
strSql = “truncate table tblAsyncExecuteNonQuery2”
sqlCm.Connection = sqlCn
sqlCm.CommandText = strSql
sqlCm.CommandType = CommandType.Text
sqlCm.ExecuteNonQuery()
strSql = “select tblAsyncExecuteNonQueryId, ClientDateEntered, ServerDateEntered

from tblAsyncExecuteNonQuery”
sqlDa.SelectCommand.CommandText = strSql
sqlDa.SelectCommand.CommandType = CommandType.Text
sqlDa.SelectCommand.Connection = sqlCn
sqlDa.Fill(dtData)
sqlBcp.DestinationTableName = “tblAsyncExecuteNonQuery2”
sqlBcp.WriteToServer(dtData)

Catch sqlExc As SqlException
MsgBox(“Error: “ & sqlExc.Message.ToString())
Catch sqlnvExc As SqlNullValueException
MsgBox(“Error: “ & sqlnvExc.Message.ToString())

Finally
sqlDa.Dispose()
sqlDa = Nothing
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCn.Dispose()
sqlCn = Nothing

End Try
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In this example, the destination table is emptied out and a data table from the source is created, which is
then inserted into the destination table.

What about copying data out of a table into a file? The SqlBulkCopy object has no support for out-
putting data to a file. Several objects in the .NET Framework can be used for copying data out of a
database table and into a file. 

Provider Statistics
Sometimes within an application, the amount of information exposed by the Performance Monitor is not
sufficient. With ADO.NET 2, it is now possible for an application to expose statistical information on a
SQL connection:

Dim strSql As String = “select tblAsyncExecuteNonQueryId, ClientDateEntered,
ServerDateEntered from tblAsyncExecuteNonQuery”
Dim strOut As String = String.Empty
Dim sqlCn As New SqlConnection(Me.gstrSyncString)
Dim sqlDa As New SqlDataAdapter(strSql, sqlCn)
Dim dtData As New DataTable
Dim hashSqlStats As Hashtable
Dim de As IDictionaryEnumerator
Try

sqlCn.Open()
sqlCn.StatisticsEnabled = True
sqlDa.Fill(dtData)
hashSqlStats = CType(sqlCn.RetrieveStatistics(), Hashtable)
de = hashSqlStats.GetEnumerator()
While de.MoveNext()

strOut += Convert.ToString(de.Key) & “: “ & Convert.ToString(de.Value) &
vbCrLf

End While
MsgBox(strOut)

Catch sqlExc As SqlException
MsgBox(“Error: “ & sqlExc.Message.ToString())

Catch sqlnvExc As SqlNullValueException
MsgBox(“Error: “ & sqlnvExc.Message.ToString())

Finally
sqlDa.Dispose()
sqlDa = Nothing
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCn.Dispose()
sqlCn = Nothing
de = Nothing
hashSqlStats = Nothing

End Try

This code provides some insight into how the connections and commands are performing within an
application.

One of the biggest advantages this approach has over merely using the Performance Monitor when
attempting to retrieve information is that this approach enables a program to provide specific information
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about its current state. Relying on the Performance Monitor results in an approximation of what is happen-
ing inside of a program when something bad happens. Figure 10-2 displays sample output for the provider
statistics.

Figure 10-2

SqlCacheDependency
One of the really nice features of ASP.NET 1.x is its capability to cache data from queries on the Web
server in the form of the Cache object. In addition to the Cache object is the CacheDependency object,
which is designed to work with the Cache object so that when changes are made in the local system on a
dependent object, the data stored in the Cache object will be updated based on the CacheDependency
object. With the CacheDependency object, it was possible to cache data on the local system based on a
timer or a change on the local file system. Unfortunately, the CacheDependency object in .NET 1.x was
sealed and could not be extended by being inherited from. The idea is that when a set of values changes
within a SQL server database, a cache item would be rebuilt with the updated and necessary data from a
predefined SQL server query. With .NET 1.x, it was necessary to go through some mechanism, such as a
timer-elapsed, file-system change initiated by a trigger, or other local event to the CacheDependency
object, in order for it to realize that it needed to be updated. This resulted in several mechanisms that
were somewhat complicated to implement. With .NET 2.0, Microsoft has unsealed the CacheDependency
object and created the SqlCacheDependency object. The SqlCacheDependency works with SQL Server
7, 2000, and 2005 to provide a mechanism for updating a client-side cache of data in an easy package.

How to Use the SqlCacheDependency in an ASP.NET Application
Getting database records is a relatively expensive operation. Anything that can be done to minimize the
number of round-trips to a database is a good thing. In many applications, several drop-down list boxes
are filled from some type of lookup table in a database. The data that would be stored in these list boxes
is a great candidate for caching. In Figure 10-3, you can see the time saved when data is stored close to
the client system.
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Figure 10-3

SQL Server 2005

SQL Server 2005 databases and tables have the built-in notification support necessary for the database to
communicate back to the calling application — in this case, an ASP.NET application — and mark the
cached values as invalid. The following code performs this operation:

Dim strKey As String = “SqlCacheDependency”
Dim strCn As String = “............”
Dim strSql As String = “select tblAsyncExecuteNonQueryId, ClientDateEntered,
ServerDateEntered from dbo.tblAsyncExecuteNonQuery”
Dim dsData As New DataSet()
Dim sqlCn As New SqlConnection(strCn)
Dim sqlCm As New SqlCommand(strSql, sqlCn)
Dim sqlDa As New SqlDataAdapter(sqlCm)
Dim sqlDep As SqlCacheDependency
If Cache(strKey) Is Nothing Then

sqlDep = New SqlCacheDependency(sqlCm)
sqlDa.Fill(dsData)
Cache.Insert(strKey, dsData, sqlDep)
Application(“CacheUpdateDate”) = Now.ToString()

End If
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Me.lblCurrentDate.Text = Now.ToString()
Me.lblCacheUpdateDate.Text = Application(“CacheUpdateDate”).ToString()
Me.gvData.DataSource = CType(Cache(strKey), DataSet).Tables(0)
Me.gvData.DataBind()

This code provides an example of how you can use the SqlCacheDepenncy within an ASP.NET 
application.

The Cache.Insert() method inserts a cacheable item into the System.Web.Caching.Cache class.
This method includes several overloaded versions that are of interest:

❑ Cache.Insert(key as String, item as Object)— This version takes a key to identify the
cached item.

❑ Cache.Insert(key as String, item as Object, dep as CacheDependency)— This version
builds on the previous version and takes a CacheDependency object. The CacheDependency
object contains the dependencies, such as the SqlCacheDependency object.

❑ Cache.Insert(key as String, item as Object, dep as CacheDependency, dt as
DateTime, ts as TimeSpan)— This version builds on the previous version and takes a 
datetime object for setting an absolute expiration time, and a timespace for a relative 
expiration.

❑ Cache.Insert(key as String, item as Object, dep as CacheDependency,
dt as DateTime, ts as TimeSpan, cpriority as CacheItemPriority, cir as
CacheItemRemovedCallback)— This version builds on the previous version. The
CacheItemPriority is an enumeration that instructs the system on the priority of a cached
item. The CacheItemRemovedCallback is a delegate that may be used to notify the running
application when the inserted item is removed from the cache.

SQL Server 7 and 2000
Working with SQL Server 7 and 2000 is slightly different than working with SQL Server 2005. SQL
Server 7 and 2000 do not have a built-in way to communicate back to the client when changes have been
made. With ASP.NET and ADO.NET Version 2, a built-in mechanism polls for changes to tables. Let’s
look at some code.

Web.config:

<caching> 
<sqlCacheDependency enabled=”true”>

<databases>
<add name=”SqlServer2kCacheExample”

connectionStringName=”SqlCacheDBConnectionString” pollTime=”600000” />
</databases>

</sqlCacheDependency>
</caching>

Code:

Dim strKey As String = “SqlCacheDependencySql2k”
Dim strCn As String = “............”
Dim strSql As String = “select tblAsyncExecuteNonQueryId, ClientDateEntered,
ServerDateEntered from dbo.tblAsyncExecuteNonQuery”
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Dim dsData As New DataSet()
Dim sqlCn As New SqlConnection(strCn)
Dim sqlCm As New SqlCommand(strSql, sqlCn)
Dim sqlDa As New SqlDataAdapter(sqlCm)
Dim sqlDep As SqlCacheDependency

Try
If Cache(strKey) Is Nothing Then

sqlDep = New SqlCacheDependency(“SqlServer2kCacheExample”,
“tblAsyncExecuteNonQuery”)

sqlDa.Fill(dsData)
Cache.Insert(strKey, dsData, sqlDep)
Application(“CacheUpdateDate”) = Now.ToString()

End If
Me.lblCurrentDate.Text = Now.ToString()
Me.lblCacheUpdateDate.Text = Application(“CacheUpdateDate”).ToString()
Me.gvData.DataSource = CType(Cache(strKey), DataSet).Tables(0)
Me.gvData.DataBind()

Finally
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCn.Dispose()
sqlDa.Dispose()
sqlCm.Dispose()
sqlCn = Nothing
sqlDa = Nothing
sqlCm = Nothing

End Try

Three items must be set up differently when dealing with SQL 7 or SQL 2000 and using the
SqlCacheDependency object:

❑ The database must be set up for caching. This is handled through a command-line call 
to aspnet_regsql.exe and a call to the shared method SqlCacheDependencyAdmin
.EnableTableForNotifications(db connection string). The EnableTableForNotifications
method will create a trigger to run on an insert, update, or delete of records within that table.

❑ The SqlCacheDependency object must be set up differently when running with SQL 7 or SQL
2000. The connection and table must be specified.

❑ The web.config must be set up. A back-end ASP.NET process will connect to the database and
look for changes in the specified table.

❑ Caching can only be done at the table level with SQL 7 and SQL 2000.

Uses for SqlCacheDependency
If you are thinking that this is a really good tool that might have useful applications elsewhere, you are
right. Let’s look at some scenarios:

❑ Data that changes slowly — This is the optimal situation in which to use the
SqlCacheDependency object. If the data being monitored changes slowly, the data can 
be cached closer to the methods that need the data.
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❑ Data that changes rapidly — The SqlCacheDependency object should probably not be used in
a scenario in which the data changes fairly rapidly. If it is used, the back-end processes would
be notified by the SqlCacheDependency object and would spend too much time notifying the
cache that the cached object should be rebuilt and triggering queries against the database.

❑ Data that is hard to reach — If for any reason there is a delay in reaching the data, caching it
might be very useful.

Ultimately, deciding where and how to cache data is an important architectural issue. What data to
cache and when to cache it is an important decision in the scope of architecting an application, and it can
only reliably be made by those who are tightly involved with the application.

SqlCacheDependencyAdmin
The SqlCacheDependencyAdmin class is used to perform administrative tasks required on a SQL Server
database to add, update, and remove support for the SqlCacheDependency class. This class is a mem-
ber of the System.Web.Caching namespace. The following table describes the members of this class.

SqlCacheDependencyAdmin Members
Public Methods Description

DisableNotifications Connects to a SQL Server database and performs
the necessary operations to remove support for
change notification for a database.

DisableTableForNotifications Connects to a SQL Server database and performs
the necessary operations to remove support for
change notification for a table.

EnableNotifications Connects to a SQL Server database and performs
the necessary operations to add support for change
notification for a database.

EnableTableForNotifications Connects to a SQL Server database and performs
the necessary operations to support change 
notification for a table.

GetTablesEnabledForNotifications An array of strings is returned with the name of
each table that is enabled for change notification in
a SQL Server database.

To successfully call these methods, a program needs appropriate security on the SQL Server database.
These security rights include the ability to create and remove stored procedures, triggers, and tables.

SqlDependency
Very similar to the SqlCacheDependency class is the SqlDependency class. The SqlDependency
object can be used to notify a winforms client-server style application that a change has occurred. The
SqlDependency object is bound to a SqlCommand object. Let’s look at some source code (and see the
tables following the code for SqlDependency properties, methods, and events):
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Dim strSql As String = “select tblTestId, TestBigInt from dbo.tblTest”
Dim sqlDr As SqlDataReader

sqlCn = New SqlConnection(Me.gstrSyncString)
sqlCm = New SqlCommand(strSql, sqlCn)
sqlCn.Open()
‘this does work.
sqlDep = New SqlDependency(sqlCm)
sqlDr = sqlCm.ExecuteReader()
While sqlDr.Read()

‘Do something with the code.
‘I am just using a loop with nothing in it.

End While
sqlDr.Close()
‘sqlDep.AddCommandDependency(sqlCm)
AddHandler sqlDep.OnChanged, AddressOf onChangeSqlDep

Private Shared Sub onChangeSqlDep(ByVal caller As Object, ByVal sqlEvent As
SqlNotificationEventArgs)

MessageBox.Show(sqlEvent.Info.ToString())
‘You will need to rebuild the SqlDependency object here.

End Sub

The following is a table containing the properties and methods of the SqlDependency object.

SqlDependency Properties
Properties Description

HasChanges Returns a value that indicates whether one of the result sets associated with the
SqlDependency object has changed.

Id A value that uniquely identifies the instance of the SqlDependency class.

SqlDependency Methods
Method Description

AddCommandDependency Adds a SqlCommand object to the SqlDependency object. This is
similar to setting the SqlCommand object within the constructor.

SqlDependency Events
Event Description

OnChanged This event is called when the results of a query change. Note that this event may
fire based on a time-out expiration or a failure to set a notification request.
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You should be aware of several rules when using the SqlCacheDependency and SqlDependency
objects:

❑ The select list cannot use the * or table_name.* syntax to specify columns. Column names
must be explicitly stated. 

❑ Table names must be qualified with two-part names. Subscription is invalid if three- or four-part
names are used.

❑ The SQL query must not contain a table column name used as a simple expression, and the col-
umn cannot be specified more than once.

❑ The SQL query must not contain derived tables.

❑ The SQL query must not contain rowset functions.

❑ The SQL query must not contain the UNION operator.

❑ The SQL query must not contain subqueries.

❑ The SQL query must not contain outer or self joins.

❑ The SQL query must not contain the TOP clause.

❑ The SQL query must not contain the DISTINCT keyword.

❑ The SQL query must not contain the COUNT(*) aggregate.

❑ The SQL query must not contain AVG, MAX, MIN, STDEV, STDEVP, VAR, or VARP aggregates.

❑ The SQL query must not contain user-defined aggregates.

❑ The SQL query must not contain a SUM function that references a nullable expression.

❑ The SQL query must not contain the full-text predicates CONTAINS or FREETEXT.

❑ The SQL query must not contain the COMPUTE or COMPUTE BY clause.

❑ In the SQL query, if GROUP BY is not specified, the select list cannot contain aggregate expressions.

❑ In the SQL query, if GROUP BY is specified, the select list must contain a COUNT_BIG(*) expres-
sion, and cannot specify HAVING, CUBE, or ROLLUP.

❑ The SQL query must not reference temporal tables or table variables.

❑ The SQL query must not reference tables/views from other databases/servers.

❑ The SQL query must not reference any other views or inline table-valued functions.

❑ The SQL query must not reference any system tables or views.

❑ The SQL query must not reference any nondeterministic function — including ranking/win-
dowing functions.

❑ The SQL query must not reference any server global variables. These are typically defined as
@@xxx.

❑ The SQL query must reference some base table or view.

❑ The SQL query must not contain an INTO clause.

299

ADO.NET Programming with SQL Server from a Client Application

12_584375 ch10.qxd  10/28/05  10:54 PM  Page 299



❑ The SQL query must not specify FOR BROWSE (or be running with SET NO_BROWSETABLE ON).

❑ The SQL query must not contain conditions that will preclude results from changing (e.g.,
WHERE 1=0).

❑ The SQL query cannot specify the READPAST locking hint. 

❑ The SQL query must not reference any Service Broker QUEUE.

Summary
The SqlClient in ADO.NET Version 2 has seen a significant increase in the number of methods and
features that it supports. In this chapter, you learned about the following:

❑ Asynchronous support in ASP.NET and a winforms application

❑ Caching and notifications of updates in ASP.NET and winforms applications

❑ How to manage passwords

❑ How to use the SqlConnectionStringBuilder

For More Information
❑ .NET Whidbey Books Online documentation

❑ SQL Server 2005 Books Online

❑ Microsoft SQL Server 2005 Community Technology (CTP) Newsgroups —http://
communities.microsoft.com/newsgroups/default.asp?icp=sqlserver2005&slcid=us

❑ “Asynchronous Command Execution in ADO.NET Version 2,” by Pablo Castro, PM at
Microsoft —http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/dnvs05/html/async2.asp

❑ Bob Beauchemin’s Weblog on the new features of ADO.NET.  Bob is known for his work at
Developmenor and now works at SQLSkills. — http://www.sqlskills.com/blogs/bobb
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SQL Server 2005 
Server-Side Programming

With the release of Microsoft SQL Server 2005 (aka Yukon), Microsoft has added a significant 
number of features to their flagship database products. These updates represent many years of
study into how developers are using relational databases and what types of needs developers will
have in the next few years.

In Chapter 10, you looked at the latest features available for programming against SQL Server on
the client side using the System.Data.SqlClient namespace. In this chapter, you will be looking
at the new features for programming with SQL Server 2005. Specifically, you will be examining the
following:

❑ Common Language Runtime (CLR) Objects — You will learn how to create stored 
procedures, functions, triggers, aggregates, and user-defined types (UDTs) that run and
reside in the database, along with the Transact-SQL (T-SQL) objects that have been available
in previous versions of the SQL Server database.

❑ SQL Management Objects (SMO) — SMO provides the capability to programmatically
create, drop, and manage database objects within SQL Server.

❑ Web Services/XML Endpoint — Web Services/XML Endpoints provide a mechanism for
SQL Server to expose data without the need for Internet Information Server.

Extended Stored Procedures
Before Microsoft SQL Server 2005, when an application needed to implement complicated business
logic within the database that was not possible within the Transact-SQL (T-SQL) language, a 
developer had to use a feature of SQL Server called extended stored procedures (XPs). XPs are pieces
of native code that are loaded by SQL Server but are written in a traditional programming lan-
guage, such as Visual C++. Unfortunately, XPs had several problems, including the following:
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❑ Control — Once an XP is executing, there is little control over what the XP can and cannot do. 

❑ Reliability — Problems with an XP can wreak havoc on the SQL Server database. These
extended stored procedures run within the address space of SQL Server; however, they have
complete access to the memory space of the server. A failure in the extended stored procedures
may result in the failure of SQL Server Service, with the result that the database is unavailable.
This would be a major problem for applications requiring significant update.

❑ Data access — Within an XP, application code has no access back to the database. A loop-back
connection must be made. In addition, the loop-back connection must be bound to the existing
session’s transaction to ensure that the XP is involved with the same transaction.

❑ Performance — Open Data Services (ODS) APIs are used by XPs. The ODS API does not include
support for the new data types in SQL Server, such as XML, varchar(max), varbinary(max),
and so on. Compared to CLR objects, the ODS API is less optimized for sending result sets back
to a client application.

❑ Scalability — SQL Server has no control over the resources used by an XP. If an XP uses too
much CPU or memory, the system SQL Server has no way to stop the misuse of resources.

While XPs tend to perform very well, the problems of scalability and reliability tend to overshadow their
performance advantages.

CLR Objects
SQL Server 2005 includes the capability to safely program in the database using the languages of the .NET
2.0 and later Frameworks. Previously, the only language that was supported when running inside the
database was T-SQL. Along with T-SQL, it was possible to call COM objects through the use of extended
stored procedures. Unfortunately, this was relatively complex and — due to the problems mentioned 
previously — Microsoft introduced the capability to programmatically use CLR objects within the
database. Although XPs have a performance advantage compared to CLR objects because of the native
code of XPs and the switching between managed and unmanaged code within a database, the safety of
CLR objects will tend to provide a better alternative when all of the issues are taken into account.

With the release of SQL Server 2005, SQL Server can host and run assemblies written in any .NET 
programming language. These assemblies can simulate the activity of T-SQL database objects such as
triggers, stored procedures, aggregates, and functions, along with the capability to define new data
types. The objects appear and act just like T-SQL-based database objects, even while they are written 
in a .NET language, such as Visual Basic .NET or C#.

Set-Based Programming
Before getting into the programming of CLR objects, we need to discuss some basic programming
methodologies. In mathematics, we have the concept of set theory. A set is a collection of objects. These
objects can be operated on in nearly any fashion, such as by using AND, OR, XOR, and other set/logical
operations. Relational databases are based on this mathematical concept of set theory. 

Let’s take a look at a SQL statement that will return some data:

Select PartNumber, PartDescription, PartCost from PartTable where PartFamily=123
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This statement is asking for the PartNumber, PartDescription, and PartCost columns from a
PartTable, where the PartFamily value is 123. This is an example of the SQL implementation of set
theory. The database is being asked to return all records that match specified criteria. Not only can data
be selected in Insert, Update, and Delete, operations may also be done in bulk, or as part of a set of
data. This is different from mainstream programming languages, which tend to operate on pieces of 
data one at a time. Thousands of human-years have been put into optimizing databases for set-based
programming using the T-SQL language. As a result, set-based programming is the default mechanism
used to access data stored within a database, and it is very tightly embedded into many database 
products. As a result, the SQL-based implementation provides a high-performance interface into data.

Procedural Programming
Typical procedural programming is a concept with which most programmers are familiar. With procedural
programming, operations against data tend to happen one at a time in a line-by-line process. This is the
metaphor that mainstream programming languages, such as Visual Basic .NET and C#, tend to follow.
From the standpoint of a human being performing programming operations, this approach makes a lot of
sense. To operate on a set of data within a database in a line-by-line fashion, an object called a cursor is
typically used. One might think of a cursor as a pointer into a set of data. Unfortunately, cursors within a
database and this style of programming are at odds with producing highly optimized database opera-
tions. There is significant overhead in operating on rows of data in a database in a line-by-line fashion. As
a result, these types of operations should be minimized.

Using CLR Objects
With the release of Microsoft SQL Server 2005, Microsoft has added the capability to execute objects stored
and run within the database that are based on the Microsoft .NET Framework, as opposed to relying on 
T-SQL or the extended stored procedure architecture. There are several advantages to using CLR objects
within a SQL Server database versus programming in T-SQL or extended stored procedures, including the
following:

❑ An improved programming model over set-based programming. Objects written in a .NET 
language offer capabilities that are not possible, or are extremely difficult to implement, under
the T-SQL programming language.

❑ Enhanced safety and security over using extended stored procedures

❑ .NET languages offer capabilities not available in T-SQL. For example, a CLR object can easily
perform complicated string processing and mathematical calculations. The string processing and
mathematical calculations would be very difficult within a T-SQL-based object. Furthermore, the
addition of the CLR provides the capability to develop aggregates and types not possible with
just using TSQL.

❑ .NET languages enable the creation of new capabilities. User-defined types and aggregates are
two new features that evolved from the inclusion of the .NET Framework in the database.

❑ Visual Studio .NET as a development tool provides for an improved development experience.

Please check the Wrox Web site (at www.wrox.com) for updates or additional information.
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Creating CLR Objects
Let’s take a quick look at the steps for creating a CLR object for SQL Server 2005. To quickly and easily
create a SQL Server 2005 CLR object, a developer needs Visual Studio 2005 and an instance of SQL
Server 2005.

1. Create a SQL Server project using Visual Studio .NET 2005. This project type has all of the 
associated assemblies referenced. It does not allow you to easily add any possible assembly to
the list. Only approved assemblies within the .NET 2.0 Framework and other SQL Server pro-
jects are currently allowed.

2. Create a class definition. Typically, there will be a separate class for each object type. For 
example, stored procedures, functions, and triggers would be separated into a stored procedure,
function, and trigger class. Each aggregate and user-defined type would be separated into its
own individual class. By compiling the code, Visual Studio .NET 2005 will create the assembly.

3. Deploy the assembly. This operation is a separate operation for compiling the code. In this case,
the code is uploaded and deployed to the database server. The assembly is stored within a 
system catalog. This operation in Visual Studio .NET 2005 is analogous to the CREATE ASSEMBLY
TSQL statement. You’ll look at the CREATE ASSEMBLY statement in the section on manual
deployment.

4. T-SQL objects need to be wired to CLR objects so that when specific calls are made to the T-SQL
objects, the calls are routed to the appropriate CLR objects. This can be done through the 
various attributes for triggers, functions, and stored procedures. In T-SQL, this is performed
through the T-SQL CREATE procedure, function, trigger, aggregate, and type statements used to
wire the objects for operation.

Now that the CLR objects have been created and deployed, these objects may be called and used just like
any other database object in T-SQL. Therefore, using a stored procedure written in VB.NET is no different
from using a stored procedure written in T-SQL. Figure 11-1 shows you how a stored procedure looks in
Visual Studio .NET 2005.

Figure 11-1
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In Figure 11-2, you can see how user-defined types are displayed within Visual Studio 2005 and the SQL
Management Studio.

Figure 11-2

Once within the Visual Studio 2005 environment, additional features are available to optimize the 
development experience. Several of the biggest features include the following:

❑ The capability to open the source code for a CLR object by right-clicking Open from a submenu.
Figure 11-3 shows the Open option for editing a CLR object.

❑ A listing of all files associated with that assembly.

❑ Debugging of a CLR object.

❑ The capability to open files associated with an assembly.

Figure 11-3

305

SQL Server 2005 Server-Side Programming

13_584375 ch11.qxd  10/28/05  10:53 PM  Page 305



Just to note, by default the ability to use CLR objects is turned off in SQL Server 2005. This feature needs
to be turned on. This is done through the following series of commands:

sp_configure ‘show advanced options’, 1
go
reconfigure
go
sp_configure ‘clr enabled’, 1
go
reconfigure
go

New Namespaces
With the release of SQL Server 2005 and .NET 2.0, two new namespaces are included for programming
with the SQL Server 2005 database: Microsoft.SqlServer.Server and System.Data.Sql. 
Along with these two namespaces, the System.Data.SqlClient namespace has had features added so 
that it will run within the SQL Server database.

Microsoft.SqlServer.Server
The Microsoft.SqlServer.Server namespace provides support for running code within the database.
This namespace provides support for the attributes along with the support for the SqlContext, SqlPipe,
and other objects.

System.Data.Sql
The System.Data.Sql namespace is a new namespace with the release of .NET 2.0 and SQL Server
2005. This namespace is needed to support the user-defined types within .NET 2.0 and SQL Server 2005.
Why is this namespace defined outside of the Microsoft.SqlServer.Server namespace? User-
defined types are needed by both the client and the server. The server needs to support the new objects
and the client needs to be able to process the new objects on the client — hence, the separation of the
support into different namespaces.

System.Data.SqlClient
The System.Data.SqlClient has been modified so that its objects may run within the SQL Server
database engine. With this support, an application has access to the standard ADO.NET objects, such as
SqlConnection, SqlDataReader, and other objects.

SQL Server Projects
Visual Studio 2005 has defined support for SQL Server into a specific project type. This project type
makes Visual Studio a top-notch environment in which to develop CLR objects. With this project,
numerous features are set up for the developer, including the following:

❑ Database connection string — This can be used to define the project to which the object will be
deployed.

❑ Test scripts — A set of test .sql scripts can be defined so that repetitive tasks may be automated
easily.

❑ Programmability tracking — Much like the Class viewer in Visual Studio, there is an
“Assembly view” within a SQL Server 2005 database through Visual Studio 2005.
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Deployment
When a set of CLR objects are created for SQL Server 2005, the objects must be loaded into the database.
This is accomplished through one of two methods: manual deployment and the Visual Studio .NET
Deploy features.

The manual process to install an assembly is a two-step process:

1. The CREATE ASSEMBLY statement is a T-SQL statement used to load the assembly within the
database. In the following code example, the assembly named SqlCLRObjects is created from
the listed file: 

CREATE ASSEMBLY SqlCLRObjects FROM ‘C:\Development Projects\Æ
SqlCLRObjects\bin\Debug\SqlCLRObjects.dll’ WITH PERMISSION_SET = SAFE

2. Now that the assembly exists within the database, a CLR object must be mapped to the CLR
method. This is accomplished through one of the following T-SQL commands:

❑ CREATE FUNCTION. CREATE FUNCTION functionName RETURNS datatype AS EXTERNAL
namespace.class.methodname is the basic calling convention to setup a CLR Function.

❑ CREATE PROCEDURE. CREATE PRODCUEDRE sprocname ( <@PARAM, DATATYPE> LIST)
AS EXTERNAL NAME namespace.class.methodname is the basic calling convention to
set up a stored procedure.

❑ CREATE TRIGGER. CREATE TRIGGER triggername ON tablename FOR action AS
EXTERNAL NAME fullyqualifiedname is the basic calling convention to set up a trigger.

❑ CREATE TYPE. CREATE TYPE typename EXTERNAL NAME fullyqualifiedname is the
basic calling convention to set up a type.

❑ CREATE AGGREGATE. CREATE AGGREGATE methodname ( @param datatype) RETURNS
datatype EXTERNAL NAME namespace.class.methodname is the basic calling 
convention to set up an aggregate.

As you can see, the manual process contains a number of options to make the CLR objects operational.
The second, more automated, way to create these objects within the database can be performed within
the Visual Studio .NET 2005 IDE. This automated deployment is performed in three steps:

1. Use the appropriate CLR attributes in a function, trigger, and such. These are discussed in more
detail within the appropriate CLR object section.

2. Set the appropriate deployment settings within Visual Studio .NET 2005 by selecting My Projects
and then selecting the Database tab to change deployment options, as shown in Figure 11-4.
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Figure 11-4

3. Deploy the assembly by right-clicking on the project and selecting the Deploy option. This
deployment is based on the rules selected in Figure 11-4. Figure 11-5 shows the deployment
through Visual Studio 2005.

Figure 11-5
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Security
An assembly may run within three allowed permissions:

❑ SAFE— This is the most restrictive execution environment that an assembly may run within.
With the SAFE permission, code is not allowed to access any external system resources, such as
files, networks, the registry, or any environment variables.

❑ EXTERNAL_ACCESS— This permission allows assemblies to access system resources, such as
files, networks, environment variables, and the registry.

❑ UNSAFE— This permission set allows assemblies to access resources within SQL Server and 
outside of the database in an unrestricted manner. Only sysadmin members can create UNSAFE
assemblies.

Debugging
Visual Studio 2005 provides for the capability to create CLR objects. It also provides for the capability to
debug CLR objects after they have been deployed within SQL Server 2005 and SQL Express. Here are the
steps you must take to debug a CLR object:

1. Build and deploy a CLR object.

2. Within Visual Studio, select Debug ➪ Attach to Process.

3. Select the process that needs to be debugged and then select Attach (see Figure 11-6).

Figure 11-6

4. Select the appropriate line to set breakpoints and begin the debugging session. Figure 11-7
shows the window to debug a CLR trigger.
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Figure 11-7

Assemblies and CLR Object Tables/Functions
Within each SQLServer 2005 database are a set of tables and functions that contain information regarding CLR objects
and assemblies within the database:

❑ sys.assemblies— The sys.assemblies catalog view contains a row for each assembly
within a database. This table contains information, including the security permission set, for the
assembly.

❑ sys.assembly_files— The sys.assembly_files catalog view contains a row of information
for each file that makes up an assembly.

❑ sys.assembly_references— The sys.assembly_references catalog view contains a row
for each pair of assemblies that directly reference each other.

❑ sys.assembly_types— The sys.assembly_types catalog view contains a row for each 
user-defined type specified within a CLR assembly.

❑ sys.types— The sys.types catalog view contains a row for each system and user-defined
type within an assembly.

❑ sys.assembly_modules— The sys.assembly_modules catalog view contains a row per
function, stored procedure, or trigger within a CLR assembly.

❑ sys.sql_modules— The sys.sql_modules catalog view contains a row per object for items
defined within T-SQL.
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❑ ASSEMBLYPROPERTY— The ASSEMBLYPROPERTY provides information about the specified 
property of an assembly. 

Its proper usage is as follows:

SELECT ASSEMBLYPROPERTY(‘clr assembly name’, ‘property name’);

The allowed properties are as follows:

❑ CultureInfo— The locale information for the assembly.

❑ PublicKey— The public key of the assembly.

❑ VersionMajor— The major component of the version number of the assembly. This is
the first part of the four-part version information.

❑ VersionMinor— The minor component of the version number of the assembly. This 
is the second part of the four-part version information.

❑ VersionBuild— The build component of the version number of the assembly. This is
the third part of the four-part version information.

❑ VersionRevision— The revision component of the version number of the assembly.
This is the last part of the four-part version information.

❑ SimpleName— The simple name of the assembly.

❑ Architecture— The processor architecture for which the assembly is compiled.

Triggers
Triggers are one of the basic objects within a database. A special type of stored procedure, triggers are
called when an operation occurs that changes data within a table. When an insert, update, or delete
operation occurs on a table or view, a database object, a trigger, can be set to fire.

By using a .NET language, a CLR trigger can do the following:

❑ Reference the special tables INSERTED and DELETED, which are visible to T-SQL triggers.

❑ Calculate the columns that have been changed through the UPDATE operation.

❑ Retrieve information about database changes.

Within the .NET Framework, the SqlTriggerContext provided by the method
SqlContext.TriggerContext property provides the trigger context so that a program may obtain
information about running within the database engine.

SqlTriggerContext
The SqlTriggerContext class is provided by calling the SqlContextTriggerContext property within 
a SQL Server 2005 CLR trigger. The SqlTriggerContext class provides the contextual information 
within a CLR trigger. This provides information regarding the action that is to be fired, the columns 
modified in an UPDATE command, and any EventData contained within a DDL style trigger.
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Once the SqlTriggerContext is obtained, it is possible to determine the type of operation that has been
performed that caused the trigger to fire. This information is provided by the SqlTriggerContext’s
TriggerAction property. Let’s look at the possible TriggerAction values for DML operations:

❑ TriggerAction.Update

❑ TriggerAction.Insert

❑ TriggerAction.Delete

For DDL operations, the possible number of TriggerAction values is much larger. Following are the
areas of possible values into which these operations fall:

❑ Alter

❑ Create

❑ Drop

❑ Deny

❑ Grant

❑ Invalid

❑ Revoke

These operations can usually run across against the following types of objects:

❑ AppRole

❑ Assembly

❑ Binding

❑ Contract

❑ EventNotification

❑ Function

❑ Index

❑ MsgType

❑ PartitionFunction

❑ PartitionScheme

❑ Object

❑ Procedure

❑ Role

❑ Route

❑ Scheme

❑ Secexpr

❑ SecurityExpression
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❑ Synonym

❑ Queue

❑ Schema

❑ Service

❑ Statement

❑ Table

❑ Trigger

❑ User

❑ View

Note that there is not an action for each object type.

Updating Columns
One of the important operations in a trigger is determining the columns that have been updated due to
an insert/update/delete operation. The columns can be found by performing the following sequence of
commands of operations within a CLR trigger. This will return the updated columns by their ordinal
value. To return the column names, several more operations must be performed:

Dim i As Integer = 0
Dim strSql As String = “select * from inserted”
Dim sqlCn As New SqlConnection(“Context Connection=true”)
Dim sqlCm As New SqlCommand
Dim sqlTrCtx As SqlTriggerContext = SqlContext.TriggerContext
Dim spPipe As SqlPipe = SqlContext.Pipe
Dim sXml As SqlXml = sqlTrCtx.EventData()
Dim strTriggerAction As String
Dim sqlDr As SqlDataReader
spPipe.Send(“Total Columns: “ & sqlTrCtx.ColumnCount.ToString())
sqlCm.CommandText = strSql
sqlCm.Connection = sqlCn
sqlCn.Open()
sqlDr = sqlCm.ExecuteReader
For i = 0 To (sqlTrCtx.ColumnCount - 1)

spPipe.Send(sqlDr.GetName(i) & “ “ & sqlTrCtx.IsUpdatedColumn(i))
Next

There are some problems with handling BLOB types with the text, ntext, and column definitions.
The preceding code will only work if the tables contain columns that are non-BLOB only. A future 
version of SQL Server will drop support for these BLOB columns and replace them with
varchar(max) and varbinary(max).

EventData for DDL Triggers
When a Data Definition Language (DDL) change event occurs due to the creation, deletion, or other
operation performed against the structure of a database object, a DDL trigger can be set to fire. This
operation performed against the structure of a database object is most likely going to be performed
through a CREATE, ALTER, or DROP command:
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Dim sqlTrCtx As SqlTriggerContext = SqlContextTriggerContext
Dim spPipe As SqlPipe = SqlContext.Pipe
Dim sXml As SqlXml = sqlTrCtx.EventData()
If Not (sXml Is Nothing) Then

If (sXml.IsNull <> True) Then
SqlContext.GetPipe().Send(“xml data: “ & sXml.Value)

Else
SqlContext.GetPipe().Send(“No xml data.”)

End If
Else

spPipe.Send(“EventData is nothing.”)
End If

Notice that the XML that has been returned to the SqlXml object is well-formed XML that contains
EventData information about the DDL operation. This information includes things such as the time of
the operation, the user connected, the machine name, and so on.

It is possible for a CLR trigger to execute on a DDL command. The TriggerAction enum exposes 
values for dropping a table, altering a view, and other operations.

Sample Code
The following example code contains many of the options available to a developer building a CLR-based
trigger:

Option Explicit On
Option Strict On
Imports System
Imports System.Data.Sql
Imports System.Data.SqlClient
Imports System.Data.SqlTypes
Imports System.Diagnostics
Imports Microsoft.SqlServer.Server
Partial Public Class Triggers

‘ EventData should be null in a DML.
‘ ColumnsUpdated should be null in a DDL.
‘ Enter existing table or view for the target and uncomment the attribute line
<SqlTrigger(Name:=”trtblSearchResults”, Target:=”tblSearchResults”, Event:=”FOR

INSERT, UPDATE”)> _
Public Shared Sub trtblSearchResults()

Dim i As Integer = 0
‘dim strSql as String = “select SearchUrl, DateEntered, dateupdated,

ServerName, SearchCode, tblSearchResultsId, DateTimeStamped, DateSearched from
inserted”

Dim strSql As String = “select * from inserted”
Dim sqlCn As New SqlConnection(“Context Connection=true”)
Dim sqlCm As New SqlCommand
Dim sqlTrCtx As SqlTriggerContext = SqlContext.TriggerContext
Dim spPipe As SqlPipe = SqlContext.Pipe
Dim sXml As SqlXml = sqlTrCtx.EventData()
Dim strTriggerAction As String
Dim sqlDr As SqlDataReader
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Try

spPipe.Send(“Total Columns: “ & sqlTrCtx.ColumnCount.ToString())
sqlCm.CommandText = strSql
sqlCm.Connection = sqlCn
sqlCn.Open()
sqlDr = sqlCm.ExecuteReader
For i = 0 To (sqlTrCtx.ColumnCount - 1)

spPipe.Send(sqlDr.GetName(i) & “ “ & sqlTrCtx.IsUpdatedColumn(i))
Next
If sqlDr.IsClosed = False Then

sqlDr.Close()
End If
sqlDr.Dispose()
strTriggerAction = sqlTrCtx.TriggerAction.ToString()
spPipe.Send(“Trigger Action: “ & strTriggerAction)
If Not (sXml Is Nothing) Then

If (sXml.IsNull <> True) Then
SqlContext.Pipe.Send(“xml data: “ & sXml.Value)

Else
SqlContext.Pipe.Send(“No xml data.”)

End If
Else

SqlContext.Pipe.Send(“EventData is nothing.”)
End If

Catch sqlEx As SqlException
‘managed the SqlException.
‘we are just going to log it an then throw it.
EventLog.WriteEntry(“test trigger”, sqlEx.Message.ToString(),

EventLogEntryType.Error)
Throw

Finally
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCn.Dispose()
sqlCm.Dispose()

End Try
End Sub

End Class

Working through the code from the top down, let’s take a look at some items to which we should pay
particular attention (this is only a quick overview; you will learn much more about these items in other
sections of the chapter):

❑ Option Explicit and Option Strict are turned on.

❑ A number of standard namespaces are imported.

❑ There is a partial class defining the triggers.

❑ There is a SqlTrigger attribute. This example sets the name of the trigger (Name), the target
database object to monitor (Target), and the events to process (Event). This attribute is used to
mark the method as a trigger within the database. 
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❑ The SqlTriggerContext is calculated and returned based on the SqlContext’s property
TriggerContext.

❑ The SqlPipe object is created. The SqlPipe object is used to send data back to the calling
method. It is important that the SqlPipe not be overused. Calling back to the calling method
will result in a method that is slow compared to an object that minimizes its calls back to the
calling method.

❑ A DDL trigger, which is new with SQL Server 2005, will provide some type of EventData. With
this specific trigger, there is no EventData that will be returned and the SqlXml object is NULL.
The code in the code segment takes the EventData into account.

❑ Much like in a T-SQL trigger, it is possible to determine the columns that have been updated.
One of the properties of the trigger context is the ColumnsUpdated property. This property will
return an array of the columns that have been updated by the associated T-SQL statement that
caused the trigger to fire.

Figure 11-8

Now let’s look at another example of a CLR trigger. This CLR trigger covers the general design goals for
a CLR trigger:

<SqlTrigger(Name:=”tr_tblSearchResults_InsertUpdate”, Event:=”FOR INSERT,
UPDATE”, Target:=”tblSearchResults”)> _

Public Shared Sub InsertUpdateSearchResultsTrigger()
Dim i As Integer
Dim iSearchCode As Long
Dim strServerName As String
Dim strSql As String = String.Empty
Dim glResults As New Generic.List(Of String)
Dim sqlCn As New SqlConnection(“Context Connection=true”)
Dim sqlCmd As New SqlCommand
Dim sqlTrCtx As SqlTriggerContext = SqlContext.TriggerContext
Dim dsData As New DataSet()
Dim dtData As New DataTable
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Dim sqlDr As SqlDataReader

Try
strSql = “select SearchUrl, tblSearchResultsId from inserted”
sqlCmd.Connection = sqlCn
sqlCn.Open()
sqlCmd.CommandText = strSql
sqlCmd.CommandType = CommandType.Text

sqlDr = sqlCmd.ExecuteReader()
While sqlDr.Read()

iSearchCode =
CalculateSearchCode(Convert.ToString(sqlDr(“SearchUrl”)))

strServerName =
CalculateServerName(Convert.ToString(sqlDr(“SearchUrl”)))

strSql = “update tblSearchResults set SearchCode=” &
iSearchCode.ToString() & “, ServerName=’” & _

strServerName.Replace(“‘“, “‘’”) & “‘, DateUpdated=getdate()
where tblSearchResultsId=” & _

Convert.ToString(sqlDr(“tblSearchResultsId”))
If sqlTrCtx.TriggerAction = TriggerAction.Insert Then

strSql = strSql & “;update tblSearchResults set
DateEntered=getdate() where tblSearchresultsId=” & _

Convert.ToString(sqlDr(“tblSearchResultsId”))
End If
glResults.Add(strSql)

End While
If Not (sqlDr.IsClosed) Then

sqlDr.Close()
End If
For i = 0 To (glResults.Count - 1)

sqlCmd.CommandText = glResults.Item(i)
sqlCmd.ExecuteNonQuery()

Next
sqlDr.Dispose()

Catch sqlExc As SqlException
Dim sqlPipe As SqlPipe = SqlContext.Pipe
sqlPipe.Send(“Error: “ & sqlExc.Message.ToString())
sqlPipe = Nothing
Throw

Finally
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCmd.Dispose()

End Try
End Sub

This trigger is based on a personal application that performs a Web search. The trigger is used to parse
the information that is inserted and update several of the fields within the search results table.
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Stored Procedures
Stored procedures are basic database objects in many databases. With Microsoft SQL Server 2005, SQL
Server now has the ability to run objects written in any .NET language within the database. Stored 
procedures are objects that can return tablelike results and messages, invoke DDL and DML changing
statements, and return parameter values to the calling code. CLR stored procedures are public, shared
(static in C#) methods within a .NET class. 

Outputting Results
With a CLR stored procedure, there are several ways to return data, including output parameters, tablelike
results, and messaging.

Using output parameters in a CLR stored procedure is very similar to using output parameters in the
client. By passing values into a function by reference and marking the parameters as output parameters,
an argument may be passed from the CLR stored procedure back to the calling method. 

The SqlPipe object, which is new in the .NET 2.0 Framework, can be used to send results to the client.
The SqlPipe object is provided by the SqlContextPipe property. On the SqlPipe is the Send()
method. The Send method includes several overloads that may be used to send table-style information
(such as a SqlDataReader) or textual information back to the calling method. The SqlPipe object
includes the method ExecuteAndSendResults(), which is an optimized mechanism to send data back
to the calling method.

SqlProcedure Attribute
The System.Data.Sql namespace provides the SqlProcedure attribute. This attribute is used to set up
a stored procedure. The only property that may be set on the SqlProcedure attribute is the name that
will be used for this stored procedure.

Sample Code
In the following sample code, the SqlProcedure attribute is used to set the name of the procedure as it
will appear within SQL Server:

<SqlProcedure(Name:=”spFunctionCount”)> _
Public Shared Sub spFunctionCount()

‘ Add your code here
Dim iReturn As Integer = 0
Dim strSql As String
Dim sqlCn as New SqlConnection(“Context Connection=true”)
Dim sqlCm As New SqlCommand
Dim sqlP As SqlPipe = SqlContext.Pipe
Try

strSql = “select count(*) as RecordCount from tblSearchResults”
sqlCn.Open()
sqlCm.Connection = sqlCn
sqlCm.CommandText = strSql
sqlCm.CommandType = CommandType.Text
sqlP.ExecuteAndSend(sqlCm)

Finally
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
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End If
sqlCn.Dispose()
sqlCm.Dispose()
sqlCm = Nothing
sqlP = Nothing

End Try
End Sub

By sending the results through the Execute method, the results are sent directly to the client by 
transferring data directly to the network buffers without being copied into the managed memory space.

Functions
User-defined CLR functions are functions that take some type of parameter and return some type of
value. Like triggers and stored procedures, functions can be developed in any .NET language. Two types
of functions can be developed. Scalar-valued functions return a single value. Table-valued functions, or
TVFs, return values in the form of a table. 

If you know that your function will not add read data from a table, you can optimize your function by
adding DataAccess = DataAccessKind.None and SystemDataAccess =
SystemDataAccessKind.None to the definition within the attribute.

Scalar-Valued Functions
A scalar-valued function is a function that returns a single value. This function is implemented as a
method of a class. It can return any Unicode data type except rowversion, text, ntext, or image. Let’s
look at some sample code: 

<SqlFunction(DataAccess:=DataAccessKind.Read, IsDeterministic:=True,
isprecise:=True, Name:=”fnTest”, SystemDataAccess:=SystemDataAccessKind.Read,
TableDefinition:=””)> _

Public Shared Function ReturnCountVal(ByVal pstrTableName As String) As
SqlInt32

Dim iResult As Integer
Dim strSql As String = “select count(*) from “ & pstrTableName
Dim sqlCn As New SqlConnection(“Context Connection=true”)
Dim sqlCm As New SqlCommand
Try

sqlCn.Open()
sqlCm.Connection = sqlCn
sqlCm.CommandText = strSql
sqlCm.CommandType = CommandType.Text
iResult = Convert.ToInt32(sqlCm.ExecuteScalar())

Finally
If sqlCn.State <> ConnectionState.Closed Then

sqlCn.Close()
End If
sqlCm.Dispose()
sqlCm = Nothing

End Try
Return (New SqlInt32(iResult))

End Function
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The preceding scalar function looks very similar to the previous objects that have been created. The
SqlFunction attribute now is much more complicated, with more options than a CLR trigger and the
CLR stored procedure:

❑ The DataAccess property is set to DataAccessKind.Read. This tells the CLR that the object
will be reading from user tables.

❑ The IsDeterministic property is set to True. A deterministic function is a function that will
return the same data to the calling method no matter when it is called.

❑ The Name property sets the name that the function will be listed as within SQL Server.

❑ The IsPrecise member tells the CLR whether or not the returned value is precise. Strings and
integers are considered to be precise; however, singles and doubles are not considered precise. If
a UDF is returning a single, double, or some other imprecise value (real number), the method
should be marked with IsPrecise, and the IsPrecise value should be set to false.
Otherwise, IsPrecise should be set to true.

❑ The SystemDataAccess property tells the system whether the function will be reading from
the system tables. The allowed values are SystemDataAccessKind.Read and
SystemDataAccessKind.None.

❑ The TableDefinition member defines the table that will be returned. In this case, an empty
string is passed.

Table-Valued Functions
A table-valued function (TVF) is a user-defined function that returns results in the form of a table. A TVF
may be defined in any .NET-managed language. The data is returned through an ISqlReader object.

A T-SQL-defined TVF obtains results of a function from an intermediate table. By using an intermediate
table, a T-SQL TVF may support constraints and indexes of a set of results. A CLR-based TVF represents
an alternative. The results do not have to be materialized in a single table. Instead, they are streamed to
the calling method and may be used immediately after the first row is available. This can improve 
performance when large numbers of rows are returned.

TVFs are implemented as methods on a class in .NET assembly. TVF code must implement the
ISqlReader. The ISqlReader is an interface provided by the in-proc System.Data.Sql provider that
supports forward-only, read-only results. 

Let’s look at some code:

Imports System
Imports System.Collections
Imports System.Data
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports System.IO
Imports Microsoft.SqlServer.Server
Partial Public Class UserDefinedFunctions

<Microsoft.SqlServer.Server.SqlFunction(FillRowMethodName:=”MyFillFunction”,
TableDefinition:=”RowData nvarchar(4000)”)> _

Public Shared Function fnTVF2(ByVal strFileName As String) As IEnumerable
‘ Add your code here

320

Chapter 11

13_584375 ch11.qxd  10/28/05  10:53 PM  Page 320



Dim strArray() As String
Dim strReader As StreamReader = New StreamReader(strFileName)
Dim line As String
Dim i As Integer = 0
Do

ReDim Preserve strArray(i + 1)
line = strReader.ReadLine()
strArray(i) = line
i += 1

Loop Until line Is Nothing
Return strArray

End Function
Public Shared Sub MyFillFunction(ByVal obj As Object, ByRef strLine As String)

strLine = CType(obj, String)
End Sub

End Class

In this code example, a text file is passed to the function. The text file is then parsed on a line-by-line basis.

Figure 11-9 shows the results of a query and uses a LIKE operator to operate on the result.

Figure 11-9

Aggregates
An aggregate function is a function that performs a calculation on a set of values and returns a single
value. Before SQL Server 2005, developers were limited to the built-in aggregate functions provided by
SQL Server and could not define their own aggregate functions. These functions included an arithmetic
average (AVG), maximum values (MAX), minimum values (MIN), and other built-in methods. 

With SQL Server 2005, developers have the capability to define their own aggregates. For example, it is
possible for developers to determine the value second to the maximum.

Before SQL Server 2005, when developers wanted to define their own aggregate, they had to pull the
results to the client and then perform the operation on the results, including iterating through the results.
This is relatively inefficient, in that all the records necessary are returned to the client for processing, and
yet the complete set of records is not needed — merely the aggregate. In addition, processing time is
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needed on the client to perform the operation. With a CLR attribute running on the server, there is no
sending of records across the network and no processing on the client. Processing occurs on the server,
which will typically have more resources than a client system.

A CLR aggregate in SQL Server 2005 has several requirements:

❑ The SqlUserDefinedAggregate attribute shows the attribute members that need to be specified:

❑ Format— This specifies the serialization form of the aggregate type.

❑ MaxByteSize— This is the maximum size, in bytes, necessary to store the state of the
aggregate type. The maximum value is 8000.

❑ IsInvariantToDuplicates— True if the aggregate is invariant to duplicates.

❑ IsInvariantToNulls— True if the aggregate is invariant to NULLs.

❑ IsInvariantToorder— True if the aggregate is invariant to order. If the aggregate is
invariant to order, the query optimizer has more flexibility in choosing the execution
plan when the aggregate is used.

❑ IsNullifEmpty— True if the aggregate returns NULL when no values have been 
accumulated.

❑ The Init() method is used to initialize the internal storage of values.

❑ The Accumulate() method processes data.

❑ The Merge() method handles data from multiple instances of the aggregate value. Depending
on the amount of data and the processing power of a server, multiple instances of the aggregate
may be created. The Merge() method will be called by SQL Server to integrate the data from
multiple instances of the aggregate function.

❑ The Terminate() method returns the result of the aggregate function:

<Serializable()> _
<StructLayout(LayoutKind.Sequential)> _
<SqlUserDefinedAggregate(Format.Native, IsInvariantToDuplicates:=True,

IsInvariantToNulls:=True, isinvariantToOrder:=True, IsNullIfEmpty:=True,
Name:=”SecondMax”)> _

Public Structure aggExample
Private gDblHigh As Double
Private gDblNextHigh As Double

Public Sub Init()
‘ Put your code here
gDblHigh = Nothing
gDblNextHigh = Nothing

End Sub

Public Sub Accumulate(ByVal value As Double)
‘ Put your code here
If gDblHigh = Nothing Then

gDblHigh = value
ElseIf gDblNextHigh = Nothing Then

If value > gDblHigh Then
gDblNextHigh = gDblHigh
gDblHigh = value
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Else
gDblNextHigh = value

End If
ElseIf (Not (IsNothing(gDblHigh)) And Not (IsNothing(gDblNextHigh)))

Then
If value > gDblHigh Then

gDblNextHigh = gDblHigh
gDblHigh = value

ElseIf (value > gDblNextHigh) And (gDblHigh <= value) Then
gDblNextHigh = value

End If
End If

End Sub

Public Sub Merge(ByVal value As aggExample)
‘ Put your code here
If Not (IsNothing(value.GetHighValue)) Then

Me.Accumulate(Convert.ToDouble(value.GetHighValue))
End If
If Not (IsNothing(value.GetNextValue)) Then

Me.Accumulate(Convert.ToDouble(value.GetNextValue))
End If

End Sub

Public Function Terminate() As SqlDouble
‘ Put your code here
Return New SqlDouble(gDblNextHigh)

End Function

Public Function GetHighValue() As SqlDouble
Return (New SqlDouble(gDblHigh))

End Function

Public Function GetNextValue() As SqlDouble
Return (New SqlDouble(gDblNextHigh))

End Function
‘ This is a place-holder field member
Public var1 As Integer

End Structure

Calling a CLR User-Defined Aggregate Function
Calling a T-SQL aggregate function is relatively simple. The statement select AVG(col1) from table
will easily return the arithmetic average of the column col1 of the specified table. A CLR user-defined
aggregate function must obey all of the rules of a built-in aggregate function. In addition to those rules, a
CLR user-defined aggregate function must obey the following rules:

❑ The user id for the connection must have permission to EXECUTE on the called user-defined
aggregate.

❑ The aggregate must be called using the schema_name.aggregate_name form. For the example
code used previously, the calling convention would be to select dbo.SecondMax(TestValue)
from tblTestNumeric.
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❑ The argument passed to the user-defined aggregate must be the specified type or be able to be
implicitly converted to the input type as specified by the CREATE AGGREGATE statement.

❑ The return type of the user-defined aggregate must match the return type of the output in the
CREATE AGGREGATE statement.

User-Defined Types
Traditional databases have typically supported simple data types. Microsoft SQL Server 2005 has added
support for user-defined types. By integrating the CLR with SQL Server 2005, the capability to extend the
simple data types has been added to the database. Whereas CLR triggers, stored procedures, functions,
and aggregates were defined as subroutines and methods within a .NET class, a user-defined type (UDT)
is equivalent to a class within the .NET Framework. These UDTs enable developers to create complex
structured data types within the database.

UDTs provide several benefits for an application architecture. They provide the capability to encapsulate
the internal state and the external behaviors of a data type. Once defined, UDTs enable deep integration
between the client and the database server.

User-Defined Sample Code
The following code contains the address, city, state, and zip code:

Option Explicit On
Option Strict On

Imports System
Imports System.Data.Sql
Imports System.Data.SqlTypes
Imports System.IO
Imports System.Runtime.Serialization

<Serializable()> _
<SqlUserDefinedType(Format.UserDefined, IsByteOrdered:=True, IsFixedLength:=True,
MaxByteSize:=512)> _
Public Structure udtypeExample

Implements INullable, IBinarySerialize

Private gblIsNull As Boolean
Private gstrAddress1 As String
Private gstrCity As String
Private gstrState As String
Private gstrZip As String

Public Sub Read(ByVal r As BinaryReader) Implements IBinarySerialize.Read
Address1 = r.ReadString()
City = r.ReadString()
State = r.ReadString()
ZipCode = r.ReadString()

End Sub

Public Sub Write(ByVal w As BinaryWriter) Implements IBinarySerialize.Write
w.Write(Address1)
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w.Write(City)
w.Write(State)
w.Write(ZipCode)

End Sub

Public ReadOnly Property IsNull() As Boolean Implements INullable.IsNull
Get

‘ Put your code here
Return (gblIsNull)

End Get
End Property

Public Overrides Function ToString() As String
Dim strVal As String
If IsNull Then

strVal = “NULL”
Else

strVal = Convert.ToString(gstrAddress1) & vbCrLf & _
Convert.ToString(gstrCity) & “, “ & Convert.ToString(gstrState) &

Space(1) & _
Convert.ToString(gstrZip)

End If
Return strVal

End Function

Public Shared ReadOnly Property Null() As udtypeExample
Get

Dim h As udtypeExample = New udtypeExample
Return h

End Get
End Property

Public Shared Function Parse(ByVal s As SqlString) As udtypeExample
If s.IsNull Or s.Value.ToLower().Equals(“null”) Then

Return Null
End If

Dim u As udtypeExample = New udtypeExample
Dim strTemp As String = Convert.ToString(s)
Dim strArray() As String
strArray = strTemp.Split(Convert.ToChar(“;”))
u.Address1 = strArray(0)
u.City = strArray(1)
u.State = strArray(2)
u.ZipCode = strArray(3)

Return u
End Function

Public Property Address1() As String
Get

Return (gstrAddress1)
End Get
Set(ByVal value As String)

gstrAddress1 = value
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End Set
End Property

Public Property City() As String
Get

Return (gstrCity)
End Get
Set(ByVal value As String)

gstrCity = value
End Set

End Property

Public Property State() As String
Get

Return (gstrState)
End Get
Set(ByVal value As String)

gstrState = value
End Set

End Property

Public Property ZipCode() As String
Get

Return (gstrZip)
End Get
Set(ByVal value As String)

gstrZip = value
End Set

End Property
End Structure

To get this code to function correctly, both the server and the client must understand the type. This
requirement includes the SQL Server Management Studio and Visual Studio 2005 IDE.

Manually Creating Tabular Results
Sometimes a stored procedure must create its own data and then return that data to the client in the
form of a result set. This may be done by using the SqlDataRecord object and the SqlMetaData object.
The SqlDataRecord is the definition of the result set’s columns. The SqlMetaData is the definition of
each individual column. Consider the following code example:

<SqlProcedure(Name:=”spReturnData”)> _
Public Shared Sub spReturnData()

Dim i As Integer = 0
Dim sqlRec As New SqlDataRecord( _

New SqlMetaData(“ID”, SqlDbType.Int), _
New SqlMetaData(“DateCalc”, SqlDbType.DateTime))

Try
SqlContext.Pipe.SendResultsStart(sqlRec)
For i = 1 To 10

sqlRec.SetInt32(0, i)
sqlRec.SetDateTime(1, DateTime.Now)
SqlContext.Pipe.SendResultsRow(sqlRec)
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Next
Finally

SqlContext.Pipe.SendResultsEnd()
End Try

End Sub

This code will return an integer, which identifies the results within the result set and the DateTime of
the row being created. The data types are defined within the SqlDataRecord, using a type from within
the SqlDbType enumeration.

SqlContext
Whenever managed code is called within SQL Server 2005, whether it is a trigger, stored procedure,
function, user-defined aggregate, or user-defined type, execution of that code involves the .NET
Framework and requires access to the calling context. The calling context is contained within the abstract
SqlContext object (defined and provided by the SQL Server namespace Microsoft.SqlServer
.Server). The calling context provides access to the following set of objects:

❑ IsAvailable—The IsAvailable property indicates whether or not the program is
running within the SQL Server.

❑ Pipe— The Pipe property is the conduit, or pipe, that is used to flow results between the client
and the server. Typically, it is used for sending results from the CLR object to the calling method.
The Pipe is obtained by calling the SqlContext.Pipe property.

❑ TriggerContext— The TriggerContext object only exists within a CLR trigger. It is used to
obtain information about the trigger that is running and the columns that were updated. Some
of that information about the trigger specifies whether the trigger is an INSERT, UPDATE,
DELETE, or DDL statement.

❑ WindowsIdentity— The WindowsIdentity property returns a WindowsIdentity object
detailing information about the connected Windows user.

The Context Connection
When running within a SQL Server CLR object and communicating with the local database, the object will
run within a context connection. A context connection is a connection between the CLR object and the
local database, bypassing the network protocol stacks. A context connection is specified by the connection
string parameter Context Connection=true. Note several restrictions to having a context connection:

❑ Only one context connection may be opened at a given time for a specific connection.

❑ MARS is not supported.

❑ The SqlBulkCopy class will not operate on a context connection.

❑ Update batching is not supported.

❑ SqlNotificationRequest cannot be used.

❑ Canceling commands is not supported.

❑ Asynchronous operations are not supported.
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❑ SqlDependency and related methods are not supported.

❑ When a context connection is used, no other keywords may be used when within the connection
string.

Now that you have the capability to communicate within the database, what about connecting to an
external database? The capability to communicate with an external database is available within a context
connection by opening a second connection object with the appropriate connection strings. When a CLR
object opens a second connection, a transaction based on the System.Transactions namespace is 
created. The database transaction is promoted to a full distributed transaction. For more information on
the System.Transactions namespace, see Chapter 6, “Transactions.”

One of the side benefits of using the Context Connection keyword and the existing SqlConnection
object is that code that runs within the database looks very similar to client-side/middle-tier data access.

SQL CLR Architecture
The Common Language Runtime is integrated with the Microsoft SQL Server 2005 database. By integrating
the database and the CLR, database programmers can use any .NET language, such as C#, Visual Basic,
and Visual C++, to create functions, stored procedures, triggers, aggregates, and user-defined data types.

Placing Business Logic
With the release of Microsoft SQL Server 2005, a new issue has cropped up for application architects and
developers. Where should the business logic of an application be placed? Before Microsoft SQL Server
2005, business logic was primarily placed within the “middle tier” of an application. SQL Server 2005
still allows business logic to be placed within the middle tier of an application, but with the capability to
program using a .NET language, SQL Server 2005 enables developers to rather easily place business
logic within the database. Let’s look at some of the advantages of doing this:

❑ By moving logic to the database tier, network traffic can be minimized. There is no reason for
the data to be moved from the database to the middle tier for processing and then back to the
database.

❑ The data within the database tier can be better validated.

❑ Data integrity can be better enforced. While databases have been able to provide for foreign key
relationships for years, it is sometimes hard to enforce integrity and relationships between
columns within a row. By having the CLR objects within the database, complex calculations that
had to be performed within a middle tier can now be done closer to the data.

The capability to place business logic within the database does not mean that all application logic should
be placed within the database. There are several reasons not to place all business logic within your SQL
Server 2005 database:

❑ Databases are designed and optimized for holding data, not for performing long-running 
operations that consume a large number of locks and other resources on the server. Successful
CLR objects will perform the minimum number of necessary operations and then exit the 
execution. 
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❑ CLR objects are written specifically for SQL Server 2005. They are not directly transportable to
other databases. If an application needs to run on multiple databases, CLR objects may not be
the best choice.

❑ Typically, updates to the user interface and business logic of a Web application can be easily
rolled out to users. If an update needs to be rolled back to the previous version, that is also fairly
easy. Updates to CLR objects, while not being overly hard, require more sophistication regarding
updates and possible rollbacks.

When to Use T-SQL and CLR Objects
One of the questions that came up during the beta cycle for the integration of CLR and Microsoft SQL
Server 2005 concerned when it is appropriate to use a CLR object as opposed to a T-SQL object.

If a T-SQL object can be written that is equivalent to a CLR object, the T-SQL object will typically 
perform better than the CLR object. CLR objects are continuing to use T-SQL to perform operations. If
the necessary operations can be performed within a T-SQL object, it is usually best to use the T-SQL
object. Because T-SQL objects perform set-based operations, set-based operations will typically perform
better than equivalent CLR objects that merely perform set-based operations without additional 
processing. However, there are several situations in which T-SQL cannot perform the same type of 
operations that a CLR object can perform:

❑ Security calculations — Complex security calculations such as the encoding or decoding of data
can typically best be performed within the CLR.

❑ Scientific calculations — Complicated scientific calculations can typically best be performed
within the CLR.

❑ Complex CLR operations — Complex CLR operations that require some type of procedural
objects should typically reside in a CLR object.

SQL Server Management Objects
With the release of .NET 1.x and the SqlClient, Microsoft released a set of objects that were able to 
perform typical database operations in a highly optimized manner. One item that was not included in
.NET 1.x was a managed interface into SQL Distributed Management Objects (SQL-DMO).

With the release of .NET 2.0 and ADO.NET 2.0, Microsoft has introduced a set of managed objects called
SQL Server Management Objects (SMOs). These objects are designed for interacting with the internal aspects
of Microsoft SQL Server. SMO can be used to build a customized SQL Server management application. For
example, an SMO management application could be used when it isn’t practical to use the full Microsoft
SQL Server Management Studio. An SMO application for managing SQL Server can be used to manage an
embedded application for which the interface must be fairly simple.

The SMO object model  replaces the SQL DMO objects. SMO has been tweaked beyond the DMO
objects. All of the functionality within DMO has been included in the new SMO objects. SMO will work
on Microsoft SQL Server 7.0 and later.

The SMO namespace is Microsoft.SqlServer.Smo. SMO is a .NET assembly, which means that the
.NET Framework must be installed before SMO may be used.
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General Design
SMO has been designed from the ground up to be faster and more efficient (in terms of memory) than
DMO. For example, full instantiation of objects is delayed until an object is explicitly referenced. An
object is fully instantiated when a requested property is not in the list of initially referenced properties.
In addition, some expensive properties are not retrieved unless they are specifically requested (the Size
property of the Database object, for example). As a result, the amount of memory used and the amount
of time needed to fill the SMO objects has been minimized.

SMO classes call into two classes: instance classes and utility classes.

Instance Classes
SMO instance classes are classes that represent SQL Server objects, such as databases, tables, triggers,
and such. The SMO instance objects create a hierarchy that represents the hierarchy of a database server.
The top levels are the instances of SQL Server. The databases are underneath the SQL Server instances,
tables are underneath the databases, triggers and columns are underneath the tables, and so on. With
this type of design, one parent object may have many child objects.

Instance classes can exist in one of three instantiation levels: un-instantiated, partially instantiated, 
and fully instantiated. The partially instantiated state is somewhat new to programmers. The partially
instantiated state is the default state for an object that has not been directly referenced. By partially 
instantiating an object, memory usage and the time needed to create objects are minimized.

Utility Classes
SMO utility classes support specific tasks that occur in the server. These classes are roughly divided into
the Transfer class, Backup and Restore class, and Scripter class.

Execution
With SMO, execution may occur in one of two ways. The usual mechanism is direct execution. With direct
execution, statements are sent to the SQL Server instance as the statements occur. The second execution
method is capture execution. With capture execution, statements are collected and then executed as a 
T-SQL batch. This provides the application with the maximum amount of flexibility. The method of 
execution is controlled using the ServerConnection object.

WMI Provider
The SMO wraps the WMI Provider objects. By wrapping the WMI Provider, a developer using XMO has
a relatively simple object model that resembles the SMO classes without needing to understand the 
intricacies of the SQL Server WMI Provider.

Scripting
With SMO, the scripting of objects has been moved into the Scripter class. The Scripter class is the
main scripting object within SMO. The Scripter class can manage the hierarchy of objects and determine
the relationships between those objects. The Scripter object and its supporting set of classes can handle
the dependencies and the progression events during execution.
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Referencing Objects through URN
One of the key conventions in referencing an object in SMO is the Unique Resource Name (URN). The
URN uses XPATH syntax. With SMO, a URN has the two elements path and attribute. The path is used 
to specify the object location and the attribute specifies a degree of filtering. A database URN looks
something like this: 

/Server[@Name=’Entrepid’]/Database[@Name=’dbWebSearchYukon’]

The URN of an object can be retrieved from its URN property. URNs are used as parameters for passing
object references to methods contained in the Scripter object. URNs may also be used to instantiate an
SMO object.

Creating Objects
Using SMO, a program has the capability to add, update, delete, and query the internal objects of SQL
Server, along with performing maintenance tasks. This section describes the management of these 
internal objects as well as the maintenance tasks.

You should understand two base objects in SMO before tackling the others: Microsoft.SqlServer
.Management.Common.ServerConnection() and Microsoft.SqlServer.Management
.Smo.Server().

The ServerConnection() object is fairly similar to the System.Data.SqlClient.SqlConnection()
object. However, it has a few extra commands from the SqlCommand() object that allow for the 
execution of commands to the database. 

The ServerConnection() has two members that are different and somewhat interesting:

❑ CapturedSql— The CapturedSql property returns SQL commands that would be sent to the
database if the ServerConnection() object is set to capture the SQL commands.

❑ SqlExecutionModes— This takes a SqlExecutionModes enum and sets the execution mode
of the connection. There are several execution modes:

❑ CaptureSql— This value instructs the ServerConnection() object to merely capture
the commands that it would send to the database, as opposed to sending them to the
database.

❑ ExecuteAndCaptureSql— This value instructs the ServerConnection() object to
capture and execute commands that are sent to the database.

❑ ExecuteSql— This value instructs the ServerConnection() object to execute the 
commands against the database and not save them.

The Server() object is an object that represents a particular instance of a SQL Server database server
that is currently being pointed at by the SqlServerConnection() object. This object has numerous
properties that describe the behavior of the installed instance. These properties include server defaults,
databases, startup options, memory, language, authentication, version, connection, and other properties
of interest. These properties are contained within the Database, Information, Settings,
UserOptions, and Configuration members of the Server() object.
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The Database() object contains information about the databases currently installed on the server. It is
through this object and its children that modifications will be made through DDL statements against the
database objects.

The Information() object contains general information about the instance of the SQL Server database.
This information includes processor, platform, the current state of the instance, edition (MSDE,
SQLExpress, Standard, Enterprise, or other information), and additional information about this 
particular instance to which the Server() object points.

The Settings() object contains settings information about the instance of the SQL Server database. This
includes information about the instance of SQL Server. From this object, code can obtain information
about default databases, files and directories, current connections, the server account, and other valuable
pieces of server setting information.

The Configuration() object is a child of the Server object. It contains a set of properties that map to the
allowed changes within the sp_configure stored procedure. These members contain the information
that controls the server configuration. Most of the properties themselves are read-only.

The UserOptions object is a child of the Server object. The UserOptions() object has a series of 
read-only members, along with members that enable the user’s options to be changed. Some of the 
properties that can be changed through the UserOptions() object include the Ansi settings, Abort 
settings, NoCount settings, and others.

Creating a Database
Creating a database is the first step in the life of a database. This is when the database is “born.” SMO
makes adding a database a rather simple step, although there are some management issues to overcome. 

Let’s begin with an example. The following code creates a new database on a system:

Dim sqlCn as New SqlConnection(strSqlcn)
Dim sqlServerConnection as New ServerConnection(sqlcn)
Dim Server as new Server(sqlServerConnection)
Dim db as new Database(Server, Me.txtDbName.Text)
Dim fgObj as New FileGroup(db, “PRIMARY”)
Dim df as New DataFile(fgObj, “SMODataFile”)
if server.Databases.Contains(Me.txtDbName.Text) = True then

db.Drop()
End If
df.Size = 10240
df.Growth = 10
df.GrowthType = FileGrowthType.Percent
df.FileName = Server.Settings.MasterDBPath & “\” & “Test.mdf”
dim lf as New LogFile(db, “SMOLogFile”)
lf.Size = df.Size / 5
lf.Growth = df.Growth
lf.GrowthType = df.GrowthType
lf.FileName = Server.Settings.MasterDBLogPath & “\” & “Test.ldf”
fgObj.Files.Add(df)
db.FileGroups.Add(fgObj)
db.LogFiles.Add(lf)
db.Create()
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Following are the steps involved in creating a database, which you can see in the preceding code:

1. Create a ServerConnection() object. This object manages the connection between the
Server() object and the SQL Server instance. It is fairly similar to the SqlConnection() object
underneath ADO.NET.

2. Create a Server() object that is based on the previous ServerConnection() object.

3. Create a new Database() object. With this object, the following members of the object should
be set:

❑ The parent of the database is the Server() object.

❑ The Name property should be set to the name of the database that is desired.

4. Create the file group by adding a new FileGroup() object to the Database() object.

5. Create the data file by creating a new DataFile() object and associating that object with the
FileGroup() object that was created in Step 4. Several properties of this DataFile() object
should be set:

❑ GrowthType— This property sets the type of growth for the data file through an enum.
The GrowthType enum has three values: KB, None, and Percent.

