


Beginning
Microsoft®

SQL Server® 2008 Administration
Professional Microsoft SQL Server 2008 Integration 
Services
978-0-470-24795-2
This book shows developers how to master the 2008 release of SSIS, covering topics 
including data warehousing with SSIS, new methods of managing the SSIS platform, 
and improved techniques for ETL operations. 

Professional SQL Server 2008 Reporting Services
978-0-470-24201-8
This book teaches solutions architects, designers, and developers how to use 
Microsoft’s reporting platform to create reporting and business intelligence solutions.

Professional Microsoft SQL Server 2008 Analysis Services
978-0-470-24798-3
This shows readers how to build data warehouses and multidimensional databases, 
query databases, and how to use Analysis Services and other components of SQL 
Server to provide end-to-end solutions. 

Professional Microsoft SQL Server 2008 Programming
978-0-470-25702-9
This updated new edition of Wrox’s best-selling SQL Server book has been expanded 
to include coverage of SQL Server 2008’s new datatypes, new indexing structures, 
manageability features, and advanced time-zone handling.

Professional Microsoft SQL Server 2008 Administration
978-0-470-24796-9
A how-to guide for experienced database administrators, this book is loaded with 
unique tips, tricks, and workarounds for handling the most difficult SQL Server 
administration issues. The authors discuss data capture, performance studio, Query 
Governor, and new techniques for monitoring and policy management.

Beginning Microsoft SQL Server 2008 Programming
978-0-470-25701-2
This comprehensive introduction to SQL Server covers the fundamentals and moves on to discuss how to create and change tables, manage 
keys, write scripts, work with stored procedures, and much more.

Beginning Microsoft SQL Server 2008 Administration
978-0-470-44091-9
This book teaches both novice and experienced database administrators how to leverage all of the features of SQL Server to deliver solid, 
reliable performance. All features and techniques are illustrated with real-world examples and step-by-step instructions. With this book, you’ll 
develop the skills required to successfully administer a SQL Server 2008 database, regardless of your experience level.

Beginning Database Design Solutions
978-0-470-38549-4
This introduces IT professionals—both DBAs and database developers—to database design. It explains what databases are, their goals, 
and why proper design is necessary to achieve those goals. It tells how to decide what should be in a database to meet the application’s 
requirements. It tells how to structure the database so the database performs well while minimizing the chance for error.

 Enhance Your Knowledge
Advance Your Career

Get more out of 
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in 
our P2P forums

Wrox Online Library
Hundreds of our books are available online 
through Books24x7.com

Wrox Blox 
Download short informational pieces and 
code to keep you up to date and out of 
trouble!

Chapters on Demand
Purchase individual book chapters in pdf 
format

Join the Community
Sign up for our free monthly newsletter at 
newsletter.wrox.com 

Browse
Ready for more Wrox? We have books and 
e-books available on .NET, SQL Server, Java, 
XML, Visual Basic, C#/ C++, and much more!

Contact Us. 
 We always like to get feedback from our readers. Have a book idea? 
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=1.632"



Leiter ffirs.tex V2 - 03/25/2009 1:24pm Page i

Beginning Microsoft® SQL Server® 2008 Administration
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxvii
Chapter 1: Introducing SQL Server 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Chapter 2: Installing SQL Server 2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Chapter 3: SQL Server 2008 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Chapter 4: SQL Server 2008 Storage Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Chapter 5: SQL Server 2008 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Chapter 6: SQL Server 2008 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Chapter 7: Configuring SQL Server Network Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Chapter 8: Automating Administrative Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Chapter 9: Disaster Prevention and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
Chapter 10: Monitoring SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Chapter 11: Optimizing SQL Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
Chapter 12: SQL Server High Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
Chapter 13: Introduction to Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
Chapter 14: Introduction to the Common Language Runtime . . . . . . . . . . . . . . . . . . . . . . . . . . 607
Chapter 15: An Administrator’s Guide to Business Intelligence . . . . . . . . . . . . . . . . . . . . . . . . 639
Chapter 16: Introduction to SQL Server Integration Services . . . . . . . . . . . . . . . . . . . . . . . . . . 645
Chapter 17: Introduction to SQL Server Analysis Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
Chapter 18: Introduction to SQL Server Reporting Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
Chapter 19: Introduction to Service Broker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 733
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755



Leiter ffirs.tex V2 - 03/25/2009 1:24pm Page ii



Leiter ffirs.tex V2 - 03/25/2009 1:24pm Page iii

Beginning

Microsoft® SQL Server® 2008 Administration



Leiter ffirs.tex V2 - 03/25/2009 1:24pm Page iv



Leiter ffirs.tex V2 - 03/25/2009 1:24pm Page v

Beginning

Microsoft® SQL Server® 2008 Administration

Chris Leiter
Dan Wood

Albert Boettger
Michael Cierkowski

Wiley Publishing, Inc.



Leiter ffirs.tex V2 - 03/25/2009 1:24pm Page vi

Beginning Microsoft® SQL Server® 2008 Administration
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-44091-9

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Beginning Microsoft SQL server 2008 administration / Chris Leiter ... [et al.].
p. cm.

Includes index.
ISBN 978-0-470-44091-9 (paper/website)

1. SQL server. 2. Database management. 3. Relational databases. I. Leiter,
Chris, 1975-

QA76.9.D3B4465 2009
005.4’476--dc22

2009004135

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or extended
by sales or promotional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in rendering legal, accounting,
or other professional services. If professional assistance is required, the services of a competent professional person
should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Web site is referred to in this work as a citation and/or a potential source of further information
does not mean that the author or the publisher endorses the information the organization or Web site may provide
or recommendations it may make. Further, readers should be aware that Internet Web sites listed in this work may
have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. Microsoft and SQL Server are registered trademarks of
Microsoft Corporation in the United States and/or other countries. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

www.wiley.com
www.wiley.com/go/permissions


Leiter ffirs.tex V2 - 03/25/2009 1:24pm Page vii

For my wife, Bridget Your patience, love, and support have made everything I have, and everything I am, possible.
Thanks for believing in me

— Chris Leiter

I dedicate my contribution of this book to my dad, Reginald Kaaikaula Wood, who lost his battle with cancer while
I was writing this book. He was a great encouragement and proud that his son was a published author even though

he said, ‘‘I don’t understand a darn word of it.’’ My dad left an amazing legacy and he will be missed.

— Dan Wood

I dedicate this book to my daughter, Rachel. Watching you grow and re-experiencing the beauty and wonder of the
world through your eyes, is and has been the greatest joy in my life. So few years to give you wings to fly.

I love you.

— Albert Boettger

I would like to dedicate this accomplishment to my daughter, Alina. You are the best thing that has ever happened
to me and I love you very much.

— Michael Cierkowski



Leiter ffirs.tex V2 - 03/25/2009 1:24pm Page viii



Leiter f02.tex V3 - 03/25/2009 1:26pm Page ix

About the Authors
Chris Leiter (Auburn, WA) is a Senior Consultant for Hitachi Consulting. His primary focus is Microsoft’s
Business Intelligence and Performance Management products. Chris has been a Microsoft Certified Pro-
fessional since 1997 and a Microsoft Certified Trainer since 2001. He currently holds the MCSE: Security,
MCITP: Database Administrator, and ITIL: Foundation certifications. Chris is also co-author of Beginning
SQL Server 2005 Administration by Dan Wood, Chris Leiter, and Paul Turley from Wrox Press 2006. When
not writing about or working with Microsoft SQL Server, he enjoys watching movies from his extensive
DVD collection with his wife, Bridget, and their cat, Cosmo. Chris contributed Chapters 1, 2, 3, 6, 7, 8, 12,
13, 15, 16, 17, and 19.

Dan Wood (Silverdale, WA) is the senior database administrator for Avalara, a sales tax compliance
company where he both administers and develops database solutions for several enterprise applications
that handle global address validation, tax rate calculation, and sales tax remittance for e-commerce and
ERP clients. He has been working with SQL Server as a DBA, consultant, and trainer since 1999. Dan
was a co-author on Beginning Transact-SQL with SQL Server 2000 and 2005 by Paul Turley and Dan Wood
(2005) and Beginning T-SQL with Microsoft SQL Server 2005 and 2008 by Paul Turley and Dan Wood (2008)
and the lead author of Beginning SQL Server 2005 Administration, all from WROX press. Dan contributed
Chapters 4 and 9.

Albert Boettger (Federal Way, WA) is the Senior Software Engineer and Database Administrator for
Sagem Morpho, Inc. Albert has more than 20 years of experience as a solution developer, database archi-
tect, and software engineer. Albert contributed Chapters 10 and 11.

Michael Cierkowski (Maple Valley, WA) currently works as an instructor for Netdesk Corporation,
with a primary focus on SQL Server Administration. Michael has been a Microsoft Certified Professional
and Trainer since 2000. He currently holds his MCSD, MCDBA, MCAD, MCSA, MCPD: (Windows,
Web, and Enterprise), and MCITP: (Database Administrator, Database Developer, BI Developer, Server
Administrator, and Enterprise Administrator). Michael contributed Chapters 5, 14, and 18.



Leiter f02.tex V3 - 03/25/2009 1:26pm Page x



Leiter f03.tex V3 - 03/25/2009 1:27pm Page xi

Credits
Executive Editor
Bob Elliott

Development Editor
Maureen Spears

Technical Editor
Jim Adams

Senior Production Editor
Debra Banninger

Copy Editor
Cate Caffrey

Editorial Manager
Mary Beth Wakefield

Production Manager
Tim Tate

Vice President and Executive
Group Publisher
Richard Swadley

Vice President and Executive
Publisher
Barry Pruett

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Lynsey Stanford

Proofreader
Nancy Carrasco

Indexer
J & J Indexing



Leiter f03.tex V3 - 03/25/2009 1:27pm Page xii



Leiter f04.tex V3 - 03/25/2009 1:30pm Page xiii

Acknowledgments

First and foremost, I thank my wife, Bridget, for once again supporting and encouraging me through this
process. It’ll be nice to have our evenings back. Thanks also to Dan Wood, for letting me take the reins
on this one. I’m really glad that you were able to stay on as a Contributing Author. Michael Cierkowski
and Albert Boettger also deserve my gratitude for stepping up to the plate and co-authoring this book.
Both of you are absolutely brilliant, and I’m lucky to know you. I also thank Lance Baldwin, one of the
best people I’ve had the privilege of working for (twice!), and Paul Turley, who helped Dan and me
get introduced to Wiley. And speaking of Wiley, I must also thank Bob Elliott for his support on this
project and faith that I could pull it all together; Maureen Spears for having the patience of a saint; and
Jim Adams, who never let anything get by him (and provided a huge contribution to Chapter 17!). There
are several other people whom I would like to thank for helping me in one way or another during the
process of creating this book. They include (in no particular order) Jeff Sparks, for constantly feeding my
ego; Rick Kinglsan, for setting the bar and letting me raise it; D.J. Norton, for being as much of a gadget
geek as I am; Stephanie Gulick, for being so supportive; everyone at Hitachi Consulting; and, of course,
the Banz and Leiter families, who put up with me working through yet another holiday season.

— Chris Leiter

A great deal of thanks to Chris Leiter for taking over this book and being an outstanding Project Lead.
Special thanks to all the wonderful people at Wrox for their patience for missed deadlines and support
when my dad was ill. Lastly, but most importantly, my gratitude and undying love goes to my beautiful
wife, Sarah, who supported me through yet another book project and expressed her pride and love while
spending many nights and weekends without me. Thank you, my love.

— Dan Wood

A special thanks to Chris Leiter for convincing me to join the team and introducing me to Wiley Publish-
ing. You were right. Thank you to Jeff Sparks for being a friend and mentor, and for always pushing me
to explore and master new technologies. Your opinions and insights were invaluable. Thanks to every-
one at Wiley Publishing who helped to make this book a reality, and especially to Bob Elliot for all his
hard work. Thanks, Maureen, for keeping us all on schedule and answering all of our questions (kind of
like herding cats), and to Jim for his excellent technical editing. To my loving wife, Elise, and beautiful
daughter, Rachel, thank you for your love, patience, and understanding. You mean more to me than
words can convey.

— Albert C. Boettger

First, I thank both Dan and Chris for considering me for this project. It has been a wonderful experience
working with you, and I hope we can do it again sometime. I also thank everyone at Wrox for making the
entire process a fairly painless affair. And finally, I thank my wife, Stacy, for dealing with many nights
of neglect while I worked on my many projects. I love you more each and every day. A task that I didn’t
think was possible.

— Michael Cierkowski



Leiter f04.tex V3 - 03/25/2009 1:30pm Page xiv



Leiter ftoc.tex V3 - 03/25/2009 1:31pm Page xv

Contents

Introduction xxvii

Chapter 1: Introducing SQL Server 2008 1

A Condensed History of SQL Server 1
In the Beginning 1
The Evolution of a Database 1
Microsoft Goes It Alone 2
BI for the Masses 2
2008 . . . and Beyond! 3

What Is SQL Server 2008? 3
Database Engine 3
Integration Services 5
Analysis Services 5
Reporting Services 6
Service Broker 6
Data Tier Web Services 6
Replication Services 6
Multiple Instances 6
Database Mail 7
A Note about Notification Services 7

SQL Server 2008 Editions 7
SQL Server Compact 3.5 SP1 8
SQL Server 2008 Express Edition 9
SQL Server 2008 Web Edition 9
SQL Server 2008 Workgroup Edition 10
SQL Server 2008 Standard Edition 10
SQL Server 2008 Enterprise Edition 10

SQL Server 2008 Architecture 11
SQL Server 2008 Communication 11
SQL Server 2008 Services 13

SQL Server 2008 Database Objects 15
Server 15
Database 16
Schema 16
Object Names 16



Leiter ftoc.tex V3 - 03/25/2009 1:31pm Page xvi

Contents

SQL Server 2008 Databases 18
System Databases 18
User Databases 20
Distribution Databases 20

SQL Server 2008 Database Storage 20
Data Files and Filegroups 21
Log Files 21

SQL Server Security 22
Windows Authentication Mode 22
SQL Server and Windows Authentication Mode (Mixed Mode) 22

Summary 23

Chapter 2: Installing SQL Server 2008 25

SQL Server Installation Planning 25
Hardware Considerations 26
Processor Considerations 27
Memory Considerations 27
Storage Considerations 28
Virtualization Considerations 32
Software Prerequisites 32

SQL Server Installation Center 34
Setup Support Rules (for Setup Support Files) 34
Setup Support Rules (for Installation) 36
Feature Selection 37
Installing to a Windows Cluster 45
Configuring the Virtual Server Name 46
Sample Databases 49

Installation Review 50
Summary 50

Chapter 3: SQL Server 2008 Tools 51

SQL Server Management Studio 52
Tool Windows 53
Toolbars 65
SQL Server Management Studio Configuration 82

Log File Viewer 90
SQL Server Business Intelligence Development Studio 91
SQL Server Profiler 93

SQL Server Trace 93
Trace Properties 94

xvi



Leiter ftoc.tex V3 - 03/25/2009 1:31pm Page xvii

Contents

Database Engine Tuning Advisor 97
General Tab 98
Tuning Options Tab 99

SQL Server Configuration Manager 100
Reporting Services Configuration Manager 100
Command-Line Tools 102

SQLCMD 102
Bulk Copy Program (BCP) 104
PowerShell 106

Summary 109

Chapter 4: SQL Server 2008 Storage Architecture 111

The Resource Database 112
The sys Schema 112

SQL Server Database Physical Structure 113
Physical Storage Data Types 114
FILESTREAM Data 118
Other Data Types 119
SQL Server Database Files 119
Data Files 120
Transaction Log 123

Summary 127

Chapter 5: SQL Server 2008 Databases 129

System Databases 129
User Databases 129
Database Planning 129

Capacity Planning 130
Creating Databases 131

Getting Started 132
Creating a New Database 132
Schemas 152
Tables 155
Indexes 165
Enforcing Data Integrity 181

Database Diagrams 190
Views 191

System Views 191
Synonyms 192
Programming Objects 193

xvii



Leiter ftoc.tex V3 - 03/25/2009 1:31pm Page xviii

Contents

Stored Procedures 193
Functions 193
Triggers 194
Assemblies 196
Types 196
Defaults 199
Rules 200

Summary 200

Chapter 6: SQL Server 2008 Security 201

SQL Server Authentication Modes 201
Changing the Authentication Mode from Management Studio 202
Using the xp_instance_regwrite Extended Stored Procedure 202

Principals 204
Logins 205
Credentials 210
Server Roles 212
Database Users 214
Fixed Database Roles 219

Permissions 225
Server Permissions 229
Database Scope Permissions 235
Schema Scope Permissions 238
Using SQL Server Management Studio for Managing Permissions 240

SQL Server Encryption 243
Extensible Key Management (EKM) 246
Encryption Tools 246

Best Practices 257
Summary 259

Chapter 7: Configuring SQL Server Network Communication 261

SQL Server 2008 Network Protocols 261
Shared Memory 262
Named Pipes 262
TCP/IP 262
Virtual Interface Adapter (VIA) 264

SQL Native Client Configuration 264
SQL Server Endpoints 265

Default TSQL Endpoints 266
TSQL TCP Endpoints 269
Database Mirroring Endpoints 270

xviii



Leiter ftoc.tex V3 - 03/25/2009 1:31pm Page xix

Contents

SOAP Endpoints 272
Service Broker Endpoints 278
Securing Endpoints 278

Summary 284

Chapter 8: Automating Administrative Tasks 285

Policy-Based Management 286
Targets 286
Facets 287
Conditions 287
Policies 288
Policy Categories 289
Effective Policies 289

Central Management Servers 292
Database Mail 294

How It Works 294
How to Configure Database Mail 295
Configuring Database Mail Options 300
Managing Profiles and Accounts 301
Guidelines for Deleting Mail Objects 309
Sending Mail 310
Managing Messages 314

Event Notifications 315
SQL Server Agent 316

Configuring the SQL Server Agent Service 316
SQL Server Agent Security 321
Creating Jobs 323
Creating Schedules 335
Creating Operators 342
Creating Alerts 345
Creating Proxies 353
Multi-Server Jobs 356

Maintenance Plans 358
Maintenance Plan Wizard 358
Maintenance Plan Designer 358

Best Practices 360
Summary 361

Chapter 9: Disaster Prevention and Recovery 363

Chapter Preparation 363
Database Recovery Models 365

xix



Leiter ftoc.tex V3 - 03/25/2009 1:31pm Page xx

Contents

Full Recovery Model 365
Bulk-Logged Recovery Model 366
Simple Recovery Model 366

SQL Server 2008 Database Backup 367
Backup Devices 367

SQL Server 2008 Backup Types 369
Full Backup 369
Differential Backup 370
File/Filegroup Backup 370
Transaction Log Backup 371
Partial Backup 371
Copy Only Backup 372

Backup Options 372
Backup Stripe 372
Mirrored Backup 372
Compressed Backup 373
WITH Options 373

Backup Strategies 375
Full Backup Only 375
Full Backup with Differential 376
Full Backup with Transaction Log 376
Full and Differential Backup with Transaction Log 377
File and Filegroup Backup 377
Filegroup with Differential 378
Partial Backup 378
Backup Summary 378

Restoring Databases 379
Restore Process 379
Delaying Recovery 380

RESTORE Command 380
RESTORE DATABASE database_name 381
FROM Options 382
WITH Clause 382
Database Restore Preparation 385
Restoring User Databases 387
Recovering System Databases 393
Database Restore Summary 395

Database Snapshots 396
Database Snapshot Limitations 398
Disaster Recovery and Database Snapshots 398

Summary 400

xx



Leiter ftoc.tex V3 - 03/25/2009 1:31pm Page xxi

Contents

Chapter 10: Monitoring SQL Server 401

Performance Monitoring 401
Performance Monitoring Strategy 402
Creating a Performance Baseline 403

Tools and Techniques for Monitoring 409
Log File Viewer 410
Activity Monitor 411
System Stored Procedures 413
Using Profiler 420
Monitoring Files 427

Auditing 430
SQL Server Audit 430
Login Auditing 438
C2 Audit Mode 440
Security Audit Event Category 441
SQL Trace 442

Tracking Changes 444
Change Data Capture 444
Change Tracking 452

Data Collection 455
Terminology 456
Architecture and Processing 456
Configuring Data Collection 458
Data Collector Types 461
Data Collection Sets 461
Error Handling 465
Reporting 466
Management Data Warehouse 466

Monitoring Database Modifications 468
Data Definition Language (DDL) Triggers 469

Summary 472

Chapter 11: Optimizing SQL Server 473

Hardware Optimization 474
CPU Selection 475
Hyperthreading 475
Memory 475
Storage Options 476
Network Design 477
Virtualizing SQL Server 478

xxi



Leiter ftoc.tex V3 - 03/25/2009 1:31pm Page xxii

Contents

Design Considerations 478
Database Recovery Model 479
Designing Efficient Tables 480
Declarative Referential Integrity (DRI) 485
Constraints versus Triggers 488
Deciding What to Index 488
Indexed Views and Filtered Indexes 494
Minimizing Blocking 497
Hidden Dangers of Time-Outs 498

Query Optimization 499
Execution Plans 500
Updating Statistics 504
Managing Indexes 504
Query Optimizer Hints 510
Plan Guides 512
Database Engine Tuning Advisor 517

T-SQL Optimization Tips 526
Limiting Result Sets 527
ANSI-Style Join Syntax 530
Dealing with Null Values 531
Alternatives to Cursors 533
Merge Joins 534
Grouping Sets 536
Distinct Aggregation 537
How Many Records Are in That Table? 538
Temp Tables versus Table Variables 539

Resource Governor 540
Configuring the Resource Governor 541
Monitoring the Resource Governor 545

Summary 551

Chapter 12: SQL Server High Availability 553

Introduction to High Availability 553
Failover Clustering 554

Windows Clustering — A Quick Primer 555
Clustering Components 556
Active/Passive Clustering 556
Active/Active Clustering 557
Considering Clustering 558

Log Shipping 558
Preparing for Log Shipping 558
Configuring Log Shipping with SQL Server Management Studio 558

xxii



Leiter ftoc.tex V3 - 03/25/2009 1:31pm Page xxiii

Contents

Configuring Log Shipping with Transact-SQL 563
Configuring Failover 571

Database Mirroring 572
Client Redirection 574
Database Mirroring Modes 574
Configuring Database Mirroring 576
Monitoring Database Mirroring 581
Managing Database Mirroring 584

Summary 587

Chapter 13: Introduction to Replication 589

Replication Overview 589
SQL Server Replication Agents 590

Snapshot Agent 591
Log Reader Agent 591
Distribution Agent 591
Merge Agent 591
Queue Reader Agent 591

SQL Server Replication Types 591
Distributed Transactions 592
Transactional Replication 593
Snapshot Replication 594
Merge Replication 594
Oracle Replication 595

SQL Server Replication Models 595
Single Publisher/Multiple Subscribers 595
Multiple Publishers/Single Subscriber 596
Multiple Publishers/Multiple Subscribers 596

Replication Tools 596
Filtering 596
Replicating Partitioned Tables and Indexes 598
New Publication Wizard 598
New Subscription Wizard 601
Replication Monitor 602

Summary 605

Chapter 14: Introduction to the Common Language Runtime 607

Databases and Programming 607
Is Transact-SQL Going Away? 608
.NET and the CLR 609

xxiii



Leiter ftoc.tex V3 - 03/25/2009 1:31pm Page xxiv

Contents

Assemblies 609
Namespaces 609
Classes 609
Methods 610

SQL Server CLR Objects 610
Enabling SQL CLR 611
Creating a SQL CLR Assembly 611
Adding an Assembly 617
Compatible Data Types 618
User-Defined Functions 619
Stored Procedures 621
Triggers 622
User-Defined Types 623
Aggregates 627

Deployment with Visual Studio 629
Programming Support 632

Threading 633
Impersonation 633

Security Options 633
.NET Security 634
Securing SQL CLR 634
SQL Server CLR Permission Sets 634

Summary 637

Chapter 15: An Administrator’s Guide to Business Intelligence 639

Understanding BI 639
Performance Management 640
Business Intelligence Components 640

Data Goes In, Data Comes Out 640
Analyze This! 641
Did You Get the Memo about Cover Pages? 642

Beyond SQL 642
The BI Side of SharePoint 642
ProClarity and PerformancePoint Server 643

So Many Tools, So Little Time 644
Summary 644

Chapter 16: Introduction to SQL Server Integration Services 645

About SSIS 645
Integration Services 646
Integration Services Object Model 647

xxiv



Leiter ftoc.tex V3 - 03/25/2009 1:31pm Page xxv

Contents

Integration Services Run Time 648
Integration Services Data Flow 648

Importing and Exporting Data 649
Using the Import Wizard 649
Using the Export Wizard 656

Transforming Data with SSIS 658
Understanding the Development Environment 659
Package Elements 661
Creating a Simple Package 670

Summary 675

Chapter 17: Introduction to SQL Server Analysis Services 677

Understanding OLAP 677
OLAP Terminology 678

Working with SSAS 679
Creating the Project 679
Defining a Data Source 679
Creating the Data Source View 682
Defining Dimensions 684
Creating the Cube 684
Create Hierarchies 686
Deploying the Project 695

Managing SSAS 696
Browsing the Cube 697
SSAS Security 698

Advanced SSAS Concepts 702
MDX 703
Data Mining 704

Summary 705

Chapter 18: Introduction to SQL Server Reporting Services 707

SQL Server Reporting Services Overview 707
Components and Tools 708

Installation and Configuration 717
Hardware and Software Requirements 717
Security Considerations 718
Installation Mode 719
Multiple Instances and Versions 719

Creating Reports 720
Report Designer 720
Report Builder 721

xxv



Leiter ftoc.tex V3 - 03/25/2009 1:31pm Page xxvi

Contents

Report Delivery 729
Caching 729
Snapshots 729
Subscriptions 730

Summary 731

Chapter 19: Introduction to Service Broker 733

Service-Oriented Architecture 733
Service Broker Overview 734
Service Broker Elements 734

Conversations 734
Contracts 737
Queues 737
Services 737
Routes 737

Security Considerations for Service Broker 738
Dialog Security 738
Transport Security 739

Creating a Sample Application 739
Creating and Preparing the Database 740
Creating the Service Broker Objects 741
Creating Objects for the TicketInputService 744
Creating Objects for the TicketNotifyService 746
Testing the Application 749

Managing Service Broker with SSMS 753
Summary 753

Index 755

xxvi



Leiter f05.tex V3 - 03/25/2009 1:39pm Page xxvii

I n t roduc t ion

Microsoft officially announced SQL Server 2008, codenamed Katmai, at the first Microsoft Business Intel-
ligence (BI) conference in May 2007. I suppose I had the same reaction as many others — ‘‘Already?’’
SQL Server 2005 had only been released a year and a half earlier, and I started to wonder if it was too
soon. I can’t tell you why I thought that. I also knew that it wasn’t unusual for Microsoft’s product teams
to start planning for the next version of a product by the time the current version had been released. I
knew that the time between the SQL Server 2000 and the SQL Server 2005 releases was too long. And I
knew that Microsoft was committed to more frequent and consistent release cycles of two to three years
for new versions of SQL Server.

I expected SQL Server 2008 to be more of a product refresh than a full new release. Most of the public
material available hinted at that. It was designed to build on the framework laid out by SQL Server 2005,
which offered two benefits. First, organizations that had already migrated to SQL Server 2005 would
find the transition to SQL Server 2008 to be easier than moving from SQL Server 2000, or other database
products. Additionally, Microsoft had solidified itself as a player in the BI market space by bundling
Analysis Services, Integration Services, and Reporting Services as part of the SQL platform.

What I didn’t expect was that some of the changes made were not incidental, but fairly significant. As
you’ll read in this book, Notification Services is gone, and Reporting Services no longer uses Internet
Information Services to publish access to the Report Server. Having decided to withhold judgment for
the time being, I have to admit I was concerned about how existing implementations of both these tools
would be affected.

As information about Katmai became available, I tried to absorb as much as I could. I read articles online
and in print magazines that outlined new features to make management of the system, and data, much
easier. One of the more compelling features for me was FILESTREAM, which allowed files to be stored
in an NTFS file system while still being maintained through SQL. I immediately saw how this feature
could be leveraged for a product that had been developed by my co-workers for receiving, archiving,
and forwarding Electronic Fingerprint Transmission records. Looking beyond that, I could envision how
other Microsoft products, like SharePoint, might eventually leverage FILESTREAM for storing extremely
large files that, if stored as BLOB data, would cause the database size to quickly become unwieldy and
difficult to manage.

In 2007, Microsoft announced that it intended to release Windows Server 2008, SQL Server 2008, and
Visual Studio 2008 on February 27, 2008. They had been releasing CTPs on a fairly regular schedule every
couple of months or so. However, by the time CTP 6 had come around in February 2008, it was clear that
SQL Server 2008 (and Visual Studio 2008) would not be ready by the intended release date. Microsoft has
announced that they were targeting Q3 of 2008 for a release. Being somewhat of a cynic, I honestly didn’t
expect to see a release until November 2008. In fact, I thought it would have been appropriate to release
it on November 7, coinciding with the third anniversary of the release of SQL Server 2005.



Leiter f05.tex V3 - 03/25/2009 1:39pm Page xxviii

Introduction

CTP 6 was considered to be ‘‘feature complete,’’ which meant that changes from that point on were
likely to be cosmetic, or relatively insignificant. At this point, components such as Data Compression,
Policy-Based Management, and the Resource Governor had been through the ringer by beta testers and
application developers, and most were happy with what they saw.

SQL Server 2008 was officially released on August 6, 2008 (although MSDN and TechNet subscribers
had already been able to access it for a week). By this time, its features, tools, and components had gone
through rigorous internal certification processes as well as significant public beta testing through the
CTP availability. As I write this, it’s been just over five months since the release of SQL Server 2008. I,
and my associates, have had a chance to put SQL Server 2008 through its paces in both production and
test environments. While, admittedly, there have been some growing pains, I believe that SQL Server
2008 is a solid product. I have worked with a number of people who often state, ‘‘I won’t install Product
X until at least Service Pack 1!’’ Because SQL Server 2008 is built on a stable SQL Server 2005 platform
and improves upon it, I find it hard to justify a statement like that.

A common theme I reiterate with my clients, and also throughout this book, is that SQL Server is much
more than a relational database management system. While the heart of SQL Server is, and always will
be, the Database Engine, it’s the client features, the performance management tools, the data integrity
components, and the Business Intelligence solutions that make SQL Server an attractive solution to many
people — DBAs and business users alike.

If you’re reading this book, then chances are you’re responsible for managing a SQL Server 2008 system,
or you will be. Several years ago, when I worked for a training company in Seattle, I would find that
students would usually (although not always) fit into one of three categories. The most common was
IT administrators who have ‘‘inherited’’ a SQL Server. Typically, this would be a new server that was
required by a new application or service the business was implementing. These students would have a
good working knowledge of Windows system management, but were new to SQL. If you find that you
fit in this category, this book is for you.

Another type of student I frequently saw was the developer who was involved in a project that used a
SQL Server database for storing application data. These developers understood how the data needed to
be stored, but were responsible for configuring and managing the development and test environments.
Often, they would have limited (if any) knowledge of systems administration, but they knew what they
were trying to accomplish. If you’re one of these developers, this book is for you.

A third category of students I sometimes saw, although admittedly less frequently than the first two,
were experienced DBAs who were familiar with Oracle, or other database technology, who needed to
know how things worked in the Microsoft realm. Although there may be a difference in terminology or
implementation, for the most part, the core technology is pretty standard. If you have experience with
other database applications and are looking to get a better understanding of how Microsoft SQL Server
2008 can meet your needs, this book is for you.

Some of you may not fit into any of these categories, or you may fit into more than one. Whatever
your intent for reading this book is, the subject matter is the same. This book, as the title suggests, is
all about database administration. But what is database administration? Database administrators are
more and more often being called on to perform duties that are not strictly ‘‘administrative’’ in nature.
Along with typical administrative duties such as backups, database maintenance, and user management,
database administrators are increasingly being asked to perform tasks such as building complex data

xxviii



Leiter f05.tex V3 - 03/25/2009 1:39pm Page xxix

Introduction

transformations for data import, building distributed data solutions, and maintaining the security and
integrity of the database while enabling the integration of managed-code into the Database Engine.

In a nutshell, for many organizations, the database administrator has become the one-stop shop for all
things related to data storage. This makes the job of being a database administrator much more compli-
cated and difficult than in the past because of the scope and power of each subsequent release.

As a result of the database administrator’s increasingly broadening role in the enterprise, it is impossible
for one book to adequately cover every facet of this critical skill set. This book lays the foundation by
covering in detail the most common database administrative tasks. It will also introduce you to many
of the more advanced areas that enterprise database administrators need to be familiar with. Read these
pages carefully, and apply what you learn. From here, move on to more complex jobs and tasks. The
opportunities for talented and hard-working database administrators are virtually unlimited.

Who This Book Is For
I’ve already given you an outline of who might be reading the book. When Dan Wood and I originally
set out to write a book on SQL Server Administration, we knew our primary audience would be IT
professionals (both developers and administrators) who have found themselves responsible for the man-
agement and maintenance of a SQL Server database. You may have been responsible for another database
application, or even an earlier version of SQL, when you learned that SQL Server 2008 was now going to
be part of the business plan.

We wrote this book for you. You may be thinking, ‘‘I’m a senior DBA and this book’s title is Beginning
Microsoft SQL Server 2008 Administration. I am not a beginner.’’ I understand. However, we also wrote
this book for you. Although SQL Server 2008 is based on SQL Server 2005, there are some key differences
that are addressed in this book. SQL Server 2008 is also a dramatic departure from even earlier versions,
and, even if you are an expert on SQL Server 2000 or SQL Server 7, you will find a great deal of very
useful information in this book. Go ahead, flip through the pages, and check it out for yourself. I believe
you will find what you’re looking for.

A Note about This Second Edition
This book is technically a second edition of Beginning SQL Server 2005 Administration. If you’ve read
through our first book (and we thank you, by the way), you may already be familiar with some of the
concepts in this book. However, each chapter has been updated to accommodate new features and tools
that are in SQL Server 2008 that were not available in its predecessor.

Assumptions
Even though we made no assumptions about prior SQL Server experience in this book, we did make
a couple of other assumptions. This book assumes that you are familiar with relational database con-
cepts. It also assumes that you are comfortable with navigating a Windows Operating System (all of our
examples were built using Windows Server 2008). Probably the biggest assumption is that you are at
least marginally experienced with the Structured Query Language (SQL). The examples in this book are
all clearly defined, but there will be times when you will be required to alter the provided scripts to work

xxix



Leiter f05.tex V3 - 03/25/2009 1:39pm Page xxx

Introduction

in your environment. A basic knowledge of SQL will be invaluable in this case. Beginning T-SQL with
Microsoft SQL Server 2005 and 2008 (Wiley, 2008) is a great resource if you need some help in this area.

What This Book Covers
As much as we would like to have included everything that any database administrator might need
for any given circumstance, there just isn’t enough time or paper to cover it all. We have made every
attempt to cover the main areas of SQL Server 2008 Administration. Inside this book, you will find
detailed information about how to maintain and manage your SQL Server 2008 installation. Most of
the day-to-day tasks of the DBA are described within the pages of this book. Installation, configuration,
backups, restores, security, availability, performance monitoring, and the tools to manage these areas are
all covered. Our intent, our goal, and our sincere desire are to provide you with the information necessary
to be a competent and successful database administrator.

With this edition, we were also able to add additional material that was not covered in the first edition.
This includes new chapters on SQL Server Analysis Services and SQL Server Reporting Services, the two
key offerings in the Microsoft SQL Server BI stack. There is also a new chapter on optimizing SQL Server
2008 that beginners and experienced DBAs alike will find useful.

How This Book Is Structured
When putting this book together, we made a conscious effort to cover the material in a logical and sequen-
tial order:

❑ The first four chapters (Chapters 1–4) cover the overall structure of SQL Server 2008, as well as
the installation process.

❑ Once that foundation is laid, we moved on to the administration process of building and secur-
ing databases in the next two chapters (Chapters 5 and 6).

❑ This is followed by seven chapters (Chapters 7–13) on specific administrative tasks and
high-availability solutions.

❑ The last six chapters (Chapters 14–19) are dedicated to introducing you to the SQL Server 2008
services, and features including the Common Language Runtime (CLR), SQL Server’s Business
Intelligence offerings, and the Service Broker.

As mentioned, we tried to follow a logical order in the structure of this book, but like most technical
books, it is not absolutely essential to read it in any particular order. However, if you are fairly new to
SQL Server, you may want to read through Chapter 1 first to get an overall picture of the product before
diving in to the remaining chapters.

What You Need to Use This Book
To take full advantage of this book, you will need to have an edition of SQL Server 2008 installed
along with the AdventureWorks2008 sample database. To perform all the steps outlined in the follow-
ing chapters, the Developer Edition (with its full support of the Enterprise Edition feature set) is highly

xxx



Leiter f05.tex V3 - 03/25/2009 1:39pm Page xxxi

Introduction

recommended. In order to duplicate the examples in Chapter 14, ‘‘Introduction to the Common Language
Runtime,’’ as well as the example on using SOAP endpoints in Chapter 7, you will also need to have
either Visual Basic 2008 or Visual C# 2008 installed (Visual Studio 2008 Professional is recommended).

Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

Examples that you can download and try out for yourself generally appear in a box like this:

Try It Out
The ‘‘Try It Out’’ is an exercise you should work through, following the text in the book.

1. They usually consist of a set of steps.

2. Each step has a number.

3. Follow the steps through with your copy of the database.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

Styles in the text are presented as follows:

❑ We highlight new terms and important words when we introduce them.

❑ We show keyboard strokes like this: [Ctrl]+A.

❑ We show URLs and code within the text like so: persistence.properties.

❑ We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that’s particularly important in the
present context.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book’s title (either by using the Search
box or by using one of the title lists) and click on the ‘‘Download Code’’ link on the book’s detail page to
obtain all the source code for the book.

xxxi



Leiter f05.tex V3 - 03/25/2009 1:39pm Page xxxii

Introduction

Because many books have similar titles, you may find it easiest to search by ISBN; this book’s ISBN is
978-0-470-44091-9.

Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to see
the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher quality
information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box or one
of the title lists. Then, on the Book Search Results page, click on the Errata link. On this page, you can
view all errata that have been submitted for this book and posted by Wrox editors.

A complete book list including links to errata is also available at www.wrox.com/
misc-pages/booklist.shtml.

If you don’t spot ‘‘your’’ error on the Errata page, click on the ‘‘Errata Form’’ link and complete the form
to send us the error you have found. We’ll check the information and, if appropriate, post a message to
the book’s Errata page and fix the problem in subsequent editions of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a web-based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will find a number of different forums that will help you not only as you
read this book, but also as you develop your own applications. To join the forums, just follow these steps:

1. Go to p2p.wrox.com and click on the Register link.

2. Read the Terms of Use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

xxxii



Leiter f05.tex V3 - 03/25/2009 1:39pm Page xxxiii

Introduction

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click on the ‘‘Subscribe to this Forum’’ icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

xxxiii



Leiter f05.tex V3 - 03/25/2009 1:39pm Page xxxiv



Leiter c01.tex V3 - 03/25/2009 11:33am Page 1

1
Introducing SQL Server

2008

Before getting into the meat (or tofu, if you prefer) and potatoes of SQL Server 2008, it’s important
that you understand what exactly it is that you have on your plate. In this chapter, you will learn
about the history of SQL Server, the key components of SQL Server, and the different editions, or
flavors, of SQL Server. This chapter also covers architecture, database objects, database storage, and
server security from a very high level, with more detail to follow in subsequent chapters.

A Condensed History of SQL Server
Now that the world revolves around SQL Server (at least, it feels that way, doesn’t it?), it’s inter-
esting to trace Microsoft SQL Server 2008 back to its humble origins. While this is by no means a
comprehensive history of SQL, it does provide some insight into the evolution of the product, as
well as an idea of where it might be headed. And who knows? This bit of trivia may still show up
in Trivial Pursuit: Geek Edition for a yellow pie slice.

In the Beginning
Microsoft’s foray into the enterprise database space came in 1987 when it formed a partnership
with Sybase to market Sybase’s DataServer product on the Microsoft/IBM OS/2 platform. From
that partnership, SQL Server 1.0 emerged, which was essentially the UNIX version of Sybase’s
DataServer ported to OS/2.

The Evolution of a Database
After several years, the developers at Microsoft were allowed more and more access to the Sybase
source code for test and debugging purposes, but the core SQL Server application continued to be
a product of Sybase until SQL Server 4.2 was released for Windows NT in March 1992.

SQL Server 4.2 was the first true joint product developed by both Sybase and Microsoft. The
Database Engine was still Sybase, but the tools and database libraries were developed by



Leiter c01.tex V3 - 03/25/2009 11:33am Page 2

Chapter 1: Introducing SQL Server 2008

Microsoft. While SQL Server had been developed to run primarily on the OS/2 platform, the
release of Windows NT heralded in a new era. The developers at Microsoft essentially abandoned any
OS/2 development and focused on bringing a version of SQL Server to Windows NT.

Microsoft Goes It Alone
With the growing success of Sybase in the UNIX market and Microsoft in Windows, the two companies
found themselves competing for market share on a product essentially developed by Sybase. As a result,
in 1994, the two companies terminated their joint development agreement, and Sybase granted Microsoft
a limited license to use and modify Sybase technology exclusively for systems running on Windows.

A year later, in June 1995, Microsoft released the first version of SQL Server developed exclusively by
Microsoft developers — SQL Server 6.0 — but the core technology was still largely Sybase code-base.
Less than a year later, more changes were made, and Microsoft released SQL Server 6.5 in April 1996.

With SQL Server 6.5 complete, the developers on the SQL Server team were beginning work on a new
database system code-named Sphinx. The Sybase code-base was rewritten almost from scratch for Sphinx,
and only a handful of code remained to indicate SQL Server’s humble beginnings in OS/2.

In December 1998, Sphinx was officially released as SQL Server 7.0. The changes from SQL Server 6.5
were readily apparent from the first second a database administrator launched the new Enterprise Man-
ager. Finally, there was a robust and reliable database system that was easy to manage, easy to learn, and
still powerful enough for many businesses.

As SQL Server 7.0 was being released, the next version was already in development. It was code-named
Shiloh. Shiloh became SQL Server 2000 and was released in August 2000. The changes to the underly-
ing data engine were minimal, but many exciting changes that affected SQL Server’s scalability issues
were added (such as indexed views and federated database servers), along with improvements like cas-
cading referential integrity. Microsoft’s enterprise database server was finally a true contender in the
marketplace.

Over the next few years, the SQL team was working on an even more powerful and exciting release
code-named Yukon, which is now SQL Server 2005. After more than five years in development, a product
that some were calling ‘‘Yukon the giant (Oracle) killer’’ was finally released.

BI for the Masses
While calling SQL Server 2005 an ‘‘Oracle killer’’ might have been a bit optimistic, no one can deny the
broad appeal of SQL Server 2005 as a great leap forward for Microsoft. Since its release, it has been the
core technology behind a great number of Microsoft products, including SharePoint, PerformancePoint,
and the System Center family of products. Many third-party vendors have also leveraged SQL for ERP
systems and other software products.

Where SQL Server 2005 really stood apart from its competitors was in its Business Intelligence (BI) offer-
ings. These include tools for moving and transforming data (SQL Server Integration Services), analyzing
data (SQL Server Analysis Services), and reporting on data (SQL Server Reporting Services). These three
components, in addition to Notification Services and the Service Broker, were part of Microsoft’s com-
mitment to make SQL Server 2005 stand out as more than just a Database Engine. The inclusion of these
technologies made SQL Server 2005 extremely attractive to businesses that were just starting to discover
and utilize BI.

2



Leiter c01.tex V3 - 03/25/2009 11:33am Page 3

Chapter 1: Introducing SQL Server 2008

2008 . . . and Beyond!
In August 2008, Microsoft SQL Server 2008 was released to manufacturing (RTM). While SQL Server 2008
isn’t as much of a paradigm shift from SQL Server 2005 as its predecessor was from SQL Server 2000, it
contains many improvements and new features that make it a compelling upgrade (which we will cover
throughout this book). SQL Server 2000 reached its end-of-life mainstream support in April 2008, which
should also help drive the adoption of SQL Server 2008.

Microsoft has invested heavily in SQL Server as a core technology and key platform, and there doesn’t
appear to be any slowdown in the near future. Rumors continue to persist that Microsoft Exchange and
Active Directory, as well as a new file system, will leverage SQL Server 2008’s Database Engine.

What Is SQL Server 2008?
As you most likely know, SQL Server 2008 is primarily thought of as a Relational Database Management
System (RDBMS). It is certainly that, but it is also much more.

SQL Server 2008 can be more accurately described as an Enterprise Data Platform. It builds on many of the
features that had first been incorporated in SQL Server 2005, while also expanding its offerings to include
several improvements and additions. Primarily known for its traditional RDBMS role, SQL Server 2008
also provides rich reporting capabilities, powerful data analysis, and data mining. It also has features
that support asynchronous data applications, data-driven Event Notification, and more.

This book is primarily focused on the administration of the Database Engine. However, as mentioned,
SQL Server 2008 includes many more features than just the relational engine. In light of that, it is impor-
tant to start with some point of common reference. This section introduces the features of SQL Server
2008. It is not meant to be all-inclusive, but it will provide the context for the remainder of the book.

Database Engine
The Database Engine is the primary component of SQL Server 2008. It is the Online Transaction Process-
ing (OLTP) engine for SQL Server and has received further enhancements since SQL Server 2005. The
Database Engine is a high-performance component responsible for the efficient storage, retrieval, and
manipulation of relational and Extensible Markup Language (XML) formatted data.

SQL Server 2008’s Database Engine is highly optimized for transaction processing, but offers exceptional
performance in complex data retrieval operations. The Database Engine is also responsible for the con-
trolled access and modification of data through its security subsystem. The Relational Database Engine in
SQL Server 2008 has many improvements to support scalability, availability, security, and programma-
bility. The following list is by no means a comprehensive list, but just a short overview of what’s new in
SQL Server 2008:

❑ Hot Add CPU — If your hardware or software environment supports it, SQL Server 2008 will
allow you to dynamically add one or more CPUs to a running system. These CPUs can be physi-
cal, logical, or virtual.

❑ Option to Optimize for Ad Hoc Workloads — SQL Server 2008 includes a new feature that
allows administrators to configure the server to improve plan cache efficiency for ad hoc batches.
With this feature enabled, the Database Engine no longer needs to store fully compiled plans that
will not be reused. Instead, the plan cache stores a stub of the ad hoc workload.

3



Leiter c01.tex V3 - 03/25/2009 11:33am Page 4

Chapter 1: Introducing SQL Server 2008

❑ SQL Server Extended Events — SQL Server 2005 introduced the ability to associate SQL Profiler
traces with Windows Performance Log counters. This was extremely helpful in identifying
poorly performing queries or the lack of sufficient resources in the system to handle certain
events. SQL Server 2008 takes this a step further by introducing SQL Server Extended Events.
Extended events allow database administrators to get a better understanding of the system
behavior by correlating SQL Server data to the operating system or database applications. This
is handled by directing output from extended events to Event Tracing for Windows (ETW).

❑ Resource Governor — The Resource Governor is a new feature that allows administrators to
specify configuration options that limit the amount of CPU and memory available to incoming
requests. This can help prevent applications or queries from consuming 100 percent of the CPU
or all available memory. The Resource Governor uses configurable workload groups, which
define what the CPU and memory limits are for any session that is classified as being a mem-
ber of that group. Classification can be performed based on a number of system functions or
user-defined functions.

❑ Policy-Based Management — SQL Server 2008 includes features that allow administrators
greater control over their server environments by enforcing behaviors or constraints through a
policy-based mechanism. In addition to using the included policies, administrators can create
their own policies to configure servers to meet compliance requirements and standardize
naming conventions, thereby simplifying administration.

❑ Centralized Management — Central Management servers are SQL Servers that can be config-
ured to manage multiple servers as part of a group. You can also execute queries against a SQL
Server group that can return results to either a combined set or a separate pane per server. A
Central Management server can also be used to enforce management policies against multiple
target servers simultaneously.

❑ Query Editor IntelliSense — SQL Server Management Studio now provides IntelliSense func-
tionality in the Query Editor. The IntelliSense functionality provides auto-completion ability,
error underlining, quick info help, syntax pair matching, and parameter help.

❑ PowerShell Provider — SQL Server 2008 includes new features that integrate with Windows
PowerShell to help administrators automate many SQL Server 2008 tasks. PowerShell is an
administrative command-line shell and scripting language that can make it easier to perform
many common tasks through automation. The PowerShell provider in SQL Server 2008 exposes
SQL Server Management Objects (SMO) in a structure similar to file system paths. SQL Server
PowerShell also includes several SQL Server cmdlets for running scripts and other common
tasks.

❑ Compressed Indexes and Tables — Compression is now supported for tables, indexes, and
indexed views on either rows or pages. Compression operations will have an effect on perfor-
mance. Because of this, row and page compression can be configured on a per-partition basis.
For example, you could choose to compress a Read Only partition, but leave a Write-intensive
partition uncompressed to minimize impact on the CPU.

❑ FILESTREAM — FILESTREAM is a new storage mechanism for storing data on the file system,
rather than in the database itself. SQL Server 2008 applications can use FILESTREAM to take
advantage of the storage and performance benefits of the NTFS file system while maintaining
transactional consistency with the files themselves. Developers can leverage FILESTREAM as
a mechanism for allowing large files to be maintained by the application database, without
causing the database to become unnecessarily bloated. (Although this is just speculation on
my part, I would be surprised if future releases of SharePoint didn’t leverage FILESTREAM
storage.)

4



Leiter c01.tex V3 - 03/25/2009 11:33am Page 5

Chapter 1: Introducing SQL Server 2008

❑ Partition Switching — Simply put, Partition Switching enables you to move data between par-
titions for a table or index. Data can be transferred between partitions without disrupting the
integrity of the table or index.

❑ Spatial Data Types — Two new data types have been created for storing planar, or ‘‘flat-earth’’
data as well as ellipsoidal, or ‘‘round-earth’’ data. These data types are known as the geometry
data type and geography data type, respectively.

❑ MERGE Statement — Transact-SQL includes a new MERGE statement that, based on the results of a
join with a source table, can perform INSERT, UPDATE, or DELETE operations against a target table.
For example, you can use MERGE to incrementally update a destination table by comparing the
differences from a source table.

Integration Services
SQL Server Integration Services (SSIS) is Microsoft’s enterprise class data Extract, Transform, and Load
(ETL) tool. SSIS was originally introduced in SQL Server 2005 as a significant re-design of SQL Server
2000’s Data Transformation Services (DTS). SSIS offers a much richer feature set and the ability to create
much more powerful and flexible data transformations than its predecessor, and this has been fur-
ther expanded in SQL Server 2008. As another component in SQL Server’s BI stack, SSIS provides a
rich environment for moving and transforming data from a variety of source and destinations systems.
SSIS 2008 includes performance enhancements, new ADO.NET components, and a new script environ-
ment that integrates with Visual Studio Tools for Applications (VSTA). SSIS is covered in more detail in
Chapter 16.

For a very thorough discussion of this feature of SQL Server 2008, read the book by Brian Knight, Erik
Veerman, Grant Dickinson, Douglas Hinson, and Darren Herbold, Professional Microsoft SQL Server
2008 Integration Services (Wiley, 2008).

Analysis Services
Analysis Services delivers Online Analytical Processing (OLAP) and Data Mining functionality for Busi-
ness Intelligence applications. As its name suggests, Analysis Services provides a very robust environ-
ment for the detailed analysis of data. It does this through user-created, multidimensional data structures
that contain de-normalized and aggregated data from diverse data sources (such as relational databases,
spreadsheets, flat files, and other multidimensional sources). Unlike the OLTP engine, which is opti-
mized for Write performance, the OLAP engine is optimized for Read performance, allowing queries
and reports to return results from millions of rows of data in a short period of time, with minimal (if any)
impact to the OLTP engine.

The Data Mining component of Analysis Services allows the analysis of large quantities of data. This
data can be ‘‘mined’’ for hidden relationships and patterns that may be of interest to an organization’s
data analyst. In fact, a well-known story about data mining involves Wal-Mart, Pop-Tarts, and hurri-
canes. Data mining revealed that prior to a hurricane event, sales of Pop-Tarts, particularly strawberry
Pop-Tarts, would surge. In fact, they concluded that sales of strawberry Pop-Tarts before a hurricane
were seven times that of normal sales. This allowed Wal-Mart to plan their inventory accordingly and
meet customer demands. What’s interesting about this example is that it seems completely random. Data
mining does not attempt to answer the question of why Strawberry Pop-Tarts sell at a much higher rate,
and sometimes, it may not even matter. Data mining revealed an absolute and consistent pattern that
was used to plan inventory accordingly and paid off for the retailer.

5



Leiter c01.tex V3 - 03/25/2009 11:33am Page 6

Chapter 1: Introducing SQL Server 2008

A more detailed introduction to SSAS and Data Mining is in Chapter 17.

Reporting Services
Reporting Services is a Web Service–based solution for designing, deploying, and managing flexible,
dynamic web-based reports, as well as traditional paper reports. These reports can contain information
from virtually any data source. Although Reporting Services is implemented as a Web Service, it does
not depend on Internet Information Services (IIS). In fact, in SQL Server 2008, IIS is no longer used to
manage SQL Server Reporting Services. SQL Server Reporting Services (SSRS) can publish reports to a
Virtual Directory hosted by the SQL Server itself, or to a SharePoint library. More information about
SSRS can be found in Chapter 18.

For a detailed description of SQL Server 2008 Reporting Services and information about how to imple-
ment and extend SQL Server 2008 reports, check out an excellent book, Professional Microsoft SQL
Server 2008 Reporting Services (Wiley, 2008), by my friends and co-workers Paul Turley, Thiago
Silva, Bryan C. Smith, and Ken Withee.

Service Broker
Service Broker provides the framework and services to enable the creation of asynchronous, loosely
coupled applications. Service Broker implements a Service Oriented Architecture (SOA) in the data tier.
It provides more controlled transaction-based communications than traditionally available in other SOA
implementations such as Microsoft Message Queuing (MSMQ), without some of the limitations that
MSMQ has (e.g., message size). Service Broker allows developers to create database applications that
focus on a particular task and allows the asynchronous communication with other applications that
perform related (yet disconnected) tasks. For more information, see Chapter 19.

Data Tier Web Services
SQL Server 2008 provides support for creating and publishing data tier objects via HTTP without the
use of an Internet Information Services (IIS) server. SQL Server 2008 registers itself with the HTTP.sys
listener, allowing it to respond to Web Services requests. Developers can take advantage of this by cre-
ating applications that interact with a database across the Internet or through a firewall by using a Web
Service. For more information, see Chapter 7.

Replication Services
SQL Server 2008 Replication Services provides the ability to automate and schedule the copying and
distribution of data and database objects from one database or server to another, while ensuring
data integrity and consistency. Replication has been enhanced in SQL Server 2008 to include a new
Peer-to-Peer Topology Wizard, which allows replication nodes to be managed using a topology viewer.
The process of adding and removing nodes has also been made easier in this version of SQL Server.
More detail about replication can be found in Chapter 13.

Multiple Instances
As with previous versions, SQL Server 2008 provides the capability of installing multiple instances of
the database application on a single computer. SQL Server 2008 can also coexist with SQL Server 2000
and SQL Server 2005 instances installed on the same server. Depending on the edition of SQL Server

6



Leiter c01.tex V3 - 03/25/2009 11:33am Page 7

Chapter 1: Introducing SQL Server 2008

being installed, up to 50 instances can be installed. This feature allows for one high-performance server
to host multiple instances of the SQL Server services, each with its own configuration and databases.
Each instance can be managed and controlled separately with no dependency on each other.

Database Mail
In the past, SQL Server relied on a Messaging Application Programming Interface (MAPI) mail client
configured on the server to facilitate e-mail and pager notification for administrative and programmatic
purposes. What this essentially meant was that to fully utilize administrative notifications, the adminis-
trator needed to install Outlook (or some other MAPI-compliant client) on the server and then create a
mail profile for the service account to use.

Many organizations wanted to take advantage of the SQL Server Agent’s ability to send job and Event
Notification via e-mail but were unwilling to install unnecessary and potentially risky software on pro-
duction server assets. The Database Mail feature removes this requirement by supporting Simple Mail
Transfer Protocol (SMTP) for all mail traffic. In addition, multiple mail profiles can be created in the
database to support different database applications. Configuring Database Mail is covered in Chapter 8.

A Note about Notification Services
In our Beginning SQL Server 2005 Administration (Wiley, 2006) book, Notification Services was introduced.
If you are familiar with Notification Services and have used it with SQL Server 2000 or SQL Server 2005,
you might be dismayed (or overjoyed, depending on your experience) that SQL Server Notification
Services is no more. Most of the functionality of Notification Services has been absorbed into SQL Server
Reporting Services, eliminating the need for Notification Services in SQL Server 2008.

SQL Server 2008 Editions
SQL Server 2008 comes in several different flavors, and each has its specific place in the data management
infrastructure with the probable exception of the Enterprise Evaluation Edition, which is only useful for
short-term evaluation of the product (180 days). At the top of the list is the Enterprise Edition, which
supports absolutely everything that SQL Server 2008 has to offer. On the other end of the spectrum is
the Express Edition, which offers very limited (but still exciting) features. Each edition, with the excep-
tion of the Compact Edition, has an x64 and x86 version. The Enterprise Edition (and consequently, the
Developer Edition) also supports IA64 environments.

The available editions are:

❑ Enterprise Edition

❑ Standard Edition

❑ Workgroup Edition

❑ Web Edition

❑ Express Edition

❑ Express Advanced Edition

❑ Developer Edition

❑ Compact Edition

7



Leiter c01.tex V3 - 03/25/2009 11:33am Page 8

Chapter 1: Introducing SQL Server 2008

The following table contrasts the major differences between the four main editions of SQL Server 2008.
The Developer Edition includes the same feature set as the Enterprise Edition but is not licensed for
production use.

Feature Enterprise Edition Standard
Edition

Workgroup
Edition

Web
Edition

Failover Clustering Yes (limited by OS) 2-node No No

Multi-Instance Support 50 16 16 16

Database Mirroring Yes Limited Witness Server
Role only

Witness
Server
Role only

Enhanced Availability
Features

Yes No No No

Table and Index Physical
Partitioning

Yes No No No

Policy-Based Management Yes Yes Yes Yes

T-SQL and MDX
IntelliSense

Yes Yes Yes No

Spatial and Location
Services

Yes Yes Yes Yes

Service Broker Yes Yes Yes Client only

Analysis Services Yes Limited No No

Data Mining Yes Limited No No

Reporting Services Yes Limited Limited Limited

Integration Services Yes Limited Very limited Very
limited

Replication Services Yes Limited Limited features
available to
Subscriber only

Limited
features
available to
Subscriber
only

For a complete list of supported features, consult SQL Server 2008 Books Online under the topic ‘‘Fea-
tures Supported by the Editions of SQL Server 2008.’’

SQL Server Compact 3.5 SP1
There have been several iterations of the SQL Server Compact Edition, beginning with SQL Server CE,
first offered in SQL Server 2000. When SQL Server 2005 was released, it was rebranded as SQL Server
2005 Mobile Edition, specifically targeting Smartphones and PDAs. The new Compact Edition enables
the installation of a small SQL Server database on a mobile device or Windows platform to support a

8



Leiter c01.tex V3 - 03/25/2009 11:33am Page 9

Chapter 1: Introducing SQL Server 2008

Windows Embedded CE or Windows Mobile application, as well as supporting desktop applications
that require a much smaller feature set than offered in the Express Edition.

This ability creates a world of opportunity for collecting data in a remote scenario and synchronizing
that data with a land-based database. For example, consider an overnight delivery service that must
maintain a record of a delivery truck’s inventory, including packages delivered and picked up. The
truck inventory could be uploaded via replication to a mobile device, where a mobile application keeps
track of the deliveries and new packages picked up at delivery locations. Once the truck comes back to
the delivery center, the mobile device could be synchronized with the central database via replication
or data upload.

SQL Server 2008 Express Edition
Back in the old days, when I had to manage database systems (in the snow, uphill both ways), the
Microsoft Desktop Edition (MSDE) of SQL Server was the primary client-side Database Engine. It was
extremely limited and included almost no management tools (except for the command-line osql utility)
but had a compelling price — free. This has since been replaced with the SQL Server 2008 Express Edi-
tion. It’s still not as robust as the Standard or Enterprise Editions, but for its very low price (you can’t
beat free), it still contains a great deal of functionality.

What makes this edition compelling is that it is perfect for many organizations that are starting or running
small businesses. They have a genuine need for a centralized managed database but aren’t ready to
pay for a more scalable and robust solution. At the risk of offending my friends in the Open Source
community, many small businesses that are not in the tech industry often don’t have the benefit of having
tech-savvy personnel on staff. Viable Open Source solutions like MySQL running on Linux or Windows
is simply not appropriate when a Database Engine with an intuitive and free graphical management
tool exists.

One of the most exciting improvements to Microsoft’s free version of its database system is that it comes
with a graphical management environment, SQL Server Management Studio Basic. It also supports
databases up to 4 GB in size and contains much of the same functionality as the other editions. There
is even an ‘‘advanced’’ edition of SQL Server 2008 Express that includes full-text search and Reporting
Services (still free!).

SQL Express can be installed on any Microsoft desktop or server operating system from Windows 2000
and beyond, so a very small company can still leverage the database technology without making a large
investment. Once the company starts to grow, it will inevitably need to make the move to one of the more
robust editions, but the upgrade process from SQL Express to its bigger siblings is a piece of cake because
the data structures are nearly identical. Even larger organizations can take advantage of the SQL Server
Express Edition by using it for smaller, departmental or business unit installations.

SQL Server 2008 Web Edition
SQL Server 2008 Web Edition is the newest entry in the SQL Server product family. The Web Edition is
designed around support for Web-facing environments and applications. With support for up to four
processors and no limits on memory or database size, the Web Edition positions itself as a cost-efficient
means for hosting services that rely on SQL Server databases. The Web Edition is targeted toward service
providers, or Select Licensing customers that need to host public data.

9



Leiter c01.tex V3 - 03/25/2009 11:33am Page 10

Chapter 1: Introducing SQL Server 2008

The Web Edition has some very specific licensing guidelines and requirements. For example, it is licensed
for public-facing web applications, sites, and services. It is not licensed for internal line-of-business
applications. Because it is designed around public consumption, Client Access Licenses (CALs) are not
applicable to the Web Edition.

The Web Edition is only available to Select Licensing and Service Provider License Agreement Cus-
tomers. Contact your reseller or licensing representative to find out if the Web Edition is appropriate for
your scenario.

SQL Server 2008 Workgroup Edition
The Workgroup Edition contains all the functionality of the SQL Server 2008 Express Edition and then
some. This edition is targeted to those small companies that have either outgrown the Express Edition
or needed a more flexible solution to begin with and yet do not need all the features of the Standard or
Enterprise Editions.

The Workgroup Edition is very flexible and contains many of the features of the more expensive editions.
What the Workgroup Edition doesn’t provide is support for more advanced Business Intelligence appli-
cations, because SQL Server Integration Services and Analysis Services are not included in this edition.
The Workgroup Edition also has a reduced feature set in regard to Reporting Services, but the Reporting
Services features supported should satisfy most small organizations.

Like the Express Edition, the Workgroup Edition can be installed on both desktop and server operating
systems, with the exception of Windows XP Home (which is not supported).

SQL Server 2008 Standard Edition
Most of the capabilities of SQL Server 2008 are supported in the Standard Edition, which makes it the
ideal data platform for many organizations. What the Standard Edition does not provide are many of
the features designed for the support of large enterprise databases. These features include many of the
high-availability and scalability enhancements, such as Partitioned Tables and Parallel index opera-
tions. It also lacks some of the more advanced features of the Analysis Services and Integration Services
engines.

SQL Server 2008 Enterprise Edition
The Enterprise Edition is the bee’s knees. Nothing is held back. Parallel operations, physical table parti-
tioning, complete business intelligence, and data-mining support — you name it, the Enterprise Edition
has it.

If you require an easy-to-implement-and-maintain platform that will allow you to dynamically add
memory and CPUs, Transparent Data Encryption, and parallel index operations, this release is for you.
It is also an appropriate solution if you require only advanced business analytics, and not necessarily the
millions of transactions per second that this edition offers.

The Enterprise Edition is about performance and scalability. Although the feature set in the Enterprise
Edition may be more than the average company needs, the differences in performance between the
Standard and Enterprise editions can have a significant impact on whether their SQL Server is scalable

10



Leiter c01.tex V3 - 03/25/2009 11:33am Page 11

Chapter 1: Introducing SQL Server 2008

enough to accommodate quick growth within the organization. The Enterprise Edition fully optimizes
Read-ahead execution and table scans, which results in a noticeable performance improvement.

The difference in cost between the Standard Edition and the Enterprise Edition can be significant; espe-
cially to smaller organizations where budget constraints can limit their purchasing power. However,
be aware that some software may depend on certain features of the Enterprise Edition. A good example
of this is the Microsoft Office PerformancePoint Server 2007 Planning Server, which relies heavily on
proactive caching for Analysis Services cubes. This feature is only available in the Enterprise Edition of
SQL Server.

SQL Server 2008 Architecture
It is the job of SQL Server to efficiently store and manage related data in a transaction-intensive envi-
ronment. The actual theories and principles of a relational database are beyond the scope of this book,
and, hopefully, you already have some of that knowledge. What is pertinent to this book is the way SQL
Server manages the data and how it communicates with clients to expose the data. The following discus-
sion describes the communication architecture utilized by SQL Server 2008, the services SQL Server 2008
offers, and the types of databases used by SQL Server. This section also introduces at a high level how
those databases are stored and accessed, but you can find a detailed description of the SQL Server 2008
storage architecture in Chapter 4.

SQL Server 2008 Communication
To adequately plan for a SQL Server database application, it is important to understand how SQL Server
2008 communicates with clients. As mentioned previously, SQL Server 2008 is more than just a relational
database server. Because the SQL Server 2008 platform offers several different data services, it also must
provide different ways of accessing that data.

SQL Server 2008 ships with the ability to communicate over different protocols. By default, SQL Server
will accept network connections via TCP/IP. The local Shared Memory protocol is also enabled by
default to allow local connections without having to incur the overhead of a network protocol. A
more complete description of the protocols that can be leveraged by SQL Server 2008 is provided in
Chapter 7.

In addition to the TCP/IP, Named Pipes, and Shared Memory protocols, the Virtual Interface Adapter
(VIA) protocol is available for VIA Storage Area Network (SAN) implementations.

With the exception of HTTP endpoints, SQL Server uses a communication format called Tabular Data
Stream (TDS). The TDS packets utilized by SQL Server are encapsulated in the appropriate protocol
packets for network communication.

The task of wrapping the TDS packets is the responsibility of the SQL Server Network Interface (SNI)
protocol layer. The SNI replaces the Server Net-Libraries and the Microsoft Data Access Components
(MDAC) that were used in SQL Server 2000. SQL Server creates separate TDS endpoints for each network
protocol.

Although TDS is the primary method for connecting to and manipulating data on a SQL Server, it is not
the only method available. In addition to TDS communication, SQL Server 2008 supports native Data

11



Leiter c01.tex V3 - 03/25/2009 11:33am Page 12

Chapter 1: Introducing SQL Server 2008

Tier Web services (see Chapter 7). By utilizing SQL Server Web services, connections can be made to SQL
Server via any client application that supports HTTP and Simple Object Access Protocol (SOAP).

Supported Languages
SQL Server 2008 supports the following five different languages to enable data manipulation, data
retrieval, administrative functions, and database configuration operations:

❑ Transact-Structured Query Language (T-SQL) — This is Microsoft’s procedural language exten-
sion to the Structured Query Language (SQL) standard established by the American National
Standards Institute (ANSI). T-SQL is entry-level compliant with the ANSI-99 standard. T-SQL
is the primary and most common method for manipulating data. For more information about
T-SQL, consult Beginning T-SQL with Microsoft SQL Server 2005 and 2008 by Paul Turley and Dan
Wood (Wiley, 2008).

❑ Extensible Markup Language (XML) — This is fully supported in SQL Server 2008 as a data
type, as well as language extensions to XML that enable the retrieval and modification of data by
using XQuery syntax or native XML methods.

❑ Multidimensional Expressions (MDX) — This language is used to query against multidimen-
sional objects in SQL Server 2008 Analysis Services.

❑ Data Mining Extensions (DMX) — This is an extension of Transact-SQL that enables the cre-
ation of queries against a data-mining model implemented in SQL Server 2008 Analysis Services.

❑ Extensible Markup Language for Analysis (XMLA) — This can be used to both discover meta-
data from an instance of SQL Server 2008 Analysis Services and to execute commands against an
instance of SSAS. XMLA commands are generally limited to the creation or modification of SSAS
objects. Actual retrieval of SSAS data is done with MDX queries.

SQL Server Programming Object Models
Most of the administrative activity that must be done on SQL Server 2008 can be done using the provided
tools, but sometimes it may be necessary to build custom administrative tools, or to be able to program-
matically build and manipulate database objects. Three new object models have been created to support
this need:

❑ SQL Management Objects (SMOs) — SMOs enable developers to create custom applications
to manage and configure SQL Server 2008, SQL Server 2005, SQL Server 2000, or SQL Server 7.0
Database Engines. It is an extensive library that provides full support for virtually all aspects of
the relational store. The SMO library makes it possible to automate administrative tasks that an
administrator must perform through custom applications, or with command-line scripts using
the SMO scripter class.

❑ Replication Management Objects (RMOs) — RMOs can be used along with SMOs to imple-
ment and automate all replication activity, or to build custom replication applications.

❑ Analysis Management Objects (AMOs) — AMOs, like SMOs and RMOs, represent a complete
library of programming objects. AMOs enable the creation of custom applications or automation
of Analysis Server management.

❑ SQL Distributed Management Objects (DMOs) — SQL-DMO is a legacy set of management
objects that have been held over from SQL Server 2000. Although they are available in SQL
Server 2005 and SQL Server 2008, they have been deprecated in favor of SQL-SMO. Applications
that still use SQL-DMO should be upgraded to support SQL-SMO for SQL Server 2008.

12



Leiter c01.tex V3 - 03/25/2009 11:33am Page 13

Chapter 1: Introducing SQL Server 2008

SQL Server 2008 Services
SQL Server runs as a service. In fact, it runs as several services if all the different features of the product
are installed. It is important to know what service is responsible for what part of the application so that
each service can be configured correctly, and so that unneeded services can be disabled to reduce the
overhead on the server and reduce the surface area of SQL Server. These services are identified by their
executable names.

MSSQLServer (SQL Server)
The MSSQLServer service is the Database Engine. To connect and transact against a SQL Server 2008
database, the MSSQLServer service must be running. Most of the functionality and storage features of
the Database Engine are controlled by this service.

The MSSQLServer service can be configured to run as the local system or as a domain user. If installed
on Windows Server 2003 or Windows Server 2008, it can also be configured to run under the Network
System account.

SQLServerAgent (SQL Server Agent)
The SQLServerAgent service is responsible for the execution of scheduled jobs such as backups,
import/export jobs, and Integration Services packages. If any scheduled tasks require network or file
system access, the SQLServerAgent service’s credentials are typically used.

The SQLServerAgent service is dependent on the MSSQLServer service. During installation, the option
is given to configure both services with the same credentials. Although this is by no means required,
it is common practice. A frequent problem encountered by database administrators is when a job that
executes perfectly during a manual invocation fails when run by the agent. Often, the reason for the
failure is because the account that is used when testing the job manually is the logged-in administrator,
but when the job is executed by the agent, the account the agent is running under does not have adequate
permissions.

MSSQLServerADHelper100 (SQL Server Active Directory Helper)
Microsoft SQL Server 2008 has the ability to publish itself and its features in Active Directory. This can
make it easier for Active Directory–aware services and applications to find the necessary SQL compo-
nents that they need. Typically, the MSSQLServer service and the SQLServerAgent service are configured
to run with a domain account that has local administrative rights on the server that SQL Server is installed
on. Although this configuration offers a great deal of flexibility to what the two services can do locally, it
doesn’t give them any permission to publish objects in Active Directory.

In order for the MSSQLServer service to register its respective instance of SQL Server, it must be either
running as the local system account (which significantly reduces the flexibility of the service) or be a
member of the domain admin group (which grants it way too much access, violating the principle of
least privilege).

To enable SQL Server to register itself in the domain, but not limit its functionality, the MSSQLServer-
ADHelper service was created. The MSSQLServerADHelper service runs under the local system
account of the domain computer that SQL Server is installed on and is automatically granted the
right to add and remove objects from Active Directory. The MSSQLServerADHelper service only runs
when needed to access Active Directory and is started by the MSSQLServer service when required.

13



Leiter c01.tex V3 - 03/25/2009 11:33am Page 14

Chapter 1: Introducing SQL Server 2008

Regardless of the number of installed instances, there is only one MSSQLServerADHelper service per
computer.

The version information ‘‘100’’ is used to denote that this service is associated with SQL Server 2008, or
SQL Server 10.0.

MSSQLServerOLAPService (SQL Server Analysis Services)
MSSQLServerOLAPService is the service that Analysis Services runs under. Analysis Services provides
the services and functionality to support all of SQL Server 2008’s OLAP needs, as well as the Data Mining
engine included with SQL Server 2008.

SQLBrowser (SQL Server Browser)
The SQLBrowser Service is used by SQL Server for named instance name resolution and server name
enumeration over TCP/IP and VIA networks.

The default instance of SQL Server is assigned the TCP Port 1433 by default to support client communica-
tion. However, because more than one application cannot share a port assignment, any named instances
are given a random port number when the service is started. This random port assignment makes it diffi-
cult for clients to connect to it, because the client applications don’t know what port the server is listening
on. To meet this need, the SQLBrowser Service was created.

On start-up, the SQLBrowser Service queries the registry to discover all the names and port numbers of
installed servers and reserves UDP Port 1434. It then listens on UDP Port 1434 for SQL Server Resolution
Protocol (SSRP) requests and responds to the requests with the list of instances and their respective port
assignments so that clients can connect without knowing the port number assignment. There are definite
security considerations to this arrangement, so it is very important that no unauthenticated traffic on UDP
Port 1434 be allowed on the network, because the service will respond to any request on that port. This
creates the potential of exposing more information about the server instances than some organizations
find acceptable.

If the SQLBrowser Service is disabled, it will be necessary to specify a static port number for all named
instances of the SQL Server Service and to configure all client applications that connect to those instances
with the appropriate connection information. For a full list of what features are affected by disabling the
SQLBrowser, consult SQL Server 2008 Books Online.

MSSQLFDLauncher (SQL Full-Text Filter Daemon Launcher)
The Microsoft Full-Text Daemon Launcher for SQL Server (MSSQLFDLauncher) is used to support
full-text indexing and full-text queries against text data stored in the database. The text data can be of
several different data types including char, nchar, varchar, nvarchar, text, and ntext. In addition,
full-text indexes can be created on binary formatted text such as Microsoft Word documents.

The chief advantage of the MSSQLFDLauncher service and associated engine is that it allows much more
flexible and powerful searches against text data than the Transact-SQL LIKE command, which is limited
to exact match searches. The MSSQLFDLauncher engine can perform exact match, proximity, linguistic,
and inflectional searches. It will also exponentially outperform comparative Transact-SQL LIKE searches
against large (millions of rows) tables. For a more complete discussion on both the Transact-SQL LIKE
command and Full-Text search, see Beginning T-SQL with Microsoft SQL Server 2005 and 2008.

14



Leiter c01.tex V3 - 03/25/2009 11:33am Page 15

Chapter 1: Introducing SQL Server 2008

MSDTSServer100 (SQL Server Integration Services)
The MSDTSServer service provides management and storage support for SSIS. Although this service is
not required to create, store, and execute SSIS packages, it does allow for the monitoring of SSIS package
execution and displaying of a hierarchical view of SSIS packages and folders that are stored in different
physical locations.

ReportingServicesServer (SQL Server Reporting Services)
The ReportingServicesServer service is the process in which Reporting Services runs. The service is acces-
sible as a Web Service and provides for report rendering, creation, management, and deploying. For more
information on Reporting Services, see Professional Microsoft SQL Server 2008 Reporting Services.

SQLWriter (SQL Server VSS Writer)
The SQLWriter service allows for the volume backup of SQL Server data and log files while the SQL
Server service is still running. It does this through the Volume Shadow Copy Service (VSS). SQL Server
database backups are typically performed through SQL Server’s backup program or through third-party
applications that communicate with SQL Server’s backup program.

Normal file system backups of volumes containing SQL Server log or data files will typically fail to
properly back up those files, because as long as SQL Server is running, the files are open. The SQLWriter
service overcomes this limitation by allowing you to perform the backups of a snapshot copy of the files
with the VSS service. It is still recommended, however, to perform regular backups through SQL Server’s
backup program.

MSDTC (Distributed Transaction Coordinator)
The MSDTC service is used to manage transactions that span more than one instance of SQL Server or
an instance of SQL Server and another transaction-based system. It uses a protocol known as two-phased
commit (2 PC) to ensure that all transactions that span systems are committed on all participating systems.

SQL Server 2008 Database Objects
SQL Server 2008 database objects exist within a defined scope and hierarchy. This hierarchy enables more
control over security permissions and organization of objects by similar function. SQL Server 2008 objects
are defined at the server, database, and schema levels.

Server
The server scope encompasses all the objects that exist on the instance of SQL Server, regardless of their
respective database or namespace. The database object resides within the server scope.

One of the more confusing terms when working with SQL Server 2008 is server. When you hear the term
server, you often think of that piece of hardware taking up space on a server rack in the server room. And
let’s not even get started on how virtualization mucks up the term. Where the confusion arises is that you
can install multiple instances of SQL Server on a single server (huh?).

What would probably be clearer is to say that the capability exists to install multiple instances of the
SQL Server 2008 Data Platform application on a single computer running a Windows operating system.
Although this might be more descriptive, it doesn’t make for very interesting marketing material.

15



Leiter c01.tex V3 - 03/25/2009 11:33am Page 16

Chapter 1: Introducing SQL Server 2008

What is left is the fact that, when it comes to SQL Server 2008 and you read ‘‘server,’’ it is important to
check the context to make sure that it means an instance of SQL Server 2008 or the physical computer
that SQL Server is installed on.

When it comes to the server scope and SQL Server 2008 database objects, the term server actually refers
to the SQL Server 2008 instance. The default instance is actually SERVERNAME\MSSQLService. How-
ever, since it is the default instance, appending MSSQLService to the server name is unnecessary. For
example, we are using a server called AUGHTEIGHT that runs the Windows Server 2008 Operating
System while writing this book. The default instance of SQL Server is known simply as AUGHTEIGHT.
If you were to install a second instance, named SECONDINSTANCE, the SQL Server name would be
AUGHTEIGHT\SECONDINSTANCE. From a SQL Server point of view, each instance is considered a
separate ‘‘server.’’

Database
The database scope defines all the objects within a database catalog. Schemas exist in the database scope.

The ANSI synonym for database is catalog. When connecting to an instance of SQL Server 2008, it is gener-
ally desired to specify an Initial Catalog, or Initial Database. An instance of SQL Server 2008 can contain
many databases. It used to be common for a typical database application to be constrained within one
database that contained all the data objects required to provide the functionality for the application.
However, now it is not uncommon to see more and more applications requiring multiple databases to
manage different components of the application (this tends to increase the scalability of said application).
An example of this is SharePoint, which creates databases for managing the SharePoint environment
itself, as well as content databases for the various sites and site collections.

Schema
Each database can contain one or more schemas. A schema is a namespace for database objects. All data
objects in a SQL Server 2008 database reside in a specific schema.

SQL Server 2008 implements the ANSI schema object. A database schema is a defined namespace in which
database objects exist. It is also a fully configurable security scope. In previous releases of SQL Server,
the namespace was defined by the owner of an object, and it wasn’t uncommon to see everything in the
database in the dbo schema. In SQL Server 2008, the ownership of an object is separated from an object’s
namespace. An individual user may be granted ownership of a schema, but the underlying objects belong
to the schema itself. This adds greater flexibility and control to the management and securing of database
objects. Permissions can be granted to a schema, and those permissions will be inherited by all the objects
defined in the schema.

Object Names
Every object in a SQL Server 2008 database is identified by a four-part, fully qualified name. This fully
qualified name takes the form of server.database.schema.object. However, when referring to objects,
the fully qualified name can be abbreviated. By omitting the server name, SQL Server will assume the
instance the connection is currently connected to. Likewise, omitting the database name will cause SQL
Server to assume the existing connection’s database context.

16



Leiter c01.tex V3 - 03/25/2009 11:33am Page 17

Chapter 1: Introducing SQL Server 2008

Omitting the schema name will cause SQL Server to assume the namespace of the logged-in user. This
is where some confusion can be created. Unless explicitly assigned, new users are assigned the default
schema of dbo. (See Chapter 6 for user and login management information.) As a result, all references to
database objects not explicitly qualified will be resolved to the dbo schema.

For example, the user Fred logs in to the server AUGHTEIGHT, and his database context is set to
AdventureWorks2008. Because Fred was not assigned a user-defined schema, he exists in the default
dbo schema. Fred wants to retrieve the contents of the Person table, so he executes the following query:

SELECT * FROM Person;

Fred’s query will resolve to AUGHTEIGHT.AdventureWorks2008.dbo.Person. Unfortunately, that table
does not exist. The fully qualified name for the contact table is AUGHTEIGHT.AdventureWorks2008
.Person.Person. In order for Fred’s query to work, one of two things will have to happen. The query
will have to be rewritten to reference the appropriate schema scope, as in the following example:

SELECT * FROM Person.Person;

Or, Fred’s default schema can be changed to the Person schema so that his query will be properly
resolved with the following command:

USE AdventureWorks2008;
GO
ALTER USER Fred WITH DEFAULT_SCHEMA=Person;
GO

Now, take a look at a different scenario. The user Fred is created and assigned the default schema of
Production. Fred wants to retrieve the contents of a table called dbo.DatabaseLog so he executes the
following:

SELECT * FROM DatabaseLog;

SQL Server first resolves this query as AUGHTEIGHT.AdventureWorks2008.Person.DatabaseLog
because Fred’s default schema is Person and he did not explicitly tell SQL Server what schema
to work with. Because the DatabaseLog table does not exist in the Person schema, the initial
resolution fails, but SQL Server then falls back to the dbo schema and resolves the name as
AUGHTEIGHT.AdventureWorks2008.dbo.DatabaseLog. The resolution succeeds, and Fred is able to
retrieve the data he wanted.

SQL Server will always search the assigned schema first, then the dbo schema if the initial resolution fails.
Care must be taken when creating objects so that the proper namespace is referenced. It is completely
possible to create a table with the same name in two different schemas (e.g., a dbo.HourlyWage and a
HumanResources.HourlyWage). When this happens and an application is created to expose the contents
of the HourlyWage table, the possibilities for inconsistencies and confusion are endless. If the schema
is not referenced in the application’s query, some users will invariably get their results from the table
in the dbo schema, whereas others will end up getting results from the HumanResources version of the
table. As a best practice, all objects should be referenced by (at least) a two-part name to avoid this
confusion.

17



Leiter c01.tex V3 - 03/25/2009 11:33am Page 18

Chapter 1: Introducing SQL Server 2008

SQL Server 2008 Databases
There are two types of databases in SQL Server: system databases and user databases. The system databases
are used to store system-wide data and metadata. User databases are created by users (sometimes dur-
ing the process of installing an application) who have the appropriate level of permissions to store
application data.

System Databases
The system databases are comprised of master, model, msdb, and tempdb databases, as well as the hidden
resource database. If the server is configured to be a replication distributor, there will also be at least one
system distribution database that is named during the replication configuration process.

The masterDatabase
The master database is used to record all server-level objects in SQL Server 2008. This includes Server
Logon accounts, Linked Server definitions, and EndPoints. The master database also records information
about all the other databases on the server (such as their file locations and names). SQL Server 2008 does
not store system information in the master database but, rather, in the Resource database. However,
system information is logically presented as the SYS schema in the master database.

The modelDatabase
The model database is a template database. Whenever a new database is created (including the system
database tempdb), a copy of the model database is created and renamed with the name of the database
being created. The advantage of this behavior is that objects can be placed in the model database prior
to the creation of any new database, and, when the database is created, the objects will appear in the
new database. For example, Transact-SQL does not contain a Trim function to truncate both leading
and trailing spaces from a string of characters. Transact-SQL offers an RTRIM function that truncates
trailing spaces and an LTRIM function that removes leading spaces. The code to successfully implement
a traditional trim operation thus becomes the following:

LTRIM(RTRIM(’character string’))

To make it easier to perform this task with the least amount of effort, a custom TRIM function can be
added to the model database with the following code:

USE Model
GO
CREATE FUNCTION dbo.Trim (@String varchar(MAX))
RETURNS varchar(MAX)
AS
BEGIN

SELECT @String = LTRIM(RTRIM(@String))
RETURN @String

END

After creating this function in the model database, it will be propagated to all databases created and can
be used with the following simplified code:

dbo.TRIM(’character string’)

18



Leiter c01.tex V3 - 03/25/2009 11:33am Page 19

Chapter 1: Introducing SQL Server 2008

Sure, it’s only a small savings, but the open and close parenthesis characters are often the source of
annoying syntax errors. By reducing the nested functions, the overall complexity of the function call is
also reduced.

Almost any database object can be added to the model database so that it will be available in subse-
quently created databases. This includes database users, roles, tables, stored procedures, functions, and
assemblies.

The msdbDatabase
The msdb database can be considered the SQL Server Agent’s database. That’s because the SQL Server
Agent uses the msdb database extensively for the storage of automated job definitions, job schedules,
operator definitions, and alert definitions. The SQL Server Agent is described in greater detail in
Chapter 8, but for now, just know that the Agent is responsible for almost all automated and scheduled
operations.

The SQL Server Agent is not the only service that makes extensive use of the msdb database. Service
Broker, Database Mail, and Reporting Services also use the msdb database for the storage of scheduling
information. In addition to automation and scheduling information, SQL Server Integration Services
(SSIS) can also use the msdb database for the storage of SSIS packages.

The tempdbDatabase
The tempdb database is used by SQL Server to store data — yes, you guessed it, temporarily. The tempdb
database is used extensively during SQL Server operations, so careful planning and evaluation of its size
and placement are critical to ensure efficient SQL Server database operations.

One of the primary functions of this database is to store temporary objects (such as temporary tables,
views, cursors, and table-valued variables) that are explicitly created by database programmers. In addi-
tion, the tempdb database stores work tables containing intermediate results of a query prior to a sort
operation or other data manipulation. For example, if you wrote a query that returned 100,000 rows and
you wanted the results sorted by a date value in the results, SQL Server could send the unsorted results to
a temporary work table, where it would perform the sorting operation and then return the sorted results
to you. It is also used extensively to support connection options such as SNAPSHOT ISOLATION or Multiple
Active Result Sets (MARS). If online index operations are performed, the tempdb database will hold the
index during the build or rebuild process.

Another important aspect to keep in mind about the tempdb database is that all database users have
access to it and have the ability to create and populate temporary objects. This access can potentially
create locking and size limitation issues on SQL Server, so it is important to monitor the tempdb database
just like any other database on SQL Server.

The resourceDatabase
The last system database is the resource database. The resource database is a Read Only database that
contains all system objects used by an instance of SQL Server. The resource database is not accessible
during normal database operations. It is logically presented as the SYS schema in every database. It
contains no user data or metadata. Instead, it contains the structure and description of all system objects.
This design enables the fast application of service packs by replacing the existing resource database with
a new one. As an added bonus, to roll back a service pack installation, all you have to do is replace the
new resource database with the old one. This very elegant design replaces the older method of running
many scripts that progressively dropped and added system objects.

19



Leiter c01.tex V3 - 03/25/2009 11:33am Page 20

Chapter 1: Introducing SQL Server 2008

User Databases
User databases are simply that — databases created by users. They are created to store data used by
data applications and are the primary purpose of having a database server. Unlike previous versions,
SQL Server 2008 does not ship with any sample databases. Instead, sample databases are available from
Microsoft’s Open Source CodePlex site (www.codeplex.com). There you can search for the three sample
databases that are available at the time of this writing: AdventureWorks2008, AdventureWorksLT2008,
and AdventureWorksDW2008.

The AdventureWorks2008 database is an OLTP database used by the fictitious Adventure Works Cycles
Company, which sells mountain bikes and mountain-biking-related merchandise.

The AdventureWorksLT2008 database is an OLTP database that is a subset of the larger
AdventureWorks2008 database. It was scaled down to help those who are new to relational
databases.

The AdventureWorksDW2008 database is an OLAP database used for data analysis of historical Adventure
Works Cycles data.

Distribution Databases
One or more distribution databases can be configured to support replication. Some SQL Server pro-
fessionals describe the distribution databases as system databases, and yet others describe them as
user databases. I don’t think it makes much difference. What is important is what the database or
databases do.

A distribution database stores metadata and transactional history to support all types of repli-
cation on a SQL Server. Typically, one distribution database is created when configuring a SQL
Server as a replication Distributor. However, if needed, multiple distribution databases can be
configured.

A model distribution database is installed by default and is used in the creation of a distribution database
used in replication. It is installed in the same location as the rest of the system databases and is named
distmdl.mdf.

SQL Server 2008 Database Storage
All system and user databases (including the resource database) are stored in files. There is always a
minimum of two files: one data file and one transaction log file. The default extension for data files is
.mdf, and the default for transaction log files is .ldf.

The default location for the system database files is <drive>:\Program Files\Microsoft SQL Server\
MSSQL.X\MSSQL\Data\, where <drive> is the installation drive and X is the instance number (MSSQL.1
for the first instance of the Database Engine). The following table lists the names and default locations for
system database files associated with the first instance of SQL Server:

20



Leiter c01.tex V3 - 03/25/2009 11:33am Page 21

Chapter 1: Introducing SQL Server 2008

System
Database

Physical Location

master <install path>\MSSQL10.MSSQLSERVER\MSSQL\Data\master.mdf
<install path>\MSSQL10.MSSQLSERVER\MSSQL\Data\mastlog.ldf

model <install path>\MSSQL10.MSSQLSERVER\MSSQL\Data\model.mdf
<install path>\MSSQL10.MSSQLSERVER\MSSQL\Data\modellog.ldf

msdb <install path>\MSSQL10.MSSQLSERVER\MSSQL\Data\msdbdata.mdf
<install path>\MSSQL10.MSSQLSERVER\MSSQL\Data\msdblog.ldf

tempdb <install path>\MSSQL10.MSSQLSERVER\MSSQL\Data\tempdb.mdf
<install path>\MSSQL10.MSSQLSERVER\MSSQL\Data\templog.ldf

resource <install path>\MSSQL10.MSSQLSERVER\MSSQL\Binn\Mssqlsystemresource.mdf
<install path>\MSSQL10.MSSQLSERVER\MSSQL\Binn\Mssqlsystemresource.ldf

When it comes to the system databases, the following guidance is given: Don’t mess with them. Your ability
to manipulate the system databases in SQL Server 2008 has been extremely limited by the developers at
Microsoft. Overall, this is a good thing. Generally speaking, the only thing you are permitted to do with
system databases is back them up or move them to faster, more reliable disk arrays if they prove to
be a performance bottleneck. The ability to modify the data contained in system tables through ad hoc
updates has been almost completely removed from SQL Server 2008. To modify the system catalog, the
server must be started in Single-User mode, and even then, activity is restricted and is not supported by
Microsoft.

Data Files and Filegroups
When a user database is created, it must contain at least one data file. This first data file is known as the
primary data file. The primary data file is a member of the default Primary filegroup. Every database has
one Primary filegroup when created, which consists of at least the primary data file. Additional data files
can also be added to the Primary filegroup. More filegroups can also be defined upon initial creation of
the database, or added after the database is created. Chapter 4 describes the storage architecture of files
in greater detail, and Chapter 5 explains the advantage of filegroups. For now, it is sufficient to know
that all of the data objects in a database (such as tables, views, indexes, and stored procedures) are stored
within the data files. Data files can be logically grouped to improve performance and allow for more
flexible maintenance (see Figure 1-1).

Log Files
Upon initial creation of a database, one transaction log must be defined. The transaction log is used to
record all modifications to the database to guarantee transactional consistency and recoverability.

Although it is often advantageous to create multiple data files and multiple filegroups, it is rarely
necessary to create more than one log file. This is because of how SQL Server accesses the files. Data
files can be accessed in parallel, enabling SQL Server to read and write to multiple files and filegroups

21



Leiter c01.tex V3 - 03/25/2009 11:33am Page 22

Chapter 1: Introducing SQL Server 2008

simultaneously. Log files, on the other hand, are not accessed in this manner. Log files are serialized to
maintain transactional consistency. Each transaction is recorded serially in the log, in the sequence it was
executed. A second log file will not be accessed until the first log file is completely filled. You can find a
complete description of the transaction log and how it is accessed in Chapter 4.

MyDB_Log.Idf

MyDB
Primary Filegroup Secondary Filegroup

MyDB_Data.mdf

MyDB_Data2.ndf MyDB_Data4.ndf

MyDB_Data3.ndf

Figure 1-1: Data files and filegroups.

SQL Server Security
Chapter 6 provides a thorough discussion of SQL Server 2008 security features. However, to select the
proper authentication model during installation, it is important to have a basic understanding of how
SQL Server controls user access.

SQL Server 2008 can be configured to work in either the Windows Authentication Mode or the SQL
Server and Windows Authentication Mode, which is frequently called Mixed Mode.

Windows Authentication Mode
In Windows Authentication Mode, only logins for valid Windows users are allowed to connect to SQL
Server. In this authentication mode, SQL Server ‘‘trusts’’ the Windows or Active Directory security sub-
system to have validated the account credentials. No SQL Server accounts are allowed to connect. They
can be created, but they cannot be used for login access. This is the default behavior of a fresh installation
of SQL Server 2008.

SQL Server and Windows Authentication Mode
(Mixed Mode)

In SQL Server Mode and Windows Authentication Mode, or Mixed Mode, valid Windows accounts
and standard SQL Server logins are permitted to connect to the server. SQL Server logins are validated
by supplying a username and password. Windows accounts are still trusted by SQL Server. The chief
advantage of Mixed Mode is the ability of non-Windows accounts (such as UNIX) or Internet clients to
connect to SQL Server.

22



Leiter c01.tex V3 - 03/25/2009 11:33am Page 23

Chapter 1: Introducing SQL Server 2008

Summary
This chapter introduced the basic structure and purpose of SQL Server 2008, along with a brief expla-
nation of the various features available in this release of Microsoft’s database application. Subsequent
chapters delve into the technologies and features exposed in this chapter so that the database adminis-
trator can better understand and implement each feature introduced.

In Chapter 2, you will learn how to plan and perform a SQL Server 2008 installation. Included in the
discussions are prerequisite hardware and software configurations, as well as service and security
considerations. A thorough installation plan will always reap enormous benefits when it comes to
post-installation modifications. Understanding what to install (and how to install it) is invaluable.

23



Leiter c01.tex V3 - 03/25/2009 11:33am Page 24



Leiter c02.tex V3 - 03/25/2009 11:37am Page 25

2
Installing SQL Server 2008

Installing SQL Server 2008 is deceptively simple. I say deceptively because although SQL Server
includes several wizards and tools that make the installation process itself go smoothly, a good
database administrator will have devised a thorough plan for installing SQL Server and its requisite
components. This chapter will introduce you to the process of installing SQL Server, beginning with
an overview of the planning process. Although it would be impossible to document every possible
design decision for every possible scenario, the goal of this chapter is to help you understand the
installation process, some key design considerations, and the various components and options
available prior to and during installation.

SQL Server Installation Planning
‘‘There is never enough time to do it right, but always enough time to do it twice.’’ ‘‘Measure twice,
cut once.’’ How many times have you heard these sayings? There are a number of these clichés that
point out that doing something right the first time means not having to do it over and over again. To
avoid having to do it twice (or more!), you need to create a thorough plan. Too often installations are
rushed and then must be uninstalled when technical issues arise. The questions that must be asked
range from collation settings and named instances to the separation of log and data files. Will SQL
Server be installed in a cluster? How about Storage Area Networks (SAN) or Network Attached
Storage (NAS)? And virtualization, won’t someone please think of the virtualization! Although the
Installation Wizards will ask you to provide answers to several questions about how you want SQL
Server installed, before you launch the Wizard you should know the why behind your answers.

In addition to the ‘‘how’’ and ‘‘why,’’ there are the ‘‘who,’’ ‘‘what,’’ and ‘‘when’’ questions that
must be answered to create an adequate plan.

❑ The ‘‘who’’ is most likely going to be the database administrator (DBA), but other indi-
viduals will need to be included in the deployment plan as well. In addition to getting
members of the IT department because there are network and storage considerations to
account for, other departments or individuals that are considered key stakeholders may
need to be involved in the process. Remember that SQL Server 2008 is an enterprise data
platform, and users who own or interact with the data that will be managed by SQL Server
will need to have their interests represented.



Leiter c02.tex V3 - 03/25/2009 11:37am Page 26

Chapter 2: Installing SQL Server 2008

❑ The ‘‘what’’ question can be a bit more complex. The first ‘‘what’’ is ‘‘What features will be
installed?’’ However, more ‘‘what’’ questions could include ‘‘What constitutes a successful
installation?’’ or ‘‘What resources are required?’’

❑ The ‘‘when’’ question is also imperative. ‘‘When will the installation be started and when will it
be complete?’’

It would be impossible to cover all the possible variations that could arise during a SQL Server installa-
tion, so this chapter covers only the essentials. Remember, when it comes to technology, the answer to
almost every question is, ‘‘It depends.’’ There are almost always ‘‘best practices,’’ but sometimes the best
practices are based on various ‘‘ivory tower’’ assumptions. We don’t all have 50 billion dollars, 20,000 IT
professionals, and unlimited access to hardware and software. Sometimes the ‘‘best practices’’ have to be
left behind in favor of practicality and budget.

For example, as a best practice, transaction logs should be placed on a RAID 1 array as opposed to any
striped array configuration because of how the transaction log is accessed by SQL Server. However, if
the only available fault-tolerant storage is a RAID 5 striped array, then by all means it should be used to
store and protect the log data. In many cases, the only storage available because of budget and hardware
constraints is a single RAID 5 array where both the transaction log and data files are hosted. In a large
enterprise solution, this would be completely unacceptable; but for a small-to-medium business imple-
mentation, it may be the only choice. The key point is that it is very important to know what the ‘‘best’’
solution is, but also keep in mind that compromises are often necessary to meet deadlines and budgetary
constraints.

Hardware Considerations
Minimum requirements are exactly that: minimum. SQL Server will run on a system with minimum
hardware, but the performance is not going to be stellar. Even the ‘‘recommended’’ hardware is to be
exceeded whenever practical. I tend to think of these as ‘‘minimum to install and start the services’’ and
‘‘minimum to run a production system,’’ respectively.

Upgrading almost any hardware object on a server hosting SQL Server 2008 will result in improved
performance, but all things being equal, increasing RAM often has the best impact on performance.
An underpowered processor or slow disk system will cause just as many performance problems as
insufficient RAM, but RAM limitations will often cause processor and disk issues to be exacerbated.

A common scenario for certification exams often presents a series of questions that involve allocating
different limited resources across different types of servers such as a file server, domain controller, and
database server. Often, you’re tasked with determining where to place the faster CPU, the better disk
array, and the new RAM. I’ve been an IT generalist for many years, so I know what the test designers are
after, but when I wear my DBA hat, I want to put everything into SQL Server.

This seems kind of self-serving, but based on my experience, SQL Server tends to be the core or underly-
ing technology for a lot of the business applications. A company that I worked at for a number of years
relies on a single SQL Server for all financial data, logistics and materials tracking, SharePoint, and sev-
eral other line-of-business applications. Without exception, these applications used SQL Server as a data
store. Optimizing the server running SQL Server would have an immediate positive impact on a majority
of the applications used for the key business activities, as well as many support applications.

26



Leiter c02.tex V3 - 03/25/2009 11:37am Page 27

Chapter 2: Installing SQL Server 2008

There are four main subsystems that you need to optimize for SQL Server 2008 to perform optimally.
These include the Processor, Memory, Storage, and Network subsystems. Performance of these
subsystems will affect SQL Server in a variety of ways, and as part of the pre-installation process, you
should have an understanding of what your hardware needs are. One quick note about the network
subsystem is that it is often the one the DBA has the least control over, and yet sometimes has the most
impact, depending on the number of applications and users that are being supported. You should work
with your network administrators and engineers to plan a strategy for concurrent database access by
your users.

Processor Considerations
Microsoft sets the minimum processor requirements at 1 GHz Pentium III or a compatible processor for
32-bit installations of SQL Server, and 1.4 GHz for 64-bit systems. However, 2.0 GHz is considered the
recommended speed for both platforms. SQL Server uses the processor extensively during the compila-
tion and execution of query plans. Your server can have an extraordinarily fast disk array and plenty of
RAM, but if it has an underpowered processor, it is all for naught. As the workload of the server increases
and more and more transactions are executed against it, the processor will have to schedule and handle
the multitude of query execution plans and programmatic manipulation of data.

Chapter 10 discusses the ways to monitor SQL Server to ensure that the CPU is not a bottleneck, but from
the outset, SQL Server should be given plenty of processor power. In addition, SQL Server is very adept
at using multiple processors to execute parallel operations, so adding a second processor will often pay
larger dividends than upgrading a single processor. However, if your license is per processor, the cost
may be prohibitive to add additional processors.

As of this writing, Microsoft considers multiple logical processors to be covered under a single processor
license. This would allow you to buy a quad-core CPU, essentially supplying SQL Server with up to
four CPUs for the cost of a single processor license. For example, if you wanted to buy a new server that
has two quad-core processors, you would be able to leverage all eight cores, but only have to buy two
processor licenses.

Memory Considerations
The minimum amount of RAM, according to Microsoft, is 512 MB. I personally find this minimum
requirement a bit on the ridiculous side. I wouldn’t set up a Windows server running any multi-user
application with only 512 MB of RAM, let alone a RAM-hungry application like SQL Server. Would
512 MB be sufficient for a desktop machine running SQL Server 2008 Developer Edition? Maybe, as long
as no serious load was put on the server.

That’s not to say that SQL Server wastes memory or that it consumes a bloated footprint. The simple fact
is that SQL Server likes memory — a lot. It attempts to place as much data as possible in RAM so that the
data is readily available for processing. It also tries to keep the data in RAM as long as possible.

SQL Server creates and maintains different memory pools for various database operations. For example,
there is a buffer cache that is used to store data pages retrieved from the disk; a procedure cache that is used
to store compiled stored procedures, triggers, functions, views, and query plans; and even a log cache for
transaction log operations.

27



Leiter c02.tex V3 - 03/25/2009 11:37am Page 28

Chapter 2: Installing SQL Server 2008

Having sufficient RAM on hand allows SQL Server to minimize the amount of page swapping required
and enables the data to be pre-fetched for fast processing. If you want to keep SQL Server happy, feed
it RAM. What you will get in return is a hard-working database server that efficiently and effectively
utilizes that RAM to service your requests as fast as possible. Lack of sufficient RAM can also cause
degradation in performance of the storage subsystem, as more data gets paged to disk.

Microsoft recommends just over 2 GB of RAM for both the 32-bit and 64-bit editions. Although Microsoft
considers operating system overhead when publishing their recommended values, given the relatively
low cost of RAM, I typically recommend this above the operating system requirements. For example, if
Windows Server 2008 recommends 2 GB of RAM for the OS, I would recommend a total of 4 GB to help
optimize performance.

Storage Considerations
An often overlooked hardware aspect of many SQL Server installations is the disk subsystem. I have
personally witnessed deployments in which undertrained personnel installed the OS, SQL Server, and
all the database files on the system partition. Although this will work, it is less than ideal. The question
of how to best place the application and database files is answered with a definite ‘‘It depends.’’

If you’re not familiar with the different levels of RAID technology, let me offer a quick primer. RAID, first
of all, stands for ‘‘Redundant Array of Inexpensive Disks’’ (inexpensive being a relative term here). When
working with SQL Server, there are four types of RAID implementations that are commonly used:

❑ RAID 0 — RAID 0 offers no redundancy or fault tolerance, but instead helps improve perfor-
mance by striping across multiple disks. RAID 0 also allows you to use the combined storage
capacity of both disks. RAID 1, also known as mirroring, provides fault tolerance by making
a bit-for-bit copy of your data on two disks. While this provides basic redundancy and can
improve Read performance (by having two separate disks available to read from), you might
suffer minor loss of Write performance, since the data will have to be written across both disks.
RAID 1 has 50 percent storage overhead.

❑ RAID 5 — RAID 5 is one of the more common implementation types of RAID, utilizing three or
more disks. RAID 5 is also called striping with parity, because as it stripes across multiple disks,
it writes a parity block on each stripe that allows the data to be rebuilt in case of a disk failure.
RAID 5 is considered a good option for most scenarios because it provides fault tolerance and
improved Read and Write performance and has a relatively low storage overhead. Because the
available capacity on a RAID 5 array is n – 1 (n being the total number of disks in the array),
the storage overhead decreases as the number of disks in the array increases.

❑ RAID 10 — RAID 10 (also sometimes known as RAID 1+0) is the cat’s pajamas of RAID, and is
considered the optimal design solution for SQL Server database files. RAID 10 requires a mini-
mum of four disks and essentially stripes data across two mirrored sets. So let’s say, for example,
that you have four disks: a, b, c, and d. Disks a and b will be used to make one mirrored set, which
we’ll call ab, and disks c and d will be used to make the cd mirrored set. The two mirrored sets are
then part of a new striped set, so when data is written to the array, it is striped across ab and cd.

Now that you know a little bit more about the various RAID levels, it’s important to understand that
there are several factors that can have an impact on the decision regarding where to install everything.
How important is fault tolerance? How much money is the organization willing to spend on the database
solution? How much disk space will be needed? How busy is the existing disk system? An optimal
installation of SQL Server could look something like Figure 2-1.

28



Leiter c02.tex V3 - 03/25/2009 11:37am Page 29

Chapter 2: Installing SQL Server 2008

RAID 1
OS

RAID 1
SQL

RAID 1
LOG

RAID 10
DATA

Figure 2-1: Optimal installation.

Notice that the application is installed on a separate set of spindles from the operating system. This
reduces contention for disk resources and makes the application more efficient. Notice use of the term
spindle. This is preferred to drive or disk because it leaves little room for interpretation. Physical disk
drives have one spindle, which is loosely analogous with the center of a spinning top. Granted, the
increase in capacity and general availability (as well as decreasing costs) of Solid State Drives, which
have no spinning platter, may eventually make the term spindle obsolete. For now, let’s agree to continue
to use that term. In the case of Figure 2-1, the two spindles that host the log file on a RAID 1 array will
actually look like a single drive to the operating system, when, in reality, there are two physical disks,
or spindles.

In addition to the application existing on a separate set of spindles, the data files and the log files are
on yet another set. The idea here is not to keep the hard disk industry in business, but to maximize
efficiency, fault tolerance, and recoverability. Placing the operating system, application, and database
all on the same spindle is basically putting all of your eggs in one basket. If the basket is dropped, you
will lose all of your eggs. Likewise, if the spindle fails, you will lose your operating system, application,
and databases. Your recovery time in this instance is tripled. Even if your server weren’t to suffer a
catastrophic failure, the amount of contention for resources on the disk subsystem could cause a severe
degradation in performance.

Separating the database files from the transaction logs files can also help improve recovery efforts. If the
database file is corrupted or damaged, the most recent backup can be used to recover it, and then
the existing transaction log can be used to recover all the transactions since the last backup. Likewise,
if the transaction log is lost, it can be re-created with minimal data loss from the database. If both data

29



Leiter c02.tex V3 - 03/25/2009 11:37am Page 30

Chapter 2: Installing SQL Server 2008

files and the log file are on the same spindle, a catastrophic failure of the spindle will result in all
data since the last backup being lost.

Backup and recovery strategies are covered in more detail in Chapter 9.

The separation of the different components of SQL Server is just part of the equation. When choosing a
disk system, it is also important to know what type of disk is best for each part of the database. Notice
in Figure 2-1 that the operating system is installed on a RAID 1 array. The same goes for the SQL Server
application and the database log file, while the data files are placed on a striped array. It is possible to
place all the SQL resources on one or more RAID 10 or RAID 5 arrays, and many organizations do just
that. However, when it comes to the transaction log, a RAID 1 configuration is more appropriate than a
RAID 5 one. A transaction log placed on a striped array will actually decrease the performance of SQL
Server. This is because of the inherent hit in Write performance on a RAID 5 array, and also because of the
way SQL Server writes serialized data to the log. Log files, by their nature, are mostly written to, which
means that often RAID 1 (or RAID 10, if you have the budget) is the best choice for performance. RAID 1
or RAID 10 is also better because of the sequential and serial nature of the transaction log as compared to
the parallel friendly nature of data files.

Each transaction is written to the transaction log before it is written to memory. This puts the transaction
log in the position to become a possible bottleneck. A fast array will help prevent the log from becoming
a performance liability.

SAN and NAS versus Local Disk Storage
Another decision to be made during a SQL Server installation is that of storage architecture. There are
many vendors in the marketplace with hundreds of possible configurations for sale. Many larger orga-
nizations have placed much of their corporate data on local and remote SANs. At the same time, other
organizations have chosen NAS, and still others (mostly smaller organizations) have chosen to place
all their data on local attached disk arrays. Although a complete discussion of these different technolo-
gies is beyond the scope of this book, a brief explanation is useful in describing the utilization of these
technologies in database implementations.

Storage Area Network (SAN)
SANs typically transmit Small Computer Systems Interface (SCSI) block commands over a network
(usually either Fibre Channel or iSCSI) in lieu of a SCSI connection for a direct-attached storage array.
This option is well-suited to SQL Server because the database application expects block access to data,
which is not easily supplied using NAS. Utilizing SAN software, multiple volumes can be created and
‘‘presented’’ to the servers, using the storage space on the SAN, as shown in Figure 2-2.

Network Attached Storage (NAS)
The NAS network interface is usually Gigabit Ethernet or Fast Ethernet, but the storage type is file-based
via traditional file sharing protocols. Volumes are not presented to the servers that utilize a NAS;
instead, files are accessed through Universal Naming Convention (UNC) shares, as shown in Figure 2-3.
File-based access degrades SQL Server performance considerably, which is why NAS storage should be
avoided. By default, databases cannot be created with a UNC location, but this behavior can be changed.
However, if the database is going to be used for any serious I/O scenarios, you will find that NAS will
not be able to provide an adequate response.

30



Leiter c02.tex V3 - 03/25/2009 11:37am Page 31

Chapter 2: Installing SQL Server 2008

DB1 DB2 DB3

F:\

J:\

G:\

K:\

H:\

L:\

I:\

M:\

SAN Storage

SAN Controller

Figure 2-2: Storage Area Network.

DB1

DB2

NAS Storage

DB3

\\NASServer\Share1

\\NASServer\Share2

\\NASServer\Share3

\\NASServer\Share4

Figure 2-3: Network Attached Storage.

31



Leiter c02.tex V3 - 03/25/2009 11:37am Page 32

Chapter 2: Installing SQL Server 2008

Local Attached Disk Array
There is a lot to be said for sharing storage resources among multiple servers on a high network, but some
organizations (for a variety of reasons) have chosen to dedicate local attached storage to their database
implementations (see Figure 2-4). In reality, the only differences between local attached disk arrays and
SANs are that the volumes created on the local array are only accessible to the server to which the array
is attached and that SAN controllers can optimize data transfer. Local arrays are typically connected via
a high-speed SCSI cable or Fiber Channel.

Figure 2-4: Local attached disk array.

Virtualization Considerations
SQL Server 2008 is the first version of SQL Server that is supported in virtual environments; however,
there are some limitations. Microsoft will officially only support installations of SQL Server in Hyper-V
environments on Windows Server 2008, and clustering of virtual machines is not supported. Because of
the continued improvement in virtualization technology, it is becoming a much more attractive option to
companies that want to either consolidate hardware or take advantage of some of the recovery and porta-
bility options available. It’s been my experience that the biggest bottleneck that occurs when running SQL
Server in a virtual machine is I/O performance. For this, I strongly recommend using SAN storage for
the database and transaction log files to avoid storing database information in a virtual hard drive file.

Software Prerequisites
In addition to the hardware dependencies mentioned above, there are a number of software dependen-
cies that exist to support the various features of SQL Server 2008. The System Consistency Checker does a
very thorough job of identifying all the requirements and dependencies, and informing you if anything is
missing. For example, if a critical component is missing, the installer won’t proceed until that component
has been installed. If, however, you are running with less than recommended RAM, the SCC will give
you a warning, but allow you to proceed with the installation. It is up to the DBA to evaluate the warning
to ensure that it is acceptable to continue the installation.

Another critical dependency is the operating system. As you might expect, the IA86 and x64 editions
of SQL Server 2008 can only be installed if the operating system is using the same platform. Note that
32-bit versions of SQL can be installed on 64-bit operating systems, but may actually suffer a perfor-
mance loss because it will need to run within the WOW64. The following table describes the different
operating systems required for each edition of SQL Server 2008. For a complete list of requirements, visit
http://technet.microsoft.com/en-us/library/ms143506.aspx.

32



Leiter c02.tex V3 - 03/25/2009 11:37am Page 33

Chapter 2: Installing SQL Server 2008

Operating System SQL Server Edition

Enterprise Standard Workgroup Web Developer Express

Windows XP SP2 Pro X X X X X

Windows XP Home
Edition SP2

X X

Windows Server 2003
SP2 Web

X

Windows Server 2003
SP2 Standard

X X X X X X

Windows Server 2003
SP2 Enterprise

X X X X X X

Windows Server 2003
SP2 Datacenter

X X X X X X

Windows Vista
Ultimate

X X X X X

Windows Vista
Enterprise

X X X X X

Windows Vista
Business

X X X X X

Windows Vista Home
Premium

X X X

Windows Vista Home
Basic

X X X

Windows Vista Starter
Edition

X

Windows Server 2008
Web

X X X X X X

Windows Server 2008
Standard

X X X X X X

Windows Server 2008
Enterprise

X X X X X X

Windows Server 2008
Datacenter

X X X X X X

Windows Small
Business Server 2003,
Standard Edition SP2

X X X X X X

Windows Small
Business Server 2003,
Premium Edition SP2

X X X X X X

33



Leiter c02.tex V3 - 03/25/2009 11:37am Page 34

Chapter 2: Installing SQL Server 2008

SQL Server Installation Center
The SQL Server 2008 setup process itself is pretty straightforward. If Autorun is enabled (I usually turn
it off), the setup splash screen will launch as soon as you insert the media. If not, the installation can be
launched from the SETUP.EXE file located in the root folder of the installation media.

You may also note that there are three folders in the root folder of the SQL Server 2008 installation
media. Each folder contains the platform-specific setup files for the x86, x64, and IA64 platforms. When
you launch setup from the root folder, it runs a detection script to determine the platform of the current
system and launches the installer for that platform. If you have a specific need to install, for example, the
32-bit version on a 64-bit platform, the preferred method is to select the Options page of the SQL Server
Installation Center.

Before the setup application launches the SQL Server Installation Center, it checks for several depen-
dencies that are critical to installing SQL Server. This includes an updated version of the Microsoft .NET
Framework (version 3.5 SP1), and in some cases, an update to the Windows Installer service may be
required as well. Be aware that if these components have not yet been installed, a reboot will be necessary
before SQL Server setup can continue.

Once the dependent components can be installed, the SQL Server Installation Center menu pops up. From
here, you can navigate through the different pages, to learn more about the planning and installation
process. You can choose to run the System Configuration Checker manually, but all of the tests are run
as part of the Installation Wizard for SQL Server 2008.

Setup Support Rules (for Setup Support Files)
Prior to installing the SQL Server setup support files, SQL Server checks a series of conditions to ensure
that the support files can be installed before the actual setup process begins. The six items shown in
Figure 2-5 and described in the following table are checked:

Component Description

Minimum operating system
version

Checks whether the computer meets minimum operating
system version requirements.

Setup administrator Checks whether the account running SQL Server Setup has
administrator rights on the computer.

Restart computer Checks if a pending computer restart is required. A
pending restart can cause Setup to fail.

Windows Management
Instrumentation (WMI) service

Checks whether the WMI service is started and running on
the computer.

Consistency validation for SQL
Server registry keys

Checks if the SQL Server registry keys are consistent.

Long path names to files on SQL
Server installation media

Checks whether the SQL Server installation media is too
long.

34



Leiter c02.tex V3 - 03/25/2009 11:37am Page 35

Chapter 2: Installing SQL Server 2008

Figure 2-5: Setup Support Rules results for setup files.

Once the initial validation tests have been completed and there are no errors that would halt the instal-
lation, the Registration Information screen appears and asks for your 25-character product key. After
entering the product key, you will be presented with the License Terms to review and accept.

Before proceeding with installation, you should understand some of the licensing constraints around
SQL Server 2008. Many organizations are not aware that the components of SQL Server are licensed as
a bundle, and when you purchase a server or processor license for SQL Server, you can install some or
all of those components on one machine, and one machine only. For example, if the Database Engine is
installed on one server and the Reporting Services engine is installed on a different server, a separate
license is required for each installation. This is a major area of confusion for many DBAs. Common sense
would say that a purchase of a SQL Server license that included the Database Engine, Reporting Services,
Integration Services, and Analysis Services would give an organization the right to spread these
services across as many servers as necessary, as long as only one instance of each service was used.
Common sense, in this instance, may get you into trouble with the licensing police. If you haven’t read
the licensing agreement, do so, or have your lawyer read it for you. The license agreement can also be
found in the Resources section of the SQL Server Installation Center.

After accepting the terms of the license agreement, you will be prompted to install the SQL Server
Setup files. These files are used during the installation process and are usually removed as part of the
post-install cleanup.

35



Leiter c02.tex V3 - 03/25/2009 11:37am Page 36

Chapter 2: Installing SQL Server 2008

Setup Support Rules (for Installation)
Another set of validation tests must be performed to verify that the system meets the conditions
for installing SQL Server. The tested components are listed in the following table and shown in
Figure 2-6:

Component Description

Fusion Active Template Library
(ATL)

Checks if a computer restart is required because of broken
fusion ATL. A pending restart can cause SQL Server Setup
to fail.

Unsupported SQL Server products Checks whether SQL Server 7.0 or SQL Server 7.0 OLAP
Services is installed. SQL Server 2008 is not supported with
SQL Server 7.0.

Performance counter registry hive
consistency

Checks if the existing performance counter registry hive is
consistent.

Previous releases of SQL Server
2008 Business Intelligence
Development Studio

Checks for previous releases of SQL Server 2008 Business
Intelligence Development Studio.

Previous CTP installation Checks whether there is an existing SQL Server 2008 CTP
installation.

Consistency validation for SQL
Server registry keys

Checks if the SQL Server registry keys are consistent.

Computer domain controller Checks whether the computer is a domain controller.
Installing SQL Server 2008 on a domain controller is not
recommended.

Microsoft .NET Application
Security

Verifies that the computer is connected to the Internet.
When a Microsoft .NET application like Microsoft
Management Studio starts, there may be be a slight delay
while the .NET security check validates a certificate.

Edition WOW64 platform Determines whether SQL Server Setup is supported on this
operating system platform.

Windows PowerShell Checks whether Windows PowerShell is installed.
Windows PowerShell is a prerequisite of Microsoft SQL
Server 2008 Express with Advanced Services.

Windows Firewall Checks whether the Windows Firewall is enabled. If the
Windows Firewall is enabled, a warning event will be
generated. This is to inform you that the SQL Server will not
automatically open the required firewall ports to enable
SQL connectivity. The Windows Firewall service must be
manually configured to allow incoming connections.

36



Leiter c02.tex V3 - 03/25/2009 11:37am Page 37

Chapter 2: Installing SQL Server 2008

Figure 2-6: Setup Support Rules results for installation.

Feature Selection
The next step in the Installation Wizard is the Feature Selection screen (see Figure 2-7). This is where
you will choose what aspects of SQL Server you want to install. If you intend to follow along with the
examples in this book, it’s recommended that you install all features in your test environment. In a
production environment, you should install the features you intend to use, and no more. You can always
go back and install additional services and features, but for the sake of efficiency, if you’re not going to
be using Analysis Services, there’s no reason to install it. If you’ve installed an earlier version of SQL
Server, sample databases were often included with the installation media. In the case of SQL Server
2005, installation of the sample databases was disabled, but it was still a feature that you could enable
through the advanced installation options. With SQL Server 2008, the sample databases are not included
with the media and are available online at www.codeplex.com. More information on installing the sample
databases is covered later in this chapter.

Instance Configuration
After choosing what features of SQL Server are to be installed, the setup utility asks for instance informa-
tion. You can install either a named instance or a default instance. The default instance takes on the name
of the machine where SQL Server is being installed. There can be only one default instance; however, SQL
Server 2008 Enterprise Edition supports installing up to 50 instances of SQL Server on a single machine.

37



Leiter c02.tex V3 - 03/25/2009 11:37am Page 38

Chapter 2: Installing SQL Server 2008

If there is a default instance, a maximum of 49 named instances can be configured. If no default instance
is installed, 50 named instances can be configured.

Figure 2-7: Feature Selection screen.

Named instances are referenced by the server name followed by the instance name. For example, the server
name used in the examples for this book is AughtEight. The default name of the SQL Server 2008 installa-
tion is the same as the server name. However, you could install a named instance on AughtEight called
Dagobah. To connect to the Dagobah instance of SQL Server, it must be referenced as AughtEight\Dagobah.
In addition to the name, any client accessing a named instance must use the SQL connection objects from
SQL Server 2000 or later. Legacy ODBC and old OLEDB drivers will be unable to enumerate a named
instance of SQL Server 2008.

The Instance Configuration screen also provides you with the opportunity to change the default location
for the SQL Server files. This sets the file location for the SQL binaries as well as the system databases.
Best practices recommend that you separate the instance folders from the OS drive.

Server Configuration
After the instance configuration is completed and the Disk Space Requirements have been verified, the
service accounts that SQL Server will use must be specified. Chapter 1 describes the various services
that SQL Server may need to run depending on what features were installed. When configuring the
security credentials for these services, you have a choice to make. Does the service require the ability to
authenticate and connect to external resources? If so, the local system account will not be appropriate.

38



Leiter c02.tex V3 - 03/25/2009 11:37am Page 39

Chapter 2: Installing SQL Server 2008

Best-practice security guidelines recommend that the local system account not be used because it grants
full administrative access to the computer on which SQL Server is installed. This expands the attack
surface of the system by allowing a compromised SQL Server to be used to attack other components
on the system. Also, services running as the local system account will have no authenticated access to
resources that exist on other servers in your environment.

A very useful feature of SQL Server is the ability to use the SQL Server Agent’s scheduling options to
run unattended jobs. If the ability to schedule SQL Server jobs that require access to external resources is
desired, then at a minimum, the SQL Agent account will need to be configured to use a domain account
so that the respective account can be granted permissions to the remote resource.

The ability to configure each installed SQL Server service individually is provided (see Figure 2-8),
which is also a security best practice, but it does increase the administrative complexity of the
system.

Figure 2-8: Service account screen.

In addition to the security information for each individual service, each service can be configured for
automatic or manual startup during installation. By default, the SQL Agent Service is configured to start
manually, while other installed components will start automatically. In order for scheduled tasks and
jobs to execute, the SQL Agent Service must be running. It is usually a good practice to configure this
service to run automatically.

39



Leiter c02.tex V3 - 03/25/2009 11:37am Page 40

Chapter 2: Installing SQL Server 2008

Additionally, the SQL Server Browser Service is disabled by default. The Browser Service is only needed
if you have multiple instances of SQL Server installed on the same machine. Although you cannot change
the account being used by the Browser Service or the Full-Text Daemon Filter Launcher, these can be
changed manually after SQL Server is installed.

Collation Settings
After setting the Authentication mode of SQL Server, you can configure the collation settings of SQL
Server 2008 by selecting the Collation tab in the Server Configuration window. The first question many
people have is, ‘‘What is collation?’’ The dictionary definition of collation is ‘‘assembling in proper numer-
ical or logical sequence.’’ Collation settings have two significant effects on your database: the sorting of
your character-based data and the searching of your character-based data.

A different collation can be set for both the SQL Server and Analysis Services, but Analysis Services only
supports Windows collation, whereas SQL Server can support both Windows and SQL collation. SQL
collation support is included for backward compatibility, and it is recommended to configure the server
collation with Windows collation (despite the fact that SQL collation is configured as the default).

Choosing Windows collation by selecting the Collation Designator provides a greater level of control
and more choices when it comes to customizing the collation settings for the server. The collation setting
affects what data will be returned when searching on character data and in what order the data will be
returned. It also determines what characters will be supported.

The default collation for an installation is determined by the locale with which Windows was configured.
For example, the default collation the SQL Server installation application chooses when being installed on
a Windows server configured for the United States is SQL_Latin1_General_CP1_CI_AS. A brief definition
of this underscore-delimited name is definitely in order:

❑ SQL_Latin1_General_CP1 indicates that characters from the Latin Code Page One (CP1), which
is equivalent to the 1,252-character set, are supported. These characters provide support for the
storing, sorting, and searching of character data in any Latin-derived language. These languages
include Western European, English, and Latin American languages. However, it is important to
note that sort orders can be different among Latin-derived languages. For example, in German
the ö character comes before z, but in Swedish, the opposite is true (z comes before ö). Therefore,
small discrepancies can occur from language to language.

The number 1,252 represents the character set identifier as assigned by the International Orga-
nizations for Standardization (ISO).

❑ CI (Case Insensitive) indicates that the character data is to be sorted and searched in dictionary
order without regard to capitalization. As this setting infers, there is also a CS (Case Sensitive)
setting as well.

❑ AS (Accent Sensitive) indicates that the character data is to be sorted and searched in dictionary
order with preference to accent marks. As a result, a search for a German ‘‘spatlese’’ wine will
not return the correct spelling of this sweet late-harvest wine, which is spätlese if it is stored with
the umlauts. Accent sensitivity can be turned off by specifying AI (Accent Insensitive).

These are not the only character settings that can be set. Character data can be set to be stored with sen-
sitivity to width with the designation of WS (Width Sensitive) or WI (Width Insensitive). Width sensitivity
applies to Unicode character data and differentiates between UTF-8 (8-Bit Unicode Text Format) and

40



Leiter c02.tex V3 - 03/25/2009 11:37am Page 41

Chapter 2: Installing SQL Server 2008

UTF-16 (16-Bit Unicode Text Format). There is also a setting for Kana sensitivity: KS (Kana Sensitive)
and KI (Kana Insensitive). Kana sensitivity essentially controls the sorting and searching of Asian Uni-
code characters (Japanese, Chinese, etc.) that can represent the same words using different script. For
example, when Japanese kana characters Hiragana and Katakana are treated differently, it is called Kana
sensitive; when they are treated the same, it is Kana insensitive.

Character data can also be sorted by their binary value. Binary sorting and searching is actually faster
than dictionary sorting and searching, but is not as user-friendly. For example, the following script creates
a table with two columns. The first column is assigned a character data type with case-sensitive dictionary
collation. The second column is assigned a character data type with binary collation:

USE TempDB
CREATE TABLE MySortTable
(DictionarySort varchar(10) COLLATE Latin1_General_CS_AS NULL,
BinarySort varchar(10) COLLATE Latin1_General_BIN)

GO

Once the tables are created, you can populate both of them with the same six rows: Alpha, Bravo, Charlie
and alpha, bravo, charlie by executing the following command:

USE TempDB
INSERT MySortTable
VALUES (’Alpha’,’Alpha’)

INSERT MySortTable
VALUES (’Bravo’,’Bravo’)

INSERT MySortTable
VALUES (’Charlie’,’Charlie’)

INSERT MySortTable
VALUES (’alpha’,’alpha’)

INSERT MySortTable
VALUES (’bravo’,’bravo’)

INSERT MySortTable
VALUES (’charlie’,’charlie’)

GO

Now that the tables are created and populated, you can query them. Notice the different order of results
using an identical query:

SELECT DictionarySort
FROM MySortTable
ORDER BY DictionarySort ASC

DictionarySort
--------------
alpha
Alpha
bravo
Bravo
charlie
Charlie

(6 row(s) affected)

SELECT BinarySort

41



Leiter c02.tex V3 - 03/25/2009 11:37am Page 42

Chapter 2: Installing SQL Server 2008

FROM MySortTable
ORDER BY BinarySort ASC

BinarySort
----------
Alpha
Bravo
Charlie
alpha
bravo
charlie

(6 row(s) affected)

As you can see, server collation can have a profound effect on how your data is stored and retrieved, so
careful planning is essential when deciding on a server collation. Fortunately, collation can also be set at
the database and column level, so multiple collations are supportable.

As a word of caution, though, be careful when implementing incompatible
collations on a single server. Issues may arise when the server collation is set to a
collation that is not compatible with a database collation. This is because the tempdb
database is set to the default server collation. When temporary objects are created in
tempdb from a user database that uses an incompatible collation, errors can occur.

Database Engine Configuration
After you have configured the server options, the next stage in the installation process requires you to
set additional configuration properties on the Database Engine. It begins with the Account Provisioning
screen, which allows you to set the Authentication mode and define administrative users. Authentication
and security are covered in great detail in Chapter 6. However, a brief explanation is appropriate at this
point.

If the default ‘‘Windows Only’’ configuration is chosen, only connections that have been authenticated
by the local Windows security subsystem (or by the domain security subsystem) are allowed to be made
to SQL Server. In this scenario, SQL Server validates that the login exists and has been authenticated, but
no password verification takes place because SQL Server ‘‘trusts’’ that the login has been validated. A
frequent connection error that occurs on servers configured for ‘‘Windows Authentication mode’’ is one
that says simply that the login failed (see Figure 2-9).

Figure 2-9: Bad login or password error message.

This is admittedly a vague response to a login request and is not the most intuitive message in the world.
‘‘Login Failed because it is not a valid Windows account and the server is configured for Windows

42



Leiter c02.tex V3 - 03/25/2009 11:37am Page 43

Chapter 2: Installing SQL Server 2008

authentication mode’’ or something a bit more informative would have been more useful. The message
can be even more cryptic, given that the respective SQL login may, in fact, exist. Being in ‘‘Windows
Authentication mode’’ does not prevent the database administrator from creating SQL Server login
accounts. However, any attempt to connect with a valid SQL Server login when the server is in ‘‘Windows
Authentication mode’’ will result in the vague ‘‘trusted SQL Server connection’’ error.

With ‘‘Mixed Mode,’’ SQL Server can authenticate Windows logins as well as logins that have been
created locally on the SQL Server. Local SQL Server logins are validated by username and password
verification. The username and an encrypted version of the password are stored in the master database.
When a SQL login connection is requested, the SQL Server security subsystem encrypts the provided
password, compares it to the stored password, and allows or refuses the connection based on the
credentials provided.

If you choose the ‘‘Mixed Mode’’ option, you will need to specify a password for the sa account. Not
setting one, or setting a weak one, would expose your SQL Server to any number of potentially disastrous
results.

Invalid credentials (either bad login name or bad password) result in the same ‘‘Login failed’’ message
(see Figure 2-9) when SQL Server is configured for ‘‘Mixed Mode’’ security.

Also on this screen you will need to provide at least one Administrator account. Often, you will want to
choose the ‘‘Add Current User’’ option (to give yourself rights to the SQL Server), but you may need
to include additional users or groups as well. Most common production environments will require you to
add a group that identifies all the SQL Server administrators, which can be added through this tool.

The Data Directories tab allows you to change the default locations for data files (which will also change
the default location for the system databases, user databases, the tempdb database, and the backup
directory).

The last tab in the Database Engine Configuration screen allows you to enable FILESTREAM options.
FILESTREAM is turned off by default, and if you don’t enable it from here, you can enable and configure
it using SQL Server Configuration Manager and SQL Server Management Studio. More information
about using FILESTREAM is in Chapter 5.

Analysis Services Configuration
As with the Database Engine, the Analysis Services Engine will require you to specify which users or
groups will have administrative control over the Analysis Services instance, as well as the data directories
for data, log, temp, and backup files. Note that Analysis Services does not use SQL-based logins. All
authentications are done through the Windows Authentication provider.

Reporting Services Configuration
If you are using SQL Server Reporting Services, you may want to specify how reports will be published.
As mentioned in Chapter 1, SQL Server Reporting Services no longer uses Internet Information Services
(IIS) for hosting access to the Reporting Services Web Service and the Reports virtual directory (both
of which are covered in more detail in Chapter 18). In your production environment, you should have
already decided whether reports will be published natively from SQL Server, or if they are going to be
published on a SharePoint Server. You have the option during installation to configure Reporting Services
to use the default ‘‘Native Mode’’ configuration or to use ‘‘SharePoint Integrated Mode.’’ There is also a
third option that allows you to install the files needed for the SSRS, but configuration will be done using
the Reporting Services Configuration tool after the installation has completed.

43



Leiter c02.tex V3 - 03/25/2009 11:37am Page 44

Chapter 2: Installing SQL Server 2008

Error and Usage Reporting
Microsoft also provides an opt-in screen to allow you to send Windows and SQL error reports, as well
as feature usage data, to Microsoft. Personally, I see some value in this, as it helps Microsoft identify
problems or bugs. That being said, I enable this only on my test and development systems and never
in my production systems, unless there is a corporate policy that dictates otherwise. Microsoft Enter-
prise licensing customers can send error reports to a Corporate Error Reporting server that allows your
administrators to selectively choose which events get sent to Microsoft.

Installation Rules
Prior to finally installing the files for SQL Server, one last set of rules is checked. These rules validate
your setup configuration options to identify potential problems that would cause undesired behavior
or prevent SQL Server from installing. The following table lists the components that are checked before
installation begins:

Component Description

Same architecture installation Checks whether the installing feature(s) are the same CPU
architecture as the specified instance.

Cross language installation Checks whether the setup language is the same as the language
of existing SQL Server features.

Existing clustered or
cluster-prepared instance

Checks if the selected instance name is already used
by an existing cluster-prepared or clustered instance on any
cluster node.

Reporting Services Catalog
Database File Existence

Checks whether the Reporting Services catalog database file
exists.

Reporting Services Catalog
Temporary Database File
Existence

Checks whether the Reporting Services catalog temporary
database file exists.

SQL Server 2005 Express tools Checks whether SQL Server 2005 Express Tools are installed.

Operating System supported for
edition

Checks whether the SQL Server edition is supported on this
operating system.

FAT32 File System Checks whether the specified drive is FAT32 file system
volume. Installing on a FAT32 file system is supported but not
recommended as it is less secure than the NTFS file system.

SQL Server 2000 Analysis
Services (64-bit) install action

Checks whether a default instance of SQL Server 2000 (64-bit)
Analysis Services is installed.

Instance name Checks whether the specified instance name is already used
by an existing SQL Server instance.

Previous releases of Microsoft
Visual Studio 2008

Checks for previous releases of Microsoft Visual Studio 2008

44



Leiter c02.tex V3 - 03/25/2009 11:37am Page 45

Chapter 2: Installing SQL Server 2008

Final Steps
After the Install Rules have been validated, a final summary screen appears that provides you with a list
of the services and features that will be installed. Clicking ‘‘Install’’ launches the SQL Server installation,
and an Installation Progress screen appears (see Figure 2-10). The Installation Progress screen gives
summary information about all the different features required by SQL Server and shows when each
individual feature is finished installing.

Figure 2-10: Installation Progress screen.

Installing to a Windows Cluster
The most difficult part about installing SQL Server to a cluster is configuring the Windows cluster, which
is beyond the scope of this book. It is important to note that planning and configuration of the cluster
must be done prior to running SQL Server Setup. There are several dependencies that must be in place,
such as clustering the Microsoft Distributed Transaction Coordinator (MS DTC). Once the Windows
cluster is installed and configured, the installation of SQL Server to the cluster has some very significant
differences from installing to a single server. One of the first things you will most likely notice is that
when the pre-installation rule validation process runs, it detects all nodes in the cluster and ensures
that they meet the requirements for a SQL Server install (see Figure 2-11).

Because you are installing a SQL Server failover cluster, the installation will be slightly different from
that previously described for a single server installation. After choosing to install the failover cluster, the

45



Leiter c02.tex V3 - 03/25/2009 11:37am Page 46

Chapter 2: Installing SQL Server 2008

Instance Configuration screen appears. SQL Server 2008 supports multiple instances in a cluster, as well
as in stand-alone scenarios.

Figure 2-11: Ensuring that the requirements are met for the install.

Configuring the Virtual Server Name
The least-intuitive part of installing a SQL Server failover cluster is the naming configuration. When
the Windows cluster was originally installed, a virtual name was designated for the cluster. However,
a virtual name must also be specified for the SQL Server installation, and it cannot be the same as the

46



Leiter c02.tex V3 - 03/25/2009 11:37am Page 47

Chapter 2: Installing SQL Server 2008

virtual name used for the cluster. For my test cluster, I installed Windows Server 2008 Enterprise Edition
on two Virtual PC images and configured the two servers as nodes in a Windows failover cluster. During
the SQL Server installation, the setup utility will prompt for the instance configuration information, at
which time you can supply both the SQL Server Network Name, which is the name of the SQL Server
cluster, and the instance name (Figure 2-12).

