ORACLE

Tk
Effective MySQL: wmysal

Backup and Recovery

Practical Knowledge for Business Continuity
Includes MySQL 5.5 GA, MySQOL 5.6 DMR, and MySQL in the Cloud

e

Ronald Bradford

Oracla ACE Director

Ovacle Press




ORACLE" Oracle Press™
Effective MySQL

Backup and Recovery




About the Author

Ronald Bradford has worked in the relational database field for over 20 years. With his
professional background and a decade of working knowledge in database architecture,
performance tuning, and management of large enterprise systems using Ingres and Oracle,
Ronald has for the past 13 years worked primarily with MySQL, the world’s most popular
open source database. He has worked both at Oracle Corporation (1996-1999) as an
Oracle Consultant and MySQL, Inc. (2006-2008) as a senior MySQL Consultant. His
contributions to the MySQL community include being recognized as the all-time top
individual MySQL blog contributor at Planet MySQL (2010), and international
recognitions include being named an Oracle ACE Director (2010) and MySQL
Community Member of the Year (2009).

Ronald combines his extensive consulting expertise with a passion to share the
knowledge and benefits of using MySQL. Starting in 2006, his many public speaking
engagements have included over 60 presentations in 20 countries in 2010-2011.



About the Technical Editors

Hans Forbrich has been working with computers since the early 1970s, in particular with
entity-relationship and relational databases starting in 1979 using an engine on IBM
mainframes called GERM (General Entity Relationship Model). Since that time, Hans has
been a DBA, an operations architect for a number of organizations, and an Oracle
University instructor but always heavily involved in high availability and recoverability.

As a fellow ACE Director, Hans is pleased and honored to have been a technical
reviewer for this book. Backup and recovery is an important and often overlooked area of
MySQL, and Ronald’s expertise and experience in this area shines through.

Chris Schneider has been a MySQL community member, user, and evangelist for the past
ten years. Throughout his career he has designed, implemented, and maintained small to
large scale MySQL installations while training and mentoring teams of DBAs. This has
included building architecture from the ground up and improving on those that are
currently in place while emphasizing scalability, performance, and ease of use. Since
2009, Chris has been an expert speaker at many U.S. conferences including the MySQL
Conference and Expo, ODTUG KScope, and Oracle Open World.

Lenz Grimmer first encountered MySQL in 1995, when he had his first job as a systems
administrator in a small Internet startup company, which already used what was later
called the “LAMP stack” to provide web hosting services for customers. He then worked
as a distribution developer at SUSE Linux from 1998-2002, before he joined MySQL AB
as a Release Engineer in charge of producing the official MySQL builds for all platforms.
After having been with the MySQL team for nine years, he recently returned to Linux, as a
member of the Oracle Linux product management team at Oracle. Lenz is the maintainer
of the mylvmbackup script and has given numerous talks on the topics of MySQL backup
and recovery. In his spare time, Lenz enjoys spending time with his family or tinkering
with remote controlled quadrocopters, powered by the Arduino platform.



ORACLE® Oracle Press™
Effective MySQL

Backup and Recovery
Ronald Bradford

G

New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi SanJuan Seoul Singapore Sydney Toronto



The McGraw-Hill companies

Effective MySQL: Backup and Recovery

Copyright © 2012 by The McGraw-Hill Companies, Inc. All rights reserved. Except as
permitted under the United States Copyright Act of 1976, no part of this publication may
be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written permission of the publisher.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. All other
trademarks are the property of their respective owners, and McGraw-Hill makes no claim
of ownership by the mention of products that contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein
with the permission of Oracle Corporation and/or its affiliates.

ISBN: 978-0-07-178858-8
MHID: 0-07-178858-1

The material in this eBook also appears in the print version of this title: ISBN 978-0-07-
178857-1, MHID 0-07-178857-3.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and
sales promotions, or for use in corporate training programs. To contact a representative

please e-mail us at bulksales@mcgraw-hill.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark
symbol after every occurrence of a trademarked name, we use names in an editorial
fashion only, and to the benefit of the trademark owner, with no intention of infringement
of the trademark. Where such designations appear in this book, they have been printed
with initial caps.

Sponsoring Editor

Paul Carlstroem
Editorial Supervisor

Patty Mon
Project Manager

Sapna Rastogi, Cenveo Publisher Services
Acquisitions Coordinator

Ryan Willard
Technical Editors

Hans Forbrich

Chris Schneider

Lenz Grimmer

Copy Editor


mailto:bulksales@mcgraw-hill.com

Lisa McCoy
Proofreader

Paul Tyler
Indexer

Karin Arrigoni
Production Supervisor

Jean Bodeaux
Composition

Cenveo Publisher Services
Ilustration

Cenveo Publisher Services
Art Director, Cover

Jeff Weeks
Cover Designer

Pattie Lee

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy,
or completeness of any information included in this work and is not responsible for any errors or omissions or the results
obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of
any information contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and
its licensors reserve all rights in and to the work. Use of this work is subject to these
terms. Except as permitted under the Copyright Act of 1976 and the right to store and
retrieve one copy of the work, you may not decompile, disassemble, reverse engineer,
reproduce, modify, create derivative works based upon, transmit, distribute, disseminate,
sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent.
You may use the work for your own noncommercial and personal use; any other use of the
work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE
NO GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE
WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY
WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee



that the functions contained in the work will meet your requirements or that its operation
will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to
you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work
or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content
of any information accessed through the work. Under no circumstances shall McGraw-
Hill and/or its licensors be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the use of or inability to use the work,
even if any of them has been advised of the possibility of such damages. This limitation of
liability shall apply to any claim or cause whatsoever whether such claim or cause arises
in contract, tort or otherwise.



For MySQL culture, past, present, and future.

To many in the MySQL and growing Oracle community:
you are more than colleagues;

you are, and always will remain, great friends.



CONTENTS

Acknowledgments

Introduction

1  The Five Minute DBA

Approaching a MySQL Backup
Determining Your Database Size
Choosing a Locking Strategy
Execution Time
Combining Information

Performing a MySQL Backup
Running mysqldump
Securing Your Backup
Benefits with mysgldump

More Information

Other Options
Conclusion

2___Understanding Backup Options

Terminology
Choosing a Backup Strategy

Database Availability
Storage Engines
Locking Strategies
MySQL Topology

Static Backup Options

Filesystem Backup

SQL Dump

Table Extract

Filesystem Snapshot

InnoDB Hot Backup
Options Not Discussed




Point in Time Requirements

Binary L.ogs
Binary L.og Position
Binary L.og Backup Options

Hardware Considerations

Data Source Consistency

Backup Security

Conclusion

3___ Understanding Business Requirements for Disaster Recovery
Defining Requirements
Defining Responsibilities
Terminology
Technical Resource Responsibilities
Decision Maker Responsibilities
Identifying Dependencies
Case Study
The MySQL Topology

Your Backup and Recovery Strategy
A Real Life Disaster

Technical Outcomes

The Decision Process

Essential External Communication
Planning for the Worst Situation
Total SAN Failure

Power Disruption

Explosion
FBI Seizure

Blackout

Human Factors

Human Resources

Developing a Strategic Plan

Conclusion



4 Using MySQL Replication

MySQL Replication Architecture
MySQL Replication Characteristics
MySQL Replication Limitations
Replication Lag
Consistency
Completeness
Replication Design Considerations
Binary [.og Row Format
Semi-synchronous Replication
Replication Backup Considerations
Additional Prerequisite Checks
Cold Backup Options
mysgldump Options
Filesystem Snapshot Options
MySQL Enterprise Backup (MEB) Options
XtraBackup Options
Architecture Design Considerations

Upcoming Replication Functionality
Conclusion

5__ Using Recovery Options
A Word About Testing
Determining the Type of Recovery Necessary
MySQL Software Failure
Crash Recovery
MyISAM Table Recovery

Other Storage Engines

Table Definition Recovery
Performing a Static Recovery

MySQL Software Installation
MySQL Data
Performing a Point in Time Recovery




Binary L.og Position
Standalone Recovery
Leveraging the Replication Stream

Binary L.og Mirroring
Recovery Verification

The Backup and Recovery Quiz

Other Important Components
Conclusion
6__ MySQL Configuration Options
Data Management
Data L.ocations
Data Consistency
Binary L.ogging
MySQL Replication
Recovery

Conclusion

7 Disaster Scenarios

Handling a MySQL Disaster
Notable MySQL Disasters

Magnolia
Couch Surfing

Journal Space

Percona
Other Notable Data Disasters
The Sidekick/Microsoft Data L.oss
Github
TD Bank
General MySQL Disaster Situations

Binary Logging Not Enabled

A Single Server

Appropriate MySQL Security

Appropriate MySQL Configuration




Deleting MySQL Data
Deleting the InnoDB Data File
Deleting MySQL Binary Logs
Existing Backup and Recovery Procedure Disasters
MySQL Software Upgrades
Operating System Security Patch Upgrade
Handling MyISAM Corruption
Missing Database Schemas
Restoring a Backup on a Running MySQL Instance

Handling InnoDB Specific Situations
Automatic Recovery

InnoDB Data Dictionary Inconsistency
Automatic Recovery Crashes the Database Server.
Other MySQL Situations

Replication Inconsistency
RDS Recovery Failure

Common Downtime Causes

External Help
Conclusion

8__ Optimizing Backup and Recovery

Example Backup Environment
Using Compression
mysqldump
MySQL Enterprise Backup (MEB)
XtraBackup
Streaming Backups
Using SSH
Using nc
MySQL Enterprise Backup (MEB)

XtraBackup
Remote Backups

mysqldump




MySQL Enterprise Backup (MEB)
XtraBackup

Parallel Processing
mydumper
XtraBackup

Incremental Backups
MySQL Enterprise Backup (MEB)
XtraBackup

Partial Backups
mysgldump
MySQL Enterprise Backup (MEB)
XtraBackup

MySQL Backup Security

Encryption with ezNcrypt
Architectural Considerations

Conclusion

9  MySQL in the Cloud
Amazon Relational Database Service (RDS)

Example Database Creation
MySQL Versions

Backup Options

Recovery Options
Google Cloud SQL

Example Database Creation

Backup Options

Restore Options
HP Cloud Database as a Service (DBaaS)
MySQL Versions

Example Database Creation

Backup Options

Recovery Options

Cloud Impact on Backup and Recovery




Conclusion



ACKNOWLEDGMENTS

Thanks to the readers who have already enjoyed the first book of the Effective MySQL
series for providing valuable feedback, both good and bad. A positive comment tells me I
am meeting your needs; a negative one means I need to continue to do better. Both are
important to ensure continued improvements in this series. It is also a great feeling to
receive an e-mail asking when the next book will be available.

As 1 write my acknowledgments for this book, I realize the timeline of my own
changing immediate family. In my first book from 2010 I acknowledged my fiancé, Cindy,
and in my second book my now wife Cindy. For this third book my family has again
increased with Chance, our two-year-old dachshund rescue. In such a short time he has
become integral to our daily routine and in finding a balance between work, life, and
writing. Significant time, effort, and support from family is needed to create a book;
however, I write this material for the benefit of all who have a desire to learn, appreciate,
and master using MySQL effectively.

Without the technical abilities of the team at McGraw-Hill this publication would not be
possible. Many thanks to Ryan Willard, my coordinating editor; Paul Carlstroem, my
sponsoring editor; and the production team, who all remained very patient during some
significant unforeseen delays.

My technical editors, Hans, Chris, and Lenz, and the extended review team have been
invaluable for this book.

The many years of database wisdom and extensive training expertise of Hans Forbrich
brings the necessary Oracle expertise to the team and ensures this material meets the needs
of an experienced Oracle DBA for understanding and learning to master backup and
recovery for MySQL.

I am indebted to Chris Schneider, who in addition to being a technical editor of this
book and co-author for the next book in this Effective MySQL series, was able to assist
greatly in supplementing content in the later chapters and perform additional reviews as I
was overcoming illness. His expertise as an operational MySQL DBA working with the
demanding needs of systems requiring real life disaster recovery needs in his daily role
ensures the syntax, examples, and options described in this book mirror the needs of many
MySQL production systems.

Lenz Grimmer, long time MySQL community advocate, good friend, and sponsor of the
open source MySQL backup tool mylvmbackup, has added another well rounded
perspective and technical validation with his many years of database and system
administration knowledge.

While the words written in this text are mine, this does not become a published book
without the help, input, clarification, and discussion of these trusted and respected senior
technical advisors.

Several others have also contributed to making this a great reference. Thanks to the



MySQL Enterprise Backup (MEB) team at Oracle including Sagar Jauhari, Lars
Thalmann, and Sanjay Manwani in their review of all things MEB. Also to Ken Ashcraft
from Google and Vipu Sabhaya from HP for their feedback on the respective offerings of
MySQL in the cloud. Mark Leith contributed an actual code patch to mysqldump in one
day as the result of a blog post providing an example hack for a workaround. Great work,
Mark. That is the MySQL community spirit and open source in action. Further thanks to
Patrick Galbraith who provided early input around MySQL replication. Finally, several
individuals and companies named or anonymous helped to provide many colorful disaster
scenarios detailed in Chapter 7.



INTRODUCTION

Disaster is inevitable. Total failure is avoidable.

While many organizations plan, practice, and invest for scalability, few plan and
practice for business resilience as the result of a disaster or a “Choas Monkey*”. One of
the most critical tasks of an operational database administrator (DBA) is to perform, test,
document, and verify adequate backup and recovery procedures to ensure business
continuity. While this may be considered a much loathed and less prioritized task, this is
the single most comforting element in a well functioning and stable production
environment. Backups are not just used for recovery. Other uses of backups that can be
incorporated into daily operations to assist in the verification process can include
additional scalability and higher availability infrastructure, testing, and benchmarking.

Understanding what limitations and quirks exist with the various approaches to MySQL
backups is important in being confident that the crucial business information is backed up.
The methods you have used to recover your information must meet your business needs to
obtain a mean time to recovery (MTTR) and the recovery point objective (RPO).

MySQL provides no one single unbreakable solution as yet. The use of MySQL storage
engines, MySQL replication, configuration settings for durability, hardware configuration,
database uptime, and locking requirements are all factors in choosing an applicable
approach matching your business requirements. This book will cover these approaches
detailing the relative strengths and weaknesses and leading the reader to identify and
implement an appropriate backup and recovery strategy.

The final chapter of this book also discusses advancements in MySQL availability in
the cloud and the benefits and risks for an optimal backup and recovery strategy.

Conventions

All code examples are provided in a proportional font. For example:
mysgl= SHOW SCHEMAS;

e e +
| Database |
o m e m oo +
| information schema |
| blog |
| mysql |
o e e oo +

3 rows 1in set (0.00 sec)

Any SQL syntax within text or code examples will be in uppercase. For example, the
FLUSH TABLES WITH READ LOCK statement will hold a global read lock. These
statements are not provided in a different font. If a specific syntax or value from a code
example is described in general text, this is provided in a proportional font, for example,



the - -1og-bin configuration option.

For any Unix/Linux command, this is prefixed with a $ to indicate a shell prompt. For
example:

S which mysgl

Any MySQL SQL statement that can be executed is prefixed with mysql> to indicate
execution with the mysql command line client that is included with a full MySQL
distribution. For example:

mysgl> SELECT VERSION() ;

All SQL statements listed with this prefix can generally be performed in any alternative
MySQL client GUI tool; however, some additional syntax may not be applicable—for
example: \G for vertical display is a mysql command line client specific directive.

About MySQL

The MySQL database server is an open source product released under the GPL V2 license.
More information about  the GPL license can  be found at
http://www.mysql.com/about/legal/licensing/index.html. The copyright owner of MySQL
at the time of this publication is Oracle Corporation. Oracle Corporation provides
continued product development and also provides commercial licenses for OEM providers
and comprehensive subscription services for websites and enterprises.

More information about MySQL can be found at the official MySQL website at
http://mysqgl.com and the MySQL developer zone at http://dev.mysql.com.

The current generally available (GA) version of MySQL is version 5.5. This book is
written to support MySQL versions 5.0 and better with specific version differences noted
when applicable. The current development version of MySQL 5.6 is also referenced to
indicate expected new functionality in an upcoming release; however, these features may
operate differently or not be provided in any final future MySQL product.

Code Examples

All examples detailed in this book are available for download from the Effective MySQL
site at http://effectivemysql.com/book/backup-recovery/. Code, scripts, and sample data
are also available at GitHub.

A separate text document of all URLs used is also included on the website to enable
quick access to these references.

References

The MySQL Reference Manual on the MySQL developer zone is an invaluable resource.
This can be found at http://dev.mysqgl.com/doc/refman/5.5/en/index.html.

Access to manuals for older MySQL versions can also be found at
http://dev.mysql.com/doc.

The Planet MySQL website at http://planet.mysqgl.com provides an aggregation of


http://www.mysql.com/about/legal/licensing/index.html
http://mysql.com
http://dev.mysql.com
http://effectivemysql.com/book/backup-recovery/
http://dev.mysql.com/doc/refman/5.5/en/index.html
http://dev.mysql.com/doc
http://planet.mysql.com

thousands of MySQL bloggers detailing great insight on all things MySQL.

Additional open source products referenced in this book including Xtra-Backup and
Percona Toolkit from Percona, mylvmbackup, and mydumper have various sources of
additional online information. These are detailed at the appropriate time.

*The “Choas Monkey” and the “Simian Army” created by Netflix highlight that proactively creating disasters esures the
best approach for being prepared. More at http://techblog.netflix.com/2011/07/netflix-simian-army.html


http://techblog.netflix.com/2011/07/netflix-simian-army.html

1
The Five Minute DBA

You have just inherited a production MySQL system and there is no confirmation that an
existing MySQL backup strategy is in operation. What is the least you need to do? Before
undertaking any backup strategy there are some necessary prerequisites about your
database size and storage engine usage that have a direct effect on your system availability
during any backup approach.

In this chapter we will discuss the approach necessary to identify a minimum
functionality backup, including:

* Determine your database size
* Determine your storage engine usage

» Locking and downtime implications

Approaching a MySQL Backup

There is more than one strategy to back up a MySQL environment. These strategies also
depend on the number of servers in the MySQL topology. There are a number of various
open source and commercial tools available to perform backups. In Chapter 2 we will be
discussing in detail all these possible options.

At this time you have an environment with a single server and you want to create a
consistent backup. You have at your disposal for all MySQL environments two immediate
options. The first option is to stop your MySQL instance and take a full filesystem cold
backup. This would result in your system being unavailable for an undetermined time, and
you would need to ensure you make a copy of all the right information including MySQL
data, transaction and binary logs if applicable, and the current MySQL configuration.

Your second option is to use a client tool included with the standard MySQL



installation. The mysqldump command can produce a consistent MySQL backup without
stopping the MySQL instance. However, before running mysqldump, several important
decisions are required to make an informed decision of the best options to use. These are:

» What is the size of the database to backup?
» What locking strategy is necessary to produce a consistent backup?

* How long will the backup take?
Determining Your Database Size

An important consideration for performing a MySQL backup is the size of your backup
when backing up to local disk. This is required to ensure you have available diskspace to
store your backup file.

The following SQL statement provides the total size in MB of your current data and
indexes:

mysgl= SELECT ROUND(8UM(data length+index length)/l1024/1024)

-= A5 total mb,
- ROUND {8UM (data length) /1024/1024) 28 data mb,
g ROUND (SUM (index_length)/1024/1024) AS index mb
-» FROM INFORMATION SCHEMA.t ablesn;

o ——— e ————— o - -

| tetal mb | data mb | index mk |

o ——— e ————— o ——— -

| 927 | 847 | 80 |

o —— e ————— Fmm - -

Your mysqldump backup will be approximately the same size as your data with an
appropriate safety margin of 10 to 15 percent. There is no precise calculation; however,
your backup produces a text based output of your data. For example, a 4 byte integer in
the database may be 10 character bytes long in a mysqldump backup file. It is possible to
compress your backup concurrently or to transfer to a different network device. These
options and their limitations are discussed in Chapters 2 and 8.

From this SQL statement the database data size is 847MB. For later reference, the size
of the backup file as described in the section running mysqldump reports a size of 818MB
using the common default options. The example database in Chapter 8 with a data size of
4.5GB produces a backup file of 2.9GB.

Choosing a Locking Strategy

The locking strategy chosen will determine if your application can perform database write
operations during the execution of a backup. By default, mysqldump performs a table level
lock to ensure a consistent version of all data using the LOCK TABLES command. This
occurs with the --lock-tables command line option, which is not enabled by default.
This option is part of the --opt option that is enabled by default. You can elect to not lock
tables; however, this may not ensure a consistent backup. When using the MyISAM
storage engine, - -lock-tables is necessary to ensure a consistent backup.

Alternatively, mysqldump provides the --single-transaction option that creates a
consistent version snapshot of all tables in a single transaction. This option is only



applicable when using a storage engine that supports multiversioning. InnoDB is the only
storage engine included in a default MySQL installation that is applicable. When
specified, this option automatically turns off - -lock-tables.

The following SQL statement will confirm the storage engines in use for your MySQL
instance:
mysgl> SELECT table schema, engine, COUNT(*) AS tabkles

-= FROM information schema.tables
-= WHERE table achema NOT IN
- f’INFURMATICN_SCHEHA’.‘PERFQRMANCE_SCHEHR‘J

-» GROUP BY table schema, engine

-»> ORDER BY 3 DESC;
T fmmm————— Fmmm———— +
| takle schema | engine | tables |
o mmmmmmmmmmmm—mmm— - - +-———— - +-——————= +
| shopping cart | MyISaM | 109 |
| cust db | InncDE | a8 |
| myagl | MyISaM | 21 |
| analytica | InneoDE | 20 |
| phpmyadmin | MyISaM | B
| newsletter | MyISaM | B
| cust db | MyISaM | R
| mysql esv | oz
o mmmmmmmm oo m - tommmm— - +

In this example, the MySQL instance has several different schemas that support various
functions including a shopping cart, newsletter, and administration tool. An all InnoDB
application may look like:

e et e it e it +
| takle schema | engine | tablea |
Fmm e e fmmm————— fmm—————— +
| pred db | InneDBE | 122 |
| myagl | MyISaM | 21 |
| myagl | cav | 2 |
e Fommmmm - e it +

As you see in the example the mysql meta-schema uses MyISAM. There is no ability to
change this. If your database is all InnoDB you will have two options regarding the
MyISAM mysql tables that we will discuss later in this chapter.

Execution Time

The most important requirement is to determine how long your backup will take. There is
no calculation that can give an accurate answer. The size of your database, the amount of
system RAM, the storage engine(s) in use, the MySQL configuration, the hard drive
speed, and the current workload all contribute in the calculation. What is important when
performing a backup is that you collect this type of information for future reference. The
execution time is important, as this is an effective maintenance window for your database.
During a database backup there may be a limitation of application functionality, a
performance overhead during the backup, and your backup may limit other operations
including batch processing or software maintenance.

Combining Information



The following is a recommended SQL statement that combines all information for an audit
of your database size:

$ cat storage engines.sgl
SELECT table achema, engine,
RCOUND (SUM (data length+index length) /1024/1024) AS total mb,
ROUND (SUM (data length) /102471024 AS data mb,
ROUND (SUM (index length) /1024 /1024) 22 index mb,
COUNT (*) AS tables
FRCOM information schema.tables
GRCUP BY table schema, engine

OFDER BY 2 DESC;

mysql= scurce storage engines.sgl

i R R R b ke b e A R S PR e e G AR e SRR o e L SRR e +
| table schema | engine | total wmbh | data_mb | index mb | tables |
A e e it e e o e Rl e B % SR o e S Al T S Ew e +
| analytics | InneCE | 10903 | 10525 | 378 | 20 |
| cust_db | InneCE | 1155 | 952 | 134 | g |
| newsletter | InnenE | c14 | 273 | 237 | 7
| shopping cart | MyIszM | 27 | 1 | a | 1o9 |
| cust_db | MyIsEM | g 3| 7 |
| mysgl | MyIsEmM | 1| a. | a. | 21 |
| information schema | MyISEM | a | a | a | 2

| information schema | MEMCRY | a | a | a | 20 |
| mysgl | cav | a | a | a | 2 |
T R T L TR TR TR T T FETRTRTE S s detodedesriati ta ke o dubodecbesrbats Sak =TT R T R T T +

Performing a MySQL Backup

Now that you have gathered prerequisite information, you have the details necessary to
make an informed decision.

The choice of how to perform a backup, when to perform, and how you monitor and
verify is a more complex process that is discussed in more detail starting with Chapter 2.

One additional consideration during a backup process is to disable any cron or batch
processes during the backup to minimize additional workload. This can minimize database
contention and shorten the window of time needed.

Running mysgldump
In the simplest form, you can perform a backup using mysqldump with the following

syntax:

2 time myagldump -urcot -p --all-databases > backup.aqgl
2 echo 27
% la -1h backup.sgl

* The first command runs the mysqldump for all databases producing an ASCII dump in
the backup.sql file.

» The second command confirms the exit status of the first command. A non-zero result is
an indication of a problem during the backup process. If any errors occur, these are
generally shown in the screen output.

 The third command shows the size of your backup file for later reference.



For example:

2 time myagldump -urcoct -p --all-databases » backup.sgl

real 0m35.4%3p

user Om=.808a

ays Om2.021a
echo 37

o 4

% la -1lh backup.sgl
—-rw-rw-r-- 1 uid gid 818M Aug 10 21:27 bkackup.sgl

This is a successful backup file totaling 818MB that took 35 seconds to execute. The
original size of the database data as shown previously for this MySQL instance was
847MB.

TIP Prefixing the mysqldump command with the time command will provide valuable
information on the actual time taken. Recording your backup time and size is an
important administration step all DBAs should do. This time is useful for scheduling
other system requirements, for an additional verification step if a successful backup has
a significantly different time, and is helpful in benchmarking using different arguments,
MySQL configuration settings, or changes in physical hardware.

An example of an error condition may look like:

2 time myagldump -urcoct -p --all-databases > backup.agl

mysgldump: Got error: 1142: SELECT, LOCKE TABL command denied to user
'root'@'localhoat' for table 'cond instances' when using LOCK TAELES
real Om7.692m

user Oml.780=
ays Om0.313a
2 echo 37

2

2 la -1h backup.sgql
-rw-rw-r-- 1 uid gid 94M Zug 10 21:28 backup.sql

A backup file as per this example may in isolation appear to be completely valid. That
is, this file contains valid and complete SQL statements and can be successfully used to
restore data in one or more schemas; however, it is incomplete as a full backup of all data.
The execution time, error status, and size are all important information for verification of a
successful backup.

Creating a backup is only the first step in a suitable strategy. It is important this backup
file can be used successfully in recovery. This is discussed in Chapter 5.

Securing Your Backup

The final step in a minimal backup approach is to ensure the security of your data. The
backup is currently on the same system as your data. A loss of this system would include
the data and your backup. The minimum you should undertake is to copy your backup to a
secondary location. For example:

S time gzip backup.sgl

S time scp backup.sgl.gz another-server:backup-dir



Benefits with mysqldump

The mysqldump command provides a SQL based backup file. This can be ideal for creating
a backup that can be executed on different versions of MySQL, and on different operating
systems. You can, for example, view this file directly and see SQL statements. For
example:

2 mors backup.agl

-- Current Databass: "mysgl”

CREATE DATABASE /*132312 IF MOT EXISTS*/ “mysgl”

/*140100 DEFAULT CHARACTEERE SET latinl */;
USE “myagl™;
-- Table structure for table “help topic™
DRCP TAELE IF EXISTS "help topic™;
f*140101 2ET @saved cs_client = @@character set client */;
f*140101 BET character set client = utfs */;
CREATE TABLE “help topic™ |
“help teopic 14 int(10) unsigned MOT NULL,
"name” char{s4) NOT MULL,
“help category 1d4° smallint (5] unsigned MNOT NULL,
“dascription” text HWOT NULL,
“example” text MNOT NULL,
"url® char{lzgs) NOT MULL,
FRIMAEY KEY (“help topic_id"},
UMIZUE EEY "name”™ [ nams™)
) ENZINE=MyISEM DEFAULT CHARSET=utfs CCMMENT='help topilcs! ;
f*140101 2ET character set client = @saved cs_client */;

-- Dumping data for table “help topic™

LOCKE TABLES “help topic™ WRITE;/*!140000 ALTER TABLE “help toplc™ DISRBLE KEYS */;
INSERT INTO “help topic™ VALUDES (0, 'MIN',16,'3yntax:'\OMIN([DISTINCT] sxpr)\n\n
Eaturns the minimam value of expr. MIN{) may taks a string argument; in'nsuch
cases, 1t returns the minimum string wvalue.Sse'\nhttp://dev.myeql.com/doc/refman/
t.l/en/mysqgl-indexss . html. The DISTINCT\Dkeyword can be uszsd to find the minimuam
& T

More Information

For more information about the various options with mysgldump, you can obtain a list of
valid options with the following syntax:

S mysgldump --help

You can find detailed information in the MySQL Reference Manual at
http://dev.mysql.com/doc/refman/5.5/en/mysqgldump.html.

Other Options

If your database uses all InnoDB tables, the default locking strategy is restrictive. You


http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html

have to consider the impact of the mysql schema on MyISAM tables. Under normal
circumstances you can generally ignore the consistency requirement providing you do not
perform operations that change the meta-data. This includes adding or changing users and
privileges, as well as creating or dropping database schemas. Alternatively you may elect
to perform two separate backups. The first backup excludes the mysql schema using the - -
single-transaction option. The second backup only includes the mysql schema and uses
the default locking approach. This will be discussed more in Chapter 2.

Conclusion

An appropriate MySQL backup strategy is an essential component for any running
production system. For a simple installation, the implementation of a backup strategy can
occur in minutes as demonstrated in this chapter. However, a backup strategy is only as
good as the process to perform a successful, timely, and complete recovery using the
backup strategy. Chapter 5 will provide a detailed explanation for a successful recovery.

There are a number of important considerations when using the output of mysqldump for
recovery that may affect how you execute your backup command. Chapter 2 will discuss
these points.

This chapter also introduced a number of common terms including consistent, valid,
complete, and point in time. We will define these terms in greater detail in Chapter 2.

The SQL statements and web links listed in this chapter can be downloaded from
http://effectivemysqgl.com/book/backup-recovery/.


http://effectivemysql.com/book/backup-recovery/

2
Understanding Backup Options

MySQL supports various different options for the backup of your database data. Each of
these options has its relative strengths and weaknesses that need to be considered to
determine what is most applicable for your production environment. The choice of
operating system, hardware, and software configuration can affect the availability of
options. There are also open source and commercial considerations for your choice of
product.

In this chapter we will discuss:
+ Different backup strategy needs and approaches
* Various popular MySQL backup options

» Hardware considerations

Terminology

Chapter 1 introduced a number of important terms that are essential to fully understand the
principles for backup and recovery with MySQL.

Term IIDescription

static backup This is a backup of data at a given point in time. Generally a MySQL backup would be performed daily, for example 2:00 A M.

This is a backup of data where all information pertaining to the backup is consistent. For example, a filesystem backup on a running production system would produce an inconsistent backup when

consistent backup copying files sequentially. This could lead to a mismatch of information between individual files.

static recovery IIA recovery process involves two important initial steps; the first is the static recovery and the second is the verification of a valid static backup.

Following a successful static recovery, it is generally necessary to perform a PITR recovery of current transactions. These are all the data operations that have occurred since the static backup, i.e., since

2:00 AM.

A backup is generally performed when the system is under less utilization, or in pre-determined times known as a maintenance window. This is when administration tasks including backups, software
upgrades, and other maintenance can be performed with limited or restricted application access.

point in time
recovery (PITR)

maintenance
window




Choosing a Backup Strategy

Several factors affect the choice of the type of backup you should implement for your
MySQL environment. This chapter covers the bases of what backup strategies exist and
what limitations you need to consider for each strategy. For a clear description of the
following backup options, these are demonstrated for a single server environment. This
highlights the relative strengths and weaknesses for evaluation. The design of your
MySQL topology can also affect an appropriate backup and recovery strategy. The use of
MySQL replication in the context of backup and recovery can be a great benefit to
overcoming some of the limitations listed in this chapter. In Chapter 4 we will discuss the
considerations for combining replication with the various strategies.

Before choosing a backup approach, various MySQL architecture and schema design
decisions may have an impact.

Database Availability

If access to your database is not required for a period of time—for example, you are not
running a 24/7 operation—there may be a common time when your database may not be
required to be available. This is called a maintenance window, and it provides an
opportunity for backup strategies that may not be possible if such a window is not
available.

Storage Engines

As highlighted in Chapter 1, the choice of storage engine for your underlying tables can
have an effect on your strategy, particularly in relation to locking and data availability
with the primary included storage engines and additional storage engines supported via a
plugin architecture. The InnoDB, MyISAM, ARCHIVE, MERGE, MEMORY, and
BLACKHOLE engines included with the official MySQL binaries have different locking
requirements and needs for consistency, which also drive different backup strategies.

In the following section we will be discussing InnoDB specific options that provide the
best approach for a true hot backup.

Locking Strategies

For any backup strategy that operates with a running MySQL instance there is an
important consideration of an applicable locking strategy to ensure a consistent backup.
An applicable locking strategy is necessary because MySQL supports different
concurrency and DML locking approaches. In MySQL not all engines support multi-
versioning concurrency control (MVCC). MySQL provides two SQL commands that
directly control table level locking. These are the LOCK TABLES and FLUSH TABLES
commands. Many backup options detailed in this chapter handle applicable locking. This
information is provided to define what options are used and available for custom
management.

LOCK TABLES

The LOCK TABLES command can provide a READ or WRITE lock for one or more
specified tables. The LOCAL option enables concurrent inserts to continue when
applicable for MyISAM tables only. Concurrent inserts for a MyISAM table are possible



when there are no holes (from deletes) in the table, or when the concurrent_insert
configuration variable is set appropriately.

This command is used when the --lock-tables option is enabled with mysgldump. See
the later section on SQL dump for a detailed explanation of when this option is auto-
enabled.

The UNLOCK TABLES command is used to release all current locks for a session. In
addition to the UNLOCK TABLES command, a session termination, a START
TRANSACTION, or a LOCK TABLES on the same table name also produce an implied
UNLOCK TABLES.

CAUTION Any backup that takes longer to execute then wait_timeout or
interactive_timeout can result in the session being closed. This will cause an implied
UNLOCK TABLES.

For more information see http://dev.mysql.com/doc/refman/5.5/en/lock-tables.html.
FLUSH TABLES

The FLUSH TABLES command, when used with the optional keywords WITH READ
LOCK, will enable a consistent view of data when the command completes successfully.
This occurs by taking a globally held read lock, then closing all currently open tables. This
can take time to complete as this requires all running SQL statements to complete. This is
not the same type of lock as a LOCK TABLES command on a list of all tables. This lock
is released by issuing an UNLOCK TABLES command, or any operation that implicitly
runs an UNLOCK TABLES command. This last point is very important as shown in the
following example.

In session 1:

myegl> DROP TRELE IF EXIETE tl;

tusry COE, 0 rows affected, 1 warnimg (0.00 sec)
myegl> CREATE TABLE tl(i imkt);

tusry COE, 0 rows affected (0.03 sec)

mysgl> INSERT INTC tl1 VALUEE (1);

tusry CE, 1 row affected (0.0l sec)

mysgls> FLUEH TAELEE WITH RERD LIOCE;

usry COE, 0 rows affected (0.02 sec)

In session 2:
mysgl> EET SESSICH lock wait timsout=10;
fusry COE, 0 rows affected (0.00 sec)
mysgl> INSERT INTC tl1 VALUEE (2);
ERROR 1205 (HYOOO) : Lock wait timecut excesded;
try restarting transacticon

The command in session 2 does not complete as expected. We can confirm this by
looking at the current threads in the processlist before the timeout occurs.

In session 1:


http://dev.mysql.com/doc/refman/5.5/en/lock-tables.html

mysgls> SHOW PROCESSELIET\G

i e bl e bl e el e Wl e ok l oW e e b Wl e e b ol e ol b

Id. 1391205
Tasr: raook
Hoet: localhost
db: bock
Command: Cuery
Time: 0O
Etate:
Info: EHOW PRCCESELIET

okt i ok e kol b e el b e el e Rl 2 oW e i e vk ok ol e ok e ol b e ok ke e b e ke o b e e
Id: 1391211
Taer: root
Hoat: localhost
db: bock
Command: Cuery
Time: &
Etate: Waiting for glokbal read lock
Info: IMEERT INTC tl VALUEE (2)
mysgl> EXIT,

As soon as session 1 is closed, an implied UNLOCK TABLES is performed. This
releases the global read lock, and the pending statement in session 2 completes
immediately if the SQL statement has not timed out as per this example.

CAUTION A common flaw with backup strategies that use FLUSH TABLES WITH
READ LOCK is the need to use two independent threads for the executing backup
process. Running a FLUSH TABLES WITH READ LOCK command, then exiting from
the current connection will automatically perform an UNLOCK TABLES. After the
successful return of FLUSH TABLES WITH READ LOCK, any backup option must
occur in a different concurrent thread. Only when the applicable backup option is
complete should an UNLOCK TABLES be executed.

NOTE The risk of using a FLUSH TABLES WITH READ LOCK command for a highly
concurrent system is this may take some time (i.e., seconds to minutes) to complete. This
is due to any other long running statements executing. It is important that this command
is monitored and terminated if necessary. While this statement is popular with snapshot
options, this risk must be carefully considered for the true impact for an online
application.

For more information see http://dev.mysql.com/doc/refman/5.5/en/flush.html.

A recent article on the popular MySQL Performance Blog provided a detailed
description of how the combination of FLUSH TABLES WITH READ LOCK, MySQL
5.5, and InnoDB can produce an unexpected wait in order to complete locking all tables.
The combination of versions, storage engines, and SQL commands can vary the expected
outcome. As always, testing is a sound business practice. For more information see
http://www.mysqlperformanceblog.com/2012/03/23/how-flush-tables-with-read-lock-
works-with-innodb-tables/.

MySQL Topology

The decision of a backup strategy for a single server installation can be very different then
for a MySQL topology that includes MySQL replication. While it may not be possible to
stop or limit access to a primary MySQL instance, this approach may be possible with a



http://dev.mysql.com/doc/refman/5.5/en/flush.html
http://www.mysqlperformanceblog.com/2012/03/23/how-flush-tables-with-read-lock-works-with-innodb-tables/

MySQL replicated slave.

A full copy of your MySQL instance using MySQL replication is actually the easiest
backup strategy to implement. This approach, when correctly configured, can also serve as
a primary recovery option with minimal impact on production operation. Chapter 4
discusses the impacts of using MySQL replication with your backup and recovery strategy.

Static Backup Options

MySQL provides no single backup option. The following are the various popular and most
common approaches to performing a static backup of a MySQL instance. This is a
necessary prerequisite for a database recovery that includes a static recovery and then a
possible point in time recovery (if configured).

The following options are possible for a backup of a given MySQL instance:

Filesystem cold backup
SQL dump

Table extract

Filesystem warm snapshot
InnoDB hot backup

Filesystem Backup

When you stop the MySQL instance with a clean and proper shutdown, it is possible to
perform a filesystem backup. This is a physical copy of files on the filesystem. To ensure
you successfully back up all important MySQL data, the following MySQL configuration
variables define various file locations that should be carefully reviewed and when
applicable included in the list of files to back up. These variable values should be obtained
while the server is running. Not all variables may be defined in the my.cnf file. MySQL
will use pre-configured defaults for all variables not defined.

* datadir The MySQL data directory
* innodb_data_home_dir The InnoDB Data directory

* innodb_data_file_path The individual InnoDB data files, which may contain
specific different directories

* log-bin The binary log directory

* log-bin-index The binary log index file
* relay-log The relay log directory

* relay-log-index The relay log index file

In addition, it is critical you also back up the MySQL configuration file as these settings
are particularly necessary to successfully run MySQL. In particular the
innodb_data_file path and innodb_log file size include underlying file sizes that
when not configured in identical size will result in your MySQL instance failing to start.
Refer to Chapter 6 for more information regarding MySQL configuration variables.



Restricting application SQL access to the MySQL server to perform a file copy of a
running MySQL instance is highly recommended. A file copy is a sequential process, and
there is no guarantee all files will be consistent for the full copy. This is especially
applicable when using InnoDB, as additional background threads operate to flush and
persist underlying data from the InnoDB Buffer pool even after all MySQL access is
restricted.

Disadvantages
There are several key disadvantages to this approach.
* The MySQL instance is not available during the backup.

» The recovery process requires a similarly configured system with the same operating
system and directory structures.

* The MySQL instance memory buffers will be re-initialized when MySQL is restarted.
This can take some time for the system to provide optimal performance for running
SQL statements.

Advantages
» Simple process.

 This enables a backup to be performed with any filesystem backup tool.
SQL Dump

MySQL provides a SQL based backup option with the included client command
mysgldump. This command was first introduced in Chapter 1. Using mysqldump is a
practical way that requires no additional software; however, this solution is not without a
number of limitations. A common use of mysqldump would be:

5 mysgldump -ul[user] -p --routines --master-data --complete-insert Y,
--all-databases > backup.sql

This command creates a backup that includes all tables, views, and stored routines for
all database schemas and the master binary log position.

The one additional option that is most commonly used is --single-transaction;
however, this is only applicable for an InnoDB only environment, or transactional storage
engine that supports MVCC.

A number of the options shown are described in further detail.
—opt

This option is enabled by default and is equivalent to --add-drop-table, --add-locks,
--create-options, --quick, --extended-insert, --lock-tables, --set-charset, and -
-disable-keys.

—lock-tables

This option is actually implied by the --opt option, which is enabled by default. The
underlying implementation of the LOCK TABLES command uses the syntax:



USE [schemal

LOCE TABLES [tablenames] EREEAD LOCAL, [taklenams] READ LOCAL, =tco
HNLOCE TAELES

USE [schemal

The mysqldump with --lock-tables only locks the tables of one schema at one time—
not all tables for all schemas. If application logic writes to two different schemas and you
use a storage engine that does not support transactions, it is possible to have inconsistent
data during a backup.

—Ilock-all-tables

This option will perform a FLUSH TABLES WITH READ LOCK command in order to
produce a consistent view of data in all schemas.

—Troutines

Using mysqgldump to back up all databases does not back up all of your schema meta-
information. MySQL routines are not included by default. This can be a significant
shortcoming if your recovery process does not fully test the validity of your backup. If
your database includes stored procedures or functions the - -routines option is necessary.

—master-data

This option is essential for any point in time recovery, which is the general requirement
for all disaster recovery situations. When enabled, the output will produce a SQL
command like:

CHANGE MASTER TO MASTER LOG FILE='log-bin.000122', MASTER LOG POS=211885601;

You can also specify --master-data=2, which will embed this SQL statement as a
comment only so this is not physically executed during the restoration of data with the
mysqldump output. The importance of this option and the prerequisite configuration is
discussed in the following section on point in time requirements.

—all-databases

As the name implies, all database schemas are referenced for the mysqldump command.
You can also specify individual database schemas and tables on the command line. To
specify specific databases use the --database option; for specific tables use --tables,
and to define schemas with an exclusion list of tables use --ignore-table.

—complete-insert

The --complete-insert option provides a practical syntax for a higher level of
compatibility as shown:



5 mysgldump -uluser] -p --skip-quote-names --databases book --tables colors

INSERT INTO colors VALUES
("RED', "Apples,Sun,Plood, ..."),
("ORANCE', "Oranges,S5and, ... ")

5 mysgldump -u[user] -p --skip-quote-names --complete-insert
--databases book --tables colors

INSERT INTO colors (name, ltems) VALUES ('RED', 'Apples,Sun,Blood,..."'), ('OCRANCE'
, '"Oranges ., 5and, ..."},

This is important if you separate your schema and data using mysqldump to trap errors
when loading data.

By default MySQL will combine a number of rows for individual INSERT statements.
This is due to the --extended-insert option that is enabled by default. If you want to
generate a backup with individual INSERT statements use the --skip-extended-insert
option. This will affect the recovery time of your backup.

—skip-quote-names

By default MySQL will automatically add a back tick (*) around every object name. This
is used to support using reserved words and spaces in object names, two practices that are
strongly not recommended. mysqldump does not quote only those objects that need this
syntax, but all objects including table names, column names, index names, etc.

This is a cumbersome syntax that can be removed with --skip-quote-names, and
providing you avoid the two conditions mentioned the backup file will be correctly
restored.

—single-transaction

When using a storage engine that supports MVCC it is possible to get a consistent view of
data using the --single-transaction option. This works, for example, with the InnoDB
storage engine. It does not work with the My-ISAM storage engine. This option does have
an overhead, as this is one long running transaction.

—hex-blob

When your database contains binary data, the --hex-blob option will provide maximum
compatibility especially when using your backup for restoration on different MySQL
systems.

MySQL Replication Specific Options

Chapter 4 will discuss a number of important mysqldump options to consider when
working with a MySQL slave including - -master-data, --apply-slave-statements, and
--dump-slave.

Additional Options

The following syntax provides a full list of possible options with mysqldump:
$ mysgldump --help



Benefits

As mentioned in Chapter 1, one of the benefits of mysqldump is the ASCII nature of the
data. You can look at the backup file with a text editor and you can use simple tools to
manipulate the data—for example, to perform a global string substitution to change the
storage engine. mysqldump can also support the extraction of individual schemas and
tables, providing a level of flexibility not possible with other options discussed in this
chapter. While mysqldump may not be the tool of choice for your full backup and recovery
strategy, understanding this command for partial data situations is important.

This command uses the MySQL client/server protocol so the mysqldump command does
not have to be performed on the same host. This can help reduce the I/O writing
requirement and disk capacity necessary; however, this can increase the time the command
executes and network utilization. When used on a Linux or Unix operating system
additional piping and redirection can enable additional features including encryption and
compression.

One advantage of the SQL backup is that it enables a cross operating system compatible
solution. A backup using mysgqldump on Linux can be restored on a Windows platform. In
addition, mysqldump also provides a --compatible option to support SQL statements that
can be used with previous MySQL versions.

Because mysqldump output is an ASCII representation of data, it is possible that the size
of the backup is larger than the database. For example, a 4 byte integer can be 10
characters long in ASCII.

Recovery Considerations

A backup process is only as good as a successful recovery. A mysqldump file is only a
static backup. Regardless of your backup approach, this is one common component
required for a true recovery solution that is to support a point in time recovery. This
important recovery step has two additional requirements when producing a SQL dump.
The first requirement is the master binary logs, which are enabled with --log-bin. The
second is the binary log position at the time of the backup; this is obtained by the --
master-data options. Chapter 6 discusses these options in detail.

Recommended Practices for Database Objects

It is recommended that you separate your table objects and table data. This has multiple
benefits including ease of comparison for schema objects, ability to re-create your schema
only—for example, with a test environment—and provides an easier way to split your data
file for possible parallel loading. Regardless of your ultimate backup process, I would
always recommend you run the following two commands to back up your schema
definition and objects:

2 myagqldump -uluser] -p --noe-data --all-databases > schema.sagl
8 mysgldump -uluser] -p --no-data --all-databaass
--ne-create-infe --routines > routines.sgl

A simple approach to schema comparison is to perform a difference between files that



are created with each backup. This approach is only approximate, as the order of objects is
not guaranteed, and the syntax may and does change between MySQL versions. You can
use this technique, however, as a quick check and confirmation of no schema changes,
which is an important verification and audit.

TIP A mysqldump of database objects can provide an easy means of confirming that no
objects have changed between scheduled backups. This can provide a level of
auditability for system architecture.

Using Compression

Using mysqgldump you can leverage the operating system to support compression. The
simplest approach is to pipe the output directly into a suitable compression algorithm. For
example:

$ mysgldump [options] | gzip > backup.sqgl.gz

While this will ensure a much smaller backup file, compression adds time to the backup
process, which could affect other considerations including locking and recovery time. See
Chapter 8 for a more detailed discussion on using compression to optimize the backup
process.

Leveraging Network Devices

You can also use mysqldump across the network, either with a pull or push process, for
example, to pull the data from the database server to another server.

# dbk-aerver is the database
# bak-gerver ia the remote aserver

o

bak-gerver 5 mysgldump [options] -C -hdb-server = backup.sgl

The -C option enables compression in the communication when supported between the
mysqgldump client command and the database server. This does not compress the result,
only the communication.

The push of mysgldump output can be performed several ways including with the nc
(netcat) command. For example:

bak-server 5 nc -1 9000 = backup.sql
db-gerver §$ mysgldump [options] | nc db-server 2000

Chapter 8 provides more information regarding different options and considerations for
streaming a backup.

Disadvantages

mysqldump is ideal for smaller databases. Depending on your hardware, including
available RAM and hard drive speed, an appropriate database size is between 5GB and
20GB. While it is possible to use mysqldump to back up a 200GB database, this single
thread approach takes time to execute. It is also impractical to restore in a timely manner



due to the single threaded nature of the restoration of a mysqldump output. Ideally,
leveraging techniques of separating static and online data into multiple files can provide
an immediate parallelism. The mydumper utility aims to improve these features by offering
parallelism capabilities. This open source utility is discussed in Chapter 8.

Table Extract

An additional form of ASCII backup is to produce a per table data file, also called a data
snapshot. This option is not practical for a full system backup; however, it is ideal for time
series, write once, and archival data, especially if the data has been manually partitioned.
Using a hybrid approach for a backup strategy can reduce both the time and size required
for your backup. This method, when used with static data, i.e., eliminating a consistency
problem, and combined with mysqldump of other data, can provide a much smaller backup
both in execution time and filesize. This can also translate to reduced recovery times.
Generally this approach is not practical as a complete solution because it is difficult to
reconcile with point in time recovery.

You can use the mysqldump command with the --tab option or SELECT INTO
OUTFILE SQL syntax to achieve a per table data file. By default, these commands
produce a tab separated column format, with a newline terminator for rows. If you wanted
to produce a comma separated variable (CSV) dump of data, you could use the following
syntax:

cd ftmp

mysgldump -u [user] -p --no-create-info --tab=.
--fielda-terminated-by=,
--fielda-cpticnally-enclosed-by=\" bock colors

4 4

2 la -1 coloras.txt
—-rw-rw-rw- 1 uid gid 308 Sep 1 00:40 ceolors.txt

% cat ftmp/colors. txt

"RED", "Apples,fun,Blocd, ... "

"ORANGE", "Oranges, Sand, ..."

"YELLOW® ... .N

"GREEN" , "Kermit, Grass, Leaves, Planta, Emeralds, Frogs, BEeaweead, Spinach,
Money, Jade,Go Traffic Light"

"BELUE", "8ky,Water, Blusberries, Earth"

"INDIGIO" ™. .. "

"WIDLET®,"..."

"WHITE" ,"..."

"BLACE" , "Night , Coal,Blackboard,Licorice, Piano Keys,..."

or

mysgl= SELECT * FROM colors

-> INTO OUTFILE '/tmp/colors.cav!'

-» FIELDS TEEMINATED BY ', ' COPTIOHNALLY ENCLOSED BY '"'.
Query OK, 9 rows affected (0.00 sec)

5 la -1 /tmp/oolora.csv

-rw-rw-rw- 1 uid gid 208 Sep 1 00:42 /tmp/colors.csv
8 diff /tmp/ocolors.txt /tmp/colors.csv

# NOTE: No difference from mysgldump generated file

One advantage of the mysqldump command is a greater flexibility of the underlying file
permissions necessary to write the output file. Using the SELECT INTO OUTFILE syntax



requires the mysqld process owner (generally mysql) to have appropriate write
permissions where the outfile is defined. This also produces an additional problem when
compressing or moving the file, as a normal operating system user generally cannot
perform this on the file created by the mysql user.

Filesystem Snapshot

A more practical solution for a larger MySQL instance is to perform a filesystem snapshot.
This is not actually a MySQL specific strategy, but rather a disk based operating system
command using Logical Volume Manager (LVM) for direct attached drives, or applicable
snapshot technology for Storage Area Network (SAN) or Network Attached Storage
(NAS) providers. This may also be a feature of certain file systems, e.g., the Btrfs file
system on Linux and ZFS on Solaris.

Your disk must be correctly configured with LVM prior to using any of these
commands. The EffectiveMySQL website provides a detailed article on installing and
configuring LVM at http://effectiveMySQL.com/article/configuring-a-new-hard-drive-for-
lvm/ and on installing MySQL to utilize this LVM volume at

http://effectiveMySQL..com/article/using-mysqgl-with-lvm.

Assuming you have a MySQL instance running on an LVM volume you can use the
following command to take a filesystem snapshot:

5 sudo su -
5 gync ; lvcreate -L1G -8 -n dbsnapshot /dev/db/p0

This command uses the logical volume group (dev/db/p0) and a very small undo size
for this example (-L1G). These would be modified accordingly for your environment.
Calculating the necessary undo size can be difficult. If the space is not large enough, the
snapshot command will report an appropriate error.

