

Effective	MySQL
Backup	and	Recovery

About	the	Author
Ronald	Bradford	has	worked	in	the	relational	database	field	for	over	20	years.	With	his
professional	 background	 and	 a	 decade	 of	 working	 knowledge	 in	 database	 architecture,
performance	tuning,	and	management	of	large	enterprise	systems	using	Ingres	and	Oracle,
Ronald	has	for	the	past	13	years	worked	primarily	with	MySQL,	the	world’s	most	popular
open	 source	 database.	 He	 has	 worked	 both	 at	 Oracle	 Corporation	 (1996–1999)	 as	 an
Oracle	 Consultant	 and	MySQL,	 Inc.	 (2006–2008)	 as	 a	 senior	 MySQL	 Consultant.	 His
contributions	 to	 the	 MySQL	 community	 include	 being	 recognized	 as	 the	 all-time	 top
individual	 MySQL	 blog	 contributor	 at	 Planet	 MySQL	 (2010),	 and	 international
recognitions	 include	 being	 named	 an	 Oracle	 ACE	 Director	 (2010)	 and	 MySQL
Community	Member	of	the	Year	(2009).

Ronald	 combines	 his	 extensive	 consulting	 expertise	 with	 a	 passion	 to	 share	 the
knowledge	 and	 benefits	 of	 using	MySQL.	 Starting	 in	 2006,	 his	 many	 public	 speaking
engagements	have	included	over	60	presentations	in	20	countries	in	2010–2011.

About	the	Technical	Editors
Hans	Forbrich	has	been	working	with	computers	since	the	early	1970s,	in	particular	with
entity-relationship	 and	 relational	 databases	 starting	 in	 1979	 using	 an	 engine	 on	 IBM
mainframes	called	GERM	(General	Entity	Relationship	Model).	Since	that	time,	Hans	has
been	 a	 DBA,	 an	 operations	 architect	 for	 a	 number	 of	 organizations,	 and	 an	 Oracle
University	instructor	but	always	heavily	involved	in	high	availability	and	recoverability.

As	 a	 fellow	 ACE	 Director,	 Hans	 is	 pleased	 and	 honored	 to	 have	 been	 a	 technical
reviewer	for	this	book.	Backup	and	recovery	is	an	important	and	often	overlooked	area	of
MySQL,	and	Ronald’s	expertise	and	experience	in	this	area	shines	through.

Chris	Schneider	has	been	a	MySQL	community	member,	user,	and	evangelist	for	the	past
ten	years.	Throughout	his	career	he	has	designed,	implemented,	and	maintained	small	 to
large	 scale	MySQL	 installations	while	 training	and	mentoring	 teams	of	DBAs.	This	has
included	 building	 architecture	 from	 the	 ground	 up	 and	 improving	 on	 those	 that	 are
currently	 in	 place	 while	 emphasizing	 scalability,	 performance,	 and	 ease	 of	 use.	 Since
2009,	Chris	has	been	an	expert	speaker	at	many	U.S.	conferences	 including	the	MySQL
Conference	and	Expo,	ODTUG	KScope,	and	Oracle	Open	World.

Lenz	Grimmer	first	encountered	MySQL	in	1995,	when	he	had	his	first	job	as	a	systems
administrator	 in	 a	 small	 Internet	 startup	 company,	 which	 already	 used	 what	 was	 later
called	the	“LAMP	stack”	to	provide	web	hosting	services	for	customers.	He	then	worked
as	a	distribution	developer	at	SUSE	Linux	from	1998–2002,	before	he	joined	MySQL	AB
as	a	Release	Engineer	in	charge	of	producing	the	official	MySQL	builds	for	all	platforms.
After	having	been	with	the	MySQL	team	for	nine	years,	he	recently	returned	to	Linux,	as	a
member	of	the	Oracle	Linux	product	management	team	at	Oracle.	Lenz	is	the	maintainer
of	the	mylvmbackup	script	and	has	given	numerous	talks	on	the	topics	of	MySQL	backup
and	 recovery.	 In	his	 spare	 time,	Lenz	enjoys	 spending	 time	with	his	 family	or	 tinkering
with	remote	controlled	quadrocopters,	powered	by	the	Arduino	platform.

Effective	MySQL
Backup	and	Recovery

Ronald	Bradford

	

	
New	York				Chicago				San	Francisco				Lisbon				London				Madrid				Mexico	City				Milan				New	Delhi				San	Juan				Seoul				Singapore				Sydney				Toronto	

Effective	MySQL:	Backup	and	Recovery

Copyright	©	2012	by	The	McGraw-Hill	Companies,	 Inc.	All	 rights	 reserved.	Except	 as
permitted	under	the	United	States	Copyright	Act	of	1976,	no	part	of	this	publication	may
be	 reproduced	 or	 distributed	 in	 any	 form	 or	 by	 any	 means,	 or	 stored	 in	 a	 database	 or
retrieval	system,	without	the	prior	written	permission	of	the	publisher.

Oracle	 is	 a	 registered	 trademark	 of	 Oracle	 Corporation	 and/or	 its	 affiliates.	 All	 other
trademarks	are	the	property	of	their	respective	owners,	and	McGraw-Hill	makes	no	claim
of	ownership	by	the	mention	of	products	that	contain	these	marks.

Screen	 displays	 of	 copyrighted	Oracle	 software	 programs	 have	 been	 reproduced	 herein
with	the	permission	of	Oracle	Corporation	and/or	its	affiliates.

ISBN:	978-0-07-178858-8
MHID:	0-07-178858-1

The	material	in	this	eBook	also	appears	in	the	print	version	of	this	title:	ISBN	978-0-07-
178857-1,	MHID	0-07-178857-3.

McGraw-Hill	eBooks	are	available	at	special	quantity	discounts	 to	use	as	premiums	and
sales	 promotions,	 or	 for	 use	 in	 corporate	 training	 programs.	To	 contact	 a	 representative
please	e-mail	us	at	bulksales@mcgraw-hill.com.

All	 trademarks	 are	 trademarks	 of	 their	 respective	 owners.	 Rather	 than	 put	 a	 trademark
symbol	 after	 every	 occurrence	 of	 a	 trademarked	 name,	 we	 use	 names	 in	 an	 editorial
fashion	only,	and	to	the	benefit	of	the	trademark	owner,	with	no	intention	of	infringement
of	 the	 trademark.	Where	 such	 designations	 appear	 in	 this	 book,	 they	 have	 been	 printed
with	initial	caps.

Sponsoring	Editor

Paul	Carlstroem

Editorial	Supervisor

Patty	Mon

Project	Manager

Sapna	Rastogi,	Cenveo	Publisher	Services

Acquisitions	Coordinator

Ryan	Willard

Technical	Editors

Hans	Forbrich

Chris	Schneider

Lenz	Grimmer

Copy	Editor

mailto:bulksales@mcgraw-hill.com

Lisa	McCoy

Proofreader

Paul	Tyler

Indexer

Karin	Arrigoni

Production	Supervisor

Jean	Bodeaux

Composition

Cenveo	Publisher	Services

Illustration

Cenveo	Publisher	Services

Art	Director,	Cover

Jeff	Weeks

Cover	Designer

Pattie	Lee
Information	has	been	obtained	by	Publisher	from	sources	believed	to	be	reliable.	However,	because	of	the	possibility	of
human	or	mechanical	error	by	our	sources,	Publisher,	or	others,	Publisher	does	not	guarantee	to	the	accuracy,	adequacy,
or	completeness	of	any	information	included	in	this	work	and	is	not	responsible	for	any	errors	or	omissions	or	the	results
obtained	from	the	use	of	such	information.

Oracle	Corporation	does	not	make	any	representations	or	warranties	as	 to	 the	accuracy,	adequacy,	or	completeness	of
any	information	contained	in	this	Work,	and	is	not	responsible	for	any	errors	or	omissions.

TERMS	OF	USE

This	is	a	copyrighted	work	and	The	McGraw-Hill	Companies,	Inc.	(“McGraw-Hill”)	and
its	 licensors	 reserve	 all	 rights	 in	 and	 to	 the	work.	 Use	 of	 this	 work	 is	 subject	 to	 these
terms.	 Except	 as	 permitted	 under	 the	Copyright	Act	 of	 1976	 and	 the	 right	 to	 store	 and
retrieve	 one	 copy	 of	 the	 work,	 you	may	 not	 decompile,	 disassemble,	 reverse	 engineer,
reproduce,	modify,	create	derivative	works	based	upon,	 transmit,	distribute,	disseminate,
sell,	publish	or	sublicense	the	work	or	any	part	of	it	without	McGraw-Hill’s	prior	consent.
You	may	use	the	work	for	your	own	noncommercial	and	personal	use;	any	other	use	of	the
work	 is	 strictly	 prohibited.	Your	 right	 to	 use	 the	work	may	be	 terminated	 if	 you	 fail	 to
comply	with	these	terms.

THE	WORK	IS	PROVIDED	“AS	IS.”	McGRAW-HILL	AND	ITS	LICENSORS	MAKE
NO	GUARANTEES	OR	WARRANTIES	AS	TO	THE	ACCURACY,	ADEQUACY	OR
COMPLETENESS	OF	OR	RESULTS	TO	BE	OBTAINED	FROM	USING	THE	WORK,
INCLUDING	 ANY	 INFORMATION	 THAT	 CAN	 BE	 ACCESSED	 THROUGH	 THE
WORK	 VIA	 HYPERLINK	 OR	 OTHERWISE,	 AND	 EXPRESSLY	 DISCLAIM	 ANY
WARRANTY,	 EXPRESS	 OR	 IMPLIED,	 INCLUDING	 BUT	 NOT	 LIMITED	 TO
IMPLIED	 WARRANTIES	 OF	 MERCHANTABILITY	 OR	 FITNESS	 FOR	 A
PARTICULAR	 PURPOSE.	McGraw-Hill	 and	 its	 licensors	 do	 not	 warrant	 or	 guarantee

that	the	functions	contained	in	the	work	will	meet	your	requirements	or	that	its	operation
will	be	uninterrupted	or	error	free.	Neither	McGraw-Hill	nor	its	licensors	shall	be	liable	to
you	or	anyone	else	for	any	inaccuracy,	error	or	omission,	regardless	of	cause,	in	the	work
or	for	any	damages	resulting	therefrom.	McGraw-Hill	has	no	responsibility	for	the	content
of	 any	 information	 accessed	 through	 the	work.	Under	 no	 circumstances	 shall	McGraw-
Hill	 and/or	 its	 licensors	 be	 liable	 for	 any	 indirect,	 incidental,	 special,	 punitive,
consequential	or	similar	damages	that	result	from	the	use	of	or	inability	to	use	the	work,
even	if	any	of	them	has	been	advised	of	the	possibility	of	such	damages.	This	limitation	of
liability	shall	apply	to	any	claim	or	cause	whatsoever	whether	such	claim	or	cause	arises
in	contract,	tort	or	otherwise.

For	MySQL	culture,	past,	present,	and	future.
To	many	in	the	MySQL	and	growing	Oracle	community:

you	are	more	than	colleagues;
you	are,	and	always	will	remain,	great	friends.

CONTENTS
	

Acknowledgments

Introduction

1						The	Five	Minute	DBA

Approaching	a	MySQL	Backup

Determining	Your	Database	Size

Choosing	a	Locking	Strategy

Execution	Time

Combining	Information

Performing	a	MySQL	Backup

Running	mysqldump

Securing	Your	Backup

Benefits	with	mysqldump

More	Information

Other	Options

Conclusion

2						Understanding	Backup	Options

Terminology

Choosing	a	Backup	Strategy

Database	Availability

Storage	Engines

Locking	Strategies

MySQL	Topology

Static	Backup	Options

Filesystem	Backup

SQL	Dump

Table	Extract

Filesystem	Snapshot

InnoDB	Hot	Backup

Options	Not	Discussed

Point	in	Time	Requirements

Binary	Logs

Binary	Log	Position

Binary	Log	Backup	Options

Hardware	Considerations

Data	Source	Consistency

Backup	Security

Conclusion

3						Understanding	Business	Requirements	for	Disaster	Recovery

Defining	Requirements

Defining	Responsibilities

Terminology

Technical	Resource	Responsibilities

Decision	Maker	Responsibilities

Identifying	Dependencies

Case	Study

The	MySQL	Topology

Your	Backup	and	Recovery	Strategy

A	Real	Life	Disaster

Technical	Outcomes

The	Decision	Process

Essential	External	Communication

Planning	for	the	Worst	Situation

Total	SAN	Failure

Power	Disruption

Explosion

FBI	Seizure

Blackout

Human	Factors

Human	Resources

Developing	a	Strategic	Plan

Conclusion

4						Using	MySQL	Replication

MySQL	Replication	Architecture

MySQL	Replication	Characteristics

MySQL	Replication	Limitations

Replication	Lag

Consistency

Completeness

Replication	Design	Considerations

Binary	Log	Row	Format

Semi-synchronous	Replication

Replication	Backup	Considerations

Additional	Prerequisite	Checks

Cold	Backup	Options

mysqldump	Options

Filesystem	Snapshot	Options

MySQL	Enterprise	Backup	(MEB)	Options

XtraBackup	Options

Architecture	Design	Considerations

Upcoming	Replication	Functionality

Conclusion

5						Using	Recovery	Options

A	Word	About	Testing

Determining	the	Type	of	Recovery	Necessary

MySQL	Software	Failure

Crash	Recovery

MyISAM	Table	Recovery

Other	Storage	Engines

Table	Definition	Recovery

Performing	a	Static	Recovery

MySQL	Software	Installation

MySQL	Data

Performing	a	Point	in	Time	Recovery

Binary	Log	Position

Standalone	Recovery

Leveraging	the	Replication	Stream

Binary	Log	Mirroring

Recovery	Verification

The	Backup	and	Recovery	Quiz

Other	Important	Components

Conclusion

6						MySQL	Configuration	Options

Data	Management

Data	Locations

Data	Consistency

Binary	Logging

MySQL	Replication

Recovery

Conclusion

7						Disaster	Scenarios

Handling	a	MySQL	Disaster

Notable	MySQL	Disasters

Magnolia

Couch	Surfing

Journal	Space

Percona

Other	Notable	Data	Disasters

The	Sidekick/Microsoft	Data	Loss

Github

TD	Bank

General	MySQL	Disaster	Situations

Binary	Logging	Not	Enabled

A	Single	Server

Appropriate	MySQL	Security

Appropriate	MySQL	Configuration

Deleting	MySQL	Data

Deleting	the	InnoDB	Data	File

Deleting	MySQL	Binary	Logs

Existing	Backup	and	Recovery	Procedure	Disasters

MySQL	Software	Upgrades

Operating	System	Security	Patch	Upgrade

Handling	MyISAM	Corruption

Missing	Database	Schemas

Restoring	a	Backup	on	a	Running	MySQL	Instance

Handling	InnoDB	Specific	Situations

Automatic	Recovery

InnoDB	Data	Dictionary	Inconsistency

Automatic	Recovery	Crashes	the	Database	Server.

Other	MySQL	Situations

Replication	Inconsistency

RDS	Recovery	Failure

Common	Downtime	Causes

External	Help

Conclusion

8						Optimizing	Backup	and	Recovery

Example	Backup	Environment

Using	Compression

mysqldump

MySQL	Enterprise	Backup	(MEB)

XtraBackup

Streaming	Backups

Using	SSH

Using	nc

MySQL	Enterprise	Backup	(MEB)

XtraBackup

Remote	Backups

mysqldump

MySQL	Enterprise	Backup	(MEB)

XtraBackup

Parallel	Processing

mydumper

XtraBackup

Incremental	Backups

MySQL	Enterprise	Backup	(MEB)

XtraBackup

Partial	Backups

mysqldump

MySQL	Enterprise	Backup	(MEB)

XtraBackup

MySQL	Backup	Security

Encryption	with	ezNcrypt

Architectural	Considerations

Conclusion

9						MySQL	in	the	Cloud

Amazon	Relational	Database	Service	(RDS)

Example	Database	Creation

MySQL	Versions

Backup	Options

Recovery	Options

Google	Cloud	SQL

Example	Database	Creation

Backup	Options

Restore	Options

HP	Cloud	Database	as	a	Service	(DBaaS)

MySQL	Versions

Example	Database	Creation

Backup	Options

Recovery	Options

Cloud	Impact	on	Backup	and	Recovery

Conclusion

ACKNOWLEDGMENTS
	

Thanks	to	the	readers	who	have	already	enjoyed	the	first	book	of	the	Effective	MySQL
series	for	providing	valuable	feedback,	both	good	and	bad.	A	positive	comment	tells	me	I
am	meeting	your	needs;	 a	negative	one	means	 I	need	 to	continue	 to	do	better.	Both	are
important	 to	 ensure	 continued	 improvements	 in	 this	 series.	 It	 is	 also	 a	 great	 feeling	 to
receive	an	e-mail	asking	when	the	next	book	will	be	available.

As	 I	 write	 my	 acknowledgments	 for	 this	 book,	 I	 realize	 the	 timeline	 of	 my	 own
changing	immediate	family.	In	my	first	book	from	2010	I	acknowledged	my	fiancé,	Cindy,
and	 in	my	 second	 book	my	 now	wife	 Cindy.	 For	 this	 third	 book	my	 family	 has	 again
increased	with	Chance,	our	 two-year-old	dachshund	 rescue.	 In	 such	a	 short	 time	he	has
become	 integral	 to	 our	 daily	 routine	 and	 in	 finding	 a	 balance	 between	 work,	 life,	 and
writing.	 Significant	 time,	 effort,	 and	 support	 from	 family	 is	 needed	 to	 create	 a	 book;
however,	I	write	this	material	for	the	benefit	of	all	who	have	a	desire	to	learn,	appreciate,
and	master	using	MySQL	effectively.

Without	the	technical	abilities	of	the	team	at	McGraw-Hill	this	publication	would	not	be
possible.	 Many	 thanks	 to	 Ryan	 Willard,	 my	 coordinating	 editor;	 Paul	 Carlstroem,	 my
sponsoring	 editor;	 and	 the	production	 team,	who	 all	 remained	very	patient	 during	 some
significant	unforeseen	delays.

My	technical	editors,	Hans,	Chris,	and	Lenz,	and	the	extended	review	team	have	been
invaluable	for	this	book.

The	many	years	of	database	wisdom	and	extensive	training	expertise	of	Hans	Forbrich
brings	the	necessary	Oracle	expertise	to	the	team	and	ensures	this	material	meets	the	needs
of	 an	 experienced	 Oracle	 DBA	 for	 understanding	 and	 learning	 to	 master	 backup	 and
recovery	for	MySQL.

I	 am	 indebted	 to	Chris	 Schneider,	who	 in	 addition	 to	 being	 a	 technical	 editor	 of	 this
book	and	co-author	for	 the	next	book	in	 this	Effective	MySQL	series,	was	able	 to	assist
greatly	in	supplementing	content	in	the	later	chapters	and	perform	additional	reviews	as	I
was	overcoming	 illness.	His	expertise	as	an	operational	MySQL	DBA	working	with	 the
demanding	needs	of	 systems	 requiring	 real	 life	disaster	 recovery	needs	 in	his	daily	 role
ensures	the	syntax,	examples,	and	options	described	in	this	book	mirror	the	needs	of	many
MySQL	production	systems.

Lenz	Grimmer,	long	time	MySQL	community	advocate,	good	friend,	and	sponsor	of	the
open	 source	 MySQL	 backup	 tool	 mylvmbackup,	 has	 added	 another	 well	 rounded
perspective	 and	 technical	 validation	 with	 his	 many	 years	 of	 database	 and	 system
administration	knowledge.

While	 the	words	written	 in	 this	 text	are	mine,	 this	does	not	become	a	published	book
without	the	help,	input,	clarification,	and	discussion	of	these	trusted	and	respected	senior
technical	advisors.

Several	 others	 have	 also	 contributed	 to	making	 this	 a	 great	 reference.	 Thanks	 to	 the

MySQL	 Enterprise	 Backup	 (MEB)	 team	 at	 Oracle	 including	 Sagar	 Jauhari,	 Lars
Thalmann,	and	Sanjay	Manwani	in	their	review	of	all	things	MEB.	Also	to	Ken	Ashcraft
from	Google	and	Vipu	Sabhaya	from	HP	for	their	feedback	on	the	respective	offerings	of
MySQL	 in	 the	cloud.	Mark	Leith	contributed	an	actual	 code	patch	 to	mysqldump	 in	 one
day	as	the	result	of	a	blog	post	providing	an	example	hack	for	a	workaround.	Great	work,
Mark.	That	is	the	MySQL	community	spirit	and	open	source	in	action.	Further	thanks	to
Patrick	Galbraith	who	 provided	 early	 input	 around	MySQL	 replication.	 Finally,	 several
individuals	and	companies	named	or	anonymous	helped	to	provide	many	colorful	disaster
scenarios	detailed	in	Chapter	7.

INTRODUCTION
	

Disaster	is	inevitable.	Total	failure	is	avoidable.
While	 many	 organizations	 plan,	 practice,	 and	 invest	 for	 scalability,	 few	 plan	 and

practice	for	business	resilience	as	the	result	of	a	disaster	or	a	“Choas	Monkey*”.	One	of
the	most	critical	tasks	of	an	operational	database	administrator	(DBA)	is	to	perform,	test,
document,	 and	 verify	 adequate	 backup	 and	 recovery	 procedures	 to	 ensure	 business
continuity.	While	this	may	be	considered	a	much	loathed	and	less	prioritized	task,	this	is
the	 single	 most	 comforting	 element	 in	 a	 well	 functioning	 and	 stable	 production
environment.	Backups	are	not	 just	used	 for	 recovery.	Other	uses	of	backups	 that	can	be
incorporated	 into	 daily	 operations	 to	 assist	 in	 the	 verification	 process	 can	 include
additional	scalability	and	higher	availability	infrastructure,	testing,	and	benchmarking.

Understanding	what	limitations	and	quirks	exist	with	the	various	approaches	to	MySQL
backups	is	important	in	being	confident	that	the	crucial	business	information	is	backed	up.
The	methods	you	have	used	to	recover	your	information	must	meet	your	business	needs	to
obtain	a	mean	time	to	recovery	(MTTR)	and	the	recovery	point	objective	(RPO).

MySQL	provides	no	one	single	unbreakable	solution	as	yet.	The	use	of	MySQL	storage
engines,	MySQL	replication,	configuration	settings	for	durability,	hardware	configuration,
database	 uptime,	 and	 locking	 requirements	 are	 all	 factors	 in	 choosing	 an	 applicable
approach	matching	 your	 business	 requirements.	 This	 book	 will	 cover	 these	 approaches
detailing	 the	 relative	 strengths	 and	 weaknesses	 and	 leading	 the	 reader	 to	 identify	 and
implement	an	appropriate	backup	and	recovery	strategy.

The	 final	 chapter	of	 this	 book	also	discusses	 advancements	 in	MySQL	availability	 in
the	cloud	and	the	benefits	and	risks	for	an	optimal	backup	and	recovery	strategy.

Conventions

All	code	examples	are	provided	in	a	proportional	font.	For	example:

	
Any	SQL	syntax	within	 text	or	code	examples	will	be	 in	uppercase.	For	example,	 the

FLUSH	 TABLES	WITH	 READ	 LOCK	 statement	 will	 hold	 a	 global	 read	 lock.	 These
statements	are	not	provided	in	a	different	font.	If	a	specific	syntax	or	value	from	a	code
example	is	described	in	general	text,	this	is	provided	in	a	proportional	font,	for	example,

the	--log-bin	configuration	option.

For	any	Unix/Linux	command,	this	is	prefixed	with	a	$	to	indicate	a	shell	prompt.	For
example:

	
Any	MySQL	SQL	statement	 that	 can	be	executed	 is	prefixed	with	mysql>	 to	 indicate

execution	 with	 the	 mysql	 command	 line	 client	 that	 is	 included	 with	 a	 full	 MySQL
distribution.	For	example:

	
All	SQL	statements	listed	with	this	prefix	can	generally	be	performed	in	any	alternative

MySQL	 client	 GUI	 tool;	 however,	 some	 additional	 syntax	 may	 not	 be	 applicable—for
example:	\G	for	vertical	display	is	a	mysql	command	line	client	specific	directive.

About	MySQL

The	MySQL	database	server	is	an	open	source	product	released	under	the	GPL	V2	license.
More	 information	 about	 the	 GPL	 license	 can	 be	 found	 at
http://www.mysql.com/about/legal/licensing/index.html.	The	copyright	owner	of	MySQL
at	 the	 time	 of	 this	 publication	 is	 Oracle	 Corporation.	 Oracle	 Corporation	 provides
continued	product	development	and	also	provides	commercial	licenses	for	OEM	providers
and	comprehensive	subscription	services	for	websites	and	enterprises.

More	 information	 about	 MySQL	 can	 be	 found	 at	 the	 official	 MySQL	 website	 at
http://mysql.com	and	the	MySQL	developer	zone	at	http://dev.mysql.com.

The	 current	 generally	 available	 (GA)	 version	 of	MySQL	 is	 version	 5.5.	This	 book	 is
written	to	support	MySQL	versions	5.0	and	better	with	specific	version	differences	noted
when	 applicable.	 The	 current	 development	 version	 of	MySQL	 5.6	 is	 also	 referenced	 to
indicate	expected	new	functionality	in	an	upcoming	release;	however,	these	features	may
operate	differently	or	not	be	provided	in	any	final	future	MySQL	product.

Code	Examples

All	examples	detailed	in	this	book	are	available	for	download	from	the	Effective	MySQL
site	 at	 http://effectivemysql.com/book/backup-recovery/.	 Code,	 scripts,	 and	 sample	 data
are	also	available	at	GitHub.

A	separate	 text	document	of	 all	URLs	used	 is	 also	 included	on	 the	website	 to	 enable
quick	access	to	these	references.

References

The	MySQL	Reference	Manual	on	the	MySQL	developer	zone	is	an	invaluable	resource.
This	can	be	found	at	http://dev.mysql.com/doc/refman/5.5/en/index.html.

Access	 to	 manuals	 for	 older	 MySQL	 versions	 can	 also	 be	 found	 at
http://dev.mysql.com/doc.

The	 Planet	 MySQL	 website	 at	 http://planet.mysql.com	 provides	 an	 aggregation	 of

http://www.mysql.com/about/legal/licensing/index.html
http://mysql.com
http://dev.mysql.com
http://effectivemysql.com/book/backup-recovery/
http://dev.mysql.com/doc/refman/5.5/en/index.html
http://dev.mysql.com/doc
http://planet.mysql.com

thousands	of	MySQL	bloggers	detailing	great	insight	on	all	things	MySQL.

Additional	 open	 source	 products	 referenced	 in	 this	 book	 including	 Xtra-Backup	 and
Percona	 Toolkit	 from	 Percona,	 mylvmbackup,	 and	 mydumper	 have	 various	 sources	 of
additional	online	information.	These	are	detailed	at	the	appropriate	time.

*The	“Choas	Monkey”	and	the	“Simian	Army”	created	by	Netflix	highlight	that	proactively	creating	disasters	esures	the
best	approach	for	being	prepared.	More	at	http://techblog.netflix.com/2011/07/netflix-simian-army.html

http://techblog.netflix.com/2011/07/netflix-simian-army.html

1
The	Five	Minute	DBA

	

You	have	just	inherited	a	production	MySQL	system	and	there	is	no	confirmation	that	an
existing	MySQL	backup	strategy	is	in	operation.	What	is	the	least	you	need	to	do?	Before
undertaking	 any	 backup	 strategy	 there	 are	 some	 necessary	 prerequisites	 about	 your
database	size	and	storage	engine	usage	that	have	a	direct	effect	on	your	system	availability
during	any	backup	approach.

In	 this	 chapter	 we	 will	 discuss	 the	 approach	 necessary	 to	 identify	 a	 minimum
functionality	backup,	including:

•		Determine	your	database	size

•		Determine	your	storage	engine	usage

•		Locking	and	downtime	implications

Approaching	a	MySQL	Backup
There	is	more	than	one	strategy	to	back	up	a	MySQL	environment.	These	strategies	also
depend	on	the	number	of	servers	in	the	MySQL	topology.	There	are	a	number	of	various
open	source	and	commercial	tools	available	to	perform	backups.	In	Chapter	2	we	will	be
discussing	in	detail	all	these	possible	options.

At	 this	 time	 you	 have	 an	 environment	with	 a	 single	 server	 and	 you	want	 to	 create	 a
consistent	backup.	You	have	at	your	disposal	for	all	MySQL	environments	two	immediate
options.	The	first	option	 is	 to	stop	your	MySQL	instance	and	 take	a	full	 filesystem	cold
backup.	This	would	result	in	your	system	being	unavailable	for	an	undetermined	time,	and
you	would	need	to	ensure	you	make	a	copy	of	all	the	right	information	including	MySQL
data,	transaction	and	binary	logs	if	applicable,	and	the	current	MySQL	configuration.

Your	 second	 option	 is	 to	 use	 a	 client	 tool	 included	 with	 the	 standard	 MySQL

installation.	The	mysqldump	 command	can	produce	a	consistent	MySQL	backup	without
stopping	 the	 MySQL	 instance.	 However,	 before	 running	 mysqldump,	 several	 important
decisions	are	required	to	make	an	informed	decision	of	the	best	options	to	use.	These	are:

•		What	is	the	size	of	the	database	to	backup?

•		What	locking	strategy	is	necessary	to	produce	a	consistent	backup?

•		How	long	will	the	backup	take?

Determining	Your	Database	Size
An	important	consideration	 for	performing	a	MySQL	backup	 is	 the	size	of	your	backup
when	backing	up	to	local	disk.	This	is	required	to	ensure	you	have	available	diskspace	to
store	your	backup	file.

The	 following	SQL	 statement	 provides	 the	 total	 size	 in	MB	of	 your	 current	 data	 and
indexes:

	
Your	 mysqldump	 backup	 will	 be	 approximately	 the	 same	 size	 as	 your	 data	 with	 an

appropriate	 safety	margin	of	10	 to	15	percent.	There	 is	no	precise	calculation;	however,
your	backup	produces	a	text	based	output	of	your	data.	For	example,	a	4	byte	integer	in
the	database	may	be	10	character	bytes	long	in	a	mysqldump	backup	file.	It	is	possible	to
compress	 your	 backup	 concurrently	 or	 to	 transfer	 to	 a	 different	 network	 device.	 These
options	and	their	limitations	are	discussed	in	Chapters	2	and	8.

From	this	SQL	statement	the	database	data	size	is	847MB.	For	later	reference,	the	size
of	the	backup	file	as	described	in	the	section	running	mysqldump	reports	a	size	of	818MB
using	the	common	default	options.	The	example	database	in	Chapter	8	with	a	data	size	of
4.5GB	produces	a	backup	file	of	2.9GB.

Choosing	a	Locking	Strategy
The	locking	strategy	chosen	will	determine	if	your	application	can	perform	database	write
operations	during	the	execution	of	a	backup.	By	default,	mysqldump	performs	a	table	level
lock	to	ensure	a	consistent	version	of	all	data	using	the	LOCK	TABLES	command.	This
occurs	with	 the	--lock-tables	 command	 line	 option,	which	 is	 not	 enabled	 by	 default.
This	option	is	part	of	the	--opt	option	that	is	enabled	by	default.	You	can	elect	to	not	lock
tables;	 however,	 this	 may	 not	 ensure	 a	 consistent	 backup.	 When	 using	 the	 MyISAM
storage	engine,	--lock-tables	is	necessary	to	ensure	a	consistent	backup.

Alternatively,	 mysqldump	 provides	 the	 --single-transaction	 option	 that	 creates	 a
consistent	 version	 snapshot	 of	 all	 tables	 in	 a	 single	 transaction.	 This	 option	 is	 only

applicable	when	using	a	storage	engine	that	supports	multiversioning.	InnoDB	is	the	only
storage	 engine	 included	 in	 a	 default	 MySQL	 installation	 that	 is	 applicable.	 When
specified,	this	option	automatically	turns	off	--lock-tables.

The	following	SQL	statement	will	confirm	the	storage	engines	in	use	for	your	MySQL
instance:

	
In	this	example,	the	MySQL	instance	has	several	different	schemas	that	support	various

functions	 including	 a	 shopping	 cart,	 newsletter,	 and	 administration	 tool.	An	 all	 InnoDB
application	may	look	like:

	
As	you	see	in	the	example	the	mysql	meta-schema	uses	MyISAM.	There	is	no	ability	to

change	 this.	 If	 your	 database	 is	 all	 InnoDB	 you	 will	 have	 two	 options	 regarding	 the
MyISAM	mysql	tables	that	we	will	discuss	later	in	this	chapter.

Execution	Time
The	most	important	requirement	is	to	determine	how	long	your	backup	will	take.	There	is
no	calculation	that	can	give	an	accurate	answer.	The	size	of	your	database,	the	amount	of
system	 RAM,	 the	 storage	 engine(s)	 in	 use,	 the	 MySQL	 configuration,	 the	 hard	 drive
speed,	and	the	current	workload	all	contribute	in	the	calculation.	What	is	important	when
performing	a	backup	is	that	you	collect	this	type	of	information	for	future	reference.	The
execution	time	is	important,	as	this	is	an	effective	maintenance	window	for	your	database.
During	 a	 database	 backup	 there	 may	 be	 a	 limitation	 of	 application	 functionality,	 a
performance	 overhead	 during	 the	 backup,	 and	 your	 backup	 may	 limit	 other	 operations
including	batch	processing	or	software	maintenance.

Combining	Information

The	following	is	a	recommended	SQL	statement	that	combines	all	information	for	an	audit
of	your	database	size:

	

Performing	a	MySQL	Backup
Now	 that	 you	have	gathered	prerequisite	 information,	 you	have	 the	details	 necessary	 to
make	an	informed	decision.

The	choice	of	how	 to	perform	a	backup,	when	 to	perform,	and	how	you	monitor	and
verify	is	a	more	complex	process	that	is	discussed	in	more	detail	starting	with	Chapter	2.

One	 additional	 consideration	during	 a	backup	process	 is	 to	disable	 any	 cron	or	 batch
processes	during	the	backup	to	minimize	additional	workload.	This	can	minimize	database
contention	and	shorten	the	window	of	time	needed.

Running	mysqldump
In	 the	 simplest	 form,	 you	 can	 perform	 a	 backup	 using	 mysqldump	 with	 the	 following
syntax:

	
•		The	first	command	runs	the	mysqldump	for	all	databases	producing	an	ASCII	dump	in
the	backup.sql	file.

•		The	second	command	confirms	the	exit	status	of	the	first	command.	A	non-zero	result	is
an	indication	of	a	problem	during	the	backup	process.	If	any	errors	occur,	these	are
generally	shown	in	the	screen	output.

•		The	third	command	shows	the	size	of	your	backup	file	for	later	reference.

For	example:

	
This	 is	a	successful	backup	file	 totaling	818MB	that	 took	35	seconds	 to	execute.	The

original	 size	 of	 the	 database	 data	 as	 shown	 previously	 for	 this	 MySQL	 instance	 was
847MB.

TIP				Prefixing	the	mysqldump	command	with	the	time	command	will	provide	valuable
information	on	the	actual	time	taken.	Recording	your	backup	time	and	size	is	an
important	administration	step	all	DBAs	should	do.	This	time	is	useful	for	scheduling
other	system	requirements,	for	an	additional	verification	step	if	a	successful	backup	has
a	significantly	different	time,	and	is	helpful	in	benchmarking	using	different	arguments,
MySQL	configuration	settings,	or	changes	in	physical	hardware.

	
An	example	of	an	error	condition	may	look	like:

	
A	backup	file	as	per	this	example	may	in	isolation	appear	to	be	completely	valid.	That

is,	 this	 file	contains	valid	and	complete	SQL	statements	and	can	be	successfully	used	 to
restore	data	in	one	or	more	schemas;	however,	it	is	incomplete	as	a	full	backup	of	all	data.
The	execution	time,	error	status,	and	size	are	all	important	information	for	verification	of	a
successful	backup.

Creating	a	backup	is	only	the	first	step	in	a	suitable	strategy.	It	is	important	this	backup
file	can	be	used	successfully	in	recovery.	This	is	discussed	in	Chapter	5.

Securing	Your	Backup
The	final	step	 in	a	minimal	backup	approach	 is	 to	ensure	 the	security	of	your	data.	The
backup	is	currently	on	the	same	system	as	your	data.	A	loss	of	this	system	would	include
the	data	and	your	backup.	The	minimum	you	should	undertake	is	to	copy	your	backup	to	a
secondary	location.	For	example:

	

Benefits	with	mysqldump
The	mysqldump	command	provides	a	SQL	based	backup	file.	This	can	be	ideal	for	creating
a	backup	that	can	be	executed	on	different	versions	of	MySQL,	and	on	different	operating
systems.	 You	 can,	 for	 example,	 view	 this	 file	 directly	 and	 see	 SQL	 statements.	 For
example:

	

	

More	Information
For	more	information	about	the	various	options	with	mysqldump,	you	can	obtain	a	list	of
valid	options	with	the	following	syntax:

	
You	 can	 find	 detailed	 information	 in	 the	 MySQL	 Reference	 Manual	 at

http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html.

Other	Options
If	 your	 database	 uses	 all	 InnoDB	 tables,	 the	 default	 locking	 strategy	 is	 restrictive.	You

http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html

have	 to	 consider	 the	 impact	 of	 the	 mysql	 schema	 on	 MyISAM	 tables.	 Under	 normal
circumstances	you	can	generally	ignore	the	consistency	requirement	providing	you	do	not
perform	operations	that	change	the	meta-data.	This	includes	adding	or	changing	users	and
privileges,	as	well	as	creating	or	dropping	database	schemas.	Alternatively	you	may	elect
to	perform	two	separate	backups.	The	first	backup	excludes	the	mysql	schema	using	the	--
single-transaction	option.	The	second	backup	only	includes	the	mysql	schema	and	uses
the	default	locking	approach.	This	will	be	discussed	more	in	Chapter	2.

Conclusion
An	 appropriate	 MySQL	 backup	 strategy	 is	 an	 essential	 component	 for	 any	 running
production	system.	For	a	simple	installation,	the	implementation	of	a	backup	strategy	can
occur	 in	minutes	as	demonstrated	 in	 this	chapter.	However,	a	backup	strategy	 is	only	as
good	 as	 the	 process	 to	 perform	 a	 successful,	 timely,	 and	 complete	 recovery	 using	 the
backup	strategy.	Chapter	5	will	provide	a	detailed	explanation	for	a	successful	recovery.

There	are	a	number	of	important	considerations	when	using	the	output	of	mysqldump	for
recovery	that	may	affect	how	you	execute	your	backup	command.	Chapter	2	will	discuss
these	points.

This	 chapter	 also	 introduced	 a	 number	 of	 common	 terms	 including	 consistent,	 valid,
complete,	and	point	in	time.	We	will	define	these	terms	in	greater	detail	in	Chapter	2.

The	 SQL	 statements	 and	 web	 links	 listed	 in	 this	 chapter	 can	 be	 downloaded	 from
http://effectivemysql.com/book/backup-recovery/.

http://effectivemysql.com/book/backup-recovery/

2
Understanding	Backup	Options

	

MySQL	supports	various	different	options	for	the	backup	of	your	database	data.	Each	of
these	 options	 has	 its	 relative	 strengths	 and	 weaknesses	 that	 need	 to	 be	 considered	 to
determine	 what	 is	 most	 applicable	 for	 your	 production	 environment.	 The	 choice	 of
operating	 system,	 hardware,	 and	 software	 configuration	 can	 affect	 the	 availability	 of
options.	 There	 are	 also	 open	 source	 and	 commercial	 considerations	 for	 your	 choice	 of
product.

In	this	chapter	we	will	discuss:

•		Different	backup	strategy	needs	and	approaches

•		Various	popular	MySQL	backup	options

•		Hardware	considerations

Terminology
Chapter	1	introduced	a	number	of	important	terms	that	are	essential	to	fully	understand	the
principles	for	backup	and	recovery	with	MySQL.

	
Term Description

static	backup This	is	a	backup	of	data	at	a	given	point	in	time.	Generally	a	MySQL	backup	would	be	performed	daily,	for	example	2:00	A.M.
consistent	backup This	is	a	backup	of	data	where	all	information	pertaining	to	the	backup	is	consistent.	For	example,	a	filesystem	backup	on	a	running	production	system	would	produce	an	inconsistent	backup	when

copying	files	sequentially.	This	could	lead	to	a	mismatch	of	information	between	individual	files.

static	recovery A	recovery	process	involves	two	important	initial	steps;	the	first	is	the	static	recovery	and	the	second	is	the	verification	of	a	valid	static	backup.

point	in	time
recovery	(PITR)

Following	a	successful	static	recovery,	it	is	generally	necessary	to	perform	a	PITR	recovery	of	current	transactions.	These	are	all	the	data	operations	that	have	occurred	since	the	static	backup,	i.e.,	since

2:00	A.M.
maintenance
window

A	backup	is	generally	performed	when	the	system	is	under	less	utilization,	or	in	pre-determined	times	known	as	a	maintenance	window.	This	is	when	administration	tasks	including	backups,	software
upgrades,	and	other	maintenance	can	be	performed	with	limited	or	restricted	application	access.

	

Choosing	a	Backup	Strategy
Several	 factors	 affect	 the	 choice	 of	 the	 type	 of	 backup	 you	 should	 implement	 for	 your
MySQL	environment.	This	chapter	covers	 the	bases	of	what	backup	strategies	exist	and
what	 limitations	 you	 need	 to	 consider	 for	 each	 strategy.	 For	 a	 clear	 description	 of	 the
following	 backup	 options,	 these	 are	 demonstrated	 for	 a	 single	 server	 environment.	This
highlights	 the	 relative	 strengths	 and	 weaknesses	 for	 evaluation.	 The	 design	 of	 your
MySQL	topology	can	also	affect	an	appropriate	backup	and	recovery	strategy.	The	use	of
MySQL	 replication	 in	 the	 context	 of	 backup	 and	 recovery	 can	 be	 a	 great	 benefit	 to
overcoming	some	of	the	limitations	listed	in	this	chapter.	In	Chapter	4	we	will	discuss	the
considerations	for	combining	replication	with	the	various	strategies.

Before	 choosing	 a	 backup	 approach,	 various	MySQL	architecture	 and	 schema	design
decisions	may	have	an	impact.

Database	Availability
If	access	to	your	database	is	not	required	for	a	period	of	time—for	example,	you	are	not
running	a	24/7	operation—there	may	be	a	common	time	when	your	database	may	not	be
required	 to	 be	 available.	 This	 is	 called	 a	 maintenance	 window,	 and	 it	 provides	 an
opportunity	 for	 backup	 strategies	 that	 may	 not	 be	 possible	 if	 such	 a	 window	 is	 not
available.

Storage	Engines
As	highlighted	in	Chapter	1,	 the	choice	of	storage	engine	for	your	underlying	tables	can
have	 an	 effect	 on	 your	 strategy,	 particularly	 in	 relation	 to	 locking	 and	 data	 availability
with	the	primary	included	storage	engines	and	additional	storage	engines	supported	via	a
plugin	 architecture.	 The	 InnoDB,	 MyISAM,	 ARCHIVE,	 MERGE,	 MEMORY,	 and
BLACKHOLE	engines	included	with	the	official	MySQL	binaries	have	different	locking
requirements	and	needs	for	consistency,	which	also	drive	different	backup	strategies.

In	the	following	section	we	will	be	discussing	InnoDB	specific	options	that	provide	the
best	approach	for	a	true	hot	backup.

Locking	Strategies
For	 any	 backup	 strategy	 that	 operates	 with	 a	 running	 MySQL	 instance	 there	 is	 an
important	 consideration	of	 an	applicable	 locking	 strategy	 to	ensure	a	consistent	 backup.
An	 applicable	 locking	 strategy	 is	 necessary	 because	 MySQL	 supports	 different
concurrency	 and	 DML	 locking	 approaches.	 In	 MySQL	 not	 all	 engines	 support	 multi-
versioning	 concurrency	 control	 (MVCC).	 MySQL	 provides	 two	 SQL	 commands	 that
directly	control	table	level	locking.	These	are	the	LOCK	TABLES	and	FLUSH	TABLES
commands.	Many	backup	options	detailed	in	this	chapter	handle	applicable	locking.	This
information	 is	 provided	 to	 define	 what	 options	 are	 used	 and	 available	 for	 custom
management.

LOCK	TABLES

The	 LOCK	TABLES	 command	 can	 provide	 a	 READ	 or	WRITE	 lock	 for	 one	 or	more
specified	 tables.	 The	 LOCAL	 option	 enables	 concurrent	 inserts	 to	 continue	 when
applicable	for	MyISAM	tables	only.	Concurrent	inserts	for	a	MyISAM	table	are	possible

when	 there	 are	 no	 holes	 (from	 deletes)	 in	 the	 table,	 or	 when	 the	 concurrent_insert
configuration	variable	is	set	appropriately.

This	command	is	used	when	the	--lock-tables	option	is	enabled	with	mysqldump.	See
the	 later	 section	 on	 SQL	 dump	 for	 a	 detailed	 explanation	 of	 when	 this	 option	 is	 auto-
enabled.

The	UNLOCK	TABLES	command	is	used	to	release	all	current	locks	for	a	session.	In
addition	 to	 the	 UNLOCK	 TABLES	 command,	 a	 session	 termination,	 a	 START
TRANSACTION,	or	a	LOCK	TABLES	on	the	same	table	name	also	produce	an	implied
UNLOCK	TABLES.

CAUTION				Any	backup	that	takes	longer	to	execute	then	wait_timeout	or
interactive_timeout	can	result	in	the	session	being	closed.	This	will	cause	an	implied
UNLOCK	TABLES.

	
For	more	information	see	http://dev.mysql.com/doc/refman/5.5/en/lock-tables.html.

FLUSH	TABLES

The	FLUSH	TABLES	 command,	when	 used	with	 the	 optional	 keywords	WITH	READ
LOCK,	will	enable	a	consistent	view	of	data	when	the	command	completes	successfully.
This	occurs	by	taking	a	globally	held	read	lock,	then	closing	all	currently	open	tables.	This
can	take	time	to	complete	as	this	requires	all	running	SQL	statements	to	complete.	This	is
not	the	same	type	of	lock	as	a	LOCK	TABLES	command	on	a	list	of	all	tables.	This	lock
is	released	by	issuing	an	UNLOCK	TABLES	command,	or	any	operation	that	 implicitly
runs	an	UNLOCK	TABLES	command.	This	last	point	is	very	important	as	shown	in	the
following	example.

In	session	1:

	
In	session	2:

	
The	 command	 in	 session	 2	 does	 not	 complete	 as	 expected.	We	 can	 confirm	 this	 by

looking	at	the	current	threads	in	the	processlist	before	the	timeout	occurs.

In	session	1:

http://dev.mysql.com/doc/refman/5.5/en/lock-tables.html

	
As	 soon	 as	 session	 1	 is	 closed,	 an	 implied	 UNLOCK	 TABLES	 is	 performed.	 This

releases	 the	 global	 read	 lock,	 and	 the	 pending	 statement	 in	 session	 2	 completes
immediately	if	the	SQL	statement	has	not	timed	out	as	per	this	example.

CAUTION				A	common	flaw	with	backup	strategies	that	use	FLUSH	TABLES	WITH
READ	LOCK	is	the	need	to	use	two	independent	threads	for	the	executing	backup
process.	Running	a	FLUSH	TABLES	WITH	READ	LOCK	command,	then	exiting	from
the	current	connection	will	automatically	perform	an	UNLOCK	TABLES.	After	the
successful	return	of	FLUSH	TABLES	WITH	READ	LOCK,	any	backup	option	must
occur	in	a	different	concurrent	thread.	Only	when	the	applicable	backup	option	is
complete	should	an	UNLOCK	TABLES	be	executed.

	
NOTE				The	risk	of	using	a	FLUSH	TABLES	WITH	READ	LOCK	command	for	a	highly
concurrent	system	is	this	may	take	some	time	(i.e.,	seconds	to	minutes)	to	complete.	This
is	due	to	any	other	long	running	statements	executing.	It	is	important	that	this	command
is	monitored	and	terminated	if	necessary.	While	this	statement	is	popular	with	snapshot
options,	this	risk	must	be	carefully	considered	for	the	true	impact	for	an	online
application.

	
For	more	information	see	http://dev.mysql.com/doc/refman/5.5/en/flush.html.

A	 recent	 article	 on	 the	 popular	 MySQL	 Performance	 Blog	 provided	 a	 detailed
description	of	how	the	combination	of	FLUSH	TABLES	WITH	READ	LOCK,	MySQL
5.5,	and	InnoDB	can	produce	an	unexpected	wait	in	order	to	complete	locking	all	tables.
The	combination	of	versions,	storage	engines,	and	SQL	commands	can	vary	the	expected
outcome.	 As	 always,	 testing	 is	 a	 sound	 business	 practice.	 For	 more	 information	 see
http://www.mysqlperformanceblog.com/2012/03/23/how-flush-tables-with-read-lock-
works-with-innodb-tables/.

