
DRAFT, 8/24/01

159
Copyright © 2001 O’Reilly & Assoc
Chapter 11

0.

n write MySQL applications.
ctivity) is one of the more
common use. Most of what

base, MS SQL Server, mSQL,
In fact, nearly none of the
ything to do with coding.
ownloading MySQL support
erything else is largely inde-
14

Java
Java is one of the simplest languages in which you ca
Its database access API JDBC (Java DataBase Conne
mature database-independent database access APIs in
we cover in this chapter can be applied to Oracle, Sy
and any other database engine as well as MySQL.
MySQL-specific information in this chapter has an
Instead, the "proprietary" information relates only to d
for JDBC and configuring the runtime environment. Ev
pendent of MySQL, excepting for features not supported by MySQL like transac-
tions.

In this chapter, we assume a basic understanding of the Java programming lan-
guage and Java concepts. If you do not already have this background, we strongly
recommend taking a look at Learning Java (O’Reilly & Associates, Inc.). For more
details on how to build the sort of three-tier database applications we discussed in
Chapter 6, Database Applications, take a look at Database Programming with JDBC
and Java, 2nd Edition (O’Reilly & Associates, Inc.).

The JDBC API
Like all Java APIs, JDBC is a set of classes and interfaces that work together to sup-
port a specific set of functionality. In the case of JDBC, this functionality is naturally
database access. The classes and interfaces that make up the JDBC API are thus
abstractions from concepts common to database access for any kind of database. A
Connection , for example, is a Java interface representing a database connection.
Similarly, a ResultSet represents a result set of data returned from a SQL SELECT
statement. Java puts the classes that form the JDBC API together in the java.sql
package which Sun introduced in JDK 1.1.
iates, Inc.

DRAFT, 8/24/01
The underlying details of database access naturally differ from vendor to vendor.
JDBC does not actually deal with those details. Most of the classes in the java.
sql package are in fact interfaces—and thus no implementation details. Individ-
ual database vendors provide implementations of these interfaces in the form of
something called a JDBC driver. As a database programmer, however, you need to
know only a few details about the driver you are using—the rest you manage via
the JDBC interfaces.

The first database-dependent thing you need to know is what drivers exist for
your database. Different people provide different JDBC implementations for a vari-
ety of databases. As a database programmer, you want to select a JDBC implemen-
tation that will provide the greatest stability and performance for your application.
Though it may seem counterintuitive, JDBC implementations provided by the data-
base vendors generally sit at the bottom of the pack when it comes to stability and
flexibility. As an Open Source project, however, MySQL relies on drivers provided
by other developers in the community.

Sun has created four classifications that divide JDBC drivers based on their archi-
tectures. Each JDBC driver classification represents a trade-off between perfor-
mance and flexibility.

Type 1
These drivers use a bridging technology to access a database. The JDBC-
ODBC bridge that comes with JDK 1.2 is the most common example of this
kind of driver. It provides a gateway to the ODBC API. Implementations of the
ODBC API in turn perform the actual database access. Though useful for
learning JDBC and quick testing, bridging solutions are rarely appropriate for
production environments.

Type 2
Type 2 drivers are native API drivers. "Native API" means that the driver con-
tains Java code that calls native C or C++ methods provided by the database
vendor. In the context of MySQL, a Type 2 driver would be one that used
MySQL’s C API under the covers to talk to MySQL on behalf of your applica-
tion. Type 2 drivers generally provide the best performance, but they do
require the installation of native libraries on clients that need to access the
database. Applications using Type 2 drivers have a limited degree of portabil-
ity.

Type 3
Type 3 drivers provide a client with a pure Java implementation of the JDBC
API where the driver uses a network protocol to talk to middleware on the
server. This middleware, in turn, performs the actual database access. The
middleware may or may not use JDBC for its database access. The Type 3
architecture is actually more of a benefit to driver vendors than application
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
architects since it enables the vendor to write a single implementation and
claim support for any database that has a JDBC driver. Unfortunately, it has
weak performance and unpredictable stability.

Type 4
Using network protocols built into the database engine, Type 4 drivers talk
directly to the database using Java sockets. This is the most direct pure Java
solution. Because these network protocols are almost never documented, most
Type 4 drivers come from the database vendors. The Open Source nature of
MySQL, however, has enabled several independent developers to write differ-
ent Type 4 MySQL drivers.