NOTE A snapshot volume does not need to be the same size as the underlying volume
that contains your MySQL data. A snapshot only has to be large enough to store all
data that is going to change over the time the snapshot exists.

CAUTION Always ensure you have sufficient diskspace to perform a snapshot. The
pvdisplay and 1vdisplay commands show total available space and the percentage of
space allocated to snapshots.

CAUTION Having an active LVM snapshot comes with a performance penalty for all
disk activity. While ideal for recovery purposes to have the current snapshot online, for
general database performance it is best to discard the snapshot as soon as it is no
longer in use. Having multiple snapshots will further degrade 1/O performance.

The verification process of taking a filesystem snapshot would include:


http://effectiveMySQL.com/article/configuring-a-new-hard-drive-for-lvm/
http://effectiveMySQL.com/article/using-mysql-with-lvm

sudo su -
mkdir -p /mnt/dbsnapshot
mount -o ro /dev/db/dbsnapshot /mnt/dbsnapshot

L% U 4%

du -sh /mnt/dbsnapshot
ls -al /mnt/dbsnapshot
diff -rq /original/volume /mnt/dbsnapshot

L Uy Ly

LVM snapshots operate under the filesystem; they are thus application and filesystem
agnostic. Whatever application uses these files—in this case, MySQL—needs to ensure
that the files on disk are in a consistent state when the snapshot is taken. This backup
approach works; however, it creates an inconsistent snapshot of MySQL. Depending on
the storage engines used, the recovery process may perform an automatic recovery for this
inconsistent view, or it may produce errors, for example, with MyISAM tables, which can
increase the total system recovery time. Historically, automatic recovery time with
InnoDB could also take a long time. This has been greatly improved with newer versions
of MySQL 5.1 and 5.5.

The correct approach when using a filesystem snapshot is to place the MySQL instance
into a consistent state before any command. This is achieved with the FLUSH TABLES
WITH READ LOCK command. As described in the earlier section on locking, this
command, when used incorrectly, does not ensure a consistent view.

The recommended steps for using a filesystem snapshot are:

* Generate a consistent MySQL view with FLUSH TABLES WITH READ LOCK. It can
be difficult to predict how long this will take.

* Obtain the MySQL binary log position with SHOW MASTER STATUS and/or SHOW
SLAVE STATUS.

* Run the snapshot command in a different thread. It is important you do not exit from the
MySQL session for the previous commands.

* Optionally run a FLUSH BINARY LOGS.

* Release locks with UNLOCK TABLES.

* Verify the filesystem snapshot.

» Make an appropriate copy of the snapshot backup on a different server or site.
* Discard the snapshot (for optimal I/O performance).

NOTE The most common backup needed for a disaster recovery is the most recent
backup. The underlying LVM logical volume for the filesystem snapshot is actually an
I/O performance overhead to maintain. The backup of the snapshot and movement to an
external system is a common approach. The restoration of these compressed backup
files from an external system can be the most significant time component of the recovery
strategy. Chapters 3 and 5 discuss these impacts in more detail.



For

more

Using mylvmbackup

The mylvmbackup utility now maintained by longtime MySQL community advocate Lenz
Grimmer is a convenience script that wraps all of this work into a single command. You
can find this utility at http://www.lenzg.net/mylvmbackup/. For example, the use of

information about the theory

http://en.wikipedia.org/wiki/l.ogical Volume Manager_(Linux).

mylvmbackup when correctly installed and configured is:

% sudo su -
& mylvmbackup

20110902 17:11:24 Info:
20110902 17:11:24 Info:

Connecting to database. ..
Flushing tables with read lock...

20110902 17:11:24 Info: Taking positicn record into

Jrmp fmylvmbackup -backup-20110%02 171124 mysgl-REDZAnD.pos. . .

20110902 17:11:24 Info: Running: lvcreate -z --g2iza=53

--name=pt_anapshct /dev/db/pd

File dezacriptor 4

Parent PID 7534:
Logical wvolume "po_snapshot" created

20110502
20110302
20110302
20110302
20110902

172
b B b
b B b
b B b

17

11
T
T
T
e B

3l
21
21
21
31

(sockat: [120367])
Jusr/bin/perl

Info:
Info:
Info:
Info:
Info:

leakad on lvcreate invocaticon.

CONE: taking LvM snapshot

Unlocking tables. ..

Discomnecting from databass. ..

Mounting snapshot. ..

Funning: mount -o rw fdev/db/p0_snapshot/

var,/tmp/mylvonkackup /mnt /backup
20110902 17:11:31 Info: DONE: mount snapshot

20110902 17:11:31 Info: Copying /Jtmp/mylvmbackup-backup-20110%02 171124
mysql-ReDEAn. pog to /var/tmp/mylvmbackup/mnt /backup-pos/backup-20110502 171124
mysgl.pos. ..

20110902 17:11:31 Info: Copyving /mysgl/eto/my.cnf to
Jvar ftmp/my 1vmbackup,/mnt fbackup-poa/backup-
20110902 171124 mysgl my.cnf. ..

20110902 17:11:31 Info: Taking actual backup. ..

20110902 17:11:31 Info:

Craating tar archive

Jwvar /tmp /my lvinbackup/backup/backup-
20110902_171124 mysgl.tar.gz
20110902 17:11:31 Info: FRunning: od ' /fvar/tmp/mylvmbackup/mnt' ;


http://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)
http://www.lenzg.net/mylvmbackup/

'tar' ovf - backup/ backup-pos/backup-20110202 171124 mysgl.pos
backup-pos,/backup-201109302_171124 mysgl _my.cnf| gzip --stdout
--verboas --beat -» J/var/tmp/mylvombackup/backup/backup-

20110902 171124 mysgl.tar.gz. INCOMPLETE-E1f2CH

backup-pos/backup-20110902_ 171124 mysgl.pos
backup-pos/backup-20110902_171124 mysgl _my.cnf

20110902 17:14:53 Info: DOME: create tar archive

20110902 17:14:59 Info: Clesaning up...

20110902 17:14:59 Info: Running: umount Jvar/tmp/mylvmbackup/mnt/backup
20110902 17:15:00 Info: DONE: nmounting /var/tmp/mylvmbackup/mnt /backup
20110902 17:15:00 Info: LVM Usage stats:

20110902 17:15:00 Info: v V3 Attr LSize Crigin Snap¥ Mova Log
Copy%  Convert
20110902 17:15:00 Info: p0_snapshot db swl-a- 5.00g po 0.01

20110902 17:15:00 Info: Running: lvremowve -f fdev/db/p0_snapshot
Logical wolums "po_snapshot" successfully removed
20110902 17:15:00 Info: DONE: Removing snapshot

2 la -1h jvar/tmp/mylvmbackup/backup/
total 152M
-rw-r--r-- 1 uid gid 153M 2011-0%-02 17:14 backup-20110%02 171124 mysgl.tar.gzs

This command supports many additional features including backing up to a remote
server using rsync. The Effective MySQL article at http:/effective-
MySQL..com/article/creating-mysql-backups-using-lvm/ provides additional information
on how to correctly install and configure mylvmbackup and also lists several valuable
external references.

TIP A snapshot is a great way to perform software updates. There is no need to back up
and remove the snapshot for this operation. If the update fails you can roll back to the
snapshot just taken.

Designing Appropriate LVM Volumes

There are several considerations for optimizing the use of LVM and MySQL. Ensure you
have a dedicated logical volume for your MySQL instance. This should include the data
and InnoDB transactional logs. This is critical for a successful recovery. A snapshot is an
atomic operation for all files at the same time per logical volume. Having data and
InnoDB transaction logs on separate volumes would not ensure a consistent snapshot, as
this would be performed separately per volume. While the MySQL binary logs are good to
keep with your MySQL backup, for a highly loaded system, it may be beneficial to
separate this from your MySQL data volume. MySQL log files, or other monitoring or
instrumentation, can also cause overhead; the goal should be to minimize your disk
footprint to ensure the most optimal recovery time.

Limiting other operations that affect your data during the execution of a filesystem
snapshot can also improve the performance. For example, disabling or limiting batch
processes and reporting can reduce additional system load.

Other Considerations

Using filesystem snapshots can be a disk I/O intensive operation. If your system is already


http://effective-MySQL.com/article/creating-mysql-backups-using-lvm/

heavily loaded, the addition of an active snapshot is an overhead that could add up to 20
percent extra load. In addition, the compressing and/or copying of the snapshot, while
necessary for a backup strategy, may add more stress to the system.

The ZFS filesystem, available with Solaris, FreeBSD, and other free Solaris derivative
operating systems, provides a native snapshot command that works very efficiently with
the designed copy-on-write principle. The Btrfs filesystem for Linux is another snapshot
efficient option. Other filesystem types such as xfs can provide different performance
benefits for disk I/O and management with snapshots.

InnoDB Hot Backup

For an InnoDB only MySQL instance there are two products that can perform a hot non-
blocking backup. These are MySQL Enterprise Backup (MEB), formally known as
InnoDB Hot Backup, and XtraBackup.

The process of performing a hot backup is different from both the mysqldump and
filesystem snapshot approaches, as it integrates with features and functionality within
InnoDB to produce a solution that provides a consistent version of data in a non-locking
manner. These tools duplicate some of the features of the InnoDB storage engine by
keeping a copy of all InnoDB transactional log engines (aka redo logs) and performing a
copy of data consistent with InnoDB data page management. Both products will also
perform a warm backup of a MySQL installation that has a mixture of InnoDB and other
storage engines.

NOTE In addition to supporting an InnoDB only application, these hot backup options
do support MyISAM backups for the mysql meta-schema and any other tables; however,
this requires table locking.

MySQL Enterprise Backup (MEB)

MEB is available as part of MySQL Enterprise Edition, a commercial offering that is
provided by Oracle when purchasing a MySQL subscription. MEB provides a hot backup
solution for a MySQL environment.

Downloading the Software You can download MySQL Enterprise Backup for evaluation
from the Oracle Software Delivery website at https://edelivery.oracle.com/. You must first
sign up for free, accept the licensing agreement, and download the appropriate version via
a web browser. Currently MySQL Enterprise Backup is available in the following
distribution packages:

+ RHEL/OL 4 32bit/64bit
RHEL/OL 5 32bit/64bit
RHEL/OL 6 32bit/64bit
SuSE 10 32bit/64bit
SuSE 11 32bit/64bit
Generic Linux 32bit/64bit



https://edelivery.oracle.com/

* Windows 32bit/64bit
» Solaris 10 32bit/64bit

The following steps install a downloaded version of the generic Linux 64bit software:

2 gude su -

2 od fopt

% unzip /path/to/Vi0004-0l.=zip

Archive: V20004-0l.zip

inflating: meb-2-7-0-linuxZ-6-x86-64bit /README. txt
inflating: meb-2-7-0-linuxZ-6-x86-64bit /manual . html
inflating: meb-3-7-0-linux2-6-x86-64bit /myagl-html.cas
inflating: meb-2-7-0-linux2-6-x86-64bit /bin/myaqlbackup
inflating: meb-3-7-0-linux2-6-x86-64bit /bin/ibkackup
inflating: meb-3-7-0-linux2-6-x86-64bit /bin/inncbackup
In -2 fopt/meb-2-7-0-linuxz-6-x86-64bit/ [opt/mek
export PATH=/opt/meb/bin:SPATH

mysgllbackup --help

o 4 4

Running a Full Backup

2 sudo su - myagl

2 mkdir /mnt/backup/meb

2 time Jopt/meb/bin/mysglbackup --ussr=roct --password=pazswd %
--backup-dir=/mnt /backup,/meb/testl backup-and-apply-log

My2QL Enterprise Backup version 3.7.0 [2011/12/719]

Copyright (o} 2003, 2011, Cracle and/or its affiliates. 211 Rights EReserved.

INFO: S2tarting with following command line ...
Jopt/meb/bin/mysgqlbackup --user=root --password=passwd
--backup-dir=/mnt /backup,/meb/teatl backup-and-apply-log

INFO: 3ot some server configuraticon informaticon from running sarver.
IMPORETENT: Please check that mysglbackup run completez succeasfully.

At the end of a successful 'backup-and-apply-log' run mysglbackup
printa "mysglbackup complated OE!IM.



datadir = Jfvar/lib/myaql/
innodk_data_home dirx =

innodb data file path = ibkdatal:10M:autcextend
innedb log group home dir = [fwvar/lib/mysgql/

innodb log files _in_group = 2

innodb log file size = 5242880

datadir = fmnt/backup/meb/teatl/datadir
innodb data_ home dir = /mnt/backup/meb/testl/datadir
innodb data file path = ibdatal:10M:autcextend

innedk leog group home dir = Jmnt/backup/meb/testl/datadir
innodk _log files in_group =

innodb log file size = K242880

mysglbackup: INFO: Unigque generated backup id for this is 123122305018224421
myagqlbackup: INFO: Uses poaix fadwvise() for performance optimization.
mysglbackup: INFO: System tablespace file format is Antelope.
mysglbackup: INFO: Found checkpeint at lsn 915847242,
myeglbackup: INFO: Btarting log scan from lsn 915847680,
120308 18:15:01 mysglbackup: INFO: Copying log...
120308 18:15:01 myeglbackup: INFO: Log copied, lan 915847942,
We wait 1 second before starting copying the data files...
120308 18:15:02 mysglbackup: INFO: Ceopying fvar/lib/mysql/ibdatal

{ABntelope file format}.

myaglbackup: Progress in MB: 200 400

mysglbackup: INFO: Preparing to lock tables: Connected to mysgld server.
120308 18:15:13 mysglbackup: INFD: Btarting to leck all the tables....



120308 18:15:14 mysglbackup: INFO: All tables ars locked and flushed to disk
myaglbackup: INFO: Cpening backup source directory ! Svar/lib/myagl/!
120308 18:15:14 my=sglbackup: INFO: Starting to backup all files in

subdirectoriss of ' /var/lib/mveqgl /!
my2glbackup: INFO: Backing up the database directory '‘musicl’
mya2glbackup: INFO: Backing up the database directory 'musica!
mya2glbackup: INFO: Backing up the database directory 'music3!
myaglbackup: INFO: Backing up the database directory 'musica!
myaglbackup: INFO: Backing up the database directory 'musics!
myaglbackup: INFO: Backing up the database directory 'mysgl!
myaglbackup: INFO: Copylng innedb data and logs during final stags
myagdlbackup: INFO: A coplad databaze page was modifiled at 2158479242,
(Thiz 12 the highezat lan found on pags)
Scamned log up to lesn 315850010,
Was able to parsse the log up to lasn 315850010,
Maximum page number for a log record 22454
120308 18:15:14 mysglbackup: INFO: A1l takles unlocked
myaglbackup: INFO: A11 MwsSQL tablea were locked for 0.000 seconds
120308 18:15:14 my=sglbackup: INFO: Full backup completad!
mya2glbackup: INFO: Backup created in directory '/mnt/backup/meb/tastl!
120308 18:15:14 mysglbackup: INFO: ibbackup logfile's creation paramsters:
atart lan 31%E47650, end lsn 215850010,
atart checkpoint 2158547942,
InnobDB: Starting an apply batch of log records to the databassa. ..
InnolDBE: Progress in percents: 0 1 2 3 4 & 6 7 8 2 10 ,., 37 32 3%
Setting log file 2izZe to © 5242380
Setting log file 2izZe to © 5242380
120308 18:15:14 mysglbackup: INFO: We were able to parsse ibbackup logfile up to
lsn 3154850010,
120308 18:15:14 mysglbackup: INFO: The Ifirat data file is ' /mnt/backup/msk/
testl/datadir/ibdatal’
and the new created log filss are at ' /mnt/backup/meb/testl/datadiz/
myaglbackup: INFO: 2ystem tableapace file format i1s Antelope.
120308 18:15:14 mysglbackup: INFO: Full backup prepared for recovary
succesafully!

Start LSN : 515847680
End LsSW : 915850010

mysglbackup completad OKL

raal omlz2.sl4s
user 0m2 . 1442
sys oml.9z48s

2 du -sh /mnt/backup/meb/tastl/
445M Jmnt /backup/meb/tastl/
2 1la -1h /mnt/backup/msb/tastl/

total 12K

-rw-rw-r-- 1 mysgl myagl 188 2012-03-08 18:15 backup-my.cnf
drwx------ 8 mysgl myagl 4.0K 2012-03-08 18:15 datadir
drwx------ 2 mysgl myagl 4.0K 2012-03-08 15:15 meta

NOTE The --with-timestamp option will create an appropriate date/time sub-directory
for each backup using MySQL Enterprise Backup.



This example showed the backup-and-apply-log option. It is also possible to create a
backup with two separate commands by running MEB with backup and then apply-1log.

For more information see the MySQL documentation at
http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/mysglbackup.backup.html.

Chapter 8 discusses additional options for MySQL Enterprise Backup including
compression, incremental, and remote backups.

Security To improve access permissions for a privileged user performing a backup with
MEB, the following privileges are required:

mysgl= CREATE USEER dbbackup@localhoat IDENTIFIED BY 'backup-password’;
mysgl> GRANT RELCOAD, REPLICATICHN CLIENT, SUPER, CREATE TEMPOREARY TAELES
-= 0N * .+ T0O dbbackup@&localhost;
mysql= GRANT CREATE, INSERT,DROFP ON mysgl.ibbackup binlog marker
T2 dbbackup@localhost;
mysql= GRANT CREATE, INSERT,DROFP ON mysql.backup progress TC dbbackup@localhost;
mysql= GRANT CREEATE, INSERT,DROP ON mysgl.backup history TO dbbackup@#localhost;

For more information refer to the MEB manual at http://dev.mysqgl.com/doc/mysql-
enterprise-backup/3.7/en/mysqglbackup.privileges.html.

Monitoring In addition to text output of the mysqlbackup command, information is
recorded in the mysql schema. For example:

mysgl= SELECT * FROM backup history\G

khkddddr bbb hdhddddddddhhhdkrd T o FEEEEEEEEEEEAA AL A LA A A d b b d g
backup id: 13312305018224421
tool name: fopt/mebk/bin/mysglbackup --user=root
--backup-dir=/mnt /backup/meb/testl backup-and-apply-log
start time: 2012-03-08 18:15:01
end time: 2012-03-08 18:15:14
binleog pos: -1
binlog file: BINLOG-DISABELED
compression level: O
enginss: MEMORY : My ISAM: InnoDE: CSV:


http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/mysqlbackup.backup.html
http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/mysqlbackup.privileges.html

innodk_data_file path: ibdatal:1oM:autoextend
innodb_f£ile_format: Antelops
start_lsn: JL5B4T7680
end_len: 315850010
incremental base_lsn: 0
backup_type: FULL
backup_format: DIRECTORY
mysql_data_dir: (var/lib/mysqgl/
innedb_data_home_dir:
innodb_log_group _home_dir: /var/lib/mysqgl/
innodbk log_files_in_group: 2
innodb_log_file size: S242880
backup_destination: /mnt/backup/meb/testl
lock_time: 0.000
exit_state: SUCCESS
last_error: HO_BERRCR
last_sarror_code: 0

mysgl= SELECT * FROM backup progress WHERE backup id=13312305013224421°\G
dkbEvA Rk R kR R Eh R ] oW FRER R R R AR bRk
backup_id: 133123050182244321
tool _nams: mysglbackup
error_cods: 0
Srror_messags: MO _ERROR
current time: 2012-03-08 18:15:01
current_state: started mysglbackup.
kR ok kR R kR ke R R T O F b Rl ke b ke e e ek
backup id: 13312305018224421
tool name: myaglbackup
error_cods: 0
&rror_message: HO _ERROR
current time: 2012-03-08 18:15:13
current_state: myaglbackup locking tables and copying . frm + other engines data.
EhkAEV b d kAR ARk AR R R R Y PO RdRkR b AR E bR Rk R e
backup id: 13312305018224421
tool nams: myaglbackup
error_cods: o
Error_messags: MO ERROR
current times: 2012-03-08 18:15:14
current state: mysglbackup unlecked the tablas.
LR R L R R R R R R s e L LR R R R R R
backup id: 133123050182Z4421
tool nams: myaglbackup
error coda: 0
error message: MO ERROR
current tims: 2012-03-08 18:18:14
current state: mysglbackup applying leg.
LR B R R R R R R SJ FOW ®dfFaidrid ki va b rewarFvErew
backup 1d: 13312305018224421
tool nams: mysglbackup
error_codes: o

arror_message: NC_ERROR

current tims: 2012-03-08 18:15:14

current state: mysglbackup returns success.
E rows 1n sst (0.02 sec)

This can be disabled with the --no-history-logging option.

More Information For more information on the features of MySQL Enterprise Backup
visit http://www.mysqgl.com/products/enterprise/backup.html.

XtraBackup


http://www.mysql.com/products/enterprise/backup.html

XtraBackup is an open source offering by Percona that can perform an InnoDB hot
backup. This tool also has additional features for the support of the XtraDB storage
engine, an open source variant of InnoDB.

Downloading the Software XtraBackup is available in three different versions. This is
because XtraBackup actually includes an embedded version of the MySQL server and
MySQL  client  libraries. =~ You can  download the  software  from
http://www.percona.com/downloads/XtraBackup/.

For example, when using the Ubuntu 64bit MySQL 5.5 version of XtraBackup, the
following commands download and install the software. Refer to the previously
mentioned link to obtain the most current version of XtraBackup for your applicable
operating system. At the publication of this book the current version is 2.0.0.

wgaet http://www.percona.com/redir/downloads/Xtrakackup/XtraBackup-2.0.0/
deb/oneiric/xas_f4 /percona-xtrabackup Z.0.0-417.coneiric_amde4 .deb

sudo apt-gst install -y libaicl

sudo dpkg -1 percona-xtrabackup *.dsb

xtrabackup -halp

£y

Ly 4 Ay

CAUTION XtraBackup may require the installation of the library package for
Asynchronous I/O (libaiol on Ubuntu, libaio on RHEL). This is also required for
MySQL versions 5.5 or greater.

NOTE In the prior version of XtraBackup, the package name was xtrabackup. It is now
percona-xtrabackup.

—backup The XtraBackup backup process is a two stage operation. The first operation
with the - -backup option performs the physical backup. The second operation with the - -
prepare option performs an internal crash recovery of the copied tablespace files and
accumulated transactional logs to produce a consistent backup that can then be restored in
a timely manner.

Using the directory structure of the MySQL installation that was referenced in the LVM
section the following syntax will perform a backup. The --datadir parameter should be
adjusted accordingly for your MySQL instance.


http://www.percona.com/downloads/XtraBackup/

% sudo su -

2 mkdir -p /oot /backup/myegl

2 time xtrabackup --backup --datadir=/var/lib/myvsgl
--target-dir=/mnt /backup/myegl/teatl

xtrabackup versicn z.0.0 for Percona Server S5.1.853 ...

xtrabackup: uses posix fadviase().

xtrabackup: cd to /fvar/lib/mysgl

xtrabackup: Target inatance is assumsd as followings.

xtrabackup: innodk data home dir = ./

xtrabackup: innodb data file path = ibdatal:1oM:autosxtend
xtrabackup: innodk log group home dir = ./

xtrabackup: imnmodb log files in group = 2

xtrabackup: imnodb log file size = SZ42380

xtrabackup: use & DIRECT
== log ecannad up to (215244705)
[01] Copying . fibkdatal
to Jmnt/backup/mysgl /teatl/ibdatal
== log scanned up to (215844705)
== log scanned up to (215844705)
== log acannad up to (215844705)
== log acannad up to (215844705)
[@1] .. Ldone
xtrabackup: The latest check point (for incremental): '915244705!
== log acannad up to (21524470E5)
xtrabackup: Stopping log copying thread.
xtrabackup: Transaction log of len (915844705) Lo (9215244705) was copled.

raal oml4 . 4288

user oml. 4008

8Y8 omd.132s

2 1la -14 /mnt/backup/mysgl/testl

drwx------ 2 root root 40%6 2012-02-08 17:32 /mnt/backup/mysgl/testl

2 la -1h /mnt/backup/mysgl/testl

total 435M

-rwWw-¥r--r-- 1 root root 434M 2012-02-08 17:32 ibdatal

-Iw-¥r--r-- 1 root root 81 201%-02-08 17:32 xtrabackup checkpoints
-Iw-r--r-- 1 root root Z.S5K 2012-03-08 17:32 xtrabackup logfile

—prepare The prepare step of XtraBackup launches the embedded version of InnoDB,
performs a crash recovery of the data and accumulated transaction logs, and produces a
clean and consistent version that is ready for any recovery requirements.

This step can occur on any server that has the backup files and the same version of
XtraBackup installed. This does not need to occur on the machine the backup was taken.



2 timz Xtrabackup --prepare --target-dir=/mnt/backup/myegl /testl

#trabackup versicn 2.0.0 for Percona Server 5.1.83

#trabackup: od to /mnt/backup/myagl/tastl

#trabackup: This target ssama to be not prepared yst.,

xtrabackup: xtrabackup logfile detectad: size=203715Z, start 1en=(915844705)
xtrabackup: Temporary ilnstance for recovery 1s ==t as fcllowings.
xtrabackup: innodb data homs dir = ./

¥trabackup: innodb data file path = ibdatal:1oM:autosextend
#*trabackup: innodk log group home dir = ./

xtrabackup: innodl log files in group = 1

xtrabackup: imnodb log file size = 2037152

»trabackup: Starting InncDE instance for recovery.

xtrabackup: Using 104857600 bvtea for buffer pool (set by --uss-memory
paramster)

InmobDE: The InnoDE memory heap iz disabled

InmoDB: Mutexes and rv locks use GC0C atomic builtins

InnoDB: Compressed tablas use zlib 1.2.3

InmoDB: Warning: innodb file io threads is deprecated. Flease use
imnmodb read jo threads and innodb write io threads instead

120308 17:34:27 InnoDB: Initializing buffer pool, size = 100.0M
120308 17:34:27 InnoDB: Completed initialization of buffer pocl
120308 17:34:27 InncDBE: highast supported file format is Barracuda.
InnoDBE: The log sequence number in ibdata filea deoes not match

InnoDB: the log sequence number in the ib logfiles!

120308 17:34:27 InncDE: Database was not ahut down normally!

InnobDBE: Starting crash recovery.

InnobDB: Reading tableapace information from the .ibd files. ..

120308 17:34:27 Percona XtraDe (http://vww.percona.com) 1.0.17-12.5 started;
log sequeancs number 215844705

[motice {again)]
If ywou use binary log and don't uss any hack of group commit,
tha binary log position seems to bea:

¥trabackup: starting shutdown with innodb fast shutdown = 1
120308 17:34:27 InncDBE: Starting shutdown. ..
120308 17:34:27 InnoDB: Shutdown completed; log sagquence numbsr 9158245315

raal omi.5278
user omid. 0208
EYS oma . G488

For saving additional time in the recovery process, you can run the --prepare option a
second time to prepare clean InnoDB transaction logs. This is not a required step.

NOTE The xtrabackup command does not create date/time based subdirectories during
the backup process.

Backing Up All MySQL Data As you can see from the XtraBackup commands, only
InnoDB specific data is included. To capture all MySQL data, the innobackupex wrapper
script packages all the necessary work into a single command. For example:



S tims innobackupex --dafaults-file=/etc/myagl/my.cnf
--ugar=root --password=pazswd /mnt/baclkup/megl

InnoDE Backup Ttility vw1.5.1l-xtrabackup; Copyright 2003, 2003 Innobass Oy
and Parcona Inc z2009-2012. All Rights Reserved.

Thiz scftwars is published undsr
the @HNU GEMERAL PUBLIC LICENSE Version 2, June 1921.

120308 17:37:04 1inncbackupex: 2tarting mysgl with opticns:
--defaults-file='/eto/mysgl/my.cnf' --user=root --password=FXHIoo
--unbuffered --

120308 17:37:04 1inncbackupex: Connected to database with myagl child

procaess (pld=£834)

120308 17:37:10 inncbackupex: Connectlion to database sarver closad

IMPORTANT: Please check that the backup run completes succesafully.

At the and of a succeasful backup run imnmcbackupex
prints "completad OEL".

innobackupex: Using mysgl Ver 14.14 Distrib 5.1.58, for dsbian-limax-gnu
(x86_f4) using readline 6.2

innobackupex: Using mysgl servar versicn Copyright (o) 2000, 2010, Oracls
and/or its affiliates. all righta ressrved.

imnnobackupex: Created backup directory /mnt/backup/mysgl/2012-03-08_17-37-10
120308 17:37:10 inncbackupex: Starting mysgl with opticns:
--defaults-file='/eto/myagl /my.cnf' --password=xxxxxuxx --unbuffered --
120308 17:37:10 1nncbackupex: Connected to database with myagl

child process (pld=£55%)

120308 17:37:12 1nncbackupex: Connectlon to database sarver closad

120308 17:37:12 inncbackupex: Starting ikbbackup with command: xtrabackup 51
--defaults-file="/atbtc/mysgl/myv.cnf" --backup --suspend-at-end
--target-dir=/mnt/backup/mysql/2012-02-08_17-27-10

innobackupex: Walting for ibbackup (pid=e636t5) to suspend

imnobackupex: Suspend file '/fmnt/backup/myegl/2013-03-08 _17-37-10/
¥trabackup suspended!



xtrakackup_ 51 weralen 1.6.5 [or MYSQL gerver 5.1.59 unknown-1linux-gnu
(x85 54] irevision id: undefined)
xtrabackup: uses posix fadvisa(),
xtrabackup: od bto JSvar/lib/mysgl
xtrabackup: Target instance is aspumed as followlings.
xtrabackup: innodb data homa dr = ./
xtrabackup: imnodb data fila path « ibdatal:loMm:autoaxtend
¥crabackup:  innedb log group _homs dir = ./
¥trabackup: ilnnodb log filee in group = 2
xtrabackup: innodb log fils Blze = B242880
xtrabackup: ude O DIRECT
=> log scanned up to [0 F15844745)
[01] Copying ./ibdatal
te /mot/backup/mysglfi012-03-08_17-37-10/1bdatal
»» log ecanmed up to [0 J1E8447058)
»» log ecanned up To [0 S1E844TO05)
»>» log ecanned up to (0 315844705
»» log ecanmed up co (0 315344705
({=} § | o o

120308 L7:37:36 Innobackupex: oontlbuimg after lbbackup has suspendsd
120308 17:37:36 innobackupex: Etarting mysgl with options:
~—~defaults-file="J/atd/ayegl /fmy.cnf' --usar=root - -password=3iocoono:
-=tAbuf fered --

120308 1F:37:36 Iimmobackupex: Connected to databame with myeqgl child
process (pld=sa7d]

»» log Bcannad up to (0 315844705)

130388 17:37;38 imnnobackupex: Etarting to lock all tables, ..

»> log scanned up to (0 3158447051

»» log scanned up to (0 F165844T05)

120308 17:37:48 Lnnobasckupex: Al1l tables lodked and [lushsd te disk

130308 17:37:48 imnobsckupex: Starting te backup .frm, MRS, .MYD, .MYI,
innobackupex: ,TRE, .TEW, .AEM, (ARZT, .CEM, .C5V and .opt Eiles in
innobackupex: subdirectoriss of ' fvar/lib/myegl ¢

innobackupax: Backing up fila */var/lib/mysql/musiol foountry. frm’
innobackupex: Backing up file */var/lib/mysqgl/musiclfalbum type.Efrm!
innobackupex: Backing up file */var/lib/mysql/muelel falbum.Crm!
innobackupex: Backing up [ile * fvar/lib/mypeqgl fmueglclfdb. opt!
innobackupex: Backing up [ile '/var/lib/mysql/musicl/artist.Com'
ilnnobksckupex: Backing up [ile * fvac/lib/fmyeql /musicd/country. frm"
innobackupax: Backing up file */var/lib/mysgl/musicdfalbum tvpe. fom!
innobackupsx: Backing up file * /var/lib/mysqgl /musicd  album. Exrm!
innobackupss: Backing up file ' /var/lib/myoqgl/musicd/db.opt!
innobackupax: Backing wp file *fvar/lib/mysqgl fmomicdfartiac . frm!
innobackupax: Backing up fila * fvar!Hdb/mysql /fmueic? focuntry. frm’
innobackupax: Backing up file *fvar/lib/mysqgl/muaicz/salbum_Cyps.frm!
innobackupax: Backing up file */var/lib/myegl/muelc3falbum. trm!
innobackupax: Backing up file */fvar/lib/mysql/musics/db.cpt!
innockackupax: Backing up file */fvar/lib/mysqgl/musici/artist. fom!
innobackupes: Backing up file * fvar/lib/eyegl /muslici/country. frm’
innobackupax: Backing up file */var/lib/mysgl/musici/salbum_type . frm!



innobackupex: Backing up £ile ' /fvar/lib/eyaqgl/music3/falbum. Ezm!

immobackupex: Backing up file * fvar/lib/myeql /musici/db.opt!

imnobackupex: Backing up file */var/lib/mysgl /musici/artist.firm’

immobackupex: Backing up files ' /wvar/lib/mysgl/myaqgl/+#. {frm, MYD, MYI MRS, TRS, TEM,
ARM, ARZ, CSM, C3V, opt, par}!

g3 filea)

innobackupex: Backing up fils ' /fvar/lib/myeql/musics/country . frm!

innobackupex: Backing up £ils ' /var/lib/mysgl/musics/album_type.frm’

innobackupex: Backing up file */var/lib/mysqgl/musics/album. frm!

innobackupex: Backing up file */var/lib/myesql/musics/db.opt?

innobackupex: Backing up file */var/lik/my=sgl /musics/artist.izm'

120308 17:37:50 Annabackupex: Finiashed backing up . frm, .MRG, .MYD, _M¥T,
JTEE, .TRM, .AEM, .ARE, .CEV, .C5M and .opt files

innobaskupex: Rassuming ibbackup

¥trabackup: The latest check point {(for incromental): '0:31584470%!

»» log Bcanned up to (0 915544705)

¥xtrabackup: Stopping log copying thraad.

xtrahackup: Transaction log of lem (0 915344705) to (0 915844705) was copled.
120308 17:37:52 innobackupex: All tables unleocksd

120308 17:37:52 inncbackupex: Connection to database server closed

inncbackupex: Backup created in dirsctory | /mnt/backup/mysgl /3013-031-08_17-37=10"
innobackupex: MySQL blnlog position: filesnams ', position
120308 17:37:52 inncbackupex: completad COKI

real OmeB.5385
uger oml.g832=
ays oml . 6528

£ du -gh fmnt/backup/myeagl/2012-03-08_17-17-10

4316M fmt fbackup /mysql f2012-03-08 17-37-10

£ 18 -1h /wmt/backup/mysql/2012-02-08_17-37-10

total 435M

~IwW-I--I-- 1 root root 2357 2012-03-08 17:37 backup-my.cnf
-IW-I--I-- 1 root root 434M 2012-03-08 17:37 ibdatal

druxr-xr-x 2 root root 4.0K 2012-031-08 17:37 musicld

drwxr-xr-x 2 root root 4.0K 2012-03-08 17:37 musica

dIwXr-Xr-¥X 2 root oot 4.0K J01Z-03-0B 17:37 wmiglicl

drwxr=-xr-x 2 root root 4.0K 2012<03-0B 17:37 wmigic4

drwxr-xXr-x 2 root root 4,.0K 201Z2-03-0B 17:37 musics

drwxr-xr-x 2 root root 4.0K 2012-03-0B 17:37 mysgl

~IW-I--Ir-- 1 root root 13 3012-03-08 17:37 xtrabagkup_binary
-IW-r--r-- 1 root root 1 2012-03-08 17:37 xtrabackup binlog info
“IW-T--T-- 1 rookt root 87 3012-63-08 17:37 xrraksckup chackpointa
“IW-T-=-r-=- 1 root root 2.5K 2012-03-08 17:37 xtrabagkup_ logfile

This command will automatically place the backup in a date/time defined sub-directory.
This can be disabled with the - -no-timestamp option.

More Information For more information on XtraBackup visit
http://www.percona.com/docs/wiki/percona-xtrabackup:xtrabackup:start.

Options Not Discussed

There are several other commands and techniques that are not discussed in detail. These
include:

* mysglhotcopy is an included utility that is applicable for MyISAM tables only. This


http://www.percona.com/docs/wiki/percona-xtrabackup:xtrabackup:start

utility should not be used as this is no longer maintained.

* ibbackup is the historical name for InnoDB Hot Backup. This has been improved and is
now called MySQL Enterprise Backup.

* mydumper (http://www.mydumper.org/) is a high performance tool providing many
features over mysgqldump including parallelism, consistency with transactional and non-
transactional tables, and binary log management. Refer to Chapter 8 for more
information.

* mt-parallel-dump is a deprecated Maatkit tool that attempted to perform parallel
mysgldump commands. The author has recommended this product no longer be used.

* MySQL online backup that was under development in MySQL versions 5.2 and 6.0 was
never incorporated into future development.

» Zmanda Recovery Manager for MySQL (http://www.zmanda.com/backup-mysql.html)
provides a user interface and management tool for MySQL backups; however, it does

not provide any additional functionality that is not described in this chapter.

« DRBD (Distributed Replicated Block Device) is not discussed as a possible MySQL
backup option. DRBD can be used to provide a more highly available system; however,
this is not specifically a backup and recovery approach.

CAUTION Be wary of GUI editors that offer a backup solution or a generic tool that
fits all database solutions. A production system requires a production strength backup
solution tailored to your business needs and objectives.

Point in Time Requirements

The static backup of a MySQL instance is only the first step of a strategy that will result in
a successful recovery. In addition to a backup strategy that provides a backup option to a
specific time when the backup was taken, it is generally necessary to perform a point in
time recovery to either the most current transactions before a physical disaster, or a time
before some human created situation. This is known as a point in time recovery (PITR)
that is performed by applying the MySQL binary logs to a recovered snapshot.

Binary Logs

When enabled, the MySQL binary logs record all DML and DDL statements that are
performed on a MySQL instance. It is possible for users with appropriate privileges to
disable the binary log for individual session statements or globally. This could produce an
inconsistent version of data during a recovery process or replication topology. It is
important that application users are not given the SUPER permission for this reason.

The binary logs are enabled with the --1og-bin option that is detailed in Chapter 6. The
SHOW BINARY LOGS command provides a list of current binary logs managed by
MySQL. The SHOW MASTER LOGS command produces the same output.


http://www.mydumper.org/
http://www.zmanda.com/backup-mysql.html

mysgl> SHOW BINARY LOGS;
e e - o ———— - +
| Log name | File size |
e e e - o ———— - +
| mysql-bin.019662 | 104857726 |
| mysql-bin.0196632 | 1048576992 |
| mysgl-bin.019664 | 1048575850 |
| mysgl-kbin.020610 | 104857966 |
| mysgl-bin.020611 | 104857679 |
| mysql-bin.020612 | 104857745 |
| mysql-bin.020613 | 51424056 |
o mmmmmm e ———o - o ——mmmm - - - +
952 rows in set (0.09 sBec)

These binary log entries match the underlying files defined by the - -1og-bin option.
5 la -ltr /var/leg/mysgl | tail

-rw-rw---- 1 myagl adm 1048572848 2011-09-04 22:00 mysgl-bin.020807
-rw-rw---- 1 myagl adm 104857952 2011-0929-04 22:08 mysgl-bin.020608
-rw-rw---- 1 myagl adm 104857729 2011-09-04 22:16 mysgl-bin.020609
-rw-rw---- 1 myagl adm 104857986 2011-09-04 22:25 mysgl-bin.020610
-rw-rw---- 1 myagl adm 104857679 2011-09-04 22:32 mysgl-bin.020811
-rw-rw---- 1 myagl adm 104857745 2011-09-04 22:41 mysgl-hin. 020812
-rw-rw---- 1 myagl adm 104857987 2011-09-04 22:50 mysgl-bin.0206132
-rw-rw---- 1 myagl adm 10432 2011-09-04 22:50 myagl-bin.index
-rw-rw---- 1 myagl adm 66904126 2011-09-04 22:56 mysgl-bin.020614

A high volume system can easily record 500MB per minute of binary logs, and this can
have a large impact on available diskspace. The --expire-logs-days option removes
these files automatically after the defined number of days. Alternatively, it is important
that you use the PURGE BINARY LOGS command to remove these files instead of
removing the files from the file system manually, as there is an internal reference between
the database and the filesystem.

CAUTION A system administrator deleting MySQL binary log files via an operating
system command is a potential disaster situation. The appropriate MySQL command
should always be used to remove binary log files.

Binary Log Position

Depending on the chosen backup option you may also need to capture the current binary
log position in order to be able to successfully perform a restoration. The SHOW
MASTER STATUS provides the current position. For example:

mysqgl> SHOW MASTER STATUS\G

tE R RS RS 2 R RS R E LR EEEE ]

kkkkhkbkdk bk h bk kb kk kb bk bk er | oW
File: mysgl-kin.020616
Popition: 63395562

Binlog Do DEBE:
Binlog Ignore DB:

This information can be obtained with the --master-data option when using the
mysqldump command.



Binary Log Backup Options

The backup of the binary logs is just as important as a backup of your database. Several
options exist including filesystem copy, replication, and other disk based technologies.

File Copy

The binary logs are sequential files that can easily be copied to an external server without
any impact on ensuring consistency with the running MySQL database. It is possible to
perform a remote synchronization of files—for example, with the rsync command—on a
regular frequency to ensure a secondary copy of the master server binary logs.

Replication

The use of MySQL replication is an easy way to have a copy of the binary log data on a
secondary system. When using MySQL replication, a copy of the binary log entries is
written to the relay log on the MySQL slave. While this is a copy, there is no accurate
reference between the master log file and position and the corresponding relay log file and
position. The relay log is not a good way to have a copy of what is in the binary log. Relay
log files have a much shorter longevity by default than the master binary logs. The use of
--log-slave-updates would be a more practical choice. Chapter 4 discusses in more
detail various options for understanding the binary logs in a MySQL replication topology.

DRBD

It is possible to easily create a mirrored binary log implementation using additional
software including DRBD. This ensures you have a consistent copy of all binary logs on a
separate server.

Hardware Considerations

Having available diskspace and network bandwidth are the most important hardware
considerations for supporting MySQL backups.

The most likely recovery will be from the most current backup. If you have insufficient
diskspace to store this on your primary server, the time for data transfer in a recovery
situation may be the most significant portion of time.

If you have insufficient diskspace on your primary server and you store your backup
compressed, the time to uncompress your backup may be the most significant component
of time.

A common design decision is between using direct attached disk versus a Network
Attached Storage device. The choice to use a Storage Area Network (SAN) as a backup
solution is not a practical option. In fact, relying solely on SAN is a greater likelihood of a
disaster. The use of snapshotting and archiving functionality in addition to SAN usage is
necessary for a fully functioning DR plan.

To ensure great network connectivity, using dedicated network connections for
application use and internal use ensures copying backup files during peak time does not
saturate your network. Network bonding is a further simple hardware option that will
reduce the impact of a physical hardware network failure.



Data Source Consistency

Producing a consistent database backup may involve ensuring the consistency of external
sources. The design of a database system that stores images in the database is a common
argument put forward for ensuring data consistency. This is, however, a classic example
where the inclusion of large static objects in the database has a far greater overhead, both
in database performance and in database backup and recovery time. The correct design of
a disaster recovery (DR) strategy should ensure that images are never stored in the
database, as this has a direct effect and is detrimental to an optimal solution.

There are examples for a backup strategy where consistency is not necessary for an
entire MySQL instance. The inclusion of backup or copy tables in a MySQL schema is a
prime candidate for defining a different schema and excluding this entire schema during a
mysqldump backup.

The inclusion of large static data or archive data that is managed and updated
infrequently can also be separated using an individual schema, for example, when using
mysqgldump. This level of separation may not be applicable for different backup options.

Backup Security

While not discussed in this book, it is an important consideration that your backup files
meet applicable security requirements. To obtain important company information, does an
intruder need to compromise the security of your production server, or just your backup
server?

Conclusion

In this chapter we discussed the primary backup options that are possible for a given
MySQL server. Knowing the relative risks of various strategies may alter your plan for
how you design a complex system. The use of MySQL replication or other topology
options can affect backup options. Knowing and understanding your application, your
data, and your rate of data change can also introduce possible optimizations for a hybrid
approach.

Producing a suitable backup strategy is only a prerequisite step to the more critical
recovery process with considerations for consistency, timeliness, and gradients of data
availability. While a full and successful recovery is essential, the time to perform a
recovery is one important business requirement that could affect the viability of your
entire business. Chapter 3 discusses important business requirements that can affect the
technical decisions for choosing the backup and recovery strategy of your MySQL
environment.

The SQL statements and web links listed in this chapter can be downloaded from
http://effectivemysql.com/book/backup-recovery/.



http://effectivemysql.com/book/backup-recovery/

3

Understanding Business Requirements for Disaster
Recovery

“No one cares about your backup; they only care if you can restore.”

Adapted from W. Curtis Preston - Backup & Recovery (O’Reilly, 2009)

One of the factors in choosing a backup methodology is the business requirements for
data recovery. There are businesses where the loss of a single transaction has a substantive
impact, and businesses where recovering to last night at midnight meets the business
requirements for acceptable loss. Defining these requirements and classes of data is not
strictly a technical problem; however, it is important to prevent very difficult
conversations about mismatched expectations.

In this chapter we will discuss:

Defining requirements

Determining responsibilities

Understanding business terminology

Planning for situations

Defining Requirements

The requirements of the business can dictate how your database backup and recovery
strategy is implemented. The business may accept a four hour recovery time, meaning that
additional hard drive space is the only additional physical need for an existing system. Or,
no downtime may dictate multiple geographically placed servers, many smaller servers
rather than fewer larger servers, and with the application designed to support partitioning
necessary to satisfy these business requirements.



Being prepared for any level of disaster is just as important as supporting a growing
system; however, this never receives the prestige like improving system performance.
Many requirements you need to put in place are safety nets that may never be utilized;
however, it would be disastrous for your business viability if they were not in place.

Basic hardware redundancies including multiple servers, hard drive RAID
configurations, network bonding and duplicate power supplies are basic necessities.
Redundancy is designed to prevent a recovery requirement and enable systems to maintain
a level of availability, generally in a degraded mode, e.g., a disk failure in a RAID disk,
NIC failure in a network bond, or slave failure in a MySQL topology. In these situations
the redundancy via either a replication or active/passive usage can ensure seamless
operations. The system is considered degraded, as the lack of further redundancy is a point
of failure, e.g., 1 disk in RAID 5. Furthermore, additional system load is generally
necessary to restore the system failure to full operation.

Advanced considerations include placing servers in different racks to avoid fire, theft,
or other serious damage. These decisions could include working with varying external
providers adding complexity to the decision making and support processes.

However, it may be impossible to fully consider an explosion that takes out the power
supply and backup power options of an entire data center of 10,000 servers. Recently the
seizure by FBI agents of servers that were totally unrelated to the original warrant, and
upheld by a U.S. district court, showed that physical servers in proximity to alleged illegal
activities are not immune to unexpected loss.

Are you prepared? What is important is that you are aware of and consider all of these
factors.

What is the cost to downtime? Having an actual figure of $X per hour combined with
the potential loss due to reputation is a powerful motivator when requesting the investment
of additional servers or other hardware for the implementation of a successful failure
strategy.

Determining Responsibilities

This book and the Effective MySQL series provide highly practical and technical content
to the reader. This chapter, while one of the least technical sections of any book, is the
single most important business information for any system that records information,
regardless of the choice of product. Disaster preparedness is too often overlooked in any
organization, from a single person startup to Fortune 500 companies.

What is important is that both the business and technical decision makers have clear
guidelines and agreement of these guidelines. For example, what does the statement “no
downtime” mean in your context? The decision maker may say “no downtime,” but what
that really means is serving page content and serving ads. This then implies that user
management, adding comments, placing orders, and other functions are all services that
can afford to have limited outages. These considerations may differ depending on your
type of business. A media organization would consider serving of ads critical, while an
online store would consider placing orders critical.



The most important component of any business is a disaster recovery (DR) plan. This is
especially important when the data you have is your primary business asset. A total loss of
data will most likely result in a loss of business viability, including your job and possible
reputation. What is the acceptable loss of data, also known as the recovery point objective
(RPO)?

Terminology

The following terms are used in defining business requirements for disaster situations.

Term IIDescriplion

Disaster recovery (DR) is the plan, including steps, actions, responsibilities, and timelines, that is needed for returning your business to successful operations. The DR plan includes the significant component for the
successful and timely recovery of all information, which will depend on a suitable backup strategy.

H

The mean time to recover (MTTR) is the average time taken to successfully recover from failure. This is not a guarantee that a system will be operational within this time. Individual components and types of failure
may have very different MTTR values. The replacement of a failed hard drive is different from loss of network connectivity by an upstream provider, or by a denial of service attack.

=
3
el

<
!
=)

IThe mean time to detect (MTTD) is often unrepresented in any strategy; however, the time to detect a problem can have a significant impact on the type of recovery and/or the requirements for loss of data.

The recovery point objective (RPO) is the point in time to which you must recover data as defined by your organization. This is a generated definition of what an organization determines as acceptable loss in a
disaster situation. Not all environments require an up to the minute recovery plan. More information at http:/en.wikipedia.org/wiki/Recovery_point_objective.

IThe recovery time object (RTO) is the acceptable amount of time in the recovery situation to ensure business continuity. This is generally defined in a Service Level Agreement (SLA).

Not all data has the same value or net worth. Some information is more important, and this classification can affect how your backup and recovery strategy may operate. In a disaster situation, certain data is more
critical. The system may be considered operational without all data available. Defining data classes determines these types of data.

HIENEE
g3 3

classes

A Service Level Agreement (SLA) is something to be considered within an existing organization and not just with external suppliers. An SLA should also include both technical and business decision responsibilities
in response to any important situation.

[2)
=
>

Defining a formal SLA within an organization may vary for each system. This may
include different values for these terms for each specific system.

Technical Resource Responsibilities

In most significant disasters you will never be given the opportunity to explain the impact,
your possible options, or even how hard the solution may be. The questions will be very
precise and generally include:

* When will our system be available?
* What information has been lost?
* Why did this happen?

The decision makers will discuss the potential revenue that was lost and the total
business impact. Knowing these facts is important in determining what you need to plan
and prepare for, how to present confidence at any time, and how to justify additional needs
in physical and human resources.

Decision Maker Responsibilities

The role of the decision maker is to ensure the ongoing business viability at your
organization. This includes many factors a technical resource may not consider, such as
the ongoing media impact, shareholder responsibilities, acquiring additional staff
resources, dealing with third party suppliers, and much more. Do you know how to reverse
an online transaction, send an e-mail blast, and change the message on your customer
support phone system? What is important is that you are prepared to support decisions
made. The most likely preparation you can do to provide a level of confidence to your
organization includes:


http://www.en.wikipedia.org/wiki/Recovery_point_objective

» Have a backup and recovery strategy in place.

» Have actual timings, test results, and daily reports of the success of your strategy freely
available for anybody in your organization.

 Consider the extent of possible disaster recovery situations. You may not be able to
address all issues; however, be able to think outside of the normal database operations
for creative solutions to complex and business threatening conditions.

* Be proactive in providing information to build confidence in advance.

Knowing the decision makers and building a rapport over time is less about technical
ability and more about professional development.

Identifying Dependencies

As you will see in the following case study, regardless of the best plans the database
administrator has for supporting a disaster, there are dependencies on other resources and
operations outside of your control.

Case Study

The following case study of a real world example is used to understand the important
technical and business factors for a complex business situation.

The MySQL Topology

Your MySQL topology includes one master server and two slave servers using MySQL
replication. This has been implemented because, in the past, several issues about read-
scalability and reporting have enabled the justification of additional servers. Your
environment supports a dedicated read slave and a dedicated reporting slave.

Your Backup and Recovery Strategy

Your backup strategy involves using one database slave to take a full copy of all of your
data. You also realize the importance of the master binary logs for a point in time recovery
and you have a secondary process that keeps copies of these at five minute intervals.

The current backup and recovery strategy supports many situations that have occurred
in the past.

* You direct reads to your primary slave and reporting to the second slave.

You can redirect reads to a different slave or the master.

You can redirect or disable reporting.

You test your backup. You are confident that a full restore of your system in two to three
hours providing necessary hardware is functional.

You can restore all data to a total loss of five minutes in a multiple database disaster
situation and generally you can support data loss to a few seconds.

The current strategy is not perfect. You have some requests in process to support a
controlled fail-over using a virtual IP (VIP) rather than a specific domain name; however,



this involves implementing application and system changes. These needs do not seem as
important as you would wish within your organization.

A Real Life Disaster

Your slave server has stopped applying transactions. There is no error message in
replication. Your additional monitoring detects important business metrics and no orders
have happened in the past 30 minutes.