MySQL	Topology
The	decision	of	a	backup	strategy	for	a	single	server	installation	can	be	very	different	then
for	a	MySQL	topology	that	includes	MySQL	replication.	While	it	may	not	be	possible	to
stop	or	limit	access	to	a	primary	MySQL	instance,	this	approach	may	be	possible	with	a

http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://www.mysqlperformanceblog.com/2012/03/23/how-flush-tables-with-read-lock-works-with-innodb-tables/

MySQL	replicated	slave.

A	 full	 copy	of	your	MySQL	 instance	using	MySQL	replication	 is	 actually	 the	easiest
backup	strategy	to	implement.	This	approach,	when	correctly	configured,	can	also	serve	as
a	 primary	 recovery	 option	 with	 minimal	 impact	 on	 production	 operation.	 Chapter	 4
discusses	the	impacts	of	using	MySQL	replication	with	your	backup	and	recovery	strategy.

Static	Backup	Options
MySQL	provides	no	single	backup	option.	The	following	are	the	various	popular	and	most
common	 approaches	 to	 performing	 a	 static	 backup	 of	 a	 MySQL	 instance.	 This	 is	 a
necessary	prerequisite	 for	a	database	 recovery	 that	 includes	a	 static	 recovery	and	 then	a
possible	point	in	time	recovery	(if	configured).

The	following	options	are	possible	for	a	backup	of	a	given	MySQL	instance:

•		Filesystem	cold	backup

•		SQL	dump

•		Table	extract

•		Filesystem	warm	snapshot

•		InnoDB	hot	backup

Filesystem	Backup
When	you	stop	 the	MySQL	instance	with	a	clean	and	proper	shutdown,	 it	 is	possible	 to
perform	a	filesystem	backup.	This	is	a	physical	copy	of	files	on	the	filesystem.	To	ensure
you	successfully	back	up	all	important	MySQL	data,	the	following	MySQL	configuration
variables	 define	 various	 file	 locations	 that	 should	 be	 carefully	 reviewed	 and	 when
applicable	included	in	the	list	of	files	to	back	up.	These	variable	values	should	be	obtained
while	the	server	is	running.	Not	all	variables	may	be	defined	in	the	my.cnf	file.	MySQL
will	use	pre-configured	defaults	for	all	variables	not	defined.

•		datadir			The	MySQL	data	directory

•		innodb_data_home_dir			The	InnoDB	Data	directory

•		innodb_data_file_path			The	individual	InnoDB	data	files,	which	may	contain
specific	different	directories

•		log-bin			The	binary	log	directory

•		log-bin-index			The	binary	log	index	file

•		relay-log			The	relay	log	directory

•		relay-log-index			The	relay	log	index	file

In	addition,	it	is	critical	you	also	back	up	the	MySQL	configuration	file	as	these	settings
are	 particularly	 necessary	 to	 successfully	 run	 MySQL.	 In	 particular	 the
innodb_data_file_path	 and	 innodb_log_file_size	 include	 underlying	 file	 sizes	 that
when	not	configured	in	identical	size	will	result	in	your	MySQL	instance	failing	to	start.
Refer	to	Chapter	6	for	more	information	regarding	MySQL	configuration	variables.

Restricting	 application	SQL	 access	 to	 the	MySQL	 server	 to	 perform	 a	 file	 copy	 of	 a
running	MySQL	instance	is	highly	recommended.	A	file	copy	is	a	sequential	process,	and
there	 is	 no	 guarantee	 all	 files	 will	 be	 consistent	 for	 the	 full	 copy.	 This	 is	 especially
applicable	 when	 using	 InnoDB,	 as	 additional	 background	 threads	 operate	 to	 flush	 and
persist	 underlying	 data	 from	 the	 InnoDB	 Buffer	 pool	 even	 after	 all	 MySQL	 access	 is
restricted.

Disadvantages

There	are	several	key	disadvantages	to	this	approach.

•		The	MySQL	instance	is	not	available	during	the	backup.

•		The	recovery	process	requires	a	similarly	configured	system	with	the	same	operating
system	and	directory	structures.

•		The	MySQL	instance	memory	buffers	will	be	re-initialized	when	MySQL	is	restarted.
This	can	take	some	time	for	the	system	to	provide	optimal	performance	for	running
SQL	statements.

Advantages

•		Simple	process.

•		This	enables	a	backup	to	be	performed	with	any	filesystem	backup	tool.

SQL	Dump
MySQL	 provides	 a	 SQL	 based	 backup	 option	 with	 the	 included	 client	 command
mysqldump.	 This	 command	 was	 first	 introduced	 in	 Chapter	 1.	 Using	 mysqldump	 is	 a
practical	way	that	requires	no	additional	software;	however,	this	solution	is	not	without	a
number	of	limitations.	A	common	use	of	mysqldump	would	be:

	
This	command	creates	a	backup	that	includes	all	tables,	views,	and	stored	routines	for

all	database	schemas	and	the	master	binary	log	position.

The	 one	 additional	 option	 that	 is	 most	 commonly	 used	 is	 --single-transaction;
however,	this	is	only	applicable	for	an	InnoDB	only	environment,	or	transactional	storage
engine	that	supports	MVCC.

A	number	of	the	options	shown	are	described	in	further	detail.

—opt

This	option	is	enabled	by	default	and	is	equivalent	to	--add-drop-table,	--add-locks,
--create-options,	--quick,	--extended-insert,	--lock-tables,	--set-charset,	and	-
-disable-keys.

—lock-tables

This	 option	 is	 actually	 implied	 by	 the	 --opt	 option,	 which	 is	 enabled	 by	 default.	 The
underlying	implementation	of	the	LOCK	TABLES	command	uses	the	syntax:

	
The	mysqldump	with	--lock-tables	only	locks	the	tables	of	one	schema	at	one	time—

not	all	tables	for	all	schemas.	If	application	logic	writes	to	two	different	schemas	and	you
use	a	storage	engine	that	does	not	support	transactions,	it	is	possible	to	have	inconsistent
data	during	a	backup.

—lock-all-tables

This	option	will	perform	a	FLUSH	TABLES	WITH	READ	LOCK	command	in	order	to
produce	a	consistent	view	of	data	in	all	schemas.

—routines

Using	 mysqldump	 to	 back	 up	 all	 databases	 does	 not	 back	 up	 all	 of	 your	 schema	meta-
information.	 MySQL	 routines	 are	 not	 included	 by	 default.	 This	 can	 be	 a	 significant
shortcoming	 if	 your	 recovery	process	 does	not	 fully	 test	 the	validity	 of	 your	 backup.	 If
your	database	includes	stored	procedures	or	functions	the	--routines	option	is	necessary.

—master-data

This	option	 is	essential	 for	any	point	 in	 time	recovery,	which	 is	 the	general	 requirement
for	 all	 disaster	 recovery	 situations.	 When	 enabled,	 the	 output	 will	 produce	 a	 SQL
command	like:

	
You	 can	 also	 specify	 --master-data=2,	 which	 will	 embed	 this	 SQL	 statement	 as	 a

comment	 only	 so	 this	 is	 not	 physically	 executed	 during	 the	 restoration	 of	 data	with	 the
mysqldump	 output.	 The	 importance	 of	 this	 option	 and	 the	 prerequisite	 configuration	 is
discussed	in	the	following	section	on	point	in	time	requirements.

—all-databases

As	 the	name	 implies,	 all	 database	 schemas	 are	 referenced	 for	 the	mysqldump	 command.
You	 can	 also	 specify	 individual	 database	 schemas	 and	 tables	 on	 the	 command	 line.	 To
specify	specific	databases	use	the	--database	option;	 for	specific	 tables	use	--tables,
and	to	define	schemas	with	an	exclusion	list	of	tables	use	--ignore-table.

—complete-insert

The	 --complete-insert	 option	 provides	 a	 practical	 syntax	 for	 a	 higher	 level	 of
compatibility	as	shown:

	
This	is	important	if	you	separate	your	schema	and	data	using	mysqldump	 to	trap	errors

when	loading	data.

By	default	MySQL	will	combine	a	number	of	rows	for	individual	INSERT	statements.
This	 is	 due	 to	 the	--extended-insert	 option	 that	 is	 enabled	by	default.	 If	 you	want	 to
generate	a	backup	with	individual	INSERT	statements	use	the	--skip-extended-insert
option.	This	will	affect	the	recovery	time	of	your	backup.

—skip-quote-names

By	default	MySQL	will	automatically	add	a	back	tick	(`)	around	every	object	name.	This
is	used	to	support	using	reserved	words	and	spaces	in	object	names,	two	practices	that	are
strongly	 not	 recommended.	mysqldump	 does	 not	 quote	 only	 those	 objects	 that	 need	 this
syntax,	but	all	objects	including	table	names,	column	names,	index	names,	etc.

This	 is	 a	 cumbersome	 syntax	 that	 can	 be	 removed	 with	 --skip-quote-names,	 and
providing	 you	 avoid	 the	 two	 conditions	 mentioned	 the	 backup	 file	 will	 be	 correctly
restored.

—single-transaction

When	using	a	storage	engine	that	supports	MVCC	it	is	possible	to	get	a	consistent	view	of
data	using	the	--single-transaction	option.	This	works,	for	example,	with	the	InnoDB
storage	engine.	It	does	not	work	with	the	My-ISAM	storage	engine.	This	option	does	have
an	overhead,	as	this	is	one	long	running	transaction.

—hex-blob

When	your	database	contains	binary	data,	the	--hex-blob	option	will	provide	maximum
compatibility	 especially	 when	 using	 your	 backup	 for	 restoration	 on	 different	 MySQL
systems.

MySQL	Replication	Specific	Options

Chapter	 4	 will	 discuss	 a	 number	 of	 important	 mysqldump	 options	 to	 consider	 when
working	with	a	MySQL	slave	including	--master-data,	--apply-slave-statements,	and
--dump-slave.

Additional	Options

The	following	syntax	provides	a	full	list	of	possible	options	with	mysqldump:

	
Benefits

As	mentioned	in	Chapter	1,	one	of	 the	benefits	of	mysqldump	 is	 the	ASCII	nature	of	 the
data.	You	can	 look	at	 the	backup	file	with	a	 text	editor	and	you	can	use	simple	 tools	 to
manipulate	 the	data—for	 example,	 to	 perform	a	global	 string	 substitution	 to	 change	 the
storage	 engine.	 mysqldump	 can	 also	 support	 the	 extraction	 of	 individual	 schemas	 and
tables,	 providing	 a	 level	 of	 flexibility	 not	 possible	 with	 other	 options	 discussed	 in	 this
chapter.	While	mysqldump	may	not	be	the	tool	of	choice	for	your	full	backup	and	recovery
strategy,	understanding	this	command	for	partial	data	situations	is	important.

This	command	uses	the	MySQL	client/server	protocol	so	the	mysqldump	command	does
not	 have	 to	 be	 performed	 on	 the	 same	 host.	 This	 can	 help	 reduce	 the	 I/O	 writing
requirement	and	disk	capacity	necessary;	however,	this	can	increase	the	time	the	command
executes	 and	 network	 utilization.	 When	 used	 on	 a	 Linux	 or	 Unix	 operating	 system
additional	piping	and	redirection	can	enable	additional	features	including	encryption	and
compression.

One	advantage	of	the	SQL	backup	is	that	it	enables	a	cross	operating	system	compatible
solution.	A	backup	using	mysqldump	on	Linux	can	be	restored	on	a	Windows	platform.	In
addition,	mysqldump	also	provides	a	--compatible	option	to	support	SQL	statements	that
can	be	used	with	previous	MySQL	versions.

Because	mysqldump	output	is	an	ASCII	representation	of	data,	it	is	possible	that	the	size
of	 the	 backup	 is	 larger	 than	 the	 database.	 For	 example,	 a	 4	 byte	 integer	 can	 be	 10
characters	long	in	ASCII.

Recovery	Considerations

A	 backup	 process	 is	 only	 as	 good	 as	 a	 successful	 recovery.	A	mysqldump	 file	 is	 only	 a
static	 backup.	 Regardless	 of	 your	 backup	 approach,	 this	 is	 one	 common	 component
required	 for	 a	 true	 recovery	 solution	 that	 is	 to	 support	 a	 point	 in	 time	 recovery.	 This
important	 recovery	 step	 has	 two	 additional	 requirements	when	 producing	 a	 SQL	dump.
The	 first	 requirement	 is	 the	master	binary	 logs,	which	are	enabled	with	--log-bin.	The
second	 is	 the	 binary	 log	 position	 at	 the	 time	 of	 the	 backup;	 this	 is	 obtained	 by	 the	 --
master-data	options.	Chapter	6	discusses	these	options	in	detail.

Recommended	Practices	for	Database	Objects

It	 is	recommended	that	you	separate	your	table	objects	and	table	data.	This	has	multiple
benefits	including	ease	of	comparison	for	schema	objects,	ability	to	re-create	your	schema
only—for	example,	with	a	test	environment—and	provides	an	easier	way	to	split	your	data
file	 for	 possible	 parallel	 loading.	 Regardless	 of	 your	 ultimate	 backup	 process,	 I	 would
always	 recommend	 you	 run	 the	 following	 two	 commands	 to	 back	 up	 your	 schema
definition	and	objects:

	
A	simple	approach	to	schema	comparison	is	to	perform	a	difference	between	files	that

are	created	with	each	backup.	This	approach	is	only	approximate,	as	the	order	of	objects	is
not	guaranteed,	and	the	syntax	may	and	does	change	between	MySQL	versions.	You	can
use	 this	 technique,	 however,	 as	 a	 quick	 check	 and	 confirmation	 of	 no	 schema	 changes,
which	is	an	important	verification	and	audit.

TIP				A	mysqldump	of	database	objects	can	provide	an	easy	means	of	confirming	that	no
objects	have	changed	between	scheduled	backups.	This	can	provide	a	level	of
auditability	for	system	architecture.

	
Using	Compression

Using	 mysqldump	 you	 can	 leverage	 the	 operating	 system	 to	 support	 compression.	 The
simplest	approach	is	to	pipe	the	output	directly	into	a	suitable	compression	algorithm.	For
example:

	
While	this	will	ensure	a	much	smaller	backup	file,	compression	adds	time	to	the	backup

process,	which	could	affect	other	considerations	including	locking	and	recovery	time.	See
Chapter	8	 for	 a	more	 detailed	 discussion	 on	 using	 compression	 to	 optimize	 the	 backup
process.

Leveraging	Network	Devices

You	 can	 also	use	mysqldump	 across	 the	 network,	 either	with	 a	 pull	 or	 push	process,	 for
example,	to	pull	the	data	from	the	database	server	to	another	server.

	
The	-C	option	enables	compression	in	the	communication	when	supported	between	the

mysqldump	 client	 command	 and	 the	 database	 server.	 This	 does	 not	 compress	 the	 result,
only	the	communication.

The	 push	 of	mysqldump	 output	 can	 be	 performed	 several	ways	 including	with	 the	nc
(netcat)	command.	For	example:

	
Chapter	8	provides	more	information	regarding	different	options	and	considerations	for

streaming	a	backup.

Disadvantages

mysqldump	 is	 ideal	 for	 smaller	 databases.	 Depending	 on	 your	 hardware,	 including
available	RAM	and	hard	drive	 speed,	 an	 appropriate	database	 size	 is	between	5GB	and
20GB.	While	 it	 is	 possible	 to	 use	mysqldump	 to	 back	 up	 a	 200GB	database,	 this	 single
thread	approach	takes	time	to	execute.	It	is	also	impractical	to	restore	in	a	timely	manner

due	 to	 the	 single	 threaded	 nature	 of	 the	 restoration	 of	 a	 mysqldump	 output.	 Ideally,
leveraging	techniques	of	separating	static	and	online	data	 into	multiple	files	can	provide
an	immediate	parallelism.	The	mydumper	utility	aims	to	improve	these	features	by	offering
parallelism	capabilities.	This	open	source	utility	is	discussed	in	Chapter	8.

Table	Extract
An	additional	form	of	ASCII	backup	is	to	produce	a	per	table	data	file,	also	called	a	data
snapshot.	This	option	is	not	practical	for	a	full	system	backup;	however,	it	is	ideal	for	time
series,	write	once,	and	archival	data,	especially	if	the	data	has	been	manually	partitioned.
Using	a	hybrid	approach	for	a	backup	strategy	can	reduce	both	the	time	and	size	required
for	your	backup.	This	method,	when	used	with	static	data,	i.e.,	eliminating	a	consistency
problem,	and	combined	with	mysqldump	of	other	data,	can	provide	a	much	smaller	backup
both	 in	 execution	 time	 and	 filesize.	 This	 can	 also	 translate	 to	 reduced	 recovery	 times.
Generally	 this	 approach	 is	 not	 practical	 as	 a	 complete	 solution	 because	 it	 is	 difficult	 to
reconcile	with	point	in	time	recovery.

You	 can	 use	 the	 mysqldump	 command	 with	 the	 --tab	 option	 or	 SELECT	 INTO
OUTFILE	 SQL	 syntax	 to	 achieve	 a	 per	 table	 data	 file.	 By	 default,	 these	 commands
produce	a	tab	separated	column	format,	with	a	newline	terminator	for	rows.	If	you	wanted
to	produce	a	comma	separated	variable	(CSV)	dump	of	data,	you	could	use	the	following
syntax:

	
One	advantage	of	the	mysqldump	command	is	a	greater	flexibility	of	the	underlying	file

permissions	necessary	to	write	the	output	file.	Using	the	SELECT	INTO	OUTFILE	syntax

requires	 the	 mysqld	 process	 owner	 (generally	 mysql)	 to	 have	 appropriate	 write
permissions	where	the	outfile	is	defined.	This	also	produces	an	additional	problem	when
compressing	 or	 moving	 the	 file,	 as	 a	 normal	 operating	 system	 user	 generally	 cannot
perform	this	on	the	file	created	by	the	mysql	user.

Filesystem	Snapshot
A	more	practical	solution	for	a	larger	MySQL	instance	is	to	perform	a	filesystem	snapshot.
This	is	not	actually	a	MySQL	specific	strategy,	but	rather	a	disk	based	operating	system
command	using	Logical	Volume	Manager	(LVM)	for	direct	attached	drives,	or	applicable
snapshot	 technology	 for	 Storage	 Area	 Network	 (SAN)	 or	 Network	 Attached	 Storage
(NAS)	 providers.	 This	may	 also	 be	 a	 feature	 of	 certain	 file	 systems,	 e.g.,	 the	Btrfs	 file
system	on	Linux	and	ZFS	on	Solaris.

Your	 disk	 must	 be	 correctly	 configured	 with	 LVM	 prior	 to	 using	 any	 of	 these
commands.	 The	 EffectiveMySQL	 website	 provides	 a	 detailed	 article	 on	 installing	 and
configuring	LVM	at	http://effectiveMySQL.com/article/configuring-a-new-hard-drive-for-
lvm/	 and	 on	 installing	 MySQL	 to	 utilize	 this	 LVM	 volume	 at
http://effectiveMySQL.com/article/using-mysql-with-lvm.

Assuming	you	have	 a	MySQL	 instance	 running	on	 an	LVM	volume	you	 can	 use	 the
following	command	to	take	a	filesystem	snapshot:

	
This	command	uses	the	logical	volume	group	(dev/db/p0)	and	a	very	small	undo	size

for	 this	 example	 (-L1G).	 These	 would	 be	 modified	 accordingly	 for	 your	 environment.
Calculating	the	necessary	undo	size	can	be	difficult.	If	the	space	is	not	large	enough,	the
snapshot	command	will	report	an	appropriate	error.

NOTE				A	snapshot	volume	does	not	need	to	be	the	same	size	as	the	underlying	volume
that	contains	your	MySQL	data.	A	snapshot	only	has	to	be	large	enough	to	store	all
data	that	is	going	to	change	over	the	time	the	snapshot	exists.

	
CAUTION				Always	ensure	you	have	sufficient	diskspace	to	perform	a	snapshot.	The

pvdisplay	and	lvdisplay	commands	show	total	available	space	and	the	percentage	of
space	allocated	to	snapshots.

	
CAUTION				Having	an	active	LVM	snapshot	comes	with	a	performance	penalty	for	all
disk	activity.	While	ideal	for	recovery	purposes	to	have	the	current	snapshot	online,	for
general	database	performance	it	is	best	to	discard	the	snapshot	as	soon	as	it	is	no
longer	in	use.	Having	multiple	snapshots	will	further	degrade	I/O	performance.

	
The	verification	process	of	taking	a	filesystem	snapshot	would	include:

http://effectiveMySQL.com/article/configuring-a-new-hard-drive-for-lvm/
http://effectiveMySQL.com/article/using-mysql-with-lvm

	

	
LVM	snapshots	operate	under	 the	 filesystem;	 they	are	 thus	application	and	 filesystem

agnostic.	Whatever	 application	 uses	 these	 files—in	 this	 case,	MySQL—needs	 to	 ensure
that	 the	 files	 on	 disk	 are	 in	 a	 consistent	 state	when	 the	 snapshot	 is	 taken.	 This	 backup
approach	works;	however,	 it	 creates	an	 inconsistent	 snapshot	of	MySQL.	Depending	on
the	storage	engines	used,	the	recovery	process	may	perform	an	automatic	recovery	for	this
inconsistent	view,	or	it	may	produce	errors,	for	example,	with	MyISAM	tables,	which	can
increase	 the	 total	 system	 recovery	 time.	 Historically,	 automatic	 recovery	 time	 with
InnoDB	could	also	take	a	long	time.	This	has	been	greatly	improved	with	newer	versions
of	MySQL	5.1	and	5.5.

The	correct	approach	when	using	a	filesystem	snapshot	is	to	place	the	MySQL	instance
into	a	consistent	state	before	any	command.	This	 is	achieved	with	 the	FLUSH	TABLES
WITH	 READ	 LOCK	 command.	 As	 described	 in	 the	 earlier	 section	 on	 locking,	 this
command,	when	used	incorrectly,	does	not	ensure	a	consistent	view.

The	recommended	steps	for	using	a	filesystem	snapshot	are:

•		Generate	a	consistent	MySQL	view	with	FLUSH	TABLES	WITH	READ	LOCK.	It	can
be	difficult	to	predict	how	long	this	will	take.

•		Obtain	the	MySQL	binary	log	position	with	SHOW	MASTER	STATUS	and/or	SHOW
SLAVE	STATUS.

•		Run	the	snapshot	command	in	a	different	thread.	It	is	important	you	do	not	exit	from	the
MySQL	session	for	the	previous	commands.

•		Optionally	run	a	FLUSH	BINARY	LOGS.

•		Release	locks	with	UNLOCK	TABLES.

•		Verify	the	filesystem	snapshot.

•		Make	an	appropriate	copy	of	the	snapshot	backup	on	a	different	server	or	site.

•		Discard	the	snapshot	(for	optimal	I/O	performance).

NOTE				The	most	common	backup	needed	for	a	disaster	recovery	is	the	most	recent
backup.	The	underlying	LVM	logical	volume	for	the	filesystem	snapshot	is	actually	an
I/O	performance	overhead	to	maintain.	The	backup	of	the	snapshot	and	movement	to	an
external	system	is	a	common	approach.	The	restoration	of	these	compressed	backup
files	from	an	external	system	can	be	the	most	significant	time	component	of	the	recovery
strategy.	Chapters	3	and	5	discuss	these	impacts	in	more	detail.

	

For	 more	 information	 about	 the	 theory	 of	 LVM	 see
http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux).

Using	mylvmbackup

The	mylvmbackup	utility	now	maintained	by	longtime	MySQL	community	advocate	Lenz
Grimmer	is	a	convenience	script	that	wraps	all	of	this	work	into	a	single	command.	You
can	 find	 this	 utility	 at	 http://www.lenzg.net/mylvmbackup/.	 For	 example,	 the	 use	 of
mylvmbackup	when	correctly	installed	and	configured	is:

	

http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)
http://www.lenzg.net/mylvmbackup/

	
This	 command	 supports	 many	 additional	 features	 including	 backing	 up	 to	 a	 remote

server	 using	 rsync.	 The	 Effective	 MySQL	 article	 at	 http://effective-
MySQL.com/article/creating-mysql-backups-using-lvm/	 provides	 additional	 information
on	 how	 to	 correctly	 install	 and	 configure	 mylvmbackup	 and	 also	 lists	 several	 valuable
external	references.

TIP				A	snapshot	is	a	great	way	to	perform	software	updates.	There	is	no	need	to	back	up
and	remove	the	snapshot	for	this	operation.	If	the	update	fails	you	can	roll	back	to	the
snapshot	just	taken.

	
Designing	Appropriate	LVM	Volumes

There	are	several	considerations	for	optimizing	the	use	of	LVM	and	MySQL.	Ensure	you
have	a	dedicated	logical	volume	for	your	MySQL	instance.	This	should	include	the	data
and	InnoDB	transactional	logs.	This	is	critical	for	a	successful	recovery.	A	snapshot	is	an
atomic	 operation	 for	 all	 files	 at	 the	 same	 time	 per	 logical	 volume.	 Having	 data	 and
InnoDB	transaction	logs	on	separate	volumes	would	not	ensure	a	consistent	snapshot,	as
this	would	be	performed	separately	per	volume.	While	the	MySQL	binary	logs	are	good	to
keep	 with	 your	 MySQL	 backup,	 for	 a	 highly	 loaded	 system,	 it	 may	 be	 beneficial	 to
separate	 this	 from	your	MySQL	data	 volume.	MySQL	 log	 files,	 or	 other	monitoring	 or
instrumentation,	 can	 also	 cause	 overhead;	 the	 goal	 should	 be	 to	 minimize	 your	 disk
footprint	to	ensure	the	most	optimal	recovery	time.

Limiting	 other	 operations	 that	 affect	 your	 data	 during	 the	 execution	 of	 a	 filesystem
snapshot	 can	 also	 improve	 the	 performance.	 For	 example,	 disabling	 or	 limiting	 batch
processes	and	reporting	can	reduce	additional	system	load.

Other	Considerations

Using	filesystem	snapshots	can	be	a	disk	I/O	intensive	operation.	If	your	system	is	already

http://effective-MySQL.com/article/creating-mysql-backups-using-lvm/

heavily	loaded,	the	addition	of	an	active	snapshot	is	an	overhead	that	could	add	up	to	20
percent	 extra	 load.	 In	 addition,	 the	 compressing	 and/or	 copying	 of	 the	 snapshot,	 while
necessary	for	a	backup	strategy,	may	add	more	stress	to	the	system.

The	ZFS	filesystem,	available	with	Solaris,	FreeBSD,	and	other	free	Solaris	derivative
operating	systems,	provides	a	native	snapshot	command	that	works	very	efficiently	with
the	designed	copy-on-write	principle.	The	Btrfs	filesystem	for	Linux	is	another	snapshot
efficient	 option.	 Other	 filesystem	 types	 such	 as	 xfs	 can	 provide	 different	 performance
benefits	for	disk	I/O	and	management	with	snapshots.

InnoDB	Hot	Backup
For	an	InnoDB	only	MySQL	instance	there	are	two	products	that	can	perform	a	hot	non-
blocking	 backup.	 These	 are	 MySQL	 Enterprise	 Backup	 (MEB),	 formally	 known	 as
InnoDB	Hot	Backup,	and	XtraBackup.

The	 process	 of	 performing	 a	 hot	 backup	 is	 different	 from	 both	 the	 mysqldump	 and
filesystem	 snapshot	 approaches,	 as	 it	 integrates	 with	 features	 and	 functionality	 within
InnoDB	to	produce	a	solution	that	provides	a	consistent	version	of	data	in	a	non-locking
manner.	 These	 tools	 duplicate	 some	 of	 the	 features	 of	 the	 InnoDB	 storage	 engine	 by
keeping	a	copy	of	all	InnoDB	transactional	log	engines	(aka	redo	logs)	and	performing	a
copy	 of	 data	 consistent	 with	 InnoDB	 data	 page	 management.	 Both	 products	 will	 also
perform	a	warm	backup	of	a	MySQL	installation	that	has	a	mixture	of	InnoDB	and	other
storage	engines.

NOTE				In	addition	to	supporting	an	InnoDB	only	application,	these	hot	backup	options
do	support	MyISAM	backups	for	the	mysql	meta-schema	and	any	other	tables;	however,
this	requires	table	locking.

	
MySQL	Enterprise	Backup	(MEB)

MEB	 is	 available	 as	 part	 of	 MySQL	 Enterprise	 Edition,	 a	 commercial	 offering	 that	 is
provided	by	Oracle	when	purchasing	a	MySQL	subscription.	MEB	provides	a	hot	backup
solution	for	a	MySQL	environment.

Downloading	the	Software	You	can	download	MySQL	Enterprise	Backup	for	evaluation
from	the	Oracle	Software	Delivery	website	at	https://edelivery.oracle.com/.	You	must	first
sign	up	for	free,	accept	the	licensing	agreement,	and	download	the	appropriate	version	via
a	 web	 browser.	 Currently	 MySQL	 Enterprise	 Backup	 is	 available	 in	 the	 following
distribution	packages:

•		RHEL/OL	4	32bit/64bit

•		RHEL/OL	5	32bit/64bit

•		RHEL/OL	6	32bit/64bit

•		SuSE	10	32bit/64bit

•		SuSE	11	32bit/64bit

•		Generic	Linux	32bit/64bit

https://edelivery.oracle.com/

•		Windows	32bit/64bit

•		Solaris	10	32bit/64bit

The	following	steps	install	a	downloaded	version	of	the	generic	Linux	64bit	software:

	
Running	a	Full	Backup

	

	

	

	

	
NOTE				The	--with-timestamp	option	will	create	an	appropriate	date/time	sub-directory
for	each	backup	using	MySQL	Enterprise	Backup.

	
This	example	showed	the	backup-and-apply-log	option.	It	is	also	possible	to	create	a

backup	with	two	separate	commands	by	running	MEB	with	backup	and	then	apply-log.

For	 more	 information	 see	 the	 MySQL	 documentation	 at
http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/mysqlbackup.backup.html.

Chapter	 8	 discusses	 additional	 options	 for	 MySQL	 Enterprise	 Backup	 including
compression,	incremental,	and	remote	backups.

Security				To	improve	access	permissions	for	a	privileged	user	performing	a	backup	with
MEB,	the	following	privileges	are	required:

	
For	 more	 information	 refer	 to	 the	 MEB	 manual	 at	 http://dev.mysql.com/doc/mysql-

enterprise-backup/3.7/en/mysqlbackup.privileges.html.

Monitoring	 	 	 	 In	 addition	 to	 text	 output	 of	 the	 mysqlbackup	 command,	 information	 is
recorded	in	the	mysql	schema.	For	example:

	

http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/mysqlbackup.backup.html
http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/mysqlbackup.privileges.html

	

	
This	can	be	disabled	with	the	--no-history-logging	option.

More	Information				For	more	information	on	the	features	of	MySQL	Enterprise	Backup
visit	http://www.mysql.com/products/enterprise/backup.html.

XtraBackup

http://www.mysql.com/products/enterprise/backup.html

XtraBackup	 is	 an	 open	 source	 offering	 by	 Percona	 that	 can	 perform	 an	 InnoDB	 hot
backup.	 This	 tool	 also	 has	 additional	 features	 for	 the	 support	 of	 the	 XtraDB	 storage
engine,	an	open	source	variant	of	InnoDB.

Downloading	the	Software				XtraBackup	is	available	in	three	different	versions.	This	is
because	 XtraBackup	 actually	 includes	 an	 embedded	 version	 of	 the	MySQL	 server	 and
MySQL	 client	 libraries.	 You	 can	 download	 the	 software	 from
http://www.percona.com/downloads/XtraBackup/.

For	 example,	 when	 using	 the	 Ubuntu	 64bit	 MySQL	 5.5	 version	 of	 XtraBackup,	 the
following	 commands	 download	 and	 install	 the	 software.	 Refer	 to	 the	 previously
mentioned	 link	 to	 obtain	 the	 most	 current	 version	 of	 XtraBackup	 for	 your	 applicable
operating	system.	At	the	publication	of	this	book	the	current	version	is	2.0.0.

	
CAUTION				XtraBackup	may	require	the	installation	of	the	library	package	for
Asynchronous	I/O	(libaio1	on	Ubuntu,	libaio	on	RHEL).	This	is	also	required	for
MySQL	versions	5.5	or	greater.

	
NOTE				In	the	prior	version	of	XtraBackup,	the	package	name	was	xtrabackup.	It	is	now

percona-xtrabackup.

	
—backup				The	XtraBackup	backup	process	is	a	two	stage	operation.	The	first	operation
with	the	--backup	option	performs	the	physical	backup.	The	second	operation	with	the	--
prepare	 option	 performs	 an	 internal	 crash	 recovery	 of	 the	 copied	 tablespace	 files	 and
accumulated	transactional	logs	to	produce	a	consistent	backup	that	can	then	be	restored	in
a	timely	manner.

Using	the	directory	structure	of	the	MySQL	installation	that	was	referenced	in	the	LVM
section	the	following	syntax	will	perform	a	backup.	The	--datadir	parameter	should	be
adjusted	accordingly	for	your	MySQL	instance.

http://www.percona.com/downloads/XtraBackup/

	
—prepare				The	prepare	step	of	XtraBackup	launches	the	embedded	version	of	InnoDB,
performs	a	crash	 recovery	of	 the	data	and	accumulated	 transaction	 logs,	and	produces	a
clean	and	consistent	version	that	is	ready	for	any	recovery	requirements.

This	 step	 can	 occur	 on	 any	 server	 that	 has	 the	 backup	 files	 and	 the	 same	 version	 of
XtraBackup	installed.	This	does	not	need	to	occur	on	the	machine	the	backup	was	taken.

	
For	saving	additional	time	in	the	recovery	process,	you	can	run	the	--prepare	option	a

second	time	to	prepare	clean	InnoDB	transaction	logs.	This	is	not	a	required	step.

NOTE				The	xtrabackup	command	does	not	create	date/time	based	subdirectories	during
the	backup	process.

	
Backing	Up	All	MySQL	Data		 	 	As	you	can	see	from	the	XtraBackup	commands,	only
InnoDB	specific	data	is	included.	To	capture	all	MySQL	data,	the	innobackupex	wrapper
script	packages	all	the	necessary	work	into	a	single	command.	For	example:

	

	

	
This	command	will	automatically	place	the	backup	in	a	date/time	defined	sub-directory.

This	can	be	disabled	with	the	--no-timestamp	option.

More	 Information	 	 	 	 For	 more	 information	 on	 XtraBackup	 visit
http://www.percona.com/docs/wiki/percona-xtrabackup:xtrabackup:start.

Options	Not	Discussed
There	are	several	other	commands	and	techniques	that	are	not	discussed	in	detail.	These
include:

•		mysqlhotcopy	is	an	included	utility	that	is	applicable	for	MyISAM	tables	only.	This

http://www.percona.com/docs/wiki/percona-xtrabackup:xtrabackup:start

utility	should	not	be	used	as	this	is	no	longer	maintained.

•		ibbackup	is	the	historical	name	for	InnoDB	Hot	Backup.	This	has	been	improved	and	is
now	called	MySQL	Enterprise	Backup.

•		mydumper	(http://www.mydumper.org/)	is	a	high	performance	tool	providing	many
features	over	mysqldump	including	parallelism,	consistency	with	transactional	and	non-
transactional	tables,	and	binary	log	management.	Refer	to	Chapter	8	for	more
information.

•		mt-parallel-dump	is	a	deprecated	Maatkit	tool	that	attempted	to	perform	parallel
mysqldump	commands.	The	author	has	recommended	this	product	no	longer	be	used.

•		MySQL	online	backup	that	was	under	development	in	MySQL	versions	5.2	and	6.0	was
never	incorporated	into	future	development.

•		Zmanda	Recovery	Manager	for	MySQL	(http://www.zmanda.com/backup-mysql.html)
provides	a	user	interface	and	management	tool	for	MySQL	backups;	however,	it	does
not	provide	any	additional	functionality	that	is	not	described	in	this	chapter.

•		DRBD	(Distributed	Replicated	Block	Device)	is	not	discussed	as	a	possible	MySQL
backup	option.	DRBD	can	be	used	to	provide	a	more	highly	available	system;	however,
this	is	not	specifically	a	backup	and	recovery	approach.

CAUTION				Be	wary	of	GUI	editors	that	offer	a	backup	solution	or	a	generic	tool	that
fits	all	database	solutions.	A	production	system	requires	a	production	strength	backup
solution	tailored	to	your	business	needs	and	objectives.

	

Point	in	Time	Requirements
The	static	backup	of	a	MySQL	instance	is	only	the	first	step	of	a	strategy	that	will	result	in
a	successful	recovery.	In	addition	to	a	backup	strategy	that	provides	a	backup	option	to	a
specific	 time	when	the	backup	was	taken,	 it	 is	generally	necessary	to	perform	a	point	 in
time	recovery	to	either	the	most	current	transactions	before	a	physical	disaster,	or	a	time
before	some	human	created	situation.	This	 is	known	as	a	point	 in	 time	 recovery	 (PITR)
that	is	performed	by	applying	the	MySQL	binary	logs	to	a	recovered	snapshot.

Binary	Logs
When	 enabled,	 the	 MySQL	 binary	 logs	 record	 all	 DML	 and	 DDL	 statements	 that	 are
performed	 on	 a	MySQL	 instance.	 It	 is	 possible	 for	 users	with	 appropriate	 privileges	 to
disable	the	binary	log	for	individual	session	statements	or	globally.	This	could	produce	an
inconsistent	 version	 of	 data	 during	 a	 recovery	 process	 or	 replication	 topology.	 It	 is
important	that	application	users	are	not	given	the	SUPER	permission	for	this	reason.

The	binary	logs	are	enabled	with	the	--log-bin	option	that	is	detailed	in	Chapter	6.	The
SHOW	 BINARY	 LOGS	 command	 provides	 a	 list	 of	 current	 binary	 logs	 managed	 by
MySQL.	The	SHOW	MASTER	LOGS	command	produces	the	same	output.

http://www.mydumper.org/
http://www.zmanda.com/backup-mysql.html

	
These	binary	log	entries	match	the	underlying	files	defined	by	the	--log-bin	option.

	
A	high	volume	system	can	easily	record	500MB	per	minute	of	binary	logs,	and	this	can

have	 a	 large	 impact	 on	 available	 diskspace.	 The	 --expire-logs-days	 option	 removes
these	 files	 automatically	 after	 the	 defined	 number	 of	 days.	Alternatively,	 it	 is	 important
that	 you	 use	 the	 PURGE	 BINARY	 LOGS	 command	 to	 remove	 these	 files	 instead	 of
removing	the	files	from	the	file	system	manually,	as	there	is	an	internal	reference	between
the	database	and	the	filesystem.

CAUTION				A	system	administrator	deleting	MySQL	binary	log	files	via	an	operating
system	command	is	a	potential	disaster	situation.	The	appropriate	MySQL	command
should	always	be	used	to	remove	binary	log	files.

	

Binary	Log	Position
Depending	on	the	chosen	backup	option	you	may	also	need	to	capture	the	current	binary
log	 position	 in	 order	 to	 be	 able	 to	 successfully	 perform	 a	 restoration.	 The	 SHOW
MASTER	STATUS	provides	the	current	position.	For	example:

	
This	 information	 can	 be	 obtained	 with	 the	 --master-data	 option	 when	 using	 the

mysqldump	command.

Binary	Log	Backup	Options
The	backup	of	the	binary	logs	is	just	as	important	as	a	backup	of	your	database.	Several
options	exist	including	filesystem	copy,	replication,	and	other	disk	based	technologies.

File	Copy

The	binary	logs	are	sequential	files	that	can	easily	be	copied	to	an	external	server	without
any	 impact	on	ensuring	consistency	with	 the	 running	MySQL	database.	 It	 is	possible	 to
perform	a	remote	synchronization	of	files—for	example,	with	the	rsync	command—on	a
regular	frequency	to	ensure	a	secondary	copy	of	the	master	server	binary	logs.

Replication

The	use	of	MySQL	replication	is	an	easy	way	to	have	a	copy	of	the	binary	log	data	on	a
secondary	 system.	When	 using	MySQL	 replication,	 a	 copy	 of	 the	 binary	 log	 entries	 is
written	 to	 the	 relay	 log	on	 the	MySQL	slave.	While	 this	 is	 a	 copy,	 there	 is	 no	 accurate
reference	between	the	master	log	file	and	position	and	the	corresponding	relay	log	file	and
position.	The	relay	log	is	not	a	good	way	to	have	a	copy	of	what	is	in	the	binary	log.	Relay
log	files	have	a	much	shorter	longevity	by	default	than	the	master	binary	logs.	The	use	of
--log-slave-updates	 would	 be	 a	 more	 practical	 choice.	 Chapter	 4	 discusses	 in	 more
detail	various	options	for	understanding	the	binary	logs	in	a	MySQL	replication	topology.

DRBD

It	 is	 possible	 to	 easily	 create	 a	 mirrored	 binary	 log	 implementation	 using	 additional
software	including	DRBD.	This	ensures	you	have	a	consistent	copy	of	all	binary	logs	on	a
separate	server.

Hardware	Considerations
Having	 available	 diskspace	 and	 network	 bandwidth	 are	 the	 most	 important	 hardware
considerations	for	supporting	MySQL	backups.

The	most	likely	recovery	will	be	from	the	most	current	backup.	If	you	have	insufficient
diskspace	 to	 store	 this	 on	 your	 primary	 server,	 the	 time	 for	 data	 transfer	 in	 a	 recovery
situation	may	be	the	most	significant	portion	of	time.

If	you	have	 insufficient	diskspace	on	your	primary	 server	 and	you	 store	your	backup
compressed,	the	time	to	uncompress	your	backup	may	be	the	most	significant	component
of	time.

A	 common	 design	 decision	 is	 between	 using	 direct	 attached	 disk	 versus	 a	 Network
Attached	Storage	device.	The	choice	to	use	a	Storage	Area	Network	(SAN)	as	a	backup
solution	is	not	a	practical	option.	In	fact,	relying	solely	on	SAN	is	a	greater	likelihood	of	a
disaster.	The	use	of	snapshotting	and	archiving	functionality	in	addition	to	SAN	usage	is
necessary	for	a	fully	functioning	DR	plan.

To	 ensure	 great	 network	 connectivity,	 using	 dedicated	 network	 connections	 for
application	use	and	 internal	use	ensures	copying	backup	files	during	peak	 time	does	not
saturate	 your	 network.	 Network	 bonding	 is	 a	 further	 simple	 hardware	 option	 that	 will
reduce	the	impact	of	a	physical	hardware	network	failure.

Data	Source	Consistency
Producing	a	consistent	database	backup	may	involve	ensuring	the	consistency	of	external
sources.	The	design	of	a	database	system	that	stores	images	in	the	database	is	a	common
argument	put	forward	for	ensuring	data	consistency.	This	 is,	however,	a	classic	example
where	the	inclusion	of	large	static	objects	in	the	database	has	a	far	greater	overhead,	both
in	database	performance	and	in	database	backup	and	recovery	time.	The	correct	design	of
a	 disaster	 recovery	 (DR)	 strategy	 should	 ensure	 that	 images	 are	 never	 stored	 in	 the
database,	as	this	has	a	direct	effect	and	is	detrimental	to	an	optimal	solution.

There	 are	 examples	 for	 a	 backup	 strategy	where	 consistency	 is	 not	 necessary	 for	 an
entire	MySQL	instance.	The	inclusion	of	backup	or	copy	tables	in	a	MySQL	schema	is	a
prime	candidate	for	defining	a	different	schema	and	excluding	this	entire	schema	during	a
mysqldump	backup.

The	 inclusion	 of	 large	 static	 data	 or	 archive	 data	 that	 is	 managed	 and	 updated
infrequently	can	also	be	separated	using	an	 individual	schema,	 for	example,	when	using
mysqldump.	This	level	of	separation	may	not	be	applicable	for	different	backup	options.

Backup	Security
While	not	discussed	 in	 this	book,	 it	 is	an	 important	consideration	 that	your	backup	files
meet	applicable	security	requirements.	To	obtain	important	company	information,	does	an
intruder	need	 to	compromise	 the	security	of	your	production	server,	or	 just	your	backup
server?

Conclusion
In	 this	 chapter	 we	 discussed	 the	 primary	 backup	 options	 that	 are	 possible	 for	 a	 given
MySQL	server.	Knowing	 the	 relative	 risks	of	 various	 strategies	may	 alter	 your	plan	 for
how	 you	 design	 a	 complex	 system.	 The	 use	 of	 MySQL	 replication	 or	 other	 topology
options	 can	 affect	 backup	 options.	 Knowing	 and	 understanding	 your	 application,	 your
data,	and	your	rate	of	data	change	can	also	introduce	possible	optimizations	for	a	hybrid
approach.

Producing	 a	 suitable	 backup	 strategy	 is	 only	 a	 prerequisite	 step	 to	 the	 more	 critical
recovery	 process	 with	 considerations	 for	 consistency,	 timeliness,	 and	 gradients	 of	 data
availability.	 While	 a	 full	 and	 successful	 recovery	 is	 essential,	 the	 time	 to	 perform	 a
recovery	 is	 one	 important	 business	 requirement	 that	 could	 affect	 the	 viability	 of	 your
entire	 business.	Chapter	3	 discusses	 important	 business	 requirements	 that	 can	 affect	 the
technical	 decisions	 for	 choosing	 the	 backup	 and	 recovery	 strategy	 of	 your	 MySQL
environment.

The	 SQL	 statements	 and	 web	 links	 listed	 in	 this	 chapter	 can	 be	 downloaded	 from
http://effectivemysql.com/book/backup-recovery/.

http://effectivemysql.com/book/backup-recovery/

3
Understanding	Business	Requirements	for	Disaster

Recovery
	
“No	one	cares	about	your	backup;	they	only	care	if	you	can	restore.”

Adapted	from	W.	Curtis	Preston	-	Backup	&	Recovery	(O’Reilly,	2009)

One	of	the	factors	in	choosing	a	backup	methodology	is	the	business	requirements	for
data	recovery.	There	are	businesses	where	the	loss	of	a	single	transaction	has	a	substantive
impact,	 and	 businesses	 where	 recovering	 to	 last	 night	 at	 midnight	 meets	 the	 business
requirements	 for	 acceptable	 loss.	Defining	 these	 requirements	 and	 classes	of	data	 is	 not
strictly	 a	 technical	 problem;	 however,	 it	 is	 important	 to	 prevent	 very	 difficult
conversations	about	mismatched	expectations.

In	this	chapter	we	will	discuss:

•		Defining	requirements

•		Determining	responsibilities

•		Understanding	business	terminology

•		Planning	for	situations

Defining	Requirements
The	 requirements	 of	 the	 business	 can	 dictate	 how	 your	 database	 backup	 and	 recovery
strategy	is	implemented.	The	business	may	accept	a	four	hour	recovery	time,	meaning	that
additional	hard	drive	space	is	the	only	additional	physical	need	for	an	existing	system.	Or,
no	 downtime	may	 dictate	multiple	 geographically	 placed	 servers,	many	 smaller	 servers
rather	than	fewer	larger	servers,	and	with	the	application	designed	to	support	partitioning
necessary	to	satisfy	these	business	requirements.

Being	prepared	 for	 any	 level	 of	 disaster	 is	 just	 as	 important	 as	 supporting	 a	 growing
system;	 however,	 this	 never	 receives	 the	 prestige	 like	 improving	 system	 performance.
Many	 requirements	you	need	 to	put	 in	place	 are	 safety	nets	 that	may	never	be	utilized;
however,	it	would	be	disastrous	for	your	business	viability	if	they	were	not	in	place.

Basic	 hardware	 redundancies	 including	 multiple	 servers,	 hard	 drive	 RAID
configurations,	 network	 bonding	 and	 duplicate	 power	 supplies	 are	 basic	 necessities.
Redundancy	is	designed	to	prevent	a	recovery	requirement	and	enable	systems	to	maintain
a	level	of	availability,	generally	in	a	degraded	mode,	e.g.,	a	disk	failure	in	a	RAID	disk,
NIC	failure	in	a	network	bond,	or	slave	failure	in	a	MySQL	topology.	In	these	situations
the	 redundancy	 via	 either	 a	 replication	 or	 active/passive	 usage	 can	 ensure	 seamless
operations.	The	system	is	considered	degraded,	as	the	lack	of	further	redundancy	is	a	point
of	 failure,	 e.g.,	 1	 disk	 in	 RAID	 5.	 Furthermore,	 additional	 system	 load	 is	 generally
necessary	to	restore	the	system	failure	to	full	operation.

Advanced	considerations	include	placing	servers	 in	different	racks	to	avoid	fire,	 theft,
or	 other	 serious	 damage.	 These	 decisions	 could	 include	 working	 with	 varying	 external
providers	adding	complexity	to	the	decision	making	and	support	processes.

However,	it	may	be	impossible	to	fully	consider	an	explosion	that	takes	out	the	power
supply	and	backup	power	options	of	an	entire	data	center	of	10,000	servers.	Recently	the
seizure	by	FBI	agents	of	 servers	 that	were	 totally	unrelated	 to	 the	original	warrant,	 and
upheld	by	a	U.S.	district	court,	showed	that	physical	servers	in	proximity	to	alleged	illegal
activities	are	not	immune	to	unexpected	loss.