Practically speaking, Type 2 and Type 4 drivers are the only viable choices for a
production application. At an abstract level, the choice between Type 2 and Type
4 comes down to a single issue: Is platform independence critical? By platform
independence, we mean that the application can be bundled up into a single jar
and run on any platform. Type 2 drivers have a hard time with platform indepen-
dence since you need to package platform-specific libraries with the application. If
the database access API has not been ported to a client platform, then your appli-
cation will not run on the platform. On the other hand, Type 2 drivers tend to per-
form better than Type 4 drivers.

Knowing the driver type provides only a starting point for making a decision
about which JDBC driver to use in your application. The decision really comes
down to knowing the drivers that exist for your database of choice and how they
compare to each other. Table 11-1 lists the JDBC drivers available for MySQL. Of
course, you are also able to use any sort of ODBC bridge to talk to MySQL as
well—but we do not recommend it under any circumstance for MySQL develop-
ers.

Of the three MySQL JDBC drivers, twz sees the least amount of development and
thus likely does not serve the interests of most programmers these days. The GNU
driver (also known as mm MySQL), on the other hand, has seen constant develop-

Table 0-1. . JDBC Drivers for MySQL

Driver Name OSIa License

a Open Source Initiative (http://www.opensource.org). For drivers released under an OSI-approved
license, the specific license is referenced.

JDBC Version Home Page

mm (GNU) LGPL 1.x and 2.x http://mmmysql.sourceforge.net/

twz no 1.x http://www.voicenet.com/~zellert/
tjFM/

Caucho QPL 2.x http://www.caucho.com/projects/jdbc-
mysql/index.xtp
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Copyright © 2001 O’Reilly & Associates, Inc.

ment and is the most mature of the three JDBC drivers. Not to be outdone, Cau-
cho claims significant performance benefits over the GNU driver.

The JDBC Architecture

We have already mentioned that JDBC is a set of interfaces implemented by differ-
ent vendors. Figure 11-1 shows how database access works from an application’s
perspective. In short, the application simply makes method calls to the JDBC inter-
faces. Under the covers, the implementation being used by that application per-
forms the actual database calls.

JDBC is divided up into two Java packages:

• java.sql

• javax.sql

The java.sql package was the original package that contained all of the JDBC
classes and interfaces. JDBC 2.0, however, introduced something called the JDBC
Optional Package—the javax.sql package—with interfaces that a driver does
not have to implement. In fact, the interfaces themselves are not even part of the
J2SE as of JDK 1.3 (though it always has been part of the J2EE).

As it turns out, some of the functionality in the JDBC Optional Package is so
important that it has been decided that it is no longer "optional" and should
instead be part of the J2SE with the release of JDK 1.4. For backwards compatibil-
ity, the Optional Package classes remain in javax.sql .

Connecting to MySQL

JDBC represents a connection to a database through the Connection interface.
Connecting to MySQL thus requires you to get an instance of the Connection
interface from your JDBC driver. JDBC supports two ways of getting access to a
database connection:

1. Through a JDBC Data Source

2. Using the JDBC Driver Manager

The first method—the data source—is the preferred method for connecting to a
database. Data sources come from the Optional Package and thus support for
them is still spotty. No matter what environment you are in, you can rely on driver
manager connectivity.

FIGURE14-1.BMP
Figure 0-1. . The JDBC architecture

DRAFT, 8/24/01
Data Source Connectivity

Data source connectivity is very simple. In fact, the following code makes a con-
nection to any database—it is not specific to MySQL:

Context ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/myds");
Connection conn = ds.getConnection("userid", "password");

The first line in this example actually comes from the Java Naming and Directory
Interface (JNDI*) API. JNDI is an API that provides access to naming and directory
services. Naming and directory services are specialized data stores that enable you
to associate related data under a familiar name. In a Windows environment, for
example, network printers are stored in Microsoft ActiveDirectory under a name.
In order to print to the networked color printer, a user does not need to know all
of the technical details about the printer. Those details are stored in the directory.
The user simply needs to know the name of the printer. The directory, in other
words, stored all of the details about the printer in a directory where an applica-
tion could access those details by name.

Though data source connectivity does not require a data source be stored in a
directory, you will find that a directory is the most common place you will want to
store data source configuration details. As a result, you can simply ask the direc-
tory for the data source by name. In the above example, the name of the data
source is "jdbc/myds". JNDI enables your application to grab the data source from
the directory by its name without worrying about all of the configuration details.