Figure 2-12: Instance Configuration screen.

If you choose a default instance, the name of the SQL Server will be whatever you provide
for the SQL Server Network Name. If you choose a named instance, the instance name will be
NetworkName\InstanceName.

After specifying the Network Name, a cluster resource group must be created. The resource group is
where SQL Server places all failover cluster resources. You will also need to specify the shared disk (or
disks) that will be used to store shared SQL Server data (Figure 2-13). Additionally, you will need to
designate an IP address that will be used as a listener for the SQL Server cluster.

The last cluster-specific option applies a cluster security policy for services that are installed as part of
the cluster. Windows Server 2003 and Windows XP only support the use of domain groups for clustered
services. This meant that the service accounts for each SQL Service installed as part of this cluster would
be added to the identified domain groups. Windows Vista and Windows Server 2008 include a new
feature that uses a Service SID rather than a group (Figure 2-14). This improves security by not requiring
the service account to run with unnecessary elevated privileges.

47



Leiter c02.tex V3 - 03/25/2009 11:37am Page 48

Chapter 2: Installing SQL Server 2008

Figure 2-13: Cluster Resource Group screen.

Figure 2-14: Cluster Security Policy screen.

48



Leiter c02.tex V3 - 03/25/2009 11:37am Page 49

Chapter 2: Installing SQL Server 2008

The Cluster Security Policy configuration screen is the last dialog that is different from a stand-alone
installation. The summary screen (Figure 2-15) is presented after the services screen, and then the
installation begins.

Figure 2-15: Cluster Installation Rules.

Once SQL Server is successfully installed, it can be controlled just like any other SQL Server instance.
The only difference is the ability of SQL Server to fail over to the second node automatically in the case
of fault tolerance, or manually for scheduled maintenance events.

Sample Databases
Because SQL Server no longer ships with sample databases, in order to follow along with
many of the examples in the book, you will need to download and manually install the sam-
ple databases from Mirosoft’s CodePlex site. There are three databases available that can be
found at www.codeplex.com/MSFTDBProdSamples. These include the AdventureWorks2008,
AdventureWorksLT2008, and AdventureWorksDW2008 databases. It is important to note that these
are not the same databases that shipped with SQL Server 2005. Although they may look similar on the
surface, they have a different schema, and they have been optimized for SQL Server 2008. Each of these
comes in a platform-specific version (x86, x64, ia64) and gives you several options for download types
(.zip and .msi). I prefer the MSI installer myself, as it makes it easy to download and deploy. There is
also an installer for some sample scripts that are used in conjunction with the databases.

In most cases, you’ll be using the AdventureWorks 2008 OLTP database, but the Analysis Services
chapter uses the AdventureWorks DW database.

49



Leiter c02.tex V3 - 03/25/2009 11:37am Page 50

Chapter 2: Installing SQL Server 2008

Installation Review
Not every installation goes flawlessly, and not everything may behave as expected. After installing SQL
Server, it is important to review the installation to ‘‘inspect,’’ or ensure that what you expected to happen,
actually happened. Did the services get installed with the proper credentials? Are they configured to
auto-start? Are the program files and database files where they were expected to be? This may seem
to be a little overkill, but ‘‘An ounce of prevention is better than a pound of cure.’’

Summary
Careful planning prior to the installation process prevents the need to uninstall and start over. It also
prevents a continuous struggle with an installation that is ‘‘not quite right.’’ In later chapters, the opti-
mization process, disk and memory access, as well as disaster recovery are discussed in great detail, and
the connection to a well-designed infrastructure for installation will become increasingly evident. One
of the most important aspects of installing SQL Server is having an understanding of the effects of the
options you select. Too many times I’ve seen production environments where a junior administrator who
was given the install media and no direction installed every feature under the sun. This was wasteful and
unnecessary.

This chapter described physical storage options, which are a big part of any database configuration.
By placing SQL data files and log files on separate physical disks, you decrease the chances of a major
disaster and increase the speed of recovery. By placing SQL Server’s assets on separate controllers and
arrays, you also increase the performance of SQL Server by reducing resource conflicts and maximizing
database throughput. It’s always a balancing act to try to get the most out of your system performance
while staying within a reasonable budget.

When it comes to availability, understand that Microsoft worked very hard to make SQL Server
‘‘cluster-friendly.’’ It is fairly easy to configure a failover cluster, but remember that a full discussion of
the Windows cluster was not provided. Many resources are available in the Windows Help files, online
resources such as TechNet, and in print that cover the topic of clustering in great detail. It is strongly
recommended that you research them thoroughly prior to any SQL Server cluster installation.

Chapter 3 will introduce you to the tools used to administer, manage, monitor, and maintain SQL Server
2008. You will learn about a number of improvements that have been made to facilitate the administration
of SQL Server 2008.

50



Leiter c03.tex V3 - 03/25/2009 11:39am Page 51

3
SQL Server 2008 Tools

Several years ago, when I was beta testing SQL Server 2005, I was surprised to see familiar tools like
the Enterprise Manager, a Microsoft Management Console (MMC)-based interface, and the SQL
Query Analyzer done away with. In fact, with the exception of the SQL Server Profiler, pretty much
everything had been replaced with a new set of applications that were . . . well, different.

It’s been my experience that most database administrators (DBAs) typically fall into one of two dis-
tinct groups. The first group is made up of database administrators whose background is system
and network administration. The second group is made up of application and database developers
who have become responsible for the administration of a SQL Server infrastructure, be it a produc-
tion system or a test-bed environment. DBAs that fell into the first category, myself included, often
responded with trepidation about the new SQL Server management tools, and with good reason.
Most of the new tools available were based on the Visual Studio interface. In fact, one of them was
indeed Visual Studio (although rebranded to sound less intimidating). What was Microsoft trying
to do — make us developers?

Yes. A database administrator must be about half system administrator and half developer in order
to be completely successful. Several years ago, when Microsoft announced its Microsoft Certified
Database Administrator (MCDBA) certification, it was no real surprise that the required exams
were both from the administrative side of database administration and the programming side.
Microsoft’s intent was clear. To be a database administrator worth his or her salt, it would be abso-
lutely imperative to understand database design and database application development. This was
where Microsoft wanted DBAs to go, and they made sure we had the tools to get there. Ironically,
the current generation of certifications, the Microsoft Certified Information Technology Profes-
sional (MCITP), includes two distinct specializations for Database Administrators and for Database
Developers.

There is no doubt that Microsoft considers database administrators to be, at least marginally, devel-
opers. However, this does not mean that the tools are not intuitive and easy to use. In fact, after
having spent more than three years working with them, I can’t ever see myself going back to what
some of us jokingly referred to as Enterprise Mangler. The tools that you will use today to man-
age SQL Server 2008 (and supported previous versions) are more intuitive and easier to use. DBAs
will also be able to take advantage of functionality that developers have become used to, such as
source control, solution files that manage multiple related files, and a fully functional Integrated
Development Environment (IDE).



Leiter c03.tex V3 - 03/25/2009 11:39am Page 52

Chapter 3: SQL Server 2008 Tools

If you’ve never worked with SQL before or haven’t managed SQL since SQL Server 2000, the new tools
may seem daunting. In reality, they are more streamlined, more efficient, and yet more powerful than
anything we’ve had before.

SQL Server Management Studio
SQL Server Management Studio completely replaces Enterprise Manager and Query Analyzer from
SQL Server 2000 and earlier. It also replaces some of the functionality formerly found in other applica-
tions, such as SQL Analysis Manager. The bulk of work that I often do is performed through SQL Server
Management Studio, or SSMS.

On first glance, the SQL Server Management Studio interface looks a lot like the Visual Studio IDE. It
should, since it is, in actuality, a Visual Studio shell. The Visual Studio shell brings many very useful
tools and features to the creation and organization of database objects, as well as the full feature set of
the old tools.

When the SQL Server Management Studio is first launched, the default view is a great deal like the old
Enterprise Manager with a slight Query Analyzer influence (see Figure 3-1).

Figure 3-1: SQL Server Management Studio.

Because there are many different windows that can be viewed in the Management Studio, the manage-
ment of screen real estate becomes critical. Most of the windows have the capability to either be pinned
open or configured to fly out when the mouse pointer is placed over the menu bar, or auto-hide when
the mouse cursor is placed elsewhere. If you are familiar with the Visual Studio Integrated Development
Environment (IDE), this will all be very familiar; if not, it may take a little while to get used to.

If you are unfamiliar with the Visual Studio interface, here’s a tip: Any window that supports the pinned
or unpinned option will have a pin at the top right of the window. When the window is pinned, the pin

52



Leiter c03.tex V3 - 03/25/2009 11:39am Page 53

Chapter 3: SQL Server 2008 Tools

will appear vertically oriented. When the window is unpinned, it will be horizontal (see Figure 3-2), and
the toolbar will auto-hide or fly out, depending on the mouse cursor location.

Pinned

Unpinned

Figure 3-2: Object Explorer with a
pinned and unpinned window.

As mentioned before, the Visual Studio interface has a bit of a learning curve, but once you get used
to it, it’s hard to imagine any interface that works as well. The biggest advantage of the interface is
that it’s heavily customizable. Everything from window placement to colors can be altered to suit your
personal management style. I used to drive my old manager (and cowriter), Dan, crazy by setting my
Query window to a black background with bright green text (yes, it was hideous). Being able to hide
and unhide windows with little effort offers a huge benefit. This conserves a great deal of screen real
estate without having to click several menus to expose the features you want. The expanding popularity
of Netbook computers with smaller screen sizes and limited resolution makes this a more and more
attractive feature for those of us who tend to administer from the road.

Tool Windows
SQL Server Management Studio offers many different tool windows that facilitate the development and
modification of database objects, as well as the effective management of SQL Server. The various views
are accessible from the View menu as well as the Standard Toolbar. Each window can be configured
as Dockable, which is the default, but can also be configured as a Tabbed Document or a Floating win-
dow. You can change the state of the window by clicking on the down arrow next to the pushpin in the
window’s title bar, or if the window is floating, by right-clicking on the title bar (Figure 3-3).

Figure 3-3: Window placement
options.

53



Leiter c03.tex V3 - 03/25/2009 11:39am Page 54

Chapter 3: SQL Server 2008 Tools

A dockable window means that the window can be dragged and docked at almost any location in the
environment. If you don’t like the Object Explorer window on the left of the Studio, just drag it to the
right, top, or bottom, and dock it there. When dragging a tool window, a guide diamond will appear
in the center of the screen representing the dockable areas. Dragging the window over one of the area
representations (see Figure 3-4) will cause a shadow to appear in that area, indicating that the window
can be docked there by releasing the mouse button.

Figure 3-4: Dockable window.

Changing a windows property to Tabbed Document mode changes the window into a tab on the main
window. The Floating window option specifies that the tool window is not anchored anywhere and can
be moved around the main interface.

Object Explorer
The Object Explorer (see Figure 3-2) is more than just a way to explore the database objects on a server.
The Object Explorer is also the tool that will be used to initiate most database management tasks. It is
arranged in a standard tree view with different groups of objects nested in folders.

The Object Explorer’s functionality is exposed through the context menu. Right-clicking on any object
or folder within the Object Explorer exposes a list of context-sensitive options, from creating tables and
users to configuring replication and Database Snapshots. The context menu also presents the ability to
create scripts that manipulate. For example, right-clicking on a table exposes a context menu that allows
the user to either view or modify the table structure through the graphical interface, or create scripts to
perform actions against the table or its data (perhaps to be saved and executed later). This functionality
exists for virtually every object that is visible in the Object Explorer.

Another great feature of SQL Server Management Studio that is exposed through the Object Explorer
and other areas of the Studio interface is the ability to create scripts based on actions performed in the
graphical designers. For example, right-clicking on the table folder and choosing to create a new folder
launches a graphical interface where the table structure can be defined. Once the table design is complete,

54



Leiter c03.tex V3 - 03/25/2009 11:39am Page 55

Chapter 3: SQL Server 2008 Tools

you can either save the table (which creates it) or click the ‘‘Generate Change Script’’ button on the Table
Designer toolbar (which will write the appropriate T-SQL to complete the task). Using the ‘‘Generate
Change Script’’ option can be beneficial when creating objects in a test or development environment that
will also need to be created in a production environment.

Likewise, when working with other objects in Management Studio, a Script button will appear at the
top of the respective designer, which will cause the actions performed in the designer to be scripted to
a new Editor window. This feature is particularly useful when several different objects of the same type
are to be created. The first one can be designed in the designer, the script generated for it, and that script
modified to create the remaining objects. It can also be a good learning tool, by allowing inexperience
database administrators to learn the T-SQL equivalent of a task that is performed through the Graphical
User Interface (GUI).

Try It Out Creating a Script
In the following example, you use the Object Explorer to create a script for a new database called
DVDCollection:

1. In Object Explorer, right-click Databases. In the context menu that appears, click ‘‘New
Database.’’

2. The New Database dialog appears (see Figure 3-5).

Figure 3-5: New Database dialog.

55



Leiter c03.tex V3 - 03/25/2009 11:39am Page 56

Chapter 3: SQL Server 2008 Tools

3. Enter DVDCollection for the name of the database.

4. Click on the Script button at the top of the New Database dialog.

5. The Script button causes the appropriate T-SQL code to be written to a new Query window.

Clicking the down arrow to the right of the Script button (Figure 3-5) gives you the option of
sending the script to a variety of locations.

6. In the New Database dialog box, click Cancel. (Clicking OK will cause the database to be created.)

The script remains, but the database is not created unless the script is executed.

Code Editor
The Code Editor in SQL Server Management Studio provides the ability to open, edit, or create new
queries. The types of queries supported by the Editor are:

❑ Database Engine Queries — These are written in Transact-SQL (T-SQL) against a SQL Server
OLTP database.

❑ Analysis Services MDX Queries — These use the MultiDimensional eXpression (MDX) language.
MDX queries are used to retrieve information from multidimensional objects created in Analysis
Services.

❑ Analysis Services DMX Queries — These are created by using extensions to the Structured
Query Language (SQL) called Data Mining eXtensions (DMX). DMX queries are written to return
information from data-mining models created in SQL Server Analysis Services databases.

❑ Analysis Services XMLA Queries

❑ SQL Server Compact — As the name implies, these can perform Transact-SQL queries using a
SQL Server Compact Edition database file as a data source.

The Code Editor is essentially a word processor. It provides color coding of syntax, multiple query win-
dows, and partial code execution when you highlight the desired code and click on the Execute button
or press [F5]. The SQL Server 2008 Books Online documentation will often refer to the Code Editor as the
Query Editor (its most common moniker), Text Editor, or simply the Editor, depending on what aspect of
SQL Server you are reading about.

The basic functionality that the Code Editor brings is the same for all the possible types of queries
it supports. However, more complete functionality is provided for specific languages. For example,
when creating MDX, DMX, or XMLA queries, the Code Editor provides basic IntelliSense functions
such as those found in Visual Studio. SQL Server 2008 also introduces, for the first time, IntelliSense for
Transact-SQL, which includes code completion (for object names) and error handling. For example, while
typing the following script, as soon as you type the H in HumanResources, a dropdown list appears with
the HumanResources schema selected. Pressing the period (.) key results in a list of objects that exist
within the HumanResources schema, from which you can use the arrow keys to highlight and select the
Employee table.

56



Leiter c03.tex V3 - 03/25/2009 11:39am Page 57

Chapter 3: SQL Server 2008 Tools

USE AdventureWorks2008

Select * from HumanResources.Employee
Where Gender = ‘M’;
GO

Additionally, if you mouse-over the column name, Gender, the Query Editor provides you with metadata
about the gender column, as shown in Figure 3-6.

Figure 3-6: IntelliSense displaying column information.

Right-clicking on the Code Editor window, when that window is associated with a Database Engine
query, results in a context menu that includes the ‘‘Design Query in Editor’’ option (see Figure 3-7). The
Query Designer is also available from the SQL Editor toolbar described later. The Query Designer can be
very helpful when writing queries against databases that are not familiar to the query writer.

Figure 3-7: Query window context
menu.

57



Leiter c03.tex V3 - 03/25/2009 11:39am Page 58

Chapter 3: SQL Server 2008 Tools

Solution Explorer
In the past, DBAs and database developers who had to keep track of saved queries that were used
together as part of a batch process, or required source control and versioning, often had to manage
multiple independent files manually. I don’t know how many times I’ve browsed a common file system
and found scattered .sql files stored here and there. SQL Server Management Studio takes full advantage
of Visual Studio’s solution system by providing the means of grouping various connection objects and
scripts into a single solution called a SQL Server Management Studio Solution. Each solution can have one
or more projects associated with it. For example, if you are developing several objects for a new applica-
tion that includes both Database Engine and Analysis Engine objects, you can create a new solution that
links them all together by creating a new SQL Server Management Solution with one or more associated
Projects (see Figure 3-8).

Figure 3-8: Associating projects and solutions.

If no solution is currently open, the Management Studio will create a new one. As you can see in
Figure 3-8, there are three types of projects to choose from:

❑ SQL Server Script — These projects contain T-SQL Database Engine queries.

❑ Analysis Services Script — These projects contain MDX, DMX, and XMLA analysis queries.

❑ SQL Server Compact Edition Script — These projects contain SQL Server Compact queries, as
you might expect.

The solution is managed through a SQL Server Management Studio Solution file with an .ssmssln exten-
sion. The example shown in Figure 3-8 created a new solution folder called AdventureWorks Automation
that contains a project folder called AdventureWorks Data Integration. By default, the solution folder and
the first project folder will have the same name, so it is generally a good idea to change the name of the

58



Leiter c03.tex V3 - 03/25/2009 11:39am Page 59

Chapter 3: SQL Server 2008 Tools

solution. The ‘‘Create directory for solution’’ option can also be cleared and a solution folder specified. In
this way, only a project folder will be created in the specified directory. If a solution is already opened,
creating a new project can add the project to the solution, or be configured to create a whole new solution
and close the open one. Solutions can contain many projects. For example, a project called AdventureWorks
Data Preparation can be added to organize the files for the sales piece of the solution (see Figure 3-9).

AdventureWorks
Projects

Figure 3-9: Multiple projects.

Projects contain three folders:

❑ Connection Folders — These folders store objects that contain connection parameters for the
queries in the solution. For example, if you look at the AdventureWorks Data Preparation
project shown in Figure 3-9, you will note that there are two connection objects, one for the
AughtEight\Administrator account and another for a SQL account named ChrisL.

❑ Queries Folders — Each of the queries in the Queries folders of the project will use one of those
configured connection objects. The query will run in the context of the associated connection
object.

❑ Miscellaneous Folder — This folder can be used to store just about any other file that is perti-
nent to the project. This may be project documentation, XML files, or even the .NET assemblies
used to create managed-code procedures.

The solution folder contains two files:

❑ Solution File — One file is the solution file, which, in this case, is called
AdventureWorks Automation.ssmssln. This contains a list of all the projects in the solution
and their locations.

❑ SQL Solution Options File — The second file is the SQL Solution Options file,
AdventureWorks Automation.sqlsuo. The solution options file contains information about
the options that customize the development environment. This file is hidden by default.

The solution folder will contain a project folder for every project added to the solution. The project
folder contains all the project files, including the project definition file. The project definition
file, or SQL Server Management Studio SQL Project file, is an XML file with the .ssmssqlproj

59



Leiter c03.tex V3 - 03/25/2009 11:39am Page 60

Chapter 3: SQL Server 2008 Tools

extension. In the previous AdventureWorks Data Integration project example, this file is called
AdventureWorks Data Integration.ssmssqlproj. The project definition file contains the connection
information, as well as metadata about the remaining files in the project.

Properties Window
The Properties window is linked to the Solution Explorer and simply displays the properties for the
currently selected item in the Solution Explorer window. Editable properties will be bolded.

Registered Servers
Multiple servers can be registered and managed with the Management Studio. Right-clicking on any
blank area in the Registered Servers window or on any server group name (see Figure 3-10) will expose
a context menu that allows for the addition of new server registrations. It also allows for the creation of
server groups. The Registered Servers window is not visible by default. To open it, use the View menu,
and select Registered Servers or press [Ctrl]+[Alt]+G.

Figure 3-10: Registered Servers
window.

If you have multiple servers in your organization, server groups can be very useful. For example, server
registrations can be segregated so that all the test and development servers are in one group and the pro-
duction servers are in another, or servers could be grouped based on function or department. Instances of
the Database Engine, Analysis Services, Reporting Services, Integration Services, and SQL Server Com-
pact can be registered in the Registered Servers window (Figure 3-10). Once registered, the Registered
Servers window provides the ability to manage the associated services or launch other SQL Server tools
associated with the respective instance.

A new feature of SQL Server 2008 includes the ability to use policy-based management, enforce-
able on multiple servers simultaneously through the use of Central Management servers. Central
Management servers can be registered in the Registered Servers window and can also have Server
Groups created to group together services with similar configuration requirements. Policy-based
administration can be used to apply policies to the Central Management server, the Server Group, or the
individual registered SQL Server. More information about Policy-Based administration is presented in
Chapter 8.

Bookmark Window
When working with very large scripts in the Code Editor, it is very useful to be able to mark a location
in the script. Bookmarks enable this functionality. The Bookmark window is made visible from the View
menu and is enabled when working with any SQL Server script type. Any number of bookmarks can

60



Leiter c03.tex V3 - 03/25/2009 11:39am Page 61

Chapter 3: SQL Server 2008 Tools

Figure 3-11: Bookmark window.

be created and then renamed with an intuitive name that identifies the bookmark (see Figure 3-11). If
the script is part of a solution, the bookmarks are saved with the solution in the Solution Options file.
Bookmarks can be added to a line by pressing [Ctrl]+K twice. Navigating bookmarks is easy. In addition
to selecting the bookmarks in the Bookmark window, you can use the key combinations of [Ctrl]+K,
[Ctrl]+P and [Ctrl]+K, [Ctrl]+N to move to the previous and next bookmarks, respectively. You can also
organize your bookmarks into multiple folders for each project, which can make it easier to navigate
through bookmarks by function.

Toolbox
The Toolbox window (see Figure 3-12) consists of maintenance plan tasks that can be dragged and
dropped into maintenance plan subtasks using the Maintenance Plan Designer, which is described in
more detail in Chapter 8.

Figure 3-12: Toolbox
window.

61



Leiter c03.tex V3 - 03/25/2009 11:39am Page 62

Chapter 3: SQL Server 2008 Tools

Error List
The Error List can be handy when trying to troubleshoot a query, even simple ones like the example in
Figure 3-13, by providing descriptive information about the error, as well as line and position number in
the query text. As you can see, the three lines of code have generated four errors. You can now resolve
these errors before you execute your query.

Figure 3-13: Error List window.

Object Explorer Details
The Object Explorer Details window replaces the Summary View from SQL Server 2005. It is a great
deal like the List or Detail view in Windows Explorer; however, it also provides a very useful reporting
feature. This feature allows the rendering of various server and database reports. The report feature is
enabled when right-clicking on an object in the Object Explorer or in the Object Explorer Details window
that has reports associated with it, and selecting the Reports option from the context menu. The following
table contains a list of all the supported reports and where they can be found:

Report Object Reports

Server Server Dashboard

Configuration Changes History

Schema Changes History

Scheduler Health

Memory Consumption

Activity — All Blocking Transactions

Activity — All Cursors

Activity — Top Cursors

62



Leiter c03.tex V3 - 03/25/2009 11:39am Page 63

Chapter 3: SQL Server 2008 Tools

Report Object Reports

Activity — All Sessions

Activity — Top Sessions

Activity — Dormant Sessions

Activity — Top Connections

Top Transactions by Age

Top Transactions by Blocked Transactions Count

Top Transactions by Locks Count

Performance — Batch Execution Statistics

Performance — Object Execution Statistics

Performance — Top Queries by Average CPU Time

Performance — Top Queries by Average I/O

Performance — Top Queries by Total CPU Time

Performance — Top Queries by Total I/O

Service Broker Statistics

Transaction Log Shipping Status

Server.Database Disk Usage

Disk Usage by Top Tables

Disk Usage by Table

Disk Usage by Partition

Backup and Restore Events

All Transactions

All Blocking Transactions

Top Transactions by Age

Top Transactions by Blocked Transactions Count

Top Transactions by Locks Count

Resource Locking Statistics by Objects

Object Execution Statistics

Database Consistency History

Index Usage Statistics

Index Physical Statistics

Continued

63



Leiter c03.tex V3 - 03/25/2009 11:39am Page 64

Chapter 3: SQL Server 2008 Tools

Report Object Reports

Schema Changes History

User Statistics

Server.Database.Service Broker Service Broker Statistics

Server.Database.Storage.Full Text Catalogs Active Full Text Catalogs

Server.Security Login Statistics

Login Failures

Resource Locking Statistics by Logins

Server.Management Tasks

Number of Errors

Server.Management.Data Collection Server Activity History

Disk Usage Summary

Query Statistics History

SQL Server Agent Job Steps Execution History

Top Jobs

Web Browser
SQL Server Management Studio also includes the ability to launch a Web Browser window within
the context of the management studio. The browser uses the Internet Explorer renderer, if desired,
to minimize the number of open applications and to allow direct access to Internet content from
within the Management Studio application. The Web Browser window is made visible from the
View menu (or by pressing [Ctrl]+[Alt]+R). You can use the address bar at the top of the window
to enter a URL, or you can use the Web Browser Search button to take you to the MSDN home
page.

Although using a browser within Management Studio might seem unnecessary, it does offer some ben-
efits. For example, it allows tabbed browsing of content or newsgroups that may be pertinent to the
current solution. You can search or ask questions without having to switch back and forth between Man-
agement Studio and Internet Explorer. Keep in mind that the Web Browser window is just an instance
of Internet Explorer embedded in Management Studio. The behavior of the Web Browser window is the
same as Internet Explorer, and the security configuration of Internet Explorer is in full effect in the Web
Browser window. However, because a separate executable is not launched, it may actually be more effi-
cient from a resource perspective to launch the Web Browser within the context of Management Studio.
For example, on my test system, when I opened up a new instance of IE and browsed to www.msdn.com,
the process consumes about 13 MB of memory. Launching the Web Browser window in SSMS and click-
ing on the Web Search button in the toolbar increased the memory utilization for the SSMS process by
only 3 MB.

64



Leiter c03.tex V3 - 03/25/2009 11:39am Page 65

Chapter 3: SQL Server 2008 Tools

Template Explorer
The Template Explorer (see Figure 3-14) contains hundreds of SQL Server, Analysis Server, and SQL
Compact scripts. Each script is grouped into folders based on their function. The template scripts can be
opened by being dragged onto an open Query window. If no Query window is open, the templates can
be opened by double-clicking with a mouse, using the Edit menu, or right-clicking on a context menu, all
of which cause a new Query window to open.

Figure 3-14: Template Explorer.

When using a template, you can modify the text directly in the Query Editor, or you can use the ‘‘Specify
Values for Template Parameters’’ option to replace the placeholders in the template (see Figure 3-15).
This dialog can be launched from the SQL Editor toolbar or through the Query menu.

Toolbars
SQL Server Management Studio includes 14 preconfigured toolbars that contain features from various
menus. Each toolbar can be displayed or hidden by using the View � Toolbars menu (see Figure 3-16).
The existing toolbars can be customized to display only the buttons that are most often used, or you can
create a new toolbar that has only the commands you typically use.

65



Leiter c03.tex V3 - 03/25/2009 11:39am Page 66

Chapter 3: SQL Server 2008 Tools

Figure 3-15: Parameter replacement.

Figure 3-16: Toolbars menu.

66



Leiter c03.tex V3 - 03/25/2009 11:39am Page 67

Chapter 3: SQL Server 2008 Tools

Try It Out Creating a Custom Toolbar
Create a new custom toolbar by completing the following steps:

1. Select the Customize command on the View � Toolbars menu. This will launch the Customize
window.

2. On the Customize window, click on the New button (see Figure 3-17), give your toolbar a new
name (for this example, I just created one called My Toolbar), and click OK. Your new toolbar will
show up in the Toolbars list, as well as a floating toolbar on your screen.

Figure 3-17: Custom toolbar window.

3. With your new toolbar highlighted, select the Commands tab on the Customize window. Two
panes are visible on the Commands tab: Categories and Commands. Each category contains com-
mands specific to that category. For example, the File category contains commands such as Open
File, Save Project, and so on.

4. Select the Edit Category, and drag several commands to the new custom toolbar created in Step
2 (see Figure 3-18). You can also right-click on a button on the toolbar to change some of the
options of that toolbar — for example, changing the name or button image used for that com-
mand. Once you have all the commands that you want on the new toolbar, you can drag it and
dock it in a desired location.

67



Leiter c03.tex V3 - 03/25/2009 11:39am Page 68

Chapter 3: SQL Server 2008 Tools

Figure 3-18: Custom edit toolbar.

Creating new toolbars or customizing existing ones can help you manage your screen real estate by
allowing you to create more useful and efficient toolbars.

Database Diagram Toolbar
The Database Diagram toolbar (see Figure 3-19) exposes a great deal of functionality for use on database
diagrams.

Figure 3-19: Database Diagram toolbar.

The toolbar is not used just for diagramming the database, but also for modifying or creating database
objects from within the diagram interface. The Database Diagram toolbar features are described in the
following table:

Feature Purpose

New Table Enables the creation of new tables from within the database diagram.

Add Table Adds an existing table from the database to the diagram.

Add Related Tables If a table in the database diagram is related to one or more additional tables
by a declarative Foreign Key constraint, clicking on the Add Related Tables
button will add those related tables to the diagram.

68



Leiter c03.tex V3 - 03/25/2009 11:39am Page 69

Chapter 3: SQL Server 2008 Tools

Feature Purpose

Delete Tables from
Database

Not only removes the table from the diagram, but deletes the table
and its contents as well. Use with caution.

Remove from Diagram Removes the selected table from the diagram, but not the database.

Generate Change
Script

Any changes made to database objects in the diagram (such as the creation,
deletion, or modification of attributes) can be sent to a script.
If changes are made to underlying objects and the diagram is saved, a prompt is
shown asking to confirm changes to the underlying objects.

Set/Remove Primary
Key

Sets or removes the primary key assignment to the selected column.

New Text Annotation Adds a textbox for annotation to the database diagram.

Table View Enables the changing of table presentation in the diagram, including
a customized view to configure exactly which aspects of the table are displayed.
The default is Column Names.

Show Relationship
Labels

Displays or hides the name of the foreign key constraints.

View Page Breaks Displays or hides page break lines to enable the organization of diagrams for
printing.

Recalculate Page
Breaks

Re-centers table objects onto as few pages as possible after being manually
arranged on the diagram.

Autosize Selected
Tables

Re-sizes the selected table so that all rows and columns are visible.

Arrange Selection Arranges selected tables so they do not overlap and are viewable
in the diagram.

Arrange Tables Arranges all tables so they do not overlap and are viewable in the diagram.

Zoom Increases or decreases the zoom factor on the displayed diagram.

Relationships Launches a dialog that displays existing foreign keys defined on a selected table
and enables the defining of additional foreign keys.

Manage Indexes and
Keys

Launches a dialog that displays existing primary and unique keys defined on a
selected table and enables the defining of additional keys.

Manage Fulltext
Indexes

Launches a dialog that displays existing full-text indexes on a selected table and
enables the defining of additional full-text indexes on full-text index-enabled
databases.

Manage XML Indexes Launches a dialog that displays existing XML indexes on a selected table and
enables the defining of additional XML indexes.

Manage Check
Constraints

Launches a dialog that displays existing Check Constraints on a selected table and
enables the defining of additional Check Constraints.

Manage Spatial
Indexes

Launches a dialog that displays existing Spatial indexes on a selected table and
enables the defining of additional indexes on Spatial data types.

69



Leiter c03.tex V3 - 03/25/2009 11:39am Page 70

Chapter 3: SQL Server 2008 Tools

Debug Toolbar
The Debug toolbar, as shown in Figure 3-20, includes several tools useful when debugging projects in
SQL Server Management Studio that let you step through long queries to help identify potential problem
areas.

Figure 3-20: Debug toolbar.

The Debug toolbar’s commands are described in the following table:

Command Purpose

Start Debugging Begins debug mode and runs the code in the Query Editor against the debugger
until a breakpoint is encountered.

Break All Sets the debugger to break all processes to which it is attached.

Stop Debugging Exits Debug mode.

Show Next Statement Moves the cursor to the next statement.

Step Into Runs the next statement.

Step Over Skips the statement immediately after the current one and executes the
statement after next.

Step Out Steps out to the next highest calling level in the query structure.

Breakpoints In Standard mode, this opens the Breakpoints window, which allows you to
view and manage Breakpoints in the current query. In Debug mode, this
provides a breakpoint menu that includes the ability to open the Locals, Call
Stack and Threads window.

Debug Location Toolbar
The Debug Location toolbar (Figure 3-21) displays thread and stack frame information about the current
command being executed in the Debug window.

Figure 3-21: Debug Location toolbar.

Help Toolbar
The Help toolbar (see Figure 3-22) provides a very easy and convenient mechanism for consulting online
help articles while using the Management Studio.

Figure 3-22: Help toolbar.

70



Leiter c03.tex V3 - 03/25/2009 11:39am Page 71

Chapter 3: SQL Server 2008 Tools

The Help toolbar’s commands are described in the following table:

Command Purpose

Web Browser
Back/Web Browser
Forward

If the Web Browser window is opened in Management Studio, the Web
Browser Back and Forward commands can be used to move from a
viewed Web page to the previously viewed Web page, and vice versa.

Web Browser Stop Stops the loading of a Web page in a Web Browser window.

Web Browser Refresh Refreshes the current Web Browser window.

Web Browser Search Launches the MSDN web site in a new Web Browser window.

Text Size Changes of the size of text in the Web Browser window. Clicking this
repeatedly will cycle the font size from Smallest, Smaller, Medium,
Larger, and Largest.

How Do I The ‘‘How Do I’’ command launches SQL Server Books Online and
loads up the How Do I section, which allows the user to navigate
through articles that explain how to perform a myriad of actions with
SQL Server 2008.

Search Launches the search feature of SQL Server Books Online.

Index Launches the SQL Server Books Online Index.

Contents Launches the SQL Server Books Online Table of Contents.

Help Favorites Launches SQL Server Books Online and opens the Help Favorites
window
for navigating any saved favorites.

Add to Help Favorites Adds the currently viewed help page to the Help Favorites.

Save Search Saves the current search in the SQL Server Books Online search page to
the Help Favorites.

Sync with Table of
Contents

If the SQL Server Books Online Table of Contents is visible, this button
will navigate to the location in the Table of Contents that the current
article window is opened to.

Ask a Question Opens the Search Community Forums home page at the MSDN web
site. Here you can create a profile and ask questions of other SQL Server
professionals or answer other people’s questions.

Check Question Status Once you have an MSDN Community Forum account, your questions
are associated with your account, so you can easily check back to see if
anyone has replied to your question.

Send Feedback The Send Feedback command allows you to provide feedback to the
SQL Server product team about SQL Server 2008.

Query Designer Toolbar
The Query Designer toolbar (see Figure 3-23) is enabled when a table is opened for editing with Object
Explorer.

71



Leiter c03.tex V3 - 03/25/2009 11:39am Page 72

Chapter 3: SQL Server 2008 Tools

Figure 3-23: Query Designer toolbar.

To open a table for editing, follow these steps:

1. Right-click on the table you want to open in Object Explorer.

2. Click ‘‘Edit Top 200 Rows.’’

If the Query Designer was not visible, it will be when the table is opened. If it was visible, it will now be
enabled. Although opening a table in a test and development environment might be acceptable, opening
a table in this manner in a production environment is never recommended. Opening a table with the
Object Explorer dumps the data from the table in to an updatable scrollable cursor. What this means
is that while the table data is exposed in the results window, any change to the displayed data is also
made to the underlying data in the table. There is no confirmation message or warning. The data is just
modified. This can be very dangerous. Displaying the entire contents of the table can also consume a great
deal of server resources if the table is large. The default behavior of SQL Server Management Studio only
exposes the first 200 rows of a table for editing, but this can be changed through the Tools � Options
menu. As a general rule, if the entire contents of a table need to be exposed for quick viewing, the best
way is to write a query with no filters, such as the following:

USE AdventureWorks2008
GO
SELECT * FROM Person.Person

This exposes the same information as opening the table, but does not populate an updatable cursor, so
the results are Read Only. If the data in that table needs to be updated, an update command is more
appropriate than modifying the data in an open table results window.

The Query Designer toolbar features are described in the following table:

Feature Purpose

Show Diagram
Pane

Displays or hides the Diagram Pane, which can be used to add or remove
tables from the query, add derived tables, and configure table join criteria.

Show Criteria
Pane

Displays or hides the Criteria Pane, which can be used to alias column
names, establish sort orders, and configure filter criteria.

Show SQL Pane Displays or hides the SQL Pane, which displays the resultant SQL syntax
from the Diagram Pane. The SQL syntax can also be manipulated in the
SQL Pane, resulting in changes to the Criteria and Diagram Panes.

Show Results
Pane

Displays or hides the results of the query if it has been executed.

Change Type Allows changing the type of query from SELECT to INSERT, DELETE, or
UPDATE.

72



Leiter c03.tex V3 - 03/25/2009 11:39am Page 73

Chapter 3: SQL Server 2008 Tools

Feature Purpose

Execute SQL Executes the query against the database.

Verify SQL
Syntax

Validates the syntax of the query, but does not execute it.

Add/Remove
Group By

Adds a GROUP BY expression and formats the query so that non-aggregated
columns in the SELECT list are present in the GROUP BY list.

Add Table Adds an existing table to the Diagram Pane and SQL Pane.

Add New
Derived Table

Adds an empty table to the Diagram Pane and the shell syntax for creating
a derived table subquery to the SQL Pane.

Source Control Toolbar
The Source Control toolbar (see Figure 3-24) is enabled when working with scripts and a Source Control
plug-in has been configured such as Visual Source Safe 2005. The addition of source-control function-
ality to SQL Server projects is a great step forward in recognizing the need for a structured solution
environment in the development of database solutions.

Figure 3-24: Source Control toolbar.

The following example uses Visual Source Safe 2005 as the source-control tool, but there are other
source-control applications available that will interact with SQL Server Management Studio. A full
description of Visual Source Safe 2005 configuration and use is beyond the scope of this book, so it will
be limited to just the interaction with SQL Server Management Studio.

To configure Management Studio to use source control:

1. Click File, and click Launch Microsoft Visual Source Safe. The Add Visual SourceSafe
Database Wizard will launch.

2. Click Next on the Welcome screen. The Database Selection screen will appear, asking for the
location of an existing Source Safe database. If you or your organization has already config-
ured a source-control database, select the ‘‘Connect to an existing database’’ option. If this is
a new installation, check the ‘‘Create a new database’’ option (see Figure 3-25).

3. The next step is either to choose an existing source control share location or to create one.
After choosing to either use an existing share or to create a new one, the summary screen for
the Wizard will appear.

4. Clicking Finish on the Wizard will launch the Visual SourceSafe Explorer. The Visual
SourceSafe Explorer can be used to create and manage project folders for both SQL Server
Management Studio and Visual Studio solutions.

In a previous example, I created a Management Studio solution called AdventureWorks Automation. Now
that Visual SourceSafe is configured for use with Management Studio, I can add the solution to the

73



Leiter c03.tex V3 - 03/25/2009 11:39am Page 74

Chapter 3: SQL Server 2008 Tools

source-control database to control the modification of the included files and to provide structured version
control.

Figure 3-25: Source-control database selection.

Much of the functionality of the Source Control toolbar is only enabled if the current project has already
been added to the source-control database.

To add a solution to source control, right-click on the solution in Solution Explorer and select ‘‘Add
Solution to Source Control.’’ After logging in to source control, choose a location for the solution (see
Figure 3-26) and click OK.

Figure 3-26: Add solution to source control.

Now that the solution has been added to source control, the Source Control toolbar is fully enabled for
managing the solution.

74



Leiter c03.tex V3 - 03/25/2009 11:39am Page 75

Chapter 3: SQL Server 2008 Tools

The features available on the Source Control toolbar are described in the following table:

Feature Purpose

Change Source
Control

Displays a dialog that enables the linking of new and existing items in the
Solution Explorer to a source-control database folder.

Get Latest
Version

Opens the latest version of the item or items selected in the Solution
Explorer.

Get Returns a list of all versions of the selected item and allows the selection of
a particular version.

Check Out for
Edit

Opens the selected item for editing and marks its status in the
source-control database as ‘‘Open for Edit,’’ preventing other users from
editing it at the same time.

Check In Saves changes and marks the selected item in the source-control database
as ‘‘Checked In’’ and allows editing by other users.

Undo Checkout Discards any changes and marks the selected item in the source-control
database as ‘‘Checked In’’ and allows editing by other users.

View History Displays the history of a project, which includes a list of everything done
to the project from creation to deletion.

Refresh Status Queries the source-control database for the most recent status of all project
items.

Share Allows for a single item to be shared in multiple projects. Changes made to
shared items are reflected in all the projects that use the item.

Compare Compares an item to a previous version to expose the changes made.

Properties Displays detailed status information on the selected item.

Source Control
Manager

Launches the associated source control application as identified in the
Management Studio options settings.

SQL Editor Toolbar
The SQL Editor toolbar (see Figure 3-27) becomes visible (or is enabled if already visible) when a new
SQL Query window is opened. It provides the most common features used by SQL programmers and
DBAs.

Figure 3-27: SQL Editor toolbar.

75



Leiter c03.tex V3 - 03/25/2009 11:39am Page 76

Chapter 3: SQL Server 2008 Tools

The supported features available on the SQL Editor toolbar are described in the following table: }

Feature Purpose

Connect Queries can be written without being connected to a database, so when it
comes time to execute the query or validate its syntax against a database, the
Connect button displays a server connection dialog that enables the selection
of the applicable server and database.

Change Connection Enables changing the connected server. A script can be created and tested on
a test and development server and then the connection changed to the
production server for execution.

Available Databases Dropdown list box for selecting the database context for the query

Execute Executes the SQL in the current window (or the highlighted portion
of code) against the selected database.

Debug Opens the current query in the debugger.

Cancel Executing Query Terminates the active query.

Parse Checks the SQL in the current window for valid structure and syntax. It
does not check to ensure that referenced objects actually exist.

Display Estimated Execution
Plan

Displays a graphical execution plan for the current window. It does not
actually execute the query, but simply checks the metadata of the referenced
object and builds a query plan based on current information.

Query Options Opens a dialog box that allows you to specify query-specific options, such as
maximum rows returned, deadlock priority, and ANSI settings. You can also
configure the output settings of the query from this dialog.

IntelliSense Enabled Toggling this button allows you to enable or disable IntelliSense for this
query.

Include Actual Execution
Plan

A graphical query plan used during execution is returned along with the
results of the query.

Include Client Statistics Client statistics including statistics about the query, network packets, and
the elapsed time of the query are returned, along with the query results.

Results to Text Formats the results of any query executed in the Query Editor as text.

Results to Grid Query results are returned in a grid. By default, grid results cannot exceed
65,535 characters.

Results to File When a query is executed a Save Results window will appear, prompting for
a filename and location.

Comment Out Selected Lines Adds inline comment marks to comment out the selected lines.

Uncomment Selected Lines Removes inline comment marks.

Decrease Indent Decreases the indent of selected text.

Increase Indent Increases the indent of selected text.

Specify Values for Template
Parameters

Displays a dialog that enables the replacement of template
parameters with defined values.

76



Leiter c03.tex V3 - 03/25/2009 11:39am Page 77

Chapter 3: SQL Server 2008 Tools

SQL Server Analysis Services Editors Toolbar
The Analysis Services Editors toolbar (see Figure 3-28) also becomes visible (or is active if already visible)
when a new Analysis Services query is opened or created. The tools on this toolbar are a subset of the SQL
Editor tools, but contain only those tools applicable to Analysis Services queries (DMX, MDX, XMLA).

Figure 3-28: Analysis Services Editors toolbar.

SQL Server Compact Edition Editor Toolbar
The SQL Server Compact Edition Editor toolbar (see Figure 3-29) becomes visible (or enabled) when
a new SQL Compact Edition Query window is opened. The tools on the SQL Server Compact Edition
toolbar are a subset of the SQL Editor tools that are applicable for SQL Compact queries.

Figure 3-29: Compact Edition Editor toolbar.

Standard Toolbar
The Standard toolbar (see Figure 3-30) provides buttons to execute the most common actions such as
opening and saving files. It also provides buttons that will launch new queries and expose additional
tool windows.

Figure 3-30: Standard toolbar.

The commands available on the Standard toolbar are described in the following table:

Feature Purpose

New Query The New Query command launches a new Database Engine
Query window by default.

Database Engine Query Opens a new Database Engine Query window.

Analysis Services MDX Query Opens a new MDX Query window.

Analysis Services DMX Query Opens a new DMX Query window.

Analysis Services XMLA Query Opens a new XMLA Query window.

Continued

77



Leiter c03.tex V3 - 03/25/2009 11:39am Page 78

Chapter 3: SQL Server 2008 Tools

Feature Purpose

SQL Server Compact Query Opens a new SQL Server Compact query.

Open File Opens a file.

Save Saves the currently selected window, or in the case of a
Designer tool, saves the current object.

Print Sends the selected window or pane to the printer.

Activity Monitor Opens the SQL Server Activity Monitor.

Table Designer Toolbar
The Table Designer toolbar (see Figure 3-31) becomes visible (or enabled) when a new table is created
using Table Designer or an existing table is modified using Table Designer. Table Designer is launched
by right-clicking on the Table node in Object Explorer and choosing New Table from the context menu,
or by right-clicking on an existing table in the Table node of Object Explorer and choosing Design.

Figure 3-31: Table Designer
toolbar.

The following table describes the toolbar:

Feature Purpose

Generate Change Script Table creation or modification done with the Designer can be sent
to a Query window for later execution.

Set/Remove Primary Key Sets the selected column of the table as the primary key column
or removes the key if it has already been set.

Relationships Enables the creation of foreign key constraints.

Manage Indexes and Keys Enables the creation of unique keys and indexes.

Manage Fulltext Index Launches a dialog that enables the creation of full-text catalogs
and full-text indexes.

Manage XML Indexes Launches a dialog that enables the creation and management of
Primary and Secondary indexes.

Manage Check Constraints Launches a dialog that enables the creation and management of
check constraints.

Manage Spatial Indexes Launches a dialog that enables the creation of Spatial Indexes for
the new Geometry and Geography data types.

78



Leiter c03.tex V3 - 03/25/2009 11:39am Page 79

Chapter 3: SQL Server 2008 Tools

Text Editor Toolbar
The Text Editor toolbar (see Figure 3-32) offers additional shortcuts to those provided in the other
language-specific editors.

Figure 3-32: Text Editor toolbar.

The features are described in the following table:

Feature Purpose

Display an Object Member List When editing T-SQL, DMX, MDX, or XMLA scripts,
invokes an IntelliSense window that displays a list of
possible script members.

Display Parameter Info Displays the parameter list for System Stored Procedures
and functions used with Analysis Services.

Display Quick Info Displays declaration information for XML objects created
or referenced in an XMLA script.

Display Word Completion Displays possible words to complete a variable,
command, or function call. If only one possible option
exists, it is implemented.

Decrease Indent Decreases the indent of selected text.

Increase Indent Increases the indent of selected text.

Comment Out Selected Lines Adds inline comment marks to comment out the selected
lines.

Uncomment Selected Lines Removes inline comment marks.

Toggle a Bookmark on the Current
Line

Adds or removes a bookmark to the current script at the
position of the cursor.

Move the Caret to the Previous
Bookmark

Moves the cursor to the previous set bookmark in the
current script project.

Move the Caret to the Next
Bookmark

Moves the cursor to the next set bookmark in the current
script project.

Move the Caret to the Previous
Bookmark in the Current Folder

Moves the cursor to the previous set bookmark in the
currently selected bookmark folder of the Bookmark
window.

Move the Caret to the Next
Bookmark in the Current Folder

Moves the cursor to the next set bookmark in the currently
selected bookmark folder of the Bookmark window.

Continued

79



Leiter c03.tex V3 - 03/25/2009 11:39am Page 80

Chapter 3: SQL Server 2008 Tools

Feature Purpose

Move the Caret to the Previous
Bookmark in the Current Document

Moves the cursor to the previous set bookmark in the
current script window.

Move the Caret to the Next Bookmark in
the Current Document

Moves the cursor to the next set bookmark in the
current script window.

Clear All Bookmarks in All Files Removes all configured bookmarks from the current
project.

View Designer Toolbar
The View Designer toolbar (see Figure 3-33) is almost exactly like the Query Designer toolbar, with the
exception of being limited to writing SELECT queries. In addition, queries written with the View Designer
are saved as views and not just query scripts. For information about the function of the buttons on the
View Designer toolbar, consult the table in the earlier section, ‘‘Query Designer Toolbar.’’

Figure 3-33: View Designer
toolbar.

XML Editor Toolbar
The XML Editor toolbar (see Figure 3-34) contains several shortcuts that are specific to managing XML
files. This is often used with XMLA scripts.

Figure 3-34: Text Editor toolbar.

The features of the Text Editor toolbar are described in the following table:

Feature Purpose

Create Schema Generates a schema file based on the structure of the current
XML file.

Reformat Selection Applies formatting rules to selected text to ensure that the
hierarchy is properly displayed.

Format the Whole Document Applies formatting rules to the entire XML document to ensure
that the hierarchy is properly displayed.

Show XSLT Output Allows you to associate an XSLT style sheet with your XML
document to format the output.

80



Leiter c03.tex V3 - 03/25/2009 11:39am Page 81

Chapter 3: SQL Server 2008 Tools

Feature Purpose

Debug XSLT Starts debugging for the XML and XSLT style sheet.

Cancel XSLT Output Cancels the output, which can be helpful if the process is
taking too long to finish.

Display an Object Member List When editing T-SQL, DMX, MDX, or XMLA scripts,
invokes an IntelliSense window that displays a list of
possible script members.

Display Parameter Info Displays the parameter list for System Stored Procedures
and functions used with Analysis Services.

Display Quick Info Displays declaration information for XML objects created
or referenced in an XMLA script.

Display Word Completion Displays possible words to complete a variable,
command, or function call. If only one possible option
exists, it is implemented.

Decrease Indent Decreases the indent of selected text.

Increase Indent Increases the indent of selected text.

Comment Out Selected Lines Adds inline comment marks to comment out the selected
lines.

Uncomment Selected Lines Removes inline comment marks.

Toggle a Bookmark on the Current
Line

Adds or removes a bookmark to the current script at the
position of the cursor.

Move the Caret to the Previous
Bookmark

Moves the cursor to the previous set bookmark in the
current script project.

Move the Caret to the Next
Bookmark

Moves the cursor to the next set bookmark in the current
script project.

Move the Caret to the Previous
Bookmark in the Current Folder

Moves the cursor to the previous set bookmark in the
currently selected bookmark folder of the Bookmark
window.

Move the Caret to the Next
Bookmark in the Current Folder

Moves the cursor to the next set bookmark in the currently
selected bookmark folder of the Bookmark window.

Move the Caret to the Previous
Bookmark in the Current Document

Moves the cursor to the previous set bookmark in the
current script window.

Move the Caret to the Next
Bookmark in the Current Document

Moves the cursor to the next set bookmark in the current
script window.

Clear All Bookmarks in All Files Removes all configured bookmarks from the current
project.

81



Leiter c03.tex V3 - 03/25/2009 11:39am Page 82

Chapter 3: SQL Server 2008 Tools

SQL Server Management Studio Configuration
Management Studio’s look and feel can be customized through the Tools � Options menu (see
Figure 3-35), which is accessed by selecting Tools on the main menu and clicking Options.

Figure 3-35: Options menu.

The Options dialog enables the customization of the Management Studio IDE. The configuration options
are divided into the following seven areas.

Environment
The Environment configuration section is broken down into four subareas:

❑ General — Start-up options and environment layout (such as tabbed windows versus MDI win-
dows) and how the windows behave. Recent file history is also configured on this screen.

❑ Fonts and Colors — The fonts and colors used in the Text Editor are completely customizable in
this area. The colors and fonts used for items such as reserved words, stored procedures, com-
ments, and background colors are just a small portion of what can be changed.

❑ Keyboard — For those database administrators who are used to Query Analyzer’s keyboard
shortcuts, this configuration area enables the setting of the keyboard shortcuts to the same ones
used in Query Analyzer. The keyboard configuration area also allows for the addition of custom
keyboard shortcuts.

❑ Help — The Help area enables the integration of Help into a Management Studio window or
launching Help externally. It also allows for customizing local and online help resources.

Text Editor
The Text Editor section enables the customization of the various Text Editors and is divided into the
following six subareas:

82



Leiter c03.tex V3 - 03/25/2009 11:39am Page 83

Chapter 3: SQL Server 2008 Tools

❑ File Extension — File extensions for all the possible script and configuration files can be con-
figured in the File Extension area. Known file extensions such as .sql, .mdx, .dmx, and .xml are
not listed, but are automatically associated with their respective editors. They can be reassigned
with a ‘‘with encoding’’ option so that Management Studio will prompt for specific language
encoding every time an associated file type is opened. Custom file extensions can also be
added.

❑ All Languages — The All Languages area is divided into two parts, General and Tabs, and pro-
vides configuration settings for IntelliSense features, word-wrap, line numbers, and indentation
for all script languages.

❑ Plain Text — Configuration settings for plain-text documents not associated with a particular
scripting language.

❑ Transact-SQL — Configuration settings specific to T-SQL. There is also a separate tab here for
enabling and configuring IntelliSense for Transact-SQL queries.

❑ XML — Configuration settings for XML documents. These settings consist of the same settings
from the All Languages area, as well as XML-specific settings such as automatic formatting and
schema download settings.

❑ Editor Tab and Status Bar — Configuration settings for the status bar, which is displayed at the
bottom of the Query Editor window. You can choose the colors of the status bar, as well as what
information is included in the display.

Query Execution
The Query Execution section provides configuration options for how queries are executed, as well as
connection properties and time-out settings. The Query Execution section is divided into two primary
areas:

❑ SQL Server — The SQL Server area has configuration options that control the maximum row
count and the maximum amount of text or Unicode text that is returned to the Management Stu-
dio results window. This area also has options to specify a batch delimiter other than GO and to
specify Query Execution time-out settings. There are also Advanced and ANSI areas that pro-
vide for the configuration of specific connection level options described in the following table:

Option Description

SET NOCOUNT Suppresses the X number rows message from being
returned on the connection.

SET NOEXEC Configures the Query Processor to only parse
and compile SQL batches, but not to execute them.

SET PARSEONLY Configures the Query Processor to only check the validity
of SQL batches, but not to compile or execute them.

SET CONCAT_NULLS_YIELDS_NULL Configures the Query Processor to return a NULL for any
string concatenated with a NULL. This setting is selected
by default.

Continued

83



Leiter c03.tex V3 - 03/25/2009 11:39am Page 84

Chapter 3: SQL Server 2008 Tools

Option Description

SET ARITHABORT Configures the Query Processor to terminate the query if an
arithmetic error, overflow, divide-by-zero, or a domain
error is encountered. This setting is enabled by default.

SET SHOWPLAN_TEXT Configures the Query Processor to only return the query
plan in text format, but not to actually execute the query.

SET STATISTICS TIME Configures the Query Processor to return the amount of
time spent in the parsing, compiling, and execution of a
script.

SET STATISTICS IO Configures the Query Processor to return the amount of
scans, physical reads, logical reads, and read-ahead reads
required to execute a script.

SET TRANSACTION ISOLATION
LEVEL

Provides the option of configuring the isolation level of SQL
scripts. The default is READ COMMITTED.

SET DEADLOCK_PRIORITY Configures the deadlock priority of SQL scripts to either
Normal or Low. The default is Normal.

SET LOCK TIMEOUT Configures the time a connection will wait until terminating
a query that is being blocked by a lock. The default setting is
-1, which means forever.

SET QUERY_GOVERNOR_
COST_LIMIT

Configures the Query Processor to prevent any query from
executing that is calculated to take longer than the
configured limit. The default value is 0, which disables the
time limit.

Suppress provider message
headers

Configures the Query Processor to suppress messages
returned by data providers such as OLEDB or SQLClient.
This setting is enabled by default.

Disconnect after the query
executes

Disconnects the active Query window from the database
after execution.

SET ANSI_DEFAULTS Sets all ANSI connection settings to On.

SET QUOTED IDENTIFIER Configures the Query Processor to allow double quotes as
legitimate object delimiters. This setting is enabled by
default.

SET ANSI_NULL_DFLT_ON Specifies that columns created in a CREATE TABLE or ALTER
TABLE statement default to allowing NULLS if
NOT NULL is not defined in the script. This setting is enabled
by default.

SET IMPLICIT_TRANSACTIONS Configures the Query Processor to begin, but not commit a
transaction any time an UPDATE, INSERT, or DELETE
statement is executed outside an explicit transaction.

84



Leiter c03.tex V3 - 03/25/2009 11:39am Page 85

Chapter 3: SQL Server 2008 Tools

Option Description

SET CURSOR_CLOSE_
ON_COMMIT

When set to ON, causes any open cursor to be closed on a
COMMIT TRANSACTION statement or
ROLLBACK TRANSACTION statement not associated with
a save point.

SET ANSI_PADDING When set to ON, causes trailing spaces to be added to any
fixed-length character string, or trailing zeros to be added to
fixed-length binary strings. Trailing spaces or trailing zeros
explicitly added to variable-length strings are not trimmed.
This setting is enabled by default.

SET ANSI_WARNINGS When set to ON, causes a warning to be returned if any
aggregate function encounters a NULL or an arithmetic
function fails. This setting is enabled by default.

SET ANSI_NULLS When set to ON, equality or inequality operations executed
against a NULL value will return an empty set. This setting is
enabled by default.

❑ Analysis Services — Configuration setting to control the execution time-out setting for Analysis
Server queries.

Query Results
The Query Results section provides configuration options for how query results are formatted. As with
the Query Execution options, this is also divided into two sections for the SQL Server Database Engine
and the Analysis Services Engine.

❑ SQL Server — The SQL Server section has configuration options to specify the default location
for query results: to a grid, as text, or to a file, as well as the default location for results sent to a
file. You can also enable the Windows default beep sound to play whenever a query batch com-
pletes. The ‘‘Results to Grid’’ settings are described in the following table:

Option Description

Include the query in the
result text

The query executed is returned as part of the result. This
setting is off by default.

Include column headers when
copying or saving results.

Results copied to the clipboard or saved to a file include the
column header names. This setting is off by default.

Quote strings containing list
separators when saving
.csv results

When exporting to a .csv file format, quotes will be placed
around any column that contains a list separator, such as a
comma. This setting is off by default.

Discard results after
execution

Queries are executed, but results are immediately cleared from
the results window. This setting is off by default.

Continued

85



Leiter c03.tex V3 - 03/25/2009 11:39am Page 86

Chapter 3: SQL Server 2008 Tools

Option Description

Display results in a separate
tab

Results are sent to a separate tab instead of a results window
beneath the query window. This setting is off by default. Note
that the new tab will not automatically have focus.

Switch to results tab after
the query executes

If the above option is enabled, the Query Results tab will
automatically have focus once the results are displayed.

Maximum Characters Retrieved Grid results are limited to a specified number of characters. By
default, this limit is 65,535 characters for non-XML data and 2
MB for XML data.

The ‘‘Results to Text’’ settings are described in the following table:

Option Description

Output format The default text output format is column-aligned. Comma, tab,
space, and custom delimiters are available.

Include column headers in the
result set

Column headers are returned in the text results by default.

Include the query in the
result text

The query executed is returned as part of the result. This
setting is off by default.

Scroll as results are
received

The results window scrolls to expose the last set of rows
returned that will fit in the results window. This setting is on
by default.

Right align numeric values This option is only available when column-aligned is selected
as the Output format. This setting is disabled by default.

Discard results after query
executes

Queries are executed, but results are immediately cleared from
the results window. This setting is off by default.

Display results in a separate
tab

Results are sent to a separate tab instead of a results window
beneath the query window. This setting is off by default.

Switch to results tab after
the query executes

If the above option is enabled, the results tab can be given
focus by enabling this option. This is off by default.

Maximum characters displayed
in each column

Configures the maximum length of any column returned in
text format. The default is 256 characters.

Multi-server Result settings include enabling or disabling adding the login name or server name to the
results, as well as merging the results from multiple servers into a single output.

86



Leiter c03.tex V3 - 03/25/2009 11:39am Page 87

Chapter 3: SQL Server 2008 Tools

❑ Analysis Services — Configuration settings for Analysis Services query results include showing
grids in separate tabs and playing the default Windows beep when the query completes. Both
settings are disabled by default.

SQL Server Object Explorer
The SQL Server Object Explorer options list contains two tabs, one for managing command settings and
another for handling scripting behavior. The command settings allow you to specify the number of rows
returned used by the menu items for the number of rows returned for the Select Top <n> Audit records,
Edit Top <n> Rows, and Select Top <n> Rows commands.

The configurable scripting options are identified in the following table:

Option Description

Delimit Individual
Statements

Separate individual T-SQL statements by using the batch
separator. This is on by default.

Include descriptive
headers

Adds descriptive comments at the beginning of a script. This is
on by default.

Include VarDecimal Enables the scripting of VarDecimal storage formats. This is off
by default.

Script change tracking Enables including Change Tracking information. This is off by
default.

Script for server version Specifies the version of SQL Server for which the script will be
generated. The default is SQL Server 2008, but SQL Server
2005 and SQL Server 2000 are supported.

Script full-text catalogs Includes scripts for full-text catalogs. This is off by default.

Script USE <database> Includes the database context in the scripts. This is on by
default.

Generate script for
dependent objects

Dependent objects will be scripted when this setting is
enabled. This is off by default.

Include IF NOT EXISTS
clause

This clause checks to see if an object with the same name
already exists. This is off by default.

Schema qualify object
names

Uses the two-part schema.object convention when including
object names in the script. This is on by default.

Script Data Compression
Options

This option includes data compression settings in the target
script if they exist in the source object. This is off by default.

Script extended properties Extended properties of an object will also be scripted when
this option is enabled. This is on by default.

Script permissions Permissions will be scripted when this option is turned on. It is
off by default.

Continued

87



Leiter c03.tex V3 - 03/25/2009 11:39am Page 88

Chapter 3: SQL Server 2008 Tools

Option Description

Convert user-defined data
types to base types

This will force user-defined data types to be converted to their
respective base types. This is off by default.

Generate SET ANSI PADDING
commands

This will enclose CREATE TABLE statements in SET ANSI
PADDING commands. This is on by default.

Include collation Enables the inclusion of collation settings in column
definitions for tables or views. This is off by default.

Include IDENTITY property This option will include IDENTITY seed and IDENTITY
increment definitions. This is on by default.

Schema qualify foreign key
references

This enables references to include schema qualifiers for foreign
key constraints. This is on by default.

Script bound defaults and
rules

This option will include sp_bindefault and sp_bindrule
binding stored procedure calls. This is off by default.

Script CHECK constraints Include CHECK constraints. This is on by default.

Script defaults Includes default values for columns. This is on by default.

Script file groups Specifies the ON <filegroup> clause for table definitions. This
is on by default.

Script foreign keys Include FOREIGN KEY constraints. This is on by default.

Script full-text indexes Includes script for full-text indexes. This is off by default.

Script indexes Includes script for clustered, non-clustered, and XML indexes.
This is off by default.

Script partition schemes Table partitioning schemes are scripted when this option is
enabled. This is off by default.

Script primary keys Includes script for PRIMARY KEY constraints. This is on by
default.

Script statistics Includes script for user-defined statistics. This is off by default.

Script triggers This will include scripts for triggers. This is off by default.

Script unique keys This will include UNIQUE constraints in generated scripts. This
is on by default.

Script view columns This option will declare view columns in view headers. This is
on by default.

ScriptDriIncludeSystemNames When enabled, this option will include system-generated
constraint names to enforce declarative referential integrity
(DRI). This is off by default.

88



Leiter c03.tex V3 - 03/25/2009 11:39am Page 89

Chapter 3: SQL Server 2008 Tools

Designers
The Designers section provides configuration options for the graphical designers used in Management
Studio. The Designers section is divided into three subareas:

❑ Table and Database Designers — The Table and Database Designers area allows for the config-
uration of specific designer behavior. The following table describes the Table options:

Option Description

Override connection
string time-out value
for table designer
updates

Changes the default connection string time-out. When modifying the
structure of large tables, more time is often required than the default of
30 seconds. Enabling this option also enables a textbox for entering the
new time-out value.

Auto generate change
scripts

When this option is enabled, Management Studio will automatically
generate a change script and prompt for a location to save the file any
time designer modifications are saved. The applicable modifications are
executed, as well as a script being generated.

Warn on null primary
keys

A primary key placed on a column that allows NULLS will cause an
error when the option is enabled. If this option is not enabled, the
designer will automatically clear the Allow Nulls attribute from the
column designated as a primary key without raising an error.

Warn about difference
detection

When selected, Management Studio will raise a warning dialog if the
changes made conflict with changes made by any other user.

Warn about tables
affected

Management Studio will raise a warning and confirmation dialog if
changes to a table affect any other table in the database.

Prevent saving
changes that require
table re-creation

This will prevent a user from making a change that will require
re-creation of a table. This includes actions such as adding a new
column to the middle of a table, dropping a column, and changing the
data type of a column.

The following table describes the Diagram options:

Option Description

Default table view Used to select the default way tables are represented in the
database diagram tool. Possible views are:

Standard — Shows the table header, all column names, data types,
and the Allow Nulls setting.

Column Names — Shows the table header and column names.

Continued

89



Leiter c03.tex V3 - 03/25/2009 11:39am Page 90

Chapter 3: SQL Server 2008 Tools

Option Description

Key — Shows the table header and the primary key columns.

Name Only — Shows only the table header with its name.

Custom — Allows you to choose which columns to view.

Launch add table dialog
on new diagram

When the Database Diagram Designer is opened, Management
Studio automatically prompts for the selection of existing tables
to be added to the diagram when this option is selected.

❑ Maintenance Plans — The Maintenance Plan Designer options determine the way new shapes
are added to the maintenance plan design area, including the precedence constraint and posi-
tioning of the new shape relative to an existing shape.

❑ Analysis Designers — The Analysis Designers options page provides options to set the connec-
tion and query time-out values for the Analysis Designers and the colors for the Data Mining
viewers.

Source Control
The Source Control configuration section allows for the integration of a source-control plug-in such as
Visual Source Safe 2005. The Source Control section is broken down into three different areas:

❑ Plug-In Selection — Here, the specific plug-in can be chosen (such as Visual Source Safe 2005, or
Visual Studio Team System).

❑ Environment — The Environment section allows for the configuration of the Source Control
Environment settings supported by the configured source-control plug-in. For Visual Source
Safe 2005, there are three preconfigured settings: Visual Source Safe, Independent Developer,
and Custom. These settings determine the automatic Check-In and Check-Out behavior of
source-control projects.

❑ Plug-in Settings — The Plug-in Settings section provides the ability to customize the
source-control actions (such as what to do with unchanged files that have been checked out and
how to manage file comparisons and timestamps).

The features available in the Source Control section are dependent on the source control application used.
Consult the documentation of the applicable program for more information.

Log File Viewer
The Log File Viewer (see Figure 3-36) is launched from within SQL Server Management Studio. To open
it, follow these steps:

1. Expand the Management node in Object Explorer.

2. Expand SQL Server Logs.

3. Right-click on a log, and select ‘‘View SQL Server Log.’’

90



Leiter c03.tex V3 - 03/25/2009 11:39am Page 91

Chapter 3: SQL Server 2008 Tools

Figure 3-36: Log File Viewer.

One of the benefits of the Log File Viewer is that it allows consolidation of practically all the logs the
DBAs are most interested in. SQL Server logs, SQL Agent logs, and Operating System logs can be opened
in the same window for easy correlation of system and SQL Server events.

When viewing multiple logs in the Log Viewer, filters can become useful in ensuring that only the infor-
mation of interest is shown. For example, the filter settings allow the specification of a start date and an
end date. Filter settings can also be set to display only those events from a certain subsystem. Applying
the appropriate filters helps mitigate the problem of ‘‘Information Overload’’ when trying to sift through
thousands of log entries.

SQL Server Business Intelligence
Development Studio

When SQL Server 2000 Reporting Services was released, Visual Studio was the only way for users to be
able to create and manage reports. However, many non-developers were scared off by an interface that
was unfamiliar to them. When SQL Server 2005 was released, Microsoft knew they had to respond to
user concerns and provide them with a new interface for not only managing reports, but one that could
be used for Analysis Services and Integration Services tasks, as well.

Thus, the SQL Server Business Intelligence Development Studio (BIDS) was born. Users could now feel
more confident that they had a tool made especially for their Business Intelligence (BI) needs.

91



Leiter c03.tex V3 - 03/25/2009 11:39am Page 92

Chapter 3: SQL Server 2008 Tools

In all actuality, BIDS is, in fact, Visual Studio, and SQL Server 2008 includes Visual Studio 2008. Granted,
it’s not the full Visual Studio 2008, which includes the templates and compilers for Visual Basic, C#,
and ASP.NET, but many DBAs were surprised to find Visual Studio installed on their workstation after
installing the SQL Server tools. Regardless of whether you launch the Business Intelligence Development
Studio shortcut from the SQL Server 2008 folder or the Visual Studio 2008 shortcut from the Visual Studio
folder in your Start menu, they launch the exact same application. If the full Visual Studio suite has not
been installed, the only available project templates will be Business Intelligence projects. However, if the
full suite is installed, all the installed features and templates will be available.

A complete discussion of the Visual Studio IDE is beyond the scope of this book, but a very brief descrip-
tion is definitely in order.

Microsoft has divided Business Intelligence into three distinct pieces: ETL (Extract-Transform-Load),
Analysis, and Reporting. These three parts of the Business Intelligence package are implemented through
SQL Server Integration Services, SQL Server Analysis Services, and SQL Server Reporting Services. Cor-
respondingly, BIDS provides Business Intelligence project templates that focus on these three areas. The
templates are available when creating a new project from BIDS (see Figure 3-37) by selecting File � New
Project from the main BIDS menu.

Figure 3-37: Business Intelligence Studio.

Once a template is selected, the template loads with the appropriate tools for the project. The available
templates are briefly described in the following table:

92



Leiter c03.tex V3 - 03/25/2009 11:39am Page 93

Chapter 3: SQL Server 2008 Tools

Template Description

Analysis Services
Project

Analysis Services projects are used to create SQL Server 2008
Analysis Services databases that expose the objects and features of
Analysis Cubes used for complex data analysis.

Import Analysis
Services 2008 Database

The import project enables the creation of an Analysis Services
project from an existing SQL Server 2008 Analysis Services database.
It essentially reverse-engineers the project using an existing
database.

Integration Services
Connection Project

Integration Services projects are used to create robust
Extract-Transform-Load (ETL) solutions to enable the moving and
transforming of data. This project type uses a Wizard to generate an
ETL package.

Integration Services
Project

This project type uses the Integration Services Designer for creating
and managing ETL packages.

Report Server Project
Wizard

The Report Server Project Wizard offers the same functionality as the
Report Server Project, but starts the development of the project in a
step-by-step process that guides the user through the various tasks
required to create a report. Like many wizards, this one leaves the
project in a skeleton phase, which will require more detailed
finalization.

Report Model Project Report Model projects are used to create and deploy SQL Server
Reporting Services 2008 report models, which can, in turn, be used
by end-users to create reports using Report Builder.

Report Server Project Report Server projects are used to create and deploy enterprise
reports for both traditional (paper) and interactive reports.

SQL Server Profiler
The SQL Server Profiler is an absolutely essential tool for both DBAs and developers alike. Profiler
provides the ability to monitor and record virtually every facet of SQL Server activity. It is actually a
graphical interface for SQL Trace, which is a collection of stored procedures and functions that are used
to monitor and record server activity. SQL Server Profiler can be launched from the Tools menu of SQL
Server Management Studio, or from the All Programs �Microsoft SQL Server 2008 � Performance Tools
menu.

SQL Server Trace
The Profiler can be used to create and view SQL Server Traces. When creating a new trace, the Profiler
will prompt you for the server on which you will be running the trace. Remember that the Profiler is just

93



Leiter c03.tex V3 - 03/25/2009 11:39am Page 94

Chapter 3: SQL Server 2008 Tools

a graphical interface for SQL Trace, and what is occurring in the background is the execution of stored
procedures and functions on the server you connect to. If the server is very busy and is operating at the
edge of its capabilities, the additional load of running SQL Trace on it may well put it over the edge.
Profiler and SQL Trace procedures are discussed in greater detail in Chapter 10.

Trace Properties
When creating a new trace, the Trace Properties dialog is shown (see Figure 3-38). The Trace Properties
dialog includes two tabs: the General tab and the Events Selection tab. A third tab, Events Extraction
Settings, will be enabled if any XML SHOWPLAN event is selected in the Events Selection tab.

Figure 3-38: Trace Properties dialog.

General Tab
The General tab provides the ability to set the basic structure of the trace (such as the trace name, trace
template, saving options, and trace stop time). It also displays the provider name and type, because SQL
Server Profiler is not limited to the Data Engine. It can also be used to trace SQL Server Analysis Services.

❑ Use the Template — This dropdown list contains several pre-built trace templates. Each tem-
plate is a pre-defined set of events and filters that provide for the monitoring of SQL Server for
particular purposes. These templates can be a good place to start when creating traces to moni-
tor SQL Server. It is also possible to create your own templates, and it is strongly recommended
that you do so. The provided templates are fine, but you will undoubtedly want to collect dif-
ferent information from that which the templates provide. To avoid having to create the same

94



Leiter c03.tex V3 - 03/25/2009 11:39am Page 95

Chapter 3: SQL Server 2008 Tools

custom trace over and over again, create and save a template to capture the information you are
interested in.

❑ Save to File — Selecting this checkbox will display a dialog prompting for a file location to save
the trace data to. The filename defaults to the name assigned to the trace with the .trc exten-
sion. However, the name can be changed if desired. The default maximum file size for a trace
file is 5 MB, but it can be set to virtually any size. When the ‘‘Save to file’’ option is selected, two
additional options are enabled: the ‘‘Enable file rollover’’ option and the ‘‘Server processes trace
data’’ option.

❑ Enable File Rollover — This option causes a new file to be created every time the max-
imum file size is reached. Each file created is named the same as the original file with a
sequential number added to the end of the name. Each sequential file is linked to the pre-
ceding file, so that each file can be opened in sequence, or they can all be opened in a single
trace window.

❑ Server Processes Trace Data — This option causes the server that the traces are running
on to also process the trace information. By default, the Profiler application processes the
trace information. During high-stress operations, if the Profiler processes the data, it may
drop some events and even become unresponsive. If the server processes the trace data,
no events will be dropped. However, having the server process the trace data and run the
trace puts an additional load on the server, which can have a negative impact on server
performance.

❑ Save to Table — Trace data can also be saved to a table instead of a file by selecting the ‘‘Save
to table’’ option. This is very useful if the trace data is going to be analyzed by an external appli-
cation that requires access to the data stored in a relational format. The down side is that large
traces will generate huge amounts of data that will be inserted into the storage table. This can
also cause server performance issues, but you can mitigate this by saving trace information to
a different server from your production system. If saving trace data to a table, the maximum
amount of rows to be stored can also be assigned.

❑ Enable Trace Stop Time — Traces can be started and configured to automatically stop at a
pre-defined time by enabling the ‘‘Enable trace stop time’’ option and assigning a stop time.

Events Selection Tab
The Events Selection tab provides the ability to choose what SQL Server events are to be traced (see
Figure 3-39). Events are grouped in 21 SQL Server event groups with a total of 170 distinct SQL Server
events, plus 10 user-definable events. There are also 11 Analysis Services Groups with 38 distinct events.
SQL Server Books Online has an excellent reference that describes each group and event. Search for the
titles of ‘‘SQL Server Event Class Reference’’ for SQL Server events and ‘‘Analysis Services Event Classes’’
for Analysis Services Events.

❑ Column Filters — Also in the Events Selection tab is the option to filter the events that are traced
(see Figure 3-40). The ability to filter the data is incredibly useful. For example, if you are trou-
bleshooting a particular application, you can filter on just the events generated by the application
of interest and avoid having to sift through all the events generated by SQL Server and other
applications.

❑ Organize Columns — The Organize Columns button enables you to place the trace columns you
are most interested in so that they are easily seen when viewing the trace. Because a great deal of

95



Leiter c03.tex V3 - 03/25/2009 11:39am Page 96

Chapter 3: SQL Server 2008 Tools

data can be returned, it may very well be that the column you are most interested in is off the
screen to the left. The Organize Columns button helps prevent this.

Figure 3-39: Events to be traced.

Figure 3-40: Filtering traced events.

Events Extraction Settings Tab
The Events Extraction Settings tab (see Figure 3-41) is enabled when one of the SHOWPLAN XML
events is chosen from the Performance event group. This tab is divided into two group boxes. The

96



Leiter c03.tex V3 - 03/25/2009 11:39am Page 97

Chapter 3: SQL Server 2008 Tools

first provides the ability to save SHOWPLAN information. All SHOWPLAN information can be saved to
a single file or multiple XML files that can be opened in SQL Server Management Studio. When
opened, they are displayed as graphical execution plans (which are described in detail in Chapter
10). The second group is used for saving graphical deadlock information. Because deadlocks are
automatically detected and killed by SQL Server, they are often hard to troubleshoot. SQL Server Profiler
provides the ability to trace deadlocks and graphically represent the sequence of events that led to the
deadlock.

Figure 3-41: Events Extraction Settings.

Chapter 10 describes how to use the SQL Server Profiler to gather pertinent SQL Server data and how to
use the profile traces to troubleshoot and optimize SQL Server performance.

Database Engine Tuning Advisor
The Database Engine Tuning Advisor (DTA) can analyze SQL Server scripts or SQL Server Profiler traces
to evaluate the effective use of indexes. It can also be used to get recommendations for building new
indexes or indexed views, or for creating physical table partitions.

Chapter 11 describes how to use the DTA to help optimize SQL Server databases, so this section is limited
to describing the tool and its features. When the DTA is started, it prompts for a server to connect to and
then automatically creates a new session. The session is displayed in two tabs: a General tab and a Tuning
Options tab.

97



Leiter c03.tex V3 - 03/25/2009 11:39am Page 98

Chapter 3: SQL Server 2008 Tools

General Tab
The General tab (see Figure 3-42) is used to define the session name, the workload for analysis, and the
database(s) to tune.

Figure 3-42: DTA General tab.

Following are some options found under this tab:

❑ Session name — By default, the session name is the name of the logged-on user combined with
the current date and time, but it can (and should) be changed to a more descriptive name.

❑ Workload — The Workload section provides the ability to retrieve trace information from either
a file or a table. The table designated must have been previously created by a SQL Server Profiler
trace, and the table must be located on the same server the DTA is running on. The file can be a
SQL script, a Profiler trace (.trc) file, or a Profiler trace saved as XML.

❑ Database for workload analysis — This option sets the initial connection information for the
DTA.

❑ Select databases and tables to tune — In this section, you can designate the database or
databases to be tuned. Keep in mind that the more objects chosen to monitor, the bigger the
performance impact on the server being monitored. The DTA doesn’t actually re-run all the
activity from the trace, but it does retrieve a great deal of metadata about the objects contained
in the workload, along with any available statistics. This activity alone generates a lot of
server activity. Both SQL Server Profiler and DTA activity should be as specific as possible for
performance reasons because the more specific the monitoring is, the better the results will be.

98



Leiter c03.tex V3 - 03/25/2009 11:39am Page 99

Chapter 3: SQL Server 2008 Tools

Another reason for being specific about choosing the right tables to tune is that if the DTA sees
no activity for a table that was selected for monitoring, it will recommend dropping any indexes
on that table not associated with a constraint.

Tuning Options Tab
The Tuning Options tab (see Figure 3-43) contains the controls used to configure how the DTA analyzes
the workload and what kind of recommendations it will return. At the bottom of the tab is a description
box that both describes the individual options and provides feedback for incompatible settings.

Figure 3-43: Tuning Options tab.

❑ Limit tuning time — Large workloads can take a very long time to fully analyze and can be very
expensive in CPU and Database Engine resources. Limiting the amount of time the DTA spends
analyzing the workload will cause it to return any recommendations generated with the amount
of workload it was able to analyze in the time allocated. For the best results, the DTA should be
allowed to run until it has completed; however, that may not always be possible on production
systems. Once analysis has started, it can be stopped by clicking the Stop Analysis button on the
DTA toolbar.

❑ Physical Design Structures (PDS) to use in database — This option group allows the config-
uration of the type of PDS recommendations the DTA will return. Options include returning
recommendations for the creation of all indexes and indexed views, indexes only, non-clustered

99



Leiter c03.tex V3 - 03/25/2009 11:39am Page 100

Chapter 3: SQL Server 2008 Tools

indexes only, and indexed views only. There is also an option for the DTA to only evaluate the
effectiveness of current PDS structures, but not recommend the creation of additional structures.
Filtered indexes can also be included.

❑ Partitioning strategy to employ — This option group is used to configure the type of physical
table partitioning to employ: no partitioning, full partitioning, and aligned partitioning. Physical
partitioning is described in Chapter 4.

❑ Physical Design Structures (PDS) to keep in database — When the DTA analyzes workloads,
if it determines the PDS structure is not beneficial, it may recommend dropping the structure
from the database. This option group is used to configure what PDS structures the DTA will not
recommend dropping. The DTA can be configured to recommend dropping any non-beneficial
PDS structure, to keep indexes only, to not recommend dropping any PDS, to keep clustered
indexes only, and to keep any aligned partitioning structure.

❑ Advanced Options — The Advanced Options dialog is used to configure the maximum amount
of disk space to use for recommendations, the maximum number of table columns to include per
individual index, and online indexing recommendations.

SQL Server Configuration Manager
The SQL Server Configuration Manager is a Microsoft Management Console (MMC) snap-in and is used
to manage all the services and protocols employed by an instance of SQL Server. It combines all the
functionality that had been in three separate applications — SQL Server 2000’s Service Manager, Client
Network Utility, and Server Network Utility. The Configuration Manager is divided into three nodes:

❑ SQL Server Services — The Services node offers the similar functionality as the Services applet
in the Administrative toolset. However, because it only shows SQL Server services, it is much
easier to both control and monitor the status of SQL Server services.

❑ SQL Server Network Configuration — The Network Configuration node displays and enables
the configuration of all the available server protocols. The protocols available for use with SQL
Server 2008 are Shared Memory, Named Pipes, TCP/IP, and Virtual Interface Adapter (VIA).
Protocols that are not in use should be disabled (or left disabled) to minimize the attack surface
of the SQL Server.

❑ SQL Native Client 10.0 Configuration — The SQL Native Client Configuration node displays
and enables the configuration of the client protocols used to connect to an instance of SQL Server
2008. The configurations only affect the computer that the Configuration Manager is running on.
In addition to protocol configuration, the Native Client Configuration node enables the configu-
ration of server aliases.

Reporting Services Configuration Manager
SQL Server 2008 includes an updated Reporting Services Configuration Manager that is more streamlined
and easier to use than configuration tools from prior versions. Depending on which options you chose
during the installation of SQL Server Reporting Services (‘‘Native Mode,’’ ‘‘SharePoint Integrated mode,’’
or ‘‘I Will Configure Later’’ mode), SQL Server may already be configured and ready to deliver reports.

100



Leiter c03.tex V3 - 03/25/2009 11:39am Page 101

Chapter 3: SQL Server 2008 Tools

More information about Reporting Services can be found in Chapter 18. For a thorough discussion of
SQL Server 2008 Reporting Services, check out the book Professional Microsoft SQL Server 2008
Reporting Services by Paul Turley, Thiago Silva, Bryan C. Smith, and Ken Withee (Wiley, 2008).

Each has its own configuration areas, including the following:

❑ Report Server Status — Selecting the Server name will display the Service Status area, which
allows you to monitor the status and stop and start the Reporting Services service. Although this
area is called Server Status, it is really only the status of the Reporting Services service.

❑ Service Account — This area is used to configure the account under which the Reporting Service
runs. Best practices recommend using an Active Directory domain account with the minimum
permissions required to run SQL Server Reporting Services. If a domain account is not avail-
able, the Network Service account may be used. Local System and Local Service accounts will
not work very well, unless SQL Server and Reporting Services are installed on the same com-
puter.

❑ Web Service URL — The Report Server Virtual Directory configuration area enables the viewing
or changing of the virtual directory on the SQL Server that hosts the Reporting Services Web Ser-
vice. Unlike prior versions of Reporting Services, the Web Service does not use IIS. The default
virtual directory name is ReportServer.

❑ Database — The Database area is used to create or configure SQL Server 2008 Report Server
databases. The Report Server databases provide storage of report definitions, report connec-
tions, and intermediately rendered reports. The database can be configured in either Native or
SharePoint Integrated mode. If you wish to switch database modes, you will have to create a
new database with the correct target mode. You can also configure the credentials that are used
by the Report Server to connect to the Report Server database. By default, the Service Account
for the Reporting Services engine is used.

❑ Report Manager URL — This area is where the virtual directory for the administrative inter-
face, Report Manager, is viewed or configured. This is the Virtual Directory that users will access
when creating or managing reports.

❑ E-mail Settings — The SMTP Server settings are very straightforward and simple. However,
using the Reporting Services Configuration tool, you can only specify the SMTP server to use
and the sender’s address. Additional configuration to the e-mail settings must be done manually
by editing the Report Server configuration file.

❑ Execution Account — The Execution Account is used when a report needs resources that are not
locally available (such as a graphic stored on a remote server). It can also be used to connect to
resources that do not require credentials. Configuration of an Execution Account is optional, but
may be necessary when accessing shared resources.

❑ Encryption Keys — During the installation of Reporting Services, the installation program auto-
matically generates a symmetric key that is used to encrypt security credentials stored in the
Report Server database. To preserve access to this encrypted information, it is critical to back
up and restore the key during certain Report Server maintenance procedures. For example, if the
database is moved to a different server or the service accounts are changed, the key will have to
be restored to preserve access to the encrypted information. The Encryption Keys configuration
area provides an easy-to-use graphical interface to back up and restore the keys. It also provides
the ability to replace the existing encryption key with a newer one, as well as delete all encrypted

101



Leiter c03.tex V3 - 03/25/2009 11:39am Page 102

Chapter 3: SQL Server 2008 Tools

content, in which case, all the stored security credentials would have to be re-entered. In the past,
this functionality was provided only through the RSKEYMGMT command-line utility, which is still
available.

❑ Scale-out Deployment — SQL Server Reporting Services 2008 provides the ability to scale-out
Web Service and report access by allowing multiple Reporting Services instances to share a com-
mon Report Server database. Scaling-out provides fault tolerance (for front-end services), as well
as being able to handle more concurrent connections and specific report execution loads. SSRS
is not ‘‘Cluster Aware,’’ but can leverage Network Load Balancing (NLB) for Web Services and
clustering of the database through a Fault Tolerant Cluster.

Command-Line Tools
SQL Server 2008 comes with plenty of great graphical tools to accomplish almost everything you could
ever need to do, but there also comes a time when a simple command-line tool is the best tool for the
job. While there are a few command-line tools out there, this section will look at the more prominent
ones, which have historically been SQLCMD (and previously OSQL) and BCP, as well as introduce you
to Microsoft’s newest, and arguably most powerful, command-line utility, PowerShell.

SQLCMD
The SQLCMD utility replaces OSQL as the utility used to execute Transact-SQL statements, Stored Proce-
dures, and SQL script files from the command prompt. OSQL is still available for backward compatibility,
but SQLCMD is a more full-featured tool. SQLCMD uses OLE DB to connect to SQL Server and execute
Transact-SQL batches.

The SQLCMD utility includes the ability to use variables, connect to servers dynamically, query server
information, and pass error information back to the calling environment. Access to the Dedicated Admin-
istrator Connection (DAC) is also provided by the SQLCMD utility. The DAC is a special diagnostic
connection that can be used by the DBA to connect to a SQL Server server when all other connection
types fail to diagnose and correct server problems.

SQLCMD supports several arguments that change the way it behaves and connects to an instance of SQL
Server. An abbreviated list is included in the following table. For a complete list of the argument options,
consult SQL Server Books Online under the topic ‘‘SQLCMD Utility.’’ Unlike other command-line utili-
ties, SQLCMD command-line arguments are case-sensitive.

Argument Description

-S Specifies the SQL Server Instance name for SQLCMD to connect to.

-U Specifies a username to use when connecting with a SQL Server login.

-P Specifies the password to use when connecting with a SQL Server login.

-E Configures SQLCMD to use a trusted connection.

-i Specifies the Transact-SQL script input file to run.

-o Specifies the output text file to return the results of a SQLCMD execution.

102



Leiter c03.tex V3 - 03/25/2009 11:39am Page 103

Chapter 3: SQL Server 2008 Tools

Argument Description

-v Specifies the parameter(s) to pass to a SQLCMD script execution.

-Q Performs a query passed as a command-line parameter and exits.

-A Designates the SQLCMD connection as a DAC

The SQLCMD utility is typically used to execute saved Transact-SQL scripts in batch processes. This
functionality is further enhanced by the ability of SQLCMD to accept scripting parameters. The following
code is an example of a SQLCMD script that accepts a parameter called DBName to back up a designated
database to a file named DatabasenameDB-Month-Day-Year.BAK to the C:\SQLBackups folder:

DECLARE @BackupDest AS varchar(255)
SET @BackupDest = ‘C:\SQLBackups\’
+ ‘$(DBName)’
+ ‘DB-’
+ DATENAME(m,GETDATE())
+ ‘-’
+ DATENAME(dd,GETDATE())
+ ‘-’
+ DATENAME(yy,GETDATE())
+ ‘.BAK’
BACKUP DATABASE $(DBName)
TO DISK = @BackupDest

If the preceding script is saved to a file called BackupDBs.SQL in the C:\SQLBackups folder, it could be
executed to back up the Master database on a server called AughtEight using Windows authentication
with the following command line:

SQLCMD –E –S AughtEight –i C:\SQLBackups\BackupDBs.SQL –v DBName="Master"

SQL Server Management Studio makes the creation of SQLCMD scripts even easier with its SQLCMD
mode. The BackupDBs.SQL script can be written and tested with Management Studio by selecting SQL-
CMD mode in the Query menu. However, to fully test it in the Query Editor, the following command
must be inserted in the beginning of the script:

:SETVAR DBName "Master"

The SETVAR command can also be used in the execution of SQLCMD from the command line, but it
usually makes more sense to use the –v variable argument.

Multiple variables can be set with the SETVAR command, as well as passed in to a SQLCMD script with
the –v argument. The following example shows how to use multiple SETVAR commands:

USE AdventureWorks2008
GO
:SETVAR ColumnName "LastName"
:SETVAR TableName "Person.Person"

SELECT $(ColumnName)
FROM $(TableName)

103



Leiter c03.tex V3 - 03/25/2009 11:39am Page 104

Chapter 3: SQL Server 2008 Tools

If the preceding example is saved to a file called GetContacts.SQL with the SETVAR commands omitted, it
would look like the following example:

USE AdventureWorks2008
GO

SELECT $(ColumnName)
FROM $(TableName)

This script could be executed with the SQLCMD utility using the following command line:

SQLCMD –E –S AughtEight –i C:\GetContacts.SQL –v ColumnName="LastName"
TableName = "Person.Person"

Dedicated Administrator Connection (DAC)
SQLCMD is particularly useful for creating batch scripting jobs for administrative purposes. However,
as an emergency utility to diagnose and hopefully correct server problems, it has no peer. With the –A
argument, the SQLCMD utilizes an exclusive connection to SQL Server. If no other connection is possible,
the SQLCMD –A command is the last and best hope for diagnosing server problems and preventing
data loss. By default, only local DACs are allowed because the DAC components only listen on the
loopback connection. However, remote DACs can be enabled using the sp_configure stored procedure
by changing the remote admin connections option to true, as the following code illustrates:

sp_configure ‘remote admin connections’, 1
RECONFIGURE

Bulk Copy Program (BCP)
The BCP utility is mainly used to import flat-file data into a SQL Server table, export a table out to a flat
file, or export the results of a Transact-SQL query to a flat file. In addition, it can be used to create format
files that are used in the import and export operations.

The syntax of the BCP utility is as follows:

usage: bcp {dbtable | query} {in | out | queryout | format} datafile
[-m maxerrors] [-f formatfile] [-e errfile] [-F firstrow] [-L lastrow]
[-b batchsize] [-n native type] [-c character type] [-w wide character type]
[-N keep non-text native] [-V file format version] [-q quoted identifier]
[-C code page specifier] [-t field terminator] [-r row terminator] [-i inputfile]
[-o outfile] [-a packetsize] [-S server name] [-U username] [-P password]
[-T trusted connection] [-v version] [-R regional enable] [-k keep null values]
[-E keep identity values] [-h "load hints"] [-x generate xml format file]

BCP format files can be created in two separate formats: XML and non-XML. These files can then be
referenced in the import and export of data. The BCP is well-documented in Books Online, but the
following examples show the most common usage of BCP.

Non-XML Format File Example
This example shows how to begin an interactive BCP session to create a non-XML format file based on an
existing table. The BCP utility will prompt for a column data type, a prefix length, and a field delimiter.

104



Leiter c03.tex V3 - 03/25/2009 11:39am Page 105

Chapter 3: SQL Server 2008 Tools

It is usually best to accept the defaults provided for the data type and the prefix length because these
values are determined by the table being referenced in the BCP command. The delimiter value can be
any character, but defaults to ‘‘None.’’

The following command uses BCP to create a format file based on the CreditCard table in the
AdventureWorks2008 database and Sales schema of the local default instance of SQL Server:

BCP AdventureWorks2008.Sales.CreditCard format nul -T -f C:\BCP\CreditCard.fmt

It is often better to provide the –S switch and specify the server name. The format argument tells BCP
that the desired output is a format file. The absence of an –x switch specifies that the output file is not
XML. The nul argument sends a NULL as the username, because the –T switch was used indicating that
BCP should use a Windows trusted connection. If –T is not used, the –U username switch is required
followed by the –P password switch. If nul is not used, BCP will fail with the error that a username was
not provided.

The result of the preceding command, accepting the defaults for the field data type and prefix length, but
entering a comma as the field delimiter, is as follows:

10.0
6
1 SQLINT 0 4 "," 1 CreditCardID ""
2 SQLNCHAR 2 100 "," 2 CardType SQL_Latin1_General_CP1_CI_AS
3 SQLNCHAR 2 50 "," 3 CardNumber SQL_Latin1_General_CP1_CI_AS
4 SQLTINYINT 0 1 "," 4 ExpMonth ""
5 SQLSMALLINT 0 2 "," 5 ExpYear ""
6 SQLDATETIME 0 8 "," 6 ModifiedDate ""

The 10.0 at the top of the results designates the version of BCP. ‘‘10.0’’ is SQL Server 2008, and ‘‘9.0’’
would be SQL Server 2005. The number 6 under the 10.0 specifies how many columns are in the file.
Following the column number is the SQL Server data type of the column, followed by the number of
bytes needed by the prefix length. The prefix length of a column depends on the maximum number
of bytes, whether the column supports NULLs, and the storage type.

If the BCP command is supplied a data format argument (-c or –n), it will output a format file with all
columns mapped to the supplied format without any interaction.

XML Format File Example
This example shows how to use the BCP command to generate an XML format file:

BCP AdventureWorks2008.Sales.CreditCard format nul –x -T –f C:\BCP\CreditCard.xml

As you can see, the syntax is identical, except that the -x switch is used to specify an XML output. The
result is as follows:

<?xml version="1.0"?>
<BCPFORMAT xmlns=http://schemas.microsoft.com/sqlserver/2004/bulkload/format

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<RECORD>
<FIELD ID="1" xsi:type="NativeFixed" LENGTH="4"/>
<FIELD ID="2" xsi:type="NCharPrefix" PREFIX_LENGTH="2" MAX_LENGTH="100"

105



Leiter c03.tex V3 - 03/25/2009 11:39am Page 106

Chapter 3: SQL Server 2008 Tools

COLLATION="SQL_Latin1_General_CP1_CI_AS"/>
<FIELD ID="3" xsi:type="NCharPrefix" PREFIX_LENGTH="2" MAX_LENGTH="50"

COLLATION="SQL_Latin1_General_CP1_CI_AS"/>
<FIELD ID="4" xsi:type="NativeFixed" LENGTH="1"/>
<FIELD ID="5" xsi:type="NativeFixed" LENGTH="2"/>
<FIELD ID="6" xsi:type="NativeFixed" LENGTH="8"/>

</RECORD>
<ROW>
<COLUMN SOURCE="1" NAME="CreditCardID" xsi:type="SQLINT"/>
<COLUMN SOURCE="2" NAME="CardType" xsi:type="SQLNVARCHAR"/>
<COLUMN SOURCE="3" NAME="CardNumber" xsi:type="SQLNVARCHAR"/>
<COLUMN SOURCE="4" NAME="ExpMonth" xsi:type="SQLTINYINT"/>
<COLUMN SOURCE="5" NAME="ExpYear" xsi:type="SQLSMALLINT"/>
<COLUMN SOURCE="6" NAME="ModifiedDate" xsi:type="SQLDATETIME"/>

</ROW>
</BCPFORMAT>

Export a Table to a Flat-File Example
Once the format file is created, it can be used to control data export and import operations. To export data
to a delimited flat file using the XML format file created in the preceding example, execute the following
code:

BCP AdventureWorks2008.Sales.CreditCard OUT C:\BCP\CreditCard.dat -T
-f C:\BCP\CreditCard.XML

Import Flat-File Example with a Format File
To test a BCP import, first create a copy of the CreditCard table with the following script:

USE AdventureWorks2008
GO
SELECT * INTO Sales.CreditCard2
FROM Sales.CreditCard
TRUNCATE TABLE Sales.CreditCard2

Once the destination table exists, the flat file and XML format file can be used to import the data to the
new CreditCard2 table with the following code:

BCP AdventureWorks2008.Sales.CreditCard2 IN C:\BCP\CreditCard.dat -T
-f C:\BCP\CreditCard.xml

PowerShell
PowerShell is a new command-line shell designed for Systems Administrators. PowerShell is both an
interactive console and a scripting interface that can be used to automate many common administrative
tasks. A complete explanation of PowerShell is beyond the scope of this book, but this section will provide
a summary of how PowerShell can be used for SQL Server Administration.

PowerShell is designed around the Microsoft .NET Common Language Runtime (CLR) and the .NET
Framework. It exposes .NET objects through a series of cmdlets, which are single-feature commands that
interact with objects. Cmdlets are formatted using a verb–noun structure, separated by a hyphen, such as

106



Leiter c03.tex V3 - 03/25/2009 11:39am Page 107

Chapter 3: SQL Server 2008 Tools

Get-Process, which returns a list of the current running processes. Another benefit of PowerShell is that
cmdlets can be piped into one another; for example, you might invoke one command to retrieve infor-
mation and then use a pipe character ( | ) on the same line to invoke another command that performs an
action or controls formatting and output of the results of the first command. You can pipe several com-
mands as a single function. PowerShell can be installed on Windows XP SP2, Windows Vista, Windows
Server 2003, and comes installed in Windows Server 2008.

SQL Server 2008 supports PowerShell for SQL Administration, and, in fact, if it’s not already installed on
the system, the SQL Server installer will install it for you. SQL Server administrators can use PowerShell
to administer any SQL Server running SQL Server 2008, SQL Server 2005, and even SQL Server 2000 SP4,
although functionality will be limited.

SQL Server 2008 also includes a limited-functionality shell known as sqlps. The sqlps utility is designed to
expose access to SQL Server objects and cmdlets automatically, but it is configured to run with a Restricted
execution policy, which prevents PowerShell scripts from running. This can be changed, if necessary.

It may be preferred to access SQL Server objects from a standard PowerShell environment, in which case,
you can create a PowerShell console that includes the snap-ins for SQL Server. The following example
shows you how to create a new PowerShell console named MySQLPS.psc1 with the SQL Server snap-ins,
to a new folder called PSConsoles. In this case, PowerShell is being invoked from the Run command in
the Start Menu.

Windows PowerShell
Copyright (C) 2006 Microsoft Corporation. All rights reserved.

PS C:\Users\Administrator> md C:\PSConsoles

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 9/23/2008 9:33 AM PSConsoles

PS C:\Users\Administrator> cd c:\PSConsoles
PS C:\PSConsoles> add-pssnapin SqlServerProviderSnapin100
PS C:\PSConsoles> add-pssnapin SqlServerCmdletSnapin100
PS C:\PSConsoles> Export-Console -Path MySQLPS.psc1

Now that you’ve created the new console, you can double-click on the file in Windows Explorer, or you
can manually invoke the console using the following command from the Run command:

powershell.exe -psconsolefile C:\PSConsoles\MySQLPS.psc1

So what can you do with PowerShell? Quite a bit, actually. The Object Explorer includes the ability to
launch PowerShell using the right-click context menu. The PowerShell console invoked is location-aware,
meaning that when you right-click the HumanResources.Employee table in the AdventureWorks2008
database and choose Start PowerShell from the menu, it will start sqlps using that object as the current
path.

107



Leiter c03.tex V3 - 03/25/2009 11:39am Page 108

Chapter 3: SQL Server 2008 Tools

PS SQLSERVER:\SQL\AUGHTEIGHT\DEFAULT\Databases\AdventureWorks20
08\Tables\HumanResources.Employee>

Try It Out Output Data using PowerShell
In this exercise, you will use PowerShell to invoke a SQLCMD function.

1. In Object Explorer, navigate to Server � Databases� AdventureWorks2008.

2. Right-click on the AdventureWorks 2008 database, and select Start PowerShell (Figure 3-44).

Figure 3-44: Start PowerShell.

3. Type the following commands into the PowerShell shell:

md C:\OutFiles
invoke-SQLCMD "Select TOP 10 * from HumanResources.Employee" |

ConvertTo-html | Out-file C:\OutFiles\Top10Emps.html

4. Navigate to C:\OutFiles, and double-click on the Top10Emps.html file. In IE, you should see the
HTML-formatted output shown in Figure 3-45.

108



Leiter c03.tex V3 - 03/25/2009 11:39am Page 109

Chapter 3: SQL Server 2008 Tools

Figure 3-45 HTML formatted output.

At this point, you’ve barely scratched the surface of what PowerShell can do, but because the entire set
of SQL Management Objects (SMO) is exposed to PowerShell, administration of your SQL Server and its
databases can be made much easier by automating and scripting many common processes.

Summary
This Chapter described the primary tools that are used by DBAs. Some of the less-frequently used tools
were covered briefly, as they are not often used by the DBA, but instead by an application or Business
Intelligence developer. By this point, you should have a good understanding of the tools available to you
in your role as a DBA and how to customize those tools to meet your needs.

The most prominent of these tools is, of course, SQL Server Management Studio. SQL Server Manage-
ment Studio for SQL Server 2008 includes many new and compelling features, such as IntelliSense for
T-SQL, PowerShell integration, and expanded toolsets. However, DBAs should also be familiar with
Business Intelligence Development Studio (BIDS) and SQL Server Configuration Manager.

109



Leiter c03.tex V3 - 03/25/2009 11:39am Page 110

Chapter 3: SQL Server 2008 Tools

Throughout this book, you will be using the tools described in this Chapter to build and manage SQL
Server 2008 databases. Having a solid understanding of the tools available will make it easier to perform
these tasks.

Chapter 4 describes how SQL Server stores its data physically and logically. It describes the physical
architecture of data and log files, as well as how SQL Server manages these files. Since Disk I/O is often
the slowest part of any SQL environment, understanding how SQL Server stores and accesses data will
be the key to maintaining a solid infrastructure.

110



Leiter c04.tex V3 - 03/25/2009 11:44am Page 111

4
SQL Server 2008 Storage

Architecture

I had just spent the better part of the day describing the storage architecture to a group of about
30 new database administrators when one of them approached me while the class was on break
and asked me pointedly, ‘‘Why do I need to know this stuff? I mean, who cares how SQL Server
stores data as long as it does it?’’ They were valid questions. After all, I have no idea how the fuel
injection system on my car works, but I drive it anyway. The key difference is that when my car
needs service, I take it to a mechanic. If your database doesn’t work, who are you going to take it
to? Understanding the mechanics of the SQL Server storage will help you make informed decisions
on where the data is stored, how the data is indexed, and how to troubleshoot an ailing database.

For years, SQL Server database administrators have grown accustomed to having unrestricted
access to system objects. This ability gave the DBA incredible power for both good and for evil.
For example, a database administrator could turn on ad hoc updates to the system tables and then
modify any value, including password hashes. This ability was certainly useful for correcting some
system errors; more damage was just as likely, however.

In the past, Microsoft strongly recommended that system objects not be accessed directly, while
sometimes offering solutions to database problems that required directly updating system tables.
With the release of SQL Server 2005 and continuing with SQL Server 2008, this apparent contra-
diction came to an end. Unless Microsoft (or a mysterious third party) releases some hidden secret
handshake that unlocks system objects to modification, they are completely inaccessible for updates
by the DBA. Even Read Only access to the actual system tables has been restricted and can only be
accomplished through the Dedicated Administrator Connection (DAC), and even that allowance
is made with the disclaimer ‘‘Access to system base tables by using DAC is designed only for Microsoft
personnel, and it is not a supported customer scenario.’’

To Microsoft’s credit, they certainly did their homework. They researched the primary reasons
that DBAs performed ad hoc updates to system tables and provided mechanisms to perform those
actions in a controlled manner without compromising the integrity of the system catalog.

In this chapter, you learn how SQL Server 2008 stores and organizes data. This knowledge will be
very helpful in any effort to optimize and tune SQL Server, as well as troubleshoot performance
issues.



Leiter c04.tex V3 - 03/25/2009 11:44am Page 112

Chapter 4: SQL Server 2008 Storage Architecture

The Resource Database
A big reason for the locking away of the system objects is because they all have a common source now
called the resource database. The resource database is the physical repository for all system objects and
is inaccessible during normal operations of SQL Server. Although the system objects are physically stored
in the resource database, they are logically presented as the sys schema in each database. Microsoft
strongly recommends that the resource database be left alone, but it can be accessed if SQL Server is
started in single-user mode. Even this access, however, is Read Only, as is access to any objects in the
sys schema. Any attempt to modify a system object will result in an error, even if ad hoc updates to
the system catalog are enabled.

Persisting all the system objects in the resource database allows for rapid deployment of service packs
and upgrades to SQL Server 2008. When installing a service pack, the process is simply one of replacing
the resource database with a new version and executing whatever modifications are required to the
operating system objects. This dramatically reduces the amount of time it takes to update SQL Server.

Even though the resource database isn’t accessible during normal SQL Server operations, information
about the database can be retrieved using system functions and global variables. The following code
returns the build number of the resource database:

SELECT SERVERPROPERTY(’ResourceVersion’)

To return the date and time the resource database was last updated, the following code can be executed:

SELECT SERVERPROPERTY(’ResourceLastUpdateDateTime’)

The sys Schema
As previously mentioned, the system objects stored in the resource database logically appear in the sys
schema of each database. The sys schema contains views that can be utilized by the DBA to retrieve
information about the objects in a database. Most (but not all) of the information the DBA typically needs
access to is available through the use of system functions and stored procedures that return metadata
from the system objects. Sometimes, however, it is beneficial to retrieve the metadata directly from the
system objects. The views in the sys schema are provided for this reason.

If you have ever used SQL Server 2000 system tables, you will find that almost all of the old system table
names have been preserved, but now are persisted as views. However, these views are only provided
for backward compatibility. They do not expose any SQL Server 2008–specific metadata. Any future
operations should be based on the new SQL Server 2008 system views. The views created to replace the
functionality of the old system tables are known as backward compatibility views, and Microsoft’s official
word is that these views will be removed in a future release.

A word of caution is needed here. As a general rule, any scripts or applications created to consume
system metadata directly from system objects should be built with the knowledge that they may not
work in future releases of SQL Server. There is nothing really new about this. Microsoft has cautioned
against formalizing processes that directly access system objects for years and has warned that the system
objects could be altered by future upgrades and service packs. What this means is that as a rule, dynamic
management views and system functions, which are discussed next, along with system stored procedures
should be used.

112



Leiter c04.tex V3 - 03/25/2009 11:44am Page 113

Chapter 4: SQL Server 2008 Storage Architecture

Dynamic Management Views and Functions
In addition to the traditional system objects that can be used to view system metadata, new dynamic
views and functions in the sys schema expose some very useful information about SQL Server pro-
cesses and database activity. The dynamic views and functions are grouped into the following functional
categories:

❑ Common Language Runtime Related Dynamic Management Views

❑ I/O Related Dynamic Management Views and Functions

❑ Database Mirroring Related Dynamic Management Views

❑ Query Notifications Related Dynamic Management Views

❑ Database Related Dynamic Management Views

❑ Replication Related Dynamic Management Views

❑ Execution Related Dynamic Management Views and Functions

❑ Service Broker Related Dynamic Management Views

❑ Full-Text Search Related Dynamic Management Views

❑ SQL Server Operating System Related Dynamic Management Views

❑ Index Related Dynamic Management Views and Functions

❑ Transaction Related Dynamic Management Views and Functions

❑ Change Data Capture Related Dynamic Management Views

❑ Resource Governor Dynamic Management Views

❑ SQL Server Extended Events Dynamic Management Views

❑ Security Related Dynamic Management Views

❑ Object Related Dynamic Management Views and Functions

Many of the dynamic views and functions replace SQL Server 2000 system-stored procedures and
Database Consistency Checker (DBCC) commands. Most of the old stored procedures and DBCC com-
mands still exist, but they are provided only for backward compatibility and do not expose new SQL
Server 2008 objects and processes. The new views and functions provide much more detailed information
and return relational result sets that can be used with ease in custom monitoring applications.

In later chapters, many (but by no means all) of the views and functions are used and explained in the
context of describing database maintenance and monitoring tasks. For a complete description of each
system view and function, check out SQL Server Books Online under the topic ‘‘Dynamic Management
Views and Functions.’’

SQL Server Database Physical Structure
SQL Server stores all of its data in files. These files are divided up into substructures that SQL Server
manages to maintain the integrity, structure, and logical organization of the data contained within them.
Although this book is meant to be a beginner’s guide to SQL Server 2008 database administration, it is still
very important for the new DBA to understand such advanced topics as physical database architecture.
Knowing how SQL Server stores and maintains data will give you a better understanding of how changes
to the data affect performance and will allow you to more effectively diagnose database problems.

113



Leiter c04.tex V3 - 03/25/2009 11:44am Page 114

Chapter 4: SQL Server 2008 Storage Architecture

Physical Storage Data Types
Before getting started on the physical storage of data, it is important to have a good understanding
about the types of data that SQL Server stores. SQL Server 2008 Books Online groups data types into the
following seven functional groups:

❑ Exact numerics

❑ Approximate numerics

❑ Date and time

❑ Character strings

❑ Unicode character strings

❑ Binary strings

❑ Other data types

Although the functional grouping of data types makes perfect sense when looking at data types from
a usability viewpoint, what is relevant to this discussion is how the data is stored. SQL Server data
types can essentially be grouped into three storage type groups: fixed-length data types, variable-length
data types, and large object data types. In certain circumstances, large object data types can also act like
variable-length data types, which are explained later. The data types described in this section are only
data types that can be assigned table column data types for the physical storage of the associated data.
This precludes the cursor and table data types that are described later in this chapter.

Fixed-Length Data Types
Fixed-length data types are exactly that — fixed. The amount of space used to store them in memory or
on disk does not change. Following is a list of fixed-length data types:

❑ bit — The bit is an integer data type that supports a value of 0 or 1. Contrary to what its name
implies, the bit data type actually consumes a byte of space for 8 or less bit data types used.

❑ tinyint — The tinyint data type uses 1 byte of storage space to store an unsigned integer value
between 0 and 255.

❑ smallint — The smallint data type uses 2 bytes of storage space to store a signed integer
between –32,768 and 32,767.

❑ int — The int data type uses 4 bytes of storage space to store a signed integer between
–2,147,483,648 and 2,147,483,647.

❑ bigint — The bigint data type uses 8 bytes of storage space to store a signed integer between
–9,223,372,036,854,775,808 and 9,223,372,036,854,775,807.

❑ decimal and numeric — The decimal and numeric data types are functionally identical. For
clarity, you should typically use decimal, because it is more descriptive of the data it is used
to store. The decimal data type can be set to consume different fixed amounts of storage space
based on how it is used. When using the decimal data type, you have the option of specify-
ing the precision (p) and scale (s) of the data to be stored. This is expressed by decimal(p,s).
The precision and scale are specified with positive integer values between 0 and 38. However,
the scale value must be less than or equal to the precision value, and can only be specified if a

114



Leiter c04.tex V3 - 03/25/2009 11:44am Page 115

Chapter 4: SQL Server 2008 Storage Architecture

precision value is specified. Storage space is dependent on the value of precision, as described in
the following table:

Precision Storage Bytes

1–9 5

10–19 9

20–28 13

29–38 17

❑ smallmoney — The smallmoney data type stores monetary values between –214,748.3648 and
214,748.3647. The smallmoney data type is accurate to a ten-thousandth of whatever currency
unit is being stored and consumes 4 bytes of space.

❑ money — The money data type stores monetary values between –922,337,203,685,477.5808 and
922,337,203,685,477.5807. The money data type is accurate to a ten-thousandth of whatever cur-
rency unit is being stored and consumes 8 bytes of space.

❑ real — The real data type is a floating-point number, so its value is approximate. The values
supported by real are negative numbers between –3.40E+38 and –1.18E-38, 0, and positive
numbers between 1.18E-38 and 3.40E+38. The real data type consumes 4 bytes of space.

❑ float — The float data type is a floating-point number, so its value is also approximate. The
range of values supported by float and the resultant storage space required is dependent on the
specified precision of the float. The precision is expressed as float(n), where n is the number of
bits used to store the mantissa of the number in scientific notation. Allowable precision values
are between 1 and 53. Precision values from 1 to 24 require 4 bytes of storage space, and preci-
sion values of 25 to 53 require 8 bytes of storage space. With the default precision of 53, the range
of values supported by float is negative numbers between –1.79E+308 and –2.23E-308, 0, and
positive numbers between 2.23E-308 and 1.79E+308.

❑ smalldatetime — The smalldatetime data type is used to store dates and times between Jan-
uary 1, 1900 and June 6, 2079. It is accurate to the minute and consumes 4 bytes of space. Inter-
nally, SQL Server stores smalldatetime data as a pair of 2-byte integers. The first 2 bytes are
used to store the number of days since January 1, 1900, and the second 2 bytes are used to store
the number of minutes since midnight.

❑ datetime — The datetime data type is used to store dates and times between January 1, 1753
and December 31, 9999. It is accurate to 3.33 milliseconds and consumes 8 bytes of space. Inter-
nally SQL Server stores datetime data as a pair of 4-byte integers. The first 4 bytes are used to
store the number of days since January 1, 1753, and the second 4 bytes are used to store the num-
ber of milliseconds (rounded to 3.33) since midnight.

❑ datetime2 — The datetime2 data type is an extension of the datetime data type with support
of a wider range of dates and more accuracy. It can be used to store dates and times between
January 1, 0001 and December 31, 9999 and is accurate to up to 100 nanoseconds. Similar to the
decimal and numeric data types, it is declared with an optional precision. The precision specifies

115



Leiter c04.tex V3 - 03/25/2009 11:44am Page 116

Chapter 4: SQL Server 2008 Storage Architecture

the storage of fractional seconds with the default precision being seven decimal places, or 100
nanoseconds. It consumes 6 bytes of space for precisions 3 or less, 7 bytes for precisions 4 and 5,
and 8 bytes for precisions 6 and 7.

❑ datetimeoffset — The datetimeoffset data type is used to store dates and times between
January 1, 0001 and December 31, 9999 along with an offset from UTC (Coordinated Universal
Time) ranging from 14 hours before UTC to 14 hours after UTC. Like the datetime2 data type, it
is accurate to 100 nanoseconds and uses the optional precision specification.

❑ date — The date data type is used to store date values only between January 1, 0001 and Decem-
ber 31, 9999. It is accurate to 1 day and consumes 3 bytes of space. Internally, SQL Server stores
date data as a 3-byte integer that is used to store the number of days since January 1, 0001.

❑ time — The time data type is used to store time values only between 00:00:00.0000000 and
23:59:59.9999999. It is accurate to 100 nanoseconds. Similar to the decimal and numeric data
types, it is declared with an optional precision. The precision specifies the storage of fractional
seconds with the default precision being seven decimal places, or 100 nanoseconds. It consumes
3 bytes of space for precisions less than 3; 4 bytes for precisions 3 and 4; and 5 bytes for
precisions 5, 6, and 7.

❑ char — The char data type is used to store a fixed amount of non-Unicode data between 1 and
8,000 characters, and is expressed as char(n), where n is the number of characters to store. Each
character requires 1 byte of storage space.

❑ nchar — The nchar data type is used to store a fixed amount of Unicode data between 1 and
4,000 characters, and is expressed as nchar(n), where n is the number of characters to store. Each
character requires 2 bytes of storage space. Unicode types are appropriate if multiple languages
must be supported.

❑ binary — The binary data type is used to store a fixed amount of binary data between 1 and
8,000 bytes, and is expressed as binary(n), where n is the number of binary bytes to store.

❑ rowversion or timestamp — rowversion is the data-type synonym for timestamp and consumes
8 bytes of storage space. rowversion should be specified instead of timestamp whenever pos-
sible, because it more accurately reflects the true nature of the data type. The timestamp data
type has nothing to do with time. It is actually an 8-byte binary string that is used to define a
versioning value to a row. When a timestamp or its synonym rowversion is specified as a table
column’s data type, every insert or update to that table will cause a new value to be generated
by SQL Server and placed in the appropriate field.

❑ uniqueidentifier — The uniqueidentifier data type is stored as a 16-byte binary string
represented by 32 hexadecimal characters. uniqueidentifiers can be generated by SQL Server
with the NEWID() function, or existing uniqueidentifiers can be inserted and stored in a
uniqueidentifer column.

Variable-Length and Large Object Data Types
Variable-length data types are used when the exact amount of space required by data cannot be predicted
(such as a column that holds a last name of a person). The varchar, nvarchar, and varbinary data types
fall into this category.

However, when the (MAX) option is specified for the length of the character or binary string, these vari-
able data types can be treated as Large Object data types. The primary difference is in how the data
is stored. Large Object data is stored outside the data row in separate physical structures by default,
whereas variable-length data is stored in the data row.

116



Leiter c04.tex V3 - 03/25/2009 11:44am Page 117

Chapter 4: SQL Server 2008 Storage Architecture

This is explained in the following descriptions:

❑ varchar — The varchar data type is used to store a variable amount of non-Unicode data
between 1 and 8,000 characters, and is expressed as varchar(n), where n is the maximum
number of characters to store. Each character requires 1 byte of storage space. The actual storage
space used by a varchar is the value of n plus 2 bytes. The varchar data type also supports
an optional (MAX) length specification. When using varchar(MAX), the maximum amount of
characters supported is 2,147,483,647, consuming up to 2 GB of storage space. When the (MAX)
option is specified, SQL Server will store the varchar data in the data row, unless the amount
of data exceeds 8,000 bytes or doing so would exceed the maximum row size of 8,060 bytes. In
these cases, SQL Server will move the varchar data out of the row and into a separate Large
Object storage space (see the section ‘‘Data Pages’’ later in this chapter).

❑ nvarchar — The nvarchar data type is identical to the varchar data type, except that it is used
to store Unicode data. Each Unicode character requires 2 bytes of storage, resulting in the maxi-
mum number of characters supported being 1,073,741,824.

❑ varbinary — The varbinary data type is also very similar to the varchar data type, except that
it is used to store binary data and not character data. Other than that, the storage and use of the
(MAX) option works the same as the (MAX) option described above.

❑ text — The text data type is a Large Object data type and is very similar to the varchar(MAX)
data type in that it can also be used to store up to 2 GB of character data. The primary difference
is that text data is stored out of the data row by default, and the text data type cannot be passed
as a parameter in SQL Server functions, stored procedures, or triggers.

❑ ntext — The ntext data type is identical to the text data type, except that it is used to store
Unicode data. As a result, the 2 GB of Unicode character data represents only 1,073,741,824
characters.

❑ image — The image data type is a Large Object data type and is very similar to the
varbinary(MAX) data type. It can also be used to store up to 2 GB of binary data but is
always stored outside the data row in separate Large Object data pages.

❑ XML — The XML data type is a Large Object type that is used to store XML (Extensible Markup
Language) in its native format. Up to 2 GB of XML data can be stored per data row.

❑ sql_variant — A sql_variant data type can be used in objects when the actual data type of a
value is unknown. The sql_variant data type can be used to store almost any value that con-
sumes less than 8,000 bytes. The type of data that is incompatible with the sql_variant type is
text, ntext, image, timestamp, cursor, varchar(MAX), and nvarchar(MAX).

CLR Data Types
SQL Server 2008 includes three different CLR-based data types. The first is hierarchyid, which is used
to manage hierarchical data in a table structure. The other two are new spatial data types that are used to
represent information about the physical location and shape of geometric objects, such as country bound-
aries, roads, lakes, and the like. SQL Server 2008’s spatial data types conform to the Open Geospatial
Consortium (OGC) Simple Features for SQL Specification version 1.1.0.

❑ hierarchyid — The hierarchyid data type is used to create tables with a hierarchical struc-
ture or to reference the hierarchical structure of data in another location. The amount of storage
required depends on the number of records and the number of hierarchies in the rows. To store a
hierarchical number for an organization with 100,000 employees divided into seven levels would

117



Leiter c04.tex V3 - 03/25/2009 11:44am Page 118

Chapter 4: SQL Server 2008 Storage Architecture

require 5 bytes. The more rows divided into more hierarchies, the more storage space that is
required. The data type is limited to 892 bytes.

❑ geometry — This type represents data in a Euclidean (flat) coordinate system.

❑ geography — The geography data type (geodetic) stores ellipsoidal (round-earth) data, such as
GPS latitude and longitude coordinates.

In-Row Data
By utilizing the ‘large value types out of row’ table option, the DBA can specify that all of the
varchar(MAX), nvarchar(MAX), and varbinary(MAX) data is treated as Large Object data and is stored
outside the row in separate Large Object data pages. The option can be set to ‘ON’ or ‘OFF’, as shown
here:

sp_tableoption ‘tablename’, ‘large value types out of row’, ‘ON’

sp_tableoption ‘tablename’, ‘large value types out of row’, ‘OFF’

Likewise, if the DBA wants to keep text or ntext data in the row unless it exceeds a specified size, the
table option ‘text in row’ can be specified. This option allows the DBA to specify a range of data to keep
in the row. The supported range is from 24 to 7,000 bytes. Instead of specifying a limit, the word ON can
be passed, resulting in a default value of 256 bytes. To turn the option off, the word OFF is passed:

sp_tableoption ‘tablename’, ‘text in row’, ‘number of bytes’

sp_tableoption ‘tablename’, ‘text in row’, ‘ON’

sp_tableoption ‘tablename’, ‘text in row’, ‘OFF’

FILESTREAM Data
A new enhancement added to SQL Server 2008 is the ability to store unstructured data, such as text doc-
uments, images, and videos, outside the database but linked to the row in which the column is defined.
FILESTREAM integrates the Database Engine with the NT File System by storing varbinary(MAX)
binary large object (BLOB) data as files on the file system instead of on separate Large Object data pages
within the data file of the database. Transact-SQL statements can insert, update, query, and back up
FILESTREAM data.

In order to use FILESTREAM, the database needs a filegroup that is designated as a FILESTREAM storage
area. The following example shows how to add a FILESTREAM filegroup to the AdventureWorks2008
database:

USE Master
GO
ALTER DATABASE AdventureWorks2008
ADD FILEGROUP MyFilestreamGroup2
CONTAINS FILESTREAM
GO
ALTER DATABASE AdventureWorks2008

118



Leiter c04.tex V3 - 03/25/2009 11:44am Page 119

Chapter 4: SQL Server 2008 Storage Architecture

ADD FILE (NAME = N’FileStreamData’
,FILENAME = N’D:\SQLData\FileStreamData’)
TO FILEGROUP MyFilestreamGroup

GO

Once the new filegroup is added to the database, tables can be added or modified to store the table’s
binary Large Object data in the file system as a Database Engine–managed object. The following example
shows how to create a table that uses the FILESTREAM storage:

USE AdventureWorks2008
GO
CREATE TABLE MyLargeData
(DocumentIdentifier uniqueidentifier ROWGUIDCOL NOT NULL UNIQUE
,DocumentFile VARBINARY(MAX) FILESTREAM NULL)
GO

Keep in mind that a table with FILESTREAM-enabled storage must have a non-NULL unique ROWGUID
column. To add a FILESTREAM column to an existing column, you must ensure that the table has a
ROWGUID column or you must add one.

Other Data Types
As previously noted, SQL Server 2008 has two data types that are not used to store data physically on
the disk by being part of a table or index definition. The following data types are used in programming
objects to manipulate data:

❑ table — The table data type is used to store a set of rows in memory. It is primarily used with
Table-Valued Functions but can be used in any programming object to return an organized result
set that has most of the properties of an actual table. A table variable can be declared and instan-
tiated with a set of columns, a specified primary key, check constraints, and a default constraint.

❑ cursor — Transact-SQL performs best with sets of data, but occasionally it is necessary to
manipulate data one row at a time. The cursor data type is used for this type of requirement. A
cursor holds a complete set of rows from a query and can then be manipulated to return single
rows at a time. For a complete discussion of cursors and their uses, check out the book Beginning
T-SQL with Microsoft SQL Server 2005 and 2008 by Paul Turley and Dan Wood (Wiley, 2008).

SQL Server Database Files
SQL Server stores data in data files and transactional records in transaction log files. These files, when
grouped together under a logical database name, are the database. A SQL Server database can have many
data files and multiple transaction log files, although one transaction log file is usually sufficient.

When a database is first created, it will have one primary data file with the default file extension of .mdf.
It can also optionally have secondary data files with the default extension of .ndf. These data files can be
grouped together in a logical grouping called a filegroup, which is explained in Chapter 5. The database
will also have, at a minimum, one transaction log file with the default extension of .ldf. The file extensions

119



Leiter c04.tex V3 - 03/25/2009 11:44am Page 120

Chapter 4: SQL Server 2008 Storage Architecture

for SQL Server databases are not enforced, so you can use anything you want, but the default extensions
are typically used because they readily identify the file’s purpose. The following sections are limited
to a description of the physical storage structure of the data and transaction log files. For a complete
description of the database creation process and how files are created and used, see Chapter 5.

Data Files
The database master data file (.mdf), or primary data file, and any secondary data files (.ndf) that are part
of the database have identical structures. Both files are used to store data, as well as all the metadata that
allows SQL Server to efficiently find, read, modify, and add data to the database. All the data from tables
and indexes and the metadata that describes that data is organized in storage objects called extents and
pages.

Extents
An extent is a SQL Server file storage structure that is 64 KB in size. Extents are comprised of eight con-
tiguous 8-KB pages. There are two types of extents: mixed extents and uniform extents. Mixed extents
contain pages from more than one object. For example, a mixed extent might contain data pages from
Table A, an index page from indexes on Table B, and still more data pages from Table C. Because there are
eight pages in an extent, it is possible for eight different objects to share an extent. Uniform extents contain
eight contiguous pages that belong to the same object. The differences are illustrated in Figure 4-1.

Contact
ContactID
NameStyle
Title
FirstName
MiddleName
LastName

Contact
ContactID
NameStyle
Title
FirstName
MiddleName
LastName

Customer
CustomerID
TerritoryID
AccountNumber
CustomerType
rowguid
ModifiedDate

CreditCard
CreditCardID
CardType
CardNumber
ExpMonth
ExpYear
ModifiedDate

Store
CustomerID
Name
SalesPersonID
Demographics
rowguid
ModifiedDate

Store
CustomerID
Name
SalesPersonID
Demographics
rowguid
ModifiedDate

SalesPerson
SalesPersonID
TerritoryID
SalesQuota
Bonus
CommissionPct
SalesYTD

SalesPerson
SalesPersonID
TerritoryID
SalesQuota
Bonus
CommissionPct
SalesYTD

Mixed Extent

CreditCard
CreditCardID
CardType
CardNumber
ExpMonth
ExpYear
ModifiedDate

CreditCard
CreditCardID
CardType
CardNumber
ExpMonth
ExpYear
ModifiedDate

CreditCard
CreditCardID
CardType
CardNumber
ExpMonth
ExpYear
ModifiedDate

CreditCard
CreditCardID
CardType
CardNumber
ExpMonth
ExpYear
ModifiedDate

CreditCard
CreditCardID
CardType
CardNumber
ExpMonth
ExpYear
ModifiedDate

CreditCard
CreditCardID
CardType
CardNumber
ExpMonth
ExpYear
ModifiedDate

CreditCard
CreditCardID
CardType
CardNumber
ExpMonth
ExpYear
ModifiedDate

CreditCard
CreditCardID
CardType
CardNumber
ExpMonth
ExpYear
ModifiedDate

Uniform Extent

Figure 4-1: Mixed extents and uniform extents.

When data is retrieved or written to disk during database operations, the extent is the basic structure for
data retrieval. SQL Server always allocates space in 64-KB increments. This maps very nicely to the way
data is organized in memory and on an NT File System (NTFS) formatted partition. As previously noted,
however, SQL Server can store pages from different objects in a single extent to maximize the efficiency
of the storage process.

120



Leiter c04.tex V3 - 03/25/2009 11:44am Page 121

Chapter 4: SQL Server 2008 Storage Architecture

Pages
All data and metadata in a SQL Server 2008 database are stored in pages. Unlike extents, pages always
store data from the same object. This includes rows from tables, rows from indexes, and Large Object
data. Pages are 8 KB in size and are organized on 64-KB extents, which are made up of eight contiguous
8-KB pages. Every page has a 96-byte header that contains information about the page, such as the page
number, the type of data stored on the page, the amount of free space available on the page, and what
object owns the page. SQL Server contains several different types of pages that are used both to store
data and to manage data.

Data Pages
Data pages contain data rows from tables. These rows cannot span pages. Because of the page header and
row offset information, the maximum row size is limited to 8,060 bytes. Row sizes are determined by the
number of columns in the row and the data type defined on each column. To maximize performance,
table and index rows should be kept as narrow as possible. For example, if a single table row were 4,100
bytes in width, only one row could be stored on each data page, leaving almost 4,000 bytes of unusable
space. Resulting reads from a table with this structure would require 8 KB of data retrieval for only 4,100
bytes of data. This is obviously very inefficient. Physical data page structure is illustrated in Figure 4-2.

Page Header
(96 Bytes)

Row 1

Row 2

Row 3

Row 4

Free
Space

Row Offsets 1 2 3 4

Figure 4-2: Physical storage
structure.

Each row-offset block consumes 2 bytes of space for every row stored on a page. Rows from tables are
physically arranged differently than their logical definition in order to optimize storage space. When a
row is stored on a data page, the row is identified with a 4-byte header, which uniquely identifies the
row on the page, followed by the fixed-length data columns, a Null block, a variable block, and then all
the variable data columns at the end of the physical row, as shown in Figure 4-3.

The Null block contains a 2-byte block that indicates how many columns in the row can contain nulls,
followed by a bitmap that indicates whether the nullable column is null. The size of the null bitmap is

121



Leiter c04.tex V3 - 03/25/2009 11:44am Page 122

Chapter 4: SQL Server 2008 Storage Architecture

equal to 1 bit per column, rounded up to the nearest byte. One to eight nullable columns require a 1-byte
bitmap. Nine to 16 columns require a 2-byte bitmap, and so on.

Row
Header

(4 Bytes)
Fixed Data Null

Block
Variable
Block Variable Data

Figure 4-3: Header identifying a row.

The variable block, like the Null block, contains 2 bytes that indicate how many variable-length columns
are present, followed by a bitmap that indicates what the maximum length of each variable column is.
Unlike the Null block, the variable block bitmap contains 2 bytes per column that point to the end of each
variable-length column, so that all the variable data can be stored contiguously at the end of the row. If
no columns are defined as variable length, the variable block is omitted.

Index Pages
Index pages contain rows from indexes. They have the same structure and limitations as data pages.

Text/Image Pages
When a column is defined with a Large Object data type, SQL Server places a 16-byte pointer in the actual
data row and places the Large Object data on separate data pages. This data includes those defined as
text, ntext, image, varchar(MAX), nvarchar(MAX), varbinary(MAX), and XML.

Global Allocation Map (GAM) and Secondary Global Allocation Map (SGAM) Pages
The GAM and SGAM pages are allocation pages that manage extents on a file-by-file basis. The second
page of every data file is a GAM page, and the third page of every data file is a SGAM page. SQL Server
will add additional GAM and SGAM pages as necessary, because each GAM and SGAM page can track
only 63,904 extents. The GAM and SGAM pages form a bitmap that indicates whether an extent is a
uniform or mixed extent. The GAM and SGAM bitmap also indicates whether the extent is full, empty,
or has free data pages.

Page Free Space (PFS) Pages
PFS pages record the status of each page, whether or not a page has been allocated, and the amount of
free space on each page.

Index Allocation Map (IAM) Pages
The IAM page contains information about the extents that a table or index uses. The IAM page contains
the location of the eight initial pages of an object, and a bitmap representing the extents that are in use for
that object. Every IAM page can track up to 512,000 data pages. SQL Server uses the IAM and PFS pages
to find and allocate new pages for data.

122



Leiter c04.tex V3 - 03/25/2009 11:44am Page 123

Chapter 4: SQL Server 2008 Storage Architecture

Bulk Changed Map (BCM) Pages
The Bulk Changed Map pages contain the location of extents that were modified by bulk operations
since the last transaction log backup. Bulk operations include UPDATETEXT, WRITETEXT, SELECT INTO,
BULK INSERT, and image operations. BCM pages are used primarily for transaction log backup opera-
tions when the database is in BULK-LOGGED recovery mode (see Chapter 9 for a full explanation of the
BULK-LOGGED recovery mode).

Differential Changed Map (DCM) Pages
The Differential Changed Map pages contain the identifier of any extent that has been modified since the
last database backup. The DCM pages are used when performing Differential backups.

Transaction Log
The purpose of the transaction log is to maintain a physical record of all transactions that have occurred
on a SQL Server database during a specific interval. The specific interval depends on the database
recovery mode.

In the default database configuration, the transaction log keeps a record of all database modifications and
is never cleared unless it is backed up or explicitly truncated by a database administrator.

The transaction log is a binary file. It is not simply a traditional log file that can be opened and viewed
with a log viewer or Notepad, so its contents are not readily available to the database administrator.
There are a couple of third-party products that can be used by the database administrator to open and
view the contents of the transaction log. These products can be used to audit database modifications and
also can be used to create scripts that will reverse the effects of an unwanted transaction.

The transaction log is maintained on disk as one or more physical files. In most cases, one transaction
log file is sufficient, because any additional log files will not be used until the first is completely full and
has reached its maximum size. Internally, the physical transaction log file is divided into multiple virtual
logs. The number and size of the virtual log files that a physical file or files are divided into are configured
dynamically by SQL Server and are not configurable. When SQL Server configures the transaction log
internal structure, it tries to keep the number of virtual logs small.

To help SQL Server maintain a smaller number of virtual logs, the initial size of the transaction log should
be set to accommodate all expected transactions that may occur between transaction log backups. If the
log is configured to auto-grow, the growth increments should be fairly large to avoid small repetitive
growths that will cause the creation of multiple small virtual logs.

Transactions
All data modifications occur within a transaction and are recorded in the transaction log. A transaction is
a single unit of data operations that can be controlled so that either all the modifications in a transaction
occur, or none occur. SQL Server has three ways of executing transactions: Implicit Transactions, Explicit
Transactions, and Auto-Commit Transactions. Implicit and Auto-Commit Transactions are mutually
exclusive.

123



Leiter c04.tex V3 - 03/25/2009 11:44am Page 124

Chapter 4: SQL Server 2008 Storage Architecture

Auto-Commit
By default SQL Server connections use Auto-Commit Transactions. Any INSERT, UPDATE, or DELETE state-
ment executed alone or in a batch will automatically be applied to the database. An example of this type
of activity is as follows:

UPDATE CheckingAccount
SET Balance = Balance + 500
WHERE AccountID = ‘123456789-CK’

UPDATE SavingsAccount
SET Balance = Balance - 500
WHERE AccountID = ‘123456789-SV’

Both of the updates in this example are transactions. In Auto-Commit mode, they will be applied to the
database independently of each other. If the first update succeeds, but the second fails, the bank will have
lost $500.00, and there will be no way to roll back the changes. Likewise, if the first update fails and the
second succeeds, you will be out $500.00, and the bank will have gained $500.00. To avoid data problems
resulting from errors involving dependent data changes, transactions should be used.