Are	you	prepared?	What	is	important	is	that	you	are	aware	of	and	consider	all	of	these
factors.

What	is	the	cost	to	downtime?	Having	an	actual	figure	of	$X	per	hour	combined	with
the	potential	loss	due	to	reputation	is	a	powerful	motivator	when	requesting	the	investment
of	 additional	 servers	 or	 other	 hardware	 for	 the	 implementation	 of	 a	 successful	 failure
strategy.

Determining	Responsibilities
This	book	and	the	Effective	MySQL	series	provide	highly	practical	and	technical	content
to	 the	 reader.	This	 chapter,	while	one	of	 the	 least	 technical	 sections	of	 any	book,	 is	 the
single	 most	 important	 business	 information	 for	 any	 system	 that	 records	 information,
regardless	of	the	choice	of	product.	Disaster	preparedness	is	too	often	overlooked	in	any
organization,	from	a	single	person	startup	to	Fortune	500	companies.

What	 is	 important	 is	 that	 both	 the	 business	 and	 technical	 decision	makers	 have	 clear
guidelines	and	agreement	of	these	guidelines.	For	example,	what	does	the	statement	“no
downtime”	mean	in	your	context?	The	decision	maker	may	say	“no	downtime,”	but	what
that	 really	 means	 is	 serving	 page	 content	 and	 serving	 ads.	 This	 then	 implies	 that	 user
management,	 adding	comments,	placing	orders,	 and	other	 functions	 are	 all	 services	 that
can	 afford	 to	 have	 limited	 outages.	 These	 considerations	may	 differ	 depending	 on	 your
type	of	 business.	A	media	organization	would	 consider	 serving	of	 ads	 critical,	while	 an
online	store	would	consider	placing	orders	critical.

The	most	important	component	of	any	business	is	a	disaster	recovery	(DR)	plan.	This	is
especially	important	when	the	data	you	have	is	your	primary	business	asset.	A	total	loss	of
data	will	most	likely	result	in	a	loss	of	business	viability,	including	your	job	and	possible
reputation.	What	is	the	acceptable	loss	of	data,	also	known	as	the	recovery	point	objective
(RPO)?

Terminology
The	following	terms	are	used	in	defining	business	requirements	for	disaster	situations.

	
Term Description

DR Disaster	recovery	(DR)	is	the	plan,	including	steps,	actions,	responsibilities,	and	timelines,	that	is	needed	for	returning	your	business	to	successful	operations.	The	DR	plan	includes	the	significant	component	for	the
successful	and	timely	recovery	of	all	information,	which	will	depend	on	a	suitable	backup	strategy.

MTTR The	mean	time	to	recover	(MTTR)	is	the	average	time	taken	to	successfully	recover	from	failure.	This	is	not	a	guarantee	that	a	system	will	be	operational	within	this	time.	Individual	components	and	types	of	failure
may	have	very	different	MTTR	values.	The	replacement	of	a	failed	hard	drive	is	different	from	loss	of	network	connectivity	by	an	upstream	provider,	or	by	a	denial	of	service	attack.

MTTD The	mean	time	to	detect	(MTTD)	is	often	unrepresented	in	any	strategy;	however,	the	time	to	detect	a	problem	can	have	a	significant	impact	on	the	type	of	recovery	and/or	the	requirements	for	loss	of	data.

RPO The	recovery	point	objective	(RPO)	is	the	point	in	time	to	which	you	must	recover	data	as	defined	by	your	organization.	This	is	a	generated	definition	of	what	an	organization	determines	as	acceptable	loss	in	a
disaster	situation.	Not	all	environments	require	an	up	to	the	minute	recovery	plan.	More	information	at	http://en.wikipedia.org/wiki/Recovery_point_objective.

RTO The	recovery	time	object	(RTO)	is	the	acceptable	amount	of	time	in	the	recovery	situation	to	ensure	business	continuity.	This	is	generally	defined	in	a	Service	Level	Agreement	(SLA).

Data
classes

Not	all	data	has	the	same	value	or	net	worth.	Some	information	is	more	important,	and	this	classification	can	affect	how	your	backup	and	recovery	strategy	may	operate.	In	a	disaster	situation,	certain	data	is	more
critical.	The	system	may	be	considered	operational	without	all	data	available.	Defining	data	classes	determines	these	types	of	data.

SLA A	Service	Level	Agreement	(SLA)	is	something	to	be	considered	within	an	existing	organization	and	not	just	with	external	suppliers.	An	SLA	should	also	include	both	technical	and	business	decision	responsibilities
in	response	to	any	important	situation.

	
Defining	 a	 formal	 SLA	within	 an	 organization	may	 vary	 for	 each	 system.	 This	may

include	different	values	for	these	terms	for	each	specific	system.

Technical	Resource	Responsibilities
In	most	significant	disasters	you	will	never	be	given	the	opportunity	to	explain	the	impact,
your	possible	options,	or	even	how	hard	the	solution	may	be.	The	questions	will	be	very
precise	and	generally	include:

•		When	will	our	system	be	available?

•		What	information	has	been	lost?

•		Why	did	this	happen?

The	 decision	 makers	 will	 discuss	 the	 potential	 revenue	 that	 was	 lost	 and	 the	 total
business	impact.	Knowing	these	facts	is	important	in	determining	what	you	need	to	plan
and	prepare	for,	how	to	present	confidence	at	any	time,	and	how	to	justify	additional	needs
in	physical	and	human	resources.

Decision	Maker	Responsibilities
The	 role	 of	 the	 decision	 maker	 is	 to	 ensure	 the	 ongoing	 business	 viability	 at	 your
organization.	This	 includes	many	 factors	a	 technical	 resource	may	not	consider,	 such	as
the	 ongoing	 media	 impact,	 shareholder	 responsibilities,	 acquiring	 additional	 staff
resources,	dealing	with	third	party	suppliers,	and	much	more.	Do	you	know	how	to	reverse
an	 online	 transaction,	 send	 an	 e-mail	 blast,	 and	 change	 the	message	 on	 your	 customer
support	 phone	 system?	What	 is	 important	 is	 that	 you	 are	 prepared	 to	 support	 decisions
made.	The	most	 likely	 preparation	you	 can	do	 to	 provide	 a	 level	 of	 confidence	 to	 your
organization	includes:

http://www.en.wikipedia.org/wiki/Recovery_point_objective

•		Have	a	backup	and	recovery	strategy	in	place.

•		Have	actual	timings,	test	results,	and	daily	reports	of	the	success	of	your	strategy	freely
available	for	anybody	in	your	organization.

•		Consider	the	extent	of	possible	disaster	recovery	situations.	You	may	not	be	able	to
address	all	issues;	however,	be	able	to	think	outside	of	the	normal	database	operations
for	creative	solutions	to	complex	and	business	threatening	conditions.

•		Be	proactive	in	providing	information	to	build	confidence	in	advance.

Knowing	the	decision	makers	and	building	a	rapport	over	 time	is	 less	about	 technical
ability	and	more	about	professional	development.

Identifying	Dependencies
As	 you	 will	 see	 in	 the	 following	 case	 study,	 regardless	 of	 the	 best	 plans	 the	 database
administrator	has	for	supporting	a	disaster,	there	are	dependencies	on	other	resources	and
operations	outside	of	your	control.

Case	Study
The	 following	 case	 study	 of	 a	 real	 world	 example	 is	 used	 to	 understand	 the	 important
technical	and	business	factors	for	a	complex	business	situation.

The	MySQL	Topology
Your	MySQL	 topology	 includes	one	master	 server	 and	 two	 slave	 servers	using	MySQL
replication.	 This	 has	 been	 implemented	 because,	 in	 the	 past,	 several	 issues	 about	 read-
scalability	 and	 reporting	 have	 enabled	 the	 justification	 of	 additional	 servers.	 Your
environment	supports	a	dedicated	read	slave	and	a	dedicated	reporting	slave.

Your	Backup	and	Recovery	Strategy
Your	backup	strategy	involves	using	one	database	slave	to	take	a	full	copy	of	all	of	your
data.	You	also	realize	the	importance	of	the	master	binary	logs	for	a	point	in	time	recovery
and	you	have	a	secondary	process	that	keeps	copies	of	these	at	five	minute	intervals.

The	current	backup	and	recovery	strategy	supports	many	situations	that	have	occurred
in	the	past.

•		You	direct	reads	to	your	primary	slave	and	reporting	to	the	second	slave.

•		You	can	redirect	reads	to	a	different	slave	or	the	master.

•		You	can	redirect	or	disable	reporting.

•		You	test	your	backup.	You	are	confident	that	a	full	restore	of	your	system	in	two	to	three
hours	providing	necessary	hardware	is	functional.

•		You	can	restore	all	data	to	a	total	loss	of	five	minutes	in	a	multiple	database	disaster
situation	and	generally	you	can	support	data	loss	to	a	few	seconds.

The	 current	 strategy	 is	 not	 perfect.	 You	 have	 some	 requests	 in	 process	 to	 support	 a
controlled	fail-over	using	a	virtual	IP	(VIP)	rather	than	a	specific	domain	name;	however,

this	involves	implementing	application	and	system	changes.	These	needs	do	not	seem	as
important	as	you	would	wish	within	your	organization.

A	Real	Life	Disaster
Your	 slave	 server	 has	 stopped	 applying	 transactions.	 There	 is	 no	 error	 message	 in
replication.	Your	additional	monitoring	detects	 important	business	metrics	and	no	orders
have	happened	in	the	past	30	minutes.

Meanwhile	 on	 the	 master	 server,	 multiple	 disk	 alerts	 have	 gone	 unnoticed	 and
unactioned	 by	 the	 system	 administrator.	 As	 a	 result	 the	 partition	 holding	 the	 MySQL
binary	 logs	 fills	 up.	 This	 results	 in	 the	 following	 error	 in	 the	 master	 error	 log,	 which
ironically	is	not	actively	monitored:

	
For	 more	 information	 on	 the	 environment	 conditions	 that	 caused	 this	 error	 see

http://ronaldbradford.com/blog/never-let-your-binlog-directory-fill-up-2009-07-15/.

Your	backup	strategy	relies	on	the	slave	server	being	up	to	date,	that	is,	by	applying	all
binary	 log	 statements	 from	 the	 master.	 As	 this	 is	 now	 disabled,	 your	 slave	 server	 is
missing	important	business	transactions	and	is	inconsistent	with	your	master.	You	cannot
use	 your	 primary	 recovery	 process,	 that	 is,	 simply	 restore	 your	 last	 successful	 static
backup	and	apply	the	master	binary	logs	for	a	point	in	time	recovery.	Your	only	option	to
recover	all	data	 is	 to	stop	your	master	database	and	 take	a	backup,	 something	you	have
never	done	on	this	server.

This	new	backup	also	involves	having	to	clean	up	available	disk	space	to	support	a	copy
of	the	database	on	this	system.	You	also	need	to	install	the	latest	backup	script,	as	this	is
not	 run	on	 this	 system.	Do	you	 risk	modifying	 the	backup	 script	 and	backup	across	 the
network	 to	 save	 cleaning	 up	 disk-space?	How	 long	will	 that	 take?	 Even	 after	 this	 new
backup	is	taken	you	then	have	to	restore	this	backup	on	both	slaves.

This	late	notification	and	initial	investigation	has	taken	two	hours	to	determine	the	only
technical	decision	 to	ensure	no	data	 loss	 requires	a	 further	 six	hours	 to	complete	 just	 to
ensure	you	have	a	recoverable	situation,	and	several	hours	more	to	complete	the	recovery
of	both	slave	servers.	You	are	required	to	give	regular	business	updates,	to	which	you	have
no	 basis	 of	 information	 for	 this	 situation	 before.	 The	 result	 to	 the	 business	 is	 no	 new
customer	orders	for	over	eight	hours.

Your	best	made	plans	as	a	DBA	are	put	to	dust	by	a	part	time	system	administrator	who
is	replacing	a	person	on	vacation.	They	did	not	notice	or	respond	to	a	disk	alert	before	it
was	 too	 late.	 In	 the	 past,	 the	 DBA	 group	 you	 belong	 to	 has	 requested	 access	 to	 these
important	system	alerts,	but	the	system	admin	group	will	not	give	you	access,	as	that	is	not
your	responsibility.

It	does	not	really	matter	who	is	to	blame—the	database	was	unavailable	for	eight	hours
during	peak	time	and	you	are	the	highly	paid	DBA	responsible	for	ensuring	the	database	is

http://ronaldbradford.com/blog/never-let-your-binlog-directory-fill-up-2009-07-15/

operational.

Technical	Outcomes
There	 are	many	 good	 points	 to	 take	 away	 from	 this	 experience.	 Your	 environment	 has
system	monitoring	 in	place.	Many	organizations	 fail	 at	 this	most	 initial	 step.	A	MySQL
backup	 and	 recovery	 strategy	 is	 in	 place,	 is	 tested,	 documented,	 and	 timed.	 There	 are
multiple	MySQL	instances	to	support	some	situations	for	failure.

There	 are	 some	 simple	 technical	 steps	 that	 are	 not	 implemented.	 Open	 access	 to	 all
information	alerts	and	the	request	for	implementing	using	IPs	and	not	using	domain	names
for	database	connections,	both	simple	technical	tasks,	but	caught	up	in	the	bureaucracy	of
the	business	and	decision	makers.

What	 other	 options	 existed	 that	 could	 have	 been	 considered	 if	 you	 had	more	 time	 to
investigate	or	discuss	with	peers?	You	could	have	promoted	one	of	your	slaves,	the	most
current,	 to	 a	 master.	 This	 would	 involve	 changing	 the	MySQL	 configuration	 to	 enable
binary	 logging	 and	modifying	 your	 application	 servers	 to	 point	 to	 the	 new	 server.	 You
could	re-configure	the	second	slave	server	to	use	this	new	master.	You	could	have	backed
up	the	old	master,	because	you	now	accept	a	loss	of	transactions	for	the	sales	during	this
time.	Your	 downtime	 is	 now	 reduced	 to	 three	 hours;	 however,	 you	have	 a	mismatch	of
monies	received	with	the	orders	defined,	and	potentially	very	annoyed	customers	if	 they
do	 not	 get	 their	 orders.	What	 is	 the	 time	 to	 undertake	 data	 forensics	 of	 the	 processed
orders,	then	reapplying	these	orders	to	the	system?	There	is	no	easy	way	because	you	do
not	want	 to	 double	 charge	 customers.	What	 is	 the	 additional	 staff	 time	 and	greater	 cost
needed?	 More	 importantly,	 do	 you	 need	 to	 even	 consider	 this?	 We	 will	 answer	 this
specific	question	in	the	following	section.

If	you	had	no	idea	about	your	system,	and	varying	options,	how	could	you	give	multiple
options	and	time	estimates	to	everybody	who	wants	answers?

The	mean	time	to	detect	(MTTD)	is	very	important	in	this	situation.	The	mean	time	to
recover	(MTTR)	is	also	important.	Which	is	more	important	may	be	different	with	respect
to	the	point	of	view	of	responsibilities.

That	 item	 on	 your	 pending	 to-do	 list	 about	 having	 a	 more	 documented,	 tested,	 and
streamlined	fail-over	process	may	have	been	a	saving	grace.	Unfortunately	the	request	to
the	application	team	to	change	the	DB	connections,	the	system	group	to	enable	a	virtual	IP
(VIP)	and	necessary	MySQL	configuration	changes	are	no	help.

The	Decision	Process
As	a	DBA	it	is	not	always	your	decision	about	what	action	to	take.	That	is	the	decision	of
the	 business	 owner.	 Who	 is	 that	 in	 your	 organization?	 What	 is	 important	 is	 how	 you
structure	information	for	the	responsible	person	to	make	an	informed	decision.

In	this	situation,	while	three	hours	of	downtime	is	less	than	eight	hours,	is	this	the	best
decision?	Each	hour	is	not	just	lost	revenue,	but	a	loss	of	business	reputation.	Will	further
bad	 press	 of	 being	 down	 all	 day	 hurt	 more?	 Again,	 it	 is	 important	 to	 understand	 the
business	requirements	and	to	know	who	is	ultimately	responsible.	In	the	previous	section
you	considered	the	additional	impacts	of	the	three	hour	recovery	option	that	accepts	data

loss	from	a	technical	perspective.	However,	you	did	not	consider	the	business	approach	of
processing	a	full	refund	to	all	customer	orders	affected.	This	functionality	already	exists	to
process	refunds.	The	business	could	also	send	a	specific	e-mail	apology	about	the	situation
and	ask	customers	to	re-order,	even	offering	a	discount	code	for	the	inconvenience.	This
additional	 process	 also	 already	 exists.	The	 result	would	mean	no	 lost	 data	 having	 to	 be
restored	 and	 no	 additional	 work	 by	 physical	 resources.	 The	 only	 technical	 requirement
would	be	identifying	the	customers	affected	and	the	details	of	these	now	refunded	orders.

A	disaster	is	the	one	thing	that	an	executive	of	an	organization	should	be	kept	awake	at
night	worrying	about.	As	a	responsible	DBA	or	data	architect,	your	single	greatest	asset	to
an	organization	is	to	know	what	to	do	when	something	goes	wrong,	to	be	prepared.	Being
proactive	 and	 actively	 simulating	 and	 testing	 disaster	 recovery	 situations,	 documenting,
timing,	and	reporting	is	the	knowledge	that	separates	skilled	and	technical	resources	from
expert	resources	with	a	holistic	business	view.

Essential	External	Communication
While	 communication	 internally	 is	 critical	 in	 any	 disaster	 scenario,	 external
communication	 is	 just	 as	 important.	Having	 a	public	 facing	 status	page,	 a	 forum,	 and	 a
feedback	loop	for	customers	is	essential.	It	 is	also	critical	 that	 information	is	 transparent
and	 open.	 Previous	 online	 disasters	 where	 information	 has	 been	 forthcoming	 promptly
reduces	additional	stresses.

It	 is	 critical	 that	 the	 status	 and	 feedback	 options	 are	 not	 part	 of	 your	 primary
infrastructure.	 As	 detailed	 with	 worst	 case	 examples	 in	 the	 following	 section,	 it	 is
important	 this	 infrastructure	 is	 in	 a	 different	 data	 center,	 and	preferably	 a	 different	 host
provider.

Planning	for	the	Worst	Situation
It	 is	 impossible	 to	 plan	 for	 every	 possible	 disaster.	 Knowing	what	 is	 possible	 can	 help
identify	how	your	business	may	be	able	to	cope,	and	how	it	may	not.	The	following	are
some	real	life	situations	that	can	happen.	As	a	technical	resource	it	is	important	that	you
share	 these	 situations	 with	 decision	 makers	 to	 ensure	 they	 are	 aware	 of	 the	 potential
issues.	Even	the	largest	companies	are	not	immune	to	an	unexpected	disaster.	One	public
failure	 of	 the	 365	Main	 data	 center	 due	 to	 a	 power	 incident	 on	 July	 24,	 2007,	 affected
giant	 Internet	 sites	 including	 Craigslist,	 GameSpot,	 Yelp,	 Technorati,	 Typepad,	 and
Netflix.

For	more	supporting	information	of	these	real	life	disasters	described	in	summary	here
visit	http://effectiveMySQL.com/article/real-life-disasters/.

Total	SAN	Failure
A	 SAN	 is	 not	 a	 backup	 solution.	 If	 anything	 a	 SAN	 is	 a	 higher	 likelihood	 of	 a	 larger
cascading	failure.	Losing	a	single	server	from	multiple	hard	drive	failures	(e.g.,	a	RAID	1,
RAID	5,	and	RAID	10	configuration	can	all	operate	with	a	single	loss)	has	far	less	impact
in	 a	 hundred	 server	 environment	 than	 a	 SAN	 failing	 and	 dropping	 all	 mounts	 for	 all
systems.	There	are	many	actual	occurrences	of	SAN	failures.	With	one	client,	 a	 routine
replacement	 of	 several	 failed	 hard	 drives	 and	 a	 software	 upgrade	 by	 an	 employee	 of	 a

http://effectiveMySQL.com/article/real-life-disasters/

large	SAN	service	provider	for	a	multi-million	dollar	SAN	investment	caused	an	internal
panic,	 which	 shut	 down	 the	 SAN	 and	 160	 different	 mount	 points.	 This	 resulted	 in
corrupting	 30+	 database	 servers	 and	 taking	 the	 entire	 website	 (a	 top	 20	 traffic	 site	 by
Alexa)	offline	for	several	days.

In	 this	example,	 relying	on	a	single	SAN	for	all	production	servers	 is	a	 situation	 that
should	be	avoided.

Power	Disruption
Even	with	backup	generators	with	 four	days	of	 fuel	supply	 in	place,	and	a	DR	situation
tested	and	used	in	the	past	five	years,	three	out	of	ten	(i.e.,	30	percent)	backup	generators
failed	to	operate	when	power	was	lost	at	a	prominent	San	Francisco	data	center.	The	result
was	 40	 percent	 of	 customers	 losing	 power	 to	 equipment.	 This	 was	 a	 serious	 disaster
causing	cascading	systems	failure.

In	this	example,	hosting	your	entire	infrastructure	even	with	a	premier	hosting	provider
with	impressive	uptime	is	no	guarantee	of	a	total	system	outage.	Using	multiple	locations
is	advisable	for	critical	functionality.

Explosion
In	 June	 2008	 an	 electrical	 explosion	 at	 a	 data	 center	 took	 offline	 approximately	 10,000
servers	including	the	primary	web	and	database	server	for	the	author	of	this	book.	Under
direction	from	the	fire	department,	due	to	safety	issues	and	due	to	the	seriousness	of	the
incident,	the	backup	generators	located	adjacent	to	the	complex	were	also	powered	down.
This	resulted	in	an	outage	for	several	days.	The	situation	was	more	complicated	because
the	 service	provider	also	had	 their	own	management	 servers,	domain	management,	SSL
management,	 client	 management,	 and	 communication	 tools	 all	 in	 the	 same	 location
without	redundancy.

In	 this	 example,	 knowing	 your	DR	 plan	 also	 includes	 understanding	 the	DR	 plan	 of
applicable	service	providers.	An	infrastructure	for	a	web	presence	has	many	moving	parts,
some	of	which	you	may	not	consider,	in	this	case,	suitable	DNS	and	network	fail	safes.

This	 was	 one	 example	 where	 the	 host	 provider	managed	 the	 situation	 for	 customers
well.	 The	 issue	was	 addressed	 in	 a	 timely	manner	with	 regular	 updates	 published	 on	 a
status	page	and	forums.	The	phone	greetings	for	support	also	included	status	information
of	the	problem.

FBI	Seizure
In	 a	 recent	FBI	 raid	 for	 specific	 hardware,	 additional	 servers	 and	 important	 networking
equipment	were	also	seized	with	the	same	warrant.	Much	like	a	serious	physical	failure,
the	 host	 provider	 was	 given	 no	 notice,	 and	 unaffected	 systems	 were	 also	 affected,
ultimately	leading	to	a	cascading	failure.	In	addition,	unlike	a	physical	failure	that	can	be
addressed	 by	 resources	 repairing	 or	 replacing	 faulty	 equipment,	 this	 equipment	 was
removed	for	an	undetermined	time.

Blackout
Large	 statewide	 blackouts	 are	 uncommon;	 however,	 as	 a	 recent	 incident	 in	 September

2011	highlighted,	a	simple	incident	with	one	component	(i.e.,	transformer	failure)	caused	a
cascading	system	failure	that	resulted	in	the	shutdown	of	multiple	nuclear	power	plants.	In
this	situation	power	was	lost	for	15	hours	for	a	large	region	across	several	states	leaving
entire	 cities	 without	 power.	 With	 a	 high	 availability	 solution	 across	 data	 centers,
insufficient	geographical	redundancy	could	still	result	in	a	total	loss.

In	 addition,	 a	 loss	 of	 power	 could	 mean	 no	 operation	 of	 your	 customer	 support
telephone	 system,	or	 facilities	 for	your	office	 staff	 to	operate	during	 the	 situation.	Even
with	a	geographical	deployment	there	may	be	no	way	to	implement	a	controlled	fail-over,
monitor,	or	update	customers	easily.

Human	Factors
Being	 hacked,	 malicious	 intent	 by	 a	 disgruntled	 employee,	 and	 a	 failed	 system	 wide
rollout	of	software	by	an	employee	that	disables	access	to	thousands	of	servers	are	all	very
possible	 situations.	 For	many	 organizations,	 the	 act	 of	 changing	 the	 keys	 to	 your	 front
door,	aka	the	system	passwords	for	your	servers,	is	an	important	process	that	needs	to	be
known,	documented,	tested,	and	able	to	be	implemented	instantly.

Human	Resources
In	addition	to	these	situations,	the	impact	of	human	resources	may	be	the	most	overlooked
situation.	The	 case	 study	 in	 this	 chapter	highlighted	 that	 less	 skilled	 technical	 resources
caused	a	cascading	failure	situation.	Vacation,	sickness,	accidents,	and	even	overworked
employees	are	all	situations	that	have	to	be	understood	as	possible	disaster	situations.

A	commonly	overlooked	situation	is	the	need	for	24/7	support	that	is	required	regularly.
While	key	resources	may	need	to	be	on	call	for	emergency	support	after	hours,	if	 this	is
always	occurring,	productively	can	be	significantly	impacted.	The	likelihood	of	error	due
to	 handling	 issues	 without	 appropriate	 procedures	 and	 at	 constant	 extended	 afterhours
work	are	factors	not	to	be	avoided.

What	is	your	“red	bus”	policy?	This	was	a	term	first	heard	by	the	author	some	20	years
ago	 when	 a	 decision	 maker	 was	 talking	 about	 my	 potential	 demise.	 Simply	 put,	 what
happens	when	your	critical	resource	is	hit	by	a	“red	bus”?	While	this	term	sounds	harsh,
this	 references	 all	 possible	 situations	 from	 sickness,	 vacations,	 accidents,	 and	 even	 the
resignation	 of	 critical	 technical	 resources.	 While	 this	 is	 the	 responsibility	 of	 an
organization,	every	individual	could	be	proactive	in	ensuring	your	organization	has	some
procedures	or	contact	details	for	support	services,	emergency	consulting	services,	or	peers
to	step	in.

Developing	a	Strategic	Plan
Defining	the	requirements	and	responsibilities	as	discussed	is	necessary	to	determine	what
is	 acceptable	 to	 the	 business.	 In	 his	 book	 High	 Availability	 and	 Disaster	 Recovery
(Springer,	 2006),	 Klaus	 Schmidt	 describes	 the	 two	 properties	 important	 for	 any	 failure
scenario,	the	probability	of	the	failure	and	the	damage	caused	by	the	failure.	The	mapping
of	the	types	of	failure	on	an	XY	chart,	with	Damage	on	the	X-axis	and	Probability	on	the
Y-axis	 (pg	 83),	 enables	 failures	 to	 be	mapped	 into	 three	 categories:	 Fault	 protection	 or
recovery	by	high	availability,	fault	recovery	by	disaster	recovery,	and	forbidden	zone	(pg

84).	 While	 the	 final	 category	 may	 appear	 inappropriately	 named,	 any	 failure	 in	 this
category	 requires	 a	 system	 redesign	 to	 remove	 this	 limitation	 in	 providing	 a	 robust
solution.	This	 technical	approach	can	be	valuable	for	 identifying	the	risk	 to	 the	business
and	 contributing	 to	 an	 appropriate	 strategic	 plan.	 In	 some	 situations,	 the	 addition	 of
applicable	redundancy	is	sufficient	to	avoid	a	loss	of	service	situation.

Not	discussed	in	this	chapter,	but	also	important	in	the	overall	data	management	plan,
are	 any	 retention	 policies	 for	 legal	 or	 auditing	 requirements.	 Your	 backup	 plan	 may
require	keeping	several	months	of	backups	on	a	weekly	or	monthly	cycle.

Conclusion
System	 failure	 and	 disasters	 are	 inevitable;	 however,	 a	 catastrophe	 that	 affects	 your
business,	your	own	career,	and	reputation	is	avoidable.	Many	disaster	situations	have	far
greater	business	implications	than	finding	and	implementing	a	technical	solution.	A	formal
SLA	 agreement	 is	 a	 driving	 factor	 in	 making	 well	 informed	 decisions	 during	 these
situations.	 The	 Boy	 Scouts’	 very	 simple	 motto	 is	 the	 most	 applicable	 advice	 for	 any
technologist:	Be	prepared.

4
Using	MySQL	Replication

	

The	use	of	MySQL	replication	 is	 instrumental	 in	many	practical	MySQL	environments
and	 is	 generally	 considered	 as	 a	 primary	 backup	 and	 first	 viable	 fail-over	 option	 in	 a
higher	 availability	 environment.	Under	normal	operating	conditions,	MySQL	 replication
may	 be	 sufficient;	 however,	 there	 are	 a	 number	 of	 limitations	 that	 must	 be	 carefully
confirmed	and	verified	for	replication	to	be	part	of	a	valid	backup	and	recovery	strategy.
As	discussed	in	Chapter	3,	a	backup	and	recovery	strategy	is	critical	for	ensuring	business
continuity	and	meeting	the	needs	of	system	availability.

In	this	chapter	we	will	be	covering:

•		Using	replication	for	backups

•		Various	replication	limitations	that	can	affect	backups

•		Additional	considerations	with	your	backup	approach

MySQL	Replication	Architecture
To	 understand	 the	 features	 and	 limitations	 of	 MySQL	 replication	 for	 any	 applicable
backup	 method,	 it	 is	 important	 to	 understand	 the	 basic	 mechanics	 between	 a	 MySQL
master	and	slave.

As	outlined	in	Figure	4-1,	the	following	are	the	key	steps	in	the	success	of	a	transaction
applied	 in	 a	MySQL	 replication	 environment.	 This	 is	 not	 an	 exhaustive	 list	 of	 all	 data,
memory,	and	file	I/O	operations	performed,	rather	a	high	level	representation	of	important
steps.

	
Figure	4-1			MySQL	replication	workflow

	

•		A	MySQL	transaction	is	initiated	on	the	master	(1).

•		One	or	more	SQL	statements	are	applied	on	the	master	(2).	The	true	implementation	of
the	physical	result	depends	on	the	storage	engine	used.	Generally	regardless	of	storage
engine,	the	data	change	operation	is	first	recorded	within	the	applicable	memory	buffer.
For	InnoDB,	the	statement	is	recorded	in	the	InnoDB	transaction	logs	(note	that
InnoDB	data	is	written	to	disk	by	a	separate	background	thread).	For	MyISAM,	the
operation	is	written	directly	to	the	applicable	table	data	file.

•		At	the	completion	of	the	transaction,	the	master	binary	log	records	the	result	of	the	DML
statement(s)	applied	(3).	MySQL	supports	varying	modes	that	may	record	the	DML
statement	or	the	actual	data	changes.

•		A	success	indicator	is	returned	to	the	calling	client	program	to	indicate	the	completion
of	the	transaction	(4).

•		The	slave	server	detects	a	change	in	the	master	binary	log	position	(5).

•		The	changes	are	received	(i.e.,	a	pull	process)	by	the	slave	server	and	written	to	the
slave	relay	log	by	the	slave	IO	thread	(6).

•		The	slave	SQL	thread	reads	the	relay	log	and	applies	all	new	changes	(7	and	8).	These
changes	may	be	recorded	as	a	statement	to	be	executed,	or	as	a	physical	row	level	data
modification.

•		A	success	indicator	is	returned	to	the	slave	replication	management.

In	summary,	the	SQL	transactions	are	recorded	in	the	master	binary	log	and	the	change
of	 this	 log	 is	 used	 as	 a	 triggering	 event	 for	 the	 slave	 to	 pull	 the	 change.	 Chapter	 2
discussed	more	information	about	the	operation	of	the	binary	log.	In	Chapter	5,	the	point
in	time	recovery	section	provides	detailed	information	on	how	to	review	and	analyze	the
master	binary	log.

MySQL	Replication	Characteristics
The	 following	 are	 important	 characteristics	 of	 the	 MySQL	 implementation	 of	 data
replication	that	can	impact	a	backup	and	recovery	strategy:

•		Each	MySQL	slave	has	only	one	MySQL	master.

•		A	replication	slave	pulls	new	information	from	the	master.

•		MySQL	replication	by	default	is	an	asynchronous	process	(*),	i.e.,	a	master	does	not	wait
for	acknowledgment	or	confirmation	from	a	slave	for	a	completed	and	successful
transaction	on	the	master.

•		A	MySQL	slave	can	also	be	used	for	read	operations,	or	additional	write	operations	if
configured.

•		MySQL	does	not	require	a	slave	to	be	identical	to	a	master.	Tables	could	be	stored	in	a
different	storage	engine	or	may	even	contain	additional	columns.	Providing	the	SQL
operation	completes	without	error,	replication	will	not	fail.

(*)	 MySQL	 5.5	 provides	 support	 for	 semi-sync	 replication,	 which	 is	 discussed	 in	 a
following	section.

CAUTION				Using	MySQL	replication	for	high	availability	(HA)	does	not	imply	you	now
have	a	disaster	recovery	(DR)	solution.	A	MySQL	slave	may	be	configured	to	not
include	all	data	on	the	master	or	be	configured	with	a	different	schema	structure.	While
a	MySQL	slave	may	include	all	data,	the	process	of	promoting	a	slave	from	a	read	only
status,	reconfiguring	your	application	to	use	this	slave,	and	altering	other	operations
designed	for	the	slave	are	all	steps	in	ensuring	a	functional	DR	plan.

	
MySQL	replication	generally	exists	in	a	production	environment	to	support	scalability,

data	redundancy,	and	high	availability.	These	architectural	features	provide	an	immediate
and	 viable	 approach	 as	 a	 backup	 and	 recovery	 strategy	 option.	 By	 combining	MySQL
replication	 with	 the	 various	 backup	 options	 described	 in	 Chapter	 2,	 several	 problems
including	locking	and	availability	of	the	production	database	can	now	be	avoided.

MySQL	Replication	Limitations
MySQL	 replication	 is	 not	 without	 issues;	 there	 are	 some	 key	 limitations	 for	 using
replication	 effectively	 and	 these	 can	 affect	 a	 functional	 database	 backup	 and	 recovery
strategy.

Replication	Lag
One	of	the	primary	issues	with	a	MySQL	topology	is	replication	lag.	Replication	lag	can
have	 a	 significant	 effect	 on	 an	 up	 to	 date	 backup	 and	 on	 an	 application	 that	 uses
replication	 for	 read	 only	 workloads.	 The	 asynchronous	 nature	 of	 MySQL	 replication
implies	that	a	difference	between	the	data	on	a	master	and	slave	is	possible	at	any	point	in
time.

You	 can	 determine	 all	 information	 about	 MySQL	 replication	 including	 lag	 with	 the
SHOW	SLAVE	STATUS	command	on	a	MySQL	instance	that	is	a	MySQL	slave:

	

	
Replication	lag	is	determined	by	a	non-zero	number	in	Seconds_Behind_Master.	This

number	does	not	 represent	 the	actual	number	of	seconds	 it	will	 take	replication	 to	catch
up.	Seconds_Behind_Master	 displays	 the	 time	 difference	 between	 the	 local	 time	 on	 the
slave	 against	 the	 time	 stamp	 of	 the	 replication	 event	 applied	 on	 that	master	 and	 that	 is
currently	being	processed	by	the	slave	SQL.

Replication	lag	has	several	causes:

•		The	volume	of	concurrent	SQL	statements	performed	on	a	multithreaded	master	exceeds
the	capacity	of	the	single	replication	IO	and	SQL	threads	to	process.	A	high	volume
production	system	with	an	increase	of	5	to	10	percent	is	enough	for	replication	lag	to
occur	and	never	catch	up.

•		A	DML	or	DDL	statement	that	takes	a	long	time	to	execute.	As	replication	is	single
threaded,	subsequent	pending	statements	are	further	delayed.	A	good	example	is	an
ALTER	TABLE	statement.

•		Replication	stopped	due	to	a	specific	error.	The	problem	was	subsequently	addressed
and	replication	restarted;	however,	replication	lag	now	exists.

•		MySQL	replication	supports	both	local	area	network	(LAN)	and	wide	area	network
(WAN)	connectivity.	The	use	of	a	slow	network	with	inconsistent	transaction
throughput	or	selective	connectivity	can	contribute	to	lag.

•		Replication	may	be	stopped	intentionally,	for	example,	a	MySQL	backup,	software
upgrade,	or	a	delayed	replication	implementation.

•		Lag	can	also	be	the	result	of	a	nested	replication	topology.	This	can	be	difficult	to
correctly	determine	that	the	master	is	indeed	a	slave	of	another	instance.

NOTE				It	is	important	to	monitor	MySQL	replication	lag	to	detect	and	report	an	increase
over	time,	as	this	is	an	indication	that	replication	may	not	catch	up.

	

Consistency
It	 is	 possible	 for	 both	 the	 data	 and	 schema	 of	 a	MySQL	 slave	 to	 be	 different	 from	 the
applicable	MySQL	master	and	 replication	 is	operating	without	errors	and/or	 lag.	This	 is
due	 to	 the	 flexibility	 of	 a	MySQL	 slave	 not	 to	 be	 a	 true	 read	 only	 version	 of	 a	 given
master,	 and	 the	 per	 statement	 execution	 of	 any	 given	 SQL	 statement	 that	 can	 complete
without	error	yet	still	perform	more	or	less	data	manipulation	than	on	the	master.

A	MySQL	slave	can	have	different	table	structures	including	a	change	in	storage	engine
and	 indexes	 and	 still	 support	 the	 primary	 function	 of	 executing	 a	 successful	 SQL
statement.	For	example,	 it	 is	 common	 for	a	 scale-out	 read	architecture	 to	have	differing
indexes	 to	 support	 SELECT	 optimizations.	 A	 change	 in	 table	 structure	 does	 not
necessarily	mean	the	data	is	inconsistent.

There	are	several	basic	settings	that	can	be	used	to	limit	and/or	check	schema	and	data
consistency.

Data	Consistency

Under	normal	circumstances	the	slave	should	be	read	only	to	ensure	data	consistency.	This
is	 enabled	with	 the	MySQL	configuration	option	read_only=TRUE.	 This	 is	 an	 important
setting	 to	 minimize	 data	 manipulation	 on	 a	 MySQL	 slave	 when	 a	 user	 connects
accidentally	or	 intentionally	 to	a	MySQL	slave	and	executes	a	DML	or	DDL	statement.
This	will	result	in	the	slave	having	different	data	or	schema	structure	than	the	master	and
may	 cause	 future	 replication	 errors.	Any	 user	 connecting	 to	 the	MySQL	 slave	with	 the
SUPER	privilege	can	override	this	setting,	so	it	is	important	to	also	restrict	user	permissions
accordingly.	 The	 slave-skip-error	 option	 can	 also	 cause	 inconsistency	 where	 these
listed	errors	will	not	result	in	a	replication	failure.

CAUTION				A	MySQL	slave	that	does	have	a	read_only=TRUE	configuration	and	has
application	user	access	with	the	SUPER	privilege	can	easily	lead	to	inconsistent	data
between	a	master	and	a	slave.

	
The	 use	 of	 MySQL	 triggers	 and	 stored	 procedures	 may	 cause	 inconsistency	 if	 any

database	object	definitions	differ	between	the	master	and	the	slave.

MySQL	replication	does	not	currently	provide	a	checksum	of	the	events	recorded	in	the
binary	log.	There	are	very	isolated	situations	when	corruption	from	related	hardware	and
network	 situations	 may	 cause	 a	 replication	 error	 producing	 a	 data	 inconsistency.	 The
current	 development	 release	 of	 MySQL	 5.6	 includes	 the	 new	 -binlog-checksum,	 --
master-verify-checksum,	 and	 slave-sql-verify-checksum	 options.	More	 information
can	 be	 found	 at	 http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-
log.html.

The	CHECKSUM	TABLE	command	enables	you	to	determine	a	CRC-32	checksum	of
all	rows	in	the	table.	As	this	reads	all	rows,	different	versions	of	MySQL	and	even	storage
engines	will	produce	a	different	result	while	the	data	may	actually	be	identical.

The	 practical	 use	 of	 CHECKSUM	 TABLE	 in	 a	 highly	 concurrent	 master/slave
environment	is	limited	as	it	is	necessary	to	ensure	a	precise	comparison	at	the	same	point

http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html

in	time	within	the	execution	of	statements.	This	command	does	not	have	a	SQL	equivalent
syntax	to	inject	within	the	replication	stream.	In	a	low	volume	environment	this	command
may	easily	produce	a	confirmation	that	 tables	are	 identical.	When	tables	do	differ,	use	a
read	 lock	with	LOCK	TABLE	<tablename>	READ	 to	obtain	a	more	consistent	version.
This	 command	 does	 read	 all	 rows	 of	 a	 table,	 so	 for	 very	 large	 tables	 this	 may	 take	 a
significant	time	to	execute.

The	MySQL	Reference	Manual	 does	 state	 that	 due	 to	 the	 hashing	 approach	 it	 is	 not
guaranteed	two	tables	of	differing	data	may	result	in	the	same	value.	This	is	true	for	many
hash	 algorithms.	 What	 is	 important	 is	 that	 using	 a	 checksum	 approach	 is	 far	 more
important	than	assuming	your	data	is	consistent	following	any	type	of	replication	error.

The	 Percona	 toolkit	 pt-table-checksum	 utility	 available	 at
http://www.percona.com/software/percona-toolkit/	is	an	open	source	tool	that	can	be	used
for	the	consistency	checking	of	table	data,	providing	various	algorithm	options	and	built-
in	replication	support.	This	tool	replaces	the	original	Maatkit	mk-table-checksum	utility.
This	tool	can	be	difficult	to	understand	and	operate,	as	the	documentation	is	not	written	to
be	 user	 friendly.	 The	 following	 instructions	 will	 provide	 a	 simple	 to	 use	 example
providing	the	necessary	Perl	DBI	and	DBD::mysql	dependencies	are	already	installed.

	
A	quick	explanation	of	the	options	used:

•		--algorithm			This	defines	the	algorithm	to	use	for	the	table	checksum.	The	most
command	and	useful	values	include	CHECKSUM,	BIT_XOR,	and	ACCUM.

•		--ask-pass			Prompts	the	user	to	specify	the	user	account	password.

•		--replicate			This	specifies	the	schema.table	where	checksum	information	is	stored
to	support	replication	comparison.

•		--create-replicate-table			This	option	pre-creates	the	checksum	table	if	it	does	not
exist.

•		--databases			This	defines	the	schema(s)	to	perform	a	checksum	for.

When	 combined	 with	 the	 following	 SQL	 query	 executed	 on	 all	 slave	 servers,	 it	 is
possible	to	detect	any	data	drift	and	inconsistency	between	a	master	and	a	slave.

	
The	 execution	 of	 this	 utility	 can	 have	 a	 significant	 performance	 overhead	 on	 a	 large

database.	This	utility	has	many	different	options	 including	different	algorithm	selections

http://www.percona.com/software/percona-toolkit/

and	 determining	 chunk	 sizes	 for	 data.	 Refer	 to	 the	 documentation	 at
http://www.maatkit.org/doc/mk-table-checksum.html	 for	 more	 information.	 Please	 note
that	this	utility	is	no	longer	active	as	an	open	source	project;	however,	this	is	still	widely
used	 among	 the	MySQL	 community.	 The	 corporate	 sponsored	 Percona	 toolkit	 product
contains	current	work.

Schema	Consistency

The	layman’s	approach	to	detecting	schema	differences	is	to	use	the	mysqldump	utility	and
to	generate	the	schema	only	and	compare.	For	example:

	
This	process	is	not	ideal	as	there	is	no	guarantee	the	output	is	ordered,	and	the	format

does	differ	between	MySQL	versions;	however,	 this	process	can	be	used	to	confirm	that
no	schema	differences	exist.	In	a	high	volume	production	system,	the	additional	pruning
of	 AUTO_INCREMENT=N	 from	 the	 CREATE	 TABLE	 statement	 is	 necessary	 to	 produce	 a
clean	comparison	of	the	schema	only.	The	following	syntax	can	be	added	to	the	previously
mentioned	commands	to	produce	this	output:

	
The	schema	sync	utility	available	at	http://schemasync.org/	is	a	Python	script	that	will

perform	a	schema	comparison.	This	tool	will	also	produce	a	patch	script	that	can	be	used
to	 bring	 the	 two	 schema	 definitions	 into	 sync.	 This	 is	 a	 valuable	 tool	 to	 help	 in	 the
automation	of	schema	correction.

Additional	 monitoring	 can	 be	 put	 into	 place	 by	 a	 DBA	 to	 detect	 a	 schema	 change
command	 and	 then	 trigger	 some	 applicable	 reporting	 and	 verification	 approach.	 The
MySQL	status	variables	can	be	used	to	detect	a	CREATE,	ALTER,	or	DROP	command.
For	example:

http://www.maatkit.org/doc/mk-table-checksum.html
http://schemasync.org/

This	SQL	statement	 shows	 the	number	of	 statements	 that	have	been	executed	 in	 total
since	the	server	was	restarted.	You	can	use	this	information	to	perform	regular	difference
checks	between	previously	 recorded	values.	Alternatively	you	 can	use	 the	mysqlbinlog
command	to	filter	and	parse	the	MySQL	binary	logs	for	any	CREATE,	ALTER,	or	DROP
commands.	Neither	of	these	options	is	ideal	nor	provides	an	absolute	guarantee	to	capture
the	occurrence	of	a	schema	modification.

Object	Consistency

It	is	also	important	that	triggers	and	stored	procedures	are	consistent	between	the	master
and	the	slave.	You	can	leverage	the	same	trick	with	comparing	the	master	and	slave	object
definitions	using	mysqldump	with	the	additional	--routines	option.	For	example:

	
All	routine	definitions	and	other	metadata	are	held	in	the	INFORMATION_SCHEMA

database.	It	is	possible	to	use	SQL	to	perform	a	quick	sanity	check.	For	example:

	
This	statement	will	produce	a	list	of	all	routines,	the	size,	and	a	checksum.	This	output

can	 be	 recorded	 daily	 and	 a	 comparison	 performed	 to	 verify	 any	 object	 changes.	 For
example:

	

Completeness
MySQL	 binary	 logging	 can	 be	 affected	 by	 several	 configuration	 options	 including
binlog-do-db	and	binlog-ignore-db.	This	can	 result	 in	DML	and	DDL	statements	not
being	logged	to	the	binary	log.	The	relay	log	application	on	a	MySQL	slave	can	further	be
affected	 by	 several	 configuration	 options	 including	 replicate-do-db,	 replicate-
ignore-db,	replicate-wild-do-table,	replicate-wild-ignore-table,	and	replicate-
rewrite-db.

Combined	 with	 the	 ability	 to	 disable	 individual	 SQL	 statements	 by	 the	 SET

SQL_LOG_BIN=0	 command	 with	 applicable	 privileges,	 there	 is	 no	 guarantee	 that	 all
successful	 SQL	 statements	 applied	 with	 your	 master	 data	 will	 be	 applied	 on	 a	 given
MySQL	slave.

When	combined	with	a	more	complex	MySQL	replication	 topology,	ensuring	 that	 the
schema	and	data	are	consistent	is	not	enough	to	determine	that	the	slave	used	for	a	backup
strategy	contains	all	data.

For	 a	 detailed	 list	 of	 MySQL	 replication	 options	 and	 variables	 refer	 to	 the	MySQL
Reference	 Manual	 at	 http://dev.mysql.com/doc/refman/5.5/en/replication-options-
table.html.

Replication	Design	Considerations
Several	MySQL	configuration	options	can	have	an	effect	on	 the	design	of	your	MySQL
replication.

Binary	Log	Row	Format
Starting	with	MySQL	5.1,	it	is	possible	to	alter	the	binary	log	format	from	the	historic	and
default	 value	 of	STATEMENT,	 to	 either	ROW	or	MIXED	by	using	 the	binlog_format
variable.	 The	 STATEMENT	 format,	 as	 the	 name	 suggests,	 records	 the	 actual	 SQL
statements,	 which	 are	 then	 applied	 on	 the	 slave.	 This	 is	 known	 as	 statement-based
replication	 (SBR).	The	ROW	format	provides	 a	binary	 representation	of	 each	 table	 row
after	modification	of	 the	data	on	 the	master,	which	 is	 subsequently	applied	precisely	on
the	slave.	This	is	known	as	row-based	replication	(RBR).

http://dev.mysql.com/doc/refman/5.5/en/replication-options-table.html

Several	 configuration	 operations	 or	 statements	 may	 lend	 themselves	 to	 requiring	 or
requesting	a	different	row	format.	For	example,	altering	the	transaction	isolation	variable
tx_isolation	from	the	default	setting	of	REPEATABLE_READ	will	require	a	MIXED	or
ROW	 format	 to	 be	 used.	 MySQL	 will	 provide	 the	 following	 error	 message	 in	 this
situation:

	
Unsafe	Statements

MySQL	may	determine	a	SQL	statement	as	unsafe	with	SBR.	The	updating	or	deleting	of
a	 limited	number	of	rows	with	 the	LIMIT	statement	will	produce	a	warning.	Statements
that	contain	system	functions,	nondeterministic	functions,	user	defined	functions	(UDFs),
and	auto-increment	changes	are	also	considered	unsafe.	For	example:

	
A	 full	 list	 can	 be	 found	 in	 the	 MySQL	 Reference	 Manual	 at

http://dev.mysql.com/doc/refman/5.5/en/replication-rbr-safe-unsafe.html.