Meanwhile on the master server, multiple disk alerts have gone unnoticed and
unactioned by the system administrator. As a result the partition holding the MySQL
binary logs fills up. This results in the following error in the master error log, which
ironically is not actively monitored:

[ERROR] myagld: Disk 1s full writing '/mysgl/binleg/log-bin.aocoozo!
{(Errcods: 23) . Walting for somecone Lo free space... Retry in 0 secs
[ERROR] Could not use /mysgl/binleg/log-bin for logging (error 280 .
Turning logging off for the whole duration of the MySQL sarver process.
To turn it on again: fix the cause, shutdown the MysQL server and reatart it.

For more information on the environment conditions that caused this error see
http://ronaldbradford.com/blog/never-let-vour-binlog-directory-fill-up-2009-07-15/.

Your backup strategy relies on the slave server being up to date, that is, by applying all
binary log statements from the master. As this is now disabled, your slave server is
missing important business transactions and is inconsistent with your master. You cannot
use your primary recovery process, that is, simply restore your last successful static
backup and apply the master binary logs for a point in time recovery. Your only option to
recover all data is to stop your master database and take a backup, something you have
never done on this server.

This new backup also involves having to clean up available disk space to support a copy
of the database on this system. You also need to install the latest backup script, as this is
not run on this system. Do you risk modifying the backup script and backup across the
network to save cleaning up disk-space? How long will that take? Even after this new
backup is taken you then have to restore this backup on both slaves.

This late notification and initial investigation has taken two hours to determine the only
technical decision to ensure no data loss requires a further six hours to complete just to
ensure you have a recoverable situation, and several hours more to complete the recovery
of both slave servers. You are required to give regular business updates, to which you have
no basis of information for this situation before. The result to the business is no new
customer orders for over eight hours.

Your best made plans as a DBA are put to dust by a part time system administrator who
is replacing a person on vacation. They did not notice or respond to a disk alert before it
was too late. In the past, the DBA group you belong to has requested access to these
important system alerts, but the system admin group will not give you access, as that is not
your responsibility.

It does not really matter who is to blame—the database was unavailable for eight hours
during peak time and you are the highly paid DBA responsible for ensuring the database is


http://ronaldbradford.com/blog/never-let-your-binlog-directory-fill-up-2009-07-15/

operational.
Technical Outcomes

There are many good points to take away from this experience. Your environment has
system monitoring in place. Many organizations fail at this most initial step. A MySQL
backup and recovery strategy is in place, is tested, documented, and timed. There are
multiple MySQL instances to support some situations for failure.

There are some simple technical steps that are not implemented. Open access to all
information alerts and the request for implementing using IPs and not using domain names
for database connections, both simple technical tasks, but caught up in the bureaucracy of
the business and decision makers.

What other options existed that could have been considered if you had more time to
investigate or discuss with peers? You could have promoted one of your slaves, the most
current, to a master. This would involve changing the MySQL configuration to enable
binary logging and modifying your application servers to point to the new server. You
could re-configure the second slave server to use this new master. You could have backed
up the old master, because you now accept a loss of transactions for the sales during this
time. Your downtime is now reduced to three hours; however, you have a mismatch of
monies received with the orders defined, and potentially very annoyed customers if they
do not get their orders. What is the time to undertake data forensics of the processed
orders, then reapplying these orders to the system? There is no easy way because you do
not want to double charge customers. What is the additional staff time and greater cost
needed? More importantly, do you need to even consider this? We will answer this
specific question in the following section.

If you had no idea about your system, and varying options, how could you give multiple
options and time estimates to everybody who wants answers?

The mean time to detect (MTTD) is very important in this situation. The mean time to
recover (MTTR) is also important. Which is more important may be different with respect
to the point of view of responsibilities.

That item on your pending to-do list about having a more documented, tested, and
streamlined fail-over process may have been a saving grace. Unfortunately the request to
the application team to change the DB connections, the system group to enable a virtual IP
(VIP) and necessary MySQL configuration changes are no help.

The Decision Process

As a DBA it is not always your decision about what action to take. That is the decision of
the business owner. Who is that in your organization? What is important is how you
structure information for the responsible person to make an informed decision.

In this situation, while three hours of downtime is less than eight hours, is this the best
decision? Each hour is not just lost revenue, but a loss of business reputation. Will further
bad press of being down all day hurt more? Again, it is important to understand the
business requirements and to know who is ultimately responsible. In the previous section
you considered the additional impacts of the three hour recovery option that accepts data



loss from a technical perspective. However, you did not consider the business approach of
processing a full refund to all customer orders affected. This functionality already exists to
process refunds. The business could also send a specific e-mail apology about the situation
and ask customers to re-order, even offering a discount code for the inconvenience. This
additional process also already exists. The result would mean no lost data having to be
restored and no additional work by physical resources. The only technical requirement
would be identifying the customers affected and the details of these now refunded orders.

A disaster is the one thing that an executive of an organization should be kept awake at
night worrying about. As a responsible DBA or data architect, your single greatest asset to
an organization is to know what to do when something goes wrong, to be prepared. Being
proactive and actively simulating and testing disaster recovery situations, documenting,
timing, and reporting is the knowledge that separates skilled and technical resources from
expert resources with a holistic business view.

Essential External Communication

While communication internally is critical in any disaster scenario, external
communication is just as important. Having a public facing status page, a forum, and a
feedback loop for customers is essential. It is also critical that information is transparent
and open. Previous online disasters where information has been forthcoming promptly
reduces additional stresses.

It is critical that the status and feedback options are not part of your primary
infrastructure. As detailed with worst case examples in the following section, it is
important this infrastructure is in a different data center, and preferably a different host
provider.

Planning for the Worst Situation

It is impossible to plan for every possible disaster. Knowing what is possible can help
identify how your business may be able to cope, and how it may not. The following are
some real life situations that can happen. As a technical resource it is important that you
share these situations with decision makers to ensure they are aware of the potential
issues. Even the largest companies are not immune to an unexpected disaster. One public
failure of the 365 Main data center due to a power incident on July 24, 2007, affected
giant Internet sites including Craigslist, GameSpot, Yelp, Technorati, Typepad, and
Netflix.

For more supporting information of these real life disasters described in summary here
visit http://effectiveMySQL.com/article/real-life-disasters/.

Total SAN Failure

A SAN is not a backup solution. If anything a SAN is a higher likelihood of a larger
cascading failure. Losing a single server from multiple hard drive failures (e.g., a RAID 1,
RAID 5, and RAID 10 configuration can all operate with a single loss) has far less impact
in a hundred server environment than a SAN failing and dropping all mounts for all
systems. There are many actual occurrences of SAN failures. With one client, a routine
replacement of several failed hard drives and a software upgrade by an employee of a



http://effectiveMySQL.com/article/real-life-disasters/

large SAN service provider for a multi-million dollar SAN investment caused an internal
panic, which shut down the SAN and 160 different mount points. This resulted in
corrupting 30+ database servers and taking the entire website (a top 20 traffic site by
Alexa) offline for several days.

In this example, relying on a single SAN for all production servers is a situation that
should be avoided.

Power Disruption

Even with backup generators with four days of fuel supply in place, and a DR situation
tested and used in the past five years, three out of ten (i.e., 30 percent) backup generators
failed to operate when power was lost at a prominent San Francisco data center. The result
was 40 percent of customers losing power to equipment. This was a serious disaster
causing cascading systems failure.

In this example, hosting your entire infrastructure even with a premier hosting provider
with impressive uptime is no guarantee of a total system outage. Using multiple locations
is advisable for critical functionality.

Explosion

In June 2008 an electrical explosion at a data center took offline approximately 10,000
servers including the primary web and database server for the author of this book. Under
direction from the fire department, due to safety issues and due to the seriousness of the
incident, the backup generators located adjacent to the complex were also powered down.
This resulted in an outage for several days. The situation was more complicated because
the service provider also had their own management servers, domain management, SSL
management, client management, and communication tools all in the same location
without redundancy.

In this example, knowing your DR plan also includes understanding the DR plan of
applicable service providers. An infrastructure for a web presence has many moving parts,
some of which you may not consider, in this case, suitable DNS and network fail safes.

This was one example where the host provider managed the situation for customers
well. The issue was addressed in a timely manner with regular updates published on a
status page and forums. The phone greetings for support also included status information
of the problem.

FBI Seizure

In a recent FBI raid for specific hardware, additional servers and important networking
equipment were also seized with the same warrant. Much like a serious physical failure,
the host provider was given no notice, and unaffected systems were also affected,
ultimately leading to a cascading failure. In addition, unlike a physical failure that can be
addressed by resources repairing or replacing faulty equipment, this equipment was
removed for an undetermined time.

Blackout

Large statewide blackouts are uncommon; however, as a recent incident in September



2011 highlighted, a simple incident with one component (i.e., transformer failure) caused a
cascading system failure that resulted in the shutdown of multiple nuclear power plants. In
this situation power was lost for 15 hours for a large region across several states leaving
entire cities without power. With a high availability solution across data centers,
insufficient geographical redundancy could still result in a total loss.

In addition, a loss of power could mean no operation of your customer support
telephone system, or facilities for your office staff to operate during the situation. Even
with a geographical deployment there may be no way to implement a controlled fail-over,
monitor, or update customers easily.

Human Factors

Being hacked, malicious intent by a disgruntled employee, and a failed system wide
rollout of software by an employee that disables access to thousands of servers are all very
possible situations. For many organizations, the act of changing the keys to your front
door, aka the system passwords for your servers, is an important process that needs to be
known, documented, tested, and able to be implemented instantly.

Human Resources

In addition to these situations, the impact of human resources may be the most overlooked
situation. The case study in this chapter highlighted that less skilled technical resources
caused a cascading failure situation. Vacation, sickness, accidents, and even overworked
employees are all situations that have to be understood as possible disaster situations.

A commonly overlooked situation is the need for 24/7 support that is required regularly.
While key resources may need to be on call for emergency support after hours, if this is
always occurring, productively can be significantly impacted. The likelihood of error due
to handling issues without appropriate procedures and at constant extended afterhours
work are factors not to be avoided.

What is your “red bus” policy? This was a term first heard by the author some 20 years
ago when a decision maker was talking about my potential demise. Simply put, what
happens when your critical resource is hit by a “red bus”? While this term sounds harsh,
this references all possible situations from sickness, vacations, accidents, and even the
resignation of critical technical resources. While this is the responsibility of an
organization, every individual could be proactive in ensuring your organization has some
procedures or contact details for support services, emergency consulting services, or peers
to step in.

Developing a Strategic Plan

Defining the requirements and responsibilities as discussed is necessary to determine what
is acceptable to the business. In his book High Availability and Disaster Recovery
(Springer, 2006), Klaus Schmidt describes the two properties important for any failure
scenario, the probability of the failure and the damage caused by the failure. The mapping
of the types of failure on an XY chart, with Damage on the X-axis and Probability on the
Y-axis (pg 83), enables failures to be mapped into three categories: Fault protection or
recovery by high availability, fault recovery by disaster recovery, and forbidden zone (pg



84). While the final category may appear inappropriately named, any failure in this
category requires a system redesign to remove this limitation in providing a robust
solution. This technical approach can be valuable for identifying the risk to the business
and contributing to an appropriate strategic plan. In some situations, the addition of
applicable redundancy is sufficient to avoid a loss of service situation.

Not discussed in this chapter, but also important in the overall data management plan,
are any retention policies for legal or auditing requirements. Your backup plan may
require keeping several months of backups on a weekly or monthly cycle.

Conclusion

System failure and disasters are inevitable; however, a catastrophe that affects your
business, your own career, and reputation is avoidable. Many disaster situations have far
greater business implications than finding and implementing a technical solution. A formal
SLA agreement is a driving factor in making well informed decisions during these
situations. The Boy Scouts’ very simple motto is the most applicable advice for any
technologist: Be prepared.



4
Using MySQL Replication

The use of MySQL replication is instrumental in many practical MySQL environments
and is generally considered as a primary backup and first viable fail-over option in a
higher availability environment. Under normal operating conditions, MySQL replication
may be sufficient; however, there are a number of limitations that must be carefully
confirmed and verified for replication to be part of a valid backup and recovery strategy.
As discussed in Chapter 3, a backup and recovery strategy is critical for ensuring business
continuity and meeting the needs of system availability.

In this chapter we will be covering:
* Using replication for backups
* Various replication limitations that can affect backups

+ Additional considerations with your backup approach

MySQL Replication Architecture

To understand the features and limitations of MySQL replication for any applicable
backup method, it is important to understand the basic mechanics between a MySQL
master and slave.

As outlined in Figure 4-1, the following are the key steps in the success of a transaction
applied in a MySQL replication environment. This is not an exhaustive list of all data,
memory, and file I/O operations performed, rather a high level representation of important
steps.



l f_i:l Clhent Process

-

- 3 » T, & o Y
! MySOL Kernal |1 _J MySOL Karnal ]
peit )]
o) \2
e Inno DB Binary
Data Trans Log
Leg
___ TR

b Mastar 4

Figure 4-1 MySQL replication workflow

* A MySQL transaction is initiated on the master (1).

* One or more SQL statements are applied on the master (2). The true implementation of
the physical result depends on the storage engine used. Generally regardless of storage
engine, the data change operation is first recorded within the applicable memory buffer.
For InnoDB, the statement is recorded in the InnoDB transaction logs (note that
InnoDB data is written to disk by a separate background thread). For MyISAM, the
operation is written directly to the applicable table data file.

At the completion of the transaction, the master binary log records the result of the DML
statement(s) applied (3). MySQL supports varying modes that may record the DML
statement or the actual data changes.

» A success indicator is returned to the calling client program to indicate the completion
of the transaction (4).

* The slave server detects a change in the master binary log position (5).

» The changes are received (i.e., a pull process) by the slave server and written to the
slave relay log by the slave IO thread (6).

* The slave SQL thread reads the relay log and applies all new changes (7 and 8). These
changes may be recorded as a statement to be executed, or as a physical row level data
modification.

* A success indicator is returned to the slave replication management.

In summary, the SQL transactions are recorded in the master binary log and the change
of this log is used as a triggering event for the slave to pull the change. Chapter 2
discussed more information about the operation of the binary log. In Chapter 5, the point
in time recovery section provides detailed information on how to review and analyze the
master binary log.

MySQL Replication Characteristics

The following are important characteristics of the MySQL implementation of data
replication that can impact a backup and recovery strategy:



» Each MySQL slave has only one MySQL master.

 Areplication slave pulls new information from the master.

« MySQL replication by default is an asynchronous process () i.e., a master does not wait
for acknowledgment or confirmation from a slave for a completed and successful
transaction on the master.

» A MySQL slave can also be used for read operations, or additional write operations if
configured.

* MySQL does not require a slave to be identical to a master. Tables could be stored in a
different storage engine or may even contain additional columns. Providing the SQL
operation completes without error, replication will not fail.

(*) MySQL 5.5 provides support for semi-sync replication, which is discussed in a
following section.

CAUTION Using MySQL replication for high availability (HA) does not imply you now
have a disaster recovery (DR) solution. A MySQL slave may be configured to not
include all data on the master or be configured with a different schema structure. While
a MySQL slave may include all data, the process of promoting a slave from a read only
status, reconfiguring your application to use this slave, and altering other operations
designed for the slave are all steps in ensuring a functional DR plan.

MySQL replication generally exists in a production environment to support scalability,
data redundancy, and high availability. These architectural features provide an immediate
and viable approach as a backup and recovery strategy option. By combining MySQL
replication with the various backup options described in Chapter 2, several problems
including locking and availability of the production database can now be avoided.

MySQL Replication Limitations

MySQL replication is not without issues; there are some key limitations for using
replication effectively and these can affect a functional database backup and recovery
strategy.

Replication Lag

One of the primary issues with a MySQL topology is replication lag. Replication lag can
have a significant effect on an up to date backup and on an application that uses
replication for read only workloads. The asynchronous nature of MySQL replication
implies that a difference between the data on a master and slave is possible at any point in
time.

You can determine all information about MySQL replication including lag with the
SHOW SLAVE STATUS command on a MySQL instance that is a MySQL slave:



mysgl> SHOW SLAVE STATUSA\G

EEFEFEFEAFFETEFEFF T T AR FETEERFT TR l oW FEFEFEEAFFFTFEFF T T AT T TR EF T TN

Slave I0 State: Waiting for master to send event
Master Host: 10.0.0.1
Master User: repl
Master Port: 3306

Master Log File: mysql-bin.001417
Read Master Log Pos: 52404776

Relay Master Log File: mysgl-bin.001417
Slave IC Running: Yes
Slave SQL Running: Yes

Exec Master L.og Pos: 51516321

Seconds Behind Master: 188

Replication lag is determined by a non-zero number in Seconds_Behind_Master. This
number does not represent the actual number of seconds it will take replication to catch
up. Seconds_Behind_Master displays the time difference between the local time on the
slave against the time stamp of the replication event applied on that master and that is
currently being processed by the slave SQL.

Replication lag has several causes:

The volume of concurrent SQL statements performed on a multithreaded master exceeds
the capacity of the single replication IO and SQL threads to process. A high volume
production system with an increase of 5 to 10 percent is enough for replication lag to
occur and never catch up.

A DML or DDL statement that takes a long time to execute. As replication is single
threaded, subsequent pending statements are further delayed. A good example is an
ALTER TABLE statement.

Replication stopped due to a specific error. The problem was subsequently addressed
and replication restarted; however, replication lag now exists.

MySQL replication supports both local area network (LAN) and wide area network
(WAN) connectivity. The use of a slow network with inconsistent transaction
throughput or selective connectivity can contribute to lag.

Replication may be stopped intentionally, for example, a MySQL backup, software
upgrade, or a delayed replication implementation.

Lag can also be the result of a nested replication topology. This can be difficult to
correctly determine that the master is indeed a slave of another instance.

NOTE It is important to monitor MySQL replication lag to detect and report an increase
over time, as this is an indication that replication may not catch up.



Consistency

It is possible for both the data and schema of a MySQL slave to be different from the
applicable MySQL master and replication is operating without errors and/or lag. This is
due to the flexibility of a MySQL slave not to be a true read only version of a given
master, and the per statement execution of any given SQL statement that can complete
without error yet still perform more or less data manipulation than on the master.

A MySQL slave can have different table structures including a change in storage engine
and indexes and still support the primary function of executing a successful SQL
statement. For example, it is common for a scale-out read architecture to have differing
indexes to support SELECT optimizations. A change in table structure does not
necessarily mean the data is inconsistent.

There are several basic settings that can be used to limit and/or check schema and data
consistency.

Data Consistency

Under normal circumstances the slave should be read only to ensure data consistency. This
is enabled with the MySQL configuration option read_only=TRUE. This is an important
setting to minimize data manipulation on a MySQL slave when a user connects
accidentally or intentionally to a MySQL slave and executes a DML or DDL statement.
This will result in the slave having different data or schema structure than the master and
may cause future replication errors. Any user connecting to the MySQL slave with the
SUPER privilege can override this setting, so it is important to also restrict user permissions
accordingly. The slave-skip-error option can also cause inconsistency where these
listed errors will not result in a replication failure.

CAUTION A MySQL slave that does have a read_only=TRUE configuration and has
application user access with the SUPER privilege can easily lead to inconsistent data
between a master and a slave.

The use of MySQL triggers and stored procedures may cause inconsistency if any
database object definitions differ between the master and the slave.

MySQL replication does not currently provide a checksum of the events recorded in the
binary log. There are very isolated situations when corruption from related hardware and
network situations may cause a replication error producing a data inconsistency. The
current development release of MySQL 5.6 includes the new -binlog-checksum, --
master-verify-checksum, and slave-sql-verify-checksum options. More information
can be found at http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-

log.html.

The CHECKSUM TABLE command enables you to determine a CRC-32 checksum of
all rows in the table. As this reads all rows, different versions of MySQL and even storage
engines will produce a different result while the data may actually be identical.

The practical use of CHECKSUM TABLE in a highly concurrent master/slave
environment is limited as it is necessary to ensure a precise comparison at the same point



http://dev.mysql.com/doc/refman/5.6/en/replication-options-binary-log.html

in time within the execution of statements. This command does not have a SQL equivalent
syntax to inject within the replication stream. In a low volume environment this command
may easily produce a confirmation that tables are identical. When tables do differ, use a
read lock with LOCK TABLE <tablename> READ to obtain a more consistent version.
This command does read all rows of a table, so for very large tables this may take a
significant time to execute.

The MySQL Reference Manual does state that due to the hashing approach it is not
guaranteed two tables of differing data may result in the same value. This is true for many
hash algorithms. What is important is that using a checksum approach is far more
important than assuming your data is consistent following any type of replication error.

The Percona toolkit pt-table-checksum utility available at
http://www.percona.com/software/percona-toolkit/ is an open source tool that can be used
for the consistency checking of table data, providing various algorithm options and built-
in replication support. This tool replaces the original Maatkit mk-table-checksum utility.
This tool can be difficult to understand and operate, as the documentation is not written to
be user friendly. The following instructions will provide a simple to use example
providing the necessary Perl DBI and DBD::mysql dependencies are already installed.

% wget http://percona.com/get/pt-table-checksum

5 chmod +x pt-table-checksum

% ./pt-table-checksum --algorithm=BIT XOR h=localhost,u-user --ask-pass
--replicate=book.checksum --create-replicate-table --databases book

A quick explanation of the options used:

* --algorithm This defines the algorithm to use for the table checksum. The most
command and useful values include CHECKSUM, BIT XOR, and ACCUM.

» --ask-pass Prompts the user to specify the user account password.

* --replicate This specifies the schema.table where checksum information is stored
to support replication comparison.

* --create-replicate-table This option pre-creates the checksum table if it does not
exist.

» --databases This defines the schema(s) to perform a checksum for.

When combined with the following SQL query executed on all slave servers, it is
possible to detect any data drift and inconsistency between a master and a slave.

SELECT db, tbl, chunk,
IF(this crc <> master_crc OR
ISNULL (master crc) <> ISNULL(this crc),'YES','NO') AS diff,
this cnt-master cnt AS rowcount diff

FROM  book.checksum

WHERE master cnt <> this cnt

OR master crc <> this crc

OR ISNULL (master crec) <> ISNULL(this_crc) ;

The execution of this utility can have a significant performance overhead on a large
database. This utility has many different options including different algorithm selections


http://www.percona.com/software/percona-toolkit/

and determining chunk sizes for data. Refer to the documentation at
http://www.maatkit.org/doc/mk-table-checksum.html for more information. Please note
that this utility is no longer active as an open source project; however, this is still widely
used among the MySQL community. The corporate sponsored Percona toolkit product
contains current work.

Schema Consistency

The layman’s approach to detecting schema differences is to use the mysqldump utility and
to generate the schema only and compare. For example:

5 mysgldump --all-databases --no-data --skip-dump-date
-uf[user] -p -h[master] > master.schema.sgl

5 mysgldump --all-databases --no-data --skip-dump-date
-ufuser] -p -h[slave] > slave.schema.sqgl

5 diff -u master.schema.sqgl slave.schema.sgl

This process is not ideal as there is no guarantee the output is ordered, and the format
does differ between MySQL versions; however, this process can be used to confirm that
no schema differences exist. In a high volume production system, the additional pruning
of AUTO_INCREMENT=N from the CREATE TABLE statement is necessary to produce a
clean comparison of the schema only. The following syntax can be added to the previously
mentioned commands to produce this output:

$ mysgldump ... | sed -e "s/AUTO INCREMENT=["% 1 //" > ...

The schema sync utility available at http://schemasync.org/ is a Python script that will
perform a schema comparison. This tool will also produce a patch script that can be used
to bring the two schema definitions into sync. This is a valuable tool to help in the
automation of schema correction.

Additional monitoring can be put into place by a DBA to detect a schema change
command and then trigger some applicable reporting and verification approach. The
MySQL status variables can be used to detect a CREATE, ALTER, or DROP command.
For example:

mysgl> EELECT wariable name, wvariable wvalus

-» FROM INFORMATION SCHEMA.SLOBAL STATUS

-» WHERE variable nams LIEE 'COM_ALTER%'

-= OR variable name LIKE 'COM _DRCE !

-» OR variabls name LIEE 'COM_CREATES';
B +
| wariable name | wariable walue |

W R e G
| COM_RLTER_LE |
| CoM_ALTER_LE_UPGRADE |
| COM_ALTER_EVENT |
| COM_ALTER_FUNCTION |
| CoM_ALTER_FROCELURE |
| COM_ALTER_SERVER |
| COM_ALTER_TZELE |
| CoM_ALTER_TRELESPACE |

%
I
I
I
I
I
I
I
I


http://www.maatkit.org/doc/mk-table-checksum.html
http://schemasync.org/

COM_CREATE DB
COM_CREATE EVENT
COM_CREATE_FUNCTICH
COM_CREATE_INDEX
COM_CREATE PROCEDUERE
COM_CREATE_SERVER
COM_CREATE_TAELE
COM_CREATE TRIGGER
COM_CREATE_UDF

I

I

I

I

I

I

I

I

| COM_CREATE USER
| COM_CREATE_VIEW

| COM_DROT DB

| COM_DROE_EVENT

| COM_DROE_FUNCTION
| COM_DROE_INDEX

| COM_DROF_EROCEDURE
| COM_DROE_SERVER

| COM_DROE_TAELE

| COM_DROE_TRIGZER

| COM_DROE_UZER

| COM_DROE_VIEW

I
I
I
I
I
I
I
I
I
I
o I
I
I
I
I
I
I
I
I
I
I

|
S e e e e e e L e e

B et e +

This SQL statement shows the number of statements that have been executed in total
since the server was restarted. You can use this information to perform regular difference
checks between previously recorded values. Alternatively you can use the mysqlbinlog
command to filter and parse the MySQL binary logs for any CREATE, ALTER, or DROP
commands. Neither of these options is ideal nor provides an absolute guarantee to capture
the occurrence of a schema modification.

Object Consistency

It is also important that triggers and stored procedures are consistent between the master
and the slave. You can leverage the same trick with comparing the master and slave object
definitions using mysqldump with the additional - -routines option. For example:
% mysgldump --all-databases --no-data --no-create-info --routines %

--skip-dump-date -u[user] -p -hlmaster] = master.routines.sgl
% mysgldump --all-databases --no-data --no-create-info --routines %

--skip-dump-date -u[user] -p -hislave] = slave.routines.sgl
% diff -u master.routines.sgl slave.routines.sgl

All routine definitions and other metadata are held in the INFORMATION SCHEMA
database. It is possible to use SQL to perform a quick sanity check. For example:

mysgl> SELECT ROUTINE SCHEMA,ROUTINE NAME, ROUTINE TYPE,
-» LENGTH (ROUTINE DEFINITICN) AS size,
-» MDE (ROUTINE DEFINITION) AS checksum
-> FROM INFORMATION SCHEMA.ROUTINES;

This statement will produce a list of all routines, the size, and a checksum. This output
can be recorded daily and a comparison performed to verify any object changes. For
example:



+o—mm—— - tommmmmmmmmmmm—— - Fommmmmm——— - e i +

| SCHEMA| ROUTINE NAME | ROUTINE T¥| size | checksum |

+o—mmm— - Fommmmmmmmmmm e — - - Fommmmmm——— - B i L +
mem | £111 mumbers | PROCEDURE 305 921277913061ceBa3is06406Cc542d209
mem | run numbers | PROCEDURE 153 2cbl70canagazdbfdseatdialedosfbl
sakila| film in stock | PROCEDURE 204 96055b0e83fdeb23a314c3200e10f450

|

I

I

| sakila| film mot_in stoc| PROCEDURE
| sakila| get_customer bal| FUNCTION
| sakila| inwventory in sto| FUNCTION
I

I
|
I

I

I

I

I

I

| eB4aceendfadsflaT2fb34c0aafides4and
I

sakila| rewards report | PROCEDURE | 1246

I

I

I

I

¥

+
I
4
I |
I |
I |

208 | eTBefcs24boesbiolsefs733043fboln |
I |
| offcogcbidebsddeaSecl097ddadsost |
I |
I |
I |
I |
I |
i

ala%99el0laflascechbfodosida7facco

WD | clean install | PROCEDURE 260 | cTab3dzofsseco7e2az040dsdefds1ba

WD | create author | FOMCTION 1310 C934451b02bc8107c1dd24824Cc655a66

WD | create post_keyw| FUNCTION 909 | 98lsld4aniedifeaf74l640ee0c2esBb

Ly | create post_term| FUNCTION 909 | 2a9foass6de2bideszb3llbsa7iaabo2g
+o——m—- - Fommmmmmmmmmmm—— - - B T e At +

Completeness

MySQL binary logging can be affected by several configuration options including
binlog-do-db and binlog-ignore-db. This can result in DML and DDL statements not
being logged to the binary log. The relay log application on a MySQL slave can further be
affected by several configuration options including replicate-do-db, replicate-
ignore-db, replicate-wild-do-table, replicate-wild-ignore-table, and replicate-
rewrite-db.

Combined with the ability to disable individual SQL statements by the SET
SQL_LOG_BIN=0 command with applicable privileges, there is no guarantee that all
successful SQL statements applied with your master data will be applied on a given
MySQL slave.

When combined with a more complex MySQL replication topology, ensuring that the
schema and data are consistent is not enough to determine that the slave used for a backup
strategy contains all data.

For a detailed list of MySQL replication options and variables refer to the MySQL
Reference Manual at  http:/dev.mysqgl.com/doc/refman/5.5/en/replication-options-
table.html.

Replication Design Considerations

Several MySQL configuration options can have an effect on the design of your MySQL
replication.

Binary Log Row Format

Starting with MySQL 5.1, it is possible to alter the binary log format from the historic and
default value of STATEMENT, to either ROW or MIXED by using the binlog_format
variable. The STATEMENT format, as the name suggests, records the actual SQL
statements, which are then applied on the slave. This is known as statement-based
replication (SBR). The ROW format provides a binary representation of each table row
after modification of the data on the master, which is subsequently applied precisely on
the slave. This is known as row-based replication (RBR).


http://dev.mysql.com/doc/refman/5.5/en/replication-options-table.html

Several configuration operations or statements may lend themselves to requiring or
requesting a different row format. For example, altering the transaction isolation variable
tx_isolation from the default setting of REPEATABLE_READ will require a MIXED or
ROW format to be used. MySQL will provide the following error message in this
situation:

mysgl= CREATE SCHEMA TF NOT EXISTS book;

mysgl= USE book;

mysgl>= DROP TABLE IF EXISTS t1;

mysgl>= CREATE TABLE tl({cl INT);

mysgls= INSERT INTO tl VALUES (1);

mysgls SET SESEICN tx isolation='READ-CCMMITTED';

mysgl= INSERT INTO tl VALUES (2);

ERROR 1665 (HYO00D): Cannot execute statement: impossible to write to
binary log since BINLOG FORMAT = STATEMENT and at least one table
uses a storage engine limited to row-based logging. InncDB is limited
to row-logging when transaction isoclation level i1s READ COMMITTED or
READ UNCOMMITTED.

Unsafe Statements

MySQL may determine a SQL statement as unsafe with SBR. The updating or deleting of
a limited number of rows with the LIMIT statement will produce a warning. Statements
that contain system functions, nondeterministic functions, user defined functions (UDFs),
and auto-increment changes are also considered unsafe. For example:

mysgl> USE book;
my=gl> DELETE FROM t1 LIMIT 1;
Query OK, 1 row affected, 1 warning (0.19 sec)
mysgl> ESHOW WARNINGS\C
AR SRS R R R R R R R R R R R R R "_ rc-lll'|llllllrlll.llIll’llllllll’llrl

Level: Hote

Code: 1592

Megsage: Unsafe statement writtem to the binary log using statement format
since BINLOG FORMAT = STATEMENT. The statement is unsafe because it uses
a LIMIT clause. This is unsafe because the set of rows ilncluded cannct be
predicted.

A full list can be found in the MySQL Reference Manual at
http://dev.mysql.com/doc/refman/5.5/en/replication-rbr-safe-unsafe.html.

Trigger Operation

MySQL triggers operate differently for the binary log formats. With SBR, triggers
executed on the master are also executed on the slave. The definition of triggers and stored
procedures may also differ between the master and a slave, which can further cause
potential data inconsistency. For RBR, triggers are not executed on the slave. The row
changes on the master resulting from any trigger action are applied directly.

Statement-based Replication (SBR)

This format has been the default since the earliest versions of MySQL starting with 3.23.
The advantages of this format include, in general, less data is written to the binary log. A
DML statement that alters thousands of rows is reflected only as a single SQL statement.
The slave has to perform the same amount of work that occurred on the master. An


http://dev.mysql.com/doc/refman/5.5/en/replication-rbr-safe-unsafe.html

expensive statement needs to be repeated on all slaves. The binary log can be analyzed
with mysqlbinlog to produce an audit of all SQL DML and DDL statements.

Row-based Replication (RBR)

With this new format, there is an improved safety of data changes. This is especially
applicable for several operations that are considered unsafe. In general, more data is
written to the binary log to reflect a change for every row, which can affect disk
performance. Starting with MySQL 5.6.2 this can be adjusted with the binlog_row_image
configuration option. Less locking is required on the slave for INSERT, UPDATE, and
DELETE statements. The binary log is also unable to provide details of SQL statements
executed. In MySQL 5.6.2 you can use the binlog rows_query_log events
configuration option to provide this information.

Semi-synchronous Replication

Starting with MySQL 5.5, it is possible to improve the asynchronous nature of MySQL
replication by enabling semi-synchronous functionality. In this mode, the master waits for
an acknowledgment from a configured slave where the transaction has been successfully
written and flushed before returning a success indicator to the client. Semi-synchronous
replication must be configured and enabled on both the master and the slave for this to
occur.

The production master performance is impacted due to the additional slave
acknowledgment; however, the benefit is a better guarantee of data integrity.

Semi-synchronous replication in described in greater detail in Chapter 3 of Effective
MySQL: Advanced Replication Techniques. More information is also available from the

MySQL Reference Manual at http://dev.mysql.com/doc/refman/5.5/en/replication-
semisync.html.

Replication Backup Considerations

Understanding that MySQL replication provides a copy of the primary database and with
listed limitations including lag, schema, and data consistency, you can leverage a
replication topology for an effective backup option.

It is possible to stop MySQL replication temporarily to provide better consistency for an
optimized backup. This includes control for stopping either the IO or SQL thread
separately depending on your needs. These options do not affect your primary master
database when performing operations (except when using semi-synchronous replication);
however, the time replication is stopped has downstream effects depending on the use of
the MySQL slave instance in question.

You can stop the applying of data changes to your MySQL replication environment with
the STOP SLAVE SQL_THREAD command. When correctly configured as a read slave
this enables a consistent version of data, for example, with the mysqldump command
independently of varying storage engines and locking strategies used.

By stopping the IO thread and ensuring all data is flushed, you are providing an
environment where there are no physical file system changes. This can be of benefit for


http://dev.mysql.com/doc/refman/5.5/en/replication-semisync.html

providing a more consistent snapshot view.
Additional Prerequisite Checks

Before using a backup option described in Chapter 2, there are several checks that affect a
consistent backup that should be considered.

Checking Replication Lag

A small amount of replication lag is acceptable, This lag time is identical for replaying the
master binary logs during a point in time recovery. A larger replication lag will result in a
longer recovery time, which may be unacceptable. Your backup script that uses a MySQL
slave should perform a precheck similar to the following:

TMP_FILE=/tmp/slave-status.tmp"

# Capture all output for later messaging if necessary

mysgl -e "SHOW SLAVE STATUS\G" > ${TMP FILE}

# Get =econds behind master value

SECONDS="grep Seconds Behind Master ${TMP FILE} | awk -F': ' '{print 352}'"
# Error checking

[ ${SECONDS} = "NULL" -o ${SECONDS} -gt 60 1 && %\

echo "ERROR: Replication is stopped or lagging" && exit 1

MySQL Temporary Tables

The use of MySQL temporary tables on the master has an impact on ensuring a successful
database recovery using a slave. Due to the per session nature, a temporary table can span
multiple transactions; however, if a backup is performed while temporary tables are in use,
these will not be present during a point in time recovery process that processes the
replication stream. This issue also exists when using temporary tables during a MySQL
slave instance restart and can result in a SQL error.

You can determine if a MySQL slave SQL thread has open temporary tables using the
INFORMATION_SCHEMA or SHOW command. This check should be performed both
before and after a STOP SLAVE SQL_THREAD command. Should a non-zero value be
returned, the backup process should re-try and ensure this condition before commencing.

mysql> SELECT variable value

-> FROM INFOEMATION SCHEMA.GLOBAL STATUS
-> WHERE variable name='SLAVE OPEN TEMF TABLES';

e +
| variable value |
Fmm e +
| 1 |
s get asusoatpenn e s s +
or
mysgl> SHOW GLOBAL STATUS LIKE 'Slave open temp tables'
ettt +---—--—- +
| Vvariable name | Value |
Fo—m—m—mm—mm————————m——— - +---—-—- +



The design of SBR can help in some circumstances to overcome this loss of data with
temporary table use. SBR provides a copy of the actual data change, not a statement that
will cause the data change. The interaction of temporary table use and a backup approach
is very dependent on the specific application design. In general, it is best to ensure there
are no open temporary tables to avoid a potential situation that you do not test for.

When intermediate data is required within your application there are several techniques
that can be implemented to overcome this situation.

InnoDB Background Threads

Stopping the SQL thread is not sufficient to ensure a consistent version of the underlying
MySQL data on the filesystem. While this stops the application of data changes, internally
InnoDB manages flushing of data from the InnoDB Buffer pool to disk by background 10
threads. When performing a file copy, inconsistency between different data files will
result, as a file copy is a sequential process. When using a filesystem snapshot utility, all
underlying database files will be consistent at the time of the snapshot. When restored, the
MySQL database will still need to perform a consistency check and statements in the
InnoDB transaction log may be applied. This occurs as part of an automatic recovery
process. There is no way with the current version of official MySQL binaries to produce a
clean state without shutting down the server.

Cold Backup Options

Stopping a MySQL slave instance has no impact to operations on a master system.
However, it is important to ensure any application using the MySQL slave for additional
purposes, including handling read scalability and/or reporting, will be affected. Generally
the procedure is to ensure the server is removed from application access accordingly
during the backup. By default, a MySQL slave instance, when started, will automatically
connect to the master and start the process of synchronizing. The configuration option
skip-slave-start will disable the slave from automatically commencing replication on
startup. Depending on the time the slave instance is unavailable it may take minutes to
hours before the slave is consistent.

mysqldump Options

Using mysqldump of a production database with the --master-data option and combined
with the master binary logs enables a full point in time recovery option. When using a
MySQL slave, the --master-data option does not provide the position of the master. At
best, this option will produce an error message; at worst, it will record the position of the
master binary log on the slave, if the slave is also configured as a master. The following
examples show both conditions:

2 mysgldump --master-data --no-data --no-create-info mysgl

mysgldump: Error: Binlegging on server not active

A MySQL slave may be configured to record a binary log using the -log-bin option
and optionally the -1og-slave-updates option. This means the MySQL slave is actually
configured as a master for additional slaves. This is known as chaining where a replication
environment may have three or more levels (e.g., a grandfather, father, and child). In this



situation the --master-data option would result in information; however, this is the
position of the binary log of this slave, not the master of the slave.

Using the MySQL Sandbox tool available at http://mysqlsandbox.net/ is an excellent
way to quickly test and verify different replication situations. To highlight this specific
condition we create a standard master and two slave sandbox replication environments:

# NOTE: A newer version may exist, check https://launchpad.net /mysgl-sandbox
2 wget http://launchpad.net/mysgl -sandbox/myegl -sandbox-2/

mysgl-sandbox-3 /f+download/MySQL-Sandbox-3.0.21 . tar. gz
2 tar xvfz MyaQL-Sandbox-3.0.21.tar.gz
2 od MySQL-Sandbox-2.0.21
# Download a version of MysSQL for wour architecturs
§ ./make replication sandbox /path/to/mysgl /binary

We can then look at the specific mysqldump output for a given slave in this replication
topology:
# Depending on your MySQL versicon this directory will differ
§ od SHOME/sandbox/rsandbox 5 5 15/nodel

2 mysgldump --dafaulta-files=my.sandbox.cnf --master-data --no-data b
--no-craata-info mysgl

CHREMGE MASTER TO MASTER LOG FILE='mysgl-bin.o0000l', MASTER LOG POS=178;

As described in the earlier point, the position described is not the actual position of the
master for this slave, but rather the position of the binary log on this slave, which is also
acting as a master. This can be confirmed with:

slavez [localhost] {msandbox} ((none)) > SHOW MASTER STATUS\G
khkdkddhdhkdddddddkdkrk ket | o FhErkrkrkrkhkrkhkhk ki kbbbt bbb h bbbk
File: mysql-kin.000001
Positicon: 178
Binlog Do DE:
Binlog Ignore DB:
plavez [localhost] {msandbox} ((none)) > SHOW SLAVE STATUS\G
*kdddddhdhhddhddhkhrhk kst | pow FhErkrdrkhkrkkkdk ki kbt ki hk bk ok
Slave I0 State: Waiting for master to aend event
Master Hest: 127.0.0.1
Master User: rsandbox
Master Port: 19570
Connect Retry: 60
Master Log File: mysqgl-bin.000001
Read Master Log Poa: 10589
Relay Log File: mysgl sandbox1957Z2-relay-bin.000002
Relay Log Poa: 2015
Relay Master Log File: mysgl-bin.000001

Exec Master Log Pom: 2868

By stopping the MySQL slave and capturing the SHOW SLAVE STATUS, it is possible
to create a backup of the MySQL slave, and use this in conjunction with the master binary
logs to perform a successful point in time recovery.

Starting with MySQL 5.5 the --dump-slave option provides the correctly formatted


http://mysqlsandbox.net/

output you would expect:
2 mysgldump --dafaulta-files=my.sandbox.cnf --dump-slave --no-data b

--no-craata-info mysgl

CHANGE MASTERE TO MASTERE LOG FILE='"mysgl-bin.000001', MABSTER LOG POS=2865;

CAUTION The use of MySQL replication requires careful consideration for correctly
identifying the position of the master when using a static backup of a slave and the
master binary log files for point in time recovery.

The --apply-slave-statements option can also be used to streamline the use of a
mysgldump file for automated recovery. This option adds the STOP SLAVE and SLAVE
START commands to the output produced.

Filesystem Snapshot Options

The stopping of the MySQL SQL slave thread prior to performing a FLUSH TABLES
WITH READ LOCK can reduce the pending wait time of this command. The optional
stopping of the MySQL IO thread will provide a consistent file system copy of the relay
logs; however, this is not necessary with any filesystem snapshot technology.

The replication position is also recorded on the filesystem in the file defined by the
relay log_info_file system variable. Using the MySQL replication environment
configured in the previous section with MySQL Sandbox this can be verified. For

example:
a8lave2> SHOW GLOBAL VARIABLES LIEE 'relay log info file';
e e e - - - - -
| Variakle name | Value |
e e e e - e e - - -
| relay leg infe file | relay-log.info |
e e -

2 cat data/relay-leog.info

Jmyagql sandbox19572-relay-kin. 000002
3015

myagl-kin.000001

2859

MySQL Enterprise Backup (MEB) Options
The MEB product has an additional option when used with a MySQL slave server:

» --slave-info This option creates the meta/ibbackup_slave_info file containing the
necessary CHANGE MASTER command to restore the backup to produce an identical
slave server.

CAUTION An important change to the use of the - -slave-info option was introduced
in the most recent version of MEB version 3.7.1 regarding the synchronizing of data
between the slave SQL thread and slave 1/0 thread.



XtraBackup Options
The XtraBackup utility manages MySQL slave specific instances using these options:

* --slave-info This option creates the xtrabackup_slave_info file containing the
necessary CHANGE MASTER command for recovery.

» --safe-slave-backup This option stops the SQL thread and waits until there are no
temporary tables in use.

Using the syntax for XtraBackup from Chapter 2, these two options are added for a
backup of a MySQL slave:

5 inncbackupex --defaults-file=/myagl/etc/my.cnf —no-timestamp Y
--slave-info --safe-slave-backup /backup/mysqgl/slave

This produces the necessary SQL for use during recovery with the defined MySQL
master:

§ more Jbackup/mysqgl/alave/xtrabackup slave_info
CHREMGE MASTER TO MASTER_LOG FILE='mysgl-bin.000001', MASTER_LOG POS=173412

For more information see http://www.percona.com/doc/percona-
xtrabackup/innobackupex/replication_ibk.html.

Architecture Design Considerations

When knowing the strengths and weaknesses of MySQL replication you may consider
alternative approaches when designing your scalable architecture. While replication is
well known for read scalability, other options that leverage improvements in data
manageability, backup, recovery, and caching are possible. This could include the
separation of write once data or batch managed data from more general read/write data.

The use of MySQL replication may also impact these design needs. Understanding data
availability differently for write, read, and cached needs combined with read and write
scalability, MySQL replication may be implemented and used in many different ways.

For example, if you have 30 years of financial data that is added to daily, however, each
year of data is completely static, the separation of data into a static table of the first 29
years of data and a dynamic table of growing data could enable a vastly different backup
and recovery strategy. This would improve caching options; however, it would add
programming complexity to your application to support this level of manual partitioning.
This one architecture decision could reduce daily backup operations of time and volume
by 90 percent. Recovery may also be five to ten times faster. The complexity is now two
different database environments with different caching strategies, different backup and
recovery approaches, and the appropriate application overhead.

MySQL provides functionality for several different approaches towards addressing this
specific example. MySQL partitioning and the ARCHIVE storage engine provide different
advantages for functionality and should be evaluated in combination with the merits of
applicable backup and recovery for these choices.


http://www.percona.com/doc/percona-xtrabackup/innobackupex/replication_ibk.html

Improving your schema design for intermediate processing of data and temporary
tables, enabling a specific database schema to be ignored for binary logging and
replication may greatly improve replication performance. This in turn minimizes potential
limitations.

Upcoming Replication Functionality

The current development version of MySQL 5.6 includes numerous replication
improvements which address some of the identified backup concerns. In summary these
improvements include:

* Binary log checksums

* Removing the row format before image

* Logging SQL statements in addition to row format

* Delayed replication

» Logging binary log and relay log positions using tables as well as files

» Multi-threading support on slaves supporting parallel transactions per database schema

More information about MySQL 5.6 features can be found in the MySQL Reference

Manual at http://dev.mysal.com/doc/refman/5.6/en/mysqlnutshell.html and

http://dev.mysql.com/doc/refman/5.6/en/news-5-6-x.html. ~ These options are also
discussed in Effective MySQL: Advanced Replication Techniques.

Conclusion

MySQL replication is an essential component for any high availability and scale out
MySQL environment. Understanding how MySQL replication can be used for a backup
and recovery strategy can be beneficial for designing a suitable MySQL topology to
support both HA and DR requirements.

The backup approach is only the first component of a successful backup and recovery
strategy. Applying the wvarious options in Chapter 2, with MySQL replication
considerations and with the business needs detailed in Chapter 3, it is now possible in the
following chapter to fully evaluate the successful recovery of your valuable business
information.

The SQL statements and web links listed in this chapter can be downloaded from
http://effectivemysqgl.com/book/backup-recovery/.



http://dev.mysql.com/doc/refman/5.6/en/mysqlnutshell.html
http://dev.mysql.com/doc/refman/5.6/en/news-5-6-x.html
http://effectivemysql.com/book/backup-recovery/

o)
Using Recovery Options

A backup is only as good as the ability to correctly recover and then use your data. A
successful recovery is both the verification step of your backup procedures, and the peace
of mind for your business sustainability. It is important that you test your entire recovery
process from end to end regularly, practicing, verifying, refining, and most importantly,
timing. In the event of a disaster after knowing recovery is possible, knowing how long
this will take is an important business consideration.

In this chapter we will be covering:
 The different types of MySQL recovery
» Review of the recovery option for each backup type

» The importance of testing and verification

A Word About Testing

Backups become regular daily operations after initially configured. Recovery is rarely
routine; they happen at any time, and generally require immediate action with the quickest
response possible to resolve the problem. Testing of the recovery process to ensure that the
backups are indeed valid and functional, and that the recovery process is known,
documented, and verified, is an ideal practice to master.

This information may sound like repetition, and it is because this is the single most
important process not to perform. As a consultant, every disaster engagement involving
recovery has been in a situation that the client had not considered, or indeed tested. In
many situations these were the common occurrences of the most obvious cases as
discussed throughout this book.

A memorable quote found on the Internet regarding backup and recovery is, “Only two



types of people work here, those who do backups [and restores] and those who wish they
had.”

NOTE There is a common misconception that testing is about ensuring your software
works correctly. Testing is really a process for trying to find ways to break your
software, and then applying improvements to address these failures. Many testing
practices are flawed because this correct approach is not used. The backup and
recovery process of a MySQL ecosystem requires the same due diligence. As with many
real world life situations, your successes are never publicly applauded; you are
remembered by your failures.

Determining the Type of Recovery Necessary

While you have a backup approach in place, the primary purpose for this is for a full data
recovery. Is this necessary to restore production operations in every situation? As
described in Chapter 3, the business may accept a certain amount of data loss depending
on the total recovery time. A data recovery process may also be necessary for a system
crash or corruption and may not require a full restore from backup. This chapter will cover
a variety of crash situations and possible recovery requirements.

MySQL Software Failure

The underlying MySQL process mysqld may fail. The following options discuss the
primary operations in the event of a MySQL crash. The cause of failure may include a
physical hardware problem, a MySQL bug, the process failing due to an exhausted
memory or disk resource, or the process being intentionally terminated. For example:



110128 12:54:28 - mysgld got signal 11;

This could be because you hit a bug. It is also possible that this binary

pr ocne of the libraries it was linked against is corrupt, improperly bullt,
or misconfigured. This error can alsoc be caused by malfunctioning hardware.
We will try our best to scrape up some info that will hopefully help diagnose
the problem, but since we have already crashed, something is definitely wrong
and this may fail.

key buffer size-f442450044

read buffer size=104853504

max used connections=1384

max connections=5500

threads connected=813

It 1s possible that mysgld could use up to

key buffer size + (read buffer size + sort buffer size)*max connections
= 11326659413 Ebytes of memory

Hope that's ok; 1f not, decrease some variables in the equation.

thd=0x171a7870

Attempting backtrace. You can use the following information to find out
where mysgld died. If you see no messages after this, something went
terribly wrong. ..

Cannot determine thread, fp=0x4B004040, backtrace may not be correct.
Stack range =anity check 0K, backtrace follows:

(nil}

New value of fp=0x171a7B70 failled sanity check, terminating stack trace!
Please read http://dev.mysgl.com/doc/mysqgl /en/using-stack-trace. html
and follow instructions on how to resclve the stack trace. Resolved
stack trace is much more helpful in diagnosing the problem, so please do
resclve it

Trying to get some variables.

Some pointers may be invalid and cause the dump to abort...

thd-guery at 0x170bd740 = select ...

thd-=thread id=256

The manual page at http://fwww.mrsqgl .com/doc/en/Crashing.html contains
information that should help you find out what is causing the crash.

Number of processes running now: 0
110128 12:54:28 mysgld restarted

Depending on the storage engine used, no further action may be required to ensure a
functioning and accessible database. The MySQL error log will generally provide
information about this situation, as described in the following section. However, it is
important to determine why this has occurred and to prevent the situation from recurring.

NOTE In a low volume Linux production system you may not detect that MySQL has
even crashed unless you review the MySQL error log. Under default operations, the
mysqld process will automatically restart through the wrapper daemon mysqld_safe. If
your application does not use persistent connections, this can occur without any
obvious application effect.

Crash Recovery

When using the InnoDB transactional storage engine, crash recovery is performed after a
system failure. This process will detect a difference between the InnoDB data files and the
InnoDB transactional logs and perform a necessary roll forward to ensure data consistency



if applicable. Depending on the size of your InnoDB transaction logs, that can take some
time to complete.

The MySQL error log will provide detailed information of the InnoDB crash recovery
when performed.

InnoDB: Log scan progressad past the checkpoint lsn O 188755039

100624 16:37:44 InnoDE: Database was not zhut down normally!

InncDBE: Starting erash recovery.

InnoDB: Reading tableapace information from the .ibd filea. ..

InnoDBE: Reatoring posaible half-written data pages from the doublewrite
InnoDB: buffar...

InnoDB: Dodlng racovery: scanned up to log 2aquence numbsr 0 152327224
InnoDBE: Dolng racovery: scanned up to log 2aquence numbsr 0 195151827
InnoDBE: 1 transacticnis) which must be rolled back or cleaned up

InnoDB: in total 108565 row operations to undo

InnoDBE: Trx id counter is © 12658

100624 16:37:45 InncDBE: Starting an apply batch of log records to the
database. ..

InnoDBE: Progress in percents: 2 3 4 5 6 7 8 9 10 11 12 12 14 15 16 ... 2%
InnoDE: Apply batch complated

InnoDBE: Last MySQL binlog file positicon o 12051, file name . /binary-log.oooooz
InnoDBE: Starting in background the rollback of uncommitted transactions

The InnoDB crash recovery process performs the following specific steps:

1. Detects if the underlying data on disk is not consistent by comparing the checkpoint
L.SN with the recorded redo log LSN.