Implicit
The ANSI standard for the Structured Query Language specifies that no modifications should be made to
data unless explicitly committed. SQL Server supports this specification through a connection property
called IMPLICIT_TRANSACTIONS. When IMPLICIT_TRANSACTIONS is set to ON, any data modification will
implicitly begin a transaction, but will not close the transaction. The transaction will remain open until it
is explicitly committed or rolled back. An example of this is as follows:

SET IMPLICIT_TRANSACTIONS ON

BEGIN TRY

UPDATE CheckingAccount
SET Balance = Balance + 500
WHERE AccountID = ‘123456789-CK’

UPDATE SavingsAccount
SET Balance = Balance - 500
WHERE AccountID = ‘123456789-SV’

COMMIT TRANSACTION

END TRY

BEGIN CATCH

ROLLBACK TRANSACTION
RAISERROR(’Account Transfer Failed’, 14,1)

END CATCH

In this example, if any error occurs during data modification, the CATCH block will be called to roll back
the transaction. If no errors occur, the transaction will be committed. In Auto-Commit mode this same

124



Leiter c04.tex V3 - 03/25/2009 11:44am Page 125

Chapter 4: SQL Server 2008 Storage Architecture

logic would not work, because there was no implicit or explicit transaction to commit or roll back. Turn-
ing on IMPLICIT_TRANSACTIONS turns off Auto-Commit.

Explicit
An explicit transaction requires a BEGIN TRANSACTION to begin the transaction and an explicit
COMMIT TRANSACTION or ROLLBACK TRANSACTION to close the transaction, as shown in the following
example:

BEGIN TRY

BEGIN TRANSACTION

UPDATE CheckingAccount
SET Balance = Balance + 500
WHERE AccountID = ‘123456789-CK’

UPDATE SavingsAccount
SET Balance = Balance - 500
WHERE AccountID = ‘123456789-SV’

COMMIT TRANSACTION

END TRY

BEGIN CATCH

ROLLBACK TRANSACTION
RAISERROR(’Account Transfer Failed’, 14,1)

END CATCH

In this example, like the implicit transaction example before it, any error can be used to immediately roll
back the transaction, ensuring data integrity.

Much of the documentation available on SQL Server states that a transaction is a ‘‘single unit of work that
must accomplish entirely, or not at all.’’ However, even if the data modifications are placed in a trans-
action, this does not guarantee that the transaction will accomplish entirely. Without the TRY and CATCH
blocks, an implicit or explicit transaction will work just like the Auto-Commit example. Any successful
modifications will be made to the database, and any failed ones will not. Proper error handling is critical
to managing transactions.

Recording Transactions
Now that you know what a transaction is, take a look at how SQL Server records them on the disk.

Data modifications are never made directly to the database data file. When a modification is sent by an
application, SQL Server finds the data page that contains the data, or, in the case of an insert, a page with
enough space in it to accommodate the data in the buffer cache. If the page is not located in the cache,
SQL Server will read the page from disk and place it in the buffer cache and then modify it there. At the
same time, SQL Server records the data modification on disk in the transaction log. When the page was
initially read into the buffer cache, it was a ‘‘clean’’ page. Once the page was modified by the transaction,
the page became ‘‘dirty.’’

125



Leiter c04.tex V3 - 03/25/2009 11:44am Page 126

Chapter 4: SQL Server 2008 Storage Architecture

SQL Server periodically issues an event called a CHECKPOINT. When a CHECKPOINT is issued, all dirty
pages in the buffer cache are written to the data file on disk. The purpose of checkpoints is to reduce
the amount of dirty data stored in the cache to minimize the amount of time required for SQL Server to
recover from a failure. Consider the following sequence of events:

BEGIN TRANSACTION 1
UPDATE ...
INSERT ...
UPDATE ...
COMMIT TRANSACTION 1

BEGIN TRANSACTION 2
INSERT ...
UPDATE ...

***CHECKPOINT***

BEGIN TRANSACTION 3
DELETE ...
UPDATE ...
COMMIT TRANSACTION 3

BEGIN TRANSACTION 4
UPDATE ...
***Server Power failure***

When SQL Server restarts after the power failure, it will read the transaction log to find the last
CHECKPOINT issued. Everything from the last CHECKPOINT to the beginning of the log has been safely
written to the disk. However, the only record of data modifications after the CHECKPOINT is in the
transaction log. Because Transaction 3 was successfully committed, the calling application was notified
of its success and should expect to see all the modifications that were submitted. In light of this, SQL
Server will roll the entire Transaction 3 forward and commit the changes to disk. Transaction 2, on the
other hand, was never successfully committed, even though the first two modifications were written to
disk by the CHECKPOINT. SQL Server will use the information in the transaction log to undo, or roll back,
the modifications. Transaction 4 was also never successfully committed, but neither was it written to the
disk. Transaction 4 data modifications will essentially be deleted from the transaction log.

Transaction Log Physical Characteristics
The transaction log is implemented as a serialized, sequential, rotary write-back log. As data modifica-
tions are written to the log, they are given a Log Sequence Number (LSN). Because the transaction log is
used to record more and more transactions, it will eventually fill up. If the transaction log has been set
up to auto-grow (see Chapter 5), SQL Server will allocate additional file space to accommodate storage
of transaction records. This behavior will continue until the transaction log’s maximum size has been
reached, or the disk that contains the transaction log fills up. If the transaction log becomes completely
full, no data modifications will be allowed on the database.

To keep the transaction log from becoming completely full, it is necessary to periodically remove old
transactions from the log. The preferred method of clearing the log is by backing up the transaction
log (see Chapter 7). By default, once the transaction log has been successfully backed up, SQL Server
will clear the inactive portion of the transaction log. The inactive portion of the transaction log is from
the LSN of the oldest open transaction to the earliest LSN in the transaction log. This clearing of the

126



Leiter c04.tex V3 - 03/25/2009 11:44am Page 127

Chapter 4: SQL Server 2008 Storage Architecture

transaction log does not reduce the size of the transaction log, but it does free up space in the log for
additional transaction records.

The inactive portion of the transaction log can also be manually cleared, but this is strongly discouraged
because doing so deletes all records of data modifications since the last database backup.

As previously noted, the transaction log is a rotary file. Once the end of the physical log is reached, SQL
Server will loop back and continue writing the current logical log at the beginning of the physical log, as
shown in Figure 4-4.

Free space due to truncation

End of
Logical Log

Last Checkpoint Start of
Logical Log

Figure 4-4: Looping back and continuing to write the current
logical log.

Summary
This chapter examined how SQL Server physically stores data and transaction records on disk. Although
this information may seem a bit esoteric in nature, it will become increasingly valuable as your SQL
Server skills advance and you encounter more complex troubleshooting and optimization issues that
require a deep understanding of how SQL Server stores and retrieves data. Keep in mind that this
chapter just scratched the surface when it comes to the deep inner workings of the Database Engine.
For a complete discussion of the Database Engine internals, consult SQL Server 2008 Books Online.

The database is the heart of SQL Server, and Chapter 5 exposes and describes all the parts and pieces that
SQL Server uses to manage, modify, and organize the data stored within it. This includes everything from
the tables used to store the data to the programming objects used to modify the data, and everything in
between.

127



Leiter c04.tex V3 - 03/25/2009 11:44am Page 128



Leiter c05.tex V3 - 03/25/2009 11:47am Page 129

5
SQL Server 2008

Databases

The database is the heart of SQL Server 2008, handling everything from storing user information for
later retrieval to acting as a temporary storage area for SQL Server operations. Previous chapters
discussed the SQL Server installation process and the internal structure of all the files that make
up a SQL Server 2008 database. This chapter delves into creating user databases and the various
options that can be configured on them.

System Databases
As mentioned in Chapter 1, when SQL Server 2008 is installed, five system databases are created to
store system information and support database operations. Four of the system databases (master,
model, msdb, and tempdb) are visible during normal database operations, but the fifth (the resource
database, as described in Chapter 4) is not. Distribution databases can also be created if the SQL
Server instance is configured as a distributor for SQL Server Replication.

User Databases
User databases are those databases that are created by any server login that possesses the appropriate
permissions. In past versions of SQL Server, you had the option to install the AdventureWorks2008
sample databases that were briefly described in Chapter 1, but this ability has since been
removed from the product. You can download the AdventureWorks2008 sample database and
code samples from the ‘‘Microsoft SQL Server Community Projects and Samples’’ located at
www.codeplex.com/sqlserversamples.

Database Planning
One of the key responsibilities of the database administrator is the management of database
creation. All too often, a company will purchase an application from a vendor that requires a SQL
Server back-end without fully planning the data tier support. Many times, the vendor will be more
than happy to come out, install the SQL Server instance, and create the necessary databases to



Leiter c05.tex V3 - 03/25/2009 11:47am Page 130

Chapter 5: SQL Server 2008 Databases

support the application. In other cases, the application vendor will create setup programs that install
and configure the database automatically. I have seen many of these installations, and, with just a few
exceptions, the configuration of the supporting databases was either inefficient or flat-out wrong.

This is not to say that the application developers from software vendor companies don’t know what
they’re doing. The problem is much more complex. First, it is almost impossible to accurately predict the
hardware platform, database usage, and the amount of data stored for every installation of a database
application combination, so default values are almost always wrong. Second, and this comes from a lot
of experience, many application developers have no idea how SQL Server really works. They think of it
only as a place to stick data. The idea of leveraging the power of the data tier or optimizing the data tier
doesn’t occur to very many application developers.

Database administrators should worry about how and why a database is performing the way it is. The
best time to start managing a database is before it is created. Whether a data application is developed
internally or purchased from a software vendor, it is imperative that the database administrator be inti-
mately involved in the planning and creation of the supporting database. With that in mind, here’s a
closer look at the database creation process and the configuration options available during database
creation.

Capacity Planning
One of the first things that must be determined when planning a new database is how much disk space
will be required to support the database. The idea is to both ensure that there is sufficient disk space
available for data expansion and to reduce the amount of data and log file growths that are performed to
accommodate the data expansion to improve database efficiency.

If the database is being built to support an application purchased from a vendor, the capacity planning
for the database should be very easy. However, the simplicity depends on the software vendor providing
detailed documentation. The documentation must describe the average size of the database after periodic
intervals where a defined number of users and transactions were supported. If the documentation is
provided, you will have a good idea of what to expect from the database and can configure it accordingly.
If the vendor did not provide the information, your job as a database administrator becomes a bit more
complicated, and you may just have to guess. However, it must be an educated guess using as much
information as you are able to collect. The difficulty is often in the fact that you may not know how the
vendor is storing and retrieving data, so the database must be monitored for growth trends to adequately
predict the amount of storage space.

If the database is being designed and built internally, there are established techniques for determining
how big the data files will need to be. These techniques work because you know how much data is added
for every transaction, whereas in a vendor-provided database, that information may not be available.

One such technique that I am sure you will encounter is calculating a database size requirement by
calculating table sizes. It looks like this:

1. Add up the total number of bytes used by the fixed-length columns in the table.

2. Average the total number of bytes used by the variable-length columns in the table.

3. Add the number from Step 1 to the number calculated in Step 2.

130



Leiter c05.tex V3 - 03/25/2009 11:47am Page 131

Chapter 5: SQL Server 2008 Databases

4. Divide 8,060 (the maximum amount of data bytes in a page) by the number calculated in
Step 3, and round down to the nearest whole number. This is the number of rows that will
fit on a single page. Remember that rows cannot span pages, which is why you round down.

5. Divide the total number of expected rows by the number of rows per page calculated in Step
4. This is the total number of data pages expected to support the table.

6. Multiply the number calculated in Step 5 by 8,192 (the size of the data page). This is the total
number of bytes required for the table.

7. Repeat the process for every table in the database.

Sounds like fun, doesn’t it? Here’s a tip: Don’t do it. The results from this algorithm are misleading at best.
The calculation doesn’t take into account variables that affect storage space, such as whether or not com-
pression is enabled, the number of indexes, the fill-factor used on the indexes, and data fragmentation,
just to name a few. So, why did I even bother to explain the process? Because it does give insight into size
considerations and because, as I mentioned earlier, you will most likely encounter this technique, and I
wanted to make sure you knew its limitations.

There is a more realistic method of determining how big to make a data file. The idea is to take the
database prototype (the test or development version of the database) and fill it with an appropriate
amount of test data. After the test database has been populated, check the size of the data file on disk,
and then multiply it by 1.5. The resulting file size should be sufficient to accommodate the initial data
load of the new database with some room to spare. This technique is by no means perfect, but it is a great
deal easier than the first technique, and typically much more accurate.

Once the database is put into production, it will become extremely important to monitor the size of
the database files in order to analyze growth trends. I prefer to configure alerts that fire off when the
database grows to 75 percent full. This will allow you to increase the size of files when necessary, but
also to increase them in sufficient percentages so that the increases are seldom executed.

Planning the size of the transaction log file is much more complicated. To accurately plan the log size,
you will need to know how big the average transaction is that will be executed on the database, as well
as how often the transactions will take place and what the physical structure of the tables being mod-
ified is. For example, an insert executed on a table stored in a heap with a row size of 800 bytes and
a non-clustered index on an integer column will increase the amount of data in the transaction log by
approximately 820 bytes. This is because the new row is recorded in the transaction log along with the
new index row. The size of the transaction log is also dependent on the recovery model of the database
and how often the database transaction log is backed up. Recovery models are introduced later in this
chapter. A complete description of indexes can be found in Chapter 6. Transaction log backups and their
effect on the transaction log are described in Chapter 9.

Creating Databases
Databases are usually created either by writing and executing Transact-SQL code or through the graph-
ical user interface. In either case, the only required information during the database creation process is
the name of the new database, so the following code will create a database called SampleDB:

CREATE DATABASE SampleDB

131



Leiter c05.tex V3 - 03/25/2009 11:47am Page 132

Chapter 5: SQL Server 2008 Databases

Executing this Transact-SQL will cause SQL Server to create a single data file and one transaction log file
in the default location for files specified during the SQL Server 2008 installation process. For a typical
installation of a default instance of SQL Server 2008, this code, when executed, will create the following
file system objects:

C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\
MSSQL\DATA\SampleDB.mdf

C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\
MSSQL\DATA\SampleDB_log.ldf

The first file is the database data file, and the second file is the database transaction log file. Although this
default behavior is very convenient, it is usually better not to take advantage of it because all databases
are not created equal, besides the fact that the system partition is hardly the recommended destination
for data and log files. The database creation process allows for the specification of data file(s), transaction
log file(s), and database options.

Getting Started
Before creating a database, it is important to understand all the available settings and options that are
available. This section explains the process of creating a database with the graphical user interface and
examines each configuration setting and option, as well as how it affects the database creation process.
Once you have gone through the entire process, I’ll show you how to turn all the work into a script
that can be run again and again by specifying different values for the database name, filenames, and file
locations.

Creating a New Database
Creating a database graphically with SQL Server Management Studio is very easy and intuitive. The first
step is to open SQL Server Management Studio from the Start menu and connect to the Database Engine
of your SQL Server.

Right-click on the Databases node, and click New Database. The New Database screen appears, as shown
in Figure 5-1.

In the ‘‘Database name’’ field, enter the name of the new database. When specifying a database name,
keep in mind that it can be a maximum of 128 characters long. SQL Server Books Online also states
that a database name must start with a letter or underscore, and then subsequent characters can be
a combination of letters, numbers, and some special characters, but this requirement is not enforced.
However, data applications may be unable to make the connection to a database if the name does not
conform to accepted standards, so it is a very good idea not to deviate from them. As a best practice,
database names should be as descriptive as possible, but also kept as short as possible. Embedded spaces
in object names are also problematic, because they can cause unexpected problems when the database is
accessed programmatically.

The ‘‘Owner’’ field should typically specify SA, which is the built-in SQL Server System Administrator
account. When creating a new database in the graphical user interface, this field will default to the value
of <default>, which is the login account that is performing the database creation. The owner of the

132



Leiter c05.tex V3 - 03/25/2009 11:47am Page 133

Chapter 5: SQL Server 2008 Databases

database gains complete control of the database. Database ownership can be modified by using the
ALTER AUTHORIZATION T-SQL statement and specifying any valid login as shown in the following example:

ALTER AUTHORIZATION ON DATABASE::SampleDB TO SA
GO

Figure 5-1: New Database screen.

There are two different ways to retrieve information about databases (such as who the owner is). The
sp_helpdb stored procedure can be used to retrieve information about all databases or a specific database
and is a lot easier to use for a quick look. For all databases, the stored procedure is executed with no
parameters. For a specific database, the name of the database is passed to the stored procedure, as demon-
strated in the following example:

USE Master
GO
EXEC sp_helpdb AdventureWorks2008

The results of the stored procedure when executed alone and with a database name are shown in
Figures 5-2 and 5-3, respectively.

133



Leiter c05.tex V3 - 03/25/2009 11:47am Page 134

Chapter 5: SQL Server 2008 Databases

Figure 5-2: sp_helpdb results without a database name.

Figure 5-3: sp_helpdb results with a database name.

Another way to view database information is by using catalog views, which were introduced in SQL
Server 2005. They offer more information than their stored procedure counterparts and allow the use of
standard T-SQL commands such as WHERE and GROUP BY. The following T-SQL statement shows how to
take the sys.databases catalog view and join it with the sys.server_principals catalog view to see basic
information about all the databases on the server (see Figure 5-4):

SELECT db.name AS database_name,

sp.name AS owner,

db.create_date,

db.compatibility_level,

db.recovery_model_desc
FROM sys.databases db INNER JOIN sys.server_principals sp
ON db.owner_sid = sp.sid

To avoid any potential issues, the database owner should almost always be SA. See Chapter 6 for more
information about the SA account.

Full-text indexing allows for the use of more flexible string-matching queries than Transact-SQL allows.
The full-text engine has been moved into the SQL Server 2008 process in this release, allowing better
optimization of mixed queries and performance of the index itself.

134



Leiter c05.tex V3 - 03/25/2009 11:47am Page 135

Chapter 5: SQL Server 2008 Databases

Figure 5-4: Using catalog views to retrieve database information.

Database Files
In the ‘‘Database files’’ section of the New Database dialog, notice that the Logical Name of the first
data file as well as the Logical Name for the first log file have been given names automatically. The first
data file is named the same as the database, and the log file is given the name of the database with _log
appended to the end. The logical names are used to refer to the files programmatically in T-SQL script.
Multiple files can be specified during the creation process, and each one could have its own configuration
settings (such as initial size and growth behavior).

Click on the Add button at the bottom of the New Database dialog. A new row for an additional file
is added to the ‘‘Database files’’ section. The new file defaults to the file type of Rows Data but can be
changed to either Log or FILESTREAM Data by selecting it from the dropdown list. Once the database is
created, the type of the file cannot be changed.

For this example, leave the file type as Rows Data. Type in a Logical Name for the new data file and then
in the Filegroup column, click on the dropdown list, and choose <new filegroup>. The New Filegroup
dialog displays, as shown in Figure 5-5.

Figure 5-5: New Filegroup dialog.

Filegroups
Databases are created on files that are organized in filegroups. Filegroups are a logical grouping of data files
that hold all data and database objects defined for the database. The data is striped across all files within
the filegroup using a proportional fill strategy. This allows all data files to become full at the same time.

135



Leiter c05.tex V3 - 03/25/2009 11:47am Page 136

Chapter 5: SQL Server 2008 Databases

The only required filegroup is the one called Primary. The Primary filegroup is made up of the primary
data file and any additional user-defined data files. The purpose of the primary data file is to store all
system references for the database including pointers to objects defined in the resource database. The
Primary filegroup contains all object definitions for user-defined objects if it is left as the default filegroup
as well as all system-created objects. In addition to the Primary filegroup, more user-defined filegroups
can be created as needed.

One of the biggest advantages of using user-defined filegroups boils down to one word: control. With
user-defined filegroups, the database administrator has complete control over what data is stored in what
location. Without user-defined filegroups, all data is stored in the Primary filegroup, so the flexibility
and scalability of the database are reduced dramatically. Although this may be perfectly acceptable for
smaller databases, once the database grows to a large size, it will become increasingly unacceptable to
have all the user and system data grouped into the same filegroup.

I wish I could tell you exactly when it becomes necessary to segregate data, but like almost all questions
in technology, the answer is, ‘‘It depends.’’ It depends on the hardware the SQL Server is running on
and how the database is being accessed; there is no hard-and-fast rule. For more information about data
segregation and the use of filegroups, check out Professional Microsoft SQL Server 2008 Administration by
Brian Knight, Ketan Patel, Wayne Snyder, Ross LoForte, and Steven Wort (Wiley, 2008).

Type in a name for the new filegroup, select the Default checkbox, and click OK. This sets the new
user-defined filegroup as the default so that all user-created objects will be placed in this filegroup. This
essentially segregates system data from user data and allows for more control of the database structure.

One nice feature of using filegroups is the ability to mark all data contained within that filegroup as Read
Only. This can be done by selecting the ‘‘Read-only’’ checkbox on the New Filegroup dialog. This can be
very advantageous when organizing the different objects in a database. The objects that change can be
placed in an updatable filegroup, whereas those that never (or seldom) change can be placed in a Read
Only filegroup. This segregation of objects can reduce the amount of data required to be backed up and
restored, which is a useful option with very large databases.

Maintenance or Performance?
Should filegroups be implemented to optimize performance or to optimize maintenance tasks? Why
not both? Filegroups provide the ability to improve both the performance and the maintainability of a
database by separating data across multiple physical files in groups of tables.

The maintenance advantage comes from the ability to back up and restore individual files and filegroups
as opposed to backing up entire databases. (File and filegroup backups are described in Chapter 9.) This
ability is useful with very large databases separated into multiple filegroups, and even more useful when
some of the filegroups are marked as Read Only. This segregation of Read Write data and Ready Only
data enables the database administrator to back up only the data that is subject to modification, which
can minimize backup and restore time of large databases. This ability, however, does not come without a
cost. File and filegroup backup strategies can become quite complex. The complexity of the maintenance
plans can quickly outweigh the flexibility that is gained.

Performance advantages that are delivered with filegroups are primarily divided into three areas: The
first is parallel Read and Write operations that are made possible by separating the data files across
multiple physical devices. However, the same performance gain can be achieved in a single filegroup
with many physical files in it. The second is the ability to move non-clustered indexes and Large Object

136



Leiter c05.tex V3 - 03/25/2009 11:47am Page 137

Chapter 5: SQL Server 2008 Databases

data off the filegroup reserved for the regular data space. Separating non-clustered indexes from the
data enables the Database Engine to seek row locations from the index and retrieve the rows from the
tables simultaneously using separate threads. Separating infrequently accessed Large Object data from
transaction-intensive relational data can improve scan performance in some instances. The third (and
most significant) advantage that filegroups enable is the ability to physically partition large tables across
multiple filegroups. (Table and index partitioning is described later in this chapter.)

When it comes to performance, filegroups will only offer a small increase in performance to most
databases, with the exception of very large databases that can fully exploit physical table partitioning.
The best way to improve disk access to data is to implement a robust Redundant Array of Inexpensive
Disks (RAID) environment. The primary reasons for using filegroups for most database administrators
are the control it offers in the storage of the data and the ability to segregate system and user data, which
equates to maintenance concerns.

File Size
In the ‘‘Initial Size (MB)’’ column (see Figure 5-1), a value should be assigned based on how big the file
is expected to be within the first few weeks (and maybe even months) of operation. When looking for a
house and planning a large family, it would be inadvisable to buy a one-bedroom house and then have
to remodel it every time a new child is born. It makes much more sense to buy a large house that would
accommodate the family, including future children. The same goes for database files. If a file is expected
to hold 1 GB of data within the first few months of its existence, it only makes sense to allocate 1 GB of
space to that file. As a best practice, file size modifications should be kept to a minimum. Allocate enough
contiguous disk space to accommodate all the expected data plus a percentage of space for growth.

Autogrowth
Click the ellipsis button on the right of the Autogrowth column (see Figure 5-1) for the Primary data
file. The Change Autogrowth dialog displays, as shown in Figure 5-6. The Change Autogrowth dialog
enables the configuration of the maximum size and file growth setting for each individual file. Ensure
that the ‘‘Enable Autogrowth’’ checkbox is checked. Clearing this checkbox sets the filegrowth property
to zero. For this example, we will use the defaults in the Change Autogrowth dialog box.

Figure 5-6: Change Autogrowth dialog.

File growth can be set at a fixed allocation size or a percentage of the existing file size. As a best practice,
the Autogrowth option should be set to a sufficiently large enough increment to minimize the number of

137



Leiter c05.tex V3 - 03/25/2009 11:47am Page 138

Chapter 5: SQL Server 2008 Databases

file-growths required to accommodate data growth. Growing files in small increments results in physical
fragmentation of the files, which is detrimental to both data and log file performance.

The size of both data and log files can be restricted, allowing one more way to control the sizing of the
files. This can be done by selecting the ‘‘Restricted File Growth (MB)’’ option button and specifying a
maximum size. This size cannot be exceeded by automatic or manual file-growth operations. It is gener-
ally a best practice to set a maximum file size to safeguard against any errant process that may attempt to
insert millions of rows (instead of just a few) and also to maintain control of database growth. One thing
to keep in mind is that if the database reaches the maximum size, all data modification transactions will
fail. If this occurs, the maximum size property can be changed and additional space allocated. The size
selected should be the maximum amount of data expected for that file in a determined period of time.
This operation should be performed on every file in the database.

Path
To change the path where data and log files are located, either click on the ellipses button on the right
of the Path column in the New Database dialog for each data file and select a destination folder for
each individual file, or simply type in the correct path in the Path column. When placing files, keep in
mind that data files and log files should never be on the same physical disk; doing so puts the data
at high risk of loss caused by disk or controller failure. See Chapter 3 for more information on file
placement.

Now that all the general settings of your new database are complete, it is time to configure the database
options.

Database Options
Click Options in the ‘‘Select a page’’ section in the upper-left of the New Database dialog, as shown in
Figure 5-7. The Options window displays, enabling the setting of several database options.

Collation
Click the Collation dropdown list and review the different collation settings that are available, but leave
the setting set to <server default>.

As noted in Chapter 2, an instance of SQL Server is assigned a default server collation that determines
what characters are supported on the server by default and how those characters are searched and sorted.
Collation settings can also be assigned to the database as well. As a result, just because a SQL Server
instance has been configured to use the Latin character set doesn’t mean that a database built to support
Korean characters cannot be created on the same instance. However, also as previously described, col-
lation incompatibilities in the tempdb database may occur if the database collation settings are different
from the SQL Server instance collation settings.

Recovery Model
Click the ‘‘Recovery model’’ dropdown list and review the available choices. The available models that
can be set are Full, Bulk-Logged, and Simple. If the Model database has not been set otherwise, the default
recovery model for new databases is Full. Recovery models are explained in complete detail in Chapter
9, so for now an abbreviated explanation will suffice.

138



Leiter c05.tex V3 - 03/25/2009 11:47am Page 139

Chapter 5: SQL Server 2008 Databases

Figure 5-7: Enabling database options.

For all intents and purposes, there are really only two recovery models, Full and Simple. The
Bulk-Logged model is meant only as an accessory to the Full recovery model for use during bulk
operations. This is because in the Full recovery model, all modifications to the database are fully logged.
Although this recovery model offers the greatest level of protection from data loss, it comes at a cost.
Because all modifications to a database are fully logged, the transaction log can grow very rapidly to large
sizes during certain operations (such as bulk loading of data or table index maintenance operations). The
Bulk-Logged recovery model is also known as minimal logging and was developed so that the database
could be temporarily set to Bulk-Logged during those operations that could cause the transaction log to
rapidly swell and then be set back to Full recovery once those operations were complete.

In the Simple recovery model, the transaction log is cleared of all inactive content every time a checkpoint
is issued. Checkpoints were described in Chapter 4. The repercussion of the Simple recovery model is that
the transaction log cannot be backed up or used for database restore operations. The transaction log is
only used for transactional consistency, but no long-term storage of transactional history is maintained.

Compatibility Level
Click the ‘‘Compatibility level’’ dropdown list and review the possible choices. Unless you have specific
reasons to change the compatibility level, it should be set to SQL Server 2008 (100). The Compatibility

139



Leiter c05.tex V3 - 03/25/2009 11:47am Page 140

Chapter 5: SQL Server 2008 Databases

level option changes the behavior of some database operations and is only necessary if an instance of
SQL Server 2008 is sharing database responsibilities with a previous release of SQL Server. SQL Server
2008 only allows for the selection of compatibility levels of 80, 90, and 100, which, as the dropdown list
indicates, correlates to SQL Server 2000, SQL Server 2005, and SQL Server 2008, respectively. In previous
versions, you were able to programmatically change the compatibility level by using the System Stored
Procedure sp_dbcmptlevel. This System Stored Procedure has been officially deprecated and has been
replaced with an addition to the ALTER DATABASE Transact-SQL command. The following code will set
the compatibility level of the AdventureWorks2008 database to SQL 2000:

ALTER DATABASE AdventureWorks2008
SET COMPATIBILITY_LEVEL = 80

For a complete discussion of all the differences between compatibility levels, there is an excellent descrip-
tion in SQL Server 2008 Books Online under the topic ‘‘ALTER DATABASE Compatibility Level
(Transact-SQL).’’ Databases upgraded from SQL Server 2000 or 2005 are configured for a compatibility
mode respective to their original version. For example, a SQL Server 2000 database upgraded to SQL
Server 2008 will have a compatibility level of 80.

Other Options
By default, the ‘‘Other options’’ section of the New Database screen organizes the options categori-
cally. For purposes of this discussion, we will sort the options alphabetically. For this exercise, leave all
the options in their default configurations. Each one is described in the following sections. Some of the
database options are also connection options. Where this is the case, the commands to set the database
option and the connection-level options are both shown. It’s important to know that connection-level
options, if specified, will override database-level options. When they are not specified, the database
option will be in effect.

Click the alphabetical sort button, which can be identified by an A and a Z with a vertical arrow pointing
down. The available options are now listed alphabetically, as shown in Figure 5-7.

ANSI NULL Default
The ‘‘ANSI NULL Default’’ setting specifies whether or not the default for columns added to a table
during a CREATE TABLE or ALTER TABLE operation is to allow nulls. When the ‘‘ANSI NULL Default’’
setting is set to False, columns added will not allow nulls unless explicitly specified to do so. When
connecting to SQL Server with SQL Server Management Studio, the connection setting for new queries
defaults to the setting ANSI NULLS ON, which overrides the database setting. To set it at the connection
level or database level, the following commands are used:

--Connection Settings
SET ANSI_NULL_DFLT_ON OFF --ANSI NULL Default False
SET ANSI_NULL_DFLT_ON ON --ANSI NULL Default True

--Database Options
ALTER DATABASE AdventureWorks2008 SET ANSI_NULL_DEFAULT OFF
ALTER DATABASE AdventureWorks2008 SET ANSI_NULL_DEFAULT ON

ANSI NULLS Enabled
The ‘‘ANSI NULLS Enabled’’ setting controls the behavior of comparisons to NULL values. When set to
True, any comparison to a NULL value results in an unknown. When set to False, comparisons to NULL

140



Leiter c05.tex V3 - 03/25/2009 11:47am Page 141

Chapter 5: SQL Server 2008 Databases

will return True if the values are null. To set it at the connection level or database level, the following
commands are used:

--Connection Settings
SET ANSI_NULLS OFF
SET ANSI_NULLS ON

--Database Options
ALTER DATABASE AdventureWorks2008 SET ANSI_NULLS OFF
ALTER DATABASE AdventureWorks2008 SET ANSI_NULLS ON

The ‘‘ANSI NULLS’’ option is deprecated as of this version of SQL Server. In a future version of SQL
Server, the option will be set to ON and will not be allowed to be changed. If an application attempts
to set the value to OFF, an error will be thrown. It is recommended that you avoid using it in all new
development work and make arrangements to update any applications that currently use it.

ANSI Padding Enabled
When set to True, ‘‘ANSI Padding Enabled’’ dictates that trailing spaces for character data and trailing
zeros for binary data are appended to the end of character and binary columns that are of fixed length.
Character and binary columns that are of variable length are not padded, but trailing spaces or trailing
zeros are not trimmed either. When set to False, character and binary columns that are of fixed length
and set to NOT NULL behave the same as when ‘‘ANSI Padding Enabled’’ is True. However, nullable
character and binary columns that are of fixed length are not padded, and any trailing spaces or trailing
zeros are trimmed. Variable-length columns behave the same as nullable fixed-length columns when
‘‘ANSI Padding Enabled’’ is False. To set it at the connection level or database level, the following
commands are used:

--Connection Settings
SET ANSI_PADDING OFF
SET ANSI_PADDING ON

--Database Options
ALTER DATABASE AdventureWorks2008 SET ANSI_PADDING OFF
ALTER DATABASE AdventureWorks2008 SET ANSI_PADDING ON

The ‘‘ANSI Padding’’ option is deprecated as of this version of SQL Server. In a future version of SQL
Server, the option will be set to ON and will not be allowed to be changed. If an application attempts
to set the value to OFF, an error will be thrown. It is recommended that you avoid using it in all new
development work and make arrangements to update any applications that currently use it.

ANSI Warnings Enabled
When ‘‘ANSI Warnings Enabled’’ is set to True, warnings will be raised by the Database Engine when-
ever an aggregate function encounters a null. When set to False, no warnings are raised. To set it at the
connection level or database level, the following commands are used:

--Connection Settings
SET ANSI_WARNINGS OFF
SET ANSI_WARNINGS ON

--Database Options

141



Leiter c05.tex V3 - 03/25/2009 11:47am Page 142

Chapter 5: SQL Server 2008 Databases

ALTER DATABASE AdventureWorks2008 SET ANSI_WARNINGS OFF
ALTER DATABASE AdventureWorks2008 SET ANSI_WARNINGS ON

Arithmetic Abort Enabled
Any statement or transaction that encounters an arithmetic overflow or divide-by-zero error will termi-
nate when ‘‘Arithmetic Abort Enabled’’ is set to True. When set to False, a warning is raised, but the
statement or transaction will not be terminated. In order for this option to have the desired effect, the
‘‘ANSI Warnings’’ options must also be set to False. To set it at the connection level or database level,
the following commands are used:

--Connection Settings
SET ARITHABORT OFF
SET ARITHABORT ON

--Database Options
ALTER DATABASE AdventureWorks2008 SET ARITHABORT OFF
ALTER DATABASE AdventureWorks2008 SET ARITHABORT ON

Auto Close
When a database is first accessed, SQL Server opens and locks all files that are associated with the
database. When ‘‘Auto Close’’ is True, the database will be closed, releasing all file locks, when the
last user connected to it closes the connection. This setting is OFF by default because the act of opening
and closing the database on a server platform is unnecessary and produces unneeded overhead. The
exception to this rule is SQL Server Express Edition, because SQL Express is designed to run on a desk-
top system where resources are more restricted and an open database consumes resources. If no user is
connected, those resources can be returned to the system. To set it at the database level, the following
commands are used:

ALTER DATABASE AdventureWorks2008 SET AUTO_CLOSE OFF
ALTER DATABASE AdventureWorks2008 SET AUTO_CLOSE ON

Auto Create Statistics
When ‘‘Auto Create Statistics’’ is set to True, the Database Engine will generate statistics for columns
without indexes that are missing statistics and when those columns are referenced in a WHERE clause, or
the ON clause of a JOIN operation. Statistics are used by the Database Engine to determine the selectivity
and distribution of data in a column. If set to False, it will be up to the database administrator to create
statistics manually wherever needed. To set it at the database level, the following commands are used:

ALTER DATABASE AdventureWorks2008 SET AUTO_CREATE_STATISTICS OFF
ALTER DATABASE AdventureWorks2008 SET AUTO_CREATE_STATISTICS ON

Auto Shrink
When ‘‘Auto Shrink’’ is set to True, the Database Engine will periodically examine the total size of all
database files and compare it to the amount of data being stored. If there is more than 25 percent total
free space remaining, the Database Engine will perform file-shrink operations on database files to reduce
the total free space to 25 percent. This option is set to False by default, except for SQL Express Edition,

142



Leiter c05.tex V3 - 03/25/2009 11:47am Page 143

Chapter 5: SQL Server 2008 Databases

and, apart from the rare instance that a database will increasingly get smaller, it should be left set to
False. To set it at the database level, the following commands are used:

ALTER DATABASE AdventureWorks2008 SET AUTO_SHRINK OFF
ALTER DATABASE AdventureWorks2008 SET AUTO_SHRINK ON

Auto Update Statistics
When ‘‘Auto Update Statistics’’ is set to True, the Database Engine will automatically update statistical
information on columns to maintain the most efficient query plans possible. This typically takes place
when a query is executed and the Query Processor discovers the out-of-date statistics. If set to False, it
will be up to the database administrator to manually keep column statistics up to date. To set it at the
database level, the following commands are used:

ALTER DATABASE AdventureWorks2008 SET AUTO_UPDATE_STATISTICS OFF
ALTER DATABASE AdventureWorks2008 SET AUTO_UPDATE_STATISTICS ON

Auto Update Statistics Asynchronously
When ‘‘Auto Update Statistics Asynchronously’’ is set to True, statistics that are discovered to be
out-of-date during queries will be updated, but the query that was being executed when the discovery
was made will not wait for the new statistics. Subsequent queries will take advantage of the new
statistics. When set to False, query compilation will not occur until after the statistics are updated. To
set it at the database level, the following commands are used:

ALTER DATABASE AdventureWorks2008 SET AUTO_UPDATE_STATISTICS_ASYNC OFF
ALTER DATABASE AdventureWorks2008 SET AUTO_UPDATE_STATISTICS_ASYNC ON

Broker Enabled
When ‘‘Broker Enabled’’ is set to True, the database is configured for participation in a Service Broker
messaging system. When this is enabled in a new database, a new Service Broker identifier is created
and persisted in the database. If Service Broker is disabled and then re-enabled, the original identifier
will be used. For more information on Service Broker, see Chapter 19. To set it at the database level, the
following commands are used:

ALTER DATABASE AdventureWorks2008 SET DISABLE_BROKER
ALTER DATABASE AdventureWorks2008 SET ENABLE_BROKER

Close Cursor on Commit Enabled
When ‘‘Close Cursor on Commit Enabled’’ is set to True, cursors contained in a transaction will be closed
after the transaction has been committed or rolled back. When this setting is False, cursors will remain
open when the transaction is committed. However, rolling back a transaction will close any cursors
except those defined as INSENSITIVE or STATIC when set to False. To set it at the connection level or
database level, the following commands are used:

--Connection Settings
SET CURSOR_CLOSE_ON_COMMIT OFF
SET CURSOR_CLOSE_ON_COMMIT ON

--Database Options

143



Leiter c05.tex V3 - 03/25/2009 11:47am Page 144

Chapter 5: SQL Server 2008 Databases

ALTER DATABASE AdventureWorks2008 SET CURSOR_CLOSE_ON_COMMIT OFF
ALTER DATABASE AdventureWorks2008 SET CURSOR_CLOSE_ON_COMMIT ON

Concatenate Null Yields Null
When a character string is concatenated with a NULL, it will return NULL when the ‘‘Concatenate Null
Yields Null’’ setting is True. When set to False, a character string concatenated with a NULL will
return the character string. To set it at the connection level or database level, the following commands
are used:

--Connection Settings
SET CONCAT_NULL_YIELDS_NULL OFF
SET CONCAT_NULL_YIELDS_NULL ON

--Database Options
ALTER DATABASE AdventureWorks2008 SET CONCAT_NULL_YIELDS_NULL OFF
ALTER DATABASE AdventureWorks2008 SET CONCAT_NULL_YIELDS_NULL ON

The ‘‘Concatenate Null Yields Null’’ option is deprecated as of this version of SQL Server. In a future
version of SQL Server, the option will be set to ON and will not be allowed to be changed. If an applica-
tion attempts to set the value to OFF, an error will be thrown. It is recommended that you avoid using
it in all new development work and make arrangements to update any applications that currently use it.

Cross-database Ownership Chaining Enabled
The ‘‘Cross-database Ownership Chaining Enabled’’ option is not settable in the Options dialog and only
indicates what the value is set to. When set to True, it indicates that the database can participate in a
cross-database ownership chain. This option is only recognized if the server level option is turned off. To
set it at the server level or database level, the following commands are used:

--Server Options
sp_configure ‘cross db ownership chaining’, 0 -- OFF
sp_configure ‘cross db ownership chaining’, 1 –- ON
RECONFIGURE

--Database Options
ALTER DATABASE AdventureWorks2008 SET DB_CHAINING OFF
ALTER DATABASE AdventureWorks2008 SET DB_CHAINING ON

Database Read-Only
The ‘‘Database Read-Only’’ option specifies that no modifications are allowed to the database when set
to True. Exclusive access to the database is required to set this option, except for the Master database. To
set it at the database level, the following commands are used:

ALTER DATABASE AdventureWorks2008 SET READ_ONLY
ALTER DATABASE AdventureWorks2008 SET READ_WRITE

Database State
The ‘‘Database State’’ option is not configurable in the graphical interface, and, for the most part, is not
directly configurable at all. The exception is the ONLINE, OFFLINE, and EMERGENCY states. The ‘‘Database

144



Leiter c05.tex V3 - 03/25/2009 11:47am Page 145

Chapter 5: SQL Server 2008 Databases

State’’ will indicate different values based on what is occurring on the database. The following table
describes the various states the database can be in:

State Description

ONLINE The database is online and available. This will show up as the NORMAL
state.

OFFLINE The database is unavailable. Databases are set offline by executing the
command ALTER DATABASE <DBName> SET OFFLINE. This can be done if the
database administrator wants to move a database file from one location
to another. In this case, the database would be set OFFLINE, then the
ALTER DATABASE <DBName> MODIFY FILE command would be executed,
followed by changing the database back to ONLINE.

RESTORING One or more files are being restored. The database is unavailable.

RECOVERING The database is being recovered. Except in the case of database
mirroring, this is a transient state that occurs during the automatic or
manual recovery process. The database is unavailable.

RECOVERY
PENDING

A database will be in this state if SQL Server encounters a
resource-related error during recovery. The database will be unavailable
until the database administrator resolves the resource error and allows
the recovery process to be completed.

SUSPECT One or more database files have been marked as suspect because of a
data access or Read error. This may occur if a TORN PAGE has been
detected during database Read operations. If a database has been marked
as SUSPECT, the database is unavailable until the error has been resolved.

EMERGENCY The database will be in this state when the database administrator has set
the status to EMERGENCY. In this state, the database is in single-user mode
and may be repaired or restored. If the database has been marked as
SUSPECT, this is the first step in correcting the problem, short of a
database restore. Only members of the sysadmin fixed server role can set
a database to the EMERGENCY state.

Date Correlation Optimization Enabled
When the ‘‘Date Correlation Optimization Enabled’’ option is set to True, it indicates that the Database
Engine will maintain date statistics between two tables with datetime columns joined by a foreign key
constraint to optimize queries between those two tables where the datetime field is a filter. To set it at
the database level, the following commands are used:

ALTER DATABASE AdventureWorks2008 SET DATE_CORRELATION_OPTIMIZATION OFF
ALTER DATABASE AdventureWorks2008 SET DATE_CORRELATION_OPTIMIZATION ON

Default Cursor
Unlike local and global variables whose scope is based on connections, cursors are always local to the
connection in which they are declared. When the ‘‘Default Cursor’’ option is set to Global, it specifies

145



Leiter c05.tex V3 - 03/25/2009 11:47am Page 146

Chapter 5: SQL Server 2008 Databases

that a declared cursor can be referenced by any batch, stored procedure, or trigger executing on the
same connection. If set to Local, the cursor can only be referenced inside the batch, stored procedure,
or trigger in which the cursor was declared. To set it at the database level, the following commands
are used:

ALTER DATABASE AdventureWorks2008 SET CURSOR_DEFAULT LOCAL
ALTER DATABASE AdventureWorks2008 SET CURSOR_DEFAULT GLOBAL

Encryption Enabled
When the ‘‘Encryption Enabled’’ option is set to True, all data and log files will be encrypted. If a database
encryption key has not yet been created, trying to set this option will result in an error. See Chapter 6
for more information on ‘‘Transparent Data Encryption.’’ To set it at the database level, the following
commands are used:

ALTER DATABASE AdventureWorks2008 SET ENCRYPTION OFF
ALTER DATABASE AdventureWorks2008 SET ENCRYPTION ON

Honor Broker Priority
The ‘‘Honor Broker Priority’’ option is not configurable in SQL Server Management Studio and must be
changed through T-SQL script. When this option is turned on, SQL Server will honor priority levels for
Service Broker messages. For more information on Service Broker and message priority, see Chapter 19.
To set it at the database level, the following commands are used:

ALTER DATABASE AdventureWorks2008 SET HONOR_BROKER_PRIORITY OFF
ALTER DATABASE AdventureWorks2008 SET HONOR_BROKER_PRIORITY ON

Numeric Round-Abort
When the ‘‘Numeric Round-Abort’’ option is set to True, it means that any numeric rounding that occurs
will generate an error. For example, if ‘‘Numeric Round-Abort’’ is set to True, the following code will
generate an error:

DECLARE @Num1 AS decimal(4,3)
SET @Num1 = 7.00004 / 2.84747
SELECT @Num1 AS Answer

RESULTS:
------------------------------------------------------------------
Msg 8115, Level 16, State 7, Line 2
Arithmetic overflow error converting numeric to data type numeric.

The error is caused because the decimal variable was declared with a scale of 3. Remember that the
scale specifies how many digits are supported to the right of the decimal place. To perform this calcu-
lation, SQL Server must round the number. If ‘‘Numeric Round-Abort’’ is set to False, this code will
succeed:

DECLARE @Num1 AS decimal(4,3)
SET @Num1 = 7.00004 / 2.84747

146



Leiter c05.tex V3 - 03/25/2009 11:47am Page 147

Chapter 5: SQL Server 2008 Databases

SELECT @Num1 AS Answer

RESULTS:
------------------------------------------------------------------
Answer
--------
2.458

To set it at the connection level or database level, the following commands are used:

--Connection Settings
SET NUMERIC_ROUNDABORT OFF
SET NUMERIC_ROUNDABORT ON

--Database Options
ALTER DATABASE AdventureWorks2008 SET NUMERIC_ROUNDABORT OFF
ALTER DATABASE AdventureWorks2008 SET NUMERIC_ROUNDABORT ON

Page Verify
The ‘‘Page Verify’’ option enables the database administrator to set different options for page Write
verification. The available options are Checksum, Torn_Page_Detection, and None. As far as performance
goes, the best option is None. However, with None set, pages corrupted during disk Write operations (or
by some other disk anomaly after the page is written to disk) will not be discovered.

With the Checksum option, SQL Server will calculate a checksum value and store it in the page header.
This checksum value is very much like the Cyclic Redundancy Check (CRC) values created when files
are written to disk by the operating system. When a data page is read from the disk, SQL Server will
re-calculate the checksum and compare it to the one stored in the page header. If the values match, the
page is good. If the values do not match, the page is considered corrupted, an error 823 will be raised,
and the database status is changed from ONLINE to SUSPECT.

In a typical configuration, only 512 bytes of data are written to the disk with each pass of the disk under
a Write head. Therefore, it takes 16 passes to write an 8-KB page. The Torn_Page_Detection option con-
figures SQL Server to write an error bit in the page header at the end of every Write cycle. If the error
bit is absent when the page is later read, an error 823 is raised, and the database status is changed from
ONLINE to SUSPECT.

When SQL Server raises an 823 error, a record will be added to the suspect_pages table in the msdb
database. The record includes the database the error occurred in, the page ID, file ID, and various other
pieces of information that will be helpful to restore the page from a backup. This table will be updated
when the page is restored, but the records will not be removed. It is the database administrator’s job to
remove any records that are marked as restored or repaired.

Choosing an appropriate Page Verify setting depends on the degree of acceptable risk and CPU utiliza-
tion. As mentioned earlier, the best option for performance is setting ‘‘Page Verify’’ to None, but this
setting exposes your database to the risk of undetected data corruption. The Checksum option offers
the best protection from undetected corruption because any modification to the data on disk during
or after data Write operations will be detected by the checksum verification. However, the Checksum

147



Leiter c05.tex V3 - 03/25/2009 11:47am Page 148

Chapter 5: SQL Server 2008 Databases

option costs the most CPU cycles. The Torn_Page_Detection option is a lower-cost method of detecting
corrupted pages, but it will only detect page corruption that occurs during the Write operation. The rec-
ommended setting is Checksum because of its high degree of data integrity verification. To set it at the
database level, the following commands are used:

ALTER DATABASE AdventureWorks2008 SET PAGE_VERIFY NONE
ALTER DATABASE AdventureWorks2008 SET PAGE_VERIFY TORN_PAGE_DETECTION
ALTER DATABASE AdventureWorks2008 SET PAGE_VERIFY CHECKSUM

Parameterization
‘‘Parameterization’’ is a very interesting but advanced option that was introduced in SQL Server 2005.
By default, the Database Engine auto-parameterizes some queries so the query plans that are created
and compiled can be reused even when different values are defined in the WHERE clause. For example,
consider this code:

USE AdventureWorks2008
GO
SELECT * FROM Person.Person
WHERE LastName = N’Smith’

If you type this code in a Query window and then click on the ‘‘Display Estimated Execution’’ button on
the SQL Editor toolbar, you will find that the Database Engine compiles the query with the search criteria
of LastName = N‘Smith’ (see Figure 5-8) when the ‘‘Parameterization’’ option is set to Simple. This is
because SQL Server decides which queries to parameterize and which ones not to when Simple is set. For
this particular query, it determines that it is not worth the extra cost.

Figure 5-8: Simple parameterization.

When the option is set to Force, SQL Server will parameterize all queries that can be parameterized,
and the same query will result in a parameterized query plan instead (see Figure 5-9). Forcing
auto-parameterization can improve performance in some instances, but careful monitoring should be
done to ensure that it doesn’t have a negative impact on performance.

148



Leiter c05.tex V3 - 03/25/2009 11:47am Page 149

Chapter 5: SQL Server 2008 Databases

Figure 5-9: Forced parameterization.

To set it at the database level, the following commands are used:

ALTER DATABASE AdventureWorks2008 SET PARAMETERIZATION SIMPLE
ALTER DATABASE AdventureWorks2008 SET PARAMETERIZATION FORCED

Quoted Identifiers Enabled
By default, SQL Server uses square brackets (‘‘[ ]’’) to delimit objects. Delimiting objects is only required
if the object name contains an embedded space or a reserved word. The ANSI standard delimiter is the
double quotation marks. The following examples show how to create and reference an object with an
embedded space with both square brackets and double quotation marks.

Following is an example for the ANSI double quote delimiter:

USE AdventureWorks2008
GO
CREATE TABLE "Sales.USA Customers"
( AcctNumber int IDENTITY(1,1) NOT NULL
, "Last Name" varchar(75) NOT NULL
, "First Name" varchar(75) NOT NULL)

SELECT AcctNumber, "Last Name", "First Name"
FROM "Sales.USA Customers"

Following is an example of the default square bracket delimiter:

USE AdventureWorks2008
GO
CREATE TABLE [Sales.USA Customers]
( AcctNumber int IDENTITY(1,1) NOT NULL
, [Last Name] varchar(75) NOT NULL

149



Leiter c05.tex V3 - 03/25/2009 11:47am Page 150

Chapter 5: SQL Server 2008 Databases

, [First Name] varchar(75) NOT NULL)

SELECT AcctNumber, [Last Name], [First Name]
FROM [Sales.USA Customers]

When the ‘‘Quoted Identifiers’’ option is True, both square brackets and double quotation marks are
accepted. If the ‘‘Quoted Identifiers’’ option is set to False, only square bracket delimiters will be
accepted. To set this option at the connection level or database level, the following commands are used:

--Connection Settings
SET QUOTED_IDENTIFIER OFF
SET QUOTED_IDENTIFIER ON

--Database Options
ALTER DATABASE AdventureWorks2008 SET QUOTED_IDENTIFIER OFF
ALTER DATABASE AdventureWorks2008 SET QUOTED_IDENTIFIER ON

On a completely editorial note, I personally believe that embedded spaces in object names are wrong and
should never be used. They typically introduce nothing but problems to your database and application
design for the negligible benefit of a natural language name.

Recursive Triggers Enabled
Recursive triggers are considered an advanced programming technique that allows the same trigger to
fire more than once, in sequence, in the same transaction. When set to False, this action is not allowed
and is the default configuration. Generally it is a good idea to leave this set to False. Recursive logic is
difficult at best to debug and can lead to many headaches. Almost all of the time, recursive logic can be
rewritten as non-recursive logic. To set it at the database level, the following commands are used:

ALTER DATABASE AdventureWorks2008 SET RECURSIVE_TRIGGERS OFF
ALTER DATABASE AdventureWorks2008 SET RECURSIVE_TRIGGERS ON

Restrict Access
The ‘‘Restrict Access’’ option enables the database administrator to restrict access to a database
to a defined set of logins. The default value of this option is MULTI_USER, which allows multiple
non-privileged users to access the database. Two other options exist to restrict access: SINGLE_USER and
RESTRICTED_USER.

When the SINGLE_USER ‘‘Restrict Access’’ option is set, only one user account is allowed access to the
database at a time.

If the RESTRICTED_USER ‘‘Restrict Access’’ option is set, only members of the db_owner, dbcreator, or
sysadmin roles can connect to the database. To set it at the database level, the following commands are
used:

ALTER DATABASE AdventureWorks2008 SET MULTI_USER
ALTER DATABASE AdventureWorks2008 SET RESTRICTED_USER
ALTER DATABASE AdventureWorks2008 SET SINGLE_USER

Service Broker Identifier
The ‘‘Service Broker Identifier’’ option is not configurable in SQL Server Management Studio and cannot
be set directly. The Service Broker Identifier is created the first time the database is enabled to use Service

150



Leiter c05.tex V3 - 03/25/2009 11:47am Page 151

Chapter 5: SQL Server 2008 Databases

Broker and is used to uniquely identify the database in a messaging infrastructure. See Chapter 19 for
more information on Service Broker.

Trustworthy
The ‘‘Trustworthy’’ setting cannot be set through SQL Server Management Studio. The ‘‘Trustworthy’’
option indicates whether or not the instance of SQL Server trusts the database to access external or net-
work resources. If this is set to False, database programming components created with managed code,
or database components that need to execute within the context of a highly privileged user, are not
allowed access to any resource external to the database. When one of those two situations is required,
the ‘‘Trustworthy’’ option can be set to True. To set it at the database level, the following commands
are used:

ALTER DATABASE AdventureWorks2008 SET TRUSTWORTHY OFF
ALTER DATABASE AdventureWorks2008 SET TRUSTWORTHY ON

VarDecimal Storage Format Enabled
The ‘‘VarDecimal Storage Format Enabled’’ feature was first introduced in Service Pack 2 for SQL Server
2005 and is now deprecated in SQL Server 2008. Row and Page Compression, new features of SQL Server
2008, replace this functionality and are discussed later in the chapter. For SQL Server 2008, it is turned on
and cannot be turned off.

Generating Database Creation Scripts
Now that you have gone through all the steps and options of creating a database, let’s take a look at how
you can script this process so that you don’t have to go through it again.

At the top of the New Database dialog is a button called Script, as shown in Figure 5-10.

Figure 5-10: Script button.

Click the down arrow to the right of Script, and it will expose the scripting options available. If you have
followed along with the last few pages, then clicking any of the Script Action options will generate a
script that will duplicate all the settings you specified in the graphical interface. This script can then be
used to create new databases with the same options simply by changing the logical and physical names of
the database and associated files. The Script Action options are also great for exploring the actual syntax

151



Leiter c05.tex V3 - 03/25/2009 11:47am Page 152

Chapter 5: SQL Server 2008 Databases

for creating or modifying database objects. Almost every configuration screen for creating or modifying
database objects includes the Script Action option.

Another option for reusing scripts is to replace the actual names of objects and files with variables. Then
all you have to do is update the variable values and execute the script. The only tricky part in creating
Data Definition Language (DDL) scripts is having to use dynamic SQL because variables can’t be used
directly in a DDL script. The following example demonstrates how to use dynamic SQL to create a new
database with a user-defined filegroup marked as the default:

DECLARE @DatabaseName AS nvarchar(255)
DECLARE @FileGroupName AS nvarchar(255)

SET @DatabaseName = N’SlateGravel’
SET @FileGroupName = N’UserData’

EXECUTE (
’CREATE DATABASE ‘ + @DatabaseName +
’ ON PRIMARY
( NAME = ‘’’ + @DatabaseName + ‘’’
, FILENAME = ‘’S:\SQLDataFiles\’ + @DatabaseName + ‘_data.mdf"
, SIZE = 20MB
, MAXSIZE = 100MB
, FILEGROWTH = 30%)
, FILEGROUP UserData
( NAME = ‘’’ + @FileGroupName + ‘’’
, FILENAME = ‘’S:\SQLDataFiles\’ + @DatabaseName + ‘_data.ndf’’
, SIZE = 2048KB , FILEGROWTH = 20%)
LOG ON

( NAME = ‘" + @DatabaseName + ‘_log’’
, FILENAME = ‘’T:\SQLLogFiles\’ + @DatabaseName + ‘_log.ldf’’
, SIZE = 100MB
, FILEGROWTH = 20%);
ALTER DATABASE ‘ + @DatabaseName +

’ MODIFY FILEGROUP ‘ + @FileGroupName + ‘ DEFAULT’)

This script assumes the presence of an ‘‘S’’ drive, ‘‘T’’ drive, a SQLDataFiles folder, and a SQLLogFiles
folder. To run it in your environment, you may have to change the drive letter assignments and folder
names.

Schemas
SQL Server 2008 implements the database schema as defined in the ANSI standard. Almost every object
in SQL Server 2008 exists within a defined schema. A schema is simply a way to organize your database
objects and assign permissions to the objects it contains. The schema itself can be owned by any database
principal including database roles and application roles while containing many objects owned by var-
ious users. Within the schema, objects cannot have duplicate names. However, objects can have the
same name if they exist in different schemas. For example, if a table called Inventory is created in the
schema Sales on the server AughtEight, its name becomes AughtEight.Sales.Inventory. An addi-
tional table called Inventory can still be created in the Marketing schema, and its name would be
AughtEight.Marketing.Inventory. Although this is possible, it is not a good idea, in my opinion, as
it can lead to confusion for anybody new to the database and may produce unexpected results from
queries later on. Where schemas really become powerful is in the ability to form a security scope that can

152



Leiter c05.tex V3 - 03/25/2009 11:47am Page 153

Chapter 5: SQL Server 2008 Databases

be used by the database administrator to control access to all objects within the schema. This is covered
in detail in Chapter 6.

In SQL Server 2008, a database principal is assigned ownership of a schema, and that schema owns the
constituent objects such as tables, views, stored procedures, and functions. If a user who owns a schema
needs to be deleted, ownership of that schema will have to be assigned to a different user first. The easiest
solution is to have the dbo user own all the schemas. The dbo user is a built-in user that is mapped to any
member of the fixed server role sysadmin. The dbo user always exists and cannot be dropped, so it is a
perfect candidate for schema ownership. For more information about the dbo user, fixed server roles, and
SQL Server 2008 security, see Chapter 6.

Schemas and Name Resolution
Because schemas are just containers for objects, it is important to set the context of object references when
calling on database objects in SQL Server 2008. Every user is assigned a default schema. When he or she
logs in to a SQL Server and calls on database objects, this default schema will play a distinct role in how
the objects must be referenced.

For example, assume that a user named FredF is created in the AdventureWorks2008 database and
assigned the default schema of Sales. If FredF logs in and executes the query SELECT * FROM CreditCard,
the CreditCard table will be resolved to AdventureWorks2008.Sales.CreditCard because Fred’s default
schema is Sales. The Sales.CreditCard table exists, and so the contents of the CreditCard table will be
returned.

If FredF executes the query SELECT * FROM Person, the table Person will be resolved to
AdventureWorks2008.Sales.Person, a table that does not exist. Because SQL Server is unable to
find the Person table in FredF’s default schema, it will default to the dbo schema and look for the
AdventureWorks2008.dbo.Person table, again with no success. SQL Server will then return the error:
"Invalid object name".

Schema Creation
To create a schema, the only required information is the name of the schema. The ownership of the
schema defaults to the user who runs the creation script, but any valid database user can be specified as
the owner. The simplest approach is to designate dbo as the owner of the schema, but there are situations
in which it may be desirable to designate a regular user as the owner. The syntax and an example of the
CREATE SCHEMA statement are as follows:

CREATE SCHEMA Schema_Name [ AUTHORIZATION owner ]

USE AdventureWorks2008
GO
CREATE SCHEMA Operations AUTHORIZATION dbo

Any schema-scoped statements that follow the CREATE SCHEMA statement will fall into the scope of the
schema just created, as the following example illustrates:

USE AdventureWorks2008
GO
CREATE SCHEMA Operations AUTHORIZATION dbo

CREATE TABLE DeliveryDriver

153



Leiter c05.tex V3 - 03/25/2009 11:47am Page 154

Chapter 5: SQL Server 2008 Databases

(DriverID int IDENTITY NOT NULL
,LName varchar(75) NOT NULL
,FName varchar(75) NOT NULL)

GRANT SELECT ON DeliveryDriver TO FredF

Even though the schema was not specified in the CREATE TABLE statement, this script places the
DeliveryDriver table into the Operations schema. Even the GRANT SELECT statement succeeds,
although the schema was not designated in the statement it defaulted to the Operations schema,
because the CREATE SCHEMA statement set the scope of the schema for all remaining statements in the
batch. If the script is changed slightly so that the GRANT SELECT statement is in a different batch, the
GRANT SELECT will fail.

CREATE SCHEMA Operations AUTHORIZATION dbo

CREATE TABLE DeliveryDriver
(DriverID int IDENTITY NOT NULL
,LName varchar(75) NOT NULL
,FName varchar(75) NOT NULL)

GO

GRANT SELECT ON DeliveryDriver TO FredF
--------------------------------------------------------------------------

Msg 15151, Level 16, State 1, Line 1
Cannot find the object ‘DeliveryDriver’, because it does not exist or you do
not have permission.

The GO keyword placed the GRANT SELECT statement outside the batch that created the schema, and thus
the execution context reverted to that of the user executing the script. As a best practice, the schema of an
object should always be specified to avoid any unexpected results.

CREATE SCHEMA Operations AUTHORIZATION dbo

CREATE TABLE Operations.DeliveryDriver
(DriverID int IDENTITY NOT NULL
,LName varchar(75) NOT NULL
,FName varchar(75) NOT NULL)

GRANT SELECT ON Operations.DeliveryDriver TO FredF

Remember that schema scope resolution always starts at the user’s default schema and will revert to the
dbo schema if a referenced object is not scope-qualified.

Schema Maintenance
As a precaution if you attempt to drop a schema that contains objects, an error will be generated as shown
in the following example:

DROP SCHEMA Operations

--------------------------------------------------------------------------

Msg 3729, Level 16, State 1, Line 1

154



Leiter c05.tex V3 - 03/25/2009 11:47am Page 155

Chapter 5: SQL Server 2008 Databases

Cannot drop schema ‘Operations’ because it is being referenced by object
’DeliveryDriver’.

If the object in the schema is still required, it can be transferred to a different schema with the
ALTER SCHEMA statement:

ALTER SCHEMA Production TRANSFER Operations.DeliveryDriver

This example alters the schema Production by moving the table DeliveryDriver from the Operations
schema to the Production schema. Because that was the last object in the schema, it can now be dropped.
Be advised, however, that transferring an object from one schema to another clears any permissions set
on the object.

A user who owns a schema cannot be dropped from the database, which is one of the reasons why
you may decide to have the dbo user own all schemas. To change the ownership of a schema, the
AUTHORIZATION property of the schema is altered. The following example changes the ownership of
the Operations schema to FredF:

ALTER AUTHORIZATION ON SCHEMA::Operations TO FredF

Tables
SQL Server 2008, like all relational database management systems, stores data in objects called tables. As
mentioned in Chapter 1, it is assumed in this book that you are at least familiar with relational database
concepts, so I won’t spend much time explaining what a table is or how to create them. What is pertinent
to the SQL Server 2008 database administrator is how to maintain and secure tables to optimize the
performance and security of the database. Security is discussed in detail in Chapter 6, so for this chapter,
the discussion is limited to the maintenance of data tables, but first a little background information is
required.

Table Collation
As discussed earlier in this chapter, when creating a database, collation support can be configured that is
different from that of the server. This is also true for table columns that contain character data. Each col-
umn can be defined with a different collation setting. For example, the AdventureWorks Cycles company
wants to enable customers from all over the world to browse and search the product catalog in their own
languages. To enable this functionality, a GlobalProductDescription table is built with the following
script:

USE AdventureWorks2008
GO
CREATE TABLE Production.GlobalProductDescription(

ProductDescriptionID int IDENTITY(1,1) NOT NULL,
EnglishDescription nvarchar(400) COLLATE SQL_Latin1_General_CP1_CI_AS NULL,
FrenchDescription nvarchar(400) COLLATE French_CI_AS NULL,
ChineseDescription nvarchar(400) COLLATE Chinese_PRC_CI_AI NULL,
ArabicDescription nvarchar(400) COLLATE Arabic_CI_AS NULL,
HebrewDescription nvarchar(400) COLLATE Hebrew_CI_AS NULL,
ThaiDescription nvarchar(400) COLLATE Thai_CI_AS NULL,
ModifiedDate datetime NOT NULL)

155



Leiter c05.tex V3 - 03/25/2009 11:47am Page 156

Chapter 5: SQL Server 2008 Databases

Each column is now sorted and searchable using the native language collation settings as defined in
the business requirement. Now, don’t let me mislead you. SQL Server definitely is not some kind of
universal translator. SQL Server just provides the framework for storing multiple languages. You will
have to arrange for the proper translation of the descriptions and place them in the appropriate columns,
and handle any collation incompatibilities that arise because of tempdb’s collation. For more information
on collation, see Chapter 2.

Table Architecture
As discussed in Chapter 4, SQL Server uses 8-KB data pages to store information. All data within a table
is stored within these data pages, but how the data on the pages is organized will differ depending on
how you create the table and what you do with it after creation. By default, all data will be stored in an
unorganized manner formally called a heap. SQL Server makes no attempt to keep the data organized or
sorted in any way and maintains no links between the pages. The following code creates a table that is
stored in such a way:

CREATE TABLE Employee(
EmployeeId int IDENTITY,
FirstName nvarchar(25) NOT NULL,
MiddleName nvarchar(25) NULL,
LastName nvarchar(25) NOT NULL,
HireDate smalldatetime
)

Although this arrangement works great for adding data to a table, it is less than an optimum solution
when trying to find a particular row or set of rows in a table. Think of a library. If you managed a library
that put all the books on shelves as they came in with no regard to genre, author, or title, it would take
very little effort to shelve the books as they came in. However, when it came time to find a particular
book, you would be forced to scan through all the shelves looking for the one book you wanted. This is
exactly how SQL Server works when it is looking for a record in a heap. Later on in the chapter, we will
take a look at indexes and see how they can help with this problem, but first, let’s look at how breaking
up the table into smaller chunks can help.

Partitioning Tables
SQL Server physically stores all data pages in logical units called partitions. Unless specifically separated,
tables are stored in a single partition defined on a single filegroup. However, SQL Server provides the
ability to separate large tables into smaller manageable units by horizontally partitioning the tables across
multiple files managed by filegroup definitions.

The Table Partitioning feature is available only in the Enterprise and Developer editions of SQL Server
2008.

For example, a transaction table with millions of rows can be physically partitioned so that all the trans-
actions for the current year are separated from those for previous years. This way, only a subset of the
table will need to be scanned to select, insert, or update current-year transactions.

To illustrate the advantages of physical table partitioning and demonstrate how to implement them,
you must first build a table that is a candidate for partitioning. Using the following script, create the
dbo.Transactions table that will hold your test data. The Transaction table has the same basic structure
as the Production.TransactionHistory and Production.TransactionHistoryArchive tables.

156



Leiter c05.tex V3 - 03/25/2009 11:47am Page 157

Chapter 5: SQL Server 2008 Databases

USE AdventureWorks2008
GO
CREATE TABLE dbo.Transactions(

TransactionID int NOT NULL,
ProductID int NOT NULL,
ReferenceOrderID int NOT NULL,
ReferenceOrderLineID int NOT NULL,
TransactionDate datetime NOT NULL,
TransactionType nchar(1) NOT NULL,
Quantity int NOT NULL,
ActualCost money NOT NULL,
ModifiedDate datetime NOT NULL)

To populate the new Transactions table, insert all the rows from the TransactionHistory and
TransactionHistoryArchive tables by using a UNION operator:

USE AdventureWorks2008
GO
INSERT dbo.Transactions
SELECT * FROM Production.TransactionHistory
UNION ALL
SELECT * FROM Production.TransactionHistoryArchive

Now that you have a nice-size table to work with, run a query against it to see the performance before
partitioning. The table contains a total of 202,696 rows. Of the transaction rows in the table, 12,711 took
place in 2001, 38,300 in 2002, 81,086 in 2003, and 70,599 took place in 2004.

--Pre Partition Statistics
USE AdventureWorks2008
GO
DBCC DROPCLEANBUFFERS
SET STATISTICS IO ON
DECLARE @BeginDate AS datetime, @EndDate AS datetime
SET @BeginDate = ‘2002-01-01’
SET @EndDate = ‘2002-12-31’

SELECT SUM(Quantity) AS TotalQuantity, SUM(ActualCost) AS TotalCost
FROM dbo.Transactions
WHERE TransactionDate BETWEEN @BeginDate AND @EndDate

The script uses the DBCC DROPCLEANBUFFERS command to clear all pages from the buffer cache. This will
allow us to see how many physical Reads are required to bring all needed data into memory. It also turns
on statistic reporting with the SET STATISTICS IO ON option and then queries the dbo.Transactions table
to return the total sales amount and total quantity of products sold in 2002.

The results of the query are as follows:

TotalQuantity TotalCost
------------- ---------------------
1472494 16427929.3028

(1 row(s) affected)

Table ‘Transactions’. Scan count 1, logical reads 1408, physical reads 26, read-
ahead reads 1407, lob logical reads 0, lob physical reads 0, lob read-ahead reads 0.

157



Leiter c05.tex V3 - 03/25/2009 11:47am Page 158

Chapter 5: SQL Server 2008 Databases

In order to see the results as shown above, you must have the results of the query displayed as text. You
can do this by pressing [Ctrl]+T prior to running the query. To switch back to grid view, press [Ctrl]+D
and re-run the query.

As you can see, to satisfy the query, SQL Server had to scan the table. To find the 38,300 rows that met
the criteria of the WHERE clause, SQL Server had to scan through 202,696 rows. This scan resulted in 1,408
logical reads.

Now, let’s see what happens when you physically divide the table into multiple files by partitioning the
table so that all the transactions are divided by year.

In a perfect world, you would know that you wanted to physically partition a table before you ever
populated it with data, but perfect worlds are rare. In this case, you have decided to physically partition
the Transactions table after it has been built. Since the data is stored in a heap, you are forced to create a
new partitioned table and move the data to it, and then drop the original table. (I will show you a much
easier way to accomplish this later in the chapter.)

The first step in partitioning the table is to create the filegroups that will hold the data files to be used to
store the partitions of the table. Remember from the previous discussion on filegroups that tables cannot
be assigned to a particular file, only to a filegroup. In this example, each filegroup will contain only one
file. This is by no means a requirement. Partitions can be defined to exist on a single file or multiple
files.

The following script adds four new filegroups with one file per filegroup to contain the parti-
tioned transaction table. As the names suggest, you will be partitioning the Transactions table
by date:

USE MASTER
GO
ALTER DATABASE AdventureWorks2008
ADD FILEGROUP FGPre2002
GO
ALTER DATABASE AdventureWorks2008
ADD FILE
( NAME = ‘AworksPre2002’
, FILENAME = ‘E:\SQLData\AworksPre2002.ndf’
, SIZE = 20MB
, FILEGROWTH = 20% )

TO FILEGROUP FGPre2002
GO
ALTER DATABASE AdventureWorks2008
ADD FILEGROUP FG2002
GO
ALTER DATABASE AdventureWorks2008
ADD FILE
( NAME = ‘Aworks2002’
, FILENAME = ‘E:\SQLData\Aworks2002.ndf’
, SIZE = 20MB
, FILEGROWTH = 20% )

TO FILEGROUP FG2002
GO
ALTER DATABASE AdventureWorks2008

158



Leiter c05.tex V3 - 03/25/2009 11:47am Page 159

Chapter 5: SQL Server 2008 Databases

ADD FILEGROUP FG2003
GO
ALTER DATABASE AdventureWorks2008
ADD FILE
( NAME = ‘Aworks2003’
, FILENAME = ‘E:\SQLData\Aworks2003.ndf’
, SIZE = 20MB
, FILEGROWTH = 20% )

TO FILEGROUP FG2003
GO
ALTER DATABASE AdventureWorks2008
ADD FILEGROUP FG2004AndAfter
GO
ALTER DATABASE AdventureWorks2008
ADD FILE
( NAME = ‘Aworks2004AndAfter’
, FILENAME = ‘E:\SQLData\Aworks2004AndAfter.ndf’
, SIZE = 20MB
, FILEGROWTH = 20% )
TO FILEGROUP FG2004AndAfter

GO

This script assumes the presence of an ‘‘E’’ drive and a SQLData folder. To run it in your environment,
you may have to change the drive letter assignment.

The next step in partitioning the Transactions table is to create a partition function. Partition functions
determine the boundaries for each partition. You must specify what data type the function will work
with during creation. All data types are valid with the exception of alias data types, CLR types, or any of
the following: text, ntext, image, xml, timestamp, varchar(max), nvarchar(max), or varbinary(max).
For example, the partition function will specify what the ranges of values are (as in 1 through 100,000,
100,001 through 1,000,000, etc.). Keep in mind that when specifying a partitioning function, you can only
partition on a single value.

In this example, all data is partitioned by date in order to group together the data in accordance to the
most frequent queries run against the table. Run the following script to create a partition function that
partitions a table into four groups of dated records. The first group is from NULL to 12/31/2001. The
second group is from 1/1/2002 to 12/31/2002. The third group is from 1/1/2003 to 12/31/2003, and the
last group is from 1/1/2004 to INFINITY.

CREATE PARTITION FUNCTION YearFunction (datetime)
AS RANGE RIGHT FOR VALUES (’1/1/2002’,’1/1/2003’,’1/1/2004’)

When creating a partition function, the option RANGE RIGHT or RANGE LEFT can be used. This is used to
determine which partition the row will be stored in if the value the table is partitioned on is equal to the
boundary value. For example, if you use RANGE LEFT and the value is equal to the boundary value, then
the row would be stored in the partition to the left of the boundary. If you were to use the RANGE RIGHT
partition function created in the previous script and insert a transaction into your table with a transaction
date of 1/1/2003, then the record would be placed into the third group.

Once the function is created to define the boundaries used for partitioning, a partition scheme must be
created. A partition scheme is used to determine where the partitions are physically stored. When defining

159



Leiter c05.tex V3 - 03/25/2009 11:47am Page 160

Chapter 5: SQL Server 2008 Databases

the partition scheme, you must specify the same number of filegroups as partitions that are defined by the
partition function. Run the following script to create a partition scheme that maps the partitions created
by the YearFunction to the filegroups that you created earlier:

CREATE PARTITION SCHEME YearScheme
AS PARTITION YearFunction
TO (FGPre2002, FG2002, FG2003, FG2004AndAfter)

If you wanted to partition the table but store all of the partitions on the same filegroup, you have two
choices: You could repeat the filegroup name for each partition or use the ALL TO option with a single
filegroup, for example, ALL TO ([PRIMARY]).

You can also specify one additional filegroup following the last one. This filegroup is marked as the
‘‘next’’ filegroup to be used if another partition is created.

All that is left to do now is to create the actual partitioned table and move the data from the original
Transactions table into it:

USE AdventureWorks2008
GO
CREATE TABLE dbo.PartitionedTransactions(

TransactionID int NOT NULL,
ProductID int NOT NULL,
ReferenceOrderID int NOT NULL,
ReferenceOrderLineID int NOT NULL,
TransactionDate datetime NOT NULL,
TransactionType nchar(1) NOT NULL,
Quantity int NOT NULL,
ActualCost money NOT NULL,
ModifiedDate datetime NOT NULL)

ON YearScheme(TransactionDate)
GO
INSERT INTO dbo.PartitionedTransactions
SELECT * FROM dbo.Transactions

When creating partition functions and partition schemes, remember that they can be used to partition
as many tables as needed. The YearFunction and YearScheme can be used to partition any table in the
AdventureWorks2008 database that has a datetime column in it.

To see if you have improved the performance of your query, run the same query that you ran before on
the Transactions table:

--Post Partition Statistics
DBCC DROPCLEANBUFFERS
SET STATISTICS IO ON
SELECT SUM(Quantity) AS TotalQuantity, SUM(ActualCost) AS TotalCost
FROM dbo.PartitionedTransactions
WHERE TransactionDate BETWEEN ‘1-1-2002’ AND ‘12-31-2002’
The results of the query are as follows:
TotalQuantity TotalCost

160



Leiter c05.tex V3 - 03/25/2009 11:47am Page 161

Chapter 5: SQL Server 2008 Databases

------------- ---------------------
1472494 16427929.3028

(1 row(s) affected)

Table ‘PartitionedTransactions’. Scan count 1, logical reads 266, physical reads 5,
read-ahead reads 259, lob logical reads 0, lob physical reads 0, lob read-ahead
reads 0.

Now that the table is physically partitioned, the logical Reads required to retrieve the results have gone
from 1,408 to 266. The decrease in I/O cost will also cause a decrease in CPU cost, resulting in a much
more efficient query. Keep in mind that the savings in performance are on a table with only 202,696 rows.
Imagine the savings if the table contained 10 years of data comprising millions of rows and the partitions
were defined on each year. The savings when querying a specific year would be much more dramatic.

Although creating partitioned tables was available in SQL Server 2005, the only way to do it was with
code. I don’t have a problem with writing scripts every once and awhile, but if I can use the GUI to write it
for me, I am all over it. SQL Server Management Studio now has the ability to not only create partitioned
tables, but also to generate the script for it so that you could run it on any server. Another benefit is that it
could perform the operation in place so that you don’t have to worry about creating a new table and mov-
ing the data into it. Let’s walk through the process of partitioning the Production.TransactionHistory
table in the AdventureWorks2008 database.

If you were following along with the last section, you will need to drop the table, partition function, and
partition scheme in order to do the next section. The following script will accomplish this for you:

IF EXISTS (SELECT * FROM sys.tables WHERE object_id =
OBJECT_ID(’dbo.PartitionedTransactions’))

DROP TABLE dbo.PartitionedTransactions

IF EXISTS
(SELECT * FROM sys.partition_schemes WHERE Name = ‘YearScheme’)

DROP PARTITION SCHEME YearScheme

IF EXISTS
(SELECT * FROM sys.partition_functions WHERE Name = ‘YearFunction’)

DROP PARTITION FUNCTION YearFunction

To partition a table from SQL Server Management Studio, right-click on the table you wish to partition,
select Storage, and then ‘‘Create Partition,’’ as shown in Figure 5-11.

Figure 5-11: Creating a partition using Management Studio.

Use the ‘‘Select Partitioning Column’’ page to identify the column upon which the table will be par-
titioned (see Figure 5-12). As mentioned earlier, only certain data types are valid for the partitioning
column, and the Wizard will only show you columns that are of valid types. In this case, we are going to
choose the TransactionDate column.

161



Leiter c05.tex V3 - 03/25/2009 11:47am Page 162

Chapter 5: SQL Server 2008 Databases

Figure 5-12: Select a Partitioning Column page.

After clicking Next, you will need to choose the partitioning function that you would like to use (see
Figure 5-13). If you choose to use an existing function, you will only be able to choose a function that
can be used with the column that you selected in the previous page. If there are no partition functions
defined in the database for the data type of your selected column, then you will be have to create a new
one. Type a name for the new partition function, and click Next.

Now a partitioning scheme needs to be selected for the table (see Figure 5-14). If there is a partition
scheme available that has the correct number of filegroups defined for the choosen funtion then it can be
reused; otherwise, a new one will need to be created. Click Next to continue.

The Map Partitions page (see Figure 5-15) is used to define the boundaries of the partition function
and the mapping between the partitions and filegroups. If the partition column is a date, datetime,
smalldatetime, datetime2, or datetimeoffset, then the ‘‘Set boundaries’’ button will be enabled. This
allows a very quick way of defining the boundary points for the partition function by specifying the Start
Date, End Date, and the Date Range. You can create partitions that are broken up by Day, Month, Quarter,
Half-Year, or Year. Once the partitions are defined, they need to be mapped to the desired filegroups. The
filegroups must already exist and cannot be created at this point. When defining the mapping, the last
one will not map to a boundary point. The filegroup is not marked as the next filegroup but the filegroup
that the last partition is placed in. See Figure 5-16 for the completed dialog box.

You now have the option to create a script that will partition the table, do the partitioning immediately,
or schedule it for later execution (see Figure 5-17).

162



Leiter c05.tex V3 - 03/25/2009 11:47am Page 163

Chapter 5: SQL Server 2008 Databases

Figure 5-13: Select a Partition Function page.

Figure 5-14: Select a Partition Scheme page.

163



Leiter c05.tex V3 - 03/25/2009 11:47am Page 164

Chapter 5: SQL Server 2008 Databases

Figure 5-15: Map Partitions page.

Figure 5-16: Set Boundaries dialog.

Data Compression
SQL Server 2008 introduces the ability to compress data in tables, indexes, or partitions. This can save I/O
requests since more data on each page equals fewer pages to read into memory. Additionally, because
more data is stored on each data page, more data can be stored in the same amount of memory. The
combination of lower I/O and having more data in memory usually translates to increased performance.
Data compression is enabled using one of two different modes: row compression or page compression.

Row Compression
Row compression is a descendent of the vardecimal storage format introduced in SQL Server 2005 SP2.
Prior to the vardecimal storage format, decimals were stored in a fixed amount of space. The amount of
space that the decimal used was based on the scale defined for the column and took anywhere between
5 and 17 bytes. This often contributed to a lot of wasted space depending on the value. For example, if

164



Leiter c05.tex V3 - 03/25/2009 11:47am Page 165

Chapter 5: SQL Server 2008 Databases

you define a column as a decimal (15, 15), it would take 9 bytes of storage regardless of the value. With
vardecimal storage format enabled, only the absolute required space to represent the number is used.
This has been extended to all fixed length data types in SQL Server 2008.

Figure 5-17: Select an Output Option page.

Now that we have seen how SQL Server stores its data in tables and how we could improve perfor-
mance by partitioning the data, let’s look at another way to improve the performance of retrieving
data — indexes.

Indexes
As noted previously, SQL Server tables are stored as heaps by default. In order for SQL Server to retrieve
any record from a heap, it must perform a full table scan; in other words, it must examine every record
to determine if it should be returned. As you are probably already thinking, this is an extremely ineffi-
cient way to retrieve data. Heaps work very well for storing data and are very efficient in handling new
records, but they are not so great when it comes to finding specific data in a table. This is where indexes
come in. SQL Server supports two basic types of indexes: clustered and non-clustered. Although there is
support for other index types such as XML and spatial indexes, which are discussed later in this chapter,
they are quite different from the regular relational indexes that will be used to locate the majority of the
data in database tables.

The key difference between clustered and non-clustered indexes is in the leaf level of the index. In
non-clustered indexes, the leaf level contains pointers to the data, whereas in a clustered index, the leaf
level of the index contains the actual data.

165



Leiter c05.tex V3 - 03/25/2009 11:47am Page 166

Chapter 5: SQL Server 2008 Databases

Clustered Indexes
All data that belongs to a table can be stored in either a heap or a clustered index. Heaps and clustered
indexes are thus mutually exclusive. As I mentioned earlier, a heap is an unorganized collection of table
rows, whereas a clustered index is a collection of organized table rows.

The white pages of the phone book are a perfect example of a clustered index. All the rows of the white
pages are clustered on the combination of last name and first name. When scanning the white pages
looking for a phone number, you are scanning both the index and the data. When the indexed value is
found, so is the rest of the pertinent data.

This is also true of SQL Server clustered indexes. Clustered indexes can be created to sort the data by
a particular attribute, or column, of the row. Going back to the library example, libraries organize most
of the books in a clustered index based on genre and/or topic, and then break that organization down
further by author. The clustered key must be unique within the index (this is to support non-clustered
indexes, as you will see shortly), but you do not have to mark the column as unique in order to create the
index. When clustered indexes are created on columns that are not marked as being unique, SQL Server
generates a hidden column that holds a 4-byte internal number called a uniqueifier to uniquely identify
duplicate clustered index keys. The leaf level of a clustered index is the actual data row, not just a pointer
to the data.

Non-Clustered Indexes
Non-clustered indexes are more like the indexes in the back of a book. When the indexed value is found,
you do not have the actual data row but a pointer that specifies the location of the actual data row. The
type of pointer that is included in the leaf level pages will depend on whether the non-clustered index is
built on top of a heap or a clustered index.

Non-Clustered Indexes on Heaps
When a non-clustered index is built on a table organized as a heap, the indexed column or columns are
sorted along with a pointer to the physical location of the data. The pointer is made up of the file ID, page
ID, and slot number that the data is located in. For example, if the data is the 20th record on page 84,593
in the first file, then the SQL would use 1:84593:20 for the value of the pointer. This allows SQL Server to
access the data quickly after finding it in the index.

For example, let’s go back to the library analogy. If the physical location of every book that came into this
unorganized library were recorded in an index as it was placed on the shelf, that index could be refer-
enced to find the location of a book instead of scanning all the shelves. The downside of this technique
is that similar records (or, in the library analogy, similar books) could be located in completely different
places. For example, searching for books on SQL Server 2008 could return several books, each one located
at the opposite end of the library. Retrieving the books may take more effort than would be required if
all the SQL Server books were clustered together. In a simple one-column index built on a heap table, the
index itself is a great deal like a two-column table. The first column records the indexed value, and the
second column records the physical location of the row in which the indexed value can be found.

Non-Clustered Indexes on Clustered Indexes
When a non-clustered index is built on a clustered index, the pointer value in the index is the clustered
index key value for that row. Once the indexed value is located, SQL Server uses the clustered key to
navigate the clustered index to retrieve all required columns.

166



Leiter c05.tex V3 - 03/25/2009 11:47am Page 167

Chapter 5: SQL Server 2008 Databases

For example, in the phone book analogy, you learned that the white pages of the phone book are just like
a clustered index in SQL Server. I live in a small town southeast of Seattle, and my phone book contains
an interesting additional index just after the white pages. I call them the ‘‘slightly off-white pages.’’
These off-white pages contain every published phone number in town listed in sorted order, along with
the last name and first name of the phone number’s holder. This is a perfect example of a non-clustered
index built on a clustered index. The phone number can be used to discover the last name–first name
combination, and then the last name–first name combination can be used to find the address, if it is listed.

Whether to create a clustered index or leave the records in a heap is a design decision that is typi-
cally driven by how the data is accessed. When data from a table is primarily accessed by a predictable
attribute or column, then it may be useful to cluster the rows of the table on that specific column. How-
ever, if the column is based on a large data type, creating a clustered index on it will be costly as far as
storage and index maintenance.

Included Columns
The functionality of non-clustered indexes can be improved by adding non-key values to the leaf nodes
of the index. This allows the index to cover more queries, reducing the number of times the clustered
index needs to be traversed in order to retrieve additional values.

For example, imagine we have a table called Contacts that has a clustered index defined on the
ContactId column and a non-clustered index defined on the LastName column. The non-clustered
index leaf nodes will contain the index value and the clustered key. When a query that requires the
ContactId, FirstName, and LastName column is executed using the LastName as a predicate, the
non-clustered index on LastName will be used to locate the records but will only contain two of the
required columns, LastName and ContactId. SQL Server would then have to make a trip to the clustered
index to retrieve the value for the FirstName for each record found. Repeated trips to the clustered index
can be eliminated by designing the index as a covered index.

Typically, a covered index is an index that contains all data needed to satisfy the query. One approach
used by DBAs is to create a non-clustered index on both the LastName and FirstName columns. This
would place the values to both the LastName and FirstName columns (since these are the index keys) and
the ContactId in the leaf nodes. If a query only needing these three columns is executed, a trip to the
clustered index would not be necessary. This approach is fine except the index size could grow quickly
since all columns that participate in the index are included on all levels of the index. Also, the index needs
to be sorted on both columns, which could cause performance problems trying to keep it this way during
updates.

Included columns allow us to increase query coverage without incurring the overhead of composite index
keys. Columns that are marked as ‘‘included’’ in the index only appear in the leaf nodes of the index and
are not considered in the ordering of the rows. To include columns in the leaf nodes, you use the INCLUDE
option of the CREATE INDEX command. The following command creates an index on the LastName column
and includes the FirstName column of the Person.Person table in AdventureWorks2008:

CREATE NONCLUSTERED INDEX IX_Person_LastName
ON Person.Person(LastName)
INCLUDE(FirstName)

Filtered Indexes
A filtered index is simply an optimized non-clustered index. It allows the creation of an index over a
subset of the data keeping the index structure smaller, resulting in a decrease of the amount of time

167



Leiter c05.tex V3 - 03/25/2009 11:47am Page 168

Chapter 5: SQL Server 2008 Databases

required to build the index and reducing index maintenance costs. Filtered indexes are particularly
useful for indexes on columns that contain a high percentage of NULL values or columns that contain
ranges of data such as dollar amounts. To create a filtered index, simply include a WHERE clause with
the CREATE INDEX statement. The following code creates an index over all products that cost more than
$800.00.

CREATE NONCLUSTERED INDEX IX_ListPrice_Product
ON Production.Product(ListPrice)

WHERE ListPrice > 800.00;

Hierarchal Indexes
As discussed in Chapter 4, HierarchyId is one of the new data types introduced in SQL Server 2008. To
aid in the retrieval of hierarchal data, indexes can be built on columns of this type using two different
approaches: breadth-first or depth-first.

Breadth-First Indexes
Breadth-first indexes keep all the records that are within the same level grouped together. This allows SQL
Server to very quickly respond to queries where all records have a common parent. For example, all
records for employees who report to the IT Manager would be grouped together. The following code
creates a breadth-first index on the employee table:

-- Breadth-First
IF EXISTS (SELECT * FROM sys.indexes

WHERE Name = ‘IX_Employee_OrganizationLevel_OrganizationNode’)
DROP INDEX IX_Employee_OrganizationLevel_OrganizationNode
ON HumanResources.Employee

CREATE NONCLUSTERED INDEX IX_Employee_OrganizationLevel_OrganizationNode
ON HumanResources.Employee
(
OrganizationLevel,
OrganizationNode
)

Depth-First Indexes
Depth-first indexes keep all the records for a chain grouped together. This allows SQL Server to quickly
answer queries that are looking for a hierarchy. For example, say we need the record for Peter and all the
people that Peter reports to, up to the CEO.

To create a depth-first index, all you need to do is create an index on the HierarchyId column.

The following code creates a depth-first index on the employee table:

-- Depth-First
IF EXISTS (SELECT * FROM sys.indexes WHERE Name = ‘IX_Employee_OrganizationNode’)

DROP INDEX IX_Employee_OrganizationNode ON HumanResources.Employee

CREATE NONCLUSTERED INDEX IX_Employee_OrganizationNode
ON HumanResources.Employee

168



Leiter c05.tex V3 - 03/25/2009 11:47am Page 169

Chapter 5: SQL Server 2008 Databases

(
OrganizationNode
)

Spatial Indexes
SQL Server 2008 includes support for spatial data through two new CLR data types: geometry and
geography. The geometry data type is designed for planer (flat earth) space, while the geography data
type is used for geodetic (round earth) space. For more information on these data types, see Chapter 4.

A common operation on spatial data is to find all records that intersect with a given area. For example,
we need to find all stores that are within a 50-mile radius of a specific location and then sort them based
on distance. Finding the intersection of regions is an expensive operation especially on complex data
regions. If all the regions that have no chance of intersecting with the given region could be eliminated,
then the cost of finding the valid records could be substantially reduced. This is where spatial indexes
help.

The creation of a spatial index goes through two phases: decomposition and tessellation. During the
decomposition phase, SQL Server breaks down a finite area into a grid structure (think ‘‘Excel worksheet’’).
Each cell of the grid is then mapped onto another grid structure, forming a more detailed level. This
process continues until four levels are created. The grid in each level can be configured to be a 4 × 4,
8 × 8, or 16 × 16 cell grid. As you can see, the number of cells can grow very quickly. For example, if you
were to have a 16 × 16 cell grid in each level, you would end up with approximately 4 billion cells.

During the tessellation phase, each spatial value in the table is mapped onto each of the resulting grid
levels. SQL Server evaluates the cells that the value ‘‘touches’’ and records them into the actual spatial
index. The spatial index can then be used to locate objects in space relative to other objects that are also
stored in the index.

Many spatial indexes can be built on a single spatial data column, each covering an independent area of
space. Since a flat plane continues infinitely in all directions, when using the geometry (flat earth) data
type, a finite space must be specified by using the BOUNDING_BOX option. For example, we may only want
to index storage-location data for stores within the state of Washington. Conceptually, it is very similar to
a filtered index in that we are only indexing a subset of the data, but instead of providing a WHERE clause
to limit the records indexed, we provide a bounding rectangle.

XML Indexes
Another type of index supported in SQL Server 2008 is the XML index. SQL Server 2005 introduced the
ability to store native XML in tables, and with that comes the ability to build indexes on that XML to help
locate and retrieve specific data within the XML text. XML data is stored as a Binary Large Object (BLOB)
in the SQL Server database. To search for specific elements, attributes, or values in the XML document,
SQL Server must first open the BLOB and then shred its contents. The act of shredding is what SQL
Server does to create a collection of XML objects that it can then navigate. It essentially extracts the XML
data structure and stores it in temporary relational structures.

XML indexes, like their relational counterparts, come with some overhead, but XML index overhead is
more significant than regular indexes. For this reason, XML indexes should be reserved for columns in
which the XML data is seldom modified.

169



Leiter c05.tex V3 - 03/25/2009 11:47am Page 170

Chapter 5: SQL Server 2008 Databases

It is typically much more efficient to have the database applications store and retrieve complete XML
documents, rather than inserting and modifying parts and pieces of the document, which results in
shredding. However, there are business cases that call for just this type of functionality, so the ability to
create XML indexes was included to avoid the necessity of shredding complete documents.

XML indexes are essentially pre-shredded sections of the XML data linked to the primary key of the table.
There are four types of XML indexes: The first XML index must be a primary XML index. In addition to
the primary index, three secondary indexes can be created that build on the primary. Each additional
index type will improve XML query performance for certain types of queries, but will also adversely
affect XML data modification.

Primary XML Indexes
The primary XML index really isn’t built on the XML column itself but, rather, is a clustered index that
is built on an internal table that is created during the index creation process. This internal table is known
as the node table. The node table is directly linked to the clustered index of the table where the XML
index is being created. To create an XML index, the table with the XML column must have a clustered
index on its primary key. The node table is used to support the primary XML index but is not directly
accessible, although information about it can be exposed using system views. The primary XML index
stores a relational representation of the XML field and assists the Query Optimizer in creating efficient
query plans to extract data from an XML field. An example of the syntax to create a primary XML index
is as follows:

USE AdventureWorks2008
GO
CREATE PRIMARY XML INDEX XML_IX_Illustration
ON Production.Illustration (Diagram)

Primary XML indexes can also be graphically created in Management Studio. To create a new set of XML
indexes, first create a table to use. To create a copy of the Person.Person table that contains an XML
column, execute the following code, which creates the MyContact table and then creates a clustered index
on the primary key, which is required to create XML indexes:

USE AdventureWorks2008
GO
SELECT * INTO dbo.MyPerson FROM Person.Person
GO
ALTER TABLE dbo.MyPerson
ADD CONSTRAINT PK_MyPerson_BusinessEntityId
PRIMARY KEY CLUSTERED (BusinessEntityId)

Now that you have a table to play with, expand the AdventureWorks2008 database in Object Explorer,
expand Tables, and then expand the dbo.MyPerson table.

You may have to refresh the Tables node to get the MyPerson table to appear.

Right-click on the MyPerson table and click Design. The table structure will appear to the right of the
Object Explorer, and the Table Designer toolbar will appear.

Click on the AdditionalContactInfo column, and then click on the ‘‘Manage XML Indexes’’ button on
the Table Designer toolbar (see Figure 5-18). If the Table Designer toolbar is not visible, select it on the
View � Toolbars menu.

170



Leiter c05.tex V3 - 03/25/2009 11:47am Page 171

Chapter 5: SQL Server 2008 Databases

Figure 5-18: ‘‘Manage XML Indexes’’
button.

On the XML Indexes dialog (see Figure 5-19), click Add and then change the name of the new primary
XML index to PXML_MyPerson_AdditionalContactInfo, and give it a short description such as ‘‘Primary
XML Index.’’

Figure 5-19: XML Indexes configuration.

Notice that the ‘‘Is Primary’’ property is set to Yes and cannot be changed. This is because this is the first
XML index, and the first XML index created on an XML column must be a primary XML index.

Primary XML indexes can also be created through the New Index dialog by right-clicking on the Indexes
node under the Table node in Object Explorer, clicking ‘‘New Index,’’ and then choosing ‘‘Primary XML’’
from the list in the ‘‘Index type’’ dropdown box, as shown in Figure 5-20. However, secondary indexes
cannot be created this way.

Secondary XML PATH Indexes
XML PATH indexes can improve the performance of XML queries that specify path expressions against the
XML column. For example, if you use queries that check for the existence of an XQuery expression such
as /Invoice/LineItem[@ProductID="9834"], then a PATH secondary index may improve performance.
PATH secondary indexes (like all other secondary XML indexes) are built on the nodes provided by the
primary XML index. An example of the syntax to create a secondary PATH index is as follows:

USE AdventureWorks2008
GO
CREATE XML INDEX IXML_MyPerson_AdditionalContactInfo_Path

ON dbo.MyPerson(AdditionalContactInfo)

171



Leiter c05.tex V3 - 03/25/2009 11:47am Page 172

Chapter 5: SQL Server 2008 Databases

USING XML INDEX PXML_MyPerson_AdditionalContactInfo
FOR PATH

Figure 5-20: New Index dialog.

Creating secondary indexes graphically is the same as creating the primary index, except that the sec-
ondary index type can now be chosen from the Secondary Type dropdown list. To create a Secondary
XML index, click on the Add button again on the XML Indexes configuration window. Now that a Pri-
mary XML index has been added, the next index type defaults to Secondary, the Is Primary property is
set to No, and a new Secondary Type dropdown list appears (see Figure 5-21).

To commit the changes to the table and actually create the indexes, the table must be saved after closing
the XML Indexes configuration window.

Secondary XML VALUE Indexes
XML VALUE indexes are designed to support XML queries where the path is not fully specified, or
where a value is being searched by a wildcard. For example, if you are trying to retrieve all LineItem
nodes that are for Product Id 9834 regardless of which invoice it belongs to using the XQuery such as

172



Leiter c05.tex V3 - 03/25/2009 11:47am Page 173

Chapter 5: SQL Server 2008 Databases

//LineItem[@ProductID="9834"], then a VALUE index may improve performance. An example of the
syntax for creating a secondary VALUE index is as follows:

CREATE XML INDEX IXML_MyPerson_AdditionalContactInfo_Value
ON dbo.MyPerson(AdditionalContactInfo)
USING XML INDEX PXML_MyPerson_AdditionalContactInfo
FOR VALUE

Figure 5-21: Secondary XML Indexes configuration.

Secondary XML PROPERTY Indexes
XML PROPERTY indexes are used to optimize queries that retrieve the value of nodes specifying
full paths to the nodes. For example, if you are trying to return the Product ID for the first LineItem
node in the document using an XQuery such as (/Invoice/LineItem/@ProductID)[1], then a PROPERTY
index may improve performance. An example of the syntax for creating a secondary PROPERTY index is
as follows:

CREATE XML INDEX IXML_MyPerson_AdditionalContactInfo_Property
ON dbo.MyPerson(AdditionalContactInfo)
USING XML INDEX PXML_MyPerson_AdditionalContactInfo
FOR PROPERTY

Maintaining Tables
Now that you have a better idea of how the data is organized in tables and explored ways to optimize
retrieving the data, we need to look at maintaining this environment. Table maintenance can be classified
into two basic categories:

❑ The maintenance of indexes

❑ The creation and maintenance of index statistics

173



Leiter c05.tex V3 - 03/25/2009 11:47am Page 174

Chapter 5: SQL Server 2008 Databases

Index Fragmentation
One of the leading causes of poor query performance is poorly maintained indexes. As indexes are
updated, they can become fragmented. This occurs because indexes are a collection of contiguous, sorted
data. To maintain the sorted order of indexes, SQL Server must split full data pages to make room for
more data.

For example, extent 72 (see Figure 5-22) contains a clustered index defined on the LastName column of
the fictitious Slate.Employee table. Each data page in the extent is completely full.

The code in the following example is shown for illustration purposes only and is not intended to be
executed.

Extent 72
Page 110
Desai
Desalvo
Dewer
D'Hers
Diaz
Dickmann
Dickson
Dievendorff Earls

Donovan
Dominguez
Dodd
Dockter
Dobney
Dixon
Dillon Eaton

Ecoffey
Edwards
Eldridge
Ellerbrock
Elliott
Elson
Emanuel

Faeber Friske Galos
Galvin
Ganio
Gao
Garcia
Garden
Garza
Gash

Gates
Gee
Gehring
Geist
German
Getzinger
Giakoumakis
Gibbens

Gubbels
Groth

Guo
Gupta
Gustafson
Gutierrez
Guzik
Haemon

Frum
Fuentes Espino
Fulton
Funk
Gaffney
Gage
Gallagher

Ferrier
Fine
Finley
Flood
Flores
Fluegel
Focht

Page 111 Page 112 Page 113 Page 114 Page 115 Page 116 Page 117

Figure 5-22: Full data pages.

The following batch is executed to insert a new row in to the Slate.Employee table:

INSERT Slate.Employee
(LastName, FirstName, Title, EmailAddress, Phone, ModifiedDate)
VALUES
(’Flintstone’,’Fred’,’Mr.’,’fredf@slategravel.com’,’123-456-7890’,GETDATE())

An immediate page split occurs. This is because there is no room on the data page for a new record. To
maintain the order of the rows, SQL Server splits Page 113 and moves approximately 50 percent of the
rows to a new unallocated data page (see Figure 5-23).

As a result of this page split, when SQL Server reads the data pages to retrieve the contents of the
Slate.Employee table, it will have to switch from Extent 72 to Extent 119, and then back to Extent 72
again to continue the scanning of rows. After many more employees are added, additional page splits
will occur. These page splits cause index fragmentation. The fragmentation of the indexes will eventu-
ally cause SQL Server to perform an excessive number of Reads to retrieve data, resulting in poor query
performance.

To check for fragmentation on all the indexes of a table or specific indexes, the dynamic management
function sys.dm_db_index_physical_stats is used. This function returns a great deal of informa-
tion about the indexes on a table, including the amount of data on each data page, the amount of
fragmentation at the leaf and non-leaf levels of the indexes, and the average size of records in an
index.

174



Leiter c05.tex V3 - 03/25/2009 11:47am Page 175

Chapter 5: SQL Server 2008 Databases

When querying this table-value function, I am most interested in the fragmentation level and the average
percentage that each page is full. The fragmentation level will let me know which indexes need to be
rebuilt, and the average percentage that each page is full tells me how soon I can expect more page splits
to occur. To query the sys.dm_db_index_physical_stats dynamic management view, the following
syntax can be used:

SELECT {* | column list} FROM
sys.dm_db_index_physical_stats
({database_id | NULL}
,{object_id | NULL}
,{index_id | NULL}
,{partition_number | NULL
,{mode | NULL | DEFAULT}

Extent 72
Page 110
Desai
Desalvo
Dewer
D'Hers
Diaz
Dickmann
Dickson
Dievendorff Earls

Donovan
Dominguez
Dodd
Dockter
Dobney
Dixon
Dillon Eaton

Ecoffey
Edwards
Eldridge
Ellerbrock
Elliott
Elson
Emanuel

Faeber Friske Galos
Galvin
Ganio
Gao
Garcia
Garden
Garza
Gash

Gates
Gee
Gehring
Geist
German
Getzinger
Giakoumakis
Gibbens

Gubbels
Groth

Guo
Gupta
Gustafson
Gutierrez
Guzik
Haemon

Frum
Fuentes Espino
Fulton
Funk
Gaffney
Gage
Gallagher

Ferrier
Fine
Finley

Page 111 Page 112 Page 113 Page 114 Page 115 Page 116 Page 117

Extent 119
Page 494
Yee
Yonekura
Yong
Young
Youtsey
Yu
Yuan
Yuhasz Zhao

Zhang
Zeng
Zeman
Zare
Zabokritski
Yvkoff
Yukish Flintstone

Flood
Flores
Fluegel
Focht

Page 495 Page 496 Page 497 Page 498 Page 499 Page 500 Page 501

Extent 73-118
Page ... Page ... Page ... Page ... Page ... Page ... Page ... Page ...

Figure 5-23: Splitting Page 113.

As the syntax indicates, the sys.dm_db_index_physical_stats function requires five parameters to be
passed to it when retrieving index information. The following table describes the parameters:

175



Leiter c05.tex V3 - 03/25/2009 11:47am Page 176

Chapter 5: SQL Server 2008 Databases

Parameter Description

database_id The integer ID value assigned by SQL Server to the database. If this is
unknown, the output of the DB_ID() function can be passed. For example,
the value DB_ID(AdventureWorks2008) can be provided in lieu of the inte-
ger. If NULL is passed, the information for all indexes in all databases will
be returned. If NULL is specified, you must also specify NULL for object_id,
index_id, and partition_number.

object_id The integer ID value for the table hosting the indexes to be examined. If the
object_id value is unknown, the output of the OBJECT_ID() function can
be passed. For example, the value OBJECT_ID(’Person.Person’) can be pro-
vided. If NULL is passed, the information for all tables will be returned. If NULL
is provided for object_id, you must also specify NULL for the index_id and
partition_number.

index_id The integer value of the index on the table. If NULL is passed, the information
for all indexes will be returned. If NULL is provided as the value, you must also
specify NULL for partition_number. Finding the value of index_id requires
querying the sys.indexes catalog view. For example, finding the name and
index_id for all the indexes on the Person.Person table would require the fol-
lowing query:

USE AdventureWorks2008
GO
SELECT name, index_id
FROM sys.indexes
WHERE object_id = OBJECT_ID(’Person.Person’)

partition_
number

If the index is partitioned then this is the integer value for the partition. Indexes
that are not partitioned have a partition number of 1. Because partitions can be
stored on separate physical files, their fragmentation can be different on each
partition. If NULL is provided as the value for partition_number, all partitions
will be returned. To discover the partition_numbers for an index, the follow-
ing query can be used:

USE AdventureWorks2008
GO
SELECT *
FROM sys.dm_db_partition_stats
WHERE object_id = OBJECT_ID(’Person.Person’)

mode Mode specifies what level of index analysis is performed and has only three
valid options: LIMITED, SAMPLED, or DETAILED, with LIMITED being the default.

The LIMITED mode is the fastest, but it only scans the index pages above the
leaf level, which makes it the least accurate.

The SAMPLED mode samples only 1 percent of the data pages to return the anal-
ysis information. If there are fewer than 10,000 pages, SQL Server will use
DETAILED instead.
The DETAILED mode scans all pages.

176



Leiter c05.tex V3 - 03/25/2009 11:47am Page 177

Chapter 5: SQL Server 2008 Databases

To practice examining and maintaining indexes, run the following command to create the MyPersons
table that is used in the next few examples:

USE AdventureWorks2008
GO
SELECT BusinessEntityId, LastName, FirstName, Title, ModifiedDate
INTO dbo.MyPersons
FROM Person.Person
CREATE CLUSTERED INDEX IX_MyPersons_LastName ON dbo.MyPersons(LastName)

To query the sys.dm_db_index_physical_stats view to return all the possible data in relation to the
MyPersons table, the following query can be used:

DECLARE @dbID smallint, @objectID int
SET @DbID = DB_ID(’AdventureWorks2008’)
SET @ObjectID = OBJECT_ID(’dbo.MyPersons’)

SELECT *
FROM sys.dm_db_index_physical_stats(@DbID, @ObjectID, NULL, NULL , ‘DETAILED’)

However, running this query returns more information than is generally needed. Because I am more
particularly interested in just the fragmentation of the leaf level of the index and the fill percentage of
the data pages, I can limit the amount of data returned. The reason that I am less concerned about the
non-leaf level is that the non-leaf level is typically very small. It can, indeed, get very fragmented, but
the fragmentation of the non-leaf level of the index does not have anywhere near as much impact on
performance as leaf-level fragmentation.

To reduce the information returned by the sys.dm_db_index_physical_stats query, it can be limited to
just the columns of interest and the leaf level of the index, as follows:

DECLARE @dbID smallint, @objectID int
SET @DbID = DB_ID(’AdventureWorks2008’)
SET @ObjectID = OBJECT_ID(’dbo.MyPersons’)

SELECT index_id, avg_fragmentation_in_percent, avg_page_space_used_in_percent
FROM sys.dm_db_index_physical_stats(@DbID, @ObjectID, NULL, NULL , ‘DETAILED’)
WHERE index_level = 0
Results:

index_id avg_fragmentation_in_percent
avg_page_space_used_in_percent

-------- ---------------------------- ------------------------------
1 0 98.9983815171732

This query only returns the fragmentation level and page space used for the leaf level of all the indexes,
which is where the worst fragmentation (as far as performance is concerned) will occur.

The precise definition of fragmentation as a measurement is the percentage of pages where the next
physical page is not the next logical page, as shown in Figure 5-24.

177



Leiter c05.tex V3 - 03/25/2009 11:47am Page 178

Chapter 5: SQL Server 2008 Databases

Extent 72
Page 110
Desai
Desalvo
Dewer
D'Hers
Diaz

Dickmann
Dickson
Dievendorff

Page 111 Page 112 Page 113 Page 114 Page 115 Page 116 Page 117
Earls

Donovan
Dominguez
Dodd
Dockter
Dobney

Dixon
Dillon

Eaton
Ecoffey
Edwards
Eldridge

Ellerbrock
Elliott
Elson
Emanuel
Faeber

Friske
Frum
Fuentes

Fulton
Funk
Gaffney
Gage
Gallagher

Ferrier
Fine
Finley
Flood
Flores

Fluegel
Focht

Figure 5-24: Impact of filling the data pages.

The MyPersons table contains 19,972 rows. Now, insert some more records in the MyPersons table. The
following script inserts 3,994 additional records, which constitutes a 20 percent increase in rows:

INSERT dbo.MyPersons
(BusinessEntityId, LastName, FirstName, Title, ModifiedDate)
SELECT BusinessEntityId, LastName, FirstName, Title, ModifiedDate
FROM Person.Person WHERE BusinessEntityId % 5 = 4

Querying the sys.dm_db_index_physical_stats dynamic management view now returns some very
interesting data:

DECLARE @dbID smallint, @objectID int
SET @DbID = DB_ID(’AdventureWorks2008’)
SET @ObjectID = OBJECT_ID(’dbo.MyPersons’)

SELECT index_id, avg_fragmentation_in_percent, avg_page_space_used_in_percent
FROM sys.dm_db_index_physical_stats(@DbID, @ObjectID, NULL, NULL , ‘DETAILED’)
WHERE index_level = 0

RESULTS:
------------------------------------------------------------------------------
index_id avg_fragmentation_in_percent

avg_page_space_used_in_percent
-------- ---------------------------- ------------------------------
1 97.8571428571428 59.4185322461082

Because of the additional rows that have been added to the MyPersons table, almost 97 percent of the
time when SQL Server was reading the data pages, the next physical page was not the next logical page.
In addition to the fragmentation, the data pages are now only 59 percent full.

The combination of the fragmented indexes and the partially filled data pages causes SQL Server
to read 274 logical extents, when only about 40 logical extent Reads should have been required.
This information is available through a deprecated Database Console Command (DBCC) command
called DBCC SHOWCONTIG. DBCC SHOWCONTIG will be removed in a future release of SQL Server,
but for now, see what it tells you about the MyPersons table:

USE AdventureWorks2008
GO

178



Leiter c05.tex V3 - 03/25/2009 11:47am Page 179

Chapter 5: SQL Server 2008 Databases

DBCC SHOWCONTIG(’dbo.MyPersons’)

RESULTS:
------------------------------------------------------------------------------
- Pages Scanned................................: 280
- Extents Scanned..............................: 38
- Extent Switches..............................: 274
- Avg. Pages per Extent........................: 7.4
- Scan Density [Best Count:Actual Count].......: 12.73% [35:275]
- Logical Scan Fragmentation ..................: 97.86%
- Extent Scan Fragmentation ...................: 13.16%
- Avg. Bytes Free per Page.....................: 3284.7
- Avg. Page Density (full).....................: 59.42%

Although historically, DBCC has been known to stand for Database Consistency Checker, many
DBCC commands now go beyond just checking database consistency. For this reason, DBCC can also be
used to as an acronym for Database Console Command.

The DBCC SHOWCONTIG command shows you that SQL Server scanned 38 extents to retrieve all the data in
the MyPersons table, but to scan those 38 extents, it had to switch between them 274 times!

It has already been established that SQL Server uses indexes to quickly find rows in data pages for
reading, updating, or deleting. However, if all you ever did was insert data in tables, you would not
need an index. The general rule is that indexes help Read performance and hurt insert performance.
Here is an analogy and a confession.

I am a home-improvement organizational slob. I am just incapable of putting things back where they
belong. As a result, when I am finished with a particular home project, I invariably grab all the tools I
have used and throw them on my workbench. Putting stuff away never takes me very long. However, as
I start the next project, I invariably spend a huge amount of time just trying to find my hammer. Out of
desperation, I sometimes just go buy another one. The home-improvement stores love me. If I just spent
the extra time required to put things back where they belong, I could save time and money.

The same goes for databases. Planning and building indexes take time and effort; so does maintaining the
indexes once they are built. However, even the most insert- and update-intensive database can usually be
found to perform five Reads for every Write. That means that maintaining indexes at peak performance
is going to pay off fivefold. With that firmly in mind, take a look at how to mitigate index fragmentation
and correct it once it has occurred.

Mitigating Fragmentation with Fill-Factor
To mitigate fragmentation caused by page splits, the database administrator can design or rebuild the
indexes so that data pages are not completely filled. This option is called the fill-factor. When building or
rebuilding the index, a fill-factor percentage can be specified. If an index page is only filled 90 percent of
the way, it will take more inserts to the index to cause page splits and thus longer for fragmentation to
occur. With the previous example, take a look at what impact filling the data pages to 90 percent would
have (see Figure 5-24).

As you can see, now that the data pages are not completely full, adding additional contacts will not cause
the pages to split as quickly. The fill-factor is only effective when the indexes are built or rebuilt. After a
few inserts, the indexes will again fill and page splits will occur. However, the page splits will not occur
immediately, and the amount of time between index rebuilds can be lengthened.

179



Leiter c05.tex V3 - 03/25/2009 11:47am Page 180

Chapter 5: SQL Server 2008 Databases

Only filling the index pages partially does have its drawbacks, as you knew it would. First, because the
pages are not completely full, the amount of disk space needed to store the index will increase. Also,
since there is less data on each page, the number of reads required to retrieve the data will increase. As
a result, there is a definite point of decreasing returns when setting a fill-factor. I personally believe that
the fill-factor of indexes should rarely be less than 90 percent. On heavily updated and queried tables,
this percentage might go as low as 85 percent, but keep in mind that at an 85 percent fill-factor, SQL
Server will have to perform 15 percent more Reads than is strictly required to retrieve the records at a
100 percent fill-factor. As a result, a 10 percent fragmentation level may have about the same effect as a
90 percent fill-factor.

Removing Fragmentation
There are three ways to remove fragmentation: The indexes can be dropped and re-created, rebuilt
in place, or reorganized. Each method has its advantages and disadvantages. The drop and re-create
option is used with the CREATE INDEX command. The rebuild and reorganize options are used with the
ALTER INDEX command. Let’s take a look at how to use each of these approaches.

Create Index with Drop Existing

The main advantage of dropping and re-creating an index is that almost everything about the index can
be changed. For example, the columns that the index is defined on can be changed, the FILLFACTOR of the
index can be modified, or the index can be changed from a non-clustered index to a clustered index as
long as a clustered index does not already exist. However, when using the DROP_EXISTING option with
the CREATE INDEX command, a specific index must be specified. When using the rebuild or reorganize
options of the ALTER INDEX command, all the indexes on a table can be processed at once.

Rebuilding an index with the DROP_EXISTING option removes index fragmentation by rebuilding all the
index pages in indexed order. It also compacts the index pages so that empty space created by page splits
is filled. Both the leaf level and the non-leaf level of the indexes are rebuilt.

The following is an example of the syntax for dropping and re-creating an index with the CREATE INDEX
command:

CREATE UNIQUE CLUSTERED INDEX PK_Address_AddressID
ON Person.Address(AddressID)
WITH (FILLFACTOR = 90, DROP_EXISTING = ON)

Rebuilding Indexes

When an index is rebuilt using the ALTER INDEX command, SQL Server actually drops and re-creates the
index much like the CREATE INDEX command. The difference is that the columns of the existing index can-
not be changed, nor can the type of index. However, the FILLFACTOR can be modified. It is also possible
to execute the command only once and have it rebuild all the indexes on that table.

Another very useful feature is the ONLINE option. If ONLINE is on, SQL Server will not place any long-term
locks on the table being indexed, resulting in a much lower impact on user performance. In order to do
this, SQL Server leverages the tempdb database for index creation and maintenance. Indexes are created
or rebuilt in the tempdb database and then moved to the appropriate database. This decreases the impact
on users in the database, but it can cause unanticipated growth of the tempdb database. The ONLINE index
option is only available with the Enterprise and Developer editions of SQL Server.

Like the DROP_EXISTING option, the REBUILD option of ALTER INDEX rebuilds both the leaf and non-leaf
levels of the index.

180



Leiter c05.tex V3 - 03/25/2009 11:47am Page 181

Chapter 5: SQL Server 2008 Databases

The following is an example of rebuilding an individual index and then all the indexes on a table with a
FILLFACTOR of 90 percent and the ONLINE option on:

USE AdventureWorks2008
GO

ALTER INDEX AK_Product_ProductNumber ON Person.Product
REBUILD WITH (FILLFACTOR=90,ONLINE=ON)

USE AdventureWorks2008
GO

ALTER INDEX ALL ON Person.Product
REBUILD WITH (FILLFACTOR=90,ONLINE=ON)

Reorganizing Indexes

Reorganizing indexes consumes the least amount of system resources, but doesn’t do as thorough a job
as an index rebuild. When SQL Server reorganizes an index, it rearranges and compacts the data pages
so that their logical order matches their physical order. Index reorganization only affects the leaf level of
the index and is always performed online.

The guideline on when to perform index reorganization versus when to perform a rebuild is the 30 per-
cent fragmentation level. If the level of fragmentation is less than or equal to 30 percent, a reorganization
will take less time than an index rebuild and consume much fewer system resources. If the fragmentation
is greater than 30 percent, index reorganization will most likely take longer than a rebuild, but it will still
consume fewer resources.

In general, if the indexes are rebuilt periodically with an appropriate FILLFACTOR, the need for index
reorganization between those periods is reduced. However, intervals of high transaction activity may
necessitate an intervening reorganization to prevent fragmentation from exceeding 30 percent and poten-
tially causing performance issues.

Statistics
Statistics are used by SQL Server to find the most efficient means of retrieving data from database tables
by storing information about the selectivity of data in a column, as well as the distribution of data in a
column. They can be created manually and automatically. Chapter 10 describes statistics in greater detail.

Enforcing Data Integrity
As mentioned in previous chapters, the assumption of this book is that you are at least marginally famil-
iar with database theory, so I will not expound on the purpose of constraints to maintain data integrity.
Instead, what is covered in this section is how to create these constraints, as well as other database objects
that are used to maintain the integrity and consistency of data.

Primary Key Constraints
A table can have one and only one primary key constraint. This value is the one that is used to uniquely
identify every row in the table. A primary key constraint can be defined on either a single column or
a combination of columns if it takes more than one column to uniquely identify each row. It is critical

181



Leiter c05.tex V3 - 03/25/2009 11:47am Page 182

Chapter 5: SQL Server 2008 Databases

that you understand how SQL Server enforces uniqueness of the key values specified in a primary key
definition. It does so by creating a unique index on the column or columns participating in the key.

It would be very inefficient to try to enforce uniqueness without sorting the data. The problem with
SQL Server in this respect is that it defaults to a unique clustered index if a clustered index does not
already exist. Decisions on which column or columns participate in a primary key and which ones define
the physical structuring of the table’s data are completely different. It should not be assumed that the
primary key should also be the table’s cluster key. Remember that all the table’s non-clustered indexes
will include the clustered index key as the pointer back to the data row. If the primary key length is large,
using a clustered index to support the primary key could prove to be very detrimental to non-clustered
index storage and retrieval.

Primary keys can be created by selecting the column or columns in the Table Designer window and
then clicking on the ‘‘Set Primary Key’’ button on the Table Designer toolbar, or by using Transact-SQL
in a CREATE TABLE or ALTER TABLE command. The following are examples of setting a primary key
on tables during and after creation.

When using the CREATE TABLE statement, you can either define the constraint as part of the column
definition or at the end of all the column definitions as part of the table definition. The first example
shows how to create the primary key as part of the column definition of the CREATE TABLE command:

USE AdventureWorks2008
GO
CREATE TABLE dbo.CreditCards(

CreditCardID int IDENTITY(1,1) NOT NULL
CONSTRAINT PK_CreditCardID PRIMARY KEY NONCLUSTERED (CreditCardID),
CardType nvarchar(50) NOT NULL,
CardNumber nvarchar(25) NOT NULL,
ExpMonth tinyint NOT NULL,
ExpYear smallint NOT NULL,
ModifiedDate datetime NOT NULL)

This next example also creates a primary key constraint in the CREATE TABLE command, but does so as
part of the table definition at the end of all the column definitions:

CREATE TABLE dbo.CreditCards(
CreditCardID int IDENTITY(1,1) NOT NULL,
CardType nvarchar(50) NOT NULL,
CardNumber nvarchar(25) NOT NULL,
ExpMonth tinyint NOT NULL,
ExpYear smallint NOT NULL,
ModifiedDate datetime NOT NULL,
CONSTRAINT PK_CreditCardID PRIMARY KEY NONCLUSTERED (CreditCardID))

In both cases, the CONSTRAINT keyword and name for the constraint are optional. If the name is omit-
ted, SQL Server will assign a system-generated name. I recommend that you provide a name for all
constraints since this is what will be displayed within SQL Server Management Studio and in any error
message generated by SQL Server, and a friendlier name could prove to be helpful. The name that you
choose must be unique within the scheme that contains the table.

182



Leiter c05.tex V3 - 03/25/2009 11:47am Page 183

Chapter 5: SQL Server 2008 Databases

The last example shows how to add a primary key constraint to an already existing table by using the
ALTER TABLE command:

ALTER TABLE dbo.CreditCards
ADD CONSTRAINT PK_CreditCardID PRIMARY KEY NONCLUSTERED (CreditCardID)

In addition, remember that if the NONCLUSTERED keyword is omitted, SQL Server will create a clustered
index to enforce the key if one is not already defined. Be sure this is what was intended as it is a common
mistake.

Unique Constraints
Whereas only one primary key constraint is allowed on a table, many unique constraints can be specified.
For example, a delivery company that employs drivers may want to record information about its drivers
in a table like the following example:

CREATE TABLE dbo.Driver(
DriverID int IDENTITY(1,1) NOT NULL

CONSTRAINT PK_DriverId PRIMARY KEY CLUSTERED,
LastName varchar(75) NOT NULL,
FirstName varchar(75) NOT NULL,
MiddleInitial varchar(3) NULL,
SocSecNum char(9) NOT NULL,
LicenseNum varchar(25) NOT NULL)

In this example, the employer would probably want to ensure that both the Social Security number and
the driver’s license number were unique in addition to the primary key. You may be thinking, ‘‘Why
don’t we just use the Social Security number or driver’s license number as the primary key?’’ There are
many reasons why these columns are not good candidates for a primary key.

When it comes to the Social Security number, security can be a big issue. Because most primary keys
are used as foreign keys, the Social Security number would be duplicated in several places. Given the
sensitivity placed on private information, this would become a management nightmare. Another reason
applies to both the Social Security number and the driver’s license number. Because both these numbers
are not numbers at all, but rather strings of characters, they are not the best values to use to enforce
referential integrity, because the join criteria would be large instead of a more efficient integer value.

One other thing to think about is whether the values are unique after all. Social Security numbers can be
reused, and you may end up with problems. This usually only occurs if you plan to keep your data for a
very long time, but it does happen.

To create a unique constraint, you have two choices: Create a unique index or create a unique constraint
on the table. A unique index behaves like a unique constraint, and SQL Server will create a unique
index to enforce the unique constraint. It is almost a case of ‘‘What comes first: the chicken or the egg?’’
However, there is a difference — albeit a small one. If you create a unique constraint, the only way to
drop the unique index is to remove the constraint. You will not be able to use the DROP INDEX command.

To create unique indexes or constraints graphically, first open the table for modification by right-clicking
on the table name and clicking Design.

183



Leiter c05.tex V3 - 03/25/2009 11:47am Page 184

Chapter 5: SQL Server 2008 Databases

On the Table Designer toolbar, click on the ‘‘Manage Indexes and Keys’’ button (see Figure 5-25).

Figure 5-25: ‘‘Manage Indexes and Keys’’
button.

On the Indexes/Keys dialog (see Figure 5-26), click Add and then specify the properties of the new index
or key. Notice in the Type property that either Index or Unique Key can be chosen. If the ‘‘Is Unique’’
property is set to True, then either Index or Unique Key will have the same effect.

Figure 5-26: Indexes/Keys dialog.

To enforce uniqueness on the LicenseNum column, one of the following commands can be used as they
will both have the same outcome:

ALTER TABLE dbo.Driver
ADD CONSTRAINT UX_LicenseNum UNIQUE NONCLUSTERED(LicenseNum)

CREATE UNIQUE NONCLUSTERED INDEX UX_LicenseNum
ON dbo.Driver(LicenseNum)

184



Leiter c05.tex V3 - 03/25/2009 11:47am Page 185

Chapter 5: SQL Server 2008 Databases

Foreign Key Constraints
Foreign key constraints are created to guarantee referential integrity between tables. To create a foreign
key constraint on a table, the column or columns defined in the foreign key must map to a column or
columns in a primary key table, where the columns are designated as either the primary key or have a
unique constraint (both unique constraints and unique indexes qualify).

The following examples are based on the dbo.Driver table created earlier and the dbo.DriverRecord
table, which can be created with the following script:

CREATE TABLE dbo.DriverRecord(
RecordID int IDENTITY (1,1) NOT NULL PRIMARY KEY NONCLUSTERED,
DriverID int,
InfractionID int NOT NULL,
RecordDate datetime NOT NULL)

To create a foreign key constraint with the graphical tools, expand the DriverRecord table in Object
Explorer. Right-click on the Keys node and click ‘‘New Foreign Key.’’ The Foreign Key Relationships
dialog will display (see Figure 5-27).

Figure 5-27: Foreign Key Relationships dialog.

Click the ellipses to the right of the ‘‘Tables And Columns Specification’’ property to select the primary
key and foreign key columns.

In the resulting Tables and Columns dialog (see Figure 5-28), choose Driver as the primary key table and
DriverID as the column in both the Primary key and Foreign key tables as shown in Figure 5-28. Once
you close the Wizard and the Table Designer page, you should be able to see the newly created foreign
key under the Keys folder in the tree view. If you don’t, right click the DriverRecord table and select
Refresh.

185



Leiter c05.tex V3 - 03/25/2009 11:47am Page 186

Chapter 5: SQL Server 2008 Databases

Figure 5-28: Tables and Columns dialog.

Foreign Key Constraint Options
Foreign key constraints have several advanced options that change the way they behave during creation
and after creation that are described in the following sections. These options can be set in the General and
Table Designer sections of the Foreign Key Relationships dialog, or through Transact-SQL. Examples of
the code necessary to create foreign keys and set their options are given with each description.

The following examples all use the same constraint name. To execute the examples in succession, it will
be necessary to drop the existing constraint prior to re-creating it. Constraints can be deleted using
SQL Server Managements Studio’s Object Explorer or by executing the script ALTER TABLE dbo.
DriverRecord DROP CONSTRAINT FK_DriverRecord_Driver.

WITH CHECK

WITH CHECK is the default setting when adding a foreign key constraint. This setting specifies that any
existing data in the foreign key table should be validated to conform to the constraint:

ALTER TABLE dbo.DriverRecord WITH CHECK
ADD CONSTRAINT FK_DriverRecord_Driver FOREIGN KEY (DriverID)

REFERENCES dbo.Driver (DriverID)

WITH NOCHECK

The WITH NOCHECK setting specifies that existing data is not validated to conform to the new constraint.
This option can make the creation process more efficient when you know that all existing data already
conforms to the constraint, but it is important to keep in mind that any non-conforming records will
be ignored during the creation. However, during subsequent updates to the non-conforming row, the
constraint will be enforced, resulting in an error.

ALTER TABLE dbo.DriverRecord WITH NOCHECK
ADD CONSTRAINT FK_DriverRecord_Driver FOREIGN KEY (DriverID)

REFERENCES dbo.Driver (DriverID)

186



Leiter c05.tex V3 - 03/25/2009 11:47am Page 187

Chapter 5: SQL Server 2008 Databases

Cascading Constraints
Foreign keys prevent the updating or deletion of parent values (primary or unique values) by default.
However, there are times when this is not desirable. SQL Server provides the option of specifying what
action is taken on the child records if a parent record is deleted or updated.

ON DELETE NO ACTION and ON UPDATE NO ACTION are the default settings for foreign keys. These settings
specify that any attempt to delete a row or update a key referenced by foreign keys in existing rows in
other tables will fail.

In addition to the default NO ACTION setting, the options CASCADE, SET NULL, and SET DEFAULT are possible,
which allow for deletions or updates of key values to cascade in a defined manner to the tables defined
to have foreign key relationships.

ON DELETE CASCADE

This option specifies that all child records will be deleted when the parent row is deleted. If the child
record also has child records, the foreign key options on those tables will be enforced and either cascade
or fail.

ALTER TABLE dbo.DriverRecord WITH NOCHECK
ADD CONSTRAINT FK_DriverRecord_Driver FOREIGN KEY (DriverID)

REFERENCES dbo.Driver (DriverID)
ON DELETE CASCADE

ON UPDATE CASCADE

When a parent key is updated, the update will cascade to any child records that reference the parent
keys.

ALTER TABLE dbo.DriverRecord WITH NOCHECK
ADD CONSTRAINT FK_DriverRecord_Driver FOREIGN KEY (DriverID)

REFERENCES dbo.Driver (DriverID)
ON UPDATE CASCADE

ON DELETE SET NULL

With this setting, any child record’s foreign key will be set to NULL if the parent row is deleted. The foreign
key column must allow nulls for this option to work.

ALTER TABLE dbo.DriverRecord WITH NOCHECK
ADD CONSTRAINT FK_DriverRecord_Driver FOREIGN KEY (DriverID)

REFERENCES dbo.Driver (DriverID)
ON DELETE SET NULL

ON UPDATE SET NULL

Any child record’s foreign key will be set to NULL if the corresponding parent key is updated. The foreign
key column must allow nulls for this option to work.

187



Leiter c05.tex V3 - 03/25/2009 11:47am Page 188

Chapter 5: SQL Server 2008 Databases

ALTER TABLE dbo.DriverRecord WITH NOCHECK
ADD CONSTRAINT FK_DriverRecord_Driver FOREIGN KEY (DriverID)

REFERENCES dbo.Driver (DriverID)
ON UPDATE SET NULL

ON DELETE SET DEFAULT

When a parent record is deleted, the corresponding child key value will be set to the value specified by
any DEFAULT constraint defined on that column. If no DEFAULT constraint exists, the value will be set to
NULL as long as the foreign key column is nullable. The value specified in the DEFAULT constraint must
have a corresponding row in the parent table.

ALTER TABLE dbo.DriverRecord WITH NOCHECK
ADD CONSTRAINT FK_DriverRecord_Driver FOREIGN KEY (DriverID)

REFERENCES dbo.Driver (DriverID)
ON DELETE SET DEFAULT

ON UPDATE SET DEFAULT

When a parent key value is updated, any corresponding child records will be updated to the value
specified in the DEFAULT constraint defined on the foreign key column. Like the previous option, the
default value must exist in the parent table. If there is no DEFAULT defined and the foreign key column is
nullable, the child value will be set to NULL.

ALTER TABLE dbo.DriverRecord WITH NOCHECK
ADD CONSTRAINT FK_DriverRecord_Driver FOREIGN KEY (DriverID)

REFERENCES dbo.Driver (DriverID)
ON UPDATE SET DEFAULT

The various cascade settings can be combined and mixed. For example, the cascade option for a DELETE
can be set to CASCADE, but NO ACTION for an UPDATE.

Check Constraints
Check constraints are used to ensure that the data in a field conforms to a defined expression. The check
constraints can be created graphically by following these steps on the dbo.Driver table that was created
earlier:

1. Expand the dbo.Driver table in Object Explorer.

2. Right-click on the Constraints node and click ‘‘New Constraint.’’ This will launch the Check
Constraints dialog.

3. In the Check Constraints dialog (see Figure 5-29), change the name of the constraint to
CK_DriverSocialSecurityNumber in the Identity section and change the description to
Enforce numeric values for SSN’s.

4. Edit the expression for the constraint by typing in the following expression:

(SocSecNum LIKE ‘[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]’)

This expression ensures that any Social Security numbers added to the table will be nine contiguous
integers with no dashes. Validating a Social Security number (SSN) is far more complicated than this

188



Leiter c05.tex V3 - 03/25/2009 11:47am Page 189

Chapter 5: SQL Server 2008 Databases

makes it out to be. For example, the first three numbers of an SSN range only between 001 and 772, but
this would become very messy using a simple LIKE operator.

Notice that as you are working within either the Foreign Key Constraint or Check Constraint dialog
boxes (see Figure 5-29), there are no OK or Cancel buttons. If you open the dialog, a constraint
is automatically added for you, so if you decided not to add the constraint, you would actually
have to delete it before closing the dialog. Here is the Transact-SQL command to create the same
constraint:

ALTER TABLE dbo.Driver ADD CONSTRAINT
CK_DriverSocialSecurityNumber
CHECK (SocSecNum LIKE ‘[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]’)

GO

Figure 5-29: Check Constraints dialog.

Default Constraints
Default constraints specify a value to be inserted in a table if no value is specified during an insert.
They can be applied to a table when it is created or added afterwards. To create a default constraint
with the graphical tools, first select the column you want to apply the default to, and then specify
a default value or binding in the Column Properties window of the Table Designer, as shown in
Figure 5-30.

Bindings are links to a Database Default or Rule and are discussed later in the chapter.

For this example, specify the string ‘000000000’ as the default value for the SocSecNum column.

The Transact-SQL command for accomplishing this same task is as follows:

ALTER TABLE dbo.Driver ADD CONSTRAINT
DF_Driver_SocSecNum DEFAULT ‘000000000’ FOR SocSecNum

GO

189



Leiter c05.tex V3 - 03/25/2009 11:47am Page 190

Chapter 5: SQL Server 2008 Databases

Figure 5-30: Creating a default constraint.

Database Diagrams
Once the database and its objects have been created, it is often convenient to be able to create entity
relationship diagrams that are linked to the underlying structures. That way, any changes that must
be made (especially the creation of foreign key constraints) can be made and applied to the database
in a convenient graphical environment. The database diagram feature in SQL Server Management
Studio provides this functionality. The database diagram feature, however, is not a replacement for
full-fledged database design tools. It is more often used in the test and development phase of database
deployment.

The database diagram feature is accessed in Object Explorer of SQL Server Management Studio in the
individual database node. Before you can create your first database diagram, you will need to install the
diagram support objects. This can be done by right-clicking on the Database Diagrams node and selecting
‘‘Install Diagram Support.’’ If you don’t do this, then the first time you try to create a database diagram,
an informational message will display notifying you that ‘‘One or more support objects’’ are missing,
and asking whether or not you want to install them. Either installing the support objects or selecting
Yes will cause SQL Server to create a system-owned table called dbo.sysdiagrams that will contain the
definitions of all diagrams created.

The following steps will guide you through the creation and modification of a database diagram:

1. Expand the Databases node and then the AdventureWorks2008 database node. Right-click on
the Database Diagrams node in AdventureWorks2008 and click ‘‘New Database Diagram.’’
The Database Diagram pane will appear, as well as an Add Table dialog that alphabetically
lists all the user tables in the database.