Trigger	Operation

MySQL	 triggers	 operate	 differently	 for	 the	 binary	 log	 formats.	 With	 SBR,	 triggers
executed	on	the	master	are	also	executed	on	the	slave.	The	definition	of	triggers	and	stored
procedures	 may	 also	 differ	 between	 the	 master	 and	 a	 slave,	 which	 can	 further	 cause
potential	 data	 inconsistency.	 For	RBR,	 triggers	 are	 not	 executed	 on	 the	 slave.	 The	 row
changes	on	the	master	resulting	from	any	trigger	action	are	applied	directly.

Statement-based	Replication	(SBR)

This	format	has	been	the	default	since	the	earliest	versions	of	MySQL	starting	with	3.23.
The	advantages	of	this	format	include,	in	general,	less	data	is	written	to	the	binary	log.	A
DML	statement	that	alters	thousands	of	rows	is	reflected	only	as	a	single	SQL	statement.
The	 slave	 has	 to	 perform	 the	 same	 amount	 of	 work	 that	 occurred	 on	 the	 master.	 An

http://dev.mysql.com/doc/refman/5.5/en/replication-rbr-safe-unsafe.html

expensive	 statement	needs	 to	be	 repeated	on	all	 slaves.	The	binary	 log	can	be	analyzed
with	mysqlbinlog	to	produce	an	audit	of	all	SQL	DML	and	DDL	statements.

Row-based	Replication	(RBR)

With	 this	 new	 format,	 there	 is	 an	 improved	 safety	 of	 data	 changes.	 This	 is	 especially
applicable	 for	 several	 operations	 that	 are	 considered	 unsafe.	 In	 general,	 more	 data	 is
written	 to	 the	 binary	 log	 to	 reflect	 a	 change	 for	 every	 row,	 which	 can	 affect	 disk
performance.	Starting	with	MySQL	5.6.2	this	can	be	adjusted	with	the	binlog_row_image
configuration	 option.	 Less	 locking	 is	 required	 on	 the	 slave	 for	 INSERT,	UPDATE,	 and
DELETE	statements.	The	binary	log	is	also	unable	to	provide	details	of	SQL	statements
executed.	 In	 MySQL	 5.6.2	 you	 can	 use	 the	 binlog_rows_query_log_events

configuration	option	to	provide	this	information.

Semi-synchronous	Replication
Starting	with	MySQL	5.5,	 it	 is	possible	 to	 improve	 the	asynchronous	nature	of	MySQL
replication	by	enabling	semi-synchronous	functionality.	In	this	mode,	the	master	waits	for
an	acknowledgment	from	a	configured	slave	where	the	transaction	has	been	successfully
written	and	 flushed	before	 returning	a	 success	 indicator	 to	 the	client.	Semi-synchronous
replication	must	be	 configured	and	enabled	on	both	 the	master	 and	 the	 slave	 for	 this	 to
occur.

The	 production	 master	 performance	 is	 impacted	 due	 to	 the	 additional	 slave
acknowledgment;	however,	the	benefit	is	a	better	guarantee	of	data	integrity.

Semi-synchronous	 replication	 in	 described	 in	 greater	 detail	 in	 Chapter	 3	 of	Effective
MySQL:	Advanced	Replication	Techniques.	More	 information	 is	 also	 available	 from	 the
MySQL	 Reference	 Manual	 at	 http://dev.mysql.com/doc/refman/5.5/en/replication-
semisync.html.

Replication	Backup	Considerations
Understanding	that	MySQL	replication	provides	a	copy	of	the	primary	database	and	with
listed	 limitations	 including	 lag,	 schema,	 and	 data	 consistency,	 you	 can	 leverage	 a
replication	topology	for	an	effective	backup	option.

It	is	possible	to	stop	MySQL	replication	temporarily	to	provide	better	consistency	for	an
optimized	 backup.	 This	 includes	 control	 for	 stopping	 either	 the	 IO	 or	 SQL	 thread
separately	 depending	 on	 your	 needs.	 These	 options	 do	 not	 affect	 your	 primary	 master
database	when	performing	operations	(except	when	using	semi-synchronous	replication);
however,	the	time	replication	is	stopped	has	downstream	effects	depending	on	the	use	of
the	MySQL	slave	instance	in	question.

You	can	stop	the	applying	of	data	changes	to	your	MySQL	replication	environment	with
the	STOP	SLAVE	SQL_THREAD	command.	When	correctly	configured	as	a	read	slave
this	 enables	 a	 consistent	 version	 of	 data,	 for	 example,	 with	 the	 mysqldump	 command
independently	of	varying	storage	engines	and	locking	strategies	used.

By	 stopping	 the	 IO	 thread	 and	 ensuring	 all	 data	 is	 flushed,	 you	 are	 providing	 an
environment	where	 there	are	no	physical	file	system	changes.	This	can	be	of	benefit	 for

http://dev.mysql.com/doc/refman/5.5/en/replication-semisync.html

providing	a	more	consistent	snapshot	view.

Additional	Prerequisite	Checks
Before	using	a	backup	option	described	in	Chapter	2,	there	are	several	checks	that	affect	a
consistent	backup	that	should	be	considered.

Checking	Replication	Lag

A	small	amount	of	replication	lag	is	acceptable,	This	lag	time	is	identical	for	replaying	the
master	binary	logs	during	a	point	in	time	recovery.	A	larger	replication	lag	will	result	in	a
longer	recovery	time,	which	may	be	unacceptable.	Your	backup	script	that	uses	a	MySQL
slave	should	perform	a	precheck	similar	to	the	following:

	
MySQL	Temporary	Tables

The	use	of	MySQL	temporary	tables	on	the	master	has	an	impact	on	ensuring	a	successful
database	recovery	using	a	slave.	Due	to	the	per	session	nature,	a	temporary	table	can	span
multiple	transactions;	however,	if	a	backup	is	performed	while	temporary	tables	are	in	use,
these	 will	 not	 be	 present	 during	 a	 point	 in	 time	 recovery	 process	 that	 processes	 the
replication	 stream.	This	 issue	also	exists	when	using	 temporary	 tables	during	a	MySQL
slave	instance	restart	and	can	result	in	a	SQL	error.

You	can	determine	if	a	MySQL	slave	SQL	thread	has	open	temporary	tables	using	the
INFORMATION_SCHEMA	or	SHOW	command.	This	check	should	be	performed	both
before	and	after	a	STOP	SLAVE	SQL_THREAD	command.	Should	a	non-zero	value	be
returned,	the	backup	process	should	re-try	and	ensure	this	condition	before	commencing.

	
or

	

The	design	of	SBR	can	help	in	some	circumstances	to	overcome	this	loss	of	data	with
temporary	table	use.	SBR	provides	a	copy	of	the	actual	data	change,	not	a	statement	that
will	cause	the	data	change.	The	interaction	of	temporary	table	use	and	a	backup	approach
is	very	dependent	on	the	specific	application	design.	In	general,	it	is	best	to	ensure	there
are	no	open	temporary	tables	to	avoid	a	potential	situation	that	you	do	not	test	for.

When	intermediate	data	is	required	within	your	application	there	are	several	techniques
that	can	be	implemented	to	overcome	this	situation.

InnoDB	Background	Threads

Stopping	the	SQL	thread	is	not	sufficient	to	ensure	a	consistent	version	of	the	underlying
MySQL	data	on	the	filesystem.	While	this	stops	the	application	of	data	changes,	internally
InnoDB	manages	flushing	of	data	from	the	InnoDB	Buffer	pool	to	disk	by	background	IO
threads.	 When	 performing	 a	 file	 copy,	 inconsistency	 between	 different	 data	 files	 will
result,	as	a	file	copy	is	a	sequential	process.	When	using	a	filesystem	snapshot	utility,	all
underlying	database	files	will	be	consistent	at	the	time	of	the	snapshot.	When	restored,	the
MySQL	 database	 will	 still	 need	 to	 perform	 a	 consistency	 check	 and	 statements	 in	 the
InnoDB	 transaction	 log	 may	 be	 applied.	 This	 occurs	 as	 part	 of	 an	 automatic	 recovery
process.	There	is	no	way	with	the	current	version	of	official	MySQL	binaries	to	produce	a
clean	state	without	shutting	down	the	server.

Cold	Backup	Options
Stopping	 a	 MySQL	 slave	 instance	 has	 no	 impact	 to	 operations	 on	 a	 master	 system.
However,	it	is	important	to	ensure	any	application	using	the	MySQL	slave	for	additional
purposes,	including	handling	read	scalability	and/or	reporting,	will	be	affected.	Generally
the	 procedure	 is	 to	 ensure	 the	 server	 is	 removed	 from	 application	 access	 accordingly
during	the	backup.	By	default,	a	MySQL	slave	instance,	when	started,	will	automatically
connect	 to	 the	master	 and	 start	 the	 process	 of	 synchronizing.	 The	 configuration	 option
skip-slave-start	will	disable	 the	slave	from	automatically	commencing	replication	on
startup.	Depending	on	 the	 time	 the	 slave	 instance	 is	 unavailable	 it	may	 take	minutes	 to
hours	before	the	slave	is	consistent.

mysqldump	Options
Using	mysqldump	of	a	production	database	with	the	--master-data	option	and	combined
with	 the	master	 binary	 logs	 enables	 a	 full	 point	 in	 time	 recovery	 option.	When	using	 a
MySQL	slave,	the	--master-data	option	does	not	provide	the	position	of	the	master.	At
best,	this	option	will	produce	an	error	message;	at	worst,	it	will	record	the	position	of	the
master	binary	log	on	the	slave,	if	the	slave	is	also	configured	as	a	master.	The	following
examples	show	both	conditions:

	
A	MySQL	slave	may	be	configured	 to	 record	a	binary	 log	using	 the	-log-bin	option

and	optionally	the	-log-slave-updates	option.	This	means	the	MySQL	slave	is	actually
configured	as	a	master	for	additional	slaves.	This	is	known	as	chaining	where	a	replication
environment	may	have	three	or	more	levels	(e.g.,	a	grandfather,	father,	and	child).	In	this

situation	 the	 --master-data	 option	 would	 result	 in	 information;	 however,	 this	 is	 the
position	of	the	binary	log	of	this	slave,	not	the	master	of	the	slave.

Using	 the	MySQL	Sandbox	 tool	 available	 at	 http://mysqlsandbox.net/	 is	 an	 excellent
way	 to	 quickly	 test	 and	 verify	 different	 replication	 situations.	 To	 highlight	 this	 specific
condition	we	create	a	standard	master	and	two	slave	sandbox	replication	environments:

	
We	can	then	look	at	the	specific	mysqldump	output	for	a	given	slave	in	this	replication

topology:

	
As	described	in	the	earlier	point,	the	position	described	is	not	the	actual	position	of	the

master	for	this	slave,	but	rather	the	position	of	the	binary	log	on	this	slave,	which	is	also
acting	as	a	master.	This	can	be	confirmed	with:

	
By	stopping	the	MySQL	slave	and	capturing	the	SHOW	SLAVE	STATUS,	it	is	possible

to	create	a	backup	of	the	MySQL	slave,	and	use	this	in	conjunction	with	the	master	binary
logs	to	perform	a	successful	point	in	time	recovery.

Starting	 with	MySQL	 5.5	 the	 --dump-slave	 option	 provides	 the	 correctly	 formatted

http://mysqlsandbox.net/

output	you	would	expect:

	
CAUTION				The	use	of	MySQL	replication	requires	careful	consideration	for	correctly
identifying	the	position	of	the	master	when	using	a	static	backup	of	a	slave	and	the
master	binary	log	files	for	point	in	time	recovery.

	
The	 --apply-slave-statements	 option	 can	 also	 be	 used	 to	 streamline	 the	 use	 of	 a

mysqldump	 file	 for	automated	 recovery.	This	option	adds	 the	STOP	SLAVE	and	SLAVE
START	commands	to	the	output	produced.

Filesystem	Snapshot	Options
The	 stopping	 of	 the	MySQL	SQL	 slave	 thread	 prior	 to	 performing	 a	 FLUSH	TABLES
WITH	READ	LOCK	can	 reduce	 the	 pending	wait	 time	 of	 this	 command.	The	 optional
stopping	of	the	MySQL	IO	thread	will	provide	a	consistent	file	system	copy	of	the	relay
logs;	however,	this	is	not	necessary	with	any	filesystem	snapshot	technology.

The	 replication	 position	 is	 also	 recorded	 on	 the	 filesystem	 in	 the	 file	 defined	 by	 the
relay_log_info_file	 system	 variable.	 Using	 the	 MySQL	 replication	 environment
configured	 in	 the	 previous	 section	 with	 MySQL	 Sandbox	 this	 can	 be	 verified.	 For
example:

	

MySQL	Enterprise	Backup	(MEB)	Options
The	MEB	product	has	an	additional	option	when	used	with	a	MySQL	slave	server:

•		--slave-info			This	option	creates	the	meta/ibbackup_slave_info	file	containing	the
necessary	CHANGE	MASTER	command	to	restore	the	backup	to	produce	an	identical
slave	server.

CAUTION				An	important	change	to	the	use	of	the	--slave-info	option	was	introduced
in	the	most	recent	version	of	MEB	version	3.7.1	regarding	the	synchronizing	of	data
between	the	slave	SQL	thread	and	slave	I/O	thread.

	

XtraBackup	Options
The	XtraBackup	utility	manages	MySQL	slave	specific	instances	using	these	options:

•		--slave-info			This	option	creates	the	xtrabackup_slave_info	file	containing	the
necessary	CHANGE	MASTER	command	for	recovery.

•		--safe-slave-backup			This	option	stops	the	SQL	thread	and	waits	until	there	are	no
temporary	tables	in	use.

Using	 the	 syntax	 for	XtraBackup	 from	Chapter	 2,	 these	 two	 options	 are	 added	 for	 a
backup	of	a	MySQL	slave:

	
This	 produces	 the	 necessary	 SQL	 for	 use	 during	 recovery	 with	 the	 defined	MySQL

master:

	
For	 more	 information	 see	 http://www.percona.com/doc/percona-

xtrabackup/innobackupex/replication_ibk.html.

Architecture	Design	Considerations
When	 knowing	 the	 strengths	 and	 weaknesses	 of	MySQL	 replication	 you	may	 consider
alternative	 approaches	 when	 designing	 your	 scalable	 architecture.	 While	 replication	 is
well	 known	 for	 read	 scalability,	 other	 options	 that	 leverage	 improvements	 in	 data
manageability,	 backup,	 recovery,	 and	 caching	 are	 possible.	 This	 could	 include	 the
separation	of	write	once	data	or	batch	managed	data	from	more	general	read/write	data.

The	use	of	MySQL	replication	may	also	impact	these	design	needs.	Understanding	data
availability	 differently	 for	write,	 read,	 and	 cached	 needs	 combined	with	 read	 and	write
scalability,	MySQL	replication	may	be	implemented	and	used	in	many	different	ways.

For	example,	if	you	have	30	years	of	financial	data	that	is	added	to	daily,	however,	each
year	of	data	 is	completely	static,	 the	 separation	of	data	 into	a	 static	 table	of	 the	 first	29
years	of	data	and	a	dynamic	table	of	growing	data	could	enable	a	vastly	different	backup
and	 recovery	 strategy.	 This	 would	 improve	 caching	 options;	 however,	 it	 would	 add
programming	complexity	to	your	application	to	support	this	level	of	manual	partitioning.
This	one	architecture	decision	could	reduce	daily	backup	operations	of	time	and	volume
by	90	percent.	Recovery	may	also	be	five	to	ten	times	faster.	The	complexity	is	now	two
different	 database	 environments	 with	 different	 caching	 strategies,	 different	 backup	 and
recovery	approaches,	and	the	appropriate	application	overhead.

MySQL	provides	functionality	for	several	different	approaches	towards	addressing	this
specific	example.	MySQL	partitioning	and	the	ARCHIVE	storage	engine	provide	different
advantages	 for	 functionality	 and	 should	 be	 evaluated	 in	 combination	with	 the	merits	 of
applicable	backup	and	recovery	for	these	choices.

http://www.percona.com/doc/percona-xtrabackup/innobackupex/replication_ibk.html

Improving	 your	 schema	 design	 for	 intermediate	 processing	 of	 data	 and	 temporary
tables,	 enabling	 a	 specific	 database	 schema	 to	 be	 ignored	 for	 binary	 logging	 and
replication	may	greatly	improve	replication	performance.	This	in	turn	minimizes	potential
limitations.

Upcoming	Replication	Functionality
The	 current	 development	 version	 of	 MySQL	 5.6	 includes	 numerous	 replication
improvements	which	address	some	of	 the	 identified	backup	concerns.	 In	summary	 these
improvements	include:

•		Binary	log	checksums

•		Removing	the	row	format	before	image

•		Logging	SQL	statements	in	addition	to	row	format

•		Delayed	replication

•		Logging	binary	log	and	relay	log	positions	using	tables	as	well	as	files

•		Multi-threading	support	on	slaves	supporting	parallel	transactions	per	database	schema

More	 information	 about	MySQL	5.6	 features	 can	 be	 found	 in	 the	MySQL	Reference
Manual	 at	 http://dev.mysql.com/doc/refman/5.6/en/mysqlnutshell.html	 and
http://dev.mysql.com/doc/refman/5.6/en/news-5-6-x.html.	 These	 options	 are	 also
discussed	in	Effective	MySQL:	Advanced	Replication	Techniques.

Conclusion
MySQL	 replication	 is	 an	 essential	 component	 for	 any	 high	 availability	 and	 scale	 out
MySQL	environment.	Understanding	how	MySQL	replication	can	be	used	 for	a	backup
and	 recovery	 strategy	 can	 be	 beneficial	 for	 designing	 a	 suitable	 MySQL	 topology	 to
support	both	HA	and	DR	requirements.

The	backup	approach	is	only	the	first	component	of	a	successful	backup	and	recovery
strategy.	 Applying	 the	 various	 options	 in	 Chapter	 2,	 with	 MySQL	 replication
considerations	and	with	the	business	needs	detailed	in	Chapter	3,	it	is	now	possible	in	the
following	 chapter	 to	 fully	 evaluate	 the	 successful	 recovery	 of	 your	 valuable	 business
information.

The	 SQL	 statements	 and	 web	 links	 listed	 in	 this	 chapter	 can	 be	 downloaded	 from
http://effectivemysql.com/book/backup-recovery/.

http://dev.mysql.com/doc/refman/5.6/en/mysqlnutshell.html
http://dev.mysql.com/doc/refman/5.6/en/news-5-6-x.html
http://effectivemysql.com/book/backup-recovery/

5
Using	Recovery	Options

	

A	backup	 is	only	as	good	as	 the	ability	 to	correctly	 recover	and	 then	use	your	data.	A
successful	recovery	is	both	the	verification	step	of	your	backup	procedures,	and	the	peace
of	mind	for	your	business	sustainability.	It	is	important	that	you	test	your	entire	recovery
process	 from	end	 to	 end	 regularly,	 practicing,	 verifying,	 refining,	 and	most	 importantly,
timing.	 In	 the	event	of	a	disaster	after	knowing	recovery	 is	possible,	knowing	how	long
this	will	take	is	an	important	business	consideration.

In	this	chapter	we	will	be	covering:

•		The	different	types	of	MySQL	recovery

•		Review	of	the	recovery	option	for	each	backup	type

•		The	importance	of	testing	and	verification

A	Word	About	Testing
Backups	 become	 regular	 daily	 operations	 after	 initially	 configured.	 Recovery	 is	 rarely
routine;	they	happen	at	any	time,	and	generally	require	immediate	action	with	the	quickest
response	possible	to	resolve	the	problem.	Testing	of	the	recovery	process	to	ensure	that	the
backups	 are	 indeed	 valid	 and	 functional,	 and	 that	 the	 recovery	 process	 is	 known,
documented,	and	verified,	is	an	ideal	practice	to	master.

This	 information	may	 sound	 like	 repetition,	 and	 it	 is	 because	 this	 is	 the	 single	most
important	process	not	 to	perform.	As	a	 consultant,	 every	disaster	 engagement	 involving
recovery	 has	 been	 in	 a	 situation	 that	 the	 client	 had	 not	 considered,	 or	 indeed	 tested.	 In
many	 situations	 these	 were	 the	 common	 occurrences	 of	 the	 most	 obvious	 cases	 as
discussed	throughout	this	book.

A	memorable	quote	found	on	the	Internet	regarding	backup	and	recovery	is,	“Only	two

types	of	people	work	here,	those	who	do	backups	[and	restores]	and	those	who	wish	they
had.”

NOTE				There	is	a	common	misconception	that	testing	is	about	ensuring	your	software
works	correctly.	Testing	is	really	a	process	for	trying	to	find	ways	to	break	your
software,	and	then	applying	improvements	to	address	these	failures.	Many	testing
practices	are	flawed	because	this	correct	approach	is	not	used.	The	backup	and
recovery	process	of	a	MySQL	ecosystem	requires	the	same	due	diligence.	As	with	many
real	world	life	situations,	your	successes	are	never	publicly	applauded;	you	are
remembered	by	your	failures.

	

Determining	the	Type	of	Recovery	Necessary
While	you	have	a	backup	approach	in	place,	the	primary	purpose	for	this	is	for	a	full	data
recovery.	 Is	 this	 necessary	 to	 restore	 production	 operations	 in	 every	 situation?	 As
described	in	Chapter	3,	the	business	may	accept	a	certain	amount	of	data	loss	depending
on	 the	 total	 recovery	 time.	A	data	 recovery	process	may	also	be	necessary	 for	a	 system
crash	or	corruption	and	may	not	require	a	full	restore	from	backup.	This	chapter	will	cover
a	variety	of	crash	situations	and	possible	recovery	requirements.

MySQL	Software	Failure
The	 underlying	 MySQL	 process	 mysqld	 may	 fail.	 The	 following	 options	 discuss	 the
primary	operations	 in	 the	 event	 of	 a	MySQL	crash.	The	 cause	 of	 failure	may	 include	 a
physical	 hardware	 problem,	 a	 MySQL	 bug,	 the	 process	 failing	 due	 to	 an	 exhausted
memory	or	disk	resource,	or	the	process	being	intentionally	terminated.	For	example:

	
Depending	on	 the	 storage	engine	used,	no	 further	 action	may	be	 required	 to	ensure	a

functioning	 and	 accessible	 database.	 The	 MySQL	 error	 log	 will	 generally	 provide
information	 about	 this	 situation,	 as	 described	 in	 the	 following	 section.	 However,	 it	 is
important	to	determine	why	this	has	occurred	and	to	prevent	the	situation	from	recurring.

NOTE				In	a	low	volume	Linux	production	system	you	may	not	detect	that	MySQL	has
even	crashed	unless	you	review	the	MySQL	error	log.	Under	default	operations,	the
mysqld	process	will	automatically	restart	through	the	wrapper	daemon	mysqld_safe.	If
your	application	does	not	use	persistent	connections,	this	can	occur	without	any
obvious	application	effect.

	

Crash	Recovery
When	using	the	InnoDB	transactional	storage	engine,	crash	recovery	is	performed	after	a
system	failure.	This	process	will	detect	a	difference	between	the	InnoDB	data	files	and	the
InnoDB	transactional	logs	and	perform	a	necessary	roll	forward	to	ensure	data	consistency

if	applicable.	Depending	on	the	size	of	your	InnoDB	transaction	logs,	that	can	take	some
time	to	complete.

The	MySQL	error	log	will	provide	detailed	information	of	the	InnoDB	crash	recovery
when	performed.

	
The	InnoDB	crash	recovery	process	performs	the	following	specific	steps:

1.		Detects	if	the	underlying	data	on	disk	is	not	consistent	by	comparing	the	checkpoint
LSN	with	the	recorded	redo	log	LSN.

2.		Applies	any	half	written	data	pages	that	were	first	written	to	the	doublewrite	buffer.

3.		Applies	all	committed	transactions	in	the	InnoDB	transaction	redo	logs.

4.		Rolls	back	any	incomplete	transactions.

In	addition,	during	a	crash	recovery	the	insert	buffer	merge	and	the	delete	record	purge
are	 performed.	 These	 steps	 are	 also	 performed	 in	 general	 background	 operations	 on	 a
working	MySQL	instance	and	are	not	specific	to	the	crash	recovery	process.

More	recent	versions	of	MySQL	have	greatly	improved	the	final	stage	of	InnoDB	crash
recovery	when	applying	the	redo	log,	starting	with	MySQL	5.1.46	(InnoDB	plugin	1.07)
and	MySQL	5.5.4.	In	the	past,	one	consideration	was	to	have	smaller	InnoDB	transaction
logs	 due	 to	 possible	 long	 recovery	 time.	 For	 more	 information	 on	 the	 specific
improvement	see	http://blogs.innodb.com/wp/2010/04/innodb-performance-recovery/.

Testing	InnoDB	Crash	Recovery

Testing	 of	 InnoDB	 crash	 recovery	 on	 a	 loaded	 system	 is	 important	 to	 determine	 if	 this
process	completes	in	a	few	minutes	or	can	take	more	than	one	hour.

Additional	information	about	steps	to	undertake	when	MySQL	is	crashing	can	be	found
at	 http://ronaldbradford.com/blog/mysql-is-crashing-what-do-i-do-2010-03-08/	 and
http://ronaldbradford.com/blog/how-to-crash-mysqld-intentionally-2010-03-05/.

TIP				Testing	a	crash	recovery	of	MySQL	is	as	simple	as	executing	a	kill	-9	on	the	mysqld
process.

http://blogs.innodb.com/wp/2010/04/innodb-performance-recovery/
http://ronaldbradford.com/blog/mysql-is-crashing-what-do-i-do-2010-03-08/
http://ronaldbradford.com/blog/how-to-crash-mysqld-intentionally-2010-03-05/

	
Under	normal	circumstances	when	MySQL	is	stopped	correctly,	InnoDB	crash	recovery

is	not	needed.	However,	as	part	of	starting	MySQL	you	should	always	check	the	error	log.
In	this	example,	while	MySQL	was	stopped	gracefully,	the	error	log	shows	crash	recovery
was	always	being	performed.	As	the	data	set	was	small	(<	1GB)	the	client	was	assuming
the	extended	startup	time	was	normal.

Shutdown	log	information:

	
Startup	log	information:

	
Monitoring	InnoDB	Crash	Recovery

Monitoring	 the	 amount	 of	 recovery	 is	 possible	 if	 existing	MySQL	monitoring	 includes
regular	logging	of	the	SHOW	ENGINE	INNODB	STATUS	information.	The	LOG	section
provides	 the	 Log	 Sequence	 Number	 (LSN)	 position.	 This	 can	 be	 compared	 with	 the
reported	LSN	 in	 the	MySQL	error	 log	during	a	crash	 recovery.	This	 information	 is	also
useful	 for	 general	 monitoring	 of	 internal	 InnoDB	 operations	 and	 should	 be	 part	 of
proactive	administration	of	any	production	system.

	
Chapter	7	will	discuss	advanced	techniques	diagnosing	and	correcting	an	InnoDB	crash

recovery	 when	 this	 process	 fails.	 This	 is	 generally	 required	 when	 there	 is	 additional
corruption	of	the	InnoDB	data	and	transaction	log	files.

MyISAM	Table	Recovery
When	using	the	MyISAM	storage	engine,	the	default	engine	for	all	MySQL	versions	prior
to	MySQL	5.5,	crash	 recovery,	 if	necessary,	 is	generally	a	manual	process.	Detection	of
possible	corruption	can	also	be	more	complex.	This	is	because	there	may	be	no	advance

notification	until	a	corrupt	MyISAM	table	is	accessed	via	an	index.

A	 problem	 can	 be	 detected	 with	 the	 CHECK	 TABLE	 or	 myisamchk	 -c	 command;
however,	this	is	impractical	in	a	large	database,	as	this	operation	can	take	a	long	time	to
determine	if	a	problem	exists.	When	MySQL	does	detect	a	problem,	the	MySQL	error	log
will	report	a	problem	requiring	further	attention.	For	example:

	
Alternatively	you	may	see	an	error	such	as:

	
NOTE				Data	for	a	MyISAM	table	(the	.MYD	file)	is	always	flushed	to	disk	for	each	DML
statement.	The	error	message	actually	references	that	the	underlying	B-tree	index	(the
.MYI	file)	is	inconsistent	with	the	data.	The	MyISAM	recovery	process	is	the	rebuilding
of	the	indexes	for	a	given	table.	This	helps	with	the	understanding	that	the	reporting	of
a	MyISAM	table	as	crashed	may	not	occur	at	system	startup,	rather	when	the	table	data
is	accessed	via	a	given	index.

	
The	MySQL	configuration	variable	myisam-recover	can	help	in	some	situations	where

the	MySQL	process	will	attempt	MyISAM	crash	recovery.	The	recommended	settings	are:

	
TIP				The	myisam-recover	configuration	option	can	offer	some	crash	safe	properties	for
MyISAM	tables.

	
Chapter	7	will	provide	more	information	on	managing	MyISAM	crash	recovery.

Other	Storage	Engines
MySQL	 offers	 a	 number	 of	 additional	 default	 storage	 engines	 as	 well	 as	 third	 party
pluggable	 engines.	 The	 following	 list	 provides	 a	 summary	 of	 recovery	 capabilities	 of
popular	engines.

Included	Default	Engines

	
Storage	Engine Recovery	Considerations

ARCHIVE NONE

MERGE The	MERGE	storage	engine	is	actually	a	meta-definition	of	multiple	underlying	MyISAM	tables.	This	results	in	the	same	recovery	issues	as	detailed	for	MyISAM.

BLACKHOLE This	storage	engine	actually	stores	no	data	so	recovery	time	is	immediate.	The	data,	however,	was	lost	at	insertion	time,	as	the	statements	or	blocks	are	only	logged	to	the	binary	log.

MEMORY As	the	name	suggests,	this	storage	engine	does	not	persist	data.	After	a	crash	recovery	no	data	recovery	is	possible.

	
Popular	Third	Party	Engines

	
Storage	Engine Recovery	Considerations

Percona	XtraDB This	fork	of	the	InnoDB	storage	engine	is	identical	in	operation	to	InnoDB	auto-recovery.

Tokutek	TokuDB TokuDB	provides	a	full	ACID	compliant	auto-recovery	storage	engine.

Akiban	AKIBANDB AKIBANDB	provides	a	full	ACID	compliant	auto-recovery	storage	engine.

Schooner	SQL Schooner	SQL	provides	a	full	ACID	compliant	auto-recovery	storage	engine.

	
This	 is	 not	 a	 full	 list	 of	MySQL	 storage	 engines.	 You	 should	 refer	 to	 the	 individual

storage	engine	vendors	for	specific	crash	recovery	details.

Table	Definition	Recovery
For	 every	 table	 in	 a	 MySQL	 instance,	 regardless	 of	 storage	 engine	 used,	 there	 is	 an
underlying	 table	 definition	 file,	 represented	 by	 a	 corresponding	 .frm	 file.	 There	 are
circumstances	 where	 these	 files	 may	 become	 corrupt	 or	 inconsistent	 with	 a	 storage
engine’s	additional	table	meta-information.	For	example:

	
and

	
and

	
This	 may	 require	 a	 different	 approach	 to	 obtaining	 this	 file	 and	 the	 matching	 data

depending	on	the	type	of	error.

NOTE				An	unexpected	MySQL	restart	has	an	additional	impact	on	performance.	The
primary	memory	buffers	including	the	InnoDB	buffer	pool	and	the	MyISAM	key	cache
are	empty.	These	must	be	re-populated	when	data	is	requested,	causing	additional	disk
I/O.	Internally,	MySQL	does	not	store	statistics	for	InnoDB	tables,	and	these	have	to	be

re-calculated	when	tables	are	first	accessed.

	

Performing	a	Static	Recovery
The	 performing	 of	 a	 static	 recovery	 involves	 a	 number	 of	 clearly	 defined	 steps
independent	of	the	type	of	backup	option	used.	These	steps	are:

1.		Necessary	software	requirements

2.		Static	data	recovery

3.		Data	verification

4.		Point	in	time	recovery	(if	applicable)

5.		Data	verification

MySQL	Software	Installation
The	recovery	of,	and	use	of,	recovered	MySQL	data	are	not	possible	without	a	functioning
MySQL	installation.	Chapter	2	does	not	describe	in	any	detail	the	various	approaches	for
managing	the	MySQL	software.	It	is	beneficial	in	a	disaster	recovery	situation	to	minimize
risk	 by	 using	 the	 same	 version	 of	 MySQL,	 installed	 via	 the	 same	 procedures—for
example,	via	system	packaging	or	binary	distribution—and	placing	all	important	MySQL
components	in	the	same	directory	structures.

The	 use	 of	 automated	 installation	 and	 deployment	 tools	 can	 ensure	 a	 repeatable
approach	 to	MySQL	 software	management.	 Popular	 runtime	 configuration	management
tools	 include	 Puppet,	 Chef,	 and	CFEngine.	 These	 tools	 can	 ensure	 the	 current	MySQL
configuration	is	available	before	a	restore	process.

MySQL	Configuration

It	 is	 important	 that	 the	MySQL	configuration	 is	 in	place	before	a	data	 recovery	process
begins	when	performing	a	SQL	restore.	Important	global	memory	settings,	 including	the
innodb_buffer_pool_size	and	key_buffer_size,	are	critical	 for	efficient	data	 recovery
via	SQL	execution.	Depending	on	the	memory	usage	of	the	machine	and	normal	database
concurrency,	you	could	choose	to	adjust	these	values	to	utilize	as	much	system	memory	as
possible	during	recovery.

CAUTION				If	the	physical	hardware	used	for	a	database	recovery	does	not	match	the
hardware	source	of	the	MySQL	configuration,	it	is	possible	the	configuration	may	cause
MySQL	to	fail	to	start	or	not	operate	optimally.

	
You	may	also	elect	to	optimize	or	adjust	the	configuration	during	the	recovery	process.

If	 the	 server	 uses	 binary	 logging	with	 the	log-bin	 option,	 disabling	 this	will	 aid	 in	 the
reloading	of	data	via	a	SQL	file	for	a	static	backup	and	point	in	time	recovery.	Altering	the
InnoDB	 transaction	 logging	 with	 innodb_flush_log_at_trx_commit	 and	 sync_binlog
can	also	reduce	some	disk	I/O	during	a	data	restore.

Depending	on	the	recovery	process	used,	you	should	also	disable	any	replication	with

the	skip_slave_start	option.

Alternatively,	 disabling	 the	 query	 cache	 with	 query_cache_type=0	 and	 disabling
external	 network	 access	 with	 skip_networking	 are	 common	 additional	 steps	 that	 can
make	a	small	improvement	as	well	as	restrict	unwanted	access	during	the	recovery	time.
The	init_file	and	init_connect	options	may	also	include	steps	that	should	be	disabled
during	the	recovery	process.

It	 is	 critical	 that	 the	 application	 is	 disabled	 from	 accessing	 data	 during	 the	 restore
process,	 especially	 if	 some	 important	 settings	 for	 data	 integrity	 are	 altered.	 The
verification	 process	 would	 also	 require	 the	 correction	 and	 restarting	 of	 the	 MySQL
instance	with	the	correct	configuration	before	application	access	is	permitted.	Restriction
processes	may	 include	skip_networking	as	mentioned,	 firewall	 rules	 to	 restrict	external
access	to	the	MySQL	TCP/IP	port,	normally	3306,	or	changing	the	MySQL	user	privileges
to	deny	SQL	access.

CAUTION				Removing	external	access	during	a	database	restore	by	enabling
skip_networking	does	not	stop	any	batch	or	cron	jobs	that	are	executed	on	the	local
machine.	These	may	affect	the	data	restore	process.	It	is	important	you	know	all	data
access	points	when	performing	a	database	restore.

	

MySQL	Data
The	restore	of	MySQL	data	will	depend	on	the	backup	approach	used.	Using	the	backup
approaches	defined	in	Chapter	2,	we	cover	each	option.

Filesystem	Copy

A	cold	filesystem	copy	or	file	snapshot	restore	is	the	installation	of	all	MySQL	data	and
configuration	files.	This	has	to	be	performed	when	the	MySQL	installation	is	not	running.
It	 is	 important	 that	 the	MySQL	 configuration	 is	 correctly	 restored	 to	match	 the	 copied
files,	 as	 several	 parameters	will	 cause	MySQL	 to	 fail	 to	 start	 correctly,	 or	may	 disable
important	components,	for	example,	the	InnoDB	storage	engine.	For	example,	any	change
in	 the	 file	 size	 with	 the	 innodb_data_file_path	 and	 innodb_log_file_size

configuration	 settings	 will	 cause	 InnoDB	 not	 to	 be	 enabled	 or	 may	 stop	 the	 MySQL
instance	from	starting.

SQL	Dump	Recovery

A	SQL	dump	recovery	requires	a	correctly	configured,	running	MySQL	installation.	The
restore	uses	the	mysql	command	line	client	to	execute	all	SQL	statements	in	the	dump	file.
For	example:

	
This	example	syntax	requires	the	dump	file	to	include	necessary	create	database	schema

commands.	 These	 are	 included	 by	 default	 with	 mysqldump	 when	 using	 the	 --all-
databases	option	to	create	the	backup.	The	backup	file	will	include	the	following	syntax,
for	example:

	
If	you	dump	an	individual	schema	with	mysqldump	this	is	not	included	by	default.	The	-

-databases	option	is	necessary	to	generate	this	SQL	syntax	within	the	backup	file.

By	default,	mysqldump	will	not	drop	database	schemas.	To	include	this	syntax	to	enable
a	clean	restore	for	a	MySQL	instance	when	existing	data	may	be	present,	use	the	--add-
drop-database	option.

The	 restore	 of	 a	mysqldump	 generated	 file	 is	 a	 single	 threaded	 process.	 Some	 benefit
may	be	obtained	by	multi-threading	this	process;	however,	this	requires	a	means	to	create
parallel	 files	 and	monitoring	 of	 resources	 for	 any	 bottlenecks.	 Chapter	 8	will	 discuss	 a
number	of	options	for	considering	a	more	optimized	recovery	approach.

The	use	of	per	 table	dump	files,	particularly	 in	a	known	format,	may	be	significantly
faster	 to	 load	 using	 the	 LOAD	 DATA	 statement	 rather	 than	 individual	 INSERT	 SQL
statements	 generated	 by	 mysqldump.	 There	 is	 a	 trade-off	 between	 the	 complexity	 to
generate	 these	 files	 consistently,	 the	 additional	 scripting	 for	 restoring	 data,	 and	 point	 in
time	recovery	capabilities.	Chapter	8	will	discuss	situations	when	using	the	per	table	dump
approach	can	speed	up	data	access	during	a	recovery	procession.

For	more	information	on	all	possible	options	with	the	mysqldump	command,	refer	to	the
MySQL	Reference	Manual	at	http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html.

SQL	Dump	Recovery	Monitoring	 	 	There	 is	 no	 easy	means	of	 determining	where	 the
database	recovery	process	is	or	how	long	the	process	will	actually	take;	however,	there	are
several	 tricks	 that	 can	 be	 used	 to	 view	 the	 recovery	 process.	 There	 is	 no	 substitute	 for
testing	and	timing	the	recovery	process	to	have	an	indicator	of	the	expected	time.	This	will
change	over	time	as	your	database	grows	in	size.

You	 can	 use	 the	 SQL	 statement	 being	 executed,	 as	 shown	 by	 the	 SHOW
PROCESSLIST	 command,	 to	 determine	 how	 much	 of	 the	 mysqldump	 file	 has	 been
processed.	You	can	compare	this	line	with	the	total	number	of	lines	in	the	dump	file.	This
can	provide	a	rough	approximation.

Recording	 table	 sizes	 and	 row	 counts	 in	 a	 daily	 audit	 process	 will	 greatly	 assist	 in
calculation	 of	 the	 approximate	 table	 size.	 This	 can	 be	 easily	 determined	 via	 the
INFORMATION_SCHEMA.	For	example:

http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html

	
NOTE				Depending	on	the	type	of	storage	engine,	some	information	provided	by	this	SQL
statement	is	only	an	estimate.	For	example,	with	the	InnoDB	storage	engine,	the	data
and	index	size	information	are	accurate;	the	number	of	rows	is	only	an	estimate.

	
Including	 this	 information	with	 the	backup	process	 is	of	benefit	 for	 later	analysis	and

verification.

MySQL	Enterprise	Backup	(MEB)	Recovery

The	 restoration	 of	 a	 static	 backup	 from	MEB	 is	 a	 simple	 command.	 It	 is	 necessary	 to
perform	some	prerequisite	steps	to	ensure	a	successful	restore.

•		Stop	the	MySQL	instance.

•		Remove	any	existing	data	directory.

•		Create	a	clean	data	directory,	or	enable	permissions	for	the	user	to	create	the	data
directory.

•		Run	mysqlbackup	copy-back.

For	example:

	

	
When	MySQL	is	restarted	the	following	messages	may	occur.	This	is	expected:

	
CAUTION				The	current	MEB	version	3.7.0	requires	the	specification	of	the	innodb-log-

files-in-group	configuration	variable	to	operate	correctly.	If	this	is	not	defined	in
your	MySQL	installation,	this	must	be	specified	on	the	command	line.

	
Generally	the	MySQL	data	directory	is	owned	by	the	mysql	user;	however,	 the	parent

directory	does	not	provide	sufficient	permissions	to	create.	If	the	directory	is	removed,	the
following	error	may	occur:

	
MEB	does	not	perform	any	of	the	pre-checks	as	noted	in	these	instructions.	MEB	can

perform	a	successful	recovery	with	a	running	MySQL	installation;	however,	this	will	not
produce	 the	 results	 you	 would	 expect.	 Chapter	 7	 provides	 an	 example	 of	 the	 level	 of
inconsistency	and	errors	that	occur.

CAUTION				MySQL	Enterprise	Backup	does	not	perform	any	checks	on	whether	MySQL
is	running,	or	whether	the	existing	data	directory	exists.	While	a	restore	may	complete
successfully,	this	will	cause	an	inconsistency	and	possible	errors.

	
XtraBackup	Recovery

The	XtraBackup	restore	process	is	a	simple	command.	XtraBackup	also	requires	several
prerequisite	steps.	The	XtraBackup	was	created	with	the	commands:

	
Before	restoring	an	XtraBackup	you	must	first	stop	MySQL,	and	you	must	ensure	the

existing	data	directory	exists	and	is	empty.	XtraBackup	will	not	check	that	MySQL	is	not
running.	Common	errors	are:

	
and

	
The	restore	is	a	single	command:

	

	
It	is	important	to	check	the	file	and	directory	permissions	after	the	Xtra-Backup	restore.

In	the	previous	example	performed	by	the	root	OS	user,	starting	MySQL	would	result	in
an	error	similar	to:

	

Innobackupex	has	a	lot	of	verbose	information,	but	no	message	at	the	end	stating	that
permissions	should	be	set.	The	following	is	required	to	correctly	start	MySQL	following
an	XtraBackup	restore	with	the	root	OS	user:

	
More	information	on	XtraBackup	recovery	options	is	available	in	the	documentation	at

http://www.percona.com/doc/percona-xtrabackup/.

Chapter	 8	 will	 discuss	 more	 advanced	 XtraBackup	 options	 including	 streaming,
compressing,	filtering,	and	parallel	operations.

XtraBackup	Manager	 	 	 The	XtraBackup	Manager	 (XBM)	 project	 provides	 additional
wrapper	 commands	 and	 database	 logging	 for	 XtraBackup.	 This	 is	 written	 in	 PHP.	 See
http://code.google.com/p/xtrabackup-manager/wiki/	 QuickStartGuide	 for	 detailed
instructions	in	getting	started.

Performing	a	Point	in	Time	Recovery
Regardless	of	the	static	recovery	approach	used,	a	point	in	time	recovery	is	the	application
of	MySQL	master	binary	logs	from	the	time	of	the	backup,	to	a	given	time,	generally	all
possible	data.	A	point	in	time	recovery	can	also	be	performed	to	a	particular	time	or	binary
log	position	if	necessary.

There	are	two	mechanisms	for	using	the	master	binary	logs;	these	depend	on	the	use	of
the	 restored	 MySQL	 environment	 in	 relation	 to	 MySQL	 replication.	 If	 the	 server	 is
standalone,	the	extraction	of	SQL	statements	from	the	binary	log	and	application	via	the
mysql	command	line	client	is	performed.	If	the	server	is	a	slave	in	a	MySQL	topology,	the
replication	stream	can	be	used	to	perform	this	automatically,	levering	the	binary	logs	that
exist	on	the	MySQL	master.

Both	options	require	the	correct	position	and	corresponding	binary	log	for	a	successful
recovery.

Binary	Log	Position
The	current	position	at	 the	 time	of	 the	database	backup	 is	necessary	 to	apply	binary	 log
statements.

Using	mysqldump

With	mysqldump,	the	use	of	the	--master-data	on	the	master	server,	or	--dump-slave	on
the	slaver	server,	will	generate	the	following	SQL	statement	with	the	output:

	
The	referenced	information	will	be	used	in	later	examples.

http://www.percona.com/doc/percona-xtrabackup/
http://code.google.com/p/xtrabackup-manager/wiki/

By	default	the	CHANGE	MASTER	TO	statement	is	applied	during	the	data	recovery.	If
a	value	of	2	was	specified	for	either	of	these	options,	for	example,	--master-data=2,	then
this	SQL	statement	is	only	a	comment	and	must	be	manually	applied	during	the	recovery
process.	 For	 older	 style	 backup	 approaches,	 the	 CHANGE	 MASTER	 syntax	 can	 be
generated	via	the	SHOW	SLAVE	STATUS	output.

	
Filesystem	Copy	or	Filesystem	Snapshot

Depending	 on	 the	 other	 backup	 approaches	 used,	 the	 position	 is	 held	 in	 the	 underlying
master.info	file	and	will	be	defined	when	the	data	is	restored	via	a	filesystem	approach.

MySQL	Enterprise	Backup	(MEB)

MySQL	Enterprise	Backup	has	this	information	in	the	meta	sub-directory	of	the	backup.
For	example:

	
XtraBackup

XtraBackup	has	this	information	in	the	backup	directory.	For	example:

	

Standalone	Recovery
Following	a	successful	static	recovery,	the	application	of	the	MySQL	binary	logs	requires
the	use	of	the	mysqlbinlog	command	to	translate	the	information	into	SQL	statements	that
can	be	applied	by	the	mysql	command.

Using	the	details	of	the	master	position	as	shown	in	the	previous	CHANGE	MASTER
example,	 we	 know	 the	 binary	 log	 file	 is	 ‘mysql-bin.000146’	 and	 the	 position	 is
810715371.

	
It	is	likely	additional	binary	log	files	are	also	required	for	a	point	in	time	recovery	to	the

most	current	transaction.

	
NOTE				A	trick	with	managing	the	binary	logs	is	to	perform	a	FLUSH	LOGS	command
during	the	backup	process.	This	produces	a	new	binary	log	file	at	the	time	of	the
backup,	and	can	reduce	the	complexity	necessary	to	determine	the	start	position	with

binary	logs	to	be	applied.

	
You	can	also	use	the	mysqlbinlog	command	to	retrieve	selected	SQL	transactions	for	a

more	specific	period	via	time	or	position	using	the	--start-datetime,	--stop-datetime,
--start-position,	 and	 --stop-position	 options,	 respectively.	 These	 options	 can	 be
used	to	perform	a	point	in	time	recovery	to	a	date	or	position	before	the	end	of	the	binary
log,	generally	to	undo	a	human	generated	data	error	such	as	an	accidental	deletion	of	data.
These	options	are	particularly	beneficial	 for	data	analysis	of	a	binary/relay	 log	when	an
error	has	occurred.

Analysis	of	the	binary	log	using	an	unknown	start	position	or	unknown	end	position	can
result	 in	misleading	 information.	The	 following	shows	an	error	 in	processing	 the	binary
log;	however,	this	not	a	result	of	the	contents	of	the	actual	binary	log:

	
When	using	correctly	aligned	event	boundaries,	no	error	occurs.

	

	
For	more	 information	 on	 the	 full	 options	 for	 the	 mysqlbinlog	 command	 refer	 to	 the

MySQL	Reference	Manual	at	http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html.

http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html

Leveraging	the	Replication	Stream
If	the	server	is	the	slave	of	an	existing	and	functioning	MySQL	master	within	a	replication
topology,	 the	 normal	 replication	 stream	 can	 be	 leveraged	 providing	 the	 position	 of	 the
master	 binary	 log	 is	 correctly	 defined	 for	 the	 slave.	Depending	on	 the	 data	 backup	 and
static	recovery	process,	this	may	or	may	not	be	already	defined	for	the	recovered	data.