2. Applies any half written data pages that were first written to the doublewrite buffer.
3. Applies all committed transactions in the InnoDB transaction redo logs.
4. Rolls back any incomplete transactions.

In addition, during a crash recovery the insert buffer merge and the delete record purge
are performed. These steps are also performed in general background operations on a
working MySQL instance and are not specific to the crash recovery process.

More recent versions of MySQL have greatly improved the final stage of InnoDB crash
recovery when applying the redo log, starting with MySQL 5.1.46 (InnoDB plugin 1.07)
and MySQL 5.5.4. In the past, one consideration was to have smaller InnoDB transaction
logs due to possible long recovery time. For more information on the specific
improvement see http://blogs.innodb.com/wp/2010/04/innodb-performance-recoveryy/.

Testing InnoDB Crash Recovery

Testing of InnoDB crash recovery on a loaded system is important to determine if this
process completes in a few minutes or can take more than one hour.

Additional information about steps to undertake when MySQL is crashing can be found
at  http://ronaldbradford.com/blog/mysql-is-crashing-what-do-i-do-2010-03-08/  and
http://ronaldbradford.com/blog/how-to-crash-mysqld-intentionally-2010-03-05/.

TIP Testing a crash recovery of MySQL is as simple as executing a kill -9 on the mysqld
process.


http://blogs.innodb.com/wp/2010/04/innodb-performance-recovery/
http://ronaldbradford.com/blog/mysql-is-crashing-what-do-i-do-2010-03-08/
http://ronaldbradford.com/blog/how-to-crash-mysqld-intentionally-2010-03-05/

Under normal circumstances when MySQL is stopped correctly, InnoDB crash recovery
is not needed. However, as part of starting MySQL you should always check the error log.
In this example, while MySQL was stopped gracefully, the error log shows crash recovery
was always being performed. As the data set was small (< 1GB) the client was assuming
the extended startup time was normal.

Shutdown log information:

2 cat Jvar/log/myagl/error.log

110426 14:05:53 [Mote] fuer/sbin/myagld: NHormal shutdown

110426 14:05:53 [Mote] Slave I/ thread killed while reading event

110426 14:05:53 [Mote] Slave I/ thread exiting, read up to log

‘myagl-bin. 000031, position 162132324

110426 14:05:53 [Mote] Ewvent Schedulser: Purging the queues. 0 avents

110426 14:05:52 [Mote] Error reading relay log event: slave SQL thread was killed
110426 14:05:56 InncDE: Starting shutdown. ..

Startup log information:

2 cat Jvar/log/myagl/error.log

110426 14:05:5% [Mote] Plugin 'FEDEERATED' 1= disablad.

InnoDBE: Log scan progressad past the checkpolint lsn 6 2726273468
110426 14:05:52%2 InnoDE: Database was not shut down normally!
InncDBE: Starting ecrash recovery.

Monitoring InnoDB Crash Recovery

Monitoring the amount of recovery is possible if existing MySQL monitoring includes
regular logging of the SHOW ENGINE INNODB STATUS information. The LOG section
provides the Log Sequence Number (LSN) position. This can be compared with the
reported LSN in the MySQL error log during a crash recovery. This information is also
useful for general monitoring of internal InnoDB operations and should be part of
proactive administration of any production system.

mysgl> SHOW ENGINE INNODE STATUS;

LG

Log sequence number O 195151897
Log flushed up to 0 195141979
Last checkpeoint at 0 1887550329

Chapter 7 will discuss advanced techniques diagnosing and correcting an InnoDB crash
recovery when this process fails. This is generally required when there is additional
corruption of the InnoDB data and transaction log files.

MyISAM Table Recovery

When using the MyISAM storage engine, the default engine for all MySQL versions prior
to MySQL 5.5, crash recovery, if necessary, is generally a manual process. Detection of
possible corruption can also be more complex. This is because there may be no advance



notification until a corrupt MyISAM table is accessed via an index.

A problem can be detected with the CHECK TABLE or myisamchk -c¢ command;
however, this is impractical in a large database, as this operation can take a long time to
determine if a problem exists. When MySQL does detect a problem, the MySQL error log
will report a problem requiring further attention. For example:

100126 22:44:35 [Warning] Checking table: ' /dbl/tbl’

100126 22:44:35 [ERROR] /var/lib/my=gls/bin/mysqgld: Table './dbl/tbl'
is marked as crashed and should be repaired

100126 22:44:35 [Warning] Checking table: t./dbl/tb2"

100126 22:44:35 [ERROR] fvar/lib/my=sgl5/bin/mysgld: Table './dbl/tb2'
is marked as crashed and should be repaired

Alternatively you may see an error such as:

100322 11:42:50 mysgld started

100322 11:42:54 InncDE: Started; log sequence numbser 1447 2027352055
100322 11:42:54 [Mote] fusr/libexac/mysgld: ready for connecticna.
Veraicn: '5.0.82-rs-log'  scocket: 'Jwvar/lib/myagl/mysgl.sock' port: 2206
100322 12:01:35 [ERROE] Susr/libexec/myagld: Table './dbl/tkl!

is marked as crashed and last {autcmatic?) repair failad

100322 12:01:325 [ERRCR] Jusr/libexec/myagld: Table './dbl/tk2!

is marked as crashed and last {autcmatic?) repair failad

NOTE Data for a MyISAM table (the .MYD file) is always flushed to disk for each DML
statement. The error message actually references that the underlying B-tree index (the
.MYI file) is inconsistent with the data. The MyISAM recovery process is the rebuilding
of the indexes for a given table. This helps with the understanding that the reporting of
a MyISAM table as crashed may not occur at system startup, rather when the table data
is accessed via a given index.

The MySQL configuration variable myisam-recover can help in some situations where
the MySQL process will attempt MyISAM crash recovery. The recommended settings are:

#my . cnf
[my=agld]
myisam-recover=FORCE, BACKUP

TIP The myisam-recover configuration option can offer some crash safe properties for
MyISAM tables.

Chapter 7 will provide more information on managing MyISAM crash recovery.
Other Storage Engines

MySQL offers a number of additional default storage engines as well as third party
pluggable engines. The following list provides a summary of recovery capabilities of
popular engines.

Included Default Engines



Storage Engine IIRecovery Considerations

ARCHIVE IINONE

BLACKHOLE IIThis storage engine actually stores no data so recovery time is immediate. The data, however, was lost at insertion time, as the statements or blocks are only logged to the binary log.

MERGE IIThe MERGE storage engine is actually a meta-definition of multiple underlying MyISAM tables. This results in the same recovery issues as detailed for MyISAM. I

MEMORY IIAS the name suggests, this storage engine does not persist data. After a crash recovery no data recovery is possible.

Popular Third Party Engines

JStorage Engine IIRecovery Considerations
Percona XtraDB IIThis fork of the InnoDB storage engine is identical in operation to InnoDB auto-recovery.

Akiban AKIBANDBIIAKIBANDB provides a full ACID compliant auto-recovery storage engine.

Tokutek TokuDB IITokuDB provides a full ACID compliant auto-recovery storage engine. I

Schooner SQL IISchooner SQL provides a full ACID compliant auto-recovery storage engine.

This is not a full list of MySQL storage engines. You should refer to the individual
storage engine vendors for specific crash recovery details.

Table Definition Recovery

For every table in a MySQL instance, regardless of storage engine used, there is an
underlying table definition file, represented by a corresponding .frm file. There are
circumstances where these files may become corrupt or inconsistent with a storage
engine’s additional table meta-information. For example:

111227 14:48:04 [ERRCR] mysgld: Incorrect informaticon in file:
'itest/ampty . frm!

and

110222 23:46:48 [ERRCOER] Cannot find or open table damo/tkl from

the internal data dicticnary of InnoDBE though the .frm filse for the
table exists. Maybs vou have deleted and recreated InnoDBE data

file=s but have forgotten to delete the corresponding .frm filss

of InncDE tables, or you have movad .frm £iles to ancther databass?
or, the table contains indsxes that this version of the engins

doean't support.

Sge http://dav.myagl .com/doc/refman/s. 1 /en/innodb-troubleshooting. html
how wou can resolve the problsam.

and

120412 16:03:24 [ERROE] Tabkle db/results contains & indexes insids InncDE,
which ia differant from the number of indexses 7 defined in the MysSQL

This may require a different approach to obtaining this file and the matching data
depending on the type of error.

NOTE An unexpected MySQL restart has an additional impact on performance. The
primary memory buffers including the InnoDB buffer pool and the MyISAM key cache
are empty. These must be re-populated when data is requested, causing additional disk
I/0. Internally, MySQL does not store statistics for InnoDB tables, and these have to be



re-calculated when tables are first accessed.

Performing a Static Recovery

The performing of a static recovery involves a number of clearly defined steps
independent of the type of backup option used. These steps are:

1. Necessary software requirements

2. Static data recovery

3. Data verification

4. Point in time recovery (if applicable)
5

. Data verification

MySQL Software Installation

The recovery of, and use of, recovered MySQL data are not possible without a functioning
MySQL installation. Chapter 2 does not describe in any detail the various approaches for
managing the MySQL software. It is beneficial in a disaster recovery situation to minimize
risk by using the same version of MySQL, installed via the same procedures—for
example, via system packaging or binary distribution—and placing all important MySQL
components in the same directory structures.

The use of automated installation and deployment tools can ensure a repeatable
approach to MySQL software management. Popular runtime configuration management
tools include Puppet, Chef, and CFEngine. These tools can ensure the current MySQL
configuration is available before a restore process.

MySQL Configuration

It is important that the MySQL configuration is in place before a data recovery process
begins when performing a SQL restore. Important global memory settings, including the
innodb_buffer_pool_size and key_buffer_size, are critical for efficient data recovery
via SQL execution. Depending on the memory usage of the machine and normal database
concurrency, you could choose to adjust these values to utilize as much system memory as
possible during recovery.

CAUTION If the physical hardware used for a database recovery does not match the
hardware source of the MySQL configuration, it is possible the configuration may cause
MySQL to fail to start or not operate optimally.

You may also elect to optimize or adjust the configuration during the recovery process.
If the server uses binary logging with the log-bin option, disabling this will aid in the
reloading of data via a SQL file for a static backup and point in time recovery. Altering the
InnoDB transaction logging with innodb_flush_log at_trx_commit and sync_binlog
can also reduce some disk I/O during a data restore.

Depending on the recovery process used, you should also disable any replication with



the skip_slave_start option.

Alternatively, disabling the query cache with query cache_ type=0 and disabling
external network access with skip_networking are common additional steps that can
make a small improvement as well as restrict unwanted access during the recovery time.
The init_file and init_connect options may also include steps that should be disabled
during the recovery process.

It is critical that the application is disabled from accessing data during the restore
process, especially if some important settings for data integrity are altered. The
verification process would also require the correction and restarting of the MySQL
instance with the correct configuration before application access is permitted. Restriction
processes may include skip_networking as mentioned, firewall rules to restrict external
access to the MySQL TCP/IP port, normally 3306, or changing the MySQL user privileges
to deny SQL access.

CAUTION Removing external access during a database restore by enabling
skip_networking does not stop any batch or cron jobs that are executed on the local
machine. These may dffect the data restore process. It is important you know all data
access points when performing a database restore.

MySQL Data

The restore of MySQL data will depend on the backup approach used. Using the backup
approaches defined in Chapter 2, we cover each option.

Filesystem Copy

A cold filesystem copy or file snapshot restore is the installation of all MySQL data and
configuration files. This has to be performed when the MySQL installation is not running.
It is important that the MySQL configuration is correctly restored to match the copied
files, as several parameters will cause MySQL to fail to start correctly, or may disable
important components, for example, the InnoDB storage engine. For example, any change
in the file size with the innodb_data_file_path and innodb_log_file_size
configuration settings will cause InnoDB not to be enabled or may stop the MySQL
instance from starting.

SQL Dump Recovery

A SQL dump recovery requires a correctly configured, running MySQL installation. The
restore uses the mysql command line client to execute all SQL statements in the dump file.
For example:

2 time myagl —uluser] -p < dumpl.sgl > dumpl.cut 2Z=&1; echo 37

real 14ml13.E817m
user lmé . 9604
ays Oml.51l6a

0
2 la -1 dumpl.out
-rw-rw-r-- 1 uid gid 0 2012-04-08 04:07 dumpl.out

This example syntax requires the dump file to include necessary create database schema



commands. These are included by default with mysqldump when using the --all-
databases option to create the backup. The backup file will include the following syntax,
for example:

CREATE DATABASE /+132312 IF NOT EXISTE+/ “book™ /+#140100
DEFAULT CHARACTER SET latinl #/;

If you dump an individual schema with mysqldump this is not included by default. The -
-databases option is necessary to generate this SQL syntax within the backup file.

By default, mysqldump will not drop database schemas. To include this syntax to enable
a clean restore for a MySQL instance when existing data may be present, use the --add-
drop-database option.

The restore of a mysqldump generated file is a single threaded process. Some benefit
may be obtained by multi-threading this process; however, this requires a means to create
parallel files and monitoring of resources for any bottlenecks. Chapter 8 will discuss a
number of options for considering a more optimized recovery approach.

The use of per table dump files, particularly in a known format, may be significantly
faster to load using the LOAD DATA statement rather than individual INSERT SQL
statements generated by mysqgldump. There is a trade-off between the complexity to
generate these files consistently, the additional scripting for restoring data, and point in
time recovery capabilities. Chapter 8 will discuss situations when using the per table dump
approach can speed up data access during a recovery procession.

For more information on all possible options with the mysqldump command, refer to the
MySQL Reference Manual at http://dev.mysqgl.com/doc/refman/5.5/en/mysqldump.html.

SQL Dump Recovery Monitoring There is no easy means of determining where the
database recovery process is or how long the process will actually take; however, there are
several tricks that can be used to view the recovery process. There is no substitute for
testing and timing the recovery process to have an indicator of the expected time. This will
change over time as your database grows in size.

You can use the SQL statement being executed, as shown by the SHOW
PROCESSLIST command, to determine how much of the mysqldump file has been
processed. You can compare this line with the total number of lines in the dump file. This
can provide a rough approximation.

Recording table sizes and row counts in a daily audit process will greatly assist in
calculation of the approximate table size. This can be easily determined via the
INFORMATION_SCHEMA. For example:


http://dev.mysql.com/doc/refman/5.5/en/mysqldump.html

SELECT tabkle schema, tabkle name,
engine, row format AS format, table rows,
avg row length AS avg row,
ROUND ( (data_length+index_length) /1024/1024,2) AS total_mb,
RCUND ( (data length) /1024 /1024,2) AS data mb,
ROUND ( (index length)/1024/1024,2) AS index mb,
CURDATE () AS today

FROM INFORMATION SCHEMA.tables
WHERE takble schema NOT IN
{("mysgl', 'information schema', 'performance schema')

ORDER BY table schema, table name;

NOTE Depending on the type of storage engine, some information provided by this SQL
statement is only an estimate. For example, with the InnoDB storage engine, the data
and index size information are accurate; the number of rows is only an estimate.

Including this information with the backup process is of benefit for later analysis and
verification.

MySQL Enterprise Backup (MEB) Recovery

The restoration of a static backup from MEB is a simple command. It is necessary to
perform some prerequisite steps to ensure a successful restore.

+ Stop the MySQL instance.
* Remove any existing data directory.

* Create a clean data directory, or enable permissions for the user to create the data
directory.

* Run mysqlbackup copy-back.

For example:



gudo eu — myBgl

sudo sarvice mysagl sctop £ Ubuntu

pudo rm -rf fvar/lib/mysgl # or applicable data directory

gudo mkdir -m /var/lib/mysgl

sudoe chown mysgl:myeql //var/lib/myvegl

tima Jopt/meb/bin/mysglbackup --defaults-files/etc/mysgl my.cnf 3\
~~backup-dir=/my=gl/backup/mak/ first %

--innodb-log-fllas-in~group=2 copy-back

MYSQ0L Enterpries Backup version 3.7.0 [2011/13/19]

Copvright (c) 2003, 3011, Oracle andfor its affiliates. All Rlights Reserved.

w 4 40 &9 W 90

120408 032:08:4% mysglbackup: INFO: Starting to copy back files
120408 02:08:42 mysglbackup: INFO: in ' /mysqgl/backup/meb/first/datadir’
directory
120408 02:08:4% mysglbackup: INFO: back to original data directory
“Yvar/lib/mysgl’
120408 02:08:45 mysglbackup: INFO: Copying back dirsctory ' /mysgl/backup/mab/
firet/datadir/bookl?
120408 02:08:4% mysglbackup: INFO: Copylng back directory ' /myvegl /backup/meb/
firat/datadir/employses’
120408 0Z:108:4% mysglbackup: INFO: Copying back directory ' /mysgl/backup/meb/
first/datadir/musicbraing’
120408 021:08:45 mysglbackup: INFO: Copying back directory ' /mysgl /backup/meb/
first/datadir/maql’
120408 02:08:45 mysglbackup: INFO: Copying back directory ' /mysgl backup/meb/
first/datadir/sakila’
140408 02:08:45 mysglbackup: INFG: Copyling back directory '/myegl /backup/meb/
firet/datadir/world innodh!
120408 02108145 mysglbackup: INFO: Copying back directory '/mysqgl /backup/meb/
firet/datadir/vorld_myisam’

myeglbackup: INFO: Starting to copy back InnoDBE tables and indexes
in ' /mysgl/backup/meb/firet' back to original InnoDE data directory:
fvar/lib/myagl

mysglbaclkup: INFS: Copying back file ' /mysql /backup/meb/firat/datadir/ibdacat!’
120408 02:11:36 mysglbackup: INFO: Starting to copy back InnoDB log files
in ¥ fmysqgl /backup/mab/Tfirst /datadir® back to original InnoDB log directory

' fvar /1ib/myegl

myaqlbackup: INFO: Copying back fils

' /myagl /backup/meb/firet fdatadir/ib logfilap®

myaglbackup: INFO: Copying back fila

' fmyagl/backup/meb/first /datadir/ib logfilel!
120408 02:11:44 mysglbackup: INFO: Pindshed copying backup files.
mysglbackup completad OK!

raal 2m55.445%s

user oml.332s

sys om22.1378

2 sudo service myagl atart

% tail -s0 fvar/log/mysgl ferror.log

When MySQL is restarted the following messages may occur. This is expected:



120408 2:12:04 InneDE: Initializing buffer pool, size = 4.30

120408 2:12:05 InneDE: Completed initialization of buffer pocl

InnoDB: The log file was created by ikbackup --apply-log at

InnoDB: ibbackup 120407 21:23:50

InncDBE: HOTE: the following erash recovery 1s part of a normal restore.

InnoDBE: The log sequencs number in ibdata files doss not match

InmoDB: the log sequence number in the ib logfiles!

120408 2:12:05 InneDE: Database was not szhut down normally!

InnoDBE: Starting crash recovery.

InnoDBE: Reading tablezpace information from the .ibd filea. ..

InnoDBE: Reatoring posaible half-written data pages from the doublewrite

InnobDB: buffer...

InnoDBE: Last MySQL binlog file position 0 5555, file nmame . /mysgl-bin.ooool?

120408 2:12:08 InneoDE: Started; log sequence number 1 2224524172

120408 2:12:06 [Mote] Ewvent Scheduler: Loaded 0 events

120408 2:12:08 [Mote] Sfuesr/sbin/myagld: ready for connecticones.

Veraicn: '5.1.81-0ubuntud.ll.10.1-log' sockst: ' Svar/run/myagld/myagld.sock!
port: 2206  (Ubuntu)

CAUTION The current MEB version 3.7.0 requires the specification of the innodb-1og-
files-in-group configuration variable to operate correctly. If this is not defined in
your MySQL installation, this must be specified on the command line.

Generally the MySQL data directory is owned by the mysql user; however, the parent
directory does not provide sufficient permissions to create. If the directory is removed, the
following error may occur:

2 time Jopt/meb/bin/mysglbackup --defaults-file=/etc/myagl /my.conf b
--backup-dir=/mysql /backup/mek/first --innodb-log-files-in-group=2 %
copy-back

My2QL Enterprise Backup version 3.7.0 [2011/12/19]

Copyright (o} 2003, 2011, <Cracle and/or its affiliates. 211 Rights EReserved.

mysglbackup: Can't create directory 'Svar/lib/mysgl' (Errcodse: 13)
mya2glbackup: ERROE: Could not create directory for server repository;
Creaticn of datadir failed.

MEB does not perform any of the pre-checks as noted in these instructions. MEB can
perform a successful recovery with a running MySQL installation; however, this will not
produce the results you would expect. Chapter 7 provides an example of the level of
inconsistency and errors that occur.

CAUTION MySQL Enterprise Backup does not perform any checks on whether MySQL
is running, or whether the existing data directory exists. While a restore may complete
successfully, this will cause an inconsistency and possible errors.

XtraBackup Recovery

The XtraBackup restore process is a simple command. XtraBackup also requires several
prerequisite steps. The XtraBackup was created with the commands:

5 time innobackupex --defaults-file=/etc/myagl/my.onf --user=root
- -pasaword=pasawd --no-timeatamp /myaql/backup/xtrabackup/firat
% time innocbackupex --applyv-log /mysql/backup/xtrabackup/firat



Before restoring an XtraBackup you must first stop MySQL, and you must ensure the
existing data directory exists and is empty. XtraBackup will not check that MySQL is not
running. Common errors are:

Original data directory is not empty! at fusr/bin/innobackupex lins S03.

and

Original data directory doss not exist! at Jusr/bin/innckbackupsx lins 439.

The restore is a single command:

2 time innobackupex --copy-back /myagl/backup/xtrabackup/first/
InnoDE Backup Utility vwl.&5.l-xtrabackup; Copyright 2003, 2003 Innobass Oy
and Percona Inc 2002-2012. All Rights Reserved.

innobackupex: Starting to copy filea in ' /mysgl /backup/xtrabackup/first!
innobackupex: back to original data directory ' /var/lib/mysgl’
innobackupex: Copying file !'/var/lib/myagl/ib logfiled!

innobackupex: Copying file !'/var/lib/myagl/xtrabackup binlog pos innodb!
innobackupex: Copying file !'/var/lib/myagl/xtrabackup checkpointa!
innobackupex: Copying file !'/fvar/lib/myagl/ib logfilel!

innobackupex: Creating directory ' /var/lib/mysgl/sakila’

innobackupex: Copying file !'/var/lib/myaqgl/actor info.frm'

innobackupex: Starting to copy InncDE system tablespacs
innobackupex: in ' /myagl/backup/xtrabackup/firatc’

innobackupex: back to original InncDE data directory ! /Jvar/lib/mysgl’
innobackupex: Copying file '/mysqgl/backup/xtrabackup/first/ibdatal?
innobackupex: Starting to copy InncDE log filea

innobackupex: in ' /myagl/backup/xtrabackup/firat’

innobackupex: back to original InncDE log directory !'/var/lib/myagl!
innobackupex: Finished copyving back files.

120408 02:46:18 inncbackupex: complated CKE!

raal iml%.6438s
user omd . 4048
sys omL7.2818

It is important to check the file and directory permissions after the Xtra-Backup restore.
In the previous example performed by the root OS user, starting MySQL would result in
an error similar to:

2 Jeto/init.d/mysgld start

Timeout error occurred trying to start MyEQL Dasmon.

Starting MysSQL: [FAILED]
2 tail -20 mwagld.leog

120108 12:05:07 InncDE: oOperating system error number 12 in a filse operation.
InnoDBE: The arror means mysgld doss not have the access rights to
InnoDBE: the diractory.

InnoDB: Filse name . /ibdatal

InnoDB: File cperaticn call: 'cpen'.

InnoDBE: Cannot continuse cperaticon.

120108 12:05:07 mysgld ended



Innobackupex has a lot of verbose information, but no message at the end stating that
permissions should be set. The following is required to correctly start MySQL following
an XtraBackup restore with the root OS user:

% chown -E mysgl:mysqgql /var/lib/myagl
5 Jeto/init.d/myeqld start

More information on XtraBackup recovery options is available in the documentation at
http://www.percona.com/doc/percona-xtrabackup/.

Chapter 8 will discuss more advanced XtraBackup options including streaming,
compressing, filtering, and parallel operations.

XtraBackup Manager The XtraBackup Manager (XBM) project provides additional
wrapper commands and database logging for XtraBackup. This is written in PHP. See

http://code.google.com/p/xtrabackup-manager/wiki/  QuickStartGuide for detailed
instructions in getting started.

Performing a Point in Time Recovery

Regardless of the static recovery approach used, a point in time recovery is the application
of MySQL master binary logs from the time of the backup, to a given time, generally all
possible data. A point in time recovery can also be performed to a particular time or binary
log position if necessary.

There are two mechanisms for using the master binary logs; these depend on the use of
the restored MySQL environment in relation to MySQL replication. If the server is
standalone, the extraction of SQL statements from the binary log and application via the
mysgl command line client is performed. If the server is a slave in a MySQL topology, the
replication stream can be used to perform this automatically, levering the binary logs that
exist on the MySQL master.

Both options require the correct position and corresponding binary log for a successful
recovery.

Binary Log Position

The current position at the time of the database backup is necessary to apply binary log
statements.

Using mysgldump

With mysqldump, the use of the --master-data on the master server, or --dump-slave on
the slaver server, will generate the following SQL statement with the output:
CHANGE MASTER TO MASTER HOST='10.0.0.1"',
MASTER USER='repl',
MASTER PASSWORD='#**#*+%+1
MASTER LOG FILE='mysgl-bin.000146',
MASTER LOG POS=810715371;

The referenced information will be used in later examples.


http://www.percona.com/doc/percona-xtrabackup/
http://code.google.com/p/xtrabackup-manager/wiki/

By default the CHANGE MASTER TO statement is applied during the data recovery. If
a value of 2 was specified for either of these options, for example, - -master-data=2, then
this SQL statement is only a comment and must be manually applied during the recovery
process. For older style backup approaches, the CHANGE MASTER syntax can be
generated via the SHOW SLAVE STATUS output.

2 my=sgl -uroct -p —& 'SHOW SLAVE STATUS\G' = slave.status

% cat slave.status | awk '/Master Log File/ { LO3=%52 } /Exec_Master Log Pos
{ pOsS=$2; printf "CHANGE MASTER TO MASTER LOG FILE=%"%s\",
MASTER_LOG POS=%5;5HOW SLAVE STATUSY'\G",LOG, POE] ]

Filesystem Copy or Filesystem Snapshot

Depending on the other backup approaches used, the position is held in the underlying
master.info file and will be defined when the data is restored via a filesystem approach.

MySQL Enterprise Backup (MEB)

MySQL Enterprise Backup has this information in the meta sub-directory of the backup.
For example:

8 grep kinleg meta/backup wvariables.txt
binleg peosition=myagl-bin.000017:5555

XtraBackup

XtraBackup has this information in the backup directory. For example:

$ cat xtrabackup binleg info
mysgl-bin. 000001 37522

Standalone Recovery

Following a successful static recovery, the application of the MySQL binary logs requires
the use of the mysqlbinlog command to translate the information into SQL statements that
can be applied by the mysql command.

Using the details of the master position as shown in the previous CHANGE MASTER
example, we know the binary log file is ‘mysql-bin.000146’ and the position is
810715371.

2 mysglbinlog /path/to/myegl-bin. 000148 --atart-position=810715271 %
| mysgl -urcot -p

It is likely additional binary log files are also required for a point in time recovery to the
most current transaction.

2 mysglbinlog /path/to/myegl-bin. 000147 /path/to/mysgl-bin.ool4as ... atch,
| mysgl -urcot -p

NOTE A trick with managing the binary logs is to perform a FLUSH LOGS command
during the backup process. This produces a new binary log file at the time of the
backup, and can reduce the complexity necessary to determine the start position with



binary logs to be applied.

You can also use the mysqlbinlog command to retrieve selected SQL transactions for a
more specific period via time or position using the --start-datetime, --stop-datetime,
--start-position, and --stop-position options, respectively. These options can be
used to perform a point in time recovery to a date or position before the end of the binary
log, generally to undo a human generated data error such as an accidental deletion of data.
These options are particularly beneficial for data analysis of a binary/relay log when an
error has occurred.

Analysis of the binary log using an unknown start position or unknown end position can
result in misleading information. The following shows an error in processing the binary
log; however, this not a result of the contents of the actual binary log:

2 mysglbinlog relay-log.007112 --start-position=e50000 --atop-position=700000

ERROE: Error in Log event::read log event(): 'read error',
data len: 538376288, event typs: 32
ERROE: Cculd not read entry at offset s50000: Error in log format or read errcr.

2 mysglbinlog relay-log.00711l2 --start-positicn=e40000 --atop-position=700000

ERROE: Error in Log event::read log event(): 'Event too big',
data len: 1414577843, event type: 110
ERROE: Could not read entry at offset §40000: Error in log format or read errcor.

When using correctly aligned event boundaries, no error occurs.

2 mysglbinlog relay-log.007112 --start-positiocn=ele0s3 --atop-position=616412
# at ela0s&3
#1l00605 0:48:23 server 1d 1 end log pos 616220 Query thread id=5331
exac time=0
error_code=0
use blog/*L*/;
SET TIMESTRMP=1275713303/%]1%/;

UFDATE “wp optiona™ 3ET “option wvaluse™ = '18784' WHERE “option nams™ =
'akismet spam_ count'
II,I"I. ltll,:

# at 616220
#Ll00605 0:48:23 server 1d 1 end log pos 616413 Query thread id=5331

exac time=0

error_code=0
SET TIMESTAEMP=1275713303/ /%]*/;:
DELETE FRCM wp_ comments WHERE DATE SUB('2010-06-05 04:48:23°',
INTEEVAL 15 DARY) = comment date gmt AND comment approved = 'apam’
/¥R
DELIMITER ;

For more information on the full options for the mysqlbinlog command refer to the
MySQL Reference Manual at http://dev.mysqgl.com/doc/refman/5.5/en/mysglbinlog.html.



http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html

Leveraging the Replication Stream

If the server is the slave of an existing and functioning MySQL master within a replication
topology, the normal replication stream can be leveraged providing the position of the
master binary log is correctly defined for the slave. Depending on the data backup and
static recovery process, this may or may not be already defined for the recovered data.

When using the --master-data or --dump-slave option you will observe in the
mysqgldump output file a CHANGE MASTER statement that will set the correct position. If
using the output information from a SHOW SLAVE STATUS command you can construct
the correct syntax as shown in the previous section.

Following this command you should run SHOW SLAVE STATUS in order to verify
settings, then START SLAVE to start processing the replication stream. You should review
the SHOW SLAVE STATUS output a second time for any errors including invalid
permissions and other errors. The following is a command error:

mysqgls> SHOW SLAVE STATUS\G

8lave I0 Funning: No
Slave 8QL Funning: Yes

Last Errnc: 0O
Last Error:

Last IO Errnc: 1236

Lasgt IO Error: Got fatal error 1226 from master when
reading data from hIna;y leg: 'Could not find first log file name in
binary leg index file?®

Last_ SQL Errnc: 0O

Last 2QL Error:

This shows that the master no longer has the required binary log files necessary to
replay all SQL statements via the replication stream.

For more information about the SHOW SLAVE STATUS command, refer to the
MySQL Reference Manual at http://dev.mysqgl.com/doc/refman/5.5/en/mysglbinlog.html.

Binary Log Mirroring

A new feature of the current 5.6 DMR version is the ability to read the binary logs of a
remote system, rather than having to copy the binary logs to process. In addition, a new
option is also provided to read a remote binary log and produce an exact copy in binary
format. This feature can also allow for binary log mirroring.

The --read-from-remote-server option tells mysqlbinlog to connect to a server and
request its binary log. This is similar to a slave replication server connecting to its master
server. The - -raw option produces binary output, and the - -stop-never option enables the
process to remain open and continue to read new binary log events as they occur on the
master. For example:


http://dev.mysql.com/doc/refman/5.5/en/mysqlbinlog.html

$ mysgl -hlo.0.0.1 -& "SHOW MASTER LOG3S"

S ettt S et +
Log_name | File size |
S ettt o SRS R S +
mysgl-bin. o000l 125
mysgl-bin. ocooooz2 125
mysgl-bin. 0o0aoos 14378834
mysgl-bin. 000004 1428537538
mysgl-bin. 00ooos 156100014
mysgl-bin. 0c0ooos 110673964
mysgl-bin. coaoa? 245009860
mysgl-bin.ocoaoos 152458500

I I
I I
I I
I I
I I
I I
I I
I I
| mysgl-bin.oooo0s | 109169248
I I
I I
I I
I I
I I
I I
I I
I I

mysgl-bin. 00ao1o 853187461
mysgl-bin. 0coooll lBe417244
mysgl-bin.ocooolz2 17154
mysgl-bin.ooools 13064
mysgl-bin.oo0ool4 1459
mysgl-bin. 00001s 149
mysgl-bin. o0ools 149
mysgl-bin. ocoool? gizg

2 mysglbinlog -hlo.0.0.1 --read-from-remote-server myagl-bin. oo001z2

# at 4

#LlZ0402 23:56:13 server 1d 1 end log pos 106 Start: binlog v 4,
sarvar ¥ S5.l.81l-0ubuntuc.11.10.1-1og created 120402 23:56:132
EINLOG !

NTXE TWEBARRAROAL RCOARRAL RACANSAX L) ¥YXLTEL Y NVUAHUIWL] EXL] EWL] EthEonARR AR RARR DR
AR RRRA AR AR AR AR AR AR AAR FgNARJAEJAEEAEEgAATIWAEGOQARRA T CAC
Tielxf;

# at 108

CREATE TABLE IF NOT EXISTS mysql.backup progreas |

/v

# at c01

INSERT INTO mysgl.backup history (backup id, tool name, ...}

VALUES (122342323 75677862, ' fopt /meb/bin/mysgqlbackup --user=root
--backup-dir=/mysql/backup/meb/second-comprassed --compreas backup ',
'2012-04-03 03:32:17','2012-04-03 03:36:59',...)

/rinf;

# at 17135

#Ll20403 4:32:26 server 1d 1 end log pos 17154 Btop
DELIMITER ;

# End of log file

REOLLEACE /+* addad by mysglbinlog */;

f*1E0003 2ET COMPLETION TYFE=@C2LD COMPLETICH TYPE*/;

You can produce a copy of the master binary log with:

2 mysglbinlog -hlo.0.0.1 --read-from-remote-servar b
--Taw myagl-bin.oo0012 > mysgl-bin.ooool2
2 12 -al mysgl-bin.ooo0l1lz
-rw-rw-r-- 1 uid gid 17154 2012-04-07 22:1% myagl-bin.ood0lz
# Z2ams number of byvtez as in SHOW MASTER LOGES

You can also obtain content from all binary logs from a given file with:

2 mysglbinlog -hlo.0.0.1 --read-from-remote-server --to-last-log mysgl-bin. 000013



Analysis of the output provides the following to see the change in filenames:

2 mysglbinlog -hlo.0.0.1 --read-from-remote-servar --to-last-log b
mysgl-bin.o0ool3 | grep Rotate

#700101 Q:00:00 server id 1 end log pos 0 Rotate to mysgl-bin.ooools
#lZ0404 £:25:04 server id 1 end log pos 13064 Rotate to mysgl-bin.ooool4
#700101 0:00:00 server id 1 end log pos 0 Rotate to myagl-bin. o0o0l4
#LlZ0405 6:25:02 server id 1 end log pos 149 Rotate to myagl-bin.
#700101 Q:00:00 server 1d 1 end log pos 4 Rotate to myagl-bin. o0001s
#1lZ0406 6:25:01 server id 1 end log pos 149 Rotate to myagl-bin. o000le
#700101 0Q:00:00 gerver id 1 end log pos 0 Rotate to myagl-bin. o000le
#1lZ0407 6:25:02 server id 1 end_log pos 149 Rotate to myagl-bin. 000017
#700101 Q:00:00 server 1d 1 end log pos 0 Rotate to myagl-bin. 000017

TIP Even if your production environment is not running MySQL 5.6, you can install this
MySQL version on another server and use these commands connecting to an older
server version, as shown in these examples connecting to a MySQL instance running
MySQL 5.1.

For more information see http://dev.mysql.com/doc/refman/5.6/en/mysglbinlog-
backup.html.

Recovery Verification

The successful recovery of a MySQL environment is not complete until verification is
performed. This can be difficult to determine as the various reasons for requiring a
recovery may affect the ability to calculate verification results.

The checking of applicable restore command(s) error status, log files, and MySQL error
log is a mandatory initial step. While this appears obvious, this author has experienced
DBA resources not performing this most basic of steps, so this is mentioned for
completeness.

The first obvious data check is to look at the size of your database. This can be as
simple as an INFORMATION_SCHEMA query. While this step is not a confirmation of
success, this will confirm no obvious import or restore failure. This can indicate no more
time consuming validation is required when a failure is immediately detected. This check
can be performed after both the static recovery and point in time recovery steps. It is
important to also check the number of database objects, including tables, routines, and
triggers, in a similar fashion.

The second check is to confirm a likely most recent transaction. This could be as simple
as looking at the last order, status update, or log entry in a given table. When your system
performs hundreds of INSERT or UPDATE statements per second and there is a recorded
insert or update timestamp or AUTO_INCREMENT primary key, there is an easy
comparison of the last reported database modification. Again, this check is not a
confirmation of success, rather an indicator of obvious failure or highlighting of potential
or expected data loss. This can be performed after both the static recovery and point in
time recovery steps.


http://dev.mysql.com/doc/refman/5.6/en/mysqlbinlog-backup.html

When a complete point in time recovery process is performed, the reported binary log
position from SHOW SLAVE STATUS can be verified with the applicable master binary
log position, recorded as part of the backup, the current file size of the last imported
binary log, or the current SHOW MASTER STATUS information.

The most conclusive agnostic approach is to perform a table checksum to compare the
actual data. The CHECKSUM TABLE command or the Percona Toolkit pt-table-
checksum utility can be used. This is impractical in a large database due to the time to read
all data to calculate. It may be practical only to check certain tables with this detailed
analysis. A more simplified check of the number of rows, or sum of an important column,
for example, and order table invoice amount can provide an initial check.

With all these steps, data verification is generally complex because the restored data
source cannot be accurately compared with an active and ever changing production
environment. Given this situation and knowing these limitations, adding additional checks
during the backup process can be critical in reducing risk. By recording a checksum,
count, sum, or some other calculation on the database at the time of a static backup, an
applicable check can be made after the static recovery step.

Using the same data checksum approach for the schema definition and all stored
routines and trigger code is also highly recommended. See Chapter 4 for examples on data
and object consistency.

The importance of database verification is to detect any problem before it becomes a
real issue. If data is lost or incomplete further application use may compound this
problem; a database recovery may not be possible in 12 hours’ time. Difficult and time
consuming data analysis may then be needed to address any data corruption, loss, or creep.

Important business metrics are generally the first indicator of a likely problem. The
amount of verification is proportional to the important value of the data. It may be critical
to ensure that all data is consistent for customer orders, and less important for a review of
a product, for example.

During the verification process application access to the underlying database should
never occur. It is very important this step is adequately catered for during the recovery
process. This is often overlooked when a full end-to-end test is not performed. After any
disaster it is advisable to perform a backup as soon as possible.

The Backup and Recovery Quiz

In response to several organizations failing to have applicable production resilience the
following checklist was created in early 2010 to poll what procedures existed.

1. Do you have MySQL backups in place?
2. Do you back up ALL your MySQL data?
3. Do you have consistent MySQL backups?

4. Do you have backups that include both static snapshot and point in time
transactions?

5. Do you review your backup logs EVERY SINGLE day or have tested backup



log monitoring in place?
6. Do you perform a test restore of your static backup?
7. Do you perform a test restore to a point in time?
8. Do you time your backup and recovery process and review over time?
9. Do you have off-site copies of your backups?
10. Do you back up your primary binary logs to a different server?

This is not an exhaustive checklist of all requirements, only the first ten items necessary
for ensuring adequate minimal procedures. If you do not score eight or better in this
checklist for your business, you are at higher risk of some level of data loss in a future
disaster situation. If you are an owner/founder/executive this should keep you awake at
night if you are not sure of your business viability following a disaster.

Source: http://ronaldbradford.com/blog/checked-your-mysql-recovery-process-recently-
2010-02-15/

Other Important Components

This chapter has discussed the recovery of MySQL software, configuration, and data. This
is the primary purpose of this book. Any operational production database system generally
includes much more than just MySQL software and data. While not discussed it is
important that as a database administrator, any additional database and system related
features are included in a total backup solution. For example:

» Cron job entries

 Related scripts, run via cron, via batch or manually

» Application code

» Additional configuration files (e.g., SSH, Apache, logrotate, etc.)
 System password and group files

» Monitoring scripts or monitoring plugins

» Backup and restore scripts

» Any system configuration files (e.g., /etc)

* Log files

Conclusion

Your business viability and data management strategy are only as good as your ability to
successfully recover your information after any level of disaster. In this chapter we have
discussed the essential steps in the process for a successful data recovery and the
importance of data verification. Chapter 7 will extend these essential foundation steps with
a number of disaster scenarios to highlight further advanced techniques in ensuring an
adequate MySQL backup and recovery strategy. Chapter 8 provides more examples of
recovery options for various advanced backup options.


http://ronaldbradford.com/blog/checked-your-mysql-recovery-process-recently-2010-02-15/

The SQL statements and web links listed in this chapter can be downloaded from
http://effectivemysql.com/book/backup-recovery/.



http://effectivemysql.com/book/backup-recovery/

6
MySQL Configuration Options

MySQL 5.5 supports over 300 configurable system variables. A number of these
variables have a direct effect on how MySQL will operate when dealing with a database
backup and crash recovery situation. Understanding what system variables do and how
they change the behavior of the MySQL server will help define how your backup and
recovery system will act when you need it the most.

In this chapter we will discuss:
* Data management system variables
* Replication system variables

* Recovery system variables

Data Management

In this section we will cover data locations, consistency, and binary logging system
variables. Having a homogeneous system setup is the preferred way to run an
environment, especially at scale. Knowing where your data is located on a file system is a
tremendous help when troubleshooting a system along with automation and other tasks.
Enabling the right system variables for data consistency driven by your Service Level
Agreement (SLA) and knowing when to use certain binary logging options are all part of
system design, and, in the end, how your system will recover from disaster.

Data Locations

The following options define the physical filesystem locations of important data stored in
MySQL. It is important to note that these locations are often overlooked when running
recoveries from server to server. Keeping your data locations homogeneous throughout
your system will lessen confusion during recovery especially if your system is sharded.



This means keeping all of the MySQL data, tmp, and base directories the same throughout
your environment. Other considerations would be keeping the InnoDB data file path and
InnoDB log file sizes the same throughout your environment. Here you will find a more
detailed list of system variables that need to be the same from master to slave and from
shard to shard:

* datadir The datadir is, by default, the directory where all databases, tables, InnoDB
data, server logs, and binary log files are located on the filesystem. Directories within
the datadir represent databases. Tables within the databases are represented by files,
which can differ depending on storage engine and server configuration. InnoDB
tablespace(s) and transaction logs will also be stored here unless defined by other
variables. The same can be said about server logs like the slow query log and error log
along with binary and relay log files. For Linux distributions this, by default, is
/var/lib/mysql.

* basedir The basedir is the filesystem location of the MySQL installation directory. It
is a good idea to have this directory located in your PATH for easy access to the
MySQL server and client utilities. Keep in mind that the basedir, by default, is /usr on
Linux and will probably be different from company to company. In this case you should
put the $basedir/bin inside your PATH so you do not require the full path to the
MySQL server and client utilities.

* innodb_data_file_path This variable defines the location to individual InnoDB data
files, also known as tablespaces, along with their sizes and behavior. The size limit of
individual files will be determined by your operating system; however, the sum of the
files, by default, has to be a minimum of 10MB. InnoDB files can also be set to
autoextend. In this case, these InnoDB files grow, if the data exceeds the initially
defined size and “auto-extend” is enabled. Please note that these files are currently
required by InnoDB to function and are considered system tablespace(s). This includes
when InnoDB is set to run with innodb_file_per_table.

* innodb_data_home_dir If you are not using absolute paths to define your shared
tablespaces in the innodb_data_file_path system variable you can use
innodb_data_home_dir to specify where all common InnoDB data files will be located
on the filesystem. Like innodb_data_file_path, this variable does not affect the
location of per-file tablespaces when innodb_file_per_table is enabled. The default
value for this variable is the MySQL datadir.

* innodb_file_per_table When innodb_file_per_table is enabled all tables that are
created with the InnoDB storage engine will create their own tablespace. The per-table
tablespace created is represented as tablename.ibd in the corresponding database
directory. The .ibd file is where data and indexes are stored. If
innodb_file_per_table is disabled, the default, all data and indexes will be stored in
the system tablespace. Innodb_file_per_table must be enabled if you choose to use
newer InnoDB file formats starting with Barracuda.

CAUTION The innodb_file per_table variable should be set before creating any
database objects. It is not possible to have a hybrid model. The only means to safely
convert from a system tablespace to a per-table tablespace is to dump all data, drop all



objects, and re-create database objects and reload all data.

Data Consistency

These configuration options affect how MySQL writes and flushes data to disk. MySQL
provides options that produce a tradeoff between write performance and durability (i.e., D
of ACID) for all transactions. The combination of varying disk hardware configurations
such as Battery Backed Write Cache (BBWC) RAID controllers also can affect
consistency.

* sync_binlog When the value of sync_binlog is set to one (1), the safest setting,
events sync to the binary log after every commit, which provides, at most, one
statement lost in the event of a mysqld crash if auto-commit is enabled. Setting
sync_binlog to a value greater than the default, zero (0), allows MySQL to sync events
at a much slower rate (allowing the disk to not work as much). Although setting
sync_binlog to 1 is the slowest setting it can also be sped up with the use of a Battery
Backed Write Cache.

As stated earlier, setting sync_binlog to a value of 1 is the slowest but safest setting.
This is because InnoDB will sync to the log files after every commit, which, in turn will
increase the amount of I/0 on your system. SSD (Solid State Drives) drives are
becoming less expensive and more prevalent in many installations. When using SSDs
on your system you may not notice any performance degradation when setting
sync_binlog to a value of 1.

* innodb_flush_log_at_trx_commit By default the value of
innodb_flush_log_at_trx_commit is 1, meaning that the log buffer is written out to
the InnoDB log files after every commit and a flush disk operation is performed on the
log file. Setting the value of innodb_flush_log_at_trx_commit to 2 will flush the log
buffer to the InnoDB log file at a loose interval of once per second. It is not
recommended you use the value of 0.

CAUTION Setting innodb_flush_log _at_trx_commit to 1 does not ensure full ACID
compliance. Also, setting this variable to 1 is one of the most performance hindering
aspects of replication. For more information please see,
http://dev.mysqgl.com/doc/refman/5.5/en/innodb-
parameters.html#sysvar_innodb_flush_log_at_trx_commit.

* innodb_support_xa This option enables InnoDB to run two-phase commits for XA
transactions and is enabled by default. This variable is essential for systems that are
using binary logging and have more than one thread changing InnoDB data in XA
transactions. Although enabling innodb_support_xa causes an extra disk flush for
transaction preparation it is necessary to ensure that transactions are placed into the
binary log in the correct order. The only times you should disable this variable is when
your system only uses one (1) thread to add and modify data or you are not using
replication.

TIP Disabling or setting innodb_support_xa to 0 could be beneficial, performance


http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_flush_log_at_trx_commit

wise, when restoring a SQL backup and log-bin is enabled. This will remove the need
for an extra fsync(). For faster overall performance you can disable
innodb_support_xa; however, you must gauge the risk of possibly having inconsistent
data with performance.

* innodb_doublewrite InnoDB performs a sequential write and sync of all data pages
that are being flushed by the InnoDB I/O thread before writing the data pages to the
appropriate random data file positions. If a MySQL crash occurs, the buffer can be used
during crash recovery to obtain a correct copy of data pages. This variable is enabled by
default (value of 1). The InnoDB doublewrite buffer guarantees page recoverability and
reduces the amount of fsync to disk.

When this variable is enabled a chunk of pages is written to the doublewrite buffer
followed by an fsync, then pages are written to the tablespace followed by an fsync. If
innodb_doublewrite is disabled each page that is written would need to be fsync’ed.

* innodb_flush_method There are three valid values, O_DSYNC and O_DIRECT, along
with the default value of fdatasync. The overall goal for this variable is to modify the

behavior of synchronizing I/0. POSIX offers different variants to synchronize 1/0,
which are O_SYNC, O_DYSNC, O_RSYNC, and O_DIRECT.

Linux implements O_SYNC, but glibc maps O_DSYNC and O_RSYNC to the same
value as O_SYNC. O_SYNC semantics require all meta-data updates of a write to on
disk when returning to userspace. O_DSYNC requires only the file data and meta-data
necessary to access it again to be on disk by the time the system call returns.
O_DIRECT minimizes cache effects of the I/O to and from a file and makes an effort to
transfer data synchronously but gives no guarantees that data and necessary meta-data
are transferred.

If the value of innodb_flush_method is set to O _DSYNC InnoDB will use O_SYNC
for the logs files and fsync to flush data files. When innodb_flush_method is set to
O_DIRECT InnoDB uses O_DIRECT to open data files and fsync to flush both data
and log files. By default, InnoDB uses fsync to flush both data and log files.

Given that InnoDB has its own caching, i.e., innodb_buffer_pool, setting
innodb_flush_method to O_DIRECT may help avoid double buffering between the
buffer pool and the filesystem cache when you are running with hardware RAID and
Battery Backed Write Cache. In any case you will need to benchmark your particular
environment to see what setting works best with your load.

* innodb_fast_shutdown Changing the behavior of InnoDB upon shutdown is nice to
have but can be dangerous. innodb_fast_shutdown has three valid values, 0, 1 (the
default), and 2. When the value is set to 0, InnoDB performs a slow shutdown, meaning
a full purge and an insert buffer merge before shutdown. With a value of 1, InnoDB
skips the purge and merge and does a fast shutdown, making the shutdown process
faster but still safe. When the value is set to 2, the most dangerous, InnoDB flushes its
logs and shuts down cold, like a crash. Although no committed transactions are lost, an
InnoDB crash recovery will occur during the next startup and may take more time for
the instance to come online.



* default_storage_engine Sometimes the ENGINE of the table can differ from
environment to environment (i.e., Dev, Test, QA, and Production). It is important to set
the default_storage_engine through all parts of the environment identically to ensure
the correct behavior of the table throughout all points of the product life cycle. In
MySQL versions from 3.23 to 5.5.4 the default value is MyISAM. In version 5.5.5 and
higher the default value is now InnoDB.

Binary Logging

These initial options are mandatory settings for the configuration of MySQL binary
logging. These options are necessary to ensure that a point in time recovery (PITR) is
possible. These settings are also necessary to enable replication on a master.

* server_id With the current implementation of replication, MySQL needs to know that
it is executing statements on unique servers so as to not duplicate work. Setting the
server_id to a unique value for every slave in your MySQL topology will ensure that
replicated data is applied correctly. If duplicate server ids are noticed in a MySQL
topology a few errors can occur. Replication will not start and the slave will throw an
error stating the master and slave hosts have the same server_id. If there is more than
one slave host your error may fill up with the following note:

[Mote]l 2lave IO thread: Falled reading log event, reconnecting to retry, log
'myagl-bin. 000723 at position 1047354349
[Hotae] Slave: received end packet from sserver, apparent master shutdown:

A good practice is to set the server_id to an integer based off of the IP address of
the server. The integer address of the IP 192.168.0.1 is 3232235521 and can be set as
the value of server_id as long as the integer is less than or equal to 4294967295. For
example:

myagl> SELECT INET ATON('192.168.0.1');

e +
| INET ATON({'192.168.0.1') |
e e T +
| 3232235521 |
T i +

1 row in aset (0.01 secg)

* log_bin This enables the binary log and is absolutely necessary if you want to
replicate data and/or have point in time backups. It is a good practice to set an absolute
path and basename for the value of 1og_bin to control the name of the binary logs. If no
basename is given MySQL will place the binlogs in the datadir with “host_name-bin”
as the basename.

* log_bin_index The log_bin_index file holds the names of binary logs acting as an
index. Again, if you do not specify the filename and omit the basename in log_bin
MySQL will use “host_name-bin.index” as the default filename.

* binlog_format With this variable you will be able to control the type of binary
logging that MySQL uses. Setting the value to STATEMENT, the default, will cause
MySQL to use pure statement based replication where all statements are recorded to the
binlog. Setting the value to ROW will cause MySQL to use pure row based replication
and log changed blocks to the binary log. Finally, if you set binlog_format to MIXED,
both statements and blocks can be inserted into the binary log.