190



Leiter c05.tex V3 - 03/25/2009 11:47am Page 191

Chapter 5: SQL Server 2008 Databases

2. Select the Address(Person) table. Click Add to add the Person.Address table to the dia-
gram and then click Close on the Add Table dialog. (You can also double-click on the table
in the list to add it to the diagram.)

3. Right-click on the Address(Person) table and then click ‘‘Add Related Tables.’’ This causes
all tables that have a defined relationship to the Person.Address table to be added to the
diagram. This feature comes in handy when you are unfamiliar with the structure of the
database.

Notice that all the tables are just piled on top of each other in the diagram. You can manually reorder
them, or just right-click on an empty space on the diagram and click ‘‘Arrange Tables.’’ SQL Server
arranges the tables neatly on the diagram pane so that the tables and their relationships are easily viewed.

Because there is limited space in the diagram, you can create multiple diagrams that divide the database
into functional areas, or you can display page breaks on the diagram and divide a large diagram into
many pages. To display page breaks, right-click on an empty space on the diagram and click ‘‘View Page
Breaks.’’

Right-clicking on any table provides the option of changing the way the table is displayed on the dia-
gram, deleting the table from the database, removing the table from the diagram, as well as several table
modification options normally available from the Table Designer toolbar.

Views
SQL Server 2008 views are simply saved queries that are named and can be managed independently of the
tables they reference. They are very much like the tables they reference, except that they are, by default,
logical objects and not physical objects. The one exception to this is when a unique clustered index is
created on a view, causing the view to be ‘‘materialized.’’ Views are typically created to abstract complex
database design, to simplify permissions by granting access to one view instead of multiple tables, and
to arrange data for export to other data stores.

The creation of views and other programming objects is unfortunately beyond the scope of this book.
For more information on how to create views and why to create views, check out Beginning T-SQL with
Microsoft SQL Server 2005 and 2008 by Paul Turley and Dan Wood (Wiley, 2008). For information about
securing views take a look at Chapter 6.

System Views
System views, as noted in Chapter 4, are the database administrator’s view of system objects. There are
too many system views to describe here, and most are documented in SQL Server 2008 Books Online.
System views can be divided into four categories:

❑ Information Schema Views — Information Schema views are pre-defined views that belong to
a special schema known as INFORMATION_SCHEMA. SQL Server 2008 implements the ISO standard
definition for the INFORMATION_SCHEMA and provides a consistent view of SQL Server metadata
that is generally stable from one release to another.

❑ Catalog Views — Catalog views are another method for retrieving metadata from SQL Server.
Because the catalog views represent the most general interface into metadata about SQL Server,

191



Leiter c05.tex V3 - 03/25/2009 11:47am Page 192

Chapter 5: SQL Server 2008 Databases

it is recommended that you use these over the Information Schema views. They provide a
great deal of useful information that can be used in the troubleshooting and maintenance of
SQL Server 2008. If using them in permanent scripts, be sure to specify the columns by name.
Microsoft reserves the right to add additional columns to the end of the catalog views, which
could break existing code. In fact, this occurred in select catalog views between SQL Server 2005
and SQL Server 2008.

❑ Dynamic Management Views — Dynamic Management views return server state information
that can be used to monitor SQL Server processes, diagnose problems, and tune performance.
They are briefly described in Chapter 4.

❑ Compatibility Catalog Views — Because the system tables from SQL Server 2000 are no longer
available, SQL Server 2008 provides many views that carry the same name as the previous sys-
tem tables. These views return only the features of SQL Server 2008 that are compatible with SQL
Server 2000 and are provided strictly for use with objects and scripts designed on SQL Server
2000. Future development work should use the new catalog views that return SQL Server 2008
specific information since these will be removed in a future release.

Synonyms
Synonyms are a means to give a name to a SQL Server schema-scoped database object that can be
used by database applications instead of its defined two-part, three-part, or four-part names. For
example, a database application that references a table on another server would typically need to use a
four-part name. Defining a synonym essentially presents an alias that maps directly to the table without
having to fully qualify the table. The following code will create a synonym called Products in the
AdventureWorks2008 database that references the dbo.DimProduct table in the AdventureWorksDW2008
database:

USE AdventureWorks2008
GO

CREATE SYNONYM dbo.Products
FOR AdventureWorksDW2008.dbo.DimProduct
GO

Now that you have a new synonym, open a new Query window and type in the following code:

USE AdventureWorks2008
GO
SELECT ProductKey, EnglishProductName, StandardCost
FROM dbo.Products

Notice that the query returns 606 rows from the AdventureWorksDW database without having to qualify
the object name, like the following example:

USE AdventureWorks2008
GO
SELECT ProductKey, EnglishProductName, StandardCost
FROM AdventureWorksDW2008.dbo.DimProduct

Synonyms can reference views, tables, stored procedures, and functions on any database, or a linked
server to simplify the application data access.

192



Leiter c05.tex V3 - 03/25/2009 11:47am Page 193

Chapter 5: SQL Server 2008 Databases

Programming Objects
As previously noted, the creation and logic behind programming objects are beyond the scope of this
book, but the purpose of the objects and their basic use is pertinent. The database administrator needs to
understand how programming objects can affect the behavior of the database. The most important aspect
is typically security, which is addressed in Chapter 6.

Stored Procedures
A stored procedure is a named collection of Transact-SQL or managed code that is stored on the server
in a database. SQL Server stored procedures are very similar to procedures from other programming
languages in that they are used to encapsulate repetitive tasks. They support user-declared variables,
conditional execution, and many other programming features.

Stored procedures can be written in traditional Transact-SQL or in any .NET managed language such
as C# or VB.NET. Chapter 14 discusses the advantages of using managed code to create complex stored
procedures that would push the limits of Transact-SQL.

The major purpose of stored procedures is to encapsulate business functionality and create reusable
application logic. Because the stored procedures are stored on the server, changes to the business logic
can be accomplished in a single location.

Stored procedures also provide controlled modification of data in the database. Giving users permission
to modify data in database tables is typically a very bad idea. Instead, stored procedures can be created
that perform only the modifications that are required by the application. Users can then be given the
permission to execute the stored procedure to perform the required data modification.

User-created stored procedures can be more efficient than ad hoc Transact-SQL, and much more secure.
They also drastically reduce the number of network packets needed to query and modify databases and
are compiled and cached for long periods of time for efficient reuse.

In addition to user-created stored procedures, SQL Server provides literally hundreds of System Stored
Procedures. These System Stored procedures are used to retrieve system information, as well as make
changes to the underlying system objects. They range from simple stored procedures that return a list
of all the logged-in users, to complex stored procedures that create database maintenance jobs. Some of
these stored procedures are covered in later chapters as they apply to the topic at hand.

Functions
SQL Server 2008 provides support for three types of user-defined functions: scalar functions, table-valued
functions, and aggregate functions. SQL Server functions are very similar to functions in other program-
ming languages. They accept parameters, perform some action based on the input parameters, and return
a value. Table-value functions always return a table data type. Scalar and aggregate functions can return
any data type except text, ntext, and image.

User-defined functions can be created with Transact-SQL or managed code with the exception of aggregate
functions, which are always created in managed code. User-defined functions offer many of the same
benefits as stored procedures as far as efficiency and security are concerned. One area in which they
differ is that functions are not allowed to execute any code that modifies the state of the database, whereas
stored procedures can.

193



Leiter c05.tex V3 - 03/25/2009 11:47am Page 194

Chapter 5: SQL Server 2008 Databases

System functions are separated into categories in Object Explorer of SQL Server Management Studio. Some
functions are used to manipulate user data (such as aggregate and string functions), whereas others are
used to retrieve system information (such as security and metadata functions).

Triggers
Triggers are stored Transact-SQL or managed-code objects that are executed because of some other action
within the system and cannot be executed directly. Two types of triggers exist in SQL Server 2008: DML
and DDL triggers.

DML Triggers
Data Manipulation Language (DML) triggers are executed as a result of a DML command (INSERT, UPDATE,
DELETE) being executed. There are two types of DML triggers in SQL Server 2008: After triggers and
‘‘Instead Of’’ triggers.

After Triggers
Traditional triggers are known as After triggers because they execute ‘‘after’’ the DML statement is exe-
cuted on the table with the defined trigger. The code in the trigger is implicitly part of the transaction that
caused the trigger to execute. Any ROLLBACK command in the body of the trigger will cause the trigger
and the associated transaction to be rolled back.

‘‘Instead Of’’ Triggers
‘‘Instead Of’’ triggers are so named because the commands in the trigger are executed ‘‘instead of’’ the
actual transaction that caused the trigger to be executed. ‘‘Instead Of’’ triggers were created primarily as
a method of sending updates to tables referenced in views containing a UNION operator, because these
views cannot be directly updated. For information about ‘‘Instead Of’’ triggers and these partitioned
views, check out Beginning T-SQL with Microsoft SQL Server 2005 and 2008 by Paul Turley and Dan Wood
(Wiley, 2008).

DDL Triggers
Data Definition Language (DDL) triggers are executed as a result of a DDL command (CREATE, DROP, ALTER)
being executed and can be scoped at either the database or server scope. DDL triggers provide the ability
to audit or prevent database and server modifications.

The following example demonstrates how to create a database-level DDL trigger to audit modifications
made to the database.

First, you create a table to record all the DDL events that occur on the database. Do this by running the
following script:

USE AdventureWorks2008
GO
CREATE TABLE AuditLog (

EventID int IDENTITY(1,1) NOT NULL,
LoginName varchar(75) NOT NULL,
EventTime datetime NOT NULL,
DDLEvent varchar(100) NULL,

194



Leiter c05.tex V3 - 03/25/2009 11:47am Page 195

Chapter 5: SQL Server 2008 Databases

Eventdata xml NOT NULL)
GO

Next, create a trigger that will execute whenever any DDL level event is executed. This trigger uses a
system function called EVENTDATA that returns an XML resultset containing all the information about the
DDL event. The trigger uses XQUERY commands to shred the XML data into a relational resultset to be
inserted into the audit table.

USE AdventureWorks2008
GO

CREATE TRIGGER DatabaseAudit
ON DATABASE
FOR DDL_DATABASE_LEVEL_EVENTS
AS
DECLARE @data XML = EVENTDATA()

INSERT AuditLog(LoginName, EventTime,DDLEvent,EventData)
VALUES
(SYSTEM_USER
,GETDATE()
,@data.value(’(/EVENT_INSTANCE/TSQLCommand)[1]’, ‘nvarchar(2000)’)
,@data)

RETURN
GO

Now, test the trigger by creating and dropping a table called TriggerTest and then querying the audit
table to see if you captured the information you wanted:

USE AdventureWorks2008
GO

CREATE TABLE TriggerTest (
Column1 int

,Column2 int)

DROP TABLE TriggerTest

SELECT * FROM AuditLog

You should get two rows that look similar to Figure 5-31 (of course, your LoginName and EventTime will
vary).

Figure 5-31: DDL Trigger Audit results.

To ensure that this trigger does not interfere with other exercises later in the book, you may want to drop
it by executing the following command:

DROP TRIGGER DatabaseAudit ON DATABASE

195



Leiter c05.tex V3 - 03/25/2009 11:47am Page 196

Chapter 5: SQL Server 2008 Databases

Assemblies
Assemblies are files that contain database programming objects and are created using Visual Studio. They
can include stored procedures, functions, triggers, aggregates, and data types written in any managed
language such as C# or Visual Basic.NET. They are directly accessible in the Database Engine through the
integration of the Common Language Runtime (CLR). Using managed code offers a significant advantage
over traditional Transact-SQL programming in certain situations such as those that require intensive and
recursive mathematical operations or complex string manipulation. Chapter 14 describes CLR objects
and integration in more detail.

As inferred in Chapter 14, there is a definite tension between database administrators and develop-
ers. Often, this tension is exacerbated by the database administrator’s lack of programming skills. With
the integration of the CLR and the Database Engine, it is more important than ever that the database
administrators understand programming and communicate with the developers who interact with their
systems.

CLR assemblies can be imported into the database with Visual Studio, Transact-SQL, or with SQL Server
Management Studio. This discussion focuses on just Transact-SQL and SQL Server Management Studio.
In order for you to follow along with me here, you will need a file to upload. Later in Chapter 14 we will
cover the creation of this file, but for now, just use your imagination.

To add a new assembly using SQL Server Management Studio, expand Databases, expand
AdventureWorks2008, expand Programmability, right-click Assemblies, and click ‘‘New Assembly.’’

In the New Assembly dialog (see Figure 5-32), browse to the assembly, specify an owner for the assembly,
and set the permissions for the assembly.

The permission set defines how much access the assembly is given to perform the contained actions.
‘‘Safe’’ limits the assembly to the current database and connection. ‘‘External Access’’ enables the assem-
bly to interact with the operating system, network, and file system. ‘‘Unrestricted’’ allows the assembly
all the privileges of External Access, as well as the ability to make calls to unmanaged code. Assembly
permission sets are discussed in more detail in Chapters 6 and 14.

Now that the assembly has been added to the database, a stored procedure, function, trigger, type, or
aggregate can be added to the database that links to the assembly. (For this exact process, check out
Chapter 14.)

Types
Types are a collection of system data types, user-defined data types, user-defined table types, and
user-defined types, as well as any XML schema collections used in the database. System data types were
covered in Chapter 4, so let’s look at the remaining types.

User-Defined Data Types
User-defined data types are aliases for system types. These aliases exist only within the database they are
created in. User-defined data types are most often used to provide an intuitive data type name and
maintain data type consistency across different tables.

196



Leiter c05.tex V3 - 03/25/2009 11:47am Page 197

Chapter 5: SQL Server 2008 Databases

Figure 5-32: New Assembly dialog.

For example, if I were to ask five different database developers to create a table that stores information
about an individual, I would most likely get five different solutions. The table will probably contain
columns for the individual’s last name, first name, address, and phone number, but chances are that the
five different database developers would provide at least three differing data types to store any one of
the fields specified. For example, one developer may use a varchar(13) to represent a phone number,
thinking that phone numbers would be represented as (111)111-1111. Another developer may decide to
think globally and provide for international codes as well, and specify a phone number of varchar(25).
To avoid possible type conflicts later, you can specify that user-defined data types be used.

To create a user-defined data type graphically, expand Databases in Object Explorer, expand
AdventureWorks2008, expand Programmability, expand Types, right-click ‘‘User-defined data types,’’
and click ‘‘New User-defined data type.’’

Figure 5-33 illustrates the creation of a ZipCode data type in the dbo schema that is based on the system
type char(5). User-defined data types can also be bound to database defaults and rules by specifying
them in the appropriate textboxes. Defaults and rules are described later in this chapter.

There are a few drawbacks of user-defined data types. For one, they are not transparent to database
applications. For example, an application programmer would not be able to instantiate a variable in the

197



Leiter c05.tex V3 - 03/25/2009 11:47am Page 198

Chapter 5: SQL Server 2008 Databases

application layer that used the ZipCode data type. The programmer would have to know that the base
type was a char(5). In addition to the application-layer visibility, user-defined data types only exist in
the database in which they are created. For example, a ZipCode data type in the AdventureWorks2008
database may not be the same as a ZipCode data type in the AdventureWorksDW2008 database. Also, once
created, it cannot be altered. In other words, if later you wanted to change the ZipCode data type to be
a char(9) to hold zip+4, you would have to drop and re-create it. Unfortunately, in order to drop it, it
can’t be used anywhere.

Figure 5-33: Creation of a ZipCode data type.

User-Defined Table Types
SQL Server 2008 provides the ability to create user-defined types that represent table definitions. You
could use user-defined table types to declare variables or as parameters for stored procedures and func-
tions, making it far easier to work with sets of information. To create a user-defined table type, you
use the CREATE TYPE statement providing the definition for the table. The following code creates a table
structure that is used to represent a set of customers and then uses it as an input parameter to a stored
procedure:

CREATE TYPE Customers AS TABLE
( CustomerName varchar (50),

198



Leiter c05.tex V3 - 03/25/2009 11:47am Page 199

Chapter 5: SQL Server 2008 Databases

CreditLimit decimal,
Address varchar(50),
PhoneNumber varchar(10) );

GO

DECLARE @customers Customers
INSERT INTO @customers(CustomerName, CreditLimit, Address, PhoneNumber)
VALUES (’’, 2300.00, ‘’, ‘’),
(’’, 2300.00, ‘’, ‘’),
(’’, 2300.00, ‘’, ‘’)
GO

EXEC usp_AddCustomers @customers
GO

The preceding code is for demonstration purposes only and will not function since there is no stored
procedure called usp_AddCustomers in the AdventureWorks database.

User-Defined Types
User-defined types (UDTs) are very similar to user-defined data types, except that they are created using
managed code and defined in an assembly that is imported into a SQL Server database. UDTs can be
very complex and can define custom data types that have no parallel system type. For example, a UDT
could be created to define a true Social Security number data type that really was stored as a number,
but didn’t truncate leading zeros. Also, we would be able to take advantage of regular expressions in the
managed code to validate the Social Security number much more easily and be more accurate.

The other advantage of UDTs is that they are visible from the application layer as well. Because they are
defined in an assembly, that assembly can be referenced in a database application so that parameters
could be instantiated using the native UDT. But user-defined types are not perfect, and they can be trou-
blesome when it comes to cross-database applications because the UDT is database-specific. However, if
the same assembly is referenced in the creation of the UDT in each database, this limitation is reduced. As
previously noted, Chapter 14 contains more information about CLR assemblies and the database objects
that can be created with them, including UDTs.

Defaults
Instead of creating a default constraint on a column in a table, a stand-alone default can be created at the
database level and then bound to any table column in the database. Defaults have been marked for depre-
cation, and it is recommended that you do not use them in any new development work. They are found
in the Programmability node of databases in Object Explorer, but must be created with Transact-SQL.
The following example demonstrates how to create a default Social Security number and then bind it to
the SocSecNum column on the dbo.Driver table:

USE AdventureWorks2008
GO
IF EXISTS(SELECT * FROM sys.default_constraints WHERE name = ‘DF_Driver_SocSecNum’)

ALTER TABLE dbo.Driver DROP CONSTRAINT DF_Driver_SocSecNum
CREATE DEFAULT dfltSocSecNum AS ‘000000000’
GO
sp_bindefault ‘dfltSocSecNum’, ‘dbo.Driver.SocSecNum’

199



Leiter c05.tex V3 - 03/25/2009 11:47am Page 200

Chapter 5: SQL Server 2008 Databases

Rules
Rules, like defaults, have been deprecated. A rule is like a check constraint. However, it is created once
at the database level and then bound to any column that matches the data type specified. The following
example demonstrates how to create a rule that enforces numeric data on a character-based column and
then how to bind that rule to the SocSecNum column:

USE AdventureWorks2008
GO
CREATE RULE AllNumRule AS
@value LIKE ‘[0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9][0-9]’
GO
sp_bindrule ‘AllNumRule’,’dbo.Driver.SocSecNum’

Summary
This chapter has covered a great deal of information, and we have barely scratched the surface. An entire
book could be written on just the SQL Server database and all the features it includes; however, this is
not that book. The purpose of this chapter was to expose you to many of the objects that can be found
in a SQL Server database and how to create and manage them. Future chapters dive into various other
areas of SQL Server 2008 from the database administrator’s perspective.

In Chapter 6, you will look at how to secure a SQL Server 2008 server, database, and all the associated
objects that comprise SQL Server. Many new features (such as SQL Server certificates, credentials, and
encryption) are described in detail, and it also covers the core security features so that you can ensure
your server is as secure as it possibly can be.

200



Leiter c06.tex V3 - 03/25/2009 11:54am Page 201

6
SQL Server 2008 Security

Security is often one of the most challenging aspects of designing and managing a database system.
As a DBA, you want your servers to be as secure as possible without having to invest an inordinate
amount of money or sacrifice user functionality. Unfortunately, many administrators and applica-
tion developers are often skeptical about the benefits of security, believing that they are somehow
immune to the myriad of threats that are out there. In reality, as long as users have access to data,
there is a risk of a security breach. So what do you do? Take the SQL Server offline, put it in a locked
room that only you have access to, and require that all database requests be processed manually
through you?

Security isn’t about guaranteeing a completely attack-proof system. It’s about mitigating and
responding to risk. It’s about ensuring that you take the necessary steps to minimize the scope
of the attack. Remember that simply giving users access to the database through the network will
introduce an element of risk. This chapter takes a look at SQL Security from the outside in. You
will learn about the different types of accounts and principals that are available. You will see how
to control access to database objects, and how to encrypt and protect your data. This chapter also
includes some guidelines for providing a secure solution for deploying and managing your SQL
Server.

Because SQL Server 2008 is designed to work with Windows Server 2008, some of the examples
in this chapter may behave a little differently in other operating systems, such as Windows Vista,
Windows XP, or Windows Server 2003. All examples in this chapter use Windows Server 2008 as
the baseline. Also, many of the examples used in this chapter refer to the server AughtEight, which
I configured in Chapter 2. Remember to replace AughtEight with your own server name.

SQL Server Authentication Modes
Microsoft SQL Server 2008 offers two options for authenticating users. The default mode is Windows
Authentication mode, which offers a high level of security by using the operating system’s authentica-
tion mechanism to authenticate credentials that will need access to the server. The other, SQL Server
and Windows Authentication mode, offers the ability to allow both Windows-based and SQL-based
authentications. For this reason, it is also sometimes referred to as Mixed mode. Although Windows
Authentication mode typically provides better security than SQL Server and Windows Authentica-
tion mode, the design of your application may require SQL-based logins.



Leiter c06.tex V3 - 03/25/2009 11:54am Page 202

Chapter 6: SQL Server 2008 Security

Windows Authentication mode allows you to use existing accounts stored in the local computer’s Secu-
rity Accounts Manager (SAM) database, or, if the server is a member of an Active Directory domain,
accounts in the Microsoft Windows Active Directory database. The benefits of using the Windows
Authentication mode include reducing the administrative overhead for your SQL or database adminis-
trators by allowing them to use accounts that already exist and the ability to use stronger authentication
protocols, such as Kerberos or Windows NT LAN Manager (NTLM).

In Windows Authentication mode, SQL does not store or need to access password information for
authentication. The Windows Authentication Provider will be responsible for validating the authenticity
of the user.

Mixed mode authentication allows you to create logins that are unique to the SQL Server and do not
have a corresponding Windows or Active Directory account. This can be helpful for applications that
require users who are not part of your enterprise to be able to authenticate and gain access to secur-
able objects in your database. When SQL logins are used, the SQL Server stores username and pass-
word information in the master database, and the SQL Server is responsible for authenticating these
credentials.

When deciding on the authentication method, it is important to identify how users will be connecting to
the database. If the SQL Server and your database users are all members of the same Active Directory
forest, or even different forests that share a trust, using Windows Authentication can simplify the process
of creating and managing logins. However, if your SQL Server is not in an Active Directory domain or
your database users are not internal to your organization, consider the use of SQL-based logins to create
a clear distinction between security contexts.

In Chapter 2, you learned how to install Microsoft SQL Server 2008, and you selected which authentica-
tion mode to use. If you wish to change the authentication mode after the installation, be aware that this
will require you to restart the SQL Server service.

Changing the Authentication Mode from Management
Studio

To change the authentication mode from Management Studio, follow these steps:

1. Launch SQL Server Management Studio.

2. In Object Explorer, select your server.

3. Right-click on your server and select Properties.

4. Under the ‘‘Select a page’’ pane, select Security.

5. Under the heading ‘‘Server authentication,’’ select or review the appropriate authentication
mode (Figure 6-1).

Using the xp_instance_regwrite Extended Stored
Procedure

You can also change the authentication mode using the xp_instance_regwrite extended stored
procedure, as long as you have administrative permissions on the local server. The following

202



Leiter c06.tex V3 - 03/25/2009 11:54am Page 203

Chapter 6: SQL Server 2008 Security

example shows you how to change the authentication mode to SQL Server and Windows Authenti-
cation mode:

USE master
EXEC xp_instance_regwrite N’HKEY_LOCAL_MACHINE’,
N’Software\Microsoft\MSSQLServer\MSSQLServer’, N’LoginMode’, REG_DWORD, 2

Figure 6-1: Server Properties screen.

You can also change the authentication mode to Windows Authentication mode by changing the DWORD
value to 1, as shown in this example:

USE master
EXEC xp_instance_regwrite N’HKEY_LOCAL_MACHINE’,
N’Software\Microsoft\MSSQLServer\MSSQLServer’, N’LoginMode’, REG_DWORD, 1

During the installation of SQL Server, the sa account is disabled by default. If you are changing the
authentication mode from Windows Authentication mode to SQL Server and Windows Authentication
mode, the account remains disabled with the password you specified during the Installation Wizard. I
recommend against using the sa account in a production environment, especially when multiple people
have administrative access to the SQL Server because of the lack of accountability. When multiple people
can log in as the sa account, you lose the ability to associate an auditable action with a specific person.

203



Leiter c06.tex V3 - 03/25/2009 11:54am Page 204

Chapter 6: SQL Server 2008 Security

Principals
The term principal is used to describe individuals, groups, and processes that will interact with the SQL
Server. The resources available to a principal are dependent on where the principal resides. Microsoft
SQL Server supports several different types of principals defined at three different levels: the Windows
level, the SQL Server level, and the database level. Each type of principal is identified here, and the way
they are used. To prepare for some of the exercises in this chapter, you will want to create some local
Windows accounts as follows:

1. From the Start Menu, right-click My Computer and select Manage.

2. In the Server Manager window, expand Configuration, then ‘‘Local Users and Groups’’ (see
Figure 6-2).

Figure 6-2: Server Management screen.

3. Right-click on the Users folder and select ‘‘New User.’’

4. In the User Name box, enter Bob.

5. In the Password and Confirm Password boxes, enter P@ssw0rd.

6. Clear the check next to the ‘‘User must change password and next login’’ box.

7. Click Create.

8. In the User Name box, enter CarolStreet.

9. In the Password and Confirm Password boxes, enter P@ssw0rd.

10. Clear the check next to the ‘‘User must change password and next login’’ box.

11. Click Create.

12. In the User Name box, enter Alice.

13. In the Password and Confirm Password boxes, enter P@ssw0rd.

14. Clear the check next to the ‘‘User must change password and next login’’ box.

15. Click Create.

16. Click Close.

204



Leiter c06.tex V3 - 03/25/2009 11:54am Page 205

Chapter 6: SQL Server 2008 Security

17. Right-click on the Groups folder and select ‘‘New Group.’’

18. In the Group Name Box, enter G NorthWest Sales.

19. Click Create.

20. Click Close.

21. Close the Server Manager window.

Logins
Microsoft SQL Server 2008 offers two kinds of logins for authentication. Windows logins are associated
with user or group accounts stored in the Active Directory or the local Security Accounts Manager (SAM)
database. SQL logins are used to represent an individual or entity that does not have a Windows account
and, therefore, must rely on the SQL Server for storage and management of account information.

Windows logins, whether they represent an individual or a group, are bound by the password policy of
either the domain or the SAM in which the account exists. When a login is created for a Windows user or
group, no password information is stored in the SQL Server. The password for a Windows login is stored
as NULL, but even if this field is populated with a value, the value is ignored. Windows logins are also
authenticated prior to connecting to the SQL Server. This means that Active Directory or the operating
system will have already verified the principal’s identity.

When a Windows login is created for a group, all members of that group have the ability to authenticate
against the SQL Server without having to create separate logins for each user.

SQL Server logins, however, must authenticate against the SQL Server. This makes the SQL Server
responsible for verifying the user’s identity. SQL stores the login and a hash of the login’s password
information in the master database. It is important that passwords for SQL logins adhere to security best
practices, such as enabling complexity requirements, prohibiting non-expiring passwords, and requiring
that passwords be changed regularly. In fact, options in Microsoft SQL Server 2008 allow you to enforce
requirements for password complexity and expiration for SQL logins based on your Windows or Active
Directory policies. Complex passwords are typically defined as having a combination of at least three of
the following four criteria:

❑ Uppercase alpha characters

❑ Lowercase alpha characters

❑ Non-negative integers (0–9)

❑ Special characters ($, %, *, &)

If the SQL Server is a member of an Active Directory domain, the password policy is usually defined in
a Group Policy object linked to the domain. For SQL logins, or logins based on a local Windows account,
this may be superseded by a Group Policy object linked to an Organizational Unit. If the SQL Server is
not a member of an Active Directory domain, the password policy is defined in the Local Group Policy
object or the Local Security Policy (which is a subset of the local GPO).

Unlike previous versions of SQL, SQL Server 2008 does not automatically create logins for the
[BUILTIN\Administrators] group, which would allow anyone with local administrative rights on the
server to log in to the SQL Server. Instead, administrators must be added during the user-provisioning
step in the Installation Wizard (see Chapter 2), or added to the sysadmin role (discussed later in the
chapter) after installation. A SQL login, sa, is also created. The sa account has full administrative access

205



Leiter c06.tex V3 - 03/25/2009 11:54am Page 206

Chapter 6: SQL Server 2008 Security

to all SQL functions. During installation, you are prompted to specify a password for the sa account.
Regardless of whether you install SQL Server using Windows Authentication mode or Mixed mode, the
sa account is disabled and remains disabled until you choose to enable the account.

Another new feature in SQL Server 2008 is the ability to create a SQL Server login that is mapped to a
certificate or asymmetric key through the GUI. SQL Server 2005 had allowed this mapping to be created
only through T-SQL. This mapping must be specified during login creation, and the certificate or asym-
metric key must be created before the login can be mapped to it. Creation and management of certificates
and symmetric keys are covered later in this chapter.

Creating Logins in Management Studio
To create logins from Management Studio, follow these steps:

1. From Object Explorer, expand your server.

2. Expand the Security folder.

3. Right-click Logins and select ‘‘New Login.’’

4. In the Login–New dialog box (see Figure 6-3), either type the Login name you want to add
or click the Search button to browse for a Windows account.

Figure 6-3: New login dialog box.

206



Leiter c06.tex V3 - 03/25/2009 11:54am Page 207

Chapter 6: SQL Server 2008 Security

5. If you are creating a SQL Login, select the ‘‘SQL Server authentication’’ radio button.

6. Also, when you select ‘‘SQL Server authentication,’’ you can choose not to enforce the pass-
word policies.

7. You may also want to change the user’s default database and language.

Try It Out Creating a New Login for Alice
To create a new login for Alice, follow these steps:

1. From Object Explorer, expand your server.

2. Expand the Security folder.

3. Right-click Logins and select ‘‘New Login.’’

4. In the New Login dialog box, click Search.

5. In the ‘‘Select User or Group’’ dialog box, type Alice and click OK.

6. Select AdventureWorks2008 as the default database.

7. Click OK.

Creating Logins Using T-SQL
Alternatively, you can use the CREATE LOGIN statement. CREATE LOGIN allows you to create either Win-
dows or SQL logins. This statement is designed to replace two stored procedures that were used in
previous versions of SQL, sp_grantlogin and sp_addlogin. Both of these stored procedures are still
available in SQL Server 2008, primarily for backward compatibility, but they have been deprecated and
may be removed in a future version of SQL. Use the following format for the CREATE LOGIN statement:

CREATE LOGIN [name] {WITH <options> | FROM <source>}

The following tables show the options available with this statement:

Option Description

PASSWORD =
‘password’

Creates a new password for SQL logins. If this value is already
hashed, use the HASHED option. Passwords are case-sensitive. See the
‘‘Best Practices’’ section in this chapter for more information on
password guidelines.

HASHED When a password is created for a SQL login, the password is stored
in the database using a one-way hashing algorithm. This provides
several benefits. Because the password is not stored in plain text, it
cannot be read by simply querying a system view. Because the
hashing process is one-way, the password cannot be extrapolated
from the hash value. This also secures the password in transmission,
because the SQL Authentication process will send the hashed value
of the password, not the actual plain-text password.

Continued

207



Leiter c06.tex V3 - 03/25/2009 11:54am Page 208

Chapter 6: SQL Server 2008 Security

Option Description

MUST_CHANGE Requires the user to change his or her password at the next login. This
is valid for SQL logins only. CHECK_POLICY and CHECK_EXPIRATION
must be set to ON for this to work.

CREDENTIAL =
credential_name

Maps an existing credential to a login. Credentials are discussed later
in this chapter.

SID = sid Allows you to manually specify a SID (Security Identifier) for a new
user. If this value is left blank, the SID will be automatically generated.

DEFAULT_DATABASE =
database

Assigns the default database for the login. If not specified, the master
database will be assumed. This should be configured to a user
database for most business users.

DEFAULT_LANGUAGE =
language

Assigns the default language for the login. If not specified, the default
language of the server at the time the login was created will be used.
This will not change if the server’s default language is changed.

CHECK_POLICY =
{ ON | OFF }

This statement allows you to enforce your Windows-based password
policies to SQL logins. This is ON by default.

CHECK_EXPIRATION =
{ ON | OFF }

A complement to the CHECK_POLICY option, this allows your
Windows-based password expiration policy to also apply to SQL
logins. If CHECK_POLICY is ON, then this will default to ON. Otherwise,
the default value is OFF.

Sources Description

WINDOWS Identifies that a login will be created based on an existing Windows
user or group.

CERTIFICATE certname Associates a pre-existing certificate with a login. Certificates are
discussed later in this chapter.

ASYMMETRIC KEY
asym_key_name

Associates a pre-existing asymmetric key with a login. Symmetric and
Asymmetric keys are discussed later in this chapter.

SQL Server will automatically hash a password before storing it in the database. Be careful about using
the HASHED option unless you are sure that the password you are supplying has already been hashed by
SQL Server. For example, if you type the following statement:

CREATE LOGIN Bill WITH PASSWORD = ‘P@ssw0rd’ HASHED

SQL will assume that P@ssw0rd is a hash of another value. So, when Alice tries to log in with P@ssw0rd,
the authentication will fail. You can use the loginproperty function to obtain the hashed value of an
existing user’s password, as shown in the following example:

SELECT LOGINPROPERTY(’bill’, ‘passwordhash’)

208



Leiter c06.tex V3 - 03/25/2009 11:54am Page 209

Chapter 6: SQL Server 2008 Security

Managing Logins
SQL Server Management Studio includes several property sheets to configure logins, which are
addressed later in this chapter. In addition to the General property sheet, you should also be familiar
with the Status page, which allows you to enable or disable the login, unlock the login, and specifically
grant or deny access to connect to this SQL Server.

From the General property sheet, you can change the following attributes:

❑ Password

❑ Password Policy

❑ Password Expiration

❑ Force the user to change the password at the next login

❑ Default Database

❑ Default Language

Logins can also be managed using the ALTER LOGIN statement. In addition to many of the options listed
previously for the CREATE LOGIN statement, the ALTER LOGIN statement uses the following format:

ALTER LOGIN name {<status> | WITH <options>}

The following table shows the additional options available with this statement:

Option Description

Status {Enable | Disable} Enables or disables the login as needed.

OLD_PASSWORD =
‘oldpassword’

Specifies the current password when changing the password for
the login. The HASHED keyword cannot be used when specifying
an old password.

NAME = login_name Allows you to rename a login. If renaming a Windows-based
login, the SID of the Windows object must match the SID for the
login in SQL Server. SQL Server–based logins must not contain a
backslash (\) character.

NO CREDENTIAL Removes the mapping between the login and a server credential.

UNLOCK A SQL Server login may become locked out after too many
invalid password attempts. If that occurs, this option can remove
the lock.

ADD CREDENTIAL Associates an Extensible Key Management (EKM) provider
credential to the login. EKM is covered later in this chapter.

DROP CREDENTIAL Removes an associated Extensible Key Management (EKM)
provider credential from the login. EKM is covered later in this
chapter.

209



Leiter c06.tex V3 - 03/25/2009 11:54am Page 210

Chapter 6: SQL Server 2008 Security

Using CREATE LOGIN
To create a new login in Transact-SQL, use the CREATE LOGIN statement. The following example creates a
new login for a user account named Bob on the AughtEight server:

CREATE LOGIN [AughtEight\Bob] from Windows;
GO

To create a new login for a Windows group, use the following example:

CREATE LOGIN [AughtEight\G NorthWest Sales] from Windows;
GO

To create a new SQL Server login for Carol, use the following syntax:

CREATE LOGIN Carol
WITH PASSWORD = ‘Th1sI$|\/|yP@ssw0rd’;
GO

To change Carol’s password to use the all-lowercase newpassword, use the following command:

ALTER LOGIN Carol WITH PASSWORD = ‘newpassword’,
CHECK_POLICY=OFF;
GO

To remove an existing login, use the DROP LOGIN statement. For example, if you want to remove Bob’s
login (remember, Bob has a Windows-based login), use the following:

DROP LOGIN [AughtEight\Bob];
GO

For More Information
For backward compatibility, Microsoft SQL Server 2008 supports the stored procedures for managing
logins listed in the following table. Because these stored procedures have been deprecated, you should
use the CREATE LOGIN and ALTER LOGIN statements.

Stored Procedure Description

sp_grantlogin: Creates a new Windows-based login.

sp_revokelogin: Removes a Windows-based login.

sp_addlogin: Creates a new SQL Server login.

sp_droplogin: Removes a SQL Server–based login.

Credentials
Microsoft SQL Server 2008 also includes a feature for mapping SQL Server logins to external Win-
dows accounts. This can be extremely useful if you need to allow SQL Server logins to interact with

210



Leiter c06.tex V3 - 03/25/2009 11:54am Page 211

Chapter 6: SQL Server 2008 Security

the resources outside the scope of the SQL Server itself (such as a linked server or a local file system).
They can also be used with assemblies that are configured for EXTERNAL_ACCESS permissions.

Credentials can be configured as a one-to-one mapping or a many-to-one mapping, allowing multiple
SQL Server logins to use one shared Windows account for external access. In SQL Server 2008, logins can
now be associated with multiple credentials, whereas SQL Server 2005 only allows a login to be mapped
to a single credential. Credentials can also be configured to use an EKM provider

Creating a New Credential
When creating a new credential, follow these steps:

1. In Object Explorer, expand your server.

2. Expand the Security folder.

3. Right-click Credentials and select ‘‘New Credential’’ (see Figure 6-4).

Figure 6-4: New Credential properties screen.

4. Type a name for the credential.

5. In the Identity section, either type the name of a Windows account or click the ‘‘ . . . ’’ button
to browse for an account.

211



Leiter c06.tex V3 - 03/25/2009 11:54am Page 212

Chapter 6: SQL Server 2008 Security

6. Enter the password for the account.

7. Re-enter the password to confirm.

8. Enable Use Encryption Provider (if desired).

9. Select a valid External Key Management provider (if the above option is selected).

10. Click OK.

Using Transact-SQL
You can use the CREATE CREDENTIAL statement as an alternative means to create a new SQL credential
object. The syntax is as follows:

CREATE CREDENTIAL name WITH IDENTITY = ‘identity_name’ [, SECRET = ‘secret’]
[FOR CRYPTOGRAPHIC_PROVIDER provider_name]

Likewise, the ALTER CREDENTIAL statement can be used to alter the name of the credential, the identity
it’s associated with, and the password. Once the credential is no longer needed, it can be removed with
the DROP CREDENTIAL command, as follows:

DROP CREDENTIAL name

Try It Out Create a New Credential for a Windows Account
Earlier in the chapter, you created a Windows account named CarolStreet with a password of P@ssw0rd.
You will now create a new credential named StreetCred for that user. When running the following
script, replace AughtEight with your own server name:

USE master
CREATE CREDENTIAL StreetCred
WITH IDENTITY = ‘AughtEight\CarolStreet’,
SECRET = ‘P@ssw0rd’;
GO

You can then associate Carol’s SQL Server login with the StreetCred credential:

ALTER LOGIN Carol WITH CREDENTIAL = StreetCred;
GO

Server Roles
Microsoft SQL Server 2008 defines eight server-level roles that are available to simplify management (and
the delegation of management) for SQL logins. These are often referred to as fixed server roles because
membership is the only thing you can change about these roles. The fixed server roles are designed
to allow you to automatically assign a common set of permissions to a login, based on the purpose of
the role.

Additionally, SQL Server 2008 also includes a public server role. In addition to customizing the member
list of the public server role, you can also define protocol-specific permissions for Tabular Data Stream

212



Leiter c06.tex V3 - 03/25/2009 11:54am Page 213

Chapter 6: SQL Server 2008 Security

(TDS) endpoints. These endpoints are covered in more detail in Chapter 7. By default, all logins are
members of the public server role.

Using Fixed Server Roles
The following table shows the fixed server roles in the order they appear on the server:

Role Description

sysadmin Members have full administrative access to the SQL Server and can
perform any action. Users and groups added through the User
Provisioning function of SQL Server setup are added to this group.

serveradmin Members of this role can change server-wide configurations and
shut down the server.

securityadmin Members can manage SQL logins, including changing and resetting
passwords as needed, as well as managing GRANT, REVOKE, and DENY
permissions at the server and database levels.

dbcreator Members can create, drop, alter, and restore any database for the
server.

diskadmin Members can manage disk files for the server and all databases.

processadmin Members can manage and terminate processes on the SQL Server.

setupadmin Members can add and remove linked servers.

bulkadmin Members of this role can execute the BULK INSERT statement for any
database on the server.

To add a login to a fixed server role, use the sp_addsrvrolemember stored procedure. The stored proce-
dure uses the following format:

sp_addsrvrolemember [ @loginame= ] ‘login’ , [ @rolename = ] ‘role’

Simply provide the login name and the role name. To add Ted to the securityadmin role, use the follow-
ing command:

USE master
CREATE LOGIN Ted WITH PASSWORD = ‘P@ssw0rd’;
GO
EXEC sp_addsrvrolemember ‘Ted’, ‘securityadmin’;
GO

Use sp_dropsrvrolemember to remove a login from a fixed server role. The syntax is similar to the
sp_addsrvrolemember stored procedure, as shown in the following example:

USE master
EXEC sp_dropsrvrolemember ‘Ted’, ‘securityadmin’;
GO

213



Leiter c06.tex V3 - 03/25/2009 11:54am Page 214

Chapter 6: SQL Server 2008 Security

For More Information
You can query the Security Catalog Views to find out more information about principals at the server
scope. The following table shows views that identify server-level principals:

View Description

sys.server_principals Returns information about all server-level principals.

sys.sql_logins Returns information about SQL Server logins.

sys.server_role_members Returns the role ID and member ID for each member of
a server role.

sys.credentials Returns a list of all credentials configured on the SQL
Server.

sys.server_principal_
credentials

Returns a list containing the principal_id and
credential_id for each principal mapped to a
credential.

Database Users
Database users are another component of the security model employed by Microsoft SQL Server 2008.
Users are granted access to securable database objects, either directly or through membership in one or
more database roles. Users are also associated with ownership of objects such as tables, views, and stored
procedures.

When a login is created, unless it is a member of a fixed server role with administrative privileges to
all databases, that login has no explicit permissions within the various databases attached to the server.
When this happens, the login is associated with the guest database user and inherits the permissions of
that user account.

When managing database users in SQL Server Management Studio, you have several options from which
to select. On the General property sheet (see Figure 6-5), you will be able to specify a name for the user
and associate the user with an existing login. Note that the username does not have to match the login
name. For ease of administration, it is best practice to try to use a consistent naming convention, but
it is not required. Also, note that there are radio buttons that show whether the user is mapped to a
login, a certificate, a key, or without any association. Through the Graphical User Interface (GUI), you
can only create a user mapped to a login. In the next section, you see how to create users with other
mappings.

Other options you can configure from the General page include specifying the user’s default schema,
schemas owned by this user (if any), and to which database roles the user belongs. In the Securables page,
you can list all the securable objects the user has permissions to and what permissions they have. Finally,
you have the Extended Properties page, which allows you to designate or view additional metadata
information about this user.

214



Leiter c06.tex V3 - 03/25/2009 11:54am Page 215

Chapter 6: SQL Server 2008 Security

Figure 6-5: Database User–New General property page.

Try It Out Create a New User and Default Schema
For this example, you will create a new database user in the AdventureWorks2008 database for Carol and
set her default schema to the Sales schema.

1. In Object Explorer, expand Databases.

2. Expand AdventureWorks2008 (see Figure 6-6).

3. Expand Security.

4. Right-click Users and select ‘‘New User.’’

5. Type Carol in the User Name box.

6. Type Carol in the ‘‘Login name’’ box, or select her login using the ‘‘...’’ button.

7. Type Sales in the ‘‘Default schema’’ box.

8. Click OK.

215



Leiter c06.tex V3 - 03/25/2009 11:54am Page 216

Chapter 6: SQL Server 2008 Security

Figure 6-6: New database user.

Now that Carol has a database user account in the AdventureWorks2008 database, she has inher-
ited the permissions granted to the public database role. Database roles and permissions are
covered later in this chapter.

CREATE USER
The CREATE USER statement can also be used for creating new database users. CREATE USER offers more
options over how the user is created than the GUI allows. For example, you can create a user based on
an existing certificate or key, or even create a user who is not associated with a login. Although reasons
for implementing these types of users will be limited, they can have access to database objects without
being associated with a specific login. They can be used to access resources that have specific security
requirements. For example, a stored procedure might contain the EXECUTE AS clause, in which case, the
stored procedure runs as the user associated with a particular certificate, or asymmetric key. The caveat,
though, is that these users are valid only in the database in which they were created. If they attempt to
access resources in another database, they will access the other database as guest. If the guest user is
disabled in the other database, then they will be denied access.

Each database has two users created by default. The dbo user (also known as the database owner) has
all rights and privileges to perform any operation in the database. Members of the fixed server role,
sysadmin, as well as the sa account, are mapped to dbo. Any object created by a sysadmin is automatically
owned by dbo. The dbo user is also the owner of the default schema, also called dbo. The dbo user cannot
be deleted.

216



Leiter c06.tex V3 - 03/25/2009 11:54am Page 217

Chapter 6: SQL Server 2008 Security

The guest account is also present in every database, but is disabled by default. The guest account is com-
monly used when a person has login access to the SQL Server, but no explicit user access to a database.
If the database has a guest account and it is enabled, then the login will connect to that database with
guest access. guest is a member of the public role and has all of the permissions assigned to that role,
but can be granted explicit permissions to securables as well.

You may also notice two other ‘‘users,’’ sys and INFORMATION_SCHEMA. Although they are not users in the
conventional sense, they do own objects in the database, primarily for storing and retrieving metadata.
These users are not mapped to any login and are disabled by default.

The following is the syntax and options for the CREATE USER statement:

CREATE USER name [{{FOR | FROM} source | WITHOUT LOGIN]
[WITH DEFAULT_SCHEMA = schema_name]

The following tables explain the options that are available:

Source Options Description

Login login_name This option specifies the login name to associate with this user.
If this value is not present, SQL Server assumes that the user
you are trying to create is using the same name as an existing
login. If there is not a login with the same name as the user, the
operation will fail.

CERTIFICATE cert_name This option allows you to create a user associated with a
certificate, rather than with a login. The certificate must
already exist in this database for the operation to succeed.
Certificates are discussed later in this chapter.

ASYMMETRIC KEY key_name This option allows you to create a user associated with an
asymmetric key, rather than with a login. The asymmetric key
must already exist in the database. Keys are discussed later in
this chapter.

Other Options Description

WITHOUT LOGIN This option allows you to designate that the user is created
without any association to a login, or other objects such as
asymmetric keys or certificates.

WITH DEFAULT_SCHEMA =
schema

This option lets you specify the schema in which the user will
operate. The benefit to users is that whenever they create or
access an object within their default schema, they can use the
object name by itself. The users may still be able to access
objects in other schemas, permission allowing, by using the
schema.object naming convention.

217



Leiter c06.tex V3 - 03/25/2009 11:54am Page 218

Chapter 6: SQL Server 2008 Security

Try It Out Create a New User
Take a look at the CREATE USER statement in action. In an earlier example, you created a new SQL Server
login called Carol and an associated user in the AdventureWorks2008 database. If you wanted to create
a user for Carol in the tempdb database, you could execute the following statement:

USE tempdb;
CREATE USER Carol;
GO

That’s all there is to creating a new user.

Look at another example. If you executed the DROP LOGIN [AughtEight\Bob] statement earlier, you’ll
need to re-create his login. In this example, you’ll create a database user named BillyBob who will be
mapped to Bob’s login, and set BillyBob’s default schema to the Sales schema:

USE master;
CREATE LOGIN [AughtEight\Bob] FROM WINDOWS;
USE AdventureWorks2008;
CREATE USER BillyBob FOR LOGIN [AughtEight\Bob]
WITH DEFAULT_SCHEMA = sales;

The last example shows creating a new user from an existing certificate. Certificates are covered later in
this chapter, but for this example, create the certificate first, and then create the user:

USE AdventureWorks2008;
CREATE CERTIFICATE SalesCert

ENCRYPTION BY PASSWORD = ‘P@ssw0rd’
WITH SUBJECT = ‘Sales Schema Certificate’,
EXPIRY_DATE = ‘12/31/2010’;

GO
CREATE USER SalesSecurity FOR CERTIFICATE SalesCert;
GO

You can also use the ALTER USER statement to make changes to a user account. This is another example
where Transact-SQL gives you greater flexibility than Management Studio. ALTER SCHEMA lets you modify
both the name property and the DEFAULT_SCHEMA property. If you wish to change the Windows or SQL
login that the account is associated with, you can use the LOGIN = option, as well. Be aware that the LOGIN
option can only be used to associate a user to a login that is the same type as the one it was originally
created as. This will not work for users created as certificate or keys. These options are illustrated in the
following examples:

USE AdventureWorks2008
ALTER USER SalesSecurity
WITH NAME = SalesSchemaSecurity;
GO

USE AdventureWorks2008
ALTER USER BillyBob
WITH DEFAULT_SCHEMA = Production;
GO

--Create a new login

218



Leiter c06.tex V3 - 03/25/2009 11:54am Page 219

Chapter 6: SQL Server 2008 Security

USE master
CREATE LOGIN TempCarol WITH PASSWORD = ‘MyPassword’,
CHECK_POLICY = OFF;
GO
USE tempdb
ALTER USER Carol WITH Login = TempCarol;
GO

Finally, once a user has outlived its usefulness, use the DROP USER statement to remove it from the
database. The DROP USER statement is straightforward, as seen in the following example:

USE AdventureWorks2008
DROP USER BillyBob;
GO

Older versions of SQL explicitly tied an object owner into the naming context of the object. For example,
if a user named BillyBob created a table called Orders, the table would be called BillyBob.Orders. SQL
Server 2008 allows you to separate an object’s schema from its owner. This helps to minimize orphaned
objects when a user is dropped by keeping those objects part of a schema that may be owned by a role
or a Windows group. Although it was easier to manage objects that were all owned by dbo, as seen in
previous versions, using schemas helps provide a more logical, hierarchical security design.

Fixed Database Roles
Every SQL database has a list of fixed database roles that allow you to delegate permissions to users as
necessary. As with the fixed server roles, membership is the only thing you can change about these roles.
It is important to know how and when to use these roles.

The following table shows the fixed database roles:

Role Description

db_accessadmin This role can add or remove access for Windows logins, Windows
groups, and SQL Server logins.

db_backupoperator This role has the right to back up the database.

db_datareader Members of this role can read data from all user tables.

db_datawriter Members of this role can write data to all user tables.

db_ddladmin This role can execute data definition language (DDL) statements for
any object in the database.

db_denydatareader This role is explicitly excluded from being able to read from any user
table with the database.

db_denydatawriter This role is explicitly excluded from being able to write to any table
in the database.

Continued

219



Leiter c06.tex V3 - 03/25/2009 11:54am Page 220

Chapter 6: SQL Server 2008 Security

Role Description

db_owner Members of this role can perform any activity within the database.
This role can also drop the database from the server. The dbo user is
automatically a member of this role.

db_securityadmin This role can manage permissions and role membership within the
database.

public Membership in the public role is automatic. Permissions that apply
to the public role apply to everyone who accesses the database.

Note that the fixed database roles include db_denydatareader and db_denydatawriter. These roles
explicitly deny Read or Write access to user tables in the database and should be used sparingly. Deny
permissions are authoritative and cannot be overridden.

User-defined database roles offer greater control over managing permissions and access to resources
within a database. Frequently, when using a role-based security model, you may find that built-in prin-
cipals (such as groups in Windows or roles in SQL) offer either too much access or not enough. In this
case, you can create user-defined roles that allow you to control access to securable objects for an entire
collection of users at once. Database roles are very similar in concept to Windows groups. You can create
a database role to identify a group of users, all of whom need access to a common set of resources, or you
can use roles to identify the permissions being granted to a securable in the database. Regardless of the
purpose of your role, its function should be clearly identified by the name of the role.

Creating a New User-Defined Database Role in Management Studio
In the New Role dialog box, you are prompted to provide a name for the role, as well as identify an
owner for the role. The owner of the role can modify it at any time. You can also select existing schemas
that will be owned by this role and add users as members to this role. In addition to the General property
sheet, you also have the Securables page and the Extended Properties page, which you can use to assign
permissions or set additional attributes, respectively.

In this example, you can create a new database role called ProductionRole and then add Carol as a
member:

1. In Object Explorer, expand Databases.

2. Expand AdventureWorks2008 and then expand Security.

3. Expand Roles and then expand Database Roles.

4. Right-click ‘‘Database Roles’’ and select ‘‘New Database Role.’’

5. In the ‘‘Role name’’ box, type ProductionRole (see Figure 6-7).

6. Under the list of members of this role (which should be empty), click Add.

7. Enter Carol in the window and click ‘‘Check Names.’’ This should resolve her name.
Click OK.

8. In the Database Role–New window, click OK.

220



Leiter c06.tex V3 - 03/25/2009 11:54am Page 221

Chapter 6: SQL Server 2008 Security

Figure 6-7: Database Role–New properties screen.

CREATE ROLE
CREATE ROLE is the Transact-SQL equivalent for creating a new user-defined database role. When using
the CREATE ROLE statement as shown here, you can also specify the owner of the role. Note that if you
are assigning a user as the owner of a role, you must have the IMPERSONATE permission, and if you’re
assigning another role as the owner, you must either be a member of that role or have ALTER per-
mission on the role. The following statement creates a role called SalesStaff, designating Carol as
the owner:

USE AdventureWorks2008
CREATE ROLE SalesStaff
AUTHORIZATION Carol;
GO

The ALTER ROLE statement is fairly limited, allowing you to change only the name of the role:

USE AdventureWorks2008
ALTER ROLE SalesStaff
WITH NAME = SalesStaffRole;
GO

221



Leiter c06.tex V3 - 03/25/2009 11:54am Page 222

Chapter 6: SQL Server 2008 Security

DROP ROLE rolename will let you remove a role from the database once it is no longer needed:

USE AdventureWorks2008
DROP ROLE SalesStaffRole;
GO

As with fixed server roles, database roles (both fixed and user-defined) can have users added to them
either through SQL Server Management Studio or through a stored procedure. The stored procedure for
database roles is sp_addrolemember. Unlike the stored procedures for adding and dropping members
from server roles, sp_addrolemember and sp_droprolemember identify the role as the first variable and
the user as the second.

The following example adds the database user Carol to the db_datareader role:

USE AdventureWorks2008
EXEC sp_addrolemember ‘db_datareader’, ‘Carol’;
GO

To remove Carol from the db_datareader role, use the following stored procedure:

USE AdventureWorks2008
EXEC sp_droprolemember ‘db_datareader’, ‘Carol’;
GO

Application Roles
Another type of role that can be used to help secure the database environment is the application role.
Application roles are quite different from standard role types. They do not have members, and they
can (and should) be configured to authenticate with a password. Application roles are typically used
when database access must be the same for all users who run a particular application. Rather than
depending on the individual user to have the appropriate access for the application to work properly, the
application can instantiate the application role without prompting the user to provide a username and
password.

You can create a new application role from the Application Roles folder within SQL Server Management
Studio. The dialog box for creating a new application role is very similar to the standard database role
dialog, with the exception of the password field and the lack of a members list.

Try It Out Create an Application Role
In this example, you create a new application role named PurchasingOrderEntry, with a password of
POEpass1:

1. In Object Explorer, expand Databases.

2. Expand AdventureWorks2008 and then expand Security.

3. Expand Roles and then expand Application Roles.

4. Right-click ‘‘Application Roles’’ and select ‘‘New Application Role.’’

5. Type PurchasingOrderEntry for the Role name (see Figure 6-8).

222



Leiter c06.tex V3 - 03/25/2009 11:54am Page 223

Chapter 6: SQL Server 2008 Security

Figure 6-8: Application Role–New properties screen.

6. Set the Default schema to ‘‘Purchasing.’’

7. Enter POEpass1 in the Password and ‘‘Confirm password’’ boxes.

8. Click OK.

In the next section, you see how to instantiate that role.

Using CREATE APPLICATION ROLE
The CREATE APPLICATION ROLE does what the name suggests. When using this statement, specify the
name of the application role, a password for the application role, and, optionally, a default schema for
the application role. The following example creates an application role named SalesApp:

USE AdventureWorks2008
CREATE APPLICATION ROLE SalesApp
WITH PASSWORD = ‘P@ssw0rd’,
DEFAULT_SCHEMA = Sales;
GO

223



Leiter c06.tex V3 - 03/25/2009 11:54am Page 224

Chapter 6: SQL Server 2008 Security

To use an application role, you can execute the sp_setapprole stored procedure. This can be called from
an application, or you can test it from your Query window. The stored procedure includes options to
activate the application role by providing an encrypted password, creating a cookie, and setting informa-
tion in the cookie. The following command activates the SalesApp application role and then returns the
username:

USE AdventureWorks2008
GO
DECLARE @cookie varbinary(8000);
EXEC sp_setapprole ‘SalesApp’, ‘P@ssw0rd’

, @fCreateCookie = true, @cookie = @cookie OUTPUT;
GO
SELECT USER_NAME();

Once you’ve executed the preceding script, all activity performed from that connection operates under
the application role. When the connection is closed, the application role session ends.

With the ALTER APPLICATION ROLE statement, you can change the name of the application role, the pass-
word, and the default schema. The following example changes the SalesApp role name to OrderEntry
and sets a new password:

USE AdventureWorks2008
ALTER APPLICATION ROLE SalesApp
WITH NAME = OrderEntry,
PASSWORD = ‘newP@ssw0rd’;
GO

If you intend to run the ALTER APPLICATION ROLE script listed previously, ensure that you don’t do it
while connected as that application role. Opening a new Query window under your own credentials will
prevent errors.

DROP APPLICATION ROLE rolename will remove an application role from the database. Ensure that you
do not have any applications still using the application role; otherwise, the application will be unable to
connect to the database. For example:

USE AdventureWorks2008
DROP APPLICATION ROLE OrderEntry;
GO

For More Information
The following Security Catalog Views can be used to identify which principals exist in your database,
and their role membership:

View Description

sys.database_principals Returns information about all database-level principals.

sys.database_role_members Returns the ID of each database role and its members.

224



Leiter c06.tex V3 - 03/25/2009 11:54am Page 225

Chapter 6: SQL Server 2008 Security

For backward compatibility, Microsoft SQL Server 2008 supports the following stored procedures. Keep
in mind that these stored procedures are considered ‘‘legacy’’ tools and may disappear in a future update
or release of SQL Server.

Stored Procedure Description

sp_adduser Creates a new database user.

sp_grantdbaccess Creates a new database user.

sp_dropuser Removes a database user.

sp_revokedbaccess Removes a database user.

sp_addrole Creates a new user-defined database role.

sp_droprole Removes a user-defined database role.

sp_addapprole Creates a new application role.

sp_approlepassword Changes the password for an application role.

sp_dropapprole Removes an application role from the database.

Permissions
A well-implemented security solution answers three questions about security access. Who are you?
What can you do? And what have you done? The Kerberos security protocol, which was developed at
MIT, is designed to answer these questions through the processes of Authentication (who are you?),
Authorization (what can you do?), and Auditing (what have you done?). In an Active Directory forest,
SQL Server uses Microsoft’s implementation of the Kerberos protocol (named after the three-headed dog
who guarded the entrance to Hades), for the Authentication of logins that are associated with Active
Directory accounts. Permissions, or Authorizations, are managed from within SQL Server itself and may
be configured on server or database objects.

A typical statement to define the permissions on an object or resource will be structured to define a
permission state, an action, the object to which the permission and action will apply, and the security
principal to whom the permission and action will apply on the defined object. Put simply, it will look
like the following:

PermissionState Action ON Object TO Principal

or

GRANT SELECT ON Person.EmailAddress TO Carol

To begin with, you should understand there are essentially three permission states that exist: GRANT,
GRANT_W_GRANT, and DENY. In addition, when a principal does not have an explicit permission

225



Leiter c06.tex V3 - 03/25/2009 11:54am Page 226

Chapter 6: SQL Server 2008 Security

defined, the permission is considered ‘‘revoked.’’ The following table shows the different permission
states:

Permission Description

GRANT This state means that you have been given the right to perform this
action or interact with this resource based on what the actual
permission is.

GRANT_W_GRANT Not only can you perform this action, but you also have the right to
give others the ability to perform this action.

DENY You cannot perform this action. This is also known as an ‘‘explicit
deny’’ because nothing will allow you to perform this action.

REVOKE This is not really a permission state as much as it is the absence of a
permission state. Revoked permissions will not show up in a
sysprotects table or sys.sysprotects view, and are considered an
‘‘implicit deny.’’ The idea is that if you haven’t been granted this
permission, either directly or indirectly, such as through
membership in a role with that permission, it is safe to assume that
you shouldn’t be doing that. Therefore, you will not be doing that.

To control permission states, you can use Object Explorer or Transact-SQL. The three commands that you
can use to control permission states are GRANT, REVOKE, and DENY, which are described in the following
table:

Command Description

GRANT This command allows you to grant the right to perform an action or
interact with an object in a specific way. The GRANT statement includes
the WITH GRANT OPTION statement, which also allows the grantee the
ability to become a grantor of this permission. Note that
WITH GRANT OPTION follows the TO Principal portion of the command.

REVOKE This command removes any explicit permission granted to the grantee,
either grant or deny. Revoked permissions will remove the ability to
perform that task. Remember that if the user is a member of another
role, he or she may still have the ability to perform the action, unless an
explicit deny is specified.

DENY This command creates an entry that will prevent the user from
performing the action. Denied permissions cannot be overridden by
grant permissions. For example, if a user specifically had deny insert
permission on a table, but belonged to a role that was given
grant insert permission on that same table, the user’s deny permission
would win.

226



Leiter c06.tex V3 - 03/25/2009 11:54am Page 227

Chapter 6: SQL Server 2008 Security

The following table shows a general list of the actions you can grant, deny, or revoke, and the types of
objects on which you can grant them. A short description is provided for each:

Action Description Securable

SELECT Controls the ability to retrieve data. ❑ Synonyms

❑ Table-valued functions

❑ Tables and columns

❑ Views and columns

INSERT Controls the ability to add a new row to a table
or view.

❑ Synonyms

❑ Tables and columns

❑ Views and columns

UPDATE Controls the ability to change data rows in a
table or view.

❑ Synonyms

❑ Tables and columns

❑ Views and columns

DELETE Controls the ability to remove data rows from a
table or view.

❑ Synonyms

❑ Tables and columns

❑ Views and columns

EXECUTE Controls the ability to launch programmability
objects.

❑ Procedures

❑ Scalar and aggre-
gate functions

❑ Synonyms

ALTER Controls the ability to change all the properties
of an object except ownership. ALTER ANY can
also be used when assigning permissions to all
objects of a specific type at the server scope.

❑ Procedures

❑ Scalar and aggre-
gate functions

❑ Service Broker queues

❑ Tables

❑ Table-valued functions

❑ Views

REFERENCES Allows a user to write to an object (using an
INSERT or UPDATE statement) that contains a
foreign key reference without having SELECT
permissions on the underlying object.

❑ Scalar and aggre-
gate functions

❑ Service Broker queues

❑ Tables and columns

❑ Table-valued functions

❑ Views and columns

Continued

227



Leiter c06.tex V3 - 03/25/2009 11:54am Page 228

Chapter 6: SQL Server 2008 Security

Action Description Securable

VIEW
DEFINITION

Controls the ability to return metadata
information about objects.

❑ Procedures

❑ Service Broker queues

❑ Scalar and aggre-
gate functions

❑ Synonyms

❑ Tables

❑ Table-valued functions

❑ Views

VIEW CHANGE
TRACKING

Allows the user to view Change Tracking
information for objects on which it is
enabled.

❑ Tables

❑ Schemas

TAKE
OWNERSHIP

Controls the ability to take ownership of an
object. Object owners can change
permissions of the object.

❑ Procedures

❑ Scalar and aggre-
gate functions

❑ Synonyms

❑ Tables

❑ Table-valued functions

❑ Views

CONTROL Controls the ability to have full control of an
object. This is similar to the ALTER
permission but includes TAKE OWNERSHIP.

❑ Procedures

❑ Scalar and aggre-
gate functions

❑ Service Broker queues

❑ Tables

❑ Table-valued functions

❑ Views

RECEIVE Controls the ability to retrieve one or more
messages from a queue.

Service Broker queues

Now that you understand the permissions and permission states, take a look at the specific permissions
available. SQL Server 2008 uses a hierarchical security model that allows you to specify permissions that
can be granted at the server, database, schema, or object levels. You can also assign permissions within
tables and views for selected columns.

The next section identifies the scopes in which the different securable objects reside and how you can use
them to control access to your data. Best practices recommend using a role-based administrative model to
simplify the process of creating a secure environment, not only for your databases and database servers,
but also for all of your operations.

228



Leiter c06.tex V3 - 03/25/2009 11:54am Page 229

Chapter 6: SQL Server 2008 Security

There are two key strategies you should use when securing your database servers:

❑ The first strategy you should use when granting permissions is known as the principle of least
privilege. This strategy mandates that you give your users appropriate permissions to do their
jobs, and nothing more. By keeping such tight constraints on your database environment, you
can offer a solution that minimizes the attack surface of your servers while maintaining opera-
tional functionality.

❑ The second key strategy is defense in depth. A good security implementation will provide security
at all layers of a database application. This might include using IPSec or SSL for communications
between clients and servers, strong password encryption on your authentication servers, and
configuring column-level permissions within a table or view.

When evaluating the different securable objects within SQL Server, you should have a good under-
standing of where and how permissions apply and how you can use some of the native features of the
hierarchical model to your advantage. Permission applied to a specific class of objects at a higher level in
the hierarchy allows for permission inheritance. For example, if you want Ted to be able to update any
row on every table within the Sales schema, you could simply use the following command:

USE AdventureWorks2008
--First, create the user
CREATE USER Ted WITH DEFAULT_SCHEMA = Sales;
-- Next, Grant Ted update permissions on the Sales Schema
GRANT UPDATE ON SCHEMA :: Sales to Ted;
GO

Alternatively, if you wanted Ted to have the ability to update any object in the database, you could use
the following:

Use AdventureWorks2008
GRANT UPDATE TO Ted;
GO

Take a quick look at the different levels in your security hierarchy. Figure 6-9 outlines the different levels
of security you need to manage. In the Windows scope, you create and manage Windows and Active
Directory security principals (like users and groups) and manage the files and services needed by the
SQL Server and the behavior of the server itself. In the server scope, you manage logins, endpoints, and
databases. In the database scope, you work with users, keys, certificates, roles, assemblies, and other
database objects. Also in this scope are schemas, which aren’t really objects as much as they are object
containers. Finally, within the schema scope, you have data types, XML schema collections, and objects.
These objects include your tables, views, stored procedures, and more.

Server Permissions
Server control permissions can be managed by simply specifying the permission and the login the per-
mission will be assigned to. For example, to grant permissions to create databases to the login Ted, you
could use the following statement:

USE master
GRANT CREATE ANY DATABASE TO Ted;
GO

229



Leiter c06.tex V3 - 03/25/2009 11:54am Page 230

Chapter 6: SQL Server 2008 Security

Schemas

Scheme Scope

View

Table

Database Scope

Databases

Users

Roles

Keys
Certificates

Assemblies

Server Scope

EndpointsLogins

Windows Scope

Figure 6-9: Security levels.

If you also wanted Ted to be able to have the permissions to alter logins and to allow others to alter
logins, you could use the following statement:

USE Master
GRANT ALTER ANY LOGIN TO Ted
WITH GRANT OPTION;
GO

To remove Ted’s ability to alter logins, you could use the following statement:

USE master
REVOKE ALTER ANY LOGIN TO Ted CASCADE;
GO

The CASCADE keyword is required because you gave Ted the GRANT_W_GRANT permission. This ensures
that not only will Ted lose his ability to alter any login, but so will anyone that Ted granted the
ALTER ANY LOGIN permission. If you had not used GRANT OPTION, the CASCADE keyword would have
been optional.

230



Leiter c06.tex V3 - 03/25/2009 11:54am Page 231

Chapter 6: SQL Server 2008 Security

Note that the preceding example revokes a permission that had been previously granted to Ted. If Ted
were a member of the securityadmin fixed server role, he would still have the ability to alter logins for
that server.

Now, if you want to prohibit Ted from being able to create a new database, you could use the DENY
statement as follows:

USE master
DENY CREATE ANY DATABASE TO Ted;
GO

Contrary to what I said earlier, the DENY permission state isn’t always the end-all be-all answer to whether
or not a login or user will be able to perform a certain action. If a login is a member of the sysadmin fixed
server role, that login has complete control over the SQL Server and its resources, and it wouldn’t make
a lot of sense to prevent that login from being able to access any object on the server. Even if the DENY
permission statement were successfully executed on an object, the sysadmin role can always change the
permissions on that object.

Also, if the GRANT OPTION was specified in the GRANT statement, as with the REVOKE keyword, you will
need to ensure that you use the CASCADE option.

The following table identifies the permissions that can be used to control the server, as well as granting
blanket permissions to any resource of a particular type on the server. You can control access by using
the following statement:

{GRANT | REVOKE | DENY} action on object to principal WITH {options}

Action Securable

ADMINISTER BULK OPERATIONS

ALTER ❑ ANY CONNECTION

❑ ANY CREDENTIAL

❑ ANY DATABASE

❑ ANY ENDPOINT

❑ ANY EVENT NOTIFICATION

❑ ANY LINKED SERVER

❑ ANY LOGIN

❑ RESOURCES

❑ SERVER STATE

❑ SETTINGS

❑ TRACE

AUTHENTICATE SERVER

Continued

231



Leiter c06.tex V3 - 03/25/2009 11:54am Page 232

Chapter 6: SQL Server 2008 Security

Action Securable

CONNECT SQL

CONTROL SERVER

CREATE ❑ ANY DATABASE

❑ ANY DDL EVENT NOTIFICATION

❑ ENDPOINT

❑ TRACE EVENT NOTIFICATION

EXTERNAL ACCESS ASSEMBLY

SHUTDOWN

UNSAFE ASSEMBLY

VIEW ❑ ANY DATABASE

❑ ANY DEFINITION

❑ SERVER STATE

Endpoints are server-level objects that use a slightly different syntax from server permissions when
granting, revoking, or denying. The following example creates an endpoint named ServiceBroker that
will be used for a Service Broker application (endpoints are covered in Chapter 7, and Service Broker is
introduced in Chapter 19), and then grants the ALTER permission for that endpoint to Ted:

CREATE ENDPOINT ServiceBroker
STATE = STARTED
AS TCP( LISTENER_PORT = 5162 )
FOR SERVICE_BROKER (AUTHENTICATION=WINDOWS);
GO

USE master
GRANT ALTER ON ENDPOINT :: ServiceBroker TO Ted;
GO

The following table lists the permissions you can grant for endpoints:

Action Description

ALTER Modify all properties of an endpoint, except ownership.

CONNECT Connect to an endpoint.

CONTROL Modify all properties of an endpoint, including ownership.

TAKE OWNERSHIP Take ownership of an endpoint.

VIEW DEFINITION View metadata about an endpoint.

232



Leiter c06.tex V3 - 03/25/2009 11:54am Page 233

Chapter 6: SQL Server 2008 Security

The next server-level object you can set permissions for is logins. The syntax for setting permissions on
logins is similar to the syntax for setting permissions on endpoints. For example, to give Carol the ability
to alter Ted’s login, you would use the following statement:

USE master
GRANT ALTER ON LOGIN :: Ted TO Carol
WITH GRANT OPTION;
GO

The following table shows how you can control these permissions for logins:

Action Description

ALTER Change any property of an existing login except ownership.

CONTROL Change all properties of an existing login including
ownership.

IMPERSONATE Perform an action as that login.

VIEW DEFINITION View metadata information about that login.

Finally, the last object type at the server level is the database object. Unlike logins and endpoints, database
permissions are specified for database users. This keeps the security of the database within the database
itself. Additional options may be available based on whether you are granting, denying, or revoking. The
following table lists permissions that can be granted on the database object.

Action Securable

ALTER ❑ ANY APPLICATION ROLE

❑ ANY ASSEMBLY

❑ ANY ASYMMETRIC KEY

❑ ANY CERTIFICATE

❑ ANY CONTRACT

❑ ANY DATABASE DDL TRIGGER

❑ ANY DATABASE EVENT NOTIFICATION

❑ ANY DATASPACE

❑ ANY FULLTEXT CATALOG

❑ ANY MESSGE TYPE

❑ ANY REMOTE SERVICE BINDING

❑ ANY ROLE

❑ ANY ROUTE

❑ ANY SCHEMA

Continued

233



Leiter c06.tex V3 - 03/25/2009 11:54am Page 234

Chapter 6: SQL Server 2008 Security

Action Securable

❑ ANY SERVICE

❑ ANY SYMMETRIC KEY

❑ ANY USER

AUTHENTICATE

BACKUP ❑ DATABASE

❑ LOG

CHECKPOINT

CONNECT

CONNECT REPLICATION

CONTROL

CREATE ❑ AGGREGATE

❑ ASSEMBLY

❑ ASYMMETRIC KEY

❑ CERTIFICATE

❑ CONTRACT

❑ DATABASE

❑ DATABASE DDL EVENT NOTIFICATION

❑ DEFAULT

❑ FULLTEXT CATALOG

❑ FUNCTION

❑ MESSAGE TYPE

❑ PROCEDURE

❑ QUEUE

❑ REMOTE SERVICE BINDING

❑ ROLE

❑ ROUTE

❑ RULE

❑ SCHEMA

❑ SERVICE

❑ SYMMETRIC KEY

234



Leiter c06.tex V3 - 03/25/2009 11:54am Page 235

Chapter 6: SQL Server 2008 Security

Action Securable

❑ SYNONYM

❑ TABLE

❑ TYPE

❑ VIEW

❑ XML SCHEMA COLLECTION

DELETE

EXECUTE

INSERT

REFERENCES

SELECT

SHOWPLAN

SUBSCRIBE QUERY NOTIFICATIONS

TAKE OWNERSHIP

UPDATE

VIEW ❑ DATABASE STATE

❑ DEFINITION

Database Scope Permissions
In the database scope, there are additional permissions you can assign based on the different types of
securable objects you have. Permissions assigned to an object class allow you to perform the defined
action on all members of that class. However, an object can be explicitly identified by declaring the class
and then the object name. The syntax for assigning permissions to database securables is as follows:

{GRANT | REVOKE | DENY} action ON class :: object TO principal

In the following example, you can grant the CONTROL permission for the Sales schema to the user Alice:

USE AdventureWorks2008
CREATE USER Alice FOR LOGIN [AughtEight\Alice]
WITH DEFAULT_SCHEMA = SALES;
GO

GRANT CONTROL ON SCHEMA :: Sales TO Alice;
GO

235



Leiter c06.tex V3 - 03/25/2009 11:54am Page 236

Chapter 6: SQL Server 2008 Security

The following table lists the various permissions and the database objects and classes to which you can
assign them:

Action Securable

ALTER ❑ APPLICATION ROLE

❑ ASSEMBLY

❑ ASYMMETRIC KEY

❑ CERTIFICATE

❑ CONTRACT

❑ FULLTEXT CATALOG

❑ MESSAGE TYPE

❑ REMOTE SERVICE BINDING

❑ ROLE

❑ ROUTE

❑ SCHEMA

❑ SERVICE

❑ SYMMETRIC KEY

❑ USER

CONTROL ❑ APPLICATION ROLE

❑ ASSEMBLY

❑ ASYMMETRIC KEY

❑ CERTIFICATE

❑ CONTRACT

❑ FULLTEXT CATALOG

❑ MESSAGE TYPE

❑ REMOTE SERVICE BINDING

❑ ROLE

❑ ROUTE

❑ SCHEMA

❑ SERVICE

❑ SYMMETRIC KEY

❑ USER

236



Leiter c06.tex V3 - 03/25/2009 11:54am Page 237

Chapter 6: SQL Server 2008 Security

Action Securable

DELETE SCHEMA

EXECUTE ❑ ASSEMBLY

❑ SCHEMA

IMPERSONATE USER

INSERT SCHEMA

REFERENCES ❑ ASSEMBLY

❑ ASYMMETRIC KEY

❑ CERTIFICATE

❑ CONTRACT

❑ FULLTEXT CATALOG

❑ MESSASGE TYPE

❑ SCHEMA

❑ SYMMETRIC KEY

SELECT SCHEMA

SEND SERVICE

TAKE OWNERSHIP ❑ ASSEMBLY

❑ ASYMMETRIC KEY

❑ CERTIFICATE

❑ CONTRACT

❑ FULLTEXT CATALOG

❑ MESSAGE TYPE

❑ REMOTE SERVICE BINDING

❑ ROLE

❑ ROUTE

❑ SCHEMA

❑ SERVICE

❑ SYMMETRIC KEY

UPDATE SCHEMA

VIEW CHANGE TRACKING SCHEMA

Continued

237



Leiter c06.tex V3 - 03/25/2009 11:54am Page 238

Chapter 6: SQL Server 2008 Security

Action Securable

VIEW DEFINITION ❑ APPLICATION ROLE

❑ ASSEMBLY

❑ ASYMMETRIC KEY

❑ CERTIFICATE

❑ CONTRACT

❑ FULLTEXT CATALOG

❑ MESSAGE TYPE

❑ REMOTE SERVICE BINDING

❑ ROLE

❑ ROUTE

❑ SCHEMA

❑ SERVICE

❑ SYMMETRIC KEY

❑ USER

Schema Scope Permissions
Finally, within the scope of a schema, there are additional permissions you can assign to objects, data
types, and XML schema collections. When granting permissions to schema-level objects, the syntax is
similar to what you saw earlier:

{GRANT | REVOKE | DENY} action ON class :: securable TO principal

When the class is an OBJECT, you can omit OBJECT :: as long as the schema name is included with the
object name, as in the following example:

Use AdventureWorks2008
GRANT SELECT, UPDATE ON Person.Person to Alice;
GO

Schema objects include the following:

❑ Aggregates

❑ Constraints

❑ Functions

❑ Procedures

238



Leiter c06.tex V3 - 03/25/2009 11:54am Page 239

Chapter 6: SQL Server 2008 Security

❑ Queues

❑ Statistics

❑ Synonyms

❑ Tables

❑ Views

The following table lists the schema classes and the permissions that can be set for each of them. Remem-
ber that not all permissions are valid for every object type. You can’t expect to grant EXECUTE on a table,
or SELECT on a stored procedure.

Class Permissions

OBJECT ❑ ALTER

❑ CONTROL

❑ DELETE

❑ EXECUTE

❑ INSERT

❑ RECEIVE

❑ REFERNCES

❑ SELECT

❑ TAKE OWNERSHIP

❑ UPDATE

❑ VIEW CHANGE TRACKING

❑ VIEW DEFINITION

TYPE ❑ CONTROL

❑ EXECUTE

❑ REFERNCES

❑ TAKE OWNERSHIP

❑ VIEW DEFINITION

XML SCHEMA COLLECTION ❑ ALTER

❑ CONTROL

❑ EXECUTE

❑ REFERNCES

❑ TAKE OWNERSHIP

❑ VIEW DEFINITION

239



Leiter c06.tex V3 - 03/25/2009 11:54am Page 240

Chapter 6: SQL Server 2008 Security

Using SQL Server Management Studio for Managing
Permissions

You can also use Object Explorer in SQL Server Management Studio to set or view permissions on objects.
In this section, you will learn how to use the GUI to control access to SQL resources.

The first thing to look at is auditing permissions on the objects themselves.

For the next example, create a new login, a new database user for the AdventureWorks2008 database, and
then grant control permissions to the Sales schema for this new user. Use the following code:

USE master
CREATE LOGIN Chris WITH PASSWORD = ‘P@ssw0rd’,
DEFAULT_DATABASE = AdventureWorks2008;
GO

USE AdventureWorks2008
CREATE USER Chris WITH DEFAULT_SCHEMA = Sales;
GO

GRANT CONTROL ON SCHEMA :: SALES TO Chris;
GO

Now, use Object Explorer to see what permissions have been granted to Chris. First, look at the database
itself:

1. Expand your server.

2. Expand Databases.

3. Right-click AdventureWorks2008 and select Properties.

4. Select Permissions.

5. In the Users or Roles pane, select ‘‘Chris.’’

Under ‘‘Explicit permissions for Chris,’’ scroll down until you find ‘‘Connect.’’ Note that the user who
granted the permission, in this case the dbo, is also listed in the Grantor column.

Next to the list of explicit permissions for this user, there is an ‘‘Effective Permissions’’ tab. Clicking on
this tab will give you a list of the permissions the user has for this resource, including those that were
granted through membership in a role or group. This new feature can really help simplify the process of
auditing your security settings, or troubleshooting why a user is having problems accessing a resource.

Because you granted control of the Sales schema to Chris, take a look at what permissions have actually
been assigned to that schema and the objects within it. To do this, open the property sheet for Chris’s
user account in the AdventureWorks2008 database (see Figure 6-10):

1. Close the Database Properties — AdventureWorks2008 window by clicking OK or Cancel.

2. In Object Explorer, expand AdventureWorks2008.

240



Leiter c06.tex V3 - 03/25/2009 11:54am Page 241

Chapter 6: SQL Server 2008 Security

Figure 6-10: Property sheet for Chris.

3. Expand Security.

4. Expand Users.

5. Right-click ‘‘Chris’’ and select ‘‘Properties.’’

6. Select the Securables page and click Search.

7. Select ‘‘All objects belonging to the schema.’’

8. From the ‘‘Schema name’’ dropdown list, select ‘‘Sales.’’

9. Click OK.

If you look at the list of explicit permissions on the Sales schema, notice that Chris only has CONTROL
permissions. Clicking the ‘‘Effective Permissions’’ tab will show you that the user has full access to any
object in the schema.

Now, take a look at specific objects in the Sales schema. Select CreditCard in the list of Securables, and
select the ‘‘Effective Permissions’’ tab.

241



Leiter c06.tex V3 - 03/25/2009 11:54am Page 242

Chapter 6: SQL Server 2008 Security

Look at the list of explicit permissions for Sales.CreditCard (see Figure 6-11), and notice that Chris has
no explicit permissions on this table. Clicking the ‘‘Effective Permissions’’ tab will show you that the user
has full access to the table and its contents.

Figure 6-11: Sales.CreditCard permissions.

You now have a user with full access to the Sales schema, but no access to resources outside of it. Any
attempt to query a view in another schema will result in the following error:

SELECT * FROM HumanResources.vEmployee
------------------------------------------------------------------------------

Msg 229, Level 14, State 5, Line 1
SELECT permission denied on object ‘vEmployee’, database ‘AdventureWorks2008’,
schema ‘HumanResources’.

242



Leiter c06.tex V3 - 03/25/2009 11:54am Page 243

Chapter 6: SQL Server 2008 Security

Also note that you can add permissions for database objects in the User Properties dialog box. You can
use the Management Studio to assign permissions by editing the properties of the securable, or by editing
the properties of a principal.

SQL Server Encryption
Protecting data, both in storage and during transmission, is important for the integrity of your applica-
tions and services. Microsoft SQL Server 2008 offers several options for both. In this section, you will see
some of the tools available for protecting your data.

First of all, whether you’re using symmetric keys, asymmetric keys, or certificates, there are two main
components to encrypting data: the encryption algorithm and the key value. The encryption algorithms
available include Data Encryption Standard (DES), Triple Data Encryption Standard (3DES), RC4, and
Advanced Encryption Standard (AES_256), as well as others. An encryption algorithm is simply a mathe-
matical formula that dictates how to turn the data from plain text into cipher text. The key is a value that
is used within that formula to determine the actual output based on the input. It’s not unlike basic alge-
bra, where you take a statement like x + y = z. In this case, x is the plain-text value, y is the encryption
key, and z is the cipher text. Fortunately, the encryption algorithms are significantly more complex than
that, but you get the idea.

Keys come in two flavors: symmetric and asymmetric. Symmetric keys use the same data key value
to both encrypt and decrypt data. This is actually very good for encrypting large amounts of data,
but has a relatively low level of security. Asymmetric keys use one key value for encrypting data and
a different value for decrypting data. This provides a higher level of security than symmetric keys,
but is a costly operation and not good for large amounts of data. A well-designed encryption method
encrypts data using symmetric keys, and encrypts the symmetric keys using asymmetric keys. Certifi-
cates use asymmetric keys, but have additional functionality that can be used for authentication and non-
repudiation.

Now, take a look at how SQL provides encryption services. Figure 6-12 shows a high-level overview of
the encryption hierarchy used by SQL Server 2008. At the top level is the Windows layer, which includes
the Windows Data Protection API (DPAPI). The DPAPI is responsible for encrypting the server’s service
master key using the server’s local machine key. The service master key is the top of the encryption food
chain within the SQL environment. The service master key is automatically generated the first time a
lower-level key is created.

Beneath the service master key is the database master key. The database master key can protect the private
keys of all certificates and asymmetric keys within a database. It is a symmetric key that is encrypted
using the 3DES algorithm and a password. Copies of the key are encrypted using the service master key
and are stored in both the master database and the database for which it was created. If the database
is moved to another server, the database master key can be decrypted by using the OPEN MASTER KEY
statement and providing the password used to encrypt it.

Also in the database scope are symmetric and asymmetric keys you can create for encrypting data, as
well as certificates that can also be used for digital signing and non-repudiation. Creating and managing
the different key types are discussed in the next section.

243



Leiter c06.tex V3 - 03/25/2009 11:54am Page 244

Chapter 6: SQL Server 2008 Security

Asymmetric
Key

Windows DP API

Database Master Key

Database Level

Symmetric
Key

Data

Data Symmetric
Key

Data

Data

Certificate

Service Master Key

Windows Level

Server Level

Figure 6-12: Encryption hierarchy.

One of the first steps you should take is creating the database master key. Remember that the database
master key is a symmetric key that encrypts all private key data within the database. This is helpful if
you are using asymmetric keys or certificates, in that they can be created without having to supply a
password or other mechanism to protect the private keys associated with both. To create a new master
key for the AdventureWorks2008 database, you can execute the following command:

USE AdventureWorks2008
CREATE MASTER KEY
ENCRYPTION BY PASSWORD = ‘P@ssw0rd’;
GO

Creation of a master key requires CONTROL permission on the database. Also, if you already have a master
key created, you must drop the existing one if you need to create a new master key. An existing master
key cannot be dropped if it is being used to encrypt a private key in the database.

Once you’ve created your master key, you can query the sys.databases catalog view to see if the
database master key has been encrypted using the service master key by looking at the value of the

244



Leiter c06.tex V3 - 03/25/2009 11:54am Page 245

Chapter 6: SQL Server 2008 Security

is_master_key_encrypted_by_server column. This column uses a Boolean value to indicate whether
the database master key is encrypted with the service master key. The value may be 0 if the database
master key was created on another server.

SELECT NAME, [is_master_key_encrypted_by_server] FROM sys.databases
GO

Before continuing on to the subject of working with other keys to encrypt database information, let’s
look at the topic of backing up your service master key and database master keys. This can be extremely
valuable in case you have to perform a disaster-recovery operation and need to recover data that had
been protected or encrypted with one of these keys. The syntax for both keys is similar, but an additional
step is required to back up an encrypted database master key.

Let’s start with the service master key first. Quite simply, use the BACKUP SERVICE MASTER KEY statement
with a file path, which can be a local or UNC path, and a password that meets your password-complexity
requirements. Using a password on the backup file prevents someone from being able to restore your
master key on another server and then being able to decrypt your database master keys. The following
example will save a backup of the service master key to a folder called C:\KeyBackups (this folder must
already exist):

BACKUP SERVICE MASTER KEY TO FILE = ‘C:\KeyBackups\ServiceMasterKey’
ENCRYPTION BY PASSWORD = ‘c@MplexP@ssw0rd’;
GO

If you need to restore the service master key, you can issue the following statement:

RESTORE SERVICE MASTER KEY FROM FILE = ‘C:\KeyBackups\ServiceMasterKey’
DECRYPTION BY PASSWORD = ‘c@MplexP@ssw0rd’;
GO

To back up and restore a database master key, use the following examples:

--Backup the database master key
USE AdventureWorks2008;
OPEN MASTER KEY
DECRYPTION BY PASSWORD = ‘P@ssw0rd’

BACKUP MASTER KEY TO FILE = ‘C:\KeyBackups\AWorksMasterKey’
ENCRYPTION BY PASSWORD = ‘dn9e8h93ndwjKJD’;
GO
--Restore the database master key
USE AdventureWorks2008;
RESTORE MASTER KEY FROM FILE = ‘c:\KeyBackups\AWorksMasterKey’
DECRYPTION BY PASSWORD = ‘dn9e8h93ndwjKJD’
ENCRYPTION BY PASSWORD = ‘P@ssw0rd’
GO

There are a couple of things to note about the previous example. First, in order to back up the database
master key, you must decrypt it by using the password that was originally used to encrypt it. Also note
that when you use the RESTORE MASTER KEY statement, you need to provide a password for encrypting
the database master key. The command will fail without this step.

245



Leiter c06.tex V3 - 03/25/2009 11:54am Page 246

Chapter 6: SQL Server 2008 Security

Extensible Key Management (EKM)
One of the most important new features of SQL Server 2008 is Extensible Key Management, or EKM for
short. EKM works with the Microsoft Cryptographic API (MSCAPI) to allow encryption keys that are
used for data encryption, as well as encryption of other keys, to be generated and stored outside of the
SQL Server 2008 environment. This provides a more robust and flexible mechanism for key management,
given that you can now separate the keys from the data they protect.

This is often accomplished through the use of Hardware Security Models (HSM). HSM vendors can
create a provider that will interface with the MSCAPI, exposing at least some of the features of the HSM
to SQL Server 2008 and other applications that leverage the MSCAPI. Unfortunately, because MSCAPI
acts as a middle tier between the HSM and the SQL Server, not all of the features of the HSM may be
exposed to the SQL Server.

In order to use EKM, you must first enable it on the server. It is turned off by default, but can be turned
on with the sp_configure command. Because enabling EKM is considered an advanced feature, the
show advanced configuration must also be specified. The following example shows you how to turn on
EKM for your server:

sp_configure ‘show advanced’, 1;
GO
RECONFIGURE
GO
sp_configure ‘EKM provider enabled’, 1;
GO
RECONFIGURE
GO

With EKM enabled, you can now store your encryption keys on HSM modules, smart cards, or USB
devices. Whenever data is encrypted using a key stored on one of these devices, that same device must be
present in order to decrypt the data. This can protect against an unauthorized user copying and attaching
the database files to a rogue SQL Server and being able to access all your confidential data.

EKM can also be leveraged to provide the following benefits:

❑ Additional authorization checks

❑ Easier key recovery

❑ Encryption key retrieval

❑ External key generation and storage

❑ External key retention and rotation

❑ Higher performance when using hardware-based encryption and decryption

❑ Manageable key distribution

❑ Secure key disposal

Encryption Tools
Now that you understand some of the basics of encryption, take a look at creating and managing encryp-
tion tools. Each of the objects in this section serves a specific purpose. After you learn how to create
symmetric keys, asymmetric keys, and certificates, you will learn how to use them.

246



Leiter c06.tex V3 - 03/25/2009 11:54am Page 247

Chapter 6: SQL Server 2008 Security

Symmetric Keys
As mentioned earlier, symmetric keys offer an efficient model for being able to encrypt large amounts of
data. The resource overhead is minimized by using the same keys for both encryption and decryption.
Here’s the syntax for generating symmetric keys:

CREATE SYMMETRIC KEY name [AUTHORIZATION owner] [FROM PROVIDER] providername
WITH options

ENCRYPTION BY mechanism

The following table shows the arguments that can be used:

Argument Description

AUTHORIZATION owner Identifies who the owner of the key is.

FROM PROVIDER Specifies that an EKM provider will be used and the
name of the provider.

KEY_SOURCE pass phrase Identifies a pass phrase used to derive the key.

ALGORITHM Choose one of the following: DES, TRIPLE_DES,
TRIPLE_DES_3KEY, RC2, RC4, RC4_128, DESX,
AES_128, AES_192, AES_256.

IDENTITY_VALUE pass phrase Used to generate a GUID for identifying data that has
been encrypted with this key.

CREATION_DISPOSITION When using an EKM device, you can specify to create
a new key on the device or map the symmetric key to
an existing one by using the following options:

❑ CREATE_NEW

❑ OPEN_EXISTING

ENCRYPTION BY mechanism One or more of the following methods for encrypting
the symmetric key:

❑ CERTIFICATE certificate_name

❑ PASSWORD = ‘password’

❑ SYMMETRIC KEY symmetric_key_name

❑ ASYMMETRIC KEY asym_key_name

Try It Out Create a Symmetric Key
The following example creates a new symmetric key named SalesKey1, which uses the 192-bit Triple
DES 3-Key algorithm:

USE AdventureWorks2008
GO
--Create Symmetric Key

247



Leiter c06.tex V3 - 03/25/2009 11:54am Page 248

Chapter 6: SQL Server 2008 Security

CREATE SYMMETRIC KEY SalesKey1
WITH ALGORITHM = TRIPLE_DES_3KEY,
KEY_SOURCE = ‘The quick brown fox jumped over the lazy dog’,
IDENTITY_VALUE = ‘FoxAndHound’
ENCRYPTION BY PASSWORD = ‘9348hsxasnA@B’;

GO

You can add or remove methods for encrypting the key with the ALTER SYMMETRIC KEY statement, and
you can remove a symmetric key by using the DROP SYMMETRIC KEY statement.

In this example, use the SalesCert certificate created in the earlier section, ‘‘Database Users,’’ to encrypt
the symmetric key and remove the password encryption from the previous example:

--Open the symmetric key
OPEN SYMMETRIC KEY SalesKey1
DECRYPTION BY PASSWORD = ‘9348hsxasnA@B’

--Add encryption using the certificate created earlier
ALTER SYMMETRIC KEY SalesKey1
ADD ENCRYPTION BY CERTIFICATE SalesCert

--Remove the password encryption
ALTER SYMMETRIC KEY SalesKey1
DROP ENCRYPTION BY PASSWORD = ‘9348hsxasnA@B’

--Close the symmetric key
CLOSE SYMMETRIC KEY SalesKey1

Asymmetric Keys
Asymmetric keys use a pair of keys rather than a single one. These keys are often referred to as the public key
and the private key. One key is used for encryption, and the other is used for decryption. It doesn’t really
matter which key is used for encryption, but the data cannot be decrypted without the corresponding
key. The process for creating an asymmetric key pair is similar to creating a symmetric key. Here’s the
syntax for generating symmetric keys:

CREATE ASYMMETRIC KEY name [AUTHORIZATION owner] [FROM key_source]
WITH ALGORITHM = algorithm [ENCRYPTION BY PASSWORD = ‘password’]

The following table shows the arguments that can be used:

Argument Description

AUTHORIZATION owner Identifies who the owner of the key is. The owner
cannot be a role or a group.

FROM key source Specifies the key source that will be used.

FILE = ‘path to filename’ Specifies a strong-name file that can be used as a
source for the key pair.

EXECUTABLE FILE Specifies an executable file that can be used to load the
key pair.

248



Leiter c06.tex V3 - 03/25/2009 11:54am Page 249

Chapter 6: SQL Server 2008 Security

Argument Description

ASSEMBLY Specifies an assembly file that can be used to load the
key pair.

ENCRYPTION BY PASSWORD =
‘password’

Specifies the password used to encrypt the private
key. The password is limited to 128 characters.

ALGORITHM Choose one of the following: RSA_512, RSA_1024, or
RSA_2048.

KEY_NAME key When using EKM, this allows you to specify the key
name from the external provider.

CREATION_DISPOSITION When using an EKM device, you can specify to create
a new key on the device or map the symmetric key to
an existing one by using the following options:

❑ CREATE_NEW

❑ OPEN_EXISTING

When creating an asymmetric key pair, you can specify the owner of the key pair and the key source
(which is either a strong-name file, an assembly, or an executable assembly file). Alternatively, you can
use an algorithm that determines the number of bits used by the private key, selecting a key length using
512, 1,024, or 2,048 bits. You can also use the ENCRYPTION BY PASSWORD option to encrypt the private key.
If you do not specify a password, the database master key will encrypt the private key.

USE AdventureWorks2008
CREATE ASYMMETRIC KEY HumanResources

WITH ALGORITHM = RSA_2048;
GO

You can use the ALTER ASYMMETRIC KEY statement to change the properties of a key pair. You can use the
REMOVE PRIVATE KEY option to take the private key out of the database (make sure you have a backup
of the private key first!), or you can change the way the private key is protected. For example, you can
change the password used to encrypt the private key and then change the protection from password to
database master key, or vice versa.

In the following example, use the following code to encrypt the private key from the HumanResources
key pair created in the earlier example using a password:

USE AdventureWorks2008
ALTER ASYMMETRIC KEY HumanResources

WITH PRIVATE KEY (
ENCRYPTION BY PASSWORD = ‘P@ssw0rd’);

GO

In the next example, you can change the password used to encrypt the private key by first decrypting it,
and then re-encrypting it with a new password:

USE AdventureWorks2008
ALTER ASYMMETRIC KEY HumanResources

249



Leiter c06.tex V3 - 03/25/2009 11:54am Page 250

Chapter 6: SQL Server 2008 Security

WITH PRIVATE KEY (
DECRYPTION BY PASSWORD = ‘P@ssw0rd’,
ENCRYPTION BY PASSWORD = ‘48ufdsjEHF@*hda’);
GO

Certificates
Certificates (also known as public key certificates) are objects that associate an asymmetric key pair with a
credential. Certificates are objects that can be used not only for encryption, but also for authentication
and non-repudiation. This means that not only can you obfuscate data that would normally be in plain
text, but you can also provide a means of guaranteeing the source, the trustworthiness of that source, or
that the data has not changed since it was signed.

The details of a certificate identify when the certificate was created, the validity period of the
certificate, who created the certificate, and what the certificate can be used for. It also identifies the
public key associated with the certificate and the algorithm that can be used for digitally signing
messages.

The ability to create and use certificates is a feature that was first introduced in SQL Server 2005, and one
that even experienced DBAs may have trouble grasping at first. Certificates are part of the bigger scope of
application security and identity, and the functionality extended to SQL Server 2008 is no different from
how you would use certificates with other applications and services. This topic is almost like opening a
Pandora’s Box, but once you understand the basics of how certificates work and how they can be used to
protect your services and data, you will appreciate their flexibility.

Certificates also have a feature that lets you trace the genealogy of the certificate, its ‘‘family tree,’’ if you
will (see Figure 6-13). This certificate hierarchy identifies not only what Certification Authority (CA) issued
the certificate, but what CA generated the certificate used by the CA to generate the certificate you have.
This is known as the certificate chain. The certificate chain can be used to identify either a common Root
CA (the highest authority in a chain) that can be trusted for authentication or another Root CA that is
considered a trustworthy source. Many applications and operating systems include a list of commercial
CAs that are automatically trusted. When the certificate from a Root CA is trusted, it is assumed that any
certificate that can trace its genealogy back to that root is also trusted. If the certificate is not from a trusted
certificate chain, the user may be warned that the certificate is not trusted, and they should proceed with
caution. Commercial CAs are often used to obtain Server Authentication and SSL certificates, simply
because many Web browsers already trust the most popular Root CAs.

Many organizations have developed their own Public Key Infrastructure (PKI). These companies have
found it necessary to deploy and use certificates for a variety of reasons. Some might use certificates with
smart cards for logging in to their computers. Some may use certificates for encrypting data on the NTFS
file system, using Encrypting File System (EFS). Some organizations may use certificates for digitally
signing applications and macros, so that their users can verify where the application came from or that
it hasn’t been modified. These organizations often have their own CA hierarchy. They may have a Root
CA they manage themselves, or they may have the ability to generate their own certificates that are part
of a third-party certificate chain.

Microsoft SQL Server 2008 has the ability to create its own self-signed certificates. In a way, SQL can be
its own CA, but don’t expect these certificates to be automatically trusted outside of the SQL instance.
The certificates generated by SQL Server conform to the X.509 standard and can be used outside of the
SQL Server if necessary, but they are not part of a trusted hierarchy. A more common approach is to use
a certificate generated by another CA and import that into SQL Server. Certificates can be just as widely

250



Leiter c06.tex V3 - 03/25/2009 11:54am Page 251

Chapter 6: SQL Server 2008 Security

used in SQL Server as they can outside SQL. You can use them for server authentication, encryption, and
digital signing.

Figure 6-13: Certificate information.

On the subject of encryption, public key certificates operate in the same way as asymmetric keys. The
key pair, however, is bound to this certificate. The public key is included in the certificate details, and the
private key must be securely archived. Private keys associated with certificates must be secured using a
password, the database master key, or another encryption key. When encrypting data, the best practice
is to encrypt the data with a symmetric key and then encrypt the symmetric key with a public key.

When creating a certificate that will be self-signed, you can use the CREATE CERTIFICATE statement. You
can choose to encrypt the private key using a strong password or by using the database master key.
You can also use the CREATE CERTIFICATE statement to import a certificate and private key from a file.
Alternatively, you can create a certificate based on a signed assembly.

Once the certificate has been created, you can modify the certificate with the ALTER CERTIFICATE state-
ment. Some of the changes you can make include changing the way the private key is protected or
removing the private key from the SQL Server. Removing the private key should be done only if the
certificate is used to validate a digital signature. If the public key had been used to encrypt data or a
symmetric key, the private key should be available for decryption.

It is a good idea when creating certificates to make a backup of the certificate and the associated private
key with the BACKUP CERTIFICATE statement. You can make a backup of the certificate without archiving
the private key, and use the public key for verification or encrypting messages that can only be decrypted
with the private key.

Once a certificate is no longer needed, you can get rid of it with the DROP CERTIFICATE statement. Be
aware that the certificate can’t be dropped if it is still associated with other objects.

251



Leiter c06.tex V3 - 03/25/2009 11:54am Page 252

Chapter 6: SQL Server 2008 Security

Try It Out Create a New Certificate
In the following example, create a new certificate named PersonnelDataCert, which you will use later
to encrypt data. After creating this certificate, back up the certificate to the file system (you can either
change the path in the example or create a new folder on your C: drive called certs). Once that is done,
the last step is to import the certificate into the tempdb database.

-- Create the Personnel Data Certificate
USE AdventureWorks2008;
CREATE CERTIFICATE PersonnelDataCert

ENCRYPTION BY PASSWORD = ‘HRcertific@te’
WITH SUBJECT = ‘Personnel Data Encryption Certificate’,
EXPIRY_DATE = ‘12/31/2011’;

GO

--Backup the certificate and private key to the file system
Use AdventureWorks2008
BACKUP CERTIFICATE PersonnelDataCert TO FILE = ‘c:\certs\Personnel.cer’

WITH PRIVATE KEY (DECRYPTION BY PASSWORD = ‘HRcertific@te’,
FILE = ‘c:\certs\Personnelkey.pvk’ ,
ENCRYPTION BY PASSWORD = ‘@notherPassword’ );

GO

--Import the certificate and private key into the TempDB database
USE tempdb
CREATE CERTIFICATE PersonnelDataCert

FROM FILE = ‘c:\certs\Personnel.cer’
WITH PRIVATE KEY (FILE = ‘c:\certs\Personnelkey.pvk’,

DECRYPTION BY PASSWORD = ‘@notherPassword’,
ENCRYPTION BY PASSWORD = ‘TempDBKey1’);

GO

In the next example, change the password used to encrypt the private key using the ALTER CERTIFICATE
statement:

Use tempdb
ALTER CERTIFICATE PersonnelDataCert

WITH PRIVATE KEY (ENCRYPTION BY PASSWORD = ‘P@ssw0rd789’,
DECRYPTION BY PASSWORD = ‘TempDBKey1’);

GO

Now you can remove the private key from the AdventureWorks2008 database. Because the certificate and
the private key are backed up, you can perform this action safely.

Use AdventureWorks2008
ALTER CERTIFICATE PersonnelDataCert

REMOVE PRIVATE KEY
GO

Finally, clean up the tempdb database:

USE tempdb
DROP CERTIFICATE PersonnelDataCert;
GO

252



Leiter c06.tex V3 - 03/25/2009 11:54am Page 253

Chapter 6: SQL Server 2008 Security

Encrypting Data
Now that you’ve seen the different objects that can be used for encryption or non-repudiation, take a look
at how you can actually use them. First of all, not everything needs to be encrypted. Because the process
of encrypting and decrypting data can be resource-intensive, you should be mindful of what data you
need to encrypt. Data that should be kept confidential (such as credit card or Social Security numbers)
might fall into this category. An employee’s middle name, no matter how embarrassing it might be,
would not. Also note that not every data type can be encrypted with the encryptbykey function. The
valid data types are nvarchar, char, wchar, varchar, and nchar.

It is also a good idea to know when to encrypt the data, and when not to. Frequently queried columns
in tables or views should not be encrypted, because the process of decrypting large amounts of data that
is queried over and over again can often become counterproductive. In this case, a better strategy might
be to store the sensitive information in a separate table that has much tighter security on it. Remember
that you can give insert or update permissions on a row in a foreign table without having to grant select
permissions on that related table. HSMs may offset some of the overhead involved with the decryption
process, but that may require significant testing to verify how well it will perform in production.

Prior to encrypting data, you must open the key that will perform the encryption process. Again, data is
commonly protected with a symmetric key, which is, in turn, protected with an asymmetric key pair. If
the symmetric key is protected with a password, then any user with ALTER permissions on the symmetric
key and the password can open and close the symmetric key. If the symmetric key is protected by an
asymmetric key or certificate, the user also needs CONTROL permissions on the asymmetric key or the
certificate.

Try It Out Create an Encrypted Column
Use the following sample code to create an encrypted column in the Sales.CreditCard table. In this
example, use the symmetric key SalesKey1 and the certificate SalesCert, both created earlier in this
chapter:

ALTER TABLE Sales.CreditCard
ADD EncryptedCardNumber varbinary(128);

GO

OPEN SYMMETRIC KEY SalesKey1 DECRYPTION BY
CERTIFICATE SalesCert WITH PASSWORD = ‘P@ssw0rd’

UPDATE Sales.CreditCard
SET EncryptedCardNumber

= EncryptByKey(Key_GUID(’SalesKey1’), CardNumber);
GO

CLOSE SYMMETRIC KEY SalesKey1;
GO

Because the symmetric key was used to encrypt the data, it will also be used for decryption. Using the
preceding example as a template, you could use the following commands to create another new column
that stores the decrypted data. A SELECT statement is included that allows you to view the original data,
the encrypted data, and the decrypted data columns:

ALTER TABLE Sales.CreditCard
ADD DecryptedCardNumber NVARCHAR(25);

253



Leiter c06.tex V3 - 03/25/2009 11:54am Page 254

Chapter 6: SQL Server 2008 Security

GO

OPEN SYMMETRIC KEY SalesKey1 DECRYPTION BY
CERTIFICATE SalesCert WITH PASSWORD = ‘P@ssw0rd’;

GO

UPDATE Sales.CreditCard
SET DecryptedCardNumber

= DecryptByKey(EncryptedCardNumber);
GO

CLOSE SYMMETRIC KEY SalesKey1;
GO

Select TOP (10) CreditCardID, CardNumber AS Original, EncryptedCardNumber AS
Encrypted, DecryptedCardNumber AS Decrypted

FROM Sales.CreditCard;
GO

You don’t have to create a whole new column to view the decrypted data, though. The DECRYPTBYKEY
function can be executed in a SELECT statement to view the unencrypted data. The following example
shows you how:

OPEN SYMMETRIC KEY SalesKey1 DECRYPTION BY
CERTIFICATE SalesCert WITH PASSWORD = ‘P@ssw0rd’;

GO

SELECT CreditCardID, CardNumber,EncryptedCardNumber
AS ‘Encrypted Card Number’,
CONVERT(nvarchar, DecryptByKey(EncryptedCardNumber))
AS ‘Decrypted Card Number’
FROM Sales.CreditCard;

GO

CLOSE SYMMETRIC KEY SalesKey1;
GO

Transparent Data Encryption
Another new feature of SQL Server 2008 is Transparent Data Encryption (TDE). TDE is designed to per-
form real-time I/O encryption, using a Database Encryption Key (DEK), of the database and transaction
log files for databases that have TDE enabled. The benefit of TDE is that it protects all data ‘‘at rest.’’ This
means that anything not currently being read into memory is protected using the DEK. However, when
a query is run, the data that is retrieved from that query is decrypted as it is being read into memory.
Unlike the use of symmetric and asymmetric keys for decrypting data in a single table or column, it is
not necessary to invoke a decryption function when reading from or writing to a table in a database
protected by TDE (hence the use of the word Transparent).

Setting up TDE is slightly more complex than other encryption methods, in that there are certain depen-
dencies that must be in place before you can enable it.

254



Leiter c06.tex V3 - 03/25/2009 11:54am Page 255

Chapter 6: SQL Server 2008 Security

1. First of all, a Database Master Key must exist in the master database.

2. Secondly, you must either create a certificate or install a certificate in the master database
that can be used to encrypt the DEK; or you may use an asymmetric key from an EKM
provider.

3. Then you will need to create the DEK in the database that you will be encrypting.
Finally, enable encryption on that database. The following script provides an example of
these steps:

USE master
CREATE MASTER KEY ENCRYPTION BY PASSWORD = ‘MyStrongP@ssw0rd’;
GO
CREATE CERTIFICATE AughtEightTDE WITH SUBJECT =
‘TDE Certificate for the AUGHTEIGHT Server’;

GO
USE AdventureWorks2008
CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = TRIPLE_DES_3KEY
ENCRYPTION BY SERVER CERTIFICATE AughtEightTDE;
GO
ALTER DATABASE AdventureWorks2008
SET ENCRYPTION ON;
GO

You can also use SQL Server Management Studio to manage the Transparent Encryption Properties of a
database. Do this by performing the following steps:

1. In Object Explorer, expand Databases.

2. Right-click on the AdventureWorks2008 database, and select Tasks, then ‘‘Manage Database
Encryption.’’

As you can see in Figure 6-14, you have several options you can perform from this window, including
‘‘Re-Encrypt Database Encryption Key’’ using a server certificate or server asymmetric key (stored in the
master database), as well as regenerating the key using an AES 128, AES 192, AES 256, or Triple DES
encryption algorithm. You can also enable or disable TDE for this database by checking (or unchecking)
the box next to ‘‘Set Database Encryption On.’’

Digital Signatures
Digital signatures provide authentication and non-repudiation. Often, with public key pairs, the private
key is used to digitally sign a message (or, in the case of a code-signing certificate, an application or
assembly). Take a look at how digital signing works with e-mail messages as an example.

Bob sends Alice a message, and his e-mail client is configured to automatically add his digital signature
to all outgoing messages. In this case, while the message is being prepared for delivery, a key is generated
and passed to a hashing algorithm for a one-way transformation of the data into a hash value. The hash
value is attached to the message, and the key that was used to generate the hash is encrypted with Bob’s
private key.

255



Leiter c06.tex V3 - 03/25/2009 11:54am Page 256

Chapter 6: SQL Server 2008 Security

Figure 6-14: Manage Database Encryption.

The message is delivered to Alice, who receives the message in plain text, as well as receiving the hashed
version of the message. Alice, who has access to Bob’s public key, uses it to decrypt the key that was
used to generate the hash. The key is then passed through the hashing algorithm, and a new hash is
generated. If the new hash matches the hash that was sent with the message, Alice can feel confident that
the message hasn’t been changed during delivery. If the hash values do not match, then the message may
have been altered since it was transmitted and should not be trusted.

In a similar vein, you can use digital signatures to sign SQL Server components (such as stored proce-
dures) to associate the stored procedure with a hash value. If the stored procedure changes by a single
bit, then the hash values will differ; and you’ll know that someone must have used an ALTER PROCEDURE
statement on it!

You can use both asymmetric keys and digital certificates to sign stored procedures, functions,
or DML triggers in SQL Server. The following code creates a simple stored procedure called
Sales.DisplaySomeVendors. You can then add a signature to that stored procedure using the SalesCert
certificate from earlier. The private key will need to be decrypted to digitally sign the stored procedure.

CREATE PROCEDURE Sales.DisplaySomeVendors AS
SELECT TOP (20) * FROM Purchasing.Vendor;

GO

USE AdventureWorks2008;
ADD SIGNATURE TO Sales.DisplaySomeVendors

BY CERTIFICATE SalesCert WITH PASSWORD = ‘P@ssw0rd’;
GO

256



Leiter c06.tex V3 - 03/25/2009 11:54am Page 257

Chapter 6: SQL Server 2008 Security

If you look at the properties of the stored procedure, you can now see that the stored procedure has been
digitally signed, and it was signed by the SalesCert certificate (see Figure 6-15). You can also query the
sys.crypt_properties catalog view. This view will show any objects that have been digitally signed. In
the next example, you will query the sys.crypt_properties view to see the digital signature assigned
to the Sales.DisplaySomeVendors stored procedure. Then you can alter the procedure, query the view
again, and note that the procedure is no longer digitally signed.

SELECT * FROM sys.crypt_properties
GO
ALTER PROCEDURE Sales.DisplaySomeVendors AS
SELECT TOP (10) * FROM Purchasing.Vendor

GO
SELECT * FROM sys.crypt_properties

Figure 6-15: Digital signature.

Best Practices
Like any other application or server product, there are a few guidelines you should follow to help
increase the level of security in place. Remember that you will never be able to plan for and protect
against every possible threat, but you can make it more difficult for malicious users to gain access to
your data.

257



Leiter c06.tex V3 - 03/25/2009 11:54am Page 258

Chapter 6: SQL Server 2008 Security

❑ Use Strong Passwords — As mentioned earlier in this chapter, you should take advantage of
the password policies and require users to create complex passwords that get changed regularly.
You should educate your users about the importance of strong passwords. While password pol-
icy enforcement for SQL Logins is managed at the server, you should provide an application or
tool that allows users a way to change their passwords and be notified when their passwords are
about to expire.

❑ No One Should Log on as sa — The sa account should rarely (if ever) log in. To provide more
accurate auditing information, users should be forced to use their own logins (or log in through
the membership in a group) in order to track what users are performing which actions. If every-
one has the sa password and everyone is able to log in as that account, nothing would stop them
from being able to steal or destroy your data. You wouldn’t be able to hold that person account-
able, because you may not know who that person is!

❑ Use Least-Privilege Accounts for SQL Services — Apply the principle of least privilege, and use
accounts that have exactly the rights and permissions needed by the services, and nothing else.
While it might be tempting to make the SQL Server account or the SQL Server Agent account a
member of an administrative group, it is not necessary. Identify what resources outside of the
SQL Server each of these accounts will be interacting with, and assign only the required permis-
sions.

❑ Audit Principals Regularly — A diligent administrator will know what accounts have been cre-
ated and who is responsible for these accounts, and identify what steps must be taken to disable
or remove superfluous accounts.

❑ Disable or Remove Any Unused Network Protocols — In the SQL Configuration Manager, you
have the ability to enable or disable protocols used by the SQL Server. Additionally, consider
disabling the NetBIOS protocol for your network adapter if NetBIOS will not be used by your
server or applications.

❑ Use On-the-Wire Encryption to Protect Your Data in Transit — It’s not enough for you to pro-
tect the data while it sits idly on the server. As a database administrator, you should use tech-
nologies like Secure Sockets Layer (SSL) encryption and Internet Protocol Security (IPSec) to
protect the data while it’s moving from client to server, server to client, or server to server.

❑ Do Not Place the SQL Server in a Location with Poor Physical Security — There is a
well-known article published by the Microsoft Security Response Center known as the ‘‘10
Immutable Laws of Security.’’ The first law dictates that if a malicious user has physical access
to your computer, it’s no longer your computer. Unless you can provide the means to control
access to the hardware, your data can easily be stolen, compromised, damaged, or destroyed.
Hardware locks, secure server rooms, and security personnel can all be instrumental in helping
to protect your data.

❑ Minimize the Visibility of the Server — SQL Servers should never be publicly available. The
Slammer worm should never have been a problem, had application architects and database
administrators taken the necessary precautions to protect against that type of attack. Slammer
was able to propagate so much, so fast, because few organizations recognized the harm in
publishing SQL connectivity through their firewalls. A well-designed database application will
use a robust and secure front-end, minimizing the exposure to the Database Engine.

❑ Remove or Disable Unnecessary Services and Applications — You should minimize the attack
surface of your SQL Server as much as possible by turning off services and features that will not
be used. Typically, it’s a good idea to avoid running other services such as IIS, Active Directory,
and Exchange on the same machine as SQL. Each one of these services can be a potential entry

258



Leiter c06.tex V3 - 03/25/2009 11:54am Page 259

Chapter 6: SQL Server 2008 Security

point for a malicious user to exploit, thereby granting the user access to your data. Because SQL
Server Reporting Services no longer requires IIS, this can help reduce the attack surface of your
system.

❑ Use Windows Authentication Whenever Possible — Windows and Kerberos authentication
are inherently more secure than SQL Authentication, but this is a design decision that you, your
application developers, and security team must address.

❑ Do Not Use Column Encryption on Frequently Searched Columns — Encrypting frequently
accessed or searched columns may cause more problems than it solves. If encrypting a column is
the best, or only, way to protect the data, make sure that the performance impact is tested before
implementing encryption in production.

❑ Use TDE to Protect Data at Rest — Encrypting the database and transaction log files can reduce
the likelihood that someone can copy your data files and walk away with sensitive business data.

❑ Always Back up Data Encryption Keys — This is probably pretty self-explanatory, but make
sure that any of the keys you use to back up your data, or other encryption keys, are safely and
securely backed up. Test your backup and recovery strategy, as well.

❑ Understand Your Role in the Company’s Security Policy — Most organizations have a docu-
mented security policy that defines acceptable use for the network and expectations for server or
service behavior. As a database administrator, your responsibilities to configure and secure your
servers may be documented as part of the overall security policy. What is expected of you and of
your servers must be unambiguous. Your liabilities should also be clearly stated.

Summary
In this chapter, you learned about many of the security features available to you in SQL Server 2008.
You should have a good understanding of the way security is applied to SQL Server from the top down,
including:

❑ How to configure the different authentication modes

❑ How to create and manage server and database principals

❑ How to assign and control permissions

❑ How to protect your data on the server

You should also be able to apply some of the best practices discussed in this chapter to your own environ-
ments. Remember that you will never have a server that is 100 percent secure, and you should never be
overconfident of your security design, because complacency leads to sloppiness, which leads to ginormous
holes in your security design. But having read this chapter, you should feel confident in implementing
the security mechanisms covered.

In Chapter 7, you will learn about creating and managing SQL endpoints and how you can enable access
to database resources using a variety of connectivity methods.

259



Leiter c06.tex V3 - 03/25/2009 11:54am Page 260



Leiter c07.tex V3 - 03/25/2009 11:58am Page 261

7
Configuring SQL Server
Network Communication

SQL Server 2008 is a client-server application designed to efficiently exchange data and instructions
over multiple network connections. Understanding the network connections and how they can
be configured is a big part of a DBA’s job. Microsoft has made your job easier by minimizing the
number of network protocols that SQL Server 2008 supports to the most commonly implemented
protocols, but at the same time, the job of the DBA is made more complex by the ability to con-
figure multiple connection types with each protocol with the endpoint server object. This chapter
discusses the different endpoints that can be configured, as well as the protocol configurations that
the endpoints rely on. The chapter also takes a brief look at the client configurations that can be
configured with SQL Server 2008.

SQL Server 2008 Network Protocols
SQL Server 2008 provides support for four protocols:

❑ Shared Memory

❑ TCP/IP

❑ Named Pipes

❑ Virtual Interface Adapter (VIA)

By default, the only network protocols enabled for most editions of SQL Server are TCP/IP and
Shared Memory. The Developer and Enterprise Evaluation editions are configured with all
protocols except Shared Memory disabled during installation, but the remaining protocols can be
enabled if required. If a protocol is not enabled, SQL Server will not listen on an endpoint that is
configured to use that protocol. This helps reduce the attack surface of SQL Server.

SQL Server Configuration Manager is used to configure server protocols. With this tool, each
supported protocol can be enabled, disabled, and configured as required. The configuration options
of the network protocols may not be intuitive, so they justify a little explanation.



Leiter c07.tex V3 - 03/25/2009 11:58am Page 262

Chapter 7: Configuring SQL Server Network Communication

Opening SQL Server Configuration Manager displays a node for configuring SQL Server services, SQL
Server network protocols, and SQL Native Client protocols. To configure the Server protocols, expand the
SQL Server 2008 Network Configuration node and select the instance to be configured. The right-hand
pane shows all four of the supported protocols and their status. To display the configurable properties of
any of the protocols, double-click on the protocol or right-click on the protocol and select Properties to
launch the corresponding Properties window.

Shared Memory
The Shared Memory protocol can only be used by local connections, because it is a shared memory and
process space used for inter-server communication. It has only one configurable property: Enabled. The
Enabled property can be set to Yes or No, resulting in a status of Enabled or Disabled. Applications or
tasks that are designed to run locally on a SQL Server can take advantage of the Shared Memory protocol.

Named Pipes
Named Pipes uses Interprocess Communication (IPC) channels for efficient inter-server communication,
as well as local area network (LAN) communication. The Named Pipes protocol has some enhancements
in SQL Server 2008 including support for encrypted traffic, but because of the excessive overhead of
Named Pipes when connecting across networks or firewalls and the additional port that Named Pipes
requires to be opened (445), it is generally a good idea to leave the Named Pipes protocol disabled. How-
ever, there are many applications, particularly older applications, that require the Named Pipes protocol
because they were designed around NetBIOS or other LAN-based protocols. Named Pipes provides easy
access to Remote Procedure Calls (RPC) within a single security domain and thus is advantageous to
these applications. If you need to support one of these applications and the SQL Server is not exposed to
external traffic, the risk of enabling the Named Pipes protocol and corresponding endpoint is minimal.

Named Pipes has two configurable properties: Enabled and Pipe Name. The Enabled property works the
same as the Shared Memory protocol. The Pipe Name specifies the inter-process pipe that SQL Server will
listen on. The default pipe is \\.\pipe\MSSQL$<instance_name>\sql\query.

TCP/IP
The TCP/IP protocol is the primary and preferred protocol for most SQL Server installations. It is config-
ured on two separate tabs on the TCP/IP Properties window: the Protocol tab and the IP Addresses tab,
as shown in Figure 7-1.

The Protocol tab has the following three configurable properties:

❑ Enabled — This works the same as the other protocols.

❑ Keep Alive — This specifies how many milliseconds SQL Server waits to verify that an idle con-
nection is still valid by sending a KEEPALIVE packet. The default is 30,000 milliseconds.

❑ Listen All — This specifies whether SQL Server will listen on all IP addresses configured on the
server.

As you can see in Figure 7-1, the ‘‘IP Addresses’’ tab contains configuration settings for each configured
IP address on the server and one section for the configuring of all IP addresses. In addition to IPv4, SQL
Server 2008 now includes support for IPv6 addresses.

262



Leiter c07.tex V3 - 03/25/2009 11:58am Page 263

Chapter 7: Configuring SQL Server Network Communication

Figure 7-1: Tabs for configuring the TCP/IP protocol.

A detailed explanation of the pros and cons of IPv6 is outside the scope of this book, but you should
be aware that it is not uncommon for a single physical adapter to have multiple IPv6 addresses asso-
ciated with it. Unlike IPv4 addresses, which allow variable-length network masks, IPv6 addresses use
fixed-length fields for the network portion and the host portion of the address (each portion uses 64
bits, or half, of the available address). A single host may belong to one or more networks, as defined
by the IPv6 protocol. For example, a single host computer will have one IPv6 address to identify it on a
non-routed network segment, a second IPv6 address to identify it on a LAN that may include multiple
routes, and a third IP address to uniquely identify it on the Internet. What is interesting about IPv6 is that
in all cases, the host portion of the address (the second half) stays the same (and is usually a variant of
the hardware, or MAC address of the adapter), and the network portion of the address (the first 64 bits)
will be different, to identify the networks to which the host machine is connected.

SQL Server will have more than one IPv4 address as well, if only to include the loopback (127.0.0.1)
address. All IP addresses, whether version 4 or version 6, are managed from the ‘‘IP Addresses’’ tab of
the TCP/IP Properties window.

IP address settings are described in the following table:

Setting Description

Active Specifies whether the individual address is active and available on the server.
This setting is not available for the IPALL configuration (shown in the bottom
of the right-hand pane in Figure 7-1).

Enabled If the Listen All property on the Protocol tab is set to No, this property
indicates whether SQL Server is listening on the IP address. If the
Listen All property on the Protocol tab is set to Yes, the Enabled property is
ignored. This setting is not available for the IPALL configuration.

Continued

263



Leiter c07.tex V3 - 03/25/2009 11:58am Page 264

Chapter 7: Configuring SQL Server Network Communication

Setting Description

IP Address Specifies the IP address for individual configuration, not available for the
IPALL configuration.

TCP Dynamic
Ports

Specifies whether the TCP port will be dynamically generated at start-up. If
left blank, dynamic assignment is disabled. A setting of 0 (zero) specifies that
dynamic assignment is enabled.

TCP Ports Specifies the TCP port to be used for all addresses in the IPALL section or the
port for a specific address in an individual IP address section. If dynamic port
assignment is enabled, this property will display the value of the dynamically
configured port.

Virtual Interface Adapter (VIA)
SQL Server 2008, like its predecessors, also supports the Virtual Interface Adapter protocol, which is used
with supported hardware and network configurations. The Virtual Interface Architecture was jointly
developed by Compaq (now HP), Intel, and Microsoft, and was designed as a high-performance protocol
that could reduce much of the overhead of traditional networking protocols by operating in a user-mode
context instead of in a kernel-mode context. VIA network clients connect to a System Area Network (not
to be confused with a Storage Area Network, despite the fact that they share an acronym).

SQL Native Client Configuration
The same four server-side protocols are supported for the SQL Native Client, and, again, SQL Server
Configuration Manager is used to enable, disable, or configure these protocols. In addition to the con-
figuration of the client protocols, the binding order of the protocols can also be set. You can do this by
expanding the SQL Native Client Configuration node and selecting Client Protocols. In the right-hand
pane, right-click on a protocol and select Order to set the order of all enabled protocols, as shown in
Figure 7-2.

As Figure 7-2 shows, if the Shared Memory protocol is enabled, it is always first in the binding order. It
is not available for manual ordering.

Aliases can be created using the SQL Native Client Configuration. Aliases are very useful in enabling
clients to connect to a server even though the name of the server does not match that in the client’s
connection string. For example, a standby server may be brought up to take the place of a failed server
that serves an application with a hard-coded connection string. Without an alias, either the application’s
connection string would need to be changed, or the server name would have to be changed. By specifying
an alias, client requests can be directed to the server without changing the server name. Aliases can also
be used to replace a complicated named-instance name.

Figure 7-3 shows the alias YODAHOME being configured for the named instance
AUGHTEIGHT\DAGOBAH. To launch the New Alias dialog, right-click on the Aliases node
and select ‘‘New Alias.’’ Once the alias has been created, new connections can be created by referencing
the alias name in lieu of the instance name.

264



Leiter c07.tex V3 - 03/25/2009 11:58am Page 265

Chapter 7: Configuring SQL Server Network Communication

Figure 7-2: Setting the order of enabled
protocols.

Figure 7-3: Configuring the alias YODAHOME.

SQL Server Endpoints
When SQL Server 2005 came out, there was a lot of confusion and trepidation about SQL Server
Endpoints. More to the point, I think a lot of people I worked with were unsure about what they
were and why they would use them. The term endpoint simply refers to a point of termination on a

265



Leiter c07.tex V3 - 03/25/2009 11:58am Page 266

Chapter 7: Configuring SQL Server Network Communication

network, or to be perfectly precise, an endpoint is the name for the entity on one end of a transport layer
connection. In previous releases of SQL Server, the default network endpoints were UDP port 1434 for
the SQL Server Resolution Service and TCP port 1433 for the default instance of SQL Server. Additional
TCP ports could be configured for the default and/or any additional named instances. Most database
administrators didn’t really think of the server listener as an endpoint, but that’s what it is, and that’s
what it will remain. SQL Server 2008 leverages connection objects as endpoints, allowing SQL Server
2008 to listen on different ports, using different transport protocols for different services.

SQL Server provides four different types of endpoints:

❑ TSQL (both default and TCP)

❑ Database Mirroring

❑ SOAP

❑ Service Broker

Each endpoint provides separate functionality and can be uniquely configured to control access to the
Database Engine and associated services.

Default TSQL Endpoints
TSQL endpoints are essentially the same as the standard endpoints that existed in earlier versions of
Microsoft SQL Server. During installation, five TSQL endpoints are created:

❑ TSQL Default TCP

❑ TSQL Default VIA

❑ TSQL Named Pipes

❑ TSQL Local Machine

❑ Dedicated Administrator Connection (DAC)

The TSQL endpoints are created to provide connection services for the four supported protocols (TCP,
VIA, Named Pipes, and Shared Memory). These protocols correspond to the Default TCP, Default VIA,
Named Pipes, and Local Machine endpoints. The fifth endpoint created to support the DAC listens on a
dedicated TCP port that is configured at start-up to support an administrative connection. The configured
port is logged in the current SQL Server log file. (SQL Server log files are described in Chapter 10.)

Regardless of the condition of the network protocol, TSQL endpoints have two states: started and stopped.
If the network protocol is enabled and the endpoint is started, SQL Server will listen and accept con-
nections on that endpoint. A stopped endpoint still listens, but actively refuses new connections. If the
corresponding protocol is disabled, the TSQL endpoint will not listen and will not respond to client
requests.

TSQL endpoints are also known as Tabular Data Stream (TDS) endpoints. TDS has been around since
Sybase created it in 1984 to support its fledgling relational Database Engine. Microsoft inherited the
protocol during its joint venture with Sybase and has since made many changes to the protocol to make
it more efficient and secure. It remains the primary protocol for transmitting data from SQL Server to
clients via the TCP, Named Pipes, VIA, and Shared Memory protocols.

266



Leiter c07.tex V3 - 03/25/2009 11:58am Page 267

Chapter 7: Configuring SQL Server Network Communication

TSQL Default TCP
The TSQL Default TCP endpoint is created during the installation of a SQL Server instance and is auto-
matically configured to listen on port 1433 for default instances. Named-instance TSQL Default TCP
endpoints are randomly assigned a TCP port every time the named instance starts up. However, the port
number for named instances can be statically configured with SQL Server Configuration Manager. Con-
figuring a static port can simplify client access and reduce the dependency on the SQL Server Browser
Service that enumerates named instances.

To statically configure the port that a named instance of SQL Server will listen on, open SQL Server Con-
figuration Manager, expand the SQL Server 2008 Network Configuration node, and select the instance
to configure. Double-click on the TCP/IP protocol in the right-hand pane, or right-click on it and click
Properties to launch the TCP/IP Properties window. By default, SQL Server is configured to listen on all
available IP addresses, and so the only place that the static port needs to be set is in the IPALL section of
the IP Addresses tab on the TCP/IP Properties window (see Figure 7-4). This behavior can be changed by
setting the Listen All property to No on the Protocol tab and individually configuring each IP address.

Figure 7-4: The IPALL section of the IP
Addresses tab.

Figure 7-4 shows the TCP port for the named instance DAGOBAH being statically set to port
50101. When configuring ports for named instances, it is best practice to choose a port above
50,000, because many ports below 50,000 are associated with other applications. To retrieve a list of
reserved and well-known ports, visit the Internet Assigned Numbers Authority (IANA) web site at
www.iana.org/assignments/port-numbers.

Keep in mind that the supported protocols are separate from endpoints, and multiple endpoints can
be configured for each protocol. In fact, it might be necessary to create multiple TCP endpoints, either
for security reasons, such as publishing a SQL Server through a firewall using the non-default port; or
for enabling connections that execute against specific processors with Non-Uniform Memory Access
(NUMA).

267



Leiter c07.tex V3 - 03/25/2009 11:58am Page 268

Chapter 7: Configuring SQL Server Network Communication

By default, all users have access to the Default TCP endpoint. However, access to the endpoint,
as well as any user-created endpoints, can be more tightly controlled with the
GRANT CONNECT | DENY CONNECT | REVOKE CONNECT commands.

The state of any endpoint can also be changed with the ALTER ENDPOINT command, as shown in the
following example:

USE Master;
GO
ALTER ENDPOINT [TSQL Default TCP]
STATE=STOPPED;

USE Master;
GO
ALTER ENDPOINT [TSQL Default TCP]
STATE=STARTED;

TSQL Default VIA
The VIA protocol is used to support VIA hardware devices such as VIA System Area Networks (SAN).
The VIA protocol is dependent on vendor implementations, so a discussion of the VIA endpoint is some-
what difficult without seemingly endorsing one hardware vendor over another. The VIA configurations
are usually very straightforward and only require a port assignment. If you are using a VIA hardware
implementation for your SAN configuration, make sure you get all the technical documentation you can
from your supplier.

TSQL Named Pipes
The Named Pipes endpoint is created to support Named Pipes protocol connections. The Named Pipes
protocol was described earlier in this chapter.

TSQL Local Machine
The TSQL Local Machine endpoint allows connections to occur using the Shared Memory protocol.
Shared Memory is only accessible on the local machine, hence the TSQL Local Machine designation for
this endpoint. Installations of the Enterprise Evaluation and Developer editions of SQL Server 2008 use
this endpoint exclusively, unless additional protocols are enabled.

Dedicated Administrator Connection (DAC)
The Dedicated Administrator Connection (DAC) endpoint is used to support limited administrative
actions when other connections are unavailable or unresponsive. It uses its own memory area, dedicated
TCP port, and CPU scheduler. By default, the DAC endpoint only listens for local connections. Remote
DAC connections can be enabled by executing the following code:

USE Master;
GO
sp_configure ‘remote admin connections’, 1;
GO
RECONFIGURE;
GO

DAC connections are facilitated through the SQLCMD command-line tool.

268



Leiter c07.tex V3 - 03/25/2009 11:58am Page 269

Chapter 7: Configuring SQL Server Network Communication

TSQL TCP Endpoints
In addition to the default TCP endpoints created automatically, additional TSQL TCP endpoints can be
created. These TSQL TCP endpoints can be created to support special security or application require-
ments. However, an important fact to keep in mind is that when a new TSQL TCP endpoint is created,
SQL Server automatically revokes all connect permissions to the default endpoint. If connection support
is still required for the default endpoint, explicit GRANT CONNECT permissions will be necessary to use the
default endpoint. SQL Server helps you remember this important fact by always returning a message
informing you of the impact of creating a new TCP endpoint, as shown in the next example.

If an additional TSQL TCP endpoint is needed, it can be created using T-SQL. The following example
creates an additional TSQL TCP endpoint that is configured to listen on port 50102 and all IP addresses
and shows the resulting message warning about permissions:

USE Master;
GO
CREATE ENDPOINT DagobahEP
STATE = STARTED
AS TCP

(LISTENER_PORT = 50102, LISTENER_IP = ALL)
FOR TSQL();
GO

RESULTS:
---------------------------------------------------------------------------
Creation of a TSQL endpoint will result in the revocation of any ‘Public’ connect
permissions on the ‘TSQL Default TCP’ endpoint. If ‘Public’ access is desired on
this endpoint, reapply this permission using ‘GRANT CONNECT ON ENDPOINT::[TSQL
Default TCP] to [public]’.

If a single IP address is needed, the LISTENER_IP argument can be set to a specific value inside parenthe-
ses, as the following example illustrates:

USE Master;
GO
CREATE ENDPOINT DagobahEP
STATE = STARTED
AS TCP

(LISTENER_PORT = 50102, LISTENER_IP = (192.168.1.101))
FOR TSQL();
GO

As mentioned earlier, IPv6 is also supported by SQL Server 2008. The address can be configured by
passing in the hexadecimal IPv6 address as a binary string in single quotes enclosed in parentheses, as
the following example illustrates:

USE Master;
GO
CREATE ENDPOINT DagobahEPv6
STATE = STARTED
AS TCP

269



Leiter c07.tex V3 - 03/25/2009 11:58am Page 270

Chapter 7: Configuring SQL Server Network Communication

(LISTENER_PORT = 50102
, LISTENER_IP = (’fe80::846a:46a7:b245:5255’))

FOR TSQL();
GO

In a previous example, the TCP/IP protocol was configured for the named instance DAGOBAH to listen
on port 50101. With the additional endpoint and associated port, it will be necessary to add the port to
the TCP/IP protocol with SQL Server Configuration Manager. This is done by simply adding another
port to the port assignment delimited by a comma, as shown in Figure 7-5.