When	 using	 the	 --master-data	 or	 --dump-slave	 option	 you	 will	 observe	 in	 the
mysqldump	output	file	a	CHANGE	MASTER	statement	that	will	set	the	correct	position.	If
using	the	output	information	from	a	SHOW	SLAVE	STATUS	command	you	can	construct
the	correct	syntax	as	shown	in	the	previous	section.

Following	 this	 command	 you	 should	 run	 SHOW	SLAVE	STATUS	 in	 order	 to	 verify
settings,	then	START	SLAVE	to	start	processing	the	replication	stream.	You	should	review
the	 SHOW	 SLAVE	 STATUS	 output	 a	 second	 time	 for	 any	 errors	 including	 invalid
permissions	and	other	errors.	The	following	is	a	command	error:

	
This	 shows	 that	 the	 master	 no	 longer	 has	 the	 required	 binary	 log	 files	 necessary	 to

replay	all	SQL	statements	via	the	replication	stream.

For	 more	 information	 about	 the	 SHOW	 SLAVE	 STATUS	 command,	 refer	 to	 the
MySQL	Reference	Manual	at	http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html.

Binary	Log	Mirroring
A	new	feature	of	 the	current	5.6	DMR	version	is	 the	ability	 to	read	the	binary	 logs	of	a
remote	system,	rather	 than	having	to	copy	the	binary	logs	to	process.	In	addition,	a	new
option	is	also	provided	to	read	a	remote	binary	log	and	produce	an	exact	copy	in	binary
format.	This	feature	can	also	allow	for	binary	log	mirroring.

The	--read-from-remote-server	option	tells	mysqlbinlog	 to	connect	to	a	server	and
request	its	binary	log.	This	is	similar	to	a	slave	replication	server	connecting	to	its	master
server.	The	--raw	option	produces	binary	output,	and	the	--stop-never	option	enables	the
process	to	remain	open	and	continue	to	read	new	binary	log	events	as	they	occur	on	the
master.	For	example:

http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html

	

	
You	can	produce	a	copy	of	the	master	binary	log	with:

	
You	can	also	obtain	content	from	all	binary	logs	from	a	given	file	with:

	
Analysis	of	the	output	provides	the	following	to	see	the	change	in	filenames:

	
TIP				Even	if	your	production	environment	is	not	running	MySQL	5.6,	you	can	install	this
MySQL	version	on	another	server	and	use	these	commands	connecting	to	an	older
server	version,	as	shown	in	these	examples	connecting	to	a	MySQL	instance	running
MySQL	5.1.

	
For	 more	 information	 see	 http://dev.mysql.com/doc/refman/5.6/en/mysqlbinlog-

backup.html.

Recovery	Verification
The	 successful	 recovery	 of	 a	MySQL	 environment	 is	 not	 complete	 until	 verification	 is
performed.	 This	 can	 be	 difficult	 to	 determine	 as	 the	 various	 reasons	 for	 requiring	 a
recovery	may	affect	the	ability	to	calculate	verification	results.

The	checking	of	applicable	restore	command(s)	error	status,	log	files,	and	MySQL	error
log	 is	 a	mandatory	 initial	 step.	While	 this	 appears	 obvious,	 this	 author	 has	 experienced
DBA	 resources	 not	 performing	 this	 most	 basic	 of	 steps,	 so	 this	 is	 mentioned	 for
completeness.

The	 first	 obvious	 data	 check	 is	 to	 look	 at	 the	 size	 of	 your	 database.	 This	 can	 be	 as
simple	as	an	INFORMATION_SCHEMA	query.	While	this	step	is	not	a	confirmation	of
success,	this	will	confirm	no	obvious	import	or	restore	failure.	This	can	indicate	no	more
time	consuming	validation	is	required	when	a	failure	is	immediately	detected.	This	check
can	 be	 performed	 after	 both	 the	 static	 recovery	 and	 point	 in	 time	 recovery	 steps.	 It	 is
important	 to	 also	 check	 the	 number	 of	 database	 objects,	 including	 tables,	 routines,	 and
triggers,	in	a	similar	fashion.

The	second	check	is	to	confirm	a	likely	most	recent	transaction.	This	could	be	as	simple
as	looking	at	the	last	order,	status	update,	or	log	entry	in	a	given	table.	When	your	system
performs	hundreds	of	INSERT	or	UPDATE	statements	per	second	and	there	is	a	recorded
insert	 or	 update	 timestamp	 or	 AUTO_INCREMENT	 primary	 key,	 there	 is	 an	 easy
comparison	 of	 the	 last	 reported	 database	 modification.	 Again,	 this	 check	 is	 not	 a
confirmation	of	success,	rather	an	indicator	of	obvious	failure	or	highlighting	of	potential
or	 expected	data	 loss.	This	 can	be	performed	after	both	 the	 static	 recovery	and	point	 in
time	recovery	steps.

http://dev.mysql.com/doc/refman/5.6/en/mysqlbinlog-backup.html

When	a	complete	point	in	time	recovery	process	is	performed,	the	reported	binary	log
position	from	SHOW	SLAVE	STATUS	can	be	verified	with	the	applicable	master	binary
log	 position,	 recorded	 as	 part	 of	 the	 backup,	 the	 current	 file	 size	 of	 the	 last	 imported
binary	log,	or	the	current	SHOW	MASTER	STATUS	information.

The	most	conclusive	agnostic	approach	is	to	perform	a	table	checksum	to	compare	the
actual	 data.	 The	 CHECKSUM	 TABLE	 command	 or	 the	 Percona	 Toolkit	 pt-table-
checksum	utility	can	be	used.	This	is	impractical	in	a	large	database	due	to	the	time	to	read
all	 data	 to	 calculate.	 It	may	 be	 practical	 only	 to	 check	 certain	 tables	with	 this	 detailed
analysis.	A	more	simplified	check	of	the	number	of	rows,	or	sum	of	an	important	column,
for	example,	and	order	table	invoice	amount	can	provide	an	initial	check.

With	 all	 these	 steps,	 data	 verification	 is	 generally	 complex	 because	 the	 restored	 data
source	 cannot	 be	 accurately	 compared	 with	 an	 active	 and	 ever	 changing	 production
environment.	Given	this	situation	and	knowing	these	limitations,	adding	additional	checks
during	 the	 backup	 process	 can	 be	 critical	 in	 reducing	 risk.	 By	 recording	 a	 checksum,
count,	 sum,	or	 some	other	calculation	on	 the	database	at	 the	 time	of	a	 static	backup,	an
applicable	check	can	be	made	after	the	static	recovery	step.

Using	 the	 same	 data	 checksum	 approach	 for	 the	 schema	 definition	 and	 all	 stored
routines	and	trigger	code	is	also	highly	recommended.	See	Chapter	4	for	examples	on	data
and	object	consistency.

The	 importance	of	database	verification	 is	 to	detect	 any	problem	before	 it	becomes	a
real	 issue.	 If	 data	 is	 lost	 or	 incomplete	 further	 application	 use	 may	 compound	 this
problem;	 a	database	 recovery	may	not	be	possible	 in	12	hours’	 time.	Difficult	 and	 time
consuming	data	analysis	may	then	be	needed	to	address	any	data	corruption,	loss,	or	creep.

Important	 business	 metrics	 are	 generally	 the	 first	 indicator	 of	 a	 likely	 problem.	 The
amount	of	verification	is	proportional	to	the	important	value	of	the	data.	It	may	be	critical
to	ensure	that	all	data	is	consistent	for	customer	orders,	and	less	important	for	a	review	of
a	product,	for	example.

During	 the	 verification	 process	 application	 access	 to	 the	 underlying	 database	 should
never	 occur.	 It	 is	 very	 important	 this	 step	 is	 adequately	 catered	 for	 during	 the	 recovery
process.	This	is	often	overlooked	when	a	full	end-to-end	test	is	not	performed.	After	any
disaster	it	is	advisable	to	perform	a	backup	as	soon	as	possible.

The	Backup	and	Recovery	Quiz
In	 response	 to	 several	 organizations	 failing	 to	 have	 applicable	 production	 resilience	 the
following	checklist	was	created	in	early	2010	to	poll	what	procedures	existed.

1.		Do	you	have	MySQL	backups	in	place?

2.		Do	you	back	up	ALL	your	MySQL	data?

3.		Do	you	have	consistent	MySQL	backups?

4.		Do	you	have	backups	that	include	both	static	snapshot	and	point	in	time
transactions?

5.		Do	you	review	your	backup	logs	EVERY	SINGLE	day	or	have	tested	backup

log	monitoring	in	place?

6.		Do	you	perform	a	test	restore	of	your	static	backup?

7.		Do	you	perform	a	test	restore	to	a	point	in	time?

8.		Do	you	time	your	backup	and	recovery	process	and	review	over	time?

9.		Do	you	have	off-site	copies	of	your	backups?

10.		Do	you	back	up	your	primary	binary	logs	to	a	different	server?

This	is	not	an	exhaustive	checklist	of	all	requirements,	only	the	first	ten	items	necessary
for	 ensuring	 adequate	 minimal	 procedures.	 If	 you	 do	 not	 score	 eight	 or	 better	 in	 this
checklist	 for	your	business,	you	are	at	higher	 risk	of	 some	 level	of	data	 loss	 in	a	 future
disaster	 situation.	 If	 you	 are	 an	owner/founder/executive	 this	 should	keep	you	 awake	 at
night	if	you	are	not	sure	of	your	business	viability	following	a	disaster.

Source:	http://ronaldbradford.com/blog/checked-your-mysql-recovery-process-recently-
2010-02-15/

Other	Important	Components
This	chapter	has	discussed	the	recovery	of	MySQL	software,	configuration,	and	data.	This
is	the	primary	purpose	of	this	book.	Any	operational	production	database	system	generally
includes	 much	 more	 than	 just	 MySQL	 software	 and	 data.	 While	 not	 discussed	 it	 is
important	 that	 as	 a	 database	 administrator,	 any	 additional	 database	 and	 system	 related
features	are	included	in	a	total	backup	solution.	For	example:

•		Cron	job	entries

•		Related	scripts,	run	via	cron,	via	batch	or	manually

•		Application	code

•		Additional	configuration	files	(e.g.,	SSH,	Apache,	logrotate,	etc.)

•		System	password	and	group	files

•		Monitoring	scripts	or	monitoring	plugins

•		Backup	and	restore	scripts

•		Any	system	configuration	files	(e.g.,	/etc)

•		Log	files

Conclusion
Your	business	viability	and	data	management	strategy	are	only	as	good	as	your	ability	to
successfully	recover	your	information	after	any	level	of	disaster.	In	this	chapter	we	have
discussed	 the	 essential	 steps	 in	 the	 process	 for	 a	 successful	 data	 recovery	 and	 the
importance	of	data	verification.	Chapter	7	will	extend	these	essential	foundation	steps	with
a	 number	 of	 disaster	 scenarios	 to	 highlight	 further	 advanced	 techniques	 in	 ensuring	 an
adequate	MySQL	 backup	 and	 recovery	 strategy.	 Chapter	 8	 provides	 more	 examples	 of
recovery	options	for	various	advanced	backup	options.

http://ronaldbradford.com/blog/checked-your-mysql-recovery-process-recently-2010-02-15/

The	 SQL	 statements	 and	 web	 links	 listed	 in	 this	 chapter	 can	 be	 downloaded	 from
http://effectivemysql.com/book/backup-recovery/.

http://effectivemysql.com/book/backup-recovery/

6
MySQL	Configuration	Options

	

MySQL	 5.5	 supports	 over	 300	 configurable	 system	 variables.	 A	 number	 of	 these
variables	have	a	direct	effect	on	how	MySQL	will	operate	when	dealing	with	a	database
backup	 and	 crash	 recovery	 situation.	Understanding	what	 system	 variables	 do	 and	 how
they	 change	 the	 behavior	 of	 the	MySQL	 server	will	 help	 define	 how	 your	 backup	 and
recovery	system	will	act	when	you	need	it	the	most.

In	this	chapter	we	will	discuss:

•		Data	management	system	variables

•		Replication	system	variables

•		Recovery	system	variables

Data	Management
In	 this	 section	 we	 will	 cover	 data	 locations,	 consistency,	 and	 binary	 logging	 system
variables.	 Having	 a	 homogeneous	 system	 setup	 is	 the	 preferred	 way	 to	 run	 an
environment,	especially	at	scale.	Knowing	where	your	data	is	located	on	a	file	system	is	a
tremendous	help	when	 troubleshooting	a	 system	along	with	 automation	and	other	 tasks.
Enabling	 the	 right	 system	 variables	 for	 data	 consistency	 driven	 by	 your	 Service	 Level
Agreement	(SLA)	and	knowing	when	to	use	certain	binary	logging	options	are	all	part	of
system	design,	and,	in	the	end,	how	your	system	will	recover	from	disaster.

Data	Locations
The	following	options	define	the	physical	filesystem	locations	of	important	data	stored	in
MySQL.	 It	 is	 important	 to	 note	 that	 these	 locations	 are	 often	 overlooked	when	 running
recoveries	 from	 server	 to	 server.	Keeping	 your	 data	 locations	 homogeneous	 throughout
your	 system	will	 lessen	 confusion	during	 recovery	 especially	 if	 your	 system	 is	 sharded.

This	means	keeping	all	of	the	MySQL	data,	tmp,	and	base	directories	the	same	throughout
your	environment.	Other	considerations	would	be	keeping	the	InnoDB	data	file	path	and
InnoDB	log	file	sizes	the	same	throughout	your	environment.	Here	you	will	find	a	more
detailed	 list	of	system	variables	 that	need	to	be	 the	same	from	master	 to	slave	and	from
shard	to	shard:

•		datadir			The	datadir	is,	by	default,	the	directory	where	all	databases,	tables,	InnoDB
data,	server	logs,	and	binary	log	files	are	located	on	the	filesystem.	Directories	within
the	datadir	represent	databases.	Tables	within	the	databases	are	represented	by	files,
which	can	differ	depending	on	storage	engine	and	server	configuration.	InnoDB
tablespace(s)	and	transaction	logs	will	also	be	stored	here	unless	defined	by	other
variables.	The	same	can	be	said	about	server	logs	like	the	slow	query	log	and	error	log
along	with	binary	and	relay	log	files.	For	Linux	distributions	this,	by	default,	is
/var/lib/mysql.

•		basedir			The	basedir	is	the	filesystem	location	of	the	MySQL	installation	directory.	It
is	a	good	idea	to	have	this	directory	located	in	your	PATH	for	easy	access	to	the
MySQL	server	and	client	utilities.	Keep	in	mind	that	the	basedir,	by	default,	is	/usr	on
Linux	and	will	probably	be	different	from	company	to	company.	In	this	case	you	should
put	the	$basedir/bin	inside	your	PATH	so	you	do	not	require	the	full	path	to	the
MySQL	server	and	client	utilities.

•		innodb_data_file_path			This	variable	defines	the	location	to	individual	InnoDB	data
files,	also	known	as	tablespaces,	along	with	their	sizes	and	behavior.	The	size	limit	of
individual	files	will	be	determined	by	your	operating	system;	however,	the	sum	of	the
files,	by	default,	has	to	be	a	minimum	of	10MB.	InnoDB	files	can	also	be	set	to
autoextend.	In	this	case,	these	InnoDB	files	grow,	if	the	data	exceeds	the	initially
defined	size	and	“auto-extend”	is	enabled.	Please	note	that	these	files	are	currently
required	by	InnoDB	to	function	and	are	considered	system	tablespace(s).	This	includes
when	InnoDB	is	set	to	run	with	innodb_file_per_table.

•		innodb_data_home_dir			If	you	are	not	using	absolute	paths	to	define	your	shared
tablespaces	in	the	innodb_data_file_path	system	variable	you	can	use
innodb_data_home_dir	to	specify	where	all	common	InnoDB	data	files	will	be	located
on	the	filesystem.	Like	innodb_data_file_path,	this	variable	does	not	affect	the
location	of	per-file	tablespaces	when	innodb_file_per_table	is	enabled.	The	default
value	for	this	variable	is	the	MySQL	datadir.

•		innodb_file_per_table			When	innodb_file_per_table	is	enabled	all	tables	that	are
created	with	the	InnoDB	storage	engine	will	create	their	own	tablespace.	The	per-table
tablespace	created	is	represented	as	tablename.ibd	in	the	corresponding	database
directory.	The	.ibd	file	is	where	data	and	indexes	are	stored.	If
innodb_file_per_table	is	disabled,	the	default,	all	data	and	indexes	will	be	stored	in
the	system	tablespace.	Innodb_file_per_table	must	be	enabled	if	you	choose	to	use
newer	InnoDB	file	formats	starting	with	Barracuda.

CAUTION				The	innodb_file_per_table			variable	should	be	set	before	creating	any
database	objects.	It	is	not	possible	to	have	a	hybrid	model.	The	only	means	to	safely
convert	from	a	system	tablespace	to	a	per-table	tablespace	is	to	dump	all	data,	drop	all

objects,	and	re-create	database	objects	and	reload	all	data.

	

Data	Consistency
These	configuration	options	affect	how	MySQL	writes	and	flushes	data	to	disk.	MySQL
provides	options	that	produce	a	tradeoff	between	write	performance	and	durability	(i.e.,	D
of	ACID)	 for	all	 transactions.	The	combination	of	varying	disk	hardware	configurations
such	 as	 Battery	 Backed	 Write	 Cache	 (BBWC)	 RAID	 controllers	 also	 can	 affect
consistency.

•		sync_binlog			When	the	value	of	sync_binlog	is	set	to	one	(1),	the	safest	setting,
events	sync	to	the	binary	log	after	every	commit,	which	provides,	at	most,	one
statement	lost	in	the	event	of	a	mysqld	crash	if	auto-commit	is	enabled.	Setting
sync_binlog	to	a	value	greater	than	the	default,	zero	(0),	allows	MySQL	to	sync	events
at	a	much	slower	rate	(allowing	the	disk	to	not	work	as	much).	Although	setting
sync_binlog	to	1	is	the	slowest	setting	it	can	also	be	sped	up	with	the	use	of	a	Battery
Backed	Write	Cache.

As	stated	earlier,	setting	sync_binlog	to	a	value	of	1	is	the	slowest	but	safest	setting.
This	is	because	InnoDB	will	sync	to	the	log	files	after	every	commit,	which,	in	turn	will
increase	the	amount	of	I/O	on	your	system.	SSD	(Solid	State	Drives)	drives	are
becoming	less	expensive	and	more	prevalent	in	many	installations.	When	using	SSDs
on	your	system	you	may	not	notice	any	performance	degradation	when	setting
sync_binlog	to	a	value	of	1.

•		innodb_flush_log_at_trx_commit			By	default	the	value	of
innodb_flush_log_at_trx_commit	is	1,	meaning	that	the	log	buffer	is	written	out	to
the	InnoDB	log	files	after	every	commit	and	a	flush	disk	operation	is	performed	on	the
log	file.	Setting	the	value	of	innodb_flush_log_at_trx_commit	to	2	will	flush	the	log
buffer	to	the	InnoDB	log	file	at	a	loose	interval	of	once	per	second.	It	is	not
recommended	you	use	the	value	of	0.

CAUTION				Setting	innodb_flush_log_at_trx_commit	to	1	does	not	ensure	full	ACID
compliance.	Also,	setting	this	variable	to	1	is	one	of	the	most	performance	hindering
aspects	of	replication.	For	more	information	please	see,
http://dev.mysql.com/doc/refman/5.5/en/innodb-
parameters.html#sysvar_innodb_flush_log_at_trx_commit.

	
•		innodb_support_xa			This	option	enables	InnoDB	to	run	two-phase	commits	for	XA
transactions	and	is	enabled	by	default.	This	variable	is	essential	for	systems	that	are
using	binary	logging	and	have	more	than	one	thread	changing	InnoDB	data	in	XA
transactions.	Although	enabling	innodb_support_xa	causes	an	extra	disk	flush	for
transaction	preparation	it	is	necessary	to	ensure	that	transactions	are	placed	into	the
binary	log	in	the	correct	order.	The	only	times	you	should	disable	this	variable	is	when
your	system	only	uses	one	(1)	thread	to	add	and	modify	data	or	you	are	not	using
replication.

TIP				Disabling	or	setting	innodb_support_xa	to	0	could	be	beneficial,	performance

http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

wise,	when	restoring	a	SQL	backup	and	log-bin	is	enabled.	This	will	remove	the	need
for	an	extra	fsync().	For	faster	overall	performance	you	can	disable
innodb_support_xa;	however,	you	must	gauge	the	risk	of	possibly	having	inconsistent
data	with	performance.

	
•		innodb_doublewrite			InnoDB	performs	a	sequential	write	and	sync	of	all	data	pages
that	are	being	flushed	by	the	InnoDB	I/O	thread	before	writing	the	data	pages	to	the
appropriate	random	data	file	positions.	If	a	MySQL	crash	occurs,	the	buffer	can	be	used
during	crash	recovery	to	obtain	a	correct	copy	of	data	pages.	This	variable	is	enabled	by
default	(value	of	1).	The	InnoDB	doublewrite	buffer	guarantees	page	recoverability	and
reduces	the	amount	of	fsync	to	disk.

When	this	variable	is	enabled	a	chunk	of	pages	is	written	to	the	doublewrite	buffer
followed	by	an	fsync,	then	pages	are	written	to	the	tablespace	followed	by	an	fsync.	If
innodb_doublewrite	is	disabled	each	page	that	is	written	would	need	to	be	fsync’ed.

•		innodb_flush_method			There	are	three	valid	values,	O_DSYNC	and	O_DIRECT,	along
with	the	default	value	of	fdatasync.	The	overall	goal	for	this	variable	is	to	modify	the
behavior	of	synchronizing	I/O.	POSIX	offers	different	variants	to	synchronize	I/O,
which	are	O_SYNC,	O_DYSNC,	O_RSYNC,	and	O_DIRECT.

Linux	implements	O_SYNC,	but	glibc	maps	O_DSYNC	and	O_RSYNC	to	the	same
value	as	O_SYNC.	O_SYNC	semantics	require	all	meta-data	updates	of	a	write	to	on
disk	when	returning	to	userspace.	O_DSYNC	requires	only	the	file	data	and	meta-data
necessary	to	access	it	again	to	be	on	disk	by	the	time	the	system	call	returns.
O_DIRECT	minimizes	cache	effects	of	the	I/O	to	and	from	a	file	and	makes	an	effort	to
transfer	data	synchronously	but	gives	no	guarantees	that	data	and	necessary	meta-data
are	transferred.

If	the	value	of	innodb_flush_method	is	set	to	O_DSYNC	InnoDB	will	use	O_SYNC
for	the	logs	files	and	fsync	to	flush	data	files.	When	innodb_flush_method	is	set	to
O_DIRECT	InnoDB	uses	O_DIRECT	to	open	data	files	and	fsync	to	flush	both	data
and	log	files.	By	default,	InnoDB	uses	fsync	to	flush	both	data	and	log	files.

Given	that	InnoDB	has	its	own	caching,	i.e.,	innodb_buffer_pool,	setting
innodb_flush_method	to	O_DIRECT	may	help	avoid	double	buffering	between	the
buffer	pool	and	the	filesystem	cache	when	you	are	running	with	hardware	RAID	and
Battery	Backed	Write	Cache.	In	any	case	you	will	need	to	benchmark	your	particular
environment	to	see	what	setting	works	best	with	your	load.

•		innodb_fast_shutdown			Changing	the	behavior	of	InnoDB	upon	shutdown	is	nice	to
have	but	can	be	dangerous.	innodb_fast_shutdown	has	three	valid	values,	0,	1	(the
default),	and	2.	When	the	value	is	set	to	0,	InnoDB	performs	a	slow	shutdown,	meaning
a	full	purge	and	an	insert	buffer	merge	before	shutdown.	With	a	value	of	1,	InnoDB
skips	the	purge	and	merge	and	does	a	fast	shutdown,	making	the	shutdown	process
faster	but	still	safe.	When	the	value	is	set	to	2,	the	most	dangerous,	InnoDB	flushes	its
logs	and	shuts	down	cold,	like	a	crash.	Although	no	committed	transactions	are	lost,	an
InnoDB	crash	recovery	will	occur	during	the	next	startup	and	may	take	more	time	for
the	instance	to	come	online.

•		default_storage_engine			Sometimes	the	ENGINE	of	the	table	can	differ	from
environment	to	environment	(i.e.,	Dev,	Test,	QA,	and	Production).	It	is	important	to	set
the	default_storage_engine	through	all	parts	of	the	environment	identically	to	ensure
the	correct	behavior	of	the	table	throughout	all	points	of	the	product	life	cycle.	In
MySQL	versions	from	3.23	to	5.5.4	the	default	value	is	MyISAM.	In	version	5.5.5	and
higher	the	default	value	is	now	InnoDB.

Binary	Logging
These	 initial	 options	 are	 mandatory	 settings	 for	 the	 configuration	 of	 MySQL	 binary
logging.	 These	 options	 are	 necessary	 to	 ensure	 that	 a	 point	 in	 time	 recovery	 (PITR)	 is
possible.	These	settings	are	also	necessary	to	enable	replication	on	a	master.

•		server_id			With	the	current	implementation	of	replication,	MySQL	needs	to	know	that
it	is	executing	statements	on	unique	servers	so	as	to	not	duplicate	work.	Setting	the
server_id	to	a	unique	value	for	every	slave	in	your	MySQL	topology	will	ensure	that
replicated	data	is	applied	correctly.	If	duplicate	server	ids	are	noticed	in	a	MySQL
topology	a	few	errors	can	occur.	Replication	will	not	start	and	the	slave	will	throw	an
error	stating	the	master	and	slave	hosts	have	the	same	server_id.	If	there	is	more	than
one	slave	host	your	error	may	fill	up	with	the	following	note:

A	good	practice	is	to	set	the	server_id	to	an	integer	based	off	of	the	IP	address	of
the	server.	The	integer	address	of	the	IP	192.168.0.1	is	3232235521	and	can	be	set	as
the	value	of	server_id	as	long	as	the	integer	is	less	than	or	equal	to	4294967295.	For
example:

•		log_bin			This	enables	the	binary	log	and	is	absolutely	necessary	if	you	want	to
replicate	data	and/or	have	point	in	time	backups.	It	is	a	good	practice	to	set	an	absolute
path	and	basename	for	the	value	of	log_bin	to	control	the	name	of	the	binary	logs.	If	no
basename	is	given	MySQL	will	place	the	binlogs	in	the	datadir	with	“host_name-bin”
as	the	basename.

•		log_bin_index			The	log_bin_index	file	holds	the	names	of	binary	logs	acting	as	an
index.	Again,	if	you	do	not	specify	the	filename	and	omit	the	basename	in	log_bin
MySQL	will	use	“host_name-bin.index”	as	the	default	filename.

•		binlog_format			With	this	variable	you	will	be	able	to	control	the	type	of	binary
logging	that	MySQL	uses.	Setting	the	value	to	STATEMENT,	the	default,	will	cause
MySQL	to	use	pure	statement	based	replication	where	all	statements	are	recorded	to	the
binlog.	Setting	the	value	to	ROW	will	cause	MySQL	to	use	pure	row	based	replication
and	log	changed	blocks	to	the	binary	log.	Finally,	if	you	set	binlog_format	to	MIXED,
both	statements	and	blocks	can	be	inserted	into	the	binary	log.

•		binlog_do_db	&	binlog_ignore_db			These	variables	are	used	on	the	master	host.
When	binlog_do_db	is	specified	and	using	statement	based	replication,	the	only
statements	that	will	be	logged	to	the	binary	log	are	those	that	are	preceded	by	the	USE
database_name	statement.	If	more	than	one	database	is	needed	you	will	need	to	use
multiple	lines	in	the	my.cnf	file	because	database	names	can	contain	commas.	Keep	in
mind	that	cross-database	statements	will	not	be	logged	while	a	different	database	is	set
as	default	or	no	database	is	selected.	When	using	row	based	replication	only	changes
belonging	to	the	database	name	are	made	regardless	if	the	USE	statement	is	used.
Adversely,	you	can	use	binlong_ignore_db	to	exclude	databases	from	the	binary	log
on	the	master	host.

If	you	do	choose	to	use	these	variables	it	can	change	the	way	backups	and	recovery
are	performed.	There	are	certain	situations	or	setups	that	these	variables	are	good	for;
however,	you	should	be	aware	that	it	is	possible	to	have	data	inconsistencies	when	used.

•		binlog_cache_size			If	a	MySQL	host	has	binary	logging	enabled,	transactional	storage
engines	are	being	used	(i.e.,	InnoDB)	and	you	are	using	large	transactions,	you	can
increase	the	value	of	binlog_cache_size	to	possibly	increase	performance.	This	cache
is	used	to	hold	changes	to	the	binary	log	during	a	transaction.

By	checking	the	value	of	the	server	status	variable,	binlog_cache_use,	you	can
determine	the	number	of	transactions	that	used	the	binary	log	cache.	The
binlong_cache_disk_use	is	another	server	status	variable	to	check	that	indicates	the
number	of	transactions	that	used	the	binary	log	cache	but	exceeded	the	value	of
binlog_cache_size	and	used	temporary	files	to	store	changes.

•		binlog_stmt_cache_size			This	variable	specifies	the	size	of	the	cache	for	the	binary
log	to	hold	non-transactional	statements	during	transactions	on	a	per	client	basis.	Again,
if	you	are	using	large	non-transactional	statements	within	transactions	you	may	benefit
from	increasing	the	value	on	binlog_stmt_cache_size.	Also,	this	variable	only	matters
if	binary	logging	is	enabled.

The	server	status	variable,	binlog_stmt_cache_use,	specifies	the	number	of	non-
transactional	statements	that	used	the	binary	log	statement	cache.

•		binlog_row_event_max_size			The	value	is	represented	in	bytes	with	a	default	value	of
1024	and	should	be	a	multiple	of	256.	This	variable	represents	the	maximum	size	of	a
row	based	binary	log	event.

MySQL	Replication
MySQL	replication	is	crucial	in	systems	that	have	a	good	backup	and	recovery	plan.	There
are	a	few	variables	that	affect	the	way	MySQL	replication	behaves.	Whether	a	slave	host
is	set	 to	only	replicate	certain	databases,	skip	certain	errors,	and	or	 is	set	up	in	a	unique
chain	topology,	it	is	important	to	know	how	the	following	will	affect	your	setup.

•		relay_log			MySQL	uses	a	numbered	set	of	files	called	relay	logs	to	hold	replicated
database	changes	before	the	SQL	thread	applies	them	to	the	slave.	These	files	are
located	on	the	slave	host	directly	and	are	only	active	on	the	“master”	host	when
log_slave_updates	is	active.	The	relay	log	files	are	numbered	in	sequence	starting

from	000001	and	are	accompanied	by	what	is	referred	to	as	the	relay	index	file,	which
contains	the	names	of	all	relay	files	currently	being	used.	Relay	log	files	are	in	the	same
format	as	MySQL	binary	logs,	making	them	easy	to	read	using	the	mysqlbinlog	client
utility.

Like	the	binary	log,	relay	log	positions	are	represented	by	byte	offsets,	so	if	the
Relay_Log_Pos	is	671	and	the	Relay_Log_File	is	mysqld-relay-bin.000002	then
MySQL	has	read	up	to	671	bytes	of	the	corresponding	file.	The	naming	conventions	for
the	relay	log	file	can	be	altered	with	the	relay-log=[file_name]	and	relay-log-
index=[file_name]	options	in	the	my.cnf	file.	If	either	of	the	preceding	is	absent	in	the
my.cnf	file	the	relay	logs	will	take	their	naming	convention	from	the	pid-file	option,
if	specified.	For	example,	when	a	PID	is	specified	in	the	my.cnf	and	the	relay-log	and
relay-log-index	are	omitted,	the	relay	logs	will	be	mysql_3306-relay-bin.index	and
mysql_3306-relay-bin.000001.	If	relay-log,	relay-log-index,	and	pid-file	are
not	specified,	the	relay	logs	will	default	to	host_name-relay-bin.	nnnnnn	and
host_name-relay-bin.index,	where	host_name	is	the	server	host	and	nnnnnn
represents	the	sequential	file	numbering.

•		relay_log_index			The	relay_log_index	system	variable	holds	the	names	of	all	the
relay	logs	for	quick	lookup.

•		replicate_do_db	&	replicate_ignore_db			These	variables	are	used	on	the	slave	host
and	act	much	like	binlog_do_db	and	binlog_ignore_db	do	on	the	master	host.	If	a
slave	is	set	up	using	replicate_do_db	and	using	statement	based	replication	only,
statements	that	have	a	preceding	USE	database_name	statement	will	be	applied	to	the
slave	host.	If	row	based	replication	is	used,	a	statement	with	a	qualifying
database_name.table_name	will	be	applied	to	the	slave	host.	Adversely,	if	you	specify
replicate_ignore_db,	all	transactions	relating	to	the	database	specified	will	not	be
applied	to	the	slave	host.

•		slave_skip_errors			Replication	error	codes	can	be	skipped	automatically	when
slave_skip_errors	is	specified.	Normally	replication	will	stop	when	the	SQL	thread
encounters	an	error;	however,	this	variable	will	cause	the	SQL	thread	to	skip	those
errors	listed	in	the	variable	value.

It	is	important	to	mention	that	it	is	not	always	a	good	idea	to	specify	a	value	for
slave_skip_errors,	given	the	implications	of	data	drift	and/or	data	integrity.

•		slave_exec_mode			There	are	two	valid	values	for	slave_exec_mode,	IDEMPOTENT
and	STRICT.	This	variable	is	used	for	replication	conflict	resolution	and	error	checking.
If	the	value	is	set	to	IDEMPOTENT	(default	for	NDB),	the	slave	will	not	error	out
during	duplicate	key	or	no	key	found	errors.	The	IDEMPOTENT	value	is	useful	with	a
system	that	is	set	up	in	a	multi-master	or	circular	replication	fashion.	When	the	value	is
set	to	STRICT,	the	default,	replication	will	stop	on	duplicate	key	and	no	key	found
errors.

•		log_slave_updates			When	log_slave_updates	is	set	to	true	and	binary	logging	is
turned	on,	the	slave	host	will	write	all	replicated	changes	to	its	own	binary	log.	This
option	is	used	to	chain	multiple	nodes	together	through	replication.	For	example,	if	you
have	three	servers	(A,	B,	and	C)	and	want	to	connect	them	in	a	chain	you	would	use

log_slave_updates	on	B.	B	would	replicate	from	A,	and	C	from	B,	forming	a	chain,
(A	->	B	->	C).

Recovery
InnoDB	has	provided	the	ability	to	auto	recover	after	a	crash	or	detecting	errors.	In	later
releases,	version	5.0,	MyISAM	is	now	able	to	run	check	and	recover	automatically	when
an	 error	 or	 crash	 is	 detected.	 There	 are	 four	 system	 variables	 that	 need	 to	 be	 in	 every
administrator#x2019s	arsenal	when	dealing	with	InnoDB	or	MyISAM	corruption.

•		innodb_force_recovery			One	would	use	innodb_force_recovery	to	recover	InnoDB
tables	that	have	been	corrupted	on	the	page	level.	Setting	this	variable	to	a	value	greater
than	0	(the	default)	will	allow	an	administrator	to	start	the	MySQL	server	and	run	a
SELECT	…	INTO	OUTFILE	or	mysqldump.	Corruption	may	cause	InnoDB	to	crash,	assert,
or	roll	forward	recovery	to	crash	from	InnoDB	background	threads	or	when	issuing	a
SELECT	*	FROM	table_name	statement.	Innodb_force_recovery	is	used	to	prevent
InnoDB	background	operations	from	running	so	you	are	able	to	start	the	server	and
dump	out	your	data.

There	are	seven	different	levels	of	innodb_force_recovery,	0–6;	however,	it	should
be	noted	that	when	setting	the	value	past	4,	most	of	your	data	might	be	irrecoverable.
InnoDB	prevents	INSERT,	UPDATE,	and	DELETE	operations	when	the	value	of
innodb_force_recovery	is	greater	than	0.	The	following	is	a	list	of	what	the	different
levels	accomplish.

•		(DEFAULT)			A	normal	startup	without	a	forced	recovery.

•		(SRV_FORCE_IGNORE_CORRUPT)			Allows	the	server	to	run	even	if	it	detects	a
corrupt	page.	This	will	allow	InnoDB	to	jump	over	corrupt	index	records	and	pages
when	running	SELECT	*	FROM	table_name.

•		(SRV_FORCE_NO_BACKGROUND)			If	a	crash	occurs	during	the	purge	operation,
setting	the	value	to	2	would	prevent	the	main	thread	from	running.

•		(SRV_FORCE_NO_TRX_UNDO)			Ensures	that	transaction	rollbacks	do	not	occur
after	recovery.

•		(SRV_FORCE_NO_IBUF_MERGE)			Table	statistics	are	not	calculated	and	no	insert
buffer	merge	operations	occur.

•		(SRV_FORCE_NO_UNDO_LOG_SCAN)			Skips	looking	at	InnoDB	undo	logs	upon
startup	and	treats	incomplete	transactions	as	committed.

•		(SRV_FORCE_NO_LOG_REDO)			Ensures	that	the	log	roll-forward	is	not	run	in
connection	with	recovery.

•		myisam_recover			There	are	four	values	you	can	use	for	myisam_recover:	DEFAULT,
BACKUP,	FORCE,	and	QUICK.	Furthermore	you	can	use	any	combination	of	the
preceding	values	if	you	separate	them	by	commas.	If	myisam_recover	is	enabled
MySQL	will	check	if	a	MyISAM	table	is	marked	as	crashed	or	was	not	closed	properly
every	time	the	table	is	opened.	The	following	is	a	list	describing	what	each	of	the	values
does:

•		DEFAULT			Recover	without	backup,	forcing,	or	quick	checking.

•		BACKUP			Run	a	backup	of	the	table	if	the	data	file	was	changed	during	recovery.
In	this	case	a	backup	of	table_name.MYD	will	be	saved	as	table_name-
datetime.BAK.

•		FORCE			Runs	a	recovery	even	if	more	than	one	row	of	data	would	be	lost	from
the	.MYD	file.

•		QUICK			If	there	are	no	deleted	blocks,	rows	in	the	table	will	not	be	checked.

When	using	MyISAM	and	you	want	to	recover	from	most	problems	automatically,
you	should	use	the	options	BACKUP,	FORCE	as	the	values	for	myisam_recover.	It	is
important	to	note	that	the	server	will	write	a	note	to	the	error	log	before	the	server
automatically	repairs	the	table.

•		myisam_max_sort_file_size			The	default	setting	for	myisam_max_sort_file_size	is
2GB	and	represents	the	max	allowed	file	size	when	re-creating	a	MyISAM	index	during
a	REPAIR	TABLE,	ALTER	TABLE,	or	LOAD	DATA	INFILE.	If	the	size	of	the	index
is	greater	than	the	value	of	myisam_max_sort_file_size	the	key	cache	is	used	instead.
Keep	in	mind	that	the	space	must	be	available	on	the	filesystem	where	the	original
index	file	is	located.

•		myisam_sort_buffer_size			This	setting	specifies	the	size	of	the	buffer	that	is	allocated
when	sorting	MyISAM	indexes	during	a	REPAIR	TABLE	or	when	creating	indexes.
The	max	value	on	32	bit	systems	is	4GB	but	can	be	greater	on	64	bit	systems.

Conclusion
As	 stated	 at	 the	 beginning	 of	 the	 chapter,	 there	 are	 over	 300	 different	 configuration
variables.	It	is	very	important	to	know	how	a	MySQL	server	has	been	configured	in	order
to	streamline	backups	and	recovery;	furthermore,	it	is	important	to	know	how	the	MySQL
server	 will	 act	 in	 the	 event	 of	 a	 crash	 given	 the	 storage	 engine(s)	 used.	 Given	 all	 the
aforementioned	variables	the	correct	settings	can	only	be	determined	by	the	load	of	your
unique	 system.	That	 said,	please	make	 sure	 to	benchmark	with	your	particular	 load	and
make	sure	 to	practice	disaster	recovery	on	a	regular	basis	so,	when	the	 time	comes,	you
and	your	business	know	what	to	expect.

7
Disaster	Scenarios

	
“Disaster	is	inevitable.	Total	failure	is	avoidable.”

Ronald	Bradford	&	Paul	Carlstroem	–	2011

Disaster	happens.	This	is	generally	when	you	are	not	expecting	or	prepared.	Having	an
idea	 of	what	 sort	 of	 problems	may	occur	 that	 require	 a	 level	 of	 recovery	will	 help	 you
understand	how	your	backup	and	recovery	strategy	plan	will	succeed.	Understanding	these
various	 situations	 and	 the	 many	 other	 possible	 cases	 can	 help	 in	 the	 testing	 and
verification	steps	implemented	for	your	business	information.	Disaster	recovery	(DR)	is	a
requirement	in	the	planning	for	a	high	availability	(HA)	solution.	In	many	environments
clear	 procedures	 and	 architectural	 design	 is	 in	 place	 enabling	 growth	more	 seamlessly.
Unfortunately	the	same	is	not	said	for	disaster	preparedness,	the	poor	cousin.	Improving,
refining,	and	testing	various	disaster	recovery	situations	are	often	left	to	a	crisis	situation
where	costly	mistakes	can	occur.

In	this	chapter	we	will	cover	several	situations	including:

•		Actual	business	ending	disaster	situations

•		Common	MySQL	disaster	situations

•		MySQL	recovery	tool	options

•		Managing	the	human	factor

Handling	a	MySQL	Disaster
A	backup	 is	only	as	good	as	 the	ability	 to	perform	a	 successful	 recovery.	Unfortunately
performing	a	recovery	 in	a	controlled	situation	 is	never	 the	case.	The	need	 to	perform	a
disaster	 recovery	 is	 always	 at	 an	 unpredictable	 time	 and	 often	 includes	 other	 factors	 or

cascading	failures.	An	action	in	one	situation	may	be	critical	to	protect	against	further	data
loss,	while	the	same	action	in	a	different	situation	will	lead	to	permanent	data	loss.	There
is	no	instruction	manual	for	every	situation;	foreknowledge	of	a	wide	range	of	situations
and	 practice	 of	 these	 is	 your	 best	 asset	 in	 the	 decision	making	 process.	 The	 following
examples	showcase	some	typical	and	less	typical	disasters.	A	number	of	common	and	less
common	 disaster	 situations	 are	 provided	 to	 enable	 the	 preparation	 and	 testing	 for	 these
situations.	 Some	 of	 these	 disaster	 situations	 are	 completely	 avoidable	with	 pre-emptive
procedures.

With	over	20	years	of	IT	experience,	 the	author	has	been	involved	in	averting	serious
business	loss	in	a	number	of	situations	and	varying	technologies.	He	is	also	not	immune	to
having	 caused	 a	 few	 minor	 disasters	 as	 a	 result	 of	 human	 error.	 Learning	 from	 the
mistakes	 of	 others	 is	 a	 critical	 step	 in	 a	 database	 administrator	 (DBA)	 or	 system
administrator	(SA)	mastering	their	respective	fields.	This	book	hopes	to	outline	the	tools
for	 creating	 an	 appropriate	 backup	 and	 recovery	 strategy	 for	 your	 specific	 environment
and	 provide	 invaluable	 tips	 and	 information	 to	 avoid	making	 the	mistakes	 others	 have
encountered.

In	 fact,	 during	 the	 final	 production	 stage	 of	 this	 book,	 two	 different	 disasters	 were
encountered	working	with	two	separate	clients	on	consecutive	days.	Both	situations	were
then	 added	 to	 this	 chapter	 as	 unique	 examples.	 In	 both	 cases	 the	 final	 outcome	 was
positive,	but	the	risk	of	not	being	prepared	is	that	your	business	may	suffer	a	serious	if	not
fatal	situation.	You	never	want	this	to	occur	on	your	watch	and	be	a	line	item	you	try	to
avoid	mentioning	on	your	resume	for	the	next	job	opportunity.

Notable	MySQL	Disasters
For	every	disaster	that	is	discussed	in	this	chapter,	many	more	exist	that	are	not	known	or
spoken	of.	Rarely	do	organizations	advertise	a	data	failure	that	resulted	in	loss	of	revenue,
users,	creditability,	or	 that	resulted	in	a	 total	failure	of	 the	business.	The	following	are	a
few	very	public	examples	of	situations	with	varying	levels	of	disaster	and	outcome.

DISCLAIMER:	The	 author	 of	 this	 book	 is	 repeating	 knowledge	 that	 is	 provided	 and
generally	 available	 online.	 These	 examples	 demonstrate	 possible	 situations	 and	 results
regardless	of	the	validity	of	the	information	in	the	source	story.

Magnolia
Ma.gnolia.com	 was	 a	 social	 bookmarking	 site	 that	 shut	 down	 due	 to	 a	 MySQL	 data
disaster	in	2009.	The	public	information	about	the	problem	includes	a	one-man	operation,
limited	 equipment	 redundancy,	 a	 faulty	 backup	 system,	 a	 hard	 drive	 failure,	 and	 an
apparent	inability	for	a	specialist	to	recover	any	data.

A	quote	from	a	 listed	reference,	“A	clear	 lesson	for	users	 is	not	 to	assume	that	online
services	have	lots	of	staff,	lots	of	servers	and	professional	backups,	and	to	keep	your	own
copies	of	 your	data,	 especially	on	 free	 services,”	 highlights	 that	 you	 should	not	 assume
your	data	is	safe.	If	you	have	the	ability	to	obtain	a	copy	of	your	own	recorded	data,	then
do	 it.	 In	 the	 case	with	Magnolia	 they	 provided	APIs	 to	 download	 all	 of	 your	 recorded
personal	data.

From	a	different	reference	is	the	comment	“Outsource	your	IT	infrastructure	as	much	as
possible	 (e.g.,	AWS,	AppEngine,	etc.).”	This	 is	not	a	wise	practice	 to	blindly	 trust	your
information	 with	 a	 third	 party.	 How	 are	 you	 sure	 their	 practices	 are	 fully	 functional,
secure,	 and	 result	 in	 a	 timely	 recovery?	 You	 should	 always	 keep	 your	 important	 and
critical	 data	 close	 to	 physical	 control.	 The	 loss	 of	 control	 is	 a	 potential	 career	 limiting
move	if	your	responsibility	is	to	ensure	the	integrity	and	availability	of	information.

CAUTION			Any	organization	that	provides	third	party	services	for	your	backup	and
recovery	strategy	and	that	states	certain	characteristics	of	data	availability	and
recovery	is	not	a	guarantee	until	it	can	be	proven	and	verified.

	
The	following	lessons	can	be	learned	from	this	experience:

1.		Adequate	hardware	redundancy	is	important.

2.		Testing	the	backup	and	recovery	process	is	important.

3.		A	particular	hardware	failure	may	not	mean	all	data	is	lost.

4.		If	data	you	store	on	an	external	website	is	important,	make	your	own	backup.

5.		Being	upfront	with	your	customers	during	a	situation	is	a	sound	business	practice.

References

•		http://www.datacenterknowledge.com/archives/2009/02/19/magnolia-data-is-gone-for-
good/

•		http://www.wired.com/epicenter/2009/01/magnolia-suffer/

•		http://www.transparentuptime.com/2009/02/magnolia-downtime-saas-cloud-rrust.html

Couch	Surfing
The	 information	 obtained	 from	 the	 shutdown	 of	 Couch	 Surfing	 reads	 like	 a	 story	 that
should	be	told	to	every	database	administrator	and	decision	maker	for	any	company	that
cares	 about	 their	 data.	 The	 TechCrunch	 article	 title	 sums	 the	 risk	 to	 any	 organization,
“CouchSurfing	Deletes	Itself,	Shuts	Down.”

This	environment	contained	both	MyISAM	and	InnoDB	data.	There	was	apparently	no
binary	 logging	 enabled,	 and	 the	 backup	 procedure,	 which	 had	 been	 failing	 for	 over	 a
month,	was	not	performing	a	remote	sync	of	all	important	MySQL	data	files.	Even	if	the
rsync	 backup	 process	 was	 operating	 correctly,	 a	 restore	 process	 would	 still	 result	 in	 a
corrupted	 database,	 as	 the	 rsync	 of	 a	 running	 database	 is	 not	 a	 consistent	 view	 of	 all
MySQL	data.	It	took	a	hard	drive	crash	for	the	situation	of	an	incomplete	backup	process
to	become	apparent	and	destroy	 the	dream	of	an	entrepreneur	who	had	contributed	over
three	years	to	this	project.

The	following	lessons	can	be	learned	from	this	experience:

1.		Disaster	is	inevitable;	be	prepared.

2.		Any	level	of	sane	production	system	availability	in	MySQL	starts	with	two	servers.
This	uses	MySQL	replication,	and	the	all	important	binary	logging.

http://www.datacenterknowledge.com/archives/2009/02/19/magnolia-data-is-gone-for-good/
http://www.wired.com/epicenter/2009/01/magnolia-suffer/
http://www.transparentuptime.com/2009/02/magnolia-downtime-saas-cloud-rrust.html

3.		Daily	verification	of	your	backup	process	should	be	one	of	the	top	daily	tasks	of	your
administrator.	Simple	metrics	such	as	the	size	of	your	database,	and	the	size	of	your
backup,	and	a	check	of	change	over	time	are	simple	red	flags.