Though this sounds simple enough, you are probably wondering how the data
source got in the directory in the first place. Someone has to put it there. Program-
matically, putting the data source in the directory can be as simple as the follow-
ing code:

SomeDataSourceClass ds = new SomeDataSourceClass();
Context ctx = new InitialContext();

// configure the DS by setting configuration attributes
ctx.bind("jdbc/myds", ds);

We have two bits of "magic" in this code. The first bit of magic is the SomeData-
SourceClass class. In short, it is an implementation of the javax.sql.Data-
Source interface. In some cases, this implementation may come from the JDBC
vendor—but not always. In fact, none of the MySQL drivers currently ship with a

* A full discussion of JNDI is way beyond the scope of this chapter. You minimally need a JNDI service
provider (analogous to a JDBC driver) and to set some environment variables to support that service
provider. You also need a directory service to talk to. If you do not have access to a directory service,
you can always practice using the file system service provider available on the JNDI home page at http:/
/java.sun.com/products/jndi or use the driver manager approach.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
DataSource implementation. If you are using some sort of application server like
Orion or WebLogic, then those application servers will provide a DataSource
implementation for you that will work with MySQL.

Configuring your data source depends on the properties demanded by the data
source implementation class. In most cases, a data source implementation will
want to know the JDBC URL and name of the java.sql.Driver interface
implementation for the driver. We will cover these two things in the next section
on driver manager connectivity.

Though we have been very vague about configuring a JDBC data source program-
matically, you should not despair. You should never have to configure a JDBC
data source programmatically. The vendor that provides your data source imple-
mentation should provide you with a configuration tool capable for publishing the
configuration for a data source to a directory. All application servers come with
such a tool. A tool of this sort will prompt you for the values it needs in order to
enter a new data source in a directory and then allow you to save that configura-
tion to the directory. Your application can then access the data source by name as
shown earlier in the chapter.

Driver Manager Connectivity

One of the few implementation classes in the java.sql .package is the
DriverManager class. It maintains a list of implementations of the JDBC java.
sql.Driver class and provides you with database connections based on JDBC
URLs you provide it. A JDBC URL comes in the form of jdbc:protocol:subprotocol.
It tells a DriverManager which database engine you wish to connect to and it
provides the DriverManager with enough information to make a connection.

JDBC uses the word “driver” in multiple contexts. In the lower-case
sense, a JDBC driver is the collection of classes that together imple-
ment all of the JDBC interfaces and provide an application with
access to at least one database. In the upper-case sense, the Driver
is the class that implements java.sql.Driver . Finally, JDBC pro-
vides a DriverManager that can be used to keep track of all of the
different Driver implementations.

The protocol part of the URL refers to a given JDBC driver. The protocol for the
Caucho MySQL driver, for example, is mysql-caucho while the GNU driver uses
mysql. The subprotocol provides the implementation-specific connection data. All
MySQL drivers require a host name and database name in order to make a con-
nection. Optionally, they may require a port if your database engine is not run-
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01

");
ning as root. Table 11-2 shows the configuration information for the MySQL JDBC
drivers.

As you can see, the URLs for the GNU driver and twz driver are very different
from the Caucho driver. As a general rule, the format of the Caucho driver is actu-
ally the preferred format since the you can specify properties separately.

Your first task is to register the driver implementation with the JDBC DriverMan-
ager . There are two key ways to register a driver:

1. You can specify the name of the drivers you want to have registered on the
command line of your application using the jdbc.drivers property: java -Djdbc.
drivers=com.caucho.jdbc.mysql.Driver MyAppClass.

2. You can explicitly load the class in your program by doing a new or a
Class.forName() : Class.forName("twz1.jdbc.mysql.jdbc-
MysqlDriver").newInstance() .

For portability’s sake, we recommend that you put all configuration information in
some sort of configuration file like a properties file and then load the configura-
tion data from that configuration file. By taking this approach, your application
will have no dependencies on MySQL or the JDBC driver you are using. You can
simply change the values in the configuration file to move from the GNU driver to
Caucho or from MySQL to Oracle.

Once you have registered your driver, you can then ask the DriverManager for a
Connection. You do this by calling the getConnection() method in the driver with
the information identifying the desired connection. This information minimally
includes a JDBC URL, user ID, and password. You may optionally include a set of
parameters:

Connection conn = DriverManager.getConnection("jdbc:mysql-caucho://carthage/Web", "someuser", "somepass

Table 0-2. . Configuration Information for MySQL JDBC Drivers

Driver Implementation URL

Caucho com.caucho.jdbc.mysql.
Driver

jdbc:mysql-caucho://HOST[:PORT]/DB

GNU org.gjt.mm.mysql.Driver jdbc:mysql://[HOST][:PORT]/
DB[?PROP1=VAL1][&PROP2=VAL2]...

twz twz1.jdbc.mysql.jdbc-
MysqlDriver

jdbc:z1MySQL://HOST[:PORT]/
DB[?PROP1=VAL1][&PROP2=VAL2]...
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
This code returns a connection associated with the database "Web" on the MySQL
server on the machine carthage using the Caucho driver under the user ID
"someuser" and authenticated with "somepass". Though the Caucho driver has the
simplest URL, connecting with the other drivers is not much more difficult. They
just ask that you specify connection properties such as the user ID and password
as part of the JDBC URL. Table 11-3 lists the URL properties for the GNU driver
and Table 11-4 lists them for the twz driver.