❑ Growth— This property sets the amount of growth as necessary.

❑ Size— This property sets the initial size of the data file.

❑ MaxSize— This property sets the maximum size of the data file.

6. Create the log file by creating a new LogFile() object and associating that object with the
LogFiles property of the Database() object. This can be performed by calling
DataBase().LogFiles.Add(LogFile()). The same properties of the DataFile() object
listed before may be set.

7. Create the database by calling the DataBase().Create() method.

Along with the creation of a database, you will want to pay attention to the following properties and
methods:

❑ Server().Databases.Contains(database name)— This method will return a true or a false
depending on whether the specified database already exists.

❑ Server().Settings.MasterDBPath— This property returns the path to the directory for the
Master database files. This is typically the default directory for new database files.

❑ Database().Drop()— The Drop method will drop an existing database as pointed to by the
Database() object. This should only be done by first checking to see whether the database
exists.

Figure 11-10 shows the files that were created for the database.
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Figure 11-10

Creating a Table, Its Columns, and an Index
Creating and managing tables can be done through the Database() and Table() objects. Within the
SMO hierarchy, the Table objects are directly below the Database() object. 

The following sample code creates a table, its columns, a primary key, and an index:

Dim strTableName as String = “tblTest”
Dim sqlCn as New SqlConnection(strSqlcn)
Dim sqlServerConnection as New ServerConnection(sqlCn)
Dim Server as new Microsoft.SqlServer.Management.Smo.Server(sqlServerConnection)
Dim db as Database = Server.Databases(txtDb.Text)
Dim tbl as New Table(db, strTableName)
if db.Tables.Contains(strTableName) then

db.Tables(strTableName).Drop()
End If
Dim colpk as New Column(tbl, strTableName & “ID”)
colpk.DataType = DataType.Int
colpk.Nullable = False
colpk.Identity = True
colpk.IdentityIncrement = 1
colpk.IdentitySeed = 1
tbl.Columns.Add(colpk)
Dim idxpk as New Index(tbl, “idx” & strTableName)
Dim idxcol as New IndexedColumn(idxpk, colpk.Name)
idxpk.IndexKeyType = IndexKeyType.DriPrimaryKey
idxpk.IndexedColumns.Add(idxcol)
tbl.Indexes.Add(idxpk)
Dim colTest as New Column(tbl, “VarcharField”)
colTest.DataType.MaximumLength = 50
colTest.DataType.SqlDataType = SqlDataType.VarChar
tbl.Columns.Add(colTest)
tbl.Create()

Here are the steps for creating a table in the database:
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1. Create a Database() and associate it with the appropriate Server() instance object.

2. Create a Table() object. Set the following properties:

❑ Parent— The Parent property of the Table() object is the Database().

❑ Name— The name of the Table() object is the name of the table.

❑ Schema— The schema of the table will most likely be the default schema of the
database. This may be set by using the Database().DefaultSchema property. If a dif-
ferent schema is needed, then a separate string may be passed into the Schema property.

3. Create the columns next. The first column that should be created is the primary key column.
This column is contained within a Column() object and Index() object. The properties of the
Column() are as follows:

❑ Parent— The Parent property of the Column() object is the Table() object.

❑ Name— The Name property of the Column() object is a string name of the Index()
object.

❑ DataType— The DataType property takes a DataType enum. Typically, this will be 
a DataType.Int, but it might also be a DataType.BigInt, DataType.SmallInt,
DataType.TinyInt, or a DataType.UniqueIdentifier.

❑ Nullable— The Nullable property of a column that will be a primary key must be set
to false. The default value is true.

❑ Identity— The Identity property of a primary column is typically set to true. This
allows the database to automatically increment (for integers) the column for inserts.

❑ IdentitySeed— The IdentitySeed property is the starting value for the Identity
field.

❑ IdentityIncrement— The IdentityIncrement property is the value that the col-
umn will be incremented by on each insert.

❑ The Column must be added to the table through the Table().Columns.Add() method.

4. Create an Index() object and associate that with the primary key column. The following prop-
erties and methods should be set:

❑ Parent— The Parent property of the Index() object is the Table() object.

❑ Name— The Name property of the Index() object is the name of the index within the
database.

❑ The Index() needs to be added to the Table() object through
Table().Indexes.Add().

❑ The Index must have the columns added by using the
Index().IndexedColumns.Add() method. This will also be used for creating a 
primary key through the IndexKeyType property.

❑ IsClustered— The IsClustered property is set to True or False.
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❑ IsUnique— The IsUnique property is set to True for a primary key.

❑ IndexKeyType— The IndexKeyType property is set to an enum value. The enum 
values are IndexKeyType.DriPrimaryKey, IndexKeyType.DriUniqueKey,
IndexKeyType.DriNone. For a primary key, the property should be set to
IndexKeyType.DriPrimaryKey.

5. Call the Index() object’s .Create() method.

Within the Table() object is the IndexCollection member. This is a collection of the indexes associated
with the table. Each Index() object contains a collection of IndexedColumn objects. This enables multiple
columns to be associated within an index.

If necessary, the index can be dropped by calling the index() object’s Drop() method. If the index
needs to be disabled, the Index() object contains a Disable() method. To re-enable an Index() object,
there is an Enable() method. The Enable() method takes an enum of type IndexEnableAction. The
values of the enum are IndexEnableAction.Rebuild and IndexEnableAction.Recreate.

Creating a User
To create a user, the User() object will be used. The User() object is an SMO object that contains 
information about a specific user in a SQL Server instance. This object will be used with the Server()
and Database() objects. 

Let’s look at some sample code to create a user:

Dim sqlCn as New SqlConnection(strSqlcn)
Dim sqlServerConnection as New ServerConnection(sqlcn)
Dim Server as New Server(sqlServerConnection)
Dim db as Database = Server.Databases(txtDb.Text)
Dim strUser as String = Me.txtUserId.Text
Dim usr as New User(db, strUser)
if db.Users.Contains(strUser) then

db.Users(strUser).Drop()
End If
usr.Login = strUser
usr.Create()

This code will work with SQL Server Authentication.

Here are the steps for creating a user with the User() object:

1. Create SqlServerConnection(), Server(), and Database() objects, as done previously.
Note that the Database() object is not created by creating a new instance of a database object,
but by referencing the existing database instance through the Server() object.

2. Create a User() object. The User() object should have the following properties set:

❑ Parent— The Parent property is the database to which this user will be assigned.

❑ Name— The Name property is the name that will be assigned to this user.

336

Chapter 11

13_584375 ch11.qxd  10/28/05  10:53 PM  Page 336



3. Assign the Login property to the User() object. The Login property is a string with the user’s
name.

4. Call the User() object’s Create() method to create the defined user.

Within the User() class are several properties and methods that may be interesting for the SMO 
programmer:

❑ Drop()— This method will drop a user.

❑ Deny()— This method takes a Permission() object and allows permissions to be set on
objects through SMO.

❑ DefaultSchema— The DefaultSchema property will return the Schema associated with the
defined user.

❑ Grant()— This method takes a Permission() object and gives the User() object access to the
specified objects defined by the Permission() object.

❑ HasDBAccess— This property will return a Boolean indicating whether a User() object has
access to a specified database.

Creating a Foreign Key
Foreign keys are a mechanism within a database to relate data in two different tables. SMO provides a
mechanism to create those objects in SQL Server through the ForeignKey() object. 

Let’s look at the code necessary to create the foreign key:

Dim strTableNameBase as String = “tblItem”
Dim strTableNameForeign as String = “tblBill”
Dim strColBase as String = “tblBillId”
Dim sqlCn as New SqlConnection(strSqlcn)
Dim sqlServerConnection as New ServerConnection(sqlCn)
Dim Server as new Microsoft.SqlServer.Management.Smo.Server(sqlServerConnection)
Dim db as Database = Server.Databases(txtDb.Text)
Dim tblBase as Table = db.Tables(strTableNameBase)
Dim tblForeign as Table = db.Tables(strTableNameForeign)
Dim colBase as column = tblBase.Columns(strColBase)
Dim colForeign as column = tblForeign.Columns(strColBase)
Dim forkey as New ForeignKey(tblBase, “fk” & strTableNameBase)
Dim forkeyCol as new ForeignKeyColumn(forkey, colForeign.Name, colForeign.Name)
forkey.ReferencedTable = tblForeign.Name
forkey.Columns.Add(forkeyCol)
forkey.Create()

Here are the steps for building a database foreign key in SQL Server:

1. Create SqlServerConnect(), Server, Database(), and appropriate Column() objects for the
two tables that will be used.

2. Create a ForeignKey() object. The ForeignKey() object should have the following 
properties set:
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❑ Parent— The Parent property is the Table() object of the base table that will be used
for the foreign key.

❑ Name— The Name property is the name of the foreign key.

❑ ReferencedTable specifes the table to reference.

3. Create a ForeignKeyColumn() object. The properties of the ForeignKeyColumn that need to
be set are as follows:

❑ Parent— The parent of the ForeignKeyColumn() object is the ForeignKey() object.

❑ Name— The name of the ForeignKeyColumn() object.

❑ ReferencedColumn— The ReferencedColumn specifies the reference column.

4. Specify the ReferencedTable property on the ForeignKey() object.

5. Add the ForeignKeyColumn object to the ForeignKey object.

6. Call the Create() method. Figure 11-11 has the foreign key relationship within Visual Studio.

Figure 11-11

Creating a Backup
You already know how to create objects when using SMO. SMO is also capable of performing other
operations. The two most common operations within SQL Server are backup and restore.

Backup
Backing up a database is the most common management operation performed against a database. The
backup operation is contained within an SMO object called Backup().

Let’s look at the code necessary to perform a backup:

dim strFileName as String
dim bkdb as New Backup()
Dim sqlCn as New SqlConnection(strSqlcn)
Dim sqlServerConnection as New ServerConnection(sqlCn)
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Dim Server as new Microsoft.SqlServer.Management.Smo.Server(sqlServerConnection)
Dim db as Database = Server.Databases(me.txtDbBackup.Text)
me.sfdBackupDatabase.AddExtension = True
me.sfdBackupDatabase.DefaultExt = “.bak”
me.sfdBackupDatabase.ShowDialog()
strFileName = me.sfdBackupDatabase.FileName
bkdb.Database = db.Name
bkdb.Action = BackupActionType.Database
bkdb.BackupSetName = “BackupSet “ & db.Name & DateTime.Now
bkdb.Devices.Add(New
Microsoft.SqlServer.Management.Smo.BackupDeviceItem(strFileName, DeviceType.File))
bkdb.Initialize = True
bkdb.SkipTapeHeader = True
bkdb.UnloadTapeAfter = True
bkdb.SqlBackup(Server)

Now let’s take a look at the steps necessary to perform a backup:

1. Create the necessary SqlServerConnection, Server, and Database objects.

2. Create a Backup() object.

3. Set the Action property. The Action property of the Backup() object should be set as appro-
priate from the BackupActionType enum. The allowed values are as follows:

❑ BackupActionType.Database— This will set the action type to back up a database.

❑ BackupActionType.Files— This will set the action type to back up a set database file.

❑ BackupActionType.Logfiles— This will set the action type to back up a set of
database log files.

4. BackupSetName. The BackupSetName sets the name of the backup.

5. Database. The Database property will set the name of the database to back up. This property
can be set by the using the Name property of the database object.

6. Devices. Typically, a program will need to merely add a new device in the type
BackupDeviceItem. This type is based on a string that points to a filename and the
DeviceType.

7. DeviceType. The DeviceType accepts an enum with the following allowed values:

❑ DeviceType.File

❑ DeviceType.LogicalDevice

❑ DeviceType.None

❑ DeviceType.Pipe

❑ DeviceType.Tape

❑ DeviceType.VirtualDevice
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8. Initialize— The Initialize property determines whether this is the backup in the set.

9. RetainDays— The RetainDays sets the number of days to retain the backup.

10. SkipTapeHeader— If the backup is done to a file, this property should be set to true.

11. UnloadTapeAfter— If the tape is to be unloaded after the backup is completed, the property is
set to true.

12. SqlBackup()— Calling the SqlBackup() routine and passing the Server() object starts the
backup process.

This will start a backup process running on the server. A backup process can take a significant amount of
time, so it may be performed asynchronously with intermittent updates. To set the backup operation to
run asynchronously, the following commands must be added before the backup is started:

1. PercentCompleteNotification— This property sets the value of the backup completion that
will result in an event being raised on the client.

2. PercentComplete— A handle for the PercentComplete event should be specified. The two
parameters that the PercentComplete event should accept are as follows:

❑ Sender— This is a standard parameter passed to methods that process events.

❑ PercentCompletedEventArgs— This parameter contains information about the 
current percentage status of the backup.

In addition, the .SqlBackupAsync() method must be called to start the processing asynchronously.

Restore
Restoring a database is a very similar process to backing up a database. The restore operation is 
contained within the SMO Restore() object. 

Let’s look at some code to perform a restore:

Dim strFileName as String
Dim rstdb as New Restore()
Dim sqlCn as New SqlConnection(strSqlcn)
Dim sqlServerConnection as New ServerConnection(sqlCn)
Dim Server as new Microsoft.SqlServer.Management.Smo.Server(sqlServerConnection)
Dim db as Database = Server.Databases(me.txtDbRestore.Text)
me.ofdRestoreDatabase.AddExtension = True
me.ofdRestoreDatabase.DefaultExt = “.bak”
me.ofdRestoreDatabase.ShowDialog()
strFileName = me.ofdRestoreDatabase.FileName
rstdb.Database = db.Name
rstdb.Action = RestoreActionType.Database
rstdb.Devices.Add(New
Microsoft.SqlServer.Management.Smo.BackupDeviceItem(strFileName, DeviceType.File)
rstdb.UnloadTapeAfter = True
rstdb.ReplaceDatabase = true
rstdb.SqlRestore(Server)
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Here are the steps necessary to restore a database from backup:

1. Create the necessary SqlServerConnection(), Server(), and Database() objects.

2. Create a Restore() object.

3. The Database property of the Restore() object needs to be set to the database that is being
restored to. The name of the database can be obtained by the Database().Name property.

4. A Device needs to be added to the Restore() object. This is done by using
Restore().Devices.Add(new BackupDeviceItem(FileName, DeviceType)), where the string
is the filename of the backup file.

5. The DeviceType must be set. The allowed DeviceType enum values are mentioned in the 
previous backup section.

6. Set the Boolean ReplaceDatabase property. True will result in the database being overwritten.

7. The Boolean UnloadTapeAfter property specifies whether or not the tape should be unloaded
after the restore is completed.

8. The SqlRestore(SqlServerConnection) will begin the restore.

To perform the updated commands asynchronously and have the updates communicated back to the
calling application, the SqlRestoreAsync will need to be called to start the restore process asyn-
chronously. The PercentCompleteNotification property and a handle must be specified for the
PercentComplete method for the restore to be properly performed asynchronously.

Scripting with SMO
The Scripter() object is the object designed to create scripts from SMO objects. Let’s take a look at
some code that uses the Scripter() object. The following example is taken from the create database
example described previously:

Dim strScript as String = String.Empty
Dim strcolScript as StringCollection
Dim strTableName as String = “tblTest”
Dim sqlCn as New SqlConnection(strSqlcn)
Dim sqlServerConnection as New ServerConnection(sqlCn)
Dim Server as new Microsoft.SqlServer.Management.Smo.Server(sqlServerConnection)
Dim db as Database = Server.Databases(txtDb.Text)
Dim tbl as New Table(db, strTableName)
Dim smoObj(1) as SqlSmoObject
Dim scrptObj as New Scripter(Server)
if db.Tables.Contains(strTableName) then

db.Tables(strTableName).Drop()
End If
Dim colpk as New Column(tbl, strTableName & “ID”)
colpk.DataType = DataType.Int
colpk.Nullable = False
colpk.Identity = True
colpk.IdentityIncrement = 1
colpk.IdentitySeed = 1
tbl.Columns.Add(colpk)
Dim idxpk as New Index(tbl, “idx” & strTableName)
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Dim idxcol as New IndexedColumn(idxpk, colpk.Name)
idxpk.IndexKeyType = IndexKeyType.DriPrimaryKey
idxpk.IndexedColumns.Add(idxcol)
tbl.Indexes.Add(idxpk)
Dim colTest as New Column(tbl, “VarcharField”)
colTest.DataType.MaximumLength = 50
colTest.DataType.SqlDataType = SqlDataType.VarChar
tbl.Columns.Add(colTest)
smoObj(0) = tbl
smoObj(1) = idxpk
strcolScript = ScrptObj.Script(smoObj)
for each item as String in strColScript

strScript &= item & “;”
Next
Me.txtResults.Text = strScript
tbl.Create()

Let’s examine what this code does:

1. The necessary objects have been created, such as ServerConnection(), Server(),
Database(), Table(), Column(), Index(), and so on.

2. A StringCollection object is created to hold the output of the Scripter() object. The
Scripter() object is created, with the Server property set.

3. An array of generic SqlSmoObject types has been created. A list of URN types could also be used.

4. The array of SqlSmoObject type is filled.

5. The Script() method of the Scripter() object is called. This will return a StringCollection
object.

6. Iterate through the StringCollection to display the values.

Figure 11-12 shows the output of the database table creation in a script.

Simple Scripting
Sometimes the Scripter() object is too complex for some reason. Many of the SMO objects contain a
Script() method that can be used to create the script necessary for that single object. The biggest 
difference between the Script() method of an individual SMO object and the Scripter() object is
that the Script() method can take a ScriptOptions object to specify the options in creating the SQL
script.
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Figure 11-12

XML Web Services Processing 
in the Database

With SQL Server 2005, Microsoft has added the capability to process XML Web Services directly in the
database tier. This enables SQL Server 2005 to act as an HTTP listener. This in turn enables SQL Server
2005 to directly process XML Web Services without the need for an intermediate listener, such as the
Microsoft Internet Information Server (IIS). SQL Server 2005 will be able to expose an XML Web Service
so that SQL statements, functions, and procedures may be directly executed. Query results may be
returned in an XML format.

The capability to be an HTTP listener is similar in concept to the original SOAP toolkit for COM,
released several years ago. With the HTTP listener, the XML Web Services request is mapped to a com-
mand within the database.
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The capability of SQL Server 2005 to listen to XML Web Services requests is limited to systems with
http.sys, which, at the time of this writing, is Windows 2003 Server and WindowsXP Service Pak 2.

Creating an Endpoint
With the release of SQL Server 2005, the capability to process XML and Web Services is included in the
database. This capability is implemented through the DDL CREATE ENDPOINT command. The commands
necessary to run an example CREATE ENDPOINT are as follows:

EXEC sp_reserve_http_namespace N’http://voyager:80/sql2k5’;

In the preceding code, the system name is voyager.

The sp_reserve_http_namespace explicitly reserves the namespace necessary to allow subsequent
DDL commands to be executed against that namespace without requiring administrator privileges on
the SQL Server 2005 database server. The next step is the DROP ENDPOINT statement.

DROP ENDPOINT sql_endpoint;

The DROP ENPOINT command merely drops a defined endpoint:

CREATE ENDPOINT sql_endpoint 
STATE = STARTED
AS HTTP(

PATH = ‘/sql2k5’, 
AUTHENTICATION = (INTEGRATED ), 
PORTS = ( CLEAR ), 
SITE = ‘*’
)

FOR SOAP (
WEBMETHOD ‘http://tempUri.org/’.’spFunctionCount’ 

(name=’dbWebSearchYukon.dbo.spFunctionCount’, 
SCHEMA=STANDARD ),

WEBMETHOD ‘spFunctionCount’ 
(name=’dbWebSearchYukon.dbo.spFunctionCount’),

WSDL = DEFAULT,
DATABASE = ‘dbWebSearchYukon’,
NAMESPACE = DEFAULT

)

The CREATE ENPOINT command defines the endpoint that a Web Service can call and the method to
which the ENDPOINT is mapped. The URL http://servername/sql2k5?wsdl shows that the system
displays the wsdl associated with the preceding defined endpoint. Figure 11-13 shows a view of the
wsdl exposed by the Web Service.
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Figure 11-13

Once the Web Service is created, it needs to be consumed by an application. Visual Studio .NET has the
capability to set up and consume an XML Web Service. Figure 11-14 shows a SQL Server 2005 XML Web
Service being consumed by Visual Studio .NET 2005.

Figure 11-14

The table sys.endpoints displays all of the endpoints contained within a database.
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Summary
This chapter provided information about programming the SQL Server 2005 database engine. You
looked at the development of CLR objects that run within the database. These CLR objects can be 
triggers, stored procedures, functions, aggregates, and user-defined types. You also learned how to 
create database objects, such as a database, tables, and users, and perform backups and restores using
SQL Management Objects (SMOs). Last, but not least, you created a Web Service to communicate with 
a SQL Server 2005 function directly, without the need for an intermediary such as IIS.

For More Information
To complement the information in this chapter, take a look at the following resources:

❑ MSDN article titled “Using CLR Integration in SQL Server 2005” —http://msdn
.microsoft.com/data/default.aspx?pull=/library/en-us/dnsql90/html/
sqlclrguidance.asp

❑ MSDN article titled “An Overview of SQL Server 2005 for the Database Developer” —
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnsql90/html/sql_ovyukondev.asp

❑ The Weblog by Niels Berglund of Developmentor —http://staff.develop.com/nielsb/

❑ Data Samples and Tools page, by Bob Beauchemin of SQLSkills and formerly of
Developmentor —www.sqlskills.com/blogs/bobb.
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Notification Services

Notification Services was originally released as a downloadable add-on for Microsoft SQL Server
2000, much like Analysis Services and Reporting Services. Because it wasn’t released as part of
SQL, many people haven’t used it yet simply because they don’t know it exists. This chapter 
covers the basics of creating a Notification Services application and highlights the new features
available for Notification Services in SQL 2005.

If you have been developing for a while, chances are good that you have had the need to create an
application that sends notifications when an event occurs, or on a periodic basis. Some examples
of these types of applications include the following:

❑ Flight schedule changes

❑ Task reminders

❑ Minimum account balance warnings

❑ Stock updates

❑ Weather updates

❑ Server monitoring

❑ News updates

❑ Task approval notifications

❑ Many other line-of-business applications

Notification Services is designed to make creating these types of applications easier. It does this by
providing a framework containing the core functionality, which means you just need to specify the
configuration and provide the method for subscribing to notifications.
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Major Components
When you are building your first Notification Services application, you face a steep learning curve.
There isn’t a simple “Hello World” example to start with that enables you to build your knowledge in
small steps and see results along the way. With Notification Services, you need to define many functions
before creating your first application. Don’t worry; you’ll examine each of these functions in detail
throughout the chapter, but first you should look at the major components and how they interact. 
Figure 12-1 shows just that, providing the “big picture” level.

Figure 12-1

Subscription Management Application
The subscription management application is responsible for collecting information from the user and
adding it to SQL Notification Services (SQL NS). This includes a list of who the subscribers are, what
types of devices the subscribers have, and the services to which they wish to subscribe.

Microsoft exposes a NS API for doing this. Your responsibility is building the interface to collect the data
and send it to the API. This is usually done in the form of a Web application that enables the user to
define his or her own subscriptions. This could be in the form of a desktop app, a service that monitors
an e-mail account, or a bulk import from another system.

This is typically the only part of a NS application that requires writing code. The rest of the application is
defined by XML files. The key components of the subscription management application are as follows:

❑ Subscriber — Who or what will be receiving the notification. There’s usually only one entry per
person, even when the user wishes to subscribe to several services offered or receive notification
on several different devices.
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❑ Subscriber Device — What to send the notification to. A user of your application may wish to
receive an e-mail message at work when one type of event has occurred, another at home for a
second event, a page for some other events, and so on. The subscriber devices are the delivery
endpoints that may be used by a subscriber’s subscriptions.

❑ Subscription — A subscription merges the information of when and where to send a notification.
It describes the conditions for being notified, such as a flight being delayed or a work item 
awaiting approval. It also indicates the device to which the subscription should be sent.

Event Provider
An event provider is designed to watch for an event to occur outside of Notification Services and then
create an NS event, such as when a file shows up on a server, when the results of a query change, or
when the contents of a Web site change.

An event provider is not required for an NS application. The NS events can be added manually through
the NS API or stored procedures, but creating an NS event is much quicker and easier in most 
circumstances. There are two built-in event providers for monitoring a SQL database or file system, but
you also have the option of creating your own custom event providers. Here are some key terms you’ll
need to fully understand event providers:

❑ External Event — Something that occurs outside of the NS application that may or may not be
used to trigger events within the NS application.

❑ Event — This is an XML representation of the action that occurred, which is stored within the
NS application. It contains any relevant data needed for determining which notifications should
be sent and any data that needs to be included in them.

❑ Event Batches — When multiple events occur at the same time, they are grouped together into
event batches for processing as a single group.

❑ Hosted Event Providers — These are event providers that run within the NS application. 

❑ Non-Hosted Event Providers — These are also sometimes referred to as independent event
providers. They are not hosted by the NS application, but rather run independently of it, possibly
even on a different server.

Generator
The generator performs the majority of the work in a NS application. Its role is to evaluate the events
that have occurred and check them against the subscriptions on file. It then determines whether any
notifications need to be generated, and if so, generates them. The major components of the generator are
as follows:

❑ Rules — These are used by the generator to determine which notifications need to be generated
for a given event. All the data you need to determine this has been stored in SQL Server tables
by the event providers and the subscription management application. Writing the rule is as 
simple as creating a join between these two sets of data and inserting the results into another
table using SQL syntax.

❑ Quantum — A quantum is the interval during which the generator checks for notifications that
need to be generated. This interval is adjustable through the instance configuration file,
described later in this chapter.
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❑ Chronicles — These store information about an event over the series of multiple event firings.
They are useful if you wish to be notified of certain information that isn’t typically tabulated,
such as how many sales took place in a given hour if your events only report single sales as they
occur.

Distributor
The role of the distributor is to deliver the notifications to the users, which can be done via e-mail, a
pager, a net send command, the delivery of a file, an FTP transfer, and so on. In many cases, a single
event can generate thousands of notifications. Delivery of these notifications can be rather intensive. The
distributor consists of the following three major parts:

❑ Formatters — These translate the raw XML data about the notification into the presentation 
format. Formatters usually take the form of an XSL stylesheet, the only built-in formatter, but
you can also create your own formatters.

❑ Delivery Protocols — These are the basic formats available for delivering a message, such as
SMTP, FTP, or HTTP.

❑ Delivery Channel — This is an instance of a delivery protocol that specifies which server, port,
and additional information to use.

Instances and Applications
As mentioned earlier, the majority of the configuration of a NS application is defined by two XML files:
the instance configuration file and the application definition file.

A notification server instance is a named copy of Notification Services. You can have multiple NS
instances running on a single machine. For each instance, a separate copy of all the NS components is
created. Each instance can contain multiple NS applications, which are usually contained within one 
logical group. This is the level at which the subscribers and their devices are defined. It also contains
information such as the machine on which the event providers, generator, and distributor will run.

Configuring the Instance
Let’s get started building your first NS application. To create a new instance, start by creating a new
XML file. First you’ll need to create the root node of NotificationServicesInstance and reference
the appropriate namespace. Inside this tag, you need to define the instance and SQL Server names. The
instance name is what you want this copy of SQL NS to be called. It will be used to name the Windows
services and SQL database. You also have the option to specify the SQL Server that stores the data for
this NS application as a different machine than the one that runs it. In most cases, you’ll specify the local
machine name.

<?xml version=”1.0” encoding=”utf-8”?>
<NotificationServicesInstance xmlns=”http://www.microsoft.com/Æ
MicrosoftNotificationServices/ConfigurationFileSchema”>

<InstanceName>WeatherInstance</InstanceName>
<SqlServerSystem>YourMachineName</SqlServerSystem>

</NotificationServicesInstance>
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The next step is to define the ParameterDefaults section. Parameters are used for values that may
change when deploying the app to different environments. This provides a single point to change these
values. The Notification Services GUI provides screens for specifying these values when creating the
instance. The ParameterDefaults section isn’t necessary to use parameters; it simply sets the default
values for each parameter.

For this application, configure four parameters for the following: the local computer name, the base
directory in which your configuration files will be stored, the address of the SMTP server you wish to
use, and the e-mail address from which notifications should come. This and the rest of the configuration
settings outlined in this section are contained within the NotificationServicesInstance tag:

<ParameterDefaults>
<Parameter>

<Name>ComputerName</Name>
<Value>YourMachineName</Value>

</Parameter>
<Parameter>

<Name>BaseDirectoryPath</Name>
<Value>C:\NS</Value>

</Parameter>
<Parameter>

<Name>SmtpServer</Name>
<Value>localhost</Value>

</Parameter>
<Parameter>

<Name>EmailAddress</Name>
<Value>name@domain.com</Value>

</Parameter>
</ParameterDefaults>

It’s time to tell the instance about the applications it will be running. For this example, we’ll only have
one, but an instance can run multiple applications. The first thing it needs to know about the application
is its name. This name will also be used to create the corresponding SQL tables, views, and stored 
procedures. You also need to specify the base directory path. The parameters you defined earlier will
come in handy here. You can pass in the value of the parameter by referencing the name surrounded by
percent symbols.

The application definition file (ADF) path specifies the name of the ADF file. Each application can also
have its own set of parameters. Here we are passing in the local computer name for the distributor 
and generator. We are also specifying the base directory path for the XSLT file that will format the 
notification, and passing in the e-mail address from which the notifications will come. These values will
be consumed later in the ADF file:

<Applications>
<Application>

<ApplicationName>WeatherAlert</ApplicationName>
<BaseDirectoryPath>%BaseDirectoryPath%</BaseDirectoryPath>
<ApplicationDefinitionFilePath>WeatherAlert.xml</ApplicationDefinitionFilePath>
<Parameters>

<Parameter>
<Name>Distributor</Name>
<Value>%ComputerName%</Value>

</Parameter>
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<Parameter>
<Name>Generator</Name>
<Value>%ComputerName%</Value>

</Parameter>
<Parameter>

<Name>XsltDirectory</Name>
<Value>%BaseDirectoryPath%</Value>

</Parameter>
<Parameter>

<Name>FromEmail</Name>
<Value>%EmailAddress%</Value>

</Parameter>
</Parameters>

</Application>
</Applications>

The last part to define in the instance configuration file is the delivery channels that will be used in this
application. The sample app will only deliver notifications via e-mail, so you’ll need to specify one 
delivery channel. The delivery channel name can be anything you want. The protocol must be SMTP
because we’re sending e-mails. In the arguments section, pass in the SmtpServer parameter for the
SMTP server argument. If you leave it as localhost in the parameters section, be sure to verify that 
the mail service is running on your machine.

<DeliveryChannels>
<DeliveryChannel>

<DeliveryChannelName>EmailChannel</DeliveryChannelName>
<ProtocolName>SMTP</ProtocolName>
<Arguments>

<Argument>
<Name>SmtpServer</Name>
<Value>%SmtpServer%</Value>

</Argument>
<Arguments>

</DeliveryChannel>
</DeliveryChannels>

That’s it. You’re done defining the instance configuration file. Save it as WeatherInstance.xml and proceed
to create the application definition file. You’ll use the configuration file again later in the chapter.

The Application Definition File
It is now time to define your application. In this section, you’ll specify what data you need to gather in
the events, what data is needed from the subscribers, and what will be included in the notification, as
well as what triggers the notification. It is a bit more involved than the configuration file. Once again,
begin by making the shell. You’ll need a root, Application node that points to the namespace specified
in the following code sample. You’ll also need to specify the machine on which the distributor and 
generator will run. If you want them to run on the same machine, you can use the %Distributor% and
%Generator% parameters that were passed in from the instance configuration file you just created.
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<?xml version=”1.0” encoding=”utf-8” ?>
<Application xmlns=”http://www.microsoft.com/Æ
MicrosoftNotificationServices/ApplicationDefinitionFileSchema”>

<Distributors>
<Distributor>

<SystemName>%Distributor%</SystemName>
</Distributor>

</Distributors>

<Generator>
<SystemName>%Generator%</SystemName>

</Generator>
</Application>

Next, you need to define what data will be expected on the events in the EventClasses section. This
consists of providing a name and the schema for the data that will be collected. In this case, you’ll need
to know the zip code for the temperature update and the current temperature in that zip code. This will
later be used to create corresponding SQL tables and views. The field types you specify need to be valid
SQL Server field types.

<EventClasses>
<EventClass>

<EventClassName>WeatherAlertEvent</EventClassName>
<Schema>

<Field>
<FieldName>ZipCode</FieldName>
<FieldType>varchar(5)</FieldType>

</Field>
<Field>

<FieldName>CurrentTemperature</FieldName>
<FieldType>float</FieldType>

</Field>
</Schema>

</EventClass>
</EventClasses>

You’ll also need to specify the provider for the events. The provider specifies how the events will be
populated. There are two types of providers: hosted and nonhosted. Hosted providers run within the NS
application scope and usually consist of monitoring a SQL table for changes or waiting for a file to show
up. Nonhosted providers indicate that the data will be populated into events by something outside of
NS; you still need to add an entry for them, though. For now, specify a nonhosted provider:

<Providers>
<NonHostedProvider>

<ProviderName>WeatherAlertProvider</ProviderName>
</NonHostedProvider>

</Providers>

Now you need to specify what the output format will be. To send a message of “The current temperature
is X degrees,” the only piece of data you need is the current temperature. In the schema section, specify
this field with a type of float.
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To format the message as previously stated, specify the content formatter. To do this, add the
ContentFormatter node and specify the built-in XsltFormatter for the class name. You’ll need to
specify the path to your XSLT file by using the XsltDirectory parameter, and specify the name of the
XSLT file you wish to use.

Now you need to specify which protocols specified in the instance configuration file will be used by this
notification class, and provide the parameters to be used. For the subject, priority, and body format, you
can hard-code the values. To do this, be sure to pass the values surrounded by single quotes and encode
these quotes for XML. The only parameter that changes is the To address. You just need to specify
DeliveryAddress for this value, which will be passed in from the subscriber’s device:

<NotificationClasses>
<NotificationClass>

<NotificationClassName>WeatherAlertNotification</NotificationClassName>
<Schema>

<Fields>
<Field>

<FieldName>CurrentTemperature</FieldName>
<FieldType>float</FieldType>

</Field>
</Fields>

</Schema>
<ContentFormatter>

<ClassName>XsltFormatter</ClassName>
<Arguments>

<Argument>
<Name>XsltBaseDirectoryPath</Name>
<Value>%XsltDirectory%</Value>

</Argument>
<Argument>

<Name>XsltFileName</Name>
<Value>WeatherAlert.xslt</Value>

</Argument>
</Arguments>

</ContentFormatter>
<Protocols>

<Protocol>
<ProtocolName>SMTP</ProtocolName>
<Fields>

<Field>
<FieldName>Subject</FieldName>
<SqlExpression>

&apos;Weather Alert.&apos;
</SqlExpression>

</Field>
<Field>

<FieldName>From</FieldName>
<SqlExpression>

&apos;%FromEmail%&apos;
</SqlExpression>
</Field>
<Field>
<FieldName>To</FieldName>
<SqlExpression>
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DeviceAddress
</SqlExpression>

</Field>
<Field>

<FieldName>Priority</FieldName>
<SqlExpression>

&apos;Normal&apos;
</SqlExpression>

</Field>
<Field>

<FieldName>BodyFormat</FieldName>
<SqlExpression>

&apos;html&apos;
</SqlExpression>

</Field>
</Fields>

</Protocol>
</Protocols>

</NotificationClass>
</NotificationClasses>

The last piece you need in order to have a complete NS application defined is the subscription information.
This section contains three parts: the class name and schema, which are defined in this section, and the
event rules, defined in the next section. The first two are very similar to what you’ve already done. Specify
the class name you want. On the schema, we need several pieces of information: the zip code for which the
subscriber wishes to receive notifications, the name of the device on which they wish to receive them, and
the maximum and minimum temperature thresholds so they can determine when they should receive 
notifications:

<SubscriptionClasses>
<SubscriptionClass>

<SubscriptionClassName>WeatherAlertSubscriptions</SubscriptionClassName>
<Schema>

<Field>
<FieldName>ZipCode</FieldName>
<FieldType>varchar(5)</FieldType>

</Field>
<Field>

<FieldName>DeviceName</FieldName>
<FieldType>varchar(255)</FieldType>

</Field>
<Field>

<FieldName>MaxTemperature</FieldName>
<FieldType>float</FieldType>

</Field>
<Field>

<FieldName>MinTemperature</FieldName>
<FieldType>float</FieldType>

</Field>
</Schema>

</SubscriptionClass>
</SubscriptionClasses>
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The event rules section is a bit different from the others. It defines a SQL query that merges the event
data with the subscriber data to populate the notification data. You should already be familiar with how
to write such a query, so we won’t walk you through it, but you can see an example in the following
code. It references several views that do not yet exist. These views will be created at the time the NS
instance is created. You have already defined the names and schema for them, however, so it’s pretty
easy to go ahead and write the query. Be sure to encode any characters, such as the greater than and less
than symbols, for XML.

<EventRules>
<EventRule>

<RuleName>WeatherAlertRule</RuleName>
<Action>

INSERT INTO WeatherAlert(
SubscriberId, DeviceName, SubscriberLocale, CurrentTemperature)

SELECT s.SubscriberId, s.DeviceName,’en-US’,
e.CurrentTemperature 

FROM WeatherAlertEvent e 
INNER JOIN WeatherAlertSubscriptions s
ON e.ZipCode=s.ZipCode AND (

e.CurrentTemperature&gt;s.MaxTemperature OR
e.CurrentTemperature&lt;s.MinTemperature)

</Action>
<EventClassName>WeatherAlertEvent</EventClassName>

</EventRule>
</EventRules>

The application definition file is now complete, and you’re almost ready to create your NS application.
The last thing you need to do is define the contents of the XSLT file previously referenced in the content
formatters section. This can be as simple or elaborate as you like, but we’ll go with simple for our 
example:

<?xml version=”1.0” encoding=”utf-8”?>
<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform” version=”1.0”>

<xsl:template match=”*/notification”>
The current temperature is <xsl:value-of select=”CurrentTemperature”/>.

</xsl:template>
</xsl:stylesheet>

Adding the SQL NS Instance
You have completely configured your first NS application, and we haven’t even looked at the interface
yet. It’s time to take a look now. Begin by opening the SQL Server Management Studio. Right-click the
Notification Services node and choose the option to add a new instance. You’ll see a dialog box with a
Browse button. Use it to browse to and select the instance configuration file you created earlier and then
click OK. SQL NS is now aware of this instance and the application contained within it.

Next, you need to register the NS instance. This will create the associated Windows service and 
performance counters. It is also where you specify which account that service will run as, along with
which account to connect to the database as. After that, you’ll need to enable the services. This will turn
on all of the subcomponents — the event providers, the generators, the distributors, and the subscriptions.
Finally, you need to start the service.
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Your application is now running and ready to send notifications. All you need to do now is set up some
subscriptions and then fire events. If you need to make changes to your configuration later, just stop and
disable the service. Then choose the update option to point to the updated configuration file and re-
enable and restart the service again.

Building the Subscription Management
Application

You need to provide the users of this application with a way to subscribe. Microsoft has provided an 
API for Notification Services, but it is up to you to create the interface for collecting the subscription
information. In most cases, this is provided via a Web application. For this example, we create a single
admin interface for setting up subscribers; you may also wish to enable subscribers to edit their own
information in your application.

In this section, you’ll learn the steps necessary for adding subscribers, defining what devices each 
subscriber has, and adding subscriptions for those subscribers. You will need to create a new Web project
and add a reference to Microsoft.SqlServer.NotificationServices. You’ll also need to add an
Imports statement referencing Microsoft.SqlServer.NotificationServices to each of the pages
outlined in this section.

Retrieving a List of Subscribers
The first step for our admin application is to create a screen that will retrieve a list of subscribers already 
set up, and then allow the admin to choose one to edit or create a new one. To do this, create a new page,
called subscriberlist.aspx. In the HTML section, add a datagrid with a single hyperlink column. The text for
this column will be the value of the SubscriberId property, and the link will point to subscriberedit.aspx,
passing in the hyperlink parameter. Also add a link that points to subscriberedit.aspx, with no parameters,
in order to add a new subscriber.

Use the following code to populate the datagrid. You first need to get a copy of the Notification Services
instance. This is something that will be reused throughout the application, so it’s best to define it in a
shared method. This method, GetNsInstance, is defined in the Utils class in the following section.
Next, create a new instance of the SubscriberEnumeration object, passing in the NS instance. This will
return a populated list of all subscribers, which you can then bind to your datagrid.

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
Dim ns As NSInstance
Dim subscribers As SubscriberEnumeration

ns = Utils.GetNsInstance()
subscribers = New SubscriberEnumeration(ns)

SubscriberGrid.DataSource = subscribers
SubscriberGrid.DataBind()

End Sub
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This page references the GetNsInstance method in the Utils class. You’ll need to create this class and
method in the Code directory. It is fairly simple and just consists of retrieving the instance name from
the web.config file, creating a new NSInstance object with that name, and returning the object:

Public Shared Function GetNsInstance() As NSInstance
Dim instanceName As String
Dim ns As NSInstance
instanceName =

System.Configuration.ConfigurationSettings.AppSettings(“InstanceName”)
ns = New NSInstance(instanceName)
Return ns

End Function

Adding/Removing a Subscriber
You now need to define subscriberedit.aspx, referenced by the previous page. There’s really only one
field you must be able to define for the subscriber: the subscriber id. Create a Web form with a field for
the subscriber id, a Save button, and a Delete button. 

Also add two hyperlinks to the page: one to edit the devices for this subscriber and one to edit the 
subscriptions. These hyperlinks should have the visible property set to false by default.

In the Page_Load event, request the subscriber id from the query string. If it isn’t blank, store it in
ViewState for future use, update the SubscriberIdText textbox with the value, and call the
EnableSubscriber method to make the appropriate links and buttons visible:

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
If Not IsPostBack Then

Dim subscriberId As String
subscriberId = Request(“SubscriberId”)
If subscriberId <> “” Then

ViewState(“SubscriberId”) = subscriberId
SubscriberIdText.Text = subscriberId
EnableSubscriber()

End If
End If

End Sub

If this is an existing subscriber, you need to enable the links to edit the devices, subscriptions, and Delete
button, as well as disable the Save button. You’ll also need to specify the link URLs, passing in the 
subscriber id, the subscription class name, and the application name:

Sub EnableSubscriber()
Dim subscriberId As String
subscriberId = Convert.ToString(ViewState(“SubscriberId”))

SubscriberIdText.Enabled = False
SaveButton.Visible = False
DeleteButton.Visible = True
DevicesLink.Visible = True
DevicesLink.NavigateUrl = “DeviceList.aspx?subscriberId=” & subscriberId

AlertSubscriptionsLink.Visible = True
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AlertSubscriptionsLink.NavigateUrl =
“SubscriptionList.aspx?applicationName=WeatherAlert&subscriptionClassNameÆ
=WeatherAlertSubscriptions&subscriberId=” & subscriberId
End Sub

Saving the subscriber is pretty straightforward. You just need to call the same shared method used earlier
to retrieve the Notification Services instance. Then create a new subscriber object, passing in the NS
instance. Set the subscriber name property and call the Add method. Then call the EnableSubscriber
method to populate the links:

Sub SaveButton_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim instanceName As String
Dim ns As Microsoft.SqlServer.NotificationServices.NSInstance
Dim subscriber As Microsoft.SqlServer.NotificationServices.Subscriber

ns = Utils.GetNsInstance()
subscriber = New Microsoft.SqlServer.NotificationServices.Subscriber(ns)
subscriber.SubscriberId = SubscriberIdText.Text
subscriber.Add()
ViewState(“SubscriberId”) = subscriberId
EnableSubscriber()

End Sub

To delete a subscriber, load the NS instance. Call a new shared method to retrieve the subscriber by 
its subscriber id. Call the Delete method on the subscriber object and transfer the user back to the 
subscriber list:

Sub DeleteButton_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim instanceName As String
Dim ns As NSInstance
Dim subscriber As Subscriber
Dim subscribers As SubscriberEnumeration

ns = Utils.GetNsInstance()
subscriber = Utils.GetSubscriber(subscriberId)
subscriber.Delete()
Server.Transfer(“SubscriberList.aspx”)

End Sub

You now need to create the GetSubscriber method in the Utils class referenced by the last code
block. It will also be used in several other places in the application. Create the new NS instance by 
calling the shared GetNsInstance method. Then, create a new SubscriberEnumeration object, 
passing in the NS instance. Next, request the subscriber object from the collection by the subscriber id
and return that subscriber object:

Public Shared Function GetSubscriber(ByVal subscriberId As String) As Subscriber
Dim ns As NSInstance
Dim subscriber As Subscriber
Dim subscribers As SubscriberEnumeration

ns = GetNsInstance()
subscribers = New SubscriberEnumeration(ns)
subscriber = subscribers.Item(subscriberId)
Return subscriber

End Function
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Device List
The next step we’re going to cover is building the device list, devicelist.aspx. This page will show which
devices each subscriber has and enable the user to add new devices. Figure 12-2 shows a simple example
of how this page may look.

Figure 12-2

As with the subscriber list, create a new datagrid in your .aspx page and two hyperlinks for adding a
device and returning to the previous page. In the code-behind, the first thing that you’re going to need 
is the subscriber id. Request it from the query string and place it in a local variable. Use it to populate
the Back link and Add Device link, and then call the GetSubscriber method to return the current 
subscriber object. You can then call the GetDevices method of the subscriber object and simply
databind it to the grid:

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
Dim subscriberId As String
Dim subscriber As Subscriber
Dim devices As SubscriberDeviceEnumeration

subscriberId = Request(“SubscriberId”)
BackLink.NavigateUrl = “SubscriberEdit.aspx?subscriberId=” +

subscriberId.ToString()

subscriber = Utils.GetSubscriber(subscriberId)
devices = subscriber.GetDevices()

DeviceGrid.DataSource = devices
DeviceGrid.DataBind()
Me.AddDeviceLink.NavigateUrl = “DeviceEdit.aspx?subscriberId=” + subscriberId

End Sub
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Device Edit
Next you’ll need to add a page similar to the one shown in Figure 12-3 to enable users to edit or add
devices.

Figure 12-3

For the Edit Device screen, you’ll need textbox fields for setting the device name and address, and 
drop-down menus for selecting the delivery channel and device type. You’ll also need a Save and Delete
button and a link to go back. In the code-behind, we’ll use the values of the subscriber id and device
name several times. This will be easier if you create properties for them. In these properties, just store the
value in ViewState and pull it back out in the Set and Get methods, respectively:

Private Property SubscriberId() As String
Get

Return Convert.ToString(ViewState(“SubscriberId”))
End Get
Set(ByVal value As String)

ViewState(“SubscriberId”) = value
End Set

End Property

Private Property DeviceName() As String
Get

Return Convert.ToString(ViewState(“DeviceName”))
End Get
Set(ByVal value As String)

ViewState(“DeviceName”) = value
End Set

End Property
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In the Page_Load method, you just need to request the subscriber id and device name. Then populate
the Back link; and if the device name isn’t empty, call the PopulateDevice method:

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
If Not IsPostBack Then

SubscriberId = Request(“SubscriberId”)
DeviceName = Request(“Devicename”)

BackLink.NavigateUrl = “DeviceList.aspx?subscriberId=” +
SubscriberId.ToString()

If DeviceName <> “” Then
PopulateDevice()

End If
End If

End Sub

The PopulateDevice method loads the device using the new GetDevice shared method and populates
the fields on the page with the values stored within Notification Services when you’re editing an existing
device. It also disables the name so that it cannot be changed and enables the Delete button:

Sub PopulateDevice()
Dim device As SubscriberDevice
device = Utils.GetDevice(SubscriberId, DeviceName)

DeviceNameText.Text = device.DeviceName
DeviceAddress.Text = device.DeviceAddress
DeliveryChannelList.Items.FindByValue(device.DeliveryChannelName).Selected = True
DeviceTypeList.Items.FindByValue(device.DeviceTypeName).Selected = True

DeviceNameText.Enabled = False
DeleteButton.Enabled = True

End Sub

In the Utils class, you must add a new method of GetDevice. It calls the GetSubscriber shared
method to get the subscriber object. The GetDevices() method of the subscriber object retrieves all of
the devices and then returns the device matching the specified device name:

Public Shared Function GetDevice(ByVal subscriberId As String, ByVal deviceName As
String) As SubscriberDevice

Dim subscriber As Subscriber
Dim devices As SubscriberDeviceEnumeration
Dim device As SubscriberDevice

subscriber = GetSubscriber(subscriberId)
devices = subscriber.GetDevices()
device = devices.Item(deviceName)
Return device

End Function

To save the device, either create a new SubscriberDevice object if it is a new subscriber or use the
GetDevice method to load an existing device. Update each of the properties with the values inputted
on the screen, and then call either the Add or Update method, accordingly. Then transfer the user back to
the DeviceList page:
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Sub SaveButton_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim device As SubscriberDevice

If (DeviceName = “”) Then
‘Add device
device = New SubscriberDevice(Utils.GetNsInstance)
device.SubscriberId = SubscriberId
device.DeviceName = DeviceNameText.Text
device.DeviceAddress = DeviceAddress.Text
device.DeliveryChannelName = DeliveryChannelList.SelectedItem.Value
device.DeviceTypeName = DeviceTypeList.SelectedItem.Value
device.Add()

Else
‘Update device
device = Utils.GetDevice(SubscriberId, DeviceName)
device.SubscriberId = SubscriberId
device.DeviceAddress = DeviceAddress.Text
device.DeliveryChannelName = DeliveryChannelList.SelectedItem.Value
device.DeviceTypeName = DeviceTypeList.SelectedItem.Value
device.Update()

End If
Server.Transfer(“DeviceList.aspx”)

End Sub

For the Delete method, get the device using the shared method, call the Delete method on it, and
transfer the user back to the DeviceList page:

Sub DeleteButton_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim device As SubscriberDevice
device = Utils.GetDevice(SubscriberId, DeviceName)
device.Delete()
Server.Transfer(“DeviceList.aspx”)

End Sub

Subscription List
The last set of pages you’ll need to make are the subscription management pages. First you need a 
page to list the subscriptions. The subscription class name is being passed into the page, so this will be a
filtered list. Begin by adding a datagrid, Back link, and Add Device link as you did for the other list pages.
In the code-behind, request the SubscriberId, ApplicationName, and SubscriptionClassName from
the query string. Then call a new method in the Utils class of GetSubscriptions to return a
SubscriptionEnumeration object. Bind the subscriptions and populate the two links:

Protected subscriberId As String
Protected applicationName As String
Protected subscriptionClassName As String

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
Dim subscriptions As SubscriptionEnumeration

subscriberId = Request(“SubscriberId”)
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applicationName = Request(“ApplicationName”)
subscriptionClassName = Request(“SubscriptionClassName”)
subscriptions = Utils.GetSubscriptions(applicationName, Æ

subscriptionClassName, subscriberId)

SubscriptionGrid.DataSource = subscriptions
SubscriptionGrid.DataBind()

BackLink.NavigateUrl = “SubscriberEdit.aspx?subscriberId=”Æ
+ subscriberId.ToString()
AddSubscriptionLink.NavigateUrl = “SubscriptionEdit.aspx?subscriberId=”Æ

+ subscriberId + “&applicationName=” + applicationName + Æ
“&subscriptionClassName=” + subscriptionClassName

End Sub

Of course, you now need to add the GetSubscriptions method you just called to the Utils class. Call
the GetNsApplication method, which is another new method you will add to this class in a moment.
Then create a new SubscriptionEnumeration class, passing in the application object, subscription
class name, and subscriber id. Now return the SubscriptionEnumeration object:

Public Shared Function GetSubscriptions(ByVal applicationName As String,Æ
ByVal subscriptionClassName As String, ByVal subscriberId As String) AsÆ

SubscriptionEnumeration
Dim app As NSApplication
Dim subscriptions As SubscriptionEnumeration

app = GetNsApplication(applicationName)
subscriptions = New SubscriptionEnumeration(app, subscriptionClassName,Æ

subscriberId)
Return subscriptions

End Function

The GetNsApplication method needs to call GetNsInstance to create a new NS instance and then
create a new NSApplication object, passing in the NS instance and application name and returning that
object:

Public Shared Function GetNsApplication(ByVal applicationName As String)Æ
As NSApplication
Dim instanceName As String
Dim ns As NSInstance
Dim app As NSApplication

ns = Utils.GetNsInstance()
app = New NSApplication(ns, applicationName)
Return app

End Function

Subscription Edit
We’re at the last and most complex page in the subscription management application. Begin by creating
the HTML layout, including textboxes for zip code, max temperature, and min temperature. Also add a
drop-down menu for the device name. Add the usual Save and Delete buttons and a link to go back.
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In the code-behind, add properties for the application name, subscriber id, subscription class name, and
subscription id that store their values in ViewState:

Private Property ApplicationName() As String
Get

Return Convert.ToString(ViewState(“ApplicationName”))
End Get
Set(ByVal value As String)

ViewState(“ApplicationName”) = value
End Set

End Property

Private Property SubscriberId() As String
Get

Return Convert.ToString(ViewState(“SubscriberId”))
End Get
Set(ByVal value As String)

ViewState(“SubscriberId”) = value
End Set

End Property

Private Property SubscriptionClassName() As String
Get

Return Convert.ToString(ViewState(“SubscriptionClassName”))
End Get
Set(ByVal value As String)

ViewState(“SubscriptionClassName”) = value
End Set

End Property

Private Property SubscriptionId() As String
Get

Return Convert.ToString(ViewState(“SubscriptionId”))
End Get
Set(ByVal value As String)

ViewState(“SubscriptionId”) = value
End Set

End Property

In the Page_Load event, populate all of the properties from their appropriate query string values. Set
the URL on the Back link and populate the Device List drop-down menu using the same shared method
you used to populate the devices on the devicelist.aspx page. Call the PopulateSubscription method
if the subscription id is not empty, and make the alert info section visible if this is an alert subscription:

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.Load
If Not IsPostBack Then

SubscriberId = Request(“SubscriberId”)
SubscriptionClassName = Request(“SubscriptionClassName”)
SubscriptionId = Request(“SubscriptionId”)
ApplicationName = Request(“ApplicationName”)

BackLink.NavigateUrl = “SubscriptionList.aspx?applicationName=” +  
ApplicationName + “&subscriptionClassName=” + SubscriptionClassName + 
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“&subscriberId=” + SubscriberId

DeviceList.DataSource = Utils.GetSubscriber(SubscriberId).GetDevices()
DeviceList.DataBind()

If SubscriptionId <> “” Then
PopulateSubscription()

End If

End If
End Sub

The PopulateSubscription method calls a new shared method of GetSubscription to load the 
subscription object. Use the GetFieldValue method of the subscription object to retrieve the value of
any property that is defined in the ADF file. Next, populate the appropriate textboxes and select the
appropriate items in the list boxes using this data. Lastly, enable the Delete button:

Sub PopulateSubscription()
Dim subscription As Microsoft.SqlServer.NotificationServices.Subscription
subscription = Utils.GetSubscription(Applicationname, SubscriptionClassName, 
SubscriberId, subscriptionId)

SubscriptionIdLabel.Text = subscription.SubscriptionId
ZipCodeText.Text = Convert.ToString(subscription.GetFieldValue(“ZipCode”))    
DeviceList.Items.FindByValue(  
Convert.ToString(subscription.GetFieldValue(“DeviceName”))).Selected = True

MaxTemperatureText.Text = 
Convert.ToString(subscription.GetFieldValue(“MaxTemperature”))

MinTemperatureText.Text = 
Convert.ToString(subscription.GetFieldValue(“MinTemperature”))

DeleteButton.Enabled = True
End Sub

Now add the GetSubscription method to the Utils class. This method calls the shared
GetSubscriptions method to retrieve a list of subscriptions for the specified application and returns
the subscription matching the specified subscription name:

Public Shared Function GetSubscription(ByVal applicationName As String, ByValÆ
subscriptionClassName As String, ByVal subscriberId As String, ByValÆ
subscriptionId As String) As Subscription
Dim subscriptions As SubscriptionEnumeration
subscriptions = GetSubscriptions(applicationName, subscriptionClassName,

subscriberId)
Return subscriptions.Item(subscriptionId)

End Function

To save the subscription, either create a new subscription object if adding a new subscription, or call 
the shared method to load a subscription if editing an existing one. Use the SetFieldValue method,
passing in the parameter names you defined in the ADF file and the values for the parameters that apply
to this subscription type. Call Add or Update depending on the subscription, and redirect the user back
to the subscription list:
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Sub SaveButton_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim subscription As Subscription

If (SubscriptionId = “”) Then
‘Add device
subscription = New Subscription(Utils.GetNsApplication(ApplicationName), 

SubscriptionClassName)
subscription.SubscriberId = SubscriberId
subscription.SetFieldValue(“ZipCode”, ZipCodeText.Text)
subscription.SetFieldValue(“DeviceName”, DeviceList.SelectedItem.Value)
subscription.SetFieldValue(“MaxTemperature”, 

Convert.ToDouble(MaxTemperatureText.Text))
subscription.SetFieldValue(“MinTemperature”, 

Convert.ToDouble(Me.MinTemperatureText.Text))
subscription.Add()

Else
‘Update device
subscription = Utils.GetSubscription(ApplicationName, 

SubscriptionClassName, SubscriberId, SubscriptionId)
subscription.SubscriberId = SubscriberId
subscription.SetFieldValue(“ZipCode”, ZipCodeText.Text)
subscription.SetFieldValue(“DeviceName”, DeviceList.SelectedItem.Value)
subscription.SetFieldValue(“MaxTemperature”, 

Convert.ToDouble(MaxTemperatureText.Text))
subscription.SetFieldValue(“MinTemperature”, 

Convert.ToDouble(Me.MinTemperatureText.Text))
subscription.Update()

End If
Server.Transfer(“SubscriptionList.aspx”)

End Sub

Add code to the Delete button that calls the shared GetSubscription method to get the subscription
object. Then call the Delete method on that object and transfer the user back to the subscription list:

Sub DeleteButton_Click(ByVal sender As Object, ByVal e As System.EventArgs)
Dim subscription As Subscription
subscription = Utils.GetSubscription(Applicationname, SubscriptionClassName, 
SubscriberId, SubscriptionId)
subscription.Delete()
Server.Transfer(“SubscriptionList.aspx”)

End Sub

You finally have a complete subscription management application. Run it and set up at least one 
subscriber, device, and subscription.

Firing an Event
You may recall that you configured the application to use a nonhosted provider. This means you are
responsible for firing the events. This can be done by calling three stored procedures specific to this NS
instance: NSEventBeginBatchWeatherAlertEvent, NSEventWriteWeatherAlertEvent, and
NSEventFlushBatchWeatherAlertEvent.
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As mentioned before, events are submitted in batches. Even if you are only submitting a single event,
you must still create a batch for it. Use the NSEventBeginBatchWeatherAlertEvent stored procedure
to do this. You must pass in the name of the provider you wish to use and the batch id as an output
parameter.

Once you have the batch id, you can submit events to it using NSEventWriteWeatherAlertEvent. For
this stored procedure, you must pass in the batch id and the parameters defined for the event in the
ADF. Be sure to pass in the zip code you have subscribed to and a temperature that falls outside of the
range you specified in order to trigger the notification. If you wish to submit more than one event, call
this stored procedure as many times as necessary.

You must now close the event batch by calling NSEventFlushBatchWeatherAlertEvent and passing
in the batch id. Within a few minutes of submitting the batch, you should receive an e-mail notification:

DECLARE @BatchId bigint
exec NSEventBeginBatchWeatherAlertEvent ‘WeatherAlertProvider’, @BatchId OUTPUT

exec NSEventWriteWeatherAlertEvent 
@EventBatchId=@BatchId, 
@ZipCode=’74011’,
@CurrentTemperature=31

exec NSEventFlushBatchWeatherAlertEvent @BatchId

Summary
This chapter has only scratched the surface of what Notification Services can do. Many topics, such as
scheduled subscriptions, nonhosted providers, chronicles, and performance tuning, simply can’t be 
covered in a single chapter. It is hoped that you can see what is possible with Notification Services and
are now well on your way to understanding how to use it. 

For More Information
For additional information on SQL 2005 Notification Services, we suggest the following resources:

❑ Microsoft SQL Server Home Page —www.microsoft.com/sql/

❑ Microsoft SQL Server 2005 Developer Center —http://msdn.microsoft.com/sql/2005/

❑ MSDN Webcast: Introducing Notification Services in SQL Server 2005 —http://msevents
.microsoft.com/cui/WebCastEventDetails.aspx?EventID=1032263436
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Service Broker

To better understand the queue mechanism known as Service Broker, we’ll begin this chapter with
an analogy. A crying baby is a common form of asynchronous communication (the parent’s normal
response time may make it seem synchronous, but it’s actually asynchronous). Here’s a breakdown
of the communication pattern that results when a parent hears his or her baby crying (yes, this will
make sense soon enough):

Sending Service: Baby

Receiving Service: Parent

Message: Baby cries out

Message Type: Baby cries with a specific tone

Contract: Baby expects parent to help

Queue: Parent in the middle of something that cannot be dropped 
immediately, so message is not acted on immediately

Service Program: Parent changes diaper

Dialog: Parent reassures baby and no more messages are queued

Okay, this may not be the best analogy, but it does represent the basic outline of each part of
Service Broker. As we proceed through the chapter, you will learn about the following concepts:
Service, Service Program, Message, Message Type, Queue, and Dialog. 

An Introduction to Service Broker
When you hear the term Service Broker, one of the first products that may come to mind is
Microsoft Message Queue (MSMQ). To many, Service Broker is a SQL Server–based replacement
for MSMQ. However, while it can certainly fulfill the role of replacement, Service Broker is more
than just a new queue mechanism. Here are some of its features:
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❑ Message Ordering: Service Broker has the capability to order messages to ensure they are 
processed in the correct order. Each message in a unit is marked with a unique identifier to 
easily determine the task to which each message is tied.

❑ Message Locking: Service Broker locks all messages relating to the same task, ensuring that the
messages are processed as a unit. This facility reduces the likelihood of incomplete transactions
leaving the data in an inconsistent state. 

❑ Coordination: Service Broker has a built-in mechanism to ensure that each message is only
delivered once, eliminating the risk of messages being processed twice.

❑ Database integration: The Service Broker service is tightly integrated with SQL Server 2005. The
queues are stored as tables in a database. This makes it very easy to use built-in SQL Server
tools to back up and restore queues, as well as create highly available solutions.

❑ Automatic Activation: Service Broker is a service and not directly implemented inside the
database. What this means is that numerous instances of the Service Broker service can 
automatically be activated when message load is heavy. These instances can also be shut down
as the workload decreases.

❑ Asynchronous Communication: Service Broker is an asynchronous service. When a server goes
down, messages can be queued until the service is back up and running. As asynchronous 
communication is loosely coupled, Service Broker can be configured to distribute the workload
across multiple servers with very little work on the part of either a developer or a DBA.

The components of Service Broker include the following (in normal order of creation):

❑ Message Types: Every communication in Service Broker must adhere to a specific message type.
Message types can be set up to allow complete flexibility (useful for binary communication) or
they can be set up to rigidly adhere to a specific schema. 

❑ Contracts: Dialogs have to be set up as a group of conversational pieces, each adhering to a
specified message type. The layout of the conversation is set up in a contract, which cannot be
changed without destroying and recreating the contract.

❑ Queue: A queue is a storage place for messages. As Service Broker is asynchronous, queues persist
messages until they either are picked up or expire.

❑ Service: We are concerned with two types of service — those that initiate conversations (the
INITIATOR) and those that receive messages in conversations (the TARGET). These can also be
called sending services and receiving services.

❑ Dialog: When discussing Service Broker, there is a bit of confusion over the use of the words
“dialog” and “conversation.” Think of a conversation as communication from one queue to
another. The fact that Microsoft chose to use the syntax CREATE DIALOG CONVERSATION further
exacerbates the problem. If a conversation is communication between queues, then a dialog is a
conversation between two queues with messages sent in both directions, with mechanisms to
ensure that messages are received and processed in order. By setting up contracts with two-way
messaging (with proper message types for each type of message sent), you initiate a dialog.
Service Broker allows for very complex “dialog conversations.”

❑ Route: A route is a pathway of communication from service to service (queue to queue). Routes
indicate where one service should send messages to communicate with another service. They
are extremely important when communicating from server to server, which is the norm when
using Service Broker.
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The basic layout of Service Broker is shown in Figure 13-1. On each end, you have a queue with a service
on top. Between the two queues is a route over which a dialog (or conversation) takes place. These 
conversations use messages that adhere to a specific message type (in best practice, XML validated by a
schema). The message types are listed in a contract that is placed at both ends as an agreement to what is
going to be said.

Figure 13-1

Working with Service Broker: A Simple Example
Before we dive into Service Broker, we’d like to give credit for the inspiration for the sample in this 
section, which has been adapted from guidance in the Microsoft course 2733 (Updating Your Database
Administration Skills to Microsoft® SQL Server 2005). This particular example was chosen for adaptation
for several reasons. First, it is simple enough to give you the basic concepts of Service Broker without
getting you bogged down in too many details. Second, it is easy to expand on with other types of code.
Finally, the example makes sense operating in a single database, even in a real-world scenario (that is,
you do not have to install two instances to make it fit a scenario you might encounter in your career).

Scenario
In this example, you will play the part of a SQL Server developer for Adventure Works, an online retailer
of bicycle parts. You are given the task of setting up a mechanism to send an e-mail message to new
users when they sign up on your e-commerce site. As the site occasionally experiences heavy loads, you
have been asked to ensure that the sign-up service does not interfere with transactions. The natural
choice of tools is Service Broker. 

In order to work through this example, you will need the Adventure Works sample database installed on
your SQL Server 2005 instance. If you have not installed SQL Server 2005 yet, you can choose a custom
install and install the sample database(s) as part of setup. If you have already installed SQL Server, there is
a script for the Adventure Works database in the samples folder, located at %Program Files%s\Microsoft
SQL Server\90\Tools\Samples\AdventureWorks OLTP. Run the file instawdb.sql to install.
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In the following example, you will set up both the sending and receiving service in the same instance of
SQL Server, acting on the same database. This is fine considering the requirements of the example, but
you would normally be setting up sending and receiving queues on different server instances (or at least
different databases). We will point out where you have to duplicate efforts when working on two
databases. The scenario in mind is illustrated in Figure 13-2.

Figure 13-2

When a user signs up on the Web form, his or her information is sent to the contacts table. In addition,
the information is sent to a customer service queue (outgoing queue), which is hooked up to an e-mail
queue (incoming queue).

Setup
Before getting started, we have to do a couple of setup tasks. The first task is to set up the database to
support Service Broker. By default, databases do not allow queues. In the following code, there are two
queries. The first query enables the Service Broker, while the second disables it. Please note that you only
have to enable Service Broker once for the database, regardless of how many queues you might wish to
set up:

-- SCRIPT = EnableServiceBroker.sql
-- 1. Enable Service Broker in Adventure Works OLTP database
USE Master
ALTER DATABASE AdventureWorks SET ENABLE_BROKER 
GO

/* 
-- 2.Disable Service Broker
USE Master
ALTER DATABASE AdventureWorks SET DISABLE_BROKER 
GO

*/

Now that the Service Broker service is enabled, we should also ensure we have a user under whom the
service can run. If you wish to skip this step, you can set up the message type with the authorization of
‘dbo’, as you are most likely running as the database owner while you play with the scripts in this
chapter. Understand, however, that this is not a best practice.
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To follow best practices, we are going to perform the following steps:

1. Create a login.

2. Create two schemas.

3. Create a user in the AdventureWorks database for the login created in step 1.

4. Grant rights for this user.

The script to set up this user is shown here:

-- SCRIPT = Logins.sql
USE Master
GO

-- 1. Create a Login
CREATE LOGIN [Chapter13Login] WITH PASSWORD=N’pass@word1’, 
DEFAULT_DATABASE=[AdventureWorks], DEFAULT_LANGUAGE=[us_english], 
CHECK_EXPIRATION=ON, CHECK_POLICY=ON
GO

USE [AdventureWorks]
GO

-- 2. Create the User
CREATE USER [Chapter13AWUser] FOR LOGIN [Chapter13Login]
GO

-- 3a.Create Signup Schema
CREATE SCHEMA CustomerSignUpService 

AUTHORIZATION [Chapter13AWUser]
GO

-- 3b.Create Email Schema
CREATE SCHEMA EmailServiceSchema

AUTHORIZATION [Chapter13AWUser]
GO

-- 4. GRANT rights
-- User needs DDL rights to create Service Broker objects
EXEC sp_addrolemember N’db_ddladmin’, N’Chapter15AWUser’

-- Table rights to make it easier to put all objects under one user
/* MISSING */

GO

You are now ready to begin working with Service Broker. Before heading into the next section, you
should log in as the Chapter13Login account. If you don’t, there is no major issue, as long as you are
logged in under an account that has dbo rights for the AdventureWorks database, but understand that
you might alter the ownership of objects without an AUTHORIZATION clause, which will change the
examples listed slightly.

Please check the Wrox Web site (at www.wrox.com) for updates to this section or for additional information.
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Message Types
You have to have an agreed-on means of communicating to have meaningful communication. In Service
Broker, message types are the method of establishing an agreed-on format for communication. At its 
simplest, you can set up a message type using the text shown in the code listing that follows. One thing to
note: When you set up a message type, you only have 128 characters for the message name. While this is
not a major issue in most cases, you can run out of space when you heavily nest a type for organization,
like AdventureWorks.com/SalesApplications/ECommerce/Portals/AdventureWorks-
CustomerWebApplication/NewCustomerSignup/CustomerInformation, which weighs in at 129
characters.

-- SCRIPT = CreateMessageType.sql
USE AdventureWorks
GO

-- Create a message type for both services
CREATE MESSAGE TYPE [CustomerInformationMessageType]

AUTHORIZATION [Chapter13AWUser]
GO

When you set up a message as shown in this code, you are using the defaults for both authorization and
validation. The default for authorization is the account that you are currently running this script under,
while the default for validation is None. What this means is you now have a message type called
CustomerInformation, which is authorized to your account (most likely sa or dbo for most of you)
that accepts any message sent. We are not overly concerned with authorization, as that sets the owner of
the queue; we are, however, concerned about validation.

Let’s take a moment to discuss VALIDATION = None, which is the default. While using this form of vali-
dation is extremely flexible, it is not a wise form of validation to use when not needed, as it allows an
authorized sender to send you anything they desire. If you do not have a thorough check on the mes-
sages, you may end up attempting to process a message that causes errors. When you set up a garbage
pail, there is a potential someone will throw in some garbage. Make sure you cannot express your mes-
sage type as XML before heading for None.

We can, however, think of a very good reason to use VALIDATION = None: performance. We say this with
a bit of trepidation, however, as many people err on the side of performance whenever they are given a
chance. This is a mistake, especially when your application accepts messages from partners outside of
your organization. If you require additional performance, particularly with internal services, you can
remove validation and gain a few more cycles, realizing that this move will force you to add additional
checking on the back end. With complex dialogs, there is the potential you will lose any performance
gains you have initiated by turning off validation.

Another option we have seen written up numerous times is VALIDATION = WELL_FORMED_XML. We see
this form of validation as only a notch above None. With WELL_FORMED_XML, you can still send garbage
messages to the queue, as long as you take the time to create XML messages. Internally, the danger here
is someone not formatting their XML message correctly. Externally, it only forces the hacker to format as
XML to attempt to cause errors.  

WELL_FORMED_XML is not a bad option in all cases, as you might want to use the queue to store to an
XML data type column. We cannot envision such a scenario at the moment, but we will agree it is possi-
ble. In this case, WELL_FORMED_XML is a much better option than None. 

374

Chapter 13

15_584375 ch13.qxd  10/28/05  10:46 PM  Page 374



Another potential reason to use XML without a schema is in a case where you have one queue that 
handles multiple types of XML snippets. While you certainly could accept all sorts of XML messages
with a single message type with no validation, we disagree with this reasoning on many levels:

❑ There is a greater likelihood of confusing a colleague about what you are accomplishing. When
you set up a message type that accepts many different types of XML snippets, you have effectively
obfuscated what your service is set up to handle. It is very flexible, of course.

❑ It is far more maintainable to have a single message type for each specific message format.
When you allow multiple message formats in a single message type, you end up writing a lot of
logic to determine how to handle the different formats. In most cases, there is more overhead
associated with determining where to send a message and adding some form of back-end type
checking than there is with setting up multiple queues.

❑ The system is already extremely flexible without creating message types that accept garbage. As
you will see, you have the capability to create any number of message types in a contract. The
capability to create multiple message types in a single contract allows you to create extremely
complex and long running conversations. You can also write to any number of queues, as long
as you have a service for each queue. 