4.		Test	and	verify.

References

•		http://techcrunch.com/2006/06/29/couchsurfing-deletes-itself-shuts-down/

•		http://forums.mysql.com/read.php?28,99328,99328#msg-99328

Journal	Space
In	 2009,	 a	 six-year-old	 blog	 hosting	 website	 ceased	 operations	 due	 to	 all	 data	 being
destroyed	and	with	no	appropriate	backup	in	place.

Information	from	articles	indicates	that	data	was	managed	on	a	RAID-1	configuration.
While	RAID-1	provides	a	level	of	disk	mirroring	to	support	a	hardware	failure	in	one	of
two	drives,	this	is	not	a	total	backup	solution.	Disk	mirroring	supports	one	situation	when
there	is	a	failure	of	one	drive.	Due	to	the	hardware	or	software	implementation	of	RAID-1,
an	 action	 applied	 on	 one	 disk	 is	 mirrored	 to	 the	 second	 disk	 under	 normal	 operating
procedures.	If	a	system	administrator	physically	removed	the	database	either	intentionally
or	unintentionally,	the	deletion	is	applied	to	the	mirrored	disk.	The	purpose	of	mirroring	is
to	have	an	identical	copy	of	the	original	on	the	same	server	host.	An	attempt	to	recover	the
data	that	was	apparently	deleted	was	also	unsuccessful.	Data	recovery	in	this	situation	is
usually	possible	providing	information	is	not	overwritten.

CAUTION			RAID	is	not	a	data	backup	solution.	RAID	provides	a	level	of	redundancy	for
only	one	type	of	physical	disk	failure.	RAID	is	an	important	first	step	in	data	protection
only.

	
While	backups	apparently	existed	for	the	application	code	base,	this	is	useless	without

an	underlying	source	of	data	held	in	the	database.

The	following	lessons	can	be	learned	from	this	experience.

1.		Hardware	redundancy	is	not	an	adequate	backup	strategy.

2.		Secure	offsite	backups	are	necessary	if	your	data	is	critical	for	business	viability.

3.		Data	loss	and	corruption	can	easily	occur	as	a	result	of	human	factors.

4.		If	the	data	you	store	on	an	external	website	is	important,	make	your	own	backup.

References

•		http://blog.backblaze.com/2009/01/05/journal-space-shuts-down-due-to-no-backups/

•		http://blog.bismuth.com/?p=275

•		http://idm.net.au/blog/006734-blogging-community-destroyed-lack-backup

Percona
Even	 industry	 leaders	 in	 the	 field	 of	 MySQL	 are	 not	 immune	 to	 a	 disaster	 scenario.

http://techcrunch.com/2006/06/29/couchsurfing-deletes-itself-shuts-down/
http://forums.mysql.com/read.php?28,99328,99328#msg-99328
http://blog.backblaze.com/2009/01/05/journal-space-shuts-down-due-to-no-backups/
http://blog.bismuth.com/?p=275
http://idm.net.au/blog/006734-blogging-community-destroyed-lack-backup

Percona,	 the	 largest	 independent	 organization	 that	 provides	 MySQL	 support	 services,
reported	 a	 “catastrophic	 failure	 of	 three	 disks	 on	 our	 primary	web	 server”	 in	 2011.	As
mentioned	in	an	earlier	example,	being	open	with	your	customers	regarding	the	recovery
process	is	as	important	as	correcting	the	problem.	A	cascading	series	of	issues	including	a
disk	 failure,	 a	 disk	 controller	 failure,	 and	 then	 data	 corruption	 due	 to	 configuration
highlight	that	being	prepared	for	more	than	one	situation	is	always	necessary.	The	delay	in
the	recovery	time	was	also	attributed	to	staff	changes.

As	 reported,	 “no	 customer	 data	 was	 compromised,”	 and	 some	 services,	 including
customer	 service	 activities,	 were	 not	 affected.	 These	 references	 indicate	 that	 sound
architectural	practices	for	a	system	failure	of	varying	components	do	not	necessarily	result
in	total	system	unavailability.

This	example	is	included	to	indicate	that	compounding	problems	do	occur	and	that	there
are	 ways	 to	 address	 potential	 problems.	 The	 article	 also	 highlights	 that	 due	 to	 a
configuration	setting,	data	corruption	occurred	after	a	series	of	unexpected	events.

CAUTION			A	disaster	does	not	always	match	your	prepared	disaster	recovery	situations
when	one	component	or	system	fails.	A	disaster	can	easily	result	in	multiple	cascading
failures	causing	unexpected	effects.

	
The	outcome	of	any	disaster	is	an	acknowledgment	for	an	organization	to	learn	from	the

experience.	 The	 following	 quote	 is	 an	 important	 message	 that	 describes	 the	 business
decisions	resulting	from	this	experience	and	is	a	great	lesson	for	all	readers.	“The	recovery
lessons	 learned	 for	us	have	been	considerable	and	will	be	 incorporated	 into	our	 internal
processes.	Availability	and	performance	of	all	of	our	websites	is	a	top	priority.”

The	following	lessons	can	be	learned	from	this	experience:

1.		A	disaster	can	easily	lead	to	more	than	one	problem	occurring	at	one	time.

2.		A	documented	process	and	knowledge	by	additional	resources	are	important	for	timely
resolution.

3.		Disaster	preparedness	is	a	continual	improvement	process.

Reference

•		http://www.mysqlperformanceblog.com/2011/07/19/server-outages-at-percona/

Other	Notable	Data	Disasters
For	additional	reference	material	in	the	type	of	disasters	that	can	occur,	the	following	non-
MySQL	 specific	 examples	 show	 failures	 with	 cloud	 based	 technologies,	 open	 source
providers,	and	even	a	bank.

The	Sidekick/Microsoft	Data	Loss
Disasters	 happen	 with	 large	 organizations.	 Danger,	 a	 $500	 million	 acquisition	 by
Microsoft,	 had	 no	 backups	 for	 the	 users	 of	 the	 Sidekick	 phone.	 All	 information	 about
contacts,	 photos,	 calendars,	 etc.,	 for	 potentially	 hundreds	 of	 thousands	 of	 devices	 was
stored	 in	 the	cloud.	Official	 statements	of	 a	 serious	 failure	 included	“likely	 lost	 all	user

http://www.mysqlperformanceblog.com/2011/07/19/server-outages-at-percona/

data	 that	 was	 being	 stored	 on	 Microsoft’s	 servers	 due	 to	 a	 server	 failure…
Microsoft/Danger	is	describing	the	likelihood	of	recovering	the	data	from	their	servers	as
extremely	low.”	Later	reports	claimed	that	the	company	failed	to	make	a	backup	before	a
Storage	Area	Network	(SAN)	upgrade,	and	when	this	was	botched,	the	result	was	loss	of
all	data.

An	 important	 question	 in	 this	 situation	 is	 not	 “Why	was	 there	 no	backup?”,	 but	why
executive	management	did	not	ask	“What	confirmation	do	we	have	 in	our	business	 that
our	data	is	safe?”	Executives	should	also	be	asking	in	any	business	“How	do	we	recover
from	a	disaster?”	and	“When	was	the	last	time	we	did	this?”

TIP			A	decision	maker	of	any	organization	should	be	paranoid	with	what	could	occur
during	a	data	loss	situation	while	having	full	knowledge	of	what	procedures,	practices,
and	drills	are	in	place	to	protect	data	from	ever	being	lost.

	
References

•		http://techcrunch.com/2009/10/10/t-mobile-sidekick-disaster-microsofts-servers-
crashed-and-they-dont-have-a-backup/

•		http://www.zdnet.com/blog/btl/the-t-mobile-microsoft-sidekick-data-disaster-poor-it-
management-going-mainstream/25777

•		http://gizmodo.com/5378805/t+mobile-sidekick-outrage-your-datas-probably-gone-
forever

Github
One	 of	 the	 most	 popular	 repositories	 of	 source	 code	 version	 control	 for	 open	 source
projects	 and	 many	 commercial	 companies	 suffered	 a	 severe	 database	 failure.	 Using
references	from	the	official	blog	post:	“Due	to	the	configuration	error	GitHub’s	production
database	was	destroyed	then	recreated.	Not	good”	and	“Worse,	however,	 is	 that	we	may
have	 lost	 some	 data	 from	 between	 the	 last	 good	 database	 backup	 and	 the	 time	 of	 the
deletion.	Newly	 created	 users	 and	 repositories	 are	 being	 restored,	 but	 pull	 request	 state
changes	and	similar	might	be	gone”	we	get	a	picture	that	adequate	backup	and	recovery
procedures	were	not	in	place.

However,	the	true	cause	of	the	problem	was	actually	a	configuration	error.	This	was	due
to	a	 test	environment	co-located	on	a	production	environment,	and	most	 likely	a	 lack	of
appropriate	 user	 security	 settings	 that	 should	 be	 different	 between	 environments.	 The
result,	a	perfectly	normal	test	practice	of	dropping	and	re-creating	the	database,	worked	as
designed;	it	was	just	never	designed	to	be	executed	on	a	production	situation.

TIP			Do	not	run	development	or	test	environments	on	the	same	machine	as	your
production	environment.	A	production	environment	should	always	have	a	different	user
account	and	password	for	management	than	non-production	environments.

	
Reference

•		https://github.com/blog/744-today-s-outage

http://techcrunch.com/2009/10/10/t-mobile-sidekick-disaster-microsofts-servers-crashed-and-they-dont-have-a-backup/
http://www.zdnet.com/blog/btl/the-t-mobile-microsoft-sidekick-data-disaster-poor-it-management-going-mainstream/25777
http://gizmodo.com/5378805/t+mobile-sidekick-outrage-your-datas-probably-gone-forever
https://github.com/blog/744-today-s-outage

TD	Bank
Of	 all	 the	 industries,	 you	would	 expect	 that	 banks	would	have	 iron	 clad	procedures	 for
management	of	customers’	bank	account	information.	In	this	botched	upgrade,	when	two
systems	were	merged	into	one,	customers	found	out	the	frustration	of	not	having	accurate
information	and	not	being	able	to	access	their	cash.	System	interruptions	and	inaccessible
accounts	were	prolonged	for	days	and	were	compounded	by	batch	processing	operations
causing	 additional	 data	 corruption.	 This	 upgrade	 failure	 shows	 that	 adequate	 backups
before	an	upgrade,	and	an	executable	recovery	process	in	the	event	of	a	failed	upgrade,	are
simple	steps	that	can	be	tested	before	a	production	migration.

References

•		http://www.zdnet.com/blog/btl/td-bank-botches-it-system-consolidation-customer-
havoc-ensues/25321

•		http://www.bizjournals.com/philadelphia/stories/2009/09/28/daily30.html

•		http://www.olegdulin.com/2009/10/this-weeks-tdbank-debacle-and-takeaways-for-it-
leaders.html

•		http://www.nbcphiladelphia.com/news/business/Computer-Glitch-Causes-Problems-at-
TD-Bank-63103572.html

General	MySQL	Disaster	Situations
The	 lack	 of	 basic	MySQL	 configuration	 requirements	 is	 a	 common	 cause	 of	 avoidable
disasters.	These	situations	that	will	be	discussed	include:

1.		Not	using	MySQL	binary	logging

2.		Using	a	single	MySQL	server	in	production

3.		Using	appropriate	MySQL	security

Other	 types	 of	 common	 and	 avoidable	 disasters	 are	 the	 result	 of	 a	 human	 resource
deleting	something.	What	do	you	do	in	these	situations?

1.		Deleting	MySQL	data

2.		Deleting	the	MySQL	InnoDB	data	file

3.		Deleting	MySQL	binary	logs

Binary	Logging	Not	Enabled
Using	MySQL	 in	 a	 production	 system	with	 only	 nightly	 backups	 and	 not	 point	 in	 time
capabilities	 is	 not	 a	 sound	 business	 practice.	With	 a	 particular	 customer’s	 e-commerce
operation	 that	 included	 sales	 of	 several	 million	 dollars	 daily	 and	 large	 transactions
exceeding	$100,000,	a	loss	of	any	successful	transaction	would	have	a	business	impact.	A
loss	 of	 all	 data	 from	 the	 last	 successful	 backup	 would	 have	 a	 significant	 and	 serious
business	effect.

If	any	data	was	accidentally	deleted,	if	the	server	had	any	hardware	failure	that	simply
resulted	in	downtime	of	the	website	for	a	day,	or	any	serious	disk	failure	resulting	in	data

http://www.zdnet.com/blog/btl/td-bank-botches-it-system-consolidation-customer-havoc-ensues/25321
http://www.bizjournals.com/philadelphia/stories/2009/09/28/daily30.html
http://www.olegdulin.com/2009/10/this-weeks-tdbank-debacle-and-takeaways-for-it-leaders.html
http://www.nbcphiladelphia.com/news/business/Computer-Glitch-Causes-Problems-at-TD-Bank-63103572.html

loss	occurs,	it	would	have	resulted	in	serious	financial	loss.	Under	any	of	these	situations,
the	lack	of	binary	logging	makes	it	impossible	to	retrieve	critical	lost	information.

For	any	production	system,	binary	logging	is	critical	to	enable	the	possible	recovery	of
any	 data	 following	 a	 nightly	 backup.	While	 not	 adequate	 to	 support	 different	 types	 of
disaster,	the	lack	of	this	essential	setting	is	a	common	failure	for	a	new	business.

Chapter	 2	 describes	 the	 MySQL	 configuration	 settings	 necessary	 to	 enable	 MySQL
binary	logging.

NOTE			No	binary	logging	means	no	point	in	time	recovery,	period.

	

A	Single	Server
A	single	MySQL	database	with	nightly	backups	and	binary	 logging	 is	 a	 sound	business
practice	that	can	provide	adequate	data	recovery.	Unfortunately,	in	a	production	situation
even	with	the	ability	to	perform	a	successful	recovery,	the	absence	of	access	to	data	such
as	in	a	read	only	mode,	or	access	to	hardware	to	perform	a	recovery,	is	a	primary	loss	of
credibility	with	your	existing	customers	while	your	site	is	unavailable.

Every	minute	of	time	taken	to	provision	or	re-purpose	a	server	and	install	and	configure
the	necessary	technology	stack	is	loss	of	business	reputation	and	business	sales.

Any	 MySQL	 infrastructure	 in	 a	 production	 system	 should	 always	 start	 with	 two
database	 servers.	MySQL	 replication	 is	 very	 easy	 to	 set	 up	 and	 configure.	The	MySQL
Reference	 Manual	 provides	 a	 detailed	 guide	 at
http://dev.mysql.com/doc/refman/5.5/en/replication-howto.html.	 Chapter	 4	 describes	 the
benefits	of	 replication	 for	backup	and	 recovery.	The	next	book	 in	 the	Effective	MySQL
series	titled	Advanced	Replication	Techniques	will	also	cover	replication	in	greater	detail.

Appropriate	MySQL	Security
The	 greatest	 cause	 of	 system	 administrator	 related	 problems	 with	MySQL	 is	 a	 lack	 of
appropriate	security	permissions	on	underlying	MySQL	data.	It	 is	recommended	that	the
MySQL	data	directory,	as	defined	by	datadir,	and	the	binary	log	directory,	as	defined	by
log-bin,	have	permissions	only	for	the	mysqld	process,	generally	the	mysql	OS	user.	For	a
common	 Linux	 distribution	 installation,	 the	 following	 permissions	 would	 be	 used	 for
optimal	security:

	
Depending	 on	 the	 installation,	 the	 MySQL	 data	 directory	 may	 not	 reside	 in

/var/lib/mysql.

CAUTION			Some	distributions	place	the	socket	file	in	the	data	directory.	This	has	to	be
moved	to	a	world	readable	directory	in	order	for	MySQL	to	function	normally	with	a
secure	data	directory.

	
Application	Security

http://dev.mysql.com/doc/refman/5.5/en/replication-howto.html

The	greatest	cause	of	application	developer	related	problems	with	MySQL	is	 the	lack	of
appropriate	permissions	and	privileges	for	user	accounts	that	can	modify	data,	structure,	or
configuration	 settings.	A	MySQL	 environment	where	 an	 application	 user	 is	 given	ALL
PRIVILEGES	 on	 all	 objects	 (i.e.,	 *.*)	 can,	 for	 example,	 disable	 binary	 logging,	which
would	 affect	 any	MySQL	 slaves,	 and	 then	 possibly	 your	 defined	 backup	 and	 recovery
strategy.	There	are	many	additional	reasons	why	this	blanket	privilege	can	cause	issues	in
a	production	environment.

More	 information	 on	 the	 effects	 of	 GRANT	 ALL	 ON	 *.*	 can	 be	 found	 at
http://ronaldbradford.com/blog/why-grant-all-is-bad-2010-08-06/.

Appropriate	MySQL	Configuration
Several	 MySQL	 configuration	 settings	 can	 lead	 to	 data	 integrity	 issues	 that	 can	 cause
undesirable	situations	with	production	data.

Read	Only	Replication	Slaves

The	most	common	problem	is	not	setting	a	MySQL	slave	to	read	only	with	the	read_only
configuration	 option.	Without	 this	 option,	 an	 application	 that	 incorrectly	 connects	 to	 a
replicated	 copy	 of	 the	 data	 has	 the	 ability	 to	modify	 this	 data.	 The	 first	 impact	 is	 data
inconsistency,	 also	 referred	 to	 as	 data	 drift.	 The	 second	 impact	 may	 cause	 MySQL
replication	to	fail	in	the	future,	which	can	lead	to	further	complications	for	data	correction
and	slave	usage.

To	 reiterate	 the	 point	 in	 the	 previous	 section	 regarding	 the	 importance	 of	 applicable
application	security,	the	following	example	demonstrates	the	potential	disastrous	effects.

Two	 MySQL	 users	 are	 defined,	 a	 user	 with	 the	 appropriate	 permissions	 for	 an
application,	and	 then	a	user	with	all	privileges.	These	users	are	defined	on	a	 replication
slave	that	is	correctly	configured	as	read	only.

	
This	 one	 example	 should	 highlight	 the	 importance	 of	 appropriate	 user	 privileges	 for

application	users.

SQL	Server	Modes
The	lack	of	an	appropriate	SQL	server	mode	with	the	sql_mode	configuration	option	can
easily	cause	data	 integrity	 issues	 that	when	not	adequately	monitored	by	 the	application
can	result	in	disastrous	results	that	may	not	be	detected	for	some	time.	The	following	are
simple	examples	to	show	that	data	loss	can	occur	without	error	in	MySQL	when	operating

http://ronaldbradford.com/blog/why-grant-all-is-bad-2010-08-06/

with	default	SQL	server	mode	settings:

	
Everything	may	appear	correct;	however,	the	final	name	was	actually	silently	truncated

by	MySQL	without	producing	an	error.

	
In	this	example,	the	0.005	rounding	error	could	be	great	for	your	portfolio,	as	it	rounded

up:

	
In	this	example,	an	invalid	date	is	modified	causing	the	data	that	was	entered	to	be	lost,

and	a	zero	data	value	is	permissible.

Fortunately,	 setting	 a	 correct	SQL	server	mode	within	MySQL	can	easily	 solve	 these
data	integrity	issues.	For	example:

	
TIP				One	of	the	greatest	sources	of	creeping	data	corruption	that	goes	undetected	and	is
almost	impossible	to	recover	is	due	to	the	MySQL	default	SQL	server	mode.	One
configuration	option,	when	set	at	the	creation	of	a	new	MySQL	instance,	can	provide
great	relief	for	future	data	integrity.

	
CAUTION				The	modification	of	the	SQL	server	mode	on	an	existing	production	system
will	generally	result	in	unexpected	errors,	especially	with	date	management.	When
using	certain	recommended	date	settings,	issues	may	also	not	present	as	problems	until
table	alterations	are	applied.

	

Deleting	MySQL	Data
“I	have	deleted	all	the	data	in	a	table.	What	do	I	do	now?”	In	this	situation	with	a	single
server,	a	database	recovery	is	generally	needed.	In	a	MySQL	replicated	environment	it	is
likely	the	destructive	statement	has	affected	all	slaves.	If	detected	immediately,	it	may	be
possible	to	stop	replication	execution	on	a	slave	to	preserve	the	data	that	was	deleted.	This
is	 only	 likely	 if	 your	 slave	 is	 lagging	 adequately,	 not	 a	 usual	 situation	 in	 a	 production
situation.

However,	 depending	on	 certain	 conditions,	 data	may	be	 recoverable	via	other	means.
The	 following	 is	 an	actual	 customer	example	of	 a	 successful	data	 recovery	provided	by
Johan	Idrén	from	the	SkySQL	support	team	and	reproduced	with	permission.

The	customer	has	executed	a	 rather	devastating	“DELETE	FROM	table_a;”	command.
The	only	backup	available	was	made	several	hours	after	the	erroneous	statement,	so	what
we	had	left	 to	work	with	was	 the	underlying	table_a.idb	 file.	Based	on	the	underlying
file	size	of	the	individual	tablespace	for	this	InnoDB	table,	most	of	the	data	may	be	still
recoverable.	This	was	a	job	suited	for	the	Percona	InnoDB	data	recovery	tool.

The	first	requirement	is	to	obtain	the	table	definition	from	the	customer.	The	output	of
the	SHOW	CREATE	TABLE	command	provides	this.	After	creating	an	identical	table	on
a	 local	 MySQL	 server,	 the	 create_defs.pl	 script	 is	 used	 to	 create	 a	 necessary
table_defs.h	file.

	

With	 this	definition,	 it	 is	 possible	 to	build	 a	binary	 to	 extract	data	 from	 the	 available
table	data	file.	Execution	appeared	to	work	well,	providing	output	consistent	with	the	table
definition	provided.

	
A	suitable	LOAD	DATA	INFILE	statement	was	used	to	process	the	generated	data	file:

	
After	 initial	 testing	some	additional	work	was	needed	 to	 remove	some	duplicate	 rows

and	garbage	data	in	the	generated	data	file.	The	end	result	was	that	all	data	was	recovered
and	the	customer	was	happy,	a	great	success!

What	caused	this	recovery	process	to	go	relatively	easy?

1.		The	InnoDB	storage	engine	was	used.

2.		No	further	DML	statements	were	run	on	the	table.

3.		The	innodb_file_per_table	configuration	option	makes	the	use	of	the	InnoDB
recovery	tool	a	lot	simpler,	as	this	only	has	to	process	the	individual	tablespace	file	and
not	the	common	tablespace,	which	supports	all	InnoDB	tables.

The	closing	comment	by	Johan	echoes	all	 this	reference	stands	for.	“The	moral	of	the
story?	Backup,	backup,	backup.”

NOTE			In	some	conditions,	data	recovery	from	a	DELETE	FROM	TABLE	command	is
possible.

	
References

•		http://blogs.skysql.com/2011/05/innodb-data-recovery-success-story.html

•		https://launchpad.net/percona-data-recovery-tool-for-innodb

•		http://www.chriscalender.com/?p=49

—i-am-a-dummy	Configuration	Option
An	additional	configuration	option	that	could	have	averted	this	situation	is	the	--i-am-a-
dummy	variable.	While	you	may	laugh,	 this	 is	a	valid	configuration	alias	for	 the	--safe-
updates	option.	This	option	disables	table	level	delete	and	update	operations	as	described
in	the	following	example:

http://blogs.skysql.com/2011/05/innodb-data-recovery-success-story.html
https://launchpad.net/percona-data-recovery-tool-for-innodb
http://www.chriscalender.com/?p=49

	
For	 more	 information	 refer	 to	 the	 MySQL	 Reference	 Manual	 at

http://dev.mysql.com/doc/refman/5.5/en/mysql-command-
options.html#option_mysql_safe-updates.

Deleting	the	InnoDB	Data	File
The	 circumstances	 for	 how	 data	 has	 been	 deleted	matters.	 For	 example,	 if	 the	 InnoDB
tablespace	file	 (e.g.,	ibdata1)	 is	deleted	while	MySQL	 is	 running	on	a	Linux	operating
system,	it	is	possible	to	recover	your	MySQL	data	but	only	if	the	MySQL	server	has	not
been	stopped.

On	a	test	system,	the	following	is	performed	to	demonstrate	this	situation:

	
As	 you	 can	 see	 there	 were	 44	 tables	 that	 were	 defined	 as	 InnoDB	 tables.	 If	 the

mysqldump	of	data	was	not	performed	before	the	MySQL	instance	was	stopped,	that	data	is
lost	without	performing	a	full	data	recovery.

	

http://dev.mysql.com/doc/refman/5.5/en/mysql-command-options.html#option_mysql_safe-updates

	
This	 situation	 for	 possible	 data	 recovery	 after	 deleting	 the	 InnoDB	 tablespace	 file	 is

because	the	mysqld	process	retains	the	file	inode	link	until	the	process	terminates.	In	this
situation	it	is	possible	to	extract	the	data	using	mysqldump.

Any	online	advice	that	states	to	shut	down	the	MySQL	process	if	data	is	deleted	may	or
may	not	be	the	correct	advice.	Knowing	the	situation	that	caused	the	disaster	is	necessary
information	before	making	any	decision,	as	shown	in	this	example.

In	this	situation,	as	indicated	in	the	error	log,	it	is	necessary	to	also	remove	the	InnoDB
transaction	logs	to	enable	the	MySQL	instance	to	start	before	performing	a	data	recovery.

Deleting	MySQL	Binary	Logs
A	 common	 problem	 is	 the	 disk	 partition	 holding	 the	MySQL	 data	 directory	 filling	 up.
While	many	 situations	 include	 the	case	where	no	monitoring	 is	 in	place	 to	detect	 a	 full
filesystem,	a	common	action	is	a	system	administrator	detects	a	filesystem	at	80%	or	90%
full	 and	 then	 acts	 to	 delete	 files	 rather	 than	 consulting	 the	 database	 administrator	 or
considering	 the	 ramifications	of	a	database	 system,	not	a	 filesystem.	Allowing	a	 system
administrator	to	remove	MySQL	binary	log	files	causes	multiple	problems.

The	 best	 file	 to	 consider	 removing	 to	 reclaim	 space	 in	 a	 MySQL	 installation	 is	 the
binary	log.	These	can	grow	in	size;	in	a	large	production	system	these	can	be	as	much	as
500MB	per	minute.	The	 first	problem	when	 removing	 files	manually	 is	 the	 reference	 to
this	file	in	MySQL	is	not	removed.	The	correct	approach	to	remove	binary	log	files	is	with
the	 PURGE	 MASTER	 command.	 This	 will	 remove	 the	 physical	 file	 and	 the	 internal
definition.

Removing	 the	 binary	 logs	 also	 affects	 your	 disaster	 recovery	 possibilities	 and	 your
MySQL	replication	topology.	If	a	MySQL	slave	has	stopped	for	some	reason	and	is	one
day	behind	the	master,	removing	the	binary	logs	on	the	master	that	are	older	than	six	hours
will	render	the	slave	useless	and	will	have	to	be	fully	recovered.	A	full	recovery	involves
using	a	backup	(for	example,	from	last	night),	and	then	the	application	of	the	binary	logs
until	 the	 current	 point	 in	 time.	 If	 those	 binary	 logs	 the	 system	 administrator	 so	 wisely
deleted	 to	ensure	 the	disk	does	not	 fill	up	have	not	been	backed	up	during	 the	day—for

example,	 if	 that	 only	 happens	 daily	 or	 even	 every	 12	 hours—your	 environment	 is	 not
recoverable	with	existing	backups.	A	different	approach	including	an	immediate	backup	is
needed.

The	final	problem	is	common	when	the	binary	log	files	and	the	MySQL	data	are	found
in	 the	 same	 directory.	 This	 is	 the	 default	 configuration	 for	 the	 popular
RedHat/CentOS/Oracle	 Linux	 and	 Ubuntu	 distribution	 installations.	 An	 over-zealous
system	 administrator	 running	 a	 smart	 find	 command	 that	 is	 used	 for	 cleanup	 on	 other
filesystems	 can	 easily	 remove	 files	 in	 the	MySQL	data	directory	 that	 are	 important	 and
can	easily	crash	or	corrupt	a	MySQL	installation.

TIP			A	well	configured	MySQL	installation	should	clearly	separate	the	MySQL	data
directory,	the	MySQL	binary	log,	and	MySQL	relay	log	directories	for	better	system
administration.

	
A	final	frustrating	example	is	when	a	client	performs	a	volume	test	in	preparation	for	a

production	deployment	and	the	result	of	the	test	fills	up	the	partitions	for	the	data	and/or
binary	logs.	The	action	of	the	experienced	DBA	to	reduce	the	amount	of	logs	kept	with	by
setting	 the	expire_logs_days	configuration	option	 to	1,	or	 the	proactive	removal	of	 the
master	binary	logs	during	the	test	is	not	a	wise	practice.	The	purpose	of	a	volume	test	is	to
prove	 a	 production	 situation.	 Are	 you	 going	 to	 proactively	 remove	 important	 files
necessary	 for	 any	 level	 of	 disaster	 recovery?	Would	 considering	 that	 the	 defined	 (and
organizational	 standard)	 filesystem	structures	are	 inappropriate	 for	 this	deployment	be	a
more	applicable	action?

TIP			The	purpose	of	testing	is	to	break	your	software,	and	then	correct	discovered	issues
so	these	situations	are	avoided	in	the	future	within	a	production	environment.

	

Existing	Backup	and	Recovery	Procedure	Disasters
The	 following	 examples	 are	where	 an	 existing	MySQL	 backup	 approach	was	 in	 place;
however,	the	recovery	encountered	situations	where	the	process	was	insufficient	in	some
way.

•		Does	your	backup	work	after	a	software	upgrade?

•		Does	MySQL	still	perform	after	a	restart?

•		Handling	MyISAM	corruption.

•		Missing	schema	data	in	backup.

•		Restoring	a	backup	on	a	running	server.

MySQL	Software	Upgrades
Running	a	MySQL	backup	and	ensuring	this	completed	successfully	and	that	backup	files
exist	 are	 not	 enough.	 In	 the	Chapter	5	 quiz	 one	 important	 step	 is	 “Do	you	 review	your
backup	logs	EVERY	SINGLE	day	or	have	tested	backup	log	monitoring	in	place?”

This	is	what	was	found	when	reviewing	a	backup	log	for	a	client:

	
The	backup	script	was	completing,	and	backup	files	were	 in	place	(and	were	 listed	in

the	log	file	output);	however,	these	errors	were	occurring.	Some	data	was	potentially	not
being	included	in	the	backup	due	to	this	error.

This	 server	 was	 running	 multiple	 MySQL	 instances	 and	 recently	 one	 instance	 was
upgraded	from	MySQL	5.1	to	MySQL	5.5;	however,	the	call	to	mysqldump	was	not.	This
error	 was	 the	 result	 of	 running	 a	 version	 5.1	 mysqldump	 against	 a	 version	 5.5	MySQL
instance.	By	changing	the	hard	coded	path	in	the	backup	the	error	message	went	away.

In	this	example,	a	backup	process	was	in	place	and	historically	operated	without	error.
The	greater	problem	 is	 teaching	people	 to	understand	 the	 importance	of	 the	verification
process.

Operating	System	Security	Patch	Upgrade
Backing	up	the	MySQL	configuration	file	can	be	as	important	as	the	MySQL	data.

A	production	MySQL	system	was	upgraded	 to	 include	new	operating	system	security
patches.	This	resulted	in	the	Linux	distribution	also	updating	MySQL	5.0	to	a	new	point
release.	 The	 correct	 process	 of	 taking	 a	 database	 backup	 before	 the	 upgrade	 was
performed;	 however,	 following	 the	 upgrade,	 application	 performance	 was	 seriously
degraded.	 It	 was	 reported	 by	 the	 client	 that	 it	 was	 not	 possible	 to	 undo	 the	 software
upgrade.

Discussion	 and	 analysis	 determined	 that	 no	 application	 changes	 were	 applied,	 the
system	 load	 was	 much	 higher,	 and	 the	 application	 was	 now	 taking	 10	 times	 longer	 to
perform	basic	tasks.	The	client	believed	only	the	MySQL	upgrade	could	be	the	cause.	The
system	had	been	running	over	150	days	without	any	similar	issues.

The	 first	 observation	 is	 that	 MySQL	 has	 been	 restarted.	 This	 has	 three	 significant
effects	on	performance.

1.		The	first	is	time	taken	to	refresh	the	applicable	memory	caches	of	data	and	indexes
over	time	as	they	are	first	accessed	from	disk.	In	some	situations	there	is	a	benefit	in
pre-caching	important	data	on	a	system	restart.

2.		The	second	situation	is	the	need	for	InnoDB	to	recalculate	the	table	statistics	for	the
query	optimizer.	This	occurs	when	a	table	is	first	opened	and	requires	random	dives	of
accessing	index	information,	initially	having	to	read	from	disk.	MySQL	5.6	includes	a
new	feature	to	save	and	load	these	table	statistics	for	faster	restarts.

3.		The	third	effect	is	less	obvious	but	important.	MySQL	will	read	the	configuration	from
the	applicable	filesystem	files,	e.g.,	my.	cnf.	This	means	that	any	dynamic	changes
made	to	the	previously	running	system	that	were	not	applied	to	the	configuration	file
are	lost.	If	this	was	not	documented,	the	previous	running	system	could	have
improvements	in	performance	that	were	not	persisted	during	the	restart.

The	 simple	 solution	 is	 to	 record	 the	 running	 values	 of	 all	 MySQL	 configuration
variables	 by	 adding	 this	 to	 the	 daily	 backup	 process.	 A	 further	 verification	 of	 running
values	 with	 the	 filesystem	 values	 in	 the	 default	 MySQL	 configuration	 file	 can	 be
performed.	This	information	can	be	obtained	in	the	following	ways:

	
With	the	runtime	configuration	of	a	number	of	system	variables,	the	system	was	able	to

improve	performance.	The	review	of	the	worst	offending	SQL	statements	and	the	creation
of	additional	indexes	also	made	a	significant	improvement.	While	a	minor	upgrade	should
not	affect	the	performance	of	SQL	statements,	it	is	always	a	good	practice	to	run	important
SQL	 statements	without	 using	 the	 query	 cache,	 capturing	 execution	 time	 and	 execution
plan	details	before	and	after	any	upgrade.

Handling	MyISAM	Corruption
The	 following	scenario	 is	 a	detailed	explanation	of	a	MyISAM	corruption	 situation	 that
recently	occurred	and	the	steps	to	triangulate	a	possible	recovery	and	the	ultimate	solution.
The	 environment	was	 a	 single	MySQL	production	 server	with	 binary	 logging	 (that	was
disabled	prior	in	the	day).	There	was	no	MySQL	replication	server	in	place.

The	Call	for	Help

While	checking	my	inbox	at	breakfast	the	following	e-mail	draws	attention:

	
NOTE			Disaster	does	not	care	if	you	are	on	vacation.

	
The	Confirmation	of	a	Serious	Problem

I	immediately	contact	the	client,	determine	that	the	situation	appears	serious,	and	connect
to	a	running	production	system	finding	the	following	errors	in	the	MySQL	error	log:

	

This	 is	 the	 first	obvious	sign	of	MyISAM	corruption.	This	generally	occurs	when	 the
MySQL	instance	crashes	or	is	not	cleanly	shut	down.	A	quick	review	confirms	that	three
minutes	earlier	this	occurred.	It	is	always	recommended	to	try	and	find	the	cause	to	ensure
this	is	understood	in	future	situations.

	

	
The	First	Resolution	Attempt

In	 this	situation	 it	 is	best	 to	shut	down	MySQL	and	perform	a	myisamchk	 of	 underlying
MyISAM	 data.	 Depending	 on	 the	 size	 of	 your	 database,	 this	 can	 take	 some	 time.	 By
default,	myisamchk	with	no	options	will	perform	a	check	only.

	
This	output	is	good:

	
This	output	is	not	good:

	
To	perform	a	repair	on	a	MyISAM	table	the	–r	option	is	required.	For	example:

	

	
This	shows	a	successful	repair.	The	following	shows	an	unsuccessful	repair:

	
This	following	error	on	the	client’s	largest	and	most	important	table	is	that	classic	WTF

moment:

	
As	a	side	note,	if	myisamchk	fails	to	complete,	a	temporary	file	is	actually	left	behind.

(First	time	experienced	by	the	author.)

	

	
The	Second	Resolution	Attempt

One	of	 the	benefits	 of	MyISAM	 is	 that	 the	underlying	data	 and	 indexes	 are	 simply	 flat
files.	These	can	be	copied	around	between	database	Schemas	with	 the	appropriate	 table
definition	file	(i.e.,.	frm).	The	following	steps	were	used	to	simulate	a	new	table.

1.		Obtain	the	table	definition	from	a	backup	file	or	SHOW	CREATE	TABLE	command.

2.		Create	a	new	table	in	a	different	schema	with	the	table	definition	and	all	indexes
removed.

3.		Copy	the	existing	.MYD	file	over	the	newly	created	table	.MYD	file.	The	new	table	does
not	need	to	be	the	same	name	as	the	old	table;	however,	the	.MYD	name	must	match	the
new	name.

4.		Repair	table	(requires	MySQL	instance	to	be	stopped).

5.		Confirm	the	data	is	accessible.

	
As	you	can	see,	a	repair	of	the	table	this	time	did	not	produce	a	core	dump.	A	further

confirmation	defines	data	is	accessible.

	
At	this	time	an	attempt	to	re-create	the	indexes	on	the	table	is	performed	to	enable	this

table	and	index	structure	to	be	copied	back	to	the	production	schema.

	
It	is	clear	that	the	table	does	not	want	to	be	repaired.

The	Third	Resolution	Attempt

At	 this	 time,	 the	 decision	 to	 continue	 or	 to	 pursue	 data	 recovery	 or	 a	 restore	 from	 the
previous	night’s	backup	is	considered,	and	both	options	are	undertaken	in	parallel.	A	more
detailed	recovery	is	performed	using	initially	the	–o	option	for	the	older	recovery	method,
and	then	with	–e	option	for	an	extended	recovery.	It	should	be	noted	that	the	myisamchk
documentation	states	“Do	not	use	this	option	if	you	are	not	totally	desperate.”

The	table	is	confirmed	as	crashed	again.

	
A	successfully	reported	repair	is	performed.

	
However,	the	table	is	still	considered	corrupt.

	
A	more	extensive	recovery	is	performed.

	
The	number	of	data	records	has	decreased	from	461,818	to	461,709.

	
The	number	of	data	records	has	decreased	again	from	461,818	originally	to	461,523,	an

indication	that	perhaps	corrupted	data	has	been	removed.

At	 this	 time,	 the	 best	 approach	 is	 to	 try	 and	 obtain	 as	 much	 data	 as	 possible	 by
extracting	data.

	
This	more	in-depth	approach	to	try	and	recover	data	has	also	failed.

A	Failed	Database	Backup

There	is	now	no	other	option	than	to	perform	a	database	restore	from	the	previous	night’s
backup.	This,	however,	failed	with	the	following	problems:

	
Some	 25%	 of	 individual	 schema	 backup	 files	 failed	 to	 uncompress	 on	 both	 the

production	server	and	a	 remote	server	containing	 the	backup	files.	What	was	 interesting
was	 the	 variety	 of	 different	 error	 messages.	 The	 customer	 was	 now	 forced	 with
considering	an	older	backup.

TIP			Testing	your	backup	on	an	external	system	is	important	to	ensure	corruption	is	not
occurring	at	the	time	of	your	backup.

	
Detecting	Hardware	Faults

In	 isolated	 situations	 and	 when	 other	 plausible	 explanations	 are	 exhausted,	 faulty
hardware	 can	 be	 the	 issue.	 During	 this	 data	 restore	 process	 other	 symptoms	 of	 slow
performance,	 especially	 compressing	 the	 original	 data,	 and	 some	 of	 the	 unexplained
outcomes	shown	indicated	a	possible	hardware	error.	The	system	log	showed	no	indication
of	problems	to	validate	this	hypothesis;	however,	in	previous	situations	the	end	result	has
been	hardware.

During	 the	 process	 of	 taking	 additional	 filesystem	 backups	 of	 the	 current	 data	 and
configuration	files	for	contingency,	the	system	failed	with	a	kernel	panic.	At	this	time	the
client	was	left	with	no	production	server,	no	current	backup	of	data	or	binary	logs,	and	an
uneasy	time	as	the	host	provider	system	engineers	looked	into	the	problem.

Almost	 an	 hour	 passes	 before	 the	 system	 is	 accessible	 again,	 and	 the	 host	 provider
reports	 a	 fault	 memory	 error	 on	 the	 console.	 MySQL	 is	 restarted,	 a	 myisamchk	 is
performed	on	the	entire	database,	and	several	tables	require	a	recover	process—all	occur
without	further	incident.	Another	hour	later,	the	database	is	in	what	is	considered	a	stable
state.	A	backup	is	then	performed.	The	client	is	now	convinced	of	the	importance	of	the
need	for	the	process.

NOTE			Any	organization	without	an	adequate	backup	and	recovery	process	is	at	risk	for
serious	business	disruption.	In	this	actual	example,	luck	was	on	their	side.

	
Conclusion

This	 client	 backup	 process	 had	 two	 important	 flaws.	 The	 first	was	 the	 backup	was	 not
checked	for	any	type	of	error.	The	uncompressing	of	backup	files	was	producing	errors.

The	second	flaw	was	that	the	binary	logs	were	not	being	stored	on	a	separate	system.	If
the	 hardware	 failure	 was	 a	 disk	 and	 not	 memory,	 data	 recovery	 may	 have	 not	 been
possible.	Not	mentioned	in	any	detail	in	this	example	is	an	additional	restore	issue	where
the	binary	log	position	was	not	recorded	during	the	backup.

This	 is	 a	 good	working	 example	of	 the	various	 approaches	 to	 attempting	 to	 correct	 a
MyISAM	database	 failure.	All	 of	 these	 steps	were	 performed	with	 a	 client	 that	 had	 an
emergency	 and	 no	 plan.	 If	 you	 do	 not	 have	 access	 to	 expert	 resources	 attempting	 to
resolve	this	type	of	problem,	the	likelihood	of	not	exhausting	all	options	increases.

Missing	Database	Schemas
A	client	needed	to	perform	a	restore	from	the	previous	night’s	backup.	When	verifying	the
recovery	 process	 using	 the	most	 recent	 customer	 that	 had	 been	 created,	 the	 application

was	 completely	 crashing	when	 viewing	 customer	 information.	What	 happened	was	 one
transaction	that	recorded	the	customer	was	included	in	the	backup,	and	new	data	for	 the
customer	was	not	included.

The	cause	was	in	not	understanding	that	mysqldump	does	not	produce	a	consistent	static
backup.	Using	mysqldump	with--all-databases	and	the	implied--lock-tables	does	not
provide	a	consistent	backup.	For	this	disaster,	the	application	would	create	a	new	schema
for	a	software	as	a	service	model.	The	first	step	is	recording	the	new	customer	in	a	central
master	database,	then	creating	a	new	customer	database,	starting	with	the	letter	c	followed
by	a	three	letter	hash,	and	finally	reporting	this	has	successfully	completed.

When	mysqldump	got	 to	 the	backup	of	 the	master	schema,	all	 tables	were	 locked,	and
the	data	extracted,	including	a	reference	to	the	new	customer	schema,	was	not	included	in
the	backup	because	database	schemas	are	processed	sequentially,	and	locking	only	occurs
on	a	per	schema	basis.	To	better	understand	the	cause,	the	following	example	is	a	look	at
the	 actual	 SQL	 statements	 of	 a	 mysqldump	 of	 the	 example	 database	 environment	 in
Chapter	8.	You	can	capture	all	SQL	statements	using	the	general	query	log.

	

	
A	further	error	was	in	the	application	where	it	was	not	correctly	handling	the	error	of	a

non-existing	 database	 table	 for	 a	 given	 customer.	 It	 was	 assumed	 that	 if	 the	 customer
could	 log	 in,	 confirming	 credentials	 from	 the	 master	 database,	 that	 the	 underlying	 per
customer	schema	objects	already	existed.

Restoring	a	Backup	on	a	Running	MySQL	Instance

For	all	restore	options	except	using	mysqldump,	the	process	requires	the	MySQL	instance
to	not	be	running.	When	using	MySQL	Enterprise	Backup	(MEB),	no	check	is	performed
to	ensure	the	instance	is	not	running,	and	it	is	therefore	possible	to	perform	a	restore	on	a
running	 instance.	 This	 is	 likely	 to	 result	 in	 inconsistent	 data	 and	 a	 potentially	 corrupt
database.	 The	 following	 occurred	while	 documenting	 the	 recovery	 options	 described	 in
Chapter	5.	This	type	of	problem	can	also	occur	with	other	backup	and	restore	products.

The	steps	taken	were:

1.		A	backup	was	performed.

2.		A	new	schema	was	created	(before_restore),	an	existing	schema	was	dropped
(employees),	and	an	individual	table	was	dropped	(book2.artist).

3.		A	restore	was	performed	on	a	running	instance.

	

	
A	mysqlbackup	copy-back	 as	 described	 in	 Chapter	 5	was	 performed.	 The	 following

initial	SQL	statements	were	run	after	to	initially	verify	the	recovery:

	
As	you	can	see	the	employees	schema	was	restored,	as	well	as	the	table	book2.artist;

however,	the	before_restore	schema	still	exists.	Further	analysis	showed	the	following
error	on	a	restored	table	that	appears	to	exist:

	
Investigation	 of	 the	 MySQL	 error	 log	 shows	 numerous	 errors	 to	 confirm	 that	 the

restoration	failed	to	complete	successfully.

	
This	highlights	two	practices	that	are	required:

1.		Determine	the	necessary	prerequisites	for	the	restore	process.

2.		Always	check	the	MySQL	error	log.

Handling	InnoDB	Specific	Situations
The	most	commonly	used	storage	engine	 in	MySQL	is	InnoDB.	One	of	 the	strengths	of
InnoDB	 is	 the	 ability	 to	 support	 transactions	 and	 the	 ability	 to	perform	automatic	 crash
recovery.	 What	 happens	 when	 this	 does	 not	 work	 as	 designed?	 This	 section	 includes
several	InnoDB	examples:

1.		When	automatic	recovery	fails

2.		Internal	data	dictionary	corruption

3.		InnoDB	data	recovery

Automatic	Recovery
The	InnoDB	storage	engine	will	automatically	perform	a	crash	recovery	when	necessary,
generally	 when	 the	 MySQL	 instance	 is	 not	 shut	 down	 safely.	 In	 this	 example,	 crash
recovery	was	occurring	every	time	MySQL	was	started.

	
While	 MySQL	 was	 cleanly	 shut	 down,	 an	 automatic	 crash	 recovery	 was	 being

performed.	This	would	 take	several	minutes	before	 the	system	was	available	for	general
use.	It	is	unclear	exactly	why	this	problem	was	occurring.	The	client	reported	the	situation
was	 the	 result	 of	 an	 unexpected	MySQL	 instance	 failure	 on	 an	 Amazon	Web	 Services
(AWS)	instance	running	on	Elastic	Block	Storage	(EBS).

InnoDB	 provides	 for	 a	 forced	 recovery	 mode,	 which	 enables	 six	 varying	 levels	 of
disabling	various	crash	recovery	features.	In	a	failed	InnoDB	crash	recovery,	you	can	use
each	of	these	modes,	starting	with	1,	to	attempt	to	retrieve	as	much	data	as	possible.	In	this
example,	this	configuration	option	was	set	to	1.

	

	
At	this	time,	the	database	has	successfully	started	without	performing	a	crash	recovery.

In	any	non-zero	mode	InnoDB	will	self-protect	the	data	and	prevent	any	modification	with
INSERT,	 UPDATE,	 or	 DELETE	 statements.	 In	 this	 example,	 a	 clean	 shutdown,	 the
removal	of	 the	innodb_force_recovery	 option,	 and	 the	 restarting	of	MySQL	addressed
the	issue.

InnoDB	Data	Dictionary	Inconsistency
Every	table	in	MySQL	has	a	related	table	definition	file	that	is	located	in	the	schema	sub-
directory	 within	 the	 data	 directory	 of	 the	 instance.	 This	 is	 known	 as	 an.frm	 file.	 In
addition,	InnoDB	holds	meta-data	within	the	InnoDB	common	tablespace	(e.g.,	the	ibdata
1	file)	about	the	table	definitions.

At	times	these	may	appear	inconsistent	or	be	inconsistent	and	report	errors	similar	to:

	
and

	
These	situations	occur	where	the	InnoDB	tablespace	has	been	rebuilt	and	the	underlying

table	definitions	were	in	place.	Alternatively	insufficient	file	permissions	with	the	MySQL
data	directory	can	cause	an	underlying	inconsistency.

Automatic	Recovery	Crashes	the	Database	Server
The	 InnoDB	 storage	 engine	 is	 designed	 to	 perform	 automatic	 crash	 recovery.	 This	 is
possible	because	the	InnoDB	transaction	logs	(redo	logs)	record	all	successful	transactions
that	may	not	 have	been	 applied	 to	 the	 underlying	 InnoDB	data.	The	doublewrite	 buffer

also	holds	committed	data	that	may	not	be	applied	to	the	same	underlying	InnoDB	data.