* binlog_do_db & binlog_ignore_db These variables are used on the master host.
When binlog_do_db is specified and using statement based replication, the only
statements that will be logged to the binary log are those that are preceded by the USE
database_name statement. If more than one database is needed you will need to use
multiple lines in the my.cnf file because database names can contain commas. Keep in
mind that cross-database statements will not be logged while a different database is set
as default or no database is selected. When using row based replication only changes
belonging to the database name are made regardless if the USE statement is used.
Adversely, you can use binlong_ignore_db to exclude databases from the binary log
on the master host.

If you do choose to use these variables it can change the way backups and recovery
are performed. There are certain situations or setups that these variables are good for;
however, you should be aware that it is possible to have data inconsistencies when used.

* binlog_cache_size If a MySQL host has binary logging enabled, transactional storage
engines are being used (i.e., InnoDB) and you are using large transactions, you can
increase the value of binlog_cache_size to possibly increase performance. This cache
is used to hold changes to the binary log during a transaction.

By checking the value of the server status variable, binlog_cache_use, you can
determine the number of transactions that used the binary log cache. The
binlong_cache_disk_use is another server status variable to check that indicates the
number of transactions that used the binary log cache but exceeded the value of
binlog_cache_size and used temporary files to store changes.

* binlog_stmt_cache_size This variable specifies the size of the cache for the binary
log to hold non-transactional statements during transactions on a per client basis. Again,
if you are using large non-transactional statements within transactions you may benefit
from increasing the value on binlog_stmt_cache_size. Also, this variable only matters
if binary logging is enabled.

The server status variable, binlog_stmt_cache_use, specifies the number of non-
transactional statements that used the binary log statement cache.

* binlog_row_event_max_size The value is represented in bytes with a default value of
1024 and should be a multiple of 256. This variable represents the maximum size of a
row based binary log event.

MySQL Replication

MySQL replication is crucial in systems that have a good backup and recovery plan. There
are a few variables that affect the way MySQL replication behaves. Whether a slave host
is set to only replicate certain databases, skip certain errors, and or is set up in a unique
chain topology, it is important to know how the following will affect your setup.

* relay_log MySQL uses a numbered set of files called relay logs to hold replicated
database changes before the SQL thread applies them to the slave. These files are
located on the slave host directly and are only active on the “master” host when
log_slave_updates is active. The relay log files are numbered in sequence starting



from 000001 and are accompanied by what is referred to as the relay index file, which
contains the names of all relay files currently being used. Relay log files are in the same
format as MySQL binary logs, making them easy to read using the mysqlbinlog client
utility.

Like the binary log, relay log positions are represented by byte offsets, so if the
Relay_Log_Pos is 671 and the Relay_Log_File is mysqld-relay-bin.000002 then
MySQL has read up to 671 bytes of the corresponding file. The naming conventions for
the relay log file can be altered with the relay-log=[file_name] and relay-log-
index=[file_name] options in the my.cnf file. If either of the preceding is absent in the
my .cnf file the relay logs will take their naming convention from the pid-file option,
if specified. For example, when a PID is specified in the my.cnf and the relay-1log and
relay-log-index are omitted, the relay logs will be mysql_3306-relay-bin.index and
mysql_3306-relay-bin.000001. If relay-log, relay-log-index, and pid-file are
not specified, the relay logs will default to host_name-relay-bin. nnnnnn and
host_name-relay-bin.index, where host_name is the server host and nnnnnn
represents the sequential file numbering.

* relay_log_index The relay log_index system variable holds the names of all the
relay logs for quick lookup.

* replicate_do_db & replicate_ignore_db These variables are used on the slave host
and act much like binlog_do_db and binlog_ignore_db do on the master host. If a
slave is set up using replicate_do_db and using statement based replication only,
statements that have a preceding USE database_name statement will be applied to the
slave host. If row based replication is used, a statement with a qualifying
database_name.table_name will be applied to the slave host. Adversely, if you specify
replicate_ignore_db, all transactions relating to the database specified will not be
applied to the slave host.

* slave_skip_errors Replication error codes can be skipped automatically when
slave_skip_errors is specified. Normally replication will stop when the SQL thread
encounters an error; however, this variable will cause the SQL thread to skip those
errors listed in the variable value.

It is important to mention that it is not always a good idea to specify a value for
slave_skip_errors, given the implications of data drift and/or data integrity.

* slave_exec_mode There are two valid values for slave_exec_mode, IDEMPOTENT
and STRICT. This variable is used for replication conflict resolution and error checking.
If the value is set to IDEMPOTENT (default for NDB), the slave will not error out
during duplicate key or no key found errors. The IDEMPOTENT value is useful with a
system that is set up in a multi-master or circular replication fashion. When the value is
set to STRICT, the default, replication will stop on duplicate key and no key found
errors.

* log_slave_updates When log_slave_updates is set to true and binary logging is
turned on, the slave host will write all replicated changes to its own binary log. This
option is used to chain multiple nodes together through replication. For example, if you
have three servers (A, B, and C) and want to connect them in a chain you would use



log_slave_updates on B. B would replicate from A, and C from B, forming a chain,
(A->B->0Q).

Recovery

InnoDB has provided the ability to auto recover after a crash or detecting errors. In later
releases, version 5.0, MyISAM is now able to run check and recover automatically when
an error or crash is detected. There are four system variables that need to be in every
administrator#x2019s arsenal when dealing with InnoDB or MyISAM corruption.

* innodb_force_recovery One would use innodb_force_recovery to recover InnoDB
tables that have been corrupted on the page level. Setting this variable to a value greater
than O (the default) will allow an administrator to start the MySQL server and run a
SELECT .. INTO OUTFILE or mysqldump. Corruption may cause InnoDB to crash, assert,
or roll forward recovery to crash from InnoDB background threads or when issuing a
SELECT * FROM table_name statement. Innodb_force_recovery is used to prevent
InnoDB background operations from running so you are able to start the server and
dump out your data.

There are seven different levels of innodb_force_recovery, 0—6; however, it should
be noted that when setting the value past 4, most of your data might be irrecoverable.
InnoDB prevents INSERT, UPDATE, and DELETE operations when the value of
innodb_force_recovery is greater than 0. The following is a list of what the different
levels accomplish.

* (DEFAULT) A normal startup without a forced recovery.

* (SRV_FORCE_IGNORE_CORRUPT) Allows the server to run even if it detects a
corrupt page. This will allow InnoDB to jump over corrupt index records and pages
when running SELECT * FROM table_name.

* (SRV_FORCE_NO_BACKGROUND) If a crash occurs during the purge operation,
setting the value to 2 would prevent the main thread from running.

* (SRV_FORCE_NO_TRX_UNDO) Ensures that transaction rollbacks do not occur
after recovery.

* (SRV_FORCE_NO_IBUF_MERGE) Table statistics are not calculated and no insert
buffer merge operations occur.

* (SRV_FORCE_NO_UNDO_LOG_SCAN) Skips looking at InnoDB undo logs upon
startup and treats incomplete transactions as committed.

* (SRV_FORCE_NO_LOG_REDO) Ensures that the log roll-forward is not run in
connection with recovery.

» myisam_recover There are four values you can use for myisam_recover: DEFAULT,
BACKUP, FORCE, and QUICK. Furthermore you can use any combination of the
preceding values if you separate them by commas. If myisam_recover is enabled
MySQL will check if a MyISAM table is marked as crashed or was not closed properly

every time the table is opened. The following is a list describing what each of the values
does:



* DEFAULT Recover without backup, forcing, or quick checking.

* BACKUP Run a backup of the table if the data file was changed during recovery.
In this case a backup of table_name.MYD will be saved as table_name-
datetime.BAK.

* FORCE Runs arecovery even if more than one row of data would be lost from
the .mMYD file.

e QUICK If there are no deleted blocks, rows in the table will not be checked.

When using MyISAM and you want to recover from most problems automatically,
you should use the options BACKUP, FORCE as the values for myisam_recover. It is
important to note that the server will write a note to the error log before the server
automatically repairs the table.

* myisam max_sort_file size The default setting for myisam_max_sort_file_ size is
2GB and represents the max allowed file size when re-creating a MyISAM index during
a REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE. If the size of the index
is greater than the value of myisam_max_sort_file_size the key cache is used instead.
Keep in mind that the space must be available on the filesystem where the original
index file is located.

* myisam_sort_buffer_size This setting specifies the size of the buffer that is allocated
when sorting MyISAM indexes during a REPAIR TABLE or when creating indexes.
The max value on 32 bit systems is 4GB but can be greater on 64 bit systems.

Conclusion

As stated at the beginning of the chapter, there are over 300 different configuration
variables. It is very important to know how a MySQL server has been configured in order
to streamline backups and recovery; furthermore, it is important to know how the MySQL
server will act in the event of a crash given the storage engine(s) used. Given all the
aforementioned variables the correct settings can only be determined by the load of your
unique system. That said, please make sure to benchmark with your particular load and
make sure to practice disaster recovery on a regular basis so, when the time comes, you
and your business know what to expect.



7

Disaster Scenarios

“Disaster is inevitable. Total failure is avoidable.”
Ronald Bradford & Paul Carlstroem — 2011

Disaster happens. This is generally when you are not expecting or prepared. Having an
idea of what sort of problems may occur that require a level of recovery will help you
understand how your backup and recovery strategy plan will succeed. Understanding these
various situations and the many other possible cases can help in the testing and
verification steps implemented for your business information. Disaster recovery (DR) is a
requirement in the planning for a high availability (HA) solution. In many environments
clear procedures and architectural design is in place enabling growth more seamlessly.
Unfortunately the same is not said for disaster preparedness, the poor cousin. Improving,
refining, and testing various disaster recovery situations are often left to a crisis situation
where costly mistakes can occur.

In this chapter we will cover several situations including:

Actual business ending disaster situations

Common MySQL disaster situations

MySQL recovery tool options

Managing the human factor

Handling a MySQL Disaster

A backup is only as good as the ability to perform a successful recovery. Unfortunately
performing a recovery in a controlled situation is never the case. The need to perform a
disaster recovery is always at an unpredictable time and often includes other factors or



cascading failures. An action in one situation may be critical to protect against further data
loss, while the same action in a different situation will lead to permanent data loss. There
is no instruction manual for every situation; foreknowledge of a wide range of situations
and practice of these is your best asset in the decision making process. The following
examples showcase some typical and less typical disasters. A number of common and less
common disaster situations are provided to enable the preparation and testing for these
situations. Some of these disaster situations are completely avoidable with pre-emptive
procedures.

With over 20 years of IT experience, the author has been involved in averting serious
business loss in a number of situations and varying technologies. He is also not immune to
having caused a few minor disasters as a result of human error. Learning from the
mistakes of others is a critical step in a database administrator (DBA) or system
administrator (SA) mastering their respective fields. This book hopes to outline the tools
for creating an appropriate backup and recovery strategy for your specific environment
and provide invaluable tips and information to avoid making the mistakes others have
encountered.

In fact, during the final production stage of this book, two different disasters were
encountered working with two separate clients on consecutive days. Both situations were
then added to this chapter as unique examples. In both cases the final outcome was
positive, but the risk of not being prepared is that your business may suffer a serious if not
fatal situation. You never want this to occur on your watch and be a line item you try to
avoid mentioning on your resume for the next job opportunity.

Notable MySQL Disasters

For every disaster that is discussed in this chapter, many more exist that are not known or
spoken of. Rarely do organizations advertise a data failure that resulted in loss of revenue,
users, creditability, or that resulted in a total failure of the business. The following are a
few very public examples of situations with varying levels of disaster and outcome.

DISCLAIMER: The author of this book is repeating knowledge that is provided and
generally available online. These examples demonstrate possible situations and results
regardless of the validity of the information in the source story.

Magnolia

Ma.gnolia.com was a social bookmarking site that shut down due to a MySQL data
disaster in 2009. The public information about the problem includes a one-man operation,
limited equipment redundancy, a faulty backup system, a hard drive failure, and an
apparent inability for a specialist to recover any data.

A quote from a listed reference, “A clear lesson for users is not to assume that online
services have lots of staff, lots of servers and professional backups, and to keep your own
copies of your data, especially on free services,” highlights that you should not assume
your data is safe. If you have the ability to obtain a copy of your own recorded data, then
do it. In the case with Magnolia they provided APIs to download all of your recorded
personal data.



From a different reference is the comment “Outsource your IT infrastructure as much as
possible (e.g., AWS, AppEngine, etc.).” This is not a wise practice to blindly trust your
information with a third party. How are you sure their practices are fully functional,
secure, and result in a timely recovery? You should always keep your important and
critical data close to physical control. The loss of control is a potential career limiting
move if your responsibility is to ensure the integrity and availability of information.

CAUTION Any organization that provides third party services for your backup and
recovery strategy and that states certain characteristics of data availability and
recovery is not a guarantee until it can be proven and verified.

The following lessons can be learned from this experience:
1. Adequate hardware redundancy is important.
2. Testing the backup and recovery process is important.
3. A particular hardware failure may not mean all data is lost.
4. If data you store on an external website is important, make your own backup.
5. Being upfront with your customers during a situation is a sound business practice.

References

* http://www.datacenterknowledge.com/archives/2009/02/19/magnolia-data-is-gone-for-
good/

* http://www.wired.com/epicenter/2009/01/magnolia-suffer/
* http://www.transparentuptime.com/2009/02/magnolia-downtime-saas-cloud-rrust.html
Couch Surfing

The information obtained from the shutdown of Couch Surfing reads like a story that
should be told to every database administrator and decision maker for any company that
cares about their data. The TechCrunch article title sums the risk to any organization,
“CouchSurfing Deletes Itself, Shuts Down.”

This environment contained both MyISAM and InnoDB data. There was apparently no
binary logging enabled, and the backup procedure, which had been failing for over a
month, was not performing a remote sync of all important MySQL data files. Even if the
rsync backup process was operating correctly, a restore process would still result in a
corrupted database, as the rsync of a running database is not a consistent view of all
MySQL data. It took a hard drive crash for the situation of an incomplete backup process
to become apparent and destroy the dream of an entrepreneur who had contributed over
three years to this project.

The following lessons can be learned from this experience:
1. Disaster is inevitable; be prepared.

2. Any level of sane production system availability in MySQL starts with two servers.
This uses MySQL replication, and the all important binary logging.


http://www.datacenterknowledge.com/archives/2009/02/19/magnolia-data-is-gone-for-good/
http://www.wired.com/epicenter/2009/01/magnolia-suffer/
http://www.transparentuptime.com/2009/02/magnolia-downtime-saas-cloud-rrust.html

3. Daily verification of your backup process should be one of the top daily tasks of your
administrator. Simple metrics such as the size of your database, and the size of your
backup, and a check of change over time are simple red flags.

4. Test and verify.
References

* http://techcrunch.com/2006/06/29/couchsurfing-deletes-itself-shuts-down/

* http://forums.mysql.com/read.php?28,99328,99328#msg-99328
Journal Space

In 2009, a six-year-old blog hosting website ceased operations due to all data being
destroyed and with no appropriate backup in place.

Information from articles indicates that data was managed on a RAID-1 configuration.
While RAID-1 provides a level of disk mirroring to support a hardware failure in one of
two drives, this is not a total backup solution. Disk mirroring supports one situation when
there is a failure of one drive. Due to the hardware or software implementation of RAID-1,
an action applied on one disk is mirrored to the second disk under normal operating
procedures. If a system administrator physically removed the database either intentionally
or unintentionally, the deletion is applied to the mirrored disk. The purpose of mirroring is
to have an identical copy of the original on the same server host. An attempt to recover the
data that was apparently deleted was also unsuccessful. Data recovery in this situation is
usually possible providing information is not overwritten.

CAUTION RAID is not a data backup solution. RAID provides a level of redundancy for
only one type of physical disk failure. RAID is an important first step in data protection
only.

While backups apparently existed for the application code base, this is useless without
an underlying source of data held in the database.

The following lessons can be learned from this experience.
1. Hardware redundancy is not an adequate backup strategy.
2. Secure offsite backups are necessary if your data is critical for business viability.
3. Data loss and corruption can easily occur as a result of human factors.
4. If the data you store on an external website is important, make your own backup.
References

* http://blog.backblaze.com/2009/01/05/journal-space-shuts-down-due-to-no-backups/

* http://blog.bismuth.com/?p=275

* http://idm.net.au/blog/006734-blogging-community-destroyed-lack-backup
Percona

Even industry leaders in the field of MySQL are not immune to a disaster scenario.


http://techcrunch.com/2006/06/29/couchsurfing-deletes-itself-shuts-down/
http://forums.mysql.com/read.php?28,99328,99328#msg-99328
http://blog.backblaze.com/2009/01/05/journal-space-shuts-down-due-to-no-backups/
http://blog.bismuth.com/?p=275
http://idm.net.au/blog/006734-blogging-community-destroyed-lack-backup

Percona, the largest independent organization that provides MySQL support services,
reported a “catastrophic failure of three disks on our primary web server” in 2011. As
mentioned in an earlier example, being open with your customers regarding the recovery
process is as important as correcting the problem. A cascading series of issues including a
disk failure, a disk controller failure, and then data corruption due to configuration
highlight that being prepared for more than one situation is always necessary. The delay in
the recovery time was also attributed to staff changes.

As reported, “no customer data was compromised,” and some services, including
customer service activities, were not affected. These references indicate that sound
architectural practices for a system failure of varying components do not necessarily result
in total system unavailability.

This example is included to indicate that compounding problems do occur and that there
are ways to address potential problems. The article also highlights that due to a
configuration setting, data corruption occurred after a series of unexpected events.

CAUTION A disaster does not always match your prepared disaster recovery situations
when one component or system fails. A disaster can easily result in multiple cascading
failures causing unexpected effects.

The outcome of any disaster is an acknowledgment for an organization to learn from the
experience. The following quote is an important message that describes the business
decisions resulting from this experience and is a great lesson for all readers. “The recovery
lessons learned for us have been considerable and will be incorporated into our internal
processes. Availability and performance of all of our websites is a top priority.”

The following lessons can be learned from this experience:
1. A disaster can easily lead to more than one problem occurring at one time.

2. A documented process and knowledge by additional resources are important for timely
resolution.

3. Disaster preparedness is a continual improvement process.
Reference

* http://www.mysqlperformanceblog.com/2011/07/19/server-outages-at-percona/

Other Notable Data Disasters

For additional reference material in the type of disasters that can occur, the following non-
MySQL specific examples show failures with cloud based technologies, open source
providers, and even a bank.

The Sidekick/Microsoft Data Loss

Disasters happen with large organizations. Danger, a $500 million acquisition by
Microsoft, had no backups for the users of the Sidekick phone. All information about
contacts, photos, calendars, etc., for potentially hundreds of thousands of devices was
stored in the cloud. Official statements of a serious failure included “likely lost all user


http://www.mysqlperformanceblog.com/2011/07/19/server-outages-at-percona/

data that was being stored on Microsoft’s servers due to a server failure...
Microsoft/Danger is describing the likelihood of recovering the data from their servers as
extremely low.” Later reports claimed that the company failed to make a backup before a
Storage Area Network (SAN) upgrade, and when this was botched, the result was loss of
all data.

An important question in this situation is not “Why was there no backup?”, but why
executive management did not ask “What confirmation do we have in our business that
our data is safe?” Executives should also be asking in any business “How do we recover
from a disaster?” and “When was the last time we did this?”

TIP A decision maker of any organization should be paranoid with what could occur
during a data loss situation while having full knowledge of what procedures, practices,
and drills are in place to protect data from ever being lost.

References

* http://techcrunch.com/2009/10/10/t-maobile-sidekick-disaster-microsofts-servers-
crashed-and-they-dont-have-a-backup/

* http://www.zdnet.com/blog/btl/the-t-mobile-microsoft-sidekick-data-disaster-poor-it-

management-going-mainstream/25777

* http://gizmodo.com/5378805/t+mobile-sidekick-outrage-your-datas-probably-gone-
forever

Github

One of the most popular repositories of source code version control for open source
projects and many commercial companies suffered a severe database failure. Using
references from the official blog post: “Due to the configuration error GitHub’s production
database was destroyed then recreated. Not good” and “Worse, however, is that we may
have lost some data from between the last good database backup and the time of the
deletion. Newly created users and repositories are being restored, but pull request state
changes and similar might be gone” we get a picture that adequate backup and recovery
procedures were not in place.

However, the true cause of the problem was actually a configuration error. This was due
to a test environment co-located on a production environment, and most likely a lack of
appropriate user security settings that should be different between environments. The
result, a perfectly normal test practice of dropping and re-creating the database, worked as
designed; it was just never designed to be executed on a production situation.

TIP Do not run development or test environments on the same machine as your
production environment. A production environment should always have a different user
account and password for management than non-production environments.

Reference

* https://github.com/blog/744-today-s-outage



http://techcrunch.com/2009/10/10/t-mobile-sidekick-disaster-microsofts-servers-crashed-and-they-dont-have-a-backup/
http://www.zdnet.com/blog/btl/the-t-mobile-microsoft-sidekick-data-disaster-poor-it-management-going-mainstream/25777
http://gizmodo.com/5378805/t+mobile-sidekick-outrage-your-datas-probably-gone-forever
https://github.com/blog/744-today-s-outage

TD Bank

Of all the industries, you would expect that banks would have iron clad procedures for
management of customers’ bank account information. In this botched upgrade, when two
systems were merged into one, customers found out the frustration of not having accurate
information and not being able to access their cash. System interruptions and inaccessible
accounts were prolonged for days and were compounded by batch processing operations
causing additional data corruption. This upgrade failure shows that adequate backups
before an upgrade, and an executable recovery process in the event of a failed upgrade, are
simple steps that can be tested before a production migration.

References

* http://www.zdnet.com/blog/btl/td-bank-botches-it-system-consolidation-customer-
havoc-ensues/25321

* http://www.bizjournals.com/philadelphia/stories/2009/09/28/daily30.html
 http://www.olegdulin.com/2009/10/this-weeks-tdbank-debacle-and-takeaways-for-it-

leaders.html

* http://www.nbcphiladelphia.com/news/business/Computer-Glitch-Causes-Problems-at-
TD-Bank-63103572.html

General MySQL Disaster Situations

The lack of basic MySQL configuration requirements is a common cause of avoidable
disasters. These situations that will be discussed include:

1. Not using MySQL binary logging
2. Using a single MySQL server in production
3. Using appropriate MySQL security

Other types of common and avoidable disasters are the result of a human resource
deleting something. What do you do in these situations?

1. Deleting MySQL data

2. Deleting the MySQL InnoDB data file
3. Deleting MySQL binary logs

Binary Logging Not Enabled

Using MySQL in a production system with only nightly backups and not point in time
capabilities is not a sound business practice. With a particular customer’s e-commerce
operation that included sales of several million dollars daily and large transactions
exceeding $100,000, a loss of any successful transaction would have a business impact. A
loss of all data from the last successful backup would have a significant and serious
business effect.

If any data was accidentally deleted, if the server had any hardware failure that simply
resulted in downtime of the website for a day, or any serious disk failure resulting in data


http://www.zdnet.com/blog/btl/td-bank-botches-it-system-consolidation-customer-havoc-ensues/25321
http://www.bizjournals.com/philadelphia/stories/2009/09/28/daily30.html
http://www.olegdulin.com/2009/10/this-weeks-tdbank-debacle-and-takeaways-for-it-leaders.html
http://www.nbcphiladelphia.com/news/business/Computer-Glitch-Causes-Problems-at-TD-Bank-63103572.html

loss occurs, it would have resulted in serious financial loss. Under any of these situations,
the lack of binary logging makes it impossible to retrieve critical lost information.

For any production system, binary logging is critical to enable the possible recovery of
any data following a nightly backup. While not adequate to support different types of
disaster, the lack of this essential setting is a common failure for a new business.

Chapter 2 describes the MySQL configuration settings necessary to enable MySQL
binary logging.

NOTE No binary logging means no point in time recovery, period.

A Single Server

A single MySQL database with nightly backups and binary logging is a sound business
practice that can provide adequate data recovery. Unfortunately, in a production situation
even with the ability to perform a successful recovery, the absence of access to data such
as in a read only mode, or access to hardware to perform a recovery, is a primary loss of
credibility with your existing customers while your site is unavailable.

Every minute of time taken to provision or re-purpose a server and install and configure
the necessary technology stack is loss of business reputation and business sales.

Any MySQL infrastructure in a production system should always start with two
database servers. MySQL replication is very easy to set up and configure. The MySQL
Reference Manual provides a detailed guide at
http://dev.mysal.com/doc/refman/5.5/en/replication-howto.html. Chapter 4 describes the
benefits of replication for backup and recovery. The next book in the Effective MySQL
series titled Advanced Replication Techniques will also cover replication in greater detail.

Appropriate MySQL Security

The greatest cause of system administrator related problems with MySQL is a lack of
appropriate security permissions on underlying MySQL data. It is recommended that the
MySQL data directory, as defined by datadir, and the binary log directory, as defined by
log-bin, have permissions only for the mysqld process, generally the mysql OS user. For a
common Linux distribution installation, the following permissions would be used for
optimal security:

S chown mysgl:mysgl /var/lib/mysgl

$ chown 700 /var/lib/mysql

Depending on the installation, the MySQL data directory may not reside in
/var/1lib/mysql.

CAUTION Some distributions place the socket file in the data directory. This has to be
moved to a world readable directory in order for MySQL to function normally with a
secure data directory.

Application Security


http://dev.mysql.com/doc/refman/5.5/en/replication-howto.html

The greatest cause of application developer related problems with MySQL is the lack of
appropriate permissions and privileges for user accounts that can modify data, structure, or
configuration settings. A MySQL environment where an application user is given ALL
PRIVILEGES on all objects (i.e., *.*) can, for example, disable binary logging, which
would affect any MySQL slaves, and then possibly your defined backup and recovery
strategy. There are many additional reasons why this blanket privilege can cause issues in
a production environment.

More information on the effects of GRANT ALL ON *.* can be found at
http://ronaldbradford.com/blog/why-grant-all-is-bad-2010-08-06/.

Appropriate MySQL Configuration

Several MySQL configuration settings can lead to data integrity issues that can cause
undesirable situations with production data.

Read Only Replication Slaves

The most common problem is not setting a MySQL slave to read only with the read_only
configuration option. Without this option, an application that incorrectly connects to a
replicated copy of the data has the ability to modify this data. The first impact is data
inconsistency, also referred to as data drift. The second impact may cause MySQL
replication to fail in the future, which can lead to further complications for data correction
and slave usage.

To reiterate the point in the previous section regarding the importance of applicable
application security, the following example demonstrates the potential disastrous effects.

Two MySQL users are defined, a user with the appropriate permissions for an
application, and then a user with all privileges. These users are defined on a replication
slave that is correctly configured as read only.

mysgl= CREATE USEER goodguyélocalhost IDENTIFIED BY 'sakilart;
mysgl> GRAENT SELECT, INSERT,UPDATE,DELETE N appdb.* TO goodguyelocalhost;

mysgl= CREARTE TUSEE supsrmand'%’';

mysgl= GRANT ALL ON *.* TO supsrmana'k';

2 mysgl -ugoodguy -psakila appdb

mysgls INSERT INTO teatl{id) VALUES(1);

ERROE 1290 (HYO00O0): The MysSQL server 1s running with the --read-only optilon
go 1t cannot execute thie statement

2 mysgl -usuperman appdb
mysgl= INZERT INTO testl{id) VALUEZ(1);
Query OE, 1 row affected (0.01 sec)

This one example should highlight the importance of appropriate user privileges for
application users.

SQL Server Modes

The lack of an appropriate SQL server mode with the sql_mode configuration option can
easily cause data integrity issues that when not adequately monitored by the application
can result in disastrous results that may not be detected for some time. The following are
simple examples to show that data loss can occur without error in MySQL when operating


http://ronaldbradford.com/blog/why-grant-all-is-bad-2010-08-06/

with default SQL server mode settings:

mysgl=
mysgl=
mysgl=
mysgl=
mysgl=

CREATE

TAELE perscon |

firat name VARCHAR(10) NOT NULL)

ENGINE=

INSERT
INSERT
INSERT
INSERT

SELECT

stephanie

jacgueline

|
| angesline
|
|

christophe

InnoDE;

INTZ person (firat name) VALUES ('stephanies');
INTZ person l:first:namefl VALUES ( 'angeline') ;
INTC perscon (firat nams) VALUES ('jacqueline');
INTZ person ifirst:namefl VALUES ( 'christopher')

* FROM person;

Everything may appear correct; however, the final name was
by MySQL without producing an error.

mysgl=
-

-

mysgl=
mysgl=
mysgl=

CREATE TABLE portfolio|
stock price DECIMALI(6,2))

ENGINE=

INSERT
INSERT
INSERT

SELECT

InnoDE;

INTS portfolic({stock price) VALUES (25.5); --
INTO portfolic(stock price) VALUES (25.75); --
INTO portfolic(stock price) VALUES (25.875); --

* FROM portfeolio;

i

actually silently truncated

25 1/2
25 1/4
25 7/8

In this example, the 0.005 rounding error could be great for your portfolio, as it rounded

CREATE TAELE kirth |
birth date DATE NOT NULL)

INSERT INTC birth (birth date) VALUES ('1965-02-29');
INSERT INTC birth (birth date) VALUES ('1268-06-00"};

SELECT * FROM birth;

up:
mysgl=
-= ENGINE=Inn<DE;
mysgl=
mysgl=
mysgl=
e +
| Birth date |

| oooo-o00-00 |
| 1968-06-00 |

In this example, an invalid date is modified causing the data that was entered to be lost,
and a zero data value is permissible.



Fortunately, setting a correct SQL server mode within MySQL can easily solve these
data integrity issues. For example:

mysqgl> SET sql mode='STRICT ALL TAELES,NO ZERO IN DATE,NO ZERC DATE';
mysgl> INSERT INTC person (first name) VALUES ('christopher’);

ERROR 1406 (22001): Data too long for column 'first name' at row 1
myagl= INSERT INTC birth (birth date) VALUES ('1965-02-29');

ERRCOR 1292 (22007): Inceorrect date value: '1965-02-29' for column
'birth date' at row 1

mysgl> INSERT INTC birth (kirth date) VALUES ('1268-06-00');

ERROR 1292 (22007): Inceorrect date value: '1968-06-00' for column
'birth date' at row 1

TIP One of the greatest sources of creeping data corruption that goes undetected and is
almost impossible to recover is due to the MySQL default SQL server mode. One
configuration option, when set at the creation of a new MySQL instance, can provide
great relief for future data integrity.

CAUTION The modification of the SQL server mode on an existing production system
will generally result in unexpected errors, especially with date management. When
using certain recommended date settings, issues may also not present as problems until
table alterations are applied.

Deleting MySQL Data

“I have deleted all the data in a table. What do I do now?” In this situation with a single
server, a database recovery is generally needed. In a MySQL replicated environment it is
likely the destructive statement has affected all slaves. If detected immediately, it may be
possible to stop replication execution on a slave to preserve the data that was deleted. This
is only likely if your slave is lagging adequately, not a usual situation in a production
situation.

However, depending on certain conditions, data may be recoverable via other means.
The following is an actual customer example of a successful data recovery provided by
Johan Idrén from the SkySQL support team and reproduced with permission.

The customer has executed a rather devastating “DELETE FROM table_a;” command.
The only backup available was made several hours after the erroneous statement, so what
we had left to work with was the underlying table_a.idb file. Based on the underlying
file size of the individual tablespace for this InnoDB table, most of the data may be still
recoverable. This was a job suited for the Percona InnoDB data recovery tool.

The first requirement is to obtain the table definition from the customer. The output of
the SHOW CREATE TABLE command provides this. After creating an identical table on
a local MySQL server, the create_defs.pl script is used to create a necessary
table_defs.h file.

§ .fcreate defs.pl --host=loccalhost --user=root --db=test --table=table a b
= table defs.h



With this definition, it is possible to build a binary to extract data from the available
table data file. Execution appeared to work well, providing output consistent with the table
definition provided.

§ ./conastraints parser -5 -f table a.idb = table_a.tsv
% head table a.tav

table a 1 John Doe

table a Z Sakila Dolphin

A suitable LOAD DATA INFILE statement was used to process the generated data file:

mysql= LORD DATA INFILE '/path/to/table a.tsv!
-» REFLACE INTO TAELE table a
-=» FIELDS TERMINATED EBY '\L'
-= OQFTIOMALLY ENCLOSED BY '™!
-= LINES 2TARTING BY 'table a’\t!
-= (1d, firstname, lastnams);

After initial testing some additional work was needed to remove some duplicate rows
and garbage data in the generated data file. The end result was that all data was recovered
and the customer was happy, a great success!

What caused this recovery process to go relatively easy?
1. The InnoDB storage engine was used.
2. No further DML statements were run on the table.

3. The innodb_file_per_table configuration option makes the use of the InnoDB
recovery tool a lot simpler, as this only has to process the individual tablespace file and
not the common tablespace, which supports all InnoDB tables.

The closing comment by Johan echoes all this reference stands for. “The moral of the
story? Backup, backup, backup.”

NOTE In some conditions, data recovery from a DELETE FROM TABLE command is
possible.

References

* http://blogs.skysgl.com/2011/05/innodb-data-recovery-success-story.html

* https://launchpad.net/percona-data-recovery-tool-for-innodb

* http://www.chriscalender.com/?p=49

—i-am-a-dummy Configuration Option

An additional configuration option that could have averted this situation is the --i-am-a-
dummy variable. While you may laugh, this is a valid configuration alias for the --safe-
updates option. This option disables table level delete and update operations as described
in the following example:


http://blogs.skysql.com/2011/05/innodb-data-recovery-success-story.html
https://launchpad.net/percona-data-recovery-tool-for-innodb
http://www.chriscalender.com/?p=49

mysql= SET SE3SICH sgl_ safe updates=TRUE;

mysgl> DELETE FRCM portfclioc;
ERROE 1175 (HYO0O0O0): You are using safe update mode and you tried to update
a table without a WHERE that uses a EEY column

For more information refer to the MySQL Reference Manual at

http://dev.mysql.com/doc/refman/5.5/en/mysql-command-
options.html#option_mysql_safe-updates.

Deleting the InnoDB Data File

The circumstances for how data has been deleted matters. For example, if the InnoDB
tablespace file (e.g., ibdata1) is deleted while MySQL is running on a Linux operating
system, it is possible to recover your MySQL data but only if the MySQL server has not
been stopped.

On a test system, the following is performed to demonstrate this situation:
8 ed fvar/lib/myaql

ls -1h ib+

-Erw-Ew---- 1 mysql mysgl 274M 2012-02-06 15:17 ibdatal
-rw-rw---- 1 myagl mysgl 128M 2012-02-06 15:17 ik logfiled
-rw-rw---- 1 myagl mysgl 128M 2011-02-07 19:36 ib logfilel

2 rm ibdatal

g la -1h ib*

-rw-rw---- 1 myagl mysgl 128M 2012-02-06 15:17 ik leogfiled

-rw-rw---- 1 myagl mysgl 128M 2011-092-07 19:36 ib:logfilel

8 mysqgldump -urcet -p --all-datakases --no-data | grep InncDBE | we -1
44

2 od /backup/dir

2 time mysgldump -uroct -p --all-databases > backup.sgl

As you can see there were 44 tables that were defined as InnoDB tables. If the
mysqgldump of data was not performed before the MySQL instance was stopped, that data is
lost without performing a full data recovery.

2 service mysgl stop
2 service mysgl start

120206 17:11:02 [Mote] fusr/sbin/myagld: Normal shutdown
120206 17:11:02 [Mote] Event Schedulsr: Purging the quaue. 0 avents


http://dev.mysql.com/doc/refman/5.5/en/mysql-command-options.html#option_mysql_safe-updates

120206 17:11:0% InncDE: Starting shutdown. ..
120206 17:11:14 InneDE: Shutdown completed; log sequence numbar O 382554662
120206 17:11:14 [Mote] fusr/sbin/myagld: shutdown complsate

120206 17:11:25 [Mote] Plugin 'FEDEEATED' 1= disablad.

120206 17:11:25 InnoDE: Initializing buffer pool, size = 200.0M
120206 17:11:28 InnoDE: Completed initialization of buffer pocl
InncDB: The first specifled data file ./ibdatal did not exist:
InncDE: a new database to be created!

120206 17:11:26 InnoDE: Setting file ./ibdatal size to 10 ME

InnoDB: Datakbasze physically writes the file full: wait...

InncDE: Error: all leg flles must be created at the same time.
InncDB: All log flles must be created alec in database creation.
InmnocDB: If you want bilgger or smaller log filea, shut down the
InnocDE: database and make sure thers were no errorg in shutdown.
InncDBE: Then delete the exlsting leg flles. Edit the .onf file
InnoDBE: and start the database again.

120206 17:11:26 [ERRCER] Plugin 'InnoDB' init functicon returned errcr.
120206 17:11:26 [ERRCE] Plugin 'InnoDB' registration as a STORAGZE ENMNGINE failed.
120206 17:11:26 [ERROR] ARborting

This situation for possible data recovery after deleting the InnoDB tablespace file is
because the mysqld process retains the file inode link until the process terminates. In this
situation it is possible to extract the data using mysqldump.

Any online advice that states to shut down the MySQL process if data is deleted may or
may not be the correct advice. Knowing the situation that caused the disaster is necessary
information before making any decision, as shown in this example.

In this situation, as indicated in the error log, it is necessary to also remove the InnoDB
transaction logs to enable the MySQL instance to start before performing a data recovery.

Deleting MySQL Binary Logs

A common problem is the disk partition holding the MySQL data directory filling up.
While many situations include the case where no monitoring is in place to detect a full
filesystem, a common action is a system administrator detects a filesystem at 80% or 90%
full and then acts to delete files rather than consulting the database administrator or
considering the ramifications of a database system, not a filesystem. Allowing a system
administrator to remove MySQL binary log files causes multiple problems.

The best file to consider removing to reclaim space in a MySQL installation is the
binary log. These can grow in size; in a large production system these can be as much as
500MB per minute. The first problem when removing files manually is the reference to
this file in MySQL is not removed. The correct approach to remove binary log files is with
the PURGE MASTER command. This will remove the physical file and the internal
definition.

Removing the binary logs also affects your disaster recovery possibilities and your
MySQL replication topology. If a MySQL slave has stopped for some reason and is one
day behind the master, removing the binary logs on the master that are older than six hours
will render the slave useless and will have to be fully recovered. A full recovery involves
using a backup (for example, from last night), and then the application of the binary logs
until the current point in time. If those binary logs the system administrator so wisely
deleted to ensure the disk does not fill up have not been backed up during the day—for



example, if that only happens daily or even every 12 hours—your environment is not
recoverable with existing backups. A different approach including an immediate backup is
needed.

The final problem is common when the binary log files and the MySQL data are found
in the same directory. This is the default configuration for the popular
RedHat/CentOS/Oracle Linux and Ubuntu distribution installations. An over-zealous
system administrator running a smart find command that is used for cleanup on other
filesystems can easily remove files in the MySQL data directory that are important and
can easily crash or corrupt a MySQL installation.

TIP A well configured MySQL installation should clearly separate the MySQL data
directory, the MySQL binary log, and MySQL relay log directories for better system
administration.

A final frustrating example is when a client performs a volume test in preparation for a
production deployment and the result of the test fills up the partitions for the data and/or
binary logs. The action of the experienced DBA to reduce the amount of logs kept with by
setting the expire_logs_days configuration option to 1, or the proactive removal of the
master binary logs during the test is not a wise practice. The purpose of a volume test is to
prove a production situation. Are you going to proactively remove important files
necessary for any level of disaster recovery? Would considering that the defined (and
organizational standard) filesystem structures are inappropriate for this deployment be a
more applicable action?

TIP The purpose of testing is to break your software, and then correct discovered issues
so these situations are avoided in the future within a production environment.

Existing Backup and Recovery Procedure Disasters

The following examples are where an existing MySQL backup approach was in place;
however, the recovery encountered situations where the process was insufficient in some
way.

* Does your backup work after a software upgrade?
* Does MySQL still perform after a restart?

* Handling MyISAM corruption.

* Missing schema data in backup.

* Restoring a backup on a running server.

MySQL Software Upgrades

Running a MySQL backup and ensuring this completed successfully and that backup files
exist are not enough. In the Chapter 5 quiz one important step is “Do you review your
backup logs EVERY SINGLE day or have tested backup log monitoring in place?”



This is what was found when reviewing a backup log for a client:

mysgldump: Got error: 1142: SELECT, LOCKE TABL command denied to user
'root'@'localhost' for table 'cond instances' when using LOCK TABLES

mysgldump: Got error: 1142: SELECT, LOCK TABL command denied to user
'root'@'localhost' for table 'cond instances' when using LOCK TABLES

The backup script was completing, and backup files were in place (and were listed in
the log file output); however, these errors were occurring. Some data was potentially not
being included in the backup due to this error.

This server was running multiple MySQL instances and recently one instance was
upgraded from MySQL 5.1 to MySQL 5.5; however, the call to mysqldump was not. This
error was the result of running a version 5.1 mysqldump against a version 5.5 MySQL
instance. By changing the hard coded path in the backup the error message went away.

In this example, a backup process was in place and historically operated without error.
The greater problem is teaching people to understand the importance of the verification
process.

Operating System Security Patch Upgrade
Backing up the MySQL configuration file can be as important as the MySQL data.

A production MySQL system was upgraded to include new operating system security
patches. This resulted in the Linux distribution also updating MySQL 5.0 to a new point
release. The correct process of taking a database backup before the upgrade was
performed; however, following the upgrade, application performance was seriously
degraded. It was reported by the client that it was not possible to undo the software
upgrade.

Discussion and analysis determined that no application changes were applied, the
system load was much higher, and the application was now taking 10 times longer to
perform basic tasks. The client believed only the MySQL upgrade could be the cause. The
system had been running over 150 days without any similar issues.

The first observation is that MySQL has been restarted. This has three significant
effects on performance.

1. The first is time taken to refresh the applicable memory caches of data and indexes
over time as they are first accessed from disk. In some situations there is a benefit in
pre-caching important data on a system restart.

2. The second situation is the need for InnoDB to recalculate the table statistics for the
query optimizer. This occurs when a table is first opened and requires random dives of
accessing index information, initially having to read from disk. MySQL 5.6 includes a
new feature to save and load these table statistics for faster restarts.

3. The third effect is less obvious but important. MySQL will read the configuration from
the applicable filesystem files, e.g., my. cnf. This means that any dynamic changes
made to the previously running system that were not applied to the configuration file
are lost. If this was not documented, the previous running system could have
improvements in performance that were not persisted during the restart.



The simple solution is to record the running values of all MySQL configuration
variables by adding this to the daily backup process. A further verification of running
values with the filesystem values in the default MySQL configuration file can be
performed. This information can be obtained in the following ways:

S mysgladmin variables
or

mysqgl> SHOW GLOBAL VARIABLES;

With the runtime configuration of a number of system variables, the system was able to
improve performance. The review of the worst offending SQL statements and the creation
of additional indexes also made a significant improvement. While a minor upgrade should
not affect the performance of SQL statements, it is always a good practice to run important
SQL statements without using the query cache, capturing execution time and execution
plan details before and after any upgrade.

Handling MyISAM Corruption

The following scenario is a detailed explanation of a MyISAM corruption situation that
recently occurred and the steps to triangulate a possible recovery and the ultimate solution.
The environment was a single MySQL production server with binary logging (that was
disabled prior in the day). There was no MySQL replication server in place.

The Call for Help

While checking my inbox at breakfast the following e-mail draws attention:

From: Existing clisant

Subjact: Emergency

Are you around? My producticn system is crashed, I'm trawvelling, and have
ANl emsrgency.

NOTE Disaster does not care if you are on vacation.

The Confirmation of a Serious Problem

I immediately contact the client, determine that the situation appears serious, and connect
to a running production system finding the following errors in the MySQL error log:

120320 5:57:01 [ERRCOR] Got error 127 when reading table . /fcust/tkll!
120320 5:57:01 [ERRCOR] Got error 127 when reading table . /cust/tkll!
120320 £:01:52 [ERRCOR] Got error 127 when reading table . /fcust/tkll!
120320 £:01:52 [ERRCOR] Got error 127 when reading table . /fcust/tkll!
120320 £:10:48 [Mote] Retrving repair of: './cust/tbll' with keycachs
120320 £:10:48 [Mote] Retrying repair of: './cust/tbhll' failaed. Please

try EEPAIR EXTENDED or myilsamchk

120320 €:12:22 [ERRCR] /var/lib/mysgls/bin/my=gld: Table './cust/tbll’
is marked as crashed and last {autcmatic?) repair failad

120320 £:12:41 [ERRCR] Svar/lib/myagls/bin/myagld: Table './cust/thlz!
is marked as crashed and should ba repaired

120320 £:12:41 [Warning] Checking tabkle: ' foust /tbl2t



This is the first obvious sign of MyISAM corruption. This generally occurs when the
MySQL instance crashes or is not cleanly shut down. A quick review confirms that three
minutes earlier this occurred. It is always recommended to try and find the cause to ensure
this is understood in future situations.

120320 S5:54:21 - mysqgld got signal 11;

Thia could be because you hit a bug. It is also possible that this binary

or one of the likbraries it was linked against is corrupt, improperly bullt,
or misconfigured. This arror can alao be caused by malfunctioning hardwars.
We will Lry our best to scraps up some info that will hopefully help diagnoss
the procblem, but s2ince we have already crashsed, scmething is dafinitely wrong
and thia may £ail.

key buffer size=62%145600

raad buffer sizse=131072

max used commections=§

max connecticons=500

threads connected=7

It 1=z possible that mysgld could use up to

key buffer size + (read buffer size + sort_buffer size)*max connections
= 1702398 K

bytez of memory

Hope that'as ok; 1f not, dacrease some variablea in the agquation.

thd=0xs7dades

Attempting backtrace. ¥You can use the following information to find out

wherse mysgld disd. If wou see no measages after this, something went
terribly wrong...

Cannot destermine thread, fp=0xk, backtrace may not ke corract.

Bogus stack limit or frame pointer, fp=0xb, stack bottom=0xledndd,
thread stack=158&08, aborting backtrace.

Trying to gst zome varlables.

Scme pointers may be invalid and cause the dump to abort. ..
thd-=query at 0x5724380 = SELECT * FROM . ..

thd-sthread id=g

The manual page at http://www.myvagl.com/doc/en/Ccrashing.html contains
informaticn that should help you find cut what 1s causing the crash.

Hurber of processes running now: ©
120320 05:54:21 mysgld restarted

120320 5:54:21 [Mote] fvar/lib/mysgle/bin/mysgld: ready for connecticne.
Veraicn: '5.0.51a-log' socket: !'Jtmp/mysgl.sock' port: 3207
My2QL Community Server (3ZPL)

The First Resolution Attempt

In this situation it is best to shut down MySQL and perform a myisamchk of underlying
MyISAM data. Depending on the size of your database, this can take some time. By
default, myisamchk with no options will perform a check only.

sudo /fetc/init.d/mysqgld stop
sudo su - mysgl

cd fvar/lib/uwyagl

myisamchk cust/* MYI

4 4 4 4

This output is good:



Checking MyIgaM file: /var/lib/mysql/cust/thlX.MYI
Data records: 0 Deleted klocka: 0

- check file-size

- check record delete-chain

- check key delete-chain

- check index refersnce

- check data record references index: 1

- check data record references indesx: 2

- check record links

This output is not good:

Checking MyIg2aM file: /var/lib/mysql/cust/thlY¥.MYI
Data records: 68384 Deleted klocka: 0

- check file-size

- check record delete-chain

- check key delete-chain

- check index refersnce

- check data record references index:
- check data record references index:
- check data record references index:
- check data record references index:
- check data record refersences index:

m ke WK =

- check record linka

myizsamchk: error: Found wrong record at 1644072
MyISAM-takle '/var/likb/myesql/cust/thlY.MYI' is corrupted
Fix it using switch "-r" or "-o

To perform a repair on a MyISAM table the -r option is required. For example:

8 myisamchk -r /var/lib/mysql/cust/thlY.MYI

- recovering (with sort) MyISAM-table ' /var/lib/mysgl/cusat/tbhlY.MYI'
Data records: 68384

- Fixing index 1

myisamchk: Duplicate key for record at 215344 against record at 215294
myisamchlk: Duplicate key for record at 212272 against record at 212224
- Fixing index 2

- Fixing index 3

- Fixing index 4

- Fixing index 5

Data records: 68382

myizamchk: warning: 2 records have been removed

This shows a successful repair. The following shows an unsuccessful repair:

2 mylsamchk -r fvar/lib/mysgl/cusat/tbhlZ. MY¥YI

- racovering (with acrt) MyIsSEM-tabls ' /var/lib/mysgl /fcust /thlZ.MYI !

Data records: 22528

- Fixing index 1

- Fixing index 2

Wrong bytessc: 2- D- 38 at 386620; Skipped

MyIsaM-table '/var/lib/mysqgl/cust/thlZ.MY¥I' 18 not fixed because of errcrs
Try fixing it by using the --safe-recover (-o), the --force (-f) opticn
or by not using the --quick (-g) flag

This following error on the client’s largest and most important table is that classic WTF
moment:



8 myisamchk -r /var/lib/mysql/cust/thll . MYI

- recovering (with sort) MyISiM-table ' /var/lib/mysgl/cust/tbhll.MYI °
Data records: 584

- Fixing index 1

Fey 1 - Found wrong stored record at 14541448

Found wrong packed record at 145423272

Wrong aligned block at 102108305

Delete link points cutaside datafile at 102108305

Eey 1 - Found wrong stored record at 18204008

Found bleock with too small length at 18204228; Skipped
Eey 1 - Found wrong stored record at 18205160

Several hundred more lines

Found bleock with too small length at 109230004; Skipped
Wrong bytesec: 14- 0- 25 at 652723224; Bkipped

Eey 1 - Found wrong stored record at 114760168

Eey 1 - Found wrong stored record at 1147851084
Segmentation fault

As a side note, if myisamchk fails to complete, a temporary file is actually left behind.
(First time experienced by the author.)

2 mylsamchk -r /var/lib/mysgl fcust/thll . MYI

- recovering (with scort) MyISaM-table ' /Svar/lib/mysgl/cust/tbll . MYI !

Data records: 584

mylsamchk: error: Can't create new tempfile: '/var/lib/myagl/cust/tbll.TMD®
Jwvar/lib/myeqgl/cuat /thll . M¥YI ' 12 not fixed becauss of errora

Try fixing it by using the --safe-recover (-o), the --force (-f) opticn
or by not using the --quick (-g) flag

The Second Resolution Attempt

One of the benefits of MyISAM is that the underlying data and indexes are simply flat
files. These can be copied around between database Schemas with the appropriate table
definition file (i.e.,. frm). The following steps were used to simulate a new table.

1. Obtain the table definition from a backup file or SHOW CREATE TABLE command.

2. Create a new table in a different schema with the table definition and all indexes
removed.

3. Copy the existing .MYD file over the newly created table .MyD file. The new table does
not need to be the same name as the old table; however, the .MYD name must match the
new name.

4. Repair table (requires MySQL instance to be stopped).

5. Confirm the data is accessible.



8 Jete/init.d/myaqld stop

Shutting down MySQL [ oK ]
2 myisamchk -r test/newtkhll.MYI
- recovering (with keycache) MyIShM-table ': teat/newtbhll.MYI®

Data records: 0
Wrong bytesec: 4- 1- 68 at

4299268; Skipped

Eey 1 - Found wrong stored record at 4302188
Eey 1 - Found wrong stored record at 14541448
Eey 1 - Found wrong stored record at 14542180

Hundreds of more errors

Eey 1 - Found wrong stored record at 114760168
Eey 1 - Found wrong stored record at 114781084

Data records: 461981
8 Jetc/init.d/myeqld start

As you can see, a repair of the table this time did not produce a core dump. A further
confirmation defines data is accessible.

mysgl> SELECT * FROM newtbll limit 10;

JEETETETETET TR R e e e e +

| id | £k _id | oex
JEETETETETET IR R e e e e b +

| 1739461 | 7847 | NULL
| 1739460 | 7867 | NULL
| 1739459 | 7894 | NULL
| 1739458 | 7875 | NULL
| 1739457 | 7979 | NULL
| 1739456 | 7871 | NULL
| 1739455 | 8113 | NULL
| 1739454 | 7908 | NULL
| 1739453 | 7877 | NULL
| 1739451 | 8064 | NULL
fmm——————— 4+ +

____________ s e s
| 000 | name
4mmmmmmmmmm— oo e
| 5806 | Merc
| 5265 | Ford
| 5321 | Ford
| 5105 | Ford
| 5670 | Linc
| 18726 | Merc
| 18131 | Ford
| 18626 | Merc
| 5801 | Merc
| 5171 | Ford
4+ 4

At this time an attempt to re-create the indexes on the table is performed to enable this
table and index structure to be copied back to the production schema.

mysgls ALTER TAELE newthkll ADD PRIMARY EEY (id);
ERROE 11%4 (HYO0O0O): Table 'mewtbll' 1s marked as crashad and should be repailred

mysgl= CHECE TAELE newtbll;

| test.newtbll | check | serror

+
I
+

| test.newtbll | check | serror
I
e e e
V]

1o sec)

_______________________________ &
Msg_text |
_______________________________ 4
Found wrong record at 1831772 |
Corrupt |

+ —— + — 4+

_______________________________ S

It is clear that the table does not want to be repaired.