Table 0-3. . URL Properties for the GNU (mm) JDBC Driver

Name Default Description

autoReconnect false Causes the driver to attempt a reconnect
when the connection dies.

characterEncoding none The Unicode encoding to use when Uni-
code is the character set.

initialTimeout 2 The initial time between reconnects in sec-
onds when autoReconnect is set.

maxReconnects 3 The maximum number of times the driver
should attempt a reconnect.

maxRows 0 The maximum number of rows to return
for queries. 0 means return all rows.

password none The password to use in connecting to
MySQL

useUnicode false Unicode is the character set to be used for
the connection.

user none The user to use for the MySQL connection.

Table 0-4. . URL Properties for the twz JDBC Driver

Name Default Description

autoReX true Manages automatic reconnect for data
update statements.

cacheMode memory Dictates where query results are cached.

cachePath . The directory to which result sets are
cached if cacheMode is set t "disk".

connectionTimeout 120 The amount of time, in seconds, that a
thread will wait on action by a connection
before throwing an exception.

db mysql The MySQL database to which the driver is
connected.

dbmdDB <connection> The MySQL database to use for database
meta-data operations.

dbmdMaxRows 66536 The maximum number of rows returned by
a database meta-data operation.

dbmdPassword <connection> The password to use for database meta-
data operations.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
As a result, connections for these two drivers commonly look like:

Connection conn = DriverManager.getConnection("jdbc:mysql://carthage/
Web?user=someuser&password=somepass");

or for twz:

Connection conn =
 DriverManager.getConnection("jdbc:z1MySQL://carthage/Web?user=someuser&password="somepass");

dbmdUser <connection> The user ID to use for database meta-data
operations.

dbmdXcept false Exceptions will be thrown on unsupported
database meta-data operations instead of
the JDBC-compliant behavior of returning
an empty result.

debugFile none Enables debugging to the specified file.

debugRead false When debugging is enabled, data read
from MySQL is dumped to the debug file.
This will severely degrade the performance
of the driver.

debugWrite false When debugging is enabled, data written
to MySQL is dumped to the debug file.
This will severely degrade the performance
of the driver.

host localhost The host machine on which MySQL is run-
ning.

maxField 65535 The maximum field size for data returned
by MySQL. Any extra data is silently trun-
cated.

maxRows Integer.MAX_
VALUE

The maximum number of rows that can be
returned by a MySQL query.

moreProperties none Tells the driver to look for more properties
in the named file.

multipleQuery true Will force the caching of the result set
allowing multiple queries to be open at
once.

password none The password used to connect to MySQL.

port 3306 The port on which MySQL is listening.

socketTimeout none The time in seconds that a socket connec-
tion will block before throwing an excep-
tion.

user none The user used to connect to MySQL.

RSLock false Enables locking of result sets for a state-
ment for use in multiple threads.

Table 0-4. . URL Properties for the twz JDBC Driver

Name Default Description
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Instead of passing the basic connection properties of "user" and "password" as a
second and third argument to getConnection(), GNU and twz instead pass them as
part of the URL. In fact, you can pass any of the properties as part of the URL.
JDBC, however, has a standard mechanism for passing driver-specific connection
properties to getConnect():

Properties p = new Properties();
Connection conn;

p.put("user", "someuser");
p.put("password", "somepass");
p.put("useUnicode", "true");
p.put("characterEncoding", "UTF-8");
conn = DriverManager.getConnection(url, p);

Unfortunately, the way in which MySQL supports these optional properties is a bit
inconsistent. It is thus best to go with the preferred manner for your driver, how-
ever unwieldy it makes the URLs.

Example 11-1 shows how to make a connection to MySQL using the GNU driver.