When	 the	 MySQL	 instance	 is	 started,	 InnoDB	 will	 detect	 a	 difference	 in	 the	 Log
Sequence	Number	(LSN)	between	the	InnoDB	transaction	logs	and	the	InnoDB	data.	This
is	an	indication	that	the	MySQL	instance	was	not	shut	down	correctly.	In	this	case	InnoDB
will	 automatically	 detect	 then	 rectify	 the	 situation	 to	 produce	 a	 consistent	 view.	 In	 the
following	example	this	then	caused	the	MySQL	server	to	crash:

	

Other	MySQL	Situations
The	following	examples	complete	some	different	situations	using	MySQL:

•		Replication	inconsistency

•		Third	party	product	recovery	limitations

Replication	Inconsistency
The	following	error	message	was	discovered	on	a	MySQL	replication	server:

	
A	review	of	the	data	on	the	slave	host	shows	the	data	for	the	SQL	statement	was	already

applied.

	
A	number	of	checks	were	performed	to	look	at	the	master	database	and	binary	logs	to

confirm	this	statement	only	occurred	once.

A	review	of	the	slave	host	error	log	showed	that	MySQL	has	recently	performed	a	crash
recovery.

	
A	review	of	the	slave	relay	log,	which	details	completed	SQL	statements,	showed	that

this	SQL	command	had	actually	been	executed,	yet	MySQL	 replication	appeared	not	 to
record	this.	A	review	of	the	underlying	information	file,	defined	by	the	relay-log-info-
file	 configuration	 option,	 indicated	 an	 inconsistency	 with	 the	 error	 log	 of	 the	 actual
master	binary	 log	executed	 log	position.	The	error	 log	 indicates	 that	MySQL	replication
started	at	the	position	of	58959139,	while	the	relay	log	information	file	shows	a	different
position.	This	inconsistency	was	the	actual	SQL	statement	that	was	being	reported	as	the
last	failure.

	
As	a	 result,	by	skipping	 the	SQL	statement,	 the	 replication	slave	could	be	started	and

continued	without	incident.

By	 default	 the	 sync_relay_log_info	 configuration	 option	 has	 a	 value	 of	 0,	 which
implies	the	filesystem	should	flush	this	file	to	disk	from	time	to	time.	In	this	situation,	a
database	 crash	 caused	 this	 file	 to	 become	 inconsistent.	More	 information	on	 this	 option
can	 be	 found	 at	 http://dev.mysql.com/doc/refman/5.5/en/replication-options-
slave.html#sysvar_sync_relay_log_info.

RDS	Recovery	Failure
Amazon	Web	Services	 (AWS)	provides	a	Remote	Database	Service	 (RDS)	 for	MySQL.
This	 is	popular	when	an	organization	does	not	have	any	skills	 to	manage	MySQL.	This
complete	 packaged	 solution	 has	 several	 limitations.	 There	 is	 no	 physical	 access	 to	 the
database	server.	While	 there	are	API	 interfaces	 to	change	MySQL	configuration	settings
and	look	at	MySQL	error	and	slow	logs,	it	is	not	possible	to	look	at	the	system	resources
being	used,	or	look	at	the	MySQL	binary	logs,	for	example.

An	issue	arose	with	a	client	when	a	database	restore	through	an	RDS	snapshot	failed.
Amazon	 support	 informed	 the	 client	 there	 was	 some	 BLOB	 or	 TEXT	 field	 with	 bad
characters	and	this	prevented	mysqlbinlog	from	performing	a	successful	restoration.	They
were	directed	to	the	following	bug:	http://bugs.mysql.com/bug.php?id=33048.

The	client	was	looking	for	a	means	of	tracking	down	the	potential	offending	records	so
a	database	restoration	could	be	performed.	First	there	was	no	way	to	confirm	this	was	the
actual	failure	of	the	restoration,	as	this	third	party	managed	service	did	not	provide	access
to	 detailed	 logs.	 The	 listed	 bug,	 if	 this	 was	 indeed	 the	 true	 problem,	 provided	 two
workaround	solutions;	the	first	was	to	analyze	the	mysqlbinlog	output,	and	then	correct	if
necessary	 before	 applying.	 The	 second	 option	 was	 to	 replay	 the	 binary	 log	 via	 the
replication	stream	rather	than	converting	to	ASCII	and	then	using	the	mysql	client.	Both	of
these	options	were	not	possible	because	the	third	party	did	not	provide	sufficient	access.

http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_sync_relay_log_info
http://bugs.mysql.com/bug.php?id=33048

The	binary	logs,	for	example,	are	not	accessible.

At	 this	 time,	 the	 client	 has	 no	 recovery	 capability.	 The	 backup	 process	 failed	 during
recovery,	and	the	service	provider	was	both	unwilling	to	help	further	or	provide	access	to
necessary	MySQL	information	to	perform	more	in-depth	analysis.

Common	Downtime	Causes
What	are	 the	most	common	causes	of	downtime	with	MySQL	systems?	Leading	service
provider	 Percona	 published	 in	 the	 IOUG	SELECT	magazine,	Q1	 2011,	 an	 article	 titled
“Causes	 of	 Downtime	 in	 Production	MySQL	 Servers,”	 which	 provides	 a	 very	 detailed
picture	of	actual	support	situations.

One	third	of	all	reported	downtime	was	not	the	result	of	MySQL	in	any	way.	Issues	with
the	 storage	 system	 were	 defined	 as	 the	 top	 factor,	 with	 the	 operating	 system	 and
networking	also	attributing	to	downtime.	A	SAN	or	RAID	storage	system	is	not	a	backup
solution.	 The	 following	 article	 by	 leading	 PostgreSQL	 expert	 Josh	 Berkus	 is	 a	 great
reinforcement	of	why.	In	 this	disaster	example,	 there	was	not	even	a	physical	failure—a
vendor-provided	firmware	update	led	to	eventual	total	data	corruption.	More	information
can	 be	 found	 at	 http://it.toolbox.com/blogs/database-soup/a-san-is-not-a-highavailability-
solution-47644.	 The	 Sidekick	 data	 disaster	 as	 detailed	 earlier	 was	 reported	 as	 a	 SAN
upgrade	mistake.

CAUTION				A	RAID	system	is	only	as	good	as	the	monitoring	used	to	detect	a	degraded
RAID	configuration	and	the	time	taken	to	correct	the	problem.	When	a	service	provider,
system	administrator,	or	other	resource	states	your	data	is	protected	by	RAID,	ask	for
proof	the	RAID	system	is	not	degraded.	This	question	is	always	asked	when	reviewing	a
client	backup	and	recovery	strategy,	and	the	results	observed	have	been	two	clients
unaware	they	had	degraded	production	systems.

	
The	 whitepaper	 also	 shows	 a	 breakdown	 of	 replication	 related	 problems	 where	 data

drift	results	in	almost	50%	of	replication	issues.	The	majority	of	data	loss	and	corruption
issues	were	 the	 result	 of	 human	 factors.	An	 important	 factor	 in	 the	management	of	 any
system	 is	 the	 result	 of	 a	 failure	 due	 to	 other	 human	 factors.	 The	 lack	 of	 appropriate
configuration	management,	unprepared	and	untested	upgrading,	or	the	lack	of	performing
software	 upgrades	 all	 attribute	 to	 controllable	 situations.	An	 important	 statement	 in	 the
prevention	 of	 situations	 that	 can	 use	 a	 disaster	 situation	 clearly	 highlights	 a	 common
problem	found.

NOTE			Quoting	from	the	“Causes	of	Downtime	in	Production	MySQL	Servers”
whitepaper:	“In	most	cases,	emergencies	analyzed	could	have	been	prevented	best	by	a
systematic,	organization-wide	effort	to	find	and	remove	latent	problems	[before	they
occur].	Many	of	the	activities	involved	in	this	effort	could	appear	to	be	unproductive,
and	might	be	unrewarding	for	people	to	do.”

	
A	 full	 copy	of	 the	whitepaper	 is	 available	 for	 download	 from	 the	Percona	website	 at

http://www.percona.com/about-us/mysql-white-paper/causes-of-downtime-in-production-

http://it.toolbox.com/blogs/database-soup/a-san-is-not-a-highavailability-solution-47644
http://www.percona.com/about-us/mysql-white-paper/causes-of-downtime-in-production-mysql-servers

mysql-servers.

External	Help
In	 some	 cases,	 a	 disaster	 is	 correctable.	 As	 shown	 in	 this	 chapter,	 understanding	 and
describing	 the	 precise	 circumstances	 and	 seeking	 input	 from	 multiple	 reputable	 and
experienced	 resources	 can	 be	 key	 to	 avoiding	 a	 disaster	 and	 career	 limiting	 situation.
Organizations	 that	 provide	 dedicated	 MySQL	 services,	 that	 are	 active	 in	 the	 MySQL
community	ecosystem,	and	that	are	known	by	this	author	are	included	here:

•		MySQL	technical	support	services,	part	of	Oracle	support	services,	provides	global	24/7
technical	support.	Details	at	http://www.mysql.com/support/.

•		SkySQL	provides	world-wide	support	and	services	for	the	MariaDB	and	MySQL
databases.	Details	at	http://www.skysql.com/.

•		FromDual	provides	independent	and	neutral	MySQL,	Percona	Server,	and	MariaDB
consulting	and	services.	Details	at	http://fromdual.com/.

•		The	Pythian	Group	“love	your	data”	provides	remote	database	services	for	Oracle,
MySQL,	and	SQL	Server.	Details	at	http://www.pythian.com/.

•		Blue	Gecko	provides	remote	DBA	services,	database	hosting	services,	and	emergency
DBA	support.	Details	at	http://www.bluegecko.net/.

•		Percona	provides	consulting,	support,	training,	development,	and	software	in	MySQL
and	InnoDB	performance.	Details	at	http://www.percona.com/.

•		Open	Query	provides	support,	training,	products,	and	remote	maintenance	for	MySQL
and	MariaDB.	Details	at	http://openquery.com/.

•		PalominoDB	provides	remote	DBA	and	system	administration	services	in	MySQL,
MariaDB,	and	other	open	source	products.	Details	at	http://palominodb.com/.

•		Effective	MySQL	provides	practical	education,	training,	and	mentoring	resources	for
MySQL	DBAs,	developers,	and	architects.	Details	at	http://effectivemysql.com/.

•		Continuent	provides	continuous	data	availability	and	database	replication	solutions,	and
provides	support	managing	and	running	MySQL	replication	with	industry	leading
experts.	Details	at	http://www.continuent.com/.

Other	 organizations	 may	 state	 they	 provide	 MySQL	 services.	 While	 this	 list	 is	 not
exclusive	of	all	possible	service	providers,	these	companies	are	known	within	the	MySQL
ecosystem.	As	with	any	service	you	should	always	 independently	compare	and	evaluate
for	your	needs.

Conclusion
World	Backup	Day	is	designated	as	the	31st	of	March.	The	tag	line	is	“Don’t	be	an	April
Fool.	 Back	 up	 your	 data.	 Check	 your	 restores.”	 More	 information	 can	 be	 found	 at
http://www.worldbackupday.com/.	However,	every	day	is	your	last	day	if	you	do	not	have
a	backup	and	recovery	process	in	place.	Disaster	recovery	(DR)	can	range	from	a	mildly
annoying	occurrence	to	a	once	in	a	lifetime	tsunami	type	event.	This	chapter	and	this	book

http://www.mysql.com/support/
http://www.skysql.com/
http://fromdual.com/
http://www.pythian.com/
http://www.bluegecko.net/
http://www.percona.com/
http://openquery.com/
http://palominodb.com/
http://effectivemysql.com/
http://www.continuent.com/
http://www.worldbackupday.com/

do	not	provide	all	 the	answers	 for	all	 situations	with	a	MySQL	disaster.	This	book	does
provide	 extensive	 knowledge	 and	 presents	 all	 the	 common	 options	 and	 tools	 available,
with	supporting	information	of	situations	you	should	be	aware	of,	plan	for,	and	know	how
to	address	when	necessary.

Copies	 of	 all	 referenced	 articles	 are	 available	 on	 the	 Effective	 MySQL	 website	 at
http://effectivemysql.com/book/backup-recovery/.

http://effectivemysql.com/book/backup-recovery/

8
Optimizing	Backup	and	Recovery

	

Once	you	know	there	 is	a	valid	backup	and	restore	process	for	your	environment,	how
can	you	improve	and	refine	this	process?	Depending	on	your	locking	strategy,	diskspace
availability,	 or	 business	 data	 recovery	 service	 level	 agreement	 (SLA),	 there	 are	 various
techniques	 you	 can	 use	 to	 optimize	 and	 streamline	 your	 process.	 There	 are	 also
architectural	considerations	for	further	optimizations.

In	this	chapter	we	will	discuss:

•		Use	and	benefits	of	compression

•		Levering	streaming

•		Parallelism	with	mydumper

•		Full	and	incremental	backups

•		Architectural	considerations

Example	Backup	Environment
Chapter	 2	 discussed	 the	 primary	 backup	 options	 available	 for	 a	MySQL	 instance.	 This
chapter	 has	 specific	 demonstrations	 for	 mysqldump,	MySQL	Enterprise	 Backup	 (MEB),
and	XtraBackup	products	described	as	well	as	mydumper.

All	tests	were	performed	on	an	Amazon	Web	Services	(AWS)	Elastic	Compute	Cloud
(EC2)	 large	 instance	 with	 a	 dedicated	 Elastic	 Block	 Storage	 (EBS)	 partition	 for	 the
MySQL	data	and	the	MySQL	backup	location.	An	EC2	m1.large	instance	is	defined	with
the	following	characteristics	from	http://aws.amazon.com/ec2/instance-types/:

•		7.5GB	memory

•		4	EC2	Compute	Units	(2	virtual	cores	with	2	EC2	Compute	Units	each)

http://aws.amazon.com/ec2/instance-types/

•		850GB	instance	storage

•		64-bit	platform

•		I/O	Performance:	High

•		API	name:	ml.large

The	following	articles	will	provide	all	 the	steps	necessary	to	start	using	AWS	without
any	prior	knowledge	in	order	to	repeat	any	examples	in	this	chapter:

•		http://effectivemysql.com/article/setting-up-amazon-web-services/

•		http://effectivemysql.com/article/using-amazon-web-services/

Refer	to	the	GitHub	repository	of	code	for	this	book	to	reproduce	the	full	environment
and	 commands	 used	 in	 the	 following	 examples.	 Details	 can	 be	 found	 at
http://effectivemysql.com/book/backup-recovery/.

The	small	database	environment	used	is	approximately	5GB.

	
For	 the	 purposes	 of	 testing	 and	 providing	 shorter	 commands,	 the	MySQL	 privileges

have	 been	 recorded	 in	 a	 user	 MySQL	 configuration	 file.	 This	 does	 not	 represent	 the
optimal	MySQL	user	account	or	approach	for	securing	MySQL	backups.	An	appropriate
and	secure	approach	should	be	used	for	production	systems.

	
All	times	shown	are	for	a	single	execution	of	the	respective	command	and	are	provided

as	 an	 example	 representation.	Appropriate	 error	 checking	 is	 not	 shown	 in	 the	 following
examples.	 This	 should	 be	 applied	 accordingly	 in	 a	 production	 setting.	 Accurate
benchmarking	 should	 involve	 several	 iterations	 of	 the	 same	 test	 and	 should	 include
monitoring	additional	system	resources,	including	CPU,	disk,	and	network	throughput	to
determine	a	more	specific	measurement.

http://effectivemysql.com/article/setting-up-amazon-web-services/
http://effectivemysql.com/article/using-amazon-web-services/
http://effectivemysql.com/book/backup-recovery/

Using	Compression
One	of	the	most	common	improvements	to	any	backup	strategy	is	the	use	of	compression.
The	time	savings	for	transferring	backups	offsite	or	to	external	media,	including	tape,	can
be	 an	 important	 benefit.	 Compression	 can	 also	 be	 used	 to	 reduce	 disk	 I/O	 during	 the
backup	or	recovery	approach.	This	feature	has	one	significant	limitation—that	is,	the	time
taken	 to	 compress	 or	 uncompress	 files	 may	 impact	 individual	 steps	 in	 the	 backup	 or
recovery	strategy.

mysqldump
When	using	mysqldump,	 compression	can	simply	be	 included	as	an	additional	 step	or	 in
the	command	line	via	a	piped	command.	For	example:

	
or

	
TIP			While	the	gzip	command	is	demonstrated	here,	other	compression	tools	exist,
including	bzip	and	7zip.	These	tools	can	provide	better	compression	ratios	for	certain
types	of	data.	Compressions	tools	also	generally	include	different	options	between	the
fastest	and	best	compression.

	
Using	the	example	MySQL	database	of	approximately	5GB:

	
With	compression	combined	as	a	single	command	the	results	are:

	

When	using	 a	piped	 command	 the	 first	 benefit	 is	 that	 the	output	 file	 is	 automatically
compressed	on	the	fly,	without	requiring	any	additional	temporary	disk	space.	This	helps
if	 your	 system	 has	 limited	 diskspace.	 The	 disadvantage	 is	 the	 additional	 time	 this
command	 may	 take	 to	 execute.	 When	 combined	 with	 the	 mysqldump	 command	 using
default	 settings,	 a	 lock	 of	 all	 tables	 can	 affect	 application	 access.	 In	 this	 example,	 the
locking	was	increased	from	91	seconds	to	258	seconds.	Locking	is	not	a	consideration	for
an	InnoDB	only	database	when	the	--single-transaction	option	is	used.

Testing	is	necessary	to	confirm	the	benefits	for	your	environment.	It	is	easy	to	time	the
backup	 and	 compress	 commands	 separately	 and	 the	 time	 taken	 when	 combined.	 The
combined	time	may	not	be	a	significant	overhead	in	some	situations.	This	will	depend	on
disk	 throughput	 capacity	 and	 memory.	 In	 the	 preceding	 example,	 359	 seconds	 was
reduced	to	258	seconds	when	the	statements	were	combined,	producing	a	saving	in	time.
In	 the	following	example	of	a	different	sized	database	on	a	different	system,	 the	 time	 is
about	the	same,	83	seconds	compared	with	81	seconds.

	
Compression	 with	 a	 filesystem	 snapshot	 is	 a	 process	 that	 occurs	 as	 a	 post-step,

generally	before	copying	the	snapshot	files.	As	the	size	of	the	backup	grows,	the	negative
impact	on	the	production	system	and	the	recovery	process	becomes	more	obvious.

The	 compression	 on	 the	 database	 server	 can	 have	 an	 effect	 on	 the	 database	 I/O
performance.	Is	the	copy	of	an	uncompressed	backup	that	is	five	to	ten	times	larger	on	a
dedicated	 network	 interface	 less	 of	 an	 impact	 than	 the	 compression?	 This	 will	 be
discussed	in	the	following	sections.

TIP			The	nice	and	ionice	Linux	commands	can	change	the	priority	of	work	on	a	system
and	lower	the	system	impact	of	certain	commands.

	
While	 you	 consider	 this,	 the	 greatest	 issue	 uncovered	 during	 consulting	 in	 a	 disaster

recovery	 situation	 is	 either	 the	 time	 taken	 to	 uncompress	 the	 data	 before	 restoration,	 or
insufficient	 disk	 space	 to	 uncompress	 a	 backup	 and	 restore	 accordingly.	 In	 the	 first
situation,	a	client	with	a	large	centralized	SAN	for	more	than	30	databases	had	a	17	hour
delay	in	the	database	restoration	due	to	the	time	taken	to	uncompress	data.	In	the	second
situation,	your	system	may	require	at	 least	 two	 times	 the	database	size	 in	diskspace,	 the
uncompressed	backup	file,	and	the	restored	database.

Under	 normal	 circumstances	 the	 most	 common	 database	 recovery	 is	 that	 of	 the	 last
physical	 backup.	 It	 would	 be	 optimal	 to	 always	 ensure	 an	 uncompressed	 copy	 of	 the

system	you	wish	to	restore	is	on	disk.

Compression	Utilities

Using	 the	mysqldump	 backup	of	2.9GB	 the	 following	 testing	was	performed	 to	compare
the	time	and	%	compression	savings	of	various	available	open	source	products.

	
The	percentage	savings	and	compression	time	of	results	will	vary	depending	on	the	type

of	data	that	is	stored	in	the	MySQL	database.

NOTE			The	pigz	compression	utility	was	the	surprising	winner	in	best	compression	time
producing	at	least	a	size	of	gzip.	This	was	a	full	50%	faster	than	gzip.

	

MySQL	Enterprise	Backup	(MEB)
A	 backup	 with	 MEB	 can	 enable	 compression	 with	 the	 --compress	 option.	 With
compression	you	are	unable	 to	apply	 the	 logs	within	a	 single	backup	command,	 i.e.,	--
compress	 and	 the	 action	backup-and-apply-log	 are	 incompatible.	 Compression	 is	 also
incompatible	 with	 all	 incremental	 backup	 options	 including	 --incremental	 and	 --
incremental-with-redo-log-only.

The	following	information	is	for	a	normal	MEB	backup:

	
Only	 InnoDB	 tablespace	 files	 are	 compressed.	 These	 are	 given	 a.ibz	 extension

accordingly	for	both	the	per	tablespace	.ibd	data	files	and	the	common	tablespace	ibdata
file.	Large	MyISAM	data	files	are	not	compressed.	For	example:

	

	
By	comparison	the	backup	without	the	--compress	option	produced	a	5.6GB	backup	in

210	seconds.	This	compressed	backup	of	1.7GB	took	282	seconds	to	complete.

The	 --compress-level=N	 option	 enables	 further	 compression.	 A	 value	 of	 1	 is	 the
default	 and	 fastest	 compression;	9	 is	 the	 slowest	 compression.	Subsequent	 tests	with	--
compress-level=9	 produced	 only	 slightly	 better	 compression;	 however,	 the	 time	 taken
was	six	times	longer.

XtraBackup
To	 enable	 compression	 with	 XtraBackup,	 you	 must	 first	 stream	 the	 data	 with	 the	 --
stream=tar	 option	 and	 pipe	 accordingly	 to	 an	 applicable	 compression	 command.	 For
example:

	

A	normal	XtraBackup	produces	the	following	results	for	the	example	database:

	
The	following	is	produced	for	an	XtraBackup	with	compression:

	
For	comparison,	without	 the	streaming	and	compression	the	backup	took	161	seconds

and	produced	a	backup	directory	5.4GB	in	size	compared	with	482	seconds	and	a	backup
file	of	1.6GB	in	size	with	compression.

When	extracting	the	backup	file,	the	following	syntax	is	used:

	
CAUTION			When	uncompressing	XtraBackup	tar	files,	the	-i	option	is	required.

	

Streaming	Backups
A	Linux	pipe	combined	with	an	applicable	command	can	be	used	to	stream	output	across
the	network,	avoiding	the	need	to	write	any	backup	information	on	the	database	server.

Using	SSH
Using	standard	SSH	with	keyed	authentication	you	can	automate	the	network	transfer	of	a
backup.	In	the	following	examples	the	SSH	connection	has	been	simplified	to	just	using
the	alias	backup:

	
TIP			You	can	remove	the	complexity	for	remote	connections	by	defining	the	hostname,
port,	user,	and	key	details	in	the	SSH	configuration	file	$HOME/.ssh/config.

	
For	example:

	
This	can	be	combined	with	compression	as	described	previously.	For	example:

	
It	 is	 also	 possible	 to	 offload	 the	 compression	 to	 the	 remote	 host	 by	 sending	 the	 data

uncompressed	and	applying	at	the	destination.	For	example:

	

	
You	can	also	throttle	throughput	in	a	pipe	with	the	pv	command.	For	example:

	

Using	nc
Using	 netcat	 (nc)	 you	 can	 transfer	 a	 file	 via	 TCP/UDP	 directly	 on	 a	 given	 port.	 This
generally	 requires	 defining	 the	 receiving	 communication	 on	 the	 destination	 server,	 and
may	require	additional	firewall	access	on	a	defined	port.	For	example:

	
This	command	 is	generally	considered	more	 lightweight	 than	ssh	and	possibly	a	 little

faster.	The	size	of	this	backup	example	does	not	represent	what	true	savings	may	occur	for
larger	 files.	 The	 time	 saving	 can	 be	 attributed	 to	 less	 authentication	 and	 encryption

requirements;	 however,	 this	 highlights	 a	 potential	 security	 impact	 for	 a	 plain	 text	 SQL
dump.	Adequate	 firewall	 security	 for	 an	 internal	 network	 is	 an	 important	 consideration.
Compression	 can	 also	 be	 included	 with	 these	 piped	 commands	 at	 either	 the	 source	 or
destination	host.

MySQL	Enterprise	Backup	(MEB)
To	achieve	streaming	with	MEB,	the	[backup-to-image]	option	can	be	used	in	conjunction
with	writing	the	output	to	standout	and	using	an	appropriate	piped	output.	For	example:

	

	
While	 you	 are	 performing	 a	 remote	 backup,	 MEB	 does	 require	 a	 local	 working

directory	and	it	does	leave	files	on	the	backup	server.

	
With	MEB	version	 3.7	 the	backup-to-image	 backup	 feature	 now	 includes	 checksum

verification	 to	 ensure	 the	 backup	 data	 remains	 unchanged	 during	 any	 transfers	 to	 other
systems.	Each	file	within	the	backup	image	is	tested	against	a	checksum	calculated	using
the	CRC32	algorithm,	either	when	files	are	extracted	from	the	backup	image,	or	using	the
new	mysqlbackup	option	validate	to	test	a	backup	image	without	extracting.

MEB	also	provides	streaming	options	to	high-capacity	storage	devices	using	the	System
Backup	 to	 Tape	 (SBT)	 interface.	 This	 enables	 MEB	 to	 integrate	 with	 Oracle	 Secure
Backup	 (OSB)	 or	 other	 compatible	 media	 management	 software	 (MMS)	 products	 to
manage	the	backup	and	restore	process.	More	information	about	the	various	--sbt	options
can	 be	 found	 at	 http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/meb-backup-
tape.html.

XtraBackup
To	enable	streaming	with	XtraBackup,	the	--stream=tar	option	is	required	and	combined
with	one	of	the	preceding	examples.	For	example:

	
The	--incremental	option	is	not	applicable	if	specified	with	the	--stream	option.	The

--stream	option	will	always	produce	a	full	backup.

The	execution	time	and	resulting	backup	size	are	comparable	to	a	standard	XtraBackup
command	as	shown	previously.

	
XtraBackup	also	provides	a	push	of	a	backup	to	a	remote	host	with	the	--remote-host

http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/meb-backup-tape.html

option.

	

	
For	 more	 information	 and	 other	 examples	 see	 http://www.percona.com/doc/percona-

xrrabackup/howtos/recipes_ibkx_stream.html.

Remote	Backups
In	 the	 previous	 section	 it	was	 possible	 to	 push	 a	MySQL	backup	 to	 an	 external	 server.

http://www.percona.com/doc/percona-xrrabackup/howtos/recipes_ibkx_stream.html

With	 all	 client/server	 backup	 options	 it	 is	 possible	 to	 pull	 a	 MySQL	 backup	 from	 the
database	server.	One	of	the	benefits	of	this	process	is	the	necessary	access	requirements.
In	a	pull	process	 the	only	permissions	on	 the	database	server	are	 the	necessary	MySQL
permissions	and	firewall	access	to	the	MySQL	port;	no	operating	system	user	is	necessary.

mysqldump
Using	the	--host	option	enables	the	mysqldump	command	to	connect	to	a	remote	server.

The	 use	 of	 --compress	 can	 provide	 some	 assistance	 in	 client/server	 network
communications	of	the	data;	however,	this	does	not	result	in	a	compressed	backup	file.

	
Surprisingly,	the	use	of	the	--compress	option	results	in	a	much	slower	backup.

MySQL	Enterprise	Backup	(MEB)
MEB	does	not	support	connecting	to	a	remote	host.

NOTE			While	MEB	has	a	--host	configuration	option,	this	is	used	only	for	the	validation
of	parsing	this	option	when	it	exists	in	a	[client]	configuration	section	without
producing	an	error	message	during	execution.

	

XtraBackup
XtraBackup	does	not	support	connecting	to	a	remote	host.

Parallel	Processing
Using	 the	 default	 mysqldump	 command	 has	 the	 limitation	 of	 being	 a	 single	 threaded
process.	This	 is	particularly	important	during	the	restoration	process	of	a	 large	database.
While	 mysqldump	 natively	 does	 not	 support	 parallel	 processing,	 the	 open	 source
mydumper	provides	a	suitable	replacement.

mydumper
Mydumper	 (http://www.mydumper.org/)	 is	 a	 high-performance	 MySQL	 backup	 and
restore	 toolset	 released	 under	 the	 GNU	 GPLv3	 license.	 Domas	 Mituzas,	 Andrew
Hutchings,	 and	Mark	 Leith	 created	 the	mydumper	 toolset	 for	 use	 in	 both	MySQL	 and

http://www.mydumper.org/

Drizzle.	 Mydumper	 was	 created	 as	 a	 tool	 that	 competes	 with	 the	 mysqldump	 client
program.	Although	there	are	many	installations	currently	using	mysqldump,	it	can	be	slow
considering	that	it	is	not	multi-threaded.

Given	that	mydumper	is	multi-threaded	it	can	create	a	MySQL	backup	much	faster	than
the	mysqldump	tool	distributed	with	MySQL.	Mydumper	also	has	the	capability	to	retrieve
the	 binary	 logs	 from	 a	 remote	 server.	 Copying	 the	 binary	 logs	 at	 the	 same	 time	 as	 the
dump	has	the	advantage	of	supporting	a	point	in	time	backup.

The	major	advantages	of	mydumper	are	as	follows:

•		Multi-threaded,	which	makes	dumping	data	much	faster.

•		Mydumper	output	is	easy	to	manage	and	parse	because	there	are	separate	files	for	tables
and	meta-data.

•		All	threads	maintain	a	consistent	snapshot	that	provides	accurate	master	and	slave
positions.

•		Mydumper	supports	Perl	Regular	Expressions	(PCRE),	which	enable	pattern	matching
for	database	names	and	table	names	to	be	included	or	excluded.

•		The	mydumper	toolset	also	comes	with	the	ability	to	restore	data	from	a	mydumper
backup	through	the	multi-threaded	tool	called	myloader.

Installation
Mydumper	must	be	compiled	from	source	code.	This	will	require	a	system	that	has	a	C++
compiler	available.	Additional	dependencies	include:

•		CMake

•		Glib2	with	development	packages

•		PCRE	with	development	packages

•		MySQL	client	libraries	and	development	packages

Refer	 to	http://docs.mydumper.org/compiling.html	 for	operating	specific	commands	 to
install	these	dependencies.

The	following	commands	were	used	for	an	Ubuntu	environment:

	
NOTE			The	current	stable	version	is	0.23.	The	current	development	version	is	0.5.1.	This
development	version	includes	additional	options	for	enabling	daemon	mode,	defining
an	interval	between	snapshots,	and	an	output	log	file	option.

http://docs.mydumper.org/compiling.html

	
Usage

On	 an	 operational	MySQL	 system,	mydumper	 can	 operate	with	 no	 arguments	 and	will
attempt	to	connect	to	MySQL	via	the	local	socket	file.	For	example:

	
No	output	is	produced	to	indicate	success	or	failure,	or	to	provide	details	of	the	export

produced.	By	default	a	directory	with	a	name	of	export-[date/time]	will	be	produced.

	
During	 the	 backup	 you	 can	 monitor	 the	 multiple	 threads	 with	 the	 SHOW

PROCESSLIST	command.	For	example:

	
Running	in	verbose	mode	produces	additional	output;	however,	the	full	output	directory

is	not	included	in	the	information	provided:

	
The	 output	 provides	 some	 additional	 insight	 into	 the	 operation.	 As	 shown	 by	 the

message,	non-InnoDB	tables	are	backed	first	 to	 improve	 locking	during	 the	entire	dump
process.

The	 following	example	uses	 the	 regular	expression	options	 to	exclude	any	mysql	 and
test	schema	objects.

	
Compression

By	 default	 all	 output	 files	 are	 uncompressed.	 By	 using	 the	 -c	 option,	 all	 files	 will	 be
compressed,	 producing	 a	 much	 smaller	 database	 backup.	 All	 files	 in	 the	 directory	 are
compressed	with	gzip.

	
More	Information

Mydumper	generates	several	files	pertaining	to	meta-data,	table	data,	table	Schemas,	and
binary	logs.

The	.metadata	 file	 stores	 the	 start	 and	 end	 times	 of	 the	 dump	 as	well	 as	 the	master
binary	 log	position.	When	a	dump	 is	 executed	a	.metadata	 file	 is	 created	 in	 the	output
directory.

	
Table	data	can	be	stored	in	two	different	ways,	one	file	with	all	table	data	or	many	files

with	 chunks	 of	 data	 for	 one	 table.	 If	 the	--rows	 option	 is	 added	 to	 the	 command,	 then
many	 files	 will	 be	 created	 for	 one	 table	 with	 a	 naming	 convention	 like
database.table.chunk,	sql.	If	the	--rows	option	is	not	specified,	one	file	per	table	will
be	create	with	a	naming	convention	like	database.table.sql.

	
When	using	the	compression	option,	all	files	are	included:

	
Table	 Schemas	 are	 created	 by	 default	 and	 stored	 in	 individual	 files	 named

databases.table-schema.sql.	These	files	can	be	removed	from	the	dump	process	with
the	 --no-Schemas	 option.	 There	 is	 no	 companion	 option	 to	 produce	 only	 the	 schema
objects.	You	should	use	mysqldump	for	this	functionality.

When	the	--binlogs	option	is	used	mydumper	will	store	binary	logs	in	a	sub-directory
inside	 the	 dump	 directory	 unless	 otherwise	 specified	 by	 the	 --binlog-outdir	 option.
Binary	 logs	will	 have	 the	 same	 filename	 as	 the	MySQL	 server	 that	 supplies	 them.	The
meta-file	will	also	reflect	the	current	master	position:

	
XtraBackup

Parallel	 copying	 for	a	 local	backup	with	XtraBackup	 is	possible	when	multiple	 InnoDB
data	 files	 exist,	 either	 from	 using	 the	 innodb_file_per_table	 configuration	 option	 or
when	 multiple	 data	 files	 in	 the	 innodb_data_file_path	 configuration	 option	 exist.
Parallel	processing	is	enabled	by	adding	the	--parallel	option	to	the	backup	process.	For
example:

	

	

Incremental	Backups
In	addition	to	performing	a	full	backup	of	your	MySQL	database,	several	options	exist	to
perform	incremental	backups.	These	can	reduce	the	time	to	perform	a	backup	and	the	size
of	backup	files;	however,	a	restore	process	will	be	more	complex	and	may	be	more	time
consuming.

The	choice	 for	using	a	 full	backup	versus	an	 incremental	backup	can	depend	also	on
physical	resources.	The	added	steps	during	the	restore	process	may	introduce	an	additional
chance	of	error	under	a	crisis	situation.	The	simplicity	of	a	full	server	restore	may	also	be
more	easily	automated.

Depending	on	the	volume	and	rate	of	change	of	data,	an	incremental	backup	may	result
in	a	smaller	backup;	however,	it	may	take	a	similar	amount	of	time	to	execute.

MySQL	Enterprise	Backup	(MEB)
With	 the	 --incremental	 option	 and	 either	 the	 --incremental-base	 option	 or	 the	 --
start-lsn	 of	 an	 appropriate	 backup,	 an	 incremental	 backup	 can	 be	 performed.	 For
example:

	

	
The	backup	directory	is	significantly	smaller	than	the	previous	full	backup.	The	saving

is	in	the	ibdata1	tablespace	file,	which	is	not	the	full	size.

	
The	 --incremental	 option	 is	 for	 InnoDB	 tables,	 or	 for	 infrequent	 updates	 of	 non-

InnoDB	tables.	If	a	non-InnoDB	table	has	been	modified,	the	entire	file	is	included	in	the
backup.	The	--incremental	option	is	incompatible	with	the	--compress	option	and	also
with	the	backup-and-apply-log	command.

Producing	a	Full	Restore

In	order	to	utilize	an	incremental	backup,	this	has	to	be	applied	to	the	full	backup	with	the
apply-incremental-backup	command.	For	example:

	

	
For	 more	 information	 visit	 the	 MEB	 Reference	 Manual	 at

http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/mysqlbackup.incremental.html
and	 the	 blog	 post	 at
https://blogs.oracle.com/MySQL/entry/mysql_enterprise_backup_taking_incremental.

MEB	also	provides	an	alternative	means	of	producing	an	incremental	backup	with	the	-
-incremental-with-redo-log-only	 option.	 This	 option	 uses	 the	 InnoDB	 transactional
log	files	and	requires	that	all	information	is	still	contained	within	these	circular	files.	See
more	 details	 from	 the	 MEB	 Reference	 Manual	 at	 http://dev.mysql.com/doc/mysql-
enterprise-backup/3.7/en/backup-incremental-options.html	 and	 the	 blog	 post	 at
https://blogs.oracle.com/MySQL/entry/mysql_enterprise_backup_redo_log.

XtraBackup
XtraBackup	 supports	 the	 ability	 to	 perform	 an	 incremental	 backup	 with	 the	 --
incremental	and	--incremental-basedir	options.	A	previous	full	backup	is	required	to
perform	an	incremental	backup.	For	example:

http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/mysqlbackup.incremental.html
https://blogs.oracle.com/MySQL/entry/mysql_enterprise_backup_taking_incremental
http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/backup-incremental-options.html
https://blogs.oracle.com/MySQL/entry/mysql_enterprise_backup_redo_log

	
An	incremental	backup	can	now	be	created:

	
The	output	will	show	a	delta	of	the	InnoDB	common	tablespace	files	was	generated:

	
Two	additional	steps	are	required	to	apply	the	incremental	backup	to	the	full	backup	to

enable	the	successful	restore	of	this	backup:

	

	
The	end	result	is	a	complete	backup	in	the	original	full	backup	directory	that	contains

all	information	from	the	incremental	backup.

Partial	Backups
Generally	 for	 a	 backup	 and	 recovery	 strategy,	 partial	 backups	 are	 not	 practical	 due	 to
absence	 of	 some	 data.	 A	 relational	 database	 also	 defines	 consistency	 with	 database
constraints,	including	foreign	keys,	which	may	not	be	included	in	a	partial	backup.	These
options,	 however,	may	 be	 of	 benefit	 in	 a	 partial	 data	 recovery	 process	 for	 a	 corrupt	 or
dropped	table,	or	for	convenience	in	testing.

A	 partial	 backup	may	 be	 practical	 in	 an	 ETL	 process	 when	 only	 a	 subset	 of	 data	 is
necessary	 and	 additional	 data	 can	 be	 regenerated	 without	 a	 backup.	 This	 can	 be	 an
optimization	that	saves	backup	space	and	time.

mysqldump
The	 mysqldump	 command	 allows	 for	 the	 specification	 of	 various	 database	 Schemas	 or
tables	with	the	--databases	and	--tables	options.

MySQL	Enterprise	Backup	(MEB)
MEB	 supports	 the	 ability	 to	 perform	 partial	 backups.	 These	 options	 include	 --only-
innodb,	 --only-innodb-with-frm,	 --only-known-file-types,	 --databases,	 --

databases-list-path,	 and--include.	 For	 more	 information	 see
http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/backup-partial-options.html.

XtraBackup
XtraBackup	 provides	 an	 export	 of	 an	 individual	 InnoDB	 and	XtraDB	 table	with	 the	--

http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/backup-partial-options.html

export	option;	however,	an	import	is	only	possible	with	Percona	Server	using	XtraDB.

More	 information	 can	 be	 found	 at	 http://www.percona.com/doc/percona-
xtrabackup/innobackupex/importing_exporting_tables_ibk.html.

MySQL	Backup	Security
Throughout	 these	 examples	 the	 topic	 of	 appropriate	 MySQL	 security	 has	 not	 been
discussed.	 This	 is	 an	 important	 consideration	 for	 any	 complete	 backup	 and	 recovery
strategy.	A	 recent	poll	 at	 the	2012	annual	MySQL	conference	highlighted	 that	very	 few
organizations	use	SSL	for	accessing	MySQL	data.

MySQL	provides	SSL	support	for	client	connections,	for	example	a	remote	backup,	and
for	 MySQL	 replication.	 In	 Chapter	 3	 of	 Effective	 MySQL:	 Advanced	 Replication
Techniques,	SSL	usage	is	described	in	detail.	The	following	sections	can	be	found	in	the
MySQL	Reference	Manual.

•		Client	connections	-	http://dev.mysql.com/doc/refman/5.5/en/secure-connections.html

•		Replication	-	http://dev.mysql.com/doc/refman/5.5/en/replication-solutions-ssl.html

With	the	wider	adoption	of	MySQL	in	the	Cloud	as	discussed	in	Chapter	9,	the	use	of
SSL	 for	 client	 communications	 and	 MySQL	 replication	 will	 become	 an	 important
requirement.	It	is	possible	to	encrypt	files	created	on	a	production	server	before	network
transfer	with	generally	available	utilities	including	openssl	and	gpg.

Using	transparent	encryption	techniques	can	provide	a	level	of	adequate	security	on	the
filesystem	and	 can	be	 integrated	 into	 the	 existing	MySQL	backup	 and	 recovery	options
with	little	impact.	The	ezNcrypt	product	from	Gazzang	(http://www.gazzang.com/)	is	one
offering	that	provides	examples	for	implementation	with	MySQL.	This	blog	post	by	Mike
Frank	 provides	 an	 introduction:	 http://mikefrank.wordpress.com/tag/mysql-mysqldump-
ezncrypt-gazzang-linux-backup-xrrabackup-transparent-encryption/.

Encryption	with	ezNcrypt
The	 following	 steps	 demonstrate	 how	 to	 set	 up	 a	 mysqldump	 encrypted	 backup	 with
ezNcrypt.	 You	 can	 request	 a	 free	 trial	 evaluation	 of	 the	 software	 from
http://blog.gazzang.com/request-a-free-trial-of-ezncrypt/.	 Following	 installation	 and
configuration,	the	first	step	is	to	verify	the	ezNcrypt	process	is	running:

	
If	the	process	is	not	running	you	would	find	the	following	error	message:

http://www.percona.com/doc/percona-xtrabackup/innobackupex/importing_exporting_tables_ibk.html
http://dev.mysql.com/doc/refman/5.5/en/secure-connections.html
http://dev.mysql.com/doc/refman/5.5/en/replication-solutions-ssl.html
http://www.gazzang.com/
http://mikefrank.wordpress.com/tag/mysql-mysqldump-ezncrypt-gazzang-linux-backup-xrrabackup-transparent-encryption/
http://blog.gazzang.com/request-a-free-trial-of-ezncrypt/

	
Under	the	covers	you	will	find	the	following	attached	devices,	and	no	actual	processes.

	

	
The	first	step	is	to	create	a	backup	directory	and	encrypt	all	contents	that	are	placed	in

the	directory.	ezNcrypt	uses	the	concept	of	an	@category	for	reference	with	an	encrypted
file	or	directory.

	
The	underlying	regular	directory	is	now	replaced:

	
Any	attempts	to	write	to	this	directory	will	fail,	even	with	the	Linux	super	user:

	
mysqldump

In	order	to	read	and	write	from	an	encrypted	directory	you	need	to	grant	access	controls	to
a	given	program,	for	example	mysqldump:

	
You	verify	the	defined	access	control	rules	with:

	
However,	writing	with	mysqldump	still	causes	an	error	because	it	is	the	shell	redirection

that	is	performing	the	writing,	as	seen	in	the	system	error	log:

	
You	can	use	the	--result-file	option	with	mysqldump	to	enable	the	process	to	create

the	file	directly.	For	example:

	
In	this	single	test,	the	transparent	encryption	added	only	a	very	nominal	overhead.	You

can	 easily	 extract	 the	 file	 from	 the	 encrypted	 directory;	 however,	 that	would	 defeat	 the
purpose	of	using	encryption.	The	following	syntax	is	shown	just	to	confirm	the	validity	of
the	encrypted	file:

	

	
When	 using	 correctly	 configured	 directories	 and	 access	 controls,	 the	 use	 is	 truly

transparent	to	the	backup	process.

Restoring	an	encrypted	 file	 is	a	 little	more	 involved.	The	best	approach	 is	 to	create	a
script	to	perform	the	work,	then	encrypt	this	script.	When	executed,	this	script	will	have
the	permissions	necessary	to	read	and	apply	the	encrypted	file.

TIP			Using	transparent	encryption	it	is	possible	to	encrypt	the	MySQL	user	and	password
securely	in	a	plain	text	configuration	file	and	used	with	appropriate	MySQL	client
commands.

	

Architectural	Considerations
Given	 the	 various	 options	 for	 backup,	 it	 is	 possible	 to	 optimize	 a	 recovery	 strategy	 to
minimize	 downtime.	 A	 failover	 to	 a	 standby	 system	 is	 generally	 the	 best	 approach	 for
critical	operations.

The	archiving	of	data	from	an	OLTP	system	to	a	secondary	MySQL	instance	can	be	a
great	 benefit	 for	 ensuring	 smaller	 backups	 and	 a	more	 efficient	 restore	 process.	 If	 your
application	 stores	 logging,	 history,	 or	 archive	 information	 in	 individual	 tables	 or	 large
amounts	of	reproducible	transient	data	or	read-only	data,	considering	the	separation	of	this
information	into	different	instances	can	also	serve	to	reduce	the	dependency	on	a	primary
system.	 This	 is	 an	 approach	 for	 designing	 your	 application	 to	 support	 sharding	 and
partitioning.

A	simple	example	is	a	new	system	for	analyzing	stock	information.	With	a	large	amount
of	historical	 information	 (over	30	years	and	approximately	500GB),	 the	application	was
designed	 for	data	 recorded	 in	 two	 individual	 tables:	 a	historical	 table	of	data	before	 the

system	went	 live	and	a	second	table	for	data	following	the	go	live	date.	The	application
was	 written	 to	 query	 one	 or	 both	 tables	 appropriately	 based	 on	 date	 parameters.	 By
recommending	the	client	split	the	MySQL	instance	into	two	separate	instances,	placing	all
historical	 data	 on	 one	 instance,	 the	 only	 application	 modification	 was	 an	 additional
database	connection	management.

The	backup	strategy	was	also	optimized	now	for	two	different	sets	of	data.	The	first	set
was	a	static	copy	of	historical	data,	no	daily	backup	was	needed,	and	no	binary	 logging
was	necessary.	This	requirement	actually	enabled	an	additional	benefit	of	parallelism	and
enabling	 the	 MySQL	 query	 cache.	 The	 second	 set	 of	 current	 data,	 which	 was	 much
smaller,	 could	 be	managed	with	 a	 different	 backup	 and	 recovery	 process	 to	meet	 SLA
requirements.	 This	 architectural	 change	 enabled	 a	 different	 strategy	 for	 read	 scalability
and	 negating	 the	 requirement	 of	 replication	 for	 historical	 information.	 The	 system	was
also	 able	 to	 support	 a	 partial	 failure	 of	 any	 historical	 information	 by	 reporting	 this
information	as	unavailable.

TIP			A	well	designed	and	configured	MySQL	replication	topology	can	be	the	first	step	for
a	minimal	recovery	time.	MySQL	replication	is	not	a	complete	backup	solution	but	can
support	optimizing	many	common	failure	scenarios.	The	Effective	MySQL:	Advanced
Replication	Techniques	book	will	focus	on	the	various	options	that	are	available	with
MySQL.

	

Conclusion
With	any	RDBMS	system,	 time	and	new	 features	will	 always	 result	 in	more	data	being
recorded.	While	an	appropriate	MySQL	backup	and	recovery	strategy	may	meet	business
expectations	today,	this	may	not	be	so	in	six	months’	time.	The	decision	of	which	backup
strategy	 to	 use	 can	 also	 be	 affected	 by	 optimization	 factors.	 The	 addition	 of	 more
hardware	 such	 as	 an	 additional	 network	 card	 or	 an	 additional	 low	 cost	 hard	 drive	 can
change	the	decision	process	for	optimizing	backup	and	recovery.

The	 SQL	 statements	 and	 web	 links	 listed	 in	 this	 chapter	 can	 be	 downloaded	 from
http://effectivemysql.com/book/backup-recovery/.

http://effectivemysql.com/book/backup-recovery/

9
MySQL	in	the	Cloud

	
“Everything	fails	all	the	time.”