The following table lists all of the options available for validation, with an explanation of what each type
of validation allows. Of these message types, we would stick to Empty or VALID_XML WITH SCHEMA
COLLECTION. Which of the two you choose depends on whether you require “parameters” to get work
done. In a queue that fires off work without needing any additional information, you should use Empty.
Any queue with a message type should use VALIDATION = VALID_XML WITH SCHEMA COLLECTION.

Validation Type Description

None Any type of message body is acceptable to the service.
This is, by far, the most flexible option, but also the most
prone to error, as a sender can send anything.

Empty The message contains no data in the body. This option
enables you to use a queue to fire off services that
require no parameters to work.

WELL_FORMED_XML The message body must be well-formed XML. This is
only a slight step above None, as a user can send 
messages you cannot consume, although they will be in
an XML format.

VALID_XML WITH SCHEMA COLLECTION The message body must contain well-formed XML, with
a valid schema attached. Note that you must include a
schema collection name when using this option.

As our message queue will require information, we will now alter the message type from the earlier
code listing to use XML and a schema. To do this, however, we must create a schema for the message
type. Because our service is going to be used for customer information, we will get the first and last
name, along with the e-mail address, a sign-on name, and a password. 
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The easiest way to create a schema is with Visual Studio 2005 (or Visual Studio .NET, as the .xsd schema
format is present in older versions of Visual Studio, as well): 

-- SCRIPT = CustomerInfoSchema.sql
CREATE XML SCHEMA COLLECTION CustomerInfoSchema AS
N’<?xml version=”1.0” encoding=”utf-16”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://Adventure-Works.com/schemas/expenseReport”
xmlns:expense=”http://Adventure-Works.com/schemas/expenseReport”
elementFormDefault=”qualified”>

<xsd:complexType name=”Customer”>
<xsd:sequence>

<xsd:element name=”FirstName” type=”xsd:string” />
<xsd:element name=”LastName” type=”xsd:string” />
<xsd:element name=”Password” type=”xsd:string” />
<xsd:element name=”EmailAddress” type=”xsd:string” />

</xsd:sequence>
</xsd:complexType>

</xsd:schema>’
GO

You have now created a schema called CustomerInfoSchema. You need to alter the message type to use
this schema for validation. The name of the schema used to validate is shown in bold in the following
code listing. Please note that if you did not already create the message type, change from ALTER to 
CREATE in the following script:

-- SCRIPT = AlterMessageType.sql
USE AdventureWorks
GO

-- Create a message type for both services
ALTER MESSAGE TYPE [CustomerInformationMessageType]

VALIDATION = VALID_XML WITH SCHEMA COLLECTION CCuussttoommeerrIInnffooSScchheemmaa
GO

You now have a message type set up that validates to a particular schema. Only messages that validate
to that schema will be accepted once you set up the contract for this service.

In order to create a message type, the user must have permissions. The fixed database roles db_owner
and ddl_admin supply these rights, as does the sysadmin fixed server role. This was the reason behind
the statement EXEC sp_addrolemember N’db_ddladmin’, N’Chapter13AWUser’ in our setup area,
which gave our Chapter 13 user rights to create objects. The owner, db_owner, and sysadmin will have
REFERENCE permission to the message type. This is important when creating a contract that uses this
particular message type.

In the example in this section, both the sending and receiving service are in the same database. You only
have to run the message type script once in this case. If you were setting up the sending and receiving 
services on separate servers, you would need the message type on both servers. This does not necessarily
mean the message type must be identical on both instances, however. The rules are as follows:

376

Chapter 13

15_584375 ch13.qxd  10/28/05  10:46 PM  Page 376



❑ The name of the message type must be the same on both server instances.

❑ The validation type must be compatible, meaning you cannot have an empty message sent to a
service that requires XML, with or without schemas. In most cases, you will want to match
types to avoid problems.

Every database has a message type called DEFAULT that is created with the database. If you want to test a
service prior to figuring out your XML schema, you can use this message type to test with. We suggest
you only use this message type for demo purposes, however, as it has no validation (VALIDATION=None).
The script for the DEFAULT Message type is shown below:

USE [AdventureWorks]

GO

CREATE MESSAGE TYPE [DEFAULT] AUTHORIZATION [dbo] VALIDATION = NONE

Contracts
To facilitate communication between two services with an agreed-on message type name, the next step is
setting up a contract. A contract is an agreement between services over how communication is going to
take place. The important parts of the contract are the message type being used and the sender of the
communication. Before elaborating on the details, let’s take a quick look at a simple contract:

-- SCRIPT = CreateContract.sql
USE AdventureWorks
GO

-- Illustration only, so no reason to create schema
CREATE MESSAGE TYPE [CreateCustomer] VALIDATION = WELL_FORMED_XML
CREATE MESSAGE TYPE [CustomerCreated] VALIDATION = WELL_FORMED_XML
GO

CREATE CONTRACT [SendCustomerContract]
(

[CreateCustomer]
SENT BY INITIATOR,
[CustomerCreated]
SENT BY TARGET 

)
GO

If you get nothing else from this section, make sure you understand that a contract is an agreement
between an INITIATOR (a service sending the message) to a TARGET (a service receiving the message)
with agreed-on message types specified.

In order to create contracts, the account you are logged in under must be part of the fixed database 
roles ddl_admin or db_owner or the fixed server role sysadmin. The account must also have REFERENCE
permission to the Message Type(s) specified in the contract. All of these roles will have REFERENCE
permission on the contract created. 

If this example were set up on two servers, you would need to have the contract placed on both servers
to fulfill communication.
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As with Message types, there is a default contract in each database for SQL Server. The default contract
uses the default message and allows it to be sent by either INTEROGATOR or TARGET. As with
Message Types, this contract should only be used for demo purposes. The script for the default contract
is shown here:

USE [AdventureWorks]

GO

CREATE CONTRACT [DEFAULT] AUTHORIZATION [dbo] ([DEFAULT] SENT BY ANY)

Queues
Queues are temporary storage places for messages. When you set up a queue in SQL Server 2005, you 
are creating a specialized type of table. The benefit of this setup is that you can use disaster recovery 
techniques on queues in the same manner you can for other database objects. One example is backing 
up queues as part of your nightly backup. We see this as having limited benefit, except in cases where
the queue is servicing a person who logs onto the network from a remote location. Most other types of
queues will either be cleared out too quickly to have the backup be of any benefit or have messages that
expire before restore is completed.  

You do not have to set up a message type or contract prior to setting up a queue. As the queue is just a
special type of table, you have the option of setting it up as the first step. We prefer to wait until the
message type and contract are complete, as we believe contract-first development is the best style when
working with Service Broker. 

To set up a simple queue, you simply need a name for the queue. The name must be unique, which
means you cannot name it with the same fully qualified name as another table (that is, you cannot use
the same database schema and table name). While you can give the queue the same name as a table if
you use a different schema, we would not advise this, as it is likely to lead to confusion.  

The next code listing shows two queues created in the AdventureWorks database. The first queue is 
used for the E-mail a Customer service, while the second is used for the Customer Sign-up service. Please
notice that we have the queue turned off when we set it up. This is not the default behavior, but it is a
good practice. You should have queues disabled to ensure they are not used until you are finished setting
up the service. You can then alter the queue with an ALTER QUEUE statement and set STATUS = ON.

-- SCRIPT = QueueSetup.sql
USE AdventureWorks
GO

-- queue for emailing the new customer
CREATE QUEUE EmailServiceSchema.SignUpEmailQueue

WITH
STATUS = OFF

GO

-- queue used by Customer service to receive responses
CREATE QUEUE CustomerSignUpService.NewCustomerSignUpQueue

WITH
STATUS = OFF

GO 
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You will notice that the example in this listing is far simpler than creating a table. There are two reasons
for this. First, a queue is an extremely simple type of table; after all, it only requires an identifier and a
“bucket” to store the messages. Second, you can set other options. Why don’t we show you? We’re so
glad you asked. The options available are shown in the following table.

Options Information

STATUS A queue can either be ON or OFF. By default, queues are ON, if
you do not explicitly set a status. If you set STATUS to OFF, the
queue is completely unavailable, which means you cannot add
any messages to the queue. It also means you cannot get any
messages out of the queue.

RETENTION RETENTION can be set to ON or OFF. RETENTION indicates
whether messages are cleared from the queue as soon as it is
processed or if it is retained for the entire duration of the 
dialog. By default, retention is set to OFF. As performance
degrades when RETENTION is set to ON, you should only retain
messages when you need a mechanism to roll back through
messages in case of a failure.

ACTIVATION * With ACTIVATION, you name a stored procedure used to 
process messages thrown into a queue. ACTIVATION has four
sub-options: STATUS, PROCEDURE_NAME, MAX_QUEUE_READERS,
and EXECUTE AS.

* STATUS ACTIVATION STATUS is either ON or OFF. When set to ON, the
default, Service Broker will automatically invoke the stored
procedure when additional processes have to be started to 
handle message load.

* PROCEDURE_NAME Any valid, fully qualified stored procedure name.

* MAX_QUEUE_READERS This value specifies the maximum number of queue readers
that can be running at any one time. The value of
MAX_QUEUE_READERS must be between 0 and 32767.

* EXECUTE AS As mentioned in Chapter 9, this is the account under which the
procedure runs. The account that owns the queue must have
access to this stored procedure, but setting it to a highly 
privileged account makes it possible to use objects to which the
queue account does not have access.

ON {filegroup} As a queue is a table, you can place it on any file group 
available in the database. If you do not specify one, the default
is DEFAULT. The main purpose for this option is for organization
and performance. In general, this option should be set by a
member of your DBA team.
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Unlike a contract, you can restructure your queue as needed. This enables you to add a stored procedure
that is automatically invoked after you have the queue set up. The following code listing shows the
ALTER statement necessary to enable our queue:

-- SCRIPT = TurnOnCustomerQueue.sql
USE AdventureWorks
GO

-- queue used by Customer service to receive responses
ALTER QUEUE CustomerSignUpService.NewCustomerSignUpQueue

WITH
STATUS = ON

GO 

If you were setting this up on two servers, the e-mail queue would go on the server that handles sending
the e-mail, while the customer sign-up queue would go on the server that stores customer information.
Please note that we have only activated one queue at this point. When we get to implementation, you
will see the reason for this.

As with other objects mentioned thus far, to create a queue, the account you are logged in under must be
in the fixed database roles ddl_admin or db_owner or in the fixed server role sysadmin. Each of these
roles, along with the owner, will have permission to reference the queue, while all but ddl_admin will
have the right to receive from the queue.

Unlike Message Types and contracts, there is no DEFAULT queue available for your use. 
Three queues are used by the Service Broker itself (EventNotificationErrorsQueue,
QueryNotificationErrorsQueue, and ServiceBrokerQueue). Do not attempt to use these
queues for your own work. 

Services
Each queue must have a service. Like most of the objects we have created thus far, declaring a service is
a simple process. For an outgoing queue you must, at minimum, declare a name for the service and the
queue name. This is shown for the customer service queue. For an incoming queue, you also specify the
contract name. This is shown for the e-mail service queue. Both are shown in the following code:

-- SCRIPT = CreateServices.sql
USE AdventureWorks
GO
-- The Email service
CREATE SERVICE [EmailConfirmationService]

AUTHORIZATION [Chapter13AWUser]
ON QUEUE EmailServiceSchema.SignUpEmailQueue
([SendCustomerInformationContract])

-- The Customer service
CREATE SERVICE [CustomerSignUpService]

AUTHORIZATION [Chapter13AWUser]
ON QUEUE CustomerSignUpService.NewCustomerSignUpQueue
GO

The rules of the service are simple. If a queue is a TARGET, or accepts incoming messages, a contract
must be specified. If no contract is specified, a queue is set up as an INITIATOR, or a sender of messages. 

380

Chapter 13

15_584375 ch13.qxd  10/28/05  10:46 PM  Page 380



When you set up a service, you must have permissions. By default, the ddl_admin and dbo_owner
fixed database roles have permission to set up a service, as does the sysadmin fixed server role. Each of
these roles, as well as the owner, has permission to REFERENCE the service, but the ddl_admin is
excluded from SEND rights.

Note that we have explicitly set the owner of the services. As with other Service Broker objects, if you do
not specify an owner, with AUTHORIZATION, the account you are logged in under will be the owner.

Processing Messages
We now have all of the objects in place to communicate. In addition to this infrastructure, we need some
plumbing to get things working. When a customer visits the Adventure Works Web site, there is a sign-up
form for an account. Sign-up is synchronous, but the e-mail sent back to the customer is not.

The Web Application
The entry point for the entire system is the form with which the user signs up. This is a simple form that
asks for the new customer’s first and last name, the e-mail address, and a password. Please note that this
is not a book on ASP.NET, so there is no input checking on the form, nor any validation. If we were to
move this to a working app, we would add these best practices. The ASPX, or tagged, portion of this
page is shown in the following code:

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”CustomerSignUp.aspx.vb”
Inherits=”CustomerSignUp” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Customer Sign Up Form</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<h1>Customer Sign Up</h1>
<table>

<tr>
<td style=”width: 127px”>First Name:</td>
<td style=”width: 191px”>

<asp:TextBox ID=”txtFirstName” runat=”server”></asp:TextBox></td>
</tr>
<tr>

<td style=”width: 127px”>Last Name:</td>
<td style=”width: 191px”>

<asp:TextBox ID=”txtLastName” runat=”server”></asp:TextBox>
</td>

</tr>
<tr>

<td style=”width: 127px”>Email Address:</td>
<td style=”width: 191px”>

<asp:TextBox ID=”txtEmailAddress” runat=”server”></asp:TextBox>
</td>
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</tr>
<tr>

<td style=”width: 127px”>Password:</td>
<td style=”width: 191px”>

<asp:TextBox ID=”txtPassword” runat=”server”></asp:TextBox>
</td>

</tr>
<tr>

<td style=”width: 127px”></td>
<td style=”width: 191px”>

<asp:Button ID=”btnSubmit” runat=”server” Text=”Submit” /></td>
</tr>

</table>
</div>
</form>

</body>
</html>

To handle the Submit button click, we will create a routine that sends the customer information to a
stored procedure called AddNewCustomer, which is detailed a bit later in this section. The Submit button
click handler is shown in the following code listing. Note that the code here is very similar to code in
earlier sections, so we will not cover it in great detail. If you skipped the ADO.NET sections of this book
(yes, we’re dreaming), here is a brief list of the steps:

1. Create a connection string. Normally, this would be pulled from somewhere other than the
page, per best practices.

2. Create a string for the stored procedure name.

3. Create a SqlConnection object.

4. Create a SqlCommand object. The CommandType must be set to StoredProcedure, or this will
be a short ride.

5. Create a parameter object for every one of the parameters in the stored procedure and attach the
parameters to the command object parameter collection.

6. Open the connection and execute the command.

7. Clean up the connection object with Dispose(). We have this coded in a Finally statement to
ensure that cleanup occurs even if there is a problem executing the command.

Imports System.Data.SqlClient

Partial Class CustomerSignUp
Inherits System.Web.UI.Page

Protected Sub btnSubmit_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles btnSubmit.Click

Dim connString As String = _
“Server=(local);Database=AdventureWorks;UID=sa;PWD=pass@word1”

Dim sproc As String = “AddNewCustomer”

Dim conn As New SqlConnection(connString)
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Dim cmd As New SqlCommand(sproc, conn)

cmd.CommandType = Data.CommandType.StoredProcedure

Dim param As New SqlParameter(“@FirstName”, Data.SqlDbType.NVarChar)
param.Value = txtFirstName.Text
cmd.Parameters.Add(param)

param = New SqlParameter(“@LastName”, Data.SqlDbType.NVarChar)
param.Value = txtLastName.Text
cmd.Parameters.Add(param)

param = New SqlParameter(“@EmailAddress”, Data.SqlDbType.NVarChar)
param.Value = txtEmailAddress.Text
cmd.Parameters.Add(param)

param = New SqlParameter(“@Password”, Data.SqlDbType.NVarChar)
param.Value = txtPassword.Text
cmd.Parameters.Add(param)

Try
conn.Open()
cmd.ExecuteNonQuery()

Finally
conn.Dispose()

End Try

End Sub
End Class

You now have a Web form to submit data. If you were to run it right now, it would throw an error, as the
stored procedure to handle the customer sign-up is not complete.

Customer Sign-Up Service
The stored procedure that starts the chain of events for sign-up is shown in the following code. We will run
through each of the sections after we take a brief look at the sample. Please note that we are not inserting
anything into the database, as this is a Service Broker example. We have added a TODO comment where you
would place code to insert into the Contact table if this were a live sign-up form.

-- SCRIPT = AddNewCustomer.sql
USE AdventureWorks
GO

SET QUOTED_IDENTIFIER ON
GO

-- stored procedure to send customer details to Email service
CREATE PROCEDURE CustomerSignUpService.AddNewCustomer
(

@FirstName    nvarchar(50),
@LastName      nvarchar(50),
@EmailAddress  nvarchar(50),
@Password      nvarchar(8)
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)
AS
BEGIN

DECLARE @message NVARCHAR(MAX)
SET @message = NCHAR(0xFEFF) 

+ ‘<Customer>’ 
+ ‘<FirstName>’ + @FirstName + ‘</FirstName>’
+ ‘<LastName>’ + @LastName + ‘</LastName>’
+ ‘<EmailAddress>’ + @EmailAddress + ‘</EmailAddress>’
+ ‘<Password>’ + @Password + ‘</Password>’

+ ‘</Customer>’

--TODO: INSERT INTO Contact table here 

DECLARE @conversationHandle UNIQUEIDENTIFIER

BEGIN DIALOG @conversationHandle
FROM SERVICE [CustomerSignUpService]
TO SERVICE ‘EmailConfirmationService’
ON CONTRACT [SendCustomerInformationContract];

SEND ON CONVERSATION @conversationHandle
MESSAGE TYPE [CustomerInformationMessageType]

(@message)

END
GO

The basic setup for a stored procedure has been highlighted in Chapter 9, so we’re not concerned about
the top portion. The first section of interest is the one that creates our XML string. This is a very low-tech
solution to our problem, as we’re simply creating a string and storing it in an nvarchar(MAX) variable.
Next, we have the code that creates the XML, along with the schema created earlier:

/* Stored Procedure Code */
DECLARE @message NVARCHAR(MAX)
SET @message = NCHAR(0xFEFF) 

+ ‘<Customer>’ 
+ ‘<FirstName>’ + @FirstName + ‘</FirstName>’
+ ‘<LastName>’ + @LirstName + ‘</LastName>’
+ ‘<EmailAddress>’ + @EmailAddress + ‘</EmailAddress>’
+ ‘<Password>’ + @Password + ‘</Password>’

+ ‘</Customer>’

/* Schema the Stored Procedure adheres to */
CREATE XML SCHEMA COLLECTION CustomerInfoSchema AS
N’<?xml version=”1.0” encoding=”utf-16”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://Adventure-Works.com/schemas/expenseReport”
xmlns:expense=”http://Adventure-Works.com/schemas/expenseReport”
elementFormDefault=”qualified”>

<xsd:complexType name=”Customer”>
<xsd:sequence>

<xsd:element name=”FirstName” type=”xsd:string” />
<xsd:element name=”LastName” type=”xsd:string” />
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<xsd:element name=”Password” type=”xsd:string” />
<xsd:element name=”EmailAddress” type=”xsd:string” />

</xsd:sequence>
</xsd:complexType>

</xsd:schema>’
GO

It’s important that an element be created for every required element in the schema. If not, the Message
Type will be invalidated, creating an error from the queue. The next step is the creation of a conversation.
This is shown in the following code listing. A dialog requires a conversation handler, which is created by
the Service Broker service. If you are sending multiple messages to a queue, you will have to retain this
handle for subsequent messages. 

DECLARE @conversationHandle UNIQUEIDENTIFIER

BEGIN DIALOG @conversationHandle
FROM SERVICE [CustomerSignUpService]
TO SERVICE ‘EmailConfirmationService’
ON CONTRACT [SendCustomerInformationContract];

In this example, we simply have to specify a FROM SERVICE and a TO SERVICE, as both are in the same
database. If we were dealing with two databases, our example would get a bit more complex, as we
would have to specify the Service Broker GUID for the target database. Provided the database is on the
same server, it is simply a matter of pulling the information from the sys.databases catalog view. 

The following code shows how to alter a stored procedure when you are dealing with two different
databases for the initiating and target services. In this example, we are assuming that the database with
the e-mail send is some form of CRM database. Note that this code is for illustrative purposes only, as
the CRM database does not exist in any of the samples:

DECLARE @TargetDatabaseID uniqueidentifier

SELECT @TargetDatabaseID = service_broker_guid
FROM sys.databases
WHERE [name] = ‘AdventureWorksCRMDatabase’

DECLARE @conversationHandle UNIQUEIDENTIFIER

BEGIN DIALOG @conversationHandle
FROM SERVICE [CustomerSignUpService]
TO SERVICE ‘EmailConfirmationService’

, @TargetDatabaseID
ON CONTRACT [SendCustomerInformationContract];

The final step for the customer sign-up side is to actually send the message to the queue, as shown in 
the following code. Initially, the message will be sent to the customer sign-up queue. Provided the e-mail
service queue is not disabled, it will be sent over to that queue, where it will be handled by the e-mail
service:

SEND ON CONVERSATION @conversationHandle
MESSAGE TYPE [CustomerInformationMessageType]

(@message)
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Before continuing, you should fill out the form from the Web app and submit a couple of new customers.
As an alternative option, you can run the following script, which will create our new customers:

-- Add customers
USE AdventureWorks
GO
EXEC CustomerSignUpService.AddNewCustomer 

‘Jane’, 
‘Roe’, 
‘jane@somewhere.com’,
‘pass@word1’

EXEC CustomerService.AddNewCustomer 
‘John’, 
‘Doe’, 
‘john@nowhere.com’,
‘pass@word1’

At this point in time, the customer service queue is up and running, but the e-mail queue is not. This
means we now have messages in the customer service queue, but none in the e-mail queue. To test this,
run the following script:

USE AdventureWorks
GO

SELECT * FROM CustomerSignUpService.NewCustomerSignUpQueue
GO

You should see the messages you created, either from the preceding script or the Web application. To get
the messages to forward, you need to enable the e-mail queue. At this point, we have no stored procedure
to handle the e-mail queue, so we are simply going to turn it on. Later in the chapter, we will show you
how to alter this again to automatically use a stored procedure as a service handler. Run the following
ALTER script, followed by the SELECT from the e-mail queue and you should see your messages appear in
the e-mail queue in short order:

USE AdventureWorks
GO

ALTER QUEUE EmailServiceSchema.SignUpEmailQueue
WITH

STATUS = ON
GO

SELECT * FROM EmailServiceSchema.SignUpEmailQueue
GO

E-mail Sending Service
Now that we have sent a message to the queue and it has been forwarded to the e-mail service queue,
the next step is to process this message. The stored procedure that handles this queue is shown in the
following code (we will go through this step by step in this section):
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-- stored procedure to read and process messages from queue 
CREATE PROCEDURE EmailServiceSchema.ProcessMessages
AS

WHILE (1 = 1)
BEGIN

DECLARE @conversationHandle UNIQUEIDENTIFIER,
@messageTypeName NVARCHAR(256),
@messageBody NVARCHAR(MAX);

RECEIVE TOP(1) 
@conversationHandle = conversation_handle,
@messageTypeName = message_type_name,
@messageBody = message_body

FROM NewCustomerEmailQueue

IF  @messageTypeName = ‘http://schemas.microsoft.com/SQL/ServiceBroker/Error’
OR

@messageTypeName = ‘http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog’
BEGIN

END CONVERSATION @conversationHandle
CONTINUE

END

IF @messageTypeName <> ‘CustomerDetails’
BEGIN

END CONVERSATION @conversationHandle
WITH ERROR = 500

DESCRIPTION = ‘Invalid message type.’
CONTINUE

END

DECLARE @customerName nvarchar(50)
, @emailAddress nvarchar(50)
, @password nvarchar(8)

-- Get our information to email
EXEC sp_xml_preparedocument @idoc OUTPUT, @XMLstring

SELECT  @customerName = CustomerName, 
@emailAddress = EmailAddress

FROM OPENXML (@idoc, ‘/Customer’,2) 
WITH (CustomerName  Name, EmailAddress Name)

EXEC sp_xml_removedocument @idoc

-- send an email using SQLiMail 
EXEC sendimail_sp @profile_name = ‘Email Service Mail Profile’, 

@recipients= @emailAddress, 
@subject=’Thank your for signing up at Adventure Works’, 
@body=’Your account has been created with the email address ‘

+ @emailAddress + ‘ and the password ‘
+ @password

END CONVERSATION @conversationHandle
END

GO
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The first step in this procedure is to pull the message information from the queue. The important bits of
information, as this is a one-way queueing mechanism, are the message type name, the message body,
and the conversation handler:

DECLARE @conversationHandle UNIQUEIDENTIFIER,
@messageTypeName NVARCHAR(256),
@messageBody NVARCHAR(MAX);

RECEIVE TOP(1) 
@conversationHandle = conversation_handle,
@messageTypeName = message_type_name,
@messageBody = message_body

FROM NewCustomerEmailQueue

After we pull the information from the queue, the next step is to ensure that we have not pulled a 
message with an error or one that states we should end the conversation. We also have to ensure that the
MessageType is not something other than what we were expecting. If any of these conditions are true,
we should abort the conversation immediately. 

-- Service Broker messages.
IF  @messageTypeName = ‘http://schemas.microsoft.com/SQL/ServiceBroker/Error’ OR

@messageTypeName = ‘http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog’
BEGIN

END CONVERSATION @conversationHandle
CONTINUE

END

-- Wrong message type
IF @messageTypeName <> ‘CustomerDetails’

BEGIN
END CONVERSATION @conversationHandle

WITH ERROR = 500
DESCRIPTION = ‘Invalid message type.’

CONTINUE
END

The syntax for END CONVERSATION is rather simple. At a minimum, you simply pass in the conversation
handler and end the dialog. If you would like to specify an error, you use the WITH ERROR statement, 
followed by an error number that you designate (this number should be documented, as Service Broker
examples can get far more complex over time). In addition, you can add a DESCRIPTION to send back to
the initiator. 

In END CONVERSATION, there is one additional option that you can specify: WITH CLEANUP. WITH CLEANUP
runs through the queue and deletes all of the messages in this particular conversation, cleaning up the
queue. Make sure you cannot salvage the conversation before invoking this option, however, because WITH
CLEANUP simply clears out its own queue. There is no notification to the other side of the conversation that
this has happened.

The next step is to create an e-mail message and send it to the customer. Currently, we have only XML
sent to us, so we have to, at minimum, pull the information we need from the message body. The code to
do this is shown here:
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DECLARE @docPointer int  
EXEC sp_xml_preparedocument @docPointer OUTPUT, @XMLstring

SELECT @customerName = CustomerName, 
@emailAddress = EmailAddress,
@password     = Password

FROM OPENXML (@docPointer, ‘/Customer’, 2) 
WITH (CustomerName  nvarchar(50), EmailAddress nvarchar(50), 

Password nvarchar(50))

EXEC sp_xml_removedocument @idoc

In this code, we make a call to the system stored procedure sp_xml_preparedoc. This has two 
parameters: an integer for the document pointer and the XML string we are feeding to this procedure.
After this, we use OPEN XML to open the document, using the document pointer, the node we wish to
start at, and a flag to indicate whether the mapping is attribute-centric (1), element-centric (2), or both
(3). In our case, we have used elements, so this is set to 2.

The next step is to send the e-mail message and end the conversation. To send the message, we are using
the SQL Server 2005’s new SQL iMail feature. The stored procedure takes a profile name, a recipient(s)
list, a subject, and a body: 

-- send an email using SQLiMail 
EXEC sendimail_sp @profile_name = ‘Email Service Mail Profile’, 

@recipients= @emailAddress, 
@subject=’Thank your for signing up at Adventure Works’, 
@body=’Your account has been created with the email address ‘

+ @emailAddress + ‘ and the password ‘
+ @password

END CONVERSATION @conversationHandle

As the e-mail queue was disabled when we started this process, you will have to run the following script
to process the e-mail messages. In the code samples for this book, we have the actual e-mail send 
commented out. If you have SQL iMail configured on your server, you can uncomment the section and
send test e-mails. The command to fire off the stored procedure is shown in the following code. There is
also a test statement to ensure messages were processed.

USE AdventureWorks
GO

EXEC EmailServiceSchema.ProcessMessages
GO

SELECT * FROM EmailServiceSchema.SignUpEmailQueue
GO
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Automating the Entire Service
We need to add a couple of alterations to automate the entire process. First, we have to alter our e-mail
queue again to make sure it automatically invokes the stored procedure. The alteration is shown here:

ALTER QUEUE EmailServiceSchema.SignUpEmailQueue
WITH

STATUS = ON
WITH ACTIVATION

(PROCEDURE_NAME = EmailServiceSchema.ProcessMessages,
EXECUTE AS [Chapter13AWUser]) 

GO

In addition, we have to make sure that only one message is processed. To do this, comment out the line
WHILE (1 = 1) in the ProcessEmail stored procedure. You can now sign up on the Web site and run the
e-mail service. 

We have included a couple of tweaks to the samples in this chapter, which you can download with the
book samples. Once you have fully automated the services, you will not see any output if you do not
have SQL iMail enabled. To ensure that the services are, in fact, working, we have a script that creates a
log table and logs the information from both queues in this table. If you run this script, you can query
the log table to see what has transpired as the services fire.

Routes
A route is a pathway for communication, from service to service. Dialogs take place over routes. In the
example shown in this section, there was no need for a route, as all of the communication took place in
one database. This is fine, because the portion we were worried about bogging down our server was the
sending of an e-mail message, which can be done at any time. A route can be created as simply as the
statement in this code:

USE AdventureWorks
GO

CREATE ROUTE MyRoute
AUTHORIZATION [Chapter13AWUser]

WITH
ADDRESS = ‘TCP://MyNewServer:1433’

GO

The route in this code is largely useless, however, as it establishes nothing other than a route from 
one server to another. If you were to create a route like this, you would have a pathway without any
information on the service being contacted. For our purposes, this is not a useful route.

To make this more applicable, let’s suppose that Adventure Works has built a new SQL Server machine
to handle e-mailing customers. This server will handle e-mailing new customers who are signing up, as
well as order fulfillment and sending out e-mails when orders are fulfilled. To run this sample, you will
need two computers, two Virtual PC images, or two separate instances running on a single machine. 

In order to do this, we have to create the queue, contract, message type(s), and e-mail service on the new
database. This is done by running the following script on the new database. The downloadable sample
also includes a script to create the new AWFulfillment database and turn on Service Broker in this
database:
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USE Master
GO
-- 1. Create a Login
CREATE LOGIN [Chapter13Login] WITH PASSWORD=N’pass@word1’, 
DEFAULT_DATABASE=[AdventureWorks], DEFAULT_LANGUAGE=[us_english], 
CHECK_EXPIRATION=ON, CHECK_POLICY=ON
GO

USE [AWFulfillment]
GO

-- 2. Create the User
CREATE USER [Chapter13AWUser] FOR LOGIN [Chapter13Login]
GO

-- 3.Create Email Schema
CREATE SCHEMA EmailServiceSchema

AUTHORIZATION [Chapter13AWUser]
GO

-- 4. Create the Schema Collection for the Message Type
CREATE XML SCHEMA COLLECTION CustomerInfoSchema AS
N’<?xml version=”1.0” encoding=”utf-16”?>
<xsd:schema xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://Adventure-Works.com/schemas/expenseReport”
xmlns:expense=”http://Adventure-Works.com/schemas/expenseReport”
elementFormDefault=”qualified”>

<xsd:complexType name=”Customer”>
<xsd:sequence>

<xsd:element name=”FirstName” type=”xsd:string” />
<xsd:element name=”LastName” type=”xsd:string” />
<xsd:element name=”Password” type=”xsd:string” />
<xsd:element name=”EmailAddress” type=”xsd:string” />

</xsd:sequence>
</xsd:complexType>

</xsd:schema>’
GO

-- 5. Create the Message Type
CREATE MESSAGE TYPE [CustomerInformationMessageType]

AUTHORIZATION [Chapter13AWUser]
VALIDATION = VALID_XML WITH SCHEMA COLLECTION CustomerInfoSchema

GO

-- 6. Create the Contract
CREATE CONTRACT [SendCustomerInformationContract]
(

AUTHORIZATION [Chapter13AWUser]
[CustomerInformationMessageType]
SENT BY INITIATOR

)
GO

-- Create stored procedure
CREATE PROCEDURE EmailServiceSchema.ProcessMessages

391

Service Broker

15_584375 ch13.qxd  10/28/05  10:46 PM  Page 391



AS
WHILE (1 = 1)
BEGIN

DECLARE @conversationHandle UNIQUEIDENTIFIER,
@messageTypeName NVARCHAR(256),
@messageBody NVARCHAR(MAX);

RECEIVE TOP(1) 
@conversationHandle = conversation_handle,
@messageTypeName = message_type_name,
@messageBody = message_body

FROM NewCustomerEmailQueue

IF  @messageTypeName = ‘http://schemas.microsoft.com/SQL/ServiceBroker/Error’
OR

@messageTypeName = ‘http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog’
BEGIN

END CONVERSATION @conversationHandle
CONTINUE

END

IF @messageTypeName <> ‘CustomerDetails’
BEGIN

END CONVERSATION @conversationHandle
WITH ERROR = 500

DESCRIPTION = ‘Invalid message type.’
CONTINUE

END

DECLARE @customerName nvarchar(50)
, @emailAddress nvarchar(50)
, @password nvarchar(8)

-- Get our information to email
EXEC sp_xml_preparedocument @idoc OUTPUT, @XMLstring

SELECT  @customerName = CustomerName, 
@emailAddress = EmailAddress

FROM OPENXML (@idoc, ‘/Customer’,2) 
WITH (CustomerName  Name, EmailAddress Name)

EXEC sp_xml_removedocument @idoc

-- send an email using SQLiMail 
EXEC sendimail_sp @profile_name = ‘Email Service Mail Profile’, 

@recipients= @emailAddress, 
@subject=’Thank your for signing up at Adventure Works’, 
@body=’Your account has been created with the email address ‘

+ @emailAddress + ‘ and the password ‘
+ @password

END CONVERSATION @conversationHandle
END
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GO

-- Create the QUEUE
CREATE QUEUE EmailServiceSchema.SignUpEmailQueue

WITH
STATUS = ON

WITH ACTIVATION
(PROCEDURE_NAME = EmailServiceSchema.ProcessMessages,

EXECUTE AS [Chapter13AWUser]) 
GO

-- Create the Service
CREATE SERVICE [EmailServiceSchema.EmailConfirmationService]

AUTHORIZATION [Chapter13AWUser]
ON QUEUE EmailServiceSchema.SignUpEmailQueue
([SendCustomerInformationContract])
GO

In order to facilitate the route, one more step has to be performed on the new database. Run the script in
the following code to get the id of the Service Broker instance for the new database: 

USE Master
GO

SELECT service_broker_guid
FROM sys.databases
WHERE [name] = ‘AWFulfillment’
GO

Next, we have to create a route from one server to another. In this instance, we are dealing with what is
essentially a one-way route, as we are only sending messages from our customer service queue to our
e-mail queue. The route script in the preceding code listing is, therefore, only run on the original
database. Paste the service_broker_guid from this code into the first bolded section of the script. You
will also need either the machine name or the IP address of the new server. We assume the service is on a
machine called FulfillmentServer for the purposes of this exercise; this is also bolded in the script, as
you will have to use the IP address or name of your server:

USE AdventureWorks
GO

DECLARE @service_broker_guid uniqueidentifier
SET @service_broker_guid = ‘{Paste GUID here}’

CREATE ROUTE EmailServiceRoute
AUTHORIZATION [Chapter13AWUser]

WITH 
SERVICE_NAME = EmailServiceSchema.EmailConfirmationService,
BROKER_INSTANCE = @service_broker_guid,
LIFETIME = NULL,
ADDRESS = ‘TCP://FulfillmentServer:1433’

GO

393

Service Broker

15_584375 ch13.qxd  10/28/05  10:46 PM  Page 393



Finally, we have to delete the service on the old server in order to have it use the service on the new
server (via the route we are creating). Here is the script that accomplishes this:

USE AdventureWorks
GO

DROP SERVICE EmailServiceSchema.EmailConfirmationService
GO

You now can test the route by running through the test scripts presented earlier in this section. If you
turn off the e-mail queue, you will now see messages retained on the original server.

Technical Bits
This section deals with what goes on under the hood in Service Broker. The first part of this section deals
with the queue table(s) and gives you brief information about how to query a queue. As you have already
queried a queue in the previous section, the main focus is on the columns in a queue, what data they 
contain, and which items are linked to other tables or views.

The second part of this section covers catalog views included in all SQL Server 2005 databases that you
can query to find out more about the internal workings of Service Broker.

Queues
As mentioned earlier in the chapter, when you create a queue in SQL Server 2005, it is created as a 
specialized type of table. There are few options, as the structure of the table is already set. Without 
hacking deep into SQL Server, you do not have access to alter this table structure, which is a good thing.
Understanding the structure, however, gives you an understanding of how a queue works. The table
structure is in the following table.

Column Name Data Type Description

status tinyint The current status of a message in the queue.
Valid values are as follows:

0 = Ready

1=Received message

2=Not yet complete

3=Retained sent message

Note that you must have RETENTION=ON to
retain the message.

queueing_order bigint This is the message order number in the queue.
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Column Name Data Type Description

conversation_group_id uniqueidentifier Identifier for the conversation group to which
the message belongs. This is the same as 
conversation_group_id in the catalog view
sys.conversation_groups.

conversation_handle uniqueidentifier The handle of the conversation. When you
begin to receive a conversation, you can 
query the handle and use it to later end a 
conversation.

message_sequence_number bigint Sequence number of a message in a conversation.
This is the order in which the message is placed
under a particular conversation_group_id or
conversation_handle.

service_name nvarchar(512) Name of the service handling the conversation.

service_id int SQL Server object id for the service handling the
conversation. This is the same value as ID in the
sys.sysobjects catalog view.

service_contract_name nvarchar(256) Name of the contract under which this 
conversation is held.

service_contract_id int The id for the contract under which the 
conversation is held. This is the same as 
service_contract_id in the sys.service
_contracts catalog view.

message_type_name nvarchar(256) Name of the message type that describes this
message.

message_type_id Int The id for the message type that describes this
message. This is the same as message_type_id
in the sys.service_message_types catalog
view.

validation nchar(2) Type of validation used for the message type.
This is the same as the field validation in the
sys.service_message_types catalog view.

message_body varbinary(MAX) The body of the message. Depending on the 
validation type, this can be converted to an
XML message or left as binary information.

The following code listing has a script you can use to get information from the e-mail queue table you
have worked with in this chapter. We could have linked to service views as well, but much of the queue
is denormalized (information pulled over from other views and tables for performance), so it is an
unnecessary step.

395

Service Broker

15_584375 ch13.qxd  10/28/05  10:46 PM  Page 395



USE AdventureWorks
GO

SELECT e.message_body 
, CASE e.status WHEN 0 THEN ‘Ready’

WHEN 1 THEN ‘Received Message’
WHEN 2 THEN ‘Not yet complete’
ELSE ‘Retained’ END AS Status 

, e.message_type_name
, e.service_contract_name
, e.service_name

FROM EmailServiceSchema.SignUpEmailQueue e
GO

Service Broker Catalog Views
Realizing the danger one could get into poking around at Service Broker tables, Microsoft has hidden
these tables. Because there are situations in which you need information about Service Broker, the SQL
Server team has made information available through catalog views. The catalog views for Service Broker
are shown in the following table. We have included the columns in each of these views, as well as their
primary keys (PKs) and foreign keys (FKs).

Catalog View Description

sys.service_contract_message_usages Each side of a Service Broker dialog has an end-
point. This view contains a row for each endpoint.
This view is a junction between sys.service_
contracts and sys.service_message_types. 

COLUMNS: service_contract_id (FK to
sys.service_contracts.contract_id), 
message_type_id (FK to sys.service
_message_types.message_type_id),
is_sent_by_initiator, and is_sent_by
_target

sys.service_contract_usages This view contains a row showing the linkage
between Message Types and Contracts. Each row
contains the message_type_id and
service_contract_id as well as 2 bits to indi-
cate whether it is initiated by the INITIATOR or
TARGET. This view is a junction between sys
.service_contracts and sys.services.

COLUMNS: service_id (FK to
sys.services.service_id), and service
_contract_id (FK to sys.service
_contracts.service_contract_id)
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Catalog View Description

sys.conversation_groups This view contains a row for each service in a 
conversation group.

COLUMNS: conversation_group_id (PK), 
service_id (FK to sys.services.service_id),
is_system

sys.remote_service_bindings This view contains a row for each binding to a
remote service.

COLUMNS: [name], remote_service_
binding_id (PK), principal_id (FK to
sys.sysuers.uid), remote_service_name,
service_contract_id (FK to
sys.service_contracts.service_contract
_id), remote_principal_id (FK to
sys.remote_logins.local_principal_id),
and is_anonymous_on

sys.routes Service broker uses routes to locate a network
address for a service. Each row contains a single
route.

COLUMNS: [name], route_id (PK), 
principal_id (FK to sys.sysusers.uid),
remote_service_name, broker_instance,
lifetime, address, mirror_address

sys.service_contracts This view contains a row for each contract used by
Service Broker.

COLUMNS: [name], service_contract_id
(PK), principal_id (FK to sys.sysusers.uid)

sys.service_message_types This view contains a row for each message type,
including the schema used (if you have validated
XML as your type). 

COLUMNS: [name], message_type_id (PK),
principal_id (FK to sys.sysusers.uid), 
validation, validation_desc, xml
_collection_id (FK to sys.xml_schema
_collections.xml_collection_id)

Table continued on following page
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Catalog View Description

sys.services This view contains a row for each service for use in
Service Broker.

COLUMNS: [name], service_id (PK), 
principal_id (FK to sys.sysusers.uid), 
service_queue_id (FK to sys.service_queues
.object_id or sys.sysobjects.[id])

sys.service_queues This view contains a row for every queue used by
Service Broker.

COLUMNS: [name], object_id (PK & FK to
sys.sysobjects.[id]), principal_id (FK to
sys.sysusers.uid), schema_id (FK to
sys.schemas.schema_id), parent_object_id
(FK to sys.sysobjects.[id]), type, type_desc,
create_dat, modify_date, is_ms_shipped,
is_published, is_schema_published,
max_readers, activation_procedure, 
execute_as_principal_id, is_
activation_enable, is_receive_enabled,
is_enqueue_enabled, is_retention_enabled

To get an idea of how to use these views, it is best to look at an example. Let’s say you want to find out all
contracts and their associated message types as well as the owners of both the contracts and the message
types. In addition, you would like to know whether a message can be sent by the INITIATOR or TARGET,
as well as the validation type and the schema name, if XML with schema. The SQL query necessary to get
this information is shown below:

SELECT c.service_contract_id As ContractID
, c.[name] As ContractName
, su2.[name] As ContractOwner
, mt.[name] As MessageTypeName 
, su.[name] As MessageTypeOwner
, mt.validation_desc 
, CASE WHEN (mu.is_sent_by_initiator=1) 

AND (mu.is_sent_by_target = 1) THEN ‘ANY’
WHEN (mu.is_sent_by_initiator=1) THEN ‘INITIATOR’
ELSE ‘TARGET’ END AS SentBy

, CASE WHEN mt.xml_collection_id IS NULL THEN ‘None’
ELSE x.[name] END AS ValidationSchema

FROM sys.service_message_types mt
JOIN sys.service_contract_message_usages mu

ON mt.message_type_id = mu.message_type_id
JOIN sys.service_contracts c

ON mu.service_contract_id = c.service_contract_id
JOIN sys.sysusers su

ON mt.principal_id = su.uid
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JOIN sys.sysusers su2
ON c.principal_id = su2.uid

LEFT JOIN sys.xml_schema_collections x
ON mt.xml_collection_id = x.xml_collection_id

ORDER BY c.service_contract_id, mt.message_type_id

Making It Easier
Niels Berglund has created a tool for administering Service Broker called SSB Admin. You can download
a copy from his site by searching the blog at http://staff.develop.com/nielsb/. (We have the
most current link for the source project in the “For More Information” section of this chapter. We aren’t
going to go into great detail about the product, but we did want to give you a quick overview, as this
tool can save you a lot of typing.)

When you open SSB, you are greeted with a screen similar to the one shown in Figure 13-3. We say 
“similar,” as we have already opened the database tree to show the Service Broker information found in
the AdventureWorks database. The tool will prompt you to log on when you choose a server. 

Figure 13-3

To create the message type we have worked with in this chapter, you would simply right-click Message
Types and click New. You will be greeted by the screen shown in Figure 13-4.
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Figure 13-4

The resulting message type is shown here:

CREATE MESSAGE TYPE CustomerInformationMessageType
AUTHORIZATION Chapter13AWUser
VALIDATION = VALID_XML WITH SCHEMA COLLECTION CustomerInfoSchema

GO

Dan Sullivan has created a tool called SQL Service Broker Explorer, which can be downloaded from the
SQL Service Broker community site, located at www.sqlservicebroker.com; the direct link is www.sqlser-
vicebroker.com/forums/ShowPost.aspx?PostID=80. Currently, we have been unable to get a good build
of the tool.

Summary
In this chapter, you learned how to set up asynchronous applications using Service Broker. The key 
concepts you learned focus mostly on the objects you use with Service Broker:

❑ Message Type: Message types are used to set up the format of the communication. You have the
option to validate against a schema, allow XML only, allow empty messages only, or allow any
type of message (NONE).

❑ Contracts: In Service Broker, the contract specifies which of the parties is going to communicate:
the sender (INITIATOR), the receiver (TARGET), or both (ANY). It also specifies which message
types (formats) are going to be used in the communication.
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❑ Queue: A queue is a specialized type of table in SQL Server 2005. Because it is a table, you can use
any of the High Availability and Disaster Recovery mechanisms on a queue. As a best practice,
you should initially set up a queue in a disabled (STATUS = OFF) state.

❑ Service: An endpoint of communication. Services watch queues for messages or send messages
through queues.

❑ Dialog: Two-way communication between two services connected via queues.

❑ Route: A pathway for communication between services located on different instances or servers.

For More Information
To complement the information in this chapter, take a look at the following resources:

❑ MSDN SQL Server site —http://msdn.microsoft.com/SQL/.This is the first place to search
for information about Service Broker. Currently, you have to make an additional click to get to
SQL Server 2005–specific information, but this will likely change in the future.

The MSDN site also has a great article that introduces you to the basic concepts of SQL Server.
According to developer/evangelist Kirk Evans (Microsoft’s Atlanta field office), it is the best
article for those starting to delve into this technology (of course, he hasn’t read this chapter yet).
The article is a bit dated now, but it still contains a very useful overview: http://
msdn.microsoft.com/library/en-us/dnsql90/html/sqlsvcbroker.asp.

❑ The Microsoft Events site —www.microsoft.com/events. Here you can find Webcasts, chats,
and local events. To find Service Broker–specific events and others, use the advanced search
engine, located at www.microsoft.com/events/AdvSearch.mspx. Check out these Webcasts
in particular (note that the links require additional clicks, as the direct links are rather long):

❑ In April 2005, there was a Webcast on using Service Broker in SQL Server Express. Look
for the event on April 21 at www.microsoft.com/events/webcasts/library/
200504.mspx.

❑ In December 2004, there was a Webcast introducing Service Broker. 

Microsoft has all of its sessions labeled as either 100, 200, 300, or 400. Level 100 sessions are very high
level with very little technical content, if any. Level 200 is a bit deeper of an overview, with demos that
include code samples. The level 300 sessions are quite a bit deeper and delve into the particulars of the
subject, generally with a much narrower scope. Finally, level 400 sessions are very advanced, dealing
with topics that require a good knowledge of the subject before attending.

You can also download a couple of GUI tools to make Service Broker easier to implement. Both take the
basic Service Broker idea and break it down into a Windows Explorer-like view:

❑ Neils Berglund’s SSB Admin —http://staff.develop.com/nielsb/PermaLink
.aspx?guid=0f036cd1-2692-4362-837a-81cb2587acc2 (as of this writing, this link was set
up to host the latest version).
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❑ Dan Sullivan’s Service Broker Explorer — You can find the zip for download at 
www.sqlservicebroker.com/forums/ShowPost.aspx?PostID=80.

Here are a couple of blogs we find interesting when dealing with Service Broker:

❑ Rushi Desai, a developer on the SQL Server database engine team, blogs about a variety of func-
tionality. Of particular interest is his entry on integrating Service Broker with InfoPath —
http://blogs.msdn.com/rushidesai/archive/2005/02/18/375873.aspx. This is a 
wonderful real-world sample. 

❑ You can also find Service Broker entries and links at Kent Tegel’s SQL Junkies site —
www.sqljunkies.com.
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Full-Text Searching

Historically, all databases have supported the ability to perform lookups based on exact values (=),
ranges (>,<, and such), and patterns (LIKE). Full-Text Search is a relatively new feature for SQL
Server, enabling users to perform lookups based on large amounts of textual data in a very fast
and efficient way. In this chapter, we will look at Full-Text Search primarily in SQL Server, 
focusing on the following topics:

❑ The terminology involved with full-text searching

❑ The Full-Text Search Architecture

❑ Setting up Full-Text Search Indexing

❑ Querying a Full-Text Index

What Is Full-Text Searching?
One of the basic features of most databases is the ability to perform searches that match a certain
pattern using the LIKE SQL operator, as shown in the following example:

Select col1, col2 from table where col3 like ‘%ADO.NET%’

This is an example query for performing a lookup. The problem with using the LIKE SQL operator
is that this query does not generally use a set of indexes. The result is that the preceding query
would typically result in an expensive table scan. Attempting to perform this search within a table
that contains several million records could result in a query that takes several minutes to run.

While using the LIKE keyword is relatively simple, it has a performance problem. The LIKE
keyword will not use an index and may force a table scan. For performance reasons, it is a good
idea to eliminate table scans. Full-text searching was developed to overcome some of the problems
that result when using the LIKE operator. With full-text searching, it is possible to perform
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searches based on more complicated situations and with higher performance than if you merely base
them on pattern matching . Here are some of the search options and advantages that full-text search 
provides:

❑ Higher performance than what you can obtain with the LIKE operator.

❑ Searching for words based on their proximity.

❑ Searching for words that are derived from a common word foundation. For example, the terms
“walk” and “walking” would likely return a similar result.

❑ Words and phrases close to the search terms.

Terminology
Let’s take a look at the terminology associated with full-text searching in SQL Server 2005:

❑ Full-Text Index — A full-text index is the storehouse for the significant words within a column
and their respective locations within a given column. This information allows a full-text engine
to quickly find necessary words and combinations of words within the desired column.

❑ Full-Text Catalog — A full-text catalog contains the full-text indexes. It resides on a local hard
drive associated with a SQL Server Instance. Each catalog contains the full-text indexes of every
table within a database. Full-text catalogs cannot be stored on nonlocal hard drives. As a result,
a catalog cannot exist on a removable drive, network drive, or floppy drive, unless this is a read-
only database.

❑ Word Breaker — A word breaker is the mechanism to tokenize text, based on the rules of a
given language.

❑ Token — A token is a word within a language that has been identified by the breakup per-
formed by a word breaker.

❑ Stemmer — Within a specific language, a stemmer is a mechanism to generate specific forms of
a given word based on the rules of the given language. As a result, stemmers are specific for a
given language. Stemmers and word breakers are included for several versions of Chinese,
Brazilian, British English, Danish, Dutch, English, French, German, Italian, Japanese, Korean,
Polish, Portuguese, Russian, Spanish, Swedish, Thai, and Turkish languages.

❑ Filter — A filter is the mechanism that extracts text from a file stored in a BLOB column (such as
varbinary(max) or image). Filters are specific for a given file type. To obtain a list of the filters
installed, the sp_help_fulltext_extensions stored procedure can be called. Because a docu-
ment stored in a table has no file extension, the file extension must be stored within a column.
Typically, it is stored within a FileExtension column.

❑ Population/Crawl — A population is a process for creating and updating a full-text index. A
population is an operation that typically requires a significant amount of CPU time and hard
drive access.

❑ Noise Words — Noise words are words that are ignored to prevent a full-text index from
becoming too large while not providing any value. For example, in English, words such as “a,”
“and,” “the,” and other small words are considered to be noise words. These words typically
provide no value to a full-text index.
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How Does Full-Text Indexing Work?
A full-text index is a special type of index within SQL server. It is built and maintained by the SQL
Server full-text service. Building a full-text index is different from building a typical index. Typically,
indexes are made from a B-tree structure based on a specific value within a particular row. Once an
index is created, inserts, updates, and deletes result in changes to a standard index. Creating a full-text
index is a different mechanism.

Microsoft Full-Text Engine for SQL Server Service
The Microsoft Full-Text Engine for SQL Server (MSFTESQL) is a service that provides full-text indexing
and the ability to search. MSFTSQL is built on Microsoft Search and is fully integrated into the SQL
Server 2005 Database. The MSFTESQL provides several features:

❑ Index Support — The MSFTESQL service manages the full-text catalogs and indexes for a
database.

❑ Query Support — The MSFTESQL service implements the full-text queries. It processes the 
full-text query and returns the results of the query.

❑ Management — The MSFTESQL service is responsible for managing the full-text indexes and
catalogs. These catalogs are not stored in the database, but in the file system.

SQL Server and the MSFTESQL Service must run under the same account to work properly together.

What Does a Full-Text Index Look Like?
To understand how SQL Server Full-Text Search works, it helps to understand the full-text index structure.
Let’s look at a couple of example rows in a table. For this example, we’ll look at a table from our full-text
search table, and in particular, at a small portion of the search results table.

tblSearchResultsId SearchText

1 Welcome to Weblogs. This is a list of the latest posts.

2 Welcome to NOAA. United States weather reports online.

Here’s a somewhat simplified look at the resulting full-text index:

Word ColId DocId Occ

Welcome 1 1 1

weblogs 1 1 3

This 1 1 4

List 1 1

Latest 1 1 7

Table continued on following page
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Word ColId DocId Occ

Posts 1 1 10

Welcome 1 2 1

NOAA 1 2 3

United 1 2 4

States 1 2 5

Weather 1 2 6

reports 1 2 7

Online 1 2 8

The Word column contains the single word (token) created at the time of indexing. Word breakers are
used to determine the contents of a word or token. The ColId column contains a value that represents
the specific table and column that is being full-text indexed. The DocId column contains values for a
Word/ColId set that maps to a particular full-text key value in a full-text indexed table. Typically, this
will be the primary key of the row from which the particular word (token) came. The Occ column 
contains an integer value that contains the location within a column marked for full-text searching. This
is used for the proximity and phrase matches. The DocId and Occ column values are represented inter-
nally to the database as a compressible 4-byte integer value. This is done primarily to save space and
minimize processing.

This section represents only a simple overview of the SQL Server 2005 Full-Text Index. Note that 
additional pieces of information are stored within the full-text index tables.

How Is a Full-Text Index Populated?
You know what a full-text index looks like, but how is it populated? The full-text index is populated not
by SQL Server, but by the Full-Text Engine for SQL Server (MSFTESQL).

MSFTESQL supports four types of full-text index population: full population, change tracking-based
population (automatic and manual), and incremental timestamp-based population.

Full Population
A full population will typically occur when a full-text catalog or index is first created and populated.
During a full population, the index entries for all of the tables within the catalog and all of the rows in
those tables are built. As a result, this may be a time-consuming process for the SQL Server Instance.

Automatic Change Tracking Population
An automatic change tracking population is a population that occurs based on changes to the table being
tracked. By tracking changes soon after they are made, the full-text index very closely mirrors the data
stored within the table being tracked. The full-text data is up-to-date in almost real time.
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Manual Change Tracking Population
With a manual change tracking population, the index is updated only when the full-text population is
specified. The change tracking can be specified with the following command:

ALTER FULLTEXT INDEX ON tableName START UPDATE POPULATION

In this code example, the tableName is replaced with the name of the table whose index is to be
updated. When a manual population occurs, only the changes that have not previously been made to the
index are sent to the full-text index.

Incremental Timestamp-Based Population
An incremental population is a population of a full-text index based on the set of rows that have been
added, updated, or deleted since the last population was started. As a result, records added since the last
update was started are added in the next update. To perform an incremental population, the database
table(s) being indexed must have a column with the type of timestamp. If a timestamp column does not
exist within each table, an incremental population cannot be performed and a full population is per-
formed instead.

When an incremental population request is started, the SQL Gatherer receives the request. The Gatherer
scans the tables for rows that have had their contents changed since the last population was started. The
Gatherer then groups these rows in a set of batch jobs. Each batch job is sent to the Microsoft Full-Text
Engine for SQL Service (MSFTESQL). Within the MSFTESQL, the batch jobs are sent to the filter daemon.
Once a row is finished within the filter daemon, the SQL Protocol Handler indexes each row within a
batch. Once the population is completed, the SQL Gatherer sets the new timestamp value, which is used
when the next incremental population is started.

If any data, such as columns, indexes, or full-text index definitions, change between incremental 
populations, a full population of the full-text index is performed.

Setting up Full-Text Indexing
Setting up full-text indexing in SQL Server 2005 has changed from previous versions. Previous versions
of SQL Server used system stored procedures to create, drop, and change catalogs and full-text indexes.
The existing stored procedures for managing these objects should continue to work. However, there will
most likely be no additional changes to them. As a result, we will look at using the DDL commands and
the new options in SQL Server Management Studio for managing full-text indexes.

DDL Setup
With the release of SQL Server 2005, Microsoft has included DDL statements for managing full-text 
operations. To create a full-text index, follow these steps:

1. Create the full-text catalog. The full-text catalog can be created through the following DDL
statement:

CREATE FULLTEXT CATALOG catName WITH ACCENT_SENSITIVITY = ON|OFF
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where catName is the name of the catalog that is to be created. Additional options are possible
with the CREATE FULLTEXT CATALOG statement, including the following:

❑ ON FILEGROUP filegroup name — This is the name of the filegroup with which the
created catalog will be associated. By default, this is the primary filegroup of the
database. The catalog is treated like a file. The physical location of the catalog is 
contained within the path of sys.master_files. The filename of the full-text catalog is a
combination of “sysft_” and the name of the catalog.

❑ IN PATH root path — This is the root directory for a catalog. If a ‘root path’ is not
included, the catalog will be created in the directory specified during the setup of SQL
Server.

2. Create the full-text index. The full-text index can be created through the DDL statement

CREATE FULLTEXT INDEX ON tableName
(

columnName TYPE COLUMN FileExtensionColumnName Language 0X0                
)
KEY INDEX uniqueIndexName ON CatalogName 
WITH CHANGE_TRACKING AUTO

where tableName is the name of the table that will have the full-text index. The columnName is
the name of the column containing the column of the file extension for the filter (discussed later
in this chapter). The Language keyword is the language that will be used to filter the specified
column. In this example, the 0X0 value is the neutral language. The uniqueIndexName is the
name of the unique index that covers the specified table. The catalogName is the catalog that
will be used to store the full-text index. The last option listed is the setting for the population.

Setup with the SQL Server Management Studio
With the SQL Server Management Studio, use the following steps to graphically create a full-text index:

1. Open the SQL Server Management Studio and right-click the table that needs to be full-text
indexed.

2. Select the Full-Text option and then select Define Full-Text Index.

3. Once the wizard opens, select the primary key of the table.

4. Select the column that will be used and the language associated with that column.

Figure 14-1 shows the columns that may have a full-text index.
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Figure 14-1

5. Select the schedule for updating the full-text index, as shown in Figure 14-2.

Figure 14-2

409

Full-Text Searching 

16_584375 ch14.qxd  10/28/05  10:52 PM  Page 409



6. Select the catalog that will be used to store the full-text index. Figure 14-3 shows the catalog
selection.

Figure 14-3

7. Select the appropriate table and catalog populations, as shown in Figure 14-4.

Figure 14-4
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8. Set the table and catalog population schedules. Figure 14-5 shows the table population schedule
options.

Figure 14-5

Full-Text Properties
The Full-Text Search Engine provides a mechanism for viewing the properties of a full-text index. The
function is named FULLTEXTCATALOGPROPERTY(‘CATNAME’, ‘PROPERTYNAME’). The CATNAME is the
name of the full-text catalog. The PROPERTYNAME is the name of the property that is being viewed. The
allowed entries are as follows:

❑ AccentSensitivity — A value of 0 is accent-insensitive. A value of 1 specifies that the catalog is
accent-sensitive.

❑ IndexSize — The IndexSize shows the size of the full-text catalog in megabytes.

❑ ItemCount — The ItemCount shows the number of full-text indexed items in a catalog.

❑ LogSize — The LogSize is a value that enables backward compatibility.
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❑ MergeStatus — A value of 0 means that a master merge is not currently occurring. A value of 1
means that a master merge is currently in progress.

❑ PopulateCompletionAge — This property is the difference between the completion of the last
full-text index population and January 1, 1900. If no population has previously occurred, the
value 0 is returned. This value is updated only on full and incremental crawls.

❑ PopulateStatus — This property shows the current status of the population. The values are
defined as follows: 0 = idle, 1 = full population is in progress, 2 = paused, 3 = throttled, 4 =
recovering, 5 = shutdown, 6 = incremental population in progress, 7 = building index, 8 = disk is
full and the index population is paused, and 9 = change tracking.

❑ UniqueKeyCount — This property shows the number of unique keys in the specified full-text
catalog.

These properties can be determined through the following command sent to the database:

SELECT fulltextcatalogproperty(‘ catSearchResults’, ‘ItemCount’)

Predicates, Programming, and the Results
Full-text searching is somewhat different from typical SQL-based programming. With typical SQL-based
programming, the results returned are based on specific criteria. Results from a full-text query are based
on approximate results.  

Queries
Writing full-text queries in SQL Server requires that the programmer be very familiar with the
CONTAINS, FREETEXT, CONTAINTABLE, and FREETEXTTABLE functions/predicates and that he or she
also understand what full-text can and cannot do and how results rank works. Let’s take a look at all of
these query options.

CONTAINS
CONTAINS is one of the full-text search predicates that can be used to search textual columns for matches
to words, phrases, word proximity, words that are related to each other, synonyms (through a the-
saurus), and weighted matches. These searches can also be used to check for the proximity of words to
determine whether words are within a certain distance of each other.

The syntax for the CONTAINS predicate looks like the following:

CONTAINS ( { column_name or (columnlist) | * }, ‘search criteria’  [, LANGUAGE
value] )

❑ column_name represents the name of a column.

❑ (columnlist) represents a list of columns to search. This list of columns can be either a 
specific column_name or a list of columns, but not both.

❑ The ‘search criteria’ from the preceding query may represent a relatively complex set of
criteria. It looks similar to the following:

412

Chapter 14

16_584375 ch14.qxd  10/28/05  10:52 PM  Page 412



❑ A simple term may be a word or phrase that matches exactly, such as “Web Logs.” If a
noise word is used in a search by itself, an error is returned stating that only noise
words were contained within the search.

❑ A prefix term may be a word or phrase that matches a set of words or phrases beginning
with the specified text. To create a prefix term, enclose the term in double quote marks
(“) and add the asterisk (*) before the ending quotation mark. If the double quotes are
not used, the full-text engine will treat the “*” as any other character. The word breakers
will typically ignore the “*”.

❑ A generational term may be a simple set of terms that include variants of the original
word being searched.

❑ An inflectional term specifies the language-dependent stemmer to be used on the 
specified simple term.

❑ Proximity terms are words or phrases that are near each other. This closeness operates
very similarly to the AND term. NEAR is a term that looks for terms in the same proximity:

term1 NEAR term2 NEAR term3

❑ Weighted terms specify that the matching rows are weighted based on specified values.

❑ LANGUAGE refers to the language that will be used for the query.

These searches may be concatenated through T-SQL-based AND and OR operators to produce the 
appropriate search results. Let’s look at a couple of examples:

SELECT * FROM TBLSEARCHRESULTS WHERE CONTAINS(SEARCHTEXT, ‘PRESIDENT’) 

The preceding example returns the columns for all rows where the term ‘PRESIDENT’ is contained
within the column SEARCHTEXT of the table TBLSEARCHRESULTS. Here’s another:

SELECT * FROM TBLSEARCHRESULTS WHERE CONTAINS(SEARCHTEXT, ‘PRESIDENT AND BUSH’) 

This example returns the columns for all rows where the term ‘PRESIDENT’ and ‘BUSH’ are contained
within the column name. Figure 14-6 shows the results of a query using the CONTAINS predicate. Note
that only three rows are returned. 

Figure 14-6

The following example returns the columns for all rows containing a term that starts with the prefix
‘PRESIDENT’:

SELECT * FROM TBLSEARCHRESULTS WHERE CONTAINS(SEARCHTEXT, ‘PRESIDENT*’) 
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FREETEXT
FREETEXT is a predicate used to search columns of textual data for values that have a similar meaning —
however, not necessarily the exact wording of the words in the search term. When the FREETEXT command
is used, the FTS engine performs the following actions:

❑ The string is divided into individual words based on word boundaries.

❑ Inflectional forms of the words are generated through stemming.

❑ The list of expansions and replacements for the terms are generated based on matches in the
thesaurus.

The general syntax for the FREETEXT command is as follows:

FREETEXT( { column_name or (column_list)  or * } , ‘text string’ [, LANGUAGE
language_term ] )

The column_name, a list of columns, or all columns listed as being full-text searchable may be used for
the search. The ‘text string’ is the text that will be searched for within the specified columns. The
language_term is the language that will be used for word breaking, stemming, thesaurus, and noise
word removal during the FREETEXT query. The language_term is optional. The language term may be
specified as a string, integer, or hexadecimal value corresponding to the locale identifier (LCID) or a 
language. If the language_term is not used, the full-text language of the column is used.

Let’s review one example where the FREETEXT predicate is used:

SELECT * FROM TBLSEARCHRESULTS WHERE FREETEXT(SEARCHTEXT, ‘PRESIDENT AND BUSH’) 

This query will return rows that have the terms PRESIDENT and BUSH in the column SEARCHTEXT within
the table TBLSEARCHRESULTS. Figure 14-7 shows the results of the preceding query.

Full-text queries with the FREETEXT are less precise than same, or similar, queries using CONTAINS. 

Figure 14-7
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The FREETEXT query returned 49 records from our database table, whereas the same query using 
CONTAINS returned only three records.

CONTAINSTABLE
The CONTAINSTABLE T-SQL command returns a table consisting of zero or more rows for the columns
containing textual data types. The queries that use the CONTAINSTABLE function take the same set of
search parameters as the CONTAINS predicate. Note several differences between the CONTAINS and the
CONTAINSTABLE TSQL objects:

❑ CONTAINSTABLE returns a relevance ranking value called RANK and a full-text key called KEY for
each row returned.

❑ The table name of the table to be searched by FTS must be specified within the CONTAINSTABLE
function.

❑ CONTAINSTABLE can be referenced in the FROM clause of a SELECT statement. The CONTAINS
predicate is referenced within the WHERE clause of a SELECT statement.

An example of the values returned through the CONTAINSTABLE function is shown in Figure 14-8.

Figure 14-8

Here’s an example of using the CONTAINSTABLE function:

SELECT * FROM TBLSEARCHRESULTS A JOIN CONTAINSTABLE(TBLSEARCHRESULTS, SEARCHTEXT,
‘PRESIDENT AND BUSH’) B ON A.TBLSEARCHRESULTSID = B.KEY

The preceding query will return the columns of the rows in the TBLSEARCHRESULTS table that match the
criteria specified in the CONTAINSTABLE function.

FREETEXTTABLE
The FREETEXTTABLE T-SQL command returns a table consisting of zero or more rows for the columns
containing textual data types. The queries that use the FREETEXTTABLE function take the same set of
search parameters as the CONTAINS predicate. Note several differences between the FREETEXT and the
FREETEXTTABLE T-SQL objects:

❑ FREETEXTTABLE returns a relevance ranking value called RANK and a full-text key called KEY for
each row returned.

❑ The table name of the table to be searched by FTS must be specified within the FREETEXTTABLE
function.

❑ The top set of ranked results can be returned by specifying the top_n_by_rank option, as
shown in the following example:

415

Full-Text Searching 

16_584375 ch14.qxd  10/28/05  10:52 PM  Page 415



FREETEXT( { column_name or (column_list)  or * } , ‘text string’ [, LANGUAGE
language_term ] [, top_n_by_rank])

❑ FREETEXTTABLE can be referenced in the FROM clause of a SELECT statement. The FREETEXT
predicate is referenced within the WHERE clause of a SELECT statement.

Figure 14-9 shows the results of a query merely using the FREETEXTTABLE function.

Figure 14-9

Here’s an example of using the FREETEXTTABLE function:

SELECT * FROM TBLSEARCHRESULTS A JOIN FREETEXTTABLE(TBLSEARCHRESULTS, SEARCHTEXT,
‘“MOTLEY CRUE”’) B ON A.TBLSEARCHRESULTSID = B.KEY

The preceding query will return the ROWS of the products in the TBLSEARCHRESULTS table that match
the criteria specified in the FREETEXTTABLE function.

Precomputed Rank with the FREETEXTTABLE Query
The top_n_by_rank option in the FREETEXTTABLE function also offers the capability to precompute the
rank. This option may be set through the sp_configure stored procedures sp_configure and
sp_fulltext_service. The precompute rank option is used to improve the performance of queries
based on FREETEXTTABLE that use top_n_by_rank. 

FORMSOF
There are times within a full-text search when it is necessary to use associated terms in the search. To
enable the associated terms, the FORMSOF object is used. With the FORMSOF object, an inflectional (single
or plural) form of a word or related form (through a thesaurus) is used.
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INFLECTIONAL
It is possible to search for all of the different tenses of a verb as well as the plural and singular forms of a
noun. Such a search can be performed by passing the INFLECTIONAL parameter in a T-SQL query:

SELECT * FROM TBLSEARCHRESULTS WHERE CONTAINS(SEARCHTEXT, ‘FORMSOF(INFLECTIONAL,
record)’)

In the preceding example, searches are performed for “record,” “records,” and so on in the SEARCHTEXT
field of the TBLSEARCHRESULTS table.

THESAURUS
It is also possible to search for related word in a search. The related word is found through a search
using a thesaurus. The THESAURUS parameter is passed in a T-SQL query, like this:

SELECT * FROM TBLSEARCHRESULTS WHERE CONTAINS(SEARCHTEXT, ‘FORMSOF(THESAURUS,
record)’)

In the preceding example, searches are performed for “record,” “disks,” and so on in the SEARCHTEXT
field of the TBLSEARCHRESULTS table.

ISABOUT
The ISABOUT object works with the WEIGHT object. ISABOUT is used to specify the weighted term keyword.

WEIGHT
In a simple full-text search query, it is possible to put a search weight on the different words that are
being searched. This weighting is based on a decimal number between 0.0 and 1.0, with the 0.0 value
being the lowest and the 1.0 value being the highest. Consider the following query:

SELECT URL FROM TBLSEARCHRESULTS WHERE CONTAINS (SEARCHTEXT, ‘ISABOUT(“MOTLEY*”,
CRUE WEIGHT(0.8), CREW WEIGHT(0.2))’)

In the preceding example, the rows that contain the term MOTLEY CRUE will be ranked higher than those
that contain the term MOTLEY CREW.

NEAR
The NEAR operator is used to indicate that the word or phrase on the left-hand side of a NEAR operator is
close to the word or phrase on the right-hand side of the NEAR operator. The NEAR operator may be used
to chain operations together. SQL Server ranks the distance between words operated on by the NEAR
operator. A low-ranking value (0) indicates that the words are fairly far apart from each other.

The following example will return rows in which the words MOTLEY and CRUE are near each other:

SELECT URL FROM TBLSEARCHRESULTS WHERE CONTAINS(SearchText, ‘MOTLEY NEAR CRUE’)

417

Full-Text Searching 

16_584375 ch14.qxd  10/28/05  10:52 PM  Page 417



Query Linked Servers
To perform a full-text query against a linked server, a full-text index must be created on the remote
tables and columns on the linked server. After the full-text indexes are created, the remote server may be
created as a linked server. Once this is done, the linked server may be queried using the four-part name
of RemoteServer.database.Owner.Table.

Multi-Column Queries
With Microsoft SQL Server 2000 and prior releases, a T-SQL statement was limited to using only one 
column per predicate/function. SQL Server 2005 offers the capability to query multiple columns 
with the CONTAINS and FREETEXT predicates, along with the CONTAINSTABLE and FREETEXTTABLE
functions. These may be specified by either a list of columns or as a ‘*’, where the ‘*’ functions as a list of
all columns with a full-text index on them.