Example 0-1. A Complete Sample of Making a JDBC Connection

import java.sql.*;

public class Connect {
 public static void main(String argv[]) {
 Connection con = null;

 try {
 // here is the JDBC URL for this database
 String url = "jdbc:mysql://athens.imaginary.com/Web?user=someuser&password=somepass";
 // more on what the Statement and ResultSet classes do later
 Statement stmt;
 ResultSet rs;

 // either pass this as a property, i.e.
 // -Djdbc.drivers=org.gjt.mm.mysql.Driver
 // or load it here like we are doing in this example
 Class.forName("org.gjt.mm.mysql.Driver");
 // here is where the connection is made
 con = DriverManager.getConnection(url);
 }
 catch(SQLException e) {
 e.printStackTrace();
 }
 finally {
 if(con != null) {
 try { con.close(); }
 catch(Exception e) { }
 }
 }
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
The line con = DriverManager.getConnection(url) makes the database con-
nection in this example. In this case, the JDBC URL and Driver implementation
class names are actually hard coded into this application. The only reason this is
acceptable is because this application is an example driver. As we mentioned ear-
lier, you want to get this information from a properties file or the command line in
real applications.

Maintaining Portability Using Properties Files

Though our focus is on MySQL, it is good Java programming practice to make
your applications completely portable. To most people, portability means that you
do not write code that will run on only one platform. In the Java world, however,
the word “portable” is a much stronger term. It means no hardware resource
dependencies, and that means no database dependencies.

We discussed how the JDBC URL and Driver name are implementation depen-
dent, but we did not discuss the details of how to avoid hard coding them.
Because both are simple strings, you can pass them on the command line as runt-
ime arguments or as parameters to applets. While that solution works, it is hardly
elegant since it requires command line users to remember long command lines. A
similar solution might be to prompt the user for this information; but again, you
are requiring that the user remember a JDBC URL and a Java class name each time
they run an application.

Properties Files

A more elegant solution than either of the above solutions would be to use a
properties file. Properties files are supported by the java.util.ResourceBundle
and its subclasses to enable an application to extract runtime specific information
from a text file. For a JDBC application, you can stick the URL and Driver name in
the properties file, leaving the details of the connectivity up to an application admin-
istrator. Example 11-2 shows a properties file that provides connection information.

 }
}

Example 0-2. The SelectResource.properties File with Connection Details for a Connection

Driver=org.gjt.mm.mysql.Driver
URL=jdbc:mysql://athens.imaginary.com/Web?user=someuser&password=somepass

Example 0-1. A Complete Sample of Making a JDBC Connection (continued)
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Example 11-3 shows the portable Connect class.

We have gotten rid of anything specific to MySQL or the GNU driver in the sam-
ple connection code. One important issue still faces portable JDBC developers.
JDBC requires any driver to support SQL2 entry level. This is an ANSI standard for
minimum SQL support. As long as you use SQL2 entry level SQL in your JDBC
calls, your application will be 100% portable to other database engines. Fortu-
nately, MySQL is SQL2 entry level, even though it does not support many of the
advanced SQL2 features.

Data Sources Revisited

Earlier in the chapter, we fudged a bit on how data sources were configured. Spe-
cifically, we stated that you can configure a data source either using a tool or
through Java code. In most cases you will do so using a tool. The way in which
you go about configuring a data source is very dependent on the vendor provid-
ing the data source. Now that you have a greater appreciation of connection prop-
erties, you should have a good idea of what you will need to configure a data
source to support MySQL.

Example 0-3. Using a Properties File to Maintain Portability

import java.sql.*;
import java.util.*;

public class Connect {
 public static void main(String argv[]) {
 Connection con = null;
 ResourceBundle bundle = ResourceBundle.getBundle("SelectResource");

 try {
 String url = bundle.getString("URL");
 Statement stmt;
 ResultSet rs;

 Class.forName(bundle.getString("Driver"));
 // here is where the connection is made
 con = DriverManager.getConnection(url);
 }
 catch(SQLException e) {
 e.printStackTrace();
 }
 finally {
 if(con != null) {
 try { con.close(); }
 catch(Exception e) { }
 }
 }
 }
}

Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
In order to better illustrate the way in which a data source can be set up for an
application, it helps to look at a real world application environment. Orion is a
J2EE compliant application server that is free for non-commercial use. In this
application, it is serving up Java Server Pages (JSPs) that go against a MySQL data-
base. The JSP makes the following JDBC call in order to do its database work:

InitialContext ctx = new InitialContext();
DataSource ds = (DataSource)ctx.lookup("jdbc/AddressBook");
Connection = ds.getConnection();

This looks familiar so far? Of course, it begs the question: how exactly does "jdbc/
AddressBook" book get configured? In Orion, you configure the data source by
editing a file called data-sources.xml. Here is the entry for "jdbc/AddressBook":

 <data-source connection-driver="org.gjt.mm.mysql.Driver"
 class="com.evermind.sql.DriverManagerDataSource"
 name="AddressBook"
 url="jdbc:mysql://carthage/Address?user=test&password=test"
 location="jdbc/AddressBook"/>

Simple Database Access
The Connect example did not do much. It simply showed you how to connect to
MySQL. A database connection is useless unless you actually talk to the database.
The simplest forms of database access are SELECT, INSERT, UPDATE, and DELETE
statements. Under the JDBC API, you use your database Connection instance to
create Statement instances. A Statement represents any kind of SQL statement.
Example 11-4 shows how to insert a row into a database using a Statement .