Dr	Werner	Vogels,	CTO	of	Amazon	(http:/allthingsdistributed.com/)

The	emergence	of	the	cloud	in	recent	years	has	seen	a	number	of	MySQL	specific	and
MySQL	like	database	solutions.	These	offerings	are	in	addition	to	running	a	stock	MySQL
implementation	in	a	virtualized	environment.	Amazon,	HP,	and	Google	currently	provide
MySQL	 cloud	 deployments	 that	 are	 based	 on	 using	 the	 core	MySQL	 server.	 There	 are
solutions	including	ScaleDB	that	use	new	MySQL	storage	engines	to	provide	many	cloud
scalable	features.	Xeround	and	Clustrix	are	custom	solutions	that	use	the	MySQL	protocol
for	 communication	 and	 ease	 of	 application	 integration;	 however,	 they	 have	 an	 entirely
different	underlying	product	solution.	In	this	chapter	we	will	be	discussing	the	options	that
most	closely	represent	a	standard	MySQL	environment:

•		Amazon	Relational	Database	Service	(RDS)

•		Google	Cloud	SQL

•		HP	Cloud	Database	as	a	Service	(DBaaS)

Amazon	Relational	Database	Service	(RDS)
AWS	RDS	 is	 the	most	mature	 cloud	 based	MySQL	 product.	 RDS	 provides	 a	managed
MySQL	 service	offering	 for	 versions	5.1	 and	5.5,	 including	 several	 point	 releases.	This
includes	a	web	based	console	and	command	line	APIs	for	creating	and	maintaining	RDS
instances.	RDS	supports	two	HA	options,	a	master	and	read	replicas	topology	via	MySQL
asynchronous	replication	and	a	Multi	Availability	Zone	(AZ)	deployment	that	provides	a
proprietary	 synchronous	 replication	 solution.	 The	 Multi	 AZ	 instance	 supports	 failover
capability	via	internal	management	of	the	RDS	instances;	however,	the	second	Multi	AZ

http://allthingsdistributed.com/

instance	is	not	accessible	for	read	load	like	a	normal	replication	topology.

Some	of	the	benefits	of	the	managed	RDS	service	include:

•		Ability	to	enable	automatic	minor	updates	of	MySQL	software	(using	--auto-minor-
version-upgrade=true	option)

•		Ability	to	upgrade	or	downgrade	the	size	of	the	RDS	instance	without	additional	work
(using	rds-modify-db-instance	--db-instance-class=<newsize>	command)

The	RDS	implementation	of	MySQL	has	some	restrictions	including:

•		No	direct	access	to	the	MySQL	configuration	file	(i.e.	my.	cnf).	Access	to	change
parameters	is	via	the	rds-modify-db-parameter-group	command.

•		Lack	of	SUPER	privilege	for	any	user.

•		No	access	to	read	binary	logs.

•		No	access	to	the	MySQL	error	log.

See	the	blog	post	http://effectivemysql.com/article/setting-up-aws-rds/	for	the	necessary
steps	to	set	up	and	create	a	new	RDS	instance.

Example	Database	Creation
Using	 the	 example	 database	 from	Chapter	 8,	 the	 following	 data	was	 added	 to	 RDS	 by
restoring	a	mysqldump	backup.

	

MySQL	Versions
These	current	versions	are	presently	available	with	RDS.

	

Backup	Options

http://effectivemysql.com/article/setting-up-aws-rds/

RDS	 enables	 the	 use	 of	 standard	 client	 tools	 to	 connect	 to	 MySQL.	 The	 mysql	 and
mysqldump	commands	can	be	used	when	connecting	to	a	remote	host.	MySQL	Enterprise
Backup	and	XtraBackup	cannot	be	used	with	RDS.

mysqldump

As	described	 in	Chapter	2	and	Chapter	8,	 the	 standard	 options	 for	 using	mysqldump	are
possible	providing	you	connect	to	the	appropriate	remote	host.	For	example:

	

	
As	 you	 can	 see,	 an	 error	 occurred.	 This	 is	 due	 to	 a	 change	 in	 mysqldump	 between

MySQL	 5.1	 and	 MySQL	 5.5.	 In	 this	 example	 the	 MySQL	 server	 running	 the	 client
command	mysqldump	is	an	older	version	than	the	RDS	database	server	version.

CAUTION			When	using	mysql	dump	to	connect	to	a	remote	database	host	for	backups,
the	mysqldump	version	must	be	at	least	the	same	version	as	the	remote	MySQL
database.

	
Using	a	correct	version	produces:

	
This	 execution	 time	 includes	 the	 network	 overhead	 between	 an	EC2	 instance	 and	 an

RDS	instance.	This	is	comparable	with	a	standard	EC2	instance	running	a	local	MySQL
instance.

A	 more	 advanced	 option	 for	 excluding	 the	 mysql	 meta-schema	 (which	 will	 become
relevant	in	the	restore	section)	can	be	achieved	by:

	
The	SQL	statement	 in	 this	 solution	has	a	 limitation	on	 the	 length	of	 the	 string	output

from	 the	 GROUP_CONCAT	 function.	 For	 MySQL	 instances	 with	 a	 large	 number	 of
database	 Schemas	 this	 query	will	 fail.	 This	 length	 restriction	 can	 be	 increased	with	 the
group_concat_max_len	configuration	variable.	Giuseppe	Maxia	provides	an	improvement
with	two	more	possible	options;	the	first,	however,	is	limited	to	the	maximum	length	of	an
OS	 command.	 See	 http://datacharmer.blogspot.com/2012/04/few-hacks-to-simulate-
mysqldump-ignore.html	for	more	details.	Within	a	day	of	posting	a	related	blog	post	about
this	syntax,	Mark	Leith	provided	a	code	patch	to	the	mysqldump	command	that	implements
an	 actual	 --ignore-database	 option.	 The	 beauty	 of	 the	MySQL	 community	 and	 open
source	 software	 is	 seen	 in	 these	 immediate	 responses.	 See	 more	 information	 at
http://www.markleith.co.uk/?p=768	 and	 MySQL	 bug	 #3228	 at
http://bugs.mysql.com/bug.php?id=3228.

TIP			There	is	currently	no	--ignore-database	option	with	mysqldump.	The	previously
mentioned	command	provides	one	of	several	suitable	alternatives.

	
Database	Snapshot

RDS	provides	a	native	 snapshot	option	 to	produce	a	consistent	backup	of	MySQL	data.
This	occurs	while	the	database	is	online.	It	is	unclear	how	locking	occurs	with	MyISAM
tables	 to	 ensure	 database	 consistency.	 Using	 the	 RDS	 CLI	 tools,	 you	 can	 produce	 a
snapshot	with:

	
NOTE			Unlike	most	other	commands	that	can	be	timed,	this	is	an	asynchronous	process.
You	must	poll	the	results	via	the	rds-describe-db-snapshots	command	to	determine	when
the	backup	is	completed.	There	is	no	estimated	percentage	completion	like	an	AWS
EBSfilesystem	snapshot.	There	is	no	execution	time	or	size	information	available
following	the	backup.

	
You	can	monitor	the	state	of	the	snapshot	creation	with	the	following	command:

	

http://datacharmer.blogspot.com/2012/04/few-hacks-to-simulate-mysqldump-ignore.html
http://www.markleith.co.uk/?p=768
http://bugs.mysql.com/bug.php?id=3228

	
Or	interactively	with	the	command:

	
This	snapshot	took	approximately	20	minutes	to	complete	for	a	20GB	RDS	instance.

An	 RDS	 snapshot	 can	 also	 be	 scheduled	 with	 the	 RDS	management	 tools	 using	 the
rds-modify-db-instance	 command	 with	 the	 --preferred-backup-window	 and	 --

backup-retention-period	configuration	options.

MySQL	Binary	Logs

RDS	does	not	provide	access	to	the	binary	logs.	This	means	it	is	not	possible	to	perform
data	analysis	or	auditing	via	the	binary	log.	RDS	does	provide	a	capability	to	restore	to	a
given	 point	 in	 time	 via	 the	 rds-restore-db-instance-to-point-in-time	 command
within	the	last	five	minutes.

	
This	 information	 is	 not	 available	 with	 the	 standard	 rds-describe-db-instances

command.	The	--show-long	option	is	required.

You	can	use	 the	MySQL	status	variables	 to	determine	 that	RDS	uses	binary	 logs	and
flushes	these	to	disk	every	five	minutes,	and	this	infers	a	redundancy	of	binary	logs	at	a
filesystem	level.

Recovery	Options
The	following	steps	describe	how	to	restore	an	RDS	backup.

SQL	Dump

You	can	use	the	mysql	command	line	tool	to	restore	a	mysqldump	backup.

	
A	verification	of	the	data	shows:

	
CAUTION			Do	not	be	fooled	by	a	significant	and	appropriate	restore	time	and	a
database	that	appears	to	contain	a	large	amount	of	data	(e.g.,	3.6GB	for	the
musicbrainz	schema).

	
However,	 you	 should	 always	 check	 for	 any	 errors	 and	 perform	 a	 more	 in-depth

validation	 to	 ensure	 your	 database	 has	 been	 completely	 restored.	 The	 average	 time	 to
perform	a	restore,	the	total	database	size,	and	additional	checks	and	balances	are	necessary
in	a	production	system.	A	review	of	the	output	file	shows:

	
This	error	condition	is	due	to	the	RDS	implementation	restricting	user	permissions.	This

type	of	error	is	unavoidable	for	a	full	mysqldump	of	all	Schemas.	A	normal	restoration	on	a
more	 traditional	 MySQL	 database	 system	 can	 overcome	 this	 with	 applicable	 user
privileges.	 In	 order	 to	 address	 this	 limitation	with	RDS,	 you	 need	 to	 use	 the	-f	 option
during	 the	restore;	however,	 this	 introduces	other	problems.	This	 type	of	situation	 is	not
limited	to	RDS	instances	with	the	lack	of	non-adjustable	user	privileges,	which	some	may
state	as	an	appropriate	security	feature.

	

	
With	 no	 actual	 error	 state	 and	 numerous	 error	 messages	 it	 is	 difficult	 to	 verify	 a

successful	 restore.	 In	 addition,	 several	 errors	occur	when	 importing	 the	MySQL	sakila
database	due	to	stored	procedures.	These	errors	can	be	reproduced	with:

	
An	import	of	the	second	mysqldump	file	excluding	the	mysql	meta-schema	produced:

	
As	 described	 in	 Chapter	 5,	 the	 modification	 of	 various	 configuration	 variables	 can

improve	 the	 performance	 of	 a	 restore,	 for	 example,	innodb_flush_log_at_trx_commit.
You	 can	 also	 disable	MySQL	 binary	 logging	 by	 setting	 the	 backup-retention-period
value	to	0.	This,	however,	requires	a	MySQL	restart	to	disable,	and	then	to	re-enable	when
completed.

RDS	Snapshot

To	perform	a	restoration	for	a	given	snapshot	that	can	be	identified	by	the	rds-describe-
db-snapshots	command,	use	the	following	syntax.	This	will	create	a	new	RDS	instance.

	
This	restoration	took	approximately	five	minutes.

A	 restoration	 from	a	given	 snapshot	 cannot	use	 the	binary	 logs	 to	perform	a	point	 in
time	 recovery.	 In	 order	 to	 use	 this,	 you	 must	 use	 the	 rds-restore-db-instance-to-
point-in-time	command.

Point	in	Time	Recovery

For	the	purposes	of	verifying	a	point	in	time	recovery,	two	new	Schemas	were	created	at
the	given	time	interval	of	the	schema	name	in	the	following	example:

	
A	point	 in	 time	recovery	was	specified	before	 the	creation	of	 the	second	schema	with

the	--restore-time	option.	This	value	does	not	have	 to	correspond	with	a	specific	 five
minute	interval	value.	This	can	be	anytime	after	an	available	snapshot	and	before	or	equal
to	the	last	restorable	time.

	
This	restore	took	approximately	11	minutes.

A	 verification	 of	 the	 restored	 Schemas	 shows	 the	 second	 schema	 does	 not	 exist	 as
expected.	In	a	production	system	a	more	detailed	verification	is	necessary.	This	example	is
only	used	to	highlight	the	syntax	for	the	commands.

	
NOTE			Be	sure	to	remove	RDS	instances	no	longer	used	with	the	rds-delete-db-instance.

	
More	information	about	RDS	can	be	found	at	http://aws.amazon.com/	rds/.

Google	Cloud	SQL
Google	provides	a	MySQL	version	5.5	cloud	offering	with	a	few	additional	features	and	a
few	unsupported	 features.	At	publication	of	 this	book,	 this	 is	available	 in	a	 limited	beta
program.	It	is	recommended	that	InnoDB	is	used	for	tables;	however,	it	is	possible	to	use
MyISAM.

This	 offering	 automatically	 replicates	 data	 synchronously	 to	 multiple	 geographic
regions	 to	 provide	 high	 data	 availability.	There	 is	 currently	 no	 asynchronous	 option	 via
traditional	replication.	With	this	synchronous	functionality,	Cloud	SQL	provides	automatic
failover	with	no	data	loss.	Software	upgrades	and	database	management	are	automatically
managed	by	the	service.

Google	Cloud	SQL	is	tightly	integrated	with	Google	App	Engine	(GAE)	using	Java	and
Python.	A	web	based	SQL	interface	and	custom	CLI	interface	are	available	for	access	to
run	 SQL	 statements.	 Any	 product	 that	 can	 communicate	 with	 a	 JDBC	 connection	 can

http://aws.amazon.com/

connect	to	Google	Cloud	SQL.

See	 the	 blog	 post	 http://effectiveMySQL.com/article/setting-up-google-cloud-sql/	 for
the	necessary	steps	to	set	up	and	create	a	new	Google	Cloud	SQL	instance.

Example	Database	Creation
Using	 the	 example	 database	 in	 Chapter	 8,	 an	 uncompressed	 or	 compressed	 (via	 gzip)
mysqldump	file	can	be	used	to	populate	a	Cloud	SQL	environment.	In	order	to	import	any
data	you	must	first	store	the	file	on	Google	Cloud	Storage.	For	example:

	
The	only	verification	option	is	file	size.

You	can	then	use	the	Google	APIs	web	console	to	import	the	given	file.	There	is	no	CLI
interface	to	initiate	this	process	or	determine	the	total	execution	time.

The	web	interface	provides	a	log	of	the	process	after	completion.

	
The	import	process	took	two	hours	and	22	minutes.

If	 there	 is	 a	 problem,	 the	 log	will	 report	 an	 error	 but	will	 not	 provide	 any	 additional
information.	For	example:

	
CAUTION			You	should	not	import	the	mysql	meta-schema,	as	this	can	cause	problems
including	permissions	for	the	root	MySQL	user	and	meta-table	structure	issues.	Refer	to
the	RDS	section	for	a	mysqldump	option	to	exclude	this	schema.

	
The	 first	 step	 of	 the	 verification	 process	 can	 be	 confirmed	with	 the	Google	 provided

SQL	CLI	tool:

http://effectiveMySQL.com/article/setting-up-google-cloud-sql/

	

Backup	Options
Only	one	option	exists	to	perform	an	independent	backup	from	Google	Cloud	SQL.

mysqldump

A	 mysqldump	 export	 is	 possible.	 This	 can	 only	 be	 initiated	 from	 the	Google	APIs	web
console.	 You	 are	 not	 able	 to	 specify	 per-schema	 or	 per-table	 information	 or	 any	 other
additional	options	at	this	time.	The	output	file,	compressed	or	uncompressed,	is	available
in	Google	Cloud	Storage	when	completed.	The	web	console	provides	a	log	of	the	process
start	and	completion.

	
This	backup	took	42	minutes.

You	can	verify	and	obtain	the	backup	file	for	off	site	management	with:

	
A	scheduled	backup	feature	is	also	available	for	regular	daily	backups.

Restore	Options
As	described	in	the	example	database	creation,	the	restore	of	a	mysqldump	 file	generated
by	 the	 export	 or	 scheduled	 process	 is	 possible.	 Google	 Cloud	 SQL	 does	 not	 currently
provide	a	point	in	time	recovery	capability.	Due	to	the	synchronous	nature	of	this	product,
high	 availability	 and	 failover	 features	 are	 provided	 by	 default,	 reducing	 the	 need	 for	 a
database	 restore.	More	 selective	 disaster	 recoverability	 options	 or	 data	 analysis	 of	 SQL
statements	in	the	binary	log	is	not	currently	possible.

For	obtaining	a	copy	of	data	at	a	given	time,	the	recommendation	is	to	use	the	export
functionality.	It	is	then	possible	to	import	this	for	verification	and	use	if	necessary.

At	 the	 time	of	 this	book’s	publication,	Google	Cloud	SQL	was	 in	 limited	beta.	More
information	can	be	found	at	https://developers.google.com/cloud-sql/.

HP	Cloud	Database	as	a	Service	(DBaaS)
The	HP	 Public	 Cloud	 (http://hpcloud.com)	 provides	 a	 number	 of	 services	 based	 on	 the
popular	 Open	 Stack	 cloud	 software	 (http://openstack.org/).	 These	 services	 include
compute,	storage,	content	delivery	network	(CDN),	identity	management,	and	a	managed
MySQL	relational	database	offering.	This	MySQL	offering	is	a	DBaaS	based	on	the	Red
Dwarf	project	from	Open	Stack	(http://wiki.openstack.org/DatabaseAsAService).

Access	to	creating,	deleting,	and	restarting	instances,	and	creating	and	using	snapshots
is	via	a	RESTful	HTTP	API	providing	JSON	formatted	 response.	The	standard	MySQL
client	 tools,	 including	 mysql	 and	 mysqldump,	 can	 be	 used	 for	 access	 to	 the	 MySQL
database.

The	 HP	 DBaaS	 offering	 is	 fully	 integrated	 with	 the	 Openstack	 Keystone	 Identity
Service.	To	access	the	DBaaS	API,	you	first	need	to	obtain	a	token	to	be	used	for	the	X-
Auth-Token	HTTP	header.	In	addition	the	X-Auth-Project-Id	(generally	your	e-mail,	or
tenant	name)	is	required	for	all	requests.	The	credentials	required	to	obtain	an	auth-token
and	the	project-id	can	be	found	from	the	HP	Management	Console.

As	of	this	writing,	the	HP	Cloud	DBaaS	(currently	in	private	beta)	offers	the	following
features.	These	are	subject	to	change	in	the	future:

•		Create	and	terminate	database	instances

•		Reset	password

•		Create	and	delete	snapshots

•		Create	instance	from	an	existing	snapshot

MySQL	Versions
DBaaS	 currently	 uses	 Percona	 Server	 version	 5.5,	 available	 from
http://www.percona.com/software/percona-server/.	 This	 is	 a	 fork	 of	MySQL	 version	 5.5
providing	XtraDB	 (a	modified	 version	 of	 InnoDB),	 better	 instrumentation,	 performance
improvements,	and	a	shorter	deployment	life	cycle	for	new	features.

Example	Database	Creation
A	request	has	to	be	made	to	the	Identity	Service	to	obtain	the	auth	token	to	use	for	DBaaS
access.	For	example:

	

https://developers.google.com/cloud-sql/
http://hpcloud.com
http://openstack.org/
http://wiki.openstack.org/DatabaseAsAService
http://www.percona.com/software/percona-server/

	
Using	the	id	value	you	can	create	a	new	instance	with:

	

Backup	Options
DBaaS	provides	for	backup	options	via	mysqldump	or	by	a	database	snapshot.

mysqldump

Refer	to	the	mysqldump	syntax	in	Chapters	2	and	8	and	the	syntax	in	the	RDS	section	for
example	usage.

Database	Snapshot

DBaaS	provides	several	API	calls	to	manage	database	snapshots.	A	database	snapshot	can
be	performed	on	a	running	MySQL	instance	with	the	following	command:

	
Snapshots	 are	 automatically	 replicated	 to	 multiple	 Availability	 Zones	 for	 higher

availability.

	

Recovery	Options

mysqldump
Refer	to	the	syntax	in	Chapter	5	and	the	RDS	section	for	example	usage.

Database	Snapshot

A	DBaaS	instance	can	be	created	from	a	pre-existing	snapshot.	The	request	is	identical	to
creating	a	new	instance,	with	the	additional	snapshot	Id	parameter.	For	example:

	
Point	in	Time	Recovery

No	information	was	available	at	this	time	regarding	point	in	time	capabilities.

At	the	time	of	this	publication	DBaaS	was	in	closed	beta	and	access	for	more	detailed
testing	 was	 not	 possible.	 More	 information	 can	 be	 found	 at
http://www.hpcloud.com/products/RDB.

Cloud	Impact	on	Backup	and	Recovery
The	use	of	the	cloud	does	not	mean	that	disasters	will	no	longer	occur.	This	is	a	myth.	The
cloud	has	made	the	case	to	ensure	appropriate	DR	operations	are	more	prevalent.	As	the
control	and	management	of	data	systems	become	the	responsibility	of	service	providers,	it
is	more	important	that	your	business	understands	the	risks	of	entrusting	this	responsibility
to	a	third	party.

The	 cloud	 has	 enabled	 a	 new	 way	 of	 testing	 and	 verifying	 your	 processes.	 The
availability	of	systems	on	demand	provides	the	ability	to	easily	test	and	verify	your	system
at	production	scale,	for	a	very	small	cost.	The	ability	to	also	test	with	additional	size	and
load	 is	 possible	 immediately	without	 any	 hardware	 provisioning	 requirements	 (except	 a
credit	card).	That	same	ability	enables	options	to	fully	test	backup	and	restore	procedures
with	full	production	volume	without	any	hindrances.

Organizations	 are	 also	 using	 the	 cloud	 for	 storing	 backup	 files	 externally,	 read
scalability	via	 replication,	 and	ancillary	 services	 including	 analytics,	 reporting,	 and	data
warehousing.	The	use	of	the	cloud	is	becoming	an	ideal	hybrid	implementation	that	scales
on	demand	with	no	upfront	hardware	costs.	The	use	of	the	cloud	does	introduce	additional
security	 concerns	 regarding	 the	 access	 to	your	business	data	 and	appropriate	 encryption
techniques	become	more	important.	Backup	options	that	have	been	discussed	in	this	book
generally	store	and	transfer	data	in	clear	text.	Chapter	8	discusses	some	more	information
on	 MySQL	 backup	 security.	 Amazon,	 the	 current	 leading	 cloud	 provider,	 recognizes
security	as	the	top	priority	and	is	constantly	improving	the	level	of	fine	grained	access	via
techniques	 including	 security	 groups,	 virtual	 private	 network	 (VPN)	 access,	 and	 AWS
direct	connect.

http://www.hpcloud.com/products/RDB

In	 some	 organizations,	 cloud	 deployments	 have	 now	 streamlined	 the	 disaster
preparedness	to	an	art	form,	giving	backup	and	recovery	the	top	priority	in	business	needs.
For	example,	using	a	quote	from	Netflix:	“The	Chaos	Monkey’s	(and	simian	army’s)	job	is
to	 randomly	 kill	 instances	 and	 services	 within	 our	 architecture.	 If	 we	 aren’t	 constantly
testing	our	ability	 to	succeed	despite	 failure,	 then	 it	 isn’t	 likely	 to	work	when	 it	matters
most—in	 the	 event	 of	 an	 unexpected	 outage.”	 This	 is	 a	 brilliant	 concept	 for	 being
prepared.

See	 http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html	 and
http://techblog.netflix.com/2011/07/netflix-simian-army.html	 for	 more	 background
information.

Ironically,	 the	 best	 advice	 for	 creating	 an	 effective	 MySQL	 backup	 and	 recovery
strategy	is	a	quote	now	possible	because	of	these	cloud	based	technology	capabilities.

	

“The	best	way	to	avoid	failure	is	to	fail	constantly.”

John	Ciancutti,	Netflix

Conclusion
Cloud	 based	 services	 are	 becoming	 more	 easily	 available	 to	 consumers.	 While	 the
Amazon	RDS	service	has	been	available	for	some	time,	the	HP	and	Google	offerings	are
recent	 editions	 not	 yet	 generally	 available	 when	 this	 book	 was	 published.	 More	 cloud
based	MySQL	products	will	definitely	become	available	in	the	future.	Each	option	has	its
relative	merits	of	providing	a	managed	service;	however,	you	must	evaluate	the	strengths
and	interoperability	needs	with	any	existing	production	environment	to	determine	the	best
approach	to	maintaining	your	business	continuity	effectively.

The	commands,	SQL	statements,	and	web	links	listed	in	this	chapter	can	be	downloaded
from	http://effectivemysql.com/book/backup-recovery/.

http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://effectivemysql.com/book/backup-recovery/

Index
	

7z	utility

7zip	utility

A
—add-drop-database	option

Akiban	AKIBANDB	storage	engine

alerts

—all-databases	option

Amazon

Amazon	Relational	Database	Service	(AWS	RDS)

								backup	options

								CLI	tools

								errors

								example	database	creation

								MySQL	versions	supported

								overview

								point	in	time	recovery

								RDS	snapshots

								recovery	options

Amazon	Web	Services	(AWS)

applications

								access

								limitations

								locks	and

								privileges

								security

—apply-slave-statements	option

ARCHIVE	storage	engine

asynchronous	replication

audits

authentication,	keyed

availability

AWS	(Amazon	Web	Services)

B
background	IO	threads

backup	files

								diskspace	for

								error	conditions

								size

								viewing

backup	generators

—backup	option

backup-and-apply-log	command

backup/recovery	quiz

backups

								architectural	considerations

								AWS	RDS	and

								backup-to-image	feature

								binary	logs.	See	binary	logs

								case	study

								choosing	methodology	for

								choosing	type	of

								cloud	impact	on

								cold

								considerations

								consistent

								defining	requirements

								defining	responsibilities

								example	environment

								execution	time

								filesystem

								filesystem	snapshots

								Google	Cloud	SQL

								hardware	considerations

								help	for

								hot

								HP	Public	Cloud

								importance	of

								incremental.	See	incremental	backups

								LVM	volumes

								maintenance	window

								MEB

								mylvmbackup	utility

								other	options	for

								partial

								performing

								planning	for	worst	situation

								point	in	time	recovery

								remote

								replication	and

								on	running	instances

								running	mysqldump

								security

								static

								strategic	plans

								strategies	for

								streaming

								terminology

								XtraBackup

backup-to-image	feature

bank	account	information

basedir	variable

batch	processes

benchmarking

binary	log	position

binary	log	statements

binary	logging

								considerations

								enabling

								not	enabled

								options	for

								performance	and

binary	logs

								AWS	RDS	and

								completeness	of

								data	consistency

								deleting

								format

								LVM	volumes	and

								mirroring

								Mydumper	and

								mysqldump	options

								point	in	time	recovery

								remote

binlog_cache_disk_use	variable

binlog_cache_size	variable

binlog_do_db	variable

binlog_format	variable

binlog_ignore_db	variable

—binlog-outdir	option

binlog_row_event_max_size	variable

—binlogs	option

binlog_stmt_cache_size	variable

BLACKHOLE	storage	engine

blackouts

Blue	Gecko

bzip	utility

bzip2	utility

C
case	study

CDN	(content	delivery	network)

CFEngine	tool

CHANGE	MASTER	statement

CHECKSUM	TABLE	command

Chef	tool

client	connections

cloud	based	services

cloud	deployments

								AWS	RDS

								considerations

								Google

								HP	Public	Cloud

								impact	on	backup/recovery

								security

Clustrix

code	examples

cold	backups

cold	filesystem	copy

communications

—complete-insert	option

completeness

—compress	option

compress	utility

compression.	See	also	optimization

								considerations

								filesystem	snapshots

								incremental	backups	and

								Mydumper

								MySQL	Enterprise	Backup

								mysqldump

								performance	and

								pros/cons

								uncompressing	data

								using

								XtraBackup

compression	utilities

configuration

								binary	logging

								considerations

								data	consistency

								data	integrity	issues

								data	locations

								overview

								recovery

								recovery	considerations

								replication

consistency

								data

								object

								overview

								schema

consistent	backups

content	delivery	network	(CDN)

Continuent

conventions

Couch	Surfing	disaster

crash	recovery.	See	recovery

crash	situations

CRC32	algorithm

cron	jobs

D
Danger	data	loss

data

								completeness

								compression.	See	compression

								consistency

								deleting

								inconsistency

								locations

								restore	of.	See	restores

								security

data	classes

data	directories.	See	directories

data	drift

data	files.	See	also	tablespaces

data	management	system	variables

data	recovery.	See	recovery

data	sources

database	administrator	(DBA)

database	objects

database	snapshots.	See	snapshots

databases

								audits

								availability

								determining	size	of

								locking.	See	locking

								missing	schemas

—databases	option

—databases-list-path	option

—datadir	parameter

datadir	variable

DBA	(database	administrator)

DBaaS	API

decision	maker	responsibilities

default_storage_engine	variable

DELETE	FROM	TABLE	command

deleting	data

dependencies

development	environment

directories

								basedir

								data

								datadir

								encrypted

								inconsistency

								relay	log

disaster	recovery	(DR)

								business	requirements	for

								case	study

								decision	process

								defining	requirements

								defining	responsibilities

								described

								examples

								external	communication

								identifying	dependencies

								planning	for	worst	situation

								strategic	plans	for

								strategies

								technical	outcomes

								terminology

disaster	recovery	(DR)	plan

disaster	scenarios

								cascading	failures

								common	downtime	causes

								configuration	issues

								Couch	Surfing

								deleting	data

								external	help

								general	MySQL	situations

								GitHub

								handling	MySQL	disasters

								hardware	faults

								InnoDB	examples

								Journal	Space

								lack	of	binary	logging

								Ma.gnolia.com

								Microsoft/Danger	data	loss

								missing	database	schemas

								MyISAM	corruption

								notable

								overview

								Percona

								RDS	recovery	failure

								replication	inconsistency

								security	patch	upgrades	and

								single	server

								software	upgrades	and

								TD	Bank

disasters

								blackouts

								decision	makers

								examples

								explosions

								external	communication

								FBI	seizures

								human	factors

								impact	of	human	resources

								power	disruption

								preparing	for

								SAN	failures

								scenarios.	See	disaster	scenarios

								technical	resources

disk	alerts

disk	space

								considerations

								insufficient

								sufficient

								temporary

disks

								mirroring

								RAID

								RAID-1

diskspace

Distributed	Replicated	Block	Device	(DRBD)

downtime

DR.	See	disaster	recovery

DRBD	(Distributed	Replicated	Block	Device)

dump	files

—dump-slave	option

E
EC2	(Elastic	Compute	Cloud)

Effective	MySQL	website

Elastic	Compute	Cloud	(EC2)

electrical	explosions

employees

								disgruntled

								errors	caused	by

encryption

error	conditions

error	logs

errors

								AWS	RDS

								MyISAM	tables

								replication	inconsistency

ETL	process

examples

—expire-logs-days	option

expire_logs_days	option

explosions

—export	option

ezNcrypt

F
fastlz	utility

FBI	seizures

feedback	options

file	snapshot	restore

files

								backup.	See	backup	files

								data

								dump

								ibdata

								.MYD

								MyISAM	data

								per	table	dump

								snapshot

								synchronizing

								tar

filesystem	backups

filesystem	copy

filesystem	copy	restore

filesystem	locations

filesystem	snapshots.	See	also	snapshots

firewalls

FLUSH	LOGS	command

FLUSH	TABLES	command

FLUSH	TABLES	WITH	READ	LOCK	command

FromDual

G
GAE	(Google	App	Engine)

GitHub	disaster

GitHub	repository

global	memory	settings

Google

Google	APIs	web	console

Google	App	Engine	(GAE)

Google	Cloud	SQL

								backup	options

								example	database	creation

								overview

								restore	options

Google	Cloud	Storage

gpg	utility

GPL	license

GROUP_CONCAT	function

group_concat_max_len	variable

gzip	utility

H
HA	(high	availability)

hardware	faults

hardware	redundancies

hash	algorithms

help

—hex-blob	option

high	availability	(HA)

—host	option

hosts,	remote

hot	backups

HP

HP	Cloud	DBaaS

HP	Public	Cloud

								backup	options

								example	database	creation

								MySQL	versions	supported

								recovery	options

human	factors

human	resources

I
i-am-a-dummy	variable

ibbackup.	See	MySQL	Enterprise	Backup

.ibd	file

ibdata	files

ibdata1	tablespace	file

.ibz	extension

—ignore-database	option

—include	option

incremental	backups

								compression	and

								MEB

								overview

								restores	and

—incremental	option

—incremental-base	option

—incremental-basedir	option

—incremental-with-redo-log-only	option

INFORMATION_SCHEMA	command

INFORMATION_SCHEMA	query

—init_connect	option

—init_file	option

innobackupex	script

InnoDB	data	file

innodb	data	file	path

InnoDB	databases,	locking

innodb	log	file	sizes

InnoDB	storage	engine

								automatic	crash	recovery

								background	threads

								considerations

								crash	recovery

								data	directory	inconsistency

								data	files

								disaster	examples

								doublewrite	buffer

								hot	backups

								locking	strategies

								transaction	logs

								two-phase	commits

InnoDB	tablespace	files

innodb_data_file_path	option

innodb_data_file_path	variable

innodb_data_home_dir	variable

innodb_doublewrite	variable

innodb_fast_shutdown	variable

innodb_file_per_table	option

innodb_file_per_table	variable

innodb_flush_log_at_trx_commit	variable

innodb_flush_method	variable

innodb_force_recovery	variable

innodb-log-files-in-group	variable

innodb_support_xa	variable

interactive_timeout

ionice	command

J
Journal	Space	disaster

K
keyed	authentication

L
LAN	(local	area	network)

Linux	commands

Linux	systems

LOAD	DATA	statement

local	area	network	(LAN)

LOCK	TABLE	command

LOCK	TABLES	command

—lock-all-tables	option

locking

								InnoDB	databases

								—lock-tables	option

								strategies	for

—lock–tables	option

log	buffer

Log	Sequence	Number	(LSN)

—log-bin	option

log_bin	variable

log_bin_index	file

log_bin_index	variable

Logical	Volume	Manager.	See	LVM

logs

								binary.	See	binary	logs

								considerations

								error

								flush	disk	operation

								redo

								transaction

—log-slave-updates	option

log_slave_updates	variable

LSN	(Log	Sequence	Number)

lvdisplay	command

LVM	(Logical	Volume	Manager)

LVM	snapshots

LVM	volumes

lzip	utility

lzma	utility

lzo	utility

M
Maatkit	tool

Magnolia	disaster

maintenance	window

manuals

—master-data	option

masters.	See	MySQL	masters

mean	time	to	detect	(MTTD)

mean	time	to	recover	(MTTR)

MEB.	See	MySQL	Enterprise	Backup

media	management	software	(MMS)

MEMORY	storage	engine

MERGE	storage	engine

.metadata	file

mk-table-checksum	utility

MMS	(media	management	software)

mt-parallel-dump	tool

MTTD	(mean	time	to	detect)

MTTR	(mean	time	to	recover)

Multi	Availability	Zone	(AZ)	deployment

Multi	AZ	instance

.MYD	files

mydumper	utility

MyISAM	data	files

MyISAM	storage	engine

								considerations

								corruption

								locking	strategies

								table	recovery

MyISAM	tables

myisam_max_sort_file_size	variable

myisam-recover	variable

myisam_recover	variable

myisam_sort_buffer_size	variable

mylvmbackup	utility

MySQL

								cloud	deployments.	See	cloud	deployments

								configuring.	See	configuration

								GPL	license

								help	for

								overview

								software	failure

								software	installation

								topology

								versions

MySQL	5.5

MySQL	5.6

MySQL	bloggers

mysql	command

MySQL	data	directory

MySQL	developer	zone

MySQL	Enterprise	Backup	(MEB)

								binary	log	statements

								compression

								downloading	software

								examples

								incremental	backups

								monitoring

								partial	backups

								recovery

								reference	manual

								remote	hosts

								replication	and

								resources

								running	full	backup

								security

MySQL	error	log

MySQL	in	the	Cloud

MySQL	masters

								characteristics	of

								cold	backups	and

								consistency

								mysqldump	options

								problems	with

								temporary	tables	and

mysql	meta-schema

MySQL	online	backup	tool

MySQL	Reference	Manual

mysql	schema

MySQL	slaves

								characteristics	of

								cold	backups	and

								consistency

								disabling

								issues

								MEB	and

								mysqldump	options

								problems	with

								read	only

								replication	lag	and

								temporary	tables	and

MySQL	topology

MySQL	website

mysqlbackup	command

mysqlbinlog	command

mysqlbinlog	output

mysqld	process	failure

mysqldump

								AWS	RDS	and

								benefits	of

								binary	log	statements

								comparing	objects

								comparing	schemas

								compression

								considerations

								database	objects

								described

								disadvantages

								encrypted	directories

								example

								ezNcrypt	and

								Google	Cloud	SQL	and

								HP	Public	Cloud

								list	of	options

								missing	data	schemas

								network	devices

								options

								output

								parallel	processing

								partial	backups

								performing	backup	with

								recovery

								remote	hosts

								replication	and

								table	extracts

								time	command	and

mysqldump	backups

								considerations

								locking	strategies

								options

								overview

								running

								size

mysqlhotcopy	utility

N

nc	(netcat)

netcat	(nc)

Network	Attached	Storage	devices

network	bandwidth

network	devices

nice	command

—no-history-logging	option

—no-schemas	option

—no-timestamp	option

O
objects

								completeness

								consistency

								schema

								table

OLTP	systems

—only-innodb	option

—only-innodb-with-frm	option

—only-known-file-types	option

Open	Query

Open	Stack	cloud	software

openssl	utility

Openstack	Keystone	Identity	Service

—opt	option

optimization.	See	also	compression

								architectural	considerations

								backup	security	and

								example	backup	environment

								incremental	backups

								overview

								parallel	processing

								partial	backups

								remote	backups

								streaming	backups

Oracle	Corporation

Oracle	Secure	Backup	(OSB)

OSB	(Oracle	Secure	Backup)

P
PalominoDB

parallel	copying

—parallel	option

parallel	processing

partial	backups

per	table	dump	files

Percona

Percona	disaster

Percona	toolkit

Percona	XtraDB	storage	engine

performance.	See	also	optimization

								binary	logging	and

								compression	and

permissions

								considerations

								remote	backups

pigz	utility

piped	commands

PITR.	See	point	in	time	recovery

Planet	MySQL

point	in	time	recovery	(PITR)

								AWS	RDS

								binary	logs

								considerations

								described

								HP	Public	Cloud

								replication	stream

								requirements

								standalone	recovery

power	disruption

power	loss

—prepare	option

processing,	parallel

production	environment

pt-table-checksum	utility

Puppet	tool

PURGE	BINARY	LOGS	command

pvdisplay	command

Pythian	Group

Python	scripts

Q
query	cache

R
RAID	system

RAID-1	configurations

—raw	option

RBR	(row-based	replication)

RDS	(Remote	Database	Service)

RDS	service

rds-describe-db-snapshots	command

read	lock

—read-from-remote-server	option

read_only	option

recovery.	See	also	restores

								AWS	RDS	options	for

								backup/recovery	quiz

								binary	logs.	See	binary	logs

								business	requirements	for

								case	study

								cloud	impact	on

								considerations

								data	access	points	and

								defining	requirements

								defining	responsibilities

								determining	type	of

								disaster.	See	disaster	scenarios

								filesystem	copy

								InnoDB	crash	recovery

								InnoDB	storage	engine

								MEB

								MyISAM	crash	recovery

								MySQL	configuration	and

								MySQL	data

								physical	hardware	and

								planning	for	worst	situation

								point	in	time.	See	point	in	time	recovery

								software	failures

								SQL	dump

								static

								strategic	plans	for

								strategy

								system	variables

								table	definition	file

								terminology

								testing	and

								verification	of

								XtraBackup

recovery	point	objective	(RPO)

recovery	time	object	(RTO)

“red	bus”	policies

Red	Dwarf	project

redo	logs

redundancy

reference	manuals

references

relay	log

relay	log	directories

relay_log	variable

relay_log_index_system	variable

relay-log-info-file	option

relay-log-info-file	system	variable

remote	backups

Remote	Database	Service.	See	RDS

remote	hosts

remote	servers

—remote-host	option

replicate_do_db	variable

replicate_ignore_db	variable

replication

								architecture

								backup	considerations

								characteristics	of

								considerations

								design	considerations

								disabling

								filesystem	snapshots	and

								high	availability	and

								inconsistency

								limitations

								MEB	and

								mysqldump	options

								new	features

								options/variables

								prerequisite	checks

								read	only	replication	slaves

								row-based

								scalable	architecture	options

								security	and

								semi-synchronous

								statement-based

								system	variables

								triggers

								workflow

								XtraBackup	and

replication	lag

replication	servers

replication	stream

restores.	See	also	recovery

								AWS	RDS

								file	snapshot

								filesystem	copy

								Google	Cloud	SQL

								incremental	backups	and

								MEB	recovery

								on	running	instances

								SQL	dump	recovery

								XtraBackup

—routines	option

row-based	replication	(RBR)

—rows	option

RPO	(recovery	point	objective)

rsync	command

RTO	(recovery	time	object)

rzip	utility

S
SA	(system	administrator)

—safe-slave-backup	option

—safe-updates	option

SAN	(Storage	Area	Network)

SAN	failures

SBR	(statement-based	replication)

SBT	(System	Backup	to	Tape)	interface

ScaleDB

schema	definition

schema	objects

schema	sync	utility

schemas

								comparison

								completeness

								consistency

Schooner	SQL	storage	engine

security

								applications

								backups

								cloud	deployments

								considerations

								data

								encryption

								firewalls

								lack	of

								MEB	backups

								optimization	and

								permissions.	See	permissions

								replication	and

security	patch	upgrades

semi-synchronous	replication

server_id	variable

servers

								downtime	causes

								master.	See	MySQL	masters

								remote

								replication

								single

								slave.	See	MySQL	slaves

Service	Level	Agreement	(SLA)

SHOW	BINARY	LOGS	command

SHOW	command

SHOW	MASTER	LOGS	command

SHOW	PROCESSLIST	command

SHOW	PROCESSLIST	command

SHOW	SLAVE	STATUS	command

—show-long	option

Sidekick/Microsoft	data	loss

—single-transaction	option

skip_networking	option

—skip-quote-names	option

skip-slave-start	option

SkySQL

SLA	(Service	Level	Agreement)

slave	host	error	log

slave	relay	log

slave_exec_mode	variable

—slave-info	option

slaves.	See	MySQL	slaves

slave-skip-error	option

slave_skip_errors	variable

snapshot	files

snapshot	volumes

snapshots

								AWS	RDS

								filesystem

								HP	Public	Cloud

								LVM

								rds-describe-db-snapshots	command

								replication	and

socket	file

software	failures

software	updates

software	upgrades

Solid	State	Drives	(SSD)

SQL	CLI	tool

SQL	dump	recovery

SQL	dumps.	See	mysqldump

SQL	server	modes

SQL	statements

sql_mode	option

SSD	(Solid	State	Drives)

SSH	connections

SSL	support

START	TRANSACTION	command

—start-lsn	option

statement-based	replication	(SBR)

static	backups

								described

								options	for

static	recovery

status	options

stock	analysis	system

STOP	SLAVE	SQL_THREAD	command

—stop-never	option

Storage	Area	Network	(SAN)

storage	engines.	See	also	specific	storage	engines

								considerations

								default

								locking	strategies

								third	party

								verifying

—stream	option

streaming	backups

—stream=tar	option

sync_binlog	variable

synchronization

								files

								replication

sync_relay_log_info	option

system	administrator	(SA)

system	alerts

System	Backup	to	Tape	(SBT)	interface

system	variables

								data	management

								recovery

								replication

T
table	data

table	definition	recovery

table	extracts

table	objects

tables

								locks

								MyISAM

								temporary

—tables	option

tablespaces

tar	files

TCP	connections

TD	Bank	disaster

technical	resource	responsibilities

temporary	tables

terminology

test	environment

testing

								considerations

								described

								importance	of

								InnoDB	crash	recovery

								purpose	of

								recovery	process

throttling

time	command

Tokutek	TokuDB	storage	engine

transaction	logs

transactions

								isolating

								key	steps

								single

trigger	operation

U
UDP	connections

Unix	commands

UNLOCK	TABLES	command

unsafe	statements

updates.	See	software	updates

V
variables.	See	system	variables

W
wait_timeout

WAN	(wide	area	network)

wide	area	network	(WAN)

—with-timestamp	option

World	Backup	Day

X
XBM	(XtraBackup	Manager)

Xeround

XtraBackup

								binary	log	statements

								compression

								examples

								incremental	backups

								parallel	copying

								partial	backups

								recovery	options

								remote	hosts

								remote	hosts	and

								replication	and

								restore	process

xtrabackup	command

XtraBackup	Manager	(XBM)

xz	utility

Z

zip	utility

Zmanda	Recovery	Manager	for	MySQL

	Acknowledgments
	Introduction
	1 The Five Minute DBA
	Approaching a MySQL Backup
	Determining Your Database Size
	Choosing a Locking Strategy
	Execution Time
	Combining Information
	Performing a MySQL Backup
	Running mysqldump
	Securing Your Backup
	Benefits with mysqldump
	More Information
	Other Options
	Conclusion
	2 Understanding Backup Options
	Terminology
	Choosing a Backup Strategy
	Database Availability
	Storage Engines
	Locking Strategies
	MySQL Topology
	Static Backup Options
	Filesystem Backup
	SQL Dump
	Table Extract
	Filesystem Snapshot
	InnoDB Hot Backup
	Options Not Discussed
	Point in Time Requirements
	Binary Logs
	Binary Log Position
	Binary Log Backup Options
	Hardware Considerations
	Data Source Consistency
	Backup Security
	Conclusion
	3 Understanding Business Requirements for Disaster Recovery
	Defining Requirements
	Defining Responsibilities
	Terminology
	Technical Resource Responsibilities
	Decision Maker Responsibilities
	Identifying Dependencies
	Case Study
	The MySQL Topology
	Your Backup and Recovery Strategy
	A Real Life Disaster
	Technical Outcomes
	The Decision Process
	Essential External Communication
	Planning for the Worst Situation
	Total SAN Failure
	Power Disruption
	Explosion
	FBI Seizure
	Blackout
	Human Factors
	Human Resources
	Developing a Strategic Plan
	Conclusion
	4 Using MySQL Replication
	MySQL Replication Architecture
	MySQL Replication Characteristics
	MySQL Replication Limitations
	Replication Lag
	Consistency
	Completeness
	Replication Design Considerations
	Binary Log Row Format
	Semi-synchronous Replication
	Replication Backup Considerations
	Additional Prerequisite Checks
	Cold Backup Options
	mysqldump Options
	Filesystem Snapshot Options
	MySQL Enterprise Backup (MEB) Options
	XtraBackup Options
	Architecture Design Considerations
	Upcoming Replication Functionality
	Conclusion
	5 Using Recovery Options
	A Word About Testing
	Determining the Type of Recovery Necessary
	MySQL Software Failure
	Crash Recovery
	MyISAM Table Recovery
	Other Storage Engines
	Table Definition Recovery
	Performing a Static Recovery
	MySQL Software Installation
	MySQL Data
	Performing a Point in Time Recovery
	Binary Log Position
	Standalone Recovery
	Leveraging the Replication Stream
	Binary Log Mirroring
	Recovery Verification
	The Backup and Recovery Quiz
	Other Important Components
	Conclusion
	6 MySQL Configuration Options
	Data Management
	Data Locations
	Data Consistency
	Binary Logging
	MySQL Replication
	Recovery
	Conclusion
	7 Disaster Scenarios
	Handling a MySQL Disaster
	Notable MySQL Disasters
	Magnolia
	Couch Surfing
	Journal Space
	Percona
	Other Notable Data Disasters
	The Sidekick/Microsoft Data Loss
	Github
	TD Bank
	General MySQL Disaster Situations
	Binary Logging Not Enabled
	A Single Server
	Appropriate MySQL Security
	Appropriate MySQL Configuration
	Deleting MySQL Data
	Deleting the InnoDB Data File
	Deleting MySQL Binary Logs
	Existing Backup and Recovery Procedure Disasters
	MySQL Software Upgrades
	Operating System Security Patch Upgrade
	Handling MyISAM Corruption
	Missing Database Schemas
	Restoring a Backup on a Running MySQL Instance
	Handling InnoDB Specific Situations
	Automatic Recovery
	InnoDB Data Dictionary Inconsistency
	Automatic Recovery Crashes the Database Server.
	Other MySQL Situations
	Replication Inconsistency
	RDS Recovery Failure
	Common Downtime Causes
	External Help
	Conclusion
	8 Optimizing Backup and Recovery
	Example Backup Environment
	Using Compression
	mysqldump
	MySQL Enterprise Backup (MEB)
	XtraBackup
	Streaming Backups
	Using SSH
	Using nc
	MySQL Enterprise Backup (MEB)
	XtraBackup
	Remote Backups
	mysqldump
	MySQL Enterprise Backup (MEB)
	XtraBackup
	Parallel Processing
	mydumper
	XtraBackup
	Incremental Backups
	MySQL Enterprise Backup (MEB)
	XtraBackup
	Partial Backups
	mysqldump
	MySQL Enterprise Backup (MEB)
	XtraBackup
	MySQL Backup Security
	Encryption with ezNcrypt
	Architectural Considerations
	Conclusion
	9 MySQL in the Cloud
	Amazon Relational Database Service (RDS)
	Example Database Creation
	MySQL Versions
	Backup Options
	Recovery Options
	Google Cloud SQL
	Example Database Creation
	Backup Options
	Restore Options
	HP Cloud Database as a Service (DBaaS)
	MySQL Versions
	Example Database Creation
	Backup Options
	Recovery Options
	Cloud Impact on Backup and Recovery
	Conclusion