Language Settings
The LANGUAGE setting is an optional value that represents the language of the textual data stored in a
column. This textual data may be stored in a char, nchar, varchar, nvarchar, text, or ntext datatype. The
LANGUAGE setting is a string, integer, or hexadecimal value that corresponds to the locale identifier
(LCID) of a language. If the language of a column is unknown or multiple languages are to be stored in a
column, the neutral language setting (0x0) is used.

When choosing a language, several items must be considered. One is the tokenizing of words. Word
boundaries are used to divide words for indexing. In some languages, these boundaries are merely
white space or a punctuation mark, such as a comma or period. Other languages may combine words
with no visible separator beyond the reader’s ability to understand that the words have been combined.
As a result, the choice of a column-level language should best represent the language expected to be
stored as textual data in the rows of the column. When in doubt, a neutral word breaker should be used.
Another consideration is stemming. Stemming is the process of searching for all inflectional forms, such
as the tenses of a verb and the single/plural forms of a noun.

The full-text data engine supports the following languages:
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❑ German

❑ French

❑ Japanese

❑ Danish

❑ Spanish

❑ Italian

❑ Dutch

❑ Norwegian

❑ Portuguese

❑ Finnish

❑ Swedish

❑ Czech

❑ Hungarian

❑ Polish

❑ Romanian

❑ Croatian

❑ Slovak

❑ Slovenian

❑ Greek

❑ Bulgarian
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Ranking
A full-text query in SQL Server can produce a ranking value indicating how relevant the returned data is
believed to be. This rank value is returned on a per-row basis. The higher the rank value for a row, the
more relevant the row when compared to other rows.

The algorithms for creating a rank depend on several items. For example, different work breakers tok-
enize textual data differently. The matching and ranking of the same words when in different languages
may be broken up differently, assuming different languages are specified. If the words are broken differ-
ently, the length of the resulting token results in a different value. 

The ranking values of different searches do not have a relationship between searches. For example, the
ranking of query 1 has no relationship to the ranking returned from a separate query.

Some commonly used properties when calculating a ranking include the following:

❑ Property — A property is an attribute of a document. This corresponds to a column in SQL
Server.

❑ Document — The document is the entity returned in a query. This corresponds to a row in SQL
Server. A document may have multiple properties, just as a row may have multiple full-text
indexed columns.

❑ Index — Many query statistics are determined relative to an individual index in which the
match occurred.

❑ Catalog — A catalog is a collection of indexes treated as a single entity for queries. Catalogs are
a mechanism of organization visible to the database administrator.

❑ Word — A word is the unit that is to be matched in the full-text search engine. Text is broken
into words by a language-specific word breaker.

❑ Occurrence — An occurrence is the work offset in a document property as made by the word
breaker. The first word is at occurrence 1, the second at occurrence 2, and so on. The first word
of a sentence has an occurrence value eight times greater than the last word of the previous sen-
tence. The first word of a paragraph has an occurrence value that’s 128 higher than the last
word of the previous sentence. The Occurrence value is taken into account when creating the
weighting of a result.

❑ Key — A key is a combination of a property and a word.

❑ HitCount — The HitCount is the number of times a key occurs in a query result.

❑ Log2 — The Log2 is the logarithm in base 2. The Log2 offers higher performance when com-
pared to a logarithm in base 2 or base e.
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❑ Russian

❑ Turkish

❑ British- English

❑ Estonian

❑ Latvian

❑ Lithuanian

❑ Brazilian

❑ Traditional Chinese

❑ Korean

❑ Simplified Chinese

❑ Arabic

❑ Thai
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❑ IndexDocumentCount — The IndexDocumentCount is the total number of documents within
an index.

❑ KeyDocumentCount — The KeyDocumentCount is the number of documents in the index 
containing the key.

❑ MaxOccurrence — The MaxOccurrence is the largest occurrence within an index for a given
property in a document.

❑ MaxQueryRank — This is the maximum rank, 1,000, which is returned by the Microsoft 
Full-Text Search Engine for SQL.

How Results Are Ranked
The computing of rank is difficult. Ranking depends on a number of factors. Different word breakers
break streams of text into words differently. Ranking and matching vary depending on the language
used. Different languages break words differently, which will result in different document lengths. Much
like the word breakers, statistics, such as IndexDocumentCount and MaxOccurrence, can vary depend-
ing on a number of factors. Documents are normalized based on the following list:

{ 16, 32, 128, 256, 512, 725, 1024, 1450, 2048, 2896, 4096, 5792, 8192, 11585,
16384, 23170, 28000, 32768, 39554, 46340, 55938, 65536, 92681, 131072, 185363,
262144, 370727, 524288, 741455, 1048576, 2097152, 4194304 };

The normalization means that a document of length 300 and length 400 will be treated as having the
same length because they fall within the same range. In this case, the documents of length 300 and
length 400 are both between 256 and 512. As a result, they are treated as having a length of 512.

CONTAINSTABLE, ISABOUT, and FREETEXT have ranking capabilities inherent within them. The ranking
for CONTAINSTABLE is as follows:

StatisticalWeight = Log2( ( 2 + IndexDocumentCount ) / KeyDocumentCount )
Rank = Min( MaxQueryRank, HitCount * 16 * StatisticalWeight / MaxOccurrence )

Phrase matches are ranked similarly to individual keys except that the property KeyDocumentCount is
estimated and may be inaccurate. As a result, phrases may receive higher weights than individual keys.

ISABOUT uses a vector-space query based on traditional information retrieval terminology. The default
ranking algorithm that is used is Jaccard. The ranking is based on the following statistics:

ContainsRank = same formula used for CONTAINSTABLE ranking of a single term.
Weight = the weight specified in the query for each term.  MaxQueryRank is the
default weight.
WeightedSum = _[key=1 to n] ContainsRankKey * WeightKey
Rank = ( MaxQueryRank * WeightedSum ) / ( ( _[key=1 to n] ContainsRankKey2 ) 
+ ( _[key=1 to n] WeightKey2 ) - ( WeightedSum ) )

The sum data is computed using unsigned 4-byte integers. All other math is performed with 8-byte 
integers.
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FREETEXT ranking is based on an OKAPI BM25 formula. Each term in the query is ranked, and these
values are summed. Words are added to the query through inflection. The added words are treated as
different terms. These different terms have no special weighting or relationship to the words from which
they are generated. The synonyms used from the thesaurus are treated as separate terms that are
weighted equally:

Rank = _[Terms in Query] w ( ( ( k1 + 1 ) tf ) / ( K + tf ) ) * ( ( k3 + 1 ) qtf /
( k3 + qtf ) ) )
Where: 
w is the Robertson-Sparck Jones weight. 
Originally, w is defined as: 
w = log10 ( ( ( r + 0.5 ) * ( N – n – R + r + 0.5 ) ) / ( ( R – r + 0.5 ) * ( n – r
+ 0.5 ) ) )
This was simplified to: 
w = log10 ( ( ( r + 0.5 ) * ( N – R + r + 0.5 ) ) / ( ( R – r + 0.5 ) * ( n – r +
0.5 ) ) )
R is the number of documents marked relevant by a user. This is not implemented in
SQL Server 2005 full-text search, and thus is ignored. 
r is the number of documents marked relevant by a user containing the term. This is
not implemented. N is the number of documents with values for the property in the
query. 
n is the number of documents containing the term. 
K is ( k1 * ( ( 1 – b ) + ( b * dl / avdl ) ) ). 
dl is the document length, in word occurrences. 
avdl is the average document length of the property over which the query spans, in
word occurrences. k1, b, and k3 are the constants 1.2, 0.75, and 8.0, respectively. 
tf is the frequency of the term in a specific document. 
qtf is the frequency of the term in the query.

Accent Sensitivity
With accent sensitivity, words that differ only according to whether or not they are accented are 
determined to be the same. For example, if accent sensitivity is set to on, the string “cafe” is not the same
as “café.” If accent sensitivity is set to off, then the string “cafe” is the same as “café.”

Accent sensitivity can be set in the CREATE FULLTEXT CATALOG statement along with the ALTER
FULLTEXT CATALOG statement.

Transforming Noise Words
Languages tend to include a lot of words that don’t necessarily provide value to the meaning of a phrase.
For example, the phrase “The full-text search engine is running” contains the noise words “the” and “is.”
Other English noise words are “a” and “and.” A noise word is left out of an index and its occurrence value
is not used.

The noise word file is stored in $SQL_SERVER_INSTALL_PATH\Microsoft SQL Server\MSSQL.1\
MSSQL\Binn\FTERef\ directory. Editing a noise-word file means that a full-text catalog must be
repopulated.

SQL Server includes an option to “transform noise words.” This option is used to remove error messages
if noise words cause a Boolean operation on a full-text query to fail. The default setting for “transform
noise words” is set so that noise words are not transformed and the value is 0. The default setting means
that when noise words in a full-text query would cause a failure, SQL Server returns an error instead.
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When the Transform Noise Words option is set to 1, SQL Server will replace noise words with an asterisk
“*” in phrase queries:

sp_configure ‘transform noise words’, 1;
go
reconfigure;
go 

The preceding T-SQL code sample set the Transform Noise Words option to 1.

Searching XML and BLOBs
So far, we have discussed the ability of SQL Server to search textual information, such as information in
char, varchar, and varchar(max) datatype columns.

XML
With the introduction of Microsoft SQL Server 2005, the XML data type has been added. This data type
allows for the storage of XML fragments and documents. Full-Text Search in SQL Server supports the
creation of full-text indexes and searches on the XML data type. Full-text queries against an XML data
type column will return rows in which the search parameters exist anywhere within the column.

BLOBs
Data, such as a Microsoft Word Document and Adobe Acrobat files, can be stored within a
varbinary(max) or images column. Data may be stored within one of these data type columns and
then queried against using a filter, which implements the IFilter interface. The filter will extract text
based on a specific file format.

There are several steps to perform the search on a BLOB:

1. Create a table to hold the BLOB. In this example, the table has the following definition:

CREATE TABLE [dbo].[tblFile](
[tblFileId] [int] IDENTITY(1,1) NOT NULL,
[ContentData] [varbinary](max) NULL,
[FileType] [varchar](10) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
[MimeType] [varchar](50) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,

CONSTRAINT [PK_tblFile] PRIMARY KEY CLUSTERED 
(

[tblFileId] ASC
) ON [PRIMARY]
) ON [PRIMARY]

The column tblFileId is a primary key and is an identity field. The column ContentData is
the column that holds the BLOB data. The FileType column contains the file extension of the
uploaded file. The MimeType column contains the mime type for the BLOB data as determined
by the ASP.NET file upload control.
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2. Create code that will upload a table. For this example, our code looks like this:

Dim iLength As Integer
Dim strFile As String
Dim strSql As String
Dim byteBuffer() As Byte
Dim httpFile As HttpPostedFile
Dim sqlCn As New SqlConnection()
Dim sqlCm As New SqlCommand()
Dim sqlDa As New SqlDataAdapter()
Dim drData As DataRow
Dim dsData As New DataSet()
Dim cmdBld As New System.Data.SqlClient.SqlCommandBuilder(sqlDa)
Try

iLength = Me.fuplControl.PostedFile.ContentLength
If (iLength > 0) Then

strFile = Right(Me.fuplControl.PostedFile.FileName, 3)
httpFile = fuplControl.PostedFile
ReDim byteBuffer(iLength)
httpFile.InputStream.Read(byteBuffer, 0, iLength)
sqlCn.ConnectionString = strCn
sqlCm.Connection = sqlCn
strSql = “select tblFileId, FileType, MimeType, ContentData from

tblFile where 1=2”
sqlDa.MissingSchemaAction = MissingSchemaAction.AddWithKey
sqlCm.CommandText = strSql
sqlDa.SelectCommand = sqlCm
sqlDa.Fill(dsData, “tblFile”)
drData = dsData.Tables(“tblFile”).NewRow()
drData(“MimeType”) = httpFile.ContentType
drData(“FileType”) = strFile
drData(“ContentData”) = byteBuffer
dsData.Tables(“tblFile”).Rows.Add(drData)
sqlDa.Update(dsData, “tblFile”)
Call DisplayFilesInDb()

End If
Finally

If sqlCn.State <> ConnectionState.Closed Then
sqlCn.Close()

End If
sqlCn.Dispose()
sqlCm.Dispose()

End Try

3. The final step in the process is to run a full-text search. An example full-text search query will
result in data like that shown in Figure 14-10.

Figure 14-11 shows the selection of a language along with the file type to use for filtering when
performing a full-text search on a BLOB. The choice of the file type column will directly change
the filter that is used in the gathering process. In Figure 14-11, we are setting the column that
contains the file type to the column named [FileType].
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Figure 14-10

Figure 14-11
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Extending Full-Text Search with Filters
When creating a full-text search, it is possible to search on columns that hold BLOB-style data. This data
can be stored in a varbinary(max) column while another column holds the file type. This data is
extracted using what is called a filter. SQL Server 2005 ships with a number of filters for common file
types, including Microsoft Office documents. Full text searching on these documents will work out of
the box. 

What happens when you would like to filter on different file types? Let’s look at filtering on an Adobe
Acrobat PDF file type. Here are the steps to filter a PDF file:

1. Remember that your table must have a BLOB field, such as a varbinary(max), and a column to
specify the file type to the full-text index Create Index commands or the full-text index wizard in
SQL Server Management Studio.

2. Download and install the Adobe Acrobat PDF Filter.

3. Execute the following commands against your SQL Server 2005 instance:

sp_fulltext_service ‘load_os_resources’,1

The preceding command tells the Microsoft Search Service to load OS-specific word breakers,
stemmers, and so on.

Do not verify that the binaries are signed:

sp_fulltext_service ‘verify_signature’, 0

4. Bounce the SQL Server Service and MSFTESQL. Figure 14-12 shows the execution of the stored
procedure sp_help_fulltext_extensions. The result is the full-text extensions that are
installed, which the Microsoft Search Service can use.

5. Create your full-text index. 

6. Issue the necessary command(s) to (re)index. This can be done through the SQL Server
Management Studio or by issuing T-SQL commands.

Figure 14-12
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Once the necessary commands have been run, the table may be queried using the existing full-text
search commands. Figure 14-13 shows the results of a full-text search query for which a PDF file is
returned.

Figure 14-13

Summary
This completes our look at the full-text capabilities of SQL Server and, in particular, SQL Server 2005. In
this chapter, you learned the basics of full-text searching and examined the full-text indexing of files in
the database. In addition, you examined different searching options.

For More Information
To complement the information in this chapter, take a look at the following resources:

❑ SQL Server 2005 Books Online

❑ SQL Server 2005 newsgroups

❑ MSDN article titled “SQL Server 2005 Full-Text Search: Internals and Enhancements,” by
Andrew Cencini —http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/dnsql90/html/sql2005ftsearch.asp

❑ John Kane’s Weblog —http://spaces.msn.com/members/jtkane
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Reporting

Originally, this chapter was titled “Business Intelligence (BI).” The direction changed when we 
considered that BI, in the Microsoft vernacular, deals more with Online Analytic Processing (OLAP)
than anything else. While certain aspects of BI are very difficult, if not impossible without OLAP,
other aspects are quite easy to create against a transactional data store. Consider the following:

❑ The key purpose of technology is to support business.

❑ Technology is concerned with the storing of data.

❑ Business is run on information.

❑ Data is not information.

❑ Therefore, one of the most important aspects of technology is turning data into information.

For the purposes of this chapter, BI is the process of turning pieces of data into meaningful infor-
mation in order to make business decisions. In most cases, this information is conveyed in the
form of a report. While reporting is not the sole focus of this chapter, a great deal of data analysis
and business intelligence work ends with building some form of report or another. This means a
great deal of the material will focus on Reporting Services. Some of the material will apply to SQL
Server 2000 as well, so we will let you know the portions that require SQL Server 2005. 

The database we will be using is the AdventureWorks database. To install this database, do a cus-
tom install of SQL Server 2005 and install the sample applications. This database is also available
on the Microsoft downloads site for SQL Server 2000 (surf to www.microsoft.com/downloads
and look for “Adventure Works”). As of the writing of this chapter, the latest copy is from 2003
and requires the .NET 1.0 Framework to install. Please note that some of the scripts will require
alteration if you go the SQL Server 2000 route.

There is a lot of ground to cover when it comes to reporting in SQL Server 2005. Much of the mate-
rial in this chapter is introductory in nature and designed to whet your appetite for more informa-
tion. As the model has been greatly simplified, this is not a code-intensive chapter. Rather, the
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focus is on increasing your toolset to expand your horizons. By the end of this chapter, you will see that
it is possible to move more work to the business analyst and spend time developing the more difficult
parts of your application.

An Introduction to Reporting
While reports are one of the least favorite parts of application development for most developers, ulti-
mately they are one of the most important aspects from a business standpoint. In addition, whether you
realize it or not, you are constantly building reports of one type or another. In some instances, you will
work with a formal reporting tool, such as Crystal Reports or Reporting Services, but many times build-
ing reports is just another aspect of your UI development. Anytime you aggregate data, you are, by defi-
nition, building a report.

This section focuses on a reporting scenario that is similar to the daily operations for many developers,
albeit quite a bit simpler. The reason for choosing a simple report is that much of the work in this chap-
ter is done without code. While showing a few different ways to render a complex report might be more
exciting and create a bigger book, complex reports are not necessary to cover the breadth of the toolset
available in Visual Studio 2005 and SQL Server 2005. To get the most out of this chapter, you will have to
play around with the tools. 

Scenario
You were just hired as a senior developer at Adventure Works, a global company that sells bicycle parts.
Your boss, Jean Trenary, just got a call from Brian Welckler, the vice president of sales. He wants a report
of total sales for all sales representatives for the first quarter of 2003, including bonuses and quotas. You
have been tasked to implement this report in a Web application.

Implementation
After the conversation with Ms. Trenary, you quickly get back to your chair, thankful that the assignment
was a very easy one. To finish this assignment, you will write a stored procedure, create a logon in SQL
Server (optional), and add a few items to a Web page. 

SQL Server Setup
To get data from SQL Server, you will create a stored procedure. There are a couple of reasons for this.
The most obvious reason is because it is far easier to secure database access through a stored procedure,
as you can restrict who has access to the procedure. With SQL Server 2005, you can also set a user under
whom the stored procedure can run, allowing a user with very limited rights to still gain access to the
database (this feature is not available if you are using SQL Server 2000). 

The stored procedure that will deliver our simple sales report is shown in the following code. Please
note that this particular stored procedure covers many schema names. The account the procedure runs
as must have access to all of the schema names.
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-- SCRIPT = SimpleReportExercise.sql

USE AdventureWorks
GO

CREATE PROCEDURE [Sales].[sspGetSalesTotals]
WITH EXECUTE AS ‘dbo’
AS
BEGIN
SELECT c.FirstName, c.MiddleName, c.LastName, s.SalesQuota, s.Bonus

, s.SalesYTD, s.SalesLastYear 
FROM Sales.SalesPerson s

JOIN HumanResources.Employee e
ON s.SalesPersonID = e.EmployeeID

JOIN Person.Contact c
ON e.ContactID = c.ContactID

END;

As mentioned in Chapter 9, we are using the new EXECUTE AS function. In this case, we have EXECUTE
AS ‘dbo’ to have this stored procedure run under the credentials of the dbo account. This is unneces-
sary if you have an account that has proper rights to the database (i.e., has access to each of the schemas
represented). If so, you can change this to EXECUTE AS CALLER to have it run under the account that is
calling the stored procedure. Remember that dbo execution does not mean that anyone has rights to run
this stored procedure. You will still have to GRANT that right. Running as dbo, we guarantee that any
person with rights to run the stored procedure has rights to access the tables it calls — in this case,
Sales.SalesPerson, HumanResources.Employees, and Person.Contact.

The next thing you will do is create a logon to run the stored procedure. When using Windows
Authentication, this is completely unnecessary. We add this step primarily for those who have a problem
running under Windows Authentication. We would rather offer this solution than have the developer
give database dbo rights to the Internet Guest account (yes, people really do this, and often). The SQL
script necessary to create your login is as follows:

-- SCRIPT = Chapter15User.sql
USE master
GO

CREATE LOGIN [Chapter15User] WITH PASSWORD=N’pass@word1’, 
DEFAULT_DATABASE=[AdventureWorks], DEFAULT_LANGUAGE=[us_english], 
CHECK_EXPIRATION=ON, CHECK_POLICY=ON
GO

The final step is giving the account rights to the database and granting execute rights for the
sspGetSalesTotal stored procedure. As mentioned before, the stored procedure itself runs as dbo, so
we do not have to grant rights to all of the objects used in the stored procedure. Creating a user and
granting execute rights is shown in the following code:

--SCRIPT = Chapter15AWUser.sql
USE AdventureWorks
GO

CREATE USER [Chapter15AWUser] FOR LOGIN [Chapter15User]
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WITH DEFAULT_SCHEMA = Sales
GO

GRANT EXECUTE ON Sales.sspGetSalesTotals
TO [Chapter15AWUser]
GO

Now that you are finished with the database, it is time to move to the Web application.

Web Application, or “Look Ma, No Code ...” (Part One)
Although this is not a book on Web applications, reporting and the Web seem to go together. With
ASP.NET 2 and Visual Studio 2005, you can create this very simple report without writing one line of
code. Here is a quick step by step:

1. Drag a DataGridView control on the page.

2. Configure the data source of the DataGridView to a SqlDataSource that points to the
AdventureWorks database.

3. On the GridView tasks menu, select Auto Format ➪ Professional.

4. On the GridView tasks menu, select Edit Columns and add BoundField objects for
FirstName, MiddleName, LastName, SalesQuota, Bonus, SalesYTD, and SalesLastYear.

5. In the same window, uncheck the Auto-Generate Fields checkbox.

6. Add the format {0:c} for each of the monetary columns.

The formatting is optional, but it creates a report page that looks better. In addition, you can auto-
generate the fields, but understand that you will have to alter the stored procedure to return a properly
formatted currency string if you choose this route. The resulting code from the steps taken is shown in
the next code snippet:

<h1>
Sales Report

</h1>
<asp:GridView ID=”GridView1” runat=”server” DataSourceID=”ReportSource1”
AutoGenerateColumns=”False” CellPadding=”4” ForeColor=”#333333” GridLines=”None”>

<Columns>
<asp:BoundField DataField=”FirstName” HeaderText=”First Name” />
<asp:BoundField DataField=”MiddleName” HeaderText=”Middle Initial” />
<asp:BoundField DataField=”LastName” HeaderText=”Last Name” />
<asp:BoundField DataField=”SalesQuota” DataFormatString=”{0:c}” 

HeaderText=”Sales Quota” />
<asp:BoundField DataField=”Bonus” DataFormatString=”{0:c}” 

HeaderText=”Bonus” />
<asp:BoundField DataField=”SalesYTD” DataFormatString=”{0:c}”    

HeaderText=”Sales YTD” />
<asp:BoundField DataField=”SalesLastYear” DataFormatString=”{0:c}” 

HeaderText=”Sales Last Year” />
</Columns>
<FooterStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White” />
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<RowStyle BackColor=”#F7F6F3” ForeColor=”#333333” />
<PagerStyle BackColor=”#284775” ForeColor=”White” 

HorizontalAlign=”Center” />
<SelectedRowStyle BackColor=”#E2DED6” Font-Bold=”True”

ForeColor=”#333333” />
<HeaderStyle BackColor=”#5D7B9D” Font-Bold=”True” ForeColor=”White” />
<EditRowStyle BackColor=”#999999” />
<AlternatingRowStyle BackColor=”White” ForeColor=”#284775” />

</asp:GridView>
<asp:SqlDataSource ID=”ReportSource1” runat=”server” ConnectionString=”Data 

Source=(local);Initial Catalog=AdventureWorks;Integrated Security=True”
ProviderName=”System.Data.SqlClient” SelectCommand=”Sales.sspGetSalesTotals”
SelectCommandType=”StoredProcedure”></asp:SqlDataSource>

When you run this page in a browser, you will see the report shown in Figure 15-1.

Figure 15-1

Don’t you wish all reports were that easy?

Now we will look at how to change the application to use the account we created in SQL Server. The only
change required to the page is a change in the connection string for the SqlDataSource, as shown here:

<asp:SqlDataSource ID=”ReportSource1” runat=”server” CCoonnnneeccttiioonnSSttrriinngg==””DDaattaa      
SSoouurrccee==((llooccaall));;IInniittiiaall  CCaattaalloogg==AAddvveennttuurreeWWoorrkkss;;PPeerrssiisstt  SSeeccuurriittyy  IInnffoo==FFaallssee;;
UUsseerr  IIDD==CChhaapptteerr1155UUsseerr;;PPaasssswwoorrdd==ppaassss@@wwoorrdd11;;””

ProviderName=”System.Data.SqlClient” SelectCommand=”Sales.sspGetSalesTotals”
SelectCommandType=”StoredProcedure”></asp:SqlDataSource>
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If you hear a funny sound right now, it is us beating the guy who thought that embedding a tag in an
ASPX page was a nifty idea. While Microsoft has ensured us that a hacker can never get at the tags 
of the page, we’re a bit paranoid about this one. Although a full explanation is beyond the scope 
of this book, one potential option is moving the connection string to the web.config file, where 
you can later add encryption using either the DataProtectionConfigurationProvider or the
RSAProtectedConfigurationProvider. The code change necessary for the initial move is shown
here:

<!-- web configuration file addition -->
<connectionStrings>

<add name=”Chapter15ConnString” connectionString=”Data Source=(local);Initial
Catalog=AdventureWorks;Persist Security Info=False;User
ID=Chapter15User;Password=pass@word1;” providerName=”System.Data.SqlClient”/>
</connectionStrings> 

<!-- Change ASPX page -->
<asp:SqlDataSource ID=”ReportSource1” runat=”server” 
CCoonnnneeccttiioonnSSttrriinngg==””<<%%$$  CCoonnnneeccttiioonnSSttrriinnggss::CChhaapptteerr1155CCoonnnnSSttrriinngg  %%>>””
PPrroovviiddeerrNNaammee==””<<%%$$  CCoonnnneeccttiioonnSSttrriinnggss::CChhaapptteerr1155CCoonnnnSSttrriinngg..PPrroovviiddeerrNNaammee  %%>>””

ProviderName=”System.Data.SqlClient” SelectCommand=”Sales.sspGetSalesTotals”
SelectCommandType=”StoredProcedure”></asp:SqlDataSource>

Normally, we would spend a little more time on this report to utilize more ADO.NET, but we won’t do
that, however, as this report is nothing more than a simple segue into the main topic of this chapter,
which is Reporting Services.

Reporting Services
For many of us, Reporting Services was revealed at the Yukon Summit in 2003. The idea of having a
server that takes the complexity of creating reports off the developer’s plate is just too cool for words.
While you can move the work to business people, there will be resistance to using the Business
Intelligence Developer Studio, largely due to that word in italics. As many of the functions available in
the BI Developer Studio are way out of the league of the sales manager, keeping Pandora out of the box
might be a wise decision. Later in the chapter, we will touch on a better way to have businesspeople cre-
ate reports, and leave development to the developers.

When you install Reporting Services, you have the option of setting up the URL with SSL or without. If
you set up Reporting Services without SSL, you will have to use http:// instead of https:// at the
beginning of all of your URLs. 

Our Simple Report in Reporting Services, or “Look Ma, no
Code ...” (Part 2)

Once again, you are called into Jean Trenary’s office. She says, “I am a bit disappointed that you decided
to build that report in ASP.NET. We spent quite a bit of money on SQL Server 2005 and feel that using
the Reporting Services feature will better justify the cost of moving to the new platform. I need you to go
back and redo that report using Reporting Services.”
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While this illustrates why business decisions are often made for the wrong reasons, we agree that
Reporting Services is a better way to go than building a report in ASP.NET. As the chapter progresses,
the reasons for using Reporting Services will become very clear. For the moment, however, the task is
building the same report using a different tool.

The first step to producing the Sales By Sales Person report is opening the Business Intelligence
Development Studio, aka Visual Studio 2005, with a different name. In other words, if you already have
Visual Studio 2005 open, you do not have to close it to open another tool; the business intelligence pro-
jects are included in the new project window, so simply create a new project.

The type of project you need to create is a Report Server project. While you can create a report without
thinking in the Reports Server Project Wizard project, we won’t go quite that brain-dead at this time.
Once you have the project open, right-click the Reports folder and choose Add ➪ New Item ➪ New
Report. If you are tempted, you can choose Add ➪ New Report, but you will go directly to wizard land,
and not pass Go. For the rest of this section, you will be creating a report for the Sales By Sale Person
functionality called SalesBySalesPerson.

Configure a data source by right-clicking the Shared Data Sources folder. A dialog box will pop up. In
the Name textbox, call the data source Chapter15DataSource. In the Connection String textbox, add
a connection to your SQL Server database. If you are using Windows Authentication on your local
box, you can use the string Data Source=(local);Initial Catalog=AdventureWorks. If you
cannot use Windows Authentication, the connection string for a local box should read Data
Source=(local);Initial Catalog=AdventureWorks;Persist Security Info=False;User
ID=Chapter15User;Password=pass@word1. Click OK and exit the dialog box.

Right-click the Reports folder, click Add ➪ New Item and choose Report. When you right-click, the Add
New Report items will use the report wizard, as will Add ➪ New Item and choosing Report Wizard. Feel
free to experiment with the wizard later.

The next step is to click the DataSet drop-down, in your new report, and choose <New DataSet ...>.
In the dialog box that appears, name the DataSet SalesBySalesPersonDataSet and choose
Chapter15DataSource (shared) in the Data Source drop-down. Change the Command Type drop-
down to Stored Procedure and type Sales.sspGetSalesTotals in the Query String box and click OK.

To complete the report, flip to the toolbox and drag a Table onto the report design. Type the title “Sales
By Sales Person” in the header. Then, drag a Matrix object under the header. Finally, click from the tool-
box to the DataSet tab and drag items from the DataSet onto the second row of the Matrix. To complete
the full report, add cells and pull them in to fit underneath the header.

As with the ASP.NET report, you will have to configure the currency fields. The formula for the sales
quota field is =FormatCurrency(Fields!SalesQuota.Value,2,true,true,true). You can do this
by right-clicking on the cell and choosing Properties, but we find it more informative to open the Report
Definition Language (RDL) file in code view. To do this, click the code button in the Solution Explorer
and view the code. When you open the code, you will see a document that looks strangely like XML.
This is because it is, in fact, XML, although some rules are a bit more restrictive, such as the fact that you
cannot add comments to the file. 

In this example, shown in the following code, we are focusing on the section of the file that takes the
data elements and places them in the file. You are searching for =Fields!SalesQuota.Value. When
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you find it, change it to =FormatCurrency(Fields!SalesQuota.Value, 2, true, true, true). The
bolded sections are the pieces you are adding to this report:

<TableCell>
<ReportItems>
<Textbox Name=”SalesQuota”>
<rd:DefaultName>SalesQuota</rd:DefaultName>
<ZIndex>3</ZIndex>
<Style>
<PaddingLeft>2pt</PaddingLeft>
<PaddingTop>2pt</PaddingTop>
<TextAlign>Right</TextAlign>
<PaddingBottom>2pt</PaddingBottom>
<PaddingRight>2pt</PaddingRight>

</Style>
<CanGrow>true</CanGrow>
<Value>=FormatCurrency(Fields!SalesQuota.Value,2,true,true,true)</Value>

</Textbox>
</ReportItems>

</TableCell>
<TableCell>
<ReportItems>
<Textbox Name=”Bonus”>
<rd:DefaultName>Bonus</rd:DefaultName>
<ZIndex>2</ZIndex>
<Style>
<PaddingLeft>2pt</PaddingLeft>
<PaddingTop>2pt</PaddingTop>
<TextAlign>Right</TextAlign>
<PaddingBottom>2pt</PaddingBottom>
<PaddingRight>2pt</PaddingRight>

</Style>
<CanGrow>true</CanGrow>
<Value>=FormatCurrency(Fields!Bonus.Value,2,true,true,true)</Value>

</Textbox>
</ReportItems>

</TableCell>
<TableCell>
<ReportItems>
<Textbox Name=”SalesYTD”>
<rd:DefaultName>SalesYTD</rd:DefaultName>
<ZIndex>1</ZIndex>
<Style>
<PaddingLeft>2pt</PaddingLeft>
<PaddingTop>2pt</PaddingTop>
<TextAlign>Right</TextAlign>
<PaddingBottom>2pt</PaddingBottom>
<PaddingRight>2pt</PaddingRight>

</Style>
<CanGrow>true</CanGrow>
<Value>=FormatCurrency(Fields!SalesYTD.Value, 2, true, true, true)</Value>

</Textbox>
</ReportItems>

</TableCell>
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<TableCell>
<ReportItems>
<Textbox Name=”SalesLastYear”>
<rd:DefaultName>SalesLastYear</rd:DefaultName>
<Style>
<PaddingLeft>2pt</PaddingLeft>
<PaddingTop>2pt</PaddingTop>
<TextAlign>Right</TextAlign>
<PaddingBottom>2pt</PaddingBottom>
<PaddingRight>2pt</PaddingRight>

</Style>
<CanGrow>true</CanGrow>
<Value>=FormatCurrency(Fields!SalesLastYear.Value,2 ,true, true, true)</Value>

</Textbox>
</ReportItems>

</TableCell>

You have just edited your first RDL document. Later in the chapter, we will cover a bit more on RDL,
including how to programmatically render RDL from your own code. When you are finished editing,
click Preview to see the results of your work. You should see a report that looks like the screenshot
shown in Figure 15-2.

Figure 15-2

Be careful using Preview. While Visual Studio 2005 against a SQL Server 2005 Reporting Services
instance will allow you to get back to design view, this is not the case with Reporting Services against
SQL Server 2000. If you select Preview in SQL Server 2000, you are pretty much hosed. As a result,
you will have to restart your project to get back to design view.
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A Brief Primer on Report Definition Language
As you will find, we see very little value in expanding on the formats of most of the XML derivatives in
this chapter, as most of the derivatives are way too complex to be covered adequately in such as short
space. RDL is an exception, however, as it is useful to see how Reporting Services is working underneath
the hood. In addition, there will be times when you need to edit RDL directly, as we did in the last sec-
tion. We won’t go into great detail on every element in the RDL file; we’ll save that for another book,
RDL for Dummies (yes, that’s a joke).

Rather than show the entire RDL for the simple report, which encompasses more than 25 pages, let’s
take a quick trip through a much simpler report. In this case, we made a report called rdlReport and
dragged the firstName onto the report. Because the data is the same source, much of the material here
can be used to edit the Sales by Sales Person report.

The first section to look at is <DataSources>. We can have two types of data sources: shared and single
report. With a shared data source, we get a name, an id (in the form of a globally unique identifier, or
GUID), and a reference. The reference refers back to an rds file, with the name of Chapter15DataSource.rds.
The link to the RDS file is shown in the following code:

<DataSources>
<DataSource Name=”Chapter15DataSource”>

<rd:DataSourceID>559a2b48-7b75-42f3-94d0-18276f3b3cd1</rd:DataSourceID>
<DataSourceReference>Chapter15DataSource</DataSourceReference>

</DataSource>
</DataSources>

The RDS data source (shared data source) contains the information that would be embedded in the page
if this were a non-shared data source. It is pulled out into a separate XML file so it can easily be shared
by multiple reports. Highlighted in bold are the pieces that pertain to the connection string:

<?xml version=”1.0” encoding=”utf-8”?>
<RptDataSource xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<Name>Chapter15DataSource</Name>
<DataSourceID>81c6df8b-5368-4723-915b-989164ecafd2</DataSourceID>
<<CCoonnnneeccttiioonnPPrrooppeerrttiieess>>

<<EExxtteennssiioonn>>SSQQLL<<//EExxtteennssiioonn>>
<<CCoonnnneeccttSSttrriinngg>>DDaattaa  SSoouurrccee==((llooccaall));;IInniittiiaall

CCaattaalloogg==AAddvveennttuurreeWWoorrkkss<<//CCoonnnneeccttSSttrriinngg>>
<<IInntteeggrraatteeddSSeeccuurriittyy>>ttrruuee<<//IInntteeggrraatteeddSSeeccuurriittyy>>

<<//CCoonnnneeccttiioonnPPrrooppeerrttiieess>>
</RptDataSource>

If you had created a non-shared data source, the connection string would have been embedded in the
RDL, as shown in the following code:

<DataSources>
<DataSource Name=”Chapter15DataSource2”>

<<CCoonnnneeccttiioonnPPrrooppeerrttiieess>>
<<DDaattaaPPrroovviiddeerr>>SSQQLL<<//DDaattaaPPrroovviiddeerr>>
<<CCoonnnneeccttSSttrriinngg>>DDaattaa  SSoouurrccee==((llooccaall));;IInniittiiaall

CCaattaalloogg==AAddvveennttuurreeWWoorrkkss<<//CCoonnnneeccttSSttrriinngg>>
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<<IInntteeggrraatteeddSSeeccuurriittyy>>ttrruuee<<//IInntteeggrraatteeddSSeeccuurriittyy>>
<<//CCoonnnneeccttiioonnPPrrooppeerrttiieess>>
<rd:DataSourceID>cf744c43-70b4-473d-a9a3-33d337f34186</rd:DataSourceID>

</DataSource>
</DataSources>

The main difference here is where the information to connect is located. Both of these methods will work
identically, although the data source embedded in the RDL will only apply to a single report. Note one
other thing about the two XML snippets. When embedded in the RDL, the tag is <DataProvider>,
whereas it is <Extension> in an RDS file. Why? That is a great question for which we have no reason-
able answer. 

The next section of the RDL page deals with how the page is rendered. The height and width of the
report are included, as well as the margins. Finishing up, there is a bit of information about the grid on
the page, which is used in the designer, as well as the language of the report and the Report ID (another
GUID). This section is shown here:

<InteractiveHeight>11in</InteractiveHeight>
<InteractiveWidth>8.5in</InteractiveWidth>
<TopMargin>1in</TopMargin>
<BottomMargin>1in</BottomMargin>
<LeftMargin>1in</LeftMargin>
<RightMargin>1in</RightMargin>
<Width>6.5in</Width>
<rd:DrawGrid>true</rd:DrawGrid>
<rd:SnapToGrid>true</rd:SnapToGrid>
<Language>en-US</Language>
<rd:ReportID>6d3dc829-bb8d-46d1-84a7-fa1073457bd4</rd:ReportID>

As we move down a bit farther, we get to the meat of the report. The <Body> tag wraps around the ren-
dered section of the report, much like a <Body> tag in HTML wraps around the rendered HTML content
of the page. The use of a <TableRows> collection enables an item to repeat once for every record in the
page. The following code shows the report if only the FirstName field is added:

<Body>
<TableRows>

<TableRow>
<Height>0.25in</Height>

<TableCells>
<TableCell>

<ReportItems>
<Textbox Name=”FirstName”>
<Width>2in</Width>
<rd:DefaultName>FirstName</rd:DefaultName>
<Top>0.125in</Top>
<Style>

<PaddingLeft>2pt</PaddingLeft>
<PaddingTop>2pt</PaddingTop>
<PaddingBottom>2pt</PaddingBottom>
<PaddingRight>2pt</PaddingRight>

</Style>
<Left>0.125in</Left>
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<CanGrow>true</CanGrow>
<Height>0.25in</Height>
<<VVaalluuee>>==FFiieellddss!!FFiirrssttNNaammee..VVaalluuee<<//VVaalluuee>>

</Textbox>
</ReportItems>

</TableCell>
</TableCells>

</TableRow>
</TableRows>   

<Height>2in</Height>
<Style />

</Body>

The final section of the file that we will look at is shown in the following code. This is the DataSets
section, which contains the fields from the DataSet we created earlier in this section. The Value tag
(above) contains the link to the FirstName field (below) in the DataSet for the page, which is bolded:

<DataSets>
<DataSet Name=”DataSet1”>

<Fields>
<<FFiieelldd  NNaammee==””FFiirrssttNNaammee””>>
<<DDaattaaFFiieelldd>>FFiirrssttNNaammee<<//DDaattaaFFiieelldd>>
<<rrdd::TTyyppeeNNaammee>>SSyysstteemm..SSttrriinngg<<//rrdd::TTyyppeeNNaammee>>

<<//FFiieelldd>>
... Snipped out code for rest of fields

<Query>
<DataSourceName>Chapter15DataSource2</DataSourceName>
<CommandType>StoredProcedure</CommandType>
<CommandText>Sales.sspGetSalesTotals</CommandText>

</Query>
</DataSet>

</DataSets>

While this short primer is certainly not enough to build full-scale RDL reports by hand, it should give
you a good heads-up for editing reports without the designer.

Using the Reporting Service Server
To go to the next level, you will have to deploy the report by right-clicking the solution and
choosing Deploy. Once you deploy the solution, you can surf to the report by using the URL http://
hostname/Reports. When you do this, you will see a screen that contains all of the projects you have
deployed to Reporting Services. From here, select SimpleReport ➪ SalesBySalesPerson. You now see
your report in all its shining glory, as shown in Figure 15-3.

Okay, maybe doesn’t look so special on the surface. What’s going on underneath the hood, however, is
a bit more impressive. When you render a report, two applications are serving up the report. The appli-
cation you see the report in is called Reports, while the application doing all of the work is called
ReportServer. The Reports application is of little use to us at the moment; we will concentrate on the
ReportServer.
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Figure 15-3

Please be aware that Visual Studio does not always fill in the production values for you to deploy your
reports. If you get an error on deployment, right-click the Solution and choose Properties. Next, you
change the drop-down on the Properties dialog box to read Active (Production) and type values
next to TargetServerURL (http://localhost/ReportServer for a development machine) and
a value for the TargetDataSourceFolder. The TargetDataSourceFolder is controlled by
Reporting Services, and you can name it whatever you like. (We use DataSources, but any name you
like will work.) As it is controlled by Reporting Services, you must specify a name; you cannot use an
absolute path such as C:\MyDataSources.

Contacting Reporting Services via an URL
One of the easiest ways to contact Reporting Services from another application is through a URL. Microsoft
has built in a rather extensive array of parameters that can be sent to the ReportServer application to 
render reports in a variety of formats. Control of the rendered report is achieved by sending commands
through either the query string or the form collection. If you are not familiar with Web applications, don’t
worry; we’ll give you enough rope to hang yourself, but we’ll also show you how to cut the branch before
you jump.

If you experiment, you will find that you can run many of the commands in this section against the
Reports application. Because of this, you might be tempted to use Reports instead of ReportServer.
Avoid this temptation; it will only add weight to your application. Remember that the ReportServer is
called from Reports. If you use Reports, you will be using two applications instead of one. 
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To control the server, you will have to learn a little bit about a couple of namespaces: namely, rs and rc.
Rather than create a long-winded intro, we believe it’s better to give an example. If you type the follow-
ing URL into a browser (substituting the server name for hostname, of course), you will see the Sales By
Sales Person report created in the last section, assuming you deployed it, that is:

http://hostname/ReportServer/Pages/ReportViewer.aspx?/SimpleReport/
SalesBySalesPerson&rs:Command=Render&rc:Toolbar=false

Below is a breakdown of what is happening with this URL:

❑ http://localhost/ReportServer/Pages/ReportViewer.aspx is the page in the ReportServer
application that renders reports.

❑ /SimpleReport/SalesBySalesPerson is our first query string element, which indicates we are
rendering the sales by sales person report in the SimpleReport project.

❑ rs:Command=Render indicates that we would like to view the rendered report.

❑ rc:Toolbar=false indicates we do not want the toolbar to show up when we render the
report.

Looking at the URL, you see two namespaces: rs and rc (these are bolded in the preceding list). The first
is rs, which stands for report server. You will use this namespace to send parameters that tell the Report
Server what to do. The second namespace is rc, which stands for rendering controller. You use this to
determine how the UI is rendered.

As you proceed through this section, we recommend working through the commands in a browser,
where applicable, and viewing the results; this will give you a much better grasp of what is going on
behind the scenes.

The rs Namespace
The first set of parameters we are going to look at are those that control the Report Server itself. In the rs
namespace are the parameters Command (what we would like the server to do), Format (how we would
like to examine the report), Snapshot (saving a rendered report), SessionID, and ClearSession:

❑ rs:Command— This parameter specifies which command should be applied to the path you are
working with. 

❑ Render— This parameter renders the specified resource. In the following code sample, the sales
by sales person, from the Simple Report project created earlier, is rendered:

http://hostname/ReportServer/Pages/ReportViewer.aspx?/SimpleReport/SalesBySalesPers
on&rs:Command=Render

❑ ListChildren—ListChildren is most commonly used to list the reports under a specific
project deployed to the Report Server. As an example, the following URL is used to view links to
all of the reports in the SimpleReport application created earlier in this chapter. The list will only
contain one report at this time.

http://hostname/ReportServer/SimpleReport?/SimpleReport&rs:Command=ListChildren 

❑ GetResourceContents— This renders a specified resource and displays it in an HTML page: 
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http://hostname/ReportServer/SimpleReport?/SimpleReport&rs:Command=GetResource
Contents

❑ GetDataSourceContents— This parameter displays the properties of a given shared data
source. If you have created individual, non-shared data sources for your reports, this value is
useless for the Command parameter:

http://hostname/ReportServer/SimpleReport?/SimpleReport&rs:Command=GetDataSource
Contents

❑ rs:Format— This is by far the easiest rs parameter to understand. It indicates the format of the
rendered report. Valid values for this parameter are HTML3.2, HTML4.0, HTMLLOWC (HTML with
Office Web Components), MHML (Web Archive Format), IMAGE, EXCEL, CSV (a comma-delimited
text file), PD, and XML. You can also create custom rendering extensions for Reporting Services
and add them to the list.

http://hostname/ReportServer/SimpleReport?/SimpleReport&rs:Format=HTML4.0&rs:Comman
d=Render

❑ rs:Snapshot— This parameter renders a snapshot to the Report Server. This is a good option
for particularly complex reports that a lot of users access. The value for this parameter is a
timestamp in the format YYYY-MM-DDThh:mm:ss (Y=Year, M=Month, D=Day, T=time from this
point on, H=Hour, m=Minute and S=Second). Example January 1, 2006 at 2:05:03 AM =
2006-01-01T02:05:03.

http://hostname/ReportServer/SimpleReport?/SimpleReport&rs:Snapshot=2005-06-07T13:
40:02

❑ rs:SessionID— This identifies the session access the Report Server. This option is useful
when you are not using session cookies. If a Report Server has been configured to not use ses-
sion cookies, the first hit on a report will cause a redirect using the Session ID, whether you
specify this or not. Subsequent hits on this report from the same session will need the Session ID
attached.

http://hostname/ReportServer/SimpleReport?/SimpleReport&rs:SessionID=DA215DE6-0206-
401C-8C9D-823337722CBE&rs:Command=Render

❑ rs:ClearSession— This parameter tells the browser to clear the currently cached copy of a
report. The only valid value for this parameter is true. Note that this will clear all copies of this
report currently associated with a particular user.

http://hostname/ReportServer/SimpleReport?/SimpleReport&rs:ClearSession=true

❑ rs:ParameterLanguage— This indicates the language in which the report should be rendered.
Note that this parameter is not useful for a report that uses a data source containing only one
language.

http://hostname/ReportServer/SimpleReport?/SimpleReport&rs:ParameterLanguage=en-
US&rs:Command=Render
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The rc Namespace
The second namespace is for the rendering controller. The parameters available are Toolbar,
Parameters, Zoom, Section, and LinkTarget:

❑ rc:Toolbar— This indicates whether the toolbar should be shown or not. Valid values are
true and false, with the default being true. For most reports in a separate application, the
value will be false. 

❑ rc:Parameters— This parameter indicates whether the parameters area of the toolbar should
be shown or not. Valid values are true, false and Collapsed, with the default being true.

❑ rc:Zoom— This is the zoom factor, as a percentage, to zoom in or out on a report. Valid
values are positive numbers (although you should not get stupid on this one and create a
zoom that is completely unreadable), Page Width and, Whole Page, with the default being 100
(or 100 percent).

❑ rc:Section— This indicates which page you wish to render. Section must be an integral
number (i.e., no decimals) of a valid page in the report, with a default value of 1. Note that you
must have a multi-page report to take advantage of this parameter.

❑ rc:LinkTarget— Useful for reports with a hyperlink column, this parameter sets the target for
browser-driven reports: 

❑ _blank— Creates a new, unnamed window. If you click multiple hyperlinks, you will
end up with multiple windows.

❑ _self— The new report will render in the same window as the old report.

❑ _parent— Parent window of the window to which you are sending the command.
Please note that this value is fairly useless if you have not spawned off a new window
for Report Server queries.

❑ _top— Uses the full window. This is useful when you are using frames and want the
hyperlink to open the link in the full window instead of inside the same frame as the
report.

❑ {window_name}— If you specify a window name as a target, any links clicked with this
value will render in the same window.

❑ rc:FindString— This is used to find a string in a particular report. This parameter is useful to
find a particular item in a multi-page report. You can further refine your search with the param-
eters StartFind and EndFind. In addition, you can set a page to show whether the search
results end up with no hits.

❑ rc:StartFind— Page to start a search for the string parameter for FindString.

❑ rc:EndString— Page to stop a search for the string parameter for FindString.

❑ rc:FallbackPage— Page to show when a search fails.

❑ rc:StyleSheet— Indicates which cascading stylesheet (CSS) to use when rendering a report.
Do not include the .css extension when specifying a stylesheet. The stylesheet used must be
deployed to the server to be valid.
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URL Parameters in Action
Setting the stage, let’s suppose the VP of Sales told Ms. Trenary that he would like you to provide a way
to view the report on the company intranet. With the simple report, you would most likely use a hyper-
link to send all parameters through the query string. The following example links to the Sales by Sales
Person report created earlier in this chapter. If you are typing this in, remember to change the hostname
to the actual name for the machine hosting Reporting Services, as shown here:

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”Default.aspx.vb”
Inherits=”_Default” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head id=”Head1” runat=”server”>

<title>Chapter 15 web - Launch page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<ul>
<li>

<a href=”
hhttttpp::////hhoossttnnaammee//RReeppoorrttSSeerrvveerr//PPaaggeess//RReeppoorrttVViieewweerr..aassppxx??//SSiimmpplleeRReeppoorrtt//SSaalleessBByySSaalleess
PPeerrssoonn&&rrss::CCoommmmaanndd==RReennddeerr&&rrcc::TToooollbbaarr==ffaallssee”>Sales By Salesperson</a>

</li>
</ul>

</div>
</form>

</body>
</html>

Suppose you would like to render a report and specify values for parameters. Fortunately, this is quite
easy, as you can send the parameters as part of a form send. To show a form sending to the Report
Server, we will use the Quarterly Sales for a Sales Rep report.

In the first run at the page, the page is going to submit directly to the Report Server for the rendered
report. To accomplish this easily, we will short-circuit the normal ASP.NET feature and have the form
run as a normal HTML form. This can be done by removing the runat=”server” attribute in the form
tag and using HTML elements on the page. You can see this in the following code:

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”FormSubmit.aspx.vb”
Inherits=”FormSubmit” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Untitled Page</title>
</head>
<body>

<form id=”form1”
action=”http://hostname/ReportServer/Pages/ReportViewer.aspx?/SimpleReport/SalesBy
SalesPerson” 

method=”post” target=”_blank”>
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<div>
<h1>Form for report</h1>

<table style=”width: 257px”>
<tr>

<td style=”width: 106px”>
Employee ID:</td>

<td>
<INPUT type=”text” ID=”EmployeeID” />

</td>
</tr>
<tr>

<td style=”width: 106px”>
</td>
<td>

<INPUT type=”submit”  value=”View” />
</td>

</tr>
<tr>

<td style=”width: 106px”>
</td>
<td>
</td>

</tr>
</table>

<input type=”hidden” name=”rs:Command” value=”Render” /> 
<input type=”hidden” name=”rs:Format” value=”HTML4.0” /> 
<input type=”hidden” name=”rc:Toolbar” value=”false” />

</div>
</form>

</body>
</html>

The downside of contacting the Report Server directly is that there is no validation on the controls in the
form. In this example, a person could easily type in an alphanumeric string and return no results. To cor-
rect this, we have two basic options. The first is to add a JavaScript form handler and the second is to
move to ASP.NET and handle the form submit, building the URL to open on the fly. Of the two,
JavaScript will work within the page we have already created without altering anything else except the
form tag. The JavaScript routine is shown here:

<head runat=”server”>
<title>Untitled Page</title>
<script language=”Javascript”>
function CheckForm()
{

var field = form1.EmployeeID;
var regex = /^\d*$/

if(regex.test(field.Value))
{

return (true);
}
else
{
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alert(‘Employee ID must be a number’);
return (false);

}    }
</script>

</head>
<body>

<form id=”form1” onsubmit=”return CheckForm()” ...

The second method of checking is to return to query string arguments and build the page using
ASP.NET server controls. The simple ASP.NET form is shown here:

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”FormSubmit2.aspx.vb”
Inherits=”FormSubmit2” %>
<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>
<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Form Submit 2</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<h1>Form for report</h1>
<table style=”width: 257px”>

<tr>
<td style=”width: 106px”>

Employee ID:</td>
<td>

<asp:TextBox ID=”EmpID” runat=”server”></asp:TextBox> 
</td>

</tr>
<tr>

<td style=”width: 106px”>
</td>
<td>

<asp:Button ID=”SubmitButton” runat=”server” Text=”Button” />
</td>

</tr>
<tr>

<td style=”width: 106px”>
</td>
<td>
</td>

</tr>
</table>

</div>
<asp:TextBox ID=”CommandTextBox” runat=”server” 

Visible=”False”>Render</asp:TextBox>
<asp:TextBox ID=”FormatTextBox” runat=”server” 

Visible=”False”>HTML4.0</asp:TextBox>
<asp:TextBox ID=”ToolbarTextBox” runat=”server” 

Visible=”False”>false</asp:TextBox>
</form>

</body>
</html>
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To finish this off, we will set up a CodeBeside page that handles the Submit button click event. As
it is best practice to always check form submission on the server side as well, we are checking
Page.IsValid prior to sending the user to the Report page. The CodeBeside file is shown here:

Partial Class FormSubmit2
Inherits System.Web.UI.Page

Protected Sub SubmitButton_Click(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles SubmitButton.Click
If (Page.IsValid) Then

SubmitFormAndRedirect()
Else

‘TODO: Add error message here
End If

End Sub

Private Sub SubmitFormAndRedirect()
Dim command As String = CommandTextBox.Text
Dim format As String = FormatTextBox.Text
Dim toolbar As String = ToolbarTextBox.Text
Dim fullURL As String

Dim urlBuilder As New StringBuilder()
urlBuilder.Append(“http://localhost/ReportServer/Pages/ReportViewer.aspx?”)
urlBuilder.Append(“/SimpleReport/SalesBySalesPerson”)

If (command.Length <> 0) Then
urlBuilder.Append(“&rs:Command=”)
urlBuilder.Append(command)

End If

If (format.Length <> 0) Then
urlBuilder.Append(“&rs:Format=”)
urlBuilder.Append(format)

End If

If (toolbar.Length <> 0) Then
urlBuilder.Append(“&rc:Toolbar=”)
urlBuilder.Append(toolbar)

End If

fullURL = urlBuilder.ToString()

‘Redirect on client side
Response.Redirect(fullURL, True)

End Sub
End Class

If you do not want the user to see the parameters on the query string, you have the option of hiding it by
using Server.Transfer instead of Response.Redirect.
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Using SOAP to Contact the Report Server
At this point, we assume that everyone knows what Service Oriented Architecture Protocol (SOAP) and
Web Service Description Language (WSDL) are. Just in case a few of you who have been napping, both
SOAP and WSDL are XML derivatives used for Web services. Yes, we realize SOAP has other uses, but
they are not germane to this chapter. For the purposes of this chapter, WSDL is the means by which the
Report Server exposes its Web services, while SOAP is the format with which it communicates.

Creating WSDL (pronounced “Whiz-dull” or “Whiz-dill”) is far beyond the scope of this chapter, or this
book for that matter. In fact, it is way off the map for most books, as WSDL is a rather complex contract
language. To get an idea of the complexity, here is part of the WSDL for the simple Hello World sample
that’s created when you add a new ASMX page in Visual Studio:

<?xml version=”1.0” encoding=”utf 8” ?> 
<wsdl:definitions xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:s=”http://www.w3.org/2001/XMLSchema” targetNamespace=”http://tempuri.org/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”>

<wsdl:types>
<s:schema elementFormDefault=”qualified” targetNamespace=”http://tempuri.org/”>
<s:element name=”HelloWorld” />
<s:element name=”HelloWorldResponse”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”0” maxOccurs=”1” name=”HelloWorldResult” type=”s:string” /> 
</s:sequence>
</s:complexType>
</s:element>
</s:schema>
</wsdl:types>
<wsdl:message name=”HelloWorldSoapIn”>
<wsdl:part name=”parameters” element=”tns:HelloWorld” /> 
</wsdl:message>
<wsdl:message name=”HelloWorldSoapOut”>
<wsdl:part name=”parameters” element=”tns:HelloWorldResponse” /> 
</wsdl:message>
<wsdl:portType name=”HelloWorldSoap”>
<wsdl:operation name=”HelloWorld”>
<wsdl:input message=”tns:HelloWorldSoapIn” /> 
<wsdl:output message=”tns:HelloWorldSoapOut” /> 
</wsdl:operation>
</wsdl:portType>
<!-- Lots more stuff removed here -->

</wsdl:definitions> 

Note that this is only around 30% of the WSDL needed to set up a single method with no parameters.
The size increases dramatically with just a few parameterized Web methods. In fact, the WSDL for
Reporting Services would weigh in at about 120 pages if placed in this book (great “thunk” factor, low
educational value = tastes great, less filling). If you would like to study the WSDL, you can surf over to
http://hostname/ReportServer/ReportService.asmx?WSDL and take a gander.

Because all major vendors we know of have a tool to create WSDL, there is no need to learn the intrica-
cies of building it by hand. In Visual Studio 2005 (or Visual Studio .NET for that matter), you set up a
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proxy for a WSDL contract by adding a Web reference. By the same token, you do not have to actually
know SOAP to use SOAP in Reporting Services, as Visual Studio will handle fulfilling the contract for
you when you create a Web reference.

Setting up the Web Application
In this section, you’ll learn how to set up a Web application that renders a report. To show you the
power of the Report Server, we are going to render the report as an image and then click on that image
to create the desired report.

The first step is creating a Web reference. Most of you have probably done this before, but we don’t want
to assume anything. To set up a Web reference, right-click on the project and choose Add Web Reference.
This will bring up a screen like the one shown in Figure 15-4.

Figure 15-4

If you want, you can click on Web Services on the local machine and find the Report Server Web
Service. Another method to get to the service is to click in the URL textbox and type in http://
localhost/ReportServer/ReportService.asmx?WSDL. Give the Web service the name
AdventureWorksReports and click the Add Reference button.

What you have done is create a proxy object that will contact the Web service you have referenced. This
proxy object will handle the SOAP for you, which is why we stated earlier that knowing SOAP is not a
mandatory skill to set up a report.

One other setup step is necessary to render a report using the user’s credentials. You will have to make
sure impersonation is set to true in the web.config file:

<identity impersonate=”true”/>
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The second step is to add a page in which to render the report. We called this page RenderReport.aspx.
At the top, type in a header and then drag an image button onto the form. Call the image button
imgSalesBySalesPerson. This is the image button that will hold a pictorial version of the report.
Below that, add a panel and call it pnlReport. Set the visible property of this panel to false. This is
the panel that will handle the rendered report. The resulting ASP.NET page is shown here:

<%@ Page Language=”VB” AutoEventWireup=”false” CodeFile=”ReportImage.aspx.vb”
Inherits=”ReportImage” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.1//EN”
“http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml” >
<head runat=”server”>

<title>Report Rendering Page</title>
</head>
<body>

<form id=”form1” runat=”server”>
<div>

<h1>Choose a report</h1>
<asp:ImageButton ID=”imgSalesBySalesPerson” runat=”server” /><br />
<asp:Panel ID=”pnlReport” runat=”server” Height=”384px” Visible=”False” 

Width=”705px”>
</asp:Panel>

</div>
</form>

</body>
</html>

To set up the initial state of the page, move to the code view (click on the ReportSelector page and then
click the View Code button at the top of the Solution Explorer). At the top of the editor window, click the
left-most drop-down list and choose Form1 events; in the right drop-down list, choose Load. In the
Page_Load event created, add the following code:

Protected Sub Page_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

If (Page.IsPostBack = False) Then
BBiinnddIImmaaggee(())

End If

End Sub

The next step is to build the BindImage() subroutine, which will hold the code to render our image in
the image button. Following are step-by-step instructions for setting up the Bind Image routine. 

First, create an object for the Web service proxy class (the class created when you added your Web refer-
ence). Setting up the Web reference is shown here:

Dim rs As New AdventureWorksReports.ReportingService()
rs.Credentials = System.Net.CredentialCache.DefaultCredentials
rs.Url = “http://localhost/ReportServer/ReportService.asmx”
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On this Web proxy object, we are setting the default credentials, which are covered a bit more in the next
paragraph. In addition, we are setting the URL for the Report Server. You may wonder why we are
doing this, as the Web proxy object already contains this URL. For the answer, think for a moment about
the most common change you make in a Web application, which is moving an application from develop-
ment to test, or even production. If you prefer to hack your proxy object and recompile every time you
move to a new Report Server, then this step is completely unnecessary.

Back to the credentials! Imagine a scenario in which you are rendering a report, or part of a report, to a
user who has no access to the Report Server. In these cases, you could create a Credentials object that
contained a user who did have access to the Report Server, and deliver the report in your Web applica-
tion. To do this, you must set up a NetworkCredential object, like this:

rs.Credentials = System.Net.NetworkCredential(“UserName”, “Password”, “DomainName”)

Note that you would not embed a username and password into the code. Sure, .NET is compiled, but it
is only compiled to IL code. Anyone who finds a way to hack your app has access to your Report Server,
so put the secrets in a better spot.

The next step is setting up the parameters for the Render method of our proxy object. The signature for
the Render method is shown here:

Public Function Render(ByVal Report As String, ByVal Format As String, _
ByVal HistoryID As String, ByVal DeviceInfo As String, _
ByVal Parameters() As AdventureWorksReports.ParameterValue,_
ByVal Credentials() As AdventureWorksReports.DataSourceCredentials, _
ByVal ShowHideToggle As String, ByRef Encoding As String, _
ByRef MimeType As String, _
ByRef ParametersUsed() As AdventureWorksReports.ParameterValue, _
ByRef Warnings() As AdventureWorksReports.Warning, _
ByRef StreamIds() As String) As Byte()

Rather than gloss over this, it is better to step through each of the parameters:

❑ Report: The name of the report we are rendering. 

Dim reportName As String = “/SimpleReport/SalesBySalesPerson”

❑ Format: The Format parameter is the format in which the report will be rendered. The types of
valid rendering formats were covered previously in the section on rs Parameters. Currently, we
are setting this to IMAGE, but we will focus on an HTML4.0 rendered report later.

Dim format As String = “IMAGE”

❑ HistoryID: The HistoryID deals with snapshots, which we are not going to cover in this chap-
ter. For our purposes, this is set to Nothing.

❑ DeviceInfo: DeviceInfo tells us a bit about the rendering of the Report. We explain this after
we finish the rest of the parameters.

Dim devInfo As String = 
“<DeviceInfo><OutputFormat>GIF</OutputFormat></DeviceInfo>”
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❑ Parameters: These are the input parameters for a report. As the report we are rendering does
not have parameters, this is set to Nothing.

❑ Credentials: The credentials necessary to render the report. As we are using impersonation,
this is set to Nothing in our Web application.

❑ ShowHideToggle: The show/hide toggle is useful for times when you are rendering the header
bar. For our purposes, this is set to Nothing.

❑ Encoding: This is the encoding type of the text in the report returned to you. Our advice? Go
ahead and get this string, even if you are not using it now.

❑ MimeType: This is the mime type of the report returned to you. Once again, go ahead and get
this string, even if you are not using it now.

❑ ParametersUsed: This is a list of parameters used in rendering this report. This may or may
not match the Parameters collection seen earlier in the list. For example, let’s assume you are
rendering more than one report in your page. If so, you can set up all of the parameters in a col-
lection. Those that are returned are the parameters that were actually used. There is no reason to
gather this information if you are not using parameters, so we have set it to Nothing.

❑ Warnings: This is a list of warnings returned from the report. You should always grab this
information, as it is the first indicator of a problem — unless you have an exception thrown, of
course.

❑ StreamIds: These are the ID values returned to you for each page in the rendered report. You
should always get these ID values.

To render the report, each of these parameters is sent to the server and a report is returned for the page
selected. If you did not specify a particular page, you will get page 1. To render the rest of the reports,
you call the service again with the StreamId of the page you would like to render. Setting up the report
capture is shown here:

Dim report As Byte() = rs.Render(reportName, format, historyID, _
devInfo, parameters, credentials, showHideToggle, encode, mimeType, _
parametersUsed, warnings, streamIDs)

Finally, we are going to render the image and place it in the rendered report as an image button. In order
to do this, you must pull the image from the stream of bytes. The only way to do this under the current
Framework is to place the byte array into a System.Drawing.Image object. You then save the image
and read it from a relative URL path:

Dim filePath As String = Server.MapPath(“.”) + “\Report.gif”
Dim img As System.Drawing.Image = _

System.Drawing.Image.FromStream(New System.IO.MemoryStream(report))

Dim thumbnail As System.Drawing.Image = _
img.GetThumbnailImage(100, 200, Nothing, Nothing)

thumbnail.Save(filePath)

‘Bind to the image button
imgSalesBySalesPerson.ImageUrl = “report.gif”

When you are finished, you should have a page that has a cute little version of your report rendered as
an image button, as shown in Figure 15-5. 

451

Reporting

17_584375 ch15.qxd  10/28/05  10:46 PM  Page 451



Figure 15-5

When you click the image button, you will render the report for the image button you clicked. In this
instance there is only one, which is our famous Sales By Sales Person report. The code necessary to ren-
der an HTML report is pretty close to the code necessary to render an image. The changes necessary to
do this are shown in bold:

Protected Sub imgSalesBySalesPerson_Click(ByVal sender As Object, _
ByVal e As System.Web.UI.ImageClickEventArgs) _
Handles imgSalesBySalesPerson.Click

‘Set up the service
Dim rs As New AdventureWorksReports.ReportingService()
rs.Credentials = System.Net.CredentialCache.DefaultCredentials
rs.Url = “http://localhost/ReportServer/ReportService.asmx”

‘Set up parameters to return an image
Dim reportName As String = “/SimpleReport/SalesBySalesPerson”
Dim format As String = “HTML4.0”
Dim historyID As String = Nothing
Dim devInfo As String = _

““<<DDeevviicceeIInnffoo>><<SSttrreeaammRRoooott>>//SSiimmpplleeRReeppoorrtt//rreessoouurrcceess//<<//SSttrreeaammRRoooott>>””  &&  __
““<<SSttyylleeSSttrreeaamm>>TTrruuee<<//SSttyylleeSSttrreeaamm>><<HHttmmllFFrraaggmmeenntt>>TTrruuee<<//HHttmmllFFrraaggmmeenntt>>””  &&  __
““<<//DDeevviicceeIInnffoo>>””

Dim parameters() As AdventureWorksReports.ParameterValue = Nothing
Dim credentials() As AdventureWorksReports.DataSourceCredentials = Nothing
Dim showHideToggle As String = Nothing
Dim encode As String = Nothing
Dim mimeType As String = Nothing

452

Chapter 15

17_584375 ch15.qxd  10/28/05  10:46 PM  Page 452



Dim parametersUsed() As AdventureWorksReports.ParameterValue = Nothing
Dim warnings() As AdventureWorksReports.Warning = Nothing
Dim streamIDs() As String = Nothing

‘Get the report as an Image
Dim report As Byte() = rs.Render(reportName, format, historyID, _

devInfo, parameters, credentials, showHideToggle, encode, mimeType, _
parametersUsed, warnings, streamIDs)

‘Return the page count (not used in this example)
Dim pageCount As Integer = streamIDs.Length

‘‘TTuurrnn  iinnttoo  aa  ssttrriinngg
DDiimm  eennccooddiinnggVVaall  AAss  NNeeww  SSyysstteemm..TTeexxtt..AASSCCIIIIEEnnccooddiinngg
DDiimm  ppaaggee  AAss  SSttrriinngg  ==  eennccooddiinnggVVaall..GGeettSSttrriinngg((rreeppoorrtt))

DDiimm  ccttll  AAss  NNeeww  LLiitteerraallCCoonnttrrooll((ppaaggee))
ppnnllRReeppoorrtt..CCoonnttrroollss..AAdddd((ccttll))
ppnnllRReeppoorrtt..VViissiibbllee  ==  TTrruuee

End Sub

At the end of the report, you will notice that we are rendering the report by turning it into a string. If
you are rendering the report to a particular place in the HTTP stream, this is an unnecessary step, as you
can simply bind the following routine to the form and output the report as a stream of bytes:

Response.BinaryWrite(report)

There is a practical reason to sacrifice a bit of performance and render as a string. When you create a
string, you have the option of replacing strings in the output. One reason for doing this is to replace
hyperlinks that point directly to the Report Server. If you simply hand the report over to the user, every
hyperlink will point to the Report Server and not your applications. This is true of drill-down reports as
well. A simple code fix looks something like this:

page.Replace(“ReportServer/”, “reportHandler.aspx?/ReportServer”)

You will then have to create the report handler page that renders the report from the hyperlink.

DeviceInfo
We have shown you DeviceInfo a couple of times in the preceding section and we are not happy with
the amount of XML you have to write to use the SOAP interfaces. After the initial shock wears off, you
find that this is not really all that complex, although there is a lot to learn. In an ideal world, the IDE
would help you with some of this work — perhaps in the 3.0 Framework. For now, however, you will
have to roll up your sleeves and write a bit of XML. To cover this subject correctly, we have to break this
down by the type of format you are going to use.

In the following sections, we cover each of the XML tags, what they are used for, and acceptable values.
The default value, where applicable, is bolded.

Please check the Wrox Website (at www.wrox.com) for updates to this section or for additional information. 
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CSV
Comma Separated Values (CSV) produces a flat file with cells in a row, separated by a comma, by default.
In reality, you can use any separator if you specify a CSV file format.

Tag Purpose Acceptable Values

Encoding Determines the text encoding ASCII, UTF-7, UTF-8, 
or Unicode

of the comma separated file.

Extension File extension for the resulting file. Default is .CSV

FieldDelimiter Delimiter to separate columns in Default is comma (,)
tabular data. Note: Value should be 
URL encoded (UNIX encoded), so a 
tab would be %09.

NoHeader Specifies whether to include column true or false
names in a header row. If true, it 
means there is no header row in 
the file.

Qualifier If you want each field (column) to Default is quotation mark (“)
be delimited on each side, you will 
specify the character here.

RecordDelimiter Character or character combination Default is <cr><lf>
to terminate a row.

SuppressLineBreaks Indicates whether line breaks are true or false
absent from the output. If you set 
this value to true, you cannot use 
a space for field delimiter, record 
delimiter, or qualifier.

Here’s an example: 

Dim devInfo As String = “<DeviceInfo><Encoding>ASCII</Encoding>” & _
“<Extension>.TXT</Extension><NoHeader>true</NoHeader>” & _
“<Qualifier>’</Qualifier><RecordDelimiter><cr></RecordDelimiter>” & _
“<SuppressLineBreaks>false</SuppressLineBreaks></DeviceInfo>”

EXCEL
Excel means that the report is rendered in Microsoft® Excel format.
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Tag Purpose Acceptable Values

OmitDocumentMap Indicates whether or not you should true or false
omit the document map for reports t
hat can use it.

OmitFormulas Indicates whether or not formulas true or false
are omitted from the rendered report.

RemoveSpace Determines the minimum space of Integer or decimal value 
an empty column smaller than a followed by “in”; the default is 
specific size. 0.125in

SimplePageHeader Determines whether the page true or false
header is separate from the rest of 
the report. If you state false, the header 
is the first row.

Here’s an example: 

Dim devInfo As String = “<DeviceInfo><OmitDocumentMap>true</OmitDocumentMap>” & _
“<OmitFormulas>true</OmitFormulas><RemoveSpace>0.5</RemoveSpace>
“<RemoveSpace>false</RemoveSpace></DeviceInfo>”

HTML
HTML rendering can be done in HTML 3.2, HTML 4.0, or HTML for the Office Web components 
(HTMLOWC). 

Tag Purpose Acceptable Values

BookmarkID Tag for the bookmark you would like Only applicable when there are 
to go to in the report. bookmarks

DocMap Determines whether the report true or false
document map is visible or not.

DocMapID The document map ID to scroll to The document map ID to scroll 
when the report is rendered. to in the report

EndFind SEARCH functionality: The last page Integral value
to examine if there is a search for a 
particular item. Used with StartFind.

FallbackPage SEARCH functionality: The page to Integral value
show when no results are found.

FindString SEARCH functionality: Text to search for. The default is an empty string.