Example 0-4. Inserting a Row into MySQL Using a JDBC Statement Object

import java.sql.*;
import java.util.*;

public class Insert {
 // We are inserting into a table that has two columns: TEST_ID (int)
 // and TEST_VAL (char(55))
 // args[0] is the TEST_ID and args[1] the TEST_VAL
 public static void main(String argv[]) {
 Connection con = null;
 ResourceBundle bundle = ResourceBundle.getBundle("SelectResource");

 try {
 String url = bundle.getString("URL");
 Statement stmt;

 Class.forName(bundle.getString("Driver"));
 // here is where the connection is made
 con = DriverManager.getConnection(url, "user", "pass");
 stmt = con.createStatement();
 stmt.executeUpdate("INSERT INTO TEST (TEST_ID, TEST_VAL) " +
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
If this were a real application, we would of course verified that the user entered
an INT for the TEST_ID, that it was not a duplicate key, and that the TEST_VAL
entry did not exceed 55 characters. This example nevertheless shows how simple
performing an insert is. The createStatement() method does just what it says: it
creates an empty SQL statement associated with the Connection in question. The
executeUpdate() method then passes the specified SQL on to the database for
execution. As its name implies, executeUpdate() expects SQL that will be modify-
ing the database in some way. You can use it to insert new rows as shown earlier,
or instead to delete rows, update rows, create new tables, or do any other sort of
database modification.

Queries and Result Sets

Queries are a bit more complicated than updates because queries return informa-
tion from the database in the form of a ResultSet . A ResultSet is an interface
that represents zero or more rows matching a database query. A JDBC Statement
has an executeQuery() method that works like the executeUpdate() method—
except it returns a ResultSet from the database. Exactly one ResultSet is
returned by executeQuery() , however, you should be aware that JDBC supports
the retrieval of multiple result sets for databases that support multiple result sets.
MySQL, however, does not support multiple result sets. It is nevertheless impor-
tant for you to be aware of this issue in case you are ever looking at someone
else’s code written against another database engine. Example 11-5 shows a simple
query. Figure 11-2 shows the data model behind the test table.

 "VALUES(" + args[0] + ",' " + args[1] + "')");
 }
 catch(SQLException e) {
 e.printStackTrace();
 }
 finally {
 if(con != null) {
 try { con.close(); }
 catch(Exception e) { }
 }
 }
 }
}

Example 0-5. A Simple Query

import java.sql.*;
import java.util.*;

public class Select {
 public static void main(String argv[]) {
 Connection con = null;

Example 0-4. Inserting a Row into MySQL Using a JDBC Statement Object
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
The Select application executes the query and then loops through each row in
the ResultSet using the next() method. Until the first call to next() , the
ResultSet does not point to any row. Each call to next() points the ResultSet

 ResourceBundle bundle =
 ResourceBundle.getBundle("SelectResource");

 try {
 String url = bundle.getString("URL");
 Statement stmt;
 ResultSet rs;

 Class.forName(bundle.getString("Driver"));
 // here is where the connection is made
 con = DriverManager.getConnection(url, "user", "pass");
 stmt = con.createStatement();
 rs = stmt.executeQuery("SELECT * from TEST ORDER BY TEST_ID");
 System.out.println("Got results:");
 while(rs.next()) {
 int a= rs.getInt("TEST_ID");
 String str = rs.getString("TEST_VAL");

 System.out.print(" key= " + a);
 System.out.print(" str= " + str);
 System.out.print("\n");
 }
 stmt.close();
 }
 catch(SQLException e) {
 e.printStackTrace();
 }
 finally {
 if(con != null) {
 try { con.close(); }
 catch(Exception e) { }
 }
 }
 }
}

Figure 0-2. The test table from the sample database

Example 0-5. A Simple Query (continued)

test

test_id : LONG
test_val : CHAR(255)
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
to the subsequent row. You are done processing rows when next() returns
false .