The Third Resolution Attempt

At this time, the decision to continue or to pursue data recovery or a restore from the
previous night’s backup is considered, and both options are undertaken in parallel. A more
detailed recovery is performed using initially the -o option for the older recovery method,

and then with -e option for an

extended recovery. It should be noted that the myisamchk

documentation states “Do not use this option if you are not totally desperate.”



The table is confirmed as crashed again.

& myisamchk thll . MYI

Checking MyISaM file: thll.MYI

Data records: 434956 Deleted klocks: ]
myisamchk: warning: Table is marked as crashed and last repair failed
- check file-aize

- check record delete-chain

- check key delete-chain

- check index reference

- check record linka

myisamchk: error: Wrong aligned klock at 3159229
MyIsaM-table 'thll.MYI' iz corrupted

Fix it using switch "-r" or "-o"

A successfully reported repair is performed.

2 myisamchk -r thll.MYI

- recovering (with keycache) MyISAM-table 'thl1.MYI®
Data records: 434956

Eey 1 - Found wrong stored record at 2158440

Wrong aligned klock at 3159239

Wrong byteseco: g- 3- 0 at 31592939; Skipped
Wrong byteseco: 4- 0-217 at 2160780; Skipped
Eey 1 - Found wrong stored record at 2161408

Eey 1 - Found wrong stored record at 2162608

Hundreds of more messages

Eey 1 - Found wrong stored record at 63449568

Found link that peoints at 351422388B0226435700 (outaside data file)
at 634435688

Eey 1 - Found wrong stored record at 63450554

Data records: 461818

However, the table is still considered corrupt.

& myisamchk thll . MYI

Checking MyISAM file: thll.MYI

Data records: 461818 Deleted klocks: ]
- check file-aize

- check record delete-chain

- check key delete-chain

- check index reference

- check record linka

myizsamchk: errecr: Found wreong record at 2209088
MyISEM-table 'thll.MYI' is corrupted

Fix it using switch "-r" or "-o"

A more extensive recovery is performed.



& myisamchk -ro tkll.MYI

- recovering (with keycache) MyISAM-table 'thl1.MYI®
Data records: 461818

Eey 1 - Found wrong stored record at 2209068

Found wrong packed record at 2209288

Delete link points ocutside datafile at 2210372

Eey 1 - Found wrong stored record at 2211256

Eey 1 - Found wrong stored record at 6095384

Hundreds of more messages

Eey 1 - Found wrong stored record at 93294832
Eey 1 - Found wrong stored record at 93295434
Data records: 461709

The number of data records has decreased from 461,818 to 461,709.

2 myisamchk -re thll . MYI

- recovering (with keycachs) MyISaM-tabls 'thll .MYI!

Data records: 461564

Found link that pointa at 24805082558742577327 (outside data file) at 4784

Found link that pointa at 2478534822401432711 (outside data file) at e3&0

Found link that points at 2452475432076752406 (outside data file) at 12572

Tena of thousands of more measages

Found block that points cutsids data file at 10855772
Found block that points cutsids data file at 108552168
Found bBlock that points cutsids data file at 108ES5RESS
Data records: 481523

The number of data records has decreased again from 461,818 originally to 461,523, an
indication that perhaps corrupted data has been removed.

At this time, the best approach is to try and obtain as much data as possible by
extracting data.

& mysgldump -u -p cust thll > dump.sqgl
mysgldump: Errer 1194: Table 'tkll' is marked as crashed and should ke
repaired when dumping tabkle 'tkll' at row: 9378

This more in-depth approach to try and recover data has also failed.
A Failed Database Backup

There is now no other option than to perform a database restore from the previous night’s
backup. This, however, failed with the following problems:

gunzip: custl 2012031%9.sql.gz: invalid compressed data--crc error

cqunzip: custl 20120219.=gl.gz: invalid compresaed data--length error

gqunzip: cu5t2:20120319.5ql,gz: invalid compressed data--length error
incomplete literal tree

gunzip: custl 2012031%.sql.gz: invalid compressed data--format

vielated

gunzip: custd4 2012031%.s8ql.gz: invalid compressed data--length error
incomplete distance tree

Some 25% of individual schema backup files failed to uncompress on both the



production server and a remote server containing the backup files. What was interesting
was the variety of different error messages. The customer was now forced with
considering an older backup.

TIP Testing your backup on an external system is important to ensure corruption is not
occurring at the time of your backup.

Detecting Hardware Faults

In isolated situations and when other plausible explanations are exhausted, faulty
hardware can be the issue. During this data restore process other symptoms of slow
performance, especially compressing the original data, and some of the unexplained
outcomes shown indicated a possible hardware error. The system log showed no indication
of problems to validate this hypothesis; however, in previous situations the end result has
been hardware.

During the process of taking additional filesystem backups of the current data and
configuration files for contingency, the system failed with a kernel panic. At this time the
client was left with no production server, no current backup of data or binary logs, and an
uneasy time as the host provider system engineers looked into the problem.

Almost an hour passes before the system is accessible again, and the host provider
reports a fault memory error on the console. MySQL is restarted, a myisamchk is
performed on the entire database, and several tables require a recover process—all occur
without further incident. Another hour later, the database is in what is considered a stable
state. A backup is then performed. The client is now convinced of the importance of the
need for the process.

NOTE Any organization without an adequate backup and recovery process is at risk for
serious business disruption. In this actual example, luck was on their side.

Conclusion

This client backup process had two important flaws. The first was the backup was not
checked for any type of error. The uncompressing of backup files was producing errors.

The second flaw was that the binary logs were not being stored on a separate system. If
the hardware failure was a disk and not memory, data recovery may have not been
possible. Not mentioned in any detail in this example is an additional restore issue where
the binary log position was not recorded during the backup.

This is a good working example of the various approaches to attempting to correct a
MyISAM database failure. All of these steps were performed with a client that had an
emergency and no plan. If you do not have access to expert resources attempting to
resolve this type of problem, the likelihood of not exhausting all options increases.

Missing Database Schemas

A client needed to perform a restore from the previous night’s backup. When verifying the
recovery process using the most recent customer that had been created, the application



was completely crashing when viewing customer information. What happened was one
transaction that recorded the customer was included in the backup, and new data for the
customer was not included.

The cause was in not understanding that mysqldump does not produce a consistent static
backup. Using mysqldump with--all-databases and the implied- -lock-tables does not
provide a consistent backup. For this disaster, the application would create a new schema
for a software as a service model. The first step is recording the new customer in a central
master database, then creating a new customer database, starting with the letter c followed
by a three letter hash, and finally reporting this has successfully completed.

When mysqldump got to the backup of the master schema, all tables were locked, and
the data extracted, including a reference to the new customer schema, was not included in
the backup because database schemas are processed sequentially, and locking only occurs
on a per schema basis. To better understand the cause, the following example is a look at
the actual SQL statements of a mysqldump of the example database environment in
Chapter 8. You can capture all SQL statements using the general query log.

mysql= SET GLOBAL general log=1;

2 time mysgldump --all-databases = dump.sgl
2 mors Jvar/lib/mysgl/ hostnams -s°.1og

44 Query SHOW DATABASES

44Init DB book2

44 Jusry ZHOW CREATE DATAEBASE IF NOT EXISTE “hbock2™

44 Quary show tablas

44 Query LOCE TABLES “album™ READ /*132311 LOCAL */, "album type~

READ /*132311 LOCAL */, "artist™ READ /*132311 LOCAL */, “country"”
READ /*132311 LOCAL */, “track™ READ /*132311 LOCAL */

44 Quary show table status like 'album!’

44 QJusry ZET OPTION E2QL QUCOTE SHOW CREATE=1

44 Quary 3ET SESSION character sst results = 'binary!
44 Quary show creats tablse "album™

44 Quary 3ET SESSION character set results = 'utfa!

44 Quary show fields from ~album”™

44 Query SELECT /f*140001 SQL _NO CACHE */ * FROM “album”
44 Query UMLOCE TRAELES

44Init DB employees

44 Quary ZHOW CREATE DATABASE IF HNOT EXISTE ~employveea™
44 Quary show tablas

44 Qusry LOCK TABLES “departments™ READ /*!132311 LOCAL */, "dept emp”

READ /*!132311 LOCAL */, "dept manager”™ READ /*132311 LOCAL */, “employees”
READ /*132311 LOCAL */, "salaries™ READ /*!132311 LOCAL */,6 “titles”
READ /*132311 LOCAL */

A further error was in the application where it was not correctly handling the error of a
non-existing database table for a given customer. It was assumed that if the customer
could log in, confirming credentials from the master database, that the underlying per
customer schema objects already existed.

Restoring a Backup on a Running MySQL Instance



For all restore options except using mysqldump, the process requires the MySQL instance
to not be running. When using MySQL Enterprise Backup (MEB), no check is performed
to ensure the instance is not running, and it is therefore possible to perform a restore on a
running instance. This is likely to result in inconsistent data and a potentially corrupt
database. The following occurred while documenting the recovery options described in
Chapter 5. This type of problem can also occur with other backup and restore products.

The steps taken were:
1. A backup was performed.

2. A new schema was created (before_restore), an existing schema was dropped
(employees), and an individual table was dropped (book2.artist).

3. Arestore was performed on a running instance.
mysgl=2HOW SCHEMAES

infoermation schema
bookZz

employeesn
migickrainz

myEgl

aakila

world innedb

world myisam

mysgl=DROP TAELE bockZ.artist;
mysgl=2HOW TABLES FROM bookZ;

T +
| Takles in book2 |
tmmmmmmmm e — - +
| alkum |
| alkbum_ type |
| country |
| track |
T +

mysgl=DROP SCHEMA emplovees;
mysql>CREATE SCHEMA before restore;
mysgl=SHOW SCHEMAS;

| Database |

information schema
before reastore
bookz2

migickrainsz

mysgl

smakila

world innedb

world myisam

A mysqglbackup copy-back as described in Chapter 5 was performed. The following
initial SQL statements were run after to initially verify the recovery:



mysgl= SHOW SCHEMAS;

| informatien schema |
| before restorse |
| bockz |
| empleyees

| musickrainsz |
| mysql |
| sakila |
| world innedb |
| world myisam |
e e e +

mysgl= SHOW TABLES FROM kook2;

| alkum |
| album_ type |
| artist |
| country |
| track |

As you can see the employees schema was restored, as well as the table book2.artist;
however, the before_restore schema still exists. Further analysis showed the following
error on a restored table that appears to exist:

mysgl= SELECT * FROM bock2.artist LIMIT 10;
ERROE 114& (42202): Table 'book2.artiast' dosan't exist

Investigation of the MySQL error log shows numerous errors to confirm that the
restoration failed to complete successfully.

120408 0:38:50 InnoDE: Error: tabklse 'employvees'. 'salaries' does not exist
in the InnoDE internal

InnoDB: data dictionary though MysSQL is Lrying to drop it.

InnoDBE: Have vou copied the .frm £ile of the table to the

InnoDBE: My=S0L database dirsctory from another databaser

InnoDB: You can look for further help from

InnoDB: http://dev.myvagl.com/doc/refman/s.1 /en/innodb-troubleshooting. html
120408 0:38:50 InneDB: Error: table 'emplovees' . 'titles' doss not axist
in the InnoDE internal

InnoDB: data dictionary though MysSQL is trying to drop it.

InnoDB: Have vou copled the .frm £ile of the table to the

InnoDB: My=SQL database directory from another databaser

InnoDB: You can look for further help from

InnoDB: http://dev.myvagl.com/doc/refman,/s .1 /en/innodb-troubleshooting. html
120408 0:46:20 [ERRCR] Cannot find or open tablse bockz2/artist from

the internal data dicticnary of InnoDBE though the .frm file for the

table exists. Maybs yvou have deleted and recreated InnoDB data

files but have forgotten to delete the corresponding .frm files

of InncDBE takbles, or you ve moved .frm files to ancthar databasar

or, the table containzs indexes that this version of the engins

doean't support.

See http://dev.myagl ..com/doc/refman/s. 1/ /en/innodb-troubleazhooting. html

how wou can resolve the problem.

This highlights two practices that are required:



1. Determine the necessary prerequisites for the restore process.
2. Always check the MySQL error log.

Handling InnoDB Specific Situations

The most commonly used storage engine in MySQL is InnoDB. One of the strengths of
InnoDB is the ability to support transactions and the ability to perform automatic crash
recovery. What happens when this does not work as designed? This section includes
several InnoDB examples:

1. When automatic recovery fails
2. Internal data dictionary corruption

3. InnoDB data recovery
Automatic Recovery

The InnoDB storage engine will automatically perform a crash recovery when necessary,
generally when the MySQL instance is not shut down safely. In this example, crash
recovery was occurring every time MySQL was started.

2 cat Jvar/log/myagl/error.log
110426 14:05:53 [Mote] usr/sbin/myagld: Normal shutdown
110426 14:05:56 InncDE: Starting shutdown. ..

InnoDBE: Log scan progressaed past the checkpolint lsn 6 2726273468
110426 14:05:5% InncDE: Database was not shut down normally!

InnoDBE: Starting crash recovery.

InnoDBE: Dolng racovery: scanned up to log 2aquence numbsr £ 27216816256
mnoDE: Dodng recovery: scanned up to log sequence numbar & 2750470428
110426 14:06:01 InncDBE: Starting an apply batch of log records to the
database. ..

InnoDB: Progress ln percents: 01 2 3 4 66 789 10 11 12 13 14 15 16 17 18 ...
InnoDBE: Apply batch complated

110426 14:07:58 InnoDE: Started; log sequence numbaer & 2750470428
110426 14:07:58 [Mote] fusr/sbin/myagld: ready for connecticns.

While MySQL was cleanly shut down, an automatic crash recovery was being
performed. This would take several minutes before the system was available for general
use. It is unclear exactly why this problem was occurring. The client reported the situation
was the result of an unexpected MySQL instance failure on an Amazon Web Services
(AWS) instance running on Elastic Block Storage (EBS).

InnoDB provides for a forced recovery mode, which enables six varying levels of
disabling various crash recovery features. In a failed InnoDB crash recovery, you can use
each of these modes, starting with 1, to attempt to retrieve as much data as possible. In this
example, this configuration option was set to 1.

#ory . onf
[ryagld]
innodb force recovery=1

2 service mysgl restart
110426 15:25:42 [Mote] Event Schedulsr: Purging the queue. 0 avents
110426 15:25:42 InncDE: Starting shutdown. ..



110426 15:25:45 InneDE: Shutdown completed; log sequence numbar &€ 2773257632
110426 15:25:45 [Mote] fusr/sbin/myagld: shutdown complate

n

110426 15:27:02 InncDE: Started; log sequence numbar & 27673257683
ImnoDE: !!! innodk force recovery 1la set to 1 11!

110426 15:27:02 [Mote] Event Scheduler: Loaded 0 events

110426 15:27:02 [Mote] Sfusr/sbin/myagld: ready for connecticns.
Veraicn: '5.1.41-3ubuntul2.s' socket: ! Jvar/run/mysgld/mysgld. sock!
port: 2306 {Ubuntu)

At this time, the database has successfully started without performing a crash recovery.
In any non-zero mode InnoDB will self-protect the data and prevent any modification with
INSERT, UPDATE, or DELETE statements. In this example, a clean shutdown, the
removal of the innodb_force_recovery option, and the restarting of MySQL addressed
the issue.

InnoDB Data Dictionary Inconsistency

Every table in MySQL has a related table definition file that is located in the schema sub-
directory within the data directory of the instance. This is known as an.frm file. In
addition, InnoDB holds meta-data within the InnoDB common tablespace (e.g., the ibdata
1 file) about the table definitions.

At times these may appear inconsistent or be inconsistent and report errors similar to:

120206 21:10:27 InneDE: Error: tabkle “test™. "person” doea not exist in the
InnoDE internal

InnoDB: data dictionary though MysSQL is Lrying to drop it.

InnoDBE: Have vou copled the .frm £ile of the table to the

InnoDB: MySQL database dirsctory from another databaser

InnoDB: ¥You can look for further help from

InnoDB: http://dev.myagl.com/doc/refman,/s .1 /an/ innodb-troubleshooting. html

and

110222 23:46:48 [ERRCOER] Cannot find or open table damo/tkl from

the internal data dicticmary of InnoDBE though the .frm file for the
table exists. Maybs vou have deleted and recreated InnoDBE data

file=s but have forgotten to deletse the corresponding .frm filses

of InncDE tables, or you have movad .frm £iles to ancther databass?
or, the table contains indsxes that this version of the engins

doean't support.

Sge http://dav.myagl .com/doc/refman/s. 1 /en/innodb-troubleshooting. html
how wou can resolve the problsam.

These situations occur where the InnoDB tablespace has been rebuilt and the underlying
table definitions were in place. Alternatively insufficient file permissions with the MySQL
data directory can cause an underlying inconsistency.

Automatic Recovery Crashes the Database Server

The InnoDB storage engine is designed to perform automatic crash recovery. This is
possible because the InnoDB transaction logs (redo logs) record all successful transactions
that may not have been applied to the underlying InnoDB data. The doublewrite buffer



also holds committed data that may not be applied to the same underlying InnoDB data.

When the MySQL instance is started, InnoDB will detect a difference in the Log
Sequence Number (LSN) between the InnoDB transaction logs and the InnoDB data. This
is an indication that the MySQL instance was not shut down correctly. In this case InnoDB
will automatically detect then rectify the situation to produce a consistent view. In the
following example this then caused the MySQL server to crash:

InnoDBE: The log sequencs number in ibdata files deoss not match

InnoDB: the log sequence number in the ib logfiles!

120125 1£:39:48 InncDE: Database was not shut down normally!

InnoDBE: Starting crash recovery.

InnolDB: Reading tableapacse information from the .ibd fileas. ..

InnoDB: Reatoring posaible half-written data pages from the doublewrite
InnobDB: buffar...

120125 16:3%:48 InncDB: Assertion failure in thread 2691024572 in file
fepofsp.c line 2101

InnoDB: Falling assserticon: inode

InnoDBE: We intentionally generate a memory trap.

InnoDB: Submit a dstailad bug report teo http: //bugs.mysgl.com.

InnoDB: If yvou get repeated assertion fallurss or crashes, evan

InnoDB: immediately aftar the myagld startup, there may be

InnoDB: corruption in the InnoCBE tablespace. Pleasse refer to

InnoDB: http://dev.myagl.com/doc/refman/s .5 /an/forcing-inncdb-recovery . html
InneDE: about forelng recovery.

120125 16:39:48 - mysqgld got signal & ;

This could be bacause you hit a bug. It 1s also possible that this binary
or one of the libraries 1t was linked against ig corrupt, improperly bullt,
or misconfigured. Thisa error can alao ke caused by malfunctioning hardware.
We will try our best to gorape up some info that will hopefully help diagnose
the preklem, but asince we have already crashed, scmething 1s definitely wrong
and thia may fail.

Other MySQL Situations

The following examples complete some different situations using MySQL.:
* Replication inconsistency

 Third party product recovery limitations

Replication Inconsistency

The following error message was discovered on a MySQL replication server:



mysql> SHOW SLAVE STATUS\G

khkdddkhdhdddddhddkhr kbt | pow FhEhkdkkkrikdkk ki ik ki iEri bbb bbbk

Relay Log File: relay-log.00711Z2
Relay Log Pos: 664060
Relay Master Log File: mysqgl-bin.002334

Exec Maater Log Pos: 59622948

Slave I0 Running: Yes
8lave 8QL Running: Ho

Last Errnc: 1082
Last Error: Error 'Duplicate entry '857867' for key 'id' on query.
Default database: 'dk'. Query: 'INSERT INTC urls (url)
VALUES ("effectivemyagl.com') '
Skip Counter: O

Last IO Errnoc: 0

Last IO Error:

Last SQL Errno: 1062

Last SQL Error: Error 'Duplicate entry 'B57867'

A review of the data on the slave host shows the data for the SQL statement was already
applied.

mysgl> select * from urls where id=857867;

to——mmm— - e +
| id | url |
+o——-m—— - Fommmm +
| 857867 | effectivemnysgl.com|
to—mm - e ettt +

A number of checks were performed to look at the master database and binary logs to
confirm this statement only occurred once.

A review of the slave host error log showed that MySQL has recently performed a crash
recovery.

111214 17:1%:20 [Mote] Plugin 'FEDERATED' i= disablad.
InnobDBE: Log scan prograssad past the checkpoint lsn 42 957070720
111214 17:1%:20 InnoDB: Database was not shut down normally!

111214 17:1%:54 InncDE: Startad; log sequence numbsaer 42 397320231

111214 17:1%2:54 [Mote] Slave SgL thread initialized, starting replication

in log '‘myagl-bin.o0z334' at position 58%53133, relay log

Vivar/lib/mysgl /relay-1og. 007110 position: 535259284

111214 17:1%:54 [Mote] Event Scheduler: Loaded 0 events

111214 17:1%:54 [Mote] Susr/asbin/myagld: ready for connecticns.

Verasicn: '5.1.41-3ubuntul2.s' socket: ! Jvar/run/myesgld/myegld.sock!

port: 2308 (Ubuntu)

111214 17:1%:54 [Mote] sSlave I/0 thread: connected to master 'repl®’,replicaticon
started in leg 'mysgl-bin.002334' at posltion 589591389

111214 17:1%:55 [ERRCR] 2lave SQL: Errcor 'Duplicats entry '857&867' for key ...
fuery: 'INSERT INTC urls (url) VALUES('effectivemysgl.com')', Error code: 1062
111214 17:1%:55 [Warning] sSlave: Duplicate aentry 'e57867! for key 'id!
Error_code: 1082

111214 17:1%:55 [ERRCR] Error running query, slave SQL thread aborted.

Fix the problem, and restart the slave =2QL thread with "SLAVE

START". We stopped at log 'mysgl-bin.002234' positicn S36822%48



A review of the slave relay log, which details completed SQL statements, showed that
this SQL command had actually been executed, yet MySQL replication appeared not to
record this. A review of the underlying information file, defined by the relay-log-info-
file configuration option, indicated an inconsistency with the error log of the actual
master binary log executed log position. The error log indicates that MySQL replication
started at the position of 58959139, while the relay log information file shows a different
position. This inconsistency was the actual SQL statement that was being reported as the
last failure.

# more relay-bkin.info
Jvar/lib/mysgl /relay-log.007112
664060

mysgl-bin. 002324

59e22948
9
1

As a result, by skipping the SQL statement, the replication slave could be started and
continued without incident.

By default the sync_relay_log_info configuration option has a value of 0, which
implies the filesystem should flush this file to disk from time to time. In this situation, a
database crash caused this file to become inconsistent. More information on this option

can be found at http://dev.mysql.com/doc/refman/5.5/en/replication-options-
slave.html#sysvar_sync_relay log_info.

RDS Recovery Failure

Amazon Web Services (AWS) provides a Remote Database Service (RDS) for MySQL.
This is popular when an organization does not have any skills to manage MySQL. This
complete packaged solution has several limitations. There is no physical access to the
database server. While there are API interfaces to change MySQL configuration settings
and look at MySQL error and slow logs, it is not possible to look at the system resources
being used, or look at the MySQL binary logs, for example.

An issue arose with a client when a database restore through an RDS snapshot failed.
Amazon support informed the client there was some BLOB or TEXT field with bad
characters and this prevented mysqlbinlog from performing a successful restoration. They
were directed to the following bug: http://bugs.mysqgl.com/bug.php?id=33048.

The client was looking for a means of tracking down the potential offending records so
a database restoration could be performed. First there was no way to confirm this was the
actual failure of the restoration, as this third party managed service did not provide access
to detailed logs. The listed bug, if this was indeed the true problem, provided two
workaround solutions; the first was to analyze the mysqlbinlog output, and then correct if
necessary before applying. The second option was to replay the binary log via the
replication stream rather than converting to ASCII and then using the mysql client. Both of
these options were not possible because the third party did not provide sufficient access.


http://dev.mysql.com/doc/refman/5.5/en/replication-options-slave.html#sysvar_sync_relay_log_info
http://bugs.mysql.com/bug.php?id=33048

The binary logs, for example, are not accessible.

At this time, the client has no recovery capability. The backup process failed during
recovery, and the service provider was both unwilling to help further or provide access to
necessary MySQL information to perform more in-depth analysis.

Common Downtime Causes

What are the most common causes of downtime with MySQL systems? Leading service
provider Percona published in the IOUG SELECT magazine, Q1 2011, an article titled
“Causes of Downtime in Production MySQL Servers,” which provides a very detailed
picture of actual support situations.

One third of all reported downtime was not the result of MySQL in any way. Issues with
the storage system were defined as the top factor, with the operating system and
networking also attributing to downtime. A SAN or RAID storage system is not a backup
solution. The following article by leading PostgreSQL expert Josh Berkus is a great
reinforcement of why. In this disaster example, there was not even a physical failure—a
vendor-provided firmware update led to eventual total data corruption. More information
can be found at http://it.toolbox.com/blogs/database-soup/a-san-is-not-a-highavailability-
solution-47644. The Sidekick data disaster as detailed earlier was reported as a SAN
upgrade mistake.

CAUTION A RAID system is only as good as the monitoring used to detect a degraded
RAID configuration and the time taken to correct the problem. When a service provider,
system administrator, or other resource states your data is protected by RAID, ask for
proof the RAID system is not degraded. This question is always asked when reviewing a
client backup and recovery strategy, and the results observed have been two clients
unaware they had degraded production systems.

The whitepaper also shows a breakdown of replication related problems where data
drift results in almost 50% of replication issues. The majority of data loss and corruption
issues were the result of human factors. An important factor in the management of any
system is the result of a failure due to other human factors. The lack of appropriate
configuration management, unprepared and untested upgrading, or the lack of performing
software upgrades all attribute to controllable situations. An important statement in the
prevention of situations that can use a disaster situation clearly highlights a common
problem found.

NOTE Quoting from the “Causes of Downtime in Production MySQL Servers”
whitepaper: “In most cases, emergencies analyzed could have been prevented best by a
systematic, organization-wide effort to find and remove latent problems [before they
occur]. Many of the activities involved in this effort could appear to be unproductive,
and might be unrewarding for people to do.”

A full copy of the whitepaper is available for download from the Percona website at
http://www.percona.com/about-us/mysqgl-white-paper/causes-of-downtime-in-production-



http://it.toolbox.com/blogs/database-soup/a-san-is-not-a-highavailability-solution-47644
http://www.percona.com/about-us/mysql-white-paper/causes-of-downtime-in-production-mysql-servers

mysql-servers.

External Help

In some cases, a disaster is correctable. As shown in this chapter, understanding and
describing the precise circumstances and seeking input from multiple reputable and
experienced resources can be key to avoiding a disaster and career limiting situation.
Organizations that provide dedicated MySQL services, that are active in the MySQL
community ecosystem, and that are known by this author are included here:

* MySQL technical support services, part of Oracle support services, provides global 24/7
technical support. Details at http://www.mysql.com/support/.

» SkySQL provides world-wide support and services for the MariaDB and MySQL
databases. Details at http://www.skysql.com/.

* FromDual provides independent and neutral MySQL, Percona Server, and MariaDB
consulting and services. Details at http://fromdual.com/.

* The Pythian Group “love your data” provides remote database services for Oracle,
MySQL, and SQL Server. Details at http://www.pythian.com/.

* Blue Gecko provides remote DBA services, database hosting services, and emergency
DBA support. Details at http://www.bluegecko.net/.

 Percona provides consulting, support, training, development, and software in MySQL
and InnoDB performance. Details at http://www.percona.com/.

» Open Query provides support, training, products, and remote maintenance for MySQL
and MariaDB. Details at http://openquery.com/.

* PalominoDB provides remote DBA and system administration services in MySQL,
MariaDB, and other open source products. Details at http://palominodb.com/.

+ Effective MySQL provides practical education, training, and mentoring resources for
MySQL DBAs, developers, and architects. Details at http://effectivemysql.com/.

+ Continuent provides continuous data availability and database replication solutions, and
provides support managing and running MySQL replication with industry leading
experts. Details at http://www.continuent.com/.

Other organizations may state they provide MySQL services. While this list is not
exclusive of all possible service providers, these companies are known within the MySQL
ecosystem. As with any service you should always independently compare and evaluate
for your needs.

Conclusion

World Backup Day is designated as the 31st of March. The tag line is “Don’t be an April
Fool. Back up your data. Check your restores.” More information can be found at
http://www.worldbackupday.com/. However, every day is your last day if you do not have
a backup and recovery process in place. Disaster recovery (DR) can range from a mildly
annoying occurrence to a once in a lifetime tsunami type event. This chapter and this book



http://www.mysql.com/support/
http://www.skysql.com/
http://fromdual.com/
http://www.pythian.com/
http://www.bluegecko.net/
http://www.percona.com/
http://openquery.com/
http://palominodb.com/
http://effectivemysql.com/
http://www.continuent.com/
http://www.worldbackupday.com/

do not provide all the answers for all situations with a MySQL disaster. This book does
provide extensive knowledge and presents all the common options and tools available,
with supporting information of situations you should be aware of, plan for, and know how
to address when necessary.

Copies of all referenced articles are available on the Effective MySQL website at

http://effectivemysql.com/book/backup-recovery/.


http://effectivemysql.com/book/backup-recovery/

8
Optimizing Backup and Recovery

Once you know there is a valid backup and restore process for your environment, how
can you improve and refine this process? Depending on your locking strategy, diskspace
availability, or business data recovery service level agreement (SLA), there are various
techniques you can use to optimize and streamline your process. There are also
architectural considerations for further optimizations.

In this chapter we will discuss:

Use and benefits of compression

Levering streaming

Parallelism with mydumper

Full and incremental backups

Architectural considerations

Example Backup Environment

Chapter 2 discussed the primary backup options available for a MySQL instance. This
chapter has specific demonstrations for mysqldump, MySQL Enterprise Backup (MEB),
and XtraBackup products described as well as mydumper.

All tests were performed on an Amazon Web Services (AWS) Elastic Compute Cloud
(EC2) large instance with a dedicated Elastic Block Storage (EBS) partition for the
MySQL data and the MySQL backup location. An EC2 m1.1large instance is defined with
the following characteristics from http://aws.amazon.com/ec2/instance-types/:

* 7.5GB memory
* 4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units each)


http://aws.amazon.com/ec2/instance-types/

850GB instance storage

64-bit platform

I/O Performance: High

API name: ml.large

The following articles will provide all the steps necessary to start using AWS without
any prior knowledge in order to repeat any examples in this chapter:

» http://effectivemysqgl.com/article/setting-up-amazon-web-services/

* http://effectivemysqgl.com/article/using-amazon-web-services/

Refer to the GitHub repository of code for this book to reproduce the full environment
and commands used in the following examples. Details can be found at

http://effectivemysql.com/book/backup-recovery/.
The small database environment used is approximately 5GB.

SELECT SUM{data_length+index_;ength?j1024f1024 Ls total mb,
80M (data length) /1024/1024 A2 data mb,
SUM (index length)/1024/1024 AS index mb,
COUNT (DISTINCT takle schema) AS schema ont,
COUNT (*) AS tables, N
CURDATE() AS tecday,
VERSION()
FROM information schema.tables\G

kkddkdddddhkdkhdkdhkhk kbt t | pow FhEhkdkikhkkkhk ik ki itk btk bk ok

total mb: 5344.52
data mb: 4545.49
index mb: 752.13

schema cnt: 7
tablea: 102
today: 2012-04-03

VERSION(): 5.1.61-0ubuntuf.11.10.1-log

For the purposes of testing and providing shorter commands, the MySQL privileges
have been recorded in a user MySQL configuration file. This does not represent the
optimal MySQL user account or approach for securing MySQL backups. An appropriate
and secure approach should be used for production systems.

% cat 5HOME/.my.onf
[client]

uger=root
pasaword=pasawd

All times shown are for a single execution of the respective command and are provided
as an example representation. Appropriate error checking is not shown in the following
examples. This should be applied accordingly in a production setting. Accurate
benchmarking should involve several iterations of the same test and should include
monitoring additional system resources, including CPU, disk, and network throughput to
determine a more specific measurement.


http://effectivemysql.com/article/setting-up-amazon-web-services/
http://effectivemysql.com/article/using-amazon-web-services/
http://effectivemysql.com/book/backup-recovery/

Using Compression

One of the most common improvements to any backup strategy is the use of compression.
The time savings for transferring backups offsite or to external media, including tape, can
be an important benefit. Compression can also be used to reduce disk I/O during the
backup or recovery approach. This feature has one significant limitation—that is, the time
taken to compress or uncompress files may impact individual steps in the backup or

recovery strategy.

mysqldump

When using mysqldump, compression can simply be included as an additional step or in

the command line via a piped command. For example:

2 time myagldump [options] = dumpl.sqgl
% la -1h dumpl.agl

$ time gzip dumpl.esgl

2 la -1h dumpl.agl.gs=

or

8 time mysgldump [options] | gzip = dump2.sgl.gs
g la -1h dump2.agql.g=

TIP While the gzip command is demonstrated here, other compression tools exist,
including bzip and 7zip. These tools can provide better compression ratios for certain
types of data. Compressions tools also generally include different options between the

fastest and best compression.

Using the example MySQL database of approximately 5GB:

% time myagldump --all-databases > /mysql/backup/dunpl.sql

real 1m31l.631e

user lmlz.533a

ays Oml0.823a

2 la -1h /myagl/backup/dumpl.sql

-rw-rw-r-- 1 uid gid 2.96 2012-04-03 03:04 /myaqgl/backup/dumpl.aql
% time gzip /myaql/backup/dumpl.sql

real 4m28.237a

uger 4mG . 6872

ays omS.316a

5 la -1h /myagl/backup/dumpl.sql.gsz

-rw-rw-r-- 1 uid gid %02M 2012-04-03 03:04 /myaqgl/backup/dumpl.asql.gz

With compression combined as a single command the results are:

8 time mysagldump --all-databases | gszip = /mysgl/backup/dump2.aql.g=
real 4ml8.536m

user Emd.271a

ays Om7.7922a

g la -1h dump2.agl.g=

-rw-rw-r-- 1 uid gid %02M 2012-04-032 03:15 /myagl/backup/dumpz.eql.gz



When using a piped command the first benefit is that the output file is automatically
compressed on the fly, without requiring any additional temporary disk space. This helps
if your system has limited diskspace. The disadvantage is the additional time this
command may take to execute. When combined with the mysqldump command using
default settings, a lock of all tables can affect application access. In this example, the
locking was increased from 91 seconds to 258 seconds. Locking is not a consideration for
an InnoDB only database when the --single-transaction option is used.

Testing is necessary to confirm the benefits for your environment. It is easy to time the
backup and compress commands separately and the time taken when combined. The
combined time may not be a significant overhead in some situations. This will depend on
disk throughput capacity and memory. In the preceding example, 359 seconds was
reduced to 258 seconds when the statements were combined, producing a saving in time.
In the following example of a different sized database on a different system, the time is
about the same, 83 seconds compared with 81 seconds.

5 time mysgldump --all-databases > dumpl.sgl

real (m36.801s

5 1ls -1h dumpl.sgl

-rw-rw-r-- 1 uid gid 280M 2012-03-08 17:41 dumpl.sqgl

5 time gzip dumpl.sgl

real (m47.457s

% 1ls -1h dumpl.sgl.g=z

-rw-rw-r-- 1 uid gid 94M 2012-03-08 17:41 dumpl.sgl.g=
5 time mysqldump --all-databases | gzip > dumpZ.sql.g=z
real 1m21.262s

5 1ls -1h dumpZ.sgl.g=z
-rw-rw-r-- 1 uid gid 94M 2012-03-08 17:43 dump2.sgl.gz

Compression with a filesystem snapshot is a process that occurs as a post-step,
generally before copying the snapshot files. As the size of the backup grows, the negative
impact on the production system and the recovery process becomes more obvious.

The compression on the database server can have an effect on the database 1/0
performance. Is the copy of an uncompressed backup that is five to ten times larger on a
dedicated network interface less of an impact than the compression? This will be
discussed in the following sections.

TIP The nice and ionice Linux commands can change the priority of work on a system
and lower the system impact of certain commands.

While you consider this, the greatest issue uncovered during consulting in a disaster
recovery situation is either the time taken to uncompress the data before restoration, or
insufficient disk space to uncompress a backup and restore accordingly. In the first
situation, a client with a large centralized SAN for more than 30 databases had a 17 hour
delay in the database restoration due to the time taken to uncompress data. In the second
situation, your system may require at least two times the database size in diskspace, the
uncompressed backup file, and the restored database.

Under normal circumstances the most common database recovery is that of the last
physical backup. It would be optimal to always ensure an uncompressed copy of the



system you wish to restore is on disk.
Compression Utilities

Using the mysqldump backup of 2.9GB the following testing was performed to compare
the time and % compression savings of various available open source products.

Compression Time | Decompression Time
Utility (sec) (sec) New Size(“%: Saving)

lzo (-3) 21 34 1.5GB (48%)

pigz (-1) 43 33 GOUEME (B4%)
pigz (-3) 56 34 967MB (67%)
gzip (-1) 81 43 G95MB (64%)
faatlz a2 125 1.3GB (55%)

pigz [-6] 105 25 902MB (69%)
gzip (-3} 106 43 967MB (67%)
compress 145 36 L1GB (2%)

pigz (-9} 202 23 S93MB (70%)
gzip [-6] 232 78 902MB (69%)
zip 234 50 902MB (69%)
gzip (-9) 405 43 B93MB (70%)
bzipZ 540 175 757MB (74%)
rzip 11 minutes 360 756MB (74%)
lzo (-9) 20 minutes B2 1.2GB (58%)

7z 33 minutes 122 HEOMB (77%)
lzip 47 minutes 132 66OMB (77%)
lzma 58 minutes 180 A3OMB (78%)
KZ 59 minutes 160 643MB (78%)

The percentage savings and compression time of results will vary depending on the type
of data that is stored in the MySQL database.

NOTE The pigz compression utility was the surprising winner in best compression time
producing at least a size of gzip. This was a full 50% faster than gzip.

MySQL Enterprise Backup (MEB)

A backup with MEB can enable compression with the --compress option. With
compression you are unable to apply the logs within a single backup command, i.e., --
compress and the action backup-and-apply-log are incompatible. Compression is also
incompatible with all incremental backup options including --incremental and --
incremental-with-redo-log-only.

The following information is for a normal MEB backup:



2 sudo su - myagl
2 time Jopt/meb/bin/myesglbackup --usar=rocot --password=pazswd %
--backup-dir=/mysqgl /backup/meb/first backup-and-apply-log

raal im30.
user omLT.
sys omld.

8798
081s
5658

2 du -sh /mysqgl /backup/meb/first
5.63 Jmyesgl/backup/mak /first
2 1la -1h /mysgl /backup/meb/first/datadir/iba»

-rw-rw-r-- 1 uid gid 5.4¢ 2012-04-02 03:25 Smysgl/backup/meb/first/datadir/ikbdatal

Only InnoDB tablespace files are compressed. These are given a.ibz extension
accordingly for both the per tablespace .ibd data files and the common tablespace ibdata
file. Large MyISAM data files are not compressed. For example:

2 time Jopt/meb/bin/mysglbackup --user=roct --password=pazswd --compresa b
--backup-dir=/myvsql /backup/meb/seccnd-comprassed backup

mysglbackup: INFZ: Unique genserated backup id for this is 1233423%27C5e778262
INFO: Usaes posix fadvise() for performance optimization.
INFO: 2ystem tableapace file format is antelope.

INFO: Found checkpolnt at lsn 274642841,

INFO: Starting log scan from lsn 274642683,

myaglbackup:
myaglbackup:
myaglbackup:
my2glbackup:
120403 3:32:

120403 3:32
Wa
120403 3:32

17 mysglbackup: INFO:
:17 mysglbackup: INFO:
wait 1 second before
:18 mysglbackup: INFO:

Copying log. ..

Log copled, lsn £274642241.
starting copying the data filea...
Copyving /var/lib/mysqgl/ibdatal



{Antelope Tile format).
mysglbackup: Progress inm MB: 200 400 €00 800 ... 4800 5000 S200 5400
myeglbackup: INFO: Freparing to lock tables: Comnected to mysgld server.
120403 03:36:5% mysglbackup: INFO: Starting to lock all the tables....
120403 03:36:5% mysglbackup: INFO: all tables are locked and flushed to disk
myaglbackup: INFO: Opaning backup ecurce directory !'/fwvar/lib/myagl/!'
120403 03:36:5% my=sglbackup: INFO: Starting £o backup all filss in
subdirectorics of ! fvar/lib/myegl /¢
myEglbackup: INFO: Backing up the database directory 'emplovesa!
myeglbackup: INFO: Backing up the database directory ‘musicbrainz’
myeglbackup: INFO: Backing up the database dirsctory 'mysgl’
myaqlbackuip: INFO; Backing up the database directory 'sakila!
mysglbackup: INFO: Backing up the database directory 'world inncdh!
myaqglbackup: INFO: Backing up the datsbase directory 'world mylsam'
myoglbackup: INFO: Copying innodb data and logs during £inal stage ...
mysglbackup: INFO: A copled database page was modified at &6374642841.

{This is the highest lan found on pagel

Scamnaed log up to lsn 6374644872,

Wag able to parse the log up to len £374644872.

Maximum page number for a Iog record 223380
mysglbackup: INFO: Compressed 5432 MB of data files to 1704 MB
{compression 58%).

real 4md 2.1608

uger imd G528

ays Oms . 9608

£ du -sh /myeql /backup/meb/second-conpressed)

1,7a Jmvegl /backup/mab /second-compreased/

£ 1la -1b /myegl /backup/meb/second-compresased /datadir/ibde
~rW-rw-r-- 1 uid gid 1.78 2012-04-03 02:38 /mysqgl/backup/meb/
sarcond-compressed/datadir /ibdatal . ibsz

% 1s =1h /myeqgl /backup/msb/second-compressed/datadir fvorld myisam/
total 484K

~IW-IW-r-- 1 myeqgl mysql B.&K 2012-04-03 03136 City.frm

~Iw-Iw-r-- 1 mysgl mysgl 267K 2012-04-03 03:36 Clity.MyD

“Tw-Iw-r-- 1 mysgql myegl 42K 2012-04-03 93:36 City.MYI

-Tw-IwW-T-- 1 myagl myegl 9.0K 2012-04-03 03:36 Countcry.frm
-Iw-IW-r-- 1 my=sgl mysgl B.SK 2012-04-03 03:36 CountryLanguages.frm
-TwWw-IW-IL-- 1 myagl my=gl 38K 2012-04-03 03:3¢ CountrylLanguags.MyYD
-TWw-IW-L-- 1 myagl myagl 18X 2012-04-03 03:36 CountrylLanguags.MyYI
-FW-IW-r-- 1 myegl myeql S1K 2012-04-03 03:36 Country.MYD
-TW-IW-r-- 1 myagl myegl 5.0K 2012-04-03 03:18 Country.MYI
~FW-IW-r-- -1 myagl mysdql £5 2012-04-03 03:318 db,opt

By comparison the backup without the - -compress option produced a 5.6GB backup in
210 seconds. This compressed backup of 1.7GB took 282 seconds to complete.

The --compress-level=N option enables further compression. A value of 1 is the
default and fastest compression; 9 is the slowest compression. Subsequent tests with - -
compress-level=9 produced only slightly better compression; however, the time taken

was six times longer.

XtraBackup

To enable compression with XtraBackup, you must first stream the data with the --
stream=tar option and pipe accordingly to an applicable compression command. For

example:

% inncbackupex--stream=tar ./ | gzip -> /path/to/backup.tar.g=



A normal XtraBackup produces the following results for the example database:

2 sude su - mysgl

% time innobackupex --defaults-file=/etc/myagl/my.cnf --user=root
--pagssword=passwd --no-timestamp /myeql/backup/xtrabackup/first
real 2m41.3398

user Om2l.76%9a

ays Oml4d.56%a

5 du -sh /myagl/backup/xtrabackup/firat/
5.4a fmyeql /backup/xtrabackup/first/

The following is produced for an XtraBackup with compression:

% time innobackupex --defaults-file=/etc/myagl/my.onf --user=root
--password=passwd --stream=tar ./ | \

gzip - = /mysgl/backup/xtrabackup/asscond.tar.gz

real Sm2 . 4098

user Tm2.551a

ays om2.025a

2 la -1h /myagl/backup/xtrabackup/aecond.tar.gz
-rw-rw-r-- 1 uid gid 1.6G 2012-04-032 04:04 second.tar.gs

For comparison, without the streaming and compression the backup took 161 seconds
and produced a backup directory 5.4GB in size compared with 482 seconds and a backup
file of 1.6GB in size with compression.

When extracting the backup file, the following syntax is used:

5 tar xvfzi /mnt/backup/xtrabackup/second.tar.gz

CAUTION When uncompressing XtraBackup tar files, the -i option is required.

Streaming Backups

A Linux pipe combined with an applicable command can be used to stream output across
the network, avoiding the need to write any backup information on the database server.

Using SSH

Using standard SSH with keyed authentication you can automate the network transfer of a
backup. In the following examples the SSH connection has been simplified to just using
the alias backup:

% cat SHOME/.ash/config
Host bkackup
IdentityFile /home/ubuntu/.ssh/admin.pem
Uzer ubuntu
HostName ec2-EE-XE-¥E-XX.compute-1.amazonaws.oom

TIP You can remove the complexity for remote connections by defining the hostname,
port, user, and key details in the SSH configuration file $SHOME/.ssh/config.



For example:

8 time mysgldump --all-databases | ash backup "cat - > rdumpl.sgl"”
real 2m20.774n
user Zms . 8962
ays Oml=2.2&61s

2 ssh backup "la -1lh rdumpl.asgl®
-rw-rw-r-- 1 uid gid 2.9 2012-04-03 04:13 rdumpl.agl

This can be combined with compression as described previously. For example:

8 time mysgldump --all-databases | gzip |
ash backup "cat - > rdump2.sgl.gz"
real 4m32.4348
user Em27. T8
ays Omll.&a23a
% sah backup "la -1lh rdumpZ.agl.gz"
-rw-rw-r-- 1 uid gid 9%02M 2012-04-03 04:18 rdumpZ.agl.gs=

It is also possible to offload the compression to the remote host by sending the data
uncompressed and applying at the destination. For example:

8 time mysgldump --all-databkases | ssh backup "cat - |
gzip > rdumpl.sgl.gz="

real 3m38.905a

uger 1mS7.011s

aya Omlz. 2658

% sah backup "la -1lh rdump3.agl.gz"

-rw-rw-r-- 1 uid gid 902M 2012-04-032 04:23 rdump?.agl.gs=

You can also throttle throughput in a pipe with the pv command. For example:

8 time mysgldump --all-databases | pv -LS5m -g |
ash backup "cat - > bkackup.sgl®

Using nc

Using netcat (nc) you can transfer a file via TCP/UDP directly on a given port. This
generally requires defining the receiving communication on the destination server, and
may require additional firewall access on a defined port. For example:

8% ssh backup "ne -1 2206 > /mysqgl/backup/ne/firat.agl" &

2 time mysgldump --all-databases | nc backup 2206

real 2m21.778a

user 1m21.261s

ays Om42.03%a

ash backup "la -lh /mysgl/kbackup/ne/first.sql”

-rw-rw-r-- 1 uid gid 2.96 2012-04-08 00:07 /myaqgl/backup/nc/firet.aql

This command is generally considered more lightweight than ssh and possibly a little
faster. The size of this backup example does not represent what true savings may occur for
larger files. The time saving can be attributed to less authentication and encryption



requirements; however, this highlights a potential security impact for a plain text SQL
dump. Adequate firewall security for an internal network is an important consideration.
Compression can also be included with these piped commands at either the source or
destination host.

MySQL Enterprise Backup (MEB)

To achieve streaming with MEB, the [backup-to-image] option can be used in conjunction
with writing the output to standout and using an appropriate piped output. For example:

2 time Jopt/meb/bin/mysglbackup --backup-dir=/myvsgl/backup/meb/straam
--backup-image=- backup-to-image | %
gsh backup "cat - = /mysgl/backup/meb/atream.tar”

My2QL Enterprise Backup version 3.7.0 [2011/12/19]

Copyright (o} 2003, 2011, <Cracle and/or its affiliates. 211 Rights EReserved.

Backup Image

mysglbackup:

mysglbackup:

mysglbackup:
mysglbackup:
mysglbackup -
mysglbackup -
42 mysglbackup: INFPC:
42 mysglbackup: INFC:

120409 15:20
120409 15:20

wWa
120409 15:20

Fath= -

INFD: Unique generated backup 14 for this 1s 123398484295209€65
Can't seek in file 'UNOFENELD' (Errcode: 249)

INFZ: Uses poslx fadvise () for performance optimizaticn.

INFD: System tablespace flle format 1s Antelope.

INFZ: Found checkpolnt at lsn S702826491.

INF>: Starting log scan from lsn S702228400.

walt 1 second before

42 mysglbackup: INFC:

(Entelcope £ile format) .

120409 15:20:

44 mysglbackup: INFC:

(Entelope file format) .

120409 15:20:

44 mysglbackup: INFC:

(Entelope file format) .

120409 15:20:

44 mysglbackup: INFC:

(Entelope file format) .

Copylng log. ..

Log copled,lsn 5702286491,

starting copying the data files...

Copying /var/lib/mysgl /ibdatal

Copying /var/lib/mysgl/sakila/rental . ibd
Copying /var/lib/mysgl/sakila/language . ikd

Copying /var/lib/mysgl/sakila/customer.ikbd

mysglbackup: INFD: Backup image created successfully.:
Image Path: '-!

t 5702886400
t 5702891809

Start LEN
End LSH

mysglbackup completed CE!

real 2m37.
user 1ms4.
BYS8 oml4d.

3 ssh backup
-TW-TwWw-r-- 1

E81e
QD3s
[=F=3=1=]

'1ls -1h /mysqgl/backup/meb/stream.tar!’

uid gid 4.2¢ Z01z-04-

08 15:22 /mysgl/backup/mek/stream.tar

While you are performing a remote backup, MEB does require a local working
directory and it does leave files on the backup server.



2 time Jopt/meb/bin/mysglbackup --backup-image=- backup-to-image %

g2sh backup "cat - = /mysgl/backup/meb/stream.tar”

My2QL Enterprise Backup version 3.7.0 [2011/12/19]

Copyright (o} 2003, 2011, <Cracle and/or its affiliates. 211 Rights EReserved.

Error: Backup to image coperaticn also regquirses --backup-dir option;
Tha apecified directory iz used to create temporary
generated filea.
Hote: Incremental backup-to-image operation also usas
--backup-dir cpticn, not --incremental-backup-4dir.

2 du -sh /mysgl /backup/meb/stream

C40K Jmyeqgl/backup/maek /straam

2 1la -1 /myegl/backup/msk/stream/

total 12

-rw-rw-r-- 1 mysgl myagl 120 2012-04-0% 15:20 backup-my.cnf
drwx------ 9 mysgl myagl 4098 2012-04-0% 15:22 datadir
drwx------ 2 mysgl myagl 4098 2012-04-0% 15:23 meta

With MEB version 3.7 the backup-to-image backup feature now includes checksum
verification to ensure the backup data remains unchanged during any transfers to other
systems. Each file within the backup image is tested against a checksum calculated using
the CRC32 algorithm, either when files are extracted from the backup image, or using the
new mysqlbackup option validate to test a backup image without extracting.

MEB also provides streaming options to high-capacity storage devices using the System
Backup to Tape (SBT) interface. This enables MEB to integrate with Oracle Secure
Backup (OSB) or other compatible media management software (MMS) products to
manage the backup and restore process. More information about the various - -sbt options

can be found at http://dev.mysal.com/doc/mysql-enterprise-backup/3.7/en/meb-backup-
tape.html.

XtraBackup

To enable streaming with XtraBackup, the - -stream=tar option is required and combined
with one of the preceding examples. For example:

¢ innchackupsex --stream=tar ./ | ssh userdbackup "cat - = /path/to/backup.tar"

The --incremental option is not applicable if specified with the --stream option. The
- -stream option will always produce a full backup.

The execution time and resulting backup size are comparable to a standard XtraBackup
command as shown previously.

% time innobackupex --defaults-file=/etc/myagl/my.onf '
--uger=root --passwordspasswd --stream=tar ./
= fuyagl/backup/xtrabackup/third.tar

real Z2m32.682m

user Om21.009a

ays Omad.833a

2 la -1h /myagl/backup/xtrabackup/third.tar

-rw-rw-r-- 1 uid gid 5.46 2012-04-032 04:02 third.tar

XtraBackup also provides a push of a backup to a remote host with the --remote-host


http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/meb-backup-tape.html

option.