GetImage Gets an icon for the HTML viewer. Gets a particular icon for the
HTML Viewer user interface.

Table continued on following page
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Tag Purpose Acceptable Values

HTMLFragment Indicates whether the report is true or false
rendered as a full HTML page or 
a snippet. If you are embedding this 
page in an ASP.NET application, 
you should set this to true.

Icon Icon for a particular rendering The icon of a particular render-
extension. ing extension.

JavaScript Indicates whether JavaScript is true or false
supported in the rendered report.

LinkTarget Target URL for any hyperlinks in Default is _self
the report.

Parameters Specifies whether the parameter true or false
toolbar shows or is hidden.

ReplacementRoot Root path for any hyperlink The default is ReportServer.

Section Page number of the report to render. Integral value. The default is 1.

StartFind SEARCH functionality: The first page Integral value
to examine if there is a search for a 
particular item. Used with StartFind.

StreamRoot If there are images in the report, this The default is 
is the root location for these images. /ReportServer/resources.

StyleStream Specifies whether cascading true or false
stylesheets and JavaScript files are 
streamed separately from the report.

Toolbar Specifies whether the main toolbar true or false
shows or is hidden. If you set this to 
false, the parameters toolbar is 
also hidden.

Type Browser abbreviation as defined in 
the browscap.ini file.

Zoom Amount to zoom into on the report. Can be an integral value between
1 and 100 or the words Page
Width or Whole Page.

Here’s an example:

Dim devInfo As String = “<DeviceInfo><HTMLFragment>true</HTMLFragment>” & _
“<JavaScript>true</JavaScript><StyleStream>0.5</StyleStream>” & _
“<StreamRoot>/ReportServer/Resources/</StreamRoot></DeviceInfo>”
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IMAGE
IMAGE is used to render a report as an image. Valid types are Bitmapped Pictures (BMP), Extended
Metafile (EMG), Graphics Interfile Format (GIF), Joint Photographers Extension Group (JPEG), Portable
Net Graphics (PNG), or Tagged Image File Format (TIFF). You are now ready to try your luck in the
Image category on Jeopardy as well.

Tag Purpose Acceptable Values

ColorDepth Number of bit to use for colors. 1,4,8,24, or 36.

Columns Number of columns for the report. Any positive integer or decimal 
This will override the report’s original value.
settings.

ColumnSpacing Spacing between columns. This will Any positive integer or decimal 
override the report’s original settings. value (larger values create larger 

graphics).

DpiX Horizontal resolution. The default value is 96.

DpiY Vertical resolution. The default value is 96.

EndPage The last page of the report to render. The default value is the same as 
A value of 0 means all pages. StartPage.

MarginBottom Bottom margin value, expressed as A positive integer or decimal 
an integer or decimal. Must be value. A value of 1in means a 
followed by “in”. This will override 1-inch margin.
the report’s original settings.

MarginLeft Left margin value, expressed as an A positive integer or decimal 
integer or decimal. Must be followed value. A value of 1in means a 
by “in”. This will override the report’s 1-inch margin.
original settings.

MarginRight Right margin value, expressed as an A positive integer or decimal 
integer or decimal. Must be followed value. A value of 1in means a 
by “in”. This will override the report’s 1-inch margin.
original settings.

MarginTop Top margin value, expressed as an A positive integer or decimal 
integer or decimal. Must be followed value. A value of 1in means a 
by “in”. This will override the 1-inch margin.
report’s original settings.

OutputFormat Any valid GDI format for a graphic. BMP, EMF, GIF, JPEG, PNG,
or TIFF. No default; must be
specified.

PageHeight Page height, in inches. Must be A positive integer or decimal 
followed by “in”. This will override value. A value of 11in means a 
the report’s original settings. page height of 11 inches.

Table continued on following page
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Tag Purpose Acceptable Values

PageWidth Page width, in inches. Must be A positive integer or decimal 
followed by “in”. This will override values. A value of 8.5in means 
the report’s original settings. a page width of 8.5 inches.

StartPage The first page of the report to render. The default value is 1.
A value of 0 means all pages.

Here’s an example:

Dim devInfo As String = “<DeviceInfo><DpiX>200</DpiX>” & _
“<DpiY>300</DpiY><StartPage>1</StartPage><EndPage>10</EndPage>” & _
“<OutputFormat>JPEG</OutputFormat></DeviceInfo>”

MTHML
MHTML is used for the Web archive format. It is, by far, the simplest to set the DeviceInfo for, as there
are only two options.

Tag Purpose Acceptable Values

JavaScript Specifies whether JavaScript is true or false
supported in the rendered report.

MHTMLFragment Indicates whether the report is true or false
rendered as a full HTML page or 
a snippet. If you are embedding this 
page in an ASP.NET application, you 
should set this to true.

Here’s an example:

Dim devInfo As String = “<DeviceInfo><JavaScript>false</JavaScript>” & _
“<MHTMLFragment>true</MHTMLFragment></DeviceInfo>”

PDF
PDF is used to render Portable Document Files, aka Adobe Acrobat documents. PDF is a rebranded ver-
sion of PostScript underneath the hood.

Tag Purpose Acceptable Values

Columns Number of columns for the report. Any positive integer or decimal 
This will override the report’s original value.
settings.

ColumnSpacing Spacing between columns. This will Any positive integer or decimal 
override the report’s original settings. value (larger values create larger 

PDF files).
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Tag Purpose Acceptable Values

DpiX Horizontal resolution. The default value is 300.

DpiY Vertical resolution. The default value is 300.

EndPage The last page of the report to render. The default value is the same as 
A value of 0 means all pages. StartPage.

MarginBottom Bottom margin value, expressed as A positive integer or decimal 
an integer or decimal. Must be value. A value of 1in means a 
followed by “in”. This will override 1-inch margin.
the report’s original settings.

MarginLeft Left margin value, expressed as an A positive integer or decimal 
integer or decimal. Must be followed value. A value of 1in means a 
by “in”. This will override the report’s 1-inch margin.
original settings.

MarginRight Right margin value, expressed as an A positive integer or decimal 
integer or decimal. Must be followed value. A value of 1in means a 

by “in”. This will override the report’s 1-inch margin.
original settings.

MarginTop Top margin value, expressed as an A positive integer or decimal 
integer or decimal. Must be followed value. A value of 1in means a 
by “in”. This will override the report’s 1-inch margin.
original settings.

PageHeight Page height, in inches. Must be A positive integer or decimal 
followed by “in”. This will override value. A value of 11in means a 
the report’s original settings. page height of 11 inches.

PageWidth Page width, in inches. Must be A positive integer or decimal 
followed by “in”. This will override values. A value of 8.5in means 
the report’s original settings. a page width of 8.5 inches.

StartPage The first page of the report to render. The default value is 1.
A value of 0 means all pages.

Here’s an example:

Dim devInfo As String = “<DeviceInfo>StartPage>1</StartPage>” & _
“<EndPage>10</EndPage></DeviceInfo>”

XML
XML renders the report in the eXtended Markup Language format.
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Tag Purpose Acceptable Values

XSLT Path for an XSLT file to render the Any valid relative path (also 
report. Note that setting this value known as an item path) on the 
overrides the OmitSchema tag. report server. The XSLT must be

published on Report Server to be
used.

MIMEType MIME type of the XML file Any valid MIME type.

UseFormattedValues Indicates whether the formatted Indicates whether to render the 
value of a textbox is used, or the formatted value of a textbox 
underlying, unformatted value when generating the XML data. 
is used. A value of false indicates that

the underlying value of the
textbox is used.

Indented Indicates whether the XML should True or false
be indented.

OmitSchema Indicates whether the Schema name True or false
should be omitted, as well as the XSD.

Encoding A valid character encoding. ASCII, UTF-8, or Unicode

FileExtension File extension for the file created. The default is .xml.

Schema Indicates whether the schema is True or false
rendered or the XML. True means 
schema, false means XML.

Here’s an example:

Dim devInfo As String = “<DeviceInfo><XSLT><ReportServer/XSLT</ReportServer>” & _
“<UseFormattedValues>true</UseFormattedValues>” & _
“<Idented>true</Idented></DeviceInfo>”

Building Report Models, or How to Slough Some of the
Work off on the Biz Guys!

For many of you, this is the only information you really wanted in this chapter. After all, developers
develop and business guys tell developers what to develop. Face it, coders like to code, not build Excel
spreadsheets. That is what biz guys do best. Fortunately, Microsoft understands this and gives us the
means to push the boring analysis garbage onto those who find it interesting. Unfortunately, very little
of this tool is about coding.

Report models are essentially an abstraction layer between the database and the Report Server. In a
model, you are exposing bits of information you would like the business analyst to have access to in a
particular context. From there, the business analyst can take the bits you have exposed and move them
around the page to his or her heart’s content, even building multiple reports without one phone call to
your boss.
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The majority of the work you will perform to build a model is wizard-driven. The hardest part of the
task is figuring out which items will be necessary for reporting. 

Creating the Model
Open the Business Intelligence Development Studio. You will want to create a new project using the
Report Model Project template. When the project opens, complete the following steps:

1. Create a new data source for you model.

a. Right-click the Data Sources folder in Solution Explorer and choose Add New Data
Source.

b. Create a connection to the AdventureWorks database on your SQL Server box by click-
ing New and then filling in the Server and Database textboxes.

c. When you click to the next box in the wizard, check the connection string (it should
be Data Source=(local);Initial Catalog=AdventureWorks;Integrated
Security=True, unless you are using a specific user account, in which case it should
be Data Source=(local);Initial Catalog=Northwind;Persist Security
Info=False; User ID=Chapter15User;Password=pass@word1;). Name the data
source Chapter15AdvWorks and click Finish.

2. Create a new Data Source View for your model.

a. Right-click on the Data Source View folder in the Solution Explorer and choose Add
New Data Source View.

b. In the first wizard step, make sure your Chapter15AdvWorks data source is selected
and click Next.

c. In the next wizard step, scroll down the list of available objects and add
HumanResources.Employee, Person.Contact, Sales. Customer, Sales.
Individual, Sales.SalesOrderDetail, Sales.SalesOrderHeader, Sales.
SalesPerson and click Next.

d. Name the Data Source View dsvSalesOrders and click Next.

3. Create a Report Model

a. Right-click on Report Models and choose Add New Report Model.

b. In the first wizard step, ensure that the dsvSalesOrders Data Source View is chosen
and click Next.

c. In the next wizard step, click Select All and then Next.

d. Leave the default of Update Statistics Before Generating and click Next.

e. In the final wizard step, name the Report model SalesOrders and click Run.

The resulting Report model should look like the screenshot shown in Figure 15-6. 
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Figure 15-6

These bits of information have been aggregated and saved as an XML file. To finish the exercise, right-
click on the project folder in Solution Explorer and click Deploy.

Creating a Report
This is the step where our business analyst comes in. When a person goes to the Reports application
http://hostname/Reports, there is a button on the toolbar labeled Report Builder. Have the user click
the Models hyperlink and then press the Report Builder button.

Make sure that you inform your report builder user to click Models before clicking the Report 
Builder button, as the Report Builder crashes when clicked outside of the Models section of the 
Reports application.

The Report Builder is a new feature of SQL Server 2005 Reporting Services. When clicked, users will
have to choose a data source from the models you have deployed. They can then begin fashioning a
report by dragging elements on the page. The Report Builder application looks like the screenshot
shown in Figure 15-7.
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Figure 15-7

To create a meaningful report, you have to start with one of the tables. For example, follow these steps to
create an employee report of salespeople, showing hire date and birth date:

1. Select Contact in Explorer.

2. Drag Last Name and First Name onto the report.

3. Once the name is on the form, you have the option to drill down from Employee and add the
Hire Date and Birth Date fields.

The resulting report, when previewed, looks like the screenshot shown in Figure 15-8.
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Figure 15-8

Summary
Reporting is an integral part of business, as aggregation of data is necessary to make proper business
decisions. Prior to the advent of tools, much of reporting was hand-coded. As tools mature, however,
more and more of the work is moved off of the developer’s plate to the business analyst’s.

In this chapter, we first looked at building a report in ASP.NET. With the new data source controls, we
were able to do this without writing any code. You can easily tailor this, using the examples in Chapter
3, to use more ADO.NET.
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The core of the chapter focused on Reporting Services. The first example was a report built using the
Business Intelligence Developer Studio, whereby a report can easily be fashioned without writing a line
of code. We pushed a bit deeper, however, into the Report Definition Language to give you a basic
grounding in what is going on behind the scenes. 

We then delved into the ReportServer application and contacting, both via a URL string and the SOAP
interface. This was the most code-intensive part of the chapter, although much of the coding was fairly
simple due to the objects Microsoft has made available through Reporting Services. The most difficult
task for the developer, as demonstrated, is working with the DeviceInfo parameter for rendering
reports. It is hoped that this will be simplified in future versions of the product, as this is the area in
which errors are most likely to crop up.

Finally, we built a Report Model and explored the Report Builder using that model. While the examples
are fairly simple, it should be evident that this is where the real power lies, as you, the developer, have
the ability to give your users the power to create their own information.

For More Information
Unfortunately, this whirlwind tour is over. While we covered a great deal of ground, much more infor-
mation has been left uncovered. Here are a few resources you can use to further hone your SQL Server
reporting skills:

❑ Community Content — In late 2003, Microsoft made a huge push to increase its online content.
In 2004, this culminated in community sites for each of the Microsoft technologies. The commu-
nity sites with content for SQL Server are the SQL site, the TechNet site, and the MSDN site:

❑ SQL —www.microsoft.com/sql/community/default.mspx.

❑ TechNet —www.microsoft.com/technet/community/default.mspx.

❑ MSDN —http://msdn.microsoft.com/community/. Note, however, that Microsoft
Webcasts have a completely different URL: http://msdn.microsoft.com/webcasts.
Another good page to start your search for developer content is the MSDN shows and
Webcasts launch page: http://msdn.microsoft.com/showsandwebcasts/.

❑ Webcasts — We advise searching the community sites for Webcasts, as a very large body of
information is available. Specific to this chapter, we suggest a couple of Webcasts at different
levels: Level 100 (a very high-level overview), level 200 (an overview with lightly technical
demos), level 300 (intermediate-level content), and level 400 (advanced sessions). 

❑ Introduction to Reporting Services (level 200) — A good overview of SQL Server 2005
Reporting Services, at http://msevents.microsoft.com/CUI/EventDetail.
aspx?EventID=1032263305

❑ Advanced Reporting with SQL Server 2005 Reporting Services (level 200) —
http://go.microsoft.com/fwlink/?LinkId=43725.

❑ Ad Hoc Reporting with SQL Server 2005 Reporting Services (level 200) —
https://msevents.microsoft.com/cui/WebCastEventDetails
.aspx?EventID=1032259394.
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❑ Hands on Labs — You can find lab manuals for offline work, or you can sign up and use one of
Microsoft’s virtual servers to complete various labs (great for those who have not yet installed
SQL Server 2005).

❑ Lab Manuals —http://msdn.microsoft.com/SQL/2005/2005Labs/default
.aspx.

❑ Hosted Labs — To launch the hosted experience, surf over to http://msdn
.demoservers.com/login.aspx?group=sql2005.
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ADO.NET 2 and 
Open-Source Databases

While SQL Server and Oracle are well-established commercial databases that Bill Gates and 
Larry Ellison each believe provide the only genuine solution for data applications, there are other
options. Not only do other databases exist, but many are freely available for download. This chap-
ter provides a survey of several popular open-source databases, what features they provide, and,
most importantly for this book, how they work with .NET 2.0. MySQL leads the crowd as the
perennial open-source favorite, holding the “M” position in LAMP (Linux, Apache, MySQL, Perl).
Firebird, Ingres, and MaxDB — from Borland, Computer Associates, and SAP, respectively — are
also covered, representing a group of databases that were once commercial but are now open.
PostgreSQL, BerkeleyDB, and SQLite are also covered — these quality databases have always been
open and are well established among open-source advocates, although they may not be as well
known outside of that community. Along with each of these databases, we provide some sample
code demonstrating fundamental capabilities of the available drivers, and references to relevant
Web sites for that community. It is hoped that this chapter will entice you to try some of the alter-
natives for your next project.

Open Source and Licensing
What is open-source software? Well, metaphorically, for some it’s a floor wax, while for others it’s
a dessert topping. For many, if not most, open source implies software developed by a community
of developers that can be freely obtained and distributed. Some organizations, however, have
hijacked the term for marketing purposes, and may provide access to the source code but only
under very limited conditions, and they do not support any sort of community process. While that
may be a misuse of the term, the reality is that calling something “open source” does not guaran-
tee much. What truly matters is the process that surrounds the product development and the
license that accompanies the source code. 
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The Open Source Initiative (OSI) at opensource.org provides the most widely recognized definition of
open-source software based upon the contents of a software product’s license. This definition can be
found at www.opensource.org/docs/definition.php. This approach makes sense given that copy-
right law governs all software, and the license that governs the product will be the final statement of
permitted use of the software. There are many OSI-approved licenses, and while they all adhere to the
principles put forth in the OSI definition, they vary in ways that are important to understand. In addi-
tion, some open-source software is dual-licensed, meaning the software may be governed by one license
under one condition and a different license for another — that is, a product may be free for noncommer-
cial use, but royalties are charged for any commercial distribution. Furthermore, if you plan on using an
open-source database in a commercial application, you should have the license reviewed by an attorney
who understands copyright law.

Besides the license, there is the community that surrounds a software project, so while the software is
governed by a given license, the process for modifying and producing the product may be more or less
open. A small group of people may produce a product under the BSD license, which would allow you to
acquire, modify, and distribute the software, but they may or may not include your or anybody else’s
changes into their version of the software. Therefore, when choosing to work with an open-source prod-
uct, carefully consider the community with whom you will be working, as you will often be dependant
upon them for support, especially at the outset.

Databases
This part of the chapter covers seven databases from the open-source world. The discussion of each
database takes the same form and the material for each database can be covered independently. Each
section opens with the background of the database and the license under which it is currently released.
Then it provides you with the information needed to download and install the software and links to the
primary discussion forums. This is followed by a review of the level of support each database provides
for SQL and .NET, as well as any specific features of the database. Finally, of course, we provide exam-
ples showing how to use the database in conjunction with .NET 2.

MySQL
MySQL is probably the best known of the open-source databases. It likely achieved most of this celebrity
by being included in the LAMP acronym, the vanguard combination of open-source technologies that
dominated dynamic Web content in the early part of the Internet boom. Ironically, early on, MySQL did
not support much of the SQL standard. It was a purely utilitarian implementation of an ISAM database
with data access provided via a daemon running on port 3306. However, good open-source software
evolves rapidly, and MySQL has been no exception. 

The current recommended release is 4.1, and version 5.0 is currently in beta testing. With the 4.1 version of
MySQL, a large portion of standard SQL syntax and features are supported, including ACID-compliant
transactions when using the InnoDB table type; and with version 5.0, many more features will be sup-
ported. However, as 4.1 is the currently recommended version, this section is based upon the features and
usage of 4.1. Where appropriate, any significant new features coming in version 5 will be noted.

MySQL is a dual-licensed product. You can find information about MySQL licensing at www.mysql
.com/company/legal/licensing/. In short, MySQL is licensed under the GPL, and if you do not
intend to comply with the requirements of the GPL, then you will need to purchase a license for MySQL.
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To understand the details of the licensing implications, you should consult an attorney with experience
in copyright law. 

SQL Compliance
For an in-depth treatment of ANSI SQL compliance and details of MySQL syntax, you should refer to the
MySQL online documentation found at http://dev.mysql.com/doc/mysql/en/compatibility
.html. Here we will examine some of the more central aspects of the MySQL database implementation
and how they may affect cross-platform compatibility. When considering these implementation issues, 
it is worth remembering the origins of the database as a server daemon providing access to ISAM data.
Therefore, because there is nothing particularly special about an ISAM database, the more important 
feature of MySQL is as data provider to a back-end data engine. MySQL has largely evolved along these
lines by providing support for other back-end data engines, and this, as you will see, greatly affects the
notion of SQL compliance.

Since its humble beginnings with ISAM, MySQL has grown to support eight additional storage engines as
of version 4.1 and will add a ninth with version 5.0. The following table itemizes and describes the sup-
ported storage engines. The original ISAM engine has been deprecated in favor of the now standard
MyISAM format. At the other end of the time line, the Federated storage engine arriving in version 5.0
will support SQL operations against remote data. In between are several other interesting storage engines.

The Merge storage engine allows a table space to be divided among multiple files, enabling a single table
to manage data that would exceed the file capacity limits on some operating systems. The Merge data
engine could also be used to distribute database activity to multiple files. The Memory engine stores all
data in heap memory. This, of course, is volatile; however, the SELECT performance is excellent against
data in the Memory table type. The other operations are fast as well, but the Memory data engine is par-
ticularly useful for directory information for which inserts and updates are rare in comparison to reads.
If you need data stored in a compressed format, there is the Archive storage engine; be forewarned,
however, that this storage type only supports INSERT and SELECT. If you need data in plain, old CSV,
there is a storage engine for that, too. Berkeley databases are also supported, but the BDB engine is still
considered experimental. If your database requires ACID (Atomic, Consistent, Isolated, and Durable)
transactions, InnoDB is the default table type for that purpose. Finally, there is the Example engine,
which provides a template should you desire to implement a data engine of your own.

Table Type Description

ISAM Original MySQL table type (deprecated)

MyISAM Current default table type

Merge Allows one logical table to be split into multiple physical tables

Memory Table stored in heap memory

InnoDB The default table type for supporting ACID-compliant transactions

BDB Provides storage in a Berkeley database format (MySQL to BDB interface consid-
ered gamma quality)

Archive Stores non-indexed table data in a compressed format

Example Demonstrates how to implement a new storage engine

Table continued on following page
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Table Type Description

CSV Provides storage tables in comma-separated values format

Federated Coming in version 5, allowing queries against remote data tables (beta)

The MyISAM and InnoDB storage engines will receive most of the focus here. MyISAM is the default
table type for MySQL; and, if transactions are required, InnoDB is the default storage engine contained
in all of the MySQL-Max binary distributions. The idea that transactions may not be required may seem
odd. After all, aren’t transactions central to any relational database management system? 

Well, maybe, but for the creators of MySQL, the issue at the time was the practical storage of data as
opposed to creating an RDBMS in compliance with the concepts of E. F. Codd and others (which, in fact,
was one purpose behind PostgreSQL, discussed later in this chapter). In short, while ACID transactions
are good, the philosophy of the MySQL creators was oriented to storing data and using techniques
within the application to achieve data consistency. To them, transactions were a trade-off between DBMS
complexity and application complexity.

If the name E. F. Codd doesn’t ring a bell, he was the IBM researcher who first developed the relational
model in 1970, which is the basis for the relational database.

For most developers with complex data systems, transactions seemed to be a better way to go, which
resulted in pressure for MySQL to support transactions; and in 2002, the InnoDB storage engine for
MySQL was completed, enabling MySQL to fully support transactions. The InnoDB storage engine also
supports row-level locking and foreign keys, features that most developers expect from their database
system.

While it may seem that we have drifted far afield from this section’s topic of SQL compliance, the reality
is that all of this information is central, both to understanding MySQL and addressing the issue of com-
pliance. For instance, it has already been noted that the Archive storage engine supports only inserts and
selects, and does not maintain any indexes on Archive table type data. Therefore, with the Archive stor-
age engine, there really is no sense in asking about SQL compliance, as it is a specialized table type for a
supposedly equally specialized application. The question of SQL compliance can be reasonably limited
to the MyISAM and InnoDB storage engines. Nonetheless, MySQL provides multiple modes that also
affect SQL compliance issues.

Modes were introduced into MySQL to enable an administrator to select specific syntactic features or
database behaviors to allow for backward compatibility or the controlled implementation of newer
database features. The twelve modes listed in the following table apply to version 4.1 databases, and
several additional modes will be available with version 5 that are related to behavioral features intro-
duced in version 5.

Most of the mode descriptions are straightforward, but some deserve special mention. For instance, 
with ANSI_QUOTES, the behavior of MySQL to allow both single and double quotes to identify strings is
altered to only allow single quotes. This is important if you are porting a statement like the following to
MySQL:

SELECT SYSTEM_USERS.ID FROM SYSTEM_USERS WHERE SYSTEM_USERS.”LastName” = ‘CROFT’;
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The default behavior for MySQL would be to treat “LastName” as a string literal, which it isn’t. Another
syntactical item of note is PIPES_AS_CONCAT. The default behavior is to treat double pipes (||) as a 
logical or, which while common in programming languages, is not the typical SQL behavior of string
concatenation. NO_AUTO_VALUE_ON_ZERO alters the behavior of auto-increment fields. If an INSERT
statement is executed against a table with an auto-increment field and the field is set to null or zero in
the statement, then an auto-incremented value is generated and placed into the field. Therefore, if you
have auto-incremented data starting from zero that needs to be imported, then the row with an auto-
increment value of zero would normally, and unexpectedly, generate a new value and replace the zero.
The final mode worth special mention is IGNORE_SPACE. MySQL typically requires the opening paren-
thesis for a function’s parameter values to immediately follow the function name, as demonstrated with
the BIN function, which returns the binary representation of a number:

SELECT BIN(32);

This way, functions cannot be confused with database fields. IGNORE_SPACE would allow the following:

SELECT BIN  (32);

Now, however, function names — in this case, BIN— are treated as reserved words. However, if you
have a table — say, INVENTORY_ITEM— with a field called BIN, then that field would have to be refer-
enced with double quotes to distinguish it from the BIN function:

SELECT INVENTORY_ITEM.”BIN” FROM INVENTORY_ITEM;

The rest of the modes are explained in the following table.

Mode Description

ANSI_QUOTES Restricts text string identifiers to single quotes (‘) and reserves
double quotes (“) for database entity identifiers.

IGNORE_SPACE Allows space between a function name and its opening paren-
thesis. This results in all function names becoming reserved
words and requires the use of double quotes to access database
fields that have the same names as functions.

NO_AUTO_VALUE_ON_ZERO Causes an auto-increment value not to be generated when a
zero (0) is inserted into an auto-increment column.

NO_DIR_IN_CREATE Ignores INDEX DIRECTORY and DATA DIRECTORY directives
when a table is created.

NO_FIELD_OPTIONS Omits all MySQL-specific field options when a SHOW CREATE
TABLE command is executed.

NO_KEY_OPTIONS Omits all MySQL-specific index field options when a SHOW
CREATE TABLE command is executed.

NO_TABLE_OPTIONS Omits all MySQL-specific table options when a SHOW CREATE
TABLE command is executed.

Table continued on following page
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Mode Description

NO_UNSIGNED_SUBTRACTION Does not cast the result of a subtraction to unsigned if one of
the operands is unsigned.

ONLY_FULL_GROUP_BY Prevents a nonselected column from being referenced in the
GROUP BY clause of the SELECT statement.

PIPES_AS_CONCAT Causes double pipes (||) to be treated as a concatenation
instead of a logical OR.

REAL_AS_FLOAT Treats REAL as an alternate for FLOAT, instead of DOUBLE.

While a MySQL administrator could implement any combination of the preceding modes, for most 
purposes there are shorthand modes. The shorthand modes, or combined modes, are listed in the following
table. Combined modes are largely for providing compatibility with different RDBMSs, but note that
these modes do not provide complete compatibility with the identified system. To quote the MySQL
documentation on the ANSI mode, the ANSI mode will “. . . change syntax and behavior to be more 
conformant to standard SQL.” The definition of “more conformant” isn’t precisely stated.

Combined Modes Description 

ANSI REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE

DB2 PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS

MAXDB PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER

MSSQL PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS

MYSQL323 NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE

MYSQL40 NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE

ORACLE PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER

POSTGRESQL PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS

The InnoDB and BDB storage engines only support transactions that meet the ACID test, and the BDB
storage engine is not ready for production environments. From a practical standpoint, InnoDB is the
only storage engine to support transactions. Therefore, when considering SQL compliance, if you don’t
use the InnoDB table type for your application, you will not have transactional capabilities. If you do not
have a complex database schema with numerous integrity constraints, then the default table type
(MyISAM) should be fine.

Stored procedures are not supported by any of the versions prior to the upcoming 5.0, so if you have to
port a database with stored procedures to MySQL, you will need to either wait for 5.0 to become suitably
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stable or implement the functionality in the application. Stored procedures provide a nice place to com-
partmentalize some database activities and to control access to those activities, but MySQL 5.0 will not
support GRANT EXECUTE so that may still be a limiting concern. On a positive note, MySQL stored proce-
dures will be conformant to the SQL2003 syntax standard.

Triggers are another feature that do not exist prior to version 5.0. This is annoying because triggers are 
a great place for putting code that generates audit logs and such, relieving the application from a lot of
pedantic code.

Views are also being added with version 5.0, currently in beta. Views will support two different algo-
rithms: MERGE or TEMPTABLE. MERGE is the internally preferred algorithm if none is specified, as it is
expected to be more efficient, but the TEMPTABLE algorithm may lead to shorter lock times. Therefore,
depending on your application, the TEMPTABLE algorithm may be a preferred strategy. Additionally,
MySQL 5.0 will support updateable views. For a view to be updateable, it must use the MERGE algorithm
whereby there must be a one-to-one relationship between the rows in the view and the rows in the
underlying table. There are additional requirements too. For example, an updateable view may not con-
tain an aggregate function, may not be based upon a derived table, and may not be based upon a non-
updateable view. For all of the details, check with the documentation. The rules for updateable views are
in line with other databases.

The InnoDB table type supports foreign keys in MySQL since version 3.23.44, and MySQL says that for-
eign keys will be implemented for MyISAM tables at some point in the future. Those tables that have
foreign keys will also support cascading DELETE statements. Foreign keys may be temporarily disabled
while loading data from backup.

Primary keys and unique constraints are also supported by both MyISAM and InnoDB table types, but
because one table type supports transactional rollback and the other doesn’t, it is important to note the
different behaviors that will occur when an error condition occurs. In general, if a constraint is violated
during a transactional operation, the transaction will be rolled back; and if the operation is not transac-
tional, the process will terminate and whatever records have been written are essentially “committed.”
With nontransactional operations, the IGNORE option will let the process continue while simply skipping
records that fail a constraint.

How MySQL handles invalid data is also worth noting. Prior to version 5, MySQL will try a best fit on
certain illegal data, particularly with NULL values. For instance, if you try to insert a NULL value into a
numeric column that is defined as NOT NULL, MySQL will automatically convert the NULL to a zero; and
for CHAR and VARCHAR columns, it will convert the NULL to a zero-length string (‘’). In addition, MySQL
will not validate dates, so you can store 2/31/05 in the database. These are the most notable items that
may cause a “gotcha” experience if you are coming from another RDBMS, but there are others, and
reviewing the documentation on this matter is worthwhile. 

To summarize, the current production version of MySQL, 4.1 does not support stored procedures, 
triggers, or views. In addition, when not using the InnoDB table type, MySQL does not support transac-
tions. All of these features will be arriving soon, but the current stable release doesn’t compare particu-
larly well with many other major database management systems.

Database Features
The real features of MySQL are simplicity and ubiquity. Notwithstanding the previous discussion about all
of the possible configurations of MySQL, the “out-of-the-box” binary installation provides a quick setup
that will allow for easy data storage in a largely SQL-like manner. The overall point of the previous 
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discussion reflects more on the RDBMS feature set of MySQL. On a practical basis, INSERT, UPDATE,
DELETE, and SELECT statements work the way you would expect, and MySQL has a slick graphical admin-
istration tool, shown in Figure 16-1. With all of that, why not go with a database that has more features?

Figure 16-1

Database constraints are shown in the following table:

Condition Limit

Maximum size for a database 64 TB with InnoDB engine

Maximum size for a table 64 TB with InnoDB engine

Maximum size for a row Not including VARCHAR, BLOB, and TEXT columns,
the maximum row size is about 8K; and total row
size must be less than 4G with InnoDB

Maximum size for a field 2 GB

Maximum number of columns in a table 1000 with InnoDB

Maximum number of indexes on a table 1024 bytes
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Well, to quote an unknown source: quantity is not quality, but quantity has a quality all its own. MySQL
is all over the place. Moreover, it is installed by default in a great number of Linux distributions and it
has probably reached the critical point where people are using it simply because other people are using
it. If you find yourself needing a cross-platform or Linux-based solution, MySQL may already be set up,
or you may need to provide access to existing data in a MySQL database. Either way, it is likely that at
some point you will have reason to bridge the divide between your application and a MySQL database.

For our purposes, the database will be set up using InnoDB and run in ANSI mode. This will provide
data storage behavior that is most in line with other major database management systems. Setup and
configuration are explained in the following section.

Installation
Installing MySQL on Windows is as simple as installing most Windows software. Go to mysql.com and
select Products ➪ Downloads. Follow the MySQL 4.1 link to the Downloads page. Find the Windows
downloads, and get the Windows (x86) download. This will provide a Windows setup executable with
all of the bells and whistles. You can run the setup program and accept all of the default settings if you
have enough disk space on your C: drive. At the end of the setup procedure, the program will prompt
you to configure the MySQL server. Go ahead and do that now, again accepting all of the defaults,
assuming you are intending to use this installation as a development server. 

Level of .NET Support
MySQL has a .NET Connector package that contains a 1.1-compatible data adapter that is at version 1.04
at the time of writing. This is the package that is used for the sample code, so download and install the
package now if you haven’t already done so. In addition to the 1.1 data adapter, MySQL also supports
ODBC, so as an alternative, you could use the ODBC driver and Microsoft’s OdbcConnection object to
establish a connection to the database.

Working with .NET
The following code shows a basic console application for VB establishing a connection to the database and
performing a SELECT operation against a table called PERSON_TBL. Before running this example, you will
need to open MySQL Administrator and create a new database called MODEL. In the new database, create a
table called PERSON_TBL. The following CREATE TABLE statement can be used to create the table:

CREATE TABLE PERSON_TBL (
PER_ID          VARCHAR(38) NOT NULL,
PER_CODE        VARCHAR(16),
PER_PUBID       VARCHAR(16),
PER_LASTNAME    VARCHAR(32),
PER_FIRSTNAME   VARCHAR(32),
PER_MIDDLENAME  VARCHAR(32),
PER_ORDINAL     VARCHAR(8),
PER_CALLEDNAME  VARCHAR(32) NOT NULL,
PER_HONORIFIC   VARCHAR(8),
PER_DOB         DATE,
PER_GENDER      VARCHAR(1),
PER_CREATED     TIMESTAMP NOT NULL,
PER_CREATED_BY  VARCHAR(8),
PER_UPDATED     TIMESTAMP NOT NULL,
PER_UPDATED_BY  VARCHAR(8)

);
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Once the database and table have been created, simply open a new console application for VB, change
the name of Module1 to MySQLTest, and then add the remaining code shown here: 

Imports MySql.Data.MySqlClient

Module MySQLTest

Sub Main()

Dim connectionString As String
Dim dbcon As IDbConnection
Dim dbcmd As IDbCommand
Dim sql As String
Dim reader As IDataReader
Dim dataValue As Object
Dim strValue As String

Console.WriteLine(“MySQLTest - start.”)
connectionString = “server=localhost;user id=root;” & _ 

“password=mypassword;database=model;pooling=false”

dbcon = New MySqlConnection(connectionString)
dbcon.Open()
dbcmd = dbcon.CreateCommand()
sql = “SELECT * FROM PERSON_TBL”
dbcmd.CommandText = sql
dbcmd.Transaction = dbcon.BeginTransaction()
reader = dbcmd.ExecuteReader()

Do While reader.Read() = True

dataValue = reader.GetValue(0)
strValue = dataValue.ToString()
Console.WriteLine(“Value: “ + strValue)

Loop

‘Clean up
reader.Close()
dbcmd.Dispose()
dbcon.Close()

reader = Nothing
dbcmd = Nothing
dbcon = Nothing

Console.WriteLine(“MySQLTest - end.”)

End Sub

End Module

This program establishes connectivity, selects all of the data from the PERSON_TBL, and then prints the
PER_ID field. Check the Web site for an enhanced version of the program that also demonstrates insert-
ing, updating, and deleting data. 
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Resource Information
This section lists important online sites for information about MySQL. First are the sites from which the
software for this section was downloaded, followed by a list of drivers, including third-party drivers not
used in this section, and finally a section covering support and product comparisons. 

Downloads
For this section all of the software can be downloaded from MySQL or one of the MySQL mirrors. The
software downloaded for this section was MySQL 4.1 Windows Binary package.

❑ http://dev.mysql.com/downloads/— Main page for MySQL downloads

❑ http://dev.mysql.com/downloads/mirrors.html— List of MySQL mirrors

Drivers
The two .NET connectors used for this section were the MySQL Connector/ODBC 3.51 and the MySQL
Connector/Net 1.0, and both were downloaded from MySQL.

❑ http://dev.mysql.com/downloads/— Main page for MySQL downloads

❑ http://sourceforge.net/projects/mysqlnet/— SourceForge project for open-source,
fully managed drivers for an ADO.NET/MySQL connector

❑ http://crlab.com/mysqlnet/— A third-party provider of MySQL/.NET connectivity

Support
In addition to coordinating the development of MySQL, MySQL AB provides professional service and
support contracts, but for getting started or comparing other products to MySQL, here are two useful
pages, one that links to all the documentation and another that generates feature comparison lists:

❑ http://dev.mysql.com/doc/— The primary page for the MySQL documentation.

❑ http://dev.mysql.com/tech-resources/features.html— This page has a comparison
tool that provides a detailed comparison chart between multiple, selectable databases.

MaxDB (formerly SAPdb)
MaxDB was formerly SAPdb, the default database server that SAP provided with its ERP (Enterprise
Resource Planning) system. Given that SAP was frequently implemented on other database systems,
such as Oracle, DB2, and others, SAPdb was not business critical. Therefore, SAP released SAPdb under
the GPL in 2001. SAP continued to provide support and development guidance after the GPL release
(providing a more friendly transition to open source than what happened with InterBase and Borland,
which are covered later). Interestingly, in 2004, MySQL AB took over SAPdb and renamed it MaxDB,
where it is now dual-licensed in the same manner as MySQL. This also explains why this section follows
the MySQL section.

It is somewhat ironic that on the MySQL Web site, the Web site for the database system that many
argued could do anything that needed to be done, there is now an offering for MaxDB, which, to quote,
is “for the most demanding enterprise applications.” However, on a more serious note, MaxDB is
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SAP/R3-certified and boasts 6,000 major installations of the core technology. Clearly, MaxDB is a serious
database and provides a good fit for MySQL AB’s business strategy.

Given that MySQL AB also controls MaxDB, it shouldn’t be surprising that MaxDB is also a dual-
licensed product governed by the same licenses as MySQL. Information about MaxDB licensing can be
found at www.mysql.com/company/legal/licensing/. In short, MaxDB is licensed under the GPL,
and if you do not intend to comply with the requirements of the GPL, then you will need to purchase a
license for MaxDB. 

SQL Compliance
MaxDB, along with the rest of the databases in this chapter, was initially designed to be a transactional,
relational database system with support for SQL. As a consequence, MaxDB broadly supports most SQL
and RDBMS features. Additionally, MaxDB supports the SQL modes described in the following table:

Mode Description

INTERNAL MaxDB SQL definition

ANSI ANSI SQL-92 entry level definition

DB2 DB2 version 4 definition

ORACLE Oracle version 7 definition

MaxDB provides support for foreign keys and referential integrity. Foreign keys may consist of one or
more primary key columns and may be defined in either the CREATE TABLE statement or the ALTER
TABLE statement. MaxDB supports four options with regard to the ON DELETE behavior of related rows.
These options are described in the following table:

Mode Description

ON DELETE RESTRICT System prevents the deletion of rows referenced by a foreign key

ON DELETE CASCADE System cascades the delete of a row in a master table to the rows
in the foreign key table

ON DELETE SET NULL On the deletion of a record referenced by a foreign key, the 
foreign key values are set to null

ON DELETE SET DEFAULT On the deletion of a record referenced by a foreign key, the 
foreign key values are set to a default value

MaxDB queries contain both sub-selects and outer joins. Outer joins may be defined as LEFT, RIGHT, or
FULL. Any FROM clause may contain a query statement that will be executed to fill the place of a table at
that position in the query. If a subquery contains an OUTER JOIN clause, it will have additional restric-
tions that are explained within the documentation.

MaxDB has both stored procedures and triggers, which really are merely stored procedures that are tied
to data events on a given table. The CREATE DBPROC statement is used to create a stored procedure. The
stored procedure defines parameters as either IN, OUT, or INOUT, causing a parameter to be exclusively
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for input, output, or for both input and output, respectively. MaxDB supports TRY..CATCH blocks, which
work as expected: If an error is generated in the TRY block, the execution drops to the CATCH statement
where the return code, held in the $rc environment variable may be evaluated. MaxDB procedures may
also return a cursor if the procedure is defined with the RETURNS CURSOR modifier.

Triggers are defined in MaxDB using the CREATE TRIGGER statement, and triggers may be defined to 
be before and after INSERT, UPDATE, or DELETE. The body of a trigger is like a stored procedure, but an
UPDATE trigger provides an IGNORE TRIGGER statement to prevent infinite recursion of changes on a
table. A minor annoyance is that MaxDB offers no way to disable a trigger on an active database other
than dropping the trigger.

MaxDB supports updateable views. Views are updateable if the CREATE statement for the view does not
contain DISTINCT, GROUP BY, HAVING, EXCEPT, INTERSECT, or UNION clauses. In addition, updateable
views may not contain subqueries or outer joins. Furthermore, for a view to be updateable, if it contains
more than one base table, then the base tables in the view must have referential constraints based on 
a foreign or primary key that are reflected in the JOIN predicate for each table in the view. Finally, an
updateable view table may have no fields that are complex expressions. From a permissions standpoint,
the user performing an update, insert, or delete against the view must have update, insert, or delete
privileges on all of the tables contained in the create view table. These conditions are generally applica-
ble to most databases that allow updateable views.

MaxDB also supports both subtransactions and nested subtransactions. These are implemented with 
the SUBTRANS BEGIN, SUBTRANS END, and SUBTRANS ROLLBACK statements, which behave much as
expected. The SUBTRANS BEGIN marks the starting point for a subtransaction, and these statements 
may be nested. A SUBTRANS END causes the last SUBTRANS BEGIN to be popped off the SUBTRANS stack,
which, within the context of the transaction, essentially causes any work done since the SUBTRANS BEGIN
to be retained by the current transaction. A SUBTRANS ROLLBACK would discard the work back to the
previous SUBTRANS BEGIN. For all of the work to be retained, the current transaction must be committed
or rolled back. In addition, a subtransaction will not affect any locks held by the parent transaction.

Database Features
MaxDB provides the graphical Installation Manager tool for installing MaxDB, and for setting up and
migrating specific database instances. The graphical interface is available on Windows and Linux, and it
is built with wxWidgets.

The Database Manager utility is provided for, you guessed it, database management. The manager has
both a command-line interface (CLI) and a graphical-user interface. The CLI is available for every plat-
form on which MaxDB runs, whereas the GUI is available for Windows and Linux.

Since version 7.4, the Database Analyzer has been provided as a monitoring tool to determine the perfor-
mance characteristics of a running database. A default configuration is provided, but the configuration
may be changed as needed.

MaxDB provides three tools for querying a database: SQL Studio, WebSQL, and SQLCLI. SQL Studio is 
a graphical client that provides an interface much like that of SQL Server Enterprise manager. WebSQL
is a Web-based interface for executing SQL statements and scripts. Finally, there is always the typical
command-line interface.
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Backups for MaxDB can be run in either online or administration (offline) mode. Online backups can 
be run from either the Database Manager or the Computing Center Management System, but offline
backup may only be run from the Database Manager. Data backups may be full or incremental, but note
that backing up the data is independent of backing up the log files. Log file backups are only incremen-
tal and will always run from the point of the last backup.

High availability features of MaxDB are primarily available through the clustering technologies of the
underlying operating system. MaxDB can be clustered on Windows 2003 Sever when you use Microsoft
cluster server. However, the details of setting up Microsoft cluster server and installing MaxDB into the
cluster are beyond the scope of our discussion. On Linux or other systems that have clustering capabili-
ties, MaxDB may be clustered as well, but custom configuration scripts must be written that are specific
to the clustering solution.

In addition to database clustering, MaxDB supports a hot standby configuration. When a database is
setup with a hot standby, a duplicate database is maintained in administrative state. Log files from the
active database are sent to the standby server where they are applied to the standby database. If the pri-
mary database fails, the standby database can be brought online. The standby database will only be as
current as the last log file applied, so whenever possible, the last database log needs to be brought over
and applied to the system to retain all of the data.

MaxDB also has a Synchronization Manager to support the synchronization of one or more distributed
MaxDB databases. The upcoming MinDB, a small footprint, Java-based database for mobile clients, will
also have synchronization support.

Web Distributed Authoring and Versioning (WebDAV) is an extension to HTTP 1.1, detailed in RFC 2518,
intended to facilitate collaborative work on the Internet. MaxDB directly supports WebDAV, which
enables MaxDB to serve as a Web-based document and XML repository.

MaxDB supports both implicit and explicit schemas. When a user is created, any database objects cre-
ated by that user will automatically be assigned to the schema that was implicitly created with the same
name as their username. However, MaxDB also supports the explicit creation of database schemas with
the CREATE SCHEMA command.

MaxDB provides support for server-side cursors using the DELCARE CURSOR, OPEN CURSOR, and FETCH
commands. Cursors can be used independently or returned from stored procedures. In addition, MaxDB
cursors may be updateable (there are some constraints, but most simple cursors will be updateable).
MaxDB cursors are also scrollable.

MaxDB supports temporary tables in a rather elegant way. If you create a table within the TEMP schema,
it is a temporary table. While you use the same CREATE TABLE command to create a temporary table,
temp tables do not support referential integrity. Therefore, specifying a referential constraint during the
creation of a temp table will generate an error.

As with most ACID-compliant databases, MaxDB makes extensive use of locking, and both implicit and
explicit locking of rows and tables is supported. Objects in the database catalog may also be locked, but
only explicitly. The isolation level in place determines the implicit locking behavior of MaxDB, and
MaxDB supports five isolation levels: 0, 10, 15, 20, and 30. Isolation level 0 corresponds to uncommitted
read, so a transaction operating at level 0 may see different results from a single query executed at two
different times within the transaction. For rows to be inserted, updated, or deleted, exclusive locks are
implicitly requested. For isolation level 10, committed reads, a shared lock is requested for each row
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read; this guarantees that no other transaction has an exclusive lock on the row being read. In addition,
for rows read during an SQL query, there is a guarantee that at the time a row is read, there are no exclu-
sive locks on the row by any other transactions. Again, exclusive locks are requested for inserts, updates,
and deletes at isolation level 10.

As you might guess, level 15 provides an isolation level between committed read, 10, and repeatable
read, 20. Therefore, level 15 provides all of the isolation of level 10, but also requests shared locks on any
table referenced by an SQL SELECT statement. Repeatable reads are achieved by isolation level 20, so
within the transaction, shared locks will be placed on all rows read by the transaction as well as all tables
referenced by an SQL query, and these locks are not released until the transaction ends or the result table
is closed. The shared locks requested on rows read by the transaction may be explicitly released before
the end of the transaction with an unlock statement. At isolation level 30, serialized, shared locks are
acquired in the same manner as level 20; but in this case, the locks can be released only by the termina-
tion of the transaction. Moreover, while it is always true that long-running transactions should be avoided,
it should be especially clear that long-running transactions with an isolation level of 20 or 30 would
destroy the concurrency of your MaxDB database. For an in-depth discussion of the explicit locking
options, consult the documentation.

Condition Limit

Maximum size for a database 32 TB (using an 8k page size)

Maximum size for a table Limited by database size

Maximum size for a row 8088 bytes (This represents the internal row 
definition; an actual row could have a BLOB or 
LONG VARCHAR field, which could contain 4 GB or 
2 GB each, respectively.)

Maximum size for a field 1 GB

Maximum number of rows in a table Limited by database size

Maximum number of columns in a table 1024 with primary key

Maximum number of indexes on a table 255

Installation
The installation process for the base MaxDB package for version 7.5 is guided by a simple command-line
program. A graphical installation should be available in version 7.6, but 7.6 is not yet the generally avail-
able release. MaxDB is also available at the MySQL Web site. Go to mysql.com and select Products ➪

MaxDB. Go to the Download Version 7.5 page and under Server Downloads, select Microsoft Windows
(x86). Once the download completes, unzip the package and execute the SDBINST.exe file. This will start
a brief interview at the command line. The first question requires an affirmative answer regarding which
components to install. Enter 10 to get everything and from then on you can press Enter to select the
defaults. When the installation completes, you will see a screen like the one shown in Figure 16-2. You
can reboot from there.

After rebooting, return to the MySQL Web site and to the Download Version 7.5 page. This time, follow 
the link under Client Downloads. On the Client Downloads page, download the DBMGUI for Windows,
shown in Figure 16-3, as well as SQL Studio and the ODBC driver. Install all of these with the Windows
setup package in which they are bundled. You should now have all the requisite MaxDB software installed.
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Figure 16-2

Figure 16-3
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Level of .NET Support
MaxDB has full support for ODBC 3.51, but it does not yet have a .NET DataAdapter. The ODBC driver
is installed with the database installation routine, and the example that follows demonstrates a DSN-less
connection to the database.

Working with .NET
The following code is a simple variation on the MySQL example. It demonstrates basic database connec-
tivity and data selection. It is the same in content as the prior example, so before running it, go into the
Database Manager for MaxDB, shown earlier in Figure 16-3, and create a new database called MODEL.
Within the database, create a table called PERSON_TBL (you can use the same CREATE TABLE statement 
as before):

Imports System.Data.Odbc

Module MaxDBTest

Sub Main()

Dim connectionString As String
Dim dbcon As IDbConnection
Dim dbcmd As IDbCommand
Dim sql As String
Dim reader As IDataReader
Dim dataValue As Object
Dim strValue As String

Console.WriteLine(“MaxDBTest - start.”)

‘Note that password has to be upper case
‘DSN connection string
‘connectionString = “DSN=MODEL;UID=DBA;PWD=DBA”
‘DSN-less connection string
connectionString = “driver={MaxDB};server=127.0.0.1;” & _

“uid=DBA;pwd=DBA;database=MODEL;OPTION=3”

dbcon = New OdbcConnection(connectionString)
dbcon.Open()
dbcmd = dbcon.CreateCommand()
sql = “SELECT * FROM PERSON_TBL”
dbcmd.CommandText = sql
dbcmd.Transaction = dbcon.BeginTransaction()
reader = dbcmd.ExecuteReader()

Do While reader.Read() = True

dataValue = reader.GetValue(0)
strValue = dataValue.ToString()
Console.WriteLine(“Value: “ + strValue)

Loop

‘Clean up
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reader.Close()
dbcmd.Dispose()
dbcon.Close()

reader = Nothing
dbcmd = Nothing
dbcon = Nothing

Console.WriteLine(“MaxDBTest - end.”)

End Sub

End Module

Again, check the Web site for an enhanced example.

Resource Information
This section lists important online sites for information about MaxDB. First we list the sites from which
the software for this section was downloaded, followed by drivers (including third-party drivers not
used in this section), and finally resources that provide support and product comparisons.

Downloads
For this section, all the software can be downloaded from MySQL or one of the MySQL mirrors. The
software downloaded for this section was the MaxDB 7.5.0.24 Windows Binary package.

❑ http://dev.mysql.com/downloads/— Main page for MySQL downloads

❑ http://dev.mysql.com/downloads/mirrors.html— List of MySQL mirrors

Drivers
The .NET connector used for this section was the MaxDB ODBC client interface.

❑ http://dev.mysql.com/downloads/maxdb/clients_75.html#Documentation — Main
page for MaxDB client downloads

Support
In addition to coordinating the development of MaxDB, MySQL AB provides professional service and
support contracts, but for getting started or comparing other products to MySQL, here are two useful
pages, one that links to all the documentation and another that generates feature comparison lists:

❑ http://dev.mysql.com/doc/maxdb/index.html— The primary page for the MaxDB 
documentation.

❑ http://dev.mysql.com/tech-resources/features.html— This page has a comparison
tool that provides a detailed comparison chart between multiple, selectable databases.
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Firebird
Firebird is an open-source RDBMS that stems from a product with a long and stable track record.
Firebird supports, and has always supported, all the key features of an RDBMS, including ACID transac-
tions, stored procedures, triggers, foreign keys, and views. Firebird also has an architecture based on
record versioning that provides solid performance without many of the issues associated with lock esca-
lation on other systems. The installation is easy and compact, making it easy to distribute with applica-
tions. Firebird also has an interesting corporate history. 

Firebird originated back in the mid-eighties as a conventional development effort by a fairly typical soft-
ware startup. The company was based in Groton, Massachusetts, which resulted in the database files
having a .GDB extension (for Groton database). The original business plan to private label the database
didn’t work out quite as expected, and the company became InterBase. Ashton-Tate, of DBase fame,
bought InterBase in 1991; and Borland bought Ashton-Tate not long thereafter. This author, along with
most others, was exposed to InterBase, as it was the client-server database that Borland pushed with
their Delphi (Visual Pascal) product. The world was client-server, Borland had a great combo-package,
and all was good.

However, the better mousetrap doesn’t always win. Delphi never approached the popularity of Visual
Basic, and more people in the VB world opted for Access or SQL Server over anything else. This, cou-
pled with the schizophrenic renaming of Borland to Inprise and then back to Borland later, didn’t help
market share either. Ultimately, Borland reached the conclusion that InterBase was essentially a dead
product, but with the encouragement of some staff who believed in the product, Borland open-sourced
InterBase 6 in August of 2000. Open-sourcing InterBase generated plenty of activity and interest by
many who believed in the database; and after seeing all of the interest, Borland decided to continue the
product and has since released a number of updates to the closed-source product. However, the ink was
in the water, and while Borland had decided to abandon an open-source strategy, a number of commit-
ted people in the community began to enhance the product from the 6.01 base and then officially forked
the project under the name Firebird.

The current stable release of Firebird is version 1.52, and Firebird 2.0 is now in alpha testing. The
InterBase Public License under which the InterBase 6.01 source code was originally released covers
Firebird. The copy of the InterBase Public License can be found on the following page: http://
info.borland.com/devsupport/interbase/opensource/IPL.html.

SQL Compliance
Given that Firebird started out with the goal of providing a robust and transactional database system,
the question of SQL compliance is much easier than with MySQL. Firebird 1.5 implements full SQL-92
Entry-Level Support and most of the SQL-99 standard.

Therefore, along with the SQL compliance, Firebird supports views and sub-selects. It also supports full
fine-grained user permission handling with roles and grants. It also provides support for domains, field
check constraints, and referential integrity. In short, Firebird has solid support for all of the fundamentals.

Database Features
One of the broad features of the Firebird database is that it is based on a multigenerational architecture,
which prevents reads from blocking writes and vice-versa. That is, in the relational database world,
there are two ways to skin the concurrency cat: record locking and record versioning. With record locking,
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whenever a consistent view of a set of records is required, a lock is placed on the records while the 
consistent view needs to be maintained. This directly impacts concurrency, which is why transactions
should always be short lived.

With record versioning, instead of locking the records and preventing data activity against the records in
question, multiple versions of the record are maintained and associated with the transaction that created
them. Each transaction has a unique, sequential identifier, so a transaction always has the ability to find
the state of any record at the time that the transaction began by examining the record and determining
whether its transaction number is less than or equal to the current transaction number. By the way, this
functionality is available in MaxDB, but only as a proprietary extension from SAP. While this mode of
operation improves concurrency generally, it is particularly important for OLAP situations in which read
transactions cannot be guaranteed to be short lived.

Before discussing some of the other features of the Firebird database, let’s address a feature that is 
surprisingly missing. Firebird does not come bundled with a visual database management tool. While a
visual database management tool is not essential and really has nothing to do with the performance or
functionality of the database itself, a good visual management tool is just handy and convenient. So, what
are your options? Several commercial and freeware products are available, as well as some open-source
offerings. They are listed at the IBPhoenix Web site mentioned later in this chapter. Two are highly 
recommended: Marathon, an open-source offering at SourceForge, and IBExpert, which has a free 
personal edition at www.ibexpert.com. These applications are shown somewhat later in this section, in
Figures 16-4 and 16-5, respectively.

The Firebird database can be run with one of two architectures: Classic Server or Super Server. The
Classic Server architecture provides one process per connection, while the Super Server architecture 
provides a single server process with each connection handled by a thread. The following table provides
a comparison of the two architectures:

Classic Server Super Server

Mature on Linux. This was the original mode Mature on Windows and Linux
of operation for Linux running from inetd. 
This architecture was ported more recently 
to Windows.

The database cache exists in each client Database cache is in the shared process space; 
process, resulting in lower with resource scales better more connections.
usage if the number of connections is low.

Allows fast, direct connections to database On Linux, only remote connections are 
files for local connections on Linux via the local allowed via localhost. On Windows, the local 
protocol. On Windows, only remote connections protocol is available for direct local 
are allowed through the localhost interface. connections, but these are not as fast as the

“Classic” processes on Linux and are not
thread safe.
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Classic Server Super Server

On Linux, the Services Manager interface is fully The Services Manager interface is fully 
implemented, allowing remote administration supported on both Windows and Linux.
capability. On Windows, the Services Manager 
interface is only partially implemented. Backup/
restore and database shutdown can be performed 
remotely but other administrative tasks require 
the use of local client utilities.

SMP (symmetrical multi-processor) support, No SMP support, and on multi-processor 
allowing better performance with a limited Windows machines, the CpuAffinityMask
number of connections. parameter in the configuration file firebird.conf

must be set to prevent processor hopping and
a severe degradation in performance.

With that said, the examples in this chapter will be run on the Windows Super Server implementation.
In addition to those two implementations, there is also an embedded database version, though for 
coverage of that you will have to refer to the Firebird site and documentation.

Firebird has support for selectable stored procedures. This is better than a stored procedure that simply
returns data; it allows a stored procedure, along with its parameters, to be used in a SELECT statement
anywhere a table would be used. This feature, along with the fact that Firebird is a versioned database
engine, can actually be used to eliminate the need for temp tables. The creators did not implement temp
tables in InterBase, and so Firebird does not have them either. Some may consider this a feature, but for
many people used to solutions that require temp tables, this seems more like a missing feature.
However, temp tables are planned for Firebird 2.0.

Firebird provides full support for referential integrity and foreign keys as well as field check constraints
and domains. Along with this is the capability to cascade deletes and updates, and, of course, the capability
to stop you from doing bad things with your data.

Firebird supports the creation of user-defined functions (UDFs). If an additional function is required
beyond those provided with Firebird’s procedural SQL, you might define a function that is available in
an external library module and use that function with your procedural SQL statements. On Windows,
this means accessing a function in a DLL, while on Linux the function would be found in a shared object
(.so) file.

Windows, Linux, Mac OS X, BSD, HP-UX, and AIX can all run Firebird. Firebird also has support for
multiple collations and character sets. Character sets can be implemented at the database level as a
default, and on individual columns if an override to the default is necessary. Note, however, that if you
use a default character set other than CHARACTER SET NONE, then you have to specify the same character
set for any client connection or transliteration errors will occur.

Client applications may also register with the database events interface to receive notification about
defined data events within the system. The important point here is that the client will be notified of the
event asynchronously without the client polling. When the event occurs, all clients that have registered
for the event will be notified that it occurred.
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Firebird defines a number of error and exception codes that may be generated while working on the
database. These exceptions can be caught and handled within a stored procedure or passed back to the
client. In addition to the system-defined exceptions, you can also define custom exceptions that may
likewise be handled either within a stored procedure or trigger or be sent back to the client.

Firebird does not support auto-number columns; instead it provides a more general feature in the form
of generators. Generators are selectable items that produce a transaction-safe series of unique numbers.
The following code creates a generator:

CREATE GENERATOR ID_GEN;

You can then set the value of ID_GEN to 1000 (the default would be 0 if you didn’t bother) with this line:

SET GENERATOR ID_GEN TO 1000;

Then you can get an id value with a SELECT statement:

SELECT GEN_ID (ID_GEN, 1) FROM RDB$DATABASE;

This statement generates a new id by adding 1 to the current value of the generator, so the returned
value would be 1001. You can pre-select the id value that is needed or you can add similar code to an ON
INSERT trigger to accomplish an auto-number type behavior.

Condition Limit

Maximum size for a database 32TB

Maximum size for a table 32TB

Maximum size for a row 64 Kb, not including BLOBs

Maximum size for a field 32Kb or 2 GB for a BLOB

Maximum number of rows in a table 2^32 Rows

Maximum number of columns in a table Limited by column types and row size

Maximum number of indexes on a table 255

Installation
The installation of Firebird for this chapter is straightforward. First, visit the Firebird site at SourceForge
and download the Windows setup package for Firebird version 1.5. Run the setup program and accept
all of the defaults. That is all that is required to set up the server. 

Second, return to the SourceForge site and download the latest Firebird Data Adapter for .NET. As of this
writing, the latest version is 1.7-RC3. This is a .NET 1.1 data adapter, so you will need .NET 1.1 installed on
the target system. In addition, the installation will run gacutil.exe to register the assembly, and gacutil.exe
will require msvcr71.dll, so ensure that it is present on your system. The adapter is packaged in a Windows
installation program; and given the aforementioned prerequisites, you can run the installation with all of
the defaults.
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Figure 16-4

Finally, go to ibexpert.com, and download the free personal edition; again, follow the Windows instal-
lation and accept any defaults. We recommend Marathon for the examples, but at the time of this writ-
ing, version 3 is still in beta. However, by the time you read this, a stable version may be completed, so
check it out.

Level of .NET Support
Firebird currently supports ODBC and .NET 1.1. In the example that follows, we are relying on the 1.7
version of the .NET data adapter that can be found at the Firebird site at SourceForge. Make sure that
this is installed prior to building the test program.

Working with .NET
Here again we see our friendly neighborhood sample program, this time updated to run against the
Firebird database. Go into IBExpert and create the new database. Immediately after creating the database,
you will be given a database registration form. Change the Server Version to Firebird 1.5, and then click
the Register button. Once the database is registered, double-click it in the database explorer window to
connect to it and create our ubiquitous PERSON_TBL. Following this, you will need to edit the aliases.conf
file found in the Firebird_1_5 directory. This file matches simple names with the location of the database
file on disk. Add the following line to this file:

model = C:\dbfiles\firebird\MODEL.FDB
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Everything should now be set to go for the sample code that follows:

Imports FirebirdSql.Data.Firebird

Module FirebirdTest

Sub Main()

Dim connectionString As String
Dim dbcon As IDbConnection
Dim dbcmd As IDbCommand
Dim sql As String
Dim reader As IDataReader
Dim dataValue As Object
Dim strValue As String

Console.WriteLine(“FirebirdTest - start.”)
connectionString = “Database=model;” & _

“User=SYSDBA;” & _
“Password=masterkey;” & _
“Dialect=3;” & _
“Server=localhost”

dbcon = New FbConnection(connectionString)
dbcon.Open()
dbcmd = dbcon.CreateCommand()
sql = “SELECT * FROM PERSON_TBL”
dbcmd.CommandText = sql
dbcmd.Transaction = dbcon.BeginTransaction()
reader = dbcmd.ExecuteReader()

Do While reader.Read() = True

dataValue = reader.GetValue(0)
strValue = dataValue.ToString()
Console.WriteLine(“Value: “ + strValue)

Loop

‘Clean up
reader.Close()
dbcmd.Dispose()
dbcon.Close()

reader = Nothing
dbcmd = Nothing
dbcon = Nothing

Console.WriteLine(“FirebirdTest - end.”)

End Sub

End Module

490

Chapter 16

18_584375 ch16.qxd  10/28/05  10:46 PM  Page 490



Figure 16-5

Resource Information
This section lists important online sites for information about Firebird. First are the sites from which the
software for this section was downloaded, followed by a list of drivers (including third-party drivers not
used in this section), and finally resources that provide support and product comparisons.

Downloads
The Firebird project is hosted at SourceForge and all of the downloads for this section can be found at the
following Web site as well as from download links at the main support sites found later in this chapter:

❑ http://sourceforge.net/projects/firebird— Main SourceForge page for Firebird
downloads

Drivers
The .NET provider for Firebird can be found at SourceForge at the location in the following list. Also
shown is the link for the project ODBC driver. A number of other freeware and closed-sourced drivers
are available, and links to those may be found at the IBPhoenix Web site.

❑ http://firebird.sourceforge.net/index.php?op=files&id=netprovider— The
Firebird data provider for .NET and Mono

❑ http://firebird.sourceforge.net/index.php?op=files&id=odbc— The Firebird
ODBC driver
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Support
Following are the two main Web sites for Firebird information, as well as the location for the ever-useful
Firebird discussion forums:

❑ http://firebird.sourceforge.net/index.php— The home page for Firebird at
SourceForge.

❑ www.ibphoenix.com/— A very useful site for all things InterBase and Firebird. This is also an
organization that sells professional support services.

❑ http://firebird.sourceforge.net/index.php?op=guide— The location of the novice’s
guide, with links to other documentation.

❑ http://groups.yahoo.com/group/Firebird-support/— The Firebird and InterBase 
discussion forum hosted at Yahoo and monitored by plenty of very helpful people.

Ingres
Ingres was the first commercially available RDBMS, initially released over 20 years ago. It was developed
at Berkeley and became commercially available in 1980. In 1994, it was acquired by Computer Associates
(CA). Ingres is embedded in most of CA’s applications, with some of the most notable being Unicenter
and ETrust.

In 2004, Computer Associates became yet another company to release a lagging database product to the
open-source community. On top of that, when they open-sourced the product, they offered a $1 million
purse with prizes of up to $400,000 for tools to automate the conversion of Oracle, Microsoft, Sybase,
DB/2, Informix, and MySQL databases to Ingres. Ingres is an enterprise-level system that offers high
availability clustering, scalable Linux database clusters, table partitioning, parallel query processing, and
online table and index reorganization. There are also 64-bit versions of the database.

Why should a company give away a quality product like Ingres? Because the reality is that the big three
databases — Oracle, Microsoft SQL Server, and DB/2 — occupy a huge share of the market. Therefore, a
company that is going to spend money on a database will likely spend money where others are spending
it, which makes their investment more secure. After all, none of the big three will be discontinued anytime
soon, and the prospective company will be able to find professionals with necessary skill sets to maintain
their database. For the database vendor, this can cause a death spiral: Smaller market share leads to fewer
sales leads to even smaller market share.

Open-sourcing the product can theoretically provide a way out. The company forgoes initial licensing fees
but has the opportunity to sell service, support, and consulting. Companies that use the software no longer
have to worry that the product won’t be available and they don’t have any up-front costs, so it is easier to
get them to at least try the product. Finally, it is easier to cultivate a developer base when developers can
freely and easily access the product. Will it work? With a product as robust and sophisticated as Ingres, it
might.

The Ingres database is licensed under the CA Trusted Open Source License (CATOSL). This license is
OSI-approved, and information about the license, along with the license itself, can be found at
www3.ca.com/Files/Licensing/. 
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SQL Compliance
Ingres R3 is SQL-92 entry-level-compliant, and it includes a large number of more advanced SQL features.
R3 provides support for all the expected features of a relational database system, including foreign keys,
check constraints, and cascading updates and deletes. In addition, it offers common support for both 
triggers and stored procedures. In short, there are no real surprises in the area of SQL behavior and 
compliance.

Database Features
With a long history as a commercial product, a lot of time was invested in end-user tools for database
management and performance analysis. These tools include the Visual DBA for database administration,
Import Manager and Export Manager for importing and exporting data, and the Journal Analyzer for
examining recovery journals.

Ingres R3 provides some fairly straightforward performance features, including read-ahead caching,
deferred writes, and group commits. In addition, Ingres provides some very sophisticated performance
options, including parallel query execution. This enables the system to fully utilize a multi-processor
environment to divide a query into pieces for execution.

R3 provides a number of options for partitioning the data in the database. Ingres has long had the 
capability to partition different tables and indices to meet storage configuration requirements. The latest
of these partitioning capabilities is key range table partitioning. This divides the physical table into 
segments determined by different key ranges. This feature coupled with parallel query execution can
provide a great boost to database retrieval times.

Ingres also provides a number of distributed data features. The first is the Distributed Query Option,
which enables queries to be executed against a remote system. R3 also provides a replication option that
enables remote sites to synchronize their data in a two-way exchange. There is also a Web Deployment
option, which is used to hook an HTTP server to the database server for the deployment of a data-driven
Web application.

Another feature that is uncommon, especially among open-source databases, is support for clustering
(and it is included with the R3 basic download). Clustering is supported on both Linux and Windows
along with cluster fail-over capabilities.

CA uses Ingres as the default database for a wide range of its applications, but many applications were
originally designed to run against Oracle. This led CA to add features in Ingres that provide support for
it in these products and allow for straightforward conversion of systems that support Oracle to Ingres.
This should make porting from Oracle to Ingres easier than most large database conversions.

Ingres is not an object-relational database, but it does provide for some user-defined extensions. These
features include the capability to create user-defined functions, data types, and operators. The Ingres
Object Manager handles these user extensions. Ingres also has a component known as the Knowledge
Manager. The Knowledge Manager enables business rules to be tied to data events much like the more
general check constraint. When the event occurs, the initial rule is fired — that is, there can be a number
of rules that run in either a forward chained or recursive fashion. There is no limit to the number of rules
that may be assigned to a table.
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Database alerts are also available in Ingres. These alerts are asynchronous messages that are sent out to
listening client programs, and once the client program receives the message, it may forward the message
via e-mail or instant messaging.

Ingres databases allow the specification of the page size, but row-level locking is only available in
databases for which the page size is larger than 2K. By default, at page sizes larger than 2K, Ingres R3
will use shared read locks for row-level locking, which produces a read-committed isolation level.
However, Ingres has a LOCKMODE command that can be used to alter the transaction level for the current
connection, enabling a user to alter the locking behavior.

Ingres has very broad platform support that goes beyond the typical x86/Windows/Unix combinations.
Due to Ingres’s history and enterprise credentials, R3 scales all the way to the mainframe, but it also
extends support down to lower-end systems. The R3-supported platforms include Windows 98,
WindowsNT/2000/XP, OpenVMS, Solaris, HP-UX, AIX, Linux on Intel, and zSeries mainframes. Ingres
also has 64-bit support for both Itanium and Opteron systems that enables you to fully leverage the lat-
est server technology. With that said, it is worth noting that Advantage Enterprise Access and Advantage
EDBC features, which provide some interconnectivity features in mainframe environments, are not
available under open source.

Installation
While Ingres R3 does have a Windows installer, some additional work is required to set up Ingres. It
involves setting up a special user on the system. The Ingres Getting Started guide provides a good 
step-by-step description of the process, but the quick-and-dirty procedure is briefly described here. First,
create a user named ingres on the machine, assign a password to the new user, and add the user to the
Administrators group. Then go to the Local Security Settings in Administrative Tools. Add the ingres
user to the policies for “Act as part of the operating system” and “Logon as a service.”

Once that is done, log in as the ingres user. Start up the installation program and accept all of the
defaults. Be forewarned: If you change any of the default paths (we changed the path for the data files
because we put all the database data files under a single directory tree for ease of offline backups), the
install program may not create them. It didn’t create an alternate data directory, and at the end of 
the installation it couldn’t start the database and we had to read the error log to find out that it had 
produced a “directory not found” error. After creating the required directory and rerunning the install
with the repair option, everything went fine.

The Ingres installation installs the database along with all of the required graphical tools, documentation,
and client connectivity drivers, including a data adapter for .NET. The Visual DBA tool for Ingres is
shown in Figure 16-6.
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Figure 16-6

Level of .NET Support
CA provides both an ODBC driver and a .NET data adapter with the base installation. The .NET adapter,
like the others, is a 1.1 adapter at this point. However, just as with the others, if the 1.1 Framework is
installed, you should be good to go.

Working with .NET
Let’s look at our sample program modified to work with Ingres R3. Again, ensure that you have created
a database called MODEL and a table called PERSON_TBL. The CREATE TABLE statement from before will
need to be altered slightly to execute on Ingres. Change the TIMESTAMP fields to DATE, which supports
the same time-date accuracy as TIMESTAMP:

Imports Ca.Ingres.Client

Module IngresTest

Sub Main()

Dim connectionString As String
Dim dbcon As IDbConnection
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Dim dbcmd As IDbCommand
Dim sql As String
Dim reader As IDataReader
Dim dataValue As Object
Dim strValue As String

Console.WriteLine(“IngresTest - start.”)
connectionString = “Host=localhost;” & _

“Database=model;” & _
“User ID=ingres;” & _
“PWD=ingres;”

dbcon = New IngresConnection(connectionString)
dbcon.Open()
dbcmd = dbcon.CreateCommand()
sql = “SELECT * FROM PERSON_TBL”
dbcmd.CommandText = sql
dbcmd.Transaction = dbcon.BeginTransaction()
reader = dbcmd.ExecuteReader()

Do While reader.Read() = True

dataValue = reader.GetValue(0)
strValue = dataValue.ToString()
Console.WriteLine(“Value: “ + strValue)

Loop

‘Clean up
reader.Close()
dbcmd.Dispose()
dbcon.Close()

reader = Nothing
dbcmd = Nothing
dbcon = Nothing

Console.WriteLine(“IngresTest - end.”)