You can specify that you result set is scrollable, meaning that you can move
around in the result set—not just forward on a row-by-row basis. The ResultSet
instances generated by a Statement are scrollable if the statement was created to
support scrollable result sets. Connection enables this to happen by an alternate
form of the createStatement() method:

Statement stmt = conn.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_READ_ONLY);

The first argument says that any result sets of the newly created statement should
be scrollable. By default, a statement’s result sets are not scrollable. The second
argument relates to an advanced feature of JDBC, updatable result sets, that lies
beyond the scope of this book.

With a scrollable result set, you can make calls to previous() to navigate back-
wards through the results and absolute() and relative() to move to arbi-
trary rows. Like next() , previous() moves one row through the result set,
except in the opposite direction. The previous() method returns false when
you attempt to move before the first row. Finally absolute() moves the result
set to a specific row, whereas relative() moves the result set a specific num-
ber of rows before or after the current row.

Dealing with a row means getting the values for each of its columns. Whatever the
value in the database, you can use the getter methods in the ResultSet to
retrieve the column value as whatever Java datatype you like. In the Select appli-
cation, the call to getInt() returned the TEST_ID column as an int and the call
to getString() returned the TEST_VAL column as a String . These getter meth-
ods accept either the column number—starting with column 1—or the column
name. You should, however, avoid retrieving values using a column name at all
costs since retrieving results by column name is many, many times slower than
retrieving them by column number.

One area of mismatch between Java and MySQL lies in the concept of a SQL
NULL. SQL is specifically able to represent some data types as null that Java can-
not represent as null. In particular, Java has no way of representing primitive data
types as nulls. As a result, you cannot immediately determine whether a 0 returned
from MySQL through getInt() really means a 0 is in that column or if no value
is in that column. JDBC addresses this mismatch through the wasNull() method.

As its name implies, wasNull() returns true if the last value fetched was SQL
NULL. For calls returning a Java object, the value will generally be NULL when a
SQL NULL is read from the database. In these instances, wasNull() may appear
somewhat redundant. For primitive datatypes, however, a valid value—like 0—
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
may be returned on a fetch. The wasNull() method gives you a way to see if that
value was NULL in the database.

Error Handling and Clean Up

All JDBC method calls can throw SQLExceptionor one of its subclasses if some-
thing happens during a database call. Your code should be set up to catch this
exception, deal with it, and clean up any database resources that have been allocated.
Each of the JDBC classes mentioned so far has a close() method associated with it.
Practically speaking, however, you only really need to make sure you close things
whose calling process might remain open for a while. In the examples we have
seen so far, you only really need to close your database connections. Closing the
database connection closes any statements and result sets associated with it auto-
matically. If you intend to leave a connection open for any period of time, how-
ever, it is a good idea to go ahead and close the statements you create using that
connection when you finish with them. In the JDBC examples you have seen, this
clean up happens in a finally clause. You do this since you want to make sure to
close the database connection no matter what happens.

Dynamic Database Access
So far we have dealt with applications where you know exactly what needs to be
done at compile time. If this were the only kind of database support that JDBC
provided, no one could ever write tools like the mysql interactive command line
tool that determines SQL calls at runtime and executes them. The JDBC
Statement class provides the execute() method for executing SQL that may be
either a query or an update. Additionally, ResultSet instances provide runtime
information about themselves in the form of an interface called ResultSetMetaData
which you can access via the getMetaData() call in the ResultSet .

Meta Data

The term meta data sounds officious, but it is really nothing other than extra data
about some object that would otherwise waste resources if it were actually kept in
the object. For example, simple applications do not need the name of the col-
umns associated with a ResultSet —the programmer probably knew that when
the code was written. Embedding this extra information in the ResultSet class is
thus not considered by JDBC’s designers to be core to the functionality of a
ResultSet . Data such as the column names, however, is very important to some
database programmers—especially those writing dynamic database access. The
JDBC designers provide access to this extra information—the meta data—via the
ResultSetMetaData interface. This class specifically provides:
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
• The number of columns in a result set

• Whether NULL is a valid value for a column

• The label to use for a column header

• The name for a given column

• The source table for a given column

• The datatype of a given column

Example 11-6 shows some of the source code from a command line tool like
mysql that accepts arbitrary user input and sends it to MySQL for execution. The
rest of the code for this example can be found at the O’Reilly Web site with the
rest of the examples from this book.