Figure 7-5: Adding another port to the port
assignment.

Database Mirroring Endpoints
SQL Server 2008 uses a mirroring endpoint for exclusive use of the server that is configured to participate
in a database mirroring configuration. In mirroring, which is described in Chapter 12, each instance of
SQL Server is required to have its own dedicated database mirroring endpoint. All mirroring commu-
nication uses this database mirroring endpoint, but client connections to a database configured with a
mirror use the standard TDS endpoint.

The configuration of an exclusive mirroring endpoint ensures that database mirror process communi-
cation is handled in a separate process from all other database activities. The easiest way to configure
mirroring endpoints is to run the Mirroring Wizard as explained in Chapter 12. To create and config-
ure a mirroring endpoint manually and enforce secure encrypted communication over the endpoint, the
following code can be used:

CREATE ENDPOINT AughtEightDagobahMirror
AUTHORIZATION sa
STATE=STARTED

270



Leiter c07.tex V3 - 03/25/2009 11:58am Page 271

Chapter 7: Configuring SQL Server Network Communication

AS TCP (LISTENER_PORT = 5022, LISTENER_IP = ALL)
FOR DATA_MIRRORING
(ROLE = PARTNER, AUTHENTICATION = WINDOWS NEGOTIATE
,ENCRYPTION = REQUIRED ALGORITHM RC4);

This example can be used to create the mirroring endpoint on either the principal or mirror server. It
assumes that the same domain account is used for the SQL Server service on both the principal and the
mirror. For the witness server, the ROLE argument would need to be changed to WITNESS.

If different accounts are used for each MSSQLSERVER service on the servers, logins that are mapped to the
service accounts from each server will need to be granted the CONNECT permission to the other servers
participating in the mirroring configuration. The following script can be run to ensure encrypted authen-
ticated communication between the three servers configured to take part in a mirroring relationship.
AughtEight is the principal server, Dagobah is the mirror server, and Tatooine is the witness server. In
this example, all three instances are running on the same physical server, which is why each endpoint is
configured with a different port number. In the case of separate physical servers, the port numbers could
be configured consistently.

--Run on AughtEight

USE Master;
GO
CREATE ENDPOINT AughtEightDagobahPrincipal
AS TCP (LISTENER_PORT = 5022)
FOR DATA_MIRRORING (ROLE = PARTNER, ENCRYPTION = REQUIRED ALGORITHM RC4);

GO
CREATE LOGIN [AughtEight\DagobahSQL] FROM WINDOWS;
CREATE LOGIN [AughtEight\TatooineSQL] FROM WINDOWS;
GO
GRANT CONNECT ON ENDPOINT::AughtEightDagobahPrincipal
TO [AughtEight\TatooineSQL];

GRANT CONNECT ON ENDPOINT::AughtEightDagobahPrincipal
TO [AughtEight\DagobahSQL];

--Run on Dagobah
USE Master;
GO
CREATE ENDPOINT AughtEightDagobahMirror

AS TCP (LISTENER_PORT = 5023)
FOR DATA_MIRRORING (ROLE = PARTNER, ENCRYPTION = REQUIRED ALGORITHM RC4);

GO
CREATE LOGIN [AughtEight\AughtEightSQL] FROM WINDOWS;
CREATE LOGIN [AughtEight\TatooineSQL] FROM WINDOWS;
GO
GRANT CONNECT ON ENDPOINT::AughtEightDagobahMirror
TO [AughtEight\AughtEightSQL];
GRANT CONNECT ON ENDPOINT::AughtEightDagobahMirror
TO [AughtEight\TatooineSQL];

--Run on Tatooine
USE Master;
GO
CREATE ENDPOINT AughtEightDagobahWitness

AS TCP (LISTENER_PORT = 5024)

271



Leiter c07.tex V3 - 03/25/2009 11:58am Page 272

Chapter 7: Configuring SQL Server Network Communication

FOR DATA_MIRRORING (ROLE = WITNESS, ENCRYPTION = REQUIRED ALGORITHM RC4);
GO
CREATE LOGIN [AughtEight\AughtEightSQL] FROM WINDOWS;
CREATE LOGIN [AughtEight\DagobahSQL] FROM WINDOWS;
GO
GRANT CONNECT ON ENDPOINT::AughtEightDagobahWitness
TO [AughtEight\AughtEightSQL];
GRANT CONNECT ON ENDPOINT::AughtEightDagobahWitness
TO [AughtEight\DagobahSQL];

The preceding commands set up the communication framework for mirroring, but do not actually ini-
tialize mirroring. See Chapter 12 for more information on how to configure and monitor mirroring.

SOAP Endpoints
Simple Object Access Protocol (SOAP) is a platform-independent protocol that defines how to use XML
and HTTP to access services, objects, and servers. SOAP endpoints are created to publish SQL Server
programming objects over data-tier Web Services without the use of IIS as a Web server.

Data-tier Web Services provide a very powerful alternative to XML Web Services and provide the means
of exposing stored procedures and functions over HTTP the same as conventional Web Service architec-
ture. In addition to stored procedures and functions, SOAP endpoints can be configured to allow ad hoc
queries, but as a general rule, ad hoc access should be avoided.

Although SOAP endpoints were introduced in SQL Server 2005, they have been considered deprecated
in SQL Server 2008. Microsoft intends to remove SOAP endpoints in a future version of SQL Server.
Microsoft recommends that existing applications that use SOAP endpoints should instead switch to
using either ASP.NET or Windows Communications Foundation (WCF). The information provided in
this section regarding the configuration of SOAP endpoints should be treated as reference only, and
development of applications that use SOAP endpoints in SQL Server should be discouraged.

SOAP endpoints return SOAP messages consisting of an XML document with a header and a body. SOAP
messages are essentially one-way transmissions from a sender to a receiver. SOAP does not define any
application semantics such as a programming model or implementation-specific details. Web Services,
on the other hand, require a request/response model. The solution is to send SOAP messages within the
body of an HTTP request and response. This solution provides the required model for Web Services, and
SOAP endpoints provide the structure to accomplish the communication.

In order to be able to create SOAP endpoints successfully, the URL must already be registered with
the HTTP.sys kernel-mode driver. This will ensure that requests for the SOAP endpoint URL are
passed to the SQL Server, and not handled by other applications, such as IIS. If the SQL Server service
account has full administrative permissions on the local machine, this can be performed by using the
sp_reserve_http_namespace stored procedure. However, since it is generally not recommended to
run SQL Server services under an administrative account, you may have to register the URL manually
using the netsh Windows configuration tool (for Windows Server 2003 environments, use the httpcfg
Windows system tool) before executing the sp_reserve_http_namespace stored procedure.

272



Leiter c07.tex V3 - 03/25/2009 11:58am Page 273

Chapter 7: Configuring SQL Server Network Communication

The following syntax is used for creating a SOAP endpoint:

CREATE ENDPOINT endPointName [ AUTHORIZATION login ]
STATE = { STARTED | STOPPED | DISABLED }
AS HTTP (
PATH = ‘url’
, AUTHENTICATION =( { BASIC | DIGEST | INTEGRATED | NTLM | KERBEROS }

[ ,...n ] )
, PORTS = ( { CLEAR | SSL} [ ,... n ] )
)

FOR SOAP (
[ { WEBMETHOD [’namespace’.] ‘method_alias’
( NAME = ‘database.schema.name’
)
} [ ,...n ] ]
[ , DATABASE = { ‘database_name’ | DEFAULT }
[ , HEADER_LIMIT = int ])

Because syntax specifications can be a bit arcane, the following example is provided to demonstrate
the creation of a SOAP endpoint. The example creates a SOAP endpoint called AWSales that uses
Windows integrated security to control access to a Web Service that is published at the location
http://AughtEight/AdventureWorks2008/Sales. The endpoint exposes the stored procedure
AdventureWorks2008.dbo.uspGetBillOfMaterials as the Web method GetBillOfMaterials. The
SOAP document that is created by this Web Service can be viewed by opening Internet Explorer and
navigating to the Web Service URL and appending a Web Service Description Language (WSDL) query
to the end of the URL:

http://AughtEight/AdventureWorks2008/Sales?wsdl

Keep in mind that you will most likely have to change the server name in your environment.

USE master;
--Turn on Advanced Options for the sp_configure utility
EXEC sp_configure ‘show advanced option’, ‘1’;
RECONFIGURE
GO
-- enable xp_cmdshell
EXEC sp_configure ‘xp_cmdshell’, ‘1’;
RECONFIGURE
GO
--Allow SQL to create the reservation (Windows Server 2008/Vista only)
EXEC xp_cmdshell ‘netsh http add urlacl url=
http://AughtEight:80/AdventureWorks2008 user=AughtEight\SQLService delegate=yes’;
GO

--Reserve the URL
EXEC sp_reserve_http_namespace N’http://AughtEight:80/AdventureWorks2008’;
GO

273



Leiter c07.tex V3 - 03/25/2009 11:58am Page 274

Chapter 7: Configuring SQL Server Network Communication

-- Create the SOAP endpoint
USE Master;
GO
CREATE ENDPOINT AWSales
STATE = STARTED
AS HTTP(

PATH = ‘/AdventureWorks2008/Sales’
,AUTHENTICATION = (INTEGRATED)
,PORTS = ( CLEAR )
,SITE = ‘AughtEight’)

FOR SOAP(
WEBMETHOD ‘GetBillOfMaterials’

(NAME=’AdventureWorks2008.dbo.uspGetBillOfMaterials’
,FORMAT=ROWSETS_ONLY)
,WSDL = DEFAULT
,DATABASE = ‘AdventureWorks2008’
,NAMESPACE = ‘http://AughtEight/’

);
GO

In the preceding example, the xp_cmdshell extended stored procedure was used to execute the neces-
sary netsh command to allow SQL to register the URL, although this can be just as easily done from a
command line. Because xp_cmdshell is disabled by default, the sp_configure stored procedure had to
be run to enable its use.

Although Internet Explorer can be used to view the SOAP document, the real use for data-tier Web
Services is for applications that are created to connect to and consume XML Web Services. Later in this
chapter, you will see how to do this.

The HTTP arguments available for configuration in a CREATE ENDPOINT statement are described in the
following table:

Argument Description

PATH Specifies the path of the Web Service. An analogous setting would
be the virtual directory name in IIS. Thus, the PATH setting specifies
what comes after the http://Servername, as specified in the SITE
argument.

AUTHENTICATION The AUTHENTICATION argument is used to specify what type or
types of authentication are allowed for the endpoint. One or more
of the following settings can be configured: BASIC, DIGEST, NTLM,
KERBEROS, or INTEGRATED. Multiple settings can be specified by
comma-delimiting the settings.

PORTS Specifies whether HTTP or HTTPS is used with the endpoint. When
CLEAR is specified, HTTP is used. SSL specifies that requests must
use HTTPS. Both CLEAR and SSL can be configured concurrently,
enabling communication with either HTTP or HTTPS.

274



Leiter c07.tex V3 - 03/25/2009 11:58am Page 275

Chapter 7: Configuring SQL Server Network Communication

Argument Description

SITE The SITE argument specifies the host name used along with
the PATH configuration. Possible choices are ‘*’, ‘+’, or
‘webSite’.

❑ The asterisk (’*’) specifies that the endpoint
will listen to all available hostnames that are not
reserved.

❑ The plus sign (’+’) specifies that the endpoint will
listen to all configured hostnames.

❑ webSite is used for a specific server name (e.g.,
AughtEight).

CLEAR_PORT Specifies the clear port to use. The default is 80.

SSL_PORT Specifies the SSL port to use. The default is 443.

AUTH_REALM AUTH_REALM defaults to NONE, but when the AUTHENTICATION
argument is DIGEST, AUTH_REALM can be used to return the
digest realm hint to the client.

DEFAULT_LOGON_DOMAIN When AUTHENTICATION is set to BASIC, this setting specifies
the default login domain. The default is NONE.

COMPRESSION When set to ENABLED, SQL Server will process requests
where gzip encoding is accepted and return compressed
responses. The default setting is DISABLED.

The configurable SOAP arguments are described in the following table:

Argument Description

WEBMETHOD The published method that will be exposed through an HTTP
SOAP request to an endpoint. More than one WEBMETHOD clause
can be defined to publish multiple SQL Server functions and
stored procedures. In the preceding example, the WEBMETHOD was
GetBillOfMaterials.

(WEBMETHOD) NAME The physical name of the function or procedure pub-
lished as the Web method, as in AdventureWorks2008.dbo
.uspGetBillOfMaterials.

Continued

275



Leiter c07.tex V3 - 03/25/2009 11:58am Page 276

Chapter 7: Configuring SQL Server Network Communication

Argument Description

(WEBMETHOD) SCHEMA Determines whether an inline XSD schema will be returned for the
Web method in SOAP responses. The possible choices are NONE,
STANDARD, and DEFAULT.

❑ NONE omits the Web method from the schema if a schema
is returned.

❑ STANDARD specifies that an XSD schema is returned.

❑ DEFAULT specifies that the endpoint SCHEMA option setting
is to be used.

(WEBMETHOD) FORMAT Specifies the format of data returned by the endpoint. The possible
choices are ALL_RESULTS, ROWSETS_ONLY, and NONE. The default
is ALL_RESULTS.

❑ ALL_RESULTS specifies that a result set or row count,
including any error message or warnings, is returned.

❑ ROWSETS_ONLY specifies that just the result set is returned
without errors, warnings, or row count information.

❑ NONE configures the endpoint not to return any
SOAP-specific formatting with the result. If this option is
used, the stored procedure or function is responsible for
proper formatting of the result set as well-formed XML.

BATCHES The BATCHES argument specifies whether ad-hoc batches can be
sent to the endpoint. It can be set to ENABLED or DISABLED. The
default setting is DISABLED.

WSDL WSDL stands for ‘‘Web Services Description Language.’’ The WSDL
setting is used to determine how a SOAP endpoint responds to
a WSDL request. The possible configuration settings are NONE,
DEFAULT, or the name of a stored procedure that returns the
desired WSDL information.

❑ NONE specifies that the endpoint will not return any infor-
mation to a WSDL request.

❑ DEFAULT specifies that basic metadata about the published
Web method will be returned to a WSDL request. This
information includes any possible parameters and the
type of data returned.

❑ Proc_Name is a procedure created to return a custom
WSDL document to a WSDL request.

276



Leiter c07.tex V3 - 03/25/2009 11:58am Page 277

Chapter 7: Configuring SQL Server Network Communication

Argument Description

SESSIONS When set to ENABLED, allows multiple SOAP request/response
message pairs in a single SOAP session. The default is DISABLED.

LOGIN_TYPE Specifies which type of Login authentication is supported by the
endpoint. The choices are WINDOWS and MIXED. The choices corre-
spond to the Server Authentication Mode. If WINDOWS is specified,
only Windows logins will be allowed. If MIXED is specified, both
Windows and SQL Server logins are allowed.

SESSION_TIMEOUT Specifies how long a session will stay open without activity. The
value is an integer and specifies the number of seconds to wait
before closing a session. Subsequent requests that use an expired
session ID will return an exception.

DATABASE Specifies the database context that the Web method will be exe-
cuted in.

NAMESPACE Specifies an XML namespace to be used with the endpoint. If
no namespace is specified, or if the DEFAULT option is used, the
namespace will be configured as http://tempuri.org.

SCHEMA Like the WEBMETHOD SCHEMA argument, this option specifies
whether inline XML Schema Definition (XSD) data is returned.
The possible choices are NONE and STANDARD.

❑ NONE configures the endpoint not to return inline XSD
data with the SOAP response.

❑ STANDARD specifies that inline XSD data is returned with
the SOAP response. If the SCHEMA setting is omitted in the
WEBMETHOD section, the Web method will use the setting
specified here.

CHARACTER_SET Specifies what to do with result data that is not valid in an XML
document. The two choices are XML and SQL.

❑ XML specifies that all characters are returned as XML or
delimited XML, and is the default setting.

❑ SQL specifies that non-XML characters are encoded as
character references, and are returned with the XML data.

HEADER_LIMIT Configures the maximum size of the header section in the SOAP
envelope. The default size is 8 K. If the SOAP headers are larger
than the configured size, a parsing exception will be thrown.

277



Leiter c07.tex V3 - 03/25/2009 11:58am Page 278

Chapter 7: Configuring SQL Server Network Communication

Service Broker Endpoints
As described in Chapter 19, Service Broker is a powerful feature of SQL Server 2008 that enables database
applications to communicate asynchronously with other database applications in a Service-Oriented
Architecture (SOA). Service Broker endpoints are only required if the two instances of the broker service
are located on separate instances of SQL Server. They are created in much the same way as SOAP end-
points. The basic CREATE ENDPOINT command is used, but instead of the FOR SOAP clause that defines the
endpoint as a SOAP endpoint, the FOR SERVICE_BROKER clause is used. The syntax for creating a Service
Broker endpoint is as follows:

CREATE ENDPOINT endPointName [ AUTHORIZATION login ]
STATE = { STARTED | STOPPED | DISABLED }
AS TCP (

LISTENER_PORT = listenerPort
[ [ , ] LISTENER_IP = ALL | ( 4-part-ip ) | ( "ip_address_v6" ) ]

)
FOR SERVICE_BROKER (

[ AUTHENTICATION = { WINDOWS [ { NTLM | KERBEROS | NEGOTIATE } ]
| CERTIFICATE certificate_name
| WINDOWS [ { NTLM | KERBEROS | NEGOTIATE } ] CERTIFICATE certificate_name
| CERTIFICATE certificate_name WINDOWS [ { NTLM | KERBEROS | NEGOTIATE } ]

} ]
[ [ , ] ENCRYPTION = { DISABLED | { { SUPPORTED | REQUIRED }

[ ALGORITHM { RC4 | AES | AES RC4 | RC4 AES } ] }
]
[ [ , ] MESSAGE_FORWARD_SIZE = forward_size ]

)

An example of this syntax put in use to create a Service Broker endpoint is as follows:

CREATE ENDPOINT MyEndpoint
STATE = STARTED
AS TCP ( LISTENER_PORT = 50001 )
FOR SERVICE_BROKER ( AUTHENTICATION = WINDOWS );

In all likelihood, when creating Service Broker or mirroring endpoints, certificates will be used to ensure
authenticated and encrypted traffic between endpoints, especially if the endpoints are located on different
physical servers. For more information on the workings of Service Broker, take a look at Chapter 19. For
information about creating and using certificates, see Chapter 6.

Securing Endpoints
A critically important aspect of all endpoints is securing them so that only connections that are autho-
rized can enumerate and call the Web methods or other services that the endpoint provides. The key
permission for endpoints is the CONNECT permission. Only those logins that have been explicitly granted
the CONNECT permission will be able to expose the functionality behind the endpoint. In addition, the
login will need permissions to the underlying objects that the endpoint provides access for.

278



Leiter c07.tex V3 - 03/25/2009 11:58am Page 279

Chapter 7: Configuring SQL Server Network Communication

Try It Out Data-Tier Web Services
To re-create this exercise requires that you have Visual Studio 2008 installed, as well as SQL Server 2008.
As described in Chapter 2, the SQL Server 2008 installation installs a piece of Visual Studio, but it does
not install everything you need to create database applications. The following examples and descriptions
assume that you have installed either C# or VB.NET (or both). If you haven’t, the information is still very
useful, but you will not be able to practice or re-create it. The examples using Visual Studio may seem to
be a bit out of context in this book. However, it is difficult to describe the use of SOAP endpoints without
using a Visual Studio application to demonstrate the purpose of data tier Web Services.

Create the Endpoint

The first step is to create the endpoint that will publish the two stored procedures you want
to make available via a data-tier Web Service where they can be used by any SOAP-compliant
application. Execute the following code to create the SOAP endpoint HRWebService that pub-
lishes the uspGetEmployeeManagers and uspGetManagerEmployees stored procedures as the
GetEmployeeManagers and GetManagerEmployees Web methods:

USE Master;
GO
CREATE ENDPOINT HRWebService
STATE = STARTED
AS HTTP(

PATH = ‘/AdventureWorks2008/HR’
,AUTHENTICATION = (INTEGRATED)
,PORTS = ( CLEAR )
,SITE = ‘AughtEight’)

FOR SOAP(
WEBMETHOD ‘GetEmployeeManagers’

(NAME=’AdventureWorks2008.dbo.uspGetEmployeeManagers’
,FORMAT=ROWSETS_ONLY)

,WEBMETHOD ‘GetManagerEmployees’
(NAME=’AdventureWorks2008.dbo.uspGetManagerEmployees’
,FORMAT=ROWSETS_ONLY)

,WSDL = DEFAULT
,DATABASE = ‘AdventureWorks2008’
,NAMESPACE = ‘http://AughtEight/’

);
GO

Once the endpoint has been created to make the procedures visible through the Web Service, a
SOAP-compliant application will be able to enumerate and reference the Web methods specified in the
endpoint.

1. Start Visual Studio 2008 and create a new VB.NET or C# Windows Application Project by clicking
on the File menu, selecting New, and then Project.

2. In the New Project window, select either Visual Basic or Visual C# from the Project Types pane,
and then choose Windows Forms Application from the Templates pane, as shown in Figure 7-6.
Ensure that .NET Framework 2.0 is selected (this will not work with later versions of .NET).

279



Leiter c07.tex V3 - 03/25/2009 11:58am Page 280

Chapter 7: Configuring SQL Server Network Communication

Figure 7-6: Selecting ‘‘Windows Forms Application’’ from the Templates pane.

3. Give the project a name such as HRSampleApp. Choose a folder for the solution to be created in,
and click OK. A design window showing a blank Windows form will appear.

4. From the toolbox (to the left of the form designer by default), select and drag a button control to
the upper-left-hand side of the form. Then drag a textbox and place it to the right of the button.
Lastly, drag a datagridview control onto the form, and place it under the button and textbox
controls, as shown in Figure 7-7. If the toolbox is not visible, it can be launched by pressing
[Ctrl]+[Alt]+X or by selecting it from the View menu.

5. You may want to adjust the size of the form and the datagridview control to accommodate mul-
tiple columns and rows. After creating the form, right-click on the project name in the Solution
Explorer window, and select ‘‘Add Web Reference,’’ as shown in Figure 7-8.

The Add Web Reference window will display where the data-tier Web Service can be added as a
Web reference to the project.

6. In the URL dropdown textbox, type in the appropriate address for your server fol-
lowed by a WSDL query command. In my case, the URL and query take the form of
http://AughtEight/Adventureworks2008/hr?wsdl.

7. Click the GO button to query the SQL Server for information regarding any Web methods pub-
lished at that location. You should see results similar to those shown in Figure 7-9.

8. In the ‘‘Web reference name’’ field, type in the name HRWebService, and click OK.

Now that all the foundation work has been completed, it is time to write the code that will call on the
Web methods made available with the SOAP endpoint.

280



Leiter c07.tex V3 - 03/25/2009 11:58am Page 281

Chapter 7: Configuring SQL Server Network Communication

Figure 7-7: Placing a datagridview control.

Figure 7-8: Selecting ‘‘Add Web
Reference.’’

281



Leiter c07.tex V3 - 03/25/2009 11:58am Page 282

Chapter 7: Configuring SQL Server Network Communication

Figure 7-9: Viewing the results of a query for information regarding Web methods.

9. Double-click on the Button1 button on the Form Designer. This will launch the Code Edi-
tor window and create the basic code to handle the button click event. In the button
click event handler, type in the code shown in the next example. There is one set of code
for a VB.NET application, and another for Visual C# application.

Following is the Visual C# code:

private void button1_Click(object sender, EventArgs e)
{

DataSet dsEmployees;
HRWebService.HRWebService proxy =

new HRSampleApp.HRWebService.HRWebService();
proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

try
{

Int32 intMgrID;
intMgrID = Convert.ToInt32(textBox1.Text);
dsEmployees = proxy.GetManagerEmployees(intMgrID);
dataGridView1.DataSource = dsEmployees;
dataGridView1.DataMember = dsEmployees.Tables[0].TableName;

}
catch (Exception ex)
{

MessageBox.Show(ex.Message);
}

}

282



Leiter c07.tex V3 - 03/25/2009 11:58am Page 283

Chapter 7: Configuring SQL Server Network Communication

Following is the Visual Basic.NET code:

Private Sub button1_Click(ByVal sender As System.Object, _
ByVal e As System.EventArgs) Handles btnGetEmployees.Click

Dim Proxy As New HRWebService.HRWebService
Proxy.Credentials = System.Net.CredentialCache.DefaultCredentials

Try

Dim dsEmployees As DataSet = Proxy.GetManagerEmployees(textBox1.Text)
dataGridView1.DataSource = dsEmployees
dataGridView1.DataMember = dsEmployees.Tables(0).TableName

Catch
MsgBox(Err.Description)

End Try

End Sub

Notice that the amount of code required to consume the Web Service is actually very small. Not counting
error-handling code, there are only five lines of code for VB.NET and eight lines for Visual C#. This is
one of the features that make consuming Web Services so attractive; most of the work has been done at
the Web Service side.

10. Once the code has been entered into the button click event, press [F5] or click the green triangle
on the menu to start the application debugging process. If everything goes well, what you should
see is the Windows form created earlier.

11. Enter the number 1 in the textbox, and click Button1. Your results should look like those in
Figure 7-10.

Figure 7-10: Results of entering 1.

SOAP endpoints can be created to not only return data, but also to manipulate data in the database. The
amount of code required does not change dramatically.

283



Leiter c07.tex V3 - 03/25/2009 11:58am Page 284

Chapter 7: Configuring SQL Server Network Communication

As a database administrator, this may all seem a bit over the top, but it is very important to understand
why developers may want to use SOAP endpoints and exactly what they do. Keep in mind, however,
that SOAP endpoints are no longer supported in SQL Server 2008. Instead, encourage your developers to
use Windows Communications Foundation in the newer versions of .NET Framework.

Summary
SQL Configuration Manager offers the database administrator a one-stop shop for troubleshooting and
configuring SQL Server connection objects and networking devices. The tools you will use to manage
these objects are simple, if not intuitive. Diagnosing networking problems has never been easier. Using
the information in this chapter, you should be able to configure and secure the network protocols and
endpoints that make it possible to make the most of SQL Server 2008 services and features. With the
introduction of Service Broker and mirroring, the database administrator’s responsibility for network and
transport security has never been greater. Be sure to carefully evaluate all the security and configuration
options available for each networking object to ensure the highest level of security and functionality.

In Chapter 8, you will learn about automating SQL Server 2008 administrative and maintenance pro-
cesses. You’ll learn to configure jobs and alerts that will keep you informed of SQL Server performance,
and keep it performing at peak efficiency.

284



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 285

8
Automating Administrative

Tasks

‘‘Set it and forget it!’’ Wouldn’t it be nice if SQL Administration were that easy? Unfortunately, that’s
not a realistic goal for many of us. SQL Server is a product that needs regular maintenance and
monitoring to ensure the health and stability of your servers. Fortunately, there are several tools
available out-of-the-box to help DBAs manage and maintain their systems. Even better are the tools
you can use to automate some of these processes that can also make your job easier.

Managing the SQL Servers in your organization can be a full-time job. In fact, it might be yours!
Realistically, the complexities of our database systems and applications (both supported and sup-
porting) might be overwhelming at first, but there are many ways that you can keep your system
in shape. This chapter will introduce you to some of the more common tools and features that
Database Administrators can leverage to take control of their servers.

❑ Policy-Based Management

❑ Database Mail

❑ Event Notifications

❑ SQL Server Agent

❑ SQL Server Maintenance Plans

As you begin this chapter, understand that some of what you will learn will serve as an introduction
to topics that are covered in later chapters. Backups, replication, performance monitoring, and the
Service Broker are just a few of the topics that can be managed or automated through many of the
tools and examples that you will see in this chapter.

The examples in this chapter use the local server configured as both a Simple Mail Transfer Protocol
(SMTP) server and a Post Office Protocol (POP3) server. Both features are available out-of-the-box
with Windows Server 2003. However, the POP3 server has been removed from Windows Server
2008. Configuration of SMTP and POP3 is beyond the scope of this book; however, there are some
free POP3 servers available.



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 286

Chapter 8: Automating Administrative Tasks

Policy-Based Management
One of the most compelling additions to SQL Server 2008 for Database Administrators is the new
Policy-Based Management feature. To simplify, Policy-Based Management allows you to define crite-
ria that can control object creation and behavior, as well as gather information about objects that are out
of compliance. It is both an automated management tool as well as a management auditing tool.

If you are familiar with how group policy objects work in the Active Directory, it’s somewhat similar, in
that you have a wide variety of settings that can be configured, locked, or reported on. All Policy-Based
Management is configured from the Management folder of the server in SQL Server Management Studio.
As you can see in Figure 8-1, there are three subfolders for the different types of management objects:
Policies, Conditions, and Facets.

Figure 8-1: Policy Management folder.

By default, no policies are installed; however, there are several policy templates that are
included when SQL Server is installed. You can import these policies from the SQL Server
installation directory, which, if you used the default settings, is C:\Program Files\Microsoft SQL
Server\100\Tools\Policies\DatabaseEngine\1033. These policies are disabled when they’re imported,
but you can enable them after you’ve had a chance to review and configure them.

Before creating and using policies, you should understand some of the basic components of Policy Man-
agement. These components include:

❑ Targets

❑ Facets

❑ Conditions

❑ Policies

❑ Policy categories

❑ Effective policies

Each of these topics is introduced in greater detail in the following sections.

Targets
A target is simply a specific entity or object that is managed by one or more policies. A target might be
a single index or table, or it might be every database attached to the local server. The Database Engine
itself might be the target of a policy.

286



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 287

Chapter 8: Automating Administrative Tasks

Targets can also be grouped in sets, such as defining all tables that belong to a particular schema.
For example, you might have a policy that specifies every table in the Person schema in the
AventureWorks2008 database as a target set.

Facets
Facets are collections of properties that represent all or some portion of a target object that are grouped
together based on behavior or characteristics. There are 74 facets that are available from the default
installation of SQL Server 2008. These include facets for databases, schemas, logins, tables, and full text
catalogs, to name a few. In some cases, a facet might be just a subset of properties from another facet. For
example, the Login facet includes properties such as Name, LoginType, IsPasswordExpired, CreateDate,
and DateLastModified; whereas the Login Options facet only includes a subset of these properties,
excluding DateLastModified and IsPasswordExpired, among others. Facets are used when defining a
condition, described in the next section.

Conditions
Conditions are one or more Boolean expressions that are associated with the properties of a specific facet.
When more than one expression is defined, you can decide whether to use the AND operator or the OR
operator when evaluating these expressions. For example, I can create a condition called Login Errors,
which uses the Login facet and checks to see if the @IsDisabled, @IsLocked, or @IsPasswordExpired
properties are true. See Figure 8-2 for reference.

Figure 8-2: New condition.

If you import the pre-defined polices from the SQL Server installation folder, several conditions on which
those policies are based will also be added to your SQL Server instance.

287



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 288

Chapter 8: Automating Administrative Tasks

Policies
Policies are what you can use to evaluate, configure, or restrict your server and the objects that reside on
it. Each policy consists of five main elements that must be defined. The first, obviously, is a unique name
for the policy. Then, a condition that will be evaluated must be selected for the policy. The third element
defines the targets against which the condition will be evaluated and to which the policy will be applied.
Next, you must choose the Evaluation mode that the policy will execute against. Depending on the type
of policy you are creating, you can select one of four available evaluation modes:

❑ On Demand — The policy must be run manually.

❑ On Change: Prevent — Uses DDL triggers to prevent a non-compliant event from occurring.
This might be useful if, for example, you want to standardize the naming conventions on certain
object types. This option will specifically prevent objects that do not comply with the naming
rules from being created.

❑ On Change: Log Only — Uses DDL triggers to log non-compliant events, but will not prevent
them from executing.

❑ On Schedule — Creates a SQL Server Agent job (described later in this chapter) to automatically
evaluate policies.

Finally, you can also define a Server restriction property. This might be useful if you want to prevent the
policy from applying to a specific version of SQL Server or a particular platform. Figure 8-3 shows a
sample policy that uses a Login Errors condition (shown in Figure 8-2) and evaluates it manually against
SQL Server 2005 and later platforms.

Note that the Enabled checkbox is grayed out. This is because the On Demand evaluation mode has been
selected. If I change the evaluation mode of the policy, you can enable it as part of a scheduled operation.

Figure 8-3: New policy.

288



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 289

Chapter 8: Automating Administrative Tasks

Policy Categories
On the description page of the policy, I can set additional properties that allow me to better manage
multiple policies on my server. With the default policies imported, I can see a list of available ‘‘Microsoft
Best Practice’’ categories, or I can create my own, as shown in Figure 8-4.

Figure 8-4: Policy Management folder.

Databases can be subscribed to a category, meaning that all policies within that category will automatically
be evaluated against the database. Although a policy can only belong to one category, a single database
can subscribe to more than one policy. This is done by right-clicking the database, choosing Policies from
the context menu, and selecting Categories. From there, you will see a dialog box that lists all the avail-
able policy categories you want this database to subscribe to. By default, policy categories are enforced
at the server level, automatically applying to all databases. This can be managed by right-clicking the
Policy Management node in Object explorer and choosing Manage Categories. Deselecting the ‘‘Mandate
Database’’ option for a category will allow you to subscribe individual databases to that category.

Also note in Figure 8-4 that I provided descriptive text as well as information in the additional Help
hyperlink section. This allows me to provide a reference to a URL that might contain more information
about that specific policy. For example, if I am creating a policy that requires a specific naming convention
for certain object types, I might include a URL for the document that defines that policy.

Effective Policies
Effective policies are all policies that are being applied to an object by meeting three criteria:

❑ The policy must be enabled. This rules out policies that are configured to run ‘‘On Demand.’’

❑ The target identified, such as a table, must belong to the target set of the policy. A login policy
has no effect on that table.

289



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 290

Chapter 8: Automating Administrative Tasks

❑ The target, or a parent object in the target hierarchy, must subscribe to the policy category that
contains the effective policies. This means that a policy may be applied to a table if its schema,
database, or server subscribes to that policy.

Try It Out Creating a Naming Policy
In this example, you will be creating a new policy that specifies a naming convention for tables that
belong to the Sales schema of the AdventureWorks2008 database. You will use this to prevent the cre-
ation of new tables that don’t meet this policy condition, as well as get an accounting of tables that already
exist that are not compliant with this naming policy.

1. Begin by creating a new Policy Condition called AWSalesTableNames. Navigate to the Conditions
folder, right-click, and select ‘‘New Condition.’’

2. Enter the AWSalesTableNames for the Name, and select ‘‘Multipart Name’’ for the Facet.

3. For the first row of the expression line, select @Name for the field.

4. Select LIKE as the operator.

5. Enter AW_Sls_% in the Value field.

6. Add a new row, using the OR operator.

7. Select @Schema for the Field value.

8. Set the Operator to !=.
9. Enter Sales for the Value field. Click OK to create the new condition.

10. Right-click on the Policies folder in Object Explorer, and click ‘‘New Policy.’’

11. Enter AW Sales Name for the Policy Name.

12. In the Check condition list, scroll down until you find the AWSalesTableNames condition (it will
be under the ‘‘Multipart Name’’ header).

13. Select the check next to the "Every Table in Every Database" line, and click the dropdown arrow
next to ‘‘Database.’’

14. Select ‘‘New Condition.’’

15. Enter AdventureWorks2008 DB for the name of the new condition.

16. Select the Database Facet.

17. Set the Condition Expression to @Name = ‘AdventureWorks2008’, and click OK.

18. Change the Evaluation Mode to ‘‘On change: prevent.’’

19. Leave the server restriction as None.

20. Check the Enable checkbox underneath the Name property.

Your settings should resemble Figure 8-5.

Now let’s test the new policy:

1. First, ensure that you can create a table in any schema other than Sales that doesn’t require this
naming convention.

290



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 291

Chapter 8: Automating Administrative Tasks

Figure 8-5: Creating the Sales Table Name policy.

2. Enter the following code to create a new table in the Person schema:

Use AdventureWorks2008;
Create Table Person.Foo (
Col1 Int,
Col2 nvarchar(25)
);

The command should succeed as expected.

3. Next, try to create a table called Foo in the Sales schema using the following code:

Use AdventureWorks2008
Create Table Sales.Foo (
Col1 Int,
Col2 nvarchar(25)
);

4. At this point, the operation should fail, indicating that the expected name isn’t provided. So now
you should create a new table that does follow the expected naming convention. Enter the follow-
ing code to create the new table:

Use AdventureWorks2008
Create Table Sales.AW_Sls_Foo (
Col1 Int,

291



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 292

Chapter 8: Automating Administrative Tasks

Col2 nvarchar(25)
);

This should complete successfully.

You have now created a policy that enforces a specific naming convention on a particular schema in the
AdventureWorks2008 database. As you explore the different facet and condition options, it is easy to see
how powerful the Policy-Based Management system can be.

Because several objects already existing in the Sales schema don’t meet our required naming convention,
we can get an audit of those tables that are in violation of the policy. Keep in mind that the policy will only
apply the DDL trigger to new objects. Existing objects will still function. To get a list of non-compliant
objects, navigate to the AW Sales Name policy, right-click on it, and select Evaluate. Your results should
look similar to Figure 8-6.

Figure 8-6: Evaluating a policy against AdventureWorks2008.

Central Management Servers
One of the most important concerns for a DBA is how to find the best way to manage multiple servers at
once. The examples in the previous section regarding Policy-Based Management were designed around
a single instance; however, if you browse through some of the options for Policy-Based Management (or
PBM, for short), you will notice that there are options that allow you to specify to which platform and
version of SQL Server these policies will apply.

292



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 293

Chapter 8: Automating Administrative Tasks

‘‘How can that be,’’ you might ask, ‘‘if PBM doesn’t exist in prior versions of SQL?’’ The answer is
through the use of Central Management Servers (CMS). More than simply an extension of PBM, the con-
cept of Central Management Servers is to allow not only policies, but also queries to be executed against
several servers simultaneously. This can be extremely useful if, for example, you have a database that is
distributed among multiple SQL Servers and you’re not sure on which server a particular row exists. You
could write a query that includes a select statement against all servers, specifying the full object name in
a separate line, or you could add these servers to a Central Management group and execute the query in
a single operation.

There are, however, two key factors to keep in mind when considering a Central Management Server:

❑ First of all, the Central Management Server and all registered target servers must use
Windows-based logins for authentication and management. SQL Login creation and
management will not be replicated among servers that are members of a manage-
ment group.

❑ The other important item to note is that a Central Management Server cannot have itself as a
target. This means that policies that are applied at the CMS are applied to the registered servers,
but not the CMS itself.

To define a new CMS, you need to display the Registered Servers window. You can access this from SQL
Server Management Studio by selecting View � Registered Servers. The Registered Servers window will
display two categories:

❑ The first is the Local Server Groups category. This is where you can add a list of servers you reg-
ularly manage for easy access, without having to connect Object Explorer to them every time.
You can create folders known as Server Groups to logically arrange and collect the servers you
typically manage.

❑ The second category is where you will define (if any) the Central Management Servers. After
you have defined a server as a Central Management Server, you will need to create a new server
group and register servers you want to centrally manage in that new server group

In Figure 8-7, you can see that I have created a new Local Server Group called MyServers, of which
AughtEight is a member. I have also defined AughtEight as a Central Management Server, with a new
server group called Bespin. This server group contains the AughtEight\Dagobah and AughtEight\Hoth
instances.

Figure 8-7: Registered
Servers.

293



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 294

Chapter 8: Automating Administrative Tasks

By right-clicking on my CMS, I can choose the ‘‘Evaluate Policies’’ option, which allows me to evaluate
one or more policies against the managed servers. I will need to specify the policy from the file system,
or I could use a policy that exists on a server (including the CMS). If you look at Figure 8-8, you will see
the results of evaluating the Check Bad Logins policy I created.

Figure 8-8: Evaluating policies against multiple servers.

Database Mail
Microsoft SQL Server 2008 includes a simple method for message delivery to and from the SQL Server.
This feature, known as Database Mail, allows SQL Server to send and receive messages through SMTP
delivery. One of the many benefits of SQL Server’s Database Mail service is that it will work with any
SMTP service, regardless of whether or not it requires authentication (which it should, but that’s a secu-
rity discussion that is beyond the scope of this chapter).

The Database Mail feature in SQL Server 2008 is a tool that allows you to generate and send e-mail mes-
sages from your server, which can be relayed through a corporate mail system. This can provide several
advantages, including using an alternate method of returning information to your users, notifying the
appropriate personnel that certain events or conditions have been met, or providing status informa-
tion about jobs and SSIS packages. Database Mail was designed with security, scalability, and reliability
in mind.

Be aware that the Database Mail feature is not included with the Express Edition of SQL Server 2008.

How It Works
Database Mail uses SMTP for message delivery. Messages can be generated from within SQL and can
include attachments from outside the SQL environment. One of the primary benefits of the Database
Mail feature is its ability to use any SMTP server to relay messages. This is a significant improvement

294



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 295

Chapter 8: Automating Administrative Tasks

over prior versions of SQL Server that use SQL Mail, which requires a MAPI-compliant mail server (such
as Microsoft Exchange) and a MAPI client (such as Microsoft Outlook). SQL Mail still exists in SQL Server
2008 but is considered a legacy feature and should not be used.

Another benefit of Database Mail is that it allows you to configure authentication credentials if required
by your SMTP server to forward messages, as well as allowing you to configure different servers for
delivery, in case your preferred server is not available. SQL Server also uses an external executable,
DatabaseMail.exe, to handle message delivery to an SMTP server. This allows the SQL Server to isolate
itself from the process that relays the messages to the SMTP server.

The msdb database is used for storing configuration information about Database Mail, controlling access
to the feature, and queuing messages until they are ready for delivery. Prior to configuring Database
Mail, there are a few things you should consider:

❑ First, you should know which SMTP servers are available for use and what credentials are
needed. As you’ll see in the next section, you can configure multiple servers, with multiple
accounts, if necessary.

❑ Another consideration is which messages will be retained, and how long they need to be
retained. By default, all Sent messages and their attachments are stored in the msdb database. Be
aware of your company’s security and retention policies for e-mail messages. You may also be
under a legal obligation to keep messages for a specific amount of time.

The Database Mail feature uses accounts to configure access to SMTP servers and profiles to configure
access to mail accounts. However, profiles and accounts can be mutually exclusive. You can create
accounts without an association to a profile, and you can use the same account with multiple profiles, if
necessary.

How to Configure Database Mail
The easiest way to configure SQL Server to use Database Mail is through the Database Mail Configuration
Wizard in SQL Server Management Studio. This section steps you through the different pages in the
Wizard and explains what each page configures:

1. To launch the Wizard, navigate to the Management section of your server in Object Explorer
(see Figure 8-9).

Figure 8-9: Launching the Database Mail
Wizard.

295



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 296

Chapter 8: Automating Administrative Tasks

2. Expand Management, right-click ‘‘Database Mail,’’ and select ‘‘Configure Database Mail.’’

3. The first page you will see is simply a start page that explains each of the following steps in
the Wizard. If you don’t want to see this page again, select the checkbox at the bottom of the
page indicating that you wish to skip this page in the future.

4. On the next screen, you’ll be asked to identify which configuration task you’re using the
Wizard to perform. You can use this to initialize Database Mail for use on the server; or, if
it’s already configured, you can manage existing mail profiles and configured accounts. You
can also change system settings. For this run, select the first option to set up Database Mail
(see Figure 8-10).

Figure 8-10: Choosing a Database Mail configuration task.

5. Database Mail is disabled by default. If this is the first time you’ve run this Wizard
and you have not manually enabled Database Mail, you will be prompted to enable
it. Once you’ve enabled Database Mail, the next screen will ask you to provide infor-
mation for a new Database Mail profile. Enter a name for the profile and, optionally, a
description to help identify the profile and how it will be used. For this example, enter
AdventureWorksSalesProfile as the profile name.

Once that information has been entered, you must configure at least one account that this
profile will use. The ability to configure multiple accounts under a single profile helps guar-
antee the availability of the Database Mail feature to users who need to receive information,
and the path of delivery isn’t relevant. The order in which the accounts are listed will deter-
mine the order of precedence when sending messages. Accounts listed at the top of the list
will be preferred over those listed below them.

296



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 297

Chapter 8: Automating Administrative Tasks

6. To create a new account, click on the Add button. In the New Database Mail Account screen
(see Figure 8-11), enter an account name and description, and then information about the
account, including the e-mail address that the messages will originate from, the display
name for that address, the reply-to address, and the name or IP address of the SMTP server.
There is also a box where you can enter the port number used by the SMTP server. Unless
you know that your server uses a different port, you should use the standard SMTP port, 25.
If your server uses Secure Sockets Layer (SSL) to protect the data in transit, select the appro-
priate checkbox.

Figure 8-11: New Database Mail Account screen.

7. Also on the new Database Mail Account screen, you will select the method of authentication
that the SMTP server requires. By default, Anonymous authentication is selected, but this
is not the preferred method for most SMTP servers. If your SMTP server is Windows-based
(such as in the case of Microsoft Exchange or IIS) and is a member of the same domain or a
different domain that shares a trust relationship, you may be able to use Windows Authen-
tication with Database Engine service credentials. Otherwise, you can use Basic authen-
tication, providing a username and password manually. Be aware that if SSL is not used
between the SQL Server and the SMTP server, the authentication information may be sent
in clear text and may be vulnerable to interception.

In this example, I am using an SMTP service installed on the local machine through IIS. You
can use the information in Figure 8-11 to configure your mail account appropriately for your
mail server.

8. Once you’ve entered in the information about the account, click OK to close the New
Database Mail Account window. You can enter in more accounts to be used by the same
profile, or you can continue on to the next screen by clicking Next.

297



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 298

Chapter 8: Automating Administrative Tasks

9. On the Manage Profile Security screen, you can use the Public Profiles tab (see Figure 8-12)
to elect to make the profile public. When a profile is public, it means that the profile will
be available to all users who are members of the DatabaseMailUserRole role in the msdb
database. You can also define which public profile is the default public profile. The default
profile is the one that is used when a profile is not specified during the Send mail operation.
For private profiles, you can specify (on a per-user basis) which profiles are available to that
user (see Figure 8-13). Each user can also have a default profile available to them. The user
must already exist in the msdb database. For this example, mark the profile as public, and
make it the default. Once you’ve configured the Profile Security options, click Next.

Figure 8-12: Configuring Public Profiles.

10. On the final input page of the Wizard, you can change the system configuration values for
mail messages sent from the SQL Server. You can identify the information shown in the fol-
lowing table:

Option Description

Account Retry Attempts The number of retry attempts that SQL Server
will make for a mail account within a profile
before it moves on to the next account

Account Retry Delay The amount of time (in seconds) that the SQL
Server will wait between retries

298



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 299

Chapter 8: Automating Administrative Tasks

Option Description

Maximum File Size Maximum size (in bytes) of file attachments

Prohibited Attachment File Extensions List of file extensions that the SQL Server will not
send

Database Mail Executable Minimum
Lifetime

The time-out value for the external executable if
there are no more messages in queue

Logging Level Choose one of the following:

❑ Normal — Logs only errors.

❑ Extended — Errors, Warnings, and
Informational messages. This is the
default setting.

❑ Verbose — Extended logging, plus suc-
cess messages and internal messages

Figure 8-13: Configuring Private Profiles.

299



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 300

Chapter 8: Automating Administrative Tasks

11. Click Next on the Configure System Parameters page to move to the last page in the Wizard.
Once you’ve provided the appropriate values to the Wizard, it gives you a summary page
with the options you’ve selected. Clicking Finish will commit your changes and give you a
quick report on the success or failure of each step.

Configuring Database Mail Options
Alternatively, you can enable Database Mail using the sp_configure stored procedure. Once Database
Mail has been enabled, you can use the sysmail_configure_sp stored procedure to configure Database
Mail settings. The syntax of the sysmail_configure_sp stored procedure is as follows:

sysmail_configure_sp [ @parameter_name = ] ‘name’ , [ @parameter_value = ]
‘value’ , [ @description = ] ‘description’

Similar to the options listed here, you can use the values in the following table for the parameters:

Parameter Description

AccountRetryAttempts The number of retry attempts SQL Server will make for
a mail account within a profile before it moves on to the
next account

AccountRetryDelay The amount of time (in seconds) that the SQL Server will
wait between retries

DatabaseMailExeMinimumLifeTime The time-out value for the external executable if there are
no more messages in queue

DefaultAttachmentEncoding The default encoding for e-mail attachments

MaxFileSize Maximum size (in bytes) of file attachments

ProhibitedExtensions List of file extensions that the SQL Server will not send

LoggingLevel Choose one of the following numeric values:

1. Normal

2. Extended

3. Verbose

The sysmail_configure_sp stored procedure (as do many of the Database Mail stored procedures) lives
in the msdb database. When executing these stored procedures, you’ll have to qualify them from within
your application or T-SQL statements. Use the following example to set the maximum file size for all
attachments sent by Database Mail to 4 MB:

EXECUTE msdb.dbo.sysmail_configure_sp
‘MaxFileSize’, ‘4194303’, ‘Max Size 4 MB’

Note that the description parameter is optional. Although it may not be required, it is always a good idea
to use it to define or explain why a particular configuration value is used.

300



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 301

Chapter 8: Automating Administrative Tasks

Managing Profiles and Accounts
Profiles are commonly used as a unit of management for SMTP accounts. However, as mentioned ear-
lier, there is no one-to-one relationship between the two. You can use the Database Mail Configuration
Wizard, or you can use a series of stored procedures to create and delete profiles and accounts as needed.

Because you’ve already been exposed to the different elements of the Wizard, you should easily be able
to fumble through the different pages to find what you need to configure the accounts and profiles you
want. In this section, you learn about the stored procedures used to create and manage Database Mail
accounts and profiles.

sysmail_add_profile_sp
The first stored procedure you should know is sysmail_add_profile_sp. This stored procedure allows
you to create a new profile to be used by the Database Mail service and uses the following syntax:

sysmail_add_profile_sp [ @profile_name = ] ‘name’ , [ @description = ] ‘desc’,
[ @profile_id = ] profile_id OUTPUT

The following table shows the available options.

Option Description

profile_name The name of the profile

description An optional description that provides information about the profile

profile_id An optional parameter that displays the unique value generated by SQL to
identify the profile

OUTPUT Keyword used to output the profile_id value

Try It Out Create a New Profile
The following example creates a new mail profile and returns the integer value generated for the profile
ID. Begin by declaring the variable for the profile_id:

DECLARE @profileID INT;

EXECUTE msdb.dbo.sysmail_add_profile_sp
@profile_name = ‘HumanResourcesMail’,
@description = ‘Mail Profile for the Human Resources team.’,
@profile_id = @profileID OUTPUT ;

SELECT @profileID ;

Note the ID returned from the SELECT statement. You’ll use this in the next example.

The sysmail_help_profile_sp stored procedure will return information about the profiles created on
the SQL Server. It will return the profile ID, the profile name, and the description, if any. You can also

301



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 302

Chapter 8: Automating Administrative Tasks

use the @profile_id or @profile_name variables to limit the results to just the specific profile you’re
interested in.

EXEC msdb.dbo.sysmail_help_profile_sp @profile_id=2
You can also query the sysmail_profile table in the msdb database to return information about the pro-
files that have been created. In addition to the information returned from the sysmail_help_profile_sp
stored procedure, you can identify who last modified the account and when.

SELECT * FROM msdb.dbo.sysmail_profile

sysmail_add_account_sp
To create a new account, use the sysmail_add_account_sp stored procedure. This stored procedure will
create an account that is not associated with a profile. A different stored procedure can be used to add
accounts to a profile, which is discussed later in this chapter.

Creating accounts, as you’ve seen from the Database Mail Configuration Wizard, is a little more complex
than creating profiles, because the accounts may vary from server to server. The following table lists the
options you can use with the sysmail_add_account_sp procedure:

Parameter Description

@account_name = name The name of the new account

@email_address = address The e-mail address associated with the account

@display_name = display How messages sent from this account display the sender’s name

@replyto_address =
address

The address that will be used for replies when the client is
responding to a message sent to this account

@description = desc An optional description for this account

@mailserver_name =
server

Name or IP address of the SMTP server this account will use

@mailserver_type =
servertype

Made available for future technology, SMTP is currently the only
value supported, and is the default.

@port = serverport TCP port used by the SMTP server. The default is 25.

@username = username Used if your SMTP server requires authentication.

@password = password The password to be provided for authentication to the SMTP server

@use_default_credentials
= [0|1]

A value of 1 indicates that the SQL Server service account will be
used for SQL authentication.

@enable_ssl = [0|1] A value of 1 indicates that SSL will be used between the SQL
Server and the SMTP server.

@account_id = accountID
OUTPUT

Returns the account ID generated when the account is created.

302



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 303

Chapter 8: Automating Administrative Tasks

Try It Out Create a New Account
So, take a look at this in action. Use the following example to create a new account:

DECLARE @accountID INT;

EXECUTE msdb.dbo.sysmail_add_account_sp
@account_name = ‘Mail Sender’,
@description = ‘Generic Account for sending mail’,
@email_address = ‘mailsender@adventureworks.com’,
@display_name = ‘SQL Database Mail Account’,
@mailserver_name = ‘mail.adventureworks.com’,
@username = ‘MailSender’,
@password = ‘P@ssw0rd’,
@account_id = @accountID OUTPUT ;

SELECT @accountID;

Note the account ID returned. You can use this in the next example.

To find out more about the accounts that have been created, use the sysmail_help_account_sp stored
procedure. This will give you information about the account, such as the ID, the name, and the server
options for this account. Use the @account_id or @account_name variables to limit the results to a specific
account.

EXECUTE msdb.dbo.sysmail_help_account_sp

To limit the output to just the account you’re interested in, use the following:

EXECUTE msdb.dbo.sysmail_help_account_sp @account_id=2

You can also return a simple list of configured accounts by querying the sysmail_account table, which
includes the datetime information of when the account was last modified and who last modified it:

SELECT * FROM msdb.dbo.sysmail_account

sysmail_add_profileaccount_sp
So, you’ve created a new profile and a new account. Now you can associate that account with that profile.
Remember that accounts can be associated with more than one profile, and each profile can be configured
to use more than one account.

To create the mapping, you can use the sysmail_add_profileaccount_sp stored procedure. This allows
you to map an account to a profile using the profile name or profile ID and the account name or account
ID. Another option you can specify is the sequence number of the account ID. This is used to determine
the order of preference for the account within that profile.

Because this is a fairly simple stored procedure, you will see a couple of examples that use the profiles
and accounts created previously.

303



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 304

Chapter 8: Automating Administrative Tasks

In this first example, you will use the account created during the Database Mail Configuration Wizard
and add it to the profile you created from the sysmail_add_profile_sp stored procedure example. This
example has you use the profile_id of the HumanResourcesProfile and the name of the SalesAccount
account. You can easily mix and match, as long as you declare the correct parameter.

EXECUTE msdb.dbo.sysmail_add_profileaccount_sp
@profile_id = 2,
@account_name = ‘SalesAccount’,
@sequence_number = 1;

In the next example, add the account created from the sysmail_add_account_sp stored procedure to the
HumanResourcesProfile profile, only this time, you will refer to the profile by name, and the account by
ID number.

EXECUTE msdb.dbo.sysmail_add_profileaccount_sp
@profile_name = ‘HumanResourcesMail’,
@account_id = 2,
@sequence_number = 2;

To find out what mappings exist between the accounts and profiles, you can use the sysmail_help_
profileaccount_sp stored procedure. You can limit your results using @account_id, @account_name,
@profile_id, or @profile_name. Each row returned identifies the profile ID, the profile name, the
account ID, the account name, and the sequence number for the account.

EXECUTE msdb.dbo.sysmail_help_profileaccount_sp

Querying the sysmail_profileaccount table in the msdb database returns the IDs of profiles and asso-
ciated accounts, but not the names. It also returns the sequence number for those accounts and the last
modified information.

SELECT * FROM msdb.dbo.sysmail_profileaccount

sysmail_update_profile_sp
Quite simply, you can use this stored procedure to change the name or description of an existing profile.
If you’re changing the description of the profile, you can refer to it using @profile_id or @profile_name.
If you want to change the name of the profile, you will use @profile_id.

Use the following example to change both the name and the description of the HumanResourcesMail
profile created earlier. Assuming that you did not create any new accounts or profiles other than those
used in the examples, the profile_id of HumanResourcesMail should be 2.

EXECUTE msdb.dbo.sysmail_update_profile_sp
@profile_id = 2,
@profile_name = ‘HRMail’,
@description = ‘Human Resources Mail Profile’;

EXECUTE msdb.dbo.sysmail_help_profile_sp;

This will produce the following output:

profile_id name description
----------- --------------------------- --------------------------------------

304



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 305

Chapter 8: Automating Administrative Tasks

1 AdventureWorksSalesProfile NULL
2 HRMail Human Resources Mail Profile

sysmail_update_account_sp
This stored procedure can be used to update the properties of a mail account after it has been cre-
ated. Unlike profiles, accounts have a lot more parameters that can be modified or adjusted as needed.
The same parameters from the sysmail_add_account_sp procedure can be used, and not unlike the
sysmail_update_profile_sp procedure, you can identify the account by account_name or account_id.

In this example, you reconfigure the name, replyto_address, and the description of the SalesMail
profile. Unfortunately, with this stored procedure, you cannot cherry-pick which values you want to
update. You will have to specify the values for all parameters, as shown here:

EXECUTE msdb.dbo.sysmail_update_account_sp
@account_id = 1,
@account_name = ‘SalesMail’,
@display_name = ‘Microsoft SQL Server - AughtEight’,
@replyto_address = ‘administrator@adventureworks.com’,
@description = ‘Sales Mail Account’,
@mailserver_name = ‘AughtEight’,
@mailserver_type = ‘SMTP’,
@port = 25,
@username = NULL,
@password = NULL,
@use_default_credentials = 1,
@enable_ssl = 0;

EXECUTE msdb.dbo.sysmail_help_account_sp

sysmail_update_profileaccount_sp
If you want to change the sequence in which the accounts will be used within a profile, you can use the
sysmail_update_profileaccount_sp stored procedure. Specify the profile and the account by either
name or ID, and then enter the preferred sequence number. Be aware that more than one account within
a profile can have the same sequence number. If this is the case, SQL will arbitrarily decide which one to
use. Use the following example to change the sequence numbers of the accounts in the HRMail profile:

-- Assigns the Mail Sender account a sequence of 1

EXECUTE msdb.dbo.sysmail_update_profileaccount_sp
@profile_id = 2,
@account_id = 2,
@sequence_number = 1;

-- Assigns the SalesMail account a sequence number of 2

EXECUTE msdb.dbo.sysmail_update_profileaccount_sp
@profile_name = ‘HRMail’,
@account_name = ‘SalesMail’,
@sequence_number = 2;

EXECUTE msdb.dbo.sysmail_help_profileaccount_sp

305



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 306

Chapter 8: Automating Administrative Tasks

sysmail_add_principalprofile_sp
This stored procedure is used to control access to a mail profile. In order for the profile to be accessible,
the profile will be made available to specific database principals within the msdb database. The following
table outlines the parameters for the sysmail_add_principalprofile_sp stored procedure:

Option Description

@principal_id The ID of the user or role in the msdb database. Use the value 0 to
specify the public role. The principal must be specified by either the
ID or name.

@principal_name The name of the user or role in the msdb database. Use the public
role if the profile is a public profile.

@profile_id The ID of the profile. Use either the ID or name to specify the profile.

@profile_name The name of the profile. Use to identify the profile.

@is_default Indicates that this profile is the default profile for the specified
principal.

Take a look at this stored procedure in action. In this first example, create a new profile with a new
account. Then, ensure that the profile is public.

-- Create the profile
EXECUTE msdb.dbo.sysmail_add_profile_sp

@profile_name = ‘Purchasing’,
@description = ‘Purchasing Mail Profile’;

-- Create the account
EXECUTE msdb.dbo.sysmail_add_account_sp

@account_name = ‘PurchasingMail’,
@description = ‘Purchasing Mail Account’,
@email_address = ‘purchasing@adventureworks.com’,
@display_name = ‘AdventureWorks Purchasing Application’,
@mailserver_name = ‘localhost’,
@use_default_credentials = 1;

-- Associate the profile and the account
EXECUTE msdb.dbo.sysmail_add_profileaccount_sp

@profile_name = ‘Purchasing’,
@account_name = ‘PurchasingMail’,
@sequence_number = 1;

-- Make the profile public
EXECUTE msdb.dbo.sysmail_add_principalprofile_sp

@principal_name = ‘public’,
@profile_name = ‘Purchasing’,
@is_default = 0;

To view the security configuration, use the sysmail_help_principalprofile_sp stored procedure.
You can specify the principal_id, principal_name, profile_id, and/or profile_name. Note that you

306



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 307

Chapter 8: Automating Administrative Tasks

should only provide either the ID or the name for each, not both. For example, if you wanted to see which
profiles are available to the public role, use the following example:

EXECUTE msdb.dbo.sysmail_help_principalprofile_sp
@principal_name = ‘public’;

If you’ve been following all the steps in this chapter so far, you should expect to see the following output:

principal_id principal_name profile_id profile_name is_default
------------ -------------- ----------- --------------------------- ----------
0 public 1 AdventureWorksSalesProfile 1
0 public 3 Purchasing 0

Interestingly enough, if you execute the sysmail_help_principalprofile_sp stored procedure without
any parameters (such as the principal_name as in the previous example), it returns results for the guest
account, not the public role. This is not surprising, though, because the guest account, when available,
is used when the requestor does not have a user mapping in the msdb database.

In the next example, you learn how to create a new profile, account, and database user named
AWOrderProcessing. You’ll then see how to configure the new profile as the default for that user.

-- Create the user
-- In the real world, you would map this to an existing server credential.
USE msdb
CREATE USER AWOrderProcessing

WITHOUT LOGIN;
GO

-- Create the profile
EXECUTE msdb.dbo.sysmail_add_profile_sp

@profile_name = ‘OrderEntry’,
@description = ‘OrderEntry Mail Profile’;

-- Create the account
EXECUTE msdb.dbo.sysmail_add_account_sp

@account_name = ‘Orders’,
@description = ‘Order Entry Primary Mail Account’,
@email_address = ‘orders@adventureworks.com’,
@display_name = ‘AdventureWorks Purchasing Application’,
@replyto_address = ‘administrator@adventureworks.com’,

@mailserver_name = ‘localhost’,
@use_default_credentials = 1;

-- Associate the profile and the account
EXECUTE msdb.dbo.sysmail_add_profileaccount_sp

@profile_name = ‘OrderEntry’,
@account_name = ‘Orders’,
@sequence_number = 1;

--Configure the purchasing account as a backup account
EXECUTE msdb.dbo.sysmail_add_profileaccount_sp

@profile_name = ‘OrderEntry’,

307



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 308

Chapter 8: Automating Administrative Tasks

@account_name = ‘PurchasingMail’,
@sequence_number = 2;

-- Make the profile available to the AWOrderProcessing user
EXECUTE msdb.dbo.sysmail_add_principalprofile_sp

@principal_name = AWOrderProcessing,
@profile_name = ‘OrderEntry’,
@is_default = 1;

-- Show which profiles the AWOrderProcessing user has access to.
EXECUTE msdb.dbo.sysmail_help_principalprofile_sp

@principal_name = ‘AWOrderProcessing’;

One thing you should note when you return the list of profiles available to the AWOrderProcessing user
is that both of the profiles available to the public role are also available to this user. Also note that the
public role and the AWOrderProcessing user each has a default profile. When a database user or a role
that is not public has a default profile defined, that profile will be the one used if a profile isn’t identified.
If the user or role does not have a default profile specified, the default profile of the public role will
be used.

sysmail_update_principalprofile_sp
Each principal can only have one default profile defined. If you need to change which of the available
profiles is the default, use the sysmail_update_principalprofile_sp stored procedure. As with the
sysmail_add_principalprofile_sp, you can identify the principal and the profile either by name or ID.
The only value you can alter with this stored procedure, though, is the @is_default parameter. Using
the last example, if you changed the @is_default option for AWOrderProcessing, then the user would
need to manually specify the appropriate profile. Otherwise, in this case, the default profile would come
from the public role.

-- Remove the default profile for AWOrderProcessing
EXECUTE msdb.dbo.sysmail_update_principalprofile_sp

@principal_name = AWOrderProcessing,
@profile_id = 4,
@is_default = 0;

-- Show which profiles the AWOrderProcessing user has access to.
EXECUTE msdb.dbo.sysmail_help_principalprofile_sp

@principal_name = ‘AWOrderProcessing’;

sysmail_delete_principalprofile_sp
If you need to remove the association between a principal and a profile, use the sysmail_delete_
principalprofile_sp stored procedure. Note that this does not delete the principal or the profile from
the database but, rather, removes the explicit mapping between the two. You might want to use this if you
have to remove the public role’s access to the specified profile, for example. The syntax is very straight-
forward, requiring you to identify both the principal and the profile; but again, you can use the name or
ID value for either. Use the following example to remove the Purchasing profile from the public role:

EXECUTE msdb.dbo.sysmail_delete_principalprofile_sp
@principal_name = ‘public’,
@profile_name = ‘Purchasing’;

EXECUTE msdb.dbo.sysmail_help_principalprofile_sp
@principal_name = ‘public’;

308



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 309

Chapter 8: Automating Administrative Tasks

sysmail_delete_profileaccount_sp
If you want to remove an account from a profile, simply use the sysmail_delete_profileaccount_sp
stored procedure. You need to specify both the profile and the account either by name or ID. The follow-
ing example removes the Orders account from the OrderEntry profile:

EXECUTE msdb.dbo.sysmail_delete_profileaccount_sp
@profile_name = ‘OrderEntry’,
@account_name = ‘Orders’;

EXECUTE msdb.dbo.sysmail_help_profileaccount_sp;

sysmail_delete_account_sp
Next, to remove an account from the msdb database entirely, use the sysmail_delete_account_sp stored
procedure. This will not only remove the account, but all references to the account in all profiles where it
was configured, as in the following example. If the account to be deleted is the only account in the profile,
the profile will remain, but will be empty.

EXECUTE msdb.dbo.sysmail_delete_account_sp
@account_name = ‘Orders’;

EXECUTE msdb.dbo.sysmail_help_account_sp;

sysmail_delete_profile_sp
Finally, to remove a profile from the msdb database, use the sysmail_delete_profile_sp stored proce-
dure. This removes the profile but will not delete the accounts in the profile. This is because the accounts
may be used in other profiles.

EXECUTE msdb.dbo.sysmail_delete_profile_sp
@profile_name = ‘OrderEntry’;

EXECUTE msdb.dbo.sysmail_help_profileaccount_sp;

Guidelines for Deleting Mail Objects
As a general rule, be careful about deleting accounts or profiles. If you are going to delete an account,
profile, or account mapping, use the following guidelines:

❑ Deleting a profile/account mapping is non-destructive. It simply removes the relationship
between the profile and account. If necessary, this can be easily re-created. If another account is
properly configured within the profile, this should not disrupt operations.

❑ Deleting an account removes its availability in all profiles. If the profiles already have another
valid account configured, then you (or your users) shouldn’t notice any problems. If you are
deleting an account that is the only account in one or more profiles, those profiles will not be
able to send mail.

❑ Deleting a profile removes a list of configured accounts, not the accounts themselves. If, how-
ever, your application is configured to use a mail profile you’ve recently deleted, once again,
your SQL Server will be unable to send messages.

309



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 310

Chapter 8: Automating Administrative Tasks

Sending Mail
This chapter has spent a lot of time looking at the elements and configuration of Database Mail, so now
let’s see where your efforts have gotten you. Sending mail is an easy process. This section introduces the
parameters of the sp_send_dbmail stored procedure, as well as a couple of useful examples of how to
prepare data for sending.

sp_send_dbmail
As mentioned earlier, the stored procedure for sending mail using the Database Mail feature is
sp_send_dbmail. As with the other Database Mail stored procedures covered earlier in this chapter, this
one lives in the msdb database; and if you’re going to be instantiating it from outside of that database,
you’ll need to qualify it, as you have been doing throughout the chapter.

Keep in mind that although a mail profile may be made public and is available to the members of the
public role, the sp_send_dbmail can only be executed by members of the DatabaseMailUserRole. Ensure
that all logins that need access to the sp_send_dbmail stored procedure are mapped to a user in the msdb
database and are members of the DatabaseMailUserRole.

The following table identifies the different parameters available to sp_send_dbmail and their
descriptions:

Parameter Description

@profile_name Name of the profile the stored procedure will use. If a default profile
is specified for the user or one has been defined for the public role,
this value is optional.

@recipients List of e-mail addresses that will receive your message. Use semi-
colons between values. Although this value is technically optional,
you must specify at least one recipient through @recipients (To:),
@copy_recipients (CC:), or @blind_copy_recipients (BCC:).

@copy_recipients The same as using the CC: (also called Carbon Copy) field in a
standard e-mail client. As with the recipients list, you can use
semicolons between multiple values.

@blind_copy_
recipients

The same as using the BCC: (also known as Blind Carbon Copy) field
in a standard e-mail client. This value will indicate a list of recipients
for your messages, but the addresses are obfuscated by e-mail
clients. Use semicolons between multiple values.

@subject Subject of the mail message. Defaults to SQL Server Message with no
value specified.

@body Text of the message. The default is NULL.

@body_format Message delivery format. Choose between TEXT and HTML. The
default is TEXT.

@importance Allows you to specify a value indicating how the client should treat
the message. Choose between Low, Normal, and High. The default is
Normal.

310



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 311

Chapter 8: Automating Administrative Tasks

Parameter Description

@sensitivity Allows you to define a sensitivity level for the message, interpreted
by the client. Choose from Normal, Personal, Private, and
Confidential. The default is Normal.

@file_attachments Allows you to provide a list of external files that can be attached to
the e-mail message. The user executing the stored procedure must
specify (and have access to) the absolute file path where the files
reside. Use a semicolon between file paths to specify multiple files.

@query Identifies a query whose results will be sent as part of the message.
The query results can be added to the body of the message or
attached as a file.

@execute_query_
database

Identifies the database context in which the aforementioned query
will run. This defaults to the current database, and is only used if the
@query option is used.

@attach_query_result_
as_file

Specifies if the query result is returned as part of the message body
or an attached file. It uses a bit value of 0 to append to the body, and
a value of 1 to attach a file with the results. Defaults to 0.

@query_attachment_
filename

Allows you to define the filename that will be attached if
@attach_query_result_as_file is set to 1. If a filename is not
provided, SQL will make one up for you.

@query_result_header Bit value that specifies if column headers are included with the
results. Not surprisingly, 0 equals no, and 1 equals yes. Defaults to 1.

@query_result_width Allows you to specify the line width by maximum number of
characters. This is an int value with a range between 10 and 32,767.
The default is 256.

@query_result_
separator

Allows you to define a single character delimiter between columns
in a query output. The default is a single space (’ ‘).

@exclude_query_output This option allows you to define (when using a query in a mail
message) whether to output the query results to the console. This
defaults to 0, which will display the results.

@append_query_error If an error is returned from a query, setting this value to 1 will
include the error in the e-mail message. The default of 0 does not
include error information.

@query_no_truncate Setting the value of this option to 1 will override the default
behavior, which is to truncate variable-length columns greater than
256. If you override the default, be aware that columns that store a
large amount of data may take longer to process and send.

@mailitem_id id OUTPUT This option allows you to return the mailitem_id after the message
has been generated. You can use this to review or clean up sent
messages.

311



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 312

Chapter 8: Automating Administrative Tasks

Take a look at some examples of how to send mail messages from within SQL Server.

In this first example, you can create a simple mail message that doesn’t rely on any additional data source.
This can be executed as a SendMail task upon completion of a job, or through an event notification. This
one will send a simple message, indicating that an import task has been successfully completed.

EXECUTE msdb.dbo.sp_send_dbmail
@profile_name = ‘HRMail’,
@recipients = ‘Gregory.House@adventureworks.com’,
@copy_recipients = ‘Administrator@adventureworks.com’,
@body = ‘Your data has been successfully imported!’,
@subject = ‘Import Notification Message - Success’;

In order for the message to actually be delivered, you must be running SMTP and POP3 services for the
adventureworks.com domain, and you must also have Gregory.House and the Administrator accounts
configured as POP3 recipients. If you have a different SMTP server configured, you can change the
@recipients and @copy_recipients parameters to valid mail accounts. The Query window will simply
return ‘‘Mail Queued.’’ The resulting e-mail should look something like Figure 8-14.

Figure 8-14: Simple mail message.

Another example uses a query within the sp_send_dbmail stored procedure to send the results to the
intended recipient list. In this example, you’re going to use a query that returns the first names, last
names, and hire dates of all employees hired in the year 2002:

EXECUTE msdb.dbo.sp_send_dbmail
@profile_name = ‘HRMail’,
@recipients = ‘Lisa.Cuddy@adventureworks.com’,
@blind_copy_recipients = ‘Gregory.House@adventureworks.com;

Administrator@adventureworks.com’,
@body = ‘Per your request, here are the employees hired in 2002.’,
@query = ‘SELECT Person.Person.FirstName AS First,

Person.Person.LastName AS Last,

312



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 313

Chapter 8: Automating Administrative Tasks

HumanResources.Employee.HireDate AS [Date of Hire]
FROM Person.Person INNER JOIN HumanResources.Employee
ON Person.Person.BusinessEntityID =

HumanResources.Employee.BusinessEntityID
WHERE HireDate > ‘’2002-01-01" AND HIREDATE < ‘’2003-01-01’’
ORDER BY HireDate’,

@execute_query_database = ‘AdventureWorks2008’,
@subject = ‘Employees Hired in 2002’,
@attach_query_result_as_file = 1;

The resulting attachment should look something like Figure 8-15.

Figure 8-15: Raw output of 2002 new hires.

One more example shows you how to take the information in a query and prepare it as an HTML doc-
ument. You can then e-mail the HTML document as the body of the mail message, and as long as the
recipient’s mail reader can render HTML, the recipient will have a nice-looking display.

USE AdventureWorks2008
DECLARE @tableHTML NVARCHAR(MAX) ;

SET @tableHTML =
N’<H1>Employees Hired in 2002</H1>’ +
N’<table border="1">’ +
N’<tr><th>First Name</th><th>Last Name</th>’ +
N’<th>Hire Date</th>’ +

CAST ((SELECT td = Person.Person.FirstName, ‘’,
td = Person.Person.LastName, ‘’,
td = HumanResources.Employee.HireDate, ‘’
FROM Person.Person INNER JOIN HumanResources.Employee
ON Person.Person.BusinessEntityID =

HumanResources.Employee.BusinessEntityID
WHERE HireDate > ‘2002-01-01’ AND HIREDATE < ‘2003-01-01’
Order by HireDate

FOR XML PATH(’tr’), TYPE
) AS NVARCHAR(MAX) ) +

N’</table>’;

EXEC msdb.dbo.sp_send_dbmail @recipients=’administrator@adventureworks.com’,
@subject = ‘2002 New Hires’,
@body = @tableHTML,

@body_format = ‘HTML’;

313



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 314

Chapter 8: Automating Administrative Tasks

This will return the output shown in Figure 8-16 to the mail client.

Figure 8-16: HTML document as body of e-mail message.

Managing Messages
As mentioned earlier, Database Mail messages are retained on the server. If you want to view which
messages have been retained, you can query the sysmail_mailitems table in the msdb database. This
returns detailed information about each message, such as who the recipients were, what the body of the
message contained, and which profile sent the message.

SELECT * FROM msdb.dbo.sysmail_mailitems

You can also delete messages from the server by using the sysmail_delete_mailitems_sp stored
procedure. This will allow you to delete messages that have either failed or succeeded, or delete just
messages older than a specific date. Service Pack 1 requires that you provide either the @sent_before or
@sent_status option.

To delete messages from before January 31, 2009, use the following example:

EXECUTE msdb.dbo.sysmail_delete_mailitems_sp
@sent_before = ‘January 31, 2009’ ;

To delete messages that show a specific status value, use the following examples:

EXECUTE msdb.dbo.sysmail_delete_mailitems_sp
@sent_status = ‘failed’;

EXECUTE msdb.dbo.sysmail_delete_mailitems_sp

314



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 315

Chapter 8: Automating Administrative Tasks

@sent_status = ‘retrying’;

EXECUTE msdb.dbo.sysmail_delete_mailitems_sp
@sent_status = ‘unsent’;

EXECUTE msdb.dbo.sysmail_delete_mailitems_sp
@sent_status = ‘sent’;

Event Notifications
Event Notifications are database objects that send information about server and database events to a Ser-
vice Broker. They execute in response to data definition language (DDL) statements and SQL Trace
events by sending information about these events to a Service Broker service. You can use Event Notifi-
cations either to log activity within a database or to execute an action asynchronous to an event. They are
designed to be an alternative to creating DDL triggers or using SQL Trace functions.

Because Event Notifications run outside the scope of a transaction, they can be used inside a database
application to respond to events without using any resources defined by the immediate transaction.
Event Notifications operate independently of whether or not the transaction commits. They can also be
used to perform an action inside an instance of SQL Server in response to a SQL Trace event.

Every Event Notification has its own exclusive Service Broker conversation between an instance of SQL
Server and the target service you specify. The conversations usually remain open as long as the Event
Notification still exists on the server. Ending a conversation prevents the target service from receiving
more messages, and the conversation will not reopen when the Event Notification fires again.

Event information is an XML data type that provides information about when the event occurs, the object
it affects, the batch statement involved, and more. This data can be used by applications that help SQL
Server track progress and make decisions.

When designing an Event Notification, you must define both the scope of the notification and the
statement or batch that raises the notification. For example, the Event Notification can occur as a
response to a statement made on all objects in the AdventureWorks2008 database. You can also define
the scope as being server-wide, such as triggering Event Notifications when new databases or logins are
created.

More information about the architecture used to create services and queues is covered in Chapter 19.
However, you should be aware that some of the mechanisms discussed in this section are also applicable
to the next topic, the SQL Server Agent Service. For this reason, you should ensure that the msdb database
is configured to manage Service Broker objects and process Event Notifications. Two important elements
of this are ensuring that the SQL Server can trust the database and the object within it, and that the
database is configured for Service Broker message delivery. To do this for the msdb database, use the
following ALTER DATABASE statement:

ALTER DATABASE msdb
SET TRUSTWORTHY ON,
ENABLE_BROKER;
GO

315



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 316

Chapter 8: Automating Administrative Tasks

Because the SQL Server Agent Service may have an active connection to the msdb database, it may be
necessary to stop the service prior to running this statement and then restart it once the command has
completed successfully.

There is also a feature in SQL Server 2008 known as SQL Server Extended Events. A full description of
Extended Events is beyond the scope of this book; however, you should be aware that they can be used
for more advanced troubleshooting and diagnostics. One of the key benefits of using Extended Events
is the ability to associate SQL events with operating system or database application events, through the
use of Event Tracing for Windows (ETW). More information on Extended Events can be found under the
topic ‘‘Introducing SQL Server Extended Events’’ in Books Online.

SQL Server Agent
This section explains how to automate SQL Server tasks using the Microsoft SQL Server Agent Service.
The SQL Server Agent Service runs as a Windows service that is dependent on the SQL Server service.
Each instance of SQL Server will have its own SQL Server Agent Service to manage jobs, schedules,
operators, and alerts. You learn about the essential components of the SQL Server Agent Service for
single and multiple server management configurations.

The primary purpose of the SQL Server Agent is to make your job easier. In a perfect world, you could
configure your servers, let them run, and never worry about losing data or the database going offline.
But this isn’t a perfect world. Things happen. And because you can’t realistically monitor every server
every minute of every day, you can use the SQL Server Agent to leverage against what you can’t do.

The SQL Server Agent Service is not available in SQL Server 2008 Express Edition.

Configuring the SQL Server Agent Service
In Chapter 2, you learned about installing SQL Server and defining which accounts are used by the SQL
Server service and the SQL Server Agent Service. A common configuration is to use the same account for
both services, but this is not required. In fact, because of certain job or administrative requirements, you
may need to use completely different credentials for each. Regardless of whether or not you use the same
account, the account used by the SQL Server Agent must be a member of the sysadmin fixed server role
and must have the following rights in the Windows operating system where the server is installed:

❑ Adjust memory quotas for a process.

❑ Act as part of the operating system.

❑ Bypass traverse checking.

❑ Log on as a batch job.

❑ Log on as a service.

❑ Replace a process-level token.

These rights can be granted by an administrator editing the Local Security Policy. If the SQL Server
Agent will be interacting with services and features outside the local system, an Active Directory domain
account should be used. This allows the SQL Server Agent to use an authenticated account to connect to
a remote file system, Web Service, or another SQL Server.

316



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 317

Chapter 8: Automating Administrative Tasks

An out-of-the-box installation of SQL Server with no changes to the default configuration does not start
the SQL Server Agent Service but, instead, requires manual control over the start and stop behavior of
the service. Don’t do this. If you are going to use the SQL Server Agent for automation or alerting features,
it needs to be running. If the SQL Server Agent is stopped, no scheduled jobs can run, and no operator
will receive notification indicating that a job did or did not run successfully. When installing SQL Server,
it is a good practice to configure the SQL Server Agent to run automatically when Windows starts.

If, however, you did not configure the SQL Server Agent to start automatically, you’ll need to know how
to start it manually. There are actually four different ways you can start and stop the SQL Server Agent
Service.

One way is to use the NET START command from a Windows command prompt:

NET START SQLSERVERAGENT

To stop the service, use the NET STOP command:

NET STOP SQLSERVERAGENT

You can also use the Services snap-in from the Administrative Tools menu or the Computer Management
console. From this tool, you can also configure the account that the service runs under, change the start-up
behavior, choose service recovery options, and view the dependencies of the service. In Chapter 3, you
learned how to use SQL Server Configuration Manager. You can use that similarly to configure the
account used by the SQL Server Agent Service and the start-up behavior, as well as error reporting
options. Finally, you can use SQL Server Management Studio to configure the behavior and properties of
the SQL Server Agent Service.

This section will spend more time going into depth about configuring the various properties of the ser-
vice, so you have a good understanding of each of the configurable elements from within a familiar tool.
In Object Explorer, you can right-click ‘‘SQL Server Agent’’ and either stop or start the service as needed.
To configure the service, select Properties from the context menu.

General Properties
From the General Properties sheet (see Figure 8-17), you can see the current state of the service, and you
can configure both the SQL Server and SQL Server Agent to automatically restart if they stop unexpect-
edly. You can also change the location of the error log and elect to include execution trace messages in
the logs for advanced troubleshooting. There is also an option to use an original equipment manufacturer
(OEM) file. This allows the log information to store data in a non-Unicode format, which can take up less
space on the system. However, if the error logs contain any Unicode data, it may be more difficult to read
or interpret. Finally, the NET SEND RECIPIENT indicates an operator that can be notified of messages that
SQL Server writes to the log file.

The messenger service is disabled by default in Windows Server 2003 and Windows Server 2008. The
ability to use NET SEND may not be available.

Advanced Properties
In the Advanced Properties sheet (see Figure 8-18), you can enable event forwarding, which will re-direct
SQL Server events to a different server. To configure this, enable the checkbox next to ‘‘Forward events

317



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 318

Chapter 8: Automating Administrative Tasks

to a different server,’’ and then select an available server or instance from the dropdown list. Once this
is configured, you can also determine what type of events will get forwarded. ‘‘Unhandled events’’ are
those that do not have alerts defined by the SQL Server Agent system, or you can select ‘‘All events.’’ You
can also decide to forward events with a minimum severity level. Severity-level values are discussed in
detail later in this chapter.

Figure 8-17: SQL Server Agent General Properties.

From this window, you can also define the CPU idle threshold. This can be useful if you have any job
schedules that define the job and should be run when the CPU is idle, such as backing up the transaction
log. In this case, the default values indicate that CPU usage must fall below 10 percent for 10 minutes.
You can adjust this as necessary to meet your performance needs.

Alert System Properties
You can configure the Alert System properties from this page (see Figure 8-19) by first defining if the SQL
Server Agent Mail service is enabled. If you want your operators to receive alert notifications by e-mail,
you should enable this feature. You can also decide if you are going to use the Database Mail feature or
the SQL Mail feature. Remember that SQL Mail is provided for backward compatibility only and should
not be used with new applications because it will be phased out. If you are upgrading from a previous
version of SQL, you should try to convert your applications to use Database Mail as soon as possible.

318



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 319

Chapter 8: Automating Administrative Tasks

Figure 8-18: SQL Server Agent Advanced Properties.

Once you’ve selected your mail system (Database Mail, preferably), you can then select an appropriate
profile to use. If you are using SQL Mail, you can test the MAPI connectivity and allow Sent messages to
be saved in the Sent Items folder of the Microsoft Outlook profile.

If you will be paging operators, you can configure options for formatting addresses in the To, CC, and
Subject lines of the message. You can also elect to include the body of the e-mail message in the page.
Additionally, you can define a fail-safe operator and methods for notifying that person. The role of the
fail-safe operator is discussed in more detail later in this chapter.

Finally, there is the option to replace tokens for all job responses to alerts. Tokens are a feature (similar to
variables) of job steps that are discussed later in this chapter. For now, though, you should understand
that this enables token replacement, replacing the variable with an actual value, for any job executed by
the alert systems.

Job System Properties
You can specify the time-out value for jobs in the Job System Properties window (see Figure 8-20). This
option configures how long the SQL Server Agent will wait for a job to complete before forcefully termi-
nating the job. The default is 15 seconds, but be aware of how long certain jobs may need to take (because
of their complexity) or the type of operations being performed.

319



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 320

Chapter 8: Automating Administrative Tasks

Figure 8-19: SQL Server Agent Alert system properties.

There is also an option to configure a non-administrative account as a proxy account for job steps. This is
only applicable if you are using SQL Server Management Studio to manage an older version of SQL
Server and its corresponding Agent service. You can specify the authentication information for the
account by providing a username, password, and domain name. Configuring a proxy account for SQL
Server 2008 job steps is covered in the section, ‘‘Creating Jobs,’’ later in this chapter.

Agent Connection Properties
If you need to connect to an instance of SQL Server that uses a non-standard connection property, you
can enter an alias used by the SQL Server to allow the SQL Server Agent Service to establish and maintain
a connection (see Figure 8-21). You can also specify whether you require the SQL Server Agent Service
to use Windows authentication or SQL Server authentication. If you select SQL Server authentication,
you must provide a valid login and password for an account that is a member of the sysadmin fixed
server role.

Job History Properties
Finally, the History page allows you to configure retention settings for job logs in the msdb database. By
default, a maximum of 1,000 rows are stored in the sysjobhistory table, and each job can use no more
than 100 rows in that table. You can use this window to remove or change the limit to the size of the job
history table (see Figure 8-22).

320



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 321

Chapter 8: Automating Administrative Tasks

Figure 8-20: SQL Server Agent Job system properties.

You can also have the SQL Server Agent service automatically purge old job history rows from the
sysjobhistory table. This feature is disabled by default. However, if enabled, it allows you to specify
how many days, weeks, or months old a job history record must be before it can be purged from the
database. If you need to maintain the job history indefinitely or need to have greater control over what
gets purged, consider creating a custom job that will meet your needs.

SQL Server Agent Security
When planning to use the SQL Server Agent Service, or allowing other users to access it, you need to
ensure that appropriate access is granted. By default, only members of the sysadmin fixed server role
have complete access to the SQL Server Agent Service. In the msdb database, additional roles are created
with varying levels of rights and permissions, but these roles are empty until a user is explicitly added
to one or more of these roles. This section identifies each of these roles and the permissions assigned
to them.

SQLAgentUserRole
The SQLAgentUserRole is the most limited of the three SQL Server Agent roles. Users who are mem-
bers of this role have the ability to create new jobs and schedules and can manage only those jobs and
schedules they create. However, they cannot view the properties of other jobs on the system, nor can they

321



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 322

Chapter 8: Automating Administrative Tasks

define operators or proxies. If they need to assign an operator or proxy to a job step, it must have already
been defined. Members of this role also cannot delete job history information, even for jobs they own,
unless they are granted EXECUTE permission on the sp_purge_jobhistory stored procedure. Another
important limitation on this role is the inability to create or manage multi-server jobs. This means that
any job created by members of this role is limited to the server on which it was created.

Figure 8-21: SQL Server Agent Connection properties.

SQLAgentReaderRole
The SQLAgentReaderRole role can enable users to create local jobs and schedules and manage only those
that they create. In addition to these permissions, they can also view the properties of other local jobs, as
well as multi-server jobs. This gives them the ability to audit the configuration of other jobs on the server,
without having any rights to change those settings. This role is also prevented from creating multi-server
jobs, but the job histories of all local and remote jobs are available for review. Members of this role,
too, are prohibited from deleting the history of jobs they own, unless granted EXECUTE permission on
sp_purge_jobhistory.

SQLAgentOperatorRole
Members of this role can create local jobs, as well as manage and modify jobs they own. They can also
view and delete the job history information for all local jobs. To a limited extent, they can also enable or
disable jobs and schedules owned by other users. However, they are still prohibited from creating and

322



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 323

Chapter 8: Automating Administrative Tasks

managing operators and proxies. They are also limited to Read Only access for multi-server jobs, as well.
Outside of the sysadmin fixed server role, this role is granted the most rights and privileges to the job
system in the SQL Server Agent Service.

Creating Jobs
Jobs are really at the core of the SQL Server Agent service. Jobs are operations that perform through a
sequence of steps that run Transact-SQL scripts and launch command-prompt applications, ActiveX
script tasks, replication tasks, and a variety of other tasks. Each task is defined as a separate job step. Part
of the design of the job system is to build each task so that you can build dependencies and workflows
between the job steps. A very simple example of this would be a backup job that ran nightly and then
e-mailed an administrator to inform him or her that the job was complete. The simplicity and complexity
of a job depend on what you need it to do. In some cases, you’ll want to create multiple jobs, rather than
a single, overly complex one, because of the time-out settings mentioned earlier.

Figure 8-22: SQL Server Agent History properties.

Try It Out Creating a New Job
Begin by creating a new job in SQL Server Management Studio. For this example, you’re going to popu-
late only the most basic information about the job from the General Properties page. Feel free to browse

323



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 324

Chapter 8: Automating Administrative Tasks

through the other property pages in this exercise, but be aware that the configurable elements in those
pages are covered later in this chapter.

1. In Object Explorer, expand SQL Server Agent.

2. Right-click Jobs and select ‘‘New Job.’’

3. In the New Job dialog box (see Figure 8-23), enter Simple Backup as the job name.

Figure 8-23: New Job properties.

4. Leave the Owner as the default.

5. Select Database Maintenance in the Category dropdown list.

6. In the description, enter Simple Backup Job. Test 1.

7. Remove the check next to Enabled.

8. Click OK.

This creates a new job and prevents the job from running once you close the New Job window. Because
the job has no steps, there would have been little harm in letting it run, but it’s a habit you will want to
get into, until you’ve tested your jobs to ensure that they work as expected.

324



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 325

Chapter 8: Automating Administrative Tasks

Now look at how to create a new job using Transact-SQL. The sp_add_job stored procedure allows you
to create a new job and set configurable options on the job. The following table lists all the options for
sp_add_job:

Option Description

@job_name The name of the job

@enabled The default value of 1 indicates the job is enabled, and a value of
0 means the job is disabled. Disabled jobs can still be manually
executed.

@description An optional description of the job. If no value is specified, the field
is populated with No description available.

@start_step_id In more complex jobs, where you have multiple steps built around
dependencies and error handling, you can actually have the job
start at a step other than the first one. Use the integer-based job ID
value for the initial job step.

@category_name Allows you to type a category name to assign the job. Categories
make it easier to group and manage jobs that have similar func-
tions. Be aware that if you misspell an existing job category (as in
‘‘Databizase Maintenance’’), it will return an error. You must use an
existing category name.

@category_id Allows you to use the category_id value rather than cate-
gory name. Category names and IDs are stored in msdb.dbo
.syscategories.

@owner_login_name Allows a system administrator to set a different login as the owner
of the job.

@notify_level_eventlog Indicates what information should be added to the Windows
Application Log. This is an int data type with the following
values:

0 — Never

1 — On success

2 — On Failure (Default)

3 — Always

@notify_level_email Indicates when to send e-mail messages regarding this job, using
the levels described in @notify_level_eventlog. The default is 0.

@notify_level_netsend This value indicates when a NET SEND message should be sent. The
Messenger service must be started on both the sender and the recip-
ient machines for this to work. With a default value of 0, the levels
for @notify_level_eventlog can be used to change its behavior.

Continued

325



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 326

Chapter 8: Automating Administrative Tasks

Option Description

@notify_level_page Indicates when to send messages to an SMTP-enabled
pager, using the same values as @notify_level_eventlog.
The default is 0.

@notify_email_operator_name The name of an operator that will receive e-mail messages if
e-mail notification is enabled. Do not use the e-mail address
but, rather, the sysname value of the operator.

@notify_netsend_operator_name The name of an operator that will receive NET SEND
messages

@notify_page_operator_name The name of the operator that will receive SMTP pages

@delete_level Indicates when to delete the job, using the values defined in
@notify_level_eventlog. If the level is set to 3, the job is
deleted upon completion, and no further instances of this
job will run. The default is 0.

@job_id job_id OUTPUT Returns the value of the job_id. The job_id is of the
uniqueidentifier data type.

Take a look at using the sp_add_job stored procedure to create a new job with only the basic elements.
After creating other elements such as schedules, operators, and alerts, you will add those into the jobs
you create in this section. For this example, you will create a new job that will be used for data re-
trieval tasks:

DECLARE @job_id uniqueidentifier;

EXECUTE msdb.dbo.sp_add_job
@job_name = ‘Poor Performers Report’,
@description = ‘Monthly task to indicate which sales team members have less

than remarkable sales figures over previous year’,
@job_id = @job_id OUTPUT;

SELECT @job_id

One thing you should notice about the job_id parameter is that it uses the uniqueidentifier data
type. This is also referred to as a Globally Unique Identifier (GUID). GUIDs are used for both jobs
and schedules if either will be used for multi-server jobs. Multi-server jobs are covered later in this
chapter.

If you’re adding a job using the sp_add_job stored procedure, you will also need to ensure that the job
can run on the server by using the sp_add_jobserver stored procedure. If the job is going to run on the
local server, all you need to define is the job either by job_id or job_name, as in the following example:

EXECUTE msdb.dbo.sp_add_jobserver
@job_name=’Poor Performers Report’;

326



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 327

Chapter 8: Automating Administrative Tasks

So, now you have two new jobs available to your SQL Server Agent Service. Neither job has any steps
defined, so running them won’t accomplish anything, other than receiving a failure message. (But hey,
if that’s what you’re after, go for it.) Before adding steps to your jobs, take a look at how to manage job
categories.

Categories
The easiest and preferred method for managing job categories is through SQL Server Management Stu-
dio. Although you could directly edit the syscategories table, it’s not recommended. You can add new
categories and delete user-created categories. Be aware that you cannot delete built-in categories. In this
example, you will add a new category called AW–Performance Tasks.

Try It Out Creating a New Category

1. From Object Explorer, expand your server, and then expand SQL Server Agent.

2. Next, right-click Jobs, and select ‘‘Manage Job Categories.’’

3. In the Manage Job Categories window (see Figure 8-24), click Add.

Figure 8-24: Manage Job Categories screen.

4. For the category name, enter AW–Performance Tasks.

5. Check the box next to ‘‘Show all jobs.’’

6. Check the box in the row for the Poor Performers Report job.

7. Click OK.

8. Click Cancel to close the Manage Job Categories window.

You have now successfully created the AW–Performance Tasks category and added the Poor Performers
Report job to it. This category will now be available for any new jobs you want to create.

327



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 328

Chapter 8: Automating Administrative Tasks

Creating Job Steps
Now that you have a couple of jobs you can work with, add some simple steps to these jobs. Before doing
this, though, take a look at the different types of job steps you can define, as shown in the following table:

Step Type Description

Windows Executable (CmdExec) This will run Windows executable code, including files
with the following extensions: .exe, .bat, .cmd, .com. For
fully automated tasks, the executable may contain
command-line parameters that can be passed to control
execution.

Transact-SQL Any T-SQL script that will execute in the context of the
job owner if not otherwise specified. The Transact-SQL
script can contain multiple batches and can include
executing stored procedures.

ActiveX Script Can use any language supported by the Windows
Scripting Host. Common examples use VBScript and
JavaScript. The script itself is written into the job task.

Replication Used to initiate replication agents for the different
replication types. Chapter 16 introduces replication and
the function of these agents.

Analysis Services Can be either command steps or queries.

Integration Services Can execute a SQL Server Integration Services (SSIS)
package. For more information about SSIS, see
Chapter 13.

For each job step type, you can identify one or more proxy accounts that can be used to execute that step
type, in case the owner of the job, or the login under which the job is run, does not have permissions
to execute that type of task. It allows you to let users run jobs that contain steps that they would not
be able to run under their own credentials. You learn about creating and managing proxies later in this
chapter.

This first example uses SQL Server Management Studio again to edit the properties of the Simple Backup
job. You’re going to add a Transact-SQL step that will perform a full backup of the AdventureWorks2008
database onto the local disk. Before beginning, you should create a folder called dbBackups on your
C: drive.

1. From Object Explorer, expand your server, and then expand SQL Server Agent.

2. Expand Jobs.

3. Right-click ‘‘Simple Backup,’’ and select Properties.

328



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 329

Chapter 8: Automating Administrative Tasks

4. Under the ‘‘Select a Page’’ list, select Steps.

5. Click on the New button.

6. In the ‘‘Step Name’’ box, enter AdventureWorks2008 Backup.

7. In the Type dropdown list, ensure that Transact-SQL is listed.

8. Leave ‘‘Run as’’ empty.

9. Ensure that master is the selected database.

10. Enter the following code in the command window:

BACKUP DATABASE AdventureWorks2008 TO DISK = ‘C:\dbBackups\AWFull.bkf’;

11. Click OK to close the New Job Step window.

12. Click OK to close the Job Properties window.

13. In the SQL Server Management Studio Note, it informs you that the last step will be changed
from ‘‘Go to Next Step’’ to ‘‘Quit with Success.’’ Click Yes.

You have now created a simple job step. Feel free to enable the job by right-clicking on the job and select-
ing Enable from the context menu. You can also manually run the job at any time, even if it’s disabled,
by right-clicking and selecting ‘‘Start Job.’’ The job should execute with success.

If you go back into the job step properties and look at the Advanced Properties page, you will notice
options to configure how the job responds when this step completes. If the job is successful, you can have
it perform one of the following tasks:

❑ Go on to the next step.

❑ Quit the job reporting success.

❑ Quit the job reporting failure.

❑ Go to Step: (number).

The option to go to a numbered step is only available if you have more than one step in the job. Be careful
about creating cyclical jobs where the first step will go to the next step, and the second step will go to the
first step.

On this page, you can also identify the number of retry attempts and how long (in minutes) the server
should wait between retries. If the job step cannot be completed successfully, you can also define how
the job should behave. You have the same options for defining what to do when the step fails as when it
succeeds.

Also, depending on the type of step being executed, you can define additional options or parameters. For
example, with Transact-SQL steps, you can specify an output file, log the output to a table, and include
output information with the job history. You can also identify who the step should run as.

329



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 330

Chapter 8: Automating Administrative Tasks

sp_add_jobstep
You can use the sp_add_jobstep stored procedure to add steps to an existing job. Using this procedure
allows you to append a step to an existing job or insert a new step between two existing steps. The
following table provides a breakdown of the parameters for sp_add_jobstep:

Parameter Description

@job_id The uniqueidentifier value of the job. You can use this or
job_name to refer to the job to which you are adding the step.

@job_name The display name of the job. Use either this or the job_id, but not
both.

@step_name A display name for the step

@step_id A unique number indicating where this step should be added
into the job step order. If no value is specified, the step_id will
auto-increment by 1. If the value specified already exists, this will
insert this step and increment the step that previously held this
value (and all steps that follow it) by 1.

@subsystem This parameter allows you to identify which subsystem will be
used to interpret the step. The available values are:

ACTIVESCRIPTING — ActiveX script

CMDEXEC — Windows command or executable

DISTRIBUTION — Replication Distribution job

SNAPSHOT — Replication Snapshot job

LOGREADER — Replication Log Reader Agent job

MERGE — Replication Merge Agent job

QueueReader — Replication Queue Reader Agent job

ANALYSISQUERY — MDX or DMX Analysis Services query

ANALYSISCOMMAND — XMLA Analysis Services command

Dts — Integration Services Package

PowerShell — Invokes a PowerShell script.

TSQL — Transact-SQL script. This is the default.

@command The command that will be executed as the job step. The syn-
tax will vary depending on the subsystem used to process the
command.

@additional_parameters This is not implemented but may be used in a future version.

@cmdexec_success_code Value returned by the CmdExec subsystem. Uses int data type,
and the default is 0.

330



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 331

Chapter 8: Automating Administrative Tasks

Parameter Description

@on_success_action Allows you to specify what to do if the step is successful. Use one
of the following values:

1 — Quit with success (default).

2 — Quit with failure.

3 — Go to the next step.

4 — Go to step on_success_step_id.

@on_success_step_id The ID of the step to go to if option 4 is selected above

@on_fail_action The same values as on_success_action except on_success_
step_id is replaced by on_fail_step_id

@on_fail_step_id The ID of the step to go to if option 4 is selected for on_
fail_action

@database_name The database in which a Transact-SQL step will execute. If no
value is specified, the Master database is used. If the step is
an ActiveX script, this can be used to identify the scripting
language.

@database_user_name The user account under which the Transact-SQL step will execute

@retry_attempts The number of attempts a step will make before it fails. The
default is 0.

@retry_interval The number of minutes before retry_attempts. The default is 0.

@os_run_priority This is not available in this version of SQL Server, but may be
implemented in the future.

@output_file_name An external file in which step output is saved. Valid for
Transact-SQL and CmdExec steps.

@flags Options that control output behavior. Uses the following values:

0 — Overwrite output file (default).

2 — Append to output file.

4 — Write T-SQL step output to step history.

8 — Write log to table, overwriting existing history.

16 — Write log to table, appending to existing history.

@proxy_id The ID of a proxy account that will be used for this job step, if
needed

@proxy_name The name of a proxy account that will be used for this job step, if
needed

331



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 332

Chapter 8: Automating Administrative Tasks

There are additional parameters listed in SQL Server Books Online that are identified as ‘‘reserved.’’
Because they are not configured, they are not included in this list.

Now take a look at creating a couple of job steps for the Poor Performers Report job. The first step will
generate an e-mail message that identifies sales employees who have not exceeded their previous year
sales by $200,000 (slackers!). The second step will e-mail an administrator indicating that the job has been
successful:

-- Create the First Step
EXECUTE msdb.dbo.sp_add_jobstep
@job_name = ‘Poor Performers Report’,
@step_id = 1,
@step_name = ‘Send Report’,
@subsystem = ‘TSQL’,
@command = ‘DECLARE @tableHTML NVARCHAR(MAX) ;

SET @tableHTML =
N’’<H1>Lowest Sales Increase</H1>" +
N’’<table border=1>" +
N’’<tr><th>First Name</th><th>Last Name</th>" +
N’’<th>Current Year Sales</th>" +
N’’<th>Previous Year Sales</th>" +

CAST ((SELECT td = pC.FirstName, ‘’’’,
td = pC.LastName, ‘’’’,
td = sP.SalesYTD, ‘’’’,

td = sP.SalesLastYear, ‘’’’
FROM AdventureWorks2008.Sales.SalesPerson AS sP INNER JOIN
AdventureWorks2008.HumanResources.Employee AS hrE ON

sP.BusinessEntityID = hrE.BusinessEntityID INNER JOIN
AdventureWorks2008.Person.Person AS pC

ON hrE.BusinessEntityID = pC.BusinessEntityID AND
hrE.BusinessEntityID = pC.BusinessEntityID

WHERE (sP.SalesYTD - sP.SalesLastYear) < 200000
FOR XML PATH(’’tr’’), TYPE

) AS NVARCHAR(MAX) ) +
N’’</table>’’;

EXECUTE msdb.dbo.sp_send_dbmail
@recipients = ‘’Gregory.House@adventureworks.com’’,
@subject = ‘’First to go...’’,
@body = @tableHTML,
@body_format = ‘’HTML’’;’;

-- Create Step 2
EXECUTE msdb.dbo.sp_add_jobstep
@job_name = ‘Poor Performers Report’,
@step_id = 2,
@step_name = ‘Notify Administrator’,
@subsystem = ‘TSQL’,
@command = ‘EXEC msdb.dbo.sp_send_dbmail

@recipients = ‘’administrator@adventureworks.com’’,
@subject = ‘’Message Sent’’,

332



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 333

Chapter 8: Automating Administrative Tasks

@body = ‘’The Monthly Sales Report has been sent’’,
@body_format = ‘’HTML’’;’;

Now, you must tell the step that you created earlier to go to the next step once the first step has been
completed. For this, use the sp_update_jobstep stored procedure, as follows:

EXECUTE msdb.dbo.sp_update_jobstep
@job_name = ‘Poor Performers Report’,
@step_id = 1,
@on_success_action = 3;

Remember that when on_success_action is set to 3, the step will go to the next step.

Token Replacement
SQL Server 2008 uses tokens in job steps as parameter placeholders. These tokens allow the SQL Server
Agent Service to replace the token with an actual value at run time (this token will not be replaced when
executed as a query in SQL Server Management Studio). This is similar to using a variable within a script
or an application. When writing jobs, consider using some of these tokens to provide accurate reporting
of job status. These tokens can also allow your jobs to be more flexible. The following table provides a list
of tokens supported by the SQL Server Agent Service:

Token Description

$(A-DBN) Database name, used in jobs launched by alerts

$(A-SVR) Server name, used in jobs launched by alerts

$(A-ERR) Error number, used in jobs launched by alerts

$(A-SEV) Error severity, used in jobs launched by alerts

$(A-MSG) Message text, used in jobs launched by alerts

$(DATE) Current date (YYYYMMDD)

$(INST) Instance name. The default instance returns an empty value.

$(JOBID) Job ID

$(MACH) Computer name

$(MSSA) Master SQL Server Agent Service name

$(OSCMD) Prefix for the program used to run CmdExec steps

$(SQLDIR) The SQL Server installation directory

$(STEPCT) The number of times this step has executed, excluding retries. Can be used to
force a multi-step loop to terminate.

$(STEPID) Step ID

$(SRVR) Name of the computer running SQL Server, including the instance name, if any

Continued

333



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 334

Chapter 8: Automating Administrative Tasks

Token Description

$(TIME) Current time (HHMMSS)

$(STRTTM) The time (HHMMSS) the job began executing

$(STRTDT) The date (YYYYMMDD) the job began executing

$(WMI(property)) The value of the property specified by property, when the job is
launched by a Windows Management Instrumentation (WMI) alert

Using Tokens in Job Steps
When SQL Server 2005 Service Pack 1 was released, it significantly changed the way tokens are used
in job steps. Prior to that release, you could simply use a token like a variable, as seen in the following
example:

PRINT ‘The database backup of $(A-DBN) is now complete.’

If your job backed up the AdventureWorks2008 database, the job step would have returned the output:

’The database backup of AdventureWorks2008 is now complete.’

Job steps in SQL Server 2008 require the use of an escape macro to successfully replace the token. The
escape macros are used to prevent parsing errors that may exist because of invalid characters in the data
that replaces the token. For example, if you installed SQL Server to a folder called C:\Finance Department’s
Database and tried to use the $(SQLDIR) token, your job step might fail, believing that the value ended at
the word Department. There are four possible escape macros. The following table lists the escape macros
and their uses:

Escape Macro Usage

$(ESCAPE_SQUOTE(token)) This allows any single quotation mark in the replacement
token string to be replaced by two single quotation marks.

$(ESCAPE_DQUOTE(token)) This escape macro replaces a double quotation mark with
two double quotation marks.

$(ESCAPE_RBRACKET(token)) Use this escape macro to replace a right bracket character
with two right bracket characters.

$(ESCAPE_NONE(token)) This allows the token to be replaced without escaping any
characters. This is designed for backward compatibility.

So, the correct way to use a token is to use the appropriate escape macro when calling the token. For
example, the following will prevent a database name that contains a single quote (which is possible)
from causing the command to end prematurely:

PRINT ‘The database backup of $(ESCAPE_SQUOTE(A-DBN)) is now complete.’

334



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 335

Chapter 8: Automating Administrative Tasks

In SQL Server 2008, because users that have Write permissions on the Windows Event Log can access
job steps that are activated by SQL Server Agent alerts or WMI alerts, use of any token that launched
by an alert is disabled by default. To enable these tokens, you can enable the ‘‘Replace tokens for all job
responses to alerts’’ option in the Alert System page of the SQL Server Agent properties.

Creating Schedules
To automate many of the tasks you need to perform to maintain your SQL Server, you must define sched-
ules for when your jobs run. Schedules, not unlike categories, can be created and managed independently
of the creation and management of jobs. This allows you to use the same schedule for multiple jobs.

Each job can also use multiple schedules. For example, you may create a job that performs a Transac-
tion Log backup. If your operation is not a 24/7 business, you might want to create a schedule so that
the transaction log is backed up more frequently during business hours. Let’s use every 2 hours as an
example. Then, you may want to continue to back up the transaction log after normal business hours,
but because there is less activity after hours, and therefore fewer changes to your database, you could
back up the transaction log every 4 hours. On the weekends, you may want to back up the transaction
logs every 8 hours. Not that you would expect a lot of activity, but if someone comes in to work over the
weekend, you will want to have a backup of any changes.

You can also enable or disable individual schedules as needed. When a schedule is disabled, any job
that uses that schedule will not run under that schedule. However, if a job is configured to use other
schedules, the job will run under those schedules. If the job itself is disabled, it will not run under any
schedule.

Take a look at the tools used to manage schedules. In this first example, you’re going to create a new
schedule for your Simple Backup job that will run the job every weekday at noon:

1. From Object Explorer, expand your server, and then expand SQL Server Agent.

2. Right-click Jobs and select ‘‘Manage Schedules.’’

3. In the Manage Schedules window, click New.

4. In the New Job Schedule window (see Figure 8-25), enter Weekdays–Noon for the schedule
name.

5. Ensure that the schedule type is Recurring, and ensure that the schedule is Enabled.

6. In the Frequency section, make sure that the schedule is set to occur weekly.

7. Select the checkboxes for Monday, Tuesday, Wednesday, Thursday, and Friday.

8. If selected, remove the check in the box next to Sunday.

9. In ‘‘Daily frequency,’’ select the radio button marked ‘‘Occurs once at:’’ and set the time to
12:01:00 PM.

10. Leave the ‘‘Start date’’ as the current date, and ensure that ‘‘No end date’’ is selected.

11. Click OK.

At this point, you can either add the job to the schedule, or you can add the schedule to the job in the
properties. Let’s look at both methods.

335



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 336

Chapter 8: Automating Administrative Tasks

Figure 8-25: New Job Schedule screen.

First, in the Manage Schedules window (which should be open, unless you closed it), you should notice
that the ‘‘Jobs in schedule’’ column for the Weekdays–Noon schedule contains the value 0, which is also
a hyperlink.

1. Click on the number 0 (note that it is a hyperlink) in the ‘‘Jobs in schedule’’ column for the
Weekdays–Noon schedule (see Figure 8-26).

2. In the ‘‘Jobs Referencing a Schedule’’ dialog box, click the checkbox in the Selected column
for the Simple Backup schedule (see Figure 8-27).

3. Click OK. Note that the number of jobs in this schedule has incremented.

4. Click OK to close the Manage Schedules window.

If you want to add the schedule to the job through the Job Properties dialog box, follow these instructions:

1. In Object Explorer, expand the Jobs folder.

2. Right-click on the Poor Performers Report job, and select Properties.

3. Under the ‘‘Select a page’’ section, click Schedules.

4. Under the Schedule list, click Pick (see Figure 8-28).

336



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 337

Chapter 8: Automating Administrative Tasks

Figure 8-26: Manage Schedules window.

Figure 8-27: Jobs Referencing a Schedule.

337



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 338

Chapter 8: Automating Administrative Tasks

Figure 8-28: Picking an existing schedule.

5. A list of available schedules will appear. Select the ‘‘Weekdays–Noon’’ schedule, and
click OK.

6. Click OK to close the Job Properties window.

Note that you can also create a new schedule from this window, as well. One of the benefits of SQL Server
2008, and especially of SQL Server Management Studio, is that you usually have more than one option
for performing a task. Use whichever tool or method best suits your administrative needs.

sp_add_schedule
You can also create new schedules with the sp_add_schedule stored procedure. When you create the
new schedule, you can specify the parameters shown in the following table:

Option Description

@schedule_name Friendly name of the schedule

@enabled The default value of 1 means that the schedule is enabled. A
value of 0 will disable the schedule.

338



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 339

Chapter 8: Automating Administrative Tasks

Option Description

@freq_type Integer value indicating the frequency type of the schedule, using
the following values:

1 — Once

4 — Daily

8 — Weekly

16 — Monthly

32 — Monthly relative to freq_interval

64 — Run when the SQL Server Agent starts.

128 — Run when CPU is idle.

@freq_interval The days the job is executed. See the next table for options. This
option is not used with all freq_type values.

@freq_subday_type Identifies the units for freq_subday_interval, with the following
values:

1 — At the specified time

2 — Seconds

4 — Minutes

8 — Hours

@freq_subday_interval The number of freq_subday_type periods between executions

@freq_relative_interval This value is the occurrence of freq_interval in each month if the
value of freq_interval is 32. Can use the following values:

1 — First

2 — Second

4 — Third

8 — Fourth

16 — Last

@freq_recurrence_factor Number of weeks or months between executions. Used only if
freq_type is 8, 16, or 32. The default is 0.

@active_start_date Date the job can start. This uses the YYYYMMDD format, and the
date must be greater than 19900101. The default is NULL.

@active_end_date Last date the job will run on this schedule. This also uses the
YYYYMMDD format, but has a default of 99991231.

Continued

339



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 340

Chapter 8: Automating Administrative Tasks

Option Description

@active_start_time Time of day on any day between the active_start_date and
active_end_date to start a job. The default is 000000 using a
24-hour HHMMSS format.

@active_end_time Time of day on any day between the active_start_date and
active_end_date to end a job. The default is 235959 using a
24-hour HHMMSS format.

@owner_login_name The name of the login that owns the schedule. By default, the
creator of the schedule becomes the owner.

@schedule_uid uid OUTPUT A uniqueidentifier for the schedule

@schedule_id id OUTPUT The ID for the schedule using an int data type

The following table shows the values of freq_type and options for freq_interval:

Value of freq_type Options for freq_interval

1 No recurrence

4 Every freq_interval days

8 Use one or more of the following values. Add the values together
to allow multiple days to be selected. For example, to specify the
schedule for Tuesday, Wednesday, and Thursday add the values
4 + 8 + 16 for a total value of 24.

1 — Sunday

2 — Monday

4 — Tuesday

8 — Wednesday

16 — Thursday

32 — Friday

64 — Saturday

16 On the freq_interval day of the month

32 Uses one of the following values for monthly relative:

1 — Sunday

2 — Monday

3 — Tuesday

340



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 341

Chapter 8: Automating Administrative Tasks

Value of freq_type Options for freq_interval

4 — Wednesday

5 — Thursday

6 — Friday

7 — Saturday

8 — Day

9 — Weekday

10 — Weekend day

You’ve probably been able to figure out why SQL Server Management Studio is the preferred method
for managing jobs and schedules. But look at an example for creating a new schedule. In this example,
you’re going to create a new schedule that will run the associated job(s) every 8 hours on the weekend.
Some comments have been added to help make sense out of some of the values.

DECLARE @schguid UNIQUEIDENTIFIER
DECLARE @schid INT

EXECUTE msdb.dbo.sp_add_schedule
@schedule_name = ‘Weekend Schedule’,
@freq_type = 8, -- Weekly
@freq_interval = 65, -- Combination of Saturday(64) and Sunday(1)
@freq_subday_type = 8, -- Hours
@freq_subday_interval = 8, -- specifies that the job runs every 8 hours
@freq_recurrence_factor = 1,
@active_end_date = 20101031,
@active_end_time = 235959,
@schedule_uid = @schguid OUTPUT,
@schedule_id = @schid OUTPUT

SELECT @schguid as GUID,@schid as ID

sp_attach_schedule
Creating the schedule will not associate the schedule with any of the jobs you have created, so either you
can go back and use SQL Server Management Studio or you can use the sp_attach_schedule stored
procedure. When you created the schedule from the previous example, it should have returned both the
GUID and the ID of the schedule.

When creating the mapping between a schedule and a job, you can use either the ID or the name
of either element. Note that the schedule_id is an int value for the local ID, and not the
uniqueidentifier GUID.

EXECUTE msdb.dbo.sp_attach_schedule
@schedule_name = ‘Weekend Schedule’,
@job_name = ‘Simple Backup’;

341



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 342

Chapter 8: Automating Administrative Tasks

Creating Operators
Operators are objects that represent a unit of notification for SQL Server Agent jobs and alerts. They
can represent an individual person, or a group. Operators are not associated with database or server
principals, but are exclusive to the SQL Server Agent Service. Earlier in this chapter, you learned how
to configure the SQL Server Agent Service to use either Database Mail or SQL Mail for the alert system.
Whichever one you configured, the SQL Server Agent Service will use that to notify the appropriate
operators.

When you create a new operator, you assign a name to the operator and then define the methods for noti-
fying the operator. Your options for notifying an operator include e-mail, NET SEND using the Windows
Messenger service, and SMTP-enabled pager.

In this example, you create a new operator for the administrator account. This operator will be available
for paging only on the weekend.

1. From Object Explorer, expand your server, and then expand SQL Server Agent.

2. Right-click on the Operators folder, and select ‘‘New Operator.’’

3. In the New Operator window (see Figure 8-29), enter Server Administrator in the Name
field.

Figure 8-29: Creating a new operator.

342



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 343

Chapter 8: Automating Administrative Tasks

4. Ensure that the Enabled box is checked.

5. In the ‘‘E-mail name’’ field, enter administrator@adventureworks.com.

6. Leave the ‘‘Net send address’’ field empty.

7. In the ‘‘Pager e-mail name’’ field, enter admin-pager@adventureworks.com.

8. In the ‘‘Pager on duty schedule,’’ set the following values:

a. ‘‘Friday’’: 5:00:00 PM and 11:59:59 PM

b. ‘‘Saturday’’: 12:00:00 AM and 11:59:59 PM

c. ‘‘Sunday’’: 12:00:00 AM and 11:59:59 PM

9. Click OK to close the New Operator properties window.

If you open the properties of the operator you just created, you will notice there are two additional pages.
The Notifications page displays a list of jobs and alerts that have sent notifications to this operator. The
History page reports the time of the last notification attempt for each notification type.

sp_add_operator
Use the sp_add_operator to create a new operator. You can use the values shown in the following
table:

Parameter Description

@name Name of the operator

@enabled The default value is 1. A value of 0 will disable the operator.

@email_address The e-mail address used to notify the operator

@pager_address The SMTP address of the pager

@weekday_pager_start_time This value marks the time during the week when the SQL
Server Agent will page the operator if necessary. Time is in
the 24-hour HHMMSS format.

@weekday_pager_end_time This value marks the time during the week when the SQL
Server Agent will no longer page the operator. Time is in
the 24-hour HHMMSS format.

@saturday_pager_start_time This value marks the time on Saturday when the SQL
Server Agent will page the operator if necessary. Time is in
the 24-hour HHMMSS format.

@saturday_pager_end_time This value marks the time on Saturday when the SQL
Server Agent will no longer page the operator. Time is in
the 24-hour HHMMSS format.

Continued

343



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 344

Chapter 8: Automating Administrative Tasks

Parameter Description

@sunday_pager_start_time This value marks the time on Sunday when the SQL Server
Agent will page the operator if necessary. Time is in the
24-hour HHMMSS format.

@sunday_pager_end_time This value marks the time on Sunday when the SQL Server
Agent will no longer page the operator. Time is in the
24-hour HHMMSS format.

@pager_days Allows you to indicate the days the operator will be avail-
able for paging. To enable multiple days, simply add the fol-
lowing values:

1 — Sunday

2 — Monday

4 — Tuesday

8 — Wednesday

16 — Thursday

32 — Friday

64 — Saturday

@netsend_address The network address of the operator the SQL Server Agent
will send a message to

@category_name The name of the category for this operator

In this example, you create a new operator that represents the Sales Managers group and enable paging
for the group between 8:00 a.m. and 5:30 p.m.:

EXECUTE msdb.dbo.sp_add_operator
@name = ‘Sales Managers’,
@email_address = ‘Sales.Managers@adventureworks.com’,
@pager_address = ‘Sales.Managers.Pagers@adventureworks.com’,
@weekday_pager_start_time = 080000,
@weekday_pager_end_time = 173000,
@pager_days = 62;

To add the operator to an existing job, you can use the sp_update_job stored procedure. You can use
this to specify that the operator should be notified using any of the defined methods for that operator.
The following example notifies the Sales Managers by e-mail when the Poor Performers Report succeeds,
and pages them if the job fails:

EXECUTE msdb.dbo.sp_update_job
@job_name = ‘Poor Performers Report’,
@notify_email_operator_name = ‘Sales Managers’,
@notify_page_operator_name = ‘Sales Managers’,
@notify_level_email = 1, -- on success
@notify_level_page = 2; -- on failure

344



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 345

Chapter 8: Automating Administrative Tasks

You can also edit the properties of an existing job to notify an operator when a job fails or succeeds, or
both by using the ‘‘When the job completes’’ option. Also on this page, you can configure the job to write
an event to the application log and have the job automatically deleted if one of the completion conditions
is met.

The Fail-Safe Operator
After you have created at least one operator, you can designate an operator as the fail-safe operator. The
fail-safe operator is an operator whose contact information is cached in memory while the SQL Server is
running. This ensures that the operator can still be contacted in case the msdb database becomes unavail-
able. The fail-safe operator can also be notified if the primary operators for a job or alert cannot be
notified. It is defined in the SQL Server Agent properties window. In the Alert System page, there is
a dropdown list allowing you to select an existing operator as the fail-safe operator, and you can use the
checkboxes to determine the methods of notification for this operator.

Creating Alerts
‘‘Danger, Will Robinson, Danger!’’ The term alerts tends to carry such negative connotation. You may
think of loud klaxons going off, the emergency lights turning on, and people shoring up the doors to
keep the zombies out. You know, stuff like that. But alerts in SQL Server 2008 don’t necessarily mean the
end of the world. Alerts can be simply informational, such as letting a manager know that someone on
the sales staff is deleting rows from the Customers table.

Creating alerts consists of three steps:

1. Name the alert. You should use a name that will be descriptive, which may also include
information about the severity of the event that triggered the alert.

2. Define the event or performance condition that will trigger the alert.

3. Identify what this alert will actually do. Will it notify an operator, or will it run a job?

Alerts typically fall into one of three categories:

❑ Event-Based Alerts — These are generated on database- or system-level events. These can be
system-defined, or you can write your own events.

❑ Alerts on Performance Conditions — These use SQL Server Performance counters to indicate
that a threshold value has been met.

❑ WMI Events — You can also create alerts based on WMI events.

SQL Server Event-Based Alerts
SQL Server event-based alerts can be used to execute a task or notify an operator based on a pre-defined
SQL Server event. These events exist as both system-created, usually referring to system-wide activity, or
they can be user-created, allowing you to define conditions within a specific database. Before you create
an alert, you should learn how to create an event.

SQL Server events are defined as an instance of an action being performed or a condition being met.
Although that may sound like a very broad definition, events themselves can be very broad in scope.
SQL Server 2008 has several events already defined for you. In fact, the number of events defined is

345



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 346

Chapter 8: Automating Administrative Tasks

almost 8,900 just for the English language! These events can be generated when a query contains too
many referenced tables, or when an index is corrupted. There is also a mechanism for you to create your
own events that may be system-wide or database-specific, as needed.

Each event is defined with a unique numerical ID, a severity level, the text of the message, and a language
ID number. Severity levels are values between 0 and 25 and are used to categorize the event.

Error messages configured with a severity level of 9 or less will not actually raise a system-level excep-
tion. This comes in handy when you want to create an alert on a SQL Server event, but you don’t want
to throw an exception to the calling application. The following table lists the different severity levels and
what they represent:

Severity Level(s) Description

0–9 Messages with a severity level between 0 and 9 indicate informational
messages that do not raise a system error. SQL Server will treat a
severity level of 10 as a 0.

11 The object or entity does not exist.

12 Indicates that the query does not use locking because of special query
hints. Read operations may result in inconsistent data.

13 Deadlock errors

14 Security errors

15 Syntax errors

16 General errors

17 The SQL Server has run out of resources or has reached an
administrator-defined limit.

18 There is a problem in the database engine, but the statement has been
executed, and the connection has been maintained.

19 A non-configurable limit has been reached, and the current batch has
stopped. Events with a severity level of 19 or higher are automatically
logged.

20 A problem has occurred in the current statement.

21 A problem that affects the entire database has occurred, but the
database may not have been damaged.

22 A table or index has been damaged by a hardware or software problem.

23 The database has been damaged by a hardware or software problem.

24 General media failure

25 User-defined

346



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 347

Chapter 8: Automating Administrative Tasks

Querying the sysmessages catalog view returns a list of all events defined on the server. To create your
own messages that can be used by events, you can use the sp_addmessage stored procedure. When using
sp_addmessage, you can use the values shown in the following table. All values default to NULL unless
otherwise stated. The only required values are @msgnum, @severity, and @msgtext.

Option Description

@msgnum This is the ID number of the message. You must use a value greater than
50,000 for all user-defined messages.

@severity Use an appropriate severity level for this event.

@msgtext This is an nvarchar(255) field that contains the message text. You can use
parameter placeholders such as %d for decimal values and %s for string
values. When the event is raised, these placeholders are replaced with the
actual values.

@lang The language for the message. Each message can be stored for multiple
languages, allowing you to localize the message.

@with_log Use TRUE to have the event logged in the Windows Application log. FALSE
is the default.

@replace Use the value replace if you are overwriting an existing message.

Take a look at an example of the sp_addmessage stored procedure. In this exercise, you create a
simple error message that contains notification information whenever a user adds a row to the
Sales.CreditCard table. In the next step, you’ll create a stored procedure that will insert a row into the
Sales.CreditCard table, and then you’ll execute that stored procedure.

-- Create the message
EXECUTE sp_addmessage
@msgnum = 60001,
@severity = 10,
@msgtext = ‘Credit Card ID #%d has been added by %s as %s’,
@with_log = ‘True’;
GO

-- Create a stored procedure for inserting credit card data that will raise
-- the error
USE AdventureWorks2008;
GO

CREATE PROCEDURE AddNewCreditCard
@CardType nvarchar(50),
@CardNumber nvarchar(25),
@ExpMonth tinyint,
@ExpYear smallint
AS
DECLARE @username varchar(60)
DECLARE @loginame varchar(60)
DECLARE @CreditCardInfo Table(CreditCardID INT)
DECLARE @CreditCardID INT

347



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 348

Chapter 8: Automating Administrative Tasks

SET @loginame = suser_sname()
SET @username = user_name()

BEGIN TRANSACTION
INSERT Sales.CreditCard(CardType,CardNumber,ExpMonth,ExpYear)
OUTPUT INSERTED.CreditCardID
INTO @CreditCardInfo

VALUES (@CardType,@CardNumber,@ExpMonth,@ExpYear);

SET @CreditCardID = (Select CreditCardID FROM @CreditCardInfo)

RAISERROR (60001, 10, 1, @CreditCardID, @loginame, @username)
COMMIT TRANSACTION;
GO

-- Run the stored procedure and return the message
EXECUTE AddNewCreditCard
@CardType=’Veesa’,
@CardNumber=’111187620190227’,
@ExpMonth=’2’,
@ExpYear=’2011’

This should result in the following output:

(1 row(s) affected)
Credit Card ID #19238 has been added by AUGHTEIGHT\Administrator as dbo

Now that you have an event, you should create an alert on that event. In this next exercise, you create an
alert that will use the error message created in the previous example and have a notification sent to the
Sales Managers operator:

1. In Object Explorer, expand SQL Server Agent.

2. Right-click Alerts and select ‘‘New Alert.’’

3. For the name, enter NewCCAlert (see Figure 8-30).

4. Ensure that ‘‘Type’’ is ‘‘SQL Server event alert.’’

5. Select AdventureWorks2008 as the database.

6. Under ‘‘Alerts will be raised based on,’’ select ‘‘Error number.’’

7. Type 60001 for the error number.

8. Switch to the Response page.

9. Select ‘‘Notify Operators.’’

10. Select ‘‘E-mail for Sales Managers.’’

11. Switch to the Options page.

12. Select ‘‘E-mail’’ under ‘‘Include error alert text in.’’

13. Click OK.

348



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 349

Chapter 8: Automating Administrative Tasks

Figure 8-30: Creating a new alert.

The following example shows you how to use the sp_add_alert stored procedure to create a new alert,
and the sp_add_notification stored procedure to associate the alert with operators that will be notified.
Because you cannot have two alerts defined for the same event in the same database, you will need to
delete the ‘‘NewCCAlert’’ you created in the previous step first.

EXECUTE msdb.dbo.sp_delete_alert
@name = ‘NewCCAlert’;

EXECUTE msdb.dbo.sp_add_alert
@name = ‘New Credit Card Alert’,
@message_id = 60001,
@include_event_description_in = 1,
@database_name = ‘AdventureWorks2008’;

EXECUTE msdb.dbo.sp_add_notification
@alert_name = ‘New Credit Card Alert’,
@operator_name = ‘Sales Managers’,
@notification_method = 1;

349



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 350

Chapter 8: Automating Administrative Tasks

The sp_add_alert stored procedure includes a number of options for creating and adding alerts. The
following table identifies all the parameters available, but be aware that, depending on the type of alert
you are creating, not all options will be used, and, in fact, some cannot be used together.

Option Description

@name The name of the alert

@message_id The error number of the alert. Only messages writ-
ten to the application log can cause an alert to be
sent.

@severity The severity level for messages that will generate
the alert. If you specify this option, all messages
with this severity level will issue this alert.

@enabled The default value of 1 enables the alert.

@delay_between_responses The wait period between alert responses in sec-
onds. Raising this value decreases the likelihood of
multiple alerts being generated within a short time.

@notification_message Optional additional message

@include_event_description_in The notification type, if any, the message text
will be included in. The values here are also used
with the sp_add_notification stored procedure.
Adding the values indicates multiple notification
types:

0 — None

1 — E-mail

2 — Pager

4 — Net Send

@database_name Identifies the database for which this alert is active.
If you do not specify a database name, the alert will
be active for all databases.

@event_description_keyword This option uses a pattern match to generate
the alert only if certain keywords or phrases are
present in the error message.

@job_id ID number of a job that will run as a response to the
alert

@job_name Name of a job that will run as a response to the
alert. Use either job_id or job_name, not both.

@raise_snmp_trap The default is 1. Changing the value to 0 will not
raise an SNMP trap message.

350



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 351

Chapter 8: Automating Administrative Tasks

Option Description

@performance_condition Allows you to define a performance condition alert in
the format of ItemComparatorValue:

Item — Performance object or counter

Comparator — Using greater than (>), less than,
(<), or equal to (=)

Value — Numeric value for the counter

@category_name Name of the alert category

@wmi_namespace Namespace used for WMI queries when using WMI
Event alerts

@wmi_query A WQL query for WMI providers that report on health
or state information

Performance Condition Alerts
Performance condition alerts use SQL Server performance objects and counters to allow alerts to be
defined on server or database activity. For example, you can use this to trigger an alert when the number
of transactions per second for the AdventureWorks2008 database rises above a specific value. In this
example, you create an alert that will notify you when the transaction log of AdventureWorks2008 is
above 85 percent full:

1. In Object Explorer, expand SQL Server Agent.

2. Right-click Alerts and select ‘‘New Alert.’’

3. For the name, enter AWXtactLogSpace (see Figure 8-31).

4. Select ‘‘SQL Server performance condition alert’’ as the Type.

5. From the Object dropdown list, select SQLServer:Databases.

6. From the Counter dropdown list, select ‘‘Percent Log Used.’’

7. From the Instance dropdown list, select AdventureWorks2008.

8. From the ‘‘Alert if counter’’ dropdown list, select ‘‘rises above.’’

9. Enter 85 for the value.

10. Switch to the Response page.

11. Select ‘‘Notify Operators.’’

12. Select ‘‘E-mail and Pager for the Server Administrator.’’

13. Click OK.

You’ve now created a new performance alert that will notify an administrator whenever the transaction
log for AdventureWorks2008 grows above 85 percent. Alternatively, you could create a job that would

351



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 352

Chapter 8: Automating Administrative Tasks

back up and truncate the transaction log. For more information about performance objects and counters,
see Chapter 10.

Figure 8-31: Creating a performance condition alert.

WMI Event Alerts
SQL Server 2008 can use WMI to collect events for alerting operators. SQL Server uses the WMI Provider
for Server Events to make the SQL Server an object manageable by WMI. Any event that can generate
Event Notification can be managed by WMI. SQL Server alerts use WMI Query Language (WQL) to
retrieve an event type for a specific database or database object. WQL is similar to SQL, but with exten-
sions specific to WMI. When an alert is created for a WMI Event, the WMI Provider for Server Events
translates a WMI query into an Event Notification. The WMI provider will dynamically create a ser-
vice and queue in the msdb database. The provider reads the data from the queue and returns it to the
application in a managed object format.

To be able to successfully create a WMI Event alert, you must ensure that the WMI Performance Adapter
service is running. The service is set to be started manually, but if you plan to make WMI Event alerts
part of your administrative solution, you may want to configure the service to start automatically. Also,
ensure that Service Broker service is enabled in the msdb database, as well as any databases that you will
be managing through WMI.

352



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 353

Chapter 8: Automating Administrative Tasks

WMI is a very powerful and complex tool, and with it, there are several different Data Definition Lan-
guage (DDL) and trace events that you can watch for with WMI alerts. I recommend reading the topic
entitled ‘‘WMI Provider for Server Events Classes and Properties’’ in Books Online for a list of avail-
able events.

Creating Proxies
SQL Server Agent properties allow you to execute specific job steps with a different security account.
This allows you greater flexibility over your application and maintenance designs. It also allows you to
create job steps that can be executed by users whose security context would normally prohibit them from
running a task. The benefit of this is that the user who creates the job need only have access to the proxy
account. The user does not need to create credentials or users or be given elevated permissions to execute
a job step. You can create proxies for the following types of job steps:

❑ ActiveX Script

❑ Operating System (CmdExec)

❑ Replication Distributor

❑ Replication Merge

❑ Replication Queue Reader

❑ Replication Snapshot

❑ Replication Transaction-Log Reader

❑ Analysis Services Command

❑ Analysis Services Query

❑ SSIS Package Execution

❑ PowerShell

There is also a folder for creating and managing unassigned proxies. Note that a single proxy can be used
for multiple task types, if needed.

Try It Out Creating a New Proxy
Take a look at the process for creating a new proxy. First of all, proxies use credentials to execute. In
Chapter 6, you learned how to create a new credential, but in case you’ve deleted it or you’re not read-
ing this book from cover to cover, you can create a new credential now. Begin by first creating a new
Windows user:

1. Navigate to the Local Users and Groups folder on your system. This may vary depending on
which Operating System you are using.

2. Expand Local Users and Groups, and select the Users folder.

3. Right-click on the Users folder and select ‘‘New User.’’

4. In the User name box, enter ScriptRunner.

5. Enter P@ssw0rd as the password, and remove the check next to ‘‘User must change password at
next logon.’’

353



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 354

Chapter 8: Automating Administrative Tasks

6. Click Create.

7. Click Close.

8. Close Server Manager (or Computer Manager, depending on your OS).

So, now that you have a new user, create a credential for this user:

1. Go back to SQL Server Management Studio.

2. In Object Explorer, expand your server, and expand Security.

3. Right-click Credentials and select ‘‘New Credential’’ (see Figure 8-32).

Figure 8-32: Creating a new credential.

4. For the name, enter ActiveXProxy.

5. In the identity box, enter AughtEight\ScriptRunner (or use your server and domain name in
place of AughtEight).

6. Enter P@ssw0rd for the Password and ‘‘Confirm password’’ fields.

7. Click OK.

354



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 355

Chapter 8: Automating Administrative Tasks

You now have a new Windows user with an associated credential on your server. Now you can use that
credential to create one or more proxies:

1. In Object Explorer, expand SQL Server Agent.

2. Expand Proxies and select ‘‘ActiveX Script.’’

3. Right-click ‘‘ActiveX Script’’ and select ‘‘New Proxy.’’

4. Enter ScriptRunner as the ‘‘Proxy name’’ (see Figure 8-33).

Figure 8-33: Creating a proxy account.

5. Enter ActiveXProxy as the ‘‘Credential name.’’

6. Ensure that ‘‘ActiveX Script’’ is selected under ‘‘Active to the following subsystems.’’

7. Alternatively, add additional subsystems or use the Principals page to identify SQL Server logins,
server roles, or msdb database roles that can reference this proxy in job creation.