End Sub

End Module

Again, look at the code online for a more in-depth sample.

Resource Information
This section lists important online sites for information about Ingres. First are the sites from which the
software for this section was downloaded, followed by a list of drivers (including third-party drivers not
used in this section), and finally a section covering support and product comparisons.
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Downloads
For this section, all the software can be downloaded from CA’s Ingres site. The software downloaded for
this section was the Ingres R3 Windows Binary package:

❑ http://opensource.ca.com/projects/ingres— Main page for Ingres downloads

Drivers
The .NET connector used for this section was the Ingres ADO.NET Connector installed with the main
package:

❑ C:\Program Files\CA\Ingres [II]\ingres\dotnet\assembly\v1.1— Default location of
the installed assembly

Support
Ingres support information can be found online at the following pages:

❑ http://opensource.ca.com/projects/ingres/documents— The primary page for the
Ingres documentation.

❑ http://opensource.ca.com/projects/ingres/forum— Discussion forums.

❑ http://opensource.ca.com/projects/ingres/lists— This is the mailing list site 
for Ingres.

❑ http://opensource.ca.com/projects/ingres/support/support— For professional 
support.

PostgreSQL
PostgreSQL is an Object Relational Database Management System (ORDBMS) that was forked from
POSTGRES 4.2, which was developed at UC-Berkeley. The university POSTGRES development effort
came to an end in 1994; coincidentally, in 1995, Marc Fournier was looking for a database back-end for
an accounting application and MySQL wasn’t working for the expected loads. He tried Postgres95, a
patch to the 4.2 code base, found he liked it, and pulled together the PostgreSQL open-source project.

Given that PostgreSQL started in an academic environment, it implemented many core ideas of solid
database design and included many more experimental ideas as well, including object-oriented inheritance
and a high level of extensibility. Although it didn’t support SQL initially (it had its own query language,
known as PostQUEL), that was addressed early on in the PostgreSQL project.

PostgreSQL is licensed under the BSD License, which provides very liberal terms for modification, 
distribution, and usage. A copy of the BSD License and the PostgreSQL licensing philosophy can be
found at www.postgresql.org/about/licence. 
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SQL Compliance
PostgreSQL supports fully ACID-compliant transactions to ensure data integrity. Postgres, which was the
forbearer of PostgreSQL, quite deliberately did not support SQL, but instead implemented a procedural
language. PostgreSQL was formed in part to provide ANSI SQL support, and now supports all of the
SQL-92 entry-level requirements. It also supports many features from the SQL-99 standard. PostgreSQL
provides full inner and outer join support as well as the less commonly implemented INTERSECT
construct.

PostgreSQL provides full support for views and updateable views. In addition, it has a feature known as
materialized views, which are views that hold pre-generated results. This, of course, greatly speeds up the
response time when selecting data from the materialized view.

The database provides full support for foreign keys and referential integrity, including CASCADE, UPDATE,
and DELETE. PostgreSQL also supports other forms of constraints, including CHECK constraints. In 
addition, you can define custom data types with embedded constraint behavior.

Triggers and stored procedures are part and parcel of PostgreSQL. Both BEFORE and AFTER triggers are
available. Stored procedures can be written in SQL or several other compatible procedural languages,
including Perl and C.

Database Features
The broadest and most interesting feature of PostgreSQL is that it is an object relational database. In
addition to all of the relational aspects of the database, it also provides many object-oriented features as
well. First and foremost among these is inheritance. You can define a base table and then define a table
as an extension of that table. The extension table automatically possesses all of the fields of the base table
plus any additional fields it defines, and it is logically handled as a single table.

In addition to inheritance, you can gain functionality in PostgreSQL by defining and implementing your
own functions, aggregate functions, and indexing methods. Any of these may be implemented using one
of the supported procedural languages discussed in a moment.

Part of the object-oriented nature of the system is an inherent capacity for extensibility, so aside from any
of the default data types found in the system, you may define new ones. Furthermore, you can define
the behavior of the functions and operators that work on them. A good example of an extended data
type is actually provided by default: an IP address data type. The database has an understanding of the
nature of IP addresses, so a query can be run against a table of IP addresses using an IP address and,
subnetwork mask combination. The database understands that the “=” operator applied to an address
means that both the IP address and the subnetwork mask must match.

In addition to the IP address, PostgreSQL also possesses complex geometric types such as points, lines,
and circles. Jumping from the subject of geometry to the related field of geography, PostGIS is available
as a downloadable add-on to allow for the implementation of a geographic information system. 

Other open add-ons include OpenFTS, for full text search capabilities. These capabilities include indexing,
relevance ranking, and metadata filtering. OpenFTS also supports multiple languages and uses a natural
language format for query search values.
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Replication is supported through yet another download, this time of the Slony-I project. This replication
mechanism provides a master to multiple slaves. The goal of this sort of replication is to provide fail-over
support to a data center and is geared toward operation with all slaves normally available. It is not for
two-way synchronization or mobile usage.

PostgreSQL implements what they call multi-version concurrency control, which is similar to the 
multi-generational architecture referred to in the Firebird discussion, and it serves the same purpose. In
PostgreSQL, writers don’t block readers, and readers don’t block writers. This is accomplished through
the use of a record-versioning mechanism for concurrency instead of a locking mechanism.

A number of procedural languages are supported for writing functions within PostgreSQL. Within the
main download, four procedural languages are supported: PL/pgSQL, PL/Tcl, PL/Perl, and PL/Python.
In addition, downloads are available for procedural languages based on PHP, Java, and R. If you are really
ambitious, there is a standard interface for developing procedural languages to be used with PostgreSQL,
so you could write an interface to allow for PL/C# on Windows systems.

You can also find several good additional add-on tools for this database system. In particular are some
nice graphical database management clients, including pgAdmin III for a client-based solution and
phpPgAdmin for a Web-based management system. Links to all of these tools may be found at the
PostgreSQL Web site at www.postgresql.org/download/. 

Condition Limit

Maximum size for a database Unlimited (32 TB databases exist)

Maximum size for a table 32 TB

Maximum size for a row 1.6 TB

Maximum size for a field 1 GB

Maximum number of rows in a table Unlimited

Maximum number of columns in a table 250–1600 depending on column types

Maximum number of indexes on a table Unlimited

Installation
PostgreSQL 8.0, now in general release, is the first version of PostgreSQL to natively support Windows.
Prior versions could be run on Windows within Cygwin, but that was not a great solution. Now there is
a Windows version and it comes with an installer. Even better, the installer also includes all of the other
necessary tidbits, such as the graphical database manager, pgAdminIII, and the ODBC driver and the
.NET adapter. The installer recommends reading a FAQ concerning the Windows installation, and we
recommend it too. It’s short, but it explains some potential gotchas regarding the need for NTFS and 
permissions for the account that runs the PostgreSQL database process. These are mostly common sense
things, and you don’t have to do anything but run the installer and accept the defaults, as per usual.
Nevertheless, read the FAQ, just in case.

Once installed, you will be able to manage the database with the pgAdminIII tool (shown in Figure 16-7)
and proceed to the sample program.
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Figure 16-7

Level of .NET Support
PostgreSQL provides support for ODBC, OleDB, and .NET 1.1. All of these connectors are installed by
the Windows installer process. For this example, we will use the .NET data connector in the NpgSQL
package. 

Working with .NET
This is our basic example reworked with PostgreSQL. Again, you will need to go into the database 
management tool, pgAdminIII, and create a database called model; within that database, create the 
PERSON_TBL. The original CREATE TABLE statement may be used without alteration. Once these steps are
out of the way, you can proceed to the sample program:

Imports Npgsql

Module PostgreSQLTest

Sub Main()

Dim connectionString As String
Dim dbcon As IDbConnection
Dim dbcmd As IDbCommand
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Dim sql As String
Dim reader As IDataReader
Dim dataValue As Object
Dim strValue As String

Console.WriteLine(“PostgreSQLTest - start.”)
connectionString = “Database=MODEL;” & _

“User=postgres;” & _
“Password=postgres;” & _
“Server=localhost;” & _
“Port=5432;”

dbcon = New NpgsqlConnection(connectionString)
dbcon.Open()
dbcmd = dbcon.CreateCommand()
sql = “SELECT * FROM PERSON_TBL”
dbcmd.CommandText = sql
dbcmd.Transaction = dbcon.BeginTransaction()
reader = dbcmd.ExecuteReader()

Do While reader.Read() = True

dataValue = reader.GetValue(0)
strValue = dataValue.ToString()
Console.WriteLine(“Value: “ + strValue)

Loop

‘Clean up
reader.Close()
dbcmd.Dispose()
dbcon.Close()

reader = Nothing
dbcmd = Nothing
dbcon = Nothing

Console.WriteLine(“PostgreSQLTest - end.”)

End Sub

End Module

Resource Information
This section lists important online sites for information about PostgreSQL. First are the sites from which
the software for this section was downloaded, followed by a list of drivers (including third-party drivers
not used in this section), and finally sources that provide support information support.

Downloads
For this section, all the software can be downloaded from PostgreSQL. The software downloaded for this
section was the PostgreSQL 8 Windows Binary package.

❑ www.postgresql.org/ftp/win32/— Location for the Win32 installer
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Drivers
The .NET connector used for this section was shipped with PostgreSQL, but you can also visit
http://gborg.postgresql.org/project/npgsql/projdisplay.php.

Support
PostgreSQL support information can be found online at the following pages:

❑ www.postgresql.org/docs/— The primary page for the PostgreSQL documentation.

❑ www.postgresql.org/community/— Provides links to the mailing lists and newsgroups.

❑ www.postgresql.org/support/professional_support— If you are interested in 
professional support or custom modifications, this page provides links to companies that 
provide support and hosting services.

BerkeleyDB
BerkeleyDB is a transactional database that is more widely used than any other open-source database.
The BerkeleyDB is an embedded database that runs behind many open source applications, not the least
of which is SendMail. Sleepycat Software makes and distributes BerkeleyDB, which is a fork of yet
another database developed at UC-Berkeley. That database was licensed under BSD, and Netscape
intended to use the database for a directory server. However, in 1996, BerkeleyDB had shortcomings in
the areas of concurrency and robustness, so Sleepycat was formed to build up the BerkeleyDB at that
time, and they just kept on going. Sleepycat and BerkeleyDB now assist a wide range of corporations,
including Google and Amazon, with specialized, high-performance data requirements.

Sleepycat now provides three products, two of which are described in this section. The first is the plain
BerkeleyDB, version 4.3. The other is BerkeleyDB XML, which provides a native XML database over
BerkeleyDB. This product understands XML Schema as well as XPath and XQuery. This enables these
expressions to be evaluated by the database against XML documents stored in the database instead of
having to process the documents in your application.

BerkeleyDB is another product that is dual-licensed. The software has the Sleepycat Public License for
open-source projects, and Sleepycat can provide proprietary licenses for those who need them. The
licensing information regarding BerkeleyDB can be found at http://sleepycat.com/download/
licensinginfo.shtml.

SQL Compliance
BerkeleyDB has no support for SQL, and thus no ANSI SQL compliance. BerkeleyDB provides a
database interface for a very fundamental table structure. While this may seem odd compared to the
other databases, and in the context of ADO.NET, it is actually a feature for the problem space that
BerkeleyDB attacks.

Database Features
Sleepycat Software calls BerkeleyDB 4.3 a developer’s database, which might sound more than a bit like
marketing-speak. Most people would call BerkeleyDB a database API, but this probably connotes a tool
that is much simpler than BerkeleyDB. BerkeleyDB is in fact an API; and while the API is compact, it is
quite sophisticated. The API manages a database that is not like a generic x-base, ISAM type file.
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As an API, BerkeleyDB provides two related features: it is not client-server and it has a small footprint.
The libraries that support a BerkeleyDB require less that 500 K, and the fact that it is not a database
server makes it easy to embed into an application and to install on a target system. In addition, the data
structure for a table is very simple, a key-value pair. The key or value can be up to 2 G, but the keys and
values are not defined by the database. The application must understand what is being stored in each
row. This is good if the application is using a predefined and immutable data structure, because it will be
fast. If you need data flexibility, return to a SQL-oriented database.

BerkeleyDB provides a data store that supports a very high level of concurrency. This concurrency extends
not only to multiple threads within a process but also to multiple independent processes on a given system.
BerkeleyDB uses a fine-grained locking system to ensure that in spite of potential multi-process access, the
data will be accessible and consistent. Therefore, the data store will be accessible given virtually any access
strategy that your system might use.

BerkeleyDB implements a truly transactional data store. BerkeleyDB couples write-ahead logging with 
logically atomic transactions to ensure that any database operation commits or rolls back appropriately.
The write-ahead logging also provides the capability to recover from a crash condition by playing back
the log. 

High-availability solutions are available by implementing single-master replication. With single-master
replication, all updates are handled via a single, master database. This database then replicates changes to
any number of replicas. All replicas are always available for data retrieval so that any given replica can fail
without impacting data retrieval capabilities. If the update master fails, then any one of the replicas may
take over that role.

For the highest level of data access performance, BerkeleyDB supports in-memory transaction logs and
databases. Configured in this manner, an application can eliminate most disk I/O and have very fast
access times.

The API enables you to configure different data store types. The basic data store is available for a single
writer with multiple readers. The concurrent data store allows multiple readers and writers. The 
transactional data store provides the capabilities of the concurrent data store and adds support for
ACID-compliant transactions, hot backups, group commits, and system recovery. Finally, a replicated
data store adds high availability.

As mentioned earlier, in addition to the basic BerkeleyDB, Sleepycat also puts out BerkeleyDB XML,
now at version 2.0. With this, your application can store any given data in the key and value of a data
row. BerkeleyDB XML adds an XML layer to the BerkeleyDB that enables an application to easily store
and search XML data.

BerkeleyDB XML enables container-based document management whereby the storage container 
possesses an understanding of XML and XML structure. For instance, it allows for the indexing of XML
nodes, attributes, elements, and metadata. The XML layer also understands XPath statements and XML
namespaces. This means that you can use XQuery to directly query documents without having to load
and parse documents in separate operations. You will examine this in the examples in this section.
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Condition Limit

Maximum size for a database 256 TB

Maximum size for a table 256 TB

Maximum size for a row 4 GB

Maximum size for a field 4 GB

Maximum number of rows in a table Direct function of row size

Maximum number of columns in a table 2 — one key and one value column

Maximum number of indexes on a table Application-dependant

Installation
Installing the BerkeleyDB library is straightforward. Download the Windows installation packages from
sleepycat.com. Run the installations and accept the defaults. This will give you the base packages. To
run the database from managed code requires a managed wrapper. The wrapper will be built from the
source provided under the build_win32 directory under the previously created installation directory.

Also download and install the BerkeleyDB XML package, accepting all of the defaults in the Windows
installer. Building the library will be covered shortly.

Level of .NET Support
As noted in the installation section, support for the BerkeleyDB products is in the form of an API, and
building the API is covered in the next section.

Working with .NET
Building the BerkeleyDB API for C++ .NET is the most ambitious project in this chapter. We will run
through it here, but for more coverage you may want to look at some of the following Web sites:

❑ www.cs.sunysb.edu/documentation/BerkeleyDB/ref/build_win/intro.html

❑ www.cs.sunysb.edu/documentation/BerkeleyDB/ref/build_win/faq.html

❑ www.huihoo.com/berkeley/dbxml-1.2.1/docs/ref_xml/xml_win/intro.html

❑ www.huihoo.com/berkeley/dbxml-1.2.1/docs/ref_xml/xml_win/examples.html

Building the API from Visual Studio 2005 is a bit tedious but not fundamentally difficult. Keep in mind
that ours was done with the 2.1.7 build of the BerkeleyDB XML product; by the time you read this, the
issues mentioned here may have already been fully addressed. Open Visual Studio and select Open ➪

Project/Solution and then navigate to the build_win32 directory under your BerkeleyDB XML installation
directory. Open the DBDXML_all project, and Visual Studio should convert the project for you. 

Before building the solution, there are three additional dependencies to deal with. The DBDXML_all
project also builds interfaces for Java, Tcl, and Python, so install the Java SDK from the Sun Web site; you
can download and install Tcl and Python from ActiveState.com. All of these can be installed using the
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default installation settings. Now select Tools ➪ Options in Visual Studio. Then, in the options tree under
Projects and Solutions in VC++ Directories, you need to make changes to both the Include Files list and
the Library Files list. To the Include Files list, add the include directories from the Python, Tcl, and Java
installations. Add another path to the win32 directory under the Java include directory. After that, add
the lib directory for Java and Tcl to the Library Files list, and add the libs directory under the Python
installation. Now build the project. 

The project will generate a bunch of errors, all related to implicit casting. These can all be corrected by
explicitly casting the variable involved. Rebuild the project. Now the errors should be reduced to those
caused by missing libraries. In one case, the project was looking for tcl84g.lib and Tcl had tcl84.lib.
Simply change the additional library settings for the related projects to use the right library. There
should only be a few of these. Now rebuild again.

You are now ready to create and run the BerkeleyDB XML example for this chapter. Unlike the other
examples, this example is C++ code used to create an interface wrapper to utilize the Berkeley XML
database system. The first block shows a sample main program that uses the SimpleXMLWrapper object
to store some simple XML documents and then run a query to retrieve them:

#using <mscorlib.dll>

#include “dbxml/DbXml.hpp”
#include “db_cxx.h”
#include “SimpleXMLWrapper.hpp”

using namespace std;
using namespace DbXml;
using namespace XMLWrapper;
//some exception handling omitted for clarity

int main(void)
{

_CrtSetReportMode( _CRT_ASSERT, 0 ) ;
SimpleXMLWrapper* wrapper = new SimpleXMLWrapper();
wrapper->createEnvironment(“.”);
wrapper->createContainer(“myNewContainer.dbxml”);
wrapper->openContainer(“myNewContainer.dbxml”);
wrapper->insertDocument(

“<book><title>book1</title><chap>chapter 1</chap></book>”);
wrapper->insertDocument(

“<book><title>book2</title><chap>chapter 1</chap></book>”);
wrapper->insertDocument(

“<book><title>book3</title><chap>chapter 1</chap></book>”);

wrapper->queryDocuments(“/book”);

cout << wrapper->nextResult() << std::endl;

return 0;
}
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This next block of code shows the header file for the SimpleXMLWrapper:

#ifndef __SIMPLEXMLWRAPPER_HPP
#define __SIMPLEXMLWRAPPER_HPP

#using <mscorlib.dll>

#include “dbxml/DbXml.hpp”
#include “db_cxx.h”

using namespace std;
using namespace DbXml;

namespace XMLWrapper
{

class SimpleXMLWrapper
{
private:

const char* envPath;
const char* containerName;
DbEnv* env;
XmlManager* db;
XmlContainer* xmlContainer;
XmlResults* xmlResults;

public:
SimpleXMLWrapper ();
void createEnvironment(const char*);
void createContainer(const char*);
void openContainer(const char*);
void insertDocument(const char*);
void queryDocuments(const char*);
std::string nextResult();

};
}

#endif

Finally, this is the implementation of the wrapper object:

#using <mscorlib.dll>

#include “dbxml/DbXml.hpp”
#include “db_cxx.h”
#include “SimpleXMLWrapper.hpp”

using namespace std;
using namespace DbXml;

namespace XMLWrapper {

SimpleXMLWrapper::SimpleXMLWrapper ()
{

envPath = “.”;
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}

void SimpleXMLWrapper::createEnvironment ( const char* environmentLocation )
{

envPath = environmentLocation;
env = new DbEnv(0);
env->set_cachesize(0, 64 * 1024 * 1024, 1);
env->open(envPath,

DB_INIT_MPOOL|DB_CREATE|DB_INIT_LOCK|DB_INIT_LOG|DB_INIT_TXN, 0);
}

void SimpleXMLWrapper::createContainer ( const char* containerName )
{

this->containerName = containerName;
db = new XmlManager(env);
db->createContainer(containerName);

}

void SimpleXMLWrapper::openContainer ( const char* containerName )
{

xmlContainer = new XmlContainer(db->openContainer(containerName));
}

void SimpleXMLWrapper::insertDocument ( const char* strDoc )
{

XmlUpdateContext myContext = db->createUpdateContext();
XmlDocument xmlDoc = db->createDocument();
xmlDoc.setContent( strDoc );
xmlContainer->putDocument(xmlDoc, myContext, DBXML_GEN_NAME);

}

void SimpleXMLWrapper::queryDocuments ( const char* strQuery )
{

std::string fullQuery = “collection(‘“ + xmlContainer->getName() + “‘)” + 
strQuery;

XmlQueryContext context = db->createQueryContext();
xmlResults = new XmlResults( db->query(fullQuery, context) );

}

std::string SimpleXMLWrapper::nextResult ( )
{

XmlValue value;
xmlResults->next(value);
return value.asString();

}
}

With the previous files, you can create a managed DLL. This is then used as a reference with any other
managed application. Using this basic interface along with the Berkeley DB XML libraries, you are free
to store and query XML documents at will.
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Resource Information
This section lists important online sites for information about BerkeleyDB. First are the sites from which
the software for this section was downloaded, followed by a list of drivers (including third-party drivers
not used in this section), and finally sources that provide support information.

Downloads
For this section, all of the software can be downloaded from Sleepycat. The software downloaded for
this section was Berkeley DB 4.3 and Berkeley DB XML 2.1.

❑ http://sleepycat.com— Main page for BerkeleyDB downloads

Drivers
In this section, no drivers were used.

Support
Berkeley DB support information can be found online at the following pages:

❑ http://sleepycat.com/supports/documentation.shtml— The primary page for the
Berkeley DB documentation

❑ http://pybsddb.sourceforge.net/ref/intro/dbisnot.html— BerkeleyDB reference
guide

❑ http://sleepycat.com/supports/index.shtml— For professional support options

SQLite
SQLite is a great little product, oriented toward being simple and embedded. How simple? SQLite has
one executable file with no external dependencies. It reads and writes directly to a single database file,
yet it has ACID-compliant transactions. It is a serverless database that is very compact and requires no
configuration, yet it supports most of the SQL-92 standard.

SQLite was first released in 2000, and it is now at version 3.2.1, which was released in March of 2005. It
started out as a C API for an embedded database, but has grown to support many other interfaces, 
including ADO.NET 2. The ADO.NET 2 provider is officially beta until Visual Studio 2005 is released, but
because this is a book on ADO.NET 2, it seemed appropriate to put the provider through some beta testing.

SQLite is not actually licensed. The software has been donated to the public domain, so you can do 
anything you want with it. There is no license page, but for a discussion of SQLite and its public domain
status, look to the following page: www.sqlite.org/copyright.html.

SQL Compliance
Despite its simplicity, SQLite implements most of the SQL-92 standards, with some of the key exceptions
contained in the following table. For a full discussion, check the documentation or the online Wiki.
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SQL Feature Behavior

CHECK constraints Parsed, but only NOT NULL and UNIQUE constraints
are enforced.

FOREIGN KEY constraints Parsed, but not enforced.

Triggers Incomplete. Recursive triggers are not supported.
Triggers must operate on a FOR EACH ROW as
opposed to FOR EACH STATEMENT.

ALTER TABLE Incomplete. Only RENAME TABLE and ADD COLUMN
are allowed.

Nested Transactions Only one transaction may be active at a time.

COUNT (DISTINCT value) Not supported. An equivalent workaround is 
provided by the following:
SELECT COUNT(value) FROM (SELECT DISTINCT
value FROM table);

OUTER JOIN Incomplete. Only LEFT OUTER JOIN is supported.
RIGHT and FULL outer joins are not supported.

Views Incomplete. Views are read-only; there are no views
that support updates.

GRANT, REVOKE Not supported.

Another item that is not in the table, because it requires some additional explanation, is static typing.
SQLite provides no static type checking except for some specific instances. Static typing is generally
taken for granted — after all, you wouldn’t expect to put a string value into a double field, but with
SQLite you can. This isn’t catastrophic given that SQLite is targeted at single-user, embedded 
implementations, but it is important to note.

A second key point regarding SQLite is concurrency. SQLite is serverless, and it is not thread safe. Again,
this is a reflection of the product’s use as the back-end for an embedded system. The idea is that one
application will be using the database. However, this doesn’t mean that you can’t use SQLite in a server
environment. It can be, and is, used for the back-end of Web sites. These are not very high-volume Web
sites, but given the quickness of the SQLite engine, it can handle a fair load. Therefore, if you do 
implement SQLite in a server environment, you will have to ensure synchronized access to the database
yourself.

Database Features
The fact that SQLite is serverless is really a key feature. For instance, suppose you want to create a .NET
and Winform application that will be distributed to the desktop. Further, this application, like most, will
have data storage and manipulation requirements. In many cases, a full-blown database server is too
much, and a database server adds complexity to the installation and many possible support headaches.
Therefore, if you have client programs that need data functionality but not a full server, and whose data
access code needs to be SQL for future use, SQLite may well be your tool of choice.
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Other key features of the database also revolve around its minimalist approach. The first of these is that
there are zero configuration requirements. Now, when many vendors say they have zero configuration
and administrative requirements, they really mean is that they have only a few requirements that any
reasonably technical but nondatabase-oriented person can manage. After all, most of them are servers
that require network ports to be available, and so on. With SQLite, it really is zero: no network ports, no
infrequently used configuration file, nothing.

SQLite is also small, with a tiny footprint. It is a single library, and it is usable from the command line 
as a single executable less that 350 K in size. That really is tiny, which makes it an easily distributed
embedded database component.

Yet for all this smallness and simplicity, it is still pretty snappy. It can insert 25,000 rows into an indexed
table in about a second, assuming that all the inserts happen within a single transaction. This is a 
side benefit of not having to communicate through a server port. However, it is important to use a 
transaction around a large block of activity; otherwise, the additional file access for each update will
become detrimental.

Installation
The base installation of SQLite is the simplest of all the databases described here. SQLite has one single
executable that can be downloaded from sqlite.org, and you can copy it wherever you need it. The
latest version at the time of writing is version 3.2.1. While you are there, also download the SQLite
Analyzer, and the SQLite DLL without the TCL bindings.

Level of .NET Support
Given that SQLite provides an API, you will need a .NET wrapper to use it in a .NET application. There
are a couple floating about, but we will use the ADO.NET SQLite wrapper found at ADO.NET SQLite at
SourceForge and listed in the “Driver Information” section below.

Working with .NET
Here we examine a basic program that opens and interrogates a simple SQLite database. SQLite doesn’t
have any graphical tools. Go to a command prompt and start SQLite 3 with the following command:

Sqlite3 model.db

This will start SQLite and put you at the SQLite prompt. You can paste the CREATE TABLE statement
used previously into the command prompt and press Enter to create the PERSON_TBL. Then type
.exit at the SQLite prompt to exit the program. This procedure will create a new database with the
PERSON_TBL in it. Now, download the x86 DLL package from the SourceForge site. The package con-
tains one managed DLL and two supporting DLLs. All of these need to be available to the test program
for it to run.

Imports Finisar.SQLite

Module SQLiteTest

Sub Main()

Dim connectionString As String
Dim dbcon As IDbConnection
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Dim dbcmd As IDbCommand
Dim sql As String
Dim reader As IDataReader
Dim dataValue As Object
Dim strValue As String

Console.WriteLine(“SQLiteTest - start.”)
connectionString = “Data Source=C:\dbfiles\sqlite\model.db;” & _

“Compress=True;” & _
“Synchronous=Off;” & _
“Version=3”

dbcon = New SQLiteConnection(connectionString)
dbcon.Open()
dbcmd = dbcon.CreateCommand()
sql = “SELECT * FROM PERSON_TBL”
dbcmd.CommandText = sql
dbcmd.Transaction = dbcon.BeginTransaction()
reader = dbcmd.ExecuteReader()

Do While reader.Read() = True

dataValue = reader.GetValue(0)
strValue = dataValue.ToString()
Console.WriteLine(“Value: “ + strValue)

Loop

‘Clean up
reader.Close()
dbcmd.Dispose()
dbcon.Close()

reader = Nothing
dbcmd = Nothing
dbcon = Nothing

Console.WriteLine(“SQLiteTest - end.”)

End Sub

End Module

Violà! Connectivity for an embedded database; check online for a more in-depth sample.

Resource Information
This section lists important online sites for information about SQLite. First are the sites from which the
software for this section was downloaded, followed by a list of drivers (including third-party drivers not
used in this section), and finally sources that provide support information.

511

ADO.NET 2 and Open-Source Databases

18_584375 ch16.qxd  10/28/05  10:46 PM  Page 511



Downloads
For this section, all of the software can be downloaded from SQLite. The software downloaded for this
section was the SQLite 3.2.1 Windows Binary package:

❑ www.sqlite.org/download.html— Main page for SQLite downloads

Drivers
The two .NET connectors used for this section were the SQLite ADO.NET 2 connector and a SQLite C#
wrapper:

❑ http://sourceforge.net/projects/adodotnetsqlite— SourceForge site for SQLite
downloads for .NET

❑ http://sqlite-dotnet2.sourceforge.net— SourceForge site for SQLite downloads for
.NET 2

❑ www.ag-software.com/DownLoad.aspx?DownLoadID=6— AG-Software wrapper for SQLite
access in C#

❑ www.phpguru.org/downloads/csharp/SQLite.NET/— A C# wrapper for accessing SQLite

Support
SQLite support information can be found online at the following pages.

❑ www.sqlite.org/docs.html— The primary page for the SQLite documentation.

❑ sqlite-users-subscribe@sqlite.org— This is the mailing list for SQLite support.

❑ www.hwaci.com/sw/sqlite/prosupport.html— If you are interested in professional 
support or custom modifications, this is the business site for the primary author of SQLite.

Summary
So there you have it: seven open-source databases to check out. If you’re wondering which one is the
best open-source database to use with .NET, the answer depends on your environment and what you
want to do. If you need an embedded database for a standalone application, SQLite is a clear winner. If
someone already has a MySQL database running and you need to talk to it, then the choice has been
made for you. If you need a native XML solution, Berkeley DB has one for you. If your environment is
an open field and you need to implement a medium- to heavy-weight database server, you have choices
to make.

PostgreSQL, Firebird, Ingres, MySQL, and MaxDB could all potentially fit the bill, so it is worth analyzing
performance details for your application. MySQL might be weaker in the concurrency department, but if
your application has mostly reads, MySQL is solid and it will likely be deployed wherever you need to 
be. If you can leverage the object-relational features of PostgreSQL in your application, you could save
development time. Firebird is just easy to use and has a very active community. Ingres is a serious 
heavy-weight with may sophisticated capabilities, but its user community is not as well-established. Still,
if you have a large amount of data and can leverage such features as key-range partitioning, it is probably
your best bet. Now, go give some of these databases a try — with open source, it won’t cost you anything!
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For More Information
To highlight the information in this chapter, the resources presented earlier are summarized here:

MySql

❑ http://dev.mysql.com/downloads/— Main page for MySQL downloads.

❑ http://sourceforge.net/projects/mysqlnet/— SourceForge project for open source,
fully-managed drivers for an ADO.NET/MySQL connector.MaxDB.

❑ http://dev.mysql.com/downloads/— Main page for MySQL and MaxDB downloads.

❑ http://dev.mysql.com/downloads/maxdb/clients_75.html#Documentation— Main
page for MaxDB client downloads.

Firebird

❑ http://sourceforge.net/projects/firebird— Main SourceForge page for Firebird
downloads.

❑ www.ibphoenix.com/— A very useful site for all things InterBase and Firebird. This is also an
organization that sells professional support services.

BerkeleyDB

❑ http://sleepycat.com— Main page for BerkeleyDB downloads.

❑ http://pybsddb.sourceforge.net/ref/intro/dbisnot.html— BerkeleyDB reference
guide.

Ingres

❑ http://opensource.ca.com/projects/ingres— Main page for Ingres downloads.

❑ http://opensource.ca.com/projects/ingres/documents— The primary page for the
Ingres documentation.

PostgreSQL

❑ www.postgresql.org/ftp/win32/— Location for the Win32 installer.

❑ www.postgresql.org/community/— Provides links to the mailing lists and newsgroups.

SQLite

❑ www.sqlite.org/download.html— Main page for SQLite downloads.

❑ www.sqlite.org/docs.html— The primary page for the SQLite documentation.
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Oracle and ADO.NET

Oracle is one of the leading database vendors, and this chapter explores how Oracle and ADO.NET
work together. ADO.NET, using its managed provider framework, attempts to provide a consistent
interface for you to use when developing applications, regardless of which database vendor you are
using. We will discuss how to access the Oracle database using ADO.NET and how to choose
between the Microsoft Oracle provider and the Oracle Data Provider (ODP) that Oracle makes
available.

Until recently, Oracle has been providing support for .NET on a half-hearted basis; however, that
is changing with their current 10g R1 release. This release makes it clear that they are beginning to
focus on providing adequate support both in terms of making their provider consistent with the
Microsoft ADO.NET feature set and by introducing tools to integrate an Oracle Database Explorer
as a Visual Studio add-in. At the time of this writing, the add-in works with Visual Studio 2003,
but Oracle anticipates that a supported version of this for Visual Studio .NET 2005 will be 
available shortly after the release of Visual Studio .NET 2005 by Microsoft.

This chapter builds on what you’ve learned in previous chapters about ADO.NET and provides
specific information that is relevant to using ADO.NET with Oracle. We also cover how to use the
new tools that Oracle provides that integrate with Visual Studio .NET. The Oracle database is 
constantly evolving, and we will highlight a few of the features from the current release, 10g R2,
and describe how to use them with your applications. All 10g R2 discussions are based on Oracle
Beta 3 and may change slightly by the time of final release of the Oracle database.

Choosing an Oracle Data Provider
If you’re targeting Microsoft SQL Server, your choice of ADO.NET providers is a pretty short list,
for a number of reasons. If you are targeting Oracle, however, that choice is a little more complex.
Two popular data providers are readily available for Oracle. Microsoft provides one that ships
with the .NET Framework in the System.Data.OracleClient namespace. Oracle provides
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ODP.NET as a free download from their Web site. Deciding which to use may be simple or complicated
depending on your application and the version of the Oracle database software used. This section 
provides a high-level overview of each provider and their differences, as well as some recommendations
for deciding when use of one is more appropriate than use of another.

One of the first things to help decide which provider to use centers around what version of Oracle the
application will be using. Oracle’s ODP.NET provider will only work with Oracle 8i or later. The
Microsoft Oracle provider will work with version 7.3 and later.

For the most basic operations, such as fetching, inserting, and deleting, both of the providers are almost
identical and can be interchanged simply by reference to the assembly and changing the using statement
(C#) or Import statement (VB.NET). As you start looking at Oracle database–specific features, you will
start noticing a greater difference between the two providers.

Regardless of the provider chosen, taking the approach of trying to isolate vendor-specific code will
always serve you well. A good strategy to help this along is using consistent data access layer utilities
and leveraging code generation where appropriate. This means that if you place SQL or calls to SQL
throughout your application or Web forms and you decide to use a different database or provider, it is
more difficult than if you had put them in a common library that the applications used.

The less you use vendor-specific code, the more options you have. For example, by not going out of your
way to use Oracle-specific features, you leave the door open for later conversion to another database
with reduced complications. 

It is important to mention that there are other ADO.NET providers that vendors have integrated with
ADO.NET and that provide access to Oracle databases. Some focus on solving specific problems, while
others sit on top of the Oracle OCI client interface. We believe that for most purposes, using either
Microsoft Oracle provider or the Oracle ODP.NET will satisfy the needs of most applications. Therefore,
this chapter focuses on those two providers. 

Common Provider Classes
The following table describes the classes that are common to both the Microsoft Oracle provider and the
Oracle ODP.NET provider. While certain methods or properties will vary between the implementations,
the high-level concept is generally the same.

Class Description

OracleBFile Provides reference access and manipulation of 
Oracle’s BFile LOB type. 

OracleCommand SQL statement or name of the stored procedure; 
inherits from the DbCommand class.

OracleCommandBuilder Handles the auto-generation of SQL in conjunction 
with a dataset and a data adapter.

OracleConnection Represents the connection to the database; inherits 
from DbConnection.
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Class Description

OracleDataAdapter Oracle-specific data adapter that is used to fill and
update datasets or data tables.

OracleDataReader Provides for forward-only reading of results.

OracleException Thrown when errors occur using the Oracle
provider methods and exposes SQL-related error
information specific to Oracle.

OracleInfoMessageEventArgs Used to pass info and warning messages back to a
user-registered callback.

OracleParameter Used to define a parameter for adding to an 
OracleCommand.

OracleParameterCollection Collection of OracleParameter classes 

OracleTransaction Returned by BeginTransaction and then used 
to perform additional actions on the current
transaction.

OracleRowUpdateEventArgs Passed to callback handler for RowUpdated event
when DataAdapter update is called; called after
the update has occurred.

OracleRowUpdatingEventArgs Passed to the callback handler for RowUpdating
event when DataAdapter update is called; called
before the update has occurred.

Microsoft Oracle Provider
The Microsoft Oracle provider furnishes all the basic support to enable standard database activities.
Microsoft has even gone so far in the version that ships with .NET 2.x to include a little more support for
some of the features that are Oracle-specific. For example, REF Cursor support is now available, along
with specialized classes for dealing with Oracle’s large object types.

In general, the Microsoft Oracle provider will always lag behind and not implement as many Oracle-specific
features. On the other hand, it will typically have a more complete set of the features that make it play well
with .NET and the Visual Studio .NET IDE. For example, if you are interested in better built-in Visual Studio
.NET wizard support or the capability to use the more generic DbProviderFactories programming
model, then you will enjoy the support provided by the Microsoft Oracle provider. If you use the designers
provided with Visual Studio .NET and specify Oracle as the provider, you will be using the Microsoft Oracle
provider.

The following classes are specific to the System.Data.OracleClient namespace.

517

Oracle and ADO.NET

19_584375 ch17.qxd  10/28/05  10:47 PM  Page 517



Class Description

OracleClientFactory Inherits from DbProviderFactory and 
implements the necessary interface to support 
the new ADO.NET factory concept. This object
would typically be returned from a call to
DbProviderFactories.GetFactory.

OracleLob Represents Blob, CLob, and Nlog types. Used when
the file data is stored in the database instead of a
physical file in the operating system, which would
use an OracleBFile.

OracleConnectionStringBuilder Allows type-safe building of an Oracle-specific
connection string and has Oracle unique properties
such as LoadBalanceTimeout that are specific to
Oracle.

OraclePermission Used to help the Framework determine whether
the caller has code access security to access the
provider in a partial trust environment. 

OraclePermissionAttribute Intended for future use to define attributes for code
access security.

Oracle Data Provider for .NET (ODP.NET)
ODP.NET is Oracle’s provider. It implements all of the standard requirements to be a first-class ADO.NET
provider. Oracle has been aggressively releasing upgrades to the provider since it was released and has
ensured that it keeps current with the full Oracle database feature set. For example, support for XmlType,
array parameters, and statement caching — to name a few — are all provided only in the Oracle ODP.NET
provider. 

Because Oracle is dependent on Microsoft as they evolve ADO.NET, in general you will always see a 
little delay as .NET/ADO.NET features are available for Oracle to implement. For example, Oracle will
be waiting to add full support for the new base class model in ADO.NET until after ADO.NET/.NET 2.x
is released.

One of the features that is only supported using the Oracle ODP.NET provider is statement caching.
Statement caching eliminates the need to reparse each statement prior to execution. It is performed on a
per-connection basis, and provides a benefit only when a statement is executed multiple times. For some
applications, this can result in a large saving of processing resources.

If you are using the more current version of Oracle 10gR2, then you also have access to the Change
Notification support that is only available using the ODP.NET provider. We cover this in more detail
later in the chapter and provide a couple of examples that show how to use it to invalidate cache in your
ASP.NET application.

If your application is heavily dependent on Oracle and leverages some of the more advanced features,
then using the ODP.NET provider will probably make more sense. 
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The following classes are specific to the Oracle ODP.NET provider.

Class Description

OracleError Represents an error returned by Oracle; you can
access it via the Errors collection on the Oracle
provider’s OracleException class.

OracleErrorCollection Represents a collection of OracleError classes.

OracleDependency Represents a dependency between an application
and a database; typically used to track and receive
notifications when results of a query have been
invalidated due to a table modification.

OracleClob Provides a class to manipulate a CLOB object.

OracleRefCursor Used to access a REF CURSOR returned as an output
parameter on a SQL statement.

Oracle Developer Tools for Visual Studio .NET
This is a new add-in for Visual Studio .NET that enables the developer to access database designer 
capabilities without having to leave Visual Studio .NET. The release of this tool represents a big step
toward making a .NET developer more productive when working with the Oracle database. In the past,
developers had to use third-party tools and never had much of an integrated experience in the Visual
Studio .NET IDE.

You can download Oracle Developer Tools from the Oracle site at www.oracle.com/technology/
tech/dotnet/tools/

Using the new integrated tool set, a developer in Visual Studio .NET can manipulate Oracle database
objects from version 8i forward, regardless of the platform on which the database runs within Visual Studio
.NET. For example, even if your database resides on a UNIX server, you can still access it via the add-in.

The main interaction for the developer will be with the new Oracle Explorer window. Using this window
provides access to all of Oracle’s features. This is not just a generic provider on top of any database —
through this window, you can access most Oracle-specific features.

Figure 17-1 illustrates the view you have from the Oracle Explorer window. This tree view provides 
you with navigation for all of the Oracle database schema objects you have access to using the current
connection credentials. 

Dragging and dropping schema objects from the Oracle Explorer window will invoke automation that
generates code for you. The generated code will use ODP.NET calls, unlike code generated from the
built-in Visual Studio .NET wizards that use the Microsoft Oracle provider.

Using the add-on capabilities of Visual Studio .NET, Oracle developers will continue to see improvements
in the integration and capabilities for using the Oracle database from within Visual Studio .NET.
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Figure 17-1

The Oracle Explorer window enables you to have multiple connections to servers. These servers can be on
platforms other than Windows. You can add connections to the Explorer window, but you must have
defined the Oracle database in your local tnsnames.ora file in order for it to be available to add. By dragging
an object such as a table from the Oracle Explorer window, you can cause automation to generate code.

If you have access to a large number of schemas, you can use the Apply Filters dialog, shown in Figure
17-2, to reduce the schemas shown in the Oracle Explorer window. The Apply Filters window is accessed
by right-clicking a connection in the OE window.

Keep in mind that Oracle Explorer is not specific to a project/solution in Visual Studio .NET. Therefore,
if you filter a connection on a schema and later wonder why it is gone when you view it from a different
project/solution than you had used it in before, all you have to do is reset the filter on that connection.

As you can see in Figure 17-3, the Table Designer enables you to create/modify the design of a table from
within the Visual Studio .NET IDE. Here you can add and remove columns and specify the appropriate
data type information for the column. You can also specify or adjust constraints as well as define indexes.

As shown in Figure 17-4, the Data Window enables you to retrieve data from a table as well as edit and
insert new data.
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Figure 17-2

Figure 17-3

Figure 17-4
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Getting Started with Oracle Explorer
After you install Oracle’s Tools for Visual Studio .NET, you will find a new item on your View menu in
the IDE labeled Oracle Explorer. When you bring that up the first time after installation, you will not yet
have any connections defined.

One of the things you must do before you can add a connection is use the Oracle Net Configuration
Wizard or edit your tnsnames.ora file manually to define a data source. The Net Configuration Wizard
will walk you through a few screens and update the tnsnames.ora file for you. If you decide to modify
this file or just wish to look at what the wizard did, you can find the tnsnames.ora file in your 
ORACLE_HOME/network/admin directory.

The following example defines an entry that would show up in the Data Source list in the Oracle
Explorer Add Connection dialog:

PROADODB =
(DESCRIPTION =

(ADDRESS_LIST =
(ADDRESS = (PROTOCOL = TCP)(HOST = 192.168.20.228)(PORT = 1521))

)
(CONNECT_DATA =

(SERVICE_NAME = proadodb)
)

)

Once you have accomplished the above, or if you already had a valid specification in your tnsnames.ora
file from past use, you can click the + on the toolbar in Oracle Explorer or right-click the Data Connection
item in the tree and select Add Connection. Upon doing so, you will see the dialog shown in Figure 17-5.

Figure 17-5

Now that you have successfully defined a connection to Oracle Explorer, you can begin exploring your
Oracle schema objects.
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Support for Large Objects
The following table contains the data types that Oracle supports for dealing with large objects.

Data Type Comments

BFile Provides support for external large objects — actual storage of
the object is done in the file system. This column is read-only
and can reference data that is up to 4 GB.

BLOB Used to store large amounts of binary data — for example,
images or other multimedia files.

CLOB Large character data support — the first 4,000 are stored like a
varchar2 and inline with the row data.

NCLOB Similar to CLOB but provides support for the National
Character Set.

Getting a Connection
The OracleConnection class facilitates the creation of a unique connection to the Oracle database. 

The most important property or constructor parameter is the Connection String. Ideally, your 
connection string would be obtained from your configuration file or some other centralized location to
prevent it from being duplicated in multiple places in your application. ASP.NET also has a new section
for storing connection strings that enables built-in protection. Having them removed from your code also
makes it easier to deal with differences between development, test, and production environments. 

If it is necessary to manipulate the connection string or to build it from scratch in the application, the
Microsoft Oracle provider OracleConnectionStringBuilder class provides type-safe Oracle-specific
properties with which you can manipulate the string.

The following is a simple connection string that uses an alias, proadodb, from tnnames.ora:

Data Source=proadodb;Persist Security Info=True;User ID=proadouser;Password=proad

It is also possible to create a connection string without using a tnsnames.ora alias. Instead of specifying
the alias in the Data Source attribute, the entire connect descriptor is provided. The following example is
the same connection string but does not depend on tnsnames.ora:

Dim con As OracleConnection

Dim conStr As String

conStr = “User Id=scott; Password=tiger;” + _
“Data Source=(DESCRIPTION = (“ + _
“ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)” + _
“(HOST = YourHostName)(PORT = 1521)) )” + _
“(CONNECT_DATA = (SERVER = DEDICATED) “ + _
“(SERVICE_NAME = ProADO2DB)));”

Try

523

Oracle and ADO.NET

19_584375 ch17.qxd  10/28/05  10:47 PM  Page 523



con = New OracleConnection(conStr)
con.Open()
con.Close()

Catch ex As Exception
MessageBox.Show(ex.Message)

End Try

If this method is used, it would be best to move the actual connection string to your application 
configuration file instead of inline in the code.

The actual options that you can provide on a connection string vary between the two providers. The 
following tables highlight the options that are similar, and unique, to each of the providers.

Common Properties 
Following are connection string properties that both the Oracle ODP.NET and the Microsoft Oracle
provider recognize and support, and which share similar behaviors:

Property Comments

Enlist Determines whether the connection is automatically enlisted
in distributed transactions.

PersistSecurityInfo Determines whether security-sensitive information is
returned with a connection object once it is opened. 

Min Pool Size Minimum number that will be retained for the pool.

Max Pool Size Maximum number of pooled connections that will be kept.

Microsoft Oracle Provider–Specific Properties
The following table describes connection string properties that are specific to the Microsoft Oracle
provider.

Property Comments

LoadBalanceTimeout Determines whether the connection is automatically enlisted
in distributed transactions.

Pooling Determines whether connection pooling will be used — the
default is true.

IntegratedSecurity Indicates whether integrated security should be used; if
desired, you also should not set user/password — the
default value is false.

Unicode Specifies whether the client is Unicode-capable — the
default is false.

ConnectionTimeout The Microsoft provider does not support using this property.
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ODP.NET Provider–Specific Properties
The following table describes connection string properties that are specific to the Oracle ODP.NET
provider.

Property Comments

DBA Privilege Blank by default; set to SYSDBA or SYSOPER to request
administrative privileges. 

ValidateConnection Causes the connection to be validated prior to being
returned if it is from the pool. Keep in mind that this
causes a server round-trip, so it may cause unnecessary
overhead if overused.

Statement Cache Purge Causes the statement cache to be purged when the 
connection is returned to the pool — the default is false.

Statement Cache Size Enables statement caching and sets the cache size — the
default is 0.

Proxy User ID User ID for the proxy ID; provides support for the 
User ID to pass through a client-specific account 
or auditing, but have an application server account for
actual access authorization.

Proxy Password Password for the proxy ID.

Incr Pool Size Number of connections that are established if all of the
connections in the pool are in use and pool size is
below the max pool size. 

Decr Pool Size Number of connections that are dismantled and closed
when excessive connections are not in use. 

Once you have opened a connection, be sure to explicitly call the Close method. This ensures that
resources are freed, and, if you are using connection pooling, the connection is returned to the pool 
for use by other callers. A common problem is getting a data reader and not closing the underlying 
connection when an error occurs. 

Both the Oracle and Microsoft provider support the concept of connection pooling and enable it by
default. As you have seen, you can gain some amount of control over how the pool is managed. The
pool capabilities in the Microsoft Oracle provider use similar techniques to those used in the Microsoft
SQL Client provider.

If you want to use Windows authentication, it is supported by both providers using a concept referred to
as integrated security. Microsoft has a property on the connection string called IntegratedSecurity
that you set to true and for which you do not pass a user/password. Oracle’s provider expects the 
connection string to have the User ID=/ to indicate integrated security.
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Failover Notification
The Oracle provider has the capability to register a callback for notification in the event that Transparent
Application Failover is invoked. While the application should not see any loss of connection as long as at
least one instance is left, the application may want to log or notify the caller of the delay that may be
incurred.

The following sample shows how to register a failover handler:

OracleConnection con = new OracleConnection();
Con.Failover += new OracleFailoverEventHandler(MyFailOverHandler);

Only the last failover handler will be invoked if multiple handlers are registered on a connection.

Binding Parameters
Because there are generic .NET types and Oracle-specific DBTypes such as OracleString, there are
options for how you handle the binding of parameters.

In most cases for input parameters, the providers can determine the type of the item based on the
Parameter Value property type. For output parameters, you have the option of retrieving the data
using .NET types or Oracle types. How this happens is different for each of the providers.

Microsoft provides a property on the parameter object named OracleType that can be used to establish
the type. This property is linked to the DbType property of the object, and when one changes, the other
will be set to an appropriate compatible type.

The Oracle ODP.NET provider will determine how the data is returned based on whether the type 
specified on the parameter is an OracleDbType or a .NET DbType. For example, if you bind as an
OracleDbType.Char, the output is returned as an OracleString type.

Array Binding
One of the features unique to using ODP.NET is the capability to bind to an array of values and pass that
via the OracleParameter. This capability would be useful to applications that need to insert multiple
rows at once into a table. For example, a logging application that logs every 50 rows would, by using
this, reduce round-trips to the database from 50 times to one time. Keep in mind that because this is an
Oracle ODP.NET–specific feature, using it would render code incompatible with using the Microsoft
provider.

Somewhere, you need to have the data defined in an array that will be passed. For example purposes
here, we use a simple static array of numbers:

//define array of lucky numbers
int[] luckyNumberArr = {70,25,32,77};

To use this feature, you must set the ArrayBindCount on the OracleCommand object. This is an impor-
tant step, as otherwise, you are likely to get an error such as an invalid cast exception, because the
parameter is not expecting to find an array for the value:

//inform the command of number in array
cmd.ArrayBindCount = luckyNumberArr.Length;
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Setting up a parameter itself is pretty straightforward and very similar to a single value operation:

OracleParameter luckyNumberParm = new
OracleParameter(“luckynum”,OracleDbType.Int32);
luckyNumberParm.Direction = ParameterDirection.Input;
luckyNumberParm.Value = luckyNumberArr;
cmd.Parameters.Add(luckyNumberParm);

The following code is a more complete example that shows how to use more than a single parameter.  In
this example, you are adding rows to a visit log table and using the array binding to optimize the round
trips to the database engine:

string conStr = 
“User Id=scott;Password=tiger;Data Source = ProAdo2DB;”;

int[] userIDs = {1,2,3,4};
string[] urls = {“home.aspx”,”view.aspx”,”edit.aspx”,”print.aspx”};
DateTime[] visitDates = 
{

DateTime.Now.AddHours(1),DateTime.Now.AddHours(1), 
DateTime.Now.AddHours(1),DateTime.Now.AddHours(1)

};

string sql = “insert into VisitLog(UserID,URL,VisitDate)” +
“     values(:userid,:url,:visitdate)”;

using (OracleConnection con = new OracleConnection(conStr))
{

con.Open();

OracleCommand cmd = new OracleCommand(sql,con);
cmd.ArrayBindCount = userIDs.Length;

OracleParameter parmUserID = 
new OracleParameter(“userid”,OracleDbType.Int32);

parmUserID.Direction = ParameterDirection.Input;
parmUserID.Value = userIDs;
cmd.Parameters.Add(parmUserID);

OracleParameter parmUrls = 
new OracleParameter(“url”,OracleDbType.Varchar2);

parmUrls.Direction = ParameterDirection.Input;
parmUrls.Value = urls;
cmd.Parameters.Add(parmUrls);

OracleParameter parmVisitDate = 
new OracleParameter(“visitdate”,OracleDbType.Date);

parmVisitDate.Direction = ParameterDirection.Input;
parmVisitDate.Value = visitDates;
cmd.Parameters.Add(parmVisitDate);

cmd.ExecuteNonQuery();

con.Close();
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con.Dispose();

}

Errors encountered during array binding can be more complex to deal with. If an error occurs during the
array binding, an OracleException will be thrown. The Errors property (OracleErrorCollection)
will contain one or more of the errors that occurred. To make it easier for you to figure out which row
caused the problem, each OracleError object that is in the collection will have the ArrayBindIndex
property set. Using that value, you can determine which row is at fault.

The following example shows how you could modify the previous example to include a try / catch
and a message to the user about the row that caused the problem.

Some code has been omitted to preserve space.

string conStr = 
“User Id=scott;Password=tiger;Data Source = ProAdo2DB;”;

int[] userIDs = {1,2,3,4};
string[] urls = {“home.aspx”,null,”edit.aspx”,”print.aspx”};
DateTime[] visitDates = 
{

DateTime.Now.AddHours(1),DateTime.Now.AddHours(1), 
DateTime.Now.AddHours(1),DateTime.Now.AddHours(1)

};

string sql = “insert into VisitLog(UserID,URL,VisitDate)” +
“     values(:userid,:url,:visitdate)”;

using (OracleConnection con = new OracleConnection(conStr))
{

con.Open();

OracleCommand cmd = new OracleCommand(sql,con);
cmd.ArrayBindCount = userIDs.Length;

//Code to setup parameters omitted to save space

try
{

cmd.ExecuteNonQuery();
}
catch(OracleException oracleEx)
{

string errorMessage = 
String.Format(“OracleException {0} “, oracleEx.Message);
foreach(OracleError errorDet in oracleEx.Errors)
{

if (errorDet.Number != 24381)
errorMessage += String.Format(“ Array Error {0} occurred at parm

{1}”, 
errorDet.Message,errorDet.ArrayBindIndex);

}

MessageBox.Show(errorMessage);
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}

con.Close();
con.Dispose();

}

In the preceding example, to cause the error, we set the value of the second URL to null. This also assumes
that the table definition for this is set so as not to allow nulls. The other thing we did is add the try /
catch. Notice that we skipped the OracleError object that had an error number value of 24381; that
object is not specific to an array item and just gives you a generic error. Something else to know is that all
you get back is the row index and not a specific indication of which parameter caused the problem. It
would probably be a good idea to include the value of the item at the error index in your error message or
in any logging that is done.

Filling a DataTable
The following code will fill a data table using the OracleDataAdapter. Please note that the following
example works with either the Microsoft or ODP.NET provider. The only difference in this particular
code would be that the using statement of Oracle.DataAccess.Client would be changed to
System.Data.OracleClient to use the Microsoft provider:

using System;
using System.Data;
using Oracle.DataAccess.Client;
using System.Collections.Generic;
using System.Text;
using MSOracleProviderLib.Properties;

namespace MSOracleProviderLib
{

public class DBEventODP
{

public static DataTable GetRecentEvents(TimeSpan timeSpan)
{

//Determine Start Date 
DateTime startDate = DateTime.Now.Subtract(timeSpan);
using (OracleConnection con = new OracleConnection())
{

//use the property from the config file to get the 
//connection string this uses the new settings class 
//that allows type safe properties to config settings
con.ConnectionString = Settings.Default.ConnectionString;
con.Open();
OracleCommand command = new OracleCommand();
command.Connection = con;
command.CommandText = “SELECT EVENTID, TITLE, ABSTRACT,” +

“EVENTDATE FROM EVENT where EVENTDATE >= “:startdate and” + 
“ eventdate <= :enddate”;

command.CommandType = System.Data.CommandType.Text;
command.Parameters.Add(

new OracleParameter(“startdate”, startDate));
command.Parameters.Add(
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new OracleParameter(“enddate”, DateTime.Now));

OracleDataAdapter dataAdapter = 
new OracleDataAdapter(command);

DataTable dataTable = new DataTable();
dataAdapter.Fill(dataTable);
con.Close();
return dataTable;

}
}

}
}

Generically Filling a DataTable
In the prior example, we showed how you could use the Oracle-specific provider classes to fill a data
table. In this example, we will use the new DbProviderFactories to accomplish the same thing, but
with more generic code. Keep in mind that while this code will work with the Microsoft Oracle provider,
the ODP.NET provider does not currently provide support for the provider factory model. Oracle
expects to release an updated version of ODP.NET in the future to support this capability.

public static DataTable GetRecentEvents(TimeSpan timeSpan)
{

//Determine Start Date 
DateTime startDate = DateTime.Now.Subtract(timeSpan);
//get the provider invarient from config file
DbProviderFactory factory = 
DbProviderFactories.GetFactory(Settings.Default.DBProvider);

using (DbConnection con = factory.CreateConnection())
{

con.ConnectionString = 
Settings.Default.ConnectionString;

con.Open();
//get the marker string for parameters from utility function
string parmMarkerFormat = GetParameterMarkerFormat(con);

DbCommand command = factory.CreateCommand();
command.Connection = con;
command.CommandText = “SELECT EVENTID, TITLE, ABSTRACT,” +

“EVENTDATE FROM EVENT where EVENTDATE >= “ +
FormatParameterName(parmMarkerFormat, “startdate”) +
“ and eventdate <= “ +

FormatParameterName(parmMarkerFormat, “enddate”); 
command.CommandType = System.Data.CommandType.Text;
DbParameter startParm =  factory.CreateParameter();
startParm.ParameterName = 
FormatParameterName(parmMarkerFormat, “startdate”);
startParm.Value = startDate;
command.Parameters.Add(startParm);
DbParameter endParm = factory.CreateParameter();
endParm.ParameterName = 
FormatParameterName(parmMarkerFormat, “enddate”);
endParm.Value = DateTime.Now ;
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command.Parameters.Add(endParm);

DbDataAdapter dataAdapter = factory.CreateDataAdapter();
dataAdapter.SelectCommand = command;

DataTable dataTable = new DataTable();
dataAdapter.Fill(dataTable);
con.Close();
return dataTable;

}
}

Using the OracleDataReader
The OracleDataReader in both the ODP.NET and Microsoft’s Oracle provider enable you to retrieve
data in a forward-only stream of data. Using a data reader can be more efficient if you only need 
forward-only access to your data. Both of the providers give you access to the data in .NET types, as well
as Oracle types.

Oracle Type Methods
The following table describes specific methods provided on the DataReader to return data in Oracle
database types.

Method Comments

GetOracleBFile Obtains an instance of OracleBFile and allows manipulation of
the BFile column. 

GetOracleBinary Returns an OracleBinary structure that represents a variable-
length stream of binary data.

GetOracleDateTime Returns an OracleDateTime structure that is capable of 
representing date and time from Jan 1, 4712 B.C., to Dec 31, 4712 A.D.

GetOracleLob Returns an OracleLob, which represents a large object that has
been stored on the server, unlike the OracleBfile that simply
contains a reference to the file.

GetOracleMonthSpan Returns the value as an OracleMonthSpan object, which will 
represent the time internval in months.

GetOracleNumber Returns the value as an OracleMonth, which represents numeric
values between –1027 and 1027.

GetOracleString Returns the value as an OracleString, which represents a 
variable-length stream of characters.

GetOracleTimeSpan Returns an OracleTimeSpan structure, which contains an 
interval of time in days, hours, minutes, and seconds.

GetOracleValue Returns an Oracle type for the column at the ordinal specified on
the call.

GetOracleValues Provides a way to receive all columns at once, rather than having
to call methods for each column. 
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Inserting New Rows
Inserting data into an Oracle table is similar to inserting it with other databases, with one exception:
Oracle does not have the same concept of identity columns as Microsoft SQL Server. Oracle handles the
concept differently using a database object called a Sequence.

The Sequence database object enables you to generate a unique sequence number. Each user of the
sequence can increment it and obtain numbers for their use. Using the sequence is independent of a
transaction that is in progress. If you increment the sequence and your transaction rolls back, the
sequence number will still have been incremented. Because multiple users can obtain sequence numbers,
there is no guarantee that the numbers you get will not have gaps. It is also possible that you will have
gaps in the resulting table because of rollbacks that have happened. A sequence does not have to be
related to a single table, and therefore could be used to provide unique numbers to multiple tables. As a
general rule, having one sequence object per table or at least one for each major table results in easier
diagnostics and a better overall experience.

The following code will create a schema database object with the basic options. You can also specify several
other more advanced options to control the sequence.

CREATE SEQUENCE “PROADOUSER”.”SEQ_EVENT” 
START WITH 1 
CACHE 5 
MAXVALUE 10000000000000000000000000000

The following utility method shows an example of how to select the NEXTVAL from a sequence. Upon
calling this, the sequence value is incremented by 1:

public static decimal GetNextSequenceValue(OracleConnection con,
string sequenceName)

{
string sql = “SELECT “ + sequenceName + “.NEXTVAL FROM DUAL”;

OracleCommand command = new OracleCommand(sql,con);

object seqValue = command.ExecuteScalar();

return (decimal)seqValue;

}

The following code shows an example of an insert method that takes a data class that has properties for
the various fields and uses the preceding utility sequence method to get the EventID populated prior to
invoking the insert:

public static decimal CreateEvent(Event eventData)
{

using (OracleConnection con = new OracleConnection())
{

con.ConnectionString = 
Settings.Default.ConnectionString;
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con.Open();
//Go get the next value from the sequence
eventData.EventID =  

GetNextSequenceValue(con, “SEQ_EVENT”);
OracleCommand command = new OracleCommand();

command.Connection = con;
command.CommandText = 

“INSERT INTO EVENT ( EVENTID, TITLE, ABSTRACT,” +
“EVENTDATE) VALUES(:EVENTID,:TITLE,:ABSTRACT,:EVENTDATE)”;

command.CommandType = System.Data.CommandType.Text;
command.Parameters.Add(new 
OracleParameter(“EVENTID”, eventData.EventID));
command.Parameters.Add(new 
OracleParameter(“TITLE”, eventData.Title));
command.Parameters.Add(new 
OracleParameter(“ABSTRACT”, eventData.Abstract));
command.Parameters.Add(new 
OracleParameter(“EVENTDATE”, eventData.EventDate));
command.ExecuteNonQuery();
con.Close();
return eventData.EventID;

}
}

Common Oracle Errors
When developing an application that uses a database, it is almost impossible to avoid having to try to
figure out some weird exception message that was thrown as a result of one of your database calls. One
of the things you will ultimately encounter if you are developing an application targeting the Oracle
database is one of the cryptic messages you get when exceptions occur that are output from the
providers and the database engine. 

Unfortunately, not every error message you get will provide you with meaningful information to help
you solve the problem that was encountered. Many, if not most, offer only a vague indication of what
went wrong, and leave it up to you to find the specific issue in your code. 

Knowing this up front, it would be wise to implement good error handling and tracing capabilities in
your application. For example, a practice of tracing out your parameters and associated values in the
event that an exception occurs on a command using parameters would speed up debugging efforts. 

This section highlights a few of the common errors that can occur and provides some insight into how
you can handle these specific errors.

OracleException Class
When an error is generated during an Oracle call, the type of exception that is thrown is typically an
OracleException. This class varies slightly in implementation between the two providers.

The ODP.NET exception class has a property, Errors, that is a collection of OracleError class
instances. These will contain the individual errors generated by the database.
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The Microsoft provider uses the Data list dictionary property that is inherited by its implementation of
OracleException from ExternalException.

ORA-01008: Not all variables bound
This error typically occurs when you have specified one or more bind variables in your query, but you
have not added the same number of parameters to your command object. This can also occur if you have
provided the parameter but the names don’t match. Another scenario, one of our favorites, is to create
the parameter but fail to add it to the parameters collection. Like many other Oracle messages, we only
wish it would tell you the name that it thinks is not bound. You would think if they could detect the fact
that one is missing, they could enumerate the list to make it less of a search for the needle in the
haystack!

ORA-01858: A nonnumeric character was found where a numeric was
expected

Another one of our favorite exceptions typically occurs on an INSERT or UPDATE statement to which you
are binding parameters and you mess up the order. By default, binding is done by order and not by
name; you can change that by setting the BindByName property on the Command object. The other option
is to be sure that your parameters are, in fact, in the same order in which they are used in the query.

System.DllNotFoundException: Unable to load DLL (oci.dll)
This error typically occurs when trying to connect to Oracle and the user the process is running does not
have access to the Oracle/bin directory where the .dll resides. Check your access permissions.

Using Tracing to Find Problems
One of the tools you can use if you are using ODP.NET is the tracing capability. ODP.NET Tracing is 
controlled via settings in your registry for the Oracle Home that you are working with. Here is the 
registry key for this: 

HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\<HOME NAME>\ODP.NET

You should replace <HOME NAME> with your own specific home as installed on your system.

Figure 17-6 shows the registry settings that you have to enable, described in the following table.

Figure 17-6

534

Chapter 17

19_584375 ch17.qxd  10/28/05  10:47 PM  Page 534



Item Comments

TraceFileName Name in which to store the trace log entries.

TraceLevel 0 – no logging
1 – Entry/Exit
2 – Connection Pooling statistics
4 – Distributed transaction information

Values are accumulative, so if you set the value to 4, you
will also see the logging information for 1 and 2.

TraceOption 0 – Single trace file
1 – Multiple trace files; the thread ID will be appended to
the file name specified in TraceFileName.

Figure 17-7 shows what you will get in the trace file. 

Figure 17-7

Understanding Packages
Packages are a feature that is unique to the Oracle database. They provide for container-like encapsulation
or the grouping of schema items such as stored procedures, functions, cursor definitions, and variables.

Packages are not required, and if you create a stored procedure without one, it is said to be a standalone
object. The goal of packages is to make life easier by providing a convenient grouping of items for 
handling grants, and, if nothing else, for improved organization. 

Simple Package Definition
Figure 17-8 shows an example of a simple package definition that defines a ref cursor and a procedure
using that cursor.

Figure 17-8
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Simple Package Body
Figure 17-9 shows the body, or the actual implementation, of the procedure defined in the package defi-
nition shown in Figure 17-8.

Figure 17-9

Overloading Packaged Functions
One of the more obscure uses of packages is to overload functions. These are functions that have the
same name, but different parameters:

CREATE OR REPLACE PACKAGE PROADOPACKAGE IS 
FUNCTION calceventdurationhours(minutes NUMBER) return Number;
FUNCTION calceventdurationhours(start DATE,end DATE) return Number;

END;

Understanding the State of Your Package
One of the things to keep in mind about your package is whether it is reusable. This is important
because you can define variables inside of your package. By default, these, along with their associated
values, stay in existence for the life of the session stored in user global area (UGA) memory. This can
cause problems if you have a large number of connected users or if you expect the value to be reset for
you on each request.

Packages have an option called Serially Reusable that enables you to specify that you do not depend
on the values to be retained between requests, which enables Oracle to reuse the memory and not 
maintain it for the life of the session. The following sample demonstrates how to mark a package as 
serially reusable:

CREATE OR REPLACE PACKAGE PROADOPACKAGE IS
PRAGMA SERIALLY_REUSABLE;
MyFavoriteNumber NUMBER := 75;

END; 

Regular Expression Support
Regular expressions are a popular way to search for patterns within a string of data. Oracle started 
providing support for regular expressions in the 10g R1 version of their database. Oracle has implemented
regular expression in compliance with the POSIX Regular Expression Standard. You might have used
regular expressions before, either in ASP.NET validation controls or other places where you wanted to
match or extract string data. Oracle regular expression support now provides that same capability, but
running inside the database engine. This can result in both significant flexibility and improved perfor-
mance when compared to performing the function on the data once it is returned.
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You can use regular expressions via the provided function either in queries or to enforce constraints on
columns in your database tables. The following table describes the functions that Oracle provides to
implement regular expressions.

Function Description

REGEXP_LIKE Similar to using LIKE. However, instead of using the simple
syntax of LIKE, you have the full power of the regular
expression syntax

REGEXP_REPLACE Allows for complex replace operations that use regular
expressions — for example, you could use it to format
account numbers from one format to another 

REGEXP_INSTR Provides a more powerful version of the INSTR function
and enables you to search a string, returning an integer that
indicates the beginning or end of the matched string

REGEXP_SUBSTR Allows for searching a string, returning a substring 
matching pattern

The following examples show how you can add a constraint to a column to ensure that a properly for-
matted e-mail is only allowed in the e-mail column:

CREATE TABLE Person
(

PersonName   VARCHAR2(30),
Email        VARCHAR(75)
CONSTRAINT Person_Email_Valid
Check(REGEXP_LIKE(Email,’^.+@[^\.].*\.[a-z]{2,}$’))

)

The following example uses a regular expression in a query:

public static DataTable GetRecentEvents(string regEx)
{

using (OracleConnection con = new OracleConnection())
{

con.ConnectionString = Settings.Default.ConnectionString;
con.Open();
OracleCommand command = new OracleCommand();
command.Connection = con;
command.CommandText = “SELECT EVENTID, TITLE, ABSTRACT,” +

“EVENTDATE FROM EVENT where REGEXP_LIKE(TITLE,:regexp)”;
command.CommandType = System.Data.CommandType.Text;
command.Parameters.Add(new 
OracleParameter(“regexp”, regEx));
OracleDataAdapter dataAdapter = 

new OracleDataAdapter(command);

DataTable dataTable = new DataTable();
dataAdapter.Fill(dataTable);
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con.Close();
return dataTable;

}
}

Database Change Notification
One of the new features in ODP.NET Release 10g R2 is support for requesting to be notified when there is
a change in your query result, a database object, or the state of the database. The goal of the notification is
to advise you that your query result set is now invalidated by events that have occurred. This can be an
insert, a delete, or a modification of the underlying table.

This capability is similar in concept to support in Microsoft SQL Server; however, the implementation
and usage is different. Currently, this is supported only by the ODP.NET provider.

Think about all the places this can be used. Keep in mind that notification requires resources to track and
deliver the notifications. Ideally, this is best used on tables that are lookup-oriented and do not have 
frequent changes. A good example of a table that would make a good candidate is something that stores
your product list. A bad table would be a table that stores views of pages on the site. Clearly, the later
would constantly be triggering the notification events and could affect performance on both the client
and database server.

OracleDependency is a new class provided by ODP.NET that defines the relationship between your
application and the database. Creating an instance of this class does not set up the notification channel
with the database that occurs when the OracleDependency object is associated with an OracleCommand
and that command is executed. Behind the scenes, this class sets up a listener that will receive the 
notifications from the database engine. 

One thing to keep in mind about notification is that the host on which the application is running must
have a port open in order for the database engine to send the notification back to the listener. By default,
the port is randomly picked by ODP.NET when the first registration occurs. You can set a fixed port
using the static property OracleDependency.Port.

The user with which you plan to use change notification must be granted that privilege; otherwise, an
exception will occur. The following statement will grant that authority to the user:

grant change notification to proadouser

Once you have registered to receive notification, it will stay active until one of the following occurs to
cause it to end. First, you can call OracleDependency.RemoveRegistration to cause it to be removed
from the notification list. If you had set the Timeout property on the OracleNotificationRequest
object and the time span specified has elapsed, the notification will automatically stop. Second, that
same object also has a notify once property (IsNotifiedOnce), which if set prior to registration will
auto-terminate the notification after the first notification is received.