Example 0-6. An Application for Executing Dynamic SQL

import java.sql.*;

public class Exec {
 public static void main(String args[]) {
 Connection con = null;
 String sql = "";

 for(int i=0; i<args.length; i++) {
 sql = sql + args[i];
 if(i < args.length - 1) {
 sql = sql + " ";
 }
 }
 System.out.println("Executing: " + sql);
 try {
 Class.forName("com.caucho.jdbc.mysql.Driver").newInstance();
 String url = "jdbc:mysql-caucho://athens.imaginary.com/TEST";
 con = DriverManager.getConnection(url, "test", "test");
 Statement s = con.createStatement();

 if(s.execute(sql)) {
 ResultSet r = s.getResultSet();
 ResultSetMetaData meta = r.getMetaData();
 int cols = meta.getColumnCount();
 int rownum = 0;

 while(r.next()) {
 rownum++;
 System.out.println("Row: " + rownum);
 for(int i=0; i<cols; i++) {
 System.out.print(meta.getColumnLabel(i+1) + ": "
 + r.getObject(i+1) + ", ");
 }
 System.out.println("");
 }
 }
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
Each result set provides a ResultSetMetaData instance via the getMetaData()
method. In the case of dynamic database access, we need to find out the how
many columns are in a result set so that we are certain to retrieve each column as
well as the names of each of the columns for display to the user. The meta data
for our result set provides all of this information via the getColumnCount() and
getColumnLabel() methods.

Processing Dynamic SQL

The concept introduced in Example 11-6 is the dynamic SQL call. Because we do
not know whether we will be processing a query or an update, we need to pass
the SQL call through the execute() method. This method returns true if the
statement returned a result set or false if none was produced. In the example, if
it returns true , the application gets the returned ResultSet through a call to
getResultSet() . The application can then go on to do normal result set pro-
cessing. If, on the other hand, the statement performed some sort of database
modification, you can call getUpdateCount() to find out how many rows were
modified by the statement.

A Guest Book Servlet
You have probably heard quite a bit of talk about Java applets. We discussed in
Chapter 6, however, how doing database access in the client is a really bad idea.
We have packaged with the examples in this book a servlet that uses the JDBC
knowledge we have discussed in this chapter to store the comments from visitors to
a Web site in a database and then display the comments in the database. While serv-
lets are not in themselves part of the three-tier solution we discussed in Chapter 6,

 else {
 System.out.println(s.getUpdateCount() + " rows affected.");
 }
 s.close();
 con.close();
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 finally {
 if(con != null) {
 try { con.close(); }
 catch(SQLException e) { }
 }
 }
 }
}

Example 0-6. An Application for Executing Dynamic SQL
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01
this example should provide a useful example of how JDBC can be used. For this
example, all you need to know about servlets is that the doPost() method han-
dles HTTP POSTevents and doGet() handles HTTP GET events. The rest of the
code is either simple Java code or an illustration of the database concepts from this
chapter. You can see the servlet in action at http://www.imaginary.com/~george/
guestbook.shtml.
Copyright © 2001 O’Reilly & Associates, Inc.

DRAFT, 8/24/01

Copyright © 2001 O’Reilly & Associates, Inc.

	14
	Java
	The JDBC API
	Type 1
	Type 2
	Type 3
	Type 4
	Ta�ble�0�1
	. JDBC Drivers for MySQL

	The JDBC Architecture
	Fig�ure�0�1
	. The JDBC architecture

	Connecting to MySQL
	1. Through a JDBC Data Source
	2. Using the JDBC Driver Manager
	Data Source Connectivity
	Driver Manager Connectivity
	Ta�ble�0�2
	. Configuration Information for MySQL JDBC Drivers

	1. You can specify the name of the drivers you want to have registered on the command line of you...
	2. You can explicitly load the class in your program by doing a new or a Class.forName(): Class.f...
	Ta�ble�0�3
	. URL Properties for the GNU (mm) JDBC Driver

	Ta�ble�0�4
	. URL Properties for the twz JDBC Driver

	Exam�ple�0�1
	. A Complete Sample of Making a JDBC Connection (continued)

	Maintaining Portability Using Properties Files
	Properties Files
	Exam�ple�0�2
	. The SelectResource.properties File with Connection Details for a Connection�

	Exam�ple�0�3
	. �Using a Properties File to Maintain Portability

	Data Sources Revisited

	Simple Database Access
	Exam�ple�0�4
	. Inserting a Row into MySQL Using a JDBC Statement Object

	Queries and Result Sets
	Exam�ple�0�5
	. A Simple Query (continued)

	Fig�ure�0�2
	. The test table from the sample database

	Error Handling and Clean Up

	Dynamic Database Access
	Meta Data
	Exam�ple�0�6
	. An Application for Executing Dynamic SQL

	Processing Dynamic SQL

	A Guest Book Servlet