8. Click OK.

355



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 356

Chapter 8: Automating Administrative Tasks

Now that you’ve created a new proxy, let’s see how it can be used in a job step. In this next example, you
add a new step to your Poor Performers Report job that will contain an ActiveX script. It’ll be a fairly
useless script, but ‘‘Hello World’’ always makes for great proof of concept!

EXECUTE msdb.dbo.sp_add_jobstep
@job_name = ‘Poor Performers Report’,
@step_id = 2,
@step_name = ‘Hello World’,
@subsystem = ‘ACTIVESCRIPTING’,
@database_name = ‘VBScript’,
@command = ‘Sub main()

Print ("Hello World.")
End Sub’,

@on_success_action = 3,
@proxy_name = ‘ScriptRunner’;

Now that this has been added, you can execute the job and review the job history to see the successful
execution of the script as the ScriptRunner.

Multi-Server Jobs
SQL Server also supports the ability to create and manage jobs on one server that can be run on multiple
SQL Servers. This functionality grants you the ability to administer and control multiple servers at once.
This can be beneficial when performing system-level tasks, such as backing up the system databases, or
controlling database-level tasks like replication.

Multi-server jobs are configured by first defining a master server. This master server acts as the source
for all jobs that will be run on multiple target servers (see Figure 8-34). When defining a multi-server
configuration, be aware that although you can enlist multiple target servers on which remote jobs will
run, not every multi-server-enabled job will run on all target servers. In fact, you can specify which
target servers a multi-server job will run. The downside to this is that each target server can only have
one master server. Plan your multi-server job configuration carefully.

There are a few things you need to know about setting up multi-server jobs:

❑ Jobs running on multiple servers that have steps running under a proxy account use the proxy
account on the target server. Ensure that you have a proxy server on both the master and target
servers that has the same access and permissions.

❑ Each target server can have only one server for all jobs.

❑ If you are going to change the name of a target server, you must remove it from the master
server, through a process known as defecting, and then re-enlist it after the name change.

❑ When removing a multi-server configuration, first defect all target servers before decommission-
ing the master.

To create multi-server jobs, you must first define the master servers and the target server. You can begin
by running the Master Server Wizard in SQL Server Management Studio:

1. In Object Explorer, right-click ‘‘SQL Server Agent,’’ and select ‘‘Multi Server Administra-
tion,’’ then ‘‘Make this a Master.’’ The Wizard begins with an introductory page that informs
you of the steps that will be taken in this Wizard.

356



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 357

Chapter 8: Automating Administrative Tasks

Master Server
MSJob 1
MSJob 2

MSJob 1
MSJob 2

MSJob 2

Target 3

Jo
b C

on
fig

Jo
b 

Co
nf

ig

Jo
b S

tat
us Job Status

Job Status

Job Config

MSJob 1

Target 2

Target 1

Figure 8-34: Multi-server configuration.

2. The next step creates an MSXOperator account. This operator is used to send information
about multi-server jobs. You can provide an e-mail address, pager address, and NET SEND
address for message delivery.

3. Then, you will specify at least one server that will be identified as a target server. SQL Server
2008 includes a compatibility check to ensure that the target server will work with the master
server.

4. The final step identifies the credentials that will be used to establish authentication and
authorization between the two servers. As a best practice, you should use Windows Active
Directory domain accounts for the SQL Server Agent service on your master server and
all target servers, so that the accounts use the benefit of Active Directory security without
having to create duplicate accounts on the servers. If the login for MSXOperator does not
exist on the target server, the Wizard will ask you if you want to create it.

Once this has completed, the Wizard will perform the following tasks:

❑ Create the MSXOperator.

❑ Ensure that the SQL Server Agent Service is running on the master server.

❑ Ensure that the SQL Server Agent Service account on the target server has rights to log in as a
target server.

❑ Enlist the target server into the master server.

Once the Wizard has completed successfully and the server is configured as a master server, you can
create new jobs that will run on the local server, remote servers, or both. You will also be able to go back

357



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 358

Chapter 8: Automating Administrative Tasks

into an existing job, and specify that job will run as a multi-server job. You can then select on which
servers the job will run. This is managed in the Targets property sheet.

Maintenance Plans
SQL Server Management Studio includes a very robust platform for creating and managing maintenance
plans. Plans can be created with a wizard or manually with the Maintenance Plan Designer. Mainte-
nance plans are actually created as Integration Services packages. To create and use Maintenance Plans,
Integration Services must be installed.

Maintenance Plan Wizard
Microsoft SQL Server 2008 includes a wizard for checking database integrity, as well as running tasks that
help reorganize the data and re-index the data. As you step through the Wizard, you are asked to choose
which tasks to perform, and then you will provide the configuration options for each task, including
which databases to perform the tasks on. The available tasks include the following:

❑ Checking database integrity

❑ Shrink the database

❑ Reorganize indexes

❑ Rebuild indexes

❑ Update statistics

❑ Clean up history

❑ Executing a SQL Server Agent job

❑ Backing up databases using full, differential, or transaction log backups

Once you’ve specified which options to include and configured them in your maintenance plan, you can
schedule the job to run on a recurring basis. This creates a job that will execute an Integration Service
package, which contains each of the steps defined in the maintenance plan. You can execute the mainte-
nance plan from the Maintenance Plan folder under the Management node in Object Explorer, or simply
execute the job that was created. You can also modify the maintenance plan at any time, and add or
remove tasks as needed.

Maintenance Plan Designer
Although the Wizard is an easy way to create a new maintenance plan, it lacks the flexibility that creating
a plan with the Designer provides. To create a new maintenance plan, right-click on the Maintenance
Plans folder in SQL Server Management Studio, and click ‘‘New Maintenance Plan.’’

In the resulting New Maintenance Plan dialog, enter a name in the Name field and click OK. This will
launch the Maintenance Plan Designer, which is based on Integration Services (see Figure 8-35).

358



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 359

Chapter 8: Automating Administrative Tasks

To create a maintenance plan, drag the desired tasks from the Toolbox onto the design surface. Once the
task is on the surface, you can either double-click on the task or right-click on the task and then select Edit
from the context menu to configure the task’s properties. Additional tasks can be added to the Designer
and joined by precedence constraints. Each task added is configured with a Success constraint by default.
However, right-clicking on the constraint (see Figure 8-36) displays a context menu where the constraint
can be configured for Success, Failure, or Completion.

Figure 8-35: Maintenance Plan Designer.

Figure 8-36 shows a Rebuild Index Task configured to rebuild the indexes on the Person.Person
table. This task will execute a Notify Operator task called ‘‘Notify Failure’’ in the event that it fails
and a Backup Database task if it succeeds. The Backup Database task that performs a Full backup of
AdventureWorks2008 will also execute the Notify Operator task if it fails, but it executes the Maintenance
Cleanup Task if it succeeds. The Maintenance Cleanup Task is configured to delete any backup files
more than 4 weeks old, and then to notify an operator that the plan has succeeded if it succeeds, or
notify of failure if it fails.

359



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 360

Chapter 8: Automating Administrative Tasks

Figure 8-36: Maintenance Plan precedent constraints and tasks.

Maintenance plans are configured to run on-demand by default, but they can be configured with a recur-
ring schedule by clicking the ellipses to the right of the Schedule field and setting the properties of the
schedule in the resulting schedule screen.

Best Practices
Here are some guidelines that can help you automate administration of your servers:

❑ Use Database Mail instead of SQLMail — SQLMail is included for backward compatibility
only, and its dependence on an extended MAPI client and server configuration can make it more
cumbersome than it’s worth.

❑ Configure Database Mail to Use Multiple Accounts and Multiple SMTP Servers for Each Pro-
file — This will help increase the ability to deliver messages to the appropriate operators and
personnel.

❑ Configure the SET TRUSTWORTHY ON and ENABLE_BROKER Options for the msdb Database — This
will help ensure that your Event Notification messages and alerts can be delivered to the appro-
priate personnel.

❑ Configure the SQL Server Agent to Start Automatically When Windows Starts, and Configure
Automatic Restart if the Service Fails — This helps ensure that scheduled jobs are able to run in
case the system is accidentally shut down or restarted.

❑ Configure the SQL Server Agent to Use a Domain User Account — This allows you to use sev-
eral features, including the ability to run and control multi-server jobs using a single account, as
well as having better auditing capabilities of how that account is used.

❑ Configure Proxy Accounts with Only the Level of Access Needed to Perform the Tasks They
Were Designed for and Nothing Else — Use the principle of least privilege in all layers of your
administrative model.

360



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 361

Chapter 8: Automating Administrative Tasks

❑ Designate Groups Rather than Individuals as Operators — You can specify the e-mail address
of a group or distribution list rather than an individual user. This gives you the flexibility of
modifying the group membership and, thereby, changing the target delivery without having
to change the job, operator, or notification method.

❑ Use Maintenance Plans to Define a Comprehensive Set of Steps That Will Check the Integrity
of Your Database and Help Resolve Performance Issues — Schedule the maintenance plan to
run regularly, but at a time when it least impacts your users.

Summary
In this chapter, you learned about the different tools that can be used to help automate the management
of SQL Server 2008. Beginning with an introduction to the new Policy-Based Management tools, you
also learned about Central Management Servers. Database Mail is one of the more essential features to
help you administer your server, in that you can use it for notification of both critical and non-critical
server events. Its flexibility in its ability to use any standard SMTP server allows you to provide a robust
solution without incurring some of the costs of a large-scale enterprise mail solution. You were also
introduced to the topic of Event Notifications, which can provide you with an alternative method of
receiving notifications of system or database events.

Finally, you got an exhaustive look at the elements of the SQL Server Agent, including administrative
tools for managing jobs, schedules, operators, alerts, and proxy accounts. In the next few chapters, you are
going to learn about different tools and resources to manage the SQL Server environment. This chapter
should serve as a building block for the materials from the next chapters, in that you should be able to
take the concepts you’ve learned here and apply them to backing up your databases, covered in Chapter
9, and performance monitoring and optimization, which are covered in Chapters 10 and 11.

361



Leiter c08.tex V3 - 03/25/2009 12:01pm Page 362



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 363

9
Disaster Prevention and

Recovery

‘‘There are two things that every database administrator can’t live without. The first is an effective
backup and restore plan. The second is an up-to-date résumé. If you have the first, you may never
need the second, but if you don’t have the first, sooner or later the résumé will be critical to your
future employment.’’ I give that speech to every group of database administrators that I address,
and I address a lot of them. It is a fact that disks fail and data gets corrupted. We have all probably
suffered from some form of data loss that could have been prevented if the data had been properly
backed up. As the individual responsible for the stability and integrity of the organization’s data,
the database administrator must be diligent and meticulous about planning a database backup
strategy so that in the event of equipment failure, user error, or intentional data corruption, the
database can be returned to service in as short as time as possible with minimal loss of data.

This chapter is about the mechanics of database backup and recovery, with a little bit of strategy
thrown in for good measure. I will try not to give specific recommendations since no cookie-cutter
recommendation will work for each situation. It is up to you as the database administrator to exam-
ine all possible backup and restore operations and come up with a plan that will prevent data loss
and minimize downtime. There are people counting on you, and the very organization that you
work for may succeed or fail because of your efforts. It is a pretty heavy responsibility to bear, but as
more and more line-of-business applications are built on top of SQL Server, it is a very real respon-
sibility. So take a deep breath, and learn all that you can about disaster prevention and recovery to
ensure that you are always the hero and never the person to blame for lost data.

Chapter Preparation
The AdventureWorks2008 database is a fairly large sample database. To reduce the amount of time
and disk space required to practice the examples in this chapter, we’re first going to create a
smaller version of AdventureWorks2008. The following script creates a database called SmallWorks
made up of a Primary filegroup and two additional filegroups with one data file each. It then
creates a table in each filegroup and populates it with data from the AdventureWorks2008 database.
The last action of the script is to set the Read Only attribute on the second user-defined filegroup.
The script assumes the existence of the C:\SQLData path.



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 364

Chapter 9: Disaster Prevention and Recovery

CREATE DATABASE SmallWorks ON PRIMARY
( NAME = ‘SmallWorksPrimary’
, FILENAME = ‘C:\SQLData\SmallWorks.mdf’
, SIZE = 10MB
, FILEGROWTH = 20%
, MAXSIZE = 50MB)
, FILEGROUP SWUserData1
( NAME = ‘SmallWorksData1’
, FILENAME = ‘C:\SQLData\SmallWorksData1.ndf’
, SIZE = 10MB
, FILEGROWTH = 20%
, MAXSIZE = 50MB)
, FILEGROUP SWUserData2
( NAME = ‘SmallWorksData2’
, FILENAME = ‘C:\SQLData\SmallWorksData2.ndf’
, SIZE = 10MB
, FILEGROWTH = 20%
, MAXSIZE = 50MB)
LOG ON

( NAME = ‘SmallWorks_log’
, FILENAME = ‘C:\SQLData\SmallWorks_log.ldf’
, SIZE = 10MB
, FILEGROWTH = 10%
, MAXSIZE = 20MB)
GO
USE SmallWorks
GO
ALTER DATABASE SmallWorks
MODIFY FILEGROUP SWUserData1 DEFAULT
GO

CREATE TABLE dbo.Person(
PersonID int NOT NULL

, FirstName varchar(50) NOT NULL
, MiddleName varchar(50) NULL
, LastName varchar(50) NOT NULL
, EmailAddress nvarchar(50) NULL
) ON SWUserData1

CREATE TABLE dbo.Product(
ProductID int NOT NULL

, ProductName varchar(75) NOT NULL
, ProductNumber nvarchar(25) NOT NULL
, StandardCost money NOT NULL
, ListPrice money NOT NULL
) ON SWUserData2

INSERT dbo.Person
(PersonID, FirstName, MiddleName, LastName, EmailAddress)
SELECT DISTINCT TOP 5000

P.BusinessEntityID

364



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 365

Chapter 9: Disaster Prevention and Recovery

, P.FirstName
, P.MiddleName
, P.LastName
, LOWER(P.FirstName + ‘.’ + P.LastName + ‘@adventureworks.com’)

FROM AdventureWorks2008.Person.Person P
INNER JOIN AdventureWorks2008.Person.EmailAddress E
ON P.BusinessEntityID = P.BusinessEntityID
WHERE P.FirstName NOT LIKE ‘%.%’
ORDER BY P.BusinessEntityID

INSERT dbo.Product
(ProductID, ProductName, ProductNumber, StandardCost, ListPrice)
SELECT ProductID

, Name
, ProductNumber
, StandardCost
, ListPrice

FROM AdventureWorks2008.Production.Product

ALTER DATABASE SmallWorks MODIFY FILEGROUP SWUserData2 READONLY

Database Recovery Models
SQL Server has three possible recovery models; however, only two are meant for regular use — the
Simple and Full recovery models. The third recovery model, Bulk-Logged, is designed to be an adjunct
to the Full recovery model. Each recovery model has its advantages and disadvantages. It is absolutely
critical that you have a complete understanding of each model so that you can make an informed and
appropriate decision as to what recovery model to operate each database in. Recovery models change the
behavior of the transaction log, what backups can be performed, and how data is recovered.

Full Recovery Model
In the Full recovery model, all activity that affects the database is logged in the transaction log in some way
or another. Some events are minimally logged, like the TRUNCATE TABLE command, which completely
clears the contents of a table. When the TRUNCATE TABLE command is executed, SQL Server logs only
the de-allocation of the data pages affected by the truncation. However, all regular database activity is
fully logged, including the rebuilding of indexes, bulk copy, SELECT INTO, BULK INSERT, and BLOB (Binary
Large Object) updates. The advantage of this full logging is that every transaction can be recovered in
the event of a failure. You never have to worry about a lost transaction due to loss of a data file. With the
loss of the actual transaction log, all transactions since the last CHECKPOINT would be lost.

The disadvantage of the Full recovery model is the same as the advantage: Almost everything that
affects the database is fully logged. As a result, the transaction log can fill up very quickly. If it is set
to auto-grow, it can also get very large, very quickly. When the database is set to Full recovery model,
it is imperative that an effective plan for backing up the transaction log on a regular basis be developed
and implemented. Backing up the transaction log clears it of all old transactions and makes room for
new ones.

365



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 366

Chapter 9: Disaster Prevention and Recovery

In the Full recovery model, the transaction log contains a record of all the modifications made to the
database since the last BACKUP LOG event. It can be used to recover those transactions, as described later
in this chapter.

Bulk-Logged Recovery Model
The Bulk-Logged recovery model, as previously noted, is an adjunct model to the Full recovery model. There
are times when the full logging behavior of the Full recovery model can be detrimental to performance
and cause unacceptable log file-growth. In these situations, the database can be configured to minimally
log bulk operations by changing the recovery model to Bulk-Logged. In the Bulk-Logged recovery model,
the following database operations are minimally logged:

❑ Index Creation

❑ Index Rebuild

❑ Bulk Copy operations

❑ BULK INSERT

❑ SELECT INTO

❑ BLOB operations

Minimal logging means that the operations listed are logged as having occurred, but the individual rows
affected are not logged. In addition to the record of the operation being logged, a record of the phys-
ical extents allocated or affected by the operation is recorded in the transaction log. During the next
BACKUP LOG event, the affected physical extents are copied to the log backup. Bulk-Logged recovery
keeps the log smaller by minimally logging data-intensive operations, but the log backups can actually
be larger. Because the log backups rely on the physical data being intact during the log backup, if the
disks are damaged or unavailable, the log backup will fail.

In Bulk-Logged recovery, the transaction log contains a record of all the fully logged modifications made
to the database and the identification of changed extents modified by minimally logged operations since
the last BACKUP LOG event. Like the transaction log in the Full recovery model, the transaction log in
Bulk-Logged recovery is available to restore transactions in the event of a database failure.

Simple Recovery Model
In the Simple recovery model, the inactive portion of the log is truncated every time SQL Server issues
a checkpoint. As explained in Chapter 4, Checkpoints are issued periodically by SQL Server to keep
the amount of time necessary to recovery a database to a minimum. The inactive portion of the log is
essentially the portion of the log from the oldest open transaction to the end of the log.

The Simple recovery model has the advantage of decreasing the administrative overhead of transaction
log management. Because the inactive portion of the log is basically cleared after every Checkpoint, the
log, if planned appropriately, should never grow and should never need to be managed. However,
the transaction log cannot be backed up and used for data recovery since it does not have a complete
record of all the transactions that have modified the database.

366



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 367

Chapter 9: Disaster Prevention and Recovery

SQL Server 2008 Database Backup
For years I stated that the best part of native SQL Server backups is the price of the backup software,
which is free. Other than the price, however, native SQL Server backups offered little in the area of
performance and flexibility that most enterprise database administrators needed. As a result of this
shortcoming, several third-party software vendors created excellent backup software that would back up
SQL Server databases up to 10 times faster than the native utility while compressing and encrypting the
backup at the same time. With the release of SQL Server 2008, Microsoft has significantly improved the
native backup system so that it now adds some exciting new features to database backup routines. The
first is that SQL Server 2008 backups are faster than those of previous editions. The speed is made even
more impressive by the fact that SQL Server 2008 also provides the ability to compress the backups and
that compressed backups are even faster than non-compressed backups. On my copy of SQL Server 2008,
a backup of the AdventureWorks2008 database takes 6 seconds when using compression and 9 seconds
without. SQL Server 2008 provides the ability to encrypt backups as well.

SQL Server 2008 backups can be performed during normal database activity. There is no need to discon-
nect users or shut down any services. Backups can be sent to disk or tape. To send backups to tape, the
tape device must be locally attached to the Database Server. This limitation can be overcome by using
third-party products or mounting the tape device on a SAN that presents the drive as a logical disk
device.

Disk destinations are identified by a physical or Universal Naming Convention (UNC) location as the
following examples illustrate:

--Full database backup of SmallWorks to a drive location
BACKUP DATABASE SmallWorks
TO DISK = ‘D:\SQLBackups\FullSmallWorks.BAK’
WITH DESCRIPTION = ‘SmallWorks DB Full Backup’

--Full database backup of SmallWorks to a UNC location
BACKUP DATABASE SmallWorks
TO DISK = ‘\\AUGHTEIGHT\SQLBackups\FullSmallWorks.BAK’
WITH DESCRIPTION = ‘SmallWorks DB Full Backup’

Backup Devices
Tape or disk locations can be mapped to a backup device. A backup device is an alias to the disk or tape
location. The only real advantage of backup devices is that they make the syntax of the backup command
simpler. However, since the backup devices are usually created once to hold many backups, the device
name will typically be less descriptive than is usually desired.

The following example shows how to create a backup device and then back up the Master database to it:

--Create a device for backups of the Master database
sp_addumpdevice ‘Disk’

, ‘MasterDBBackups’
, ‘D:\SQLBackups\masterDB.Backups.BAK’

--Backup the Master database to the new device

367



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 368

Chapter 9: Disaster Prevention and Recovery

BACKUP DATABASE Master TO MasterDBBackups
WITH DESCRIPTION = ‘Master DB Full Backup’

Backup devices can also be created graphically by expanding the Server Objects node in Object Explorer
of SQL Server Management Studio, right-clicking on ‘‘Backup Devices,’’ and clicking on ‘‘New Backup
Device.’’

Try It Out SQL Server Database Backups
Regardless of the type of database backup executed, SQL Server performs the following actions:

❑ Logs the BACKUP statement in the transaction log.

❑ Issues a Checkpoint causing all outstanding dirty buffer pages to be written to the disk.

❑ Writes all data pages specified by the FULL, DIFFERENTIAL, FILE, or FILEGROUP backup
options to the backup media.

❑ Writes all data modifications recorded in the transaction log that occurred during the backup to
the backup media.

❑ Logs the completion of the backup in the transaction log.

Back up the Master database by executing the following command in SQL Server Management Studio:

--Full database backup of the Master database
BACKUP DATABASE Master
TO DISK = ‘D:\SQLBackups\FullMaster.BAK’
WITH DESCRIPTION = ‘MASTER DB FULL Backup’

The script performs a Full database backup of the Master database. It assumes that you have a ‘‘D’’
volume and a folder named SQLBackups. The backup command will create designated files, but it will
not create folders.

Databases can also be backed up using the graphical tools provided with Management Studio. To accom-
plish the same results as the previous script, follow these steps:

1. Expand the Databases and then the System Databases nodes in Object Explorer of Management
Studio.

2. Right-click on the Master database, then click Tasks � Back Up to launch the Back Up Database
dialog (Figure 9-1).

3. Click on the Remove button to remove the default backup location.

4. Click on the Add button to specify a new destination for the database backup.

5. In the Select Backup Destination dialog, type in a new destination for the backup such as
D:\SQLBackups\Master.BAK.

6. Click OK to start the backup.

368



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 369

Chapter 9: Disaster Prevention and Recovery

Figure 9-1: The Backup Database dialog.

SQL Server 2008 Backup Types
SQL Server 2008 supports several backup types that can be combined or used independently to create
backup strategies. In this section, we’ll explore the different types, and then in the next section, we’ll
examine the backup options and how to combine the backup types into an effective backup strategy.
Most of the backups are performed the same way using the graphical tools, and the interface is very
intuitive. With that in mind, in the following examples, each backup type will only be accompanied by
the appropriate Transact-SQL to use to perform the backup.

Full Backup
Probably the most common and easy way to implement backups is the Full backup. The Full backup
simply backs up all the data in the database and records all database file locations. SQL Server logs the
beginning of a Full database backup in the transaction log and then records all modifications made to the
database for the duration of the backup in the transaction log. When all the data pages from the database
data files have been transferred to the backup media, SQL Server logs the completion of the backup and

369



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 370

Chapter 9: Disaster Prevention and Recovery

transfers the portion of the transaction log that occurred during the backup to the backup media. Full
backups can be used in any recovery model.

The advantage of the Full backup is that it is exceptionally simple. However, Full backups take longer
than other backup methods and typically result in the same unchanged data being backed up over and
over again along with the new and updated data.

--Full database backup of SmallWorks
BACKUP DATABASE SmallWorks
TO DISK = ‘D:\SQLBackups\SmallWorksFull.BAK’
WITH DESCRIPTION = ‘SmallWorks FULL Backup’

Differential Backup
Differential backups are used to back up only the data that has changed since the last Full backup. Like
the Full backup, the Differential backup also consists of the portion of the transaction log that contains
database modifications that occurred during the backup. Because Differential backups only contain the
extents of data files that have changed since the last Full backup, they take less time to execute than
Full backups. However, each consecutive Differential backup will in most cases become progressively
larger. If just 1 byte of a 64-KB extent is modified, the Differential backup will back up the entire extent.
The Differential backup is available regardless of the database recovery model and requires a base Full
database backup.

--Differential database backup of SmallWorks
BACKUP DATABASE SmallWorks
TO DISK = ‘D:\SQLBackups\SmallWorksDiff.BAK’
WITH DIFFERENTIAL, DESCRIPTION = ‘SmallWorks Differential Backup’

File/Filegroup Backup
When a database is divided across many files and filegroups, these files and filegroups can be backed
up individually. This type of backup is particularly useful for very large databases. File and Filegroup
backups work similarly as Full and Differential backups in that the data pages of the file and then all
transactions made against the file or filegroup are added to the backup media.

--Backup of the "SWUserData1" User-Defined Filegroup
BACKUP DATABASE SmallWorks
FILEGROUP = ‘SWUserData1’
TO DISK = ‘D:\SQLBackups\SmallWorksUserData1FG.BAK’
WITH DESCRIPTION = ‘SmallWorks SWUserData1 Filegroup Backup’
--Backup of the SmallWorks data file "SmallWorksData1"
--The logical name of the file **NOT the physical file name**
BACKUP DATABASE SmallWorks
FILE = ‘SmallWorksData1’
TO DISK = ‘D:\SQLBackups\SmallWorksData1File.BAK’
WITH DESCRIPTION = ‘SmallWorks UserData1 File Backup’

File/Filegroup with Differential
An additional option available when backing up files or filegroups is the ability to perform a Differential
File or Filegroup backup. This option works exactly like the typical Differential backup; only the changes to
the file or filegroup since the last full File or Filegroup backup are captured as well as any changes to the
files during the backup.

370



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 371

Chapter 9: Disaster Prevention and Recovery

--Differential Filegroup Backup of the "SWUserData1" User-Defined Filegroup
BACKUP DATABASE SmallWorks
FILEGROUP = ‘SWUserData1’
TO DISK = ‘D:\SQLBackups\SmallWorksUserData1FGDIFF.BAK’
WITH DIFFERENTIAL, DESCRIPTION = ‘SmallWorks Filegroup Differential Backup’

File and Filegroup backups are only available if the database is in Full or Bulk-Logged recovery model,
with one exception. If a filegroup is marked as Read Only and the database is configured in the Simple
recovery model, then that filegroup can be backed up.

Transaction Log Backup
In Full or Bulk-Logged recovery models, it is imperative that periodic Transaction Log backups are
completed to both maintain the size of the transaction log within reasonable limits and to allow for the
recovery of data with the least amount of data loss.

Transaction Log backups come in three forms: Pure Log backups, Bulk Log backups, and Tail Log
backups.

❑ Pure Log Backup — A Pure Log backup contains only transactions and is completed when the
database is in Full recovery model or Bulk-Logged recovery model, but no bulk operations have
been executed.

--Pure or Bulk Log Backup of SmallWorks
BACKUP LOG SmallWorks
TO DISK = ‘D:\SQLBackups\SmallWorksLog.TRN’
WITH DESCRIPTION = ‘SmallWorks Log Backup’

❑ Bulk Log Backup — Bulk Log backups contain both transactional data and any physical extents
modified by bulk operations while the database was in Bulk-Logged recovery.

❑ Tail Log Backup — Tail Log backups are completed when the database is in Full or Bulk-Logged
recovery prior to a database restoration to capture all transaction log records that have not yet
been backed up. It is possible in some instances to execute a Tail Log backup even if the database
is damaged.

--Tail Log Backup of SmallWorks
BACKUP LOG SmallWorks
TO DISK = ‘D:\SQLBackups\SmallWorksTailLog.TRN’
WITH NO_TRUNCATE, DESCRIPTION = ‘SmallWorks Tail Log Backup’

Partial Backup
A Partial database backup consists of the Primary filegroup, Read Write filegroups, and any Read Only
filegroup specified. The idea behind the Partial backup is that the Primary filegroup, which contains all
the information necessary to bring the database online, and all the filegroups subject to modifications can
be backed up together, leaving the filegroups that do not change to be backed up separately and not as
often, saving both time and backup media space.

BACKUP DATABASE SmallWorks READ_WRITE_FILEGROUPS
TO DISK = ‘D:\SQLBackups\SmallWorksPartial.BAK’
WITH DESCRIPTION = ‘Partial Backup of all Read/Write filegroups’

371



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 372

Chapter 9: Disaster Prevention and Recovery

Copy Only Backup
Copy Only backups can be performed on database files and transaction logs to create a backup without
affecting the chain of backups required to restore a database. They are essentially non-logged backups
that can be used outside the maintenance environment. For instance, if a copy of the database is needed
for test and development, a Copy Only backup can be performed so as not to break the backup chain.
Backup chains are discussed in the ‘‘Restoring Databases’’ section later in this chapter.

BACKUP DATABASE SmallWorks
TO DISK = ‘D:\SQLData\SmallWorksCopyOnly.BAK’
WITH COPY_ONLY, DESCRIPTION = ‘Copy only backup’

Backup Options
As previously described, backups can be sent to either a disk or tape destination. When sent to these
destinations, the choice can be made to compress the database backup. Another possibility for backup
destinations is to send the backups to multiple destinations at the same time. The multiple destinations
can be configured as a stripe of the backup or a mirror.

Backup Stripe
Striping a backup across multiple devices may save time in the backup process since multiple physical
devices are being written to simultaneously. To create a backup stripe, simply add multiple destinations
to the backup command as shown in the following code:

BACKUP DATABASE SmallWorks
TO DISK=’D:\StripedBackupsA\SmallWorksStripe1.bak’
, DISK=’E:\StripedBackupsB\SmallWorksStripe2.bak’
, DISK=’F:\StripedBackupsC\SmallWorksStripe3.bak’

WITH DESCRIPTION = ‘Striped Backup’

Once a stripe set has been created, each file will only accept backups that also include all the members of
the stripe. The three files are now a set made up of three family members. In order to send a backup to
just one of the members, the FORMAT option must be specified. Although the striped backup can improve
performance of the backup, a loss or corruption of any file in the stripe will result in a total loss of the
backup.

Mirrored Backup
I received a call late one night from a colleague who had taken over my position after I had moved on
to another job. He was desperate. He explained to me that their main database server had suffered a
catastrophic failure. They had rebuilt the server and were in the process of restoring from tape when
the tape drive inexplicably decided to devour the tape and the redundant drive I had set up was out of
commission. I listened intently to his story, but in the end I could only respond with ‘‘If you have another
copy of the tape, simply get a different tape drive and restore from the copy. If you don’t have another
copy, restore from the most recent copy you do have and update your résumé.’’

I tell every SQL Server Administration class I teach this story. I do so to highlight the importance of
having redundant backups. It is too easy to feel safe and secure in the knowledge that you are regularly

372



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 373

Chapter 9: Disaster Prevention and Recovery

backing up your data. However, your backups are just as vulnerable as the data that they are ostensibly
protecting. I have encountered many organizations who wouldn’t dream of storing their data on anything
but redundant arrays, yet they back up their critical data to a single device and don’t make copies of it.

In the past, creating redundant backups meant backing the database up and then backing up the backups
or using a hardware solution that mirrored the backups while they were being created. SQL Server 2008
provides the built-in ability to mirror database backups.

Mirrored backups are not supported through the visual tools. The following code demonstrates how to
back up a database to one destination and mirror the entire backup to another destination simultane-
ously. The WITH FORMAT option is required to create a new mirrored backup set.

BACKUP DATABASE SmallWorks
TO DISK=’D:\MirroredBackupsA\SmallWorksMirror1.bak’

MIRROR TO DISK=’E:\MirroredBackupsB\SmallWorksMirror2.bak’
WITH FORMAT, DESCRIPTION = ‘Mirrored Backup’

Compressed Backup
As I mentioned previously, compressed backups actually are faster than non-compressed backups. They
also restore faster. However, this speed does not come without a cost. Compressed backups consume
significantly more CPU resources than non-compressed backups. If your database server is already over-
worked in the area of CPU usage, you may want to avoid compressed backups or schedule them for
low-CPU-usage time periods. The following code demonstrates how to create a compressed backup:

BACKUP DATABASE SmallWorks
TO DISK=’D:\SQLBackups\SmallWorksCompressed.bak’

WITH COMPRESSION, DESCRIPTION = ‘Compressed Backup’

WITH Options
The following table lists and briefly describes each option that can be included in the WITH clause of a
database backup command:

Option Description

BLOCKSIZE = integer Specify a specific block size. If not specified, SQL Server will
attempt to choose a block size that is optimum for the tape or
disk destination.

CHECKSUM | NO_CHECKSUM The CHECKSUM option specifies that SQL Server will validate
any page checksum or torn page information when reading the
page. SQL Server will also generate page checksums that can
be used to validate backups with the RESTORE command. The
CHECKSUM option will decrease the speed and performance of
the backup. The NO_CHECKSUM setting is the default setting and
configures SQL Server to not generate or validate page
checksum data during the backup.

Continued

373



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 374

Chapter 9: Disaster Prevention and Recovery

Option Description

STOP_ON_ERROR |
CONTINUE_AFTER_ERROR

The default setting of STOP_ON_ERROR aborts the backup if a
bad page checksum or torn page is detected during the
backup. The CONTINUE_AFTER_ERROR setting overrides this
behavior, allowing the database to be backed up even if there
are errors in the database.

DESCRIPTION = string A description of the database backup is often useful to identify
the backup media. The description property supports a
description length of 255 characters.

DIFFERENTIAL Specifies that a Differential backup is to be performed on the
associated database or data file/filegroup.

EXPIREDATE = datetime A date specification used to identify when the backup is no
longer required and may be overwritten

RETAINDAYS = integer Specifies the number of days the backup is required. This
option or the EXPIREDATE option is used to control this
behavior.

PASSWORD = string A password can be assigned to a backup so that the password
is required to use the backup during a restore operation. The
password protection is very weak and should not be relied on
to guarantee the security of a backup. The PASSWORD option is
deprecated and will be removed in a future release.

FORMAT | NOFORMAT The FORMAT option is used to create a new backup media set. It
will overwrite any existing media set at the destination.
NOFORMAT is the default setting that would prevent an
inadvertent overwriting of a backup file that was participating
in a backup stripe set.

INIT | NOINIT The default setting of NOINIT specifies that any backups sent to
the destination will be appended to the backup file. INIT
specifies that subsequent backups will overwrite the existing
backup file contents.

NOSKIP | SKIP The NOSKIP default setting configures SQL Server to check the
backup media’s expiration date to prevent inadvertent
overwriting of previous backups. The SKIP setting ignores the
expiration date information

MEDIADESCRIPTION = string A maximum length string of 255 characters used to describe
the backup media

MEDIANAME = string The backup media’s logical name with a maximum of 128
characters

374



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 375

Chapter 9: Disaster Prevention and Recovery

Option Description

MEDIAPASSWORD =
string

Like the PASSWORD option that defines a password for an
individual backup, the MEDIAPASSWORD sets a password on the
backup media set. The MEDIAPASSWORD is also very weak and
should not be relied on for media set security. This option is
deprecated.

NAME = string A maximum length of 128 characters to identify the name of the
backup set

NOREWIND | REWIND This option is only used when the backup destination is specified
as TAPE. The default REWIND option configures SQL Server to
rewind the tape when the backup is completed or the end of the
tape is reached during a backup.

NOUNLOAD | UNLOAD This option is only used with tape backups. The default setting is
UNLOAD, which configures SQL Server to rewind and eject the tape
when the backup is complete. NOUNLOAD overrides this default
behavior and leaves the tape open and mounted.

RESTART This option does absolutely nothing. It does not generate an error
when used and is included to prevent old scripts from previous
releases from failing.

STATS = percentage as
integer

Configures SQL Server to return progress information every time
the specified percentage is reached. The default is 10.

COPY_ONLY COPY_ONLY backups do not affect the transaction log sequence.
These backups cannot be used for a Differential or Transaction
Log backup base.

COMPRESSION COMPRESSION backups average about 80 percent smaller in size
than uncompressed backups. The compression will vary
depending on the type of data stored in the database

NORECOVERY The NORECOVERY option backs up the database and then places it
in the non-accessible ‘‘Restoring’’ mode. This is useful for a last
backup of a database before taking it offline or moving it to a new
location

Backup Strategies
As previously mentioned, the various backup types provided by SQL Server 2008 can be used in different
combinations to create a variety of backup strategies. In this section, we will cover just a few of the more
commonly used backup strategies.

Full Backup Only
The Full backup strategy (Figure 9-2) uses periodic Full database backups with no Log or Differential
backups. It is a very useful and simple strategy but is generally limited to small databases configured in

375



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 376

Chapter 9: Disaster Prevention and Recovery

the Simple recovery model and for system databases. This strategy exposes the database to the risk of
losing one period of data modifications. For example, if the database is backed up every day at 1:00 a.m.
and there is a database failure anytime before 1:00 a.m., the most recent restore point will be 1:00 a.m. of
the previous day. For small databases with very few daily updates, this may be acceptable.

Full

Mon

Full

Tue

Full

Wed

Full

Thu

Full

Fri

Full Backup Strategy

A.M. A.M. A.M. A.M. A.M.

Figure 9-2: Full backup strategy.

Full Backup with Differential
Like the Full backup strategy, the Full backup with Differential (Figure 9-3) is generally limited to
databases configured in Simple recovery model because it does not provide for any management of
the transaction log. However, the addition of a periodic Differential backup makes this backup strategy
more appropriate for slightly larger changing databases where the management of a transaction log is
not desired. Because only data modified since the last Full backup is copied to the backup media, the
periodic Differential backups will be smaller when compared to the Full backups and will take less time
to execute.

Full

Mon

Differential

Tue

Differential

Wed

Differential

Thu

Full

Fri

Full Backup with Differential Strategy

A.M. A.M. A.M. A.M. A.M.

Figure 9-3: Full backup with Differential strategy.

Full Backup with Transaction Log
The disadvantages of the Full and Full with Differential plans are that they expose the database to the
risk of data loss equal to the periodicity of the backup. By introducing Transaction Log backups into the
backup plan (Figure 9-4), this risk is reduced dramatically. However the management of transaction logs
introduces more complexity to the administration of database files. As previously discussed, when the
database is not in Simple recovery model, the transaction log must be periodically backed up to prevent
it from growing too large and filling up. The alternative method of maintaining the log is to periodically
clear it, but this is strongly discouraged as described later.

In the event of a database failure, the database can be restored up to the moment of failure by performing
periodic Transaction Log backups between Full backups. The number of log backups and the periodicity
of the backups depend on how busy the database is and what the acceptable degree of data loss is. In

376



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 377

Chapter 9: Disaster Prevention and Recovery

a worst case scenario, both the database and the transaction log could be lost. If that is the case, then
like the Full and Differential backup plans, the database can only be restored to the end of the previous
Transaction Log backup. However, if only the data files are damaged, the database backup, log backups,
and online log can be used to restore the database to the moment of failure.

Full

Mon Mon Mon Mon

Full

Tue

Full with Log Backup Strategy

Mon

A.M. A.M. P.M. P.M. P.M. A.M.

Figure 9-4: Full with Log backup strategy.

Because Transaction Log backups are typically smaller and faster, they can be scheduled to occur as
often as necessary. It is not uncommon to see Transaction Log backups scheduled for every 10 minutes
on databases that are subject to very frequent modifications.

Full and Differential Backup with Transaction Log
The disadvantage of performing several Transaction Log backups between Full backups is that in order to
restore a database, the Full backup and all the logs must be sequentially restored. This can be burdensome
if there are a large number of log backups to restore. To minimize this issue, a Differential backup (Figure
9-5) can be performed to capture all the changes to the database since the last Full backup. To restore the
database, the log backups between the Full and the Differential can be ignored.

Full

Mon Mon Mon Mon

Full

Tue

Full and Differential with Log Backup Strategy

Mon

A.M. A.M. A.M.

Mon

P.M. P.M. P.M. A.M.

Differential

Figure 9-5: Full and Differential with Log backup strategy.

File and Filegroup Backup
With very large databases, it is sometimes more efficient to back up the database in slices. This offers a
great deal of flexibility in the backup plan, but it also introduces a proportionate increase in the complex-
ity of the backup plan. Database data files and filegroups can be backed up and restored individually,
enabling the administrator to avoid a time-consuming and unnecessary restore of a large database in its
entirety. This method is especially useful if some of the filegroups contain Read Only data. These file-
groups can be backed up once and then recovered later in the event of a failure with no loss of interim
data. For example, a production database is comprised of four 25-GB filegroups. One of the filegroups

377



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 378

Chapter 9: Disaster Prevention and Recovery

contains tables that are updated about once every three months. The other three contain transactional
data that is updated on a regular basis. The first filegroup can be configured as Read Only and backed
up. The remaining three can be backed up on a rotating basis interspersed with Transaction Log backups,
as Figure 9-6 illustrates.

Mon Mon MonMon Tue Wed

File/Filegroup Backup Strategy

TueTue

A.M.

Full

Mon

A.M. P.M. P.M.A.M.

Tue

A.M. P.M.A.M.P.M. A.M.

RO
File

Group

File
Group 

1

File
Group 

2

Figure 9-6: File/Filegroups backup strategy.

Filegroup with Differential
If the Filegroup strategy still backs up too much data that does not change, a File or Filegroup backup
can be combined with a File or Filegroup Differential backup. This way only the changes to the respective
file or filegroup will be backed up. However, since the straightforward File/Filegroup backup increases
complexity, adding a Differential backup to the mix will complicate things even more, and this strategy
will require a great deal of planning and maintenance.

Partial Backup
As previously described, the Partial backup (Figure 9-7) backs up the Primary filegroup and all
READ_WRITE configured filegroups by default. In addition, any READONLY configured filegroups can be
added to the backup set by specifying them in the BACKUP statement. The purpose behind this strategy is
to back up the Read Only filegroups once and then to periodically backup only the filegroups subject to
modification.

Mon Mon MonMon

Partial Backup Strategy

A.M.

Mon

A.M. P.M.A.M.

Tue

A.M.P.M.

RO
File

Group
RW File
Groups

RW File
Groups

Figure 9-7: Partial backup strategy.

Backup Summary
As you can see, there are quite a few different ways to combine backup types to develop an appropriate
backup strategy. Each backup type has its advantages and disadvantages. I wish I could give a prescrip-

378



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 379

Chapter 9: Disaster Prevention and Recovery

tive guide to backing up your databases, but I can’t. Each environment is unique, from the size of the
database and number of transactions per hour to the disk subsystem supporting the database. It is crit-
ically important to develop a backup strategy that mitigates the risk of data loss while at the same time
allowing for a realistic and effective data recovery strategy.

Restoring Databases
I have met with many database administrators who were shocked to discover that their database backup
plan did not lend itself to a problem-free recovery. If having an effective backup plan is critical, then
having an effective restoration plan is even more critical. SQL Server is very lenient in allowing different
backup types at different times, but it is a bit pickier about how those backups are restored. The critical
issue in most restoration plans is the sequence of backups. This section will describe the restore process,
how to prepare a database for restoration, and how to restore databases backed up using the strategies
outlined previously.

Restore Process
The restore process is made up of three phases: the Data Copy phase in which data pages are copied from
the backup media to the data file(s); the Redo phase in which the record of committed transactions is
restored from a log backup or the log portion of a database backup; and finally, the Undo phase in which
uncommitted transactions are rolled back from a log backup or the log portion of a database backup.

The Data Copy and Redo phases can span multiple backups. For example, a database is backed up with
a Full backup, followed by a Differential backup and then a Transaction Log backup. To restore the
database to its most recent state would require restoring the Full backup and then the Differential backup
as part of the Data Copy phase. The log portion of the Differential backup would begin the Redo phase,
followed by the committed transactions in the Transaction Log backup. After all committed transactions
are reapplied to the database, the Undo phase begins in which all uncommitted transactions are rolled
back and the database is brought online.

Each phase is linked to the next. If any backup is missing from the sequence, the process stops at the
end of the backup preceding the missing sequence. Figure 9-8 illustrates a lost or corrupted log backup.
Even though there are an additional two good log backups, they cannot be used because the effects of the
transactions recorded in the 12:01 p.m. Transaction Log backup are unknown. The database can only be
restored to the end of the 9:00 a.m. Transaction Log backup.

Full

Mon Mon Mon Mon

Missing Backup

Mon

A.M. A.M. P.M. P.M. P.M.

Figure 9-8: Missing backup.

379



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 380

Chapter 9: Disaster Prevention and Recovery

Delaying Recovery
When restoring a sequence of backups such as a Full backup and a series of Transaction Log backups,
the Undo phase and database recovery will have to be delayed so that each additional backup can be
restored. Once a database has been recovered, no additional backups can be applied. To delay recovery,
the option NO RECOVERY must be specified along with the RESTORE DATABASE command.

RESTORE Command
Although databases can be restored effectively with the graphical tools provided in Management Studio,
there are many advanced restore options that are only available by utilizing Transact-SQL. The simplified
RESTORE command syntax is as follows:

RESTORE DATABASE | LOG database_name
[File | FileGroup]
[FROM <backup_media> [ ,...n ] ]
[WITH

[CHECKSUM | NO_CHECKSUM]
[[,] FILE = file_number]
[[,] MOVE ‘logical_file_name’ TO ‘operating_system_file_name’] [,...n]
[[,] RECOVERY | NORECOVERY | STANDBY = standby_file_name]
[[,] REPLACE]
[[,] STOPAT = date_time

]

For simplicity, let’s break down the RESTORE command into its constituent pieces. The first is the actual
RESTORE command, which is typically followed by the argument DATABASE or LOG and then the target
database name. However, the RESTORE command can also be used to expose backup media metadata
and to verify the integrity of a backup set. The following table gives the various RESTORE commands that
expose information about the backup without actually restoring the database. The table is followed by
descriptions of the actual restore process.

Command Description

RESTORE HEADERONLY Exposes information from the backup media such as the name,
description, and type of backup, as well as information about
the backed-up database.

RESTORE FILELISTONLY Exposes the name of the files contained in the backup set.

RESTORE LABELONLY Retrieves media information such as the media name and
description.

RESTORE VERIFYONLY Checks the integrity of the backup media. If the backup set
was created using the CHECKSUM option, the VERIFYONLY
command will read the page checksums as well as check to
make sure that the backup set is readable.

380



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 381

Chapter 9: Disaster Prevention and Recovery

RESTORE DATABASE database_name
Specifies that the restore process is for a database and specifies the name of the target database to restore
to. The database name specified does not need to exist or be the same name as the backed-up database.

FILE
The RESTORE DATABASE database_name statement can be followed by the logical name of a database data
file so that only that file is restored from the backup media. A file can be specified for Full, File, and
Filegroup backups.

RESTORE DATABASE SmallWorks
FILE = ‘SmallWorksData2’
FROM DISK = ‘D:\SQLBackups\SmallWorksFull.BAK’

FILEGROUP
The RESTORE DATABASE database_name statement can also be followed by the name of a database file-
group so that only that filegroup is restored from the backup media. A filegroup can be specified for Full
and Filegroup backups.

RESTORE DATABASE SmallWorks
FILEGROUP = ‘SWUserData2’
FROM DISK = ‘D:\SQLBackups\SmallWorksFull.BAK’

READ_WRITE_FILEGROUPS
The READ_WRITE_FILEGROUPS option only restores those filegroups in the database not marked as Read
Only. This option can be used with Full and Partial backups.

RESTORE DATABASE SmallWorks
READ_WRITE_FILEGROUPS
FROM DISK = ‘D:\SQLBackups\SmallWorksFull.BAK’

PAGE
To recover from Torn Page or checksum errors that identify one or more corrupted data pages, the
RESTORE DATABASE database_name statement can specify the 8-K data page to be restored. The page
restore option requires the file ID and page ID to be passed, as the following example illustrates:

RESTORE DATABASE SmallWorks PAGE = ‘1:14’
FROM DISK = ‘D:\SQLBackups\SmallWorksFull.BAK’

RESTORE LOG database_name
The RESTORE LOG statement specifies that the restore process is for a database transaction log. The backup
must be from a BACKUP LOG process. The restoration of the transaction log must be applied to an
existing database. The first Log Sequence Number (LSN) of the log backup being restored must be the
next consecutive LSN after the last LSN of the previous Log or database backup.

RESTORE LOG SmallWorks
FROM DISK = ‘D:\SQLBackups\SmallWorksLog.BAK’

381



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 382

Chapter 9: Disaster Prevention and Recovery

FROM Options
When restoring a database from either a database backup or a log backup, the RESTORE command expects
a backup media location to be specified in the FROM clause of the RESTORE statement. If no backup media
location is specified, then the recovery operation is executed. During the recovery operation, SQL Server
rolls forward all complete transactions from the existing transaction log and rolls back all incomplete
transactions, as this example shows:

RESTORE DATABASE SmallWorks

With this syntax, the database is recovered in place. This may be necessary if the database is left in a
RECOVERING state but there are no additional backups to be applied.

Other than the recover in place option, the following arguments are valid.

FROM DISK
The FROM DISK = file_location specifies that the backup media resides on one or more physical disks
identified by a drive letter and location or a network location identified by a UNC, as the following code
illustrates:

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackUps\SmallWorksFull.BAK’

RESTORE DATABASE SmallWorks
FROM DISK = ‘\\AughtEight\SQLBackUps\SmallWorksFull.BAK’

FROM TAPE
The FROM TAPE = tape_device specifies that the backup media resides on one or more tapes identified by
a tape UNC, as shown in the following code:

RESTORE DATABASE SmallWorks
FROM TAPE = ‘\\.\tape1’

FROM DATABASE_SNAPSHOT
The DATABASE_SNAPSHOT option specifies that the online database will be restored back to the state it was
in when the specific Database Snapshot was created. Database Snapshots will be discussed at the end of
this chapter.

WITH Clause
After the FROM clause and its arguments comes the WITH clause. The WITH clause of the RESTORE command
has several options. The most commonly used are described in the following sections.

RECOVERY | NORECOVERY
When restoring a database from a sequence of backups, all but the last backup must be restored with
the NORECOVERY option. This allows for additional backups to be applied to the database. The RECOVERY
option completes the Redo/Undo phase of restoration as previously described, making the database
available to client connections and preventing further restore operations. WITH RECOVERY is the default

382



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 383

Chapter 9: Disaster Prevention and Recovery

setting, so it is important to override it until the final backup is being applied. There is no ‘‘UnRecover’’
command that will allow you to restart the restoration process. Once the database is recovered, the entire
restore process must be restarted to apply additional backups. However, if all the available backups
have been applied but the database was not recovered, the RESTORE DATABASE command can be specified
without designating a source for the restore to invoke the recovery process with the current transaction
log.

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksFull.BAK’
WITH NORECOVERY

RESTORE LOG SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksTailLog.BAK’
WITH RECOVERY

STANDBY
The NORECOVERY option leaves the database in a state of recovering and prevents access to the database.
The STANDBY option functions much the same way except it allows for Read Only access to the database.
It does this through the use of a standby file that stores all the Undo information that would normally be
used to recover the database. The STANDBY option allows for a copy of the database to be maintained on
a separate server and periodically updated with additional transaction log restores. This functionality is
at the heart of Log Shipping, which is described in Chapter 12.

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksFull.BAK’
WITH STANDBY = ‘E:\SQLBackups\SmallWorksUndoRollback.DAT’

CHECKSUM | NO_CHECKSUM
The CHECKSUM option specifies that page checksum information is verified before the data is rewritten to
the database during a restore operation. If the backup was not created using the checksum option, the
RESTORE . . . WITH CHECKSUM command will fail. It will also throw an error if any checksum errors are
encountered during the restore process.

BACKUP DATABASE SmallWorks
TO DISK = ‘E:\SQLBackups\SmallWorksCheckSumFull.BAK’
WITH CHECKSUM

--Capture the tail of the log prior to restore operation
BACKUP LOG SmallWorks
TO DISK = ‘E:\SQLBackups\SmallWorksTailLog.BAK’
WITH NO_TRUNCATE

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksCheckSumFull.BAK’
WITH CHECKSUM

CONTINUE_AFTER_ERROR | STOP_ON_ERROR
The CONTINUE_AFTER_ERROR option specifies that the restore operation will continue regardless of errors
found in the backup media. The default setting of STOP_ON_ERROR will cause the restore operation to fail
if any error is encountered.

383



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 384

Chapter 9: Disaster Prevention and Recovery

FILE
One of the more confusing aspects of the RESTORE command is that there is a FILE = option in the RESTORE
clause that specifies a logical filename and another FILE = option in the WITH clause, where an integer
value that represents the backup location in the file is specified. Since multiple backups can be stored in
a single location identified with a name, it is important to be able to differentiate them. When sending
multiple backups to the same file location, it is essentially like storing files within files. To differentiate
between the different backups stored in a single file, the FILE = backup_number option is specified. The
following example shows multiple backups being sent to the same destination. The first is a Full backup,
the second is a Differential backup, and the last is a Tail Log backup. The example goes on to show the
restoration of the backups from the same file.

--Initialize the backup file and backup the SmallWorks database to the file
BACKUP DATABASE SmallWorks
TO DISK = ‘E:\SQLBackups\SmallWorksBackups.BAK’
WITH INIT, DESCRIPTION = ‘Full Backup of SmallWorks’

--Send an Additional backup to the file
BACKUP DATABASE SmallWorks
TO DISK = ‘E:\SQLBackups\SmallWorksBackups.BAK’
WITH DIFFERENTIAL, DESCRIPTION = ‘Differential Backup of SmallWorks’

--Capture the tail of the log prior to restore operation
BACKUP LOG SmallWorks
TO DISK = ‘E:\SQLBackups\SmallWorksBackups.BAK’
WITH NO_TRUNCATE, DESCRIPTION = ‘Tail Log Backup of SmallWorks’

--Restore the Full Backup with NORECOVERY
RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksBackups.BAK’
WITH FILE = 1, NORECOVERY

--Restore the Differential Backup with NORECOVERY
RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksBackups.BAK’
WITH FILE = 2, NORECOVERY

--Restore the Tail Log Backup with RECOVERY
RESTORE LOG SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksBackups.BAK’
WITH File = 3, RECOVERY

MOVE . . . TO . . .

When restoring databases it is sometimes necessary to change the physical name or location of the
database file. The MOVE logical_filename TO operating_system_filename accomplishes this. For
instance, a new database server has been installed, and you need to move a database from the old server
to the new server. The new server’s file system is not organized the same as the old server so new loca-
tions must be specified. The following example shows how to move the SmallWorks database from its
original location to the new drives identified for data files and log files.

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksFull.BAK’
WITH MOVE ‘SmallWorksPrimary’ TO ‘S:\SQLData\SmallWorks.mdf’

384



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 385

Chapter 9: Disaster Prevention and Recovery

, MOVE ‘SmallWorks_log’ TO ‘T:\SQLLogs\SmallWorks_log.ldf’
, MOVE ‘SmallWorksData1’ TO ‘S:\SQLData\SmallWorksData1.ndf’
, MOVE ‘SmallWorksData2’ TO ‘S:\SQLData\SmallWorksData2.ndf’
, REPLACE

PARTIAL
The PARTIAL option specifies that the Primary filegroup and any designated user-defined filegroups will
be restored. Partial restores are described later in this Chapter.

REPLACE
The REPLACE option overrides the normal database restoration safety checks and specifies that the backup
files referenced should replace the existing files. This is sometimes necessary if the transaction log is not
available for a Tail Log backup, but the restore operation fails with errors because of no Tail Log backup
existing. The REPLACE option also enables the backup of one database to be restored over an existing
database even if the files and names are different.

Database Restore Preparation
There are a few different reasons to restore a database, and only one of them involves a failure of the
database. It may very well be that the only time you will be required to restore a database is to move a
database from one server to another or to restore a test and development database, in which case there is
still some pre-planning to do.

Generally the preparation tasks are as follows:

1. Isolate the database by placing it in SINGLE_USER mode (if it is accessible).

2. Back up the tail of the transaction log if in Full or Bulk-Logged recovery model. This captures
all the recent activity.

3. Gather information about all the backups that are required to restore the database to the
most recent consistent state.

Isolate the Database
Isolating the database is typically required because when restoring a database that is still online, SQL
Server essentially drops and then recreates the database from the backup media. As we learned ear-
lier, a database cannot be dropped if someone is connected to it. Some documentation specifies that the
database should be set to RESTRICTED_USER instead of SINGLE_USER. However, when a database is set
to RESTRICTED_USER access, it will still allow multiple connections. SQL Server just limits those connec-
tions to privileged users such as the DBO or SA. If there are multiple DBO users in your organization,
RESTRICTED_USER will not prevent them from connecting to the database. RESTRICTED_USER will also not
prevent you from opening multiple windows and multiple connections to the database you are trying to
restore, thus preventing the restore from occurring. Each Query Window and Object Explorer in Manage-
ment Studio uses its own connection. To ensure that the restore operation will succeed, it is much easier
to just place the database in SINGLE USER access. Ironically, to change the database from MULTI_USER to
SINGLE_USER or RESTRICTED_USER access, you must have exclusive access to the database, which equates
to SINGLE_USER.

385



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 386

Chapter 9: Disaster Prevention and Recovery

Capture Recent Activity
Backing up the tail of the log ensures that the most recent transactions (since the last backup) are recorded
and recoverable. Often, this is not an optional step, and restore operations will not be permitted until the
Tail Log backup has been completed.

Gather Backup Information
This last step can be made easier if the entire database server has not suffered a failure. SQL Server
records all database backup and restore history in the msdb database. To see what backups SQL Server
Management Studio thinks need to be restored, in Object Explorer right-click Databases, click ‘‘Restore
Database,’’ and then choose the database to restore from the ‘‘Source for Restore’’ database dropdown
list. Management Studio will automatically choose the backups to restore, as shown in Figure 9-9. Keep
in mind that this is for a complete restore. If you are restoring a file or filegroup, Management Studio
is not as helpful. It will list all the File and Filegroup backups performed, but it will not select any for
recovery. You will have to do that manually. Likewise, if the choices made by Management Studio are
not what you want, you are able to override the selected backups. If the backup history is not available,
the ‘‘From device’’ option can be used to select a file or backup device, and the appropriate backups can
be chosen.

Figure 9-9: Multiple file restore.

As previously described, backup media information can also be retrieved through the use of three
RESTORE command arguments: RESTORE HEADERONLY, RESTORE FILELISTONLY, and RESTORE LABELONLY.

386



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 387

Chapter 9: Disaster Prevention and Recovery

Restoring User Databases
The backup strategies outlined earlier in this chapter apply mostly to user databases. Although system
databases do need to be backed up, the strategy for backing them up is very straightforward and is
typically confined to Full database backups only. This is because system databases do not change as often
and are typically quite small. This section, therefore, describes the process of restoring user databases
from the backup strategies defined earlier.

Full Restore
The periodic Full backup of a database is the simplest of all backup strategies and is also a very simple
restore strategy. If the database needs to be restored, simply find the most recent Full backup, and use
it to restore the database. Figure 9-10 illustrates a database that is damaged at 9:00 a.m. The most recent
backup was completed at 12:02 a.m. In this case, the 12:02 a.m. backup would be restored with recovery.

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksWed0002.BAK’
WITH RECOVERY

Full

Mon

Full

Tue

Full

Wed Wed

A.M. A.M. A.M. A.M.

Database
Damaged

Figure 9-10: Full restore scenario.

Full with Differential Restore
Differential backups require a Full backup to be applied prior to the restoration of the Differential. Figure
9-11 illustrates a failure of the SmallWorks database at 9:00 a.m. on Wednesday. Since a Differential
backup was completed at 12:02 a.m. on Wednesday, the Differential backup on Tuesday can be ignored.
The recovery process is the Monday Full backup followed by the Wednesday Differential backup.

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksFullMon0002.BAK’
WITH NORECOVERY

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksDiffWed0002.BAK’
WITH RECOVERY

Full with Transaction Log Restore
Like the Differential backup and restore process, the Transaction Log backup also requires a baseline
restore before it can be applied. Figure 9-12 illustrates a SmallWorks database damaged at 3:00 p.m. Since

387



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 388

Chapter 9: Disaster Prevention and Recovery

the database is in Simple or Bulk-Logged recovery model, the tail of the transaction log may be able to be
backed up to capture all the most recent changes to the database. In this way, very little to no data may be
lost. The Tail Log backup is completed at 3:10 p.m. After the Tail Log backup is complete, the restoration
process can be executed, starting at the Monday Full backup and then proceeding through the remaining
Transaction Log backups.

BACKUP LOG SmallWorks
TO DISK = ‘E:\SQLBackups\SmallWorksTailLogMon1510.BAK’
WITH NO_TRUNCATE

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksFullMon0002.BAK’
WITH NORECOVERY

RESTORE LOG SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksLogMon0900.BAK’
WITH NORECOVERY

RESTORE LOG SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksLogMon1202.BAK’
WITH NORECOVERY

RESTORE LOG SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksTailLogMon1510.BAK’
WITH RECOVERY

Full

Mon Tue Wed Wed

A.M. A.M. A.M. A.M.

Database
Damaged

Differential Differential

Figure 9-11: Differential restore scenario.

Full

Mon Mon Mon

A.M. A.M. P.M.

Mon

P.M.

Database
Damaged

Figure 9-12: Transaction Log restore
scenario.

388



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 389

Chapter 9: Disaster Prevention and Recovery

Full and Differential with Transaction Log Restore
When using both Differential and Transaction Log backups to capture changes to the database, the impor-
tant thing to remember is sequence. Each Differential backup contains the changes made to the database
that were recorded in transaction logs during the interval between the Full backup and any Differential
backup completed. Figure 9-13 illustrates this behavior. Since the database is damaged at 6:00 p.m., a
Tail Log backup is completed to capture all activity between 3:00 p.m. and 6:00 p.m. The database is then
restored using the Full, Differential regular Transaction Log and Tail Log backups.

BACKUP LOG SmallWorks
TO DISK = ‘E:\SQLBackups\SmallWorksTailLogMon1810.BAK’
WITH NO_TRUNCATE, NORECOVERY

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksFullMon0002.BAK’
WITH NORECOVERY

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksDiffMon1202.BAK’
WITH NORECOVERY

RESTORE LOG SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksLogMon1500.BAK’
WITH NORECOVERY

RESTORE LOG SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksTailLogMon1810.BAK’
WITH RECOVERY

Full

Mon Mon Mon Mon

A.M. A.M. A.M.

Mon

P.M. P.M.

Differential

Mon

P.M.

Database
Damaged

Figure 9-13: Full and Differential with Log scenario.

File and Filegroup Restore
File and Filegroup restore processes vary depending on the recovery model the database is configured
for and whether the file or filegroup is marked as Read Only. If the database is in Simple recovery model,
the only files or filegroups that can be restored independently of the complete database are those that
are marked as Read Only. Since the database is in Simple recovery model, no Tail Log backups are
allowed, and any restoration of a Read Only file or filegroup will result in that file or filegroup being
immediately available for queries. The syntax and process for individual file or individual filegroup
restores are identical.

389



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 390

Chapter 9: Disaster Prevention and Recovery

Try It Out File Restore Example 1
This first example shows the process of restoring a single damaged file in the SmallWorks database when
it is configured in Full Recovery.

1. Back up the tail of the active transaction log.

--Capture the tail of the transaction log
BACKUP LOG SmallWorks
TO DISK = ‘E:\SQLBackups\SmallWorksTailLog.BAK’
WITH INIT, NO_TRUNCATE, NORECOVERY

2. Restore the damaged data file.

--Restore the damaged or corrupted file
RESTORE DATABASE SmallWorks FILE = ‘SmallWorksData1’
FROM DISK = ‘E:\SQLBackups\SmallWorksFull.BAK’

At this point the SmallWorksData1 file is offline, and any queries that reference the dbo.Person table,
which resides in the SmallWorksData1 file, will fail.

3. Restore the tail of the log, which returns the SmallWorksData1 file to an online status.

--Restore the tail of the log to bring the SmallWorksData1 file online
RESTORE LOG SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksTailLog.BAK’
WITH RECOVERY

Try It Out File Restore Example 2
This second example shows the process of restoring a single damaged data file that resides in a Read
Only filegroup. In this example, the capture of the tail of the log and the restoration of the tail to bring
the file online are unnecessary. This is because the file resides on a Read Only filegroup. There are no
changes to capture.

--Restore the damaged or corrupted file
RESTORE DATABASE SmallWorks FILE = ‘SmallWorksData2’
FROM DISK = ‘E:\SQLBackups\SmallWorksFull.BAK’

Once the restoration of the SmallWorksData2 file is complete, the database is completely online and
accessible.

Partial Restore
The Partial restore process is very similar to the File/Filegroup restoration process. The significant dif-
ference is that Partial restores always include the Primary filegroup.

390



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 391

Chapter 9: Disaster Prevention and Recovery

Try It Out Partial Restore Example 1
The following example shows the SmallWorks database being backed up with a Partial backup and then
the restore process to bring the database back online after suffering a failure of both the SWUserData1
READWRITE filegroup and the Primary filegroup.

1. Perform the Partial backup:

BACKUP DATABASE SmallWorks READ_WRITE_FILEGROUPS
TO DISK = ‘E:\SQLBackups\SmallWorksFull.BAK’
WITH INIT

2. Sometime later the READ_WRITE configured filegroups including the Primary filegroup expe-
rience a failure. The first step after the failure is to capture all the recent activity and place the
database in a state to recover from the failure.

BACKUP LOG SmallWorks
TO DISK = ‘E:\SQLBackups\SmallWorksTailLog.BAK’
WITH INIT, NORECOVERY, NO_TRUNCATE

3. Restore the READ_WRITE configured filegroups. In the case of the SmallWorks database, that is
the Primary and SWUserData1 filegroups.

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksFull.BAK’
WITH PARTIAL, NORECOVERY

4. Restore the tail of the log and bring the database online

RESTORE LOG SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksTailLog.BAK’
WITH RECOVERY

5. Even though the database is online, the user-defined filegroups are still inaccessible because
of restoring the Primary filegroup. To bring the user-defined filegroups online, we use the
RESTORE DATABASE command but do not specify a source for the restore. This completes the
recovery process for the filegroups and is near instantaneous since no data is actually being
restored.

RESTORE DATABASE SmallWorks FILEGROUP = ‘SWUserData1’
WITH RECOVERY

RESTORE DATABASE SmallWorks FILEGROUP = ‘SWUserData2’
WITH RECOVERY

The SmallWorks database is now completely online.

391



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 392

Chapter 9: Disaster Prevention and Recovery

Try It Out Partial Restore Example 2
In this example, only the SWUserData1 READWRITE filegroup is damaged so it is unnecessary to restore
the Primary database.

1. Start off again with a Partial backup of the SmallWorks database.

BACKUP DATABASE SmallWorks READ_WRITE_FILEGROUPS
TO DISK = ‘E:\SQLBackups\SmallWorksFull.BAK’
WITH INIT

2. Sometime later the file in the SWUserData1 filegroup is damaged. When it is discovered, the tail
of the transaction log is captured and the database is put into a state to support recovery.

BACKUP LOG SmallWorks
TO DISK = ‘E:\SQLBackups\SmallWorksTailLog.BAK’
WITH INIT, NORECOVERY, NO_TRUNCATE

3. Restore just the SWUserData1 filegroup and then the tail of the log to bring the database com-
pletely online.

RESTORE DATABASE SmallWorks FILEGROUP = ‘SWUserData1’
FROM DISK = ‘E:\SQLBackups\SmallWorksFull.BAK’
WITH NORECOVERY

RESTORE LOG SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksTailLog.BAK’
WITH RECOVERY

Point-in-Time Restore
SQL Server 2008 supports the recovery of both databases and transaction logs to a specific point in time,
but only if the database is configured in the Full or Bulk-Logged recovery models. As previously dis-
cussed, the Bulk-Logged recovery model should only be used as an adjunct to the Full recovery model.
This is especially true because of the impact of the Bulk-Logged recovery on point-in-time restores. If
the database is configured for Bulk-Logged recovery and the transaction log contains bulk operations,
point-in-time recovery is not possible; the transaction log must be restored in its entirety.

Point-in-time database restore operations are useful to restore a database to a point just prior to data
corruption because of a malicious or accidental modification of data. For example, an accidental update
to the SmallWorks database occurs at 3:00 p.m. but is not detected until 6:15 p.m. A scheduled database
backup was completed at 4:00 p.m., and a scheduled Transaction Log backup occurred at 5:00 p.m. To
restore the database to just before the accidental update, a point-in-time restore is used. The sequence of
events to restore the database is as follows:

RESTORE DATABASE SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksFull1600.BAK’
WITH STOPAT = ‘12/05/2008 14:59:00’

392



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 393

Chapter 9: Disaster Prevention and Recovery

,NORECOVERY

RESTORE LOG SmallWorks
FROM DISK = ‘E:\SQLBackups\SmallWorksLog1700.BAK’
WITH STOPAT = ‘12/05/2008 14:59:00’

,RECOVERY

Recovering System Databases
System databases are just as vulnerable to failure as User databases, and it is very important to ensure
that they are adequately protected. Essentially you have two choices when it comes to recovering System
databases. You can restore them from backup, or you can rebuild them from scratch. I highly recommend
the backup and restore approach, since rebuilding them from scratch means a ton more work.

Because system databases are usually small, they don’t require a great deal of time to back up, and they
don’t take up much space when backed up. How often the structure of your system databases change
will determine how often you will need to back them up to minimize the post-restore tasks.

Recovering the Master Database
There are two scenarios for recovering the Master database. In the first scenario, the server is accessible.
And in the second, SQL Server is not accessible.

If you can connect to SQL Server, the server instance must be started in single-user mode in order to
restore and recover the Master database:

1. To start an instance of SQL Server in single-user mode, type the following command at the
command prompt:

sqlservr.exe –m

2. If the server supports multiple instances of SQL Server, be sure to start the right
one. The default instance of SQL Server is located in the folder \Program Files\
Microsoft SQL Server\MSSQL.1\MSSQL\Binn. Each additional instance will have its own
MSSQL.X folder, but depending on the installation sequence, they may not be in numerical
order.

3. Once the server is started in single-user mode, the Master database can be restored. To
accomplish this, start another command prompt window and log in to the SQL Server
instance with SQLCMD. The following example shows a login command to an instance of
SQL Server called AughtEight (-S) using Windows Security (-E).

C:\>SQLCMD –S AughtEight -E

For a complete description of the SQLCMD syntax, consult SQL Server 2008 Books Online
under the topic ‘‘Using the sqlcmd Utility.’’

4. After successfully logging in to the server, the restoration of the Master database can be com-
pleted through the normal RESTORE syntax.

393



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 394

Chapter 9: Disaster Prevention and Recovery

1>RESTORE DATABASE MASTER FROM DISK = ‘E:\SQLBackups\MasterFull.BAK’
2>GO
Processed 360 pages for database ‘Master’, file ‘master’ on file 1.
Processed 2 pages for database ‘Master’, file ‘mastlog’ on file 1.
The master database has been successfully restored. Shutting down SQL
Server.
SQL Server is terminating this process.

As shown in the preceding example, once the Master database has been restored, SQL Server will auto-
matically shut down the instance so that it can be restarted with the newly restored Master database.

The only database that can be restored in single-user mode is the Master database. Once Master is
restored, restart SQL Server to continue restoring any other system or user databases.

If the instance of SQL Server is not accessible because of a corrupted Master database or total server
failure, then the Master database will have to be rebuilt. In previous versions of SQL Server this could
be done through a command prompt utility. However, Microsoft discontinued support of that utility.
In order to rebuild the Master database, you must re-install SQL Server. Once SQL Server has been
re-installed, the most recent backup of the Master database can be used to restore the server using the
same procedure outlined previously.

Once the Master database has been restored and the instance of SQL Server restarted, the remaining
system databases and user databases should be remounted automatically. If the backup of the Master
database is not up-to-date or does not exist at all, the remaining system and user databases may not
automatically remount and will have to either be restored or attached. Assuming that the remaining
database files are still intact in the file system, it is much faster and easier to attach the databases. The
simplest way to attach the existing databases is to use the graphical tools in SQL Server Management
Studio:

1. To attach a database, right-click Databases and click Attach; the Attach Databases window
will appear.

2. Click on the Add button to browse to the location of the database’s MDF file and select it.

Each database’s MDF file contains the metadata that identifies the location of all the
database’s constituent files. As long as none of the files are identified with a ‘‘Not Found’’
message, the database should attach with no difficulty.

3. If a data file is missing, the database will not be able to be attached. However, if only the
transaction log file is missing, the database can still be successfully attached by selecting the
missing log file and clicking Remove. Once the log file is removed from the list, click OK to
attach the database. SQL Server will re-create a log file using the metadata of the original.

Orphaned Users
After the Master database and all the other databases have been restored or attached, it may be necessary
to check the user databases for orphaned users. Orphaned users occur when a SQL Server login has been
added to the Master database and granted access to a database, but the backup of the Master database
was performed before the login was created. When the user database was attached or restored, the user
database contained the database user, but the login in the Master database did not exist.

394



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 395

Chapter 9: Disaster Prevention and Recovery

To find and fix orphaned users, two methods are available. The first is the ALTER USER command. If the
user FredF is orphaned, the following code can be used to re-associate the database user to the server
login:

USE SmallWorks
GO
ALTER USER FredF
WITH LOGIN = FredF

The second method is to use a deprecated stored procedure called sp_change_users_login. The
sp_change_users_login procedure has three modes defined by the input parameter @Action. The three
supported actions are defined in the following table:

Action Description

Report Returns a list of all database users not associated with a valid
SQL Server login.

Auto_Fix Links the database user to a SQL Server login with the same
name. For example:

❑ USE SmallWorks

❑ GO

❑ sp_change_users_login ‘Auto_Fix’, ‘FredF’

This example links the SmallWorks database user FredF to a
Server login with the same name if one exists.

Update_One Links a specific database user to a specific SQL Server Login.

❑ USE SmallWorks

❑ GO

❑ sp_change_users_login ‘Update_One’, ‘FredF’,
‘SQLFredFLogin’

This example links the SmallWorks database user FredF to a
SQL Server login called SQLFredFLogin.

Database Restore Summary
Like the backup strategy, it is exceptionally important to have a restore plan. A good restore plan will
cover any combination of possible failures and list the steps required to restore the database in the short-
est time possible and with the least amount of data loss. There is no way I could cover every possible
combination in the few pages devoted to this topic. It is up to you to analyze your infrastructure and
choose the backup and restore plan that best fits your environment.

395



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 396

Chapter 9: Disaster Prevention and Recovery

Database Snapshots
Database Snapshots can’t really be used for disaster recovery in the case of a complete database loss.
However, they can be very useful in reversing the effects of database modifications. They are also useful
in re-directing queries away from a busy transactional database.

What is a Database Snapshot? A snapshot is a point-in-time, static, Read Only view of a database. The
creation of a snapshot is instantaneous because the database that is the source of the snapshot is not
actually copied to create the snapshot. Instead, data files are created that will only hold the data pages
from the source database that have changed since the snapshot was created. This functionality is called
Copy On Write. When the Database Snapshot is initially created, near-identical data files are created to
hold the contents of the snapshot. The difference in the data files is that they have separate physical
locations from the source database, and they initially consume very little disk space.

The easiest way to understand Database Snapshots is to create and use one. The following script creates
a snapshot of the SmallWorks database.

CREATE DATABASE SmallWorksSnapShot ON
(NAME = ‘SmallWorksPrimary’

, FILENAME = ‘D:\SQLSnapShotData\SmallWorksPrimary.mdf’)
,(NAME = ‘SmallWorksdata1’
, FILENAME = ‘D:\SQLSnapShotData\SmallWorksData1.ndf’)
,(NAME = ‘SmallWorksdata2’
, FILENAME = ‘D:\SQLSnapShotData\SmallWorksData2.ndf’)
AS SNAPSHOT OF SmallWorks

A look in the file system reveals that the SmallWorks snapshot data files are all 10 MB, as they were when
you created the database (your size may vary based on any modifications you made to the SmallWorks
database), but the files are only consuming 128 KB for the primary file and 64 KB for each secondary data
file for a total of 256 KB. SQL Server reserves the same amount of disk space that the database is presently
using, but it only allocates enough to store the metadata of the database structure.

Now let’s take a look at the data in the SmallWorks and SmallWorksSnapshot databases and see what
happens to the snapshot database and the data when changes are made to the source database.

1. First write a query to return some data from the first three rows of the dbo.Person table in
the SmallWorks database and the SmallWorksSnapshot database, as shown in the following
example:

USE SmallWorks
GO
SELECT FirstName, LastName, EmailAddress
FROM dbo.Person
WHERE PersonID < 4

FirstName LastName EmailAddress
--------- -------- ---------------------------------
Ken Sánchez ken.sánchez@adventureworks.com
Terri Duffy terri.duffy@adventureworks.com

396



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 397

Chapter 9: Disaster Prevention and Recovery

Roberto Tamburello roberto.tamburello@adventureworks.com

(3 row(s) affected)

USE SmallWorksSnapShot
GO
SELECT FirstName, LastName, EmailAddress
FROM dbo.Person
WHERE PersonID < 4

FirstName LastName EmailAddress
--------- -------- ---------------------------------
Ken Sánchez ken.sánchez@adventureworks.com
Terri Duffy terri.duffy@adventureworks.com
Roberto Tamburello roberto.tamburello@adventureworks.com

(3 row(s) affected)

Notice that both of the databases return the same results. In actuality, the query to the snap-
shot database was re-directed to the source database since the data pages containing the
contact information had not been changed since the snapshot was created.

2. Now, let’s update the data in the source database by changing the last name of all the people
in the database. We’ll update all of them so we can more easily examine the changes to the
physical data files hosting the snapshot database.

USE SmallWorks
GO
UPDATE dbo.Person
SET LastName = ‘Flintstone’

(5000 row(s) affected)

The SmallWorksSnapShot data files now consume about 1.2 MB of space (your results may
vary). Updating the 5,000 rows in the SmallWorks database caused the original data pages
containing those rows to be copied to the snapshot, resulting in an increase in the size of the
snapshot.

3. Now let’s query the two databases again to see what the results are. The source database is,
indeed, changed, reflecting the update of the LastName column.

USE SmallWorks
GO
SELECT FirstName, LastName, EmailAddress
FROM dbo.Person
WHERE PersonID < 4

FirstName LastName EmailAddress
--------- -------- ---------------------------------
Ken Flintstone ken.sánchez@adventureworks.com
Terri Flintstone terri.duffy@adventureworks.com

397



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 398

Chapter 9: Disaster Prevention and Recovery

Roberto Flintstone roberto.tamburello@adventureworks.com

(3 row(s) affected)

However, the snapshot database still reflects the data as it appeared when the snapshot was
created. This is what is meant by a ‘‘static, Read Only copy’’ of the database.

USE SmallWorksSnapShot
GO
SELECT FirstName, LastName, EmailAddress
FROM dbo.Person
WHERE PersonID < 4

FirstName LastName EmailAddress
--------- -------- ---------------------------------
Ken Sánchez ken.sánchez@adventureworks.com
Terri Duffy terri.duffy@adventureworks.com
Roberto Tamburello roberto.tamburello@adventureworks.com

(3 row(s) affected)

You can create as many snapshots as you want of a database, but keep in mind that each additional
snapshot is going to add additional overhead to your source database. The overhead is created because
every command that updates or deletes data or objects will cause a Write to the snapshot database to
record the previous version of the database.

Database Snapshot Limitations
There are some limitations of Database Snapshots and limitations on the source database created with
the snapshot:

❑ Database Snapshots cannot be backed up. Since the snapshot is a combination of data retrieved
from the source database and data stored internally, it is impossible to actually back up the snap-
shot.

❑ Database Snapshots cannot be modified.

❑ Source databases cannot be dropped while a snapshot exists.

❑ Source databases cannot be restored to a point in time prior to the creation of the snapshot while
the snapshot exists.

Disaster Recovery and Database Snapshots
How exactly do Database Snapshots fit in to the realm of disaster recovery? That is an excellent question!
Snapshots can be used to undo updates to a source database because they have the original copy of the
data as it looked prior to the modification.

Undoing Updates
In the previous example, we updated all 5,000 rows of the Person table with the last name of Flintstone.
To reverse the effects of this frivolous update, the following script can be used:

USE SmallWorks
GO

398



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 399

Chapter 9: Disaster Prevention and Recovery

UPDATE dbo.Person
SET LastName = S.LastName
FROM dbo.Person P
JOIN SmallWorksSnapShot.dbo.Person S
ON S.PersonID = P.PersonID

A query of the source database will now reveal that all the last names have been put back to their original
values.

Undoing Deletes
Consider the following command that deletes 50 of the rows from the dbo.Person table:

DELETE dbo.Person
WHERE PersonID < 51

If this was a malicious or accidental update, the normal pattern for restoring the data would be to restore
the database to a test server and then copy the data from the test server back to the production database.
With a Database Snapshot there is no need to involve the database backups.

To restore the data, simply insert the data back into the source database table by selecting from the
snapshot.

USE SmallWorks
GO
INSERT dbo.Person
(PersonID, FirstName, LastName, EmailAddress)
SELECT PersonID, FirstName, LastName, EmailAddress
FROM SmallWorksSnapShot.dbo.Person
WHERE PersonID < 51

Undoing Drops
If a database object is dropped from the source database, it can be scripted and re-created from the
snapshot database. If it was a table, the table can then be repopulated using the previous method for
undoing deletes.

--Inadvertant deletion of the Person table
USE SmallWorks
GO
DROP TABLE dbo.Person

--Recreate the Person Table
USE SmallWorks
GO
CREATE TABLE dbo.Person(
PersonID int NOT NULL,
FirstName varchar(50) NOT NULL,
MiddleName varchar(50) NULL,
LastName varchar(50) NOT NULL,
EmailAddress nvarchar(50) NULL
) ON SWUserData1
--Repopulate the table
INSERT dbo.Person
(PersonID, FirstName, LastName, EmailAddress)

399



Leiter c09.tex V3 - 03/25/2009 12:13pm Page 400

Chapter 9: Disaster Prevention and Recovery

SELECT PersonID, FirstName, LastName, EmailAddress
FROM SmallWorksSnapShot.dbo.Person

Restoring from Snapshots
If several undesired changes have been made to the source database, it can be restored to the point in time
when the snapshot was created by specifying the snapshot as the source of the restore operation. Remem-
ber that if multiple snapshots exist, the database cannot be restored to a point in time before a snapshot
was created. Those snapshots will have to be dropped first. The following command demonstrates how
to restore the SmallWorks database from a database snapshot:

USE MASTER
GO
RESTORE DATABASE SmallWorks
FROM DATABASE_SNAPSHOT = ‘SmallWorksSnapShot’

Summary
In this chapter, we examined the different ways to back up and restore databases. We also took a look
at the different aspects of disaster recovery, which is most important to minimizing data loss and pre-
serving our jobs. Hopefully, you have arrived at the planned conclusion to this chapter. That conclusion
is that it is all about planning. As database administrators we are ultimately responsible for maintaining
the integrity and security of the data entrusted to us. In order to accomplish this important goal, it is
imperative that we plan for disaster and, even more importantly, plan how to recover from any disaster
with the absolute minimum amount of data loss and downtime.

400



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 401

10
Monitoring SQL Server

One of the primary responsibilities of the database administrator is the ongoing monitoring of
SQL Server. Monitoring is done for a variety of reasons, including performance, storage, security,
and standards compliance. Much of this monitoring can be automated, but for the most part, the
monitoring results must be interpreted and acted on in a systematic approach by the DBA. The
monitoring job never ends, and it can become quite complex. Knowing what to monitor, when
to monitor, and what constitutes acceptable and unacceptable behavior can become a full-time
job. Making things even more challenging is the fact that each SQL Server installation is different,
making a global recommendation about what indicators identify unacceptable and acceptable
performance very difficult.

This chapter explains the various tools used to monitor SQL Server and provides guidelines on how
to use these tools to identify potential security problems and areas for optimization. Monitoring
SQL Server can be a challenging process. SQL Server interacts heavily with every operating system
subsystem. Some applications rely heavily on RAM, whereas others are CPU- or disk-intensive. SQL
Server can be all three at the same time. SQL Server can also be very network-intensive, especially
with distributed applications, replication, or database mirroring. Many database administrators
find the whole process of monitoring and optimizing arcane and nebulous. However, it doesn’t
have to be all that mysterious. A good understanding of the tools, as well as a familiarity with the
different objects requiring monitoring, will go a long way toward making your monitoring tasks
less intimidating.

Whole books have been written on the subject of monitoring, along with several web sites dedicated
to the subject. I won’t attempt to tell you everything you need to know about monitoring SQL Server
in this book, but I will describe the fundamentals, which, as in all things, is the best place to start.

Performance Monitoring
SQL Server 2008 performance monitoring can essentially be divided into five basic areas:

❑ System resources

❑ SQL Server itself

❑ The database

❑ The database application

❑ The network



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 402

Chapter 10: Monitoring SQL Server

Before getting into the specifics of performance monitoring, it is very important to understand the
methodology. Monitoring for the sake of monitoring is useless. You monitor your hardware and SQL
Server implementations to anticipate and prevent performance problems. To do this, you must have
some kind of plan — a strategy that will enable you to invest the right amount of time and the right
amount of resources to maintain and improve the performance of your SQL Server.

Performance Monitoring Strategy
The strategy for monitoring and optimizing SQL Server is fairly straightforward and is made up of the
following steps:

1. Create a Performance Baseline — Without a baseline of your database server, it is very
unlikely that you will be able to make changes to the server platform with complete confi-
dence that the changes will accomplish the improvements you are looking for. A baseline
contains measurements from all the systems previously mentioned (system resources, SQL
Server, the database, the database application, and the network). Specific counters and mea-
surements are discussed later in this chapter. When evaluating the baseline, you may iden-
tify areas that warrant immediate optimization. If changes are made, a new baseline must be
created.

2. Complete Periodic Performance Audits — After the baseline is completed, periodic perfor-
mance audits are performed to ensure that performance has not degraded from when the
baseline was created. This step is often supplemented or replaced by reactive audits that are
performed in response to complaints of poor server performance. I prefer to be proactive and
schedule the audits, but there will invariably be times when a reactive audit will be required
because unexpected performance problems arise.

3. Make Changes and Evaluate Their Impact — After performing audits, you may find areas
that require modification. When making these changes, it is important to be meticulous. As a
rule, you should not make multiple changes at once. Instead, make one or two changes, and
then evaluate the measurements that prompted the changes to be made. This makes it much
easier to identify what changes have the greatest impact on performance. Chapter 11 goes
into more detail on what specific changes you can make to optimize SQL Server when your
performance audit identifies a problem area.

4. Reset the Baseline — After completing all the modifications, create another baseline to mea-
sure future performance trends.

The Mad Clicker
I work with a colleague that we affectionately call the ‘‘Mad Clicker.’’ When something
goes wrong in the server room, he invariably gets involved and starts clicking away,
making sweeping changes to configuration settings in an attempt to correct the prob-
lem. Often, he is successful, but it is next to impossible to duplicate his actions in the
future because even he doesn’t know everything he changed. Don’t be a ‘‘Mad Clicker.’’
Complete a modification, and then measure and document the results. This makes it
easy to duplicate and easy to roll back if the modifications resulted in a degradation of
performance instead of an improvement.

402



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 403

Chapter 10: Monitoring SQL Server

Creating a Performance Baseline
It is very important when creating a baseline that typical activity is monitored. Monitoring performance
during a monthly import may give you some interesting data, but it will not help you evaluate and
improve overall system performance. There are different ways of creating baselines. Most database
administrators have their own preferences on how to gather and compare performance data. They
also have their own favorite counters and system views that they feel give them insight into how the
database is performing. SQL Server performance monitoring and optimization is more of an art than a
science.

I have seen many different recommendations on what System Monitor counters to collect and what SQL
Server–specific activity to monitor. All of them were different. Some database administrators recom-
mended monitoring everything, whereas others recommended monitoring a small selection of processes.
I support the small selection philosophy for two different reasons. The first is that there is definitely such
a thing as ‘‘too much information.’’ Collecting every conceivable bit of performance data will most likely
result in a case of not seeing the forest because of the trees. There is just too much data to sift through.
The second reason (and maybe even more importantly) is the performance factor.

Gathering performance information is not free. The more information you gather, the more it costs in
terms of performance. This creates an interesting paradox. To adequately monitor performance, you must
introduce performance-degrading actions to the database. The quandary that creates is one in which you
can never be completely positive that your monitoring actions are not at least marginally responsible for
unacceptable performance.

Limiting the data retrieved will reduce this uncertainty, but it is also important to keep in mind that you
should not look at any particular counter in isolation. For example, heavy disk activity might be caused
by memory limitations, and unsatisfactory CPU performance can be caused by poorly written queries
and missing indexes. No one subsystem exists in a vacuum.

So, what should you have in your baseline? Over the years, I have condensed the list of objects and pro-
cesses that I monitor for baselines and performance audits. Those counters are described in the following
pages.

The main tool for creating a performance baseline is Performance Monitor. However, Dynamic Manage-
ment Views (DMVs) are used as well to give more context to the baseline. After explaining the counters
used for a baseline and performance audits, this chapter digs deeper into the SQL Server–specific tools
and explores how to identify misbehaving processes.

Performance Counters
The following are some of the most useful counters to use when auditing performance. This discussion
is not meant to be all-inclusive. It is made up of the counters I and a few of my colleagues have come to
rely on for a ‘‘big picture’’ view of SQL Server performance. There are many more counters that can be
used to diagnose performance issues and to dig deeper into the nuts and bolts of SQL Server activity. But
these few will most likely provide the information you need to quickly evaluate the health of your server.

Processor Counters
Processor counters are used in conjunction with other counters to monitor and evaluate CPU performance
and identify CPU bottlenecks.

403



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 404

Chapter 10: Monitoring SQL Server

❑ Processor: % Processor Time — The Processor: % Processor Time counter displays the total
percentage of time spent processing non-idle threads. On a multiple-processor machine, each
individual processor can be monitored independently. If the CPU affinity settings have been
customized, you may want to monitor a specific CPU. Other than that, I normally use the _total
instance identifier to see the combined processor utilization. CPU activity is a good indicator of
SQL Server CPU activity and is a key way to identify potential CPU bottlenecks. Recommenda-
tions on what this counter should look like vary. As a general rule, if total % Processor Time is
consistently greater than 70 percent, you probably have a CPU bottleneck, and you should look
at either optimizing current application processes, upgrading the CPU, or both. Use this counter
along with the Processor Queue Length counter to positively identify CPU bottlenecks.

❑ Process: % Processor Time (sqlservr) — The Process: % Processor Time counter (when set to
monitor information from the SQL Server process) can be used to determine how much of the
total processing time can be attributed to SQL Server.

❑ System: Processor Queue Length — The Processor Queue Length counter displays the number
of threads waiting to be processed by a CPU. If the average queue length is consistently greater
than two times the number of processors, then you may have a CPU bottleneck, because the pro-
cessors can’t keep up with the number of requests.

Use the Processor Queue Length and the % Processor Time counters together to determine if you have a
CPU bottleneck. If both counters are out of acceptable ranges, there is most assuredly a CPU bottleneck.

If the Processor Queue Length is not within acceptable limits, but the % Processor Time is, you may
not have a CPU bottleneck, but a configuration problem instead. Ensure that the max worker threads
server setting has not been set to a value that is too high for your system. The default setting for
max worker threads is 0, which configures SQL Server to automatically set max worker threads in
accordance to the values shown in the following table. However, in addition to 0, it is possible to
configure any value between 128 and 32,767. SQL Server Books Online gives the acceptable range as 32
through 32,767, which is incorrect. The graphical interface will accept any value between 0 and 32,767,
but any value between 1 and 127 results in a setting of 128.

CPUs 32-bit 64-bit

1 256 512

2 256 512

4 256 512

8 288 576

16 352 704

32 480 960

Disk Counters
Several disk counters return disk Read and Write performance information, as well as data transfer
information, for each physical disk or all disks. Physical disk statistics, when combined with memory
statistics, give a very accurate view of total I/O performance on the server.

404



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 405

Chapter 10: Monitoring SQL Server

❑ PhysicalDisk: Avg. Disk Queue Length — As the last mechanical component in modern
computer systems, the disk is inherently the slowest, even with the built-in memory cache that
virtually all disk controllers are configured with. The Avg. Disk Queue Length counter returns
the average number of Read and Write operations that were queued for an individual disk or
all disks. The requests are queued because the disk or disks are too busy, and the controller’s
onboard memory cache has no space to temporarily store the Read or Write request. This
counter should remain below the number of physical disks multiplied by two. For example, if
your database is located on a 10-disk array, the counter should remain below 20.

❑ If this counter is consistently greater than the desired value, the most likely cause is an inade-
quacy in the disk subsystem, or an inadequate amount of memory on the server. A lack of mem-
ory can cause the disk subsystem to be overworked by SQL Server’s inability to cache data in
memory for long periods of time, resulting in more physical disk Reads. Spreading the database
across multiple disks and multiple controllers may increase performance. Adding memory, if
possible, to the disk controller may also alleviate the disk bottleneck.

❑ PhysicalDisk: % Disk Time — This counter measures how busy a physical disk or hardware
disk array is. The % Disk Time counter shouldn’t consistently run at more than 60 percent. If it
does, check out the % Disk Read and % Disk Write counters to determine what type of activity
the disk is primarily performing. If more than one array is used for the database, this counter can
be used to determine if the disk workload is equally divided among all the arrays.

Memory Counters
As previously noted, memory counters (along with disk counters) are used by the DBA to get an overall
picture of database I/O. A lack of memory will have a direct impact on disk activity. When optimizing a
server, adding memory should always be considered. SQL Server loves memory and effectively allocates
it to minimize the amount of disk access required for database operations. If you are looking for a SQL
Server performance panacea, adding memory is as close as you’re going to get.

❑ Memory: Pages/Sec — The Pages/Sec counter measures the number of pages per second that
are paged out of memory to disk or paged into memory from disk. The official recommenda-
tion for this counter is that it should never be consistently greater than zero. In all likelihood,
it will regularly spike higher than zero, then return to near zero, and then spike high again, as
Figure 10-1 shows. This is perfectly normal, but if the counter is consistently above zero, it indi-
cates a possible memory bottleneck. The solution, of course, is to add memory. However, it may
also be that the maximum server memory setting is set too low if there is plenty of memory on
the server. The memory counter Available Bytes will show how much memory is available on
the system.

Another possible cause of steady memory paging is an application other than SQL Server run-
ning on the same server. Ideally, SQL Server should be the only application supported by the
server. Sometimes this is not possible, but it is still the ideal configuration.

❑ Memory: Available Bytes — The Available Bytes counter indicates how much memory is avail-
able to processes. The official recommendation is that there should always be at least 5 MB of
available memory, but this is a particularly low number, and it should probably be at least 10
times as much.

❑ Process: Working Set (sqlservr) — The SQL Server instance of the Working Set counter shows
how much memory is in use by SQL Server. If this number is always lower than the minimum
server memory setting or significantly lower than the maximum server memory setting, SQL

405



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 406

Chapter 10: Monitoring SQL Server

Server is most likely configured to use too much memory. This is not necessarily a bad thing, as
long as it is not interfering with other server processes.

❑ SQL Server: Buffer Manager: Buffer Cache Hit Ratio — The Buffer Cache Hit Ratio counter
measures the percentage of time that data was found in the buffer without having to be read
from disk. This counter should be very high, optimally 90 percent or better. When it is less than
90 percent, disk I/O will be too high, putting an added burden on the disk subsystem.

❑ SQL Server: Buffer Manager: Page Life Expectancy — The Page Life Expectancy counter
returns the number of seconds a data page will stay in the buffer without being referenced by a
data operation. The minimum value for this counter is approximately 300 seconds. This counter,
along with the Buffer Cache Hit Ratio counter, is probably the best indicator of SQL Server
memory health. A higher number for both counters is better.

Figure 10-1: Spiking of number of pages in and out of memory to disk.

Network Counters
For most network counters, there is no hard-and-fast recommendation for what you should see. The only
guidance that can possibly be given is to ensure that the network traffic being generated on the server

406



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 407

Chapter 10: Monitoring SQL Server

is well within the capacity of the network connection. Network counters, however, are a good way to
measure the network traffic over a period of time to evaluate trends to determine if some type of scaling
or load balancing may be in order.

❑ Network Interface: Bytes Total/Sec — The Bytes Total/Sec counter measures the total number
of bytes that are being sent back and forth between the server and the network. If the server is
configured exclusively for SQL Server, almost all of the traffic should belong to SQL Server. As
mentioned, this counter is very useful in analyzing network traffic trends. This information is
very useful for planning scale-out and upgrade requirements.

SQL Server Counters
After installing SQL Server, a plethora of SQL Server performance objects and counters are configured
to assist in the performance monitoring and optimization of SQL Server. If you are like 99 percent of
all database administrators, you will most likely never look at a majority of these counters. However,
there will be a special few that you will come to completely rely on. The following SQL Server–specific
counters are extraordinarily useful in the establishment of a baseline, and comparing activity against the
baseline to establish SQL Server performance health:

❑ SQL Server: General Statistics: User Connections — The User Connections counter displays
the number of user connections that are currently connected to SQL Server. This counter is espe-
cially useful in monitoring and tracking connection trends to ensure that the server is configured
to adequately handle all connections. Keep in mind that this counter displays the number of
user connections, not users. Some applications will create more than one connection per user,
whereas others may create only one connection but support multiple users.

❑ SQL Server: Locks: Average Wait Time — The Average Wait Time counter is an excellent
counter to monitor and track the average amount of time that user requests for data resources
have to wait because of concurrent blocks to the data. With the baseline and subsequent audits,
this counter will be a leading indicator of database application performance. However, it is just
an indicator. Resolving long-term locking requires running traces to record lock information.
Traces are discussed later in this chapter.

❑ SQL Server: Locks: Deadlocks/Sec — Deadlocks occur when two or more transactions hold a
lock on different resources and the transactions require access to the resources held by the oppos-
ing transaction. If this sounds very confusing, see the sidebar ‘‘Sample Events Resulting in a
Deadlock’’ for a simple example illustrating the sequence of events that results in a deadlock.

❑ SQL Server Access Methods: Page Splits/Sec — As described in Chapter 5, page splits occur
when SQL Server attempts to insert a row in a clustered or non-clustered index page, but there
is not sufficient space available to accommodate the new row. To maintain the contiguousness of
the index page, SQL Server splits about half of the data out of the original page and moves it to a
free page. This splitting of data is necessary to maintain the indexes, but it causes excessive I/O
because logically contiguous data is no longer physically contiguous. As more and more rows
are inserted, the fragmentation of data will become worse.

The Page Splits/Sec counter enables the monitoring of page split activity to determine how fast table
indexes are becoming fragmented. Although a certain amount of page splitting is normal, excessive
page splits will cause a steady deterioration of database performance. Chapter 5 explains how to detect,
correct, and mitigate this fragmentation.

407



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 408

Chapter 10: Monitoring SQL Server

When monitoring page split activity, create a baseline shortly after rebuilding the indexes. As subsequent
performance audits are completed, compare the page split activity. When the counter begins to spike, it
is probably time for the indexes to be rebuilt again with an appropriate fill-factor.

Sample Events Resulting in a Deadlock
Two stored procedures are executed at the same time on separate connections. The
first stored procedure, Proc1, updates one or more rows in TableA. The second stored
procedure, Proc2, updates one or more rows in TableB. At this time, Proc1 has an
exclusive lock on the updated rows in TableA, and Proc2 has an exclusive lock on the
rows in TableB.

Next, Proc1 attempts to update the same rows in TableB that Proc2 has updated. It
will not be able to, because Proc2 already has an exclusive lock. At this point, Proc1 is
blocked by Proc2. Proc2 then attempts to update the rows that Proc1 has updated and
is also blocked. This mutual blocking is a deadlock.

SQL Server does not allow deadlocks to continue. The Database Engine monitors for
deadlocks, and, if one is detected, it will select a victim process and kill that process.
The error raised by a terminated deadlock looks like the following message:

Msg 1205, Level 13, State 51, Line 6
Transaction (Process ID 53) was deadlocked on lock
resources with another process and has been chosen as the
deadlock victim. Rerun the transaction.

The selection process is based on cost. Whichever process would cost the least to roll
back is terminated, and the remaining process or processes are allowed to continue. The
most significant cause of deadlocks is the updating of tables in an inconsistent process.
When database developers are creating procedures for data modification, they should
update multiple objects in the same order whenever possible. For example, if Proc1
and Proc2 both update TableA first, and then TableB, a short-term blocking lock may
have occurred, but a deadlock would not have.

Deadlocks may occur occasionally, but they should not be a regular occurrence. Because
they are automatically detected and killed, they are sometimes difficult to troubleshoot.
The Profiler tool can be used to identify the offending processes involved in a deadlock,
as discussed later in this chapter.

Dynamic Management Views
SQL Server 2008 provides many Dynamic Management Views (DMVs) that can be used in the gathering
of baseline information and for diagnosing performance problems. Some of these views offer the same
information as performance counters, but in a relational and instantaneous format. Other views provide
more specific database performance information. I won’t try to cover all the views in this section, but the
following views can prove very helpful in the creation and comparison of performance baselines:

❑ sys.dm_os_performance_counters — A very interesting Dynamic Management View as far as
operating system information is concerned is sys.dm_os_performance_counters. This view
provides much the same information as Performance Monitor, except that the information is
returned in a relational format and the values returned are instantaneous. Because the data is

408



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 409

Chapter 10: Monitoring SQL Server

instantaneous, per-second counters will have to be queried at least twice to determine their true
value. The columns that are returned by this view are described in the following table:

Column Name Description

object_name Counter category, such as SQLServer:Wait Statistics or
SQLServer:Buffer Manager

counter_name Name of the counter

Instance_name Name of the counter instance, such as database name or instance
description. Server-level counters will not have an instance value.

cntr_value Instantaneous value of the counter

cntr_type Counter types fall into the following type categories:

65792 Numeric (integer) counter

1073874176 Average value counter

1073939712 Base value counter

272696576 Per second counter

537003264 Ratio value counter

❑ sys.dm_db_index_physical_stats — As described in Chapter 5, this view returns informa-
tion about the indexes on a table, including the amount of data on each data page, the amount
of fragmentation at the leaf and non-leaf level of the indexes, and the average size of records in
an index.

❑ sys.dm_db_index_usage_stats — The sys.dm_db_index_usage_stats view collects cumula-
tive index usage data. This view can be used to identify which indexes are seldom referenced
and, thus, may be increasing overhead without improving Read performance. The following
code example demonstrates one possible use of this view by joining it with the sys.indexes
system view to return the index name, table name, and index usage information:

USE AdventureWorks2008;
GO
SELECT object_name(S.object_id) AS TableName
,I.name AS IndexName, S.user_seeks AS Seeks
,S.user_scans AS Scans, S.user_updates AS Updates
,S.last_user_seek AS LastSeek, S.last_user_scan AS LastScan
FROM sys.dm_db_index_usage_stats S
JOIN sys.indexes I ON S.object_id = I.object_id
AND S.index_id = I.index_id
WHERE S.object_id > 100000 --Return only user owned index data
ORDER BY Seeks, Scans;

Tools and Techniques for Monitoring
Chapter 3 described many of the tools available from a feature point of view. This chapter examines the
tools from an implementation point of view and discusses how to use them to actually perform some

409



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 410

Chapter 10: Monitoring SQL Server

key database-monitoring tasks. The discussion also examines a few more tools that were not described in
Chapter 3, because they are intricately tied in to SQL Server Management Studio.

Log File Viewer
The Log File Viewer is an excellent tool for the viewing of SQL Server and operating system logs in a
one-time correlated view. For example, memory subsystem errors from the system log can be correlated
with SQL Server errors, indicating out-of-memory conditions and allowing you to isolate the problem
away from SQL Server. To open the Log File Viewer, expand the Management folder in SQL Server
Management Studio, expand SQL Server Logs, right-click on the log you want to view, and select ‘‘View
SQL Server Log.’’ Once the Log File Viewer is open, you can choose to open additional SQL Server logs
and/or operating system logs by expanding and selecting the logs you want to review (see Figure 10-2).
Notice that you can also open up log files for the SQL Server Agent and Database Mail.

Figure 10-2: Log File Viewer.

SQL Server and SQL Server Agent log files are closed and a new log is opened every time the respective
service is restarted. In a production system this may not occur very often, resulting in a large log file. To
avoid unacceptably large log files, the contents of the log files should be exported and the files cycled.
To cycle the SQL Server Log, execute the sp_cycle_errorlog stored procedure. To cycle the Agent Log,
the sp_cycle_agent_errorlog stored procedure is used. These procedures clear the contents of the logs
without requiring a service restart.

The number of logs that SQL Server keeps can be configured by right-clicking on the SQL Server Logs
folder and selecting Configure (see Figure 10-3). The minimum and default number of logs is 6, but it can
be increased to as many as 99. The number cannot be less than 6.

410



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 411

Chapter 10: Monitoring SQL Server

Figure 10-3: Configuring log files.

Activity Monitor
Microsoft bundled a surprise with the final release candidate of SQL Server 2008 when they included a
completely overhauled Activity Monitor. This was a surprise to the community because Activity Monitor
was moved from its traditional location, leading a number of concerned DBAs to flood the support
forums with postings. Apparently this was also a surprise to the Microsoft Books Online team, whom as
of this writing were still referencing the documentation for the old Activity Monitor!

Activity Monitor in SQL Server 2008 is now a feature-rich, near-real-time, graphical performance dash-
board. The new Activity Monitor has a similar look and feel to the system Reliability and Performance
Monitor included in Vista and Server 2008. The first thing that experienced DBAs will notice is that Activ-
ity Monitor is no longer located in the Management node of SQL Server Management Studio. Now you
will find Activity Monitor on the context menu of a SQL Server instance.

Activity Monitor is a great tool for gaining a deeper understanding of the overall health and performance
of your server. Compared to prior versions, it is no longer limited to displaying simple process and lock
information. Activity Monitor now shows intuitive graphs, detailed process and lock information, file
I/O statistics, and information about long-running queries. In addition, all of the grid views can now be
sorted and filtered. Activity Monitor cannot replace a good set of Data Management Views in the hands
of an experienced DBA, but it is very useful in answering the basic question ‘‘Why is my server running
slowly?’’

In order to run Activity Monitor, you will need the view server state permission. To kill any processes,
you will also need to be a member of either the sysadmin or processadmin server roles. The new Activity
Monitor will work on SQL Server 2005, but not on prior versions.

411



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 412

Chapter 10: Monitoring SQL Server

Activity Monitor is comprised of five major sections, titled Overview, Processes, Resource Waits, Data
File I/O, and Recent Expensive Queries:

❑ Overview — The Overview section displays four near-real-time graphs that represent key per-
formance metrics. Right-clicking on a graph will allow you to adjust the refresh rate or pause
data collection.

❑ Processes — The Processes section lists a row for every connection to SQL Server, along with
several columns describing the process (such as the user associated with the connection, the
database context, and the command presently running, as well as any wait status and block-
ing information). Right-clicking on a process and selecting Details will bring up the last com-
mand executed on that connection and provide the capability to kill the process, if necessary.
Right-clicking on a process will display a context menu with the option to trace the process in
SQL Server Profiler. Figure 10-4 illustrates this behavior. Also notice in Figure 10-4 that Process
59 is suspended, because it is waiting on the resource that is locked by Process 57, which, in turn,
is waiting on the resource that is locked by Process 60.

Figure 10-4: Processes.

❑ Resource Waits — The Resource Waits section displays a complete list of all resource waits
(CPU, Latch, Memory, Buffer I/O, etc.). This list does not provide any drill-in capability, but you
can filter and sort the results.

412



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 413

Chapter 10: Monitoring SQL Server

❑ Data File I/O — The Data File I/O section displays file activity totals by database file. The list
can be filtered and sorted.

❑ Recent Expensive Queries — This is a welcome addition to the Activity Monitor! The Recent
Expensive Queries section shows all recent, costly queries and allows you to open the complete
query statement or the detailed execution plan in a new Query window. Figure 10-5 displays this
section and shows the context menu options for an expensive query.

Figure 10-5: Recent Expensive Queries.

By default, Activity Monitor will refresh the display every 10 seconds. To configure Activity Monitor for
a different refresh rate, right-click on any of the graphs, and select the desired Refresh Interval or select
Pause to disable refreshing. Keep in mind that frequent refreshing of process information can cause
degradation of SQL Server’s performance.

System Stored Procedures
Although Activity Monitor is a great graphical tool to view processes and the resources they are using,
often the simpler output of System Stored Procedures is more appropriate for identifying current pro-
cesses and identifying any contention.

413



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 414

Chapter 10: Monitoring SQL Server

sp_who and sp_who2
The sp_who2 stored procedure is an undocumented system procedure that offers a distinct advantage
over its documented sibling procedure, sp_who. They both return information about current SQL Server
processes, but the sp_who2 procedure’s information is more comprehensive.

These stored procedures are essentially equivalent to Activity Monitor’s Processes page. The output of
sp_who or sp_who2 can be restricted by specifying a process ID as an input parameter. The syntax of the
sp_who and sp_who2 procedures is as follows:

sp_who [process_ID] | login_name | [ACTIVE]

sp_who2 [process_ID] | [ACTIVE]

The sp_who stored procedure returns nine columns described in the following table:

Column Name Description

spid Server Process ID. The spid represents the session ID of the connection.
Every connection has one spid.

ecid Execution Context ID. The ecid value indicates what thread the process
was executed on. An ecid of 0 indicates that the process was executed on
the main thread.

status The status of the session. Possible status values are as follows:

Running — The session is performing some work.

Runnable — The session has performed some work, but it cur-
rently has no work to perform.

Sleeping — The session is waiting to perform work.

Background — Background processes (typically those owned by
the system) that periodically activate to perform an action

Suspended — The session has work to do but has been stopped
because it is waiting for a process (such as I/O) to complete.

Dormant — The session is being re-set by SQL Server.

Rollback — The session is currently rolling back a transaction.

Pending — The session is waiting on an available thread.

Spinloop — The session is waiting on a spinlock to become free.
Spinlocks are used for fast protection of critical memory regions
on multi-CPU machines.

loginame The login associated with the session

hostname Host name associated with the session

blk The spid of the session that is blocking the session if one exists. If not, a
0 is returned.

414



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 415

Chapter 10: Monitoring SQL Server

Column Name Description

dbname The name of the database connected to by the session

cmd The type of command executing on the session

request_id The integer identifier of the request running in the session

The sp_who2 stored procedure returns 13 columns, although it returns one column, spid, twice — once
on the left side of the result set and once on the right to make the result set easier to read. The columns
are described in the following table:

Column Name Description

SPID Server Process ID. The spid represents the session ID of the connection.
Every connection has one spid.

Status The status information is the same as for the sp_who command.

Login The login associated with the session

HostName Host name associated with the session

BlkBy The spid of the session that is blocking the session if one exists

DBName The name of the database connected to by the session

Command The type of command executing on the session

CPUTime The cumulative CPU usage for this process

DiskIO The cumulative Disk I/O for this process

LastBatch The last time the client process executed a remote stored procedure call
or an EXECUTE statement. If the process is a system process, the time is
the time that SQL Server was last started.

ProgramName The name of the application (if reported) associated with the session
(e.g., Microsoft SQL Server Management Studio)

SPID Duplicate of the spid recorded in the first column of the results

REQUESTID The integer identifier of the request running in the session

When the ‘‘Active’’ option is added to sp_who or sp_who2, SQL Server does not return any session that
has the Command of ‘‘Awaiting Command,’’ which specifies that the session is waiting on input from a
user process.

sp_lock
The sp_lock stored procedure returns the number and types of locks held by active database processes.
The object locked or requested to be locked is returned with the lock status and any identifying informa-
tion (such as the object’s integer identifier), along with the index ID, if any.

415



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 416

Chapter 10: Monitoring SQL Server

SQL Server Locking
To interpret the information returned by sp_lock, it is important to understand the lockable resource
types and the modes these locks can take. The possible resource types are described in the following
table:

Resource Type Description

RID A RID lock is a row lock on a heap. The identifier is in the format
FileID:PageNumber:RID, where FileID is the data file containing the
row, PageNumber is the integer identifier of the 8K data page, and RID
identifies the specific row on the data page.

KEY A KEY lock is a row-level lock when a clustered index exists. The KEY is a
hexadecimal number that the Database Engine uses internally to track
individual clustered index keys.

PAG PAG indicates that the lock is requested or held on an 8-K data page. The
value of PAG is the combination of the data file FileID and the integer
identifier of the data page.

EXT An EXT lock is a lock of an entire 64-K extent. The value of EXT is the data
file FileID and the identifier of the first page on the extent.

TAB TAB locks are table locks. No resource information is returned for TAB
locks because the ObjID column already contains the Object_ID of the
table.

DB DB indicates a database lock. No resource information is returned for DB
locks because the dbid column already contains the identifier for the
database locked.

APP APP indicates a lock request held on an application resource. Application
locks are issued explicitly through the use of the sp_getapplock stored
procedure and are fairly rare.

FIL A FIL lock is a lock held on a data file. The resource information contains
the integer value of the file identifier.

MD MD locks are metadata locks. MD locks are typically on XML collection data.

HBT A lock on a Heap or B-Tree index

AU A lock on an Allocation Unit

Locks on resource types are requested and granted by mode. The sp_lock stored procedure returns
information that identifies the mode of the lock (e.g., whether the lock is a shared or exclusive lock). The
following table describes the most common modes:

416



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 417

Chapter 10: Monitoring SQL Server

Lock Mode Description

Sch-S Shared Schema Lock — Prevents processes from altering the schema of
a resource while it is in use. The Sch-S lock mode is compatible with
other shared locks.

Sch-M Schema Modification Lock — Required to modify the schema of a
resource. This lock mode is not compatible with any other lock mode.

S Shared Lock — A Shared lock is compatible with all other locks except
Exclusive locks.

U Update Lock — An Update lock is used to prevent deadlocks by
specifying that a resource is locked for eventual updating.

X Exclusive Lock — For any resource that is being modified, created, or
dropped, a process will have an Exclusive lock during the modification.

IS Intent Shared Lock — Intent locks are used on resources higher in the
resource hierarchy to prevent more exclusive locks from being issued.
For example, an Intent Shared lock can be placed on a data page if an
individual row is being read. This prevents an Exclusive lock from being
placed on the page and trapping the shared process. Intent Shared locks
are compatible with all locks except Exclusive.

IU Intent Update Lock — These locks function in the same way as Intent
Shared locks to prevent more exclusive locks from being granted higher
in the resource hierarchy. Intent Update locks are compatible with all
locks except Update and Exclusive.

IX Intent Exclusive Lock — These locks work the same as the other two
Intent locks. Intent Exclusive locks are only compatible with other Intent
Exclusive locks.

SIU Shared Intent Update — The SIU lock mode is a combination of the
Shared and Intent Update locks. It is compatible with all other locks
except Exclusive, Intent Exclusive, Shared with Intent Exclusive, and
Update with Intent Exclusive.

SIX Shared with Intent Exclusive — The SIX lock mode is less restrictive
than the IX lock mode and allows for compatible shared locks higher in
the resource hierarchy.

UIX Update with Intent Exclusive — The UIX lock mode is a combination of
the Update and Intent Exclusive locks. It is only compatible with Intent
Shared locks.

BU Bulk Update — Bulk Update locks are issued to bulk load table
operation processes when the TABLOCK hint is used or when the
Table Lock On Bulk Load table option is set. Bulk Update locks are
incompatible with all locks except other Bulk Update locks.

417



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 418

Chapter 10: Monitoring SQL Server

KILL
Although not a stored procedure, the KILL command enables the database administrator to kill an offend-
ing process just like the ‘‘Kill Process’’ button on the Process Property dialog shown in Figure 10-4. The
syntax for the KILL command is as follows:

KILL spid

The KILL command is very useful, but it should be used with great caution. Although it is sometimes
necessary to kill a stalled process, it is very important to gather as much information as possible about
that process before killing it. For example, killing a transaction that has updated a thousand rows will
result in a thousand row rollbacks, resulting in some undesired consequences such as a full transaction
log or lost data.

Try It Out System Stored Procedures
Take a look at what information is returned by the System Stored Procedures and how you can use them
to isolate troublesome processes.

1. Open a Query window. Type and execute the following code:

USE AdventureWorks2008;
GO
BEGIN TRAN
UPDATE Person.Person
SET LastName = ‘Gates’
WHERE BusinessEntityID = 1;

2. Open a second Query window. Type and execute the following code:

USE AdventureWorks2008;
GO
SELECT * FROM Person.Person
WHERE BusinessEntityID = 1;

You will not see any results returned when executing this statement. It will not complete until the
first query releases its locks.

3. Open a third Query window and run the sp_who System Stored Procedure by executing the fol-
lowing command:

EXEC sp_who;

Notice that one of the processes shows that it is being blocked by another session. In the case
shown in Figure 10-6, SPID 59 is being blocked by SPID 60.

4. Execute the sp_who2 stored procedure, but restrict the result set to the Server Process ID (SPID)
that is responsible for the block in progress. In my case, the spid is 60.

EXEC sp_who2 60;

418



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 419

Chapter 10: Monitoring SQL Server

Figure 10-6: Result of running sp_who System Stored Procedure.

The more comprehensive results of the sp_who2 stored procedure execution return very useful
information (such as the program and user responsible, as well as when the session executed the
command responsible for the lock contention).

5. Identify what object is being contested by the two processes. Execute the sp_lock stored pro-
cedure. The results of this procedure, like the sp_who and sp_who2 stored procedures, can be
restricted by passing in the appropriate process ID.

6. Type and execute the following command to display the information about the SPID being
blocked. This is the SPID that returned a value in the BlkBy column of the sp_who2 results. For
me, it was 59, but remember that your SPID will most likely be different:

EXEC sp_lock 59;

The results are shown in Figure 10-7.

Figure 10-7: sp_lock results.

In Figure 10-7, notice that several locks have been requested and granted, but the shared lock on the
clustered index key 010086470766 (which represents the contact in the Person.Person table with the

419



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 420

Chapter 10: Monitoring SQL Server

BusinessEntityID of 1) is in a WAIT status. This is because spid 60 is currently modifying that particular
row and has an exclusive lock on that key.

To terminate the blocking process, execute the KILL command specifying the appropriate SPID, which,
for me, is 60:

KILL 60;

Use caution when killing a process. SPID 60 is the process on my computer. Your results may vary!

Using Profiler
Chapter 3 described the basic features of Profiler. This section shows you how to gather performance
information to isolate and correct database application problems. The guidelines for the traces provided
can be combined into a comprehensive trace or run individually.

Another important consideration for using Profiler is overhead. Running Profiler interactively can cre-
ate a great deal of server overhead and create a large uncertainty factor. Profiler is just a graphical
interface for viewing the results of a SQL trace. It is an excellent tool, but for large databases with a
heavy transaction load, you will probably want to use the sp_trace_setevent, sp_trace_setfilter,
sp_trace_setstatus, and sp_trace_create stored procedures to create, configure, and run traces with
the trace data collected in files. The data can then be viewed using Profiler straight from the collected
files, or you can import the data into a database for analysis.

Try It Out Analyzing Deadlocks with Profiler
As mentioned earlier, detecting deadlocks is easy using Performance Monitor. Finding out why dead-
locks are happening is more difficult and requires the running of traces and examining the data collected
with Profiler.

1. Open SQL Server Management Studio, and connect to a server that hosts the
AdventureWorks2008 database. After connecting, launch SQL Server Profiler from the
Tools menu, and create a new trace based on the Blank template, as shown in Figure 10-8.

2. On the Events Selection tab, select the Lock events Deadlock graph and Lock:Deadlock Chain,
as shown in Figure 10-9. Notice that when Deadlock graph is selected, the Events Extraction Set-
tings tab appears.

3. To limit the data returned to Profiler, click on the ‘‘Column Filters’’ button, and then select
Database Name. In the ‘‘Not Like’’ box, enter MSDB to prevent SQL Agent and scheduled
monitoring activity from being traced. Click OK.

Figure 10-10 shows the desired configuration. Be careful when filtering databases. It may seem
like the best filter would be one that specifies only a particular database by creating the filter
where the database ID or database name is like a specific value. However, there are many Profiler
events that do not have a specific database context, and these will not display if you set the filter
this way. Instead, you must tell Profiler what databases you don’t want to monitor. The deadlock
graph is one such event.

420



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 421

Chapter 10: Monitoring SQL Server

Figure 10-8: Creating a new trace based on the Blank template.

Figure 10-9: Selecting Deadlock graph and Lock:Deadlock Chain.

421



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 422

Chapter 10: Monitoring SQL Server

Figure 10-10: Desired configuration.

4. In the Event Extraction Settings tab, check the ‘‘Save Deadlock XML events separately’’ check-
box, and enter a destination to save the files (see Figure 10-11). Select the option to save ‘‘Each
Deadlock XML batch in a distinct file,’’ and click Run.

Figure 10-11: Entering a destination to save the files.

422



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 423

Chapter 10: Monitoring SQL Server

5. In SQL Server Management Studio, open two new Query windows.

6. In the first Query window (which is probably called SQLQuery1.sql), type the following code and
execute it:

--Connection 1
USE AdventureWorks2008;
GO

BEGIN TRAN

UPDATE Person.Address
SET City = ‘Redmond’
WHERE AddressID = 1;

7. In the second Query window, type the following code and execute it:

--Connection 2
USE AdventureWorks2008;
GO
BEGIN TRAN
UPDATE Person.Person
SET LastName = ‘Gates’
WHERE BusinessEntityID = 1;

UPDATE Person.Address
SET AddressLine1 = ‘1 Microsoft Way’
WHERE AddressID = 1;

This update will not complete because the transaction in Connection 1 has an exclusive lock
on the row being updated in the Person.Person table. What is occurring at this point is a
blocking lock. The transaction in Connection 2 wants to update the row that is being locked by
Connection 1. Blocking locks are allowed and will continue indefinitely unless a lock time-out
has been set, the blocking transaction completes, or an administrator terminates the blocking
transaction.

8. On the first connection, write and execute the following code to update the Person.Person table:

--Connection 1
UPDATE Person.Person
SET FirstName = ‘Bill’
WHERE BusinessEntityID = 1;

This update causes a deadlock to occur because both connections hold exclusive locks on
resources that the opposing transaction requires to complete. The deadlock is detected and one
of the deadlocked processes is killed (the deadlock victim). The remaining process will then
succeed.

9. Return to Profiler, stop the trace, and select the Deadlock graph event class row. The deadlock
graph shows the server process IDs and locked resources that were deadlocked. Hovering the
mouse over one of the processes will expose the process that participated in the deadlock, as
shown in Figure 10-12.

423



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 424

Chapter 10: Monitoring SQL Server

Figure 10-12: Exposing the process that participated in the deadlock.

To restore the Person.Person table to its original state, be sure to execute a ROLLBACK state-
ment on the transaction not killed by the deadlock.

10. To capture the script that was used to run this trace, click on the File menu within SQL Profiler,
and select the Export � Script Trace Definition � For SQL Server 2005–2008 (see Figure 10-13). A
‘‘Save as’’ dialog will be displayed. Save the script as DeadLockTrace.SQL.

11. Open the DeadLockTrace.SQL file that you just saved with SQL Server Management Studio. This
is the script that SQL Server ran to create the trace you just practiced. By saving this script, it
can be run at any time without having to launch and run Profiler. For more information about
each of the stored procedures, consult SQL Server Books Online, which contains a very thorough
description of each procedure.

Once the trace file is captured, it can either be opened with SQL Profiler or, in the case of larger traces,
it can be inserted into a table for analysis with conventional T-SQL queries. To move the data into a
table, the fn_trace_gettable table-valued function can be used. This table-valued function requires two
values: the name of the trace file to be imported and the maximum number of rollover files to collect.
The default for the number of files is the maximum number of files set with the trace. The following
example shows how the trace collected earlier can be added to a table called DeadLockTraceTable in the
AdventureWorks2008 database:

USE AdventureWorks2008;
GO
SELECT * INTO DeadLockTraceTable
FROM fn_trace_gettable(C:\ProfilerTraces\DeadLocks.trc’, NULL);

424



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 425

Chapter 10: Monitoring SQL Server

Figure 10-13: Export trace definition.

Detect and Analyze Long-Running Queries with Profiler
Profiler is a great tool for analyzing locks, as well as debugging stored procedures and database applica-
tions. It is also very useful in the identification and analysis of long-running queries that interfere with
the performance of SQL Server. Profiler can return query execution information that can be examined
by the database administrator to isolate the cause of the lengthy query. Is it poorly written? Are there no
indexes to support the query, or is it just a monster query?

Try It Out Analyzing Queries
To analyze queries, follow these steps:

1. Start Profiler and create a new trace called QueryTuning using the Blank template. Select the fol-
lowing events on the Events Selection tab:

❑ Performance: Showplan XML

425



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 426

Chapter 10: Monitoring SQL Server

❑ Stored Procedures: SP:Completed

❑ TSQL: SQL:BatchCompleted

2. Click on the ‘‘Column Filters’’ button, create a filter in which the database name is like
AdventureWorks2008, and click OK to apply the filter.

3. Click on the ‘‘Organize Columns’’ button. Find the Duration column and move it up to the top of
the column list to make it easy to read duration data.

4. On the Events Extraction Settings tab, select the ‘‘Save XML Showplan events separately’’ check-
box. Choose a destination to save the ShowPlan information, title the file QueryTuning, and then
choose the option to save each XML ShowPlan in a separate file. SQLPlan is the file extension
given to ShowPlan data. The ShowPlan data is stored as XML and can be viewed with Manage-
ment Studio, as you will see later. When saving query plans in separate files, each file is given the
name of the file defined in the destination, along with a numerical identifier appended to the end
of the name.

5. Click Run to start the trace.

6. Next, open a new Query window in SQL Server Management Studio. Type and execute the fol-
lowing code:

USE AdventureWorks2008;
GO
SELECT P.ProductID, P.name AS Product, TH.TransactionDate,

SUM(TH.Quantity), SUM(TH.ActualCost), SUM(P.StandardCost)
FROM Production.Product P
INNER JOIN Production.TransactionHistory TH
ON P.ProductID = TH.ProductID
GROUP BY P.ProductID, P.Name, TH.TransactionDate;
GO
EXEC dbo.uspGetManagerEmployees 109;
GO
EXEC dbo.uspGetEmployeeManagers 1;
GO
SELECT P.name AS Product, SUM(SOD.OrderQty) AS SumQty

, SUM(SOD.UnitPrice) AS SumPrice, SUM(SOD.LineTotal) AS SumTotal
, CONVERT(char(10), SOH.OrderDate,101) AS orderDate
, CONVERT(char(10), SOH.ShipDate,101) AS ShipDate
, CONVERT(char(10), SOH.DueDate,101) AS DueDate

FROM Sales.SalesOrderDetail SOD
INNER JOIN Sales.SalesOrderHeader SOH
ON SOH.SalesOrderID = SOD.SalesOrderID
INNER JOIN Production.Product P
ON P.ProductID = SOD.ProductID
GROUP BY P.Name, SOH.OrderDate, SOH.ShipDate, SOH.DueDate;

After the query completes, stop the trace and examine the results. Notice that the longest-running
process is the last one that references the Sales.SalesOrderHeader, Sales.SalesOrderdetail,
and Production.Product tables.

7. Navigate to the ShowPlan destination folder and examine the contents. You should see four files
named QueryTuning_1.SQLPlan through QueryTuning_4.SQLPlan.

426



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 427

Chapter 10: Monitoring SQL Server

8. Double-click on the QueryTuning_4.SQLPlan file. It will open with SQL Server Management Stu-
dio as a graphical execution plan, as shown in Figure 10-14.

Figure 10-14: SQL Server Management Studio as a graphical execution plan.

The ShowPlan files are very useful in evaluating the actual process that the Database Engine uses to
optimize queries and in identifying areas for improvement. The ShowPlans are read from right to left.
Hovering the mouse over an icon will display additional information about the process depicted, often
providing insight into how the process can be optimized. For example, if a process shows an unnecessary
implied conversion, the data types can be more strictly passed to avoid the implied conversion.

The information represented in Figure 10-14 is actually saved as XML. This is of particular interest to
organizations that want to consume the ShowPlan data with analysis applications such as the Database
Tuning Advisor that are built to analyze query plans and identify areas for improvement. Change
the name of the QueryTuning_4.SQLPlan to QueryTuning_4.XML. Right-click on the QueryTun-
ing_4.XML file and choose ‘‘Open with ... Internet Explorer.’’ The ShowPlan file displayed is rendered
with Internet Explorer’s built-in XML parser and is readily identified as an XML file.

Monitoring Files
One of the more mundane (but imminently important) monitoring tasks for every database administra-
tor is that of monitoring and managing file sizes. The default setting for both data files and log files is
to grow automatically with no maximum size. This is probably not the most ideal configuration. Gen-
erally, during the database design and planning phase, a determination of database size is made. This
determination should identify the starting size of the database files and the anticipated rate of growth of
each file type. However, unexpected growth, especially with the log file, is very typical. This makes the
monitoring of file sizes especially important. If a data file fills to capacity, no data modifications will be
allowed. The same goes for the log files.

Disk Usage Report
There are several ways to monitor database file sizes. The Disk Usage report in SQL Server Management
Studio (see Figure 10-15) is one. This report is very informative and can be used to find the tables that

427



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 428

Chapter 10: Monitoring SQL Server

are consuming the most space, as well as index structures and files. The disadvantage of the Disk Usage
report is that you have to run the report to get it.

Figure 10-15: Disk Usage report.

sp_spaceused
The sp_spaceused stored procedure can also be used to return some of the same information as the Disk
Usage report, but the sp_spaceused stored procedure will only return space information for the entire
database if no object name parameter is passed with it or a single object. The following example shows
how to run sp_spaceused to retrieve information from the AdventureWorks2008 database and a table in
the AdventureWorks2008 database:

SET NOCOUNT ON;
USE AdventureWorks2008;
GO
SELECT ‘AdventureWorks2008 Space Used Data’
EXEC sp_spaceused; --Return total database size and available disk space

SELECT ‘Person.Person Space Used Data’
EXEC sp_spaceused ‘Person.Person’; --Return allocation data for Person.Person

The results of this script are as follows (your results will look a little different, because I formatted the
results to fit on the page):

------------------------------
AdventureWorks2008 Space Used Data

database_name database_size unallocated space
------------------ -------------- ------------------

428



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 429

Chapter 10: Monitoring SQL Server

AdventureWorks2008 198.06 MB 15.40 MB

reserved data index_size unused
------------------ ------------------ ------------------ ------------------
185000 KB 96312 KB 82112 KB 6576 KB

------------------------------
Person.Person Space Used Data

name rows reserved data index_size unused
--------- -------- --------- --------- ------------- ------
Person 19972 83752 KB 30488 KB 52560 KB 704 KB

sys.sysfiles
The system view sys.sysfiles is another great way to retrieve information about files in the database,
but the default data returned is not the most intuitive. For example, the size attribute is not a file size,
but the number of 8-K data pages, and the maxsize attribute returns -1 if no maximum size is specified.
To make the results more concise and readable, you can create a script like the one that follows:

SELECT Name, FileName
, CAST((Size * 8192 / 1048576) AS varchar(10)) + ‘MB’ AS FileSize
, MaxSize =

CASE MaxSize
WHEN -1 THEN ‘Unlimited’
ELSE CAST((Maxsize / 128) AS varchar(10)) + ‘MB’

END FROM sys.sysfiles;

The results of this query are simple and easy to understand (see Figure 10-16). They can also be consumed
by an application and programmatic decisions made based on the results.

Figure 10-16: Query results.

429



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 430

Chapter 10: Monitoring SQL Server

Monitoring Files with Performance Monitor
Probably the most efficient way of keeping abreast of the amount of free space in data and log files is
to use performance counters. The SQL Server:Databases performance object has several counters that
can be used to monitor disk and log file sizes. You can use these counters to create alerts as described
in Chapter 8. This way, SQL Server does the monitoring for you and sends you notifications when a
data file has exceeded a preconfigured size or the transaction log has filled to a percentage greater than a
certain value.

Auditing
At its root, auditing is simply the process of monitoring and tracking changes to a system. Increasingly,
DBAs are required to implement auditing to satisfy application security and business requirements.
Monitoring access to and changes to database data, in many cases, may be employed to satisfy industry
mandatory compliance in terms of HIPAA, SOX, and other regulatory measures.

Auditing is one of those topics that is very simple conceptually, but traditionally has been very difficult
in practice, often requiring custom solutions and extensive commitments of time and resources, with
varying degrees of success. SQL Server 2008 aims to change that by making auditing a more integrated,
standardized, and automated task, while at the same time increasing audit reliability and reducing the
overall system overhead.

At the core of the new auditing capabilities, SQL Server 2008 introduces the SQL Server Extended Events
engine. The Extended Events engine potentially allows any process to define and raise events, and con-
sumers to receive events. Events are handled in a completely decoupled fashion, allowing a single event
to be efficiently dispatched to multiple consumers while ensuring that events are never lost.

With the wide variety of auditing tools available in SQL Server, a database administrator is able to easily
craft a comprehensive, customized auditing strategy to meet the needs of his particular organization.
In this section, I will introduce the various auditing tools and processes and attempt to give you some
insight on how you can use them effectively in your environment.

SQL Server Audit
SQL Server 2008 Enterprise Edition introduces a new automatic auditing option known as SQL Server
Audit. An SQL Server Audit is made up of a number of different elements working together to track and
log events that occur on the system. The elements are known as the SQL Server Audit Package, the Server
Audit Specification, the Database Audit Specification, and the Audit Destination (also known as the target).

To understand the elements that make up an SQL Server Audit and how they interact, it is useful to
compare it to a more well-known construct — a report. A report is the output generated by combining a
report definition with a data source. Similarly, an audit is the output generated by combining an audit
object with an audit specification.

The term audit can be a bit confusing because the same word is used in many
different contexts. SQL Server uses the term audit to describe the audit package, the
auditing process itself, and the output of the auditing process! It is no wonder that
the terminology can cause some confusion.

430



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 431

Chapter 10: Monitoring SQL Server

The basic process for creating a SQL Server Audit is as follows:

1. Create a SQL Server Audit Package and define a destination for the output.

2. Create a Server Audit Specification and/or one or more Database Audit Specifications that
define the audit event criteria.

3. Enable the Audit Specification(s).

4. Enable the Audit.

5. View and analyze the captured audit events. Depending on the audit destination, results can
be viewed using the Windows Event Viewer, the Log File Viewer in the SQL Server Manage-
ment Console, or by using the fn_get_audit_file function.

Before actually creating an audit, I will go over each element in a little more detail. Then I will present an
example that ties it all together.

Audit Package
An Audit Package defines an audit, acts as the event consumer for captured audit events, and directs the
captured events to a target destination. Audit Packages can be managed from the Security � Audits
folder of a server instance.

In addition to the target, there are only two other settings that you can change:

❑ Queue Delay — This setting indicates the number of milliseconds to buffer events before forcing
them to be processed. The default value is 1,000 (1 second). Setting this value to zero will force
events to be processed immediately. Buffering helps to minimize the performance impact of the
audit on the server, so in most cases I recommend leaving it at the default value.

❑ Shut Down Server on Audit Log Failure — When this flag is set, SQL Server will shut down if it
is unable to write events to the target. Most commonly, this occurs when the disk volume where
the logs are being written runs out of space. It is important to mention that if this flag is set and
you run out of log space, you will not be able to restart the server until you free up additional
space or start SQL Server using the -f flag to disable auditing.

An Audit Package can contain at most one server audit specification and one database audit specification
for each database. If necessary, you can create multiple audits that each map to a different specification.

Audit Packages are always created in the disabled state. Enabling the Audit Package will allow it to send
captured events to the target.

Server Audit Specification
A Server Audit Specification determines which server-level events should be included in the audit. Server
Audit Specifications are defined at the SQL Server instance level, so there can only be one per audit.
Server Audit Specifications are located in the Security � Server Audit Specifications folder of each server
instance.

The Server Audit Specification can include multiple server-level action groups, where each group is a
pre-defined collection of related events. The specified events are included in the audit and saved to the

431



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 432

Chapter 10: Monitoring SQL Server

destination. Most of the action groups have an equivalent security audit event category, as described
later in this chapter.

The following table shows the available server-level-only action groups and briefly describes the events
that are included:

Group Description

SUCCESSFUL_LOGIN_GROUP A principal (user or role) successfully logs in.

LOGOUT_GROUP A principal logged out.

FAILED_LOGIN_GROUP A principal failed to successfully log in.

LOGIN_CHANGE_PASSWORD_GROUP The password is changed for any server login.

SERVER_ROLE_MEMBER_CHANGE_
GROUP

A login is added or removed from a fixed server
role.

BACKUP_RESTORE_GROUP A backup or restore command is issued.

SERVER_OPERATION_GROUP Any security audit operations are performed, such
as altering settings or resources.