The following shows how to create an instance of OracleDependency and associate it with your 
command. After this association, when you execute the command, the change notification registration
will occur:
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OracleDependecy dependency = new OracleDependency(command);

As indicated previously, you can establish the port on which that notification will occur. Keep in mind
that in most production environments containing one or more firewalls or routers, it is generally a good
idea to agree on a port to use with your network administrator. It would be a good idea to have that 
discussion early in the development process to avoid last-minute surprises. The following will establish
the port that is used:

OracleDependency.Port = 1595;

The next thing that you need to do is establish a callback that will be invoked when the notification
occurs. If you do not establish a callback, you could also poll the HasChanges property on the dependency
instance. The following example establishes a callback (this should happen prior to execution/registra-
tion of the notification):

Dependency.OnChanged += new OnChangedEventHandler(MyNotification_Handler);

Using Notification with ASP.NET
As you learned in previous chapters using the SqlCacheDependecy object, you can leverage the 
notification capabilities of Microsoft SQL Server to have it invalidate an ASP.NET cache entry upon
change of the item in the database. While Oracle supplies an OracleDependency, it does not currently
tie that into the ASP.NET cache infrastructure.

It’s likely that in the future, ODP.NET might provide this capability, so check with the current version.
However, to demonstrate how notification works, let’s implement our own simplified version of
SqlCacheDependency to allow a cache key to invalidate when the Oracle change notification occurs.

We’ll first define our own version of OracleCacheDependency. It will inherit from System.Web
.Caching.CacheDependency so that we can pass it as required to the Cache API calls. If you’re not
familiar with the System.Web.Caching.CacheDependency class, its purpose is to define a relationship
between an ASP.NET cache item and a file, another cache key, or another dependency object. Or, in this
case, we are extending it to integrate with Oracle change notification capabilities:

public class OracleCacheDependency : System.Web.Caching.CacheDependency
{

public OracleCacheDependency(OracleCommand command)
{

m_Dependency = new OracleDependency(command);

//work around a beta bug that threw error if you tried to 
//set this after there was already a request
try
{

OracleDependency.Port = 1005;
}
catch { }

m_Dependency.OnChange += new OnChangeEventHandler(HandleChangeNotification);
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}

void HandleChangeNotification(object sender, 
OracleNotificationEventArgs eventArgs)

{
this.NotifyDependencyChanged(this, EventArgs.Empty);

}

private OracleDependency m_Dependency;

public OracleDependency Dependency
{

get { return m_Dependency; }
set { m_Dependency  = value; }

}

}

In the preceding code sample, your constructor takes an Oracle Command object instance and associates it
with the OracleCommand object instance. At the same time, the OnChanged event is handled to detect
when the result set of the query has changed. Finally, when the notification occurs, you call the
NotifyDependencyChanged method of CacheDependency, which will result in the associated
ASP.NET cache entry being deleted.

The next thing we need to do is see how we can use this object when we cache data into the ASP.NET
Cache. The goal here is to simply show how change notification works, and to demonstrate how to tie it
into the cache dependencies. Much more elaborate things could be done here, but they are beyond the
scope of this book.

In the following example, we are going to first determine whether the DataSet is in the ASP.NET Cache.
If not, we will proceed to execute the query. For the query, we will tie it to an OracleDependency that is
exposed from the OracleCacheDependency object. By doing this, we can then add the item to the
ASP.NET cache and associate that cached item to our OracleCacheDependency instance that will get
the notification. When that notification occurs, it will cause the CacheDendency to trigger, thereby
removing the item from the ASP.NET Cache:

public class EmployeeManager
{

public  DataSet GetEmployees()
{

if (HttpContext.Current.Cache[“Employees”] != null)
return HttpContext.Current.Cache[“Employees”] as DataSet;

string conStr = “User Id=scott; Password=tiger;” +
“Data Source=(DESCRIPTION = (“ +
“ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)” +
“(HOST = 192.168.75.2)(PORT = 1522)) )” +
“(CONNECT_DATA = (SERVER = DEDICATED) “ +
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“(SERVICE_NAME = ProADO2DB)));”;

using (OracleConnection con = new OracleConnection())
{

con.ConnectionString = conStr;
con.Open();
OracleCommand command = new OracleCommand();
command.Connection = con;
command.CommandText = “select * from emp where rownum < 5”;
command.CommandType = System.Data.CommandType.Text;
OracleCacheDependency cacheDep = new OracleCacheDependency(command);

OracleDataAdapter dataAdapter = new OracleDataAdapter(command);

DataSet ds = new DataSet();
dataAdapter.Fill(ds);
con.Close();

HttpContext.Current.Cache.Insert(“Employees”, ds, cacheDep);

return ds;

}
}

}

The preceding method simply checks whether the data is in the ASP.NET cache; if not, it will perform
the query and register to receive the change notification. After the query is performened, it will place a
copy of the DataSet into the ASP.NET cache and return the data to the caller.

In our example, the caller is an ASP.NET Web form that has a GridView and gets its data from an
ObjectDataSource. The following shows how the EmployeeManager class along with the
OracleCacheDependency class can be used with a page:

<asp:GridView ID=”GridView1” runat=”server” DataSourceID=”ObjectDataSource1” />
<asp:ObjectDataSource ID=”ObjectDataSource1” runat=”server”
SelectMethod=”GetEmployees” TypeName=”EmployeeManager” />

No other markup or code is required on the Web form to use the example classes. A complete discussion
of the ObjectDataSource and other associated data-binding classes can be found in Chapter 7.

When the Web form is accessed, the following list of employee data is provided in the grid (see 
Figure 17-10).
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Figure 17-10

Since this was the first time the query was run, it would have registered the change notification request with
Oracle. You can check to see whether your notification registration is active by using the following query:

select * from user_change_notification_regs;

Using this query, you can confirm that the registration did happen. The CallBack column returned by
this query can be helpful in determining the host that the server will attempt to notify when change
occurs. The column will contain the host and the port on which notification will occur.

To trigger the notification, issue the following command to update the salaries on each employee row:

update emp set sal = sal * 1.2;
commit;

The preceding SQL statement will increase the salary of each employee by 20 percent and then commit
the change. Upon commitment of the change, the notification event will occur, and your notification
handler will be called. Figure 17-11 shows the output after the page is refreshed and the change 
notification has been received.

As demonstrated, change notification provides a powerful way to create dependencies on data in the
Oracle database. While the example focused on how to integrate the notification with the ASP.NET
cache, the same capabilities can be accomplished by a Windows Form application or a Windows Service.
The important thing to remember about using change notification is to make sure to use it only on tables
that are not subject to a high volume of data changes.
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Figure 17-11

Using the BFile Type
As we discussed earlier, the BFile data type provides for storage external to the database in the file 
system of up to 4 GB of data. This data type is best used where you are consistently storing large
amounts of unstructured data and you want to keep that data separate from your database. Because 
the BFile type provides the capability to retrieve partial amounts of the associated data, it can be 
advantageous to only retrieve the portion of the referenced item that you need for continued processing,
not all of the referenced data.

A nice feature of the BFile data type is that it supports the concept of reference copying. Use this when
you want to perform a copy and have only the reference to the data copied and not the file data itself.
This can save a tremendous amount of time if you are doing the operation frequently. A unique feature 
is that the referenced file does not have to exist at the time the reference is created, only when you
attempt to use the reference. This could enable you to create a placeholder that is later filled in by your
application. 

The System.Data.OracleClient data provider that Microsoft ships with ADO.NET 2.x provides support
for the BFile using the OracleBFile class. 

Oracle Services for Microsoft Transaction Server
Oracle Services for MTS provides for the integration of Oracle databases as resource managers when
performing transactions that are coordinated by MTS. Oracle Services interacts with the Microsoft
Distributed Transaction Coordinator (MSDTC) to enable all COM components to participate in a global
transaction. 

Using this capability would enable you to conduct a transaction that spanned multiple database
instances, including a mixed environment. For example, you could coordinate work across a Microsoft
SQL Server or an Oracle database running on a different operating system, and even include MSMQ
activities as part of a single transaction coordinated by MSDTC.
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In version 9i of Oracle, improvements were made in the architecture to extend scalability by placing an
instance of the Oracle Services within each MTS process. In release 9iR2 that followed, support was also
added to enable transactional .NET applications to use Oracle as a resource manager. 

Oracle Database Extensions for .NET
Starting with Oracle 10g Release 2, developers will be able to write stored procedures and functions in
managed code that will execute within the Oracle database engine. This support is similar to the support
that Microsoft SQL Server provides for hosting the CLR Framework. This capability is available on
Oracle databases running on the Windows platform, but is not available on other platforms at this time. 

From a coding point of view, a stored procedure or function can be written in any CLR-supported lan-
guage, such as C# or VB.NET. Database access must be accomplished using a server-side version of the
Oracle Data Provider (ODP.NET). The main difference is that you already have a database session and
you cannot start a local or distributed transaction. The Oracle.DataAccess.Server namespace pro-
vides access to the ODP.NET provider.

Oracle runs the CLR and associated stored procedures and functions inside a process external to the
database main process (extproc.exe). You must have the .NET Framework installed on your database
server; however, it may be version 1.0 or later. You can debug your stored procedure or function by
attaching to this process from within Visual Studio .NET and setting breakpoints in your class.

Deployment support is performed via the Oracle Deployment Wizard, which is integrated with the
Oracle Developer Tools for Visual Studio .NET. During the deploy process, the Deployment Wizard will
take a copy of your assembly and place it in ORACLE_BASE\ORACLE_HOME\bin\CLR.

Installation of the Database Extensions
You must install the Oracle Database Extensions to use this feature. If you have already created a
database and later want to enable this feature, you must first install the Database Extensions and then
run the Database Configuration Assistant to enable support.

Your development machine should have the Oracle Developer Tools for Visual Studio .NET installed, so
you will be able to deploy the .NET code to the database.

Building a .NET Stored Procedure
In order to be deployed, the stored procedure must be implemented as a static (shared in VB.NET)
method and not be a constructor or destructor. The parameter types that you use must be compatible
with the Oracle native database types. When deployment happens, they must be mapped by the
Deployment Wizard.

The following steps will walk you through the process of creating a .NET stored procedure that will
work with the Oracle database.
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Step 1 — Set Up a Project to Hold the Class
There is no special type of project for Oracle .NET extensions as there is for Microsoft SQL Server managed-
code stored procedures. Class library projects make the best type of project to hold the stored procedure
you are going to create. Using other types of projects, such as an executable or Windows application 
project, is not recommended. Because these are special classes and you may want to have special
deployment processes for them, keeping them in their own library, separate from other class libraries that
might hold your common business logic, is a good recommendation.

Step 2 — Add a Class and Define Your Method
The following example is a class that we have added to our new class library project. In this example, we
will query the emp table, determine the number of rows in it, and return the count:

Imports Oracle.DataAccess.Client

Public Class EmployeeProcs

Public Shared Function GetEmployeeCount() As Int32

Dim con As OracleConnection

con = New OracleConnection(“context connection=true”)

con.Open()

Dim cmd As OracleCommand
cmd = con.CreateCommand()
cmd.CommandText = “select count(*) from emp”

Dim empCount As Int32

empCount = cmd.ExecuteScalar()

cmd.Dispose()

con.Close()

Return empCount

End Function

Step 3 — Deploy the New Stored Procedure 
Now that you have built a class that implements a stored procedure, the next step is to deploy the
assembly so that it can be seen by the database. To accomplish this, you use the Oracle Data Tools and
click the .NET Assembly ➪ Deploy .NET Assembly menu item. This will start the deployment wizard to
help walk you through the process. Figure 17-12 shows the first step in the deploy process.
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Figure 17-12

You select the Copy Assembly and Generate Stored Procedures option. The wizard will copy your
assembly from its current location to ORACLE_HOME\bin\clr. On future pages, you will be able to
select whether you want to create a subdirectory inside the clr folder for your specific assembly. This 
is a good idea if you have multiple applications using the same server and you want to keep some 
separation between the applications.

Once you have selected to copy the assembly and generate stored procedures, the wizard will move
along to collect information on which of the methods in the selected assembly you wish to deploy. This
is also where you identify the parameter mapping and the associated security. Figure 17-13 shows how
to perform method selection.

Mapping parameter data types on stored procedures is an important part of deploying a managed-code
stored procedure. Figure 17-14 shows the wizard screen that helps you through mapping. Consult the
ODP.NET reference manual for further details on recommended mappings.

Once you have completed these steps, you will be presented with a summary of your options. You will
also have the option to save the script to a file for later use. If you were to take a look at the proposed
script, it would look similar to the following:

CREATE OR REPLACE LIBRARY SIMPLESPROC_DLL AS
‘$ORACLE_HOME\bin\clr\SimpleSProc.dll’;
GRANT EXECUTE ON SIMPLESPROC_DLL TO SCOTT;
GRANT EXECUTE ON DBMS_CLR TO SCOTT;
GRANT EXECUTE ON DBMS_CLRTYPE TO SCOTT;
GRANT EXECUTE ON DBMS_CLRPARAMTABLE TO SCOTT;
CREATE OR REPLACE FUNCTION SCOTT.GETEMPLOYEECOUNT RETURN BINARY_INTEGER;

This script will run after the assembly is already copied to the bin\clr directory. The first line of the
script defines the library to the Oracle database. Next, the grants will provide access to the owner to use
the stored procedure. Finally, the actual function that you want to use is defined.
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Figure 17-13

Figure 17-14
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Summary
Covering all of the features and capabilities of ADO.NET and the Oracle database would be impossible
without dedicating a complete book (or books) to the topic. In this chapter, we tried to provide you with
a foundation for using ADO.NET with the Oracle database.

You learned that your choice of providers and the specific feature set in Oracle that you will use is criti-
cal. Additionally, your commitment to follow an architectural design that will isolate your database calls
to a layer within your application will also provide you with ongoing flexibility to make decisions as
your application evolves. 

The new Oracle Tools for Visual Studio .NET represent tangible evidence of Oracle’s commitment to 
provide first-class tools for working with their database from within Visual Studio .NET. Using these
tools, you will be more productive and have quick access to schema information as you develop your
application.

The Oracle database continues to evolve and add new and progressive features, such as Change
Notification and Extensions for .NET that represent significant advances for the database engine. Keep
in mind that these are not the only new features Oracle has added, and you are encouraged to learn
about and explore the other features not highlighted in this chapter.

Using any database is associated with learning the specifics of that vendor’s product. If every database
provided the same support, there would be no competition between database vendors. ADO.NET, while
not perfect, provides significant abstraction on top of vendor specifics, yet provides you with the flexi-
bility to access the low-level vendor-specific capabilities needed by your application. As you read about
how ADO.NET works, absorbing the specifics of the different databases we cover in the book, take a few
minutes to reflect on the similarities. 

In addition to the content covered in this chapter, Oracle provides a wealth of information in their 
production documentation. Another great place to get questions answered is on the Oracle Web site,
www.oracle.com, where key members of the Oracle team, in addition to the community, provide
responses to questions posted to their forums.

For More Information
To complement the information in this chapter, take a look at the following resources:

❑ Oracle .NET Developer Center —www.oracle.com/technology/tech/dotnet/

❑ Download Oracle Developer Tools for Visual Studio .NET — www.oracle.com/
technology/tech/dotnet/tools/
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Constants/Enums 
in ADO.NET

This appendix provides the set of constants/enums that are included with ADO.NET with Version
2.0 of the .NET Framework and with SQL Server 2005.

Parent Name Enum Description

Microsoft.SqlServer.Server.TriggerAction Enum.

TriggerAction Invalid The Invalid TriggerAction event.

TriggerAction Insert The Insert TriggerAction occurs
when a row is inserted into a table. This
is a DML trigger.

TriggerAction Update The Update TriggerAction occurs
when a row is updated in a table. This
is a DML trigger.

TriggerAction Delete The Delete TriggerAction occurs
when a row is deleted from a table.
This is a DML trigger.

TriggerAction CreateTable The CreateTable TriggerAction
occurs when a table is created. This is a
DDL trigger.

TriggerAction AlterTable The Alter TriggerAction occurs
when a table is altered. This is a DDL
trigger.

Table continued on following page
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Parent Name Enum Description

TriggerAction DropTable The DropTable TriggerAction occurs when
a table is dropped. This is a DDL trigger.

TriggerAction CreateIndex The CreateIndex TriggerAction occurs
when an index has been created. This is a
DDL trigger.

TriggerAction AlterIndex The AlterIndex TriggerAction occurs
when an index has been altered. This is a
DDL trigger.

TriggerAction DropIndex The DropIndex TriggerAction occurs
when an index has been dropped. This is a
DDL trigger.

TriggerAction CreateSecurity This is a DDL trigger.
Expression

TriggerAction DropSecurity This is a DDL trigger.
Expression

TriggerAction CreateSynonym The CreateSynonym TriggerAction occurs
when a synonym has been created. This is a
DDL trigger.

TriggerAction DropSynonym The DropSynonym TriggerAction occurs
when a synonym has been dropped. This is a
DDL trigger.

TriggerAction CreateView The CreateView TriggerAction occurs
when a view has been created. This is a DDL
trigger.

TriggerAction AlterView The AlterView TriggerAction occurs
when a view has been altered. This is a DDL
trigger.

TriggerAction DropView The DropView TriggerAction occurs when
a synonym has been created. This is a DDL
trigger.

TriggerAction CreateProcedure The CreateProcedure TriggerAction
occurs when a procedure has been created.
This is a DDL trigger.

TriggerAction AlterProcedure The AlterProcedure TriggerAction
occurs when a procedure has been altered.
This is a DDL trigger.

TriggerAction DropProcedure The DropProcedure TriggerAction occurs
when a procedure has been dropped. This is a
DDL trigger.

550

Appendix A

20_584375 appa.qxd  10/28/05  10:55 PM  Page 550



Parent Name Enum Description

TriggerAction CreateFunction The CreateFunction TriggerAction
occurs when a function has been created. This
is a DDL trigger.

TriggerAction AlterFunction The AlterFunction TriggerAction occurs
when a function has been altered. This is a
DDL trigger.

TriggerAction DropFunction The DropProcedure TriggerAction occurs
when a function has been dropped. This is a
DDL trigger.

TriggerAction CreateTrigger The CreateTrigger TriggerAction occurs
when a trigger has been created. This is a
DDL trigger.

TriggerAction AlterTrigger The AlterProcedure TriggerAction
occurs when a trigger has been altered. This
is a DDL trigger.

TriggerAction DropTrigger The DropTrigger TriggerAction occurs
when a trigger has been dropped. This is a
DDL trigger.

TriggerAction CreateEvent The CreateEventNotification
Notification TriggerAction occurs when an event has

been created. This is a DDL trigger.

TriggerAction DropEvent The DropEventNotification
Notification TriggerAction occurs when an event has

been dropped. This is a DDL trigger.

TriggerAction CreateType The CreateType TriggerAction occurs
when a type has been created. This is a DDL
trigger.

TriggerAction DropType The DropType TriggerAction occurs when a
type has been dropped. This is a DDL trigger.

TriggerAction CreateAssembly The CreateAssembly TriggerAction
occurs when an assembly has been created.
This is a DDL trigger.

TriggerAction AlterAssembly The AlterAssembly TriggerAction occurs
when a procedure has been altered. This is a
DDL trigger.

TriggerAction DropAssembly The DropAssembly TriggerAction occurs
when an assembly has been dropped. This is
a DDL trigger.

Table continued on following page
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Parent Name Enum Description

TriggerAction CreateUser The CreateUser TriggerAction occurs
when a user has been created. This is a DDL
trigger.

TriggerAction AlterUser The AlterUser TriggerAction occurs
when a user has been altered. This is a DDL
trigger.

TriggerAction DropUser The DropUser TriggerAction occurs 
when a user has been dropped. This is a DDL
trigger.

TriggerAction CreateRole The CreateRole TriggerAction occurs
when a role has been created. This is a DDL
trigger.

TriggerAction AlterRole The AlterRole TriggerAction occurs
when a role has been altered. This is a DDL
trigger.

TriggerAction DropRole The DropRole TriggerAction occurs when
a role has been dropped. This is a DDL
trigger.

TriggerAction CreateAppRole The CreateAppRole TriggerAction occurs
when an AppRole has been created. This is a
DDL trigger.

TriggerAction AlterAppRole The AlterAppRole TriggerAction occurs
when an AppRole has been altered. This is a
DDL trigger.

TriggerAction DropAppRole The DropAppRole TriggerAction occurs
when an AppRole has been dropped. This is
a DDL trigger.

TriggerAction CreateSchema The CreateSchema TriggerAction occurs
when a schema has been created. This is a
DDL trigger.

TriggerAction AlterSchema The AlterProcedure TriggerAction
occurs when a procedure has been altered.
This is a DDL trigger.

TriggerAction DropSchema The DropSchema TriggerAction occurs
when a schema has been dropped. This is a
DDL trigger.

TriggerAction CreateLogin The CreateLogin TriggerAction occurs
when a login has been created. This is a DDL
trigger.
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Parent Name Enum Description

TriggerAction AlterLogin The AlterLogin TriggerAction occurs
when a login has been altered. This is a DDL
trigger.

TriggerAction DropLogin The DropLogin TriggerAction occurs
when a login has been dropped. This is a
DDL trigger.

TriggerAction CreateMsgType The CreateMsgType TriggerAction occurs
when a MsgType has been created. This is a
DDL trigger.

TriggerAction DropMsgType The DropMsgType TriggerAction occurs
when a MsgType has been dropped. This is a
DDL trigger.

TriggerAction CreateContract The CreateContract TriggerAction
occurs when a contract has been created. This
is a DDL trigger.

TriggerAction DropContract The DropContract TriggerAction occurs
when a contract has been dropped. This is a
DDL trigger.

TriggerAction CreateQueue The CreateQueue TriggerAction occurs
when a queue has been created. This is a DDL
trigger.

TriggerAction AlterQueue The AlterQueue TriggerAction occurs
when a queue has been altered. This is a DDL
trigger.

TriggerAction DropQueue The DropQueue TriggerAction occurs
when a queue has been dropped. This is a
DDL trigger.

TriggerAction CreateService The CreateService TriggerAction occurs
when a service has been created. This is a
DDL trigger.

TriggerAction AlterService The AlterService TriggerAction occurs
when a service has been altered. This is a
DDL trigger.

TriggerAction DropService The DropService TriggerAction occurs
when a service has been dropped. This is a
DDL trigger.

TriggerAction CreateRoute The CreateRoute TriggerAction occurs
when a route has been created. This is a DDL
trigger.

Table continued on following page
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Parent Name Enum Description

TriggerAction AlterRoute The AlterRoute TriggerAction occurs
when a route has been altered. This is a DDL
trigger.

TriggerAction DropRoute The DropRoute TriggerAction occurs
when a route has been dropped. This is a
DDL trigger.

TriggerAction GrantStatement The GrantStatement TriggerAction
occurs when access to a statement is granted.
This is a DDL trigger.

TriggerAction DenyStatement The DenyStatement TriggerAction occurs
when access to a statement is denied. This is a
DDL trigger.

TriggerAction RevokeStatement The RevokeStatement TriggerAction
occurs when access to a statement is revoked.
This is a DDL trigger.

TriggerAction GrantObject The GrantObject TriggerAction occurs
when access to an object is granted. This is a
DDL trigger.

TriggerAction DenyObject The DenyObject TriggerAction occurs
when access to a statement is denied. This is a
DDL trigger.

TriggerAction RevokeObject The RevokeObject TriggerAction occurs
when access to an Object is revoked. This is a
DDL trigger.

TriggerAction CreateBinding The CreateBinding TriggerAction occurs
when the Create Binding. This is a DDL
trigger.

TriggerAction AlterBinding The AlterBinding TriggerAction occurs
when the Alter Binding statement was 
executed. This is a DDL trigger.

TriggerAction DropBinding The DropBinding TriggerAction occurs
when Drop Binding statement is executed.
This is a DDL trigger.

TriggerAction CreatePartition The CreatePartitionFunction
Function TriggerAction occurs when the Create

Partition Function is executed. This is a DDL
trigger.

TriggerAction AlterPartition The AlterPartitionFunction
Function TriggerAction occurs when an Alter

Partition Function is executed. This is a DDL
trigger.
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Parent Name Enum Description

TriggerAction DropPartition The DropPartitionFunction
Function TriggerAction occurs when a Drop Parition

Function is executed. This is a DDL trigger.

TriggerAction CreatePartition The CreateParitionScheme
Scheme TriggerAction occurs when the Create

Parition Scheme statement is executed. This is
a DDL trigger.

TriggerAction AlterPartition The AlterParitionScheme TriggerAction
Scheme occurs when the Alter Partition Scheme 

statement is revoked. This is a DDL trigger.

TriggerAction DropPartition The DropPartitionScheme TriggerAction
Scheme occurs when the Drop Partition Scheme. This

is a DDL trigger.

System.Data.AcceptRejectRule Enum

AcceptRejectRule None No action occurs (default).

AcceptRejectRule Cascade Changes are cascaded across the relationship.

System.Data.Common.CatalogLocation Enum

CatalogLocation Start The Start value indicates the positon of the
catalogn name occurs before the schema por-
tion of a full qualified table name in a text
command

CatalogLocation End The End value indicates the positon of the
catalog name occurs after the schema 
portion of a full qualified table name in a text
command

System.Data.CommandBehavior Enum

CommandBehavior Default The query may return multiple result 
sets. Execution of the query may affect 
the database state. Calling ExecuteReader
(CommandBehavior.Default) is 
functionally equivalent to calling
ExecuteReader().

CommandBehavior SingleResult The query returns a single result set.

CommandBehavior SchemaOnly The query returns column information only
and does not affect the database state.

CommandBehavior KeyInfo The query returns column and primary key
information. The query is executed without
any locking on the selected rows.

Table continued on following page
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Parent Name Enum Description

CommandBehavior SingleRow The query is expected to return a single row.
Execution of the query may affect the
database state. Some .NET Framework data
providers may, but are not required to, use
this information to optimize the performance
of the command. If your SQL statement is
expected to return only a single row, specify-
ing SingleRow can also improve application
performance. It is possible to specify
SingleRow when executing queries that
return multiple result sets. In that case, multi-
ple result sets are still returned, but each
result set has a single row.

CommandBehavior SequentialAccess Provides a way for the DataReader to handle
rows that contain columns with large binary
values. Rather than load the entire row,
SequentialAccess enables the DataReader
to load data as a stream. You can then use the
GetBytes or GetChars method to specify a
byte location to start the read operation, and
a limited buffer size for the data being
returned.

CommandBehavior CloseConnection When the command is executed, the 
associated Connection object is closed when
the associated DataReader object is closed.

System.Data.CommandType Enum

CommandType Text An SQL text command. (Default) 

CommandType StoredProcedure The name of a stored procedure.

CommandType TableDirect The name of a table.

System.Data.ConflictOption Enum

ConflictOption CompareAll Update and delete statements will include all 
SearchableValues searchable columns from the table in the

WHERE clause. This is equivalent to specifying
CompareAllValuesUpdate |
CompareAllValuesDelete.

ConflictOption Compare If any Timestamp columns exist in the table, 
RowVersion they are used in the WHERE clause for all gener-

ated update statements. This is equivalent to
specifying CompareRowVersionUpdate |
CompareRowVersionDelete.
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ConflictOption OverwriteChanges All update and delete statements include
only PrimaryKey columns in the WHERE
clause. If no PrimaryKey is defined, all
searchable columns are included in the WHERE
clause. This is equivalent to
OverwriteChangesUpdate |
OverwriteChangesDelete.

System.Data.ConnectionState Enum

ConnectionState Closed The connection is closed.

ConnectionState Open The connection is open.

ConnectionState Connecting The Connection object is connecting to the
data source. (This value is reserved for future
versions of the product.) 

ConnectionState Executing The Connection object is executing a 
command. (This value is reserved for future
versions of the product.) 

ConnectionState Fetching The Connection object is retrieving data.
(This value is reserved for future versions of
the product.) 

ConnectionState Broken The connection to the data source is broken.
This can occur only after the connection has
been opened. A connection in this state may
be closed and then reopened. (This value is
reserved for future versions of the product.) 

System.Data.DataRowAction Enum

DataRowAction Nothing The row has not changed.

DataRowAction Delete The row was deleted from the table.

DataRowAction Change The row has changed.

DataRowAction Rollback The most recent change to the row has been
rolled back.

DataRowAction Commit The changes to the row have been committed.

DataRowAction Add The row has been added to the table.

DataRowAction ChangeOriginal The original version of the row has been
changed.

DataRowAction ChangeCurrent The original and the current versions of the 
AndOriginal row have been changed.
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System.Data.DataRowState Enum

DataRowState Detached The row has been created but is not part of
any datatable. A datarow is in this state
immediately after it has been created and
before it is added to a collection, or if it has
been removed from a collection.

DataRowState Unchanged The row has not changed since update was
last called.

DataRowState Added The row has been added to a datatable, and
update has not been called.

DataRowState Deleted The row was deleted using the delete
method of the datarow.

DataRowState Modified The row has been modified and update has
not been called.

System.Data.DataRowVersion Enum

DataRowVersion Original The row contains its original values.

DataRowVersion Current The row contains current values.

DataRowVersion Proposed The row contains a proposed value.

DataRowVersion Default The default version of datarow. For a
DataRowState value of Added, Modified, or
Current, the default version is Current. 

System.Data.SerializationFormat Enum

SerializationFormat Xml Serialize as XML content. This is the default.

SerializationFormat Binary Serialize as binary content. This format was
added with .NET 2.0.

System.Data.DataSetDateTime Enum

DataSetDateTime Local DateTime is always stored in Local. If Utc or
Unspecified is assigned to a column in this
mode, it is first converted into Local.
Serialization in this mode is always 
performed in Local. There is an offset during
serialization.

DataSetDateTime Unspecified DateTime is always stored in Unspecified. If
Local or Utc is assigned to a column in this
mode, it is first converted into Unspecified.
Serialization in this mode does not cause an
offset.
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DataSetDateTime UnspecifiedLocal DateTime is stored in Unspecified. If Local or
Utc is assigned to a column in this mode, it is
first converted into Unspecified. Serialization
in this mode causes offset. This is the default
behavior and is backward compatible. This
option should be thought of as being
Unspecified in storage but applying an offset
that is similar to Local during serialization.

DataSetDateTime Utc DateTime is stored in Universal Coordinated
Time (UTC). If Local or Unspecified is
assigned to a column in this mode, it is first
converted into Utc format. Serialization in
this mode is always performed in Utc. There
is no offset during serialization.

System.Data.DataViewRowState Enum

DataViewRowState None None.

DataViewRowState Unchanged An unchanged row.

DataViewRowState Added A new row.

DataViewRowState Deleted A deleted row.

DataViewRowState ModifiedCurrent A current version, which is a modified 
version of original data (see
ModifiedOriginal).

DataViewRowState CurrentRows Current rows including unchanged, new, and
modified rows.

DataViewRowState ModifiedOriginal The original version (although it has since
been modified and is available as
ModifiedCurrent).

DataViewRowState OriginalRows Original rows, including unchanged and
deleted rows.

System.Data.DbType Enum

DbType AnsiString A variable-length stream of non-Unicode
characters ranging between 1 and 8,000 
characters.

DbType Binary A variable-length stream of binary data 
ranging between 1 and 8,000 bytes.

DbType Byte An 8-bit, unsigned integer ranging in value
from 0 to 255.

DbType Boolean A simple type representing Boolean values of
true or false.
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DbType Currency A currency value ranging from –2 63 (or
–922,337,203,685,477.5808) to 2 63 –1 (or
+922,337,203,685,477.5807) with an accuracy
to a ten-thousandth of a currency unit.

DbType Date Date and time data ranging in value from
January 1, 1753, to December 31, 9999, to an
accuracy of 3.33 milliseconds.

DbType DateTime A type representing a date and time value.

DbType Decimal A simple type representing values ranging
from 1.0 x 10 –28 to approximately 7.9 x 10 28

with 28–29 significant digits.

DbType Double A floating point type representing values
ranging from approximately 5.0 x 10 –324 to 1.7
x 10 308 with a precision of 15–16 digits.

DbType Guid A globally unique identifier (or GUID). A
GUID has 2128 unique values.

DbType Int16 An integral type representing signed 16-bit
integers with values between –32768 and
32767.

DbType Int32 An integral type representing signed 32-bit
integers with values between –2147483648
and 2147483647.

DbType Int64 An integral type representing signed 64-bit
integers with values between
–9223372036854775808 and
9223372036854775807.

DbType Object A general type representing any reference or
value type not explicitly represented by
another DbType value.

DbType SByte An integral type representing signed 8-bit
integers with values between –128 and 127.

DbType Single A floating-point type representing values
ranging from approximately 1.5 x 10 –45 to 3.4
x 10 38 with a precision of 7 digits.

DbType String A type representing Unicode character
strings.

DbType Time Date and time data ranging in value from
January 1, 1753, to December 31, 9999, to an
accuracy of 3.33 milliseconds.
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DbType UInt16 An integral type representing unsigned 16-bit
integers with values between 0 and 65535.

DbType UInt32 An integral type representing unsigned 32-bit
integers with values between 0 and
4294967295.

DbType UInt64 An integral type representing unsigned 64-bit
integers with values between 0 and
18446744073709551615.

DbType VarNumeric A variable-length numeric value.

DbType AnsiString A fixed-length stream of non-Unicode 
FixedLength characters.

DbType StringFixed A fixed-length string.
Length

DbType Xml A parsed representation of an XML document
or fragment.

System.Data.IsolationLevel Enum

IsolationLevel Chaos The pending changes from more highly 
isolated transactions cannot be overwritten.

IsolationLevel ReadUncommitted A dirty read is possible, meaning that no
shared locks are issued and no exclusive
locks are honored.

IsolationLevel ReadCommitted Shared locks are held while the data is being
read to avoid dirty reads, but the data can be
changed before the end of the transaction,
resulting in nonrepeatable reads or phantom
data.

IsolationLevel RepeatableRead Locks are placed on all data used in a query,
preventing other users from updating the
data. Prevents nonrepeatable reads but 
phantom rows are still possible.

IsolationLevel Serializable A range lock is placed on the rows, 
preventing other users from updating or
inserting rows into the dataset until the trans-
action is complete.

IsolationLevel Snapshot Reduces blocking by storing a version of data
that one application can read while another is
modifying the same data. Indicates that from
one transaction, you cannot see changes
made in other transactions, even if you
requery.
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IsolationLevel Unspecified An isolation level other than the one specified
is being used, but the level cannot be 
determined.

System.Data.LoadOption Enum

LoadOption OverwriteChanges The incoming values for this row will be 
written to both the current value and the
original value versions of the data for each
column.

LoadOption PreserveChanges The incoming values for this row will be 
written to the original value version of each
column. The current version of the data in
each column will not be changed.

LoadOption Upsert The incoming values for this row will be 
written to the current version of each column.
The original version of each column’s data
will not be changed.

System.Data.MappingType Enum

MappingType Element The column is mapped to an XML element.

MappingType Attribute The column is mapped to an XML attribute.

MappingType SimpleContent The column is mapped to a System.Xml
.XmlText node.

MappingType Hidden The column is mapped to an internal 
structure.

System.Data.MissingMappingAction

Missing Passthrough The source column or source table is created
MappingAction and added to the DataSet using its original

name.

Missing Ignore The column or table not having a mapping is 
MappingAction ignored. Returns null.

Missing Error An error is generated if the specified column 
MappingAction mapping is missing.

Missing Add Adds the necessary columns to complete the 
SchemaAction schema.

Missing Ignore Ignores the extra columns.
SchemaAction

Missing Error An error is generated if the specified column 
SchemaAction mapping is missing.
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Missing AddWithKey Adds the necessary columns and primary key 
SchemaAction information to complete the schema. To func-

tion properly with the .NET Framework Data
Provider for OLE DB, AddWithKey requires
that the native OLE DB provider obtains nec-
essary primary key information by setting the
DBPROP_UNIQUEROWS property, and then
determines which columns are primary key
columns by examining DBCOLUMN_KEYCOLUMN
in the IColumnsRowset. As an alternative, the
user may explicitly set the primary key con-
straints on each column. This ensures that
incoming records that match existing records
are updated instead of appended. When
using AddWithKey, the .NET Framework
Data Provider for SQL Server appends a FOR
BROWSE clause to the statement being executed.
Users should be aware of potential side
effects, such as interference with the use of
SET FMTONLY ON statements. See SQL Server
Books Online for more information.

System.Data.ParameterDirection Enum

ParameterDirection Input The parameter is an input parameter.

ParameterDirection Output The parameter is an output parameter.

ParameterDirection InputOutput The parameter is capable of both input and
output.

ParameterDirection ReturnValue The parameter represents a return value from
an operation such as a stored procedure,
built-in function, or user-defined function.

System.Data.Rule Enum

Rule None No action is taken on related rows.

Rule Cascade Delete or update related rows. This is the
default.

Rule SetNull Set values in rows related to DBNull.

Rule SetDefault Set values in related rows to the value 
contained in the DefaultValue property.

System.Data.SchemaType Enum

SchemaType Source Ignore any table mappings on the
DataAdapter. Configure the schema using
the incoming schema without applying any
transformations.
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SchemaType Mapped Apply any existing table mappings to the
incoming schema. Configure the
System.Data.DataSet with the trans-
formed schema.

System.Data.SchemaSerializationMode Enum

Schema IncludeSchema Includes schema serialization for a typed 
SerializationMode DataSet. The default.

Schema ExcludeSchema Skips schema serialization for a typed 
SerializationMode DataSet.

System.Data.SqlDbType Enum

SqlDbType BigInt A 64-bit signed integer.

SqlDbType Binary A fixed-length stream of binary data ranging
between 1 and 8,000 bytes.

SqlDbType Bit An unsigned numeric value that can be 0, 1,
or null.

SqlDbType Char A fixed-length stream of non-Unicode 
characters ranging between 1 and 8,000 char-
acters.

SqlDbType DateTime Date and time data ranging in value from
January 1, 1753 to December 31, 9999 to an
accuracy of 3.33 milliseconds.

SqlDbType Decimal A fixed precision and scale numeric value
between –10 38 –1 and 10 38 –1.

SqlDbType Float A floating-point number within the range of
–1.79E +308 through 1.79E +308.

SqlDbType Image A variable-length stream of binary data 
ranging from 0 to 2 31 –1 (or 2,147,483,647)
bytes.

SqlDbType Int A 32-bit signed integer.

SqlDbType Money A currency value ranging from –2 63 (or
–922,337,203,685,477.5808) to 2 63 –1 (or
+922,337,203,685,477.5807) with an accuracy
to a ten-thousandth of a currency unit.

SqlDbType NChar A fixed-length stream of Unicode characters
ranging between 1 and 4,000 characters.

SqlDbType NText A variable-length stream of Unicode data
with a maximum length of 2 30 –1 (or
1,073,741,823) characters.
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SqlDbType NVarChar A variable-length stream of Unicode charac-
ters ranging between 1 and 4,000 characters.
Implicit conversion fails if the string is greater
than 4,000 characters. Explicitly set the object
when working with strings longer than 4,000
characters.

SqlDbType Real A floating-point number within the range of
–3.40E +38 through 3.40E +38.

SqlDbType UniqueIdentifier A globally unique identifier (or GUID).

SqlDbType SmallDateTime Date and time data ranging in value from
January 1, 1900, to June 6, 2079, to an 
accuracy of 1 minute.

SqlDbType SmallInt A 16-bit signed integer.

SqlDbType SmallMoney A currency value ranging from –214,748.3648
to +214,748.3647 with an accuracy to a 
ten-thousandth of a currency unit.

SqlDbType Text A variable-length stream of non-Unicode data
with a maximum length of 2 31 –1 (or
2,147,483,647) characters.

SqlDbType Timestamp Automatically generated binary numbers,
which are guaranteed to be unique within a
database. Timestamp is used typically as a
mechanism for version-stamping table rows.
The storage size is 8 bytes.

SqlDbType TinyInt An 8-bit unsigned integer.

SqlDbType VarBinary A variable-length stream of binary data 
ranging between 1 and 8,000 bytes. Implicit
conversion fails if the byte array is greater
than 8,000 bytes. Explicitly set the object
when working with byte arrays larger than
8,000 bytes.

SqlDbType VarChar A variable-length stream of non-Unicode
characters ranging between 1 and 8,000 
characters.

SqlDbType Variant A special data type that can contain numeric,
string, binary, or date data as well as the SQL
Server values Empty and Null, which is
assumed if no other type is declared.

SqlDbType Xml An XML value.
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SqlDbType Udt A SQL Server 2005 user-defined type (UDT).

System.Data.StatementType Enum

StatementType Select An SQL query that is a SELECT statement.

StatementType Insert An SQL query that is an INSERT statement.

StatementType Update An SQL query that is an UPDATE statement.

StatementType Delete An SQL query that is a DELETE statement.

StatementType Batch An SQL query that is a batch of statements.

System.Data.UpdateRowSource Enum

UpdateRowSource None Any returned parameters or rows are
ignored.

UpdateRowSource OutputParameters Output parameters are mapped to the
changed row in the datatable.

UpdateRowSource FirstReturned The data in the first returned row is mapped 
Record to the changed row in the datatable.

UpdateRowSource Both Both the output parameters and the first
returned row are mapped to the changed row
in the datatable.

System.Data.UpdateStatus Enum

UpdateStatus Continue The data update is to continue processing
rows.

UpdateStatus ErrorsOccurred The event handler reports that the update
should be treated as an error.

UpdateStatus SkipCurrentRow The current row is not to be updated.

UpdateStatus SkipAll The current row and all remaining rows are 
RemainingRows not to be updated.

System.Data.XmlReadMode Enum

XmlReadMode Auto Default. 

XmlReadMode ReadSchema Reads any inline schema and loads the data.

XmlReadMode IgnoreSchema Ignores any inline schema and reads data into
the existing schema. If any data does not
match the existing schema, it is discarded. If
the data is a DiffGram, IgnoreSchema has
the same functionality as DiffGram.
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XmlReadMode InferSchema Ignores any inline schema, infers schema from
the data, and loads the data. If the table already
contains a schema, the current schema is
extended by adding new tables or adding
columns to existing tables. An exception is
thrown if the inferred table already exists but
with a different namespace, or if any of the
inferred columns conflict with existing columns.

XmlReadMode DiffGram Reads a DiffGram, applying changes from
the DiffGram to the table.

XmlReadMode Fragment Reads XML fragments, such as those generated
by executing FOR XML queries, against an
instance of SQL Server.

XmlReadMode InferTypedSchema Ignores any inline schema, infers a strongly
typed schema from the data, and loads the
data. If the type cannot be inferred from the
data, it is interpreted as string data. 

System.Data.XmlWriteMode Enum

XmlWriteMode WriteSchema Writes the current contents of the schema as
XML data, with the relational structure as
inline XSD schema.

XmlWriteMode IgnoreSchema Ignore any inline schema. Rely on the Data’s
existing schema.

XmlWriteMode DiffGram Writes the entire contents as a DiffGram,
including original and current values.

System.Data.KeyRestrictionBehavior Enum

KeyRestrictionBehavior AllowOnly Default. Identifies the only additional 
connection string parameters that are
allowed. Identifies additional connection
string parameters that are not allowed.

KeyRestriction PreventUsage Identifies additional connection string 
Behavior parameters that are not allowed.

System.Data.Common.GroupByBehavior Enum

GroupByBehavior Unknown The support for the GROUP BY clause is
unknown.

GroupByBehavior NotSupported The GROUP BY clause is not supported.

GroupByBehavior Unrelated There is no relationship between the columns
in the GROUP BY clause and the nonaggre-
gated columns in the SELECT list. You may
group by any column.
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GroupByBehavior MustContainAll The GROUP BY clause must contain all 
nonaggregated columns in the select list, 
and can contain other columns not in the
select list.

GroupByBehavior ExactMatch The GROUP BY clause must contain all 
nonaggregated columns in the select list, and
must not contain other columns not in the
select list.

System.Data.Common.IdentifierCase Enum

IdentifierCase Unknown The data source has ambiguous rules 
regarding identifier case and cannot discern
this information.

IdentifierCase Insensitive The data source ignores identifier case when
searching the system catalog. The identifiers
“ab” and “AB” will match.

IdentifierCase Sensitive The data source distinguishes identifier case
when searching the system catalog. The 
identifiers “ab” and “AB” will not match.

System.Data.Common.SupportedJoinOperators Enum

Supported None The data source does not support join 
JoinOperators queries.

Supported Inner The data source supports inner joins.
JoinOperators

Supported LeftOuter The data source supports left outer joins.
JoinOperators

Supported RightOuter The data source supports right outer joins.
JoinOperators

Supported FullOuter The data source supports full outer joins.
JoinOperators

System.Data.Odbc.OdbcType Enum

OdbcType BigInt Exact numeric value with precision 19 (if
signed) or 20 (if unsigned) and scale 0
(signed: +–2^63 – 1, unsigned:0 2^64 – 1)
(SQL_BIGINT).

OdbcType Binary A stream of binary data (SQL_BINARY). This
maps to Byte.

OdbcType Bit Single-bit binary data (SQL_BIT). This maps
to Boolean.
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OdbcType Char A fixed-length character string (SQL_CHAR).
This maps to String.

OdbcType DateTime Date data in the format yyyymmddhhmmss
(SQL_TYPE_TIMESTAMP). This maps to
DateTime.

OdbcType Decimal Signed, exact numeric value with a precision
of at least p and scale s, where 1 ≤ p ≤ 15 and
s ≤ p. The maximum precision is driver-spe-
cific (SQL_DECIMAL).

OdbcType Numeric Signed, exact, numeric value with a precision
p and scale s, where 1 ≤ p ≤ 15, and s ≤ p
(SQL_NUMERIC).

OdbcType Double Signed, approximate, numeric value with a
binary precision 53 (zero or absolute value
10[–308] to 10[308]) (SQL_DOUBLE).

OdbcType Image Variable-length binary data. Maximum length
is data source–dependent (SQL_LONG-
VARBINARY).

OdbcType Int Exact numeric value with precision 10 and
scale 0 (signed: –2[31] ≤ n ≤ 2[31] – 1,
unsigned:0 ≤ n ≤ 2[32] – 1) (SQL_INTEGER).

OdbcType NChar Unicode character string of fixed string
length (SQL_WCHAR).

OdbcType NText Unicode variable-length character data.
Maximum length is data source–dependent.
(SQL_WLONGVARCHAR). 

OdbcType NVarChar A variable-length stream of Unicode 
characters (SQL_WVARCHAR).

OdbcType Real Signed, approximate, numeric value with a
binary precision 24 (zero or absolute value
10[–38] to 10[38]) (SQL_REAL). 

OdbcType UniqueIdentifier A fixed-length, globally unique identifier
(GUID) (SQL_GUID). 

OdbcType SmallDateTime Data and time data in the format yyyymmd-
dhhmmss (SQL_TYPE_TIMESTAMP). 

OdbcType SmallInt Exact numeric value with precision 5 and
scale 0 (signed: –32,768 ≤ n ≤ 32,767,
unsigned: 0 ≤ n ≤ 65,535) (SQL_SMALLINT). 
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OdbcType Text Variable-length character data. Maximum
length is data source–dependent (SQL_LONG-
VARCHAR). 

OdbcType Timestamp A stream of binary data (SQL_BINARY).

OdbcType TinyInt Exact numeric value with precision 3 and
scale 0 (signed: –128 ≤ n ≤ 127, unsigned:0 ≤ n
≤ 255) (SQL_TINYINT). 

OdbcType VarBinary Variable-length binary. The maximum is set
by the user (SQL_VARBINARY). 

OdbcType VarChar A variable-length stream character string
(SQL_CHAR). 

OdbcType Date Date data in the format yyyymmdd
(SQL_TYPE_DATE). 

OdbcType Time Date data in the format hhmmss
(SQL_TYPE_TIMES).

System.Data.OleDb.OleDbLiteral Enum

OleDbLiteral Invalid An invalid value. This maps to
DBLITERAL_INVALID.

OleDbLiteral Binary_Literal A binary literal in a text command. This maps
to DBLITERAL_BINARY_LITERAL.

OleDbLiteral Catalog_Name A catalog name in a text command. This
maps to DBLITERAL_CATALOG_NAME.

OleDbLiteral Catalog The character that separates the catalog 
_Separator name from the rest of the identifier in a text

command. This maps to DBLITERAL_CATA-
LOG_SEPARATOR.

OleDbLiteral Char_Literal A character literal in a text command. This
maps to DBLITERAL_CHAR_LITERAL.

OleDbLiteral Column_Alias A column alias in a text command. This maps
to DBLITERAL_COLUMN_ALIAS.

OleDbLiteral Column_Name A column name used in a text command or in
a data-definition interface. This maps to
DBLITERAL_COLUMN_NAME.

OleDbLiteral Correlation_Name A correlation name (table alias) in a text 
command. This maps to DBLITERAL_CORRE-
LATION_NAME.

OleDbLiteral Cursor_Name A cursor name in a text command. This maps
to DBLITERAL_CURSOR_NAME.
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OleDbLiteral Escape_ The character used in a LIKE clause to escape 
Percent_Prefix the character returned for the DBLITERAL

_LIKE_PERCENT literal. For example, if a per-
cent sign (%) is used to match zero or more
characters and the backslash (\) is used, the
characters “abc\%%” match all character val-
ues that start with “abc%”. Some SQL dialects
support a clause (the ESCAPE clause) that can
be used to override this value. This maps to
DBLITERAL_ESCAPE_PERCENT_PREFIX.

OleDbLiteral Escape_ The character used in a LIKE clause to escape 
Underscore the character returned for the 
_Prefix DBLITERAL_LIKE_UNDERSCORE literal. For

example, if an underscore (_) is used to match
exactly one character and the backslash (\) is
used, the characters “abc\_ _” match all char-
acter values that are five characters long and
start with “abc_”. Some SQL dialects support
a clause (the ESCAPE clause) that can be used
to override this value. This maps to DBLIT-
ERAL_ESCAPE_UNDERSCORE_PREFIX.

OleDbLiteral Index_Name An index name used in a text command or in
a data-definition interface. This maps to
DBLITERAL_INDEX_NAME.

OleDbLiteral Like_Percent The character used in a LIKE clause to match
zero or more characters. For example, if this
is a percent sign (%), the characters “abc%”
match all character values that start with
“abc”. This maps to DBLITERAL_LIKE_
PERCENT.

OleDbLiteral Like_Underscore The character used in a LIKE clause to match
exactly one character. For example, if this is
an underscore (_), the characters “abc_”
match all character values that are four 
characters long and start with “abc”. This
maps to DBLITERAL_LIKE_UNDERSCORE.

OleDbLiteral Procedure_Name A procedure name in a text command. This
maps to DBLITERAL_PROCEDURE_NAME.

OleDbLiteral Quote_Prefix The character used in a text command as the
opening quote for quoting identifiers that
contain special characters. This maps to
DBLITERAL_QUOTE_PREFIX.
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OleDbLiteral Schema_Name A schema name in a text command. This
maps to DBLITERAL_SCHEMA_NAME.

OleDbLiteral Table_Name A table name used in a text command or in a
data-definition interface. This maps to
DBLITERAL_TABLE_NAME.

OleDbLiteral Text_Command A text command, such as an SQL statement.
This maps to DBLITERAL_TEXT_COMMAND.

OleDbLiteral User_Name A user name in a text command. This maps to
DBLITERAL_USER_NAME.

OleDbLiteral View_Name A view name in a text command. This maps
to DBLITERAL_VIEW_NAME.

OleDbLiteral Cube_Name The name of a cube in a schema (or the 
catalog if the provider does not support
schemas).

OleDbLiteral Dimension_Name The name of the dimension. If a dimension is
part of more than one cube, then there is one
row for each cube/dimension combination.

OleDbLiteral Hierarchy_Name The name of the hierarchy. If the dimension
does not contain a hierarchy or has only one
hierarchy, then the current column contains a
null value.

OleDbLiteral Level_Name Name of the cube to which the current level
belongs.

OleDbLiteral Member_Name The name of the member.

OleDbLiteral Property_Name The name of the property.

OleDbLiteral Schema_Separator The character that separates the schema 
name from the rest of the identifier in 
a text command. This maps to
DBLITERAL_SCHEMA_SEPARATOR.

OleDbLiteral Quote_Suffix The character used in a text command as the
closing quote for quoting identifiers that con-
tain special characters. 1.x providers that use
the same character as the prefix and suffix
may not return this literal value and can set
the lt member of the DBLITERAL structure to
DBLITERAL_INVALID if requested. This maps
to DBLITERAL_QUOTE_SUFFIX.
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OleDbLiteral Escape_Percent The escape character, if any, used to  
_Suffix suffix thecharacter returned for the 

DBLITERAL_LIKE_PERCENT literal. For 
example, if a percent sign (%) is used to
match zero or more characters and percent
signs are escaped by enclosing in open and
close square brackets, DBLITERAL_ESCAPE
_PERCENT_PREFIX is “[“, DBLITERAL
_ESCAPE_PERCENT_SUFFIX is “]”, and the
characters “abc[%]%” match all character val-
ues that start with “abc%”. Providers that do
not use a suffix character to escape the
DBLITERAL_ESCAPE_PERCENT character do
not return this literal value and can set the lt
member of the DBLITERAL structure to
DBLITERAL_INVALID if requested. This maps
to DBLITERAL_ESCAPE_PERCENT_SUFFIX.

OleDbLiteral Escape_ The character used in a LIKE clause to escape 
Underscore the character returned for the DBLITERAL_
_Suffix LIKE_UNDERSCORE literal. For example, if an

underscore (_) is used to match exactly one
character and the backslash (\) is used, the
characters “abc\_ _” match all character val-
ues that are five characters long and start
with “abc_”. Some SQL dialects support a
clause (the ESCAPE clause) that can be used to
override this value. This maps to DBLIT-
ERAL_ESCAPE_UNDERSCORE_SUFFIX.

System.Data.OleDb.OleDbType Enum

OleDbType Empty No value (DBTYPE_EMPTY).

OleDbType SmallInt A 16-bit signed integer (DBTYPE_I2).

OleDbType Integer A 32-bit signed integer (DBTYPE_I4). 

OleDbType Single A floating-point number within the range of
–3.40E +38 through 3.40E +38 (DBTYPE_R4). 

OleDbType Double A floating-point number within the range of
–1.79E +308 through 1.79E +308 (DBTYPE_R8). 

OleDbType Currency A currency value ranging from –2 63 (or
–922,337,203,685,477.5808) to 2 63 –1 (or
+922,337,203,685,477.5807) with an accuracy
to a ten-thousandth of a currency unit
(DBTYPE_CY). 

Table continued on following page
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OleDbType Date Date data, stored as a double (DBTYPE_DATE).
The whole portion is the number of days
since December 30, 1899, while the fractional
portion is a fraction of a day. 

OleDbType BSTR A null-terminated character string of Unicode
characters (DBTYPE_BSTR).

OleDbType IDispatch A pointer to an IDispatch interface
(DBTYPE_IDISPATCH). 

OleDbType Error A 32-bit error code (DBTYPE_ERROR).

OleDbType Boolean A Boolean value (DBTYPE_BOOL).

OleDbType Variant A special data type that can contain 
numeric, string, binary, or date data, as 
well as the special values Empty and Null
(DBTYPE_VARIANT). This type is assumed if
no other is specified. 

OleDbType IUnknown A pointer to an IUnknown interface
(DBTYPE_UNKNOWN). 

OleDbType Decimal A fixed precision and scale numeric 
value between –10 38 –1 and 10 38 –1

(DBTYPE_DECIMAL). 

OleDbType TinyInt An 8-bit signed integer (DBTYPE_I1).

OleDbType UnsignedTinyInt An 8-bit unsigned integer (DBTYPE_UI1).

OleDbType UnsignedSmallInt A 16-bit unsigned integer (DBTYPE_UI2).

OleDbType UnsignedInt A 32-bit unsigned integer (DBTYPE_UI4).

OleDbType BigInt A 64-bit signed integer (DBTYPE_I8). 

OleDbType UnsignedBigInt A 64-bit unsigned integer (DBTYPE_UI8).

OleDbType Filetime A 64-bit unsigned integer representing the
number of 100-nanosecond intervals since
January 1, 1601 (DBTYPE_FILETIME).

OleDbType Guid A globally unique identifier (or GUID)
(DBTYPE_GUID).

OleDbType Binary A stream of binary data (DBTYPE_BYTES). 

OleDbType Char A character string (DBTYPE_STR). 

OleDbType WChar A null-terminated stream of Unicode 
characters (DBTYPE_WSTR).

OleDbType Numeric An exact numeric value with a fixed precision
and scale (DBTYPE_NUMERIC).
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OleDbType Udt A SQL Server 2005 user-defined type (UDT).

OleDbType DBDate Date data in the format yyyymmdd
(DBTYPE_DBDATE). 

OleDbType DBTime Time data in the format hhmmss
(DBTYPE_DBTIME). 

OleDbType DBTimeStamp Data and time data in the format yyyymmd-
dhhmmss (DBTYPE_DBTIMESTAMP). 

OleDbType PropVariant An automation PROPVARIANT
(DBTYPE_PROP_VARIANT).

OleDbType VarNumeric A variable-length numeric value.

OleDbType Xml An xml data type.

OleDbType VarChar A variable-length stream of non-Unicode
characters.

OleDbType LongVarChar A long string value.

OleDbType VarWChar A variable-length, null-terminated stream of
Unicode characters.

OleDbType LongVarWChar A long null-terminated Unicode string value.

OleDbType VarBinary A variable-length stream of binary data.

OleDbType LongVarBinary A long binary value.

System.Data.PropertyAttributes Enum

PropertyAttributes NotSupported The property is not supported by the
provider.

PropertyAttributes Required The user must specify a value for this 
property before the data source is initialized.

PropertyAttributes Optional The user does not need to specify a value for
this property before the data source is 
initialized.

PropertyAttributes Read The user can read the property.

PropertyAttributes Write The user can write to the property.

Microsoft.SqlServer.Server.DataAccessKind Enum

DataAccessKind None The method or function does not access user
data.

DataAccessKind Read The method or function reads user data.

Table continued on following page
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Microsoft.SqlServer.Server.SystemDataAccessKind Enum

SystemDataAccessKind None The method or function does not access 
system data.

SystemDataAccessKind Read The method or function reads system data.

Microsoft.SqlServer.Server.Format Enum

Format Unknown The serialization format is unknown.

Format Native The Native serialization format uses a very
simple algorithm that enables SQL Server 
to store an efficient representation of the 
UDT on disk. Types marked for Native 
serialization can only have value types
(structs in Microsoft Visual C#, and structures
in Microsoft Visual Basic .NET) as members.
Members of reference types (such as classes
in Visual C# and Visual Basic), either 
user-defined or those existing in the frame-
work (such as String), are not supported.

Format UserDefined The UserDefined serialization format gives
the developer full control over the binary for-
mat through the IBinarySerialize.Write
and IBinarySerialize.Read methods.

System.Data.SqlClient.SqlBulkCopyOptions Enum

SqlBulkCopyOptions Default Use the default values for all options.

SqlBulkCopyOptions KeepIdentity Preserve source identity values. When not
specified, identity values are assigned by the
destination.

SqlBulkCopyOptions CheckConstraints Check constraints while data is being
inserted. By default, constraints are not
checked.

SqlBulkCopyOptions TableLock Obtain a bulk update lock for the duration of
the bulk copy operation. When not specified,
row locks are used.

SqlBulkCopyOptions KeepNulls Preserve null values in the destination table
regardless of the settings for default values.
When not specified, null values are replaced
by default values where applicable.

SqlBulkCopyOptions FireTriggers When specified, causes the server to fire the
insert triggers for the rows being inserted into
the database.
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SqlBulkCopyOptions UseInternal When specified, each batch of the bulk-copy 
Transaction operation will happen within a transaction. If

you indicate this option and also provide a
SqlTransaction object to the constructor, a
System.ArgumentException occurs.

System.Data.SqlClient.SqlNotificationAuthType Enum

SqlNotification None Default. The connection to the client does not 
AuthType use any authentication. Any 
connection used is considered to be valid. 

SqlNotification Integrated Specifies that the server should try to 
AuthType communicate using integrated security on

operating systems that support it. This also
means that the service account running SQL
Server 2005 must be a recognized account 
on the client computer requesting the 
notification.

System.Data.SqlClient.SqlNotificationEncryptionType Enum

SqlNotification None Default. Message data is exchanged in 
EncryptionType plain text.

SqlNotification Certificate Use a server certificate to create an encrypted 
EncryptionType Secure Sockets Layers (SSL) channel between

the client and the server.

System.Data.SqlClient.SqlNotificationInfo Enum

SqlNotificationInfo Truncate One or more tables were truncated.

SqlNotificationInfo Insert Data was changed by an INSERT statement.

SqlNotificationInfo Update Data was changed by an UPDATE statement.

SqlNotificationInfo Delete Data was changed by a DELETE statement.

SqlNotificationInfo Drop An underlying object related to the query was
dropped.

SqlNotificationInfo Alter An underlying server object related to the
query was modified.

SqlNotificationInfo Restart The server was restarted (notifications are
sent during restart.).

SqlNotificationInfo Error An internal server error occurred.

SqlNotificationInfo Query A SELECT statement that can be notified or
was provided.

SqlNotificationInfo Invalid A statement was provided that cannot be
notified (for example, an UPDATE statement).

Table continued on following page
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SqlNotificationInfo Options The SET options were not set appropriately at
subscription time.

SqlNotificationInfo Isolation The statement was executed under an 
isolation mode that was not valid (for 
example, Snapshot).

SqlNotificationInfo AlreadyChanged The SqlDependency object already fired, and
new commands cannot be added to it.

System.Data.SqlClient.SqlNotificationSource Enum

SqlNotificationSource Data Data has changed; for example, an INSERT,
UPDATE, DELETE, or TRUNCATE operation
occurred.

SqlNotificationSource Timeout The subscription time-out expired.

SqlNotificationSource Object A database object changed; for example, an
underlying object related to the query was
dropped or modified.

SqlNotificationSource Database The database state changed; for example, the
database related to the query was dropped or
detached.

SqlNotificationSource System A system-related event occurred. For 
example, there was an internal error, the
server was restarted, or resource pressure
caused the invalidation.

SqlNotificationSource Statement The Transact-SQL statement is not valid 
for notifications; for example, a SELECT
statement that could not be notified or a 
non-SELECT statement was executed.

SqlNotificationSource Environment The runtime environment was not compatible
with notifications; for example, the isolation
level was set to snapshot, or one or more
SET options are not compatible.

SqlNotificationSource Execution A runtime error occurred during execution.

SqlNotificationSource Client A client-initiated notification occurred, 
such as a client-side time-out or as a result 
of attempting to add a command to a 
dependency that has already fired.

System.Data.SqlClient.SqlNotificationTransports Enum

SqlNotification None This value is not used when defining a 
Transports notification transport protocol. It is returned

when applying CAS policy and two 
notification objects return different notifica-
tion transport values.
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SqlNotification Tcp Use TCP as the protocol to perform callback
Transports notification.

SqlNotification Http Use HTTP as the protocol to perform callback 
Transports notification. 

SqlNotification Any Use HTTP as the protocol to perform callback 
Transports notification if available; otherwise, use TCP.

System.Data.SqlClient.SqlNotificationType Enum

SqlNotificationType Change Data on the server being monitored changed.
Use the item to determine the details of the
change.

SqlNotificationType Subscribe There was a failure to create a notification
subscription. Use the object’s item to deter-
mine the cause of the failure.

System.Data.SqlClient.SqlCompareOptions Enum

SqlCompareOptions None Specifies the default option settings for 
comparisons.

SqlCompareOptions IgnoreCase Specifies that comparisons must ignore case.

SqlCompareOptions IgnoreNonSpace Specifies that comparisons must ignore 
non-space combining characters, such as 
diacritics. The Unicode Standard defines
combining characters as characters that are
combined with base characters to produce a
new character. Non-space combining 
characters do not take up character space by
themselves when rendered. For more 
information on non-space combining 
characters, see the Unicode Standard at
www.unicode.org.

SqlCompareOptions IgnoreKanaType Specifies that comparisons must ignore the
Kana type. Kana type refers to Japanese 
hiragana and katakana characters, which 
represent phonetic sounds in the Japanese
language. Hiragana is used for native
Japanese expressions and words, while
katakana is used for words borrowed from
other languages, such as “computer” or
“Internet.” A phonetic sound can be
expressed in both hiragana and katakana. If
this value is selected, the hiragana character
for one sound is considered equal to the
katakana character for the same sound.

Table continued on following page
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SqlCompareOptions IgnoreWidth Specifies that comparisons must ignore 
character width. For example, Japanese
katakana characters can be written as 
full-width or half-width, and if this value is
selected, the katakana characters written as
full-width are considered equal to the same
characters written in half-width.

SqlCompareOptions BinarySort2 Performs a binary sort.

SqlCompareOptions BinarySort Specifies that sorts should be based on a 
character’s numeric value, rather than its
alphabetic value.

System.Data.SqlClient.StorageState Enum

StorageState Buffer Buffer size.

StorageState Stream Stream.

StorageState UnmanagedBuffer Unmanaged buffer.

System.Data.OracleClient.OracleLobOpenMode Enum

OracleLobOpenMode ReadOnly The LOB is opened in read/only mode.

OracleLobOpenMode ReadWrite The LOB is opened in read/write mode.

System.Data.OracleClient.OracleType Enum

OracleType BFile An Oracle BFILE data type that contains a 
reference to binary data with a maximum size
of 4 GB that is stored in an external file.

OracleType Blob An Oracle BLOB data type that contains
binary data with a maximum size of 4 GB. 

OracleType Char An Oracle CHAR data type that contains a
fixed-length character string with a 
maximum size of 2,000 bytes.

OracleType Clob An Oracle CLOB data type that contains 
character data, based on the default character
set on the server, with a maximum size 
of 4 GB.

OracleType Cursor An Oracle REF CURSOR.

OracleType DateTime An Oracle DATE data type that contains a
fixed-length representation of a date and
time, ranging from January 1, 4712 B.C. to
December 31, 4712 A.D., with the default 
format dd-mmm-yy. To bind B.C. dates, use a
String parameter and the Oracle TO_DATE
or TO_CHAR conversion functions for input
and output parameters, respectively. 
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OracleType IntervalDay An Oracle INTERVAL DAY TO SECOND data 
ToSecond type (Oracle 9i or later) that contains an inter-

val of time in days, hours, minutes, and sec-
onds, and has a fixed size of 11 bytes. 

OracleType IntervalYear An Oracle INTERVAL YEAR TO MONTH data 
ToMonth type (Oracle 9i or later) that contains an inter-

val of time in years and months, and has a
fixed size of 5 bytes. 

OracleType LongRaw An Oracle LONGRAW data type that contains
variable-length binary data with a maximum
size of 2 GB. 

OracleType LongVarChar An Oracle LONG data type that contains a
variable-length character string with a 
maximum size of 2 GB. 

OracleType NChar An Oracle NCHAR data type that contains 
a fixed-length character string to be stored in
the national character set of the database,
with a maximum size of 2,000 bytes (not 
characters) when stored in the database.
Note: The size of the value is dependent on
the national character set of the database. 
See your Oracle documentation for more
information.

OracleType NClob An Oracle NCLOB data type that contains
character data to be stored in the national
character set of the database, with a 
maximum size of 4 GB (not characters) when
stored in the database. Note: The size of 
the value is dependent on the national 
character set of the database. See your Oracle
documentation for more information.

OracleType Number An Oracle NUMBER data type that contains
variable-length numeric data with a 
maximum precision and scale of 38.

OracleType NVarChar An Oracle NVARCHAR2 data type that contains
a variable-length character string stored in
the national character set of the database,
with a maximum size of 4,000 bytes (not 
characters) when stored in the database.
Note: The size of the value is dependent on
the national character set of the database. 
See your Oracle documentation for more
information.
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OracleType Raw An Oracle RAW data type that contains 
variable-length binary data with a maximum
size of 2,000 bytes.

OracleType RowId The base64 string representation of an Oracle
ROWID data type.

OracleType Timestamp An Oracle TIMESTAMP (Oracle 9i or later) that
contains date and time (including seconds),
and ranges in size from 7 to 11 bytes.

OracleType TimestampLocal An Oracle TIMESTAMP WITH LOCAL TIMEZONE
(Oracle 9i or later) that contains the date, the
time, and a reference to the original time
zone, and ranges in size from 7 to 11 bytes.

OracleType TimestampWithTZ An Oracle TIMESTAMP WITH TIMEZONE
(Oracle 9i or later) that contains the date, the
time, and a specified time zone, and has a
fixed size of 13 bytes.

OracleType VarChar An Oracle VARCHAR2 data type that contains
a variable-length character string with a 
maximum size of 4,000 bytes.

OracleType Byte An integral type representing unsigned 
8-bit integers with values between 0 and 255.
This is not a native Oracle data type, but is
provided to improve performance when
binding input parameters.

OracleType UInt16 An integral type representing unsigned 16-bit
integers with values between 0 and 65535.
This is not a native Oracle data type, but is
provided to improve performance when
binding input parameters.

OracleType UInt32 An integral type representing unsigned 32-bit
integers with values between 0 and
4294967295. This is not a native Oracle data
type, but is provided to improve performance
when binding input parameters.

OracleType SByte An integral type representing signed 8-bit
integers with values between –128 and 127.
This is not a native Oracle data type, but is
provided to improve performance when
binding input parameters.

582

Appendix A

20_584375 appa.qxd  10/28/05  10:55 PM  Page 582



Parent Name Enum Description

OracleType Int16 An integral type representing signed 16-bit
integers with values between –32768 and
32767. This is not a native Oracle data type,
but is provided to improve performance
when binding input parameters. 

OracleType Int32 An integral type representing signed 32-bit
integers with values between –2147483648
and 2147483647. This is not a native Oracle
data type, but is provided for performance
when binding input parameters.

OracleType Float A single-precision, floating-point value. 
This is not a native Oracle data type, but is
provided to improve performance when
binding input parameters. 

OracleType Double A double-precision, floating-point value. 
This is not a native Oracle data type, but is
provided to improve performance when
binding input parameters.

System.Xml.Xsl.Runtime.SetIteratorResult Enum

SetIteratorResult NoMoreNodes This enumeration supports the .NET
Framework infrastructure and is not intended
to be used directly from your code.

SetIteratorResult InitRight This enumeration supports the .NET 
Iterator Framework infrastructure and is not intended

to be used directly from your code.

SetIteratorResult NeedLeftNode This enumeration supports the .NET
Framework infrastructure and is not intended
to be used directly from your code.

SetIteratorResult NeedRightNode This enumeration supports the .NET
Framework infrastructure and is not intended
to be used directly from your code.

SetIteratorResult HaveCurrentNode This enumeration supports the .NET
Framework infrastructure and is not intended
to be used directly from your code.

System.Xml.Xsl.Runtime.IteratorResult Enum

IteratorResult NoMoreNodes This enumeration supports the .NET
Framework infrastructure and is not intended
to be used directly from your code.
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IteratorResult NeedInputNode This enumeration supports the .NET
Framework infrastructure and is not intended
to be used directly from your code.