2 time innobackupex --dafaults-file=/atc/myasgl/my.cnf

--ugar=roct --pasaword=passwd %

--no-timestamp --remote-host=backup %

Jmyagl/backup/xtrabackup/remote
InnoDE Backup Ttility vwl.5.1l-xtrabackup; Copyright 2003, 2003 Innobass Oy
and Perccocna Inc 2009-2012. All Rights Reserved.

120409 14:50:47 inncbackupex: Starting ibbackup with command: xtrabackup 51
--defaults-file="/atc/mysgl /my.cnf" --kbackup --suspend-at-snd --targst-dir=/tmp

--log-gtream

xtrabackup 51 wvergion 1.9.2 for MysSQL server 5.1.5% unknown-linux-grnu (xee_e64)
xtrabackup: Log only mods.

»» log acanned up to (1 140731913c)

120409 14:50:42 Iinncbackupex: Continuing after ibbackup has suapandsd
innokackupex: Starting to backup InnoDE tablss and indasxea

innobackupex: to ! /myagl/backup/xtrabackup/ remota!

innobackupex: from original InnoDE data directory ! /var/lib/mregl’
innobackupex: Backing up file ' /var/lib/myegl/ibdatal’

ibdatal 100% 18MB 9,.0ME/B oo:nz
innobackupex: Backing up files ! /Swvar/lib/mysgl/sakila/+.ibd' (15 files)
actor.ibd 100% 112EB 112.0KB/s Q000

== log acannad up to (1 14073191%5)
address.ibd 100% 180KEBR 160.0KEE/s 0000
category.ibd 100% KR 96.0KB/s 00:00

country. frm 100% 25838 8.4¥E/B 002040

db.opt 100% (3= 0.1KE/8 Q000

120409 14:52:28 1nncbackupex: Finished backing up .frm, .MEG, .MYLD, .MYI,
.TRZ, .TEN, .ARM, .ARZ, .SV, .CSM and .opt files

innokackupex: Rasuming ibbackup

#trabackup: The latest check peoint (for incremental): '1:1407213195!
*trabackup: Stopping log copying thrsad.

.=»log acannad up £o (1 14073191=E5)

*trabackup: Transaction log of lan (1 14072191%5) E£o (1 14073191325) was copiad.
120409 14:5%:20 inncbackupex: 211 tables unlocksd

120409 14:5%:20 inncbackupex: Connectlion to database server clossd
xtrabackup logfile 100% 2560 Z.EKB/= 00 oD

xtrabackup checkpolnta 100% 32 0.1KB/ /8 oo aoa

innobackupex: Backup crzated in directory ' Jmyagl/backup/xtrabackup/remobe’
innobackupex: My2QL binlocg positicon: fillenams 'mysgl-bin, 0000ez’,

positicon 106

120409 14:5%:21 1inncbackupex: complated CH!

raal 2m54.157=8

user Tm22.4808

sya omz2.31778

2 du -sh fmyegl /backup/xtrabackup/remcte

du: cannot accegs 'Jmysgl /backup/xtrabackup/remote': Mo such file or dirsctory
% gah backup 'du -sh /myegl/backup/xtrabackup/ramota’

4,23 Jmysgl /backup/xtrabackup/ remote

For more information and other examples see http://www.percona.com/doc/percona-
xrrabackup/howtos/recipes_ibkx_stream.html.

Remote Backups

In the previous section it was possible to push a MySQL backup to an external server.


http://www.percona.com/doc/percona-xrrabackup/howtos/recipes_ibkx_stream.html

With all client/server backup options it is possible to pull a MySQL backup from the
database server. One of the benefits of this process is the necessary access requirements.
In a pull process the only permissions on the database server are the necessary MySQL
permissions and firewall access to the MySQL port; no operating system user is necessary.

mysqldump
Using the - -host option enables the mysqldump command to connect to a remote server.

The use of --compress can provide some assistance in client/server network
communications of the data; however, this does not result in a compressed backup file.

5 time mysagldump -u<users -p<passwords --host db-server --compresa
--all-databases > backup.aqgl
Uzing the
% time mysgldump -hl0.0.0.1 --all-databases = /mysgl/backup/ldumpl.sql
real 1lm39.484s
user lm3.252a
ays Omz4.2068
2 time myagldump -hl0.0.0.1 --all-databases --compress >4
Juyagl /backup/ ldumple. sql
real 4m45.21%9a
user lm34. 7628
ays Oml3.857a
2 la -1h /myagl/backup/ldunp*
-rw-rw-r-- 1 uid gid 2.9%3 2012-04-02 04:5% ldumple.sgl
-rw-rw-r-- 1 uid gid 2.93 2012-04-03 04:54 ldumpl.agl

Surprisingly, the use of the - -compress option results in a much slower backup.

MySQL Enterprise Backup (MEB)

MEB does not support connecting to a remote host.

NOTE While MEB has a - -host configuration option, this is used only for the validation
of parsing this option when it exists in a [client ] configuration section without
producing an error message during execution.

XtraBackup

XtraBackup does not support connecting to a remote host.

Parallel Processing

Using the default mysqldump command has the limitation of being a single threaded
process. This is particularly important during the restoration process of a large database.
While mysqldump natively does not support parallel processing, the open source
mydumper provides a suitable replacement.

mydumper

Mydumper (http://www.mydumper.org/) is a high-performance MySQL backup and
restore toolset released under the GNU GPLv3 license. Domas Mituzas, Andrew
Hutchings, and Mark Leith created the mydumper toolset for use in both MySQL and



http://www.mydumper.org/

Drizzle. Mydumper was created as a tool that competes with the mysqldump client
program. Although there are many installations currently using mysqldump, it can be slow
considering that it is not multi-threaded.

Given that mydumper is multi-threaded it can create a MySQL backup much faster than
the mysqldump tool distributed with MySQL. Mydumper also has the capability to retrieve
the binary logs from a remote server. Copying the binary logs at the same time as the
dump has the advantage of supporting a point in time backup.

The major advantages of mydumper are as follows:
* Multi-threaded, which makes dumping data much faster.

* Mydumper output is easy to manage and parse because there are separate files for tables
and meta-data.

+ All threads maintain a consistent snapshot that provides accurate master and slave
positions.

* Mydumper supports Perl Regular Expressions (PCRE), which enable pattern matching
for database names and table names to be included or excluded.

» The mydumper toolset also comes with the ability to restore data from a mydumper
backup through the multi-threaded tool called myloader.

Installation

Mydumper must be compiled from source code. This will require a system that has a C++
compiler available. Additional dependencies include:

+ CMake

* Glib2 with development packages

* PCRE with development packages

* MySQL client libraries and development packages

Refer to http://docs.mydumper.org/compiling.html for operating specific commands to
install these dependencies.

The following commands were used for an Ubuntu environment:

sudo apt-get install -y make cmake Jg++

sudo apt-get install -y libglibz.0-dev libmyaglclient-dew zliblg-dav b,
ibpcres-dev

wget http://launchpad.nst /mydumper /0.2/0.2. 2/ +download,/ mydumper-0.2.2 . Lar.gz
tar xviz mydumper-0.2.2.tar.gz

cd mydurper-2.2.3/

cmake .

maks

SSmydumper -halp

sudo cp mydumper Juar/local /bin

e S S Y S S e ¥ R

NOTE The current stable version is 0.23. The current development version is 0.5.1. This
development version includes additional options for enabling daemon mode, defining
an interval between snapshots, and an output log file option.


http://docs.mydumper.org/compiling.html

Usage

On an operational MySQL system, mydumper can operate with no arguments and will
attempt to connect to MySQL via the local socket file. For example:

8 mkdir /myagl/backup/mydunper
8 cd /mysql/backup/mydunper

2 time mydumper

real 1mS55.070@

user Om22.198a
ays Om7.6864a
2 echo 357

No output is produced to indicate success or failure, or to provide details of the export
produced. By default a directory with a name of export-[date/time] will be produced.

g la -1d export-*

drwi------ 2 uid gid 12288 2012-04-07 19:24 export-20120407-192341
% du -sh export-20120407-192341/
2.9G Export—201204OT—19234lf

During the backup you can monitor the multiple threads with the SHOW
PROCESSLIST command. For example:

mysgl= SHOW PROCESSLIST

| 97 |52 | | WULL

| =8 | & | writing to net | SELECT ... * FRCM 'musicbrainz'.'track_name' |
| =22 |25 | Sending data | SELECT ... * FROM 'musicbrainz'.'recording' |
| 100 | 7 | writing to net | SELECT ... * FRCM 'musichbrainz'.'track’ |
| 101 |29 | Writing to net | SELECT ... * FRCM 'musicbrainz'.'relsassa’ |

Running in verbose mode produces additional output; however, the full output directory
is not included in the information provided:



g . /mydumper -v 3
** Message: Connected to a MySQL server
** Mesgsage: Started dump at: 2012-04-07 1%:21:42

** Message: Written master status

** Mesaage: Thread 2 dumping data for ‘myagl'.'backup progreass'
** Mesaage: Thread 1 dumping data for ‘'‘mysql’'.'backup history’
** Message: Thread 1 dumping data for 'mysgl'.'ewvent!

** Message: Thread 3 dumping data for 'myesgl'.'funec'

** Message: Thread 2 dumping data for 'mysgl'.'general log’

** Message: Thread 2 dumping data for 'world myisam'.'City'

** Message: Thread 1 dumping data for 'world myisam'.'Country’
** Message: Thread 4 dumping data for ’world:myisam'.‘CDuntryLanguage'
** Megsage: Thread 4 dumping data for 'employees'.'departments’
** Message: Thread 4 dumping data for 'employvees'.'dept emp’

** Message: Thread 2 dumping data for 'employesa'. 'dept manager'
** Message: Thread 2 dumping data for 'employees',’empls?ees’

** Message: Thread 1 dumping data for 'employesa'.'salar

ieg!

** Mespage: Non-InnoDE dump complete, unleocking tables

** Message: Thread 2 dumping data for 'employess'.'titlea!

** Message: Thread 4 dumping data for 'musichrainz'.'artist’

** Mesaage: Thread 2 dumping data for 'musichrainz'.'artist credit’
** Mesaage: Thread 2 dumping data for 'musichrainz'.'release group'
** Message: Thread 3 shutting down

** Message: Thread 1 shutting down

*+ Message: Thread 4 shutting down

*+ Message: Thread 2 shutting down

** Message: Finished dump at: 2012-04-07 12:34:50

The output provides some additional insight into the operation. As shown by the
message, non-InnoDB tables are backed first to improve locking during the entire dump

process.

The following example uses the regular expression options to exclude any mysql and

test schema objects.

8 . /mydumpsr --user root --regex '"(?!{myagl|teat))’®

Compression

By default all output files are uncompressed. By using the -c option, all files will be

compressed, producing a much smaller database backup
compressed with gzip.

% time Jhome/ubuntu/mydumper-0.2.3/mydumper -c¢
real Am7 .203m

user 4md 2. 3028

ays om4.&636a

8 du -sh export-20120407-+*
2.9G export-20120407-122341
903M export-20120407-192605

More Information

Mydumper generates several files pertaining to meta-data,

binary logs.

. All files in the directory are

table data, table Schemas, and



The .metadata file stores the start and end times of the dump as well as the master
binary log position. When a dump is executed a .metadata file is created in the output
directory.

5 LAST EXPORT='ls -dtr export-* | tail -1°'
% cat SLAST EXPORT/.metadata
Started dump at: 2012-04-07 19:26:05
SHOW MASTEER STATUS:
Log: mysgl-hin., 000017
Poa: 106

Finished dump at: 2012-04-07 19:29:12

Table data can be stored in two different ways, one file with all table data or many files
with chunks of data for one table. If the --rows option is added to the command, then
many files will be created for one table with a naming convention like
database.table.chunk, sqgl. If the --rows option is not specified, one file per table will
be create with a naming convention like database.table.sql.

£ la -1h export-20120407-192341 | more
total z.93

-rw-rw-r-- 1 uid gid 207 2012-04-07 12:24 musickrainz.gender-schema.sgl
-rw-rw-r-- 1 uid gid 122 2012-04-07 12:22 musickrainz.gender.sgl

-rw-rw-r-- 1 uid gid 471 2012-04-07 12:24 musickrainz.medium-schema.sgl
-rw-rw-r-- 1 uid gid 74M 2012-04-07 12:22 musickrainz.medium.sgl

-rw-rw-r-- 1 uid gid 445 2012-04-07 12:24 musickbrainz.recording-schema.sgl
-rw-rw-r-- 1 uid gid Z1oM 2012-04-07 12:25 musicbrainz.recording.sgl

-rw-rw-r-- 1 uld gid 424 2012-04-07 13:24 musicbrainz.release group-schema.sgl

When using the compression option, all files are included:

£ la -1lh export-20120407-192505 | more
total 202M

-rw-rw-r-- 1 uid gid 190 2012-04-07 12:27 musicbkbrainz.gender-schama.sqgl.gs=
-rw-rw-r-- 1 uid gid 123 2012-04-07 12:26 musickbrainz.gender.sql.g=
-rw-rw-r-- 1 uid gid 275 2012-04-07 12:27 musicbkrainz.medium-schama.sqgl.gz
-rw-rw-r-- 1 uid gid 12M 2012-04-07 12:26 musicbkbrainz.medium.sgl.g=
-rw-rw-r-- 1 uild gid 270 2012-04-07 12:27 musickrainz.recording-schema.sgl.gz
-rw-rw-r-- 1 uld gid 3e8M 2012-04-07 12:23 musickrainz.recording.sgl.gz

Table Schemas are created by default and stored in individual files named
databases.table-schema.sql. These files can be removed from the dump process with
the --no-Schemas option. There is no companion option to produce only the schema
objects. You should use mysqldump for this functionality.

When the --binlogs option is used mydumper will store binary logs in a sub-directory
inside the dump directory unless otherwise specified by the --binlog-outdir option.
Binary logs will have the same filename as the MySQL server that supplies them. The
meta-file will also reflect the current master position:



% ls -lh export-20120407-220027/binlog_snapshot/

total 2.70C

-rw-r--r-- 1 uid gid 168 2012-04-07 22:01 mysgl-kin.000001
-rw-r--r-- 1 uid gid 168 2012-04-07 232:01 mysgl-kin.000002

-rw-r--r-- 1 uid gid 17K 2012-04-07 23:02 mysgl-kin.000012
-rw-r--r-- 1 uid gid 13K 2012-04-07 23:02 mysgl-kin.000013
-rw-r--r-- 1 uid gid 149 2012-04-07 23:02 mysgl-bin.000014
-rw-r--r-- 1 uid gid 149 2012-04-07 232:02 mysgl-kin.000015
-rw-r--r-- 1 uid gid 149 2012-04-07 232:02 mysgl-kin.000016
-rw-r--r-- 1 uid gid &.2K 2012-04-07 23:02 mysgl-kin.000017

% cat export-20120407-230027/metadata
Started dump at: 2012-04-07 23:00:27
SHOW MASTEER STATUS :

Log: mysgl-bin., 000017

FPoa: B328

Finished dump at: 2012-04-07 22:02:56

XtraBackup

Parallel copying for a local backup with XtraBackup is possible when multiple InnoDB
data files exist, either from using the innodb_file per_table configuration option or
when multiple data files in the innodb_data_file_path configuration option exist.
Parallel processing is enabled by adding the - -parallel option to the backup process. For
example:



% time innobackupex --defaults-file=/otc/myegl/my.cnf b
--uger=roct --passwocrd=passwd --no-timestamp --parallel 3 4
fmyaql /backup/xtrabackup/parallal

InnoDE Backup Toiliby wil.c.l-xtrabackup; Copyright 2003, 2003 Innobass Oy

xtrabackup: Starting 3 threads for parallel data files tranafer
[01] Copving ./ibdatal to /mysgl/backup/xtrabackup/parallel/ibdatal
[02] Copving ./=akila/rental.ibd to
Jmyegql/backup/xtrabackup /parallel/ . fsakila/rental .ibd
[02] Copving ./esakila/languagse.ibd to
Jmysgl /backup/xtrabackup /parallel/. /sakila/languags. ikd
[oz] .. Ldone
[o2] copving ./sakilafcustomer.ibd to
Jfmyegl/backup/xtrabackup/parallel/ . /sakila/customer. ibd

[pz2] .. Ldone
[o1] .. Ldone
[2] .. Ldens

[G2] Copying ./sakila/inventory.ibd to

fmyaql /backup/xtrabackup/parallsel/ . fesakila/inventory . ikd
[01] Copying . Jfe=akila/film.ibd to

Jmvagl /backup/xtrabackup /fparallel/ . fsakila/film.ibd
[02] Copving . /sakilafeiti.ibd to
Jmyeqgl/backup/xtrabackup /parallsl/ . fsakila/city.ibd

[oz] . ..done
[o2] . ..done
[o1] . ..done

[02] Copving ./esakila/category.ibd to

Jmysgl /backup/xtrabackup /parallel/. /sakila /category. ikbd
[02] Copving ./eakilafcountry.ibd to
Jfmyesgl/backup/xtrabackup/parallsl/. /sakila/country. ibd
[B2] .. Ldons

[B2] . .Ldons

[01] Copying ./eakila/film category.ikd to

fmyagl /backup/xtrabackup /parallely. /fsakila/film category.ikd
[2] Copying ./fsakila/store.ibd to
fmyagl /backup/xtrabackup/parallel/ . /sakilasstore.ibd

[02] copying ./sakilafstaff.ibd to

Jmyvagl /backup/xtrabackup /fparallel/. feakilafstaff.ibd

[Bz2] .. done
[22] .. done
[z1] . Ldone

[p1] Copving ./=akilafaddreses.ibd to
Jmyaql/backup/xtrabackup /parallel/ . fsakila/addreas.ibd
[02] Copying ./sakila/film_acter.ikd to
Jfmyagl/backup/xtrabackup/parallel/. /sakila/film_actor.ikd
[02] Copving ./eakilafactor.ibd teo

Jmvagl /backup/xtrabackup/parallel/. /sakila/factor.ibd

[B2] . .Ldons



[o1] .. done

[02] Copving .Jfeakila/payment.ibd to
Jmyegl/backup/xtrabackup /parallaly . fsakila/payment.ibd

[0Zz] . . done

120408 04:5%:58 inncbackupex: Finishsd backing up .frm, .MEG, .MYD, .MYI,
.TRZ, .TRN, .AEM, .ARZ, .CS8V, .C3M and .opt filas

innobackupex: ERasuming ikbackup

xtrabackup: The latest check point (for incremental): '1:13255186544!°

xtrabackup: Stopping log copying thread.
L=xlog acannad up to (1 1355186644)

xtrabackup: Transaction log of lan (1 1355186844} Lo (1 1355186644) was copled.
120408 Q5:00:00 inncbackupex: 2ll tables unlockad
120408 05:00:00 inncbackupex: Connection to database sarver closad

innobackupex: Backup created in directory ! J/myagl/backup/xtrabackup/parallsl’
innobackupex: My2QL binlog positicn: filenams 'mysgl-bin.oodoeo!,

position 43717825

120408 05:00:00 inncbackupex: complated CKE!

raal lm54.351s
user oml7.2218
sys omll.5858

Incremental Backups

In addition to performing a full backup of your MySQL database, several options exist to
perform incremental backups. These can reduce the time to perform a backup and the size
of backup files; however, a restore process will be more complex and may be more time
consuming.

The choice for using a full backup versus an incremental backup can depend also on
physical resources. The added steps during the restore process may introduce an additional
chance of error under a crisis situation. The simplicity of a full server restore may also be
more easily automated.

Depending on the volume and rate of change of data, an incremental backup may result
in a smaller backup; however, it may take a similar amount of time to execute.

MySQL Enterprise Backup (MEB)

With the --incremental option and either the --incremental-base option or the --
start-1sn of an appropriate backup, an incremental backup can be performed. For
example:



Ftime Sopt/meb/Bin/mysglbackup --inoremental '

==incremental -base=dir: /myeql fbackop /melk/Eiret

--incrsmental -backup -dir=/myeql /backup /mak/firet-ines backup

HySQL Enterprise Backup verslon 3.7.0 [2o011/13/19]

Copyright {0} 200%, 2011, Oracle andfor ite affillatea. ALl Rightea Répsrvad.

nyeglbackup: INFO: Uesing scart len=6374633558, caloulated froa
backup history tabls of MySOL ssrver and backup wariablss.txt flls of
incramental-basa backup.
myaglbackun: INFD: Found checkpolnt at lan £522458384.
omyaglbackup: INFO: Btarting log scan from Isn SS29487872.
126407 20:1%:19 myaglbackup: INFO: Copylng log...
120407 20:1%:19 mysglbasckup: INFD: Log coplad, lon E533458384.

We walt 1L pecond before starting copying tha dars filea. ..
120407 20:1%:20 mysglibackup: IMPO: Copyling fvarflib/myagl/ibdatal
(Amtelops fila format) .
mysglbackup: Progresd in ME: 200 400 €00 BO0D 1000 ... D00 G200 5400
eymglbackup: INFO: Praparing to lock tablsgs: connected to mysqld server.
120407 20:20:14 mysglbackup: INPO: Starting to lock all the tablses. ...
120407 20:200: L5 mysglbackup: INFO: All tables aréd locksd and flushed to disk
myaglbacioep: INFO: Opsning backup eource directory '/var/lib/mysgl)
120407 20:20:15 mysglbackup: INFOD: Starting to backup a1l files in
mubdirectoriss of '/var/llb/moegl /"
myaglbackup: INFO; Backing up the database directory ‘bookd’
myeglbackup: IMFO: Backing up the database ddrsdtory ‘amployess®
myEglbackup: INFO: Backing up the database directory ‘muesichbrainz’
my=qglbackup: INFO: Backing up the databazss dirsctory ‘mysgle
myarflbackup: INFO: Badking up the databage dirsatory ‘sakila’
myaglbackup: I[HNFO: Backing up the darabagse dirsctary ‘wrlﬁ_iﬂﬂﬂdh'
myeglbackup: INFO: Backing up the databape directory ‘world mydsam'
myeqlbackup: INFQ: Copying innodb data and logs during fimal ptaps ...
myaglbackup: INFO) A copled databass pages was acdlfied at 85754882184,

(Thim la the higheat lan found on page)

Scannaed log up to lan SS25451054.

Was ahle to parss tha Iocg up to lsn S52%4%1094,

Marimum page number for a log record 261153
120407 I0:20:15 wysglbackup: INFO: ALl takles unlocksd
myaglbackup: INFO: ALl M¥SOL tables wers lofksd [or 0.000 ssconda
myaglbackup: INFG, Backup containg changes from lan £274533558
to l&n 529491004
120407 20:20: 15 mysglbackup: INFO: Incremental backup completed)
mysaglbackup: INFO: MysSQL binlog poeiticn: filsnams mysgl-bin.oooolT,
pogition 555§
mysglbackups INFO: Backup craated 1n divectory
U fmyegl fbackup/meb/firat -inc

Paramaters SUMMATy

Btart LSN 1 ERTHEIS553
End Law 1 BEIF4910%4

mysglbackup completad OKL

raal 0m56.1338
user 0ml7.5615
sys 0m3. 9928

The backup directory is significantly smaller than the previous full backup. The saving
is in the ibdatai tablespace file, which is not the full size.



5 du -sh /myagl/backup/meb/first*
5.6 Jfmyaql /backup/meb/first

92M fmyaql /backup/meb/first-inc
2 la -1h /myagl/backup/meb/first-inc/datadizr/

total 90M

drwx------ 2 uid
drwx------ 2 uid
-rw-rw-r-- 1 uid
-rw-rw---- 1 uid
-rw-rw-r-- 1 uid
drwx------ 2 uid
drwx------ 2 uid
drwx------ 2 uid
drwx------ 2 uid
drwx------ 2 uid

The --incremental option is for InnoDB tables, or for infrequent updates of non-
InnoDB tables. If a non-InnoDB table has been modified, the entire file is included in the
backup. The --incremental option is incompatible with the --compress option and also

gid 4.0K
gid 4.0K
gid 0
gid 4.0K
gid 90M
gid 4.0K
gid 4.0K
gid 4.0K
gid 4.0K
gid 4.0K

201z-04-07
201z-04-07
201z-04-07
201z-04-07
2012-04-07
201z-04-07
201z-04-07
201z-04-07
201z-04-07
201z-04-07

20:20
20:20
20:20
20:20
20:20
20:20
20:20
20:20
20:20
20:20

with the backup-and-apply-log command.

Producing a Full Restore

In order to utilize an incremental backup, this has to be applied to the full backup with the

book2

employess
ibbackup ibd files
ibbackup logfile
ikdatal
musickrainz

myagl

aakila

world inneodb
world myisam

apply-incremental-backup command. For example:

2 time Jopt/meb/bin/mysglbackup b
--backup-dir=/mysql /backup/meb/first "
--incremental-backup-dir=/mysql /backup/meb/first-inc %
apply-incremental-backup

My20QL Enterpriss Backup version 3.7.0

Copyright (c) 2003,

2011,

120407 21:2%:40 mysglbackup:

subdirectoriss of

myaglbackup: INFO:
myaglbackup: IMFO:
myaglbackup: IMNFO:
mya2glbackup: IMFO:

[2011/12/19]
oracle and/or ite affiliates. 21l Rights Reserved.

INFO: Copying all non-InnofDB files in

timysgl/backup/meb/firat-inc/datadir!
to the corresponding subdirsactories in
Vimysgl/backup/mekb/firaet /datadir
Copying file ' /mysgl /backup/meb/first-
inc/datadir /bookz/album. £rm’



myaglbackup: INFO: Copying file ' /mysgl /backup/meb/first-inc/datadir /world
mylzam/CountryLanguage . frm!’
myaglbackup: INFO: Copying file ! /mysgl /backup/meb/first-
inc/datadir /world myisam/db.opt!
myaglbackup: INFO: Checking for delsted datakbasss and non-InncDE filsas
120407 21:2%:40 mysglbackup: INFO: Finlshed copving all non-InncDE files
mya2gdlbackup: INFO: incremental backup to the full backup.
myaglbackup: INFO: Uaes posix fadvisa() for performance optimizatiom.
myaglbackup: INFO: ibbackup: Progress 1in MEBE:
120407 21:2%:43 mysglbackup: INFO: ibkackup logfilse's creation parameters:
atart lan 6529427572, end lsn £52%5421024,
atart chackpoint £529488284.
InnoDBE: Dolng racovery: scannsed up to log saqguence numbsr £525431094
InnoDB: Starting an apply bkatch of log records to the databass. ..
InnoDBE: Progreas in percents: © 1 2 3 4 5 & .. 24 %5 26 327 38 93
Satting log fila =ize Lo 0 134217728
InnoDBE: Progreas in ME: 100
Satting log file size to © 134217728
InnoDBE: Progrez2s in ME: 100
120407 21:2%:50 mysglbackup: INFO: We were able to parse ibbackup logfils
up to lan 6523491094,
ibbackup: Last MySQL binlog file position 0 5555, file mame . /myagl-bin.ooonl?
120407 21:2%2:50 mysglbackup: INFO: The first data file is !'/myegl /backup/meb/
firat/datadir/ibdatal’
and the new created log files are at ' /mvagl/backup/meb/first /datadir/'
mya2glbackup: INFO: Svstem tablezpacse file format is antelope.
120407 21:2%:50 mysglbackup: INFO: Incremental backup applied succezsfully!
mysglbackup completad QL

raal Oml0.&8E5s
user omd . D20
EYS omd . 20488

For more information visit the MEB Reference Manual at
http://dev.mysql.com/doc/mysqgl-enterprise-backup/3.7/en/mysqglbackup.incremental.html
and the blog post at
https://blogs.oracle.com/MySQL/entry/mysqgl enterprise_backup_taking incremental.

MEB also provides an alternative means of producing an incremental backup with the -
-incremental-with-redo-log-only option. This option uses the InnoDB transactional
log files and requires that all information is still contained within these circular files. See
more details from the MEB Reference Manual at http://dev.mysqgl.com/doc/mysql-
enterprise-backup/3.7/en/backup-incremental-options.html and the blog post at
https://blogs.oracle.com/MySQL/entry/mysql_enterprise_backup_redo_log.

XtraBackup

XtraBackup supports the ability to perform an incremental backup with the --
incremental and --incremental-basedir options. A previous full backup is required to
perform an incremental backup. For example:


http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/mysqlbackup.incremental.html
https://blogs.oracle.com/MySQL/entry/mysql_enterprise_backup_taking_incremental
http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/backup-incremental-options.html
https://blogs.oracle.com/MySQL/entry/mysql_enterprise_backup_redo_log

2 time innobackupex --dafaults-file=/oatc/mysgl/my.cnf
--ugar=roct --pasawocrd=passwd --no-timeatamp
Jiyagl /backup/xtrabackup/firat

xtrabackup: Transaction log of lan (1 2234524172} Lo (1 2224524172) was copled.
120408 02:34:13 inncbackupex: 211l tables unlockad

120408 02:34:13 inncbackupex: Connection to database sarvar closad
innobackupex: Backup created in directeory ! /myagl/backup/xtrabackup/first!
innobackupex: My3QL binlog positicon: filenams '‘mysgl-bin.ocoool',

position 27522

120408 02:34:13 1nncbackupex: complated CKE!

raeal ZM30.6673
user 0m21.33358
sYySs aml4.713s

An incremental backup can now be created:

2 time innobackupex --user=root --password=pasawd '
--defaults-file=/etc/myagl /my.cnf

--incremental -basedir=/myeqgl /backup/xtrabackup/first
--ineremental --no-timestamp /myagl/backup/xtrabackup/firat-inc

[p1] Copving ./ibkdatal to /mysgl/backup/xtrabackup/first-inc/ikbdatal .delta

innobackupex: Backup created in directory ' /myagl/backup/xtrabackup/first-inc
innobackupex: My2QL binlog positicn: filenams '‘mysgl-bin.ocoool',

position 41912727

120408 02:04:27 1nncbackupex: complated CKE!

raal 1m22.4659s

user OMZ0.32453
sys Oml.5928

The output will show a delta of the InnoDB common tablespace files was generated:
5 la -1h /myagl/backup/xtrabackup/firat-inc

-rw-rw---- 1 uid gid 58M 2012-04-08 02:04 ibdatal.delta

Two additional steps are required to apply the incremental backup to the full backup to
enable the successful restore of this backup:



§ time innobackupex --usar=rookb --passwordspasawd '\
--defaplte-Liles/ate/myaql/my.cnf --apply-log --redo-anly |
Juyegl /backup/xtrakackup/firet

xtrabackup: cd to /myeql/backup/xtrabackup/firet

strabackup: This target seems to be already prapared.

¥trabackup: motice: xtrabackup logfils was already used to '--prapara’.
strabackup) Tewporary instance [or recovery 1F 88t as followings.
atrabackup: innodb data_home_dir = ,/f

xtrabackup: innodb daca_file _path = ibdatal:5000M:autoextand

xtrabackup:  innodb_log_group homs_dirv = ./

ztrabackup:  innodb_log_files_in_group = 2

xtrabackup:  inhodb_log file_pizs = 134217726

xtrabackup: Starting InnoD8 instance for recovery.

»trabackup: Using 104857500 bvtes for buifer pool

{eat by --upe-memory paramstat)

InnobB: The InnoDE memory heap is disabled

120408 23:55:;51 InnoDB: Inicializing buffer pool, size = 100.0M

120408 3:55:51 InnoDE: Completed initialization of buffer pool

InnoDR: Last MySOL binlog flle poslticn © 5555, [ile name ./wyegl-bin.00o0ly
120408 3:55:51 InnocDB: Starting shutdown...

120408 2:55:52 InnoDB: Shutdown completed; log sequence numbser 1 2234524684
120408 03:55:52 inncbackupex: comploced OXI

real tmb , 7360
usar omd. 1288
gy oMb . 0843

§ time innobackupex --uUSer=To0b --password=pasawd
--defaules-fila=/stemyaql/my.cnf --apply-log
Juyeqgl /packup /xtrabackup/firer \
=-1lncremental -dirs/mysql /backup/xtrabackup/first-inc
InnobE Backup Meility vi.&.l-xrrabackup; Copyright 2003, 2003 Innobase Oy
and Percona Inc 200%-2012. All Rights Ressrved.
xtrabackup 51 versicn 1.3.2 for MYSQL saTver 5.1.5% unknown-linux-gnu (xXe€_&4)
incremental backup from 12234524172 18 snabled.
strabackup: ed to jmyaql/backup/xtrabackup/firar
rerabackup: This rarget seeme Co be already preparsed.
strabackup: xtrabackup_legfilas detecred: slze=23529294, start_len=(1 23325677247|
xtrabackup: page size for /mysgl/backup/xtrabackup/first-ine/ibdatal.dslta
im 1€384 bytas
Applying JSayeql fbackup/xtrabackup/first-inc/ibdacal . delca ...
rtrabackup: TempoOTAry Instance for Teoovery 18 ST as followings.
grrabackup: innedb data homs dlr = /
xtrabsckup: innodb data filsa path = IbAATAl:S000M: antoextand
xerabackup: innedb log group homs dir = fmysql/backap/xcrabackup/firsc-inc
atrabackup: innodk log files_in group = 1
derabackup: innodb log fila aize = 235%358
¥trabackup: Starting InnsbB lnatance [ar recovery.
strabackup: Using 104857400 bytsa for buffer pool (et by --uss-mamory
PArametar)
InnobDB: The InnoDE memory heap is disabled



120408 4:00:42 InnoDE: Initializing buffer pool, size = 100.0M
120408 4:00:42 InnoDE: Completed initialization of buffer pocl
InnoDBE: The log sequencs number in ibdata filea deoes not match
InnoDB: the log sequence number in the ib logfiles!
120408 4:00:42 InneDE: Database was not ahut down normally!
InnoDBE: Starting crash recovery.
InnoDE: Reading tableapace information from the .ibd filea. ..
InnoDB: Last MySQL binlog file positicon 0 419212727, file name . /mysgl-bin.oooool
120408 4:00:51 InneDB: Started; log sequence numbser 1 2325677247
InnolDB: Laz2t MySQL binlog file positicn o 41912727, fils name . /mysgl-bin.ooodol
120408 4:00:51 InneDB: Starting shutdown. ..
120408 4:00:54 InncDB: Shutdown completed; log sequence number 1 2325677247
innobackupex: Starting to copy non-InnoDE filea in
V/myegl /backup /xtrabackup/first-inc!
innobackupex: to the full bkackup diractory ' /mysgl/Packup/xtrabackup/first!
innobackupex: Copying file '/mysqgl/backup/xtrabackup/first/
xtrabackup binlog info!
innobackupex: Copying file '/mysqgl/backup/xtrabackup/first/ibdatal’

innobackupex: Copying file !'/mysqgl/backup/xtrabackup/first/artist.frm!
innobackupex: Copying file !'/mysqgl/backup/xtrabackup/first/album.frm’
120408 04:03:44 inncbackupex: complated OKE!

raal 2m56.4058
user omd . 2003
sys oml3. 7098

The end result is a complete backup in the original full backup directory that contains
all information from the incremental backup.

Partial Backups

Generally for a backup and recovery strategy, partial backups are not practical due to
absence of some data. A relational database also defines consistency with database
constraints, including foreign keys, which may not be included in a partial backup. These
options, however, may be of benefit in a partial data recovery process for a corrupt or
dropped table, or for convenience in testing.

A partial backup may be practical in an ETL process when only a subset of data is
necessary and additional data can be regenerated without a backup. This can be an
optimization that saves backup space and time.

mysqldump

The mysqldump command allows for the specification of various database Schemas or
tables with the - -databases and - -tables options.

MySQL Enterprise Backup (MEB)

MEB supports the ability to perform partial backups. These options include --only-
innodb, --only-innodb-with-frm, --only-known-file-types, --databases, --

databases-list-path, and- -include. For more information see
http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/backup-partial-options.html.

XtraBackup

XtraBackup provides an export of an individual InnoDB and XtraDB table with the --


http://dev.mysql.com/doc/mysql-enterprise-backup/3.7/en/backup-partial-options.html

export option; however, an import is only possible with Percona Server using XtraDB.

More information can be found at http://www.percona.com/doc/percona-
xtrabackup/innobackupex/importing_exporting tables_ibk.html.

MySQL Backup Security

Throughout these examples the topic of appropriate MySQL security has not been
discussed. This is an important consideration for any complete backup and recovery
strategy. A recent poll at the 2012 annual MySQL conference highlighted that very few
organizations use SSL for accessing MySQL data.

MySQL provides SSL support for client connections, for example a remote backup, and
for MySQL replication. In Chapter 3 of Effective MySQL: Advanced Replication
Techniques, SSL usage is described in detail. The following sections can be found in the
MySQL Reference Manual.

+ Client connections - http://dev.mysql.com/doc/refman/5.5/en/secure-connections.html

* Replication - http://dev.mysqgl.com/doc/refman/5.5/en/replication-solutions-ssl.html

With the wider adoption of MySQL in the Cloud as discussed in Chapter 9, the use of
SSL for client communications and MySQL replication will become an important
requirement. It is possible to encrypt files created on a production server before network
transfer with generally available utilities including openssl and gpg.

Using transparent encryption techniques can provide a level of adequate security on the
filesystem and can be integrated into the existing MySQL backup and recovery options
with little impact. The ezNcrypt product from Gazzang (http:/www.gazzang.com/) is one
offering that provides examples for implementation with MySQL. This blog post by Mike
Frank provides an introduction: http://mikefrank.wordpress.com/tag/mysqgl-mysgldump-
ezncrypt-gazzang-linux-backup-xrrabackup-transparent-encryption/.

Encryption with ezNcrypt

The following steps demonstrate how to set up a mysqldump encrypted backup with
ezNcrypt. You can request a free trial evaluation of the software from
http://blog.gazzang.com/request-a-free-trial-of-ezncrypt/.  Following installation and
configuration, the first step is to verify the ezNcrypt process is running:

5 sudo ezncrypt-service status
eznerypt | Checking system dependencies
** ezncrypt system is UP and running **
log | File: /var/leg/ezncrypt/ezncrypt-service.log

If the process is not running you would find the following error message:


http://www.percona.com/doc/percona-xtrabackup/innobackupex/importing_exporting_tables_ibk.html
http://dev.mysql.com/doc/refman/5.5/en/secure-connections.html
http://dev.mysql.com/doc/refman/5.5/en/replication-solutions-ssl.html
http://www.gazzang.com/
http://mikefrank.wordpress.com/tag/mysql-mysqldump-ezncrypt-gazzang-linux-backup-xrrabackup-transparent-encryption/
http://blog.gazzang.com/request-a-free-trial-of-ezncrypt/

% sudo ezncrypt-service status
ezncrypt | Checking system dependencies
** ezncrypt system is NOT running **
leg | File: /var/leg/ezncrypt/ezncrypt-assrvice.log
& sudeo ezncrypt-service start

ezncrypt | Checking system dependencies
ezncrypt | checking encryption directories
keyngr | Retrieving key from K28
| = Encryption password retrieved from KS2
szncrypt | starting service
| = using "aes 256" cipher algorithm
| dene!
accesa | Loading access contrel list
| dene!
ezncrypt | Thank you for using ezncrypt.
leg | File: /var/leg/ezncrypt/ezncrypt-service.log

Under the covers you will find the following attached devices, and no actual processes.

g df -h
Filesysatem

fvar/lib/ezncrypt/storage/encrypted private
Jwar/lib/ezncrypt/eznorypted

% pas -ef | grep ezn

uid 4947 3327 0 23:15 pts/3 00:00:00 grep ezZn
% pa -ef | grep cry

root a0 2 0 21:4a1 7 00:00:00 [ecryptfm-kthrea]
root 31 2 0 21:a1 7 00:00:00 [cryptel
uid 4951 3327 0 23:15 pts/3 00:00:00 grep cry

The first step is to create a backup directory and encrypt all contents that are placed in
the directory. ezNcrypt uses the concept of an @category for reference with an encrypted
file or directory.

5 mkdir /mysql/backup/ezncrypt
% sudo ezncrypt --encrypt @backup /mysql/backup/encrypted
ezncrypt Checking syastem dependencies
Verifying ezncrypt licenae
getting infermation about locaticn
= path: fvar/lib/ezncrypt/ezncrypted/backup
Checking encryption status
dene !
Retrieving key from K28
= Encryption password retrieved from KS28
generating keys
dene !

|
|
|
|
szncrypt |
|

|

|

|

|

backup | backing up data

|

|

|

|

|

|

|

|

|

|

keymgr

Thia can take a while. Pleass ke patient

> backing up /myeql/backup/encrypted

= File: jopt/ezncrypt/backup/2012-04-27/encrypted.tar.gz
dene !

ezncrypt encrypting filea
= checking disk space
= encrypting /mysql/backup/encrypted
dene !
ezncrypt congratulaticons. you have encrypted your Filesll!
log File: /wvar/log/ezncrypt/ezncrypt.log



The underlying regular directory is now replaced:

5 la -1 /mysql/backup
total 0
lrwxrwxrwx 1 root root 59 2012-04-27 00:032 encrypted -=

fvar/lib/ezncrypt fezncrypted/backup/ /myeql /backup/encrypted

Any attempts to write to this directory will fail, even with the Linux super user:

5 mysgldump --all-databases > /mysqgl/backup/encrypted/edumpl.sql
-bash: /myaql /backup/encrypted/edumpl.aql: Permission denied

8 sudo myagldump --all-databases > /myeql/backup/encrypted/edumpl.aqgl
-bash: /myeql/backup/encrypted/edumpl.aql: Permission denied

mysqldump
In order to read and write from an encrypted directory you need to grant access controls to
a given program, for example mysqgldump:

% sudo ezncrypt-access-control -a "ALLOW @backup * /usr/bin/mysqldump”
pasaphrase:

salt:

Fule added

You verify the defined access control rules with:

% sude ezncrypt-access-control -L

pasaphrase:

salt:

# - Type Category Path Process

1 ALIOW @backup * fusr/bin/myasqldump

However, writing with mysqldump still causes an error because it is the shell redirection
that is performing the writing, as seen in the system error log:

2 mysgldump --all-databases > /mysdl /backup/encrypted/aedunpl.sgl
-bash: /myagl/backup/encrypted/edumpl.sgl: Parmissicn denisd

¢ dmesg | tail

[4132848.818552] ezncryptfs: DENIED type="acl" sxec="/bin/bash"
script="/dav/pts/4" comm="bash" path="/var/lib/ezncrypt /ezncryptaed/backup”
pid=7442 uid=1000

You can use the --result-file option with mysqldump to enable the process to create
the file directly. For example:

% time mysgldump --all-databasea '
--regult-file=/mysql /backup/encrypted/edump? .aql

real 1m34.714s

user OmS2 . 3882

ays Om=. 589

% sudo ezncrypt-run "las -1 /mysql/backup/encrypted/"

pasaphrase:

salt:

total 2.0G
—-rw-rw-r-- 1 uid gid 2.96 2012-04-27 02:43 edump2.agl



In this single test, the transparent encryption added only a very nominal overhead. You
can easily extract the file from the encrypted directory; however, that would defeat the
purpose of using encryption. The following syntax is shown just to confirm the validity of
the encrypted file:

2 sudo Jfusr/sbin/ezncrypt-run "cp /mysgl /backup/encrypted/edumpz.sgl "¢
pasaphrase:

2alt:

2 1la -al edump*

total 2216

-rw-r--r-- 1 uid gid 2.93 2012-04-27 02:55 adumpz.sgl

% grep "“CRELTE.*DATARELZSE" edumpz.sgl

CREATE DATRAEBASE f*122312 IF NOT EXISTS*/ "bockz2™ f+*140100 DEFAULT CHARRCTER SET
latinil */;

CREATE DATAEBRSE f*122312 IF NOT EXISTS*/ “emplovees™ ...

CREATE DATAEBRSE f*122312 IF NOT EXISTS*/ "musichrainz™ ...

CREATE DATREASE /*122312 IF NOT EXISTS*, "mysgl™ ...

CREATE DATRERSE f*122312 IF NOT EXISTS*/ “=akila™ ...

CREATE DATABRASE /*132Z312 IF NOT EXISTS*, “world innodb™ ...

CREATE DATRBRSE /*132Z312 IF NOT EXISTS*, “world myisam™ ...

When using correctly configured directories and access controls, the use is truly
transparent to the backup process.

Restoring an encrypted file is a little more involved. The best approach is to create a
script to perform the work, then encrypt this script. When executed, this script will have
the permissions necessary to read and apply the encrypted file.

TIP Using transparent encryption it is possible to encrypt the MySQL user and password
securely in a plain text configuration file and used with appropriate MySQL client
commands.

Architectural Considerations

Given the various options for backup, it is possible to optimize a recovery strategy to
minimize downtime. A failover to a standby system is generally the best approach for
critical operations.

The archiving of data from an OLTP system to a secondary MySQL instance can be a
great benefit for ensuring smaller backups and a more efficient restore process. If your
application stores logging, history, or archive information in individual tables or large
amounts of reproducible transient data or read-only data, considering the separation of this
information into different instances can also serve to reduce the dependency on a primary
system. This is an approach for designing your application to support sharding and
partitioning.

A simple example is a new system for analyzing stock information. With a large amount
of historical information (over 30 years and approximately 500GB), the application was
designed for data recorded in two individual tables: a historical table of data before the



system went live and a second table for data following the go live date. The application
was written to query one or both tables appropriately based on date parameters. By
recommending the client split the MySQL instance into two separate instances, placing all
historical data on one instance, the only application modification was an additional
database connection management.

The backup strategy was also optimized now for two different sets of data. The first set
was a static copy of historical data, no daily backup was needed, and no binary logging
was necessary. This requirement actually enabled an additional benefit of parallelism and
enabling the MySQL query cache. The second set of current data, which was much
smaller, could be managed with a different backup and recovery process to meet SLA
requirements. This architectural change enabled a different strategy for read scalability
and negating the requirement of replication for historical information. The system was
also able to support a partial failure of any historical information by reporting this
information as unavailable.

TIP A well designed and configured MySQL replication topology can be the first step for
a minimal recovery time. MySQL replication is not a complete backup solution but can
support optimizing many common failure scenarios. The Effective MySQL: Advanced
Replication Techniques book will focus on the various options that are available with
MySQL.

Conclusion

With any RDBMS system, time and new features will always result in more data being
recorded. While an appropriate MySQL backup and recovery strategy may meet business
expectations today, this may not be so in six months’ time. The decision of which backup
strategy to use can also be affected by optimization factors. The addition of more
hardware such as an additional network card or an additional low cost hard drive can
change the decision process for optimizing backup and recovery.

The SQL statements and web links listed in this chapter can be downloaded from
http://effectivemysqgl.com/book/backup-recovery/.



http://effectivemysql.com/book/backup-recovery/

9
MySQL in the Cloud

“Everything fails all the time.”
Dr Werner Vogels, CTO of Amazon (http:/allthingsdistributed.com/)

The emergence of the cloud in recent years has seen a number of MySQL specific and
MySQL like database solutions. These offerings are in addition to running a stock MySQL
implementation in a virtualized environment. Amazon, HP, and Google currently provide
MySQL cloud deployments that are based on using the core MySQL server. There are
solutions including ScaleDB that use new MySQL storage engines to provide many cloud
scalable features. Xeround and Clustrix are custom solutions that use the MySQL protocol
for communication and ease of application integration; however, they have an entirely
different underlying product solution. In this chapter we will be discussing the options that
most closely represent a standard MySQL environment:

* Amazon Relational Database Service (RDS)
* Google Cloud SQL
* HP Cloud Database as a Service (DBaaS)

Amazon Relational Database Service (RDS)

AWS RDS is the most mature cloud based MySQL product. RDS provides a managed
MySQL service offering for versions 5.1 and 5.5, including several point releases. This
includes a web based console and command line APIs for creating and maintaining RDS
instances. RDS supports two HA options, a master and read replicas topology via MySQL
asynchronous replication and a Multi Availability Zone (AZ) deployment that provides a
proprietary synchronous replication solution. The Multi AZ instance supports failover
capability via internal management of the RDS instances; however, the second Multi AZ


http://allthingsdistributed.com/

instance is not accessible for read load like a normal replication topology.
Some of the benefits of the managed RDS service include:

+ Ability to enable automatic minor updates of MySQL software (using - -auto-minor -
version-upgrade=true option)

+ Ability to upgrade or downgrade the size of the RDS instance without additional work
(using rds-modify-db-instance --db-instance-class=<newsize> command)

The RDS implementation of MySQL has some restrictions including:

* No direct access to the MySQL configuration file (i.e. my. cnf). Access to change
parameters is via the rds-modify-db-parameter-group command.

» Lack of SUPER privilege for any user.
* No access to read binary logs.

* No access to the MySQL error log.

See the blog post http://effectivemysqgl.com/article/setting-up-aws-rds/ for the necessary
steps to set up and create a new RDS instance.

Example Database Creation

Using the example database from Chapter 8, the following data was added to RDS by
restoring a mysqldump backup.

e et tommmmmmmmmm— o o mmmmmmmmmm o e e e +
| takle schema | tetal mk | data mb | index mb |
fmm e fmm T +
| musichbrainz | 5152.71875000 | 4412.64062500 | 740.07812500 |
| employees | 196.43750000 | 141.25000000 | 55.18750000 |
| mysql | 5.40259974 | 3.03738880 | 2.36621094 |
| world innedb | 0.76562500 | 0.57812500 |  0.18750000 |
| sakila | 0.46972656 | 0.29687500 | 0.172B5156 |
| world myisam | 0.42019653 | 0.35671997 |  0.06347656 |
| informaticn schema | 0.00878206 | 0.00000000 | 0.00878906 |
| performance schema | 0.00000000 | 0.00000000 | 0.00000000 |
e it fommmm e e R +

MySQL Versions

These current versions are presently available with RDS.

2 rds-describe-db-angins-verasicnzs -e myagl

VERSICOHN mysgl 5.1.45 mysgls.l MysSQL Community Edition Mysgl 5.1.45
VERSICOHN mysgl 5.1.4% mysglSs.l MysSQL Community Edition MySQL 5.1.49-R1
with inncdb plugin

VERSICOHN mysgl 5.1.50 mysglS.l MysSQL Community Edition MySQL 5.1.50-R2
VERSICOHN mysgl 5.1.57 mysglS.l MysSQL Community Edition MySQL 5.1.57-R1
VERSICON mysgl 5.1.681 mysglSs.l MysSQL Community Edition MySQL 5.1.81-R1
VERSICOHN mysgl 5.5.12 mysgls.5 MysSQL Community Edition MySQL 5.5.12-R1
VERSICHN mysgl 5.5.20 mysglS5.5 MysSQL Community Edition MySQL 5.5.20-R1
VERSICON mysgl 5.5.8 mysgls.5 MySQL Community Edition MySQL S.5.2.R1 GA

Backup Options


http://effectivemysql.com/article/setting-up-aws-rds/

RDS enables the use of standard client tools to connect to MySQL. The mysql and
mysgqldump commands can be used when connecting to a remote host. MySQL Enterprise
Backup and XtraBackup cannot be used with RDS.

mysqldump

As described in Chapter 2 and Chapter 8, the standard options for using mysqldump are
possible providing you connect to the appropriate remote host. For example:

% cat ~/.my.cnf
[zlient]
uzser=dba

pasaword=pasawd
host=kbock2 . XXX .us-=sast-1.rda. amascnawsa . com

% time mysagldump --all-databasea > /mysql/backup/rdsl.sql
mysgldump: Goet error: 1142: SELECT,LOCK TABL command denied te user
'dba'@'ip-10-154-163-1.ec2.internal' for table 'cond instances'
when using LOCEKE TABLES

real 1m2Z.818m
user Omd2.579a
ays Oml7.5458

% la -1h /myagl/backup/rdsl.agl
-rw-rw-r-- 1 uid gid 2.96 2012-04-18 17:22 /myagl/backup/rdal.aql

As you can see, an error occurred. This is due to a change in mysqldump between
MySQL 5.1 and MySQL 5.5. In this example the MySQL server running the client
command mysqldump is an older version than the RDS database server version.

CAUTION When using mysql dump to connect to a remote database host for backups,
the mysqldump version must be at least the same version as the remote MySQL
database.

Using a correct version produces:
% time mysagldump --all-databasea > /mysql/backup/rdsl.sql

real 1mlE.115m
user Omds,.521a
ays Oml&.1l4%9a

2 la -1h /myagl/backup/rdsl.agl
-rw-rw-r-- 1 uid gid 2.96 2012-04-18 17:27 /myagl/backup/rdal.aql

This execution time includes the network overhead between an EC2 instance and an
RDS instance. This is comparable with a standard EC2 instance running a local MySQL
instance.

A more advanced option for excluding the mysql meta-schema (which will become
relevant in the restore section) can be achieved by:



2 time mysgldump --databasss 'my2gl --skip-column-names b

-2 "SELECT GROUP_COMCAT (schema_namse SEPARATCRE ' ') FRCM &,
informaticn schema.schemata WHERE schema_nams NOT IN b
('mysgl', 'performance schema', 'information schema') ;"' = /myagl/backup/rdsz.sgl
raal lmla.358s
user om4%.2438
8YS OmLE.8378

The SQL statement in this solution has a limitation on the length of the string output
from the GROUP_CONCAT function. For MySQL instances with a large number of
database Schemas this query will fail. This length restriction can be increased with the
group_concat_max_1len configuration variable. Giuseppe Maxia provides an improvement
with two more possible options; the first, however, is limited to the maximum length of an
OS command. See http:/datacharmer.blogspot.com/2012/04/few-hacks-to-simulate-
mysqgldump-ignore.html for more details. Within a day of posting a related blog post about
this syntax, Mark Leith provided a code patch to the mysqldump command that implements
an actual --ignore-database option. The beauty of the MySQL community and open
source software is seen in these immediate responses. See more information at

http://www.markleith.co.uk/?p=768 and MySQL bug #3228 at
http://bugs.mysql.com/bug.php?id=3228.

TIP There is currently no --ignore-database option with mysqldump. The previously
mentioned command provides one of several suitable alternatives.

Database Snapshot

RDS provides a native snapshot option to produce a consistent backup of MySQL data.
This occurs while the database is online. It is unclear how locking occurs with MyISAM
tables to ensure database consistency. Using the RDS CLI tools, you can produce a
snapshot with:

2 rds-create-db-snapshot -i bock2 -z backup-1
DESMAPSHOT backup-1 bockz 2012-04-18T15:09:08.420FZ myagl 20 creating
dba 5.5.20 genseral-public-licenzse manual

NOTE Unlike most other commands that can be timed, this is an asynchronous process.
You must poll the results via the rds-describe-db-snapshots command to determine when
the backup is completed. There is no estimated percentage completion like an AWS
EBSfilesystem snapshot. There is no execution time or size information available
following the backup.

You can monitor the state of the snapshot creation with the following command:

2 while [ : ];do date;rds-deacriba-db-snapshota -3 backup-1;z2lzsep 15;dons
Wed Apr 18 20:13:24 UTC 2012
DESMAPSHCOT backup-1 bockz 2012-04-18T12:31:51.319%

my=sgl 20 ereating dba 5.5.20 general-public-license manual


http://datacharmer.blogspot.com/2012/04/few-hacks-to-simulate-mysqldump-ignore.html
http://www.markleith.co.uk/?p=768
http://bugs.mysql.com/bug.php?id=3228

Wad Apr 18 20:33:17 UTC 2012
DESMAPSHOT backup-1 2012-04-13T20:12:30.178E bookz 2012-04-18T15:21:51.%13E
my=sgl 20 avallable dba £5.5.20 genaral-public-licensse manual

Or interactively with the command:

% watch -n 15 --differences "rds-describe-db-snapshota"

This snapshot took approximately 20 minutes to complete for a 20GB RDS instance.

An RDS snapshot can also be scheduled with the RDS management tools using the
rds-modify-db-instance command with the --preferred-backup-window and --
backup-retention-period configuration options.

MySQL Binary Logs

RDS does not provide access to the binary logs. This means it is not possible to perform
data analysis or auditing via the binary log. RDS does provide a capability to restore to a
given point in time via the rds-restore-db-instance-to-point-in-time command
within the last five minutes.

2 date

Wed Apr 15 20:42:03 UTC 2012

¢ rds-describe-db-instances bock2 --headers --show-long | head -2 | cut -4, -f22
Latest Rastorable Time

2012-04-153T20:40:002

This information is not available with the standard rds-describe-db-instances
command. The - -show-1ong option is required.

You can use the MySQL status variables to determine that RDS uses binary logs and
flushes these to disk every five minutes, and this infers a redundancy of binary logs at a
filesystem level.

Recovery Options
The following steps describe how to restore an RDS backup.
SQL Dump

You can use the mysql command line tool to restore a mysqldump backup.

S time mysgl -udba -ppasswd -hbock2.X¥X.us-east-1l.rds.amazonaws.com Y
= /mysqgl/backup/dumpl.sgql > dumpl.ocut 2>&1

real 25m2.568s

user 1Iml7.86%98

sys Om4d . 764

A verification of the data shows:



mysgl> scurce allschemas.agl

o mmmmmmm Fom o m o o mmmmmmmmmm o e e +
| takle schema | tetal mk | data mb | index mb

o m e e - e e e - fmm e e - fmm e +
| musichrainz | 2681.85927500 | 2970.82812500 | 711.03125000 |
| employees | 196.43750000 | 141.25000000 | 55.18750000 |
| bockz | 83.76562500 | 57.17187500 | 26.59275000 |
| mysql | 5.38966751 | 3.02736282 | 2.36230469 |
| infermatioen schema | 0.00878906 | 0.00000000 | 0.00878206 |
| performance schema | 0.00000000 | 0.00000000 | 0.00000000 |
fmm e fmm e o +

CAUTION Do not be fooled by a significant and appropriate restore time and a
database that appears to contain a large amount of data (e.g., 3.6GB for the
musicbrainz schema).

However, you should always check for any errors and perform a more in-depth
validation to ensure your database has been completely restored. The average time to
perform a restore, the total database size, and additional checks and balances are necessary
in a production system. A review of the output file shows:

% cat dumpl.out
ERRECR 1044 (42000) at line 2827: Access denied for user 'dba'@'$’
to database 'mysgl®

This error condition is due to the RDS implementation restricting user permissions. This
type of error is unavoidable for a full mysgldump of all Schemas. A normal restoration on a
more traditional MySQL database system can overcome this with applicable user
privileges. In order to address this limitation with RDS, you need to use the -f option
during the restore; however, this introduces other problems. This type of situation is not
limited to RDS instances with the lack of non-adjustable user privileges, which some may
state as an appropriate security feature.

2 time mysgl - = /mysgl/backup/dumpl.z2gl = dumpl.out Z=£1
raal 23m57.5808

usar 1ml7.4055
sys om4 . TiZs
% echo &7

o

2 mors dumps.out

ERROE 1044 (42000) at line 2827: Access denised for user 'dba'@'%' Lo databass
ERROE 1044 (42000) at linse 2835: Access denilsed for user 'dba'@'%' Lo databass
ERROE 1044 (42000) at line 2838: Access denlsed for user 'dba'@'%' Lo databass



ERROR 1146 (42502) at line 2871: Table 'mysqgl.backup history' doesn't exist
ERROE 1044 (42000) at lins 2872: Access denisd for user 'dba'@'%' Lo databass
ERROE 114s& (42802) at line 2873: Table 'mysqgl.backup history' doesn't exist

mysgl= acurce allachemas.sgl

e e E inuateaieiaiitienin ikt btk +---mmmm -  Jintiniesta et +
| table schema | total mb | data_mb | indesx mb |
S e s i s e Fo A S i i S i . +
| misichrainz | 2681.85937500 | 2970.82812500 | 711.03125000 |
| employeea | 1me.43750000 | 141.25000000 | S55.18750000 |
| bookz | B3.76562500 | 57.17187500 | 26.52375000 |
| sakila | 6.56817627 | 4.09844971 |  2.46972656 |
| mysgl | E.3B966751 | 3.02736282 | 2.325220469 |
| world innodb | 0.76562500 | 0.57812500 | 0.18750000 |
| world myisam | 0.420189653 | 0.35671987 | 0.06347656 |
| information_schema | 0.00878905 | a.oooooooo | 0.00873306 |
| performance_schema | o.ooooo000 | a.ocooooooo | 0.00000000 |
e e L A b L e a a frrtteti R R L e A e L R S S AR +

With no actual error state and numerous error messages it is difficult to verify a
successful restore. In addition, several errors occur when importing the MySQL sakila
database due to stored procedures. These errors can be reproduced with:

2 mysgl = 2akila-achema.sgl

ERROE 1412 (HY00O) at line 183: ¥You do not have the 2UPER privilege and binary
logging is enabled {(you *might* want to uss thae lass =zafe
log bin trust function creators variable)

2 mysgl = =2akila-data.=sgl

ERROE 1412 ([(HY00O) at line 73: ¥You do not have the SUPER privilege and binary
logging i2 enabled {(you *might* want to uss tha lass =zafe

log bin trust functicon creators variable)

An import of the second mysqldump file excluding the mysql meta-schema produced:

5 time myagl < /myaql/backup/rdaz.aql » rdsZ.ocut 2=&1
real 24m21.368a

user Iml&s.557a
ays Om4 .644a
echo 57

o

2 cat rds2.out

As described in Chapter 5, the modification of various configuration variables can
improve the performance of a restore, for example, innodb_flush_log_at_trx_commit.
You can also disable MySQL binary logging by setting the backup-retention-period
value to 0. This, however, requires a MySQL restart to disable, and then to re-enable when
completed.

RDS Snapshot

To perform a restoration for a given snapshot that can be identified by the rds-describe-
db-snapshots command, use the following syntax. This will create a new RDS instance.



2 rds-restore-db-instance-from-db-snapshot bock2s -s backup-1

Wad Apr 185 20:48:03 UTC 2012
DEIMNSTANCE bookzzs db.ml.largse myagl 20 dba creating us-=ast-1b 1 n
5.5.20 general-public-license
SECGRCOUP  default actiwve
PARBMGRP default.mysgls.5 in-sync

Wed Apr 18 20:53:00 UTC 2012
DEINSTANCE bookis 2012-04-18T20:51:25.083E db.ml.large mysgl 20 dba

avallable book2s.cgmogpifkiss.us-east-1.rds.amazonaws.com 2206 us-east-1b
1 n

5.5.20 general-public-license
SECGRCOUP  default active
PARBMGRP default.mysgls.5 in-sync

This restoration took approximately five minutes.

A restoration from a given snapshot cannot use the binary logs to perform a point in
time recovery. In order to use this, you must use the rds-restore-db-instance-to-
point-in-time command.

Point in Time Recovery

For the purposes of verifying a point in time recovery, two new Schemas were created at
the given time interval of the schema name in the following example:
mysgl> CREATE SCHEMA 20120418 204605;

mysgl= SHOW SCHEMAS;

| Database |

20120418 203846 |
20120418 204605 |

&
| information schema
|
|

11 rowa in set (0.00 sec)

A point in time recovery was specified before the creation of the second schema with
the --restore-time option. This value does not have to correspond with a specific five
minute interval value. This can be anytime after an available snapshot and before or equal
to the last restorable time.



2 rds-restore-db-instance-to-point-in-time %
--target-db-instance-idaentifier bockan b,
--gource-db-inatance-idantifier bock2 b
--reatore-time 2012-04-13T20:41:25%

Wed Apr 18 21:02:26 UTC 2012
DEINSTANCE bookizn db.ml.largs myagl 20 dba creating 1 nn 5.5.20
general-public-licanse

SECGRCOUP  default active

PARAMGREP running-mysglss in-sync

Wed Apr 18 21:13:16 UTC 2012
DBEINSTANCE bookzZn 2012-04-18T21:07:04.160Z db.ml.large mysgl 20 dba
available bookan.cgmogpifkiss.us-sast-1l.rds.amazonaws.com 2206 us-east-1b
L
5.5.20 general-public-license
SECGRCOUP  default actiwve
PARBMGRP running-mysglcss in-sync

This restore took approximately 11 minutes.

A verification of the restored Schemas shows the second schema does not exist as
expected. In a production system a more detailed verification is necessary. This example is
only used to highlight the syntax for the commands.

mysgl= SHOW SCHEMAS;

| infermaticn schema |
| 20120418 203846 |
11 rowa in set (0.00 gec)

NOTE Be sure to remove RDS instances no longer used with the rds-delete-db-instance.

More information about RDS can be found at http://aws.amazon.com/ rds/.

Google Cloud SQL

Google provides a MySQL version 5.5 cloud offering with a few additional features and a
few unsupported features. At publication of this book, this is available in a limited beta
program. It is recommended that InnoDB is used for tables; however, it is possible to use
MyISAM.

This offering automatically replicates data synchronously to multiple geographic
regions to provide high data availability. There is currently no asynchronous option via
traditional replication. With this synchronous functionality, Cloud SQL provides automatic
failover with no data loss. Software upgrades and database management are automatically
managed by the service.

Google Cloud SQL is tightly integrated with Google App Engine (GAE) using Java and
Python. A web based SQL interface and custom CLI interface are available for access to
run SQL statements. Any product that can communicate with a JDBC connection can


http://aws.amazon.com/

connect to Google Cloud SQL.
See the blog post http://effectiveMySQL..com/article/setting-up-google-cloud-sql/ for

the necessary steps to set up and create a new Google Cloud SQL instance.
Example Database Creation

Using the example database in Chapter 8, an uncompressed or compressed (via gzip)
mysqgldump file can be used to populate a Cloud SQL environment. In order to import any
data you must first store the file on Google Cloud Storage. For example:

5 geutil mb ga://effectivenyagl

Creating gs://effectivenyaql/. ..

2 time gsutil cp dumpl.sqgl ga://effectivemyagl

Copying file:///myvaql /backup/dumpl.aqgl. ..
[Setting Content-Type=zapplication/x-agl]

Uploading: 65%.0 MBE/2.9%2 GB

real Tm39.020m

user Om50.0759a

ays Omld.441a

5 geutil la -1 ge://effectivenyagql

3106569645 2012-04-17T03:40:54 ga://effectivemyagl/dumpl.aql
TOTAL: 1 okjects, 2106569645 bytes (2.89 GB)

2 la -al dumpl.agl

-rw-rw-r-- 1 uid gid 3108569645 2012-04-08 02:58 dumpl.sgl

The only verification option is file size.

You can then use the Google APIs web console to import the given file. There is no CLI
interface to initiate this process or determine the total execution time.

The web interface provides a log of the process after completion.

Apr 15, 2012 1:23 PM Started importing ge://effectivemyaqgl/rdaz.aql
Apr 18, 2012 3:45 FM Imported gs://effectivenyaql/rdaz.agl

The import process took two hours and 22 minutes.

If there is a problem, the log will report an error but will not provide any additional
information. For example:

Failed to import ga://effectivemyeql/dumpl.sgl: Zn unknown problem
occurred (ERRCR ROBMS)

CAUTION You should not import the mysql meta-schema, as this can cause problems
including permissions for the root MySQL user and meta-table structure issues. Refer to
the RDS section for a mysqldump option to exclude this schema.

The first step of the verification process can be confirmed with the Google provided
SQL CLI tool:


http://effectiveMySQL.com/article/setting-up-google-cloud-sql/

e e e e e e e +
| takle schema | tetal mk | data mb | index mb

e e - - e e - - e e - o e - +
| musicbrainz | 2681.85927500 | 2970.82812500 | 711.03125000 |
| employees | 196.43750000 | 141.25000000 | 55.18750000 |
| test | 81.10927500 | 66.59375000 |  14.51562500 |
| world innodb | 0.76562500 | 0.57812500 | 0.18750000 |
| sakila | 0.46972656 | 0.29687500 | 0.17285156 |
| world myisam | 0.42019653 | 0.35671937 | 0.06347656 |
| mysql | 0.04379368 | 0.00180149 | 0.04199219 |
| informaticn schema | 0.00878206 | 0.00000000 | 0.00878906 |
e e e o e o e e o e e +

Backup Options
Only one option exists to perform an independent backup from Google Cloud SQL.
mysqldump

A mysgldump export is possible. This can only be initiated from the Google APIs web
console. You are not able to specify per-schema or per-table information or any other
additional options at this time. The output file, compressed or uncompressed, is available
in Google Cloud Storage when completed. The web console provides a log of the process
start and completion.

Apr 18, 2012 5:22 PM sStarted backing up to gs://effactivemysgl/cloudl.sgl.gz
Apr 18, 2012 &:05 PM Backed up to ga://effectivemysgl/cloudl.sgl.gz

This backup took 42 minutes.

You can verify and obtain the backup file for off site management with:

% time gsutil cp ga://effectivemysgl/cloudl*
Copying ge://effectivemyegl/cloudl.agl.gz. . .
Copying ga://effectivemyagl/cloudl.aql.gz.log.13347365000328424. .,

real 1m33.916m
user Om25.618a
ays Omll.2&659a

% la -1h cleoudl.agl.g=

-rw-rw-r-- 1 uid gid 9%929M 2012-04-19 01:39 cloudl.agl.g=
2 gunzip cleoudl.asgl.g=

2 la -1h eleoudl.sgl

-rw-rw-r-- 1 uid gid 3.06 2012-04-192 01:29 cloudl.agl

A scheduled backup feature is also available for regular daily backups.

Restore Options

As described in the example database creation, the restore of a mysqldump file generated
by the export or scheduled process is possible. Google Cloud SQL does not currently
provide a point in time recovery capability. Due to the synchronous nature of this product,
high availability and failover features are provided by default, reducing the need for a
database restore. More selective disaster recoverability options or data analysis of SQL
statements in the binary log is not currently possible.

For obtaining a copy of data at a given time, the recommendation is to use the export
functionality. It is then possible to import this for verification and use if necessary.



At the time of this book’s publication, Google Cloud SQL was in limited beta. More
information can be found at https://developers.google.com/cloud-sql/.

HP Cloud Database as a Service (DBaaS)

The HP Public Cloud (http://hpcloud.com) provides a number of services based on the
popular Open Stack cloud software (http://openstack.org/). These services include
compute, storage, content delivery network (CDN), identity management, and a managed
MySQL relational database offering. This MySQL offering is a DBaaS based on the Red

Dwarf project from Open Stack (http://wiki.openstack.org/DatabaseAsAService).
Access to creating, deleting, and restarting instances, and creating and using snapshots
is via a RESTful HTTP API providing JSON formatted response. The standard MySQL

client tools, including mysql and mysgldump, can be used for access to the MySQL
database.

The HP DBaaS offering is fully integrated with the Openstack Keystone Identity
Service. To access the DBaaS API, you first need to obtain a token to be used for the X-
Auth-Token HTTP header. In addition the X-Auth-Project-Id (generally your e-mail, or
tenant name) is required for all requests. The credentials required to obtain an auth-token
and the project-id can be found from the HP Management Console.

As of this writing, the HP Cloud DBaaS (currently in private beta) offers the following
features. These are subject to change in the future:

» Create and terminate database instances
* Reset password
* Create and delete snapshots

+ Create instance from an existing snapshot
MySQL Versions

DBaaS currently uses Percona  Server version 5.5, available from
http://www.percona.com/software/percona-server/. This is a fork of MySQL version 5.5
providing XtraDB (a modified version of InnoDB), better instrumentation, performance
improvements, and a shorter deployment life cycle for new features.

Example Database Creation

A request has to be made to the Identity Service to obtain the auth token to use for DBaaS
access. For example:

2 curl -1 httpe://[IdentitvServiceHost] /vz.0/tokaens -X POST Y,

-H "Content-Typea: applicaticon/yson" -4 %

"{rauth": {"tenantName": "tenant@dcmain.com",

"passwordcredentials": {"ussrnams": "userddomain.com", "password": "changeitv}}}!

{"accesav: |

"token": |
"expirea": "2012-04-05TC04:25:29.405E",
"id®: "HPAuth 4fTc6456e4bl0laZSabilleT4",


https://developers.google.com/cloud-sql/
http://hpcloud.com
http://openstack.org/
http://wiki.openstack.org/DatabaseAsAService
http://www.percona.com/software/percona-server/

"tenant": |
nidv: m123456789",
"name" : "tanantadomain. com”

}
¥

"uzart: |

Using the id value you can create a new instance with:

2 curl -i httpa:// [CBRaasHost] fvl.0/12245/instancas -X POST 4
-H "Content-Type: application/jscn" -H "X-zuth-Token: 4
HPRuth 4f7ce45624b0la25ab0lleT4" -H "X-Auth-Project-Id: tenantédomain.oom" B,

-d '{"instance”: {"name": "My Instance", "flavorRef": "medium",
"port": "i3ge", "dbtype”: { "name": "mysgl", "version”: "5.5" }}}°
{
"instance":
{

"status": "BUILD",

pdated”: mll,

"name": "My Instance",

"linka": [

{
"hrafr: "http://127.0.0.1/v1.0/1z2345/instances/1fff3cal-1504-4dcc-
%b20-2327584220788",
Ilrelll H Ilselfll
}

T4

"craated": "2012-02-07T1%:04:02E",

"hostnams": "15.100.100.100",

"idr: "1fffasel-1c04-4dcc-3bi0-2ae784ea0788"

}

}

Backup Options
DBaaS provides for backup options via mysqldump or by a database snapshot.
mysqldump

Refer to the mysqldump syntax in Chapters 2 and 8 and the syntax in the RDS section for
example usage.

Database Snapshot

DBaaS provides several API calls to manage database snapshots. A database snapshot can
be performed on a running MySQL instance with the following command:

2 curl -i httpa://[CBRaasHost] /fvl.0/12245 /snapshots -X POST -H &
"Wontent-Type: applicaticon/json" -H "X-muth-Token: b

HPRuth 4f7ce45624b01a25ab0l1e74" -H "K-Auth-Project-Id: tenant@domain. com" b,
-d ' {v"snapshot": {"name": "My _Instance Snapshot", 4

"inatancsIdT: "1fff9691—15D4—4dcc—9h3D—SaeTB4eeDTSB"}}'

Snapshots are automatically replicated to multiple Availability Zones for higher
availability.



Recovery Options

mysqldump

Refer to the syntax in Chapter 5 and the RDS section for example usage.
Database Snapshot

A DBaaS instance can be created from a pre-existing snapshot. The request is identical to
creating a new instance, with the additional snapshot Id parameter. For example:

2 curl -i httpa://[CBRaasHost] /fvl.0/ 12245/ /instances -X POST -H &
"ontent-Type: applicaticon/json" -H "X-muth-Token: b
HPRuth 4f7ce45624b01a25ab0l1e74" -H "K-Auth-Project-Id: tenant@domain. com" b,

-d '{vinstance": {"name": "Backup", "snapshotId®: "id of snapshot", %
flavorRef": "medium", "porte: vi3cs', vdbtypse": { "nams": "mysgl", b
"yersicn": "5.5" }}}!

Point in Time Recovery
No information was available at this time regarding point in time capabilities.

At the time of this publication DBaaS was in closed beta and access for more detailed
testing ~was not  possible.  More information can be found @ at

http://www.hpcloud.com/products/RDB.

Cloud Impact on Backup and Recovery

The use of the cloud does not mean that disasters will no longer occur. This is a myth. The
cloud has made the case to ensure appropriate DR operations are more prevalent. As the
control and management of data systems become the responsibility of service providers, it
is more important that your business understands the risks of entrusting this responsibility
to a third party.

The cloud has enabled a new way of testing and verifying your processes. The
availability of systems on demand provides the ability to easily test and verify your system
at production scale, for a very small cost. The ability to also test with additional size and
load is possible immediately without any hardware provisioning requirements (except a
credit card). That same ability enables options to fully test backup and restore procedures
with full production volume without any hindrances.

Organizations are also using the cloud for storing backup files externally, read
scalability via replication, and ancillary services including analytics, reporting, and data
warehousing. The use of the cloud is becoming an ideal hybrid implementation that scales
on demand with no upfront hardware costs. The use of the cloud does introduce additional
security concerns regarding the access to your business data and appropriate encryption
techniques become more important. Backup options that have been discussed in this book
generally store and transfer data in clear text. Chapter 8 discusses some more information
on MySQL backup security. Amazon, the current leading cloud provider, recognizes
security as the top priority and is constantly improving the level of fine grained access via
techniques including security groups, virtual private network (VPN) access, and AWS
direct connect.


http://www.hpcloud.com/products/RDB

In some organizations, cloud deployments have now streamlined the disaster
preparedness to an art form, giving backup and recovery the top priority in business needs.
For example, using a quote from Netflix: “The Chaos Monkey’s (and simian army’s) job is
to randomly kill instances and services within our architecture. If we aren’t constantly
testing our ability to succeed despite failure, then it isn’t likely to work when it matters
most—in the event of an unexpected outage.” This is a brilliant concept for being
prepared.

See http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html and

http://techblog.netflix.com/2011/07/netflix-simian-army.html for more background
information.

Ironically, the best advice for creating an effective MySQL backup and recovery
strategy is a quote now possible because of these cloud based technology capabilities.

“The best way to avoid failure is to fail constantly.”

John Ciancutti, Netflix

Conclusion

Cloud based services are becoming more easily available to consumers. While the
Amazon RDS service has been available for some time, the HP and Google offerings are
recent editions not yet generally available when this book was published. More cloud
based MySQL products will definitely become available in the future. Each option has its
relative merits of providing a managed service; however, you must evaluate the strengths
and interoperability needs with any existing production environment to determine the best
approach to maintaining your business continuity effectively.

The commands, SQL statements, and web links listed in this chapter can be downloaded
from http://effectivemysqgl.com/book/backup-recovery/.



http://techblog.netflix.com/2010/12/5-lessons-weve-learned-using-aws.html
http://techblog.netflix.com/2011/07/netflix-simian-army.html
http://effectivemysql.com/book/backup-recovery/

7z utility

7zip utility
A

—add-drop-database option
Akiban AKIBANDB storage engine
alerts
—all-databases option
Amazon
Amazon Relational Database Service (AWS RDS)
backup options
CLI tools
erTors
example database creation
MySQL versions supported
overview
point in time recovery
RDS snapshots
recovery options
Amazon Web Services (AWS)
applications
access
limitations

locks and

Index



privileges

security
—apply-slave-statements option
ARCHIVE storage engine
asynchronous replication
audits
authentication, keyed
availability

AWS (Amazon Web Services)

B

background IO threads
backup files
diskspace for
error conditions
size
viewing
backup generators
—backup option
backup-and-apply-log command
backup/recovery quiz
backups
architectural considerations
AWS RDS and
backup-to-image feature
binary logs. See binary logs
case study
choosing methodology for
choosing type of
cloud impact on
cold
considerations
consistent
defining requirements
defining responsibilities
example environment
execution time
filesystem

filesystem snapshots



Google Cloud SQL
hardware considerations
help for

hot

HP Public Cloud
importance of
incremental. See incremental backups
LVM volumes
maintenance window
MEB

mylvmbackup utility
other options for

partial

performing

planning for worst situation
point in time recovery
remote

replication and

on running instances
running mysqldump
security

static

strategic plans

strategies for

streaming

terminology

XtraBackup

backup-to-image feature

bank account information

basedir variable

batch processes

benchmarking

binary log position

binary log statements

binary logging

considerations
enabling

not enabled



options for

performance and
binary logs

AWS RDS and

completeness of

data consistency

deleting

format

LVM volumes and

mirroring

Mydumper and

mysqldump options

point in time recovery

remote
binlog_cache_disk_use variable
binlog_cache_size variable
binlog_do_db variable
binlog_format variable
binlog_ignore_db variable
—binlog-outdir option
binlog_row_event_max_size variable
—binlogs option
binlog_stmt_cache_size variable
BLACKHOLE storage engine
blackouts
Blue Gecko
bzip utility
bzip2 utility

C

case study

CDN (content delivery network)
CFEngine tool

CHANGE MASTER statement
CHECKSUM TABLE command
Chef tool

client connections

cloud based services

cloud deployments



AWS RDS
considerations
Google
HP Public Cloud
impact on backup/recovery
security
Clustrix
code examples
cold backups
cold filesystem copy
communications
—complete-insert option
completeness
—compress option
compress utility
compression. See also optimization
considerations
filesystem snapshots
incremental backups and
Mydumper
MySQL Enterprise Backup
mysqldump
performance and
pros/cons
uncompressing data
using
XtraBackup
compression utilities
configuration
binary logging
considerations
data consistency
data integrity issues
data locations
overview
recovery
recovery considerations

replication



consistency

data

object

overview

schema
consistent backups
content delivery network (CDN)
Continuent
conventions
Couch Surfing disaster
crash recovery. See recovery
crash situations
CRC32 algorithm

cron jobs

D

Danger data loss
data
completeness
compression. See compression
consistency
deleting
inconsistency
locations
restore of. See restores
security
data classes
data directories. See directories
data drift
data files. See also tablespaces
data management system variables
data recovery. See recovery
data sources
database administrator (DBA)
database objects
database snapshots. See snapshots
databases
audits

availability



determining size of
locking. See locking
missing schemas
—databases option
—databases-list-path option
—datadir parameter
datadir variable
DBA (database administrator)
DBaaS API
decision maker responsibilities
default_storage_engine variable
DELETE FROM TABLE command
deleting data
dependencies
development environment
directories
basedir
data
datadir
encrypted
inconsistency
relay log
disaster recovery (DR)
business requirements for
case study
decision process
defining requirements
defining responsibilities
described
examples
external communication
identifying dependencies
planning for worst situation
strategic plans for
strategies
technical outcomes
terminology

disaster recovery (DR) plan



disaster scenarios
cascading failures
common downtime causes
configuration issues
Couch Surfing
deleting data
external help
general MySQL situations
GitHub
handling MySQL disasters
hardware faults
InnoDB examples
Journal Space
lack of binary logging
Ma.gnolia.com
Microsoft/Danger data loss
missing database schemas
MyISAM corruption
notable
overview
Percona
RDS recovery failure
replication inconsistency
security patch upgrades and
single server
software upgrades and
TD Bank

disasters
blackouts
decision makers
examples
explosions
external communication
FBI seizures
human factors
impact of human resources
power disruption

preparing for



SAN failures
scenarios. See disaster scenarios
technical resources
disk alerts
disk space
considerations
insufficient
sufficient
temporary
disks
mirroring
RAID
RAID-1
diskspace
Distributed Replicated Block Device (DRBD)
downtime
DR. See disaster recovery
DRBD (Distributed Replicated Block Device)
dump files

—dump-slave option

E

EC2 (Elastic Compute Cloud)
Effective MySQL website
Elastic Compute Cloud (EC2)
electrical explosions
employees

disgruntled

errors caused by
encryption
error conditions
error logs
erTors

AWS RDS

MyISAM tables

replication inconsistency
ETL process
examples

—expire-logs-days option



expire_logs_days option
explosions
—export option

ezNcrypt

F

fastlz utility
FBI seizures
feedback options
file snapshot restore
files

backup. See backup files

data

dump

ibdata

.MYD

MyISAM data

per table dump

snapshot

synchronizing

tar
filesystem backups
filesystem copy
filesystem copy restore
filesystem locations
filesystem snapshots. See also snapshots
firewalls
FLUSH LOGS command
FLUSH TABLES command
FLUSH TABLES WITH READ LOCK command

FromDual

G

GAE (Google App Engine)
GitHub disaster

GitHub repository

global memory settings
Google

Google APIs web console



Google App Engine (GAE)
Google Cloud SQL
backup options
example database creation
overview
restore options
Google Cloud Storage
gpg utility
GPL license
GROUP_CONCAT function
group_concat_max_len variable

gzip utility

H

HA (high availability)

hardware faults

hardware redundancies

hash algorithms

help

—hex-blob option

high availability (HA)

—host option

hosts, remote

hot backups

HP

HP Cloud DBaaS

HP Public Cloud
backup options
example database creation
MySQL versions supported
recovery options

human factors

human resources

I

i-am-a-dummy variable

ibbackup. See MySQL Enterprise Backup
.ibd file

ibdata files



ibdatal tablespace file
.ibz extension
—ignore-database option
—include option
incremental backups
compression and
MEB
overview
restores and
—incremental option
—incremental-base option
—incremental-basedir option
—incremental-with-redo-log-only option
INFORMATION_SCHEMA command
INFORMATION_SCHEMA query
—init_connect option
—init_file option
innobackupex script
InnoDB data file
innodb data file path
InnoDB databases, locking
innodb log file sizes
InnoDB storage engine
automatic crash recovery
background threads
considerations
crash recovery
data directory inconsistency
data files
disaster examples
doublewrite buffer
hot backups
locking strategies
transaction logs
two-phase commits
InnoDB tablespace files
innodb_data_file_path option

innodb_data_file_path variable



innodb_data_home_dir variable
innodb_doublewrite variable
innodb_fast_shutdown variable
innodb_file_per_table option
innodb_file_per_table variable
innodb_flush_log_at_trx_commit variable
innodb_flush_method variable
innodb_force_recovery variable
innodb-log-files-in-group variable
innodb_support_xa variable
interactive_timeout

ionice command

J

Journal Space disaster

K

keyed authentication

L

LAN (local area network)
Linux commands
Linux systems
LOAD DATA statement
local area network (LAN)
LOCK TABLE command
LOCK TABLES command
—Ilock-all-tables option
locking
InnoDB databases
—Ilock-tables option
strategies for
—Ilock-tables option
log buffer
Log Sequence Number (LSN)
—log-bin option
log_bin variable
log_bin_index file
log_bin_index variable

Logical Volume Manager. See LVM



logs

binary. See binary logs

considerations

error

flush disk operation

redo

transaction
—Ilog-slave-updates option
log_slave_updates variable
LSN (Log Sequence Number)
lvdisplay command
LVM (Logical Volume Manager)
LVM snapshots
LVM volumes
1zip utility
lzma utility

1zo utility

M

Maatkit tool

Magnolia disaster

maintenance window

manuals

—master-data option

masters. See MySQL masters

mean time to detect (MTTD)

mean time to recover (MTTR)

MEB. See MySQL Enterprise Backup
media management software (MMS)
MEMORY storage engine

MERGE storage engine

.metadata file

mk-table-checksum utility

MMS (media management software)
mt-parallel-dump tool

MTTD (mean time to detect)

MTTR (mean time to recover)

Multi Availability Zone (AZ) deployment

Multi AZ instance



MYD files
mydumper utility
MyISAM data files
MyISAM storage engine
considerations
corruption
locking strategies
table recovery
MyISAM tables
myisam_max_sort_file_size variable
myisam-recover variable
myisam_recover variable
myisam_sort_buffer_size variable
mylvmbackup utility
MySQL
cloud deployments. See cloud deployments
configuring. See configuration
GPL license
help for
overview
software failure
software installation
topology
versions
MySQL 5.5
MySQL 5.6
MySQL bloggers
mysql command
MySQL data directory
MySQL developer zone
MySQL Enterprise Backup (MEB)
binary log statements
compression
downloading software
examples
incremental backups
monitoring

partial backups



recovery
reference manual
remote hosts
replication and
resources
running full backup
security
MySQL error log
MySQL in the Cloud
MySQL masters
characteristics of
cold backups and
consistency
mysqldump options
problems with
temporary tables and
mysql meta-schema
MySQL online backup tool
MySQL Reference Manual
mysql schema
MySQL slaves
characteristics of
cold backups and
consistency
disabling
issues
MEB and
mysqldump options
problems with
read only
replication lag and
temporary tables and
MySQL topology
MySQL website
mysqlbackup command
mysqlbinlog command
mysqlbinlog output

mysqld process failure



mysqldump

AWS RDS and
benefits of

binary log statements
comparing objects
comparing schemas
compression
considerations
database objects
described
disadvantages
encrypted directories
example

ezNcrypt and

Google Cloud SQL and
HP Public Cloud

list of options
missing data schemas
network devices
options

output

parallel processing
partial backups
performing backup with
recovery

remote hosts
replication and

table extracts

time command and

mysqldump backups

considerations
locking strategies
options

overview
running

size

mysqlhotcopy utility

N



nc (netcat)

netcat (nc)

Network Attached Storage devices
network bandwidth

network devices

nice command
—no-history-logging option
—no-schemas option

—no-timestamp option

o

objects
completeness
consistency
schema
table
OLTP systems
—only-innodb option
—only-innodb-with-frm option
—only-known-file-types option
Open Query
Open Stack cloud software
openssl utility
Openstack Keystone Identity Service
—opt option
optimization. See also compression
architectural considerations
backup security and
example backup environment
incremental backups
overview
parallel processing
partial backups
remote backups
streaming backups
Oracle Corporation
Oracle Secure Backup (OSB)
OSB (Oracle Secure Backup)



P
PalominoDB
parallel copying
—parallel option
parallel processing
partial backups
per table dump files
Percona
Percona disaster
Percona toolkit
Percona XtraDB storage engine
performance. See also optimization
binary logging and
compression and
permissions
considerations
remote backups
pigz utility
piped commands
PITR. See point in time recovery
Planet MySQL
point in time recovery (PITR)
AWS RDS
binary logs
considerations
described
HP Public Cloud
replication stream
requirements
standalone recovery
power disruption
power loss
—prepare option
processing, parallel
production environment
pt-table-checksum utility
Puppet tool
PURGE BINARY LOGS command



pvdisplay command
Pythian Group

Python scripts

Q

query cache

R

RAID system
RAID-1 configurations
—raw option
RBR (row-based replication)
RDS (Remote Database Service)
RDS service
rds-describe-db-snapshots command
read lock
—read-from-remote-server option
read_only option
recovery. See also restores
AWS RDS options for
backup/recovery quiz
binary logs. See binary logs
business requirements for
case study
cloud impact on
considerations
data access points and
defining requirements
defining responsibilities
determining type of
disaster. See disaster scenarios
filesystem copy
InnoDB crash recovery
InnoDB storage engine
MEB
MyISAM crash recovery
MySQL configuration and
MySQL data

physical hardware and



planning for worst situation
point in time. See point in time recovery
software failures
SQL dump
static
strategic plans for
strategy
system variables
table definition file
terminology
testing and
verification of
XtraBackup
recovery point objective (RPO)
recovery time object (RTO)
“red bus” policies
Red Dwarf project
redo logs
redundancy
reference manuals
references
relay log
relay log directories
relay_log variable
relay_log_index_system variable
relay-log-info-file option
relay-log-info-file system variable
remote backups
Remote Database Service. See RDS
remote hosts
remote servers
—remote-host option
replicate_do_db variable
replicate_ignore_db variable
replication
architecture
backup considerations

characteristics of



considerations
design considerations
disabling
filesystem snapshots and
high availability and
inconsistency
limitations
MEB and
mysqldump options
new features
options/variables
prerequisite checks
read only replication slaves
row-based
scalable architecture options
security and
semi-synchronous
statement-based
system variables
triggers
workflow
XtraBackup and

replication lag

replication servers

replication stream

restores. See also recovery
AWS RDS
file snapshot
filesystem copy
Google Cloud SQL
incremental backups and
MEB recovery
on running instances
SQL dump recovery
XtraBackup

—Troutines option

row-based replication (RBR)

—Trows option



RPO (recovery point objective)
rsync command
RTO (recovery time object)

rzip utility

S

SA (system administrator)
—safe-slave-backup option
—safe-updates option
SAN (Storage Area Network)
SAN failures
SBR (statement-based replication)
SBT (System Backup to Tape) interface
ScaleDB
schema definition
schema objects
schema sync utility
schemas
comparison
completeness
consistency
Schooner SQL storage engine
security
applications
backups
cloud deployments
considerations
data
encryption
firewalls
lack of
MEB backups
optimization and
permissions. See permissions
replication and
security patch upgrades
semi-synchronous replication
server_id variable

servers



downtime causes

master. See MySQL masters

remote

replication

single

slave. See MySQL slaves
Service Level Agreement (SLA)
SHOW BINARY LOGS command
SHOW command
SHOW MASTER LOGS command
SHOW PROCESSLIST command
SHOW PROCESSLIST command
SHOW SLAVE STATUS command
—show-long option
Sidekick/Microsoft data loss
—single-transaction option
skip_networking option
—skip-quote-names option
skip-slave-start option
SkySQL
SLA (Service Level Agreement)
slave host error log
slave relay log
slave_exec_mode variable
—slave-info option
slaves. See MySQL slaves
slave-skip-error option
slave_skip_errors variable
snapshot files
snapshot volumes
snapshots

AWS RDS

filesystem

HP Public Cloud

LVM

rds-describe-db-snapshots command

replication and

socket file



software failures
software updates
software upgrades
Solid State Drives (SSD)
SQL CLI tool
SQL dump recovery
SQL dumps. See mysqldump
SQL server modes
SQL statements
sql_mode option
SSD (Solid State Drives)
SSH connections
SSL support
START TRANSACTION command
—start-Isn option
statement-based replication (SBR)
static backups
described
options for
static recovery
status options
stock analysis system
STOP SLAVE SQL_THREAD command
—stop-never option
Storage Area Network (SAN)
storage engines. See also specific storage engines
considerations
default
locking strategies
third party
verifying
—stream option
streaming backups
—stream=tar option
sync_binlog variable
synchronization
files

replication



sync_relay_log_info option
system administrator (SA)
system alerts
System Backup to Tape (SBT) interface
system variables
data management
recovery

replication

T

table data
table definition recovery
table extracts
table objects
tables
locks
MyISAM
temporary
—tables option
tablespaces
tar files
TCP connections
TD Bank disaster
technical resource responsibilities
temporary tables
terminology
test environment
testing
considerations
described
importance of
InnoDB crash recovery
purpose of
recovery process
throttling
time command
Tokutek TokuDB storage engine
transaction logs

transactions



isolating
key steps
single

trigger operation

U

UDP connections

Unix commands

UNLOCK TABLES command
unsafe statements

updates. See software updates

\%

variables. See system variables

W

wait_timeout

WAN (wide area network)
wide area network (WAN)
—with-timestamp option

World Backup Day

X

XBM (XtraBackup Manager)
Xeround
XtraBackup
binary log statements
compression
examples
incremental backups
parallel copying
partial backups
recovery options
remote hosts
remote hosts and
replication and
restore process
xtrabackup command
XtraBackup Manager (XBM)

xz utility

Z



zip utility

Zmanda Recovery Manager for MySQL



Are You

Professional development and industry
recognition are not the only banefits you
gain from Oracle certifications, Thay also
facilitate career growth, improve
productivity, and enhance credibility.
Hiring managers who want to distinguish
among candidates for critical IT positions
know that the Oracle Certification Program
is one of the most highly valued
benchmarks in the marketplace. Hundreds
of thousands of Oracle certified technologists
testify to the importance of this
industry-recognized credential as the best
way to get ahead—and stay there.

For details about the
Oracle Certification Program, go to
oracle.com/education/cartification,

Oracle University —
Learn technology from the source

ORACLE
UNIVERSITY




e

Join the WoEld'S Largest

—

Oracle Comim 1;

With mora than 5 million membars,

Oracle Technology Network
(otn.oracle.com) is the best place online

for developers, DBAs, and architects to
interact, exchange advice, and get software
downloads, documantation, and

technical tips = all for freel

Registration is easy;
join Oracle Technology
Network today:
otn.oracle.com/join

oORACLE’
TECHNOLOGY NETWORK




. FREE SUBSCRIPTION
TO ORACLE MAGAZINE

Oracle Magazine is essential gear for today's information technology professionals. \
Stay informed and increase your productivity with every issue of Oracle Magazine,

Inside each free bimonthly issue you'll get:

« Up-to-date information on Oracle Database, Oracle Application Server,
Web development, enterprisa grid computing, database technology,
and businass trands

* Third-party news and announcements

+ Tachnical articles on Oracle and partner products, technologies,
and operating environments

« Development and administration tips
+ Real-world customer stories

If thera are othar Oracle users at

your location who would liks to ; \
receiva thelr own subscription o 1 IF@@ @asy ways to subscribe:

Oracls Magazine, ploase photo-

copy this form and pass it along. Web

Visit our Wab site at eracle.comforaclemagazine
You'll find a subscription form there, plus much more

Complete the questionnaire an thi back of this card

and fax the questionname side only to +1.847.763,9638
MAGAZINE

Mail

Complete the questionnaira on the back of this card
and mail it to P.0. Box 1263, Skokie, IL 60076-8263

ORACLE’

Coprghr® 350 Crapa sndfor im ofisarse. ki righty rowsra. QTacls 16 8 S@ES Tackmunt of Craos SAMparusen odir it flom Criter names. oy O FaCSnants of SR M T SRNaT



Want your own FREE subscription?

To receive a freée subscription to Oracfe Magazine, you must fill oul the entlrs card, sign it, and data
It lincomplate cards cannol be processad or acknowledgadh. You can atso fax your application to
+1.247 7635538, Or subscribe at our Web site at oracle com/foraclemagaring

O Yes, please send me 3 FREE subscription Crecle Magasine. D Ne.

D) From anw s fre, Orscls Pusisting sliows cur §
e e T Gurt e-mall Sddnene T igacial pRodno- |x ]l
o e srroucce e, T Be Bciuded i progien,

Pt Ok i cirde. [yom (10 6od wish 10 B I sded,
A R e MRS SO O VPRI Vi e

1) oracte Pustibabiag allssin saring of Dl postl fraiie 1M wes
e third Quart. I you prefee yosr alSng sdabeis it i
b briihicied B T peCgPRT, placie aeci this ol

B gy wom ny el ik 1 s menmd B il 0
Esptivnnt Butrnn o 2 VREWLIH of snsd 1 el 10

s
L} e e e ababig ol - ik -
o ey R

trgAIiuTE gragairags

Tama winie

Tamaany Toeall sddrais

CLLE LT B T

- iy wnomise; EVIGTAIRIAIEIE &F PO3NE] CEAW TRIRERBAE
S o b e e e o b by o b byt e FERACT
+m.ﬂ-;nrmm--ﬂ:b i) i
s b e bt s g S TRaRITY Tie

Would you lke to recolve your fres subserption (n digital fammat instead of pit i it becomes avallabla? Oes Otio

YOU MUST ANSWER ALL10 QUESTIONS BELOW.

/

WOHET 15 i MY DR ACTITY WALT 73 VO CORRENT PRI AR WOEHLTIG =n SHmn =0
m:‘rmmmmu mmmuﬂlhqﬂl E;Eﬂ SHiull o4 Tm
= gt iy ML VS g 5
YR e em—— B A o)
S At iy ol S B Bl =Wl
=n Mewlarivy = W 1
EHE: EHI-HI- :I';ﬂ = pHAR
= H Diensetar Snjig E;If:ﬁhnh Gﬂmﬂ
= 17 Connm S Timons kgl = G e = 3 Mannam () W AL FRINCTY. B M USEAT TV
i ok E:mﬂ g:’-rllh-m AN bt ad ot appiyi
g+ ] e ST — Z Al e % 3 [y e g sgiunm
= 1 Rk s = 0 Ny Lorpuiing = 3 e = 1 e 2
= It o M, T T 18 = a1 e B =2 o D
Eﬁm i SN (E) Wt T cOmP T 1 ;E'n'."-‘ﬂ:'i'u Sty )
= : m;-- Eu W ik ) = 1 Do (e
s E = B Mewhan 26 000 AL P OB ERL
o e T
zn STV EUURATT, THCI BRIMNCN, o nmnw St [
= 1 b Mokt S - DL = B W1 | bl = 0 D B P Mg
2 1 g, i = 1 Frwwr i 9 e = W ke ity g e
S hintiomwie Egmm._ .00 ) T B
= M e e v = 81 Do Pty O R it e SR ELCPUENT RS
= e v Frodan WLk S oL = 11 ks [hevvage
= 10 i e 36T WAAL FERTTIALLT D #oR =i bk lem
Y Bifersetmben TIN LCATIONT infmek wne ) =X ::h-
DN N = 1 Lo i D S gL e
= @ 1T e = W el BlBEn
0 THUR SO0 RN S DR LA T - tﬁﬁ-“ = 1 Bty Warnbans il
CPR3E T B FRLEAIRE o =8 " = 3 D eblmne
bk ol ot 5 =1‘:=|'.ﬂ'-u- = 11 e Mgl rsen | g
TR = TRALE L T
= 1 DR L $iite
= Clbdharstan Litruame (© JI0TON AT AT Wi 2 2 il inogrin
i — 23 s
2 & Fin Mgt = it i o = -u
ZE Tmm = I L0, 0 5L, A =?’m"
% 0 Wekmide M BT LS i
2 Ny £ 56 41 194, 0ID w35, 40, 0 ﬁ'ﬂﬁ_.m [ —
2 T
2 0 s LU 40 R B g
2 0 Y O sy 2 E Dt
i oz he = o et
= ='Tr ='m T Bar ol b L
£ § fmiua cHEs oA
E"mmm cHg o W i




	Acknowledgments
	Introduction
	1 The Five Minute DBA
	Approaching a MySQL Backup
	Determining Your Database Size
	Choosing a Locking Strategy
	Execution Time
	Combining Information
	Performing a MySQL Backup
	Running mysqldump
	Securing Your Backup
	Benefits with mysqldump
	More Information
	Other Options
	Conclusion
	2 Understanding Backup Options
	Terminology
	Choosing a Backup Strategy
	Database Availability
	Storage Engines
	Locking Strategies
	MySQL Topology
	Static Backup Options
	Filesystem Backup
	SQL Dump
	Table Extract
	Filesystem Snapshot
	InnoDB Hot Backup
	Options Not Discussed
	Point in Time Requirements
	Binary Logs
	Binary Log Position
	Binary Log Backup Options
	Hardware Considerations
	Data Source Consistency
	Backup Security
	Conclusion
	3 Understanding Business Requirements for Disaster Recovery
	Defining Requirements
	Defining Responsibilities
	Terminology
	Technical Resource Responsibilities
	Decision Maker Responsibilities
	Identifying Dependencies
	Case Study
	The MySQL Topology
	Your Backup and Recovery Strategy
	A Real Life Disaster
	Technical Outcomes
	The Decision Process
	Essential External Communication
	Planning for the Worst Situation
	Total SAN Failure
	Power Disruption
	Explosion
	FBI Seizure
	Blackout
	Human Factors
	Human Resources
	Developing a Strategic Plan
	Conclusion
	4 Using MySQL Replication
	MySQL Replication Architecture
	MySQL Replication Characteristics
	MySQL Replication Limitations
	Replication Lag
	Consistency
	Completeness
	Replication Design Considerations
	Binary Log Row Format
	Semi-synchronous Replication
	Replication Backup Considerations
	Additional Prerequisite Checks
	Cold Backup Options
	mysqldump Options
	Filesystem Snapshot Options
	MySQL Enterprise Backup (MEB) Options
	XtraBackup Options
	Architecture Design Considerations
	Upcoming Replication Functionality
	Conclusion
	5 Using Recovery Options
	A Word About Testing
	Determining the Type of Recovery Necessary
	MySQL Software Failure
	Crash Recovery
	MyISAM Table Recovery
	Other Storage Engines
	Table Definition Recovery
	Performing a Static Recovery
	MySQL Software Installation
	MySQL Data
	Performing a Point in Time Recovery
	Binary Log Position
	Standalone Recovery
	Leveraging the Replication Stream
	Binary Log Mirroring
	Recovery Verification
	The Backup and Recovery Quiz
	Other Important Components
	Conclusion
	6 MySQL Configuration Options
	Data Management
	Data Locations
	Data Consistency
	Binary Logging
	MySQL Replication
	Recovery
	Conclusion
	7 Disaster Scenarios
	Handling a MySQL Disaster
	Notable MySQL Disasters
	Magnolia
	Couch Surfing
	Journal Space
	Percona
	Other Notable Data Disasters
	The Sidekick/Microsoft Data Loss
	Github
	TD Bank
	General MySQL Disaster Situations
	Binary Logging Not Enabled
	A Single Server
	Appropriate MySQL Security
	Appropriate MySQL Configuration
	Deleting MySQL Data
	Deleting the InnoDB Data File
	Deleting MySQL Binary Logs
	Existing Backup and Recovery Procedure Disasters
	MySQL Software Upgrades
	Operating System Security Patch Upgrade
	Handling MyISAM Corruption
	Missing Database Schemas
	Restoring a Backup on a Running MySQL Instance
	Handling InnoDB Specific Situations
	Automatic Recovery
	InnoDB Data Dictionary Inconsistency
	Automatic Recovery Crashes the Database Server.
	Other MySQL Situations
	Replication Inconsistency
	RDS Recovery Failure
	Common Downtime Causes
	External Help
	Conclusion
	8 Optimizing Backup and Recovery
	Example Backup Environment
	Using Compression
	mysqldump
	MySQL Enterprise Backup (MEB)
	XtraBackup
	Streaming Backups
	Using SSH
	Using nc
	MySQL Enterprise Backup (MEB)
	XtraBackup
	Remote Backups
	mysqldump
	MySQL Enterprise Backup (MEB)
	XtraBackup
	Parallel Processing
	mydumper
	XtraBackup
	Incremental Backups
	MySQL Enterprise Backup (MEB)
	XtraBackup
	Partial Backups
	mysqldump
	MySQL Enterprise Backup (MEB)
	XtraBackup
	MySQL Backup Security
	Encryption with ezNcrypt
	Architectural Considerations
	Conclusion
	9 MySQL in the Cloud
	Amazon Relational Database Service (RDS)
	Example Database Creation
	MySQL Versions
	Backup Options
	Recovery Options
	Google Cloud SQL
	Example Database Creation
	Backup Options
	Restore Options
	HP Cloud Database as a Service (DBaaS)
	MySQL Versions
	Example Database Creation
	Backup Options
	Recovery Options
	Cloud Impact on Backup and Recovery
	Conclusion