SERVER_STATE_CHANGE_GROUP The server service state is changed.

SERVER_OBJECT_CHANGE_GROUP A CREATE, ALTER, or DROP command is used on a
server object.

SERVER_PRINCIPAL_CHANGE_GROUP A server principal is created, altered, or dropped.

SERVER_PRINCIPAL_IMPERSONATION_
GROUP

Impersonation is used in a server context, such as
with Execute As <login>.

SERVER_PERMISSION_
CHANGE_GROUP

A GRANT, REVOKE, or DENY is issued for permissions
at the server scope, such as creating a login.

SERVER_OBJECT_PERMISSION_
CHANGE_GROUP

A GRANT, REVOKE, or DENY is issued for server object
permissions, such as when changing ownership.

BROKER_CONVERSATION_GROUP An audit broker conversation is created.

BROKER_LOGON_GROUP Audit messages related to Service Broker transport
security are reported.

DATABASE_MIRRORING_ACTION_
GROUP

Audit messages related to database mirroring
transport security are reported.

TRACE_CHANGE_GROUP A trace is created, configured, or filtered.

In addition to the server-level-only action groups, you can also use any of the database action groups in
a Server Audit Specification. When you use a database action group at the server level, it applies to all
databases on the server. The database action groups are described in the next section.

432



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 433

Chapter 10: Monitoring SQL Server

Database Audit Specification
A Database Audit Specification works in the same way as a Server Audit Specification, but at the database
level. An audit can include one Database Audit Specification for each database on the server. Database
Audit Specifications can be managed from the Security � Database Audit Specifications node of each
database. A Database Audit Specification can include multiple database-level action groups or single
audit events.

The following table shows the action groups that are available at the database level and briefly describes
which events they represent:

Group Description

APPLICATION_ROLE_CHANGE_
PASSWORD_GROUP

An application role password is changed.

AUDIT_CHANGE_GROUP An audit is created, modified, or deleted.

DATABASE_ROLE_MEMBER_
CHANGE_GROUP

A login is added or removed from a database role.

DATABASE_OPERATION_GROUP Specific database operations occur, such as
checkpoint or subscribe query notification.

DATABASE_CHANGE_GROUP A database is created, altered, or dropped.

DATABASE_OBJECT_CHANGE_GROUP A CREATE, ALTER, or DROP statement is used on any
object in the database, including schemas.

DATABASE_PRINCIPAL_
CHANGE_GROUP

A user or role is created, modified, or dropped.
Password changes are included in this group.

DBCC_GROUP Any DBCC command is issued.

SCHEMA_OBJECT_CHANGE_GROUP A schema is created, altered, or dropped.

DATABASE_PRINCIPAL_
IMPERSONATION_GROUP

An impersonation event occurs in the database,
such as Execute As <Principal> or SETPRINCIPAL.

DATABASE_OWNERSHIP_
CHANGE_GROUP

The owner of a database is changed.

DATABASE_OBJECT_OWNERSHIP_
CHANGE_GROUP

The owner is changed for any object in a database.

SCHEMA_OBJECT_OWNERSHIP_
CHANGE_GROUP

When permission to change the owner of any object
is checked.

DATABASE_PERMISSION_
CHANGE_GROUP

Any database permission is changed, such as
granting access to a database.

DATABASE_OBJECT_PERMISSION_
CHANGE_GROUP

Permissions are changed for any object in a
database, including schemas.

Continued

433



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 434

Chapter 10: Monitoring SQL Server

Group Description

SCHEMA_OBJECT_PERMISSION_
CHANGE_GROUP

When permission to change the permissions of any
object is checked

DATABASE_OBJECT_ACCESS_GROUP Any access to any database or database object, such
as certificates or symmetric keys

SCHEMA_OBJECT_ACCESS_GROUP Whenever an object permission is used in a schema

A powerful feature of the Database Audit Specification allows auditing of specific actions on specific
objects, performed by a specific principal (user or role). The actions that can be audited are DELETE,
EXECUTE, INSERT, RECEIVE, REFERENCES, SELECT, and UPDATE.

If you select a specific action in a Database Audit Specification, then you must also specify an object name
and a principal name. You can use the ‘‘public’’ principal to include all users and roles, since everyone
is automatically a member of ‘‘public.’’ You will not be able to save a specification that includes an
incomplete row.

Audit Destination
The audit destination (also known as the target of the audit) determines where the captured events will
be written. The destination of the audit can be one of the following:

❑ File — Saves the audit to a file. In addition to the file path, you can specify the maximum number
of rollover files, the maximum size of each file, and whether or not to reserve the necessary space.
The security of this selection will depend on the file system permissions that are assigned to the
file.

❑ Security Log — Writes the audited events to the Windows Security log. This is probably the best
choice for a high-security environment, but before selecting this destination, you will likely need
to modify a couple of system policies. Refer to the section below on targeting the security log for
more information.

❑ Application Log — Sets the audit destination to the Windows Application log. Remember when
choosing this destination that by default, the application log is readable by ordinary users. Some
audit information might be sensitive in nature and not fit for general consumption. This choice
may not be appropriate for a high-security environment.

Targeting the Security Log
In order to write events to the Security log, the SQL Server service account will need to be added to the
‘‘Generate Security Audits’’ policy, and the ‘‘Audit Object Access’’ security policy will need to be enabled
for both success and failure. This can be accomplished either from the security policy snap-in (secpol.msc)
or, in Windows Vista or Server 2008, by using the command-line audit policy program (auditpol.exe).

To enable targeting the security log using the security policy snap-in:

1. Open the security policy snap-in by entering secpol.msc in Start � Run.

2. Expand ‘‘Local Policies,’’ and then click on ‘‘User Rights Assignment.’’

434



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 435

Chapter 10: Monitoring SQL Server

3. Open the ‘‘Generate Security Audits’’ policy, and add the SQL Server service account to the
local security setting.

4. Next, select ‘‘Audit Policy’’ from the left-hand pane.

5. Open the ‘‘Audit Object Access’’ policy, and check both success and failure on the Local
Security setting tab.

6. Close the security policy snap-in.

By default, the Local System, Local Service, and Network Service are part of the Generate Security Audits
policy. If you are running SQL Server under one of these accounts, then you will only need to configure
the ‘‘Audit Object Access’’ policy.

Try It Out Auditing Security Events
To audit security events, follow these steps:

1. Open SQL Server Management Studio, and connect to the server that hosts the
AdventureWorks2008 database. Expand the Security node in Object Explorer, then right-click on
the Audits folder and select New Audit. Create the new audit as shown in Figure 10-17.

Figure 10-17: Creating a new Audit Package.

If the file path does not exist, you will receive an error when you click OK on the
Create Audit dialog. If necessary, you can leave the dialog open, use Explorer to
create the desired folder, and then complete the dialog.

435



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 436

Chapter 10: Monitoring SQL Server

2. Right-click on the Server Audit Specifications folder, and select New Server Audit Specifica-
tion. In the Audit box, select the audit that you created above, and then add the following action
groups:

❑ SERVER_PRINCIPAL_CHANGE_GROUP

❑ SERVER_PRINCIPAL_IMPERSONATION_GROUP

❑ LOGIN_CHANGE_PASSWORD_GROUP

3. Save the Audit Specification, and then right-click on it and select ‘‘Enable Server Audit Specifica-
tion.’’ The icon on the Audit Specification should change to show that it is enabled.

4. Expand the AdventureWorks2008 database, and create a new Database Audit Specification from
the Security � Database Audit Specifications folder. Map this specification to the Audit Package
created above, and then add the following action groups as shown in Figure 10-18:

❑ SELECT: Object Class ‘‘Schema’’, Object Name ‘‘Person’’, Principal Name ‘‘public’’

❑ DATABASE_OBJECT_PERMISSION_CHANGE_GROUP

Figure 10-18: Creating a new Database Audit Specification.

5. Save and enable the Audit Specification. The icon for the Database Audit Specification should
change to show that it is enabled.

436



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 437

Chapter 10: Monitoring SQL Server

6. Now enable the audit itself to begin receiving the included events. Once the audit is enabled, type
the following into a new Query window and execute it:

-- Create a new server login
EXEC sp_addlogin ‘Paul’, ‘Microsoft123’, ‘AdventureWorks2008’;
GO

-- Exclude this login from OS policy constraints
ALTER LOGIN Paul WITH CHECK_POLICY = OFF
GO

-- change password
EXEC sp_password @old = ‘Microsoft123’, @new = ‘Microsoft456’, @loginame =
‘Paul’
GO

-- Allow this user to access AdventureWorks2008
USE AdventureWorks2008
GO
CREATE USER Paul FOR LOGIN Paul
GO

-- Try to select as Paul, no permissions yet!
EXECUTE AS LOGIN=’Paul’
SELECT * FROM Person.Person WHERE BusinessEntityID=1;
REVERT
GO

-- Assign permissions
GRANT SELECT ON Person.Person TO Paul;
GO

-- Now the select should succeed
EXECUTE AS LOGIN=’Paul’
SELECT * FROM Person.Person WHERE BusinessEntityID=1;
REVERT
GO

-- Clean up
DROP USER Paul
GO
EXEC sp_droplogin ‘Paul’;
GO

Notice when you run the script that both a result set and an exception are displayed. This is
expected and is intended to highlight the ability of an audit to detect both successful and failed
access attempts. The exception was generated when user Paul attempted to read data from the
Person.Person table before permission was granted.

7. Finally, disable the audit and then right-click on the audit and select ‘‘View Audit Logs’’ to dis-
play the results in the Log File Viewer. Your results should look similar to Figure 10-19.

437



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 438

Chapter 10: Monitoring SQL Server

Figure 10-19: Viewing audit results using Log File Viewer.

Notice in the audit result that all the targeted events were captured; including the failed SELECT attempt.

You can also view audit results as a table by using the new fn_get_audit_file function. If you would
like to try this, execute the following code in a new Query window:

SELECT * FROM
fn_get_audit_file(’C:\SQLAudit\*’,default,default)

Login Auditing
The most fundamental auditing to manage and implement is Login Auditing. Login Auditing simply
records successful login attempts, failed login attempts, or both. Support for auditing logins is built into
SQL Server and can be enabled with the SQL Server Management Console from the security page of the
Server Properties dialog, as shown in Figure 10-20. After changing the login auditing level, you must
restart the server instance before the new setting will take effect.

Login success and failure events are written to the Windows Application Log as well as to the SQL Server
Log. Exactly the same information is written to both logs with one key exception. The SQL Server Log
receives an extra entry for a failed login that includes a special State code that describes in more detail
what caused the login failure. The most common state code values are listed in the following table:

438



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 439

Chapter 10: Monitoring SQL Server

Error State Error Description

2 or 5 Invalid user ID

6 Attempt to use a Windows login name with SQL authentication

7 Login disabled and password mismatch

8 Password mismatch

9 Invalid password

11 or 12 Login is valid, but user does not have any access to the server.

13 SQL Server service paused.

16 Login failed while trying to connect to the specified target database.

18 Password change is required.

23 Server is in the process of shutting down.

27 Unable to determine the initial database

Figure 10-20: Server Security Properties.

439



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 440

Chapter 10: Monitoring SQL Server

C2 Audit Mode
C2 Audit Mode is a set of ratings originally established by the U.S. Department of Defense that applies
to levels of security in a computer system, based on their auditing and access control capabilities. SQL
Server has been C2-compliant since version 2000. This mode of operation may be required for govern-
ment agencies and contractors.

C2 auditing goes beyond simple server events, such as login and logout, extending to include successful
and failed attempts to access all statements and objects. This can be of benefit when you are attempting
to identify possible security violations, but as you can imagine, it can also consume a massive amount of
storage as well as negatively affect performance. In a high-volume environment, the C2 logs will probably
be much larger than the database itself!

If you are using C2 Audit Mode and your server runs out of physical storage space for the log files, then
SQL Server will shut itself down to preserve the integrity of the audit. If this happens, you will not be
able to restart SQL Server until you either free up additional space or you disable auditing by using the
-f flag when starting the server instance.

To enable C2 Audit Mode, right-click on a server instance in SSMS Object Explorer, select Properties,
select the Security page, and check the ‘‘Enable C2 audit tracing’’ setting. To disable C2 Audit Mode,
clear the ‘‘Enable C2 audit tracing’’ checkbox. After changing this setting, you must restart your server
instance before it will take effect.

You can also enable or disable C2 Audit tracing using transact-SQL as follows:

-- Enable c2 audit mode
sp_configure ‘show advanced options’, 1
GO
RECONFIGURE
GO
sp_configure ‘c2 audit mode’, 1
GO
RECONFIGURE
GO

-- Disable c2 audit mode
sp_configure ‘show advanced options’, 1
GO
RECONFIGURE
GO
sp_configure ‘c2 audit mode’, 0
GO
RECONFIGURE
GO

As with the SMSS method, after changing the C2 Audit Mode setting, you must restart your server
instance before the change will take effect.

The C2 Audit log trace files are always stored in the server instance data directory. You can read these
files either by using SQL Server Profiler or with the sys.fn_trace_gettable system function.

440



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 441

Chapter 10: Monitoring SQL Server

Security Audit Event Category
If you like SQL Profiler as much as I do, you will be pleased to discover that you can use this ubiquitous
tool to monitor a wide variety of security audit events, such as successful and failed login attempts, new
users, and password changes. These events can all be found in the Security Audit section when selecting
the events to include in your trace.

The Security Audit Events allow you to selectively monitor much of the same information as a full C2
Audit, but when using SQL Profiler, you get to pick and choose exactly what you want to monitor and
only incur the overhead of monitoring when it is needed.

Try It Out Auditing Security Events with SQL Server Profiler
To audit security events with SQL Server Profiler, follow these steps:

1. Start SQL Server Profiler, and create a new trace called SecurityAudit using the Blank template.
Select the following events in the Security Audit section of the Events Selection tab:

❑ Audit Add DB User Event.

❑ Audit Add Member to DB Role Event.

❑ Audit Login Change Password Event.

❑ Audit Server Principal Management Event.

2. Click the ‘‘Organize Columns’’ button. Find the EventSubClass, TargetLoginName,
TargetUserName, RoleName, and ObjectName columns, and move them to the top of the
column list just after the EventClass column to make it easier to read the results.

3. Click Run to start the trace.

4. Open a new Query window in SQL Server Management Studio. Type and execute the following
code:

-- Create a new server login
EXEC sp_addlogin ‘Paul’, ‘Microsoft123’, ‘AdventureWorks2008’;
GO

-- Exclude this login from OS policy constraints
ALTER LOGIN Paul WITH CHECK_POLICY = OFF
GO

-- change password
EXEC sp_password @old = ‘Microsoft123’, @new = ‘Microsoft456’, @loginame = ‘Paul’
GO

-- Allow this user to access AdventureWorks2008
USE AdventureWorks2008
GO
CREATE USER Paul FOR LOGIN Paul
GO
EXEC sp_addrolemember N’db_owner’, ‘Paul’

441



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 442

Chapter 10: Monitoring SQL Server

GO

-- Clean up
DROP USER Paul
GO
EXEC sp_droplogin ‘Paul’;
GO

After the query completes, stop the trace and examine the results. Notice that each selected security
related event is recorded. Your output should look something like Figure 10-21.

Figure 10-21: Security Audit Trace.

As always, if you save the trace files, you can consume the trace data in a table in SQL Server by using
the sys.fn_trace_gettable system function.

SQL Trace
SQL Trace provides an alternative to using SQL Server Profiler to capture events. With SQL Trace, you
use System Stored Procedures to define traces in T-SQL. This is especially useful for organizations that
want to develop their own customized audit solutions.

The basic process for setting up a SQL Trace is as follows:

1. Create a trace with sp_trace_create.

2. Add the events that you want to include using sp_trace_setevent. When adding events,
you must execute the stored procedure once for every event and column combination that
you want included in your trace. A complete list of events and column ID numbers is avail-
able from SQL Server Books Online.

3. If desired, use sp_trace_setfilter to define a filter for captured events.

442



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 443

Chapter 10: Monitoring SQL Server

Once a trace has been created, you can use the sp_trace_setstatus stored procedure to start, stop, and
close the trace.

The following code will create and start a trace that is equivalent to the SQL Server Profiler example
included in the ‘‘Security Audit Event Category’’ section. The trace will continue to run until it is stopped
with the sp_trace_setstatus stored procedure or until the server instance is restarted.

-- Create a new trace
Declare @id int
exec sp_trace_create @id output, 0, N’C:\ProfilerTraces\SecurityAudit’
select @id ‘traceid’ -- Display the trace id

-- Add some events
Declare @On bit
SET @On=1
-- Event 109 = Audit Add DB User Event
exec sp_trace_setevent @id, 109, 21, @On -- EventSubClass
exec sp_trace_setevent @id, 109, 42, @On -- TargetLoginName
exec sp_trace_setevent @id, 109, 39, @On -- TargetUserName
exec sp_trace_setevent @id, 109, 38, @On -- RoleName
exec sp_trace_setevent @id, 109, 34, @On -- ObjectName
-- Event 104 = Audit Add Login Event
exec sp_trace_setevent @id, 104, 21, @On -- EventSubClass
exec sp_trace_setevent @id, 104, 42, @On -- TargetLoginName
exec sp_trace_setevent @id, 104, 39, @On -- TargetUserName
exec sp_trace_setevent @id, 104, 38, @On -- RoleName
exec sp_trace_setevent @id, 104, 34, @On -- ObjectName
-- Event 110 = Audit Add Member to DB Role Event
exec sp_trace_setevent @id, 110, 21, @On -- EventSubClass
exec sp_trace_setevent @id, 110, 42, @On -- TargetLoginName
exec sp_trace_setevent @id, 110, 39, @On -- TargetUserName
exec sp_trace_setevent @id, 110, 38, @On -- RoleName
exec sp_trace_setevent @id, 110, 34, @On -- ObjectName
-- Event 107 = Audit Login Change Password Event
exec sp_trace_setevent @id, 107, 21, @On -- EventSubClass
exec sp_trace_setevent @id, 107, 42, @On -- TargetLoginName
exec sp_trace_setevent @id, 107, 39, @On -- TargetUserName
exec sp_trace_setevent @id, 107, 38, @On -- RoleName
exec sp_trace_setevent @id, 107, 34, @On -- ObjectName

-- Start the trace
exec sp_trace_setstatus @traceid=@id, @status=1 -- Starts the trace
GO

The following code will stop and close the trace. Make sure to substitute the trace ID that was returned
when you started the trace.

-- Stop and close the trace
Declare @id int
SET @id=3 -- enter the value recorded above

exec sp_trace_setstatus @traceid=@id, @status=0 -- Stops the trace
exec sp_trace_setstatus @traceid=@id, @status=2 -- Closes the trace
GO

443



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 444

Chapter 10: Monitoring SQL Server

Tracking Changes
Tracking changes to table data has long been a challenge for database administrators. This task has
typically required a complex combination of triggers, custom tables, timestamps, and stored procedures;
even then, success was still difficult.

SQL Server 2008 introduces not one, but two, different methods of tracking changes! The first method is
Change Data Capture, which is a full-featured, highly customizable change and data tracking solution.
The second method is its lightweight cousin, Change Tracking, which leaves out the ability to track the
data. Both methods of tracking changes are able to track DML changes (such as inserts, updates, and
deletes) and DDL changes (such as new columns) at the column level.

One of the key difficulties with custom Change Tracking solutions is how to determine what has changed
after a given point in time. This is more complex than it first appears. Timestamps can partially solve the
problem, but they are ‘‘stamped’’ at the beginning of a transaction, not when it is committed. In addition,
timestamps only apply to a single table, whereas what is really required is a database-global metric that
can be used.

Change Data Capture and Change Tracking both solve this problem by using log sequence numbers
(LSNs). LSNs are assigned when a change is committed, and they are globally ordered so they can be
used as a single-value baseline for an entire database. With Change Tracking, this process is abstracted
by another level, and you are presented with an integer value that represents the database change
level.

In my opinion, these are some of the best new features of SQL Server 2008.

Change Data Capture
Another of the many new features of SQL Server 2008 is Change Data Capture (or CDC). CDC is an
innovative new approach to an old problem, specifically, ‘‘How can you efficiently record all changes
to data in a table?’’ Prior to CDC, the most common answer was ‘‘Use triggers in a custom developed
solution,’’ which is not really the answer that most DBAs want to hear. Now this process has been stan-
dardized, and while it is still not without some issues and limitations, CDC goes a long way in the right
direction.

Change Data Capture works by processing the SQL Transaction Log at scheduled intervals looking for
all INSERT, UPDATE, DELETE, and Data Definition Language (DDL) changes that occur on tables for which
CDC has been enabled. Figure 10-22 gives you the 10,000-foot view of CDC.

Information about what changed and when the change occurred is saved in change tables that are
created when CDC is enabled. The data in these tables is designed to be easily consumed by other
applications.

A classic example of where this would be useful is in maintaining a data warehouse. The old approach
usually involved either periodically rebuilding the entire warehouse, or trying to develop a custom
solution using timestamps to discover recent changes. Of course, timestamps won’t do any good if the
record has been deleted, so a method of saving ‘‘tombstones’’ (deleted records) would have to be devised
as well. Ouch! With CDC all the legwork is done for you, and you can focus on processing the changed
information rather than wasting time just trying to find out what changed.

444



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 445

Chapter 10: Monitoring SQL Server

Database

CDC
CDC enabled on

database:
Creates CDC

objects.

Data
Warehouse

CDC Consumer
Process

Table Changed:
Insert, Update,

Delete, DDL logged

CDC enabled on table:
Creates a mirrored

change table.

SQL Agent runs
capture job.

Change
data stored in
change tables

SQL Agent runs
cleanup job.

State records
are discarded.

Capture Job

cleanup Job

CDC API

SQL Transaction
Log

User
Tables

Change
Tables

CDC
MetaData

Tables

Figure 10-22: Visualizing Change Data Capture.

As mentioned previously, CDC uses log sequence numbers (LSNs) to determine the sequence in which
changes occurred to a table. Functionally this is superior to using timestamps; however, humans are
generally more comfortable working with time than with sequence numbers, so to support the humans,
CDC keeps a cross-reference between LSN values and the associated time value. To make it a bit easier,
functions are provided that will translate between the two values as needed.

At present, there is no built-in user interface to configure this powerful feature; however, some
third-party configuration utilities are already starting to appear. In this section, I will show you how to
use the CDC stored procedures and functions to configure, query, and administer Change Data Capture,
and I will discuss some of the limitations of the current implementation.

Configuration
Before you can use Change Data Capture, it must be configured. The configuration process is very
straightforward:

1. Enable Change Data Capture on the database using the sys.sp_cdc_enable_db stored pro-
cedure.

2. Enable Change Data Capture for one or more tables in the database using the
sys.sp_cdc_enable_table stored procedure.

445



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 446

Chapter 10: Monitoring SQL Server

Enabling Change Data Capture on a database creates all of the necessary metadata tables and
supporting stored procedures, functions, and data management views. You must be a member of the
sysadmin fixed server role in order to enable CDC on a database. The CDC process will exclusively use
a schema named cdc and a database user named cdc. If a schema or a user already exists in the database
with this name, then you will not be able to enable CDC until you rename or remove the conflicting
object. The following example will enable Changed Data Capture for the AdventureWorks2008
database:

Use AdventureWorks2008
GO

-- Enable Change Data Capture
EXEC sys.sp_cdc_enable_db
GO

Once the database is CDC-enabled, you can enable CDC on specific tables using the sys.sp_cdc_
enable_table stored procedure. In its basic form, you specify the source schema and source table name
as shown in the example below:

Use AdventureWorks2008
GO

-- Enable Person.Person table for Change Data Capture
EXEC sys.sp_cdc_enable_table ‘Person’,’Person’, @role_name=NULL,

@supports_net_changes = 1
GO

The role_name parameter is used to control access to the Change Table, while the supports_net_changes
parameter creates an additional function that returns a consolidated list that combines all of the indi-
vidual changes for a given key into a single result row. To support net changes, the table must have a
primary or unique key. When you enable a table for Change Data Capture, CDC will create a correspond-
ing Change Table that mirrors the source table schema with some extra metadata columns. In addition,
two jobs are created — a Capture Job to process the SQL transaction log and a Cleanup Job to purge rows
from the Change Tables that are older than the specified retention period. You need to make sure that
SQL Server Agent Service is running to process these jobs. By default, all columns will be tracked that
exist at the time the table was CDC-enabled, but if necessary, you can limit tracking to specific columns
by using the advanced @captured_column_list parameter.

If you would like to get a list of databases and/or tables that are enabled for CDC, you can do
so by using the is_cdc_enabled column in sys.databases, or the is_tracked_by_cdc column in
sys.tables. The following sample code demonstrates how to query the system views for CDC-enabled
objects:

-- Display the name of every database enabled for cdc
SELECT name FROM sys.databases WHERE is_cdc_enabled=1

-- Display the name of every table enabled for cdc in AdventureWorks2008
Use AdventureWorks2008
GO
SELECT name FROM sys.tables WHERE is_tracked_by_cdc=1
GO

446



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 447

Chapter 10: Monitoring SQL Server

To disable CDC on a table, use the sys.sp_cdc_disable_table stored procedure. When a table is dis-
abled, the corresponding Change Table will be removed from the database. The following example shows
how to disable Change Tracking on the Person.Person table:

USE AdventureWorks2008
GO
EXEC sys.sp_cdc_disable_table ‘Person’,’Person’,’All’
GO

The final parameter in the example above represents the specific capture instance to disable. Use ‘All’
to disable all capture instances for the indicated schema and name.

Finally, you can disable Change Tracking for an entire database using the sys.sp_cdc_disable_db stored
procedure. When you disable CDC, all of the associated metadata tables, Change Tables, and manage-
ment objects will be dropped from the database:

Use AdventureWorks2008
GO

-- Disable Change Data Capture
EXEC sys.sp_cdc_disable_db
GO

Using Change Data Capture
Once Change Data Capture is configured, then at some point you will probably want to query the Change
Tables to learn if anything changed and, if so, what. There are two Table-Valued Functions (TVFs) for
each Change Table that are used for this purpose:

❑ cdc.fn_get_all_changes_<schema_table> — Returns a complete list of changes for the spec-
ified Change Table. To use this function, you must specify a valid beginning and ending log
sequence number. For updates, you can also optionally include the prior values.

❑ cdc.fn_get_net_changes_<schema_table> — This function returns a consolidated list of
changes, with one output row representing the final version of each row that changed. As with
the previous function, you must specify a valid LSN range. This is a great time-saver if all you
need to do is synchronize a data warehouse with the latest values!

In order to properly use the Change Table TVFs, you will need some help to determine the appropriate
log sequence numbers and column positions. As you might expect, there are several ‘‘helper’’ functions
that you can use for this purpose (see the following table):

helper Function Description

sys.fn_cdc_is_bit_set Determines if changes occurred to data in a specific column. This
function is typically used in conjunction with the
sys.fn_cdc_get_column_ordinal function.

sys.fn_cdc_get_column_
ordinal

Looks up the column ordinal associated with the specified column.
This value is typically used to determine the ‘‘position’’ of the
column for the sys.fn_cdc_is_bit_set function.

Continued

447



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 448

Chapter 10: Monitoring SQL Server

helper Function Description

sys.fn_cdc_get_min_lsn Returns the earliest valid log sequence number for a given capture
table.

sys.fn_cdc_get_max_lsn Returns the maximum valid log sequence number for any capture
table.

sys.fn_increment_lsn Returns the next valid log sequence number after a specified LSN.

sys.fn_decrement_lsn Finds the prior log sequence number before a specified LSN.

sys.fn_cdc_map_time_
to_lsn

Finds the nearest valid log sequence number for the specified
tracking time. This function is very useful to translate time values
into log sequence numbers for use with the Table-Valued
Functions.

sys.fn_cdc_map_lsn_
to_time

Returns the date and time associated with a specified log sequence
number.

The following example will display all changes that have been captured for the Person.Person table, as
well as indicate whether the change occurred to the LastName column:

USE AdventureWorks2008
GO
Declare @from_lsn binary(10)
Declare @to_lsn binary(10)
Declare @lastname_ordinal int

-- Get the available log sequence range
SET @from_lsn=sys.fn_cdc_get_min_lsn(’Person_Person’)
SET @to_lsn=sys.fn_cdc_get_max_lsn()

-- Get the ordinal value for the LastName column
SET @lastname_ordinal=sys.fn_cdc_get_column_ordinal(’Person_Person’,’LastName’)

-- Return the list of changes and whether or not the change
-- affected in the LastName column
SELECT sys.fn_cdc_is_bit_set(@lastname_ordinal, __$update_mask) ‘LastNameChanged’,

* FROM cdc.fn_cdc_get_all_changes_Person_Person(@from_lsn, @to_lsn, ‘all’)
GO

For this example to function, you must first enable the Person.Person table for Change Data Tracking
as described in the Configuration section.

448



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 449

Chapter 10: Monitoring SQL Server

One word of caution: It is very important to set the parameters properly for the
Change Table TVFs. If anything goes wrong, a very misleading error will be
returned:

Msg 313, Level 16, State 3, Line X
An insufficient number of arguments were supplied for the procedure

or function . . .

If you receive this error, you probably did supply the right number of arguments,
but one or more of the arguments were invalid or out of range. The reason that a
seemingly incorrect error is returned is because at present it is not possible to raise
an explicit error from within a TVF. Microsoft decided that rather than failing
silently when the parameters were invalid, they would raise an error, even if it was
misleading.

Job Control
As mentioned earlier, Change Data Capture uses a Capture Job and a Cleanup Job to keep the Change
Tables up to date and of a manageable size. These jobs are automatically created when the first table in
a database is enabled for Change Data Capture. You have no control over the default configuration of
these jobs; however, you can modify them after they are created by using the sys.sp_cdc_change_job
stored procedure.

If you have enabled transactional replication on the database, then the Capture Job will be disabled, and
the Change Tables will be updated by the transactional replication process.

You can use sys.sp_cdc_help_jobs to view the current job configurations. By default, the Capture Job is
enabled immediately and will scan the SQL transaction logs once every 5 minutes, processing a maximum
of 1,000 transactions per cycle. The Cleanup Job is automatically configured to run once per day at 2 a.m.
It will remove change records that are more than three days old, with a limit of 5,000 deletions per delete
statement.

Changes to job configurations will not take effect until the job is stopped and restarted. The
sys.sp_cdc_stop_job and sys.sp_cdc_start_job stored procedures provide a convenient way to
accomplish this.

The following example shows how to change the Cleanup Job to retain change data for 5 days:

USE AdventureWorks2008
GO

-- Change the Cleanup Job retention to 6000 minutes
-- 5 days * 24 hours/day * 60 minutes/hour = 6000 minutes
EXEC sys.sp_cdc_change_job @job_type=’cleanup’, @retention=6000
GO

-- Stop and restart the job

449



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 450

Chapter 10: Monitoring SQL Server

-- Note: The stop_job command will generate an error if the job is not
-- actually running. This is fine and the error can be ignored.
EXEC sys.sp_cdc_stop_job ‘cleanup’
GO
EXEC sys.sp_cdc_start_job ‘cleanup’
GO

-- View the configuration to confirm that the change was made
EXEC sys.sp_cdc_help_jobs
GO

Related Dynamic Management Views
Several dynamic management views are provided to help administrators monitor the status of the
Change Data Capture processes. These are described in the following list:

❑ sys.dm_cdc_log_scan_sessions — Displays details about each log scan session that has run
since the server was last restarted.

❑ sys.dm_repl_traninfo — Displays information about each replicated transaction. This will
only be relevant with regard to Change Data Capture if you are using CDC and replication
together.

❑ sys.dm_cdc_errors — This view returns information about any errors that occurred in any of
the last 32 sessions.

Limitations
Change Data Capture is a powerful and reasonably easy-to-use generalized solution to tracking content
changes; however, its current incarnation does have some limitations and side-effects that you should be
aware of.

❑ Supported Editions — First the bad news: CDC is only available in SQL Server 2008 Enterprise,
Development, and Evaluation editions. Many of us would like to see this feature extended to
other editions, but for now this is it.

❑ Supported Data Types — As of this writing, CDC does not support any of the new data types
introduced with SQL Server 2008. You can still track changes on tables that contain these types
of columns, but you will have to exclude them from the column list when enabling the table.

❑ DDL Changes — This is a mixed bag; some DDL changes will be reflected in the Change
Tables, and some will not. The tracked column list is set when the table is enabled for CDC.
Any columns added after the table was enabled will not be included in the Change Table,
and any columns that are deleted from the source table will remain in the Change Table. On
the other hand, changes to the data types of source columns will be mirrored in the Change
Table. The data type change will fail if the new data type is not compatible with existing data
in the associated Change Table. In this situation, you can either disable Change Tracking for
the table, or you can manually update the Change Table to make sure that existing data can
be successfully converted. Finally, you must be a member of the sysadmin, db_owner, or
db_ddladmin security roles in order to make changes to the structure of any source tables that
are enabled for CDC. This is true even if explicit rights are granted to a specific user on a table.

450



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 451

Chapter 10: Monitoring SQL Server

❑ Mirroring — Mirroring is fully supported in conjunction with Change Data Capture; however,
you will need to manually create and enable the Capture and Cleanup Jobs in the mirror
database after a failover.

❑ Restoring the Database — If a CDC-enabled database is restored to the same server, then
Change Data Capture will remain enabled. If, on the other hand, the database is restored to a
different server, then CDC will be disabled and all related objects will be removed from the
database. You can override this behavior by using the KEEP_CDC option when restoring the
database. Attaching the database will always keep CDC enabled, but will fail if you attempt
to attach a CDC-enabled database to a server running an edition of SQL Server that does not
support CDC.

❑ Sparse Columns — Change data will be captured for a source table that uses sparse columns,
but only when column sets are not used.

❑ XML — Changes to data in XML columns will be captured, but not for individual elements.

Tables
When Change Data Capture is first enabled for a database, several new tables will be created to help
manage the CDC processes. Microsoft recommends that you don’t try to query these tables directly, but
if you are like me, then that is just an irresistible invitation to peruse! Nothing will suddenly break if you
decide to take a look, but I do recommend that you avoid making any changes. When you are ready to
play by the rules, each table has an associated stored procedure or function that should be used instead
(see the following table):

Table Description

cdc.<schema_table>_CT These are the tables where changes to the source tables are actually
recorded. One Change Table will be created for every source table
for which you enable Change Data Capture. The structure of these
tables will vary depending on which source columns are being
tracked. In general, you should avoid querying these tables directly
and use the cdc.fn_get_all_changes_<schema_table> and
cdc.fn_cdc_get_net_changes_<schema_table> functions instead.

cdc.captured_columns This table contains a list of all tracked columns. You can limit which
columns are included by specifying a column list when you enable
CDC for a table. Use the sys.sp_cdc_get_source_columns stored
procedure to display the captured columns.

cdc.change_tables Contains a list of all source tables that have been enabled for CDC.
The preferred method to view this information is by using the
sys.sp_cdc_help_change_data_capture stored procedure.

cdc.ddl_history This table returns one row for each data definition language (DDL)
change made to a CDC-enabled source table. The associated stored
procedure is sys.sp_cdc_get_ddl_history.

cdc.lsn_time_mapping Maps log sequence number (LSN) commit values to the time the
transaction committed. This table is used when you execute the
sys.fn_cdc_map_lsn_to_time and sys.fn_cdc_map_time_to_lsn
helper functions.

Continued

451



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 452

Chapter 10: Monitoring SQL Server

Table Description

cdc.index_columns Contains information about the unique identifier for rows in the
source table. This can be either the primary key or a unique index as
specified when CDC is enabled on a source table. Use the
sys.sp_cdc_help_change_data_capture stored procedure to return
index column information.

dbo.cdc_jobs This table holds the configuration parameters for Capture and
Cleanup Jobs. You won’t find it with the other tables; it is stored in
MSDB instead. The sys.sp_cdc_help_jobs stored procedure will
display the list of jobs.

Change Tracking
Change Tracking is essentially Change Data Capture without the ‘‘data.’’ Change Tracking can determine
if any changes have been made to a row in a table, but it will not provide details about the actual data
that was changed. This makes Change Tracking a lighter-weight alternative to Change Data Capture,
provided that all you need is the current values for changed rows.

In addition to just recording the fact that a row has changed, Change Tracking can also optionally iden-
tify the specific column(s) that were updated. It also captures data definition language (DDL) changes.
Cleanup is done automatically behind the scenes.

This adds up to an ideal tool for use when developing synchronization solutions for custom discon-
nected applications. In fact, Change Tracking was designed with this in mind, supporting both single
and bidirectional synchronization scenarios.

To begin using Change Tracking, you must first alter the database and set the CHANGE_TRACKING flag. The
example below shows how to enable Change Tracking in the AdventureWorks2008 database:

ALTER DATABASE AdventureWorks2008
SET CHANGE_TRACKING = ON
(CHANGE_RETENTION = 2 DAYS, AUTO_CLEANUP = ON)

GO

Once Change Tracking is enabled in the database, individual tables can be tracked by altering them
to enable Change Tracking. The following example shows how to enable Change Tracking in the
Person.Person table:

USE AdventureWorks2008
GO

ALTER TABLE Person.Person
ENABLE CHANGE_TRACKING
WITH (TRACK_COLUMNS_UPDATED = ON)

GO

That’s it! With SQL Server 2008, it really is that easy to set up a low-overhead, full-featured, and reliable
Change Tracking system.

452



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 453

Chapter 10: Monitoring SQL Server

Functions and Views
The functions and views in the following table are created when Change Tracking is enabled on a
database:

Function or View Description

CHANGETABLE Returns the list of changes to tracked tables that have
occurred after the specified version. If you enter null for the
version, all available changes will be returned.

CHANGE_TRACKING_MIN_
VALID_VERSION

Returns the minimum valid version number. This is
typically used to validate that synchronization is possible.

CHANGE_TRACKING_
CURRENT_VERSION

Returns the current version number. This value would
typically be saved by an external application for use later
with the CHANGETABLE function to return the net changes.

CHANGE_TRACKING_IS_
COLUMN_IN_MASK

This helper function will interpret the column data to
determine if a particular column has been changed.

WITH CHANGE_TRACKING_
CONTEXT

Allows the originator of change to be recorded, so that
system changes can be differentiated from user changes.

sys.change_tracking_databases Returns a list of all databases that are enabled for Change
Tracking.

sys.change_tracking_tables Returns a list of all tables in the current database that are
enabled for Change Tracking.

Try It Out Synchronizing with an External Application
Assume for a moment that you have an external application that needs to synchronize with
Person.Person. The most difficult task involved in this is trying to determine what has changed since
your last update. This is where Change Tracking really shines. I think that you will be surprised at how
easily this can be accomplished.

Before beginning, make sure that Change Tracking is enabled on the AdventureWorks2008 database
and then on the Person.Person table, as shown earlier in this section.

Change Tracking sequences all of changes using an internal database-global versioning system. You
will need to know what version to start from in order to get the net changes since the last synchroniza-
tion. If this were the initial load, then the current version number would be recorded, and the source
data would be copied in full to establish the initial baseline. To get the starting point for our simulated
synchronization, follow these steps:

1. Enter the following into a Query window and execute it:

SELECT CHANGE_TRACKING_CURRENT_VERSION()’current_version’

2. Write down the result. You will need it later on.

453



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 454

Chapter 10: Monitoring SQL Server

3. At this point imagine that the external application has disconnected. Changes that occur after this
point will need to be synchronized when the external application reconnects. Type the following
into a Query window and execute it to make some changes to the Person.Person table:

USE AdventureWorks2008
GO

-- Change some data in the Person table
UPDATE Person.Person
SET FirstName=’Paul’, LastName=’Allen’
WHERE BusinessEntityID=1
GO

-- Change the same record again
UPDATE Person.Person
SET FirstName=’Bill’, LastName=’Gates’
WHERE BusinessEntityID=1
GO

-- Insert a new row
INSERT Person.Person (BusinessEntityID,PersonType,FirstName,LastName)
VALUES (310,’SC’,’Joan’,’Ballmer’)
GO

-- Update the new row
UPDATE Person.Person
SET FirstName=’Steve’
WHERE BusinessEntityID=310
GO

4. Next, the external application reconnects and wants to synchronize. To do so, it needs to know
what has changed since its last synchronization. Change Tracking can provide this information
using the initial version number that you recorded previously. Enter the following into a com-
mand window and execute it, making sure to substitute the version value that you recorded
earlier:

USE AdventureWorks2008
GO

Declare @sync_version bigint
SET @sync_version = [INSERT YOUR VALUE HERE!]

SELECT CHANGE_TRACKING_CURRENT_VERSION()’current_version’;

-- Identify the changes made after an earlier version
SELECT CT.BusinessEntityID,p.FirstName, p.LastName,CT.SYS_CHANGE_OPERATION,
CT.SYS_CHANGE_COLUMNS, CT.SYS_CHANGE_CONTEXT
FROM CHANGETABLE(CHANGES Person.Person,@sync_version) CT
left join Person.Person p on CT.BusinessEntityID=p.BusinessEntityID
GO

454



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 455

Chapter 10: Monitoring SQL Server

This should return a result set that looks something like Figure 10-23.

Figure 10-23: Synchronization change summary.

Notice a few interesting things about this result set:

❑ It displays the ‘‘end result’’ for each primary key, consolidating all of the changes.

❑ Only the primary key for the table is saved in the Change Table. The current values are being
retrieved by looking them up in the source table.

❑ For updates, there is a value in the ‘‘SYS_CHANGE_COLUMNS’’ column that we could use to
determine if a change occurred to any given column. Insert and Delete operations simply report
NULL for this value because all columns are affected.

The actual synchronization process would delete records with a change operation of ‘‘D,’’ update those
with a ‘‘U,’’ and insert new records for entries with an ‘‘I.’’ Finally, the new ‘‘current version’’ value
would be saved by the external application in preparation for the next synchronization.

It is possible that the external application might be disconnected for so long that the change records are no
longer available. This can be easily determined by using the CHANGE_TRACKING_MIN_VALID_VERSION
function and making sure that the saved baseline version is greater than the minimum version. If not,
then the external application would need to get a full copy of the synchronized object(s) and establish a
new baseline.

Data Collection
Data Collection is a new feature in SQL Server 2008 that automatically collects different customizable
sets of management data into a data warehouse, where you can analyze and report on the data. This is
different from the other monitoring features described in this chapter in that Data Collection repeatedly
captures snapshots of the data on a schedule, allowing you to monitor how it is changing over time and
look for trends.

Data Collection provides significant benefits beyond simply using the SQL Trace and Performance Mon-
itor, for example:

❑ It provides a central collection point for management data across multiple servers.

❑ It allows you to control exactly which management metrics you want to capture.

455



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 456

Chapter 10: Monitoring SQL Server

❑ It allows reporting using SQL Server Reporting Services.

❑ It is extensible via a richly featured API.

The Management Data Warehouse is not a new concept, but typically it takes more work for an admin-
istrator to implement than the benefit (or perceived benefit) that they receive. Data Collection provides a
new invitation to administrators to give the Management Data Warehouse another try.

This feature is disabled by default, but configuration is easy, and it only takes a few minutes to start
capturing a wide array of performance-related data using pre-defined objects.

Terminology
Before we get too far, it will help to have a common understanding of the terminology that is used in the
context of data collection. The table below defines these key terms:

Term Definition

Target This term can refer to the database itself or anything in the database
that can be managed. Yes, the term target is really that wide open. In
this context, it is just a fancy pronoun that means ‘‘that thing.’’

Target type Defines what type of object the target is. To continue the analogy
above, the target type would be the answer to the question ‘‘What is
that thing?’’

Data provider A data provider enables access to a source of data of a specific type.
Data providers are used to provide data to a collector type.

Collector type A logical container encompassing the SQL Server Integration Services
(SSIS ) package that actually collects the data and uploads it to the
Management Data Warehouse

Collection item An instance of a collector type in a collection set, created with specific
input parameters and a defined collection frequency

Collection set A group of collection items and associated metadata

Collection mode The method used to collect the data. At this point it is either ‘‘cached’’
or ‘‘non-cached.’’

Management Data
Warehouse

A relational database where the collected data is stored

Architecture and Processing
Data Collection is like many of the new subsystems in SQL Server in that it is comprised of several
lower-level technologies combined in new, innovative ways. In this case, SQL Server Integration Ser-
vices (SSIS) and SQL Server Agent have been combined with a new external process called the Data
Collector.

456



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 457

Chapter 10: Monitoring SQL Server

The following explanation uses a lot of specific terms! If you get lost, review the
terminology section or try to line things up using Figure 10-24!

Data collection
set

SQL
Agent Job

Schedule

Report

Purge based on
retention period

* Only one mode may be active
   at any one time.

Management Data
Warehouse Data

Processing

SSIS
Upload
Package

SSIS
Collector
Package

Temporary
Storage

Data Collector
Run time

(dcexec.exe)

Audit and History
maintained by Data

Collector. Audit and
History

Collection
Mode*

Upload
Mode*

Collection Items
define provider.

Data
Provider

Collector gets data
from provider.

Provider data
is cached.

Cached data used
during upload

Aggregates,
filters, etc.

applied.

Defines
Schedule

SQL Agent
Starts Data
Collector.

Reports use
warehouse.

Figure 10-24: Data Collection architecture overview.

The Data Collector is the central object that ties everything together. It relies on Data Collection Sets to
define the data providers, schedule, and retention period to use for collected data. SQL Server Agent
uses the schedule defined in the collection set to run the Data Collector, which, in turn, executes an SSIS
package to collect the requested data from the data provider. Using a separate schedule in the collection
set, SQL Server Agent again runs the Data Collector, which this time runs an SSIS package to process and
upload the collected data into the Management Data Warehouse. The Data Collector also maintains audit
and history information so that administrators can easily identify and resolve problems. Figure 10-24
shows an overview of the Data Collection architecture.

The Data Collector uses MSDB to store most of its control data. This includes configuration, run time,
auditing, and collection history information. You will not be able to use Data Collection if the MSDB
database is not present on the server.

457



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 458

Chapter 10: Monitoring SQL Server

In order to use the Data Collector, a user must be a member of one of the defined Data Collector security
roles (in MSDB). There are only three roles, as listed below:

❑ dc_admin — Grants full administrator rights for the Data Collector configuration. Membership
in this role also grants membership in SQLAgentUserRole and inherits the permissions granted
to dc_operator.

❑ dc_operator — Allows Read and update access necessary for running and configuring collection
sets. Membership in this role also grants membership in db_dtsltduser so that the operator can
list and view collector packages.

❑ dc_proxy — Grants Read access to data collection sets and allows users to execute packages that
they own.

Now that you know how it works, I will explain how to configure data collection.

Configuring Data Collection
Data collection must be configured before you will able to create or enable any collection sets. Configu-
ration can be accomplished in SSMS, and it is relatively straightforward:

1. If you do not already have a Data Management Warehouse database, then you will need to
create one.

2. After creating the database, you will then be able to set up data collection.

There is a clear advantage in using a single management warehouse database to
consolidate data from multiple servers. When configuring data collection in this
way, you must make sure that the service account used by SQL Server Agent has the
necessary rights on the foreign machine. As an alternative, you can configure the
individual data collection sets to use a proxy.

Both of these tasks can be performed from SSMS by using the Configure Management Data Warehouse
Wizard, which is located on the context menu of Data Collection within the Management node of a server
instance. You may need to run this Wizard twice, first to create a new storage database and then again to
set up data collection. You can select which task to perform on the first page of the Wizard, as shown in
Figure 10-25.

When creating a new Management Data Warehouse:

1. You must specify where the storage database is located.

2. If you don’t have a storage database, you can create a new one from the same dialog by click-
ing on the New button. Figure 10-26 shows the storage selection page of the Wizard.

3. After selecting a storage database, the next step is to indicate what level of access, if any,
should be assigned to specific users or groups. Data Collection uses three pre-defined secu-
rity roles as described below:

❑ mdw_admin — Members of this role can perform any task in the data warehouse.

458



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 459

Chapter 10: Monitoring SQL Server

❑ mdw_writer — Members of this role can upload data to the data warehouse. Any data
collector that stores data in the warehouse must be a member.

❑ mdw_reader — This role is designed to support troubleshooting and to view historical
data. Members can only read data that is related to these tasks.

Figure 10-25: Configure Management Data Warehouse
Wizard.

Figure 10-26: Configure Management Data Warehouse
Storage.

Figure 10-27 shows the page of the Wizard where you map logins and users to data collection roles.

After creating a Management Data Warehouse, you will need to run the Wizard to set up data collection.
For this task, there are only two options that need to be set:

❑ The name of the Management Data Warehouse database to use for storage

❑ The name of the directory to use for cache files

This page of the Wizard is shown in Figure 10-28.

459



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 460

Chapter 10: Monitoring SQL Server

Figure 10-27: Map Logins and Users.

Figure 10-28: Set up Data Collection.

When the ‘‘Set up data collection’’ Wizard is completed and setup is finished, SQL Server 2008 will
enable Data Collection and start the system data collection sets. The icon next to the Data Collection
node will change, and you will be able to enable/disable data collection and manage individual data
collection sets.

460



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 461

Chapter 10: Monitoring SQL Server

Data Collector Types
Before discussing the data collector sets, I will spend a minute and introduce Data Collector types. Data
Collector types define the data providers that can be used to gather data for a data collection set. At present,
Microsoft only provides four different collector types, but there are hints that they will soon be adding
more (perhaps a WMI type?). Even so, the current collector types cover a lot of ground and can be used
to gather a wide variety of data. Each collector type uses an XML schema to define its input criteria
(Microsoft Books Online describes these schemas in detail). The list below covers the currently available
types:

❑ T-SQL Query Collector Type — This is perhaps the most flexible of the collector types. It will
accept any T-SQL select statement. The input criteria include a list of databases that the collector
will be applied to.

❑ SQL Trace Collector Type — Collects data gathered from a SQL Trace. When collecting data, the
SQL Trace will save results to a file, and then during the upload phase, the file will be processed
using fn_trace_gettable. The input criteria allow filters to be defined.

❑ Performance Counters Collector Type — This collector type takes snapshots of Performance
Monitor counters. The input criteria permit limited use of wildcards.

❑ Query Activity Collector Type — This is a custom collector type that includes internal pro-
cessing that gathers information about most performance-affecting queries. It correlates query
activity, statistics, plans, and the actual query text.

Data Collection Sets
Data collection sets gather data from one or more collection items and upload the data to the data ware-
house. Each collection item is based on a Data Collector type that is configured using input parameters
(in XML format). A collection set also defines the schedules for data collection and upload, the account
under which to run the jobs, and the retention period for uploaded data.

Out-of-the-box, SQL Server 2008 installs three system data collection sets. By default, these are automat-
ically enabled when you first set up data collection. They include a wide variety of performance metrics
and can consume between 250 MB and 350 MB of storage per day; however, the bulk of the data is only
retained for 2 weeks. The system data collection sets cannot be deleted; however, you can disable or
reconfigure them. Each set is described below:

❑ Disk Usage — Tracks the size and growth of all database and log files. This collection set
uses a T-SQL collector type to gather data from sys.partitions, sys.allocation_units,
sys.dm_io_virtual_file_stats, and DBCC SQLPERF (LOGSPACE). By default, data is collected
every 60 seconds, uploaded every 6 hours, and is retained for 730 days.

❑ Server Activity — Snapshots a wide variety of performance metrics that are useful in
determining resource usage, contention, bottlenecks, and blocking problems. Two
different collector types are used. First, a T-SQL collector samples data from sys.dm_os_
wait_stats, sys.dm_os_latch_stats, sys.dm_os_schedulers, sys.dm_exec_sessions,
sys.dm_exec_requests, sys.dm_os_waiting_tasks, sys.dm_os_process_memory, and

461



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 462

Chapter 10: Monitoring SQL Server

sys.dm_os_memory_nodes. Then, a performance counter collector gathers data from a selection
of system and SQL Server performance counters. This collection set gathers a high vol-
ume of data, so its default settings are quite different from those of the previous collection set.
The default settings collect data every 60 seconds and upload the data every 15 minutes, but only
retain the data for
14 days.

❑ Query Statistics — Gathers data about query statistics, query plans, and specific queries, includ-
ing individual query text. This data can be linked to system-level statistics to allow drilldown to
an individual query, enabling you to better detect and analyze poorly performing queries. The
logic that ties this information together is custom-coded inside the query activity collector type
and cannot be changed. By default, this collection set will gather data every 10 seconds, upload
it every 15 minutes, and retain the data for 14 days.

Each of the system data collection sets has an associated report, which you can view in SSRS by
right-clicking on the Data Collection node and selecting Reports � Management Data Warehouse.
The available reports are named Server Activity History, Disk Usage Summary, and Query Statistics
History.

You are also free to define your own custom data collection sets using the sp_syscollector_create_
collection_set System Stored Procedure. At present, you must use T-SQL to create a new data collec-
tion set, since there is no GUI available.

Try It Out Create a Custom Data Collector Set
One of the primary uses for the Data Collector is to collect and monitor performance data; however, the
default collector set may actually include too much information. In some cases, it might be more appro-
priate to monitor just a few targeted counters, as described in the ‘‘Performance Monitoring’’ section
earlier in this chapter.

This example will demonstrate how to create a new Data Collector set that includes a few CPU-specific
performance counters that are useful in detecting CPU bottlenecks. It should also be a good starting point
for you to create your own collector sets later on.

Before beginning, make sure that you have configured Data Collection on your server as described earlier
in this section.

1. Create a new custom Data Collector set. Enter the following into the new Query window and
execute it:

--STEP 1
USE msdb
GO

DECLARE @collection_set_id int
DECLARE @collection_set_uid uniqueidentifier
SET @collection_set_uid = ‘9170CBA3-2C8D-402f-82F5-CD427F75D221’

exec dbo.sp_syscollector_create_collection_set
@name = ‘CPU Bottlenecks’,

462



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 463

Chapter 10: Monitoring SQL Server

@target = ‘’, -- use this for another server ‘/Server[@Name=’’MSSQLSERVER’’]’
@collection_mode = 0,
@days_until_expiration=5, -- Only keep the data for five days
@description = ‘Collects selected PerfMon CPU counters’,
@logging_level = 0, -- 0-2 are valid, in increasing verbosity
@schedule_name=N’CollectorSchedule_Every_5min’,
@collection_set_id = @collection_set_id OUTPUT,
@collection_set_uid = @collection_set_uid OUTPUT

SELECT @collection_set_id ‘collection set id’,
@collection_set_uid ‘collection set uid’

GO

2. Write down the value returned in the ‘‘collection set id’’ column. You will need it later!

3. Add a new collection item using the Performance Counters Data Collector type. This collection
item will reference three CPU counters that are useful in identifying CPU bottlenecks. Enter the
following into a new Query window and execute it, making sure to substitute the value you
recorded above for the collection set ID:

-- STEP 2
USE msdb
GO

DECLARE @collector_type_uid uniqueidentifier, @collection_item_id int,
@collection_set_id int

SET @collection_set_id=[YOUR VALUE] -- use the value you recorded above!

-- Get collector type uid
SELECT @collector_type_uid=collector_type_uid
FROM [dbo].[syscollector_collector_types]
WHERE name = N’Performance Counters Collector Type’;

-- Add a new collection item
EXEC [dbo].[sp_syscollector_create_collection_item]
@name=’Perfmon CPU counters’,
@parameters=’
<ns:PerformanceCountersCollector xmlns:ns="DataCollectorType">

<PerformanceCounters Objects="System"
Counters="Processor Queue Length" Instances="*" />
<PerformanceCounters Objects="Processor"
Counters="% Processor Time" Instances="_Total" />

<PerformanceCounters Objects="Process"
Counters="% Processor Time" Instances="sqlservr" />

</ns:PerformanceCountersCollector>’,
@frequency=5, -- every 5 seconds
@collection_set_id=@collection_set_id,
@collector_type_uid=@collector_type_uid,
@collection_item_id=@collection_item_id OUTPUT

Select @collection_item_id ‘collection item id’
GO

463



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 464

Chapter 10: Monitoring SQL Server

4. At this point, the new collection set is ready to go. In fact, it will now be visible in the SQL Server
Management Console. Using the SSMC, expand the Management � Data Collection node for the
server. You should see a new entry named CPU Bottlenecks. Right-click on the CPU Bottlenecks
data collection set, and select Properties. You should see something similar to Figure 10-29.

Figure 10-29: Data Collection Set Properties.

5. You need to start the new data collection set so that it can begin storing the performance monitor
counters in the data warehouse. Close the Data Collection Set Properties dialog, then right-click
on the CPU Bottlenecks data collection set and select ‘‘Start Data Collection Set.’’

At this point, relax for a few minutes and have a cup of coffee or whatever your beverage of choice might
be. The data collection set will capture data every 5 seconds, but will only upload the data to the data
warehouse every 5 minutes. So before you query the warehouse, you will need to wait at least 5 minutes
to make sure some data has actually been uploaded.

After you are done with your beverage, enter the following into a new Query window and execute it:

-- STEP 3
-- Report the captured data

464



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 465

Chapter 10: Monitoring SQL Server

USE MgmtDataWarehouse
GO

DECLARE @collection_set_uid uniqueidentifier, @endtime datetime
SET @collection_set_uid = ‘9170CBA3-2C8D-402f-82F5-CD427F75D221’

SELECT pci.[object_name], pci.counter_name, pci.instance_name, pc.*
FROM snapshots.performance_counter_values AS pc

INNER JOIN core.snapshots s ON s.snapshot_id = pc.snapshot_id
left join snapshots.performance_counter_instances pci on
pc.performance_counter_instance_id=pci.performance_counter_id

WHERE s.collection_set_uid = @collection_set_uid
ORDER BY pc.performance_counter_instance_id,pc.collection_time
GO

The output should look similar to Figure 10-30.

Figure 10-30: Performance counter data in the Management Data Warehouse.

Notice that the requested counters were captured every 5 seconds. The data in the warehouse could
easily be reported or even graphed using SQL Server Reporting Services. Now that the data collection set
has been created, it can be started, stopped, and managed using SSMC.

Error Handling
Given the number of components involved in the data collection processes and the fact that the data
sources themselves may be located on foreign machines, it is no surprise that errors may occur some-
where along the line. In many cases, errors are caused by connectivity issues, permission issues, or
unexpected shutdowns. The error will always be logged by the Data Collector, and depending on the
type of error, the Data Collector may try again, or it may elect to disable the collection set.

You can view the log either through SSMS by selecting ‘‘View Logs’’ from the context menu of the Data
Collection node or from the context menu of any Data Collection Set.

465



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 466

Chapter 10: Monitoring SQL Server

The following table shows how the Data Collector handles some of the more common errors:

Type of Error Data Collector Response

Unable to connect to a data
provider

The collection set is stopped and disabled.

Data provider connection is
dropped

After a short delay, the connection is tried again. If the
connection fails a second time, then the collection set is
disabled.

Unable to connect to the
management data warehouse

The connection is re-attempted up to four times with
short delays between attempts. If after four tries the
connection is still unavailable, then the collection set is
disabled.

The connection to the data
management warehouse is dropped
during upload

This error is handled in the same way as the previous
error. Any uploaded data will be kept except for the
transaction that was in process when the connection
dropped.

An error is received from a data
provider

The collection set is stopped and disabled. This error
happens most often during development and testing.

There is an error in the data flow The number of failures is counted and reported, unless
the error is critical, in which case, the collection set is
disabled. This error is typically caused by data type
conversion errors, expression evaluation errors, or
lookup failures.

Reporting
The Data Collector component includes three built-in reports for use with the built-in data collector sets.
These can be run from the SSMC by right-clicking on the Data Collection node and selecting a report from
Reports �Management Data Warehouse. The three reports are titled Server Activity History, Disk Usage
Summary, and Query Statistics History. Microsoft put quite a bit of effort into making some great-looking
reports to highlight what is possible when using the Data Collector. A sample of the Server Activity
report is shown in Figure 10-31.

Now for the bad news, if you want reports like that for your own custom data collection sets, then you
will need to design them yourself. When you are ready to get started with reporting, take a look at
Chapter 18.

Management Data Warehouse
The Management Data Warehouse is the database where all of the data that is captured by the Data Collec-
tor eventually ends up. Data is written to a series of tables in the Management Data Warehouse during
the upload phase of the data collection process. You will need to know a little bit about these tables in
order to develop your own custom queries and reports.

466



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 467

Chapter 10: Monitoring SQL Server

Figure 10-31: Server Activity report.

467



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 468

Chapter 10: Monitoring SQL Server

The core.snapshots view is at the top of the food chain. It contains one row for each snapshot that has
been uploaded for a collection item in a collection set. Below core.snapshots, each different collector
type uses a different set of tables to store its uploaded data. I won’t attempt to detail all of the custom
tables used by the system collector sets, but it would help you to know the standard tables used by each
collector type (see the following table for details):

Collector Type Tables/Views Used

Performance Counters Data is captured into snapshots.performance_counter_values,
and a description of the counters themselves is stored in
snapshots.performance_counter_instances. There is also a view
named snapshots.performance_counters that combines the data
from the two tables for you.

SQL Trace The snapshots.trace_info table contains data that describes each
trace, and the snapshots.trace_data table contains the captured
trace data.

Query Activity The primary table is snapshots.query_stats; however, the internal
logic of this collector type generates several support tables that allow
drill-in capability for individual queries.

T-SQL This one works a bit differently. A new table is created in the
snapshots schema with a name corresponding to the name of the
collection item. The table structure will include a few metadata
columns and then mirror the provided T-SQL output. The system
collection sets make heavy use of this collector type. For example,
the Disk Usage collection uses T-SQL collectors for its disk_usage,
log_usage, and query_stats collection items.

Remember to assign the proper permissions to any logins or users that require access to the Manage-
ment Data Warehouse. As discussed earlier in this section, the available security roles are mdw_admin,
mdw_writer, and mdw_reader, in decreasing level of access.

I will leave you with a sample query that may help to get you started creating your own. The following
query will display the results of the last disk usage snapshot:

SELECT c.collection_set_uid,ss.*
FROM snapshots.disk_usage ss
inner join core.snapshots c on ss.snapshot_id=c.snapshot_id
WHERE ss.snapshot_id=(select MAX(snapshot_id) from snapshots.disk_usage)

Monitoring Database Modifications
Like many people in the information technology field, I cut my teeth in desktop support, then moved on
to network support, and finally settled in with SQL Server. I can’t begin to count how many times I began
a support conversation with, ‘‘Have you changed anything recently?’’ only to hear the canned response,
‘‘No, I haven’t done anything. It just stopped working.’’ I bet you can relate. As a database administrator,
your audience has changed a bit, but when a database application suddenly quits working, I can almost

468



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 469

Chapter 10: Monitoring SQL Server

guarantee that you will hear the same answer from database and application developers — ‘‘I didn’t do
anything, it just stopped working.’’

A very powerful feature in SQL Server 2008 gives the DBA the ability to debunk that claim with solid
audit evidence that, indeed, something was changed to break the database. This feature is the ability to
monitor and even prevent database modifications through the use of Data Definition Language (DDL)
triggers and event notifications.

Data Definition Language (DDL) Triggers
DDL triggers can be defined at the database and server scope. Like traditional Data Modification Lan-
guage (DML) triggers, DDL triggers fire after the event that the trigger is defined on. If a trigger is defined
to prevent the dropping of a database, the database will be dropped first and then put back when the
trigger fires with a ROLLBACK statement in it. This can prove to be very costly, but may be less costly than
having to restore the database from scratch.

Unlike traditional triggers, DDL triggers are defined on a particular statement or group of statements,
regardless of the object that the statement is directed to, and are not assigned to a particular object. As a
result, a DROP_DATABASE trigger will fire no matter what database is dropped.

In traditional DML triggers, a great deal of the functionality of the trigger is gained from access to the
Deleted and Inserted tables that exist in memory for the duration of the trigger. DDL triggers do not
use the Inserted and Deleted tables. Instead, if information from the event needs to be captured, the
EVENTDATA function is used.

SQL Server Books Online contains a complete hierarchical listing of server- and database-level events
that can be used with DDL triggers. You can find the list under the topic, ‘‘Event Groups for Use with
DDL Triggers.’’

EVENTDATA Function
The EVENTDATA function returns an XML document that contains pre-defined data about the event that
caused the trigger to execute. The type of data largely depends on the event that caused the trigger to
execute, but all triggers return the time the trigger was fired, the ID of the process that caused the trigger
to execute, and the type of event.

The following example creates a server-scoped DDL trigger that will execute any time a database is
created, altered, or dropped:

USE Master;
GO
CREATE TRIGGER ServerDBEvent
ON ALL SERVER
FOR CREATE_DATABASE, DROP_DATABASE, ALTER_DATABASE
AS
DECLARE @Data AS xml
DECLARE @EventType AS nvarchar(25)
DECLARE @PostTime AS nvarchar(25)
DECLARE @ServerName AS nvarchar(25)
DECLARE @DBName AS nvarchar(25)
DECLARE @Login AS nvarchar(25)

469



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 470

Chapter 10: Monitoring SQL Server

DECLARE @TSQLCommand AS nvarchar(MAX)

SET @Data = EVENTDATA()
SELECT @EventType =

@Data.value(’ (/EVENT_INSTANCE/EventType)[1] ‘, ‘nvarchar(25) ‘)
, @PostTime = @Data.value(’ (/EVENT_INSTANCE/PostTime)[1] ‘, ‘nvarchar(25) ‘)
, @ServerName =

@Data.value(’ (/EVENT_INSTANCE/ServerName)[1] ‘, ‘nvarchar(25) ‘)
, @Login = @Data.value(’ (/EVENT_INSTANCE/LoginName)[1] ‘, ‘nvarchar(25) ‘)
, @DBName =

@Data.value(’ (/EVENT_INSTANCE/DatabaseName)[1] ‘, ‘nvarchar(25) ‘)
, @TSQLCommand =

@Data.value(’ (/EVENT_INSTANCE/TSQLCommand)[1] ‘, ‘nvarchar(max) ‘)

PRINT @EventType
PRINT @PostTime
PRINT @ServerName
PRINT @login
PRINT @DBName
PRINT @TSQLCommand;

GO

To test the trigger, execute the following code and examine the output:

USE Master;
GO
CREATE DATABASE SampleDB;
GO
ALTER DATABASE SampleDB SET RECOVERY SIMPLE;
RESULTS:
---------------------------------------------------------
CREATE_DATABASE
2008-09-22T00:48:11.240
AUGHTEIGHT
AUGHTEIGHT\Administrator
SampleDB
CREATE DATABASE SampleDB;

ALTER_DATABASE
2008-09-22T00:48:11.960
AUGHTEIGHT
AUGHTEIGHT\Administrator
SampleDB
ALTER DATABASE SampleDB SET RECOVERY SIMPLE;

Try It Out Database Scoped DDL Trigger
In this exercise, you create a DDL trigger that prevents modifications to the database and records infor-
mation about who tried to modify the database and how they tried to modify it in an audit table. Follow
these steps:

1. Create a table that will contain the auditing information gathered from the DDL trigger. To do
that, type and execute the following code:

470



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 471

Chapter 10: Monitoring SQL Server

USE AdventureWorks2008;
GO
CREATE TABLE DatabaseDDLAudit
(AuditID int IDENTITY(1,1) NOT NULL
,PostTime datetime NOT NULL
,LoginName nvarchar(128) NULL
,Command nvarchar(MAX) NULL
,EventData xml NULL);

2. Now that you have an audit table, you can create the DDL database trigger that will insert into
the table and prevent any modifications to the database. To create the trigger, type and execute
the following code:

USE AdventureWorks2008;
GO
CREATE TRIGGER NoDDLAllowed
ON DATABASE
FOR DDL_DATABASE_LEVEL_EVENTS
AS
SET NOCOUNT ON
DECLARE @data AS xml, @PostTime AS datetime, @HostName AS nvarchar(128)
DECLARE @LoginName AS nvarchar(128), @Command AS nvarchar(MAX)

SET @data = EVENTDATA()

SELECT
@PostTime =
CAST(@Data.value(’ (/EVENT_INSTANCE/PostTime)[1] ‘, ‘nvarchar(25) ‘)AS

datetime)
,@HostName =
@Data.value(’ (/EVENT_INSTANCE/HostName)[1] ‘, ‘nvarchar(25) ‘)

,@LoginName =
@Data.value(’ (/EVENT_INSTANCE/LoginName)[1] ‘, ‘nvarchar(25) ‘)

,@Command =
@Data.value(’ (/EVENT_INSTANCE/TSQLCommand)[1] ‘, ‘nvarchar(max) ‘)

RAISERROR (’What?! Are you nuts? Modifications to this database are not
allowed!

You can expect a visit from human resources shortly.’, 16, 1)
ROLLBACK
INSERT DatabaseDDLAudit
(PostTime, LoginName, Command, EventData)
VALUES (@PostTime, @LoginName, @Command, @Data)
RETURN;

3. To test the trigger and review the data collected, execute the following code:

USE AdventureWorks2008;
GO
ALTER TABLE Person.Person
ADD NewColumn varchar(10) NULL;

471



Leiter c10.tex V3 - 03/25/2009 12:22pm Page 472

Chapter 10: Monitoring SQL Server

Your results should look like the following:

Msg 50000, Level 16, State 1, Procedure NoDDLAllowed, Line 21
What?! Are you nuts? Modifications to this database are not allowed!

You can expect a visit from human resources shortly.
Msg 3609, Level 16, State 2, Line 1
The transaction ended in the trigger. The batch has been aborted.

4. Now, query the audit table to see the data collected by executing the following command:

USE AdventureWorks2008;
GO
SELECT * FROM DatabaseDDLAudit;
GO

When it comes time to make authorized changes to the database, the trigger will have to be dis-
abled or dropped (preferably disabled). The following script demonstrates how to disable the
DDL trigger, make changes, and re-enable the trigger when complete:

USE AdventureWorks2008;
GO
DISABLE TRIGGER NoDDLAllowed
ON DATABASE;
GO
CREATE TABLE TestTable
(Column1 int
,Column2 int);
GO
ENABLE TRIGGER NoDDLAllowed
ON DATABASE;
GO

Summary
As you can see, monitoring the database server can become a full-time job. This chapter only scratched
the surface when it comes to the events that can be monitored and the methods you can use. However,
this chapter should give you a very good start on designing a monitoring strategy and determining
what is most important for your particular environment. Keep in mind that all monitoring will have a
certain amount of impact on SQL Server’s overall performance. The more you monitor, the more the cost.
Monitor in small slices, but be sure to get the big picture by putting all the slices together. Then, when it
comes to making changes to the system, make small changes and measure your results.

Monitoring and optimization are two sides of the same coin. Monitoring is commonly used to find areas
in need of optimization, and after the optimizations are performed, monitoring is again used to test the
effectiveness of the changes. The next chapter discusses several optimization methods and techniques
that you can use to keep your server running smoothly.

472



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 473

11
Optimizing SQL Server

Webster’s dictionary defines optimization as ‘‘an act, process, or methodology of making something
as fully perfect, functional, or effective as possible.’’ Looking at this definition in the context of SQL
Server, one might say that optimization is making the best possible use of the Database Engine to
minimize query response time, resource usage, and hardware stress. As you might imagine, this
is not a trivial task, and in practice, it is as much art as it is science. There are so many choices,
options, opinions, and techniques available that it is easy to get lost in all the rhetoric and lose sight
of the goal.

My approach to optimization is not to try to tell you exactly what you need to do, but instead to
share with you the knowledge and techniques that I have developed over many years as a suc-
cessful database administrator and application designer. You may not agree with all of the ideas
and methods that I will present, and it may well be that in your specific situation an alternative
approach will yield better results. What follows is what I have found to work in the majority
of cases.

In order to be successful at optimization, you need to have a clear understanding of any applications
that are using your server and how they compete for limited resources. In this regard, the design of
the application has a bigger long-term impact than any other factor. Time spent up front to properly
design an application is more valuable than 10 times the effort spent later on to fix it. In fact, the best
way to minimize performance issues is to make performance an ongoing and integral part of the
life cycle of every database application.

One of the biggest challenges with optimization is in knowing where to target your efforts. It makes
sense to focus on areas that will yield the biggest possible improvement over the widest range of
situations. After design issues, the biggest opportunities for improvement can be found in the proce-
dures and queries that are used by an application. Unfortunately, many databases, including those
in commercial products, are delivered with a bare minimum of indexes and without consideration
for the effect of long-term growth on query performance. Besides design, procedures, and queries,
I will also cover hardware optimization. In some cases, this is the only viable option, and since the
hardware forms the foundation of the server, it is also a good place to start.



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 474

Chapter 11: Optimizing SQL Server

Hardware Optimization
Improper hardware design and configuration is the source of many performance problems in SQL Server.
This is understandable considering that the performance of SQL Server is dependent on all of the major
hardware subsystems working together in concert, and any deficiencies in the CPU, memory, network,
or storage subsystems can cause performance bottlenecks. The goal when designing the hardware is to
maximize data throughput. In this context, throughput is simply the amount of data per unit of time that
can be pushed through the processing pipeline.

The required hardware will also depend in part on the nature of the database you are implementing.
Online Transactional Processing (OLTP) databases have different characteristics from Online Analyti-
cal Processing (OLAP) databases. OLTP databases are normally front-line operational business systems.
They are characterized by small- to medium-sized databases (<100 GB) with large numbers of users run-
ning short transactions with a mix of Read and Write operations. OLAP databases are used for reporting
and data warehousing. They tend to be much larger in size and have a smaller number of users per-
forming long read/reporting operations. For best performance, try not to mix databases with different
characteristics on the same server.

Using the monitoring techniques that you learned in Chapter 10, you can identify with reasonable cer-
tainty which, if any, hardware subsystems are causing throughput bottlenecks. However, before you run
out and buy more hardware, it is worth considering alternative options (optimizations) to reduce the
stress on the affected subsystems. For example, if your CPUs are overloaded, instead of buying more
CPUs, it might be possible to achieve the same result by optimizing a poorly written or inefficient query.
Similarly, if the disk storage system is straining to keep up, instead of buying an expensive new RAID,
you might be able to eliminate the I/O bottleneck by moving the log files to a different physical volume
or even to a separate drive controller.

Many DBAs are not hardware experts, and for this reason, it is very tempting to just ‘‘throw hardware’’
at any performance problems. I am generally not in favor of this approach for three reasons:

1. It can be expensive, especially if you have not planned ahead to allow for future expan-
sions. In most organizations, significant hardware purchases must be justified, budgeted,
and approved, and management will then have a certain expectation that the proposed solu-
tion will resolve the problem.

2. In cases in which the root cause of the performance problem is due to inefficient or poorly
written applications, adding hardware will only provide a short-term fix. As the databases
grow in size, it is not uncommon for the exact same problems to resurface a few short
months later on the new hardware, which will definitely not improve anyone’s credibility.

3. The potential performance gains to be had when adding hardware are far less that the poten-
tial performance gains that can be achieved through optimization (in particular, the com-
monly used queries and procedures).

For these reasons, when faced with performance problems, it is generally prudent to first attempt opti-
mization, and only fall back on additional hardware as a last resort.

That being said, there are occasions when adding hardware is justified and necessary, and when you
reach this point, it is important to know where to focus your time and money. In addition, planning
ahead when you initially purchase the hardware will allow you to react faster to, and reduce the costs

474



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 475

Chapter 11: Optimizing SQL Server

associated with, future needs and changing conditions. The remainder of this section will cover several
hardware-related considerations to help you when initially specifying your SQL Server hardware and
when adding new hardware to address performance bottlenecks.

CPU Selection
The choice of processor is one decision that many DBAs agonize over unnecessarily. The fact is that
internally the CPU is the fastest of the subsystems, making it more likely that the CPU will be waiting on
itself rather than being waited on. A high-end dual-core processor can easily outpace the fastest currently
available DDR3 memory. In many cases, I have found that CPU ‘‘pressure’’ is caused by excessive query
plan compilations, missing indexes, and large sorting operations, all of which can be mitigated through
optimizations.

For a ‘‘typical’’ dedicated server installation (if there is such a thing), hosting several moderately sized
databases and averaging less than a few hundred concurrent connections, a single high-end dual or
quad-core processor will probably be sufficient. Even so, it may make sense to buy a motherboard with
more than one socket, just in case you decide to expand your server operations later on. Keep in mind
that Microsoft’s SQL Server ‘‘processor’’ license is by the physical socket rather than by the core, so a
single quad-core CPU will only require a single processor license.

When selecting the specific type of CPU, the amount of L2 cache can have a significant impact on overall
performance. A large L2 cache will keep data off the system bus and reduce memory transfers. For SQL
Server, increasing the L2 cache from 512 KB to 2 MB can result in a 20–30 percent CPU performance
boost.

All of the mainstream CPUs on the market today are 64-bit capable, and the 64-bit versions of Windows
and SQL Server cost the same as the 32-bit versions. For SQL Server, it makes sense to go 64-bit unless
you are faced with a compelling reason not to, such as driver issues or legacy co-resident software.

Hyperthreading
Hyperthreading presents two ‘‘logical’’ processors to the system for a single physical CPU, with the
intention of helping the physical CPU to be more fully utilized by the OS. This is distinctly different from
multi-core processors where each core is a distinct, separate physical processor (even though they may
share a common L2 cache). SQL Server efficiently handles its own internal queuing and threading for the
OS, and enabling hyperthreading tends to simply overload CPUs with already high utilization. For this
reason, in most cases hyperthreading should be disabled.

One key indicator that hyperthreading is slowing down SQL Server is the ‘‘context switches/second’’
measurement for a processor. When SQL Server uses multiple schedulers to service requests, it is forced
to context switch the threads between processors, whether they are physical or logical. If you measure
more than 5,000 context switches/second per physical processor, then turning off hyperthreading may
improve performance.

Memory
Memory is the single most important element for SQL Server to maintain consistent data throughput.
While the fastest DDR3 memory is still only a fraction of the throughput of the CPUs, this same mem-
ory is still more than 10 times faster than the best fiber channel drives. All data must be transferred to

475



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 476

Chapter 11: Optimizing SQL Server

memory before the processor can interact with it, so the more memory that you have available, the fewer
round-trips the system will need to make to the storage layer. SQL Server uses its own advanced caching
mechanism to keep commonly used data in memory for reuse.

The operating system and everything else on the server will require memory as well, so the best general
rule is to get as much as you can, provided your operating system can support it. The 64-bit editions of
Windows Server can support between 32 GB and 2 TB (terabytes) of directly accessible RAM. If you are
still using a 32-bit server, then you will be limited to 4 GB of memory, except for the DataCenter and
Enterprise editions, which can support up to 128 GB and 64 GB, respectively.

Storage Options
Disk I/O bottlenecks are very common because in many cases retrieving data from the disk is the slowest
operation in the processing chain. Hard drives have a limited number of I/O operations per second
(IOPS) that they can handle, which is directly related to the average seek time for the device. Storage
arrays are a critical component of a well-designed server since they offer improvements to both the
bandwidth and the IOPS over individual drives and provide redundancy as well.

Storage is the one area where there are so many options and recommendations that it is easy to get lost
in the rhetoric. In fact, if you were to strictly follow Microsoft’s guidelines, then for a typical installation,
you would need to provide upwards of a dozen individual storage arrays to support the various logs,
partitions, file groups, indexes, and data files. I have no doubt that the recommended configuration
would provide outstanding disk I/O performance; however, for all but the largest installations, a more
limited approach will suffice. A simpler approach will also be easier for you to manage.

In general, you will receive the largest performance benefit by placing the log files on their own RAID1 or
RAID1+0 storage array. Log files are written sequentially, so moving them to their own array will reduce
drive ‘‘thrashing,’’ and for systems with high-transaction volumes may improve I/O performance by as
much as 30 percent.

My typical chain of thought when designing SQL Server storage systems is to
provision independent spindle sets for the OS, logs, and data as a starting point.
This provides good performance and recoverability. After that it becomes a
question of how many drives need to be in those spindle sets for performance and
high availability. Then, if it’s a high-demand server, I consider dedicated controllers
for those spindle sets.

Placing tempdb on its own storage volume is another option that can provide a significant performance
boost. tempdb is not used just for temporary tables. It is also used as overflow storage for large sort
operations, to hold intermediate objects when executing complex queries, as storage for queries that
return large result sets, and as a workspace for several of the DBCC commands. In many cases, you can
increase performance by placing tempdb on an additional local drive or a small local RAID1 array. One
interesting new option for tempdb is to use a solid-state drive.

It is a good idea to test your configuration before placing it into production. Microsoft provides the free
SQLIO Disk Subsystem Benchmark Tool for this purpose. For more information or to download this tool,
search Microsoft’s web site for ‘‘SQLIO.’’

476



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 477

Chapter 11: Optimizing SQL Server

Beyond moving the log files and tempdb, you can create additional SQL filegroups to distribute disk
I/O loads to specific drives or arrays. Using filegroups, you can control the physical location of
data files, indexes, text data, image data, and file streams. Using partitions, you can even split up a
single table across multiple filegroups. Each of these options has the potential to improve disk I/O
performance.

Write Caching
Write caching is a technique used by both drives and controllers that will queue several Writes in mem-
ory and then commit them to the drives in larger, more efficient batch operations. The danger with
this is the potential for unwritten data in the cache to be lost during a power failure or unexpected
shutdown.

Most drives that support Write caching rely on a capacitive mechanism that is not battery-backed. These
drives can lose data during a power cycle or similar system failure. To guarantee data integrity, you
should disable disk caching for any drives that will be used with SQL Server.

In contrast, caching controllers typically do provide a battery backup for their Write cache. These con-
trollers disable on-disk caches and use their own caching memory instead. In the event of a system or
power failure, these devices will store unwritten data until power is restored and will then flush the data
to the disks before any further access is permitted. SQL Server is targeted to use these kinds of controllers
for optimal I/O performance, and Write caching can be safely enabled in this environment.

Most caching controllers that I have worked with are configured from the factory for 100 percent Read
caching. I believe that this is done because the manufacturers don’t want to blindly enable Write caching
on your behalf for safety reasons. In addition, the battery backing module is often optional and may not
be installed in all cases.

Solid-State Drives
A relatively new option in the storage realm is solid-state drives. Recent improvements in this technology
have significantly boosted performance and at the same time reduced the cost. Solid-state drives have
no moving parts and, as a result, can offer extremely fast average seek times and an impressive number
of I/O operations per second (IOPS). On the downside, they are still considerably more expensive than
traditional drives and do not provide as high a capacity. At this point, I would not consider them for
primary storage; however, their excellent I/O characteristics make them an ideal option for tempdb.

Network Design
Network problems are rarely the cause of performance bottlenecks in a typical online transaction pro-
cessing (OLTP) database, and in most cases, a single 100 Mbs/1 Gbs network card will be able to keep up
with demand.

If you are using an iSCSI storage array, you should use a separate network card for the storage network.
If your array can handle it, you might even consider teaming multiple network interfaces to improve
performance even further.

Be careful to confirm the speed and duplex setting when using auto-sensing 10/100 or 10/100/1000
network cards. It is not uncommon for these cards to auto-sense incorrectly, which can hurt your network
performance. You can prevent this from happening by manually configuring the network card.

477



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 478

Chapter 11: Optimizing SQL Server

Finally, make sure that your network uses switches rather than hubs. Switches isolate non-broadcast
communications and dramatically reduce data collisions. Replacing an old hub with a switch will often
result in a dramatic performance improvement.

Virtualizing SQL Server
Recently I have started to receive a lot of questions regarding the effects of running SQL Server in a
virtual machine. Virtualization decouples applications and data from the underlying hardware, allowing
them to be more easily managed and moved from one server to another. Using virtualization, you can
run several virtual servers on a single physical server. This is a fairly new concept and at this time is
largely unproven territory with regard to production SQL Servers.

Virtualization has the potential of saving money by improving hardware utilization. This is based on
the fact that many servers under-utilize their hardware. In these cases, virtualization can help you to
achieve better overall hardware utilization by running several virtual servers on a single physical server.
For example, if you have three physical servers, each averaging 20 percent utilization, then combining
these onto a single similar physical server should provide similar performance while utilizing around
60 percent of the physical server’s resources. The savings are realized by requiring only one physical
server instead of three to achieve a similar result. Of course, the virtualization layer itself actually uses
some resources, and this overhead tends to impact I/O performance the most.

When virtualizing SQL Server, a good rule of thumb is that, using similar hardware, you will take a
20 percent I/O performance hit. This may be acceptable for certain applications or specific uses, such as
training or testbeds, but does not make sense for high-throughput applications. Provided that you have
enough RAM, reasonably sized OLTP databases should not suffer too much in a virtualized environment.
OLAP databases, on the other hand, are much more I/O-intensive and would probably take a much
larger performance hit.

Design Considerations
An efficient database begins with an efficient implementation design. It is worth the effort to put in a
little extra time up front to plan your implementation rather than waiting for any deficiencies to show
up in production. Database and application design are complex and much debated topics, and no single
approach can cover all possible scenarios.

When designing for integrity and performance, the idea is to work with SQL Server, not against it. SQL
Server is a relational database, and you will reap the biggest rewards if you design normalized, relational
solutions. Certain object constructs such as polymorphism and inheritance can be difficult to model, and
newer application modes (offline clients) present new challenges for database designers and administra-
tors. No solution is perfect, and there is always room for improvement in every design.

This section really just represents the tip of the iceberg as far as design theory goes. My goal is not to
tell you exactly how to design your database. That is a decision that only you can make. Instead, in this
section, I will share some guidelines that over the years I have found to work well in many different
situations. My hope is that perhaps you will be able to take advantage of some of these recommendations
to improve your own designs.

478



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 479

Chapter 11: Optimizing SQL Server

Database Recovery Model
One of the first decisions that must be made for every database is the choice of recovery model. The
recovery model is used to determine what kinds of transactions are logged, and as such, this decision
needs to be coordinated with your backup strategy. This choice also happens to have a significant impact
on performance.

There are three choices for the recovery model:

❑ Simple — When using the Simple recovery model, the transaction log is truncated each time a
checkpoint is issued, and log space is reclaimed. High-performance non-logged bulk-copy oper-
ations are permitted. This mode is ideal for test and development databases and should be con-
sidered for small production databases and data warehouses. Only Full or Differential backups
are possible.

❑ Bulk-Logged — This recovery model allows high-performance non-logged bulk-copy opera-
tions but maintains the transaction log for all other changes. Consider using this model if you
are willing to sacrifice some flexibility of point-in-time recovery. It is also possible to temporarily
switch a database to this model to improve performance of large bulk operations like creating
indexes or bulk copying.

❑ Full — This recovery model always logs every change. Using this model, you will not gain the
performance benefits for bulk-copy operations like the other models provide; however, you will
always be able to recover to any point in time. This mode is appropriate for most production
databases.

If your database normally uses the Full recovery model, you can temporarily switch the recovery model
to Bulk-Logged to increase the performance of certain bulk operations, including SELECT INTO, BCP,
BULK INSERT, CREATE INDEX, and changes to TEXT and IMAGE fields. This can be accomplished using a
T-SQL script as shown below:

USE AdventureWorks2008
GO

-- Switch the recovery mode to BULK_LOGGED
ALTER DATABASE AdventureWorks2008
SET RECOVERY BULK_LOGGED
GO

-- Run the bulk operation
CREATE NONCLUSTERED INDEX IX_ModifiedDate
ON Person.BusinessEntity(ModifiedDate)
GO

-- Assuming AdventureWorks2008 was using FULL recovery
-- Restore the recovery mode to FULL
ALTER DATABASE AdventureWorks2008
SET RECOVERY FULL
GO

479



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 480

Chapter 11: Optimizing SQL Server

If you want to review the currently configured recovery modes for your databases, you can use the
following code:

SELECT [name],state_desc,recovery_model_desc
FROM sys.databases

Designing Efficient Tables
Tables are the heart and soul of every database. The choices that are made when designing the tables
will have a bigger effect on the long-term performance of the database than any other factor. A good
table design will be capable of adapting to future needs, scale well as the tables increase in size, guar-
antee the integrity of the data, minimize blocking and time-outs, and maintain high performance levels
over time.

This is not an easy task. Almost every choice involves some kind of trade-off. A performance gain in one
area is often accompanied by a performance loss in another. Under-normalized designs introduce the risk
of data duplication and inconsistencies, while over-normalized designs reduce performance and increase
complexity. Therefore, the best approach is to help you identify the key factors that will have the most
impact, and then to let you be the final judge.

Consider the following general guidelines when designing tables:

❑ Normalize to Third Normal Form — Try to implement all of your tables using the third nor-
mal form (described later (p. 482–3)). This will maximize the ability of the query processor to
optimize your queries and prevent data duplication, inconsistencies, and anomalies.

❑ De-Normalize for Performance — After normalizing the tables in a database, you should
evaluate possible cases where intentionally de-normalizing specific attributes can significantly
improve performance. In many cases, this involves saving the results of costly calculations over
a range of child records in an associated parent table.

❑ Always Define Primary and Cluster Keys — Every table in a referential database should have
both a primary key and a cluster key. In many cases, these may be the same key. Recommenda-
tions for selecting these keys are presented later in this chapter.

❑ Enforce Referential Integrity — Always use declarative referential integrity (DRI) and
server-side constraints to enforce referential integrity. Never rely on an application to manage
this in place of the database.

❑ Limit the Number of Columns per Table — If necessary, you can define up to 1,024 columns
per table in SQL Server 2008 (and up to 100,000 additional ‘‘sparse’’ columns). Be aware, how-
ever, that the more columns that are defined, the wider the table will be, and the more work it
will take to query and manage the data. In some cases, you may be able to separate a number of
related fields into a 1:1 joined table and only create the related record when necessary. Typically
large numbers of columns are an indication that your design is not normalized.

❑ Use the Narrowest Data Types Possible — Using smaller data types makes the tables narrower
(fewer bytes per row), allowing more data to be saved in each storage range, which helps to
minimize data I/O and improve query performance. Suggestions for appropriate data types are
presented later in the section.

❑ Consider Horizontal Partitioning for Very Large Tables — Very large tables can severely
degrade performance. One way of combating this is to partition very large tables into ‘‘current’’

480



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 481

Chapter 11: Optimizing SQL Server

and ‘‘archive’’ sections (perhaps using a transaction date). Assuming that the bulk of the queries
are to retrieve current information, this will have a dramatic effect on query performance.

❑ Use a Naming Convention — This is good advice for any design project, and SQL Server is no
exception. Using a naming convention helps to reduce the effort required to maintain and under-
stand your design. For example, you might choose to prefix all views with a v, stored procedures
with a p, unique constraints with a UQ, and so on.

The most important of these guidelines by far are the first two, so I will spend a little extra time covering
them in more depth.

Normalization
Normalization is a technique for designing efficient tables in a relational structure and is all about reduc-
ing duplication of data and protecting data from logical inconsistencies and anomalies. In normalization
theory, there are actually six normal forms, with each higher form making the table less and less vul-
nerable to inconsistencies. This also means that each additional form increases the complexity of the
design, so in practical use, it is usually sufficient to stop at the third normal form. Normalizing beyond
this point is often an exercise in diminishing returns, with the risk of the design becoming so complex
that it significantly affects performance.

The best way to explain normalization is with an example. I will start with the following hypothetical
employee table:

Employee Table (Zero Form)

Employee Location LocationAddress Phone1 Phone2

Thierry Boillot Main Office 123 Main Street 555-0001 555-0002

Brian Rawlings Branch 1 456 Suburb Way 555-8877 555-6655

This is typically called a zero form because it does not follow any normalization rules. The first step is to
convert this table into a first normal form. To do this, simply apply the following rules:

1. Eliminate repeating groups.

2. Provide a unique key.

Typically, the first normal form will increase the number of rows. Here is what it would look like:

Employee Table (First Form)

EmployeeId Employee Location LocationAddress Phone1

1 Thierry Boillot Main Office 123 Main Street 555-0001

2 Thierry Boillot Main Office 123 Main Street 555-0002

3 Brian Rawlings Branch 1 456 Suburb Way 555-8877

4 Brian Rawlings Branch 1 456 Suburb Way 555-6655

481



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 482

Chapter 11: Optimizing SQL Server

This is not very useful yet, so we will continue on to the second normal form. The second normal form
requires that the following additional conditions be met:

1. Create separate tables for repeating sets of values.

2. Relate those tables together.

To represent the second normal form, the phone number needs to be separated from the Employee table.
Here is a second normal representation of the data:

Employee Table (Second Form)

EmployeeId(Primary key) Employee Location LocationAddress

1 Thierry Boillot Main Office 123 Main Street

3 Brian Rawlings Branch 1 456 Suburb Way

EmployeePhone Table

PhoneId(Primary Key) EmployeeId
(Foreign Key)

Phone

1 1 555-0001

2 1 555-0002

3 3 555-8877

4 3 555-6655

Notice that it requires two tables to represent the original data in this form, with a one-to-many rela-
tionship between the employee data and the phone data. This is much better, but it is still not quite
good enough. The final step is to apply the rules for the third normal form. There is only one additional
requirement:

❑ Eliminate fields that do not depend on the key.

In this case, the LocationAddress field clearly does not relate to the employee (it relates to the location),
so it needs to be eliminated from the Employee table. So to reach the third normal form, an additional
table is required for the Location as shown below (to conserve space, I will not repeat the phone table,
which is unchanged):

Employee Table (Third Form)

EmployeeId (Primary Key) Employee
(Foreign Key)

LocationId

1 Thierry Boillot 1

3 Brian Rawlings 2

482



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 483

Chapter 11: Optimizing SQL Server

Location Table

LocationId (Primary Key) Location LocationAddress

1 Main Office 123 Main Street

2 Branch 1 456 Suburb Way

When implemented in SQL Server, tables in the third normal form will usually outperform those in zero
form. In addition, the data is less subject to inconsistencies because each data attribute is stored in only
one place.

For comparison, if you wanted to generate a query using the third normal form design that would output
the equivalent of the original zero form, it would look like this:

select em.Employee,lc.Location,lc.LocationAddress,[1] ‘Phone1’,[2] ‘Phone2’
FROM Employees em inner join Locations lc on em.LocationID=lc.LocationID
left join (select pvt.* from

(select e.EmployeeID,e.Phone,
DENSE_RANK() OVER (PARTITION BY e.EmployeeID ORDER BY e.Phone) denserank
FROM EmployeePhones e) ep

PIVOT (min(Phone) for denserank IN ([1],[2])) pvt) ea
on em.EmployeeID=ea.EmployeeID

Notice how complicated it can be to simulate zero-form structures from a normalized design! To get
the phone numbers requires a subquery that first ranks them and then pivots the top two ranks for
each employee into a single output row. Normally you would probably never attempt something like
this, because in a client application it makes more sense to view and edit child tables using a separate
linked list.

In the real world, most database professionals intuitively design tables in the third normal form from
the ground up. After a while, it becomes so second nature that when you do run across a de-normalized
table, it looks strange, even if you don’t see the anomaly right away.

Now that I have covered normalization and why it makes sense, I will turn right around and tear it down
a bit by presenting some cases in which you might actually want to de-normalize a table.

De-Normalization
It has been said that there can be too much of a good thing, and optimization is no exception. Very
few databases rigidly adhere to a fully normalized form. There are situations in which making a
few small concessions in an otherwise normalized design can significantly improve performance. In
these situations, most database professionals will choose to de-normalize and won’t lose any sleep
over it.

As with normalization, an example will serve better than words alone. Assume for a moment that in the
AdventureWorks2008 application, it was a requirement that the business client display the date of the last
order for a product whenever the product was viewed or used. This value could be retrieved from the
fully normalized structure using the following query:

SELECT p.ProductID,p.Name,d.LastOrder
FROM Production.Product p left join

483



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 484

Chapter 11: Optimizing SQL Server

(SELECT sd.ProductId,MAX(sh.OrderDate) ‘LastOrder’
FROM Sales.SalesOrderDetail sd inner join Sales.SalesOrderHeader sh

on sd.SalesOrderID=sh.SalesOrderID
GROUP BY sd.ProductID) d on p.ProductID=d.ProductID

-- 221ms CPU time, 468ms elapsed time, 1931 logical reads

By itself, this query does not take all that long to run; however; if you had to run it 10,000 times a day, the
cumulative effect might be considerable because of the overhead involved in reading and sorting all of
the order history records to find the one value of interest. In this case, it might make sense to de-normalize
the database a little bit and save the last order date for each product in the product record. Furthermore,
to automatically maintain this calculation in real time, you should create a trigger or, if it is available, tap
into the stored procedures used to update the sales order tables. After making these changes, you would
be able to simplify the query above to look like the following:

SELECT ProductID,Name,LastOrder
FROM Production.Product
-- 0ms CPU time, 161ms elapsed time, 15 logical reads

The new query runs considerably faster than the original, and the biggest difference is in the number
of reads required (15 vs. 1,931). The cost for this Read performance boost is the increased time to
maintain the new value whenever a sales order is updated. If the usage pattern of the database
suggests that product reads occur more often than product writes, then this would be a good
optimization.

This optimization does introduce the possibility of inconsistent data, where the calculated last order
date does not match the actual last order date. If you attempt something similar, you should create a
validation procedure to check the calculated column and then run it regularly until you are confident
that your calculation process is working correctly.

Another common scenario in which databases are de-normalized is when the business rules dictate that
there will only be so many of a given element. For example, if your business rules limited a customer to
only two phone numbers, then the overhead of creating a linked phone number list might outweigh any
risks of data inconsistency. In this case, you might be better off by just creating a Phone1 and a Phone2
field in the customer table.

De-normalization is a difficult decision and should be carefully considered. Even so, as long as you
make sure that you recognize the trade-offs involved, it is an optimization tool that you should
consider.

Data Type Selection
When choosing the data types for columns in your tables, you should select the smallest data type that
is capable of containing the possible range of values. Smaller data types will require less space to store,
reduce I/O overhead, produce smaller indexes, and respond faster to searches. Consider the following
when choosing a data type:

❑ Char versus Varchar — This seems to be one of the biggest problem areas. Char values are fixed
width, and unless you are using compression, they will consume a byte of storage for every char-
acter position. Varchar values are variable length and will only use as many bytes of storage as
there are characters; however, varchar fields do have a couple of bytes of overhead. In general,

484



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 485

Chapter 11: Optimizing SQL Server

only use Char for fields that are less than 4 bytes in length, or where all the data is close to the
same length.

❑ Varchar versus Text — This is an easy one: Use varchar! Microsoft intends to deprecate the
Text, NText, and Image data types. In SQL Server 2005 and above, you can use the varchar(max)
data type to hold up to 231 bytes of text.

❑ Unicode Strings — Unicode strings are prefixed by an N. These strings consume twice as much
space (2 bytes per character) as the non-Unicode equivalents. Only use the Unicode data types if
your data will contain international characters.

❑ Integer Options — Sometimes I have to remind developers that there are other integer
types besides int (Int32). For example, for small values between 0 and 255, you can use a
tinyint (byte), and for values between –32,768 and 32,767, you can use a smallint (Int16).

❑ Date/Time Options — Data and time values can be difficult to deal with. Fortunately, SQL
Server 2008 has addressed this by adding several new date and time data types. You can now
choose between datetime, smalldatetime, date, time, datetime2, and datetimeoffset. Make
sure that you understand the differences between these data types before deciding which to use.

❑ Unique Identifiers — Consider adding a GUID column if you want to support offline clients;
however, you should avoid using a GUID as the primary or cluster key for the table.

❑ Object Data — If your object can be represented as XML, then use the XML data type. Otherwise,
use the varbinary data types. Starting with SQL Server 2005, varbinary(max)columns can con-
tain up to 231 bytes of data!

❑ Binary Data — Pure binary data can be stored using the varbinary data type, but you might
also want to consider the new filestream data type as well.

SQL Server supports several additional advanced data types. Refer to Books Online for the complete list.

Handling Complex Object Data
As business systems continue to evolve, complex data structures are becoming more and more common.
Complex data presents a series of new challenges for database administrators because it often does not
fit into a classical relational model.

Rather than trying to force the data into a rigid relational structure, SQL Server 2008 offers several
other possibilities to store non-traditional data, such as the XML, FileStream, Spatial, Hierarchy,
sql_variant, and varbinary data types. These options open up a host of new possibilities for using
SQL Server.

Remember when planning for complex data that SQL Server is still a relational database (vs. an object
database). If you want to be able to easily identify and search for your complex data, you should plan to
extract one or more key metadata fields and save those in discrete columns along with your complex data
blob. This will allow SQL Server to do what it does best and still support your complex data clients.

Declarative Referential Integrity (DRI)
Declarative referential integrity (DRI) is a feature of SQL Server that prevents inconsistent data, such as
widowed or orphaned records. DRI is one of the best tools in the SQL arsenal, and I strongly encourage its

485



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 486

Chapter 11: Optimizing SQL Server

use whenever possible. DRI not only provides guaranteed integrity for related data, but it also provides
much better performance than trying to do the same thing using triggers or application code. The reason
that DRI performs better is that it relies on constraints to enforce the data relationships, which prevents
inconsistent changes up front rather than rolling them back after the fact (like triggers). DRI is also able
to automatically cascade changes to related tables — all without having to write a single line of code.

If a DRI relationship is established between two tables, this allows you to confidently use a more effi-
cient INNER JOIN when querying the tables together (discounting nullable fields). Without DRI, there
is no guarantee that a matching record will exist in the other table, requiring the use of a less efficient
OUTER JOIN to avoid excluding unmatched records. When designing queries, it is never safe to assume
the validity of a relationship unless DRI is employed.

Consider the following example of how DRI can simplify a common task and protect your data:

In the AdventureWorks2008 database, the Person.BusinessEntity table contains a common underlying
reference that identifies an entity that can be a person, store, or vendor (or all three at the same time) and
can have an address and a list of associated contacts. Figure 11-1 shows the DRI relationships between
these tables.

Figure 11-1: DRI relationships for Person.BusinessEntity.

486



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 487

Chapter 11: Optimizing SQL Server

It would not be prudent to delete the entity if any related records still existed in the database. This would
‘‘orphan’’ the related records and very likely break the application. In order to do this without DRI, you
would need to do something like the following:

Use AdventureWorks2008
GO

BEGIN TRY

DECLARE @BEID int
SET @BEID=1

-- Has an Address?
IF EXISTS(SELECT * FROM Person.BusinessEntityAddress WHERE BusinessEntityID=@BEID)

RAISERROR(’In use in Person.BusinessEntityAddress table’,16,0)
-- In use as a Person?
If EXISTS(SELECT * FROM Person.Person WHERE BusinessEntityID=@BEID)

RAISERROR(’In use in Person.Person table’,16,0)
-- In use as a Contact?
IF EXISTS(SELECT * FROM Person.BusinessEntityContact WHERE BusinessEntityID=@BEID)

RAISERROR(’In use in Person.BusinessEntityContact table’,16,0)
-- In use as a Store?
IF EXISTS(SELECT * FROM Sales.Store WHERE BusinessEntityID=@BEID)

RAISERROR(’In use in Sales.Store table’,16,0)
-- In use as a Vendor?
IF EXISTS(SELECT * FROM Purchasing.Vendor WHERE BusinessEntityID=@BEID)

RAISERROR(’In use in Purchasing.Vendor table’,16,0)

-- Everything is OK, delete the entity
DELETE FROM Person.BusinessEntity WHERE BusinessEntityID=1;

END TRY
BEGIN CATCH

Print ERROR_MESSAGE()
END CATCH

-- RESULTS –
In use in Person.BusinessEntityAddress table

With DRI, you can accomplish the same thing (and more) in one line by simply attempting to delete the
record as follows:

DELETE FROM Person.BusinessEntity WHERE BusinessEntityID=1;

-- RESULTS --
Msg 547, Level 16, State 0, Line 2
The DELETE statement conflicted with the REFERENCE constraint
"FK_BusinessEntityAddress_BusinessEntity_BusinessEntityID". The conflict
occurred in database "AdventureWorks2008", table "Person.BusinessEntityAddress",
column ‘BusinessEntityID’.

The statement has been terminated.

With DRI, maintaining data integrity is faster, easier, and more reliable than with other methods. DRI
guarantees data integrity at all times, regardless of who or what is attempting to make the change.

487



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 488

Chapter 11: Optimizing SQL Server

DRI can also cascade updates and deletions to related tables or set related values to null, or to a
default value. The bottom line is that DRI is the only way to absolutely ensure that your data remains
consistent.

Constraints versus Triggers
Constraints and triggers are both means of using SQL Server to enforce conditions on data in tables. The
difference between these two methods really boils down to flexibility versus performance. Triggers are
more flexible, but they are much slower, require more overhead, and only fire after the rows have already
been updated (forcing a rollback to undo changes). Constraints are more limited, leaner, and are applied
before changes are made.

It is advantageous to use constraints in place of triggers whenever possible. In fact, SQL Server uses
constraints internally to maintain primary key integrity and enforce DRI conditions. SQL Server supports
several different kinds of constraints as listed below:

❑ Primary Key — Maintains unique entries for the defined primary key. This type of constraint is
created automatically when you define a primary key.

❑ Foreign Key — Used to enforce DRI relationships to maintain data integrity. Foreign keys are
created automatically when you define a DRI relationship between two tables.

❑ Unique — Unique constraints are used to guarantee that data values are unique across an entire
table or a subset of a table (using a filtered index). Unique constraints are created when you
define a unique index with a type of ‘‘unique key.’’

❑ Check — Check constraints are used to enforce data integrity by defining what data is valid in a
table. Check constraints are enforced whenever data is inserted or updated. The most common
type of check constraint is not allowing null values. Multiple check constraints can be applied to
a given column.

❑ Default — Default constraints assign default values to columns that are not specified when insert-
ing new records. This can help simplify insert statements by not requiring that a value be speci-
fied for every non-nullable field.

It is true that a trigger can do almost everything that a constraint can do; however, not taking
advantage of constraints whenever possible would in a sense be using the wrong tool for the job. If
you have to dig a hole, a shovel will work much better than a spoon. So why wouldn’t you use the
shovel?

The only time you should use triggers to enforce data integrity is when your business logic is too complex
to represent as a constraint. Arguably, if this is the case, a better option for the business logic might be a
middle-tier or an application server.

Deciding What to Index
The choice of what to index is probably the single biggest performance-related decision that you can
make for a database. Indexes provide a context for locating and retrieving data rows in a table. They are
used by SQL Server to identify specific records, speed up searches, optimize query plans, limit disk I/O,
and even to physically order the raw data itself. Good index choices can improve query performance by
several orders of magnitude, and poor choices can bring your database to its knees.

488



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 489

Chapter 11: Optimizing SQL Server

A basic overview of indexes is included in Chapter 5, and I won’t attempt to repeat that information here.
Instead, this section is devoted to providing you with a series of guidelines and recommendations that
you can use to make better index decisions.

Primary Key Choice
The primary key is one of the two most important decisions that you will need to make for each table (the
other is the cluster key choice). It is responsible for uniquely identifying rows in the table and prevents
duplicate records from being created. Only one primary key can be declared per table, and all values
must be unique and cannot be null. Every index that you create will implicitly include the primary key
(or unique key) as a pointer in order to be able to look up the underlying records efficiently.

The choice of primary key is a hotly debated topic among database professionals. There are two main
schools of thought on this subject: natural versus surrogate.

❑ Natural Key — A natural key is one that is based on a business element that represents the data
entity. For example, a currency table might use a currency code as a natural key to uniquely
identify the type of currency. In general, natural keys are easier to read and may reduce the com-
plexity of queries, provided that the natural identifier is commonly understood. Simple lookup
tables are ideal candidates for natural keys.

❑ Surrogate Key — A surrogate key is one that has nothing to do with any business requirements
and is added simply to define a unique identifier. Identity columns are commonly used as
surrogate keys, and you will find many examples of this throughout the AdventureWorks2008
database. Surrogate keys are preferred when a business entity (table) does not have a clearly
identifiable natural key or when the natural key can frequently change.

A design that is largely based on surrogate keys will be extremely efficient since most of the joins between
tables will be based on a single field. Using natural keys does not provide this advantage; instead, each
level of child objects must define a composite primary key based on the parent’s natural key and its
own natural key. Take a look at Figure 11-2, which compares natural keys versus surrogate keys for a
parent–child–grandchild structure.

The primary key in the natural key structure does not allow the same invoice number to be used more
than once for the same vendor or the same line number to be used multiple times on the same invoice. To
mirror these business rules in the surrogate version, you must create unique constraints for the Invoice
and InvoiceLine tables as indicated.

As you can see, using natural primary keys in an n-tier parent–child structure is not the best choice.
Complex business systems commonly have parent–child hierarchies that are five or more levels deep.
The fifth tier would end up having a five-part primary key! Smaller keys mean narrower (fewer bytes per
row) tables, which improves performance by allowing more data and index pages to fit into the cache.

Consider what would happen in the example above if a vendor code was changed. In the natural key
version, in addition to the vendor record itself, every related invoice and invoice line would have to be
updated. In the surrogate version, the corresponding change would only require a single update to the
vendor record. Now imagine the impact of changing the size of the vendor code. If the business decided
that vendor codes needed to be extended by two characters, then the natural key approach would require
a structural change to every table in the hierarchy, while the surrogate version would only require a
change to a single table.

489



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 490

Chapter 11: Optimizing SQL Server

Figure 11-2: Natural keys versus surrogate keys.

So if surrogate keys are so good, why would you ever want to use a natural key? To put it simply, natural
keys are more ‘‘natural.’’ They make the tables easier for users to understand and manage. In fact, it is
extremely uncommon to find a database that does not use some natural keys.

When choosing a primary key, consider the following:

❑ The primary key should not change.

❑ The data type should be an integer or a short, fixed-width character. Short character keys are
often used for small lookup tables, such as currency, freight, commodity, group, or category
codes. The narrower the primary key, the better the performance. This implies that an integer
IDENTITY would be a better choice than a GUID.

❑ Avoid ‘‘smart’’ keys with embedded business codes. Using keys with embedded business mean-
ings will require extensive data refactoring when the business requirements change. The mean-
ing of the primary key should remain unchanged over time.

❑ Consider natural keys for simple lookup tables. Many lookup tables are perfectly suited to natu-
ral keys, such as lists of states, currencies, zip codes, freight carriers, or export commodities.

❑ Consider surrogate keys for hierarchical parent–child structures. As demonstrated previously,
there are clear benefits for surrogate keys in parent–child structures, especially if they extend
very many levels deep.

490



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 491

Chapter 11: Optimizing SQL Server

❑ Natural key searches must still be supported. Even if you use a surrogate primary key, you
should still define an alternate unique natural key for lookup purposes. Humans prefer natural
keys, and they look good on reports.

❑ Try to minimize the use of composite primary keys. Composite keys increase the width of the
primary key, which, in turn, reduces performance. Even so, there are specific cases in which com-
posite keys make sense. One such example is in many-to-many join tables, where the primary
key is often a combination of the (surrogate) keys of the tables being joined.

Cluster Key Choice
The cluster key is what determines the physical order in which data is stored in pages on disk. The physical
order of the data plays an important role in determining how many I/O operations must be done in
order to find and retrieve records. Tables without a cluster key are basically an unorganized ‘‘heap’’ of
data. A heap is not a very efficient way of storing information that you might actually need later on.
Imagine that you had a collection of 10,000 baseball cards that were stored in no particular order in a
big bin. If you wanted to locate your 1952 Mickey Mantle card, you would have to go through each
card one-by-one. This is the equivalent of a ‘‘table scan’’ in SQL Server. If, instead, you had physically
organized your cards in some way, then you would be able to find the one that you wanted much more
quickly because you would have to ‘‘scan’’ fewer items. For example, if all the cards were in last name
order, then you would be able to pull out just the ‘‘Mantle’’ cards and then scan through a much smaller
set to find what you wanted. Scanning a subset of data based on its physical order is known as a clustered
index scan.

Changing the cluster key on a production database can be a very resource-intensive task. This will lock
the table while all of the existing data is physically moved and reordered, potentially causing downtime.
For this reason, it is important to make the proper choice for the cluster key up front.

So what makes the best choice for physically ordering data in a table? This is actually a complex topic, and
the easy out is to just say, ‘‘It depends,’’ and leave it at that. Personally, I have never been satisfied with
that answer, and my first response is usually ‘‘on what?’’ Looking at this from a performance perspective,
I can provide a much better answer.

The choice of cluster key should have as many of the following characteristics as possible:

❑ Highly Selective — A highly selective key will result in fewer records that must be scanned per
clustered range. In the baseball card example above, the last name is a highly selective value.
A particular last name will limit a search to a small fraction of the whole collection. A weaker
choice would be Year or Team, since these do not limit the results by nearly as much. Of course,
the best choice would be a field with total selectivity — in other words, a unique value.

❑ Rarely Changed — Changing a cluster key value involves moving the record to a new page in
order to maintain the physical order. Needless to say, this can be costly in terms of I/O perfor-
mance, and it tends to cause fragmentation of the table, which slows down access even further.
The best selection is a field with values that never change.

❑ Ever Increasing Values — When a table is clustered, records are stored in pages on disk,
based on a range of cluster key values. As long as the key values are always increasing, new
data will be efficiently added to the end of the cluster. This will eliminate fragmentation on
the table and fill the data pages to capacity, which maximizes I/O throughput. If keys are
inserted that fall into a prior range, then SQL Server may have to ‘‘split’’ a page to squeeze in the
new value.

491



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 492

Chapter 11: Optimizing SQL Server

❑ Narrow — Keys with fewer bytes per record are preferable to wider keys. Not only does this
allow for faster sorting and searching of the key values, it also has a hidden impact. In SQL
Server, the cluster key is actually part of every non-clustered index as well! This makes sense
when you consider that SQL Server has to have some way to look up the physical records
associated with each index value. The best choice is a single column containing an integer,
datetime, or small, fixed-length character value.

❑ Commonly Filtered by Range — Clustered indexes provide superior performance when
you need to return a range of data. This includes using operators such as BETWEEN, <, >, <=,
and >=.

❑ Frequently Sorted or Grouped — A clustered index on a column that is commonly used in
ORDER BY or GROUP BY expressions can improve performance by eliminating the need for SQL
Server to sort the data.

❑ Often Used in Join Clauses — In some cases, there is an advantage to clustering by a field that
is often used to join tables, such as foreign key columns, especially when records are commonly
retrieved using the foreign key as a filter. A common example of this is clustering a child table
by the parent ID.

Considering the desirable characteristics defined above, there are three clear preferences for the cluster
key choice. When selecting a cluster key, strongly consider one of the following:

❑ The Primary Key — This is the most commonly used cluster key, in part because SQL Server
will automatically cluster the primary key when it is first created, provided that there is not a
pre-defined cluster key on the table. This is normally a good choice because the primary key
shares several of the characteristics that are desirable for a cluster key. In fact, if the primary key
is a surrogate IDENTITY key, then this choice will be unique, unchanging, ever-increasing, and
narrow. Depending on the specific business use for the table, the remaining criteria could be true
as well, making this a nearly perfect choice.

❑ A Transaction Date — For transaction tables and archives, a compelling choice for the cluster
key is the date of the transaction. Normally this is a stamped date that is ever-increasing. The
datetime data type is accurate to within 3 ms (milliseconds), which is highly selective. Business
rules normally dictate that transaction date stamps can never change, and the transaction date is
commonly used to sort and limit query results.

❑ A Foreign Key — In certain cases, a foreign key can also make a good choice for a cluster key.
This is particularly true for child tables in a hierarchical structure. Assuming that the database is
using surrogate IDENTITY keys, choosing a parent ID as the cluster key provides an unchanging,
narrow key that is often used in join clauses, and to filter and group results.

Of course, the final selection for the cluster key should be based on performance testing results gathered
during a period of ‘‘typical’’ activity.

GUIDS as Cluster Keys
A common mistake made by database designers is to use a GUID as the cluster key. Don’t do it!

First, take a look at the criteria for cluster keys as defined in the previous section. On the plus side, GUIDs
are unique and do not change. On the minus side, they are wide, random, not used to sort or group, and
not commonly filtered by range. This alone tips the scale against using a GUID as a cluster key, but there
is an even bigger problem.

492



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 493

Chapter 11: Optimizing SQL Server

The fact that GUIDs are random is what makes them just about the worst possible choice for a cluster key.
Clustering a GUID column will result in almost perfect fragmentation of the index ranges because SQL
Server has no idea how to establish efficient ranges for random values. As records are added, additional
page splits will occur as SQL Server moves data around to make room for the new values. Compounding
the problem is that SQL Server includes the cluster key as a hidden part of every non-clustered index.
Therefore, not only will the clustered index be fragmented, so will every non-clustered index!

If you are stuck with a table that uses a GUID cluster key and are unable to change the structure,
consider generating the values using NEWSEQUENTIALID instead of NEWID. This will generate GUIDs
such that each new value will be greater than the prior values, which will considerably reduce
fragmentation.

When dealing with GUIDs, a better choice is to add a surrogate IDENTITY key for the table and to make
that the primary and cluster key. Then create a unique constraint on the GUID column, allowing it to act
as an alternate unique key.

Other Indexes
Beyond the primary and cluster keys, what else should be indexed? For most database administra-
tors, this is a daunting question. I typically see two approaches: everything or nothing. Neither of these
approaches is ideal. It is true that indexes are the single biggest factor in improving query performance;
however, every index actually slows down insert and update operations and consumes storage space. In
fact, for a heavily indexed table, it is not uncommon for the indexes to actually consume more storage
space than the table itself! Therefore, what is needed is a way to find a compromise that balances data
retrieval and data update performance.

Before continuing, it is worth pointing out that the benefits of any index will increase as the number of
rows in the table increases. On a table with few rows (less than 1,000) the benefits of an index will be
negligible. For small tables, the only indexes that you should consider are the primary/cluster keys and
possibly a unique key.

The guidelines for generic indexes are a bit more relaxed than those for primary or cluster key indexes.
In general, you will realize the biggest performance benefits if your indexes fall into one or more of the
following categories:

❑ Narrow — Short, or ‘‘narrow,’’ indexes will perform better than wider indexes, especially as
the tables involved increase in size. Query operations on large tables (especially larger than the
cache) are very disk I/O-intensive. A narrow index will require fewer disk reads and allow more
values to be cached. In addition, indexes are commonly used for comparison operations, and
smaller entries are easier to compare.

❑ Selective — The degree of selectivity is a critical factor for any index. This can range from per-
fectly selective (all values are unique) to all inclusive (all values are the same). It is pointless to
index a column where all the values are the same! The higher the degree of selectivity, the more
benefit an index will provide. SQL Server keeps track of the selectivity of each index and uses
this when creating query plans.

❑ Covering — A covering index is a compound index that contains all of the columns required to
produce the required results. This may seem contradictory to the narrow category described
above, and, indeed, this type of index will be more I/O-intensive; however, it will be less inten-
sive than having to look up the underlying row data. A good covering index can save a lot disk

493



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 494

Chapter 11: Optimizing SQL Server

reads. To maximize the effectiveness of the index, order the columns from most selective to least
selective.

❑ Unique Constraints — Unique constraints are used to enforce the uniqueness of the data in a col-
umn or a combination of columns. This is common when using a natural key as an alternative
lookup value for a surrogate primary key.

Prime candidates for indexes are any columns that are used in DRI foreign key joins and any columns
commonly used to limit query results. Each of these possibilities should be evaluated to determine if an
index will be of benefit.

Indexed Views and Filtered Indexes
Indexed views and filtered indexes are more advanced indexing techniques that you can use to further refine
and optimize your database. There is a certain amount of overlap in their functionality, and where this
occurs, it makes sense to use the lighter-weight filtered indexes. I will briefly explain each of these index
types and then present an example in which filtered indexes are a better choice.

An indexed view is really just an ordinary view that has a clustered index. This allows SQL Server to
blur the line between tables and views by treating the view as a virtual table. As a result, indexed views
inherit all the capabilities of views combined with the indexing benefits of tables. Traditionally, indexed
views have been used to restrict users to a subset of data and to present data to users in a logical format,
including pre-calculated data aggregations and transforms. When combined with schema binding, it
is also possible to use indexed views to enforce constraints on subsets of the original table, and this
approach provides a non-trigger-based option for enforcing unique values only for non-null entries in a
column.

Another interesting use for indexed views is to virtually de-normalize a complex relational structure
for consumption by an application. The indexed view will be automatically maintained by SQL
Server when the source data changes and will have the side benefit of offloading I/O from the source
tables. Placing an ‘‘instead of’’ trigger on the indexed view could even allow it be fully updateable by
the client.

I have often seen it stated that indexed views are an enterprise-only feature. This is
not true. Indexed views can be created and used in any version of SQL Server.
However, only in the Enterprise Edition will the Query Processor automatically
consider the indexed view. In other versions, the indexed view will only be
considered if you reference it by name and use the NOEXPAND hint. Filtered indexes,
on the other hand, are automatically considered in all versions of SQL Server.

With SQL Server 2008, a new option has been introduced known as filtered indexes. A filtered index is
simply a table index that only applies to a subset of data based on ‘‘simple’’ comparison logic (no like
operators). Filtered indexes do not need to be unique, and since they are associated with the table directly,
they are more likely to be used by the Query Optimizer for a wider range of queries than indexed views.
Among other possibilities, filtered indexes offer a direct and easy solution for enforcing unique entries
on a nullable column.

494



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 495

Chapter 11: Optimizing SQL Server

Owing to their performance advantage over indexed views, whenever possible you should use filtered
indexes instead of indexed views. Filtered indexes must meet the following conditions:

❑ Single Table — All columns for a filtered index must be in the same table.

❑ No Computed Columns — No computed columns are permitted in filtered indexes.

❑ Simple Comparison Logic — The filter clause must be expressed using simple comparison
operators (no like comparisons). Null evaluation is permitted using the IS NULL and IS NOT NULL
operators.

Try It Out Create a Filtered Index on a Nullable Column
In this example, assume that we need to establish a customer alias that can be used to uniquely identify
a customer, but that not every customer will have an alias. There are three approaches that we could use
to enforce this condition: a trigger, an indexed view, or a filtered index. You will need to evaluate each
option and determine which one will work best:

1. You must create the alias column in the Sales.Customer table. You can do this either with SQL
Server Management Studio or by executing the following in a new command window:

USE AdventureWorks2008
GO

ALTER TABLE Sales.Customer ADD Alias varchar(10) null

2. You need to update a couple of values in the new column. Enter the following into an SSMS com-
mand window and execute it:

USE AdventureWorks2008
GO

UPDATE Sales.Customer SET Alias=’NJSP’ WHERE CustomerID=1
UPDATE Sales.Customer SET Alias=’DCJS’ WHERE CustomerID=2

3. Now that the column has been defined and has a couple of data items, you need to evaluate the
methods to enforce the business condition that non-null entries should be unique. A unique
constraint is not possible in this case because more than one value might be null. Select an
option below based on what you know about triggers, indexed views, and filtered indexes.
Enter the code associated with your selection in a command window, and execute it within the
AdventureWorks2008 database context.

-- OPTION 1, TRIGGER IMPLEMENTATION
CREATE TRIGGER Sales.trigUniqueAlias ON Sales.Customer FOR INSERT,UPDATE
AS
SET NOCOUNT ON;
IF (SELECT count(CustomerID) FROM inserted
WHERE exists (SELECT CustomerID FROM Sales.Customer sc

WHERE sc.Alias = inserted.Alias
AND sc.CustomerID!= inserted.CustomerID)) > 0

495



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 496

Chapter 11: Optimizing SQL Server

BEGIN;
ROLLBACK TRANSACTION;

END;
GO
--DROP TRIGGER Sales.trigUniqueAlias
--GO

-- OPTION 2, INDEXED VIEW IMPLEMENTATION
CREATE VIEW Sales.vCustomerAlias WITH SCHEMABINDING
AS
SELECT CustomerID,Alias
FROM Sales.Customer
WHERE (Alias IS NOT NULL);
GO
CREATE UNIQUE CLUSTERED INDEX CK_vCustomerAlias ON
Sales.vCustomerAlias(Alias);
GO
--DROP VIEW Sales.vCustomerAlias
--GO

-- OPTION 3, FILTERED INDEX IMPLEMENTATION
CREATE UNIQUE NONCLUSTERED INDEX FICustomerAlias

ON Sales.Customer (Alias)
WHERE Alias IS NOT NULL;
GO
--DROP INDEX FICustomerAlias ON Sales.Customer
--GO

4. Now you will need to evaluate your choice. You can use the built-in statistics-gathering ability of
SQL Server to accomplish this inline. Enter the following code in a new command window and
execute it:

USE AdventureWorks2008
GO

SET STATISTICS IO ON;
SET STATISTICS TIME ON;
UPDATE Sales.Customer SET Alias=’NJSP’ WHERE CustomerID=2

The statement should generate an error and display the time and I/O statistics. Listing only the relevant
time and statistics entries for each option, the output should be like one of the following:

*** TRIGGER RESULTS ***
Msg 3609, Level 16, State 1, Line 1
The transaction ended in the trigger. The batch has been aborted.
Table ‘Customer’. Scan count 0, logical reads 2, physical reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.

Table ‘Customer’. Scan count 1, logical reads 3, physical reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.

SQL Server Execution Times:
CPU time = 10 ms, elapsed time = 215 ms.

*** INDEXED VIEW RESULTS ***

496



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 497

Chapter 11: Optimizing SQL Server

Msg 2601, Level 14, State 1, Line 1
Cannot insert duplicate key row in object ‘Sales.vCustomerAlias’
with unique index ‘CK_vCustomerAlias’.

The statement has been terminated.
SQL Server Execution Times:

CPU time = 10 ms, elapsed time = 8 ms.

*** FILTERED INDEX RESULTS ***
Msg 2601, Level 14, State 1, Line 1
Cannot insert duplicate key row in object ‘Sales.Customer’
with unique index ‘FICustomerAlias’.

The statement has been terminated.
SQL Server Execution Times:

CPU time = 0 ms, elapsed time = 2 ms.

Notice that the filtered index option is clearly superior when it comes to performance. In fact, the filtered
index approach was four times faster than the indexed view approach and a whopping 100 times faster
than using a trigger!

If you want, you can experiment with the other options by repeating the final update after first running
the DROP code listed below each option and then running the code to activate a new option.

Minimizing Blocking
To support multiple concurrent users and updates, SQL Server implements a complex resource-locking
system. Locks can occur at the row, index, page, extent, table, or database level, and are automatically
escalated as needed during a transaction. Blocking occurs when multiple processes attempt to lock
the same resources at the same time. The first process that requires a particular resource will lock it,
and any other processes that require the same resource will be blocked until the first process releases
the lock.

I am simplifying a bit here for the sake of brevity. In actuality, blocking is a bit more complex, in that
there are multiple kinds of locks and only certain combinations will actually block.

In addition to slowing down operations, there are two critical risks related to blocking — deadlocks and
time-outs. Deadlocks occur when two processes become mutually locked, with each requiring a resource
that is held by the other. When this happens, one connection is terminated by the server, which can cause
application errors and data loss. Time-outs occur when a client has been blocked for so long that it simply
gives up. By default, most connections will time-out after they have been blocked for 30 seconds. Again,
depending on how the application is designed, in some cases time-outs can cause application exceptions
that result in lost data.

Normally SQL Server is fairly good at handling locking and blocking issues; however, it always pays to
help minimize these types of problems whenever possible. With that in mind, here are some tips that you
can use to help minimize blocking issues:

❑ Keep It Short — The shorter the transaction, the less likely it is that it will block anything. When
inside a transaction, try to avoid using loops (while, etc.) or cursors, and avoid statements that
access large numbers of rows. Never ask for user input during a transaction.

497



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 498

Chapter 11: Optimizing SQL Server

❑ Prepare, Then Transact — Do all of your conditional evaluations, lookups, and other prepara-
tion before initiating the transaction. In addition, try to avoid interleaving reads and updates
within the same transaction. One method that works well for this is to use table variables to store
pre-calculated results and to determine affected records, and then update all necessary rows in a
single operation.

❑ Use Stored Procedures — If possible, use stored procedures rather than direct table updates.
Wrapping your transactions inside a stored procedure is more secure and provides better per-
formance.

❑ Use a Normalized Schema — One of the nice side effects of normalization is that it automatically
helps reduce blocking issues by separating tables into smaller logical units.

❑ Separate Reporting from Transactions — Gathering data for reports can access huge amounts
of data at one time, especially when performing rollups or processing data cubes. Whenever
possible, try to separate your analytical reporting (OLAP) databases from your transaction pro-
cessing databases (OLTP).

In addition, you can affect blocking by adjusting the server transaction isolation level setting or by using
a query or table hint to manually select a locking granularity level. Query and table hints are described
in more detail in the ‘‘Query Optimization’’ section later in this chapter.

Hidden Dangers of Time-Outs
Locking leads to blocking, blocking leads to time-outs, and time-outs lead to trouble. At issue is the fact
that a time-out is a client-side event, and when a client times out, SQL Server simply stops whatever it was
doing on that connection. This can have some unanticipated results if the time-out occurs in the middle
of a transaction, even if the transaction was initiated by the server inside a stored procedure!

Take a look at the following stored procedure. On the surface it appears solid, with no obvious way for
the code to exit without closing out the transaction. If there are any errors, then the catch block will roll
back the transaction; otherwise, the transaction will commit.

CREATE PROCEDURE up_UpdateInTrx
AS
BEGIN

SET NOCOUNT ON;
BEGIN TRY
BEGIN TRAN

UPDATE Production.Product
SET SafetyStockLevel=55
WHERE ProductID=1

UPDATE Production.ProductInventory
SET Bin=5
WHERE ProductID=1

COMMIT TRAN
Return(0)

END TRY
BEGIN CATCH
ROLLBACK TRAN

498



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 499

Chapter 11: Optimizing SQL Server

Return(1)
END CATCH

END
GO

Looks can be deceiving. There is a subtle hole in this procedure that could let the code ‘‘escape’’ without
rolling back or committing the transaction. You guessed it — a time-out. In particular, if any of the state-
ments inside the transaction were blocked by another process for more than 30 seconds (by default), then
the client would generate a time-out. When this occurs, the client tells the server to cancel whatever it is
doing. SQL Server simply abandons the command, and no error is raised to trigger the catch block.

Because the time-out is initiated by the client, SQL Server expects the client to handle it and do any
required cleanup. Part of this cleanup should be rolling back the open transaction; however, unless you
were explicitly aware that the server initiated a transaction, it might not occur to you to check for this in
your client exception-handling code. It is often overlooked.

There are a couple of possible outcomes. If the client closes the connection, then the open transaction
will be automatically rolled back by SQL Server. On the other hand, if the client continues to use the
connection for further transactions, then a serious problem develops. All of the additional transactions
will occur inside the original uncommitted transaction. As more transactions are run on this connec-
tion, more and more resources will be locked, greatly increasing the chance of additional time-outs and
even deadlocks. If this cycle continues long enough and locks enough resources, the server will become
unresponsive. Eventually, the client application will be closed (or killed), or the server will be restarted,
either of which will terminate the original connection and roll back every change that was made after the
original time-out. Without understanding what is going on, it will appear that SQL Server ‘‘lost’’ data.

If you are using a connection pool, such as the ASP.NET default pool, then the problem can get even
worse. Closing a pooled connection simply returns the connection to the pool rather than actually closing
it. From there the connections will continue to lock resources on the server and may even be reused for
additional transactions — which will also be uncommitted. Once the connection is ultimately closed,
SQL Server will roll back every uncommitted change.

One way to avoid leaving open transactions after a time-out is to use the "SET XACT_ABORT ON" command
in the stored procedure. By default, SQL Server leaves XACT_ABORT off, which means that it is the client’s
responsibility to clean up following a time-out. If you turn on XACT_ABORT at the beginning of your
procedure, then SQL Server will take responsibility for cleaning up if there is a time-out.

Query Optimization
The Query Optimizer in SQL Server 2008 is responsible for handling the extremely difficult task of finding
the most efficient way to execute a query. Every query has an intrinsic search space that represents the
maximum possible number of operations that might be required to satisfy the search conditions. The
Optimizer tries to order the execution steps in such as way as to reduce the search space as quickly as
possible, thus limiting the overall number of operations required to generate a result.

Statistics are a critical factor in generating efficient query plans. They collect information on the cardinal-
ity (number of rows) and selectivity (distribution of data) for each table. Statistics are used by the Query
Optimizer to weight the relative costs of the various methods for generating the same results. If the statis-
tics are significantly out-of-date, or worse, non-existent, then the Optimizer will have to guess. Needless

499



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 500

Chapter 11: Optimizing SQL Server

to say, if it guesses wrong, then your query performance will suffer. For example, if the statistics were
out-of-date for a table and were reporting that it only had 10 rows of data, then the Optimizer might
choose to do a table scan instead of an index lookup. If it turned out that the table actually had 100,000
rows, then the choice of a table scan would be very costly. Poor cardinality and selectivity estimates are
the primary causes of inefficient query plans.

Indexes provide the Query Optimizer with additional options. Indexes on reasonably selective columns
used in where, join, or group by clauses will typically be chosen by the Optimizer over a table scan.
Indexes that contain all of the required output columns will even allow the Optimizer to avoid accessing
the table data at all.

As you might have guessed, creating a plan for a complex query can consume a fair amount of CPU
resources on its own. It would be a waste of resources to keep generating new plans over and over again,
so in most cases SQL Server will only generate a plan once and then save it in memory in the plan cache.
Subsequent executions will then use the cached plan until it ages out of memory or is invalidated.

Execution Plans
An execution plan describes the sequence of steps that the Query Optimizer has selected to process a
query. Execution plans are a database administrator’s primary means of troubleshooting poorly perform-
ing queries; therefore, it is very important to understand how to interpret them to identify and resolve
problem areas and high-cost steps.

Execution plans come in two different flavors: estimated and actual. The estimated plan is what is gener-
ated by the Query Optimizer, and this plan is passed to the storage engine for processing. The actual plan
is what the storage engine actually did. In the large majority of cases, the estimated and actual plans will
be the same. The only time you are likely to see a difference is when the statistics are out-of-date or when
the storage engine decides to try parallel processing in a multiple-CPU environment. In these cases, the
storage engine may ignore the proposed plan and use its own.

Plan Caching
After the Query Optimizer submits the estimated execution plan, the storage engine compares it to any
actual plans that are already in the plan cache. If a matching plan is found in the plan cache, then it will
be reused, which saves the overhead of creating new actual plans every time a query is processed. Plans
in the cache do not last forever; under normal circumstances, they are slowly ‘‘aged’’ out of memory (the
lazywriter handles the aging, among other tasks).

There are other actions that can cause a plan to be discarded as well, which can generate a lot of CPU
stress if it happens often enough. In particular, the following actions can cause a plan to be invalidated
and recompiled:

❑ Low Memory — If the server runs low on memory, any plans not being referenced by a client
connection may be cleared.

❑ Table or Schema Changes — Changes to any tables or schemas used in the plan will invali-
date it. This includes any changes to the structure or schema of any temporary tables used in
the query.

❑ Index Changes — Dropping or changing any of the indexes used by the plan will invalidate it.

500



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 501

Chapter 11: Optimizing SQL Server

❑ Statistics Changes — Any changes to the statistics used to develop the query plan will force the
plan to be recompiled.

❑ Significant Row Count Changes — If enough inserts and deletes occur to any of the referenced
tables, then the plan will be recompiled. This threshold can be adjusted by using the KEEP PLAN
and KEEPFIXED PLAN query hints. Refer to the ‘‘Query Hints’’ section later in this chapter for
more details.

❑ Mixing DDL and DML — Try to avoid interleaving DDL and DML within the same query, since
this will always cause the plan to recompile.

❑ Changing SET Options — Changing any SET options inside the query will invalidate the plan.
To avoid recompilation, make all of your SET changes at the beginning of the query rather than
throughout the query.

Sometimes during testing it can help to completely clear the procedure cache. This
can be done by executing DBCC FREEPROCCACHE.

Viewing Execution Plans
Internally each query results in a single execution plan, but SQL Server provides you with several differ-
ent options to view the plan:

❑ Graphical — SSMS will display graphical plans if you select to include either the estimated or
actual execution plan when executing a query. The graphical plans are great for getting a quick
feel for what is happening; however, only a limited of amount of detail is presented.

❑ Text — Text plans are a bit harder to understand but include more information. You can include
text plans by adding one of the following SET statements in a query batch:

❑ SHOWPLAN_ALL — Instructs SQL Server to return a detailed analysis of the estimated execu-
tion plan. The query will not actually be executed.

❑ SHOWPLAN_TEXT — Similar to the previous option, this will return estimated execution
information without actually executing the query; however, the output format is intended
for use with command-line tools.

❑ STATISTICS_PROFILE — Actually runs the query and then returns detailed information for
each statement that was executed.

❑ XML — These are very complete data sets describing all of the details of the execution plan. XML
plans can be included by using one of the following SET statements:

❑ SHOWPLAN_XML — Returns estimated execution information in a well-formed XML docu-
ment. This is the XML version of SHOWPLAN_ALL.

❑ STATISTICS_XML — Runs the query and then returns detailed information for each state-
ment in XML form. This is the XML equivalent of STATISTICS_PROFILE.

All of the SHOWPLAN options are also available as event classes in SQL Profiler; however, you are encour-
aged to use the XML versions. The non-XML versions have been deprecated and will be removed in a
future release.

501



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 502

Chapter 11: Optimizing SQL Server

Analyzing Execution Plans
After you have captured and displayed an execution plan, you can analyze it to find potential changes
that may improve performance. These changes may involve adding new indexes, changing sort options,
partitioning, using query hints, or re-writing the original query in a new way. Figure 11-3 shows the
graphical execution plan for the following query:

Select p.PersonType, p.LastName, p.FirstName, e.HireDate, e.JobTitle, ph.Cell,
ph.Home, ph.Work

FROM Person.Person p left join HumanResources.Employee e on
p.BusinessEntityID=e.BusinessEntityID

left join (select BusinessEntityID, [1] ‘Cell’, [2] ‘Home’, [3] ‘Work’ FROM
(select BusinessEntityID,PhoneNumberTypeID,PhoneNumber FROM Person.PersonPhone) p
PIVOT (min(PhoneNumber) for PhoneNumberTypeID IN ([1],[2],[3])) pvt) ph
on ph.BusinessEntityID=p.BusinessEntityID

WHERE PersonType=’EM’

Figure 11-3: Graphical execution plan.

The first step in analyzing the plan is to look for certain specific operations that are commonly associated
with performance issues. If you see any of the following operations, you should investigate them further
to determine if there is a problem:

❑ Clustered Index Scans or Table Scans — Scans occur when SQL Server has to slog through
the data record-by-record. When this occurs on large tables, it is often a sign that an additional
index could be added to improve performance. If the Query Optimizer identifies any of these
‘‘missing’’ indexes, then it will display an index recommendation in green text at the top of the
graphical plan.

❑ Cross-Join — This is almost always an error in the query design where a join was not defined
between two tables. Cross-joins combine every record in the first table with every record in the
second table, resulting in a table that contains the product of record counts of each table.

❑ Key Lookup or RID Lookup — These mean that the row data had to be retrieved in order to
provide additional values required by the query. If you see a lot of these, you might be able to

502



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 503

Chapter 11: Optimizing SQL Server

improve performance by reducing the number of output rows in the query, creating a covering
index, or in some cases, changing the cluster key.

❑ Filter — This is another kind of scan operation, included where there is a complex expression
that must be evaluated over all input rows. One place you will see this is if you use a function in
the WHERE clause. In other cases, it may indicate the need for additional indexes.

❑ Sort — This indicates the presence of an ORDER BY clause. Sorting can be a very CPU-intensive
task, so if you see this, make sure that the results really need to be sorted. In some cases, you
may be able to create a covering index and avoid the sorting operation altogether.

When analyzing plans, you should focus on the most costly operations first. In the plan referenced above,
notice that the most costly operation is a Clustered Index Scan on the Person.Person table to limit the
rows based on the PersonType. Mousing over any of the operations in a graphical query plan will dis-
play a tooltip showing details of the operation. Figure 11-4 shows the operation details for the clustered
index scan.

Figure 11-4: Query plan operation
details.

In the case of this particular query, the Optimizer has identified a missing index that might improve
performance. Right-clicking on the screen and selecting Missing Index Details shows the following
information:

/*
Missing Index Details from PlanTest.sql - AUGHTEIGHT.AdventureWorks2008
(AUGHTEIGHT\Administrator (53))

The Query Processor estimates that implementing the following index could improve
the query cost by 91.2832%.

*/

/*

503



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 504

Chapter 11: Optimizing SQL Server

USE [AdventureWorks2008]
GO
CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
ON [Person].[Person] ([PersonType])
INCLUDE ([BusinessEntityID],[FirstName],[LastName])
GO
*/

Notice that it recommends using the INCLUDE clause of the index, which includes additional columns in
the index simply for covering purposes. The Query Optimizer is estimating a 91.3 percent increase in
performance if we add the index that it recommends.

Very complex query plans can get a little confusing to navigate. Just remember that everything comes
together at the top left of the screen. When following the query outward towards the right, you can
use the estimated subtree cost to identify which path is the more costly. In addition, mousing over the
connecting arrows between operations will display a tool tip showing the estimated number of rows and
estimated data size that is being moved. Using these techniques, it is relatively easy to identify the most
costly operations.

Updating Statistics
Statistics are used by the Query Processor to help determine optimal execution plans. By default, statistics
are set to automatically create and update. In most cases, this provides an acceptable trade-off in that the
time required to automatically compute statistics is more than compensated for by the gains in query
performance.

If you choose to disable automatic statistics for a given table, then you will also need to periodically
use the UPDATE STATISTICS command to manually update statistics. This should be done whenever the
contents of the table have been significantly altered.

When using UPDATE STATISTICS, SQL Server will automatically re-enable automatic statistics unless
you specify the NORECOMPUTE clause.

If you want to make sure that statistics are current for every table in a given database, then you can use
the sp_updatestats stored procedure. This procedure invokes UPDATE STATISTICS on every table in the
target database that is out-of-date, as determined by the rowmodctr (row modification counter) column
in the sys.sysindexes server view. The following example shows how to update statistics for the entire
AdventureWorks2008 database:

USE AdventureWorks2008;
GO
EXEC sp_updatestats

Managing Indexes
Given the important role of indexes in the Query Optimizer, it is critical that they are properly managed
in order to continue to provide optimal query results. Query statistics should be periodically analyzed to
identify new potential indexes, and existing indexes need to be periodically de-fragmented and evaluated

504



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 505

Chapter 11: Optimizing SQL Server

for effectiveness. Performing these relatively simple tasks will greatly assist the Query Optimizer and
help maintain excellent query performance.

Identifying Missing Indexes
There are several different approaches that you can take to identify indexes that would potentially be of
benefit. The first method is to use the ‘‘Missing Index’’ dynamic management views. SQL Server automat-
ically maintains three DMVs that together can be used to view SQL Server’s internal recommendations
for new indexes as follows:

SELECT migs.user_seeks, migs.avg_total_user_cost, migs.avg_user_impact,
migs.last_user_seek, mid.[statement] ‘database_schema_table’,
mid.included_columns, mid.equality_columns, mid.inequality_columns,
migs.unique_compiles
FROM sys.dm_db_missing_index_group_stats migs WITH (NOLOCK)
INNER JOIN sys.dm_db_missing_index_groups mig WITH (NOLOCK)
ON migs.group_handle = mig.index_group_handle
INNER JOIN sys.dm_db_missing_index_details mid WITH (NOLOCK)
ON mig.index_handle = mid.index_handle
INNER JOIN sys.objects so on mid.[object_id]=so.[object_id]
INNER JOIN sys.databases sd on mid.[database_id]=sd.[database_id]
WHERE so.is_ms_shipped=0
-- and sd.name=’AdventureWorks2008’ -- uncomment to limit to specific db

The information gathered by the three Missing Index views is cleared whenever you restart the server, so
for best results, run the above query after the server has been operating for a while under normal load.

The Missing Indexes feature is a lightweight tool that has certain limitations. Make sure that you consider
the following when using this feature:

❑ It is not intended to replace the Database Engine Tuning Advisor (covered later in this chapter).
The Missing Indexes feature does not provide enough information for you to fine-tune your
overall indexing configuration.

❑ It is limited to 500 missing index groups. After that point, no more missing index data will be
gathered.

❑ It does not consider the optimal column order when suggesting covering indexes.

❑ It does not suggest filtered indexes, indexed views, or partitioning.

❑ It uses a simplistic model to generate cost information that may not be accurate. In addition, dif-
ferent costs may be returned for the same index group if multiple queries can benefit from the
index in different ways.

❑ It does not consider trivial query plans.

To see an example of what the Missing Index views can do, enter the following into a new SQL Server
Management Studio Query window and execute it:

USE AdventureWorks2008
GO

-- Run a query over some fields that are not indexed

505



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 506

Chapter 11: Optimizing SQL Server

SELECT sd.SalesOrderID,sd.ProductID,sd.OrderQty
FROM Sales.SalesOrderDetail sd
WHERE sd.LineTotal>1000
GO

Next, if you run the query using the three Missing Index views, you should see something like
Figure 11-5:

Figure 11-5: Identifying potential indexes using the Missing Index views.

Notice that SQL Server has identified a missing covering index that would benefit the sales order detail
query.

Your results may include additional rows that correspond to previously executed queries for which SQL
Server has identified a missing index. The result shown in Figure 11-5 is the only result that is directly
related to the query in this example.

Using Automatic Statistics to Identify Missing Indexes
If auto-create and auto-update statistics are enabled, then SQL Server will automatically maintain statis-
tics for all columns that are used to limit results in a query expression. If any of these columns do not
have an index, then SQL Server creates a ‘‘placeholder’’ entry in its internal indexes table and calculates
statistics on the column for the query processor to use. If SQL has created statistics for an un-indexed
column, then the odds are that an index on the column will improve performance. Of course, the final
determination should be made by testing the impact of any new queries in your particular environment.

Use the following query to display a list of non-indexed columns for which statistics have been generated.
By adjusting the WHERE clause, this query can display information about all existing indexes as well.

SELECT so.name ‘object_name’, i.index_id,
isnull(i.type_desc, ‘[Not Indexed]’ ) ‘index_type’,
stuff((SELECT ‘, ‘ + c.name FROM sys.stats_columns as sc
INNER JOIN sys.columns as c on c.[object_id] = sc.[object_id]

and c.column_id = sc.column_id
WHERE ss.[object_id] = sc.[object_id] and ss.stats_id = sc.stats_id
ORDER BY c.column_id FOR XML PATH(’’)), 1, 1, ‘’) ‘columns’,

i.is_unique ‘UQK’,i.is_primary_key ‘PK’,i.is_unique_constraint ‘UQC’,
ss.auto_created ‘auto’,ss.user_created ‘user’,
ss.name as statsname,
CASE WHEN i.name is null then stats_date(t.[object_id], ss.stats_id)
ELSE stats_date(t.[object_id], i.index_id)
END ‘stats_date’

FROM sys.stats as ss INNER JOIN sys.objects so on ss.[object_id]=so.[object_id]
INNER JOIN sys.tables t on so.name = t.name
LEFT OUTER JOIN sys.indexes as i on ss.name = i.name

506



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 507

Chapter 11: Optimizing SQL Server

WHERE t.is_ms_shipped = 0 -- filter out system tables
and ss.auto_created=1 -- use this for just auto created stats

-- and i.type_desc=’CLUSTERED’ -- use this to display just cluster keys
-- and i.is_primary_key=1 -- use this to display just primary keys
-- and so.name=’Customer’ -- use this to display a specific table
ORDER BY t.name,i.index_id

Executing the above query just for the Customer object in the AdventureWorks2008 database should
return output similar to what is shown in Figure 11-6.

Figure 11-6: Identifying potential indexes using automatic statistics.

Notice in Figure 11-6 that statistics have been automatically calculated for the StoreID and PersonID
columns, but no index exists for these columns. This indicates that you might be able to improve perfor-
mance for customer queries by adding these indexes.

Using XML ShowPlan to Identify Missing Indexes
It is also possible to display information about missing indexes directly in SSMS by using the XML
ShowPlan feature. This method uses the same process as the Missing Index views, but displays the
results immediately in XML format.

To see how this works, enter the following into a new SSMS Query window and execute it:

USE AdventureWorks2008
GO
SET STATISTICS XML ON
GO
-- Run a query over some fields that are not indexed
SELECT sd.SalesOrderID,sd.ProductID,sd.OrderQty
FROM Sales.SalesOrderDetail sd
WHERE sd.LineTotal>1000
GO

This will generate an extra XML result set with the query execution plan. Clicking on the ShowPlan XML
will open the execution plan, and from there you can right-click and select ‘‘Missing Index Details’’ to
view the Query Processor’s recommendations. SQL Server generates the following recommendation for
the previous query:

/*
Missing Index Details from ExecutionPlan1.sqlplan
The Query Processor estimates that implementing the following index could improve
the query cost by 86.5124%.

*/

/*

507



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 508

Chapter 11: Optimizing SQL Server

USE [AdventureWorks2008]
GO
CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]
ON [Sales].[SalesOrderDetail] ([LineTotal])
INCLUDE ([SalesOrderID],[OrderQty],[ProductID])
GO
*/

Notice that this is in code form, so if you want to take the recommendation, you can simply uncomment
the code, give the index a name, and execute it. Nice!

Index De-Fragmentation
Indexes can become fragmented over time as changes are made to the underlying data. When indexes
fragment, it leaves ‘‘gaps’’ in the data pages that are not filled with data. This, in turn, causes additional
page reads to occur when doing table scans or partial table scans. If the fragmentation becomes bad
enough, it can significantly degrade query performance. This is particularly true of the clustered index
because it actually represents the physical order of the data on disk.

For indexes that frequently become fragmented, you might be able to slow down the fragmentation process
by using the ‘‘fill-factor’’ to reserve some extra space on each page. You will need to evaluate the trade-off
between slowing down fragmentation and the extra disk reads caused by unfilled pages.

Beginning with SQL Server 2005, you can use the sys.dm_db_index_physical_stats management view
to display information about the indexes, including their fragmentation level. The following query shows
how to query detailed information for all indexes in the AdventureWorks2008 database with more than
10 percent fragmentation:

SELECT OBJECT_SCHEMA_NAME(ps.object_id) ‘schemaname’,
OBJECT_NAME(ps.object_id) ‘objectname’, si.name ‘indexname’,ps.*

FROM sys.dm_db_index_physical_stats(DB_ID(’AdventureWorks2008’),
null,null,null,’DETAILED’) ps

LEFT OUTER JOIN sys.indexes si on ps.[object_id]=si.[object_id] and
ps.index_id=si.index_id

WHERE ps.avg_fragmentation_in_percent>10

The ALTER INDEX command, combined with the REORGANIZE or REBUILD directives, will attempt
to de-fragment any clustered or non-clustered indexes. Reorganization is a bit lighter weight than
rebuilding, in that it runs without doing any long-term locking, does not block running queries
or updates, and does not update statistics. Rebuilding will lock the table for the duration of the
operation (unless you use the ONLINE=ON option). Interestingly enough, the reorganization opera-
tion is always fully logged, regardless of the database recovery option selected, while the rebuild
operation will honor the setting and minimally log if the recovery mode is set to Simple or Bulk-
Logged.

The process for de-fragmenting a heap is a little different. Because a heap is, by definition, an unordered
collection of rows, there actually is no index to rebuild. In order to de-fragment a heap, you will have to
provide structure by creating a clustered key on the table, at least temporarily. If you don’t want to keep

508



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 509

Chapter 11: Optimizing SQL Server

the cluster key, you can drop it immediately after you create it and the heap will remain in its newly
ordered state.

De-fragmentation is not always possible. Certain choices of cluster key, such as a GUID, will always
result in a highly fragmented index.

The script below will automatically de-fragment every index in the AdventureWorks2008 database that
is more than 10 percent fragmented. Heaps are ignored; the REORGANIZE option is used for mildly frag-
mented indexes, and the REBUILD option is used when there is heavy fragmentation.

USE AdventureWorks2008;
SET NOCOUNT ON;
GO

-- Get work table, all indexes >10% fragmented
DECLARE @work TABLE ([objid] int, idxid int, pnum int, avgfrag real);
INSERT @work ([objid],idxid,pnum,avgfrag)
SELECT [object_id],index_id,partition_number,avg_fragmentation_in_percent
FROM sys.dm_db_index_physical_stats(DB_ID(’AdventureWorks2008’),

null,null,null,’LIMITED’)
WHERE avg_fragmentation_in_percent>10 and index_id>0;

-- loop through worklist
Declare @objfullname nvarchar(261), @indexname nvarchar(130), @pcount int,

@cmd nvarchar(1000);
Declare @objid int, @idxid int, @pnum int, @avgfrag real
Declare worklist CURSOR FOR SELECT * from @work;
OPEN worklist
WHILE(1=1) BEGIN;

FETCH NEXT FROM worklist into @objid,@idxid,@pnum,@avgfrag;
IF @@FETCH_STATUS < 0 BREAK;

-- Get the object full name, index name, and total partition count
SELECT @objfullname=OBJECT_SCHEMA_NAME(@objid) + ‘.’ + OBJECT_NAME(@objid);
SELECT @pcount=(SELECT COUNT(*) FROM sys.partitions
WHERE [object_id]=@objid and index_id=@idxid);

SELECT @indexname=name FROM sys.indexes
WHERE [object_id]=@objid and index_id=@idxid;

-- Create the command, if fragmentation is over 25 then REBUILD
SELECT @cmd=N’ALTER INDEX ‘ + @indexname + N’ ON ‘ + @objfullname +
case when @avgfrag>25 then N’ REBUILD’ else N’ REORGANIZE’ end

-- Execute the command to defrag the index
Exec (@cmd);
Print ‘Executed ‘ + @cmd;

END;

-- Clean up
CLOSE worklist;
DEALLOCATE worklist;
DELETE FROM @work;

509



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 510

Chapter 11: Optimizing SQL Server

Determining Index Effectiveness
Indexes do have a cost, and too many indexes on a table can seriously hurt the performance of inserts
and updates. If an index is seldom or never used, then dropping the index will actually improve overall
performance.

The sys.dm_db_index_physical_stats management view reports index usage information. The data
that it collects is re-set every time the server is restarted, so before querying index usage information,
make sure that you have been running a while during a period of typical system activity. The example
below will display a list of all non-clustered, non-primary key indexes that have not been used by a user
or by the system since the last restart:

SELECT DB_NAME([database_id]) ‘dbname’, so.name ‘objname’, si.name ‘indexname’,
si.type_desc ‘indextype’, si.is_primary_key ‘PK’,
ius.user_seeks+ius.user_scans+ius.user_lookups ‘userusage’,
ius.system_seeks+ius.system_scans+ius.system_lookups ‘sysusage’

FROM sys.dm_db_index_usage_stats ius
inner join sys.objects so on ius.[object_id]=so.[object_id]
inner join sys.indexes si on ius.[object_id]=si.[object_id]

and ius.index_id=si.index_id
WHERE so.is_ms_shipped=0
-- comment out the following restrictions to see all indexes

and ius.user_seeks+ius.user_scans+ius.user_lookups+
ius.system_seeks+ius.system_scans+ius.system_lookups = 0

and si.type <> 1 and si.is_primary_key = 0

Query Optimizer Hints
Hints allow you to give recommendations to the Query Optimizer to help it choose a better execution
plan. When using query hints, be very careful to perform adequate testing. In most cases you will prob-
ably find that the Query Optimizer already has the best plan, and adding hints only serves to reduce
performance. However, when used judiciously, hints have the potential to resolve some of the most
difficult performance problems.

There are three types of hints supported in SQL Server 2008: Table, Join, and Query. I will briefly cover
the most commonly used hints below.

Table Hints
Table hints apply only to a specific table or view. They are specified by using the WITH clause directly
following the table name.

❑ NOEXPAND — This hint will prevent indexed views from being expanded to include their under-
lying tables. This forces the Query Optimizer to treat the indexed view as a table with a clustered
index.

❑ FORCESEEK — This option will restrict the Query Optimizer to only use index seek operations to
access data in the table. This is useful in cases in which the Query Optimizer incorrectly guesses
the cardinality (number of rows) of the operation and opts to use a table scan. One example of
where you might see this is in queries that use the LIKE or IN operators.

510



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 511

Chapter 11: Optimizing SQL Server

❑ INDEX(name) — This hint allows you to specify one or more indexes to use for the table. This can
be useful in rare cases in which the Query Optimizer consistently chooses an inefficient index.
There are two special forms of this hint to force table scans or seeks as follows:

❑ INDEX(0) — Forces a clustered index scan or, if there is no clustered index, a table scan.

❑ INDEX(1) — Forces a clustered index scan or seek. This option is not valid if the table does
not have a clustered index.

❑ UPDLOCK — Specifies that update locks should be taken and held for the duration of the transac-
tion. When combined with HOLDLOCK, you can use this to lock resources early on in a procedure
that you will need to update later. This can help maintain integrity for procedures that update
shared data.

❑ HOLDLOCK/SERIALIZABLE — Specifies that locks should be held for the duration of the
transaction. Essentially this uses the ‘‘serializable’’ transaction isolation level for the speci-
fied table.

❑ NOLOCK/READUNCOMMITTED — This is a semicontroversial hint, but I find it very useful in
situations in which dirty reads will not affect data integrity. This hint instructs the Query
Processor to ignore exclusive locks on the data placed by other transactions (dirty reads) and
to forego placing any shared locks on the data while reading. This introduces the possibility
of reporting inconsistent data. Allowing dirty reads can greatly increase the performance
of a query and will eliminate nearly all blocking issues. Schema locks are required for all
queries, so even dirty reads will be blocked if another process has locked a required schema for
modification.

Join Hints
Join hints allow you to specify a particular strategy to use when connecting two tables or views
in a query. I very rarely use join hints, since in the vast majority of cases, I have found that SQL
Server does an excellent job of identifying the best type of join to use. In the few cases in which I
have seen join problems, more often than not the root problem turned out to be way the query was
written.

If you ever do need to use a join hint, you can do so by specifying one of the following qualifiers directly
in the ANSI-style join clause of the query:

❑ MERGE — Forces a merge operation for the join. Merging requires that both inputs be sorted on
the join key, and then entries from each input are matched by comparing the values in a single
pass through sorted lists. The merge join itself is very fast, but the sorting can be CPU-intensive.

❑ LOOP — Forces the join to use a loop operation. In a loop join, the inputs are labeled as the outer
table and the inner table. Looping works by cycling through each entry in the outer table, and for
each entry looking up a related entry in the inner table. This is efficient if the outer table is small
and the inner table is pre-indexed and large.

❑ HASH — Forces a hash operation for the join. Hash joins are designed for set matching operations
such as inner, left, right, and full outer joins; and for intersections, unions, duplicate removal,
and grouping. They work by first building an intermediate hash table (preferably in memory)
using the smaller input, and then using the hash table to look up related entries while scanning
through the larger input (known as the probe input).

511



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 512

Chapter 11: Optimizing SQL Server

Query Hints
Query hints apply to the query statement as a whole. They are specified by using the OPTION clause at the
end of a SELECT, INSERT, DELETE, UPDATE, or MERGE statement. I have found the query hints in this table
to be particularly useful:

Hint Description

FAST(rows) Instructs the Query Processor to return the indicated number of rows as
quickly as possible, then continue processing normally to retrieve the
remaining rows.

MAXDOP(number) Overrides the default ‘‘maximum degree of parallelism’’ server setting for
a specific query. You can use this hint to reduce parallelism to a single
CPU in cases in which the query generates an excessive number of context
switches. This is particularly common with hyperthreaded processors but
may occur on any multiple-CPU system.

OPTIMIZE
FOR(@variable=
constant)

Instructs the Query Optimizer to optimize the query using a specific value
for a local variable. Using this option can protect the query from getting a
query plan that is optimized for seldom used parameter values.

RECOMPILE Tells the Query Processor to discard the execution plan rather than saving
it in the plan cache. This will cause the query to be recompiled on every
execution. This can improve performance for queries with large numbers
of parameters, where the specific parameter values can make a significant
difference in the execution plan.

KEEP PLAN Extends the life of the plan in the plan cache by raising the threshold of the
number of changes that can occur to the table before the query plan is
recompiled. In some cases, reducing the recompile frequency may reduce
CPU stress.

KEEPFIXED PLAN This hint goes a bit further than KEEP PLAN and will preserve the plan
regardless of changes to table statistics. Only a schema change or an
explicit command will recompile a plan that uses this hint.

TABLE
HINT(table,hint)

Allows you to specify a table hint at the query level. If the table is aliased,
then the table reference must use the aliased name. This is useful when
you need to modify the behavior of a specific table inside a query that you
are otherwise unable to change.

USE PLAN(xml) Forces the Query Optimizer to use an existing query plan. This option
should always be used from within a plan guide rather than directly.

Plan Guides
Plan guides are used to optimize query performance in situations in which it is not practical to modify
the query directly, as in an existing deployed application. As a side benefit, they can also be used to
provide predictable performance by locking down query plans. Plan guides can even be transferred from
server to server, allowing you to fine-tune the plan guide on a development system and then deploy it in
production once you have perfected it.

512



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 513

Chapter 11: Optimizing SQL Server

Mainly owing to their complexity, plan guides have not been overly used; however, SQL Server 2008
has made several improvements that simplify and automate many of the most difficult tasks. New is the
ability to pull plans directly from the plan cache, and plan forcing, which allows an XML execution plan
to be explicitly specified.

Creating Plan Guides
Procedurally, plan guides are actually very easy to create. The difficulty lies in determining the correct
values for the plan guide parameters. To create a plan guide, you can use the sp_create_plan_guide
stored procedure or you can use SSMS by right-clicking on the Programmability � Plan Guides node and
selecting ‘‘New Plan Guide.’’

When creating a plan guide using SSMS, you will need to supply the following parameters:

Parameter Description

Name The name of the plan guide. You can select anything you want
for this.

Statement The statement to match. For SQL and Object plan guides, this can be
tricky to properly define since it must exactly match the statement in the
actual execution batch. Creating a plan guide from the plan cache is the
best way to determine this value.

Scope Type The context for the plan guide, which must be one of the following
values:

Object — Object plan guides apply to stored procedures, user-defined
functions, and DML triggers.

SQL — SQL plan guides apply to stand-alone statements and batches.

Template — A variation of the SQL plan guide that is used to override
the default parameterization setting.

Scope Batch The Scope Batch is only valid for SQL plans, and even then it is optional.
When not specified, this will default to the statement; otherwise, it must
contain the batch text exactly as it was submitted to SQL Server.

Scope Schema Name For object plans only, this is the schema name of the object.

Scope Object Name For object plans only, this is the name of the object.

Parameters For SQL and object plans, this is required and must be the exact
parameters and data types as submitted to SQL Server. Note that this is
the internalized parameterization, which is similar to sp_executesql.

Hints Use this parameter to enter one or more query hints or to specify the
query plan to force in XML format. The most commonly used hints for
plan guides are OPTIMIZE FOR, RECOMPILE, INDEX, and FORCESEEK. When
specifying hints, you must enter them in the following format:
OPTION(query_hint[, . . . n]).

513



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 514

Chapter 11: Optimizing SQL Server

As you can see, several of the required parameters are difficult to get right. If they do not match the
actual submitted information, then the plan guide will not match and will not be used. This was the
biggest problem with using plan guides prior to SQL Server 2008. Fortunately, now it is possible to create
a plan guide directly from an execution plan in the plan cache, which takes care of all the tedious work
for you.

Creating Plan Guides from the Plan Cache
The ability to create a plan guide directly from an execution plan in the cache is a huge improvement.
This is still a two-step process, but it is easy and it does the bulk of the work for you. First, you need to
query the plan cache using dynamic management views and locate the plan for which you want to create
a plan guide. In most cases, it is easiest to find the plan by searching for a portion of the statement text as
follows:

SELECT cp.plan_handle, sql_handle, st.text, objtype, qs.statement_start_offset
FROM sys.dm_exec_cached_plans AS cp
JOIN sys.dm_exec_query_stats AS qs ON cp.plan_handle = qs.plan_handle
CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS st
WHERE st.text like ‘[enter start of statement to find]%’;

Once you have the plan handle and the statement starting offset, you can create the plan guide using
the sp_create_plan_guide_from_handle stored procedure. Hand entering plan handles is tedious,
since they are varbinary(64) data types. It makes more sense to remember the value in a variable, as
demonstrated in the example below:

-- Assume that this is the statement for which you want to create a guide
SELECT * FROM Person.Address WHERE StateProvinceID=1
GO

-- Using the management views, lookup the plan handle and offset
Declare @handle varbinary(64), @offset int
SELECT @handle=cp.plan_handle, @offset=qs.statement_start_offset
FROM sys.dm_exec_cached_plans AS cp
JOIN sys.dm_exec_query_stats AS qs ON cp.plan_handle = qs.plan_handle
CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS st
WHERE st.text like ‘select * from Person%’;

-- Finally, use the plan handle and offset to create the guide
exec sp_create_plan_guide_from_handle

@name = ‘NewPlanGuide’,
@plan_handle = @handle,
@statement_start_offset = @offset;

Notice that there is no option to specify any hints. When you create plans in this way, they are automat-
ically created with the full query plan included. Finally, once the plan guide is created, you will be able
to view it in SSMS and use SSMS to enable/disable or delete the plan guide as needed.

Plan Freezing
A query plan is considered frozen if there is a matching plan guide that specifies the actual execution plan.
When you create plan guides from the cache (as shown previously), they include the XML execution
plan, so whenever these queries are executed, the plan in the guide will be used instead of generating a
new one.

514



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 515

Chapter 11: Optimizing SQL Server

Freezing plans can be helpful in a few specific circumstances:

❑ It can help to provide consistent query performance, even when the statistics are continually
changing.

❑ You can use frozen plans to preserve application performance when you first upgrade to a new
version of SQL Server.

❑ You can use a cloned test/development system to develop optimal execution plans and then use
frozen plan guides to implement these optimizations on a production system.

Try It Out Creating a Plan Guide
Assume that you have a deployed application that consistently runs a certain query that is causing perfor-
mance problems by repeatedly context-switching threads between CPUs (parallelism problem). You do
not have access to the source code to modify the query, and you also don’t want to change the maximum
degree of parallelism setting for the entire server. The solution to this problem is a plan guide.

1. First, you will need to find the problem query in the plan cache. Of course, before that can hap-
pen, the query must actually be executed at least once so that it will exist in the plan cache. Enter
the following into a new Query window in SSMS, then enable the Actual Execution Plan from the
Query menu, and finally execute it:

USE AdventureWorks2008
GO
-- STEP 1, Run a query so that it will exist in the cache
-- Note: The following ‘GO’ is included to keep the comments seperate
-- from the statement in the cached text for the query plan.
GO
select top 5 pp.LastName,pp.FirstName,sum(sh.TotalDue) ‘TotalSales’
from Sales.SalesOrderHeader sh join Person.Person pp on
sh.SalesPersonID=pp.BusinessEntityID

group by pp.LastName,pp.FirstName
order by SUM(sh.totalDue) desc
GO

2. Select the Execution Plan tab, and you should see a plan similar to the one shown in Figure 11-7.

Figure 11-7: Execution plan before plan guide.

515



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 516

Chapter 11: Optimizing SQL Server

Notice that the plan is using a Nested Loop (Inner Join). This is significant only because this will
be used as a marker later on to confirm that the plan guide is working.

3. You will need to create a plan guide for the problem query that uses the MAXDOP hint to limit
parallelism and stop all of the context-switching. For testing purposes, you will also use the
HASH JOIN hint to force the query to use a hash join. This change will show up on the execution
plan and allow easy visual confirmation that the plan guide is working. Enter the following into
a new Query window and execute it:

-- STEP 2, Create the Plan Guide
DECLARE @text nvarchar(max);
SELECT @text=st.[text]
FROM sys.dm_exec_query_stats AS qs
CROSS APPLY sys.dm_exec_sql_text([sql_handle]) AS st
CROSS APPLY sys.dm_exec_text_query_plan(qs.plan_handle,
qs.statement_start_offset,
qs.statement_end_offset) AS qp

WHERE text LIKE ‘select top 5 pp.LastName,pp.FirstName%’;

EXECUTE sp_create_plan_guide
@name = ‘HintGuide1’,
@stmt=@text,
@type=’SQL’,
@hints=’OPTION(HASH JOIN,MAXDOP 1)’;

GO

4. You should confirm that the plan guide was successfully created. This is easy to do using the
sys.plan_guides system view.

-- STEP 3, Verify that the plan guide was created.
SELECT * FROM sys.plan_guides
WHERE scope_batch LIKE ‘select top 5 pp.LastName,pp.FirstName%’;
GO

You should see a row displayed that contains information about the plan guide. The content of
the row is not important at this point, just the fact that it exists. You can also confirm that the
plan exists by checking the Programmability � Plan Guides node in SSMS. Expand this node,
right-click HintGuide1, and select Properties. A dialog should appear that is similar to the one
shown in Figure 11-8.

Notice that everything is grayed out. In this release of SQL Server you cannot directly edit plan
guides in SSMS; however, you can script the plan guide to a new Query window and edit it there.
Of course, if you do this, you will need to drop the original plan guide before you re-create a
new one.

5. You need to confirm that the plan guide is actually going to be used for the problem query.
Return to the original Query window and re-execute the problem query. After it completes,
review the execution plan. It should look something like Figure 11-9.

6. Confirm that the query is now using a Hash Match (Inner Join). This confirms that the plan
guide is, in fact, being used. Using this method, you were able to fix a problem in a deployed
solution without modifying any source code. Neat!

If you want, you can use SSMS to enable or disable the plan guide. Whenever it is enabled, the problem
query will use a hash match, and whenever it is disabled, a nested loop will be used.

516



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 517

Chapter 11: Optimizing SQL Server

Figure 11-8: Plan Guide Properties in SSMS.

Figure 11-9: Execution plan after plan guide.

Database Engine Tuning Advisor
As described earlier, index usage can be analyzed with DMVs, but the analysis can be a bit tricky and
take a great deal of time. Instead of spending hours analyzing index utilization and experimenting with
various configurations, the Database Engine Tuning Advisor (DTA) can be used to analyze existing
indexes. The DTA can return recommendations for the addition of indexes, indexed views, and table
partitioning. It can also recommend the dropping of existing data structures where their existence is
detrimental to performance.

The initial release of the Database Engine Tuning Advisor in SQL Server 2008 included a bug
(KB#959790, Bug#50003717) that prevented the DTA from making any index creation recommenda-
tions when the database being analyzed included more than one default FileGroup (as is the case with

517



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 518

Chapter 11: Optimizing SQL Server

AdventureWorks2008). This bug was fixed in Cumulative Update Package 2 for SQL Server 2008,
released on November 19, 2008. Make sure to apply this update or a more recent service pack before
continuing.

Try It Out Using the DTA to Analyze a SQL Script
To try this out, start by creating three new tables to experiment with.

1. Run the following script to create the NewContact, NewSalesOrder, and NewTransactionHistory
tables with existing data:

USE AdventureWorks2008;
GO
SELECT * INTO dbo.NewContact
FROM Person.Person;

SELECT * INTO dbo.NewSalesOrder
FROM Sales.SalesOrderDetail;

SELECT * INTO dbo.NewTransactionHistory
FROM Production.TransactionHistory;

2. These tables have no indexes on them, so any query against them will result in a full table scan,
which is not the most efficient. You could analyze the queries that will be used to retrieve data
from these tables manually and determine what indexes to create, or you can ask the DTA to give
you some advice. The DTA can also give recommendations for dropping unneeded indexes, so
you will create a non-clustered index on the NewTransactionHistory table’s rowguid column to
see what the Advisor thinks of it:

USE AdventureWorks2008;
GO
CREATE NONCLUSTERED INDEX ix_RowGUID ON dbo.NewSalesOrder (rowguid);

3. Now that the tables and an index are in place, analyze a workload to see how queries perform
against these tables. The following script flushes all dirty pages to disk, clears out the procedure
cache, clears out the buffer cache, and sets STATISTICS IO on to capture I/O performance data.
Finally, it then queries the three new tables. Write this query in the Query Editor and save it as
AWWorkLoad.SQL:

CHECKPOINT;
DBCC FREEPROCCACHE;
DBCC DROPCLEANBUFFERS;

SET STATISTICS IO ON;
USE AdventureWorks2008;
GO

SELECT LastName FROM dbo.NewContact
WHERE LastName BETWEEN ‘A’ AND ‘C’;

SELECT LastName FROM dbo.NewContact
WHERE LastName LIKE ‘M%’;

SELECT ProductID, SUM(OrderQty) AS SumQty, SUM(UnitPrice) AS SumPrice

518



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 519

Chapter 11: Optimizing SQL Server

FROM dbo.NewSalesOrder GROUP BY ProductID;

SELECT ProductID, TransactionDate, SUM(Quantity) AS TotalQty
, SUM(ActualCost) AS SumCost

FROM dbo.NewTransactionHistory
WHERE TransactionDate BETWEEN ‘2003-11-12’ AND ‘2004-01-31’
GROUP BY ProductID, TransactionDate;

4. Before executing the query, select the ‘‘Include Actual Execution Plan’’ option to return the
graphical query plan. The message results for this query show a large number of reads and the
creation of work tables for the aggregations:

(2116 row(s) affected)
Table ‘NewContact’. Scan count 1, logical reads 3808, physical reads 52,
read-ahead reads 1630, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.

(1550 row(s) affected)
Table ‘NewContact’. Scan count 1, logical reads 3808, physical reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.

(266 row(s) affected)
Table ‘Worktable’. Scan count 0, logical reads 0, physical reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.
Table ‘NewSalesOrder’. Scan count 1, logical reads 1495, physical reads 24,
read-ahead reads 948, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.

(12849 row(s) affected)
Table ‘Worktable’. Scan count 0, logical reads 0, physical reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.
Table ‘NewTransactionHistory’. Scan count 1, logical reads 789, physical
reads 0,
read-ahead reads 0, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.

The execution plan shows the table scans and creation of hash match working tables to perform
the aggregations (see Figure 11-10).

5. To analyze this query batch, open the DTA (Tools � Database Engine Tuning Advisor) and
start a new session. In the ‘‘Session name’’ area, you can either leave the default value of the
logged-in username with date, or type in a descriptive name. In Figure 11-11, the session is called
AWWorkLoad Analysis.

6. Next, select the AWWorkLoad.SQL file as the workload file, set the starting database to
AdventureWorks2008, and select just the three tables that are referenced in the file (see
Figure 11-11).

7. On the Tuning Options tab, select the options to use indexes with no partitioning and don’t keep
existing structures, as shown in Figure 11-12.

519



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 520

Chapter 11: Optimizing SQL Server

Figure 11-10: Execution plan.

Figure 11-11: Starting a new session.

520



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 521

Chapter 11: Optimizing SQL Server

Figure 11-12: Selecting tuning options.

8. Click ‘‘Start Analysis’’ to analyze the AWWorkLoad.SQL file. The DTA will collect metadata
about the objects and examine possible indexing strategies to improve the performance of the
queries. When the analysis is complete, the DTA will return its recommendations. In this case, it
shows that by dropping the index on the rowguid column and adding indexes to the three tables,
it can improve performance by 85 percent, as shown in Figure 11-13.

Figure 11-13: Improving performance.

9. The DTA’s recommendations can be applied immediately by clicking on the ‘‘Apply Recommen-
dations’’ option in the Actions menu, or they can be saved to a file by clicking on the ‘‘Save Rec-
ommendations’’ option. As you can see in Figure 11-13, the names the DTA gives to new objects
are not exactly intuitive. I re-wrote the recommendations, as the following code illustrates:

USE [AdventureWorks2008]
GO
DROP INDEX [ix_RowGUID] ON [dbo].[NewSalesOrder] WITH ( ONLINE=OFF )

CREATE NONCLUSTERED INDEX _dta_ixProductID ON [dbo].[NewSalesOrder]

521



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 522

Chapter 11: Optimizing SQL Server

([ProductID] ASC) INCLUDE ( [OrderQty],[UnitPrice])
WITH (SORT_IN_TEMPDB=OFF, IGNORE_DUP_KEY=OFF, DROP_EXISTING=OFF, ONLINE=OFF)
ON [PRIMARY];

CREATE NONCLUSTERED INDEX _dta_ixTranDateProductID ON
[dbo].[NewTransactionHistory]

([TransactionDate] ASC,[ProductID] ASC) INCLUDE ( [Quantity],[ActualCost])
WITH (SORT_IN_TEMPDB=OFF, IGNORE_DUP_KEY=OFF, DROP_EXISTING=OFF, ONLINE=OFF)
ON [PRIMARY];

CREATE NONCLUSTERED INDEX _dta_ixLastName ON [dbo].[NewContact]
([LastName] ASC)
WITH (SORT_IN_TEMPDB=OFF, IGNORE_DUP_KEY=OFF, DROP_EXISTING=OFF, ONLINE=OFF)
ON [PRIMARY];

CREATE STATISTICS _dta_statProductIDTranDate
ON [dbo].[NewTransactionHistory]([ProductID], [TransactionDate])

Take a closer look at the DTA’s recommendations. The recommendation for the dropping of the rowguid
column index is because that column was never referenced in the workload. Use caution with this behav-
ior of the DTA. The index may be there for a very good reason, but the workload didn’t use it.

The next recommendation is for the creation of an index on the ProductID column that includes the
OrderQty and UnitPrice columns. This is because of the query that aggregates the two included columns
and groups them by the ProductID column. By creating this index, the Query Optimizer can retrieve all
the data to satisfy the query from the index, and no table access will be required. The same behavior is
repeated with the NewTransactionHistory table, except that a composite index on the two group-by
columns is created, and the aggregated columns are included. With the third index recommendation,
it is simply a matter of speeding up the search for the LastName column. Finally, notice that the DTA
recommends that statistics be maintained for the combination of the ProductID and TransactionDate
columns in the NewTransactionHistory table. Statistics are used by the Query Optimizer when selecting
an execution plan.

Either apply the recommendations, or execute the saved recommendation script to drop the unnecessary
index and create the three new indexes. Next, return to the AWWorkLoad.SQL script and re-run it the
same as before. Notice the difference in I/O.

(2116 row(s) affected)
Table ‘NewPerson’. Scan count 1, logical reads 10, physical reads 2,
read-ahead reads 8, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.

(1550 row(s) affected)
Table ‘NewPerson’. Scan count 1, logical reads 9, physical reads 1,
read-ahead reads 7, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.

(266 row(s) affected)
Table ‘NewSalesOrder’. Scan count 1, logical reads 378, physical reads 3,
read-ahead reads 376, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.

(12849 row(s) affected)

522



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 523

Chapter 11: Optimizing SQL Server

Table ‘NewTransactionHistory’. Scan count 1, logical reads 118, physical reads 2,
read-ahead reads 115, lob logical reads 0, lob physical reads 0,
lob read-ahead reads 0.

The Read activity has indeed been reduced by a little more than 85 percent, resulting in a much more
efficient query plan. Also notice that the work tables for aggregation were not created at a huge savings.
An examination of the query plan shows that no table access was performed. All the data to satisfy the
queries was returned from indexes. This, of course, is not always possible, but the DTA will lean toward
creating these ‘‘Covering Indexes’’ unless there is a significant amount of data modification on those
tables, as well as where the presence of the indexes may be detrimental to performance.

The bottom line is that the DTA can save you valuable time in analyzing table structures and recom-
mend appropriate indexing strategies to improve performance. Just be sure that the activity that is being
analyzed by the DTA is typical of the normal database activity. If the workload being analyzed contains
large end-of-quarter analysis queries that are not the typical activity, the DTA may give some recommen-
dations that would be detrimental to normal database operations.

Using the DTA with Profiler
The DTA can also analyze trace data collected by Profiler or the SQL Trace stored procedures to make
recommendations. When creating a Profiler trace to use with the DTA, the Tuning template can be used,
or you can configure your own event settings. However, in order for the DTA to analyze the trace file,
performance data must be returned. The events that return data are the ‘‘Completed’’ events such as
SP:Completed and SQL:Completed.

Correlating Database Activity with Performance Counters
Viewing performance counters with System Monitor or viewing SQL Server activity with Profiler can
help monitor and detect high-cost activity. But until SQL Server 2005 was released, correlating data
from the two tools was not possible except with third-party software. Profiler now has the capability to
import and correlate performance data based on time. This is extraordinarily useful in finding out what
processes are causing system bottlenecks.

Try It Out Correlating Performance Data with Profiler Data
With the three tables created in the previous section and a new working script, try out this feature.

1. Open a new Query window. Type the following code and save it as AWPerformance.SQL:

USE AdventureWorks2008;
GO
DECLARE @Iterations AS int;
SET @Iterations = 0;
WHILE @Iterations < 10
BEGIN
SELECT ProductID, SUM(OrderQty) AS TotalProduct, SUM(UnitPrice)
FROM dbo.NewSalesOrder GROUP BY ProductID

523



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 524

Chapter 11: Optimizing SQL Server

WAITFOR DELAY ‘00:00:02’
UPDATE dbo.NewSalesOrder SET UnitPrice = UnitPrice * 1.25
WHERE ProductID % 2 = 0
SET @Iterations = @Iterations + 1

END
WAITFOR DELAY ‘00:00:02’;

IF EXISTS (SELECT * FROM sys.indexes
WHERE name = ‘ix_TransactionID’)
DROP INDEX ix_TransactionID ON dbo.NewTransactionHistory
CREATE NONCLUSTERED INDEX ix_TransactionID ON dbo.NewTransactionHistory
(TransactionID);

SET @Iterations = 0;
WHILE @Iterations < 5
BEGIN
INSERT dbo.NewTransactionHistory
(ProductID, ReferenceOrderID, ReferenceOrderLineID, TransactionDate
, TransactionType, Quantity, ActualCost, ModifiedDate)
SELECT ProductID, ReferenceOrderID, ReferenceOrderLineID, TransactionDate
, TransactionType, Quantity, ActualCost, ModifiedDate
FROM dbo.NewTransactionHistory WHERE TransactionID % 21 = 1

WAITFOR DELAY ‘00:00:02’
UPDATE dbo.NewSalesOrder SET UnitPrice = UnitPrice / 1.25
WHERE ProductID % 2 = 0
SET @Iterations = @Iterations + 1

END
WAITFOR DELAY ‘00:00:02’;

ALTER INDEX ix_TransactionID
ON dbo.NewTransactionHistory REBUILD;

2. Now, open the Reliability and Performance Monitor and create a new Data Collector Set named
AwCollector of type ‘‘Performance counter.’’ For now, include a few counters to make it easier to
see how to use the tools.

3. Add the Pages/sec, Avg. Disk Queue Length, %Processor Time, and Page Splits/sec counters
to the counter log, and change the sampling interval to every 1 second, as shown in Figure 11-14.
Click OK to save the Data Collector and start the sampling.

4. Open SQL Server Profiler and create a new trace called AWPerformance using the Blank
template. Save the trace to a file called AWPerformance.trc with a maximum size of 15 MB. On
the Events Selection tab, expand the TSQL events and select the SQL:BatchCompleted and
SQL:StmtCompleted events. Click on the ‘‘Organize Columns’’ button, and move the Text Data
column up just below Application Name; click OK, and then click Run.

5. Return to the AWPerformance script created earlier and run it. After the script completes (it will
take a couple of minutes), stop the Profiler trace and the Data Collector.

6. In Profiler, open the AWPerformance.trc trace file that was created by Profiler. Then, import the
Data Collector log by clicking File � Import Performance Data. Notice that the Profiler events
and Performance Monitor events are now time-correlated. By selecting a peak value in the perfor-
mance data window, the corresponding trace event is highlighted in the trace window. Selecting
a particular trace event will cause the associated performance data to be highlighted. Figure 11-15
shows the correlation between a spike in the Performance Counter Log and an INSERT operation
in the Profiler results.

524



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 525

Chapter 11: Optimizing SQL Server

Figure 11-14: Changing the sampling interval.

Figure 11-15: Highlighting the associated performance data.

525



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 526

Chapter 11: Optimizing SQL Server

T-SQL Optimization Tips
Transact-SQL optimization is perhaps the most complex and difficult topic that is covered in this chapter.
This is simply because in T-SQL, as in any other high-level programming language, it is possible to
express the same idea in a wide variety of ways. Programming languages are simply an expression of
the ideas and methods conceived by a designer to solve a problem, and as such, each solution provides a
glimpse into the mind of the person who created it. To a large degree this freedom of expression is what
makes programming more of an art than a science. By the same token, it also makes optimizing these
procedures that much more challenging.

Some database administrators prefer to stay out of the code and stop the optimization process after tun-
ing the indexes. I can understand and respect this; however, it is important to consider that the potential
benefits of optimizing the code itself far exceed any other form of optimization. Other database adminis-
trators are not hesitant to ‘‘get their feet wet,’’ and identify and analyze particularly egregious procedures
(even in commercial applications) and take steps to prevent them from having a negative impact on the
rest of the server. This section is targeted directly at the later group, yet still has much to offer the former
as well.

A few years ago I was called in to analyze a time-out problem that was plaguing a
commercial timecard application. It turned out the procedure that retrieved an
individual’s timecard was so poorly written that it was unable to scale properly as
the number of records in the database increased. By re-writing the procedure in a
more efficient way, I was able to improve performance by more than 1,000 percent,
reducing the execution time from more than 30 seconds to around 30 ms. The
process has run flawlessly ever since.

This section is not intended as a T-SQL programming guide. In fact, it is assumed that you have
a basic working knowledge of T-SQL. My goal here is to examine several of the most common
performance-related problem areas and to present you with alternatives and insights into how to make
them more efficient. Keep in mind that your mileage may vary, and you should always thoroughly test
your results when using these ideas to modify your own procedures.

Before moving on to cover the bigger areas, it is important to note that code optimizations are not always
complex, and sometimes the little things can collectively have a big impact. The following tips are some
of these little things that you should look for:

❑ SET NOCOUNT ON — Include this command at the top of every stored procedure to prevent SQL
from reporting the number of affected rows after every operation. This will provide a small, but
noticeable, performance boost.

❑ Fully Qualify Object Names — Include the schema name with every object name used. This
will save a schema lookup and avoid potential problems if two objects have the same name in
different schemas.

❑ Avoid Using DISTINCT — Adding the DISTINCT keyword when querying a result set will force
SQL Server to build a temporary index to enforce this condition. In many cases, this is unneces-
sary, especially if any unique combinations of data are already included in the result set (such as
a primary key value).

526



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 527

Chapter 11: Optimizing SQL Server

❑ Use UNION ALL instead of UNION — The UNION keyword will only include distinct rows and suf-
fers from the same issue as described previously. Using UNION ALL includes all rows and thus
avoids this overhead.

❑ Avoid Unnecessary Sorting — Don’t arbitrarily include an ORDER BY clause if the calling proce-
dure does not require it. Many client-side grid controls handle their own sorting anyway.

Each remaining topic in this section will discuss a specific area of concern in more detail. In many of the
topics, you will notice that I include comments in the code samples that show I/O and time performance
numbers. These metrics were all gathered using the SET STATISTICS IO ON and SET STATISTICS TIME ON
commands. The first area that I will discuss also happens to be one of the biggest performance offenders.

Limiting Result Sets
One of the easiest ways to improve performance is to limit the data that gets returned from queries
and procedures to just what is actually needed by the client. Limiting results in this way will reduce
server I/O loads, minimize network congestion, and improve query response time. Unfortunately,
over-inclusive results are one of the most common problems that I see, both in terms of rows and
columns.

Including unnecessary columns is quite common because of over-use of the ubiquitous
"select * from table" syntax. This is particularly egregious when multiple tables are included
in the query, since the asterisk by itself will return all rows from all included tables. One problem that
this causes is when any of the column names happen to be the same, which is fairly common in joined
structures. This can wreak havoc with applications, causing unexpected exceptions, and even worse,
causing the wrong field to get updated. Another problem with unnecessary columns shows up in the
Query Optimizer. When you include all of the columns in the output, you will often see the Optimizer
choose to use a clustered index scan on the entire table, even if other indexes exist. Finally, if the table
happens to include any really big fields, then this could significantly increase the amount of data that
would have to be retrieved from disk and pushed over the wire to the client. Take a look at the difference
in performance of the following two queries:

SELECT sod.SalesOrderID, sod.SalesOrderDetailID FROM Sales.SalesOrderDetail sod
-- (121317 row(s) affected)
-- Table ‘SalesOrderDetail’. Scan count 1, logical reads 228, physical reads 0.
-- CPU time = 40 ms, elapsed time = 3777 ms.

SELECT * FROM Sales.SalesOrderDetail sod
-- (121317 row(s) affected)
-- Table ‘SalesOrderDetail’. Scan count 1, logical reads 1240, physical reads 0.
-- CPU time = 250 ms, elapsed time = 8398 ms.

If all we needed was the order and detail IDs, then the first query would provide the answer twice as
fast, and only use one-sixth of the CPU time.

In a way, excessive row counts are an even bigger problem than extra columns because the filters used
to limit rows often depend on parameters that are passed in by an application. Many applications even
provide some level of ad hoc querying, which makes it nearly impossible for a DBA to guarantee per-
formance levels. In general, try to define as many conditions as possible to limit the number of records
returned, and wherever possible define indexes on any selective columns that are frequently used in the

527



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 528

Chapter 11: Optimizing SQL Server

where clause. Even in cases in which it is not possible to define a sufficiently restrictive filter, you might
still be able to limit the number of rows returned to a fixed maximum.

TOP N and SET ROWCOUNT
Using TOP N and SET ROWCOUNT are two ways to limit the number of rows returned even when the query
itself would normally generate additional data. These techniques can be very effective in applications that
only display a page of data at any one time, or when all you care about are the top results. For example,
if a client application wanted to retrieve the five most expensive products from the AdventureWorks2008
database, it could just query the products list, sort it by ListPrice, and read the first five returned values.
This would generate a query similar to the following:

SELECT ProductID,Name,ListPrice
FROM Production.Product
ORDER BY ListPrice desc
-- (504 row(s) affected)
-- Table ‘Product’. Scan count 1, logical reads 15, physical reads 0.
-- CPU time = 0 ms, elapsed time = 280 ms.

Instead of reading the first five values and throwing the rest away, the client could use TOP N or
SET ROWCOUNT to tell the server to only return the first five values, thereby eliminating the waste. Here
are examples of using these methods:

SELECT TOP 5 ProductID,Name,ListPrice
FROM Production.Product
ORDER BY ListPrice desc
-- (5 row(s) affected)
-- Table ‘Product’. Scan count 1, logical reads 15, physical reads 0.
-- CPU time = 0 ms, elapsed time = 6 ms.

SET ROWCOUNT 5
SELECT ProductID,Name,ListPrice
FROM Production.Product
ORDER BY ListPrice desc
SET ROWCOUNT 0
-- (5 row(s) affected)
-- Table ‘Product’. Scan count 1, logical reads 15, physical reads 0.
-- CPU time = 0 ms, elapsed time = 7 ms.

As you can see, TOP N and SET ROWCOUNT are roughly the same as far as performance goes, and either one
will be many times faster than retrieving the full list.

In general, I prefer to use TOP(n) over SET ROWCOUNT. The reason is that SET ROWCOUNT remains in effect
for all statements until you execute a SET ROWCOUNT 0, while TOP(n) is limited to a single statement.
Better isolation can help prevent unanticipated problems.

HAVING versus WHERE
One of the most common questions that I have seen over the years is about the differences between the
HAVING and WHERE clauses in a query. Specifically, which one is better? The answer is both, depending on
what you need to accomplish!

528



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 529

Chapter 11: Optimizing SQL Server

The difference is in the timing. There are actually three different ways that you can filter a query in SQL
Server. You can use joins, the WHERE clause, or the HAVING clause. Joins are processed first, followed by the
WHERE clause, and then finally the HAVING clause. In general, the earlier in the process chain that a filter
is applied, the better the results. Therefore, the only filters that must be placed in the HAVING clause are
ones that are based on the calculation results themselves. In all other cases, the filter should be placed in
the WHERE clause instead.

It is important to note that it will not always make a difference whether you place a filter in the HAVING
clause or in the WHERE clause because the Query Optimizer in SQL Server 2008 is very smart about
reordering the filters for you. For example, the following queries will actually result in the same
execution plan:

SELECT pp.ProductLine, COUNT(pp.ProductID) ‘Products’
FROM Production.Product pp
WHERE pp.ProductLine in (’R’,’M’)
GROUP BY pp.ProductLine

SELECT pp.ProductLine, COUNT(pp.ProductID) ‘Products’
FROM Production.Product pp
GROUP BY pp.ProductLine
HAVING pp.ProductLine in (’R’,’M’)

Normally, you would expect the second filter to require a lot more work, because the aggregate would
need to be calculated first, and only then would the HAVING filter be applied. However, in this case the
Query Optimizer comes to the rescue by recognizing the improperly written query and moving the
expression into the WHERE clause behind the scenes. Don’t assume that the Query Optimizer will always
be able to compensate for poorly written queries. You will experience more consistent results if you
explicitly use the WHERE clause for filters that do not depend on an aggregate.

Functions in the WHEREClause
A common mistake when constructing the WHERE clause is to wrap a table column in a function rather
than using the function on a constant value. Performance in SQL Server depends heavily on the Query
Optimizer’s ability to use indexes. Wrapping the table column in a function tends to mask the column
from the Query Optimizer, which forces a slower full table scan to be used instead of an index.

In most cases, it is easy to re-write these kinds of expressions in a way that will allow the Optimizer to
use an index to help process the query. For example, take the following inefficient query:

SELECT Name
FROM Production.Product
WHERE substring(Name,1,2)=’BE’
-- Index Scan
-- (1 row(s) affected)
-- Table ‘Product’. Scan count 1, logical reads 5, physical reads 0.
-- CPU time = 10 ms, elapsed time = 38 ms.

SELECT Name
FROM Production.Product
WHERE Name like ‘BE%’
-- Index Seek

529



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 530

Chapter 11: Optimizing SQL Server

-- Table ‘Product’. Scan count 1, logical reads 2, physical reads 0.
-- CPU time = 0 ms, elapsed time = 2 ms.

The first query used a function (substring) that wrapped the Name column and effectively hid it from the
Optimizer. This forced a more expensive scan operation to be used. Re-writing the query in a way that
eliminated the function allowed the Query Optimizer to take advantage of the faster seek operation on
the column. You will find this same behavior with any function that operates on the column that is being
filtered. Whenever you notice this, try to find a way to isolate the data column and either eliminate the
function or move the function to the constant side of the comparison.

ANSI-Style Join Syntax
The ANSI-style join syntax has been around for quite a while, and you are probably familiar with it
already. ANSI join syntax basically requires that the join criteria for each joined table be explicitly
declared when the tables are joined, rather than implicitly derived from a comparison in the WHERE clause.
I have used the ANSI-style join syntax exclusively for many years and have found it to be superior to the
older non-ANSI joins. Here are some of the reasons why I prefer ANSI-style joins:

❑ ANSI-style joins are easier to understand. Intermixing join expressions with your query filters in
the WHERE clause can make it very difficult to understand and troubleshoot query problems.

❑ ANSI-style joins offer more join options, allowing you to more precisely specify the entity rela-
tionships, as well as permitting more advanced join types such as Full Outer, Star, and Merge
joins.

❑ Non-ANSI joins are deprecated.

Starting with SQL Server 2008, the non-ANSI *= and =* join operators will no longer be accepted
when using database compatibility level 90 or greater.

Even though you can still technically use the non-ANSI "=" join operator in the WHERE clause of a query,
you should not do so. Besides the fact that this operator will also be deprecated at some point in the
future, its use will make your queries less readable and harder to debug. Consider the following query,
and see how long it takes you to spot the missing join:

-- SQL-style joins make it difficult to find problems
SELECT poh.PurchaseOrderID,poh.OrderDate,poh.EmployeeID,pod.ProductID,

pp.Name ‘ProductName’,pv.Name ‘VendorName’
FROM Purchasing.Vendor pv, Person.BusinessEntity pbe, Production.Product pp,
Purchasing.PurchaseOrderHeader poh, Purchasing.PurchaseOrderDetail pod

WHERE pv.BusinessEntityID=poh.VendorID and poh.PurchaseOrderID<10
and poh.PurchaseOrderID=pod.PurchaseOrderID and poh.PurchaseOrderID>5
and pp.ProductID=pod.ProductID

-- (290878 row(s) affected)
-- Table ‘BusinessEntity’. Scan count 1, logical reads 62, physical reads 0.
-- Table ‘Product’. Scan count 0, logical reads 28, physical reads 0.
-- Table ‘PurchaseOrderDetail’. Scan count 4, logical reads 8, physical reads 0.
-- Table ‘Vendor’. Scan count 0, logical reads 8, physical reads 0.
-- Table ‘PurchaseOrderHeader’. Scan count 1, logical reads 2, physical reads 0.
-- CPU time = 871 ms, elapsed time = 12919 ms.

530



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 531

Chapter 11: Optimizing SQL Server

Obviously something is wrong since the query is running very slowly and is returning hundreds of
thousands of rows. This is a classic symptom of an accidental cross-product or cross-join, but where
is it? Re-writing the query using the ANSI-style join syntax makes the problem obvious and easy
to fix:

-- The problem is clear with the ANSI-sytle joins
SELECT poh.PurchaseOrderID,poh.OrderDate,poh.EmployeeID,pod.ProductID,

pp.Name ‘ProductName’,
pv.Name ‘VendorName’
FROM Purchasing.PurchaseOrderDetail pod
inner join Purchasing.PurchaseOrderHeader poh on

pod.PurchaseOrderID=poh.PurchaseOrderID
inner join Production.Product pp on pod.ProductID=pp.ProductID
inner join Purchasing.Vendor pv on pv.BusinessEntityID=poh.VendorID
--,Person.BusinessEntity pbe -- This table should not have been included

WHERE poh.PurchaseOrderID>5 and poh.PurchaseOrderID<10
-- (14 row(s) affected)
-- Table ‘Product’. Scan count 0, logical reads 28, physical reads 0.
-- Table ‘Vendor’. Scan count 0, logical reads 28, physical reads 0.
-- Table ‘PurchaseOrderDetail’. Scan count 4, logical reads 8, physical reads 0.
-- Table ‘PurchaseOrderHeader’. Scan count 1, logical reads 2, physical reads 0.
-- CPU time = 0 ms, elapsed time = 2 ms.

When using the ANSI-style joins, the problem becomes obvious. The Person.BusinessEntity table was
not explicitly joined to any other table, so it was being implicitly cross-joined with the rest of the query,
which was inflating the row count.

Dealing with Null Values
Nulls are an unavoidable and important part of every database; however, most people have an incom-
plete view of what null actually means, and how and why it is used by SQL Server. The actual definition
of null simply states that it is a ‘‘special value that represents the absence of any data value.’’ There are a
lot of misconceptions about what this really means, so first let’s take a look at what null is not:

❑ Null is not zero. Zero is a value.

❑ Null is not an empty string. An empty string is actually a string value that is zero in length.

❑ Null is not a minimum date value, although many applications define it as such to avoid dealing
with null dates.

❑ Null does not mean ‘‘not applicable.’’ It is sometimes used in this capacity, but ‘‘no data’’ and
‘‘not applicable’’ are really different concepts.

❑ Null does not mean ‘‘unknown.’’ A null value might be used to represent an unknown value
during data entry, but the value might be missing for other reasons as well. As above, the con-
cepts of ‘‘unknown’’ and ‘‘no data’’ are actually different.

So what does that leave? Well, nothing. . . . And that is exactly what null actually is — nothing. It repre-
sents a missing or absent value. The presence of null values results in some interesting interactions when
doing logical comparisons, as is done in the WHERE clause of a query. Figure 11-16 shows the logical truth
tables when null values are taken into account.

531



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 532

Chapter 11: Optimizing SQL Server

Input A

True True True

True

True

True

True

True

TrueTrue

True

True

True

False

False False

False

False

False

False

False

False

FalseFalse

False

False
NULL

NULL NULL

NULL
NULL

NULL

NULL

NULL

NULL

NULLNULL

NULL

NULL

Input B AND OR NOT A

Figure 11-16: Logical truth tables including null values.

As you can see, several of the logical comparisons will result in a null value, and any rows for which
the filter results in a null will be excluded from the output. With very few exceptions, an expression will
result in null if any of its inputs are null. Looking at this from a logical perspective, most of the time it
makes sense. For example, suppose that I asked for your birth date in order to calculate your age and you
refused to provide it. I would then be unable to calculate your age because I was missing a key input.
In this situation, in database terms, your birth date would be null. I think that most would agree that
this makes sense, but there are some other implications of null that might make you scratch your head.
Consider the following examples:

Declare @alive bit;
SET @alive=NULL;

if @alive=1 or @alive!=1
Print ‘Alive or Dead’;

Else
Print ‘Huh? Neither alive nor dead’;

-- Result: Huh? Neither alive nor dead

if @alive=@alive
Print ‘It must equal itself, right?’

else
Print ‘Not always. null does not equal null’

-- Result: Not always. null does not equal null

Since null is not actually a value, it cannot be equal to any value.

At this point, it is important to highlight the difference between ‘‘distinct’’ and ‘‘not equal.’’ At first
glance, it would seem that values that were not equal would also be distinct; however, in the context of
nulls, this is not necessarily true. In SQL Server two null values are not considered distinct, and at the
same time they are not equal. Confused? I don’t doubt it. In SQL Server, grouping is based on distinct
values rather than on unequal values, and as a consequence all of the null values are grouped together.

Another concession to the normal handling of nulls is in CHECK constraints on columns in a table. When
evaluating CHECK constraints, SQL Server will accept data for which the condition evaluates to null. The
exact same expression in a WHERE clause would exclude the data that evaluated to null.

532



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 533

Chapter 11: Optimizing SQL Server

Alternatives to Cursors
Too many times I have seen administrators and developers alike embark on crusades to eliminate cursors,
just because they read an article somewhere that branded cursors as a problem. This is really disingen-
uous to the cursor, which does actually play an important role in T-SQL programming. I am not saying
that eliminating cursors is not a good idea, because in many cases, there are alternatives that can actu-
ally improve performance. Rather, I am saying that it is important to understand why cursors can be a
problem in the first place.

One of the first things that cursor crusaders will do is to arbitrarily replace the cursor with a while loop.
This is not necessarily bad, but it really does not solve the problem either. The issue is the fact that cursors
process data a single record at a time, rather than using a set-based approach. In some cases, this may be
necessary, and, if so, then using a cursor may be the best solution. Perhaps each pass through the loop
involves constructing a personalized e-mail message and then sending it to a particular recipient (like a
vendor statement). In this case, it really is not going to make a lot of difference whether you use a cursor
or a while loop.

In other cases, it might be possible to replace the cursor or while loop altogether, and this is where you
can realize some really significant performance benefits. The real problem is in using a loop to do a job
that could be done in a set operation. Here is an example that highlights this issue:

-- Generate a comma-delimited list of vendors that supply each product
DECLARE @results TABLE
(ProductID int primary key,Vendors varchar(max))

DECLARE @pid int, @vname varchar(50), @vlist varchar(max)
DECLARE product_cursor CURSOR FOR SELECT ProductID FROM Production.Product pp
WHERE EXISTS(SELECT 1 FROM Purchasing.ProductVendor pv

WHERE pv.ProductID=pp.ProductID)
OPEN product_cursor
FETCH NEXT FROM product_cursor INTO @pid
WHILE @@FETCH_STATUS = 0 BEGIN

SET @vlist=’’
DECLARE vendor_cursor CURSOR FOR
SELECT v.Name FROM Purchasing.ProductVendor pv

inner join Purchasing.Vendor v on pv.BusinessEntityID=v.BusinessEntityID
WHERE ProductID=@pid
OPEN vendor_cursor
FETCH NEXT FROM vendor_cursor into @vname
WHILE @@FETCH_STATUS = 0 BEGIN
SET @vlist = @vlist + ‘; ‘ + @vname
FETCH NEXT FROM vendor_cursor into @vname

END
CLOSE vendor_cursor
DEALLOCATE vendor_cursor

INSERT @results (ProductID,Vendors)
VALUES (@pid,substring(@vlist,3,datalength(@vlist)))
FETCH NEXT FROM product_cursor INTO @pid

END
CLOSE product_cursor
DEALLOCATE product_cursor

533



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 534

Chapter 11: Optimizing SQL Server

SELECT * FROM @results
-- CPU time = 891 ms, elapsed time = 4394 ms.

The cursor-based operation shown previously generates a table of product numbers, and for each prod-
uct, it includes a semicolon-delimited list containing the name of every vendor that supplies the product.
Somehow eliminating the cursor and replacing it with a while loop really would not accomplish very
much. Instead, the process itself needs to be analyzed and then replaced with a set-based operation. The
listing below shows a set-based replacement that generates exactly the same output:

-- The same operation using a set based approach
SELECT p.ProductID,
stuff((SELECT ‘; ‘ + v.name FROM Purchasing.Vendor v
inner join Purchasing.ProductVendor pv

on v.BusinessEntityID=pv.BusinessEntityID
WHERE p.ProductID=pv.ProductID
ORDER BY pv.BusinessEntityID FOR XML PATH(’’)), 1, 1, ‘’) ‘vendors’
FROM Production.Product p
WHERE EXISTS(SELECT 1 FROM Purchasing.ProductVendor xv

WHERE xv.ProductID=p.ProductID)
-- CPU time = 10 ms, elapsed time = 503 ms.

In addition to being much more compact, the set-based operation runs nine times faster and uses 89
percent less CPU time! This is how to optimize a loop — by eliminating the sequential processing and
replacing it with a set-based operation.

Merge Joins
The new merge join operator performs simultaneous insert, update, and delete operations on a single
table. For the first time in SQL Server, it is possible to efficiently merge the contents of one table (or query)
into another table in a single statement. Internally, the merge process has been optimized to minimize
the number of necessary scans. This gives merge a clear performance advantage over the older method
of using separate statements for each operation. As you can imagine, there are a lot of tasks that might
benefit from this. It is particularly useful in maintaining data warehouse tables and when saving updated
business objects from a client application.

The following example highlights many of the features of the merge join. First, the following code creates
two matching tables, and then performs several updates to just one table.

USE AdventureWorks2008
GO

-- Setup a baseline to test from
SELECT TOP 10 BusinessEntityID ‘ID’,AccountNumber,Name

INTO dbo.VendA FROM Purchasing.Vendor
ORDER BY BusinessEntityID

SELECT * INTO dbo.VendB FROM dbo.VendA
GO

-- Make some changes to VendA
INSERT dbo.VendA (ID,AccountNumber,Name)

VALUES (5000,’ACME0001’,’ACME Corporation’)

534



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 535

Chapter 11: Optimizing SQL Server

UPDATE dbo.VendA SET Name=’Zen Master’ WHERE ID=1502
DELETE dbo.VendA WHERE ID=1510
GO

In order to implement the same changes to VendB that were done to VendA, we could use separate update
statements or a merge join. Using separate update statements would require something like the follow-
ing code:

-- Update VendB using separate statements, this must be wrapped in a
-- transaction to keep the operation atomic.
-- Don’t actually run this, it is just here to show the alternative.
BEGIN TRY

BEGIN TRAN
-- UPDATE
UPDATE VendB
SET Name=VendA.Name, AccountNumber=VendA.AccountNumber
FROM VendB inner join VendA on VendB.ID=VendA.ID
-- INSERT
INSERT VendB (ID,AccountNumber,Name)
SELECT VendA.ID,VendA.AccountNumber,VendA.Name
FROM VendA left join VendB on VendA.ID=VendB.ID
WHERE VendB.ID is null
-- DELETE
DELETE VendB
WHERE NOT EXISTS(SELECT * FROM VendA WHERE VendA.ID=VendB.ID)
COMMIT TRAN

END TRY
BEGIN CATCH

ROLLBACK TRAN
END CATCH
GO
-- Table ‘VendB’. Scan count 3, logical reads 34, physical reads 0.
-- Table ‘VendA’. Scan count 3, logical reads 43, physical reads 0.
-- Table ‘Worktable’. Scan count 1, logical reads 5, physical reads 0.
-- CPU time = 0 ms, elapsed time = 18 ms.

Now take a look at the same operation using a merge join:

-- Now use merge to populate VendB with the same data as VendA
MERGE INTO VendB
USING VendA

ON VendA.ID=VendB.ID
WHEN MATCHED THEN

UPDATE SET Name=VendA.Name, AccountNumber=VendA.AccountNumber
WHEN NOT MATCHED BY TARGET THEN

INSERT (ID,AccountNumber,Name)
VALUES (VendA.ID, VendA.AccountNumber, VendA.Name)

WHEN NOT MATCHED BY SOURCE THEN
DELETE;

GO
-- Table ‘VendB’. Scan count 2, logical reads 33, physical reads 0.
-- Table ‘VendA’. Scan count 2, logical reads 22, physical reads 0.
-- CPU time = 0 ms, elapsed time = 6 ms.

535



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 536

Chapter 11: Optimizing SQL Server

Much better! The merge join is easier to understand, performs fewer database reads, and runs faster than
separate statements.

If you have ever worked with n-tier business objects, then you are familiar with the challenges in per-
sisting object changes back to the database. Business objects are normally edited as a unit; for example,
a purchase order and all of its lines will typically be edited and saved together. When it comes time to
save the changes, depending on what the user has done, records might need to be deleted, inserted, or
updated. It is now possible to use a DataTable client-side to create a list that contains just the changed
rows, and then send the changes to SQL Server using a Table Valued Function (TVF). Then you can use
the Table Valued Function with the merge operator to update the database table in a single statement. An
example of this technique is beyond the scope of this book; however, if you are interested, a quick search
online should yield several hits.

Grouping Sets
Grouping sets are another new feature of SQL Server 2008. They allow multiple field groupings to be
aggregated at the same time, with all of the different results being returned together. Grouping sets
provide a functional superset of the WITH CUBE and WITH ROLLUP grouping modifiers. They allow more
flexibility in defining what groups to aggregate and offer a more compact and easy-to-understand syntax.
A single grouping set operation can replace an entire collection of individual grouping statements.

With grouping sets, all of the different group values and subtotals are returned in a single result set,
similar to what you would get if you calculated each group individually and then combined all of the
results with a UNION ALL operator. For example, say that you wanted to return sales totals from the
AdventureWorks2008 database by year, by customer, by territory, and overall. In prior versions of SQL
Server, you could get all of these summaries by running four different queries and then combining them
as follows:

-- Multiple groupings using individual queries
SELECT CustomerID,null ‘TerritoryID’,null ‘Year’,SUM(TotalDue) ‘Total’
FROM Sales.SalesOrderHeader
GROUP BY CustomerID
UNION ALL
SELECT null,TerritoryID,null,SUM(TotalDue) ‘Total’
FROM Sales.SalesOrderHeader
GROUP BY TerritoryID
UNION ALL
SELECT null,null,Year(OrderDate),SUM(TotalDue) ‘Total’
FROM Sales.SalesOrderHeader
GROUP BY Year(OrderDate)
UNION ALL
SELECT null,null,null,SUM(TotalDue) ‘Total’
FROM Sales.SalesOrderHeader
ORDER BY CustomerID desc,TerritoryID desc,[Year] desc
-- Table ‘SalesOrderHeader’. Scan count 4, logical reads 2744, physical reads 0.
-- Table ‘Worktable’. Scan count 0, logical reads 0, physical reads 0.
-- CPU time = 280 ms, elapsed time = 1973 ms.

536



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 537

Chapter 11: Optimizing SQL Server

Using grouping sets, you can accomplish the same thing using a shorter and more easily understandable
syntax:

-- Multiple groupings using grouping sets
SELECT CustomerID,TerritoryID,Year(OrderDate) ‘Year’,SUM(TotalDue) ‘Total’
FROM Sales.SalesOrderHeader
GROUP BY GROUPING SETS ((CustomerID),(TerritoryID),(Year(OrderDate)),())
ORDER BY CustomerID desc,TerritoryID desc,Year(OrderDate) desc
-- Table ‘Worktable’. Scan count 0, logical reads 0, physical reads 0.
-- Table ‘SalesOrderHeader’. Scan count 3, logical reads 2058, physical reads 0.
-- CPU time = 301 ms, elapsed time = 1845 ms.

Notice with the grouping sets solution that the conditions for each individual group are specified in
parentheses after the grouping sets keyword. You can add as many different grouping sets as neces-
sary, and you can even specify cube and rollup operations. There are many different possibilities, and I
encourage you to experiment with this great new feature.

Distinct Aggregation
Distinct aggregation is where you use the DISTINCT keyword to calculate the number of unique values
in the form COUNT(DISTINCT field). SQL Server has trouble optimizing these kinds of statements,
especially if more than one distinct count is used in a single query. It can be extremely frustrating
to design an otherwise useful query and then have it slow to a crawl when you add a distinct
aggregate.

The root of the problem is that in order for SQL Server 2008 to calculate a distinct aggregate, it
has to create and read an intermediate result table based on the input data stream. For multiple
distinct aggregates in the same query, SQL Server repeats this process, destroying and re-creating
the data stream and generating new intermediate results for each total. This ends up being far more
expensive than just calculating the totals in a subquery! As an example of this, consider the following
query:

-- Counts using distinct aggregation
SELECT COUNT(distinct sd.SalesOrderID) ‘Orders’,

COUNT(distinct sd.SalesOrderDetailID) ‘Details’,
COUNT(distinct sh.CustomerID) ‘Customers’

FROM Sales.SalesOrderDetail sd
inner join Sales.SalesOrderHeader sh on sd.SalesOrderID=sh.SalesOrderID

GO
-- Table ‘Worktable’. Scan count 3, logical reads 246112, physical reads 0.
-- Table ‘SalesOrderDetail’. Scan count 1, logical reads 228, physical reads 2.
-- Table ‘SalesOrderHeader’. Scan count 1, logical reads 45, physical reads 2.
-- CPU time = 1822 ms, elapsed time = 2036 ms.

Notice the huge number of reads that were required in Worktable and the fact that it had to be scanned
three times in order to generate the three distinct totals. Clearly, there must be a better way.

537



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 538

Chapter 11: Optimizing SQL Server

One alternative approach that I use in these kinds of situations is to leverage subqueries to group and
count the unique values and then join the subqueries together into a final result set. The query below
uses this technique to generate the same results, but using a fraction of the resources and time:

-- Distinct Counts using sub-queries
WITH OrderCounter (Orders,Details) AS
( SELECT COUNT(1) ‘Orders’,SUM(Lines) ‘Details’ FROM

(SELECT SalesOrderID,COUNT(SalesOrderDetailID) ‘Lines’
FROM Sales.SalesOrderDetail GROUP BY SalesOrderID) s

),
CustomerCounter (Customers) AS
( SELECT COUNT(1) ‘Customers’ FROM

(SELECT CustomerID FROM Sales.SalesOrderHeader GROUP BY CustomerID) c
)
SELECT Orders,Details,Customers
FROM OrderCounter,CustomerCounter
GO
-- Table ‘SalesOrderHeader’. Scan count 1, logical reads 45, physical reads 0.
-- Table ‘SalesOrderDetail’. Scan count 1, logical reads 1240, physical reads 16.
-- CPU time = 100 ms, elapsed time = 250 ms

There are a couple of interesting aspects to this solution:

❑ The three distinct totals only required two subqueries because two of the totals were calculated
at once.

❑ Notice that the final result uses an implicit cross-join because each intermediate result is guar-
anteed to return a single row. Of more importance, however, is the 95 percent reduction in the
CPU time required and the 99 percent reduction in logical reads. The moral: Don’t use distinct
aggregates when you can use subqueries!

How Many Records Are in That Table?
There are many occasions when you might need to retrieve the total number of records that exist in a
table. The typical way to do this is by using COUNT(*) as follows:

-- Get record count by physically counting the rows
SELECT Count(*) FROM Production.TransactionHistory
-- Table ‘TransactionHistory’. Scan count 1, logical reads 157, physical reads 0.
-- CPU time = 40 ms, elapsed time = 101 ms.

This approach works by physically counting the number of records in the table by performing an index
scan on the primary key or by doing a full table scan if there is no primary key. For small tables this will
happen very quickly, but for large tables it can take quite a while to count all of the records.

Fortunately, there is a much faster alternative that can also return the number of records in a table. There
is a caveat, however, in that the record count is not guaranteed to be 100 percent accurate for tables
that have recently had a lot of insertions or deletions. This alternative method takes advantage of the
statistical information that SQL Server automatically keeps for every table and index (unless you have
disabled auto-statistics). The following example uses statistics to return the record count:

-- Get record count using partition statistics
select sum(row_count) ‘TotalRows’
FROM sys.dm_db_partition_stats

538



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 539

Chapter 11: Optimizing SQL Server

WHERE object_id=object_id(’Production.TransactionHistory’)
and index_id<=1
-- Table ‘sysidxstats’. Scan count 1, logical reads 2, physical reads 0.
-- CPU time = 0 ms, elapsed time = 0 ms.

Notice the execution time; this query completed so quickly that it didn’t even register on the timer! Even
better, this method will continue to operate nearly instantaneously regardless of how big the source table
gets. Oh, and it also works with partitions as well. In fact, it can even be adapted to return the record
counts for every table in the database in a single operation, as shown below:

-- Get Record counts for every user table in the current database
select so.name ‘TableName’, so.type, sum(row_count) ‘TotalRows’
FROM sys.dm_db_partition_stats ps inner join sys.objects so
on ps.[object_id]=so.[object_id]
WHERE index_id<=1 and so.[type]=’U’
GROUP BY so.name,so.type
ORDER BY SUM(row_count) DESC
-- Table ‘sysschobjs’. Scan count 0, logical reads 294, physical reads 0.
-- Table ‘sysidxstats’. Scan count 1, logical reads 11, physical reads 0.
-- CPU time = 10 ms, elapsed time = 37 ms.

Amazingly, using partition statistics to return the record counts for every table in the database is faster
than using COUNT(*) on a single medium-sized table. If you can live with the possibility that the record
counts may be slightly off, then you can use statistics to save a lot of CPU time.

If necessary, you can manually update the statistical row totals by running the UPDATEUSAGE command,
as shown below:

-- Update statistics for every table and index in the database
DBCC UPDATEUSAGE(0) WITH COUNT_ROWS

-- Update statistics for a single table
DBCC UPDATEUSAGE(0,’Production.TransactionHistory’,1) WITH COUNT_ROWS

Temp Tables versus Table Variables
When writing stored procedures, there is often a need to temporarily store tabular data within the scope
of the procedure. There are basically two ways of storing temporary data in SQL Server 2008: temporary
tables and table variables. Temporary tables have been around for quite a while and generally well
understood. Table variables, on the other hand, are a relatively new innovation, and there is still a lot of
confusion about how best to use them.

Technically, there are two different types of temporary tables: local and global. However, for the purposes
of this comparison, when I refer to temporary tables, I mean local temporary tables.

Temporary tables and table variables have a great deal of functional overlap, which gives rise to seem-
ingly endless discussions as to which one is better to use. In fact, each was developed to solve a different
set of problems, as becomes evident when looking at the differences and limitations of each option.
Understanding these differences is the key to knowing which option is best suited for a given situation.
So, when choosing between temporary tables and table variables, consider the following:

❑ Temporary tables are always created in tempdb, while table variables are created in memory.
This is often cited as a reason to use table variables over temporary tables; however, there is not

539



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 540

Chapter 11: Optimizing SQL Server

as much difference in this regard as you might first imagine. Temporary tables will be cached in
memory for fast access, and table variables will use tempdb when subjected to memory pressure.

❑ Temporary tables have session scope, while table variables only have procedure/batch scope.
Any object that goes ‘‘out of scope’’ is automatically cleaned up by SQL Server, so this difference
has several interesting consequences:

❑ Table variables are not visible to the calling procedure, but temporary tables are.

❑ Table variables cannot be dropped, but temporary tables can.

❑ Table variables that are created inside of a dynamic SQL statement will not be visible out-
side the dynamic statement, but temporary tables will.

❑ Table variables cannot be generated dynamically, for example, via a SELECT INTO.

❑ You cannot use DDL on table variables. The structure of a table variable is fixed at the time of
creation. The only indexes permitted are ones that can be declared directly in the DECLARE TABLE
statement — a primary key and any number of additional unique keys. This implies that table
variables will always be accessed via a scan operation. Temporary tables do allow DDL opera-
tions and allow any number of indexes to be added.

❑ Statistics are not calculated on table variables. The Query Optimizer always sees them with
a cardinality of 1. This means that table variables will never force a recompile of the query
plan. It also means that table variables will not take advantage of parallelism on multiple-CPU
systems. For small tables, this can save time, but for medium to large tables with more than
around 100,000 rows, a more relevant query plan will often save far more time than it takes to
recompile.

❑ Table variables do not participate in transactions or locking and are not affected by rollbacks. A
result of this is that table variables are logged only at the statement level, and these log entries
are truncated as soon as the statement ends. Temporary tables will participate in transactions
and locking and are logged normally. However, since they log to tempdb, the log will automati-
cally be truncated at the next checkpoint (Simple recovery mode).

❑ Table variables can be created and accessed from within a user-defined function. Temporary
tables cannot.

❑ Beginning in SQL Server 2008, table variables can be passed as parameters.

As you can see, table variables are more flexible, and, depending on the specific task you are trying to
accomplish, they may be the only option. However, for large numbers of records, temporary tables gain
a performance advantage due to their support for statistics and additional indexes. As always, make sure
to test any given solution to see how it actually performs.

Resource Governor
The Resource Governor in SQL Server 2008 allows workloads to be differentiated and prioritized. This can
be incredibly useful when you need to guarantee that certain critical processes have enough resources
to operate efficiently, while still sharing resources with other less important jobs. It can also be used to
insulate key processes from runaway queries and to prioritize queries. Prior to the Resource Governor,
you could use multiple instances and a careful array of configuration values (such as affinity masks) to
divide up resources. This solution was less than ideal because, in most cases, the resources used by one
instance were reserved and could not be shared with other instances. The Resource Governor solves this

540



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 541

Chapter 11: Optimizing SQL Server

problem by sharing resources when they are available and only kicking in to enforce limits when there is
resource contention.

At this time, the Resource Governor is only available in the Enterprise, Developer, and Evaluation
versions of SQL Server 2008.

The Resource Governor is comprised of three key components: a classifier function that differentiates
workloads, resource pools that describe limits for shared server resources, and workload groups that are
used to enforce policies for similar workloads. Figure 11-17 shows how these components work together.

Dedicated Admin
Connection

Internal 
Pool

Default
Pool

Unlimited Shared
System

Resources

CPU/
Memory0:100

Incoming
Connection

Classifier Function

Default Group

User-Defined Group

Internal Group

User-Defined Group User-
Defined

Pool...
...

X:Y

Figure 11-17: The Resource Governor.

Also included with the Resource Governor are several new database functions and events to support
workload differentiation and resource monitoring. The following topics describe how to configure and
monitor this new feature.

Configuring the Resource Governor
The Resource Governor must be configured before you can use it in a meaningful way. Configuration
consists of the following four steps:

1. Configure resource pools.

2. Configure workload groups.

3. Create a classifier function.

4. Assign a classifier function and reconfigure.

Except for creating a classifier function, these steps can be performed using either SQL Server Manage-
ment Studio or a command window using DDL statements. Oddly enough, when using SSMS, you must
enable the Resource Governor before you can configure it. When using DDL statements, you can con-
figure it before you enable it, which seems more natural to me. In any case, configuration is easy and
reasonably straightforward. The following sections explain each step in more detail.

541



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 542

Chapter 11: Optimizing SQL Server

Configure Resource Pools
Resource pools are used to define logical boundaries for physical resources. It is helpful to think of a
resource pool as a kind of virtual server instance. Each pool allows you to specify minimum and maxi-
mum utilization percentages for CPU and memory usage. The minimum values represent the minimum
guaranteed resource availability, and the maximum values represent the shared resource limit.

It is normal to see resource usage for a particular pool exceed the defined maximum
value. If a resource is not required by another pool, then whatever is available to
SQL Server as a whole is free to be used. The maximums are only enforced when
the server has to divvy resources between competing pools.

Two resource pools are automatically created by SQL Server — the internal pool and the default pool.
The internal pool is used by SQL Server itself for critical system tasks and cannot be altered in any way.
It is an unrestricted pool and will consume resources as necessary, even if it means violating the limits
established for the other pools. The default pool is used for everything else that has not been explicitly
placed into a custom pool. The default pool cannot be created or deleted, but it can be re-configured to
limit resource use.

Additional resource pools can be created as needed, but the total of all minimum values for a resource
cannot exceed 100 percent, and the total of all maximum values for a resource must be between the total
minimum and 100 percent. Resource pools can be created, altered, or dropped from SSMS, or by using
DDL statements. For example, the following command will create a new resource pool that is limited to
50 percent of the total system memory and 25 percent of the total CPU resources:

CREATE RESOURCE POOL poolFinance
WITH
(

MAX_CPU_PERCENT=25,
MAX_MEMORY_PERCENT=50

);

Configure Workload Groups
Workload groups are used to define policies that apply to similar requests as determined by the classifier
function. There are two built-in workload groups — the internal group and the default group — which
are assigned to the internal pool and the default pool, respectively. The internal group is used by SQL
Server itself for critical tasks and cannot be changed. The default group is used for everything else that
has not been explicitly assigned to a user-defined group. The default group cannot be moved or deleted;
however, you can configure it. Additional user-defined workload groups can be created as needed and
assigned to either the default pool or to a user-defined pool. If necessary, user-defined workload groups
can even be moved between pools.

The following policies (parameters) are available when creating a workload group:

❑ IMPORTANCE — This indicates the relative importance of tasks within a given resource pool. Valid
values are HIGH, MEDIUM, and LOW. The default value is MEDIUM.

542



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 543

Chapter 11: Optimizing SQL Server

❑ REQUEST_MAX_MEMORY_GRANT_PERCENT — This is the maximum memory that a single request can
use from the pool. If insufficient memory is available, then the request will be held until a mem-
ory grant becomes available or the request times out. The default value is 25 percent.

❑ REQUEST_MAX_CPU_TIME_SEC — This setting specifies the maximum CPU time that a
request can use. Exceeding this value will not stop a request from processing; instead, a
CPU Threshold Exceeded event will be raised, and the request will continue. The default is 0,
which means unlimited.

❑ REQUEST_MEMORY_GRANT_TIMEOUT_SEC — This parameter sets the number of seconds that a
request will wait for a memory grant before failing. The default is 0, which uses an internal
calculation to determine the value based on the query cost.

❑ MAX_DOP — This sets the maximum degree of parallelism for requests. This setting overrides the
server ‘‘max degree of parallelism’’ setting and sets an upper limit on the MAX_DOP query hint.
The default is 0, which uses the system default setting.

❑ GROUP_MAX_REQUESTS — Sets the maximum number of simultaneous requests for the group. The
default is 0, which means unlimited.

The following example will create a workload group and assign it to resource pool poolFinance:

CREATE WORKLOAD GROUP wrkgroupFinance
WITH
(

IMPORTANCE = MEDIUM,
REQUEST_MAX_MEMORY_GRANT_PERCENT = 50,
REQUEST_MAX_CPU_TIME_SEC = 0,
REQUEST_MEMORY_GRANT_TIMEOUT_SEC = 0,
MAX_DOP = 4,
GROUP_MAX_REQUESTS = 25

)
USING poolFinance;

Create a Classifier Function
The classifier function is used by the Resource Governor to decide which workload group to use for an
incoming session. When the Resource Governor is enabled, this function will be executed after authen-
tication and any logon triggers. It must return the name of the workload group to assign the incoming
session to. If the classifier function fails for any reason or returns an invalid group name, then the session
will be assigned to the ‘‘default group.’’

Make sure to test your classifier function before putting it into production. A poorly written classifier
function can render the system unusable by causing all new sessions to time out. In addition, make sure
to enable the Dedicated Administrator Connection. The DAC bypasses the classifier function and can be
used to gain access to the server if there is a problem.

Classifier functions are subject to a few special conditions:

❑ They should always be created with server scope, meaning they should reside in the master
database.

543



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 544

Chapter 11: Optimizing SQL Server

❑ Only one classifier function can be active at any point in time, and the active function cannot be
dropped from the database.

❑ The classifier function must finish quickly to avoid causing connection time-outs.

The following table includes several functions that are useful in classifying workload groups. Included
are a few functions that are new to SQL Server 2008 and are intended specifically for this task:

Function Description

HOST_NAME Returns the name of the workstation.

APP_NAME Returns the name of the application; however, not every
application sets this value.

SUSER_NAME Returns the login name of the user in the syslogins table.

SUSER_SNAME Returns the login name of the user based on their security
identifier.

IS_SRVROLEMEMBER Determines if the login is a member of a fixed server role.

IS_MEMBER Determines if the login is a member of a Windows group or
database role.

LOGONPROPERTY Returns information about the login, including the default
database.

CONNECTIONPROPERTY Returns information about the connection that the request
originated from, including the IP address and authentication
mode.

ORIGINAL_DB_NAME Returns the name of the database that was specified in the
connection string.

The following example demonstrates how to create a classifier function:

USE master
GO

CREATE FUNCTION fnTestClassifier()RETURNS SYSNAME
WITH SCHEMABINDING
AS
BEGIN

DECLARE @grpName SYSNAME
IF (SUSER_SNAME() = ‘sa’)
SET @grpName = ‘wrkgroupAdmin’

ELSE IF (APP_NAME() like ‘%Logistics%’)
SET @grpName = ‘wrkgroupLogDep’

ELSE IF (APP_NAME() like ‘%REPORT SERVER%’)
SET @grpName = ‘wrkgroupReports’

544



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 545

Chapter 11: Optimizing SQL Server

ELSE
SET @grpName = ‘default’

RETURN @grpName
END;

Assign the Classifier Function and Reconfigure
The final step in configuring the Resource Governor is to assign the classifier function. Before completing
the configuration, make sure that you have thoroughly tested the function, and also make sure to enable
the Dedicated Administrator Connection just in case something goes wrong. The following example
shows how to complete the configuration:

ALTER RESOURCE GOVERNOR WITH (CLASSIFIER_FUNCTION = dbo.fnTestClassifier)
GO
ALTER RESOURCE GOVERNOR RECONFIGURE

The new configuration should take effect immediately.

Monitoring the Resource Governor
Monitoring the various workload groups and resource pools is a critical part of maintaining a smoothly
running server. Monitoring will allow you to identify potential configuration issues and correct them
before they affect critical business operations. There are three means of getting statistical information
about the Resource Governor: performance counters, events, and system views.

Performance Counters
Performance counters are the preferred means of reporting Resource Governor performance statistics.
There are two new counters that can be used for this purpose:

❑ SQLServer:Workload Group Stats — Reports workload group statistics, such as the number of
active requests and how many are receiving less than optimal resources.

❑ SQLServer:Resource Pool Stats — Reports a variety of resource pool memory and CPU statis-
tics, including overall CPU usage and the total memory in use by the pool.

Events
The Resource Governor also includes several new events that you can monitor using SQL Trace. These
are listed below:

❑ CPU Threshold Exceeded — This event fires whenever the Resource Governor detects a query
that exceeds the maximum CPU time configured for the workload group. This event is only
guaranteed to fire if the threshold is exceeded for more than 5 seconds.

❑ PreConnect:Starting — This event is reported when a logon trigger or classifier function is
executed.

❑ PreConnect:Completed — This event indicates that a logon trigger or classifier function has
completed.

545



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 546

Chapter 11: Optimizing SQL Server

System Views
Rounding out the monitoring tools for the Resource Governor are several new catalog and management
views that provide saved configuration information and current statistics:

❑ sys.resource_governor_configuration— Displays the saved Resource Governor configura-
tion. This view only includes two columns that correspond to the classifier function name and
whether or not the Resource Governor is enabled.

❑ sys.resource_governor_resource_pools— Displays the saved memory and CPU threshold
values that have been configured for each resource pool.

❑ sys.resource_governor_workload_groups— Displays a list of defined workload groups,
including the saved value of each configurable parameter, as described in the previous section
on configuring workload groups.

❑ sys.dm_resource_governor_configuration— Shows the current in-memory configuration
values for the Resource Governor, including whether or not a re-configuration is pending.

❑ sys.dm_resource_governor_resource_pools— This management view returns the in-memory
configuration values of each resource pool, as well as accumulated statistics and current resource
usage information.

❑ sys.dm_resource_governor_workload_groups— Returns the current configuration, accumu-
lated statistics, and current resource usage information for each workload group.

The following code shows how to re-set the Resource Governor statistics that are reported by the resource
pool and workload group management views. You may want to do this after making significant config-
uration changes to the Resource Governor.

DBCC TRACEON (8041, -1)
GO
ALTER RESOURCE GOVERNOR RECONFIGURE

Try It Out Using the Resource Governor
Imagine that you are faced with the unenviable situation of permitting ad hoc query access to a few
reporting users, while at the same time guaranteeing that business application users are not overly
affected. This exercise will demonstrate how to use the Resource Governor to accomplish this goal.
Before getting started, you will need a couple of users to simulate an ad hoc reporting user and a business
application user.

1. Open a new command window in SSMS, and execute the following code to create these users:

-- PREP Task 1, create test users
USE AdventureWorks2008
GO
CREATE LOGIN AdHocUser WITH password=’P@ssw0rd’,

DEFAULT_DATABASE=AdventureWorks2008
exec sp_grantdbaccess ‘AdHocUser’

546



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 547

Chapter 11: Optimizing SQL Server

exec sp_addrolemember ‘db_datareader’, ‘AdHocUser’

GO
CREATE LOGIN FinanceUser WITH password=’P@ssw0rd’,

DEFAULT_DATABASE=AdventureWorks2008
exec sp_grantdbaccess ‘FinanceUser’
exec sp_addrolemember ‘db_datareader’, ‘FinanceUser’

2. You must create a classifier function in the master database that will assign each user to a dif-
ferent workload group. The function can be created ahead of time and will not actually be used
until you bind it to the Resource Governor. Enter the following code in a command window and
execute it:

-- PREP Task 2, create a classifier function
USE master
GO
CREATE FUNCTION fnClassifier()
RETURNS sysname
WITH SCHEMABINDING
AS
BEGIN
DECLARE @wrkGroup sysname

IF SUSER_SNAME()=’AdHocUser’ BEGIN
SET @wrkGroup=’wrkgrpAdHoc’

END ELSE IF SUSER_SNAME()=’FinanceUser’ BEGIN
SET @wrkGroup=’wrkgrpFinance’

END ELSE BEGIN
SET @wrkGroup=’default’

END
RETURN @wrkGroup

END
GO

3. Now that you have a classifier function and a couple of test users, you are ready to configure the
Resource Governor itself. Most of the configuration tasks can be done from one screen in SQL
Server Management Studio. In Object Explorer, expand the Management tree, then right-click
‘‘Resource Governor’’ and select Properties.

4. Click on the ‘‘Enable Resource Governor’’ checkbox to enable editing, and then enter the con-
figuration as described in the following table (see Figure 11-18). Most properties in the Resource
Governor are case-sensitive, so be careful when entering the configuration.

Resource Pool Associated Workload Group

poolAdHoc wrkgrpAdHoc
Maximum CPU % = 10 Maximum Requests = 15
Maximum Memory % = 25 Degree of Parallelism = 4

poolFinance wrkgrpFinance
(use default settings) (use default settings)

547



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 548

Chapter 11: Optimizing SQL Server

Figure 11-18: Resource Governor configuration.

5. Make sure to select the ‘‘Classifier function name’’ as shown in Figure 11-18, then click OK to
save the configuration and enable the Resource Governor. The icon in Object Explorer should
change to indicate that the Resource Governor is running.

6. Next, if you are running on a system with multiple CPUs, then you will need to limit the number
of CPUs available to SQL Server to force the workloads to compete for the same CPU. There will
never be any CPU resource contention as long as there are more CPUs available than there are
requests. You can set the CPU affinity in SQL Server without restarting by executing the follow-
ing code:

-- PREP Task 3, set CPU Affinity
sp_configure ‘show advanced options’, 1;
RECONFIGURE WITH OVERRIDE;
GO
sp_configure ‘affinity mask’, 1; -- default value of 0 means use all CPUs
GO
sp_configure ‘affinity i/o mask’, 1;
RECONFIGURE WITH OVERRIDE;

7. Next, you will need to simulate two competing CPU-intensive workloads to confirm that the
Resource Governor is functioning. You must open a separate query session for each of the two
users that were created above. From SSMS, select File � New � Database Engine Query, then
change the authentication mode to ‘‘SQL Server Authentication’’ and enter the username and
password for AdHocUser. Then repeat this process for FinanceUser. Once the two query sessions
have been created, you can confirm that they were assigned to the correct resource pools by run-
ning the following code in a new Query window. You should receive results similar to what is
shown in Figure 11-19.

-- Confirm users are connected to the correct pools
select rp.name ‘PoolName’, wg.name ‘WrkGrpName’,xs.session_id,
xs.login_name,xs.login_time,xs.[program_name]

548



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 549

Chapter 11: Optimizing SQL Server

from sys.dm_exec_sessions xs
inner join sys.dm_resource_governor_workload_groups wg on

xs.group_id=wg.group_id
inner join sys.dm_resource_governor_resource_pools rp on

wg.pool_id=rp.pool_id
WHERE wg.pool_id>=256

Figure 11-19: Confirming resource pool assignment.

8. Assuming that the resource pool assignments are correct, all that remains is to monitor the pools
while running some CPU-intensive workloads. To monitor the pools, you will use the Reliability
and Performance Monitor. Open this tool from the control panel, and add counters to monitor
the CPU usage percentage of each resource pool as shown in Figure 11-20. Start monitoring as
soon as you finish entering the counters.

Figure 11-20: Adding counters to monitor resource pool usage.

9. Finally, enter the following code into the two Query windows that you opened for AdHocUser
and FinanceUser, but wait to execute the code.

-- CPU Intensive Workload
USE AdventureWorks2008
GO

-- This query will peg the CPU at 100%

549



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 550

Chapter 11: Optimizing SQL Server

SELECT MAX(p1.r1 + p2.r2) mv FROM
(SELECT ROW_NUMBER() OVER (ORDER BY ProductID) r1
FROM Production.TransactionHistory) p1

CROSS JOIN
(SELECT ROW_NUMBER() OVER (ORDER BY ProductID DESC) r2
FROM Production.TransactionHistory) p2

OPTION (MAXDOP 1)

The code above will generate a very CPU-intensive workload. (It should peg the CPU at 100 percent
for the duration of the query.) Execute the workload code for the AdHocUser first, then wait about 10
seconds and execute it for the FinanceUser. Both queries will continue running for a very long time.
While they are running, switch over to the Performance Monitor screen and observe the results. You
should observe something similar to what is shown in Figure 11-21.

Figure 11-21: Performance Monitor showing the Resource Governor in action.

Notice that when the AdHocUser first started to run the query, they received all of the CPU resources
because no other workloads were competing. However, once the FinanceUser started their query, then
the Resource Governor kicked in and throttled the AdHocUser down to the configured CPU maximum
of 10 percent.

550



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 551

Chapter 11: Optimizing SQL Server

If your results show both queries using 100 percent CPU, then you have a multi- CPU system and have
not set the CPU affinity as described previously. When there are more CPUs than active queries, then
every query will receive its own CPU resources.

When you are finished observing the results, you can stop both queries and close the associated Query
windows. Once the Query windows are closed, you can use SSMS to disable the Resource Governor.
Finally, if you configured SQL Server with a CPU affinity, then you can clear it by re-configuring ‘affinity
mask’ and ‘affinity i/o mask’ as shown in step 6, but using a parameter of ‘0’.

Summary
I hope that this chapter has provided you with some insights into optimization that you will be able to
put to use in your own databases. Remember that there is always more than one way to solve a problem,
and no particular method that does the job is necessarily ‘‘right’’ or ‘‘wrong.’’ When faced with a difficult
situation, use your imagination and be creative in your solution.

I would like to reiterate the importance of a good design in maintaining high performance levels, espe-
cially as the database grows over time. Good designs will scale well, use a minimal amount of server
resources, and rarely require administrative intervention. Poor designs, on the other hand, tend to result
in ongoing performance issues. If you start with a solid design, it can make a world of difference.

Having a hot or warm standby server (or some other failover solution) is critical to maintaining a
highly available server platform. Chapter 12 discusses how to use Windows Clustering, SQL Server
Log-Shipping, and SQL Server Mirroring configurations to maximize the availability of your database.

551



Leiter c11.tex V3 - 03/25/2009 12:31pm Page 552



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 553

12
SQL Server High

Availability

It’s that sinking feeling you get when your cell phone or pager goes off at 3:00 in the morning. No
one ever calls to tell you that things are running smoothly (and if they did, they’d probably wait
until a more appropriate time). No, the server has gone down . . . the database server . . . your
server.

The problem could be any number of things. A failed disk, network problems, or power outages are
among the many things that can plague you as a database administrator. However, with the right
combination of hardware and software, many of these outages can be avoided.

This chapter should provide you with a basic understanding of the topic of high availability and the
tools provided to help improve the availability of your databases. This chapter covers the following
topics:

❑ Availability

❑ Clustering

❑ Log shipping

❑ Database mirroring

Introduction to High Availability
The definition of high availability is subjective. This is because you may have some applications
that need to be available 24 hours a day, seven days a week; and you may have other database
applications that only need to be available during business hours. High availability isn’t always
about full-time operations, but, rather, about services being accessible to your users when they
need them.

High availability is also about being able to meet Service Level Agreements (SLAs) or Operating
Level Agreements (OLAs), which define your requirements for maintaining application and ser-
vice availability in order to meet user demand and keep services online. For example, there is a



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 554

Chapter 12: SQL Server High Availability

concept known as the rule of nines. The rule of nines is based on the realization that 100 percent
availability is unattainable. There are too many variables that affect our networked systems to absolutely
guarantee 100 percent uptime. These can be power outages, floods, fires, tornados, or human error. For
example, I can remember a specific incident where a developer executed a query against a production
database that managed to lock the database for more than an hour.

The rule of nines identifies a more realistic series of uptime requirements based on percentage values just
shy of 100 percent. The following table lists the number of minutes per year based on the rule of nines:

Percentage of Uptime per Year Downtime per Year in Minutes

99% 5,259.6

99.9% 525.96

99.99% 52.596

99.999% 5.2596

As you can see, the ultimate goal for any high-availability solution is the five nines rule — 99.999
percent — which provides you with a little more than 5 minutes of downtime per year. Again, you
might not be supporting an application that needs to be running for all but an hour a year, so plan your
availability solutions accordingly.

In Chapter 9, you learned about backup and recovery strategies as part of a disaster recovery plan. These
days, the term disaster recovery has fallen out-of-favor. The more preferred term is business continuity. The
idea is that you want to prevent your systems from becoming unavailable, or if a service does fail, its
impact in your environment is minimal. The high-availability solutions identified in this chapter can help
you maintain business continuity in the event of an outage.

High availability may also be dictated by your budget. To achieve the five nines of availability, you might
have to maintain multiple data centers around the world, with redundancy built in at each location.
While a full list of options for a true five nines environment is outside the scope of this book, this chapter
will educate you about the features inherent to Microsoft SQL Server 2008 that allow you to improve
your application availability.

Failover Clustering
When it comes to high availability with instant or near-instant failover, clustering provides an invaluable
service. SQL Server Clustering is based on the Windows Clustering service and is only available in the
Enterprise and Datacenter Editions of Windows Server. Clustering works by using two or more servers
(referred to as nodes) to act as a single virtual server for your end-users. Windows Server 2003 supports a
maximum of eight nodes in a cluster, while Windows Server 2008 supports up to 16 nodes.

Clustering is available in both the Enterprise and Standard Editions of SQL Server; however, a key dif-
ference is that the Standard Edition is limited to two nodes only.

When reviewing high-availability options for SQL Server, an understanding of how Windows Clustering
works, as well as how SQL Server can use clustering, will help you make an informed decision. In this

554



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 555

Chapter 12: SQL Server High Availability

section, you’ll learn about the basics of Windows Clustering and the pros and cons of how it works with
SQL Server.

Windows Clustering — A Quick Primer
Microsoft offers two ways to introduce high availability into the Windows Server operating system:
Network Load Balancing and Windows Clustering. Network Load Balancing (NLB) is based on the premise
of several different servers operating somewhat independently but acting as a single unit. One of the best
examples of an implementation of NLB is a Web farm. As you can see in Figure 12-1, each server that
participates in a Web farm operates its own Web Services and usually has its own copy of the pages and
applications that will be served to the public. The members of the Web farm appear to your clients as
a single unified web site. For example, when UserA connects to www.yoursite.you, she might actually
be connecting to server 37; but when UserB connects to www.yoursite.you, he might be connecting to
server 42.

www.yoursite.you

User A

User B

Server 51

Server 42

Server 37

Figure 12-1: Network Load Balancing.

With Windows Clustering (shown in Figure 12-2), cluster-aware applications access data on a shared
volume known as a quorum. The quorum is responsible for storing the shared data that will be accessed
by the cluster nodes, as well as identifying which node is the primary node for the application. In many
Windows Clustering scenarios, the quorum device is a single shared storage unit that requires each node to
have a connection to it, using either Small Computer System Interface (SCSI) or Fibre Channel connectors.
Unfortunately, this single storage model allows for a single point of failure should the quorum device no
longer be available. Enhancements in the Windows Clustering service, however, can allow the quorum
data to be replicated, so that each node can have a copy of the quorum data connected locally. This
allows clusters to be used over wide area networks (WANs) or virtual private networks (VPNs). This is
also referred to as a majority node cluster.

When building highly available applications, many organizations employ a model when NLB is used on
the front-end, for firewall, proxy, and Web Services; and clustering is used on the back-end, for database
applications.

555



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 556

Chapter 12: SQL Server High Availability

Node A

Node B

ClusterServer1

Shared Disk

Figure 12-2: Windows Clustering.

Clustering Components
So, what do you need to begin clustering? Well, you’ll need a couple of servers. Although having iden-
tical hardware in both servers is not required, at the very least, the hardware in both servers should be
comparable (same processors, disk configuration, memory, etc.). I can remember a specific incident that
happened years ago when two servers that had the same manufacturing defect were used in a cluster,
and both servers failed at the same time. The likelihood of this happening again is rare, but it is some-
thing to consider when provisioning hardware. The platform, OS, service pack, and patch level must be
the same on all nodes in the cluster.

You will also need a shared storage device. Serial Attached SCSI, Fibre Channel, and iSCSI are common
interfaces for many cluster storage devices. If you are using iSCSI in your clustering solution, you will
need to make sure you have a dedicated Network Interface Card (NIC) for the iSCSI connection that is
separate from your Windows network adapter. If using Windows Server 2008, ensure that you are using
a compatible storage device. On this device, you will create at least two volumes. One volume will be
used as a witness disk, which holds the cluster configuration information. You will then need one or
more data volumes for your applications.

Clustering works by defining a virtual server for the cluster. This virtual server appears to be a sin-
gle server to your clients and end-user applications. It is given a unique name and IP address, and, as
explained in Chapter 2, SQL Server can then be installed on it.

Active/Passive Clustering
Most applications (and SQL Server is no exception) use what is known as active/passive clustering. In the
active/passive clustering model, for a single application, one node is designated as the primary node. All
requests that come into the cluster virtual server are directed to this primary cluster. Secondary nodes are
failover nodes and only become active when the primary node is unavailable and no heartbeat exists for
that node. When this happens, a secondary node begins taking over the work for the cluster, allowing
applications to continue running with little noticeable interruption. Figure 12-2 is an example of an

556



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 557

Chapter 12: SQL Server High Availability

active/passive cluster. Because your client applications always use the virtual server and not the primary
server, they are oblivious to the work that goes on behind the scenes.

Active/Active Clustering
First of all, the term active/active can be a little misleading. You would think that unlike an active/passive
cluster (in which one node does all the work, while the other nodes hang back and wait for something
interesting to happen), an active/active cluster would ensure that everyone is playing an equal part in
making this application highly available. This, however, is not the case. An active/active cluster usually
describes a scenario in which more than one cluster-aware application is running, and each application
has a different node configured as the primary node for that application. The primary reason for this
is mainly because of the technical limitations of how databases and other application services work.
Focusing just on SQL Server, for example, only one server can write to the active transaction log at a
time. Because the other nodes are not able to write to the same transaction log, what else is there for
them to do?

Well, you could configure a second virtual server using one of the existing standby nodes as the primary
for this new server, and install another instance of SQL Server on that one. For example, suppose you
have two servers, Node A and Node B, that are configured so that Node A is the primary node and
Node B is the secondary node for ClusterServer1. You then decide to use these two servers to create a
second virtual server named ClusterServer2, only this time Node B is the primary node, and Node A is
the secondary node, as shown in Figure 12-3.

Node A

Node B

ClusterServer1

ClusterServer2

Shared Disk

Figure 12-3: Active/active clustering.

In order for active/active clustering to work, the standby servers must be able to handle the combined
workload for both virtual servers should they fail. So, if Server A comes to a screeching halt, Server B has
to be able to respond to client requests for both virtual servers. Now, in a two-node environment, this
may not be an optimal solution, but remember that with Windows Server 2008, you can have up to 16
nodes in a cluster.

Technically, this is really more of an (active/passive)/(active/passive) implementation, but that’s just
splitting hairs.

557



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 558

Chapter 12: SQL Server High Availability

Considering Clustering
Now that you’re familiar with how Windows Clustering works, you can see that it offers you some
significant benefits. It can provide instant or near-instant failover with no client reconfiguration required,
because they point to the cluster name, not individual nodes. It is also a high-availability solution that
provides failover of the entire instance of SQL Server, not just a specific database. Cost may be a factor,
though, when you consider the hardware and software requirements.

Log Shipping
Log shipping is another method by which you can maintain business continuity. Unlike failover cluster-
ing, log shipping is managed on a per-database basis. It provides you with the ability to designate one or
more servers to hold a secondary copy of the database in question. It does this by making regular back-
ups of the transaction log and then restoring the backups onto a secondary server. This section explains
how to configure log shipping and how to perform failover for a database. Log shipping is also available
in the Workgroup Edition of SQL Server 2008.

Preparing for Log Shipping
Before you can configure log shipping, you will want to ensure that a few things have been correctly
configured. First of all, ensure that reliable network connectivity exists between the primary server and
the standby server. When using the Wizard, you can make a full backup of the current server and restore
that backup on the standby server. If your database is particularly large, a full backup from the Wizard
may not be possible, so you may need to manually configure the backup and restore for the source
database.

Next, ensure that your database is using the Full recovery model. This is required because the log ship-
ping process must make regular backups of the transaction log. Using the Bulk-Logged recovery model
prevents data entered at the primary server using a non-logged bulk operation from being applied to the
secondary servers, as well.

You will also want to ensure that the target database doesn’t already exist on the standby server. Typ-
ically, in production environments, this isn’t a problem. However, sometimes a server that had been
primarily used for testing gets ‘‘promoted’’ into the production environment. If this is the case, ensure
that the server is clean, and if it does have a copy of the production database, it is from a recent backup.

Just a quick note about the examples you will see in this chapter: For the sake of (relative) simplicity, I am
using two additional instances of SQL Server 2008 on the same server as my primary test environment.
Keep in mind that in a production environment, you will likely be using separate physical servers for
each of the roles.

Configuring Log Shipping with SQL Server Management
Studio

You can configure log shipping for a database at any time by viewing the Properties sheet of the database
or by right-clicking on the database and selecting Tasks � Ship Transaction Logs from Object Explorer,
as shown in Figure 12-4.

558



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 559

Chapter 12: SQL Server High Availability

Figure 12-4: Configuring log shipping.

In the Transaction Log Shipping page, you can configure the required options for backing up the
database, designating secondary servers, and a monitoring server. To begin, you will need to enable this
database as the primary server for log shipping. Figure 12-5 shows a database that has already been
configured for log shipping and monitoring. Notice the checkbox that indicates this server is the primary
server.

If you click the ‘‘Backup Settings’’ button, a new window will appear that allows you to specify the loca-
tion and frequency for the backup operations. Assuming that the secondary servers will be on different
physical servers (which they should be — otherwise, you really don’t gain much benefit from log ship-
ping), you will need to provide a UNC path that the secondary servers can use to retrieve the backups
generated by the log shipping process. The transaction logs will be copied from this location to a local
file system path on each secondary server. You can also specify a local file system path where the initial
full backup and subsequent Transaction Log backups will be located.

If you are going to have multiple secondary servers and you want to be able to continue using the alter-
nate secondary servers after one of them has been promoted to the new primary server, consider placing
the backup folder on a share that is accessible to all servers and will not be affected if there is a general
server failure on the primary server.

Notice in Figure 12-6 that you can also specify automatic cleanup behavior for files generated by log
shipping. The default configuration deletes files older than 72 hours and will generate an alert when a
backup hasn’t been performed for an hour. You can also specify the frequency of the backup operation

559



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 560

Chapter 12: SQL Server High Availability

and change the default name assigned to the backup job. You can also enable or disable backup compres-
sion from this window.

Figure 12-5: Log Shipping configuration page.

One thing you will want to be careful about, especially with environments that have a heavy transac-
tion processing load, is how often the Transaction Log backup runs. A student of mine once ran into
an issue where they had configured the backup job to run every 5 minutes because of the large number
of transactions being processed. Unfortunately, at roughly the same time every week, another main-
tenance task would run that would cause the backup job to take longer than expected. This meant
that the restore operation on the standby server was still waiting for the new log before the backup
had been moved over. The remedy I suggested to this student was to specify a different schedule that
would back up and restore the transaction log less frequently while this other maintenance task ran. It
resulted in a larger file being copied over, but the backup and copy were able to complete before the next
restore job.

Once you’ve configured the backup job settings, you can configure one or more secondary servers. Sec-
ondary servers can be configured as a hot standby that will sit in a NO RECOVERY state until failover is
initiated, or they can also be configured as a Read Only copy of the database (which may be helpful for
querying data for reporting and analysis services).

560



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 561

Chapter 12: SQL Server High Availability

To configure a new secondary server, from the Transaction Log Shipping page, click Add. This also
brings up a new window with three option screens. From the header section of the window, you can
specify the name of the secondary server and the name of the standby database. If used for failover, the
name of the secondary database should be the same as the primary to avoid re-configuring your client
applications.

Figure 12-6: Backup options.

As you can see from Figure 12-7, you can configure the options for performing the initial restore of the
database. You can have the restore begin immediately after configuring the log shipping options; you can
specify an existing backup file to use for building a new standby server; or, if the standby server already
has a restored copy of the database, you can use that database instead. If you have restored the database
on a new standby server using existing backups, make sure you apply all Transaction Log backups to
ensure that the database is in a consistent state.

The Copy Files tab allows you to configure options for the file copy task (see Figure 12-8). A new job will
be created that copies the files created by the backup operation to the destination folder on the secondary
server. As with the backup job, you can specify the frequency of this job and also the options for cleaning
up older files.

561



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 562

Chapter 12: SQL Server High Availability

Figure 12-7: Configuring standby servers.

The Restore Transaction Log tab allows you to configure the restore operation. As you can see in
Figure 12-9, you can choose to have the destination database use the NO RECOVERY mode (which prevents
client access) or the STANDBY mode (which allows Read Only access to the database). Depending on the
frequency of the restore operations and the tasks that will use the standby database, you may need to
disconnect users when restoring the database backups. So, enable that checkbox if necessary. You can
also configure the restore operation to be delayed to help guarantee that the backup and copy operations
have a chance to complete, and specify how long the server should wait without performing a restore
before an alert is fired. Finally, you can configure the appropriate schedule for the restore tasks. As with
the other scheduled operations, the Transaction Log restore will run every 15 minutes.

Optionally, you can also configure a server to monitor log shipping operations. This server should be a
SQL Server that doesn’t directly participate in the log shipping process. Although you could potentially
use the primary server or one of the secondary servers as the Log Shipping monitor, it may be counter-
productive, because you want to be able to validate the status of the log shipping operation between the
primary and standby servers. Because the purpose of log shipping is to create a standby server that could
be used if the primary fails, it makes little sense to put the monitor on the server that is more likely to
fail, or will be the one to handle the additional workload if the primary does fail.

The purpose of the Log Shipping monitor is simply to track the details of the log shipping process for
that database. It will keep track of primary server backups, copy operations, and secondary server restore
operations. It will also generate alert information for failed backups. Although this data is recorded on
each of the respective servers, having a single repository for this data may make it easier to track and
monitor the log shipping process.

562



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 563

Chapter 12: SQL Server High Availability

Figure 12-8: Copy Files options.

To add a monitor server, from the Transaction Log Shipping page, select ‘‘Use a monitor server instance,’’
and then click Settings to add and configure the new server. As you can see in Figure 12-10, you can
specify the server that will act as the monitoring server and the login that is used as the proxy account of
the log shipping job. You can also configure the history retention value and the name for the job that will
generate alerts if there is a problem with the backup, copy, or restore jobs.

Once the Log Shipping monitor is configured, you can also use it to view reports about any and all log
shipping databases that this server monitors. Do this by right-clicking on the server name from Object
Browser and then selecting Reports � Standard Reports � Transaction Log Shipping Status. Whereas
the primary and secondary servers will let you view report information about the configuration on the
servers themselves, using a monitoring server allows you to view the status of the primary and secondary
servers from just the one report. You can also use this server to monitor multiple instances of log shipping
for all your databases and keep track of them through this reporting tool.

Once you have your log shipping options configured, you can apply them to the database, and if every-
thing is configured properly, the backups should begin right away. Unless you’ve changed the schedule
for the jobs, the default has them run every 15 minutes.

Configuring Log Shipping with Transact-SQL
If you prefer, you can use a series of stored procedures to configure log shipping instead of Management
Studio. This may make it easier for you to streamline the log shipping configuration process, especially
if you will be configuring multiple secondary servers. Several stored procedures are available that will
help automate the process of configuring log shipping.

563



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 564

Chapter 12: SQL Server High Availability

Figure 12-9: Restoring the logs.

The following table lists primary server-stored procedures:

Stored Procedure Description

sp_add_log_shipping_primary_database Use this to configure the primary database for log
shipping.

sp_add_log_shipping_primary_secondary This will add a secondary database to an existing
primary.

sp_change_log_shipping_primary_
database

This stored procedure changes the primary
database settings.

sp_cleanup_log_shipping_history You can use this to clean up local job history.

sp_delete_log_shipping_primary_
database

When you want to stop log shipping, you can use
this stored procedure.

sp_delete_log_shipping_primary_
secondary

If you want to remove a secondary server from the
primary, use this stored procedure.

sp_help_log_shipping_primary_database This will display primary database settings for the
local server.

sp_help_log_shipping_primary_
secondary

This will display secondary server names for a
specified primary database.

sp_refresh_log_shipping_monitor This will update the monitor with the latest data.

564



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 565

Chapter 12: SQL Server High Availability

Figure 12-10: Log shipping monitor.

The following table lists secondary-server-stored procedures:

Stored Procedure Description

sp_add_log_shipping_secondary_database This will add a secondary database.

sp_add_log_shipping_secondary_primary Use this to specify the primary server and
database information for the secondary server.

sp_change_log_shipping_secondary_
database

This allows you to change settings on the
secondary database.

sp_change_log_shipping_secondary_primary This allows you to change additional settings
such as destination folder and file retention.

sp_cleanup_log_shipping_history This will clean up local history.

sp_delete_log_shipping_secondary_
database

Use this to remove a secondary database.

sp_delete_log_shipping_secondary_primary This will remove information about the primary
from the secondary server.

Continued

565



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 566

Chapter 12: SQL Server High Availability

Stored Procedure Description

sp_help_log_shipping_secondary_database Use this to retrieve secondary database settings.

sp_help_log_shipping_secondary_primary This allows you to view the settings for the
primary database.

sp_refresh_log_shipping_monitor Update the monitor with the latest information
about the secondary database.

The following table lists monitor-server-stored procedures:

Stored Procedure Description

sp_add_log_shipping_alert_job Creates an alert job if one doesn’t already exist.

sp_delete_log_shipping_alert_job Removes the alert job if there are no primary
databases listed.

sp_help_log_shipping_alert_job This will return the job ID of the alert job.

sp_help_log_shipping_monitor_
primary

Use this to display monitor records about the
specified primary database.

sp_help_log_shipping_monitor_
secondary

Use this to display monitor records about the
specified secondary database.

If you want to see some of these stored procedures in action, rather than immediately applying the
log shipping changes to the primary database, you can choose to script the commands to a file. You
can then alter the file or copy its contents to automate the creation of multiple secondary databases.
Following is the script that was generated from the example configuration presented earlier. Note that
there are several elements that must be configured on both the primary and secondary servers. If you
want to run the script to configure your servers, be sure to replace the server names AUGHTEIGHT,
AUGHTEIGHT\DAGOBAH, and AUGHTEIGHT\HOTH with your server names as needed.

-- Execute the following statements at the Primary to configure Log Shipping
-- for the database [AUGHTEIGHT].[AdventureWorks2008],
-- The script needs to be run at the Primary in the context of the [msdb] database.
--------------------------------------------------------------
Adding the Log Shipping configuration

-- ****** Begin: Script to be run at Primary: [AUGHTEIGHT] ******

DECLARE @LS_BackupJobId AS uniqueidentifier
DECLARE @LS_PrimaryId AS uniqueidentifier

566



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 567

Chapter 12: SQL Server High Availability

DECLARE @SP_Add_RetCode As int

EXEC @SP_Add_RetCode = master.dbo.sp_add_log_shipping_primary_database

@database = N’AdventureWorks2008’

,@backup_directory = N’\\AughtEight\SQLLogs’

,@backup_share = N’\\AughtEight\SQLLogs’

,@backup_job_name = N’LSBackup_AdventureWorks2008’

,@backup_retention_period = 4320

,@backup_compression = 1

,@monitor_server = N’AUGHTEIGHT\HOTH’

,@monitor_server_security_mode = 1

,@backup_threshold = 60

,@threshold_alert_enabled = 1

,@history_retention_period = 5760

,@backup_job_id = @LS_BackupJobId OUTPUT

,@primary_id = @LS_PrimaryId OUTPUT

,@overwrite = 1

IF (@@ERROR = 0 AND @SP_Add_RetCode = 0)
BEGIN

DECLARE @LS_BackUpScheduleUID As uniqueidentifier

567



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 568

Chapter 12: SQL Server High Availability

DECLARE @LS_BackUpScheduleID AS int

EXEC msdb.dbo.sp_add_schedule

@schedule_name =N’LSBackupSchedule_AUGHTEIGHT1’

,@enabled = 1

,@freq_type = 4

,@freq_interval = 1

,@freq_subday_type = 4

,@freq_subday_interval = 15

,@freq_recurrence_factor = 0

,@active_start_date = 20081111

,@active_end_date = 99991231

,@active_start_time = 0

,@active_end_time = 235900

,@schedule_uid = @LS_BackUpScheduleUID OUTPUT

,@schedule_id = @LS_BackUpScheduleID OUTPUT

EXEC msdb.dbo.sp_attach_schedule

@job_id = @LS_BackupJobId

,@schedule_id = @LS_BackUpScheduleID

EXEC msdb.dbo.sp_update_job

@job_id = @LS_BackupJobId

,@enabled = 1

END

EXEC master.dbo.sp_add_log_shipping_primary_secondary

@primary_database = N’AdventureWorks2008’

,@secondary_server = N’AUGHTEIGHT\DAGOBAH’

,@secondary_database = N’AdventureWorks2008’

568



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 569

Chapter 12: SQL Server High Availability

,@overwrite = 1

-- ****** End: Script to be run at Primary: [AUGHTEIGHT] ******

-- Execute the following statements at the Secondary to configure Log Shipping
-- for the database [AUGHTEIGHT\DAGOBAH].[AdventureWorks2008],
-- the script needs to be run at the Secondary in the context of the
-- [msdb] database.
----------------------------------------------------------------------------
-- Adding the Log Shipping configuration

-- ****** Begin: Script to be run at Secondary: [AUGHTEIGHT\DAGOBAH] ******

DECLARE @LS_Secondary__CopyJobId AS uniqueidentifier
DECLARE @LS_Secondary__RestoreJobId AS uniqueidentifier
DECLARE @LS_Secondary__SecondaryId AS uniqueidentifier
DECLARE @LS_Add_RetCode As int

EXEC @LS_Add_RetCode = master.dbo.sp_add_log_shipping_secondary_primary

@primary_server = N’AUGHTEIGHT’

,@primary_database = N’AdventureWorks2008’

,@backup_source_directory = N’\\AughtEight\SQLLogs’

,@backup_destination_directory = N’C:\CopiedLogs’

,@copy_job_name = N’LSCopy_AUGHTEIGHT_AdventureWorks2008’

,@restore_job_name = N’LSRestore_AUGHTEIGHT_AdventureWorks2008’

,@file_retention_period = 4320

,@monitor_server = N’AUGHTEIGHT\HOTH’

,@monitor_server_security_mode = 1

,@overwrite = 1

,@copy_job_id = @LS_Secondary__CopyJobId OUTPUT

,@restore_job_id = @LS_Secondary__RestoreJobId OUTPUT

,@secondary_id = @LS_Secondary__SecondaryId OUTPUT

IF (@@ERROR = 0 AND @LS_Add_RetCode = 0)

569



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 570

Chapter 12: SQL Server High Availability

BEGIN

DECLARE @LS_SecondaryCopyJobScheduleUID As uniqueidentifier
DECLARE @LS_SecondaryCopyJobScheduleID AS int

EXEC msdb.dbo.sp_add_schedule

@schedule_name =N’DefaultCopyJobSchedule’

,@enabled = 1

,@freq_type = 4

,@freq_interval = 1

,@freq_subday_type = 4

,@freq_subday_interval = 15

,@freq_recurrence_factor = 0

,@active_start_date = 20081111

,@active_end_date = 99991231

,@active_start_time = 0

,@active_end_time = 235900

,@schedule_uid = @LS_SecondaryCopyJobScheduleUID OUTPUT

,@schedule_id = @LS_SecondaryCopyJobScheduleID OUTPUT

EXEC msdb.dbo.sp_attach_schedule

@job_id = @LS_Secondary__CopyJobId

,@schedule_id = @LS_SecondaryCopyJobScheduleID

DECLARE @LS_SecondaryRestoreJobScheduleUID As uniqueidentifier

570



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 571

Chapter 12: SQL Server High Availability

DECLARE @LS_SecondaryRestoreJobScheduleID AS int

EXEC msdb.dbo.sp_add_schedule

@schedule_name =N’DefaultRestoreJobSchedule’

,@enabled = 1

,@freq_type = 4

,@freq_interval = 1

,@freq_subday_type = 4

,@freq_subday_interval = 15

,@freq_recurrence_factor = 0

,@active_start_date = 20081111

,@active_end_date = 99991231

,@active_start_time = 0

,@active_end_time = 235900

,@schedule_uid = @LS_SecondaryRestoreJobScheduleUID OUTPUT

,@schedule_id = @LS_SecondaryRestoreJobScheduleID OUTPUT

EXEC msdb.dbo.sp_attach_schedule

@job_id = @LS_Secondary__RestoreJobId

,@schedule_id = @LS_SecondaryRestoreJobScheduleID

END

DECLARE @LS_Add_RetCode2 As int

IF (@@ERROR = 0 AND @LS_Add_RetCode = 0)

BEGIN

EXEC @LS_Add_RetCode2 = master.dbo.sp_add_log_shipping_secondary_database

@secondary_database = N’AdventureWorks2008’

,@primary_server = N’AUGHTEIGHT’

571



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 572

Chapter 12: SQL Server High Availability

,@primary_database = N’AdventureWorks2008’

,@restore_delay = 0

,@restore_mode = 1

,@disconnect_users = 1

,@restore_threshold = 45

,@threshold_alert_enabled = 1

,@history_retention_period = 5760

,@overwrite = 1

END

IF (@@error = 0 AND @LS_Add_RetCode = 0)
BEGIN

EXEC msdb.dbo.sp_update_job

@job_id = @LS_Secondary__CopyJobId

,@enabled = 1

EXEC msdb.dbo.sp_update_job

@job_id = @LS_Secondary__RestoreJobId

,@enabled = 1

END

-- ****** End: Script to be run at Secondary: [AUGHTEIGHT\DAGOBAH] ******

Configuring Failover
To configure failover between a primary and a secondary server, use the following procedure:

1. If there are any uncopied backup files from the backup share, copy them to the copy destina-
tion on each secondary server.

2. Apply all remaining transaction logs in sequence to each secondary database.

3. Perform a backup of the active transaction log on the primary database, if possible. Copy the
backup and apply to each standby database.

572



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 573

Chapter 12: SQL Server High Availability

4. If the primary server is still operational, you may be able to configure the primary
database as a new secondary database once the failover has been completed. You can
facilitate this by backing up the transaction log on the primary database using the NO
RECOVERY option. This allows you to apply Transaction Log backups from the replacement
database.

5. Select one of the secondary servers to host the new primary database by placing the database
in recovery mode. As you learned in Chapter 9, this will bring the database to an operational
state.

If you have additional secondary servers, you can configure the newly recovered database to act as the
primary for additional secondary databases and make the original primary database a new secondary.
Perform the following steps to swap roles:

1. Disable the backup job on the original primary server.

2. Disable the copy and restore jobs on the original secondary server.

3. Use the same share created for the original primary for backups of the new primary
database.

4. Add the original database as a secondary database.

5. In the secondary database options on the original database, specify that the database is
already initialized. This will save you from having to do a full restore.

Because log shipping is configured on a per-database basis, you may need to perform some additional
tasks to ensure that your users can maintain consistent access to the database, even in the event of a
failover. First of all, the applications your clients are using must be aware of the change. This may require
that the application be manually configured to use the new primary server or that the old server name
be reassigned as an alias for the new server. Also, to ensure consistent access to the database from your
application, you will want to ensure that all associated metadata for that database is migrated over.
This includes SQL Server Logins, jobs, and alerts, to name a few. Because of some of the limitations of
log shipping, it is great for creating Read Only standby servers but is a moderate solution for failover
considerations.

Database Mirroring
Database mirroring is a relatively new method for ensuring database availability. Database mirroring
was first introduced in the earlier Community Technology Previews of SQL Server 2005; however, it
was disabled when the product was released. After further testing and certification of database mir-
roring, it was re-enabled when SP1 was released. Database mirroring hasn’t changed in SQL Server
2008, and the basic concept is very similar to log shipping in that transaction log records are sent from a
source database (known as the principal database) to a destination database (known as the mirror database).
However, instead of a transaction log being copied on a file basis, individual log records are sent on
a transaction-by-transaction basis. While database mirroring is also a database-level redundancy solu-
tion, it relies on constant communication between servers to maintain transactional integrity. Database

573



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 574

Chapter 12: SQL Server High Availability

mirroring also offers the added advantage of automatic and almost instantaneous failover when config-
ured with a third witness server.

Database mirroring is configured by establishing a partnership between the server hosting the principal
database and the server hosting the mirror database. Rather than using the file system as the method
of maintaining consistency between the two servers, communications are established and maintained
using SQL Server endpoints. Another key difference between log shipping and database mirroring is
that database mirroring restricts you to one principal and one mirror for each database.

Database mirroring requires the use of at least two instances of SQL Server. Although these instances
could conceivably be on the same physical server, it makes much more sense to have them on separate
servers to protect against server failure (see Figure 12-11).

Client

Mirror

Witness

Principal

Normal

Failover

Figure 12-11: Database mirroring.

The three server roles in a database mirroring configuration are as follows:

❑ Principal Server — The principal server hosts the copy of the database that clients connect to and
interact with. As transactions occur on the principal database, the transaction log records are
forwarded to the mirror database.

❑ Mirror Server — The mirror server hosts a copy of the principal database and applies the trans-
action log records sent by the principal database to keep the mirrored database in sync with the
principal database.

❑ Witness Server — The witness server is optional. It is only needed if automatic failover to the
mirror server is required in the case of a principal database failure. The witness server monitors
the status of the principal and mirror servers in a high-availability configuration, which is
described in the section ‘‘Database Mirroring Modes,’’ later in this chapter.

574



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 575

Chapter 12: SQL Server High Availability

When using database mirroring, the mirror database is not directly accessible for client requests because
it is in the constant state of recovering transaction log records. However, indirect access can be configured
by creating a Database Snapshot of the mirrored database. Keep in mind that Database Snapshots are a
point-in-time view of the database and will not reflect the ongoing modifications to the mirror.

It is also important to note that database mirroring cannot be used with databases that have
FILESTREAM storage enabled.

Client Redirection
One of the big advantages of database mirroring is that clients can automatically be redirected to the
mirror server in the case of a principal database failure. However, the automatic redirection is not a
server-based feature. The connection string of clients is configured to work with a mirrored database by
adding the Failover Partner attribute, as shown in the following example:

Server=AughtEight; Failover Partner=Dagobah; Database=AdventureWorks2008

If the client’s attempt to connect to the server identified by the Server attribute fails, it will try the server
identified by the Failover Partner attribute. The opposite is also true. If the client attempts to connect
to the failover partner and it is not available, it will try the original server.

Database Mirroring Modes
When building a mirroring solution, you can choose between three operating modes. The database can
be configured to use high-performance mode, high-safety without automatic failover mode, and high-safety with
automatic failover mode. Each operating mode has its advantages and disadvantages. It is important to
understand exactly what each mode provides and how it affects your high-availability solution.

High-Performance Mode
The high-performance mode uses asynchronous processing. In this mode, the principal server sends an
acknowledgment to the client application of a successful transaction as soon as it sends the corresponding
log record to the mirror server, but it does not wait for acknowledgment from the mirror server that the
log record was received. Under normal workload conditions, the latency between the principal and the
mirror is relatively small. However, if the principal server is under heavy workload, this can increase
the gap between the two partners.

In high-performance mode, there is no automatic failover and no witness server is required. A witness
server can be configured, but there is absolutely no advantage to this arrangement because a failure of
the principal will still require a forcing of the database service on the mirror. Once the original princi-
pal is restored to service, it will configure itself as a mirror, but the mirroring session will remain in a
SUSPENDED state until explicitly resumed by the administrator. Resuming and forcing the mirroring
service are described later in this chapter.

High-Safety without Automatic Failover Mode
In the high-safety without automatic failover mode, the principal server does not send an acknowledgment to
the client of a successful transaction until the mirror server acknowledges the receipt of the correspond-
ing transaction log record. Although this helps protect against data loss in the case of a failure, it can
add latency to your transaction processing. There is no automatic failover in this mode and no witness

575



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 576

Chapter 12: SQL Server