IteratorResult HaveCurrentNode This enumeration supports the .NET
Framework infrastructure and is not intended
to be used directly from your code.
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SYMBOLS
“ (double quote) characters, quoted identifiers, 78–79
@ (at) character, T-SQL variable names, 239
[ and ] square brackets, quoted identifiers, 78–79
_ (underscore) character, table name avoidance, 16

A
A.C.I.D (atomicity/consistency/isolation/durability),

transactions, 140–141
Abstract Factory model, ADO.NET 2, 35–37
accent sensitivity, query results ranking, 421
Accumulate() method, aggregate functions, 322
acronyms, naming convention avoidance, 15
Active Directory

provider shortcomings, 201
versus user properties, 221–226

ActiveX Data Objects (ADO), development history,
8–10

AddNewCustomer procedure, Service Broker, 382
ADF (application definition file), Notification Services,

351–352
ADO (ActiveX Data Objects), development history,

8–10
ADO.NET
Command object, 11
Connection object, 11
constants/enums listing, 549–584
data types, 109–116
DataAdapter object, 11
DataReader object, 11

DataSet object, 11
DataSets, 32
development history, 10–11
MARS (Multiple Active Result Sets) support, 9

ADO.NET 2.0
Abstract Factory model, 35–37
asynchronous commands, 266–272
database-independent code, 35
DataSet optimizations, 32
development history, 11–12
Generic Factory Model, 42–47
interfaces, 35–36
legacy API support, 40–42
schema metadata system, 67–77

AdsCommand class, data providers, 211–219
AdsConnectionStringBuilder class, data

providers, 209–211
AdsDataAdapter class, data providers, 228–231
AdsDataReader class, data providers, 219–228
AdsFactory class, data providers, 231–232
AdsParameterCollection class, data

providers, 212
AdsProvider property, data providers, 205, 206
aggregate functions, CLR (Common Language Run-

time) Objects, 321–323
ALERT QUEUE statement, message queues, 378
alerts, Ingres, 494
anchors, queries, 253–254
APIs, legacy support issues, 40–42
application definition file (ADF), Notification Services,

351–356
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applications, instance configuration file, 351–352
architecture

CLR (Common Language Runtime) Objects, 328–329
Firebird, 486–487
Generic Factory Model providers, 44–45
legacy data access model, 43–44

archives, data deletion protection method, 35
arrays, Oracle, 526–529
ASP.NET

asynchronous operations, 272–276
change notification, 539–543
SqlCacheDependency object, 293–295, 538–543

ASP.NET 1.x, data binding, 163–164
ASP.NET 2.0

data binding, 163–164
Data Source controls, 164–169
Data Source window elements, 192–196
Web applications, 430–432

ASSEMBLYPROPERTY, CLR (Common Language Run-
time) Objects, 311

AsyncCallBackObject() method, asynchronous
commands, 268–270

asynchronous commands. See also commands
AsyncCallBackObject(), 268–270
BeginExecuteNonQuery() method, 267–269
BeginExecuteReader() method, 269–271
BeginExecuteXMLReader() method, 271–272
callback objects, 269–270
described, 266–267
EndExecuteNonQuery() method, 268–269
IO Completion ports, 267
SqlCommand class support, 267–272

asynchronous communications, Service Broker, 370
asynchronous operations

ASP.NET, 272–276
IAsyncResult interface, 275–276

at (@) character, T-SQL variable names, 239
attributes
SqlProcedure, 318–319
SqlUserDefinedAggregate, 322

automatic change tracking, Full-Text Search population
method, 406

B
Backup class, SMO utility class, 330
Backup() object, SQL Server Management Objects

(SMOs), 338–340
backup/restore, SQL Server Management Objects

(SMOs), 338–341

backups
MaxDB, 480
queues, 378

batch updating, ADO support, 9
BCP (Bulk Copy Program), data migration, 29
BeginExecuteNonQuery() method, asynchronous

commands, 267–269
BeginExecuteReader() method, asynchronous 

commands, 269–271
BeginExecuteXMLReader() method, asynchronous

commands, 271–272
BeginTransaction() method, data providers, 209
BerkeleyDB

concurrency, 503
data stores, 503
database elements, 502–504
development history, 502
fine-grained locking system, 503
in-memory transaction logs, 503
installation, 504
key-value pairs, 503
logically atomic transactions, 503
.NET interaction, 504–507
resource information, 508
single-master replication, 503
Sleepycat Public License, 502
small footprint, 503
SQL compliance, 502
transactional data store, 503
write-ahead logging, 503
XML layer, 503

BFile data type, Oracle, 543
BI (Business Intelligence), described, 427–428
BIGINT data type, SQL Server, 100
BINARY data type, SQL Server, 102–106
binary serialization, DataTables, 92–93
binary storage, data types, 102–106
BindingList control, Windows Forms, 198
BindingNavigator control, Windows Forms, 198
BindingSource control, Windows Forms, 197–198
BIT data type, SQL Server, 107
BLOBs, Full-Text Search, 422–424
Boolean fields, naming conventions, 16
Boolean values
BIT data type, 107
OrderByColumnsInSelect property, 71

BuildUpdateCommands() method, data providers, 231
bulk copy operations, SQL Server, 291–292
Bulk Copy Program (BCP), data migration, 29
Business Intelligence (BI), described, 427–428
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C# language

business object class, 181–182
data class, 180–181
null coalescing operator, 113
nullable types, 113–114
reachability, 244
sealing classes, 203
transaction processing, 242–243

caching
Data Source controls, 167–169
page-level, 168–169
user-control, 168–169

callback objects, asynchronous commands, 269–270
Cancel() method, data providers, 215
capture execution, SQL Server Management Objects

(SMOs), 330
CAS (Code Access Security), XML/ADO.NET integra-

tion, 127–128
case sensitivity, QuoteIdentifierCase property, 72
catalog views, Service Broker, 396–399
catalogs, Full-Text Search index setup, 408
change notification

Oracle, 538–543
XML/ADO.NET integration, 133–134

change tracking, Full-Text Search population
methods, 407

ChangeDatabase() method, data providers, 209
ChangePassword() method, password

management, 281
channels

delivery, 350
instance configuration file, 352

CHAR (character) data type, SQL Server, 98
character data storage, data types, 98– 99
character sets, Firebird, 487
chronicles, generator component, 350
classes
AdsCommand, 211–219
AdsConnection, 203–209
AdsConnectionStringBuilder, 209–211
AdsDataAdapter, 228–231
AdsDataReader, 219–228
AdsFactory, 231–232
AdsParameterCollection, 212
AdsProvider, 202
ConfigurationManager, 54
ConnectionStringBuilder, 53–60
ConnectionStringCollection, 54

data provider, 202
DataSourceEnumerator, 232
DataTableReader, 93
DbConnection, 202
DirectorySearcher, 212
Helper, 48–51
Inference, 132–133
instance, 330
Microsoft Oracle provider, 517–518
ObjectDataSource control, 180–182
ODP.NET, 518–519
Oracle provider, 516–519
OracleConnection, 523
OracleConnectionStringBuilder, 523
OracleDependency, 538–539
OracleException, 533–534
provider-independent, 44–45
sealing, 203
SMO utility, 330
SqlBulkCopy, 291–292
SqlBulkCopyColumnMapping, 291–292
SqlBulkCopyColumnMappingCollection,

291–292
SqlCacheDependencyAdmin, 297
SqlCommand, 267–272
SqlConnectionStringBuilder, 281–283
SqlDataSourceEnumerator, 278–279
SqlDependency, 297–300
SqlTriggerContext, 311–313
Utils, 357–359, 362
XmlReader, 121–124
XmlSchemaSet, 131
XmlWriter, 121–124

ClearAllPools() method, connection pooling, 280
ClearPool() method, connection pooling, 280
client applications, Firebird, 487
client-side transactions, 1.x Framework, 145–146
Close() method, data providers, 208, 228
CLR (Common Language Runtime) Objects

advantages, 303
aggregate functions, 321–323
architecture, 328–329
business logic placement, 328–329
column updates, 313
complex operations, 329
context connections, 327–328
creating, 304–306
DDL event triggers, 313–314
debugging process, 309–310
deployment methods, 307–308
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CLR (Common Language Runtime) Objects (continued)
design goal code, 316–317
functions, 310–311, 319–324
mapping methods, 307
permissions, 309
procedural programming, 303
results output, 318
scalar-valued functions, 319–320
scientific calculations, 329
security calculations, 329
set theory, 302–303
set-based programming, 302–303
SQL Server integration, 301
SQL Server projects, 306–310
SqlCLRObjects assembly, 307
SqlContext object, 327
SqlPipe object, 318
SqlProcedure attribute, 318–319
SqlTriggerContext class, 311–313
stored procedures, 318–319
sys.assemblies table, 310
sys.assembly_files table, 310
sys.assembly_modules table, 310
sys.assembly_preferences table, 310
sys.assembly_types table, 310
sys.sql_modules table, 310
sys.types table, 310
tables, 310–311
tabular results, 326–327
triggers, 311–317
versus T-SQL objects, 329
TVFs (table-valued functions), 320–321
user-defined aggregate functions, 323–324
user-defined types, 324–326

clustering, Ingres, 493
CODASYL (Conference on Data Systems Language),

development history, 2–3
Code Access Security (CAS), XML/ADO.NET integra-

tion, 127–128
CodeBeside page, ReportServer, 446
Column() object, SQL Server Management Objects

(SMOs), 335
columns

foreign key naming conventions, 16
naming conventions, 16
primary key definitions, 19–20
primary key naming conventions, 16
Service Broker queue tables, 394–395
SQL Server Management Objects (SMOs), 334–336

updating, 313
user properties versus Active Directory properties,

222–225
combined modes, MySQL, 472
Command object, query storage, 11
commands. See also asynchronous commands; objects

asynchronous, 266–272
CLR mapping methods, 307
CreateCommand(), 77
DataReaders(), 87
DbCommand(), 77–78
DDL CREATE ENDPOINT, 344–345
DROP ENDPOINT, 344–345
ExecuteScalar(), 83 96
insert, 218
named parameters, 80
output parameters, 84–85
positional parameters, 80
provider-specific, 78
provider-specific parameters, 80–81
quoted identifiers, 78–79
return codes, 85–87
scalars, 87
SqlCommand(), 78
System.Data.CommandBehavior(), 82–83

CommandText property, data providers, 213
commitment, data access factor, 2
Common Language Runtime (CLR) Objects, SQL Server,

301–328
Common Table Expressions (CTEs), T-SQL, 252–254
communications, Server Broker, 369
compilers, legacy API support issues, 40–42
complex operations, CLR (Common Language Runtime)

Objects, 329
CompositeIdentifierSeparatorPattern, schema

metadata system, 69–70
concurrency, BerkeleyDB, 503
Conference on Data Systems Language (CODASYL),

development history, 2–3
configuration files

connection string storage, 54
XML/ADO.NET integration, 120

Configuration() object, SQL Server Management
Objects (SMOs), 332

Configuration Wizard
ObjectDataSource control, 182–184
SQLDataSource control configuration, 170–174
TableAdapter method connection, 187–189
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ConfigurationManager class, retrieving connection
strings, 54

Connection object, establishing/maintaining connec-
tions, 11

Connection property, data providers 213
connection objects

constructors, 204
MARS (Multiple Active Result Sets), 276–278

connection pooling, SQL Server, 279–280
connection strings

configuration file storage, 54
ConnectionStringBuilder class, 53–60
ConnectionStringCollection class, 54
creation methods, 53–54
database, 306
dynamic construction, 57
provider-specific string parameters, 57–60
provider-specific types, 55–57
retrieving, 54
SqlDataSource method, 431–432
TableAdapter method, 187

connections
context, 327–328
database opening/closing, 60–62
exception error information collection, 62–66
exception management methods, 62–66
failover notification, 526
Oracle, 523–526
provider-specific issues, 66–67
status checking, 60–62

ConnectionString properties, data providers,
204–205

ConnectionStringBuilder class, building connec-
tion strings, 53–60

ConnectionStringCollection class, connection
strings, 54

ConnectionTimeout property, data providers, 205
constants, ADO.NET listing, 549–584
constraints

MySQL, 473–474
PostgreSQL, 498

constructors
AdsDataAdapter class, 229–230
connection object, 204

consumers
data access, 6–12
OLE-DB workflow process, 5–6

contacts
SOAP, 447–448
URL, 439–446

CONTAINS function, Full-Text Search, 412–413
CONTAINSTABLE function, Full-Text Search, 415
context connections, CLR (Common Language Run-

time) Objects, 327–328
contracts, Service Broker, 370, 377–378
controls
BindingList, 198
BindingNavigator, 198
BindingSource, 197–198
Data Source, 164–169
multi-version concurrency, 499
ObjectDataSource, 176–185
SQLDataSource, 170–175
UI, 197–198

conversions, XML/ADO.NET integration, 123–124
coordination, Service Broker element, 370
CREATE AGGREGATE command, CLR mapping

method, 307
CREATE ASSEMBLY statement, assembly

deployment, 307
CREATE ENDPOINT command, SQL Server, 344–345
CREATE FUNCTION command, CLR mapping

method, 307
CREATE PROCEDURE command, CLR mapping

method, 307
CREATE TRIGGER command, CLR mapping

method, 307
CREATE TYPE command, CLR mapping method, 307
Create() method, SMO Index() object, 336
CreateCommand() objects, Generic Factory Model, 77
CreateDbCommand() method, data providers, 208–209
CreateDbParameter() method, data providers, 215
CreateParameter() method, adding parameters to

an object, 79–80
CreatePermission() method, data providers, 232
CTEs (Common Table Expressions), T-SQL, 252–254
currency, data types, 102
CURSOR data type, SQL Server, 108
cursors, server-side, 480
customer sign-up, Service Broker service, 383–386
CustomerInfoSchema, Service Broker, 376

D
DAO (Data Access Objects), development history, 6–7
data access layer

consumers, 6–12
development history, 2–4
industry support, 2
performance factor, 1
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data access layer (continued)
reliability, 1
vendor commitment, 2

Data Access Objects (DAO), development history, 6–7
data binding

ASP.NET 1.x, 163–164
ASP.NET 2.0, 163–164
data source caching, 167–169
Data Source controls, 164–169
data sources, 160–162
DataSource control generation, 189–190
DBDirect methods, 186–187
defined, 159
ObjectDataSource control, 176–185
one-way versus two-way, 163
parameter data validation, 166
parameter passing, 165–167
provider-specific syntax issues, 175–176
SQLDataSource control, 170–175
TableAdapter method, 185–189
typed DataSets, 185–186
Windows Forms, 191–198
Windows Forms versus Web applications, 159–160

data concurrency, two-way data binding issues, 163
Data Definition Language (DDL)

event triggers, 313–314
Full-Text Search index setup, 407–408

data exchange, XML/ADO.NET integration, 119
data migration, SELECT statement, 29
data providers. See also providers

Active Directory shortcomings, 201
ADO.NET registration, 233
AdsCommand class, 211–219
AdsConnection class, 203–209
AdsConnectionStringBuilder class, 209–211
AdsDataAdapter class, 228–231
AdsDataReader class, 219–228
AdsFactory class, 231–232
AdsParameterCollection class, 212
AdsProvider class, 202
classes, 202
connection object constructors, 204
connection string fields, 203–204
DataSourceEnumerator class, 232
deleting records, 217–218
DirectorySearcher class, 212
indexers, 219–221
Oracle, 515–516
parameter non-support reasons, 212

permissions, 232
reader (select) methods, 216
tables, 212
updating records, 217–218
user objects, 212
user properties versus Active Directory properties,

221–226
Data Source caching, when to use, 168–169
Data Source Configuration Wizard, data sources,

193–196
Data Source controls

ASP.NET 2.0 data binding, 164
data caching, 167–169
generating, 189–190
parameter passing, 165–167
Visual Studio 2005, 169–170

Data Source window, interface elements, 192–196
data sources

data binding, 160–162
data retrieval, 81
Data Source Configuration Wizard, 193–196
distributed transactions, 145–154
listing available, 51–53
Reporting Services, 436–437
schema metadata system information, 69–73
Windows Forms, 192–196

data storage, legal issues, 35
data stores, BerkeleyDB, 503
Data Transformation Services (DTS), data migration, 29
data types

ADO.NET, 109–116
BFile, 543
BIGINT, 100
BINARY, 102–106
BIT, 107
Boolean, 97
CHAR (character), 98
CLR (Common Language Runtime) Objects, 324–326
CURSOR, 108
DATETIME (TIMESTAMP), 100
DECIMAL (DEC and DEC(p,s)), 101–102
FLOAT (FLOAT and DOUBLE PRECISION), 101
floating-point, 101
IMAGE, 102–103
INT (integer), 97, 99
legacy support issues, 40–41
MONEY, 102
NCHAR (national character storage), 99
.NET Framework, 109–116
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NTEXT, 99
nullable types, 113–114
NUMERIC, 101
NVARCHAR (national character storage), 99
NVARCHAR (MAX), 99
Oracle, 523
PostgreSQL, 498
REAL (FLOAT(24)), 101
schema metadata system, 69
Service Broker queue tables, 394–395
SMALLDATETIME, 100
SMALLINT, 100
SMALLMONEY, 102
SQL Server, 98–108
SQL_VARIANT, 107–108
SqlTypes namespace, 109–113
string, 97
TABLE, 108
TEXT, 99
TIMESTAMP, 107
TINYINT, 100
UNIQUEIDENTIFIER, 108
VARBINARY, 102–103
VARBINARY (MAX), 102–103
VARCHAR (char varying/character varying), 98
VARCHAR (MAX), 99
XML, 108

DataAdapter object, data retrieval, 11
DataAdapter() object, DataSet population method,

89–90
Database property, data providers, 205, 206
database connection strings, SQL Server projects, 306
database integration, Service Broker element, 370
Database() object, SQL Server Management Objects

(SMOs), 332, 334–335
databases. See also open-source databases

CODASYL definition, 2
context connections, 327–328
creating in SQL Server Management Objects (SMOs),

332–334
data deletion protection methods, 35
data normalization, 24–30
design guidelines, 30–35
flat, 28–29
indexes, 22
normalized design, 26
old/new design migration, 34–35
opening/closing connections, 60–62
planning process, 13–14
quality data assurance, 26–27

relational, 3–4
reports, 23–24
security enforcement, 23
Service Broker setup, 372–373
SMO backup/restore, 338–341
strongly typed business objects, 33–34
views, 22–24
XML Web services, 343–345

DataReaders() object
DataSet population method, 90
forward-only read capability, 11
value returns, 88
when to use, 95

DataSet() object, disconnected data storage, 11
DataSets

binary serialization, 92–93
data filling, 82
data representation, 88
DataAdapter() object, 89–90
DataReaders() object, 90
in-memory database representations, 32
manual population methods, 89
serialization, 92–93
when to use, 95–96

DataSource property, data providers, 205
DataSourceEnumerator class, data providers, 232
DataSourceProductName class, schema metadata

system, 70
DataTableReader() class, data representation, 93
DataTables

data filling, 82
data representation, 90
DataTableReader() class, 93
DataView() object, 91–92
Oracle fills, 529–531
RowState() object, 91
serialization, 92–93
streaming data, 93–94

DataView() object, DataTables, 91–92
date/time, data types, 100
DATETIME (TIMESTAMP) data type, SQL Server, 100
DateTime fields, naming conventions, 16
DbCommand object

calling from a DbConnection object, 78
calling from Generic Factory Model, 77
provider independent class, 44–45

DbConnection class
DbCommand object calls, 78
metadata retrieval, 202
provider-independent class, 44–45
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DbConnection property, data providers, 213
DbDataSourceEnumerator() method, listing avail-

able data sources, 52–53
DBDirect methods, data binding, 186–187
DbParameter, provider independent class, 44–45
DbTransaction property, data providers, 214–215
DDL (Data Definition Language)

event triggers, 313–314
Full-Text Search index setup, 407–408

DDL CREATE ENDPOINT command, SQL Server,
344–345

DDL triggers, T-SQL, 263–264
debugging

CLR (Common Language Runtime) Objects, 309–310
XSL, 125–126

DECIMAL (DEC and DEC(p,s)) data type, SQL Server,
101–102

Delete() method, removing subscribers, 359
delivery channels

distributor component, 350
instance configuration file, 352

delivery protocols, distributor component, 350
Dense_Rank() function, T-SQL, 248
Depth property, data providers, 226
device list, subscription management application,

360–363
DeviceInfo object, ReportServer, 453–460
devicelist.aspx file, subscription management

application, 360
dialogs, Service Broker component, 370
direct execution, SQL Server Management Objects

(SMOs), 330
DirectorySearcher class, data providers, 212
disconnected data access, ADO support, 9
Dispose() method, data providers, 208, 228
distributed data, Ingres, 493
Distributed Transaction Coordinator, performance moni-

toring, 149–150
distributed transactions

client-side, 145–146
flow-through, 156
IDBDataAdapter object, 150–153
local data effects, 150–153
versus local transactions, 141
multiple data source spanning, 145
nested transactions, 153–155
performance monitoring, 149–150
System.Transactions namespace, 146–149
TransactionScope object, 146–149

Web services, 155–156
workflow process, 147–149

distributors, Notification Service components, 350
double quote (“) characters, quoted identifiers, 78–79
DROP ENDPOINT command, SQL Server, 344–345
DTS (Data Transformation Services), data migration, 29

E
e-mail, sending service, 386–389
EnableSubscriber() method, adding/removing 

subscribers, 358–359
EndExecuteNonQuery() method, asynchronous 

commands, 268–269
enumerators

ADO.NET listing, 549–584
SQL Server, 278–279

error codes, Firebird, 488
error tracing, ODP.NET, 534–535
errors

exception information collection, 62–66
Oracle, 533–534
severity levels, 63–64

event batches, Notification Services, 349, 367–368
event providers, Notification Services, 349
events

application definition file, 353, 356
DDL triggers, 263–264, 313–314
firing, 367–368
InfoMessage, 244–246
Notification Services, 349, 353, 367–368
ObjectSourceData control, 178–179
OnRowUpdating, 230
Page_Load, 358
SqlDependency class, 298
StateChange, 207
XML change notification, 133–134

exception codes, Firebird, 488
exception handling, T-SQL, 240–249
exceptions

error information collection, 62–66
management methods, 62–66
OracleException class, 533–534
provider-specific interaction, 64–65

EXECUTE AS function, Reporting Services, 429
ExecuteNonQuery() method

data providers, 217–218
data source data retrieval, 81

ExecuteReader() method, search results display,
81–82
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ExecuteScalar() method
data providers, 216
single value return, 83, 96

execution, SQL Server Management Objects
(SMOs), 330

explicit locking, MaxDB, 480–481
explicit schemas, MaxDB, 480
expressions
IdentifierPattern property, 71
Oracle, 536–538
ParameterMarkerPattern property, 71
ParameterNamePattern property, 71
QuoteIdentifierPattern property, 72

extended stored procedures (XP), SQL Server, 301–302
extensibility

Generic Factory Model, 46
PostgreSQL, 498

external events, Notification Services, 349
EXTERNAL_ACCESS permission, CLR (Common Lan-

guage Runtime) Objects, 309

F
failover notification, Oracle, 526
FieldCount property, data providers, 226
fields
Boolean naming conventions, 16
connection string, 203–204
DateTime, 16

files
ADF (application definition file), 351–352
application definition, 352–356
CodeBeside, 446
devicelist.aspx, 360
instance configuration, 350–352
machine.config, 46

filters
defined, 404
Full-Text Search, 425–426

FindAll() method, data providers, 219
Firebird

character sets, 487
Classic Server architecture, 486–487
client applications, 487
database elements, 485–488
development history, 485
error codes, 488
exception codes, 488
foreign keys, 487

generators, 488
installation, 488–489
InterBase Public License, 485
.NET integration, 489–491
record locking, 485–486
record versioning, 485–486
referential integrity, 487
resource information, 491
selectable stored procedures, 487
SQL compliance, 485
Super Server architecture, 486–487
supported platforms, 487
UDFs (user-defined functions), 487

fixed-length storage, CHAR (CHARACTER) data type, 98
flags, BINARY data type, 103–106
flat databases, normalization, 28–29
FLOAT (FLOAT and DOUBLE PRECISION) data type,

SQL Server, 101
floating-point, data types, 101
flow-control statements, T-SQL, 239–240
flow-through transactions, distributed transactions, 156
foreign keys

column naming conventions, 16
Firebird, 487
MaxDB, 478
MySQL, 473
PostgreSQL, 498
primary key relationships, 20–21
SQL Server Management Objects (SMOs), 337–338

ForeignKey() object, SQL Server Management
Objects (SMOs), 337–338

formatters, distributor component, 350
forms

customer sign-up, 383–386
normalization types, 25
ReportServer, 445
Service Broker, 381–383

FORMSOF object, Full-Text Search, 416
FREETEXT function, Full-Text Search, 414–415
FREETEXTABLE function, Full-Text Search, 415–416
Full Text Indexing Wizard, Full-Text Search index setup,

409–411
full-text catalog, defined, 404
full-text index, defined, 404
Full-Text Search

automatic change tracking population, 406
BLOBs search, 422–424
CONTAINS function, 412–413
CONTAINSTABLE function, 415
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Full-Text Search (continued)
filters, 425–426
FORMSOF object, 416
FREETEXT function, 414–415
FREETEXTABLE function, 415–416
full population, 406
incremental timestamp-based population, 407
indexing setup, 407–412
INFLECTIONAL parameter, 417
ISABOUT object, 417
language settings, 418–419
manual change tracking population, 407
multi-column queries, 418
NEAR operator, 417
properties, 411–412
queries, 412–418
query-linked servers, 418
results rankings, 419–422
structure elements, 405–406
THESAURUS parameter, 417
WEIGHT function, 417
XML search, 422

full-text searching, described, 403–404
functions. See also methods

CLR (Common Language Runtime) Objects, 310–311,
319–324

CONTAINS, 412–413
CONTAINSTABLE, 415
Dense_Rank(), 258
EXECUTE AS, 429
FREETEXT, 414–415
FREETEXTABLE, 415–415
NTile(), 258–259
Oracle expressions, 537
PIVOT, 254–256
RANK(), 257
READFAST, 262
TABLESAMPLE, 259–262
UNPIVOT, 256
WAITFOR, 262–263
WEIGHT, 417

G
GenerateDBDirectMethods property, data binding,

186–187
generational terms, Full-Text Search query, 413
generators

Firebird, 488
Notification Services, 349–350

Generic Factory Model
command parameter adding, 79–80
CreateCommand() object, 77
default parameters/values, 58–59
default providers, 46
exception catching methods, 64
extensibility, 46
Helper class, 48–51
pros/cons, 47
provider architecture, 44–45
provider-agnostic platform, 42
provider-independent classes, 44–45

GetDataSources() method
data providers, 232
listing available data sources, 51–52

GetDevices() method, device list display, 360, 362
GetEnumerator() method, data providers, 228
GetName() method, data providers, 228
GetNsApplication() method, subscription list 

display, 364
GetNsInstance() method

subscriber list retrieval, 357–359
subscription list display, 364

GetOrdinal() method, data providers, 228
GetSchemaTable() method, data providers, 228
GetSqlValues() method, SqlTypes, 289
GetSubscriber() method, subscribers, 359–360
GetSubscription() methods, subscription list 

display, 363–364, 366
GetValues() method, data providers, 228
Globally Unique Identifiers (GUIDs), primary key avoid-

ance, 19–20
GroupByBehavior enumerator, schema metadata 

system, 70

H
HasRows property, data providers, 226
Helper class, writing, 48–51
hosted event providers

application definition file, 353
Notification Services, 349

Hungarian notation, naming convention, 15

I
IAsyncResult interface, asynchronous operations,

275–276
IDBDataAdapter object, distributed transactions,

150–153
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IdentifierCase, schema metadata system, 70
IdentifierPattern property, schema metadata 

system, 71
identifiers
IdentifierCase property, 70
quoted, 78–79
UNIQUEIDENTIFIER data type, 108

IDisposable interface, data providers, 207
IMAGE data type, SQL Server, 102–103
implicit locking, MaxDB, 480–481
implicit schemas, MaxDB, 480
IMS (Information Management System), development

history, 3
incremental timestamp-based, Full-Text Search popula-

tion method, 407
independent event providers, Notification Services, 349
Index() object, SQL Server Management Objects

(SMOs), 335–336
indexers

data providers, 219–221
Full-Text Search setup, 407–412

indexes
database search performance enhancements, 22
SQL Server Management Objects (SMOs), 334–336

indexing engine, performance/speed enhancements,
94–95

industry support, data access factor, 2
Inference class, XML/ADO.NET integration, 132–133
INFLECTIONAL parameter, Full-Text Search, 417
inflectional terms, Full-Text Search query, 413
InfoMessage event, T-SQL, 244–246
Information Management System (IMS), development

history, 3
Information() object, SQL Server Management

Objects (SMOs), 332
Ingres

alerts, 494
CATOSL (CA Trusted Open Source License), 492
clustering, 493
database elements, 493–494
development history, 492
distributed data, 493
installation, 494–495
key range table partitioning, 493
Knowledge Manager, 493
.NET integration, 495–496
Oracle support, 493
page sizing, 494
parallel query execution, 493

read-ahead caching, 493
replication, 493
resource information, 496–497
row-level locking, 494
SQL compliance, 493
supported platforms, 494
user-defined extensions, 493

inheritance, PostgreSQL, 498
Init() method, aggregate functions, 322
INITIATOR service, Service Broker contracts,

377–378, 380–381
in-memory transaction logs, BerkeleyDB, 503
insert command, data providers, 218
instance classes, SQL Server Management Objects

(SMOs), 330
instance configuration file, Notification Services,

350–352
instance methods, ObjectDataSource control 

support, 180
instances, Notification Services, 350–352
INT (integer) data type, SQL Server, 97, 99
interfaces

ADO.NET 2, 35–36
IAsyncResult, 275–276
IDisposable, 207
ISqlReader, 320–321

IO Completion ports, asynchronous commands, 267
ISABOUT object, Full-Text Search, 417
IsClosed property, data providers, 226
IsCompleted property, asynchronous operations,

270–271
IsDbNull() method, data providers, 228
isolation levels, transactions, 142–143
ISqlReader interface, table-valued functions, 320–321
ItemDeleted event, change notification, 133–134
ItemDeleting event, change notification, 133–134
ItemInserted event, change notification, 133–134
ItemInserting event, change notification, 133–134
ItemUpdated event, change notification, 133–134
ItemUpdating event, change notification, 133–134

J
JavaScript, ReportServer validation, 444–445
joinbacks, queries, 253–254
joins

MaxDB, 478
self, 253
SupportedJoinOperators property, 72–73
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K
key range table partitioning, Ingres, 493
key-value pairs, BerkeleyDB, 503

L
labels, DataSourceProductName property, 70
languages, Full-Text Search settings, 418–419
legal issues, data storage, 35
licensing, open-source software issues, 467–468
lists, subscriber retrieval, 357–358
Load() method, streaming data, 93–94
local transactions

creating, 143–145
versus distributed transactions, 141

locking
BerkeleyDB, 503
MaxDB support, 480–481

logically atomic transactions, BerkeleyDB, 503
loops, CURSOR data type, 108

M
machine.config file, default providers, 46
manual change tracking, Full-Text Search population

method, 407
MARS (Multiple Active Result Sets)

ADO.NET support, 9
connection objects, 276–278

materialized views, PostgreSQL, 498
MaxDB

backups, 480
Database Analyzer, 479
database clustering, 480
database elements, 479–481
Database Manager utility, 479
development history, 477–478
foreign keys, 478
hot standby configuration support, 480
implicit/explicit schemas, 480
installation, 481–483
isolation levels, 480–481
locking, 480–481
nested subtransactions, 479
.NET interaction, 483–484
outer joins, 478
query tools, 479
referential integrity, 478

resource information, 484
server-side cursors, 480
SQL interaction, 478–479
SQL modes, 478
SQL Studio, 479
SQLCLI, 279
stored procedures, 478–479
subtransactions, 479
Synchronization Manager, 480
temporary tables, 480
triggers, 478–479
updateable views, 479
WebDAV (Web Distributed Authoring and Versioning), 480
WebSQL, 479

measurement units, column naming conventions, 16
Merge() method, aggregate functions, 322
message locking, Service Broker element, 370
message ordering, Service Broker element, 370
message queues, 378–380
message types, Service Broker, 370, 374–377
message validation, Service Broker, 374–377
methods. See also functions
Accumulate(), 322
AdsDataReader class, 226–228
AdsFactory class, 231–232
AsyncCallBackObject(), 268–270
BeginExecuteNonQuery(), 267–269
BeginExecuteReader(), 269–271
BeginExecuteXMLReader(), 271–272
BeginTransaction(), 209
BuildUpdateCommands(), 231
Cancel(), 215
ChangeDatabase(), 209
ChangePassword(), 281
ClearAllPools(), 280
ClearPool(), 280
Close(), 208, 228
Create(), 336
CreateDbCommand(), 208–209
CreateDbParameter(), 215
CreateParameter(), 79–80
CreatePermission(), 232
DbDataSourceEnumerator(), 52–53
Delete(), 359
Dispose(), 208, 228
EnableSubscriber(), 358–359
EndExecuteNonQuery(), 268–269
ExecuteNonQuery(), 81, 217–218
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ExecuteReader(), 81–82
ExecuteScalar(), 216
FindAll(), 219
GetDataSources(), 51–52, 232
GetDevices(), 360, 362
GetEnumerator(), 228
GetName(), 228
GetNsApplication(), 364
GetNsInstance(), 357–359, 364
GetOrdinal(), 228
GetSchemaTable(), 228
GetSqlValues(), 289
GetSubscriber(), 359–360
GetSubscription(), 363–364, 366
GetValues(), 228
Init(), 322
IsDbNull(), 228
legacy support issues, 40–41
Load(), 93–94
Merge(), 322
MoveNext(), 221
NextResult(), 228
ObjectDataSource control, 183
Open(), 206–207
OracleDataReader class, 531
OUTPUT, 249–250
Page_Load(), 362, 365–366
PopulateDevice(), 362
PopulateSubscription(), 365–366
Prepare(), 215
PrepareCommand(), 215, 219
QuoteIdentifier(), 78–79
Read(), 219
ReadAsObject, 122
reader (select), 216
Render(), 450–451
ROW_NUMBER(), 256–257
Script(), 342
Send(), 318
SqlCommand class, 267–272
SqlDependency class, 298
SqlType data retrieval, 287–290
TableAdapter, 185–189
Terminate(), 322–323
TryGetValue(), 210–211
UnQuoteIdentifier(), 78–79
WriteFromObject, 122

Microsoft Full-Text Engine for SQL Server (MSFTESQL),
described, 405

Microsoft Oracle provider
classes, 517–518
connection string properties, 524

Microsoft Transaction Server (MTS), Oracle services,
543–544

Microsoft Visual Studio 2005, XML requirement, 118
Microsoft.SqlServer.Server namespace, SQL

Server, 306
models, MySQL support, 470
modes

MaxDB, 478
MySQL, 470–472

MONEY data type, SQL Server, 102
MoveNext() method, data providers, 221
MSFTESQL (Microsoft Full-Text Engine for SQL Server),

described, 405
MTS (Microsoft Transaction Server), Oracle services,

543–544
multi-column queries, Full-Text Search, 418
Multiple Active Result Sets (MARS)

ADO.NET support, 9
connection objects, 276–278

multiple recordsets, ADO support, 9
multi-version concurrency control, PostgreSQL, 499
MySQL

combined modes, 472
database elements, 473–475
development history, 468–469
foreign keys, 473
installation, 475
invalid data handling, 473
licensing, 468–469
mode descriptions, 470–472
models, 470
.NET interaction, 475–476
online documentation, 469
primary keys, 473
resource information, 477
shorthand modes, 472
SQL compliance issues, 469–473
storage engines, 469–470
stored procedures, 472–473
transaction support, 470
triggers, 473
unique constraints, 473–474
views, 473
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N
named parameters, command objects, 80
namespaces

providers, 43–44
ReportServer, 440–442
SQL Server 2005, 306

naming conventions
acronym use, 15
Boolean fields, 16
columns, 16
DateTime fields, 16
foreign keys, 16
Hungarian notation, 15
measurement units, 16
numeric columns, 16
Pascal Case, 15
primary keys, 16
rules, 15–16
space character use, 16
stored procedures, 17–19
table elements, 15–17
triggers, 17
underscore (_) character use, 16

national character storage, NCHAR/NVARCHAR data
types, 99

NCHAR (national character storage) data type, SQL
Server, 99

NEAR operator, Full-Text Search, 417
nested transactions, distributed transactions, 153–155
.NET Data Provider, SQL Server communications, 265
.NET Framework

BerkeleyDB interaction, 504–507
data types, 109–116
data type/SQL Server mapping, 114–116
Firebird integration, 489–491
Ingres integration, 495–496
MaxDB interaction, 483–484
MySQL interaction, 475–476
Oracle database extensions, 544
PostgreSQL integration, 500–501
SQLite integration, 510–511

.NET Framework 1.0, .Net Data Provider, 265

.NET Framework 2.0
legacy API support issues, 40–42
version display, 41

networks, SQL Server enumeration, 278–279
NextResult() method, data providers, 228

noise words
defined, 404
query results ranking, 421–422

nonhosted event providers
application definition file, 353
Notification Services, 349

normalization
data views, 22–23
flat databases, 28–29
form types, 25
performance considerations, 30
real world application, 25
reasons for, 24

Notification Services
ADF (application definition file), 351–352
application definition file, 352–356
application types, 347
components, 348–350
development history, 347
distributors, 350
event providers, 349
firing events, 367–368
generator components, 349–350
instance configuration file, 350–352
SQL instance, 356–357
subscription management application, 348–349,

357–367
NTEXT data type, SQL Server, 99
NTile() function, T-SQL, 258–259
numbers

data types, 99–102
table names, 15

NUMERIC data type, SQL Server, 101
numeric columns, naming conventions, 16
NVARCHAR (MAX) data type, SQL Server, 99
NVARCHAR (national character storage) data type,

SQL Server, 99

O
Object Linking and Embedding Database (OLE-DB),

development history, 5
object serialization, XML/ADO.NET integration, 122–123
ObjectDataSource control, data binding, 176–185
objects. See also commands
Backup(), 338–340
callback, 269–270
CLR versus T-SQL, 329
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Column(), 335
Command, 11
Connection, 11
context connections, 327–328
DataAdapter, 11
Database(), 332, 334–335
DataReader, 11
DataSet, 11, 32
DeviceInfo, 453–460
ExecuteScalar(), 96
ForeignKey(), 337–338
FORMSOF, 416
IDBDataAdapter, 150–153
Index(), 335–336
Information(), 332
ISABOUT, 417
ObjectDataSource control implementation, 182–183
Restore(), 340–341
Scripter(), 341–343
scripting, 330
Sequence, 532–533
Server(), 331
ServerConnection(), 331
set-based programming, 302–303
SMO creation, 331–332
SqlCacheDependency, 293–297, 538–543
SqlContext, 327
SqlDataRecord, 326–327
SqlDbType, 290–291
SqlMetadata, 326–327
SqlPipe, 318
strongly typed, 33–34
SubscriberDevice, 362
SubscriberEnumeration, 357–359
SubscriptionEnumeration, 363–364
Table(), 334–335
Transaction, 142
TransactionScope, 146–149
TriggerContext, 327
URN referencing, 331
User(), 336–337
WMI Provider, 330

ObjectSpaces, Visual Studio Longhorn release, 136
ODBC (Open Database Connectivity), development 

history, 4
ODP.NET (Oracle Data Provider for .NET)

classes, 518–519
array binding, 526–529

connection string properties, 524, 525
Oracle data provider, 516
OracleDependency class, 538–539
provider classes, 516–517
tracing, 534–535

OLE-DB (Object Linking and Embedding Database),
development history, 5

one-way data binding, versus two-way data binding, 163
OnRowUpdating event, data providers, 230
Open Database Connectivity (ODBC), development 

history, 4
Open Source Initiative (OSI), definition, 468
Open() method, data providers, 206–207
OpenFTS, PostgreSQL downloadable add-on, 498
open-source databases. See also databases

BerkeleyDB, 502–508
Firebird, 485–492
Ingres, 492–497
MaxDB, 477–484
MySQL, 468–477
PostgreSQL, 497–502
SQLite, 508–512

open-source software, licensing issues, 467–468
operators
NEAR, 417
TOP, 250–252

Oracle
array binding, 526–529
BFile data type, 543
change notifications, 538–543
connection string properties, 524–525
connections, 523–526
data providers, 515–516
data types, 523
DataTable fills, 529–531
error tracing, 534–535
errors, 533–534
expression functions, 537
failover notification, 526
Ingres integration, 493
large object support, 523
Microsoft Oracle provider, 517–518
MTS (Microsoft Transaction Server), 543–544
.NET database extensions, 544
.NET stored procedures, 544–547
ODP.NET, 516
OracleConnection class, 523
OracleConnectionStringBuilder class, 523
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Oracle (continued)
OracleDataReader class, 531
OracleException class, 533–534
packages, 535–536
parameter binding, 526
provider classes, 516–519
regular expressions, 536–538
row insertion, 532–533
Sequence database object, 532–533
vendor-specific code avoidance, 516
Visual Studio.NET developer tools, 519–533

Oracle Data Provider for .NET (ODP.NET), classes,
518–519

Oracle Explorer, Visual Stuido.NET, 519–522
OracleConnection class, Oracle connections, 523
OracleConnectionStringBuilder class, Oracle

connections, 523
OracleDataReader class, methods, 531
OracleDependency class, ODP.NET, 538–539
OracleException class, Oracle errors, 533–534
OrderByColumnsInSelect property, schema 

metadata system, 71
OSI (Open Source Initiative), definition, 468
outer joins, MaxDB, 478
output, CLR stored procedure results, 318
output formats, application definition file, 353–354
OUTPUT method, T-SQL, 249–250
output parameters, value returns, 84–85
output validation, XML/ADO.NET integration, 131–132

P
packages, Oracle definitions, 535–536
Page_Load() method

adding/removing subscribers, 358–359
device list editing, 362
subscription list editing, 365–366

page-level caching, when to use, 168–169
paging, ObjectDataSource control support, 179
parallel query execution, Ingres, 493
ParameterMarkerFormat property, schema 

metadata system, 71
ParameterMarkerPattern property, schema 

metadata system 71
ParameterNameMaxLength property, schema 

metadata system, 71
ParameterNamePattern property, schema metadata

system, 71

parameters
adding to an object, 79–80
application definition file, 352–355
BeginExecuteReader() method, 269
data provider non-support reasons, 212
data validation, 166
INFLECTIONAL, 417
instance configuration file, 351
named, 80
ObjectDataSource control, 183–184
Oracle, 526
output, 84–85
passing to Data Source controls, 165–167
positional, 80
provider-specific, 80–81
Render() method, 450–451
rs namespace, 440–441
THESAURUS, 417
URL ReportServer, 443–446

partitioning, key range table, 493
Pascal Case, naming conventions, 15
passwords
ChangePassword() method, 281
SQL Server management, 280–283

performance, data access factor, 1
permissions

CLR (Common Language Runtime) Objects, 309
data providers, 232
Service Broker contracts, 377–378

pgAdmin III, PostgreSQL add-on tool, 499
PIVOT function, T-SQL, 254–256
PL/Perl language, PostgreSQL support, 499
PL/pgSQL language, PostgreSQL support, 499
PL/Python language, PostgreSQL support, 499
PL/Tcl language, PostgreSQL support, 499
PopulateSubscription() method, subscription list

editing, 365–366
population, Full-Text Search methods, 406–407
population/crawl, defined, 404
positional parameters, command objects, 80
PostGIS, PostgreSQL downloadable add-on, 498
PostgreSQL

BSD License, 497
constraints, 498
database elements, 498–499
development history, 497
extended data types, 498
extensibility, 498
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foreign keys, 498
inheritance, 498
installation, 499–500
materialized views, 498
multi-version concurrency control, 499
.NET integration, 500–501
OpenFTS, 498
pgAdmin III, 499
PostGIS, 498
procedural languages, 499
referential integrity, 498
replication, 499
resource information, 501–502
SQL compliance, 498
stored procedures, 498
triggers, 498
updateable views, 498

PopulateDevice() method, device list editing, 362
prefix terms, Full-Text Search query, 413
prefixes

stored procedure guidelines, 18
trigger naming conventions, 17

Prepare() method, data providers, 215
PrepareCommand() method, data providers, 215, 219
primary keys

column definitions, 19–20
column naming conventions, 16
foreign key relationships, 20–21
MySQL, 473

private cache area, data source caching, 167–169
procedural languages, PostgreSQL supported types, 499
procedural programming, CLR (Common Language Run-

time) Objects, 303
procedures

naming conventions, 17–19
sspGetSalesTotal, 429–430
XP (extended stored), 301–302

programmability tracking, SQL Server projects, 306
properties
AdsDataAdapter class, 229
AdsDataReader class, 226–228
AdsProvider, 205, 206
ASSEMBLYPROPERTY, 311
Column() object, 335
CommandText, 213
CompositeIdentifierSeparatorPattern, 69–70
Connection, 213
ConnectionString, 204–205
ConnectionTimeout, 205

Database, 205, 206
DataSource, 205
DataSourceProductName, 70
DbConnection, 213
DbParameterCollection, 214–215
DbTransaction, 214–215
Depth, 226
FieldCount, 226
Full-Text Search, 411–412
GenerateDBDirectMethods, 186–187
GroupByBehavior, 70
HasRows, 226
IdentifierCase, 70
IdentifierPattern, 70
Index() object, 335–336
IsClosed, 226
IsCompleted, 270–271
legacy support issues, 40–41
ObjectDataSource control, 177–178
Oracle connection string, 524–525
OrderByColumnsInSelect, 71
ParameterMarkerFormat, 71
ParameterMarkerPattern, 71
ParameterNameMaxLength, 71
ParameterNamePattern, 71
query results ranking, 419–420
QuoteIdentifierCase, 72
QuoteIdentifierPattern, 72
RecordsAffected, 226
scalar-valued functions, 320
ServerConnection() object, 331
ServerVersion, 205
SQLCacheDependency, 168
SqlConnectionStringBuilder class, 282–283
SqlContext object, 327
SQLDataSource control, 174–175
SqlDependency class, 298
SqlFunction attribute, 320
SqlTriggerContext class, 311
State, 205
StatementSeparatorPattern, 72
StringLiteralPattern, 72
SubscriberID, 357
SupportedJoinOperators, 72–73
Table() object, 335
TriggerAction, 312
user versus Active Directory, 221–226
User() object, 336–337
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Property Page, SQLDataSource control configura-
tion, 173

protocols
application definition file, 354–355
delivery, 350

provider classes, Oracle, 516–519
provider statistics, SQL Server, 292–293
providers. See also data providers

application definition file, 353
connection strings, 53–60
Generic Factory Model architecture, 44–45
GetDataSources() support, 51
hosted event, 349, 353
independent event, 349
machine.config file default types, 46
namespaces, 43–44
non-hosted event, 349, 353
OLE-DB workflow process, 5–6
provider-specific commands, 78

proximity terms, Full-Text Search query, 413

Q
quantum, generator component, 349
queries

anchors, 253–254
data caching, 293–297
Full-Text Search, 412–418
joinback, 253–254
MaxDB, 479
multi-column, 418
recursive, 253–254
reserved words, 75
results ranking, 419–422
schema metadata system, 68–73
schema metadata system information sources, 76–77
schema metadata system restrictions, 73–75
Service Broker, 372
SQLDataSource control configuration, 173

query-linked servers, Full-Text Search, 418
queues

e-mail sending service, 386–389
Service Broker, 370, 378–380, 394–396

quotation marks (“), quoted identifiers, 78–79
quoted identifiers

double quote (“) characters, 78–79
square brackets [ and ] characters, 78–79

QuoteIdentifier() method, SQL Server, 78–79

QuoteIdentifierCase property, schema metadata
system, 72

QuoteIdentifierPattern property, schema meta-
data system, 72

R
RANK() function, T-SQL, 257
rc namespace, ReportServer, 442
RDL (Report Definition Language), Reporting Services,

436–438
RDO (Remote Data Objects), development history, 7–8
reachability, T-SQL, 244
Read() method, data providers, 219
read-ahead caching, Ingres, 493
ReadAsObject method, XML block reading, 122
reader (select) methods, data providers, 216
READFAST function, T-SQL, 262
REAL (FLOAT(24)) data type, SQL Server, 101
receiving services, Service Broker component, 370
record locking, Firebird, 485–486
record versioning, Firebird, 485–486
records

data provider deletion, 217–218
data provider updates, 217–218
deletion protection methods, 35

RecordsAffected property, data providers, 226
recursive queries, T-SQL, 253–254
REFERENCE permission, Service Broker contracts,

377–378, 381
referential integrity

Firebird, 487
MaxDB, 478
PostgreSQL, 498

regular expressions
IdentifierPattern property, 71
Oracle, 536–538
ParameterMarkerPattern property, 71
ParameterNamePattern property, 71
QuoteIdentifierPattern property, 72

relational databases, development history, 3–4
relationships, foreign key/primary key, 20–21
reliability, data access factor, 1
Remote Data Objects (RDO), development history, 7–8
Render() method, ReportServer, 450–451
replication

BerkeleyDB, 503
Ingres, 493
PostgreSQL, 499
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Report Definition Language (RDL), Reporting Services,
436–438

Reporting Services
account rights, 429
versus ASP.NET reports, 433
data sources, 436–437
execute rights, 429
implementation, 428
log in, 429
page rendering, 437–438
RDL (Report Definition Language), 436–438
report models, 460–464
ReportServer, 438–460
scenarios, 428
servers, 438–460
SQL Server setup, 428–430
SqlDataSource connection string, 431–432
sspGetSalesTotal procedure, 429–430
URL contacts, 439–446
URL setup, 432
Web applications, 430–432

reports
compiled views, 23–24
ReportServer HTML rendering, 452–453

ReportServer
CodeBeside page, 446
DeviceInfo object, 453–460
forms, 445
HTML report rendering, 452–453
JavaScript validation, 444–445
rc namespace, 442
Render() method, 450–451
rs namespace, 440–441
SOAP contacts, 447–448
URL contacts, 439–446
URL parameters, 443–446
validations, 444–445
Web application setup, 448–453
WSDL (Web Service Description Language), 447–448

reserved words, schema metadata system, 75
Restore class, SMO utility class, 330
Restore() object, SQL Server Management Objects

(SMOs), 340–341
restore/backup, SQL Server Management Objects

(SMOs), 338–341
restrictions, schema metadata system, 73–75
result sets, multiple active, 276–278
results output, CLR (Common Language Runtime)

Objects, 318

results rankings, Full-Text Search, 419–422
return codes, command execution status reporting,

85–87
routes, Service Broker, 370, 390–394
row set loops, CURSOR data type, 108
ROW_NUMBER() method, T-SQL, 256–257
rows

Oracle insertion, 531–533
TIMESTAMP data type, 107

RowState() object, DataTables, 91
rs namespace, ReportServer, 440–441
rules, generator component, 349

S
SAFE permission, CLR (Common Language Runtime)

Objects, 309
SAPdb (MaxDB)

backups, 480
Database Analyzer, 479
database clustering, 480
database elements, 479–481
Database Manager utility, 479
development history, 477–478
foreign keys, 478
hot standby configuration support, 480
implicit/explicit schemas, 480
installation, 481–483
isolation levels, 480–481
locking, 480–481
nested subtransactions, 479
.NET interaction, 483–484
outer joins, 478
query tools, 479
referential integrity, 478
resource information, 484
server-side cursors, 480
SQL interaction, 478–479
SQL modes, 478
SQL Studio, 479
SQLCLI, 279
stored procedures, 478–479
subtransactions, 479
Synchronization Manager, 480
temporary tables, 480
triggers, 478–479
updateable views, 479
WebDAV (Web Distributed Authoring and Versioning), 480
WebSQL, 479
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scalars, single value returns, 87
scalar-valued functions, CLR (Common Language Run-

time) Objects, 319–320
schema inference, XML/ADO.NET integration, 132–133
schema metadata system

data source information, 69–73
data types, 69
IdentifierPattern property, 71
information queries, 68–73
information sources, 76–77
OrderByColumnsInSelect property, 71
ParameterMarkerFormat, 71
ParameterMarkerPattern property, 71
ParameterNameMaxLength property, 71
ParameterNamePattern, 71
provider-agnostic API, 67
QuoteIdentifierCase, 72
QuoteIdentifierPattern, 72
reserved words, 75
restrictions, 73–75
StatementSeparatorPattern, 72
StringLiteralPattern, 72
SupportedJoinOperators, 72–73
uses, 77

schemas
CustomerInfoSchema, 376
MaxDB, 480

scientific calculations, CLR (Common Language Run-
time) Objects, 329

Script() method, SQL Server Management Objects
(SMOs), 342

Scripter class, SMO utility class, 330
Scripter() object, SQL Server Management Objects

(SMOs), 341–343
scripting objects, SQL Server Management Objects

(SMOs), 330
scripts

Service Broker, 373
Service Broker communication routes, 390–394
SQL Server Management Objects (SMOs), 341–343
test, 306

searches
ASP.NET asynchronous operations, 272–276
results display, 81–82
XML, 422

security
CAS (Code Access Security), 127–128
CLR (Common Language Runtime) Object

permissions, 309

database views, 23
XSD documents, 127–128

security calculations, CLR (Common Language Run-
time) Objects, 329

SELECT statement, data migration, 29
selectable stored procedures, Firebird, 487
self joins, T-SQL, 253
Send() method, CLR (Common Language Runtime)

Objects, 318
sending services, Service Broker component, 370
separators, CompositeIdentifierSeparator

Pattern property, 69–70
Sequence database object, Oracle, 532–533
serialization

DataTables, 92–93
XML/ADO.NET integration, 122–123

Server() object, SQL Server Management Objects
(SMOs), 331

ServerConnection() object, SQL Server Manage-
ment Objects (SMOs), 331

servers
query-linked, 418
Reporting Services, 438–460

server-side cursors, MaxDB, 480
ServerVersion property, data providers, 205
Service Broker

asynchronous communication, 370
automatic activation, 370
catalog views, 396–399
communication patterns, 369
components, 370–371
contracts, 377–378
coordination, 370
customer sign-up service, 383–386
database integration, 370
e-mail sending service, 386–389
log in, 373
message locking, 370
message ordering, 370
message processing, 381–394
message types, 374–377
message validation, 374–377
queries, 372
queues, 378–380, 394–396
routes, 390–394
sample scenario, 371–372
scripts, 373
service automation, 390
services, 380–381
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setup, 372–373
SQL Service Broker Explorer, 400
SSB Admin, 399–400
Web application form, 381–383

Service Oriented Architecture Protocol (SOAP), Report-
Server, 447–448

services
automating, 390
customer sign-up, 383–386
e-mail sending, 386–389
Service Broker, 370, 380–381
Service Broker contracts, 377–378

set theory, CLR (Common Language Runtime) Objects,
302–303

set-based programming, CLR (Common Language Run-
time) Objects, 302–303

Settings() object, SQL Server Management Objects
(SMOs), 332

shorthand modes, MySQL, 472
simple terms, Full-Text Search query, 413
simple transactions, versus distributed transactions, 141
single-master replication, BerkeleyDB, 503
SMALLDATETIME data type, SQL Server, 100
SMALLINT data type, SQL Server, 100
SMALLMONEY data type, SQL Server, 102
SMOs (SQL Server Management Objects)
Backup() object, 338–340
backup/restore, 338–341
capture execution, 330
Column() object, 335
columns, 334–336
Configuration() object, 332
database creation, 332–334
Database() object, 332, 334–335
described, 301, 329
direct execution, 330
execution methods, 330
foreign keys, 337–338
ForeignKey() object, 337–338
Index() object, 335–336
indexes, 334–336
Information() object, 332
instance classes, 330
object creation, 331–332
Restore() object, 340–341
Script() method, 342
Scripter() object, 341–343
scripting objects, 330
scripts, 341–343

Server() object, 331
ServerConnection() object, 331
Settings() object, 332
table creation, 334–336
Table() object, 334–335
tables, 334–336
URN (Unique Resource Name) referencing, 331
user creation, 336–337
User() object, 336–337
UserOptions() object, 332
utility classes, 330
WMI Provider objects, 330

SOAP (Service Oriented Architecture Protocol), Report-
Server, 447–448

space character, table name, 16
SQL (Structured Query Language)

development history, 3, 235–238
Firebird compliance, 485
MaxDB interaction, 478–479

SQL Server
ADO.NET integration, 265–266
BIGINT, 100
BINARY, 102–106
BIT, 107
bulk copy operations, 291–292
cache dependent data, 168
CHAR (character), 98
CLR Object tables/functions, 310–311
CLR (Common Language Runtime) Objects, 301–328
connection pooling, 279–280
CURSOR, 108
data type/.NET mapping, 114–116
data types, 98–108
database connection strings, 306
DATETIME (TIMESTAMP), 100
DDL CREATE ENDPOINT command, 344–345
DECIMAL (DEC and DEC(p,s)), 101–102
DROP ENDPOINT command, 344–345
enumerations, 278–279
FLOAT (FLOAT and DOUBLE PRECISION), 101
full-text searching, 403–404
IMAGE, 102–103
INT (integer), 97, 99
management objects, 329–343
Microsoft.SqlServer.Server namespace, 306
MONEY, 102
MSFTESQL (Microsoft Full-Text Engine for SQL

Server, 405
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SQL Server (continued)
NCHAR (national character storage), 99
.NET Data Provider, 265
NS instance, 356–357
NTEXT data type, 99
NUMERIC, 101
NVARCHAR (MAX) data type, 99
NVARCHAR (national character storage), 99
password management, 280–283
programmability tracking, 306
provider statistics, 292–293
quoted identifiers, 78–79
REAL (FLOAT(24)), 101
Reporting Services setup, 428–430
reserved words, 75
SMALLDATETIME, 100
SMALLINT, 100
SMALLMONEY, 102
SMOs (SQL Management Objects), 301
SQL_VARIANT, 107–108
SqlConnectionStringBuilder class, 281–283
SqlDataSourceEnumerator class, 278–279
SqlTypes, 283–300
stored procedure prefix guidelines, 18
System.Data.Sql namespace, 306
System.Data.SqlClient namespace, 306
TABLE, 108
test scripts, 306
TEXT, 99
TIMESTAMP, 107
TINYINT, 100
UNIQUEIDENTIFIER, 108
VARBINARY, 102–103
VARBINARY (MAX), 102–103
VARCHAR (MAX), 99
VARCHAR (char varying/character varying), 98
Web Services/XML Endpoint, 301
XML, 108
XML Web services, 343–345
XPs (extended stored procedures), 301–302

SQL Server Management Objects (SMOs)
Backup() object, 338–340
backup/restore, 338–341
capture execution, 330
Column() object, 335
columns, 334–336
Configuration() object, 332
database creation, 332–334

Database() object, 332, 334–335
described, 301, 329
direct execution, 330
execution methods, 330
foreign keys, 337–338
ForeignKey() object, 337–338
Index() object, 335–336
indexes, 334–336
Information() object, 332
instance classes, 330
object creation, 331–332
Restore() object, 340–341
Script() method, 342
Scripter() object, 341–343
scripting objects, 330
scripts, 341–343
Server() object, 331
ServerConnection() object, 331
Settings() object, 332
table creation, 334–336
Table() object, 334–335
tables, 334–336
URN (Unique Resource Name) referencing, 331
user creation, 336–337
User() object, 336–337
UserOptions() object, 332
utility classes, 330
WMI Provider objects, 330

SQL Server Management Studio, Full-Text Search index
setup, 408–411

SQL Service Broker Explorer, Service Broker administra-
tion tool, 400

SQL statements, TableAdapter method, 187
SQL Studio, MaxDB query tool, 479
SQL_VARIANT data type, SQL Server, 107–108
SqlBulkCopy class, bulk copy operations, 291–292
SqlBulkCopyColumnMapping class, bulk copy opera-

tions, 291–292
SqlBulkCopyColumnMappingCollection class,

bulk copy operations, 291–292
SqlCacheDependency object

change notification, 539–543
query data caching, 293–297

SQLCacheDependency property, data source
caching, 168

SqlCacheDependencyAdmin class, SQL Server, 297
SQLCLI, MaxDB query tool, 479
SqlClient provider, SqlCommand object 78
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SqlClientFactory provider, GetDataSources()
method support, 51

SqlCLRObjects assembly, deployment methods, 307
SqlCommand class, asynchronous command support,

267–272
SqlCommand object, calling from SqlClient provider, 78
SqlConnectionStringBuilder class, SQL connec-

tions, 281–283
SqlContext object, CLR (Common Language

Runtime) Objects, 327
SqlDataRecord object, tabular results, 326–327
SqlDataSource connection string, Reporting Ser-

vices, 431–432
SQLDataSource control, configuration methods,

170–175
SqlDataSourceEnumerator class, SQL Server,

278–279
SqlDbType object, SqlTypes, 290–291
SqlDependency class, SQL Server, 297–300
SQLite

database elements, 509–510
development history, 508
installation, 510
minimalist approach, 510
.NET integration, 510–511
resource information, 512
small footprint, 510
SQL compliance, 508–509
zero configuration requirements, 510

SqlMetadata object, tabular results, 326–327
SqlPipe object, CLR (Common Language Runtime)

Objects, 318
SqlProcedure attribute, CLR (Common Language

Runtime) Objects, 318–319
SqlTriggerContext class, CLR (Common Language

Runtime) Objects, 311–313
SqlTypes namespace

bulk copy operations, 291–292
data retrieval methods, 287–290
data types, 109–113
provider statistics, 292–293
SqlCacheDependency object, 293–297
SqlCacheDependencyAdmin class, 297
SqlDbType object, 290–291
SqlDependency class, 297–300
structures, 284–287

SqlUserDefinedAggregate attribute, aggregate
functions, 322

square brackets [ and ] characters, quoted identifiers,
78–79

SSB Admin, Service Broker administration tool,
399–400

sspGetSalesTotal procedure, Reporting Services,
429–430

State property, data providers, 205
StateChange event, data providers, 207
statements
ALERT QUEUE, 378
StatementSeparatorPattern property, 72

StatementSeparatorPattern property, schema
metadata system, 72

static methods, ObjectDataSource control
support, 180

statistics, data deletion protection method, 35
stemmer, defined, 404
storage engines, MySQL, 469–470
stored procedures
AddNewCustomer, 382
CLR (Common Language Runtime) Objects, 318–319
Firebird, 487
MaxDB, 478–479
MySQL, 472–473
naming conventions, 17–19
Oracle, 544–547
PostgreSQL, 498
sspGetSalesTotal, 429–430
TABLE data type, 108
TableAdapter method, 188–189
XP (extended), 301–302

string parameters, provider-specific connection strings,
57–60

StringLiteralPattern property, schema metadata
system, 72

strings
connection, 53–60
connection fields, 203–204
database connection, 306
ParameterMarkerFormat property, 71
SqlDataSource connection, 431–432

structured exception handling, T-SQL, 240–249
Structured Query Language (SQL)

development history, 3, 235–238
Firebird compliance, 485
MaxDB interaction, 478–479

subscriber devices, subscription management applica-
tion component, 349
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SubscriberDevice object, device list editing,
362–363

SubscriberEnumeration object, subscriber list
retrieval, 357–359

SubscriberID property, subscribers, 357
subscribers

adding/removing, 358–359
device list display, 360
retrieving, 357–358
subscription management application, 357–359,

363–367
subscription management application component, 348

subscription lists
displaying, 363–364
editing, 364–367

subscription management application
adding/removing subscribers, 358–359
device list, 360–363
event firing, 367–368
Notification Services, 348–349
saving subscriptions, 366–367
subscriber list retrieval, 357–358
subscription list, 363–367

SubscriptionEnumeration object, subscription list
display, 363–364

subscriptions
application definition file, 355
saving, 366–367
subscription management application component, 349

SupportedJoinOperators property, schema meta-
data system, 72–73

sys.assemblies table, CLR (Common Language 
Runtime) Object, 310

sys.assembly_files table, CLR (Common Language
Runtime) Object, 310

sys.assembly_modules table, CLR (Common 
Language Runtime) Object, 310

sys.assembly_preferences table, CLR (Common
Language Runtime) Object, 310

sys.assembly_types table, CLR (Common Language
Runtime) Object, 310

sys.sql_modules table, CLR (Common Language
Runtime) Object, 310

sys.types table, CLR (Common Language Runtime)
Objects 310

system requirements, transactions, 156–157
System.Data.CommandBehavior() objects,

enumerated types, 82–83

System.Data.Common namespace, provider
classes, 202

System.Data.Sql namespace, SQL Server, 306
System.Data.SqlClient namespace, SQL

Server, 306
System.Data.SqlTypes namespace, SqlType 

structures, 284–287
System.Transactions namespace, distributed trans-

actions, 146–149

T
TABLE data type, SQL Server, 108
Table() object, SQL Server Management Objects

(SMOs), 334–335
TableAdapter method, data binding, 185–189
tables

CLR (Common Language Runtime) Objects, 310–311
data providers, 212
dragging/dropping into Windows Forms, 192
foreign keys, 20–21
MaxDB, 480
message queues, 378–380
namespace qualified, 94
naming conventions, 15–17
primary key conventions, 19–20
Service Broker queues, 394–395
SQL Server Management Objects (SMOs), 334–336
SQLDataSource control configuration, 173–174
user properties versus Active Directory properties,

221–222
views, 22–23

TABLESAMPLE function, T-SQL, 259–262
table-valued functions, CLR (Common Language Run-

time) Objects, 320–321
tabular results, CLR (Common Language Runtime)

Objects, 326–327
TARGET service, Service Broker contracts, 377–378,

390–381
Terminate() method, aggregate functions, 322–323
test scripts, SQL Server projects, 306
TEXT data type, SQL Server, 99
text markup, XML/ADO.NET integration, 120
THESAURUS parameter, Full-Text Search, 417
time-based population, Full-Text Search method, 407
time/date, data types, 100
TIMESTAMP data type, SQL Server, 107
TINYINT data type, SQL Server, 100
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token, defined, 404
TOP operator, T-SQL, 250–252
tracing, ODP.NET, 534–535
transaction logs, BerkeleyDB, 503
Transaction object, isolation levels, 142
transaction processing

C# language, 242–243
VB.NET, 241–242

transactional data store, BerkeleyDB, 503
transactions

A.C.I.D (atomicity/consistency/isolation/durability),
140–141

concepts, 139–145
distributed, 145–154
isolation levels, 142–143
local transaction creation, 143–145
logically atomic, 503
MaxDB, 479
MySQL support, 470
parent/child scenarios, 140
simple versus distributed, 141
system requirements, 156–157
types, 141

TransactionScope object, distributed transactions,
146–149

Transact-SQL (T-SQL) language, development history,
235–238

Transfer class, SMO utility class, 330
TriggerAction property, operations, 312–313
TriggerContext object, CLR (Common Language

Runtime) Objects, 327
triggers

CLR (Common Language Runtime) Objects, 311–317
column updates, 313
DDL, 263–264
DDL events, 313–314
MaxDB, 478–479
MySQL, 473
naming conventions, 17
PostgreSQL, 498
TriggerContext object, 327

TryGetValue() method, data providers, 210–211
T-SQL (Transact-SQL) language

aggregate functions, 323–324
at (@) character, 239
CLR mapping methods, 307
versus CLR objects, 329
CREATE ASSEMBLY statement, 307
CTEs (Common Table Expressions), 252–254

DDL triggers, 263–264
Dense_Rank() function, 258
development history, 235–238
flow-control statements, 239–240
InfoMessage event, 244–246
NTile() function, 258–259
OUTPUT method, 249–250
PIVOT function, 254–256
RANK() function, 257
reachability, 244
READFAST function, 262
recursive queries, 253–254
ROW_NUMBER() method, 256–257
self joins, 253
structured exception handling, 240–249
TABLESAMPLE function, 259–262
TOP operator, 250–252
UNPIVOT function, 256
variable declarations, 238–239
WAITFOR function, 262–263

two-way data binding, data concurrency issues, 163
typed DataSets, data binding, 185–186

U
UDFs (user-defined functions), Firebird, 487
UI controls, Windows Forms, 197–198
underscore (_) character, table name avoidance, 16
Unique Resource Name (URN), SMO referencing, 331
UNIQUEIDENTIFIER data type, SQL Server, 108
universal data access, development history, 4–6
UNPIVOT function, T-SQL, 256
UnQuotedIdentifier() method, SQL Server, 78–79
UNSAFE permission, CLR (Common Language Runtime)

Objects, 309
updateable views, PostgreSQL, 498
updates, columns, 313
URL, ReportServer parameters, 443–446
URL contacts, ReportServer, 439–446
URN (Unique Resource Name), SMO referencing, 331
user objects, data providers, 212
user properties, versus Active Directory properties,

221–226
User() object, SQL Server Management Objects

(SMOs), 336–337
user-control caching, when to use, 168–169
user-defined aggregate functions, CLR (Common Lan-

guage Runtime) Object, 323
user-defined extensions, Ingres, 493
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user-defined functions (UDFs), Firebird, 487
user-defined types, CLR (Common Language Runtime)

Objects, 324–326
UserOptions() object, SQL Server Management

Objects (SMOs), 332
users

password changing, 280–281
SQL Server Management Objects (SMOs), 336–337

utility classes, SQL Server Management Objects
(SMOs), 330

Utils class
device list editing, 362
subscriber list retrieval, 357–359

V
validations

parameter data, 166
ReportServer, 444–445
Service Broker messages, 374–377
XML/ADO.NET integration, 131–133

VARBINARY data type, SQL Server, 102–103
VARBINARY (MAX) data type, SQL Server, 102–103
VARCHAR (MAX) data type, SQL Server, 99
VARCHAR (char varying/character varying) data type,

SQL Server, 98
variable declarations, T-SQL, 238–239
VB.NET language

reachability, 244
transaction processing, 241–242

vendor commitment, data access factor, 2
versioning records, data preservation method, 35
views

data normalization, 22–23
database abstraction, 31–32
MaxDB, 479
MySQL, 473
PostgreSQL, 498
reports, 23–24
security enforcement, 23
Service Broker catalogs, 396–399

Visual Studio 2005
CLR debugging, 309–310
CLR deployment, 307–308
CLR mapping methods, 307
CLR permissions, 309
creating CLR objects, 304–306
data components, 192

Data Source controls, 169–170
Report Server project, 433
SQL Server projects, 306–310
UI controls, 197–198
Web applications, 430–432

Visual Studio.NET
Oracle developer tools, 519–533
Oracle Explorer, 519–522

W
WAITFOR function, T-SQL, 262–263
Web applications

data binding environment, 159–160
one-way versus two-way data binding, 163
Reporting Services, 430–432
ReportServer setup, 448–453

Web Distributed Authoring and Versioning (WebDAV),
MaxDB, 480

Web forms, ObjectDataSource control implementa-
tion, 182–183

Web Service Development Language (WSDL), Report-
Server, 447–448

Web services
distributed transactions, 155–156
XML/ADO.NET integration, 119–120

Web Services/XML Endpoints, SQL Server, 301
Web sites

anti-stored procedure argument, 238
BerkeleyDB downloads, 508
BerkeleyDB drivers, 508
BerkeleyDB licensing information, 502
BerkeleyDB support, 508
Bill Vaughn, 249
BSD License, 497
CATOSL (CA Trusted Open Source License), 492
Dan Sullivan, 400
Firebird downloads, 491
Firebird drivers, 491
Firebird support, 492
Ingres downloads, 497
Ingres drivers, 497
Ingres support, 497
InterBase Public License, 485
MaxDB downloads, 484
MaxDB drivers, 484
MaxDB support, 484
Microsoft downloads, 427
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MySQL documentation, 469
MySQL downloads, 477
MySQL drivers, 477
MySQL licensing, 468–469
MySQL support, 477
.NET Framework change issues, 41
Niels Berglund, 399
nullable types, 114
Oracle Developer Tools, 519
OSI (Open Source Initiative) definition, 468
PostgreSQL, 499
PostgreSQL downloads, 501
PostgreSQL drivers, 502
PostgreSQL support, 502
Scot Allen, 140
SQL (Structured Query Language) specifications, 235
SQLite discussion, 508
SQLite downloads, 512
SQLite drivers, 512
SQLite support, 512

Web SQL, MaxDB query tool, 479
WebDAV (Web Distributed Authoring and Versioning),

MaxDB, 480
WEIGHT function, Full-Text Search, 417
weighted terms, Full-Text Search query, 413
Windows Forms

application data binding, 191–198
BindingList control, 198
BindingNavigator control, 198
BindingSource control, 197–198
data binding, 191–198
data binding environment, 159–160
data sources, 192–196
dragging/dropping tables, 192
one-way versus two-way data binding, 163
UI controls, 197–198

wizards
Configuration, 170–174, 181–184, 187–189
Data Source Configuration, 193–196
Full Text Indexing, 409–411

WMI Provider objects, SQL Server Management Objects
(SMOs), 330

word breaker, defined, 404
write-ahead logging, BerkeleyDB, 503
WriteFromObject method, XML object representa-

tion, 122
WSDL (Web Service Description Language), Report-

Server, 447–448

X
XML (eXtensible Markup Language)

BerkeleyDB support, 503
CAS (Code Access Security), 127–128
change notification, 133–134
configuration files, 120
data exchange, 119
design goals, 120–121
Designer, 124–125
DeviceInfo object tags, 453–460
flexibility, 117
Full-Text Search, 422
future trends, 135–136
Inference class, 132–133
ItemDeleted event, 133–134
ItemDeleting event, 133–134
ItemInserted event, 133–134
ItemInserting event, 133–134
ItemUpdated event, 133–134
ItemUpdating event, 133–134
Microsoft Visual Studio 2005 requirement, 118
.NET Framework schema type conversions, 123–124
object serialization, 122–123
ObjectSpaces, 136
output validation, 131–132
performance enhancements, 134–135
schema inference, 132–133
security focus, 127–128
Service Broker message validation, 374–377
text markup, 120
validation, 131–133
Web services, 119–120
XML Views, 136
XmlReader class, 121–124
XmlSchemaSet class, 131
XmlWriter class, 121–124
XPath 2.0, 135
XPathDocument, 128–130
XQuery, 135–136
XSD documents, 126–128
XSL debugging, 125–126
XSLT 2.0, 135–136
XSLT enhancements, 134

XML data type, SQL Server, 108
XML Views, declarative maps, 136
XML Web services, database processing, 343–345
XmlReader class, XML/ADO.NET integration, 121–124
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XmlSchemaSet class, XML/ADO.NET integration, 131
XmlWriter class, XML/ADO.NET integration, 121–124
XP (extended stored procedures), SQL Server, 301–302
XPath 2.0, standards, 135
XPathDocument, XML/ADO.NET integration, 128–130
XQuery, XPath 2.0 superset, 135–136

XSD documents, XML/ADO.NET integration, 126–128
XSL debugging, XML/ADO.NET integration, 125–126
XSLT 2.0, XPath 2.0 superset, 135–136

Z
zero configuration, SQLite, 510
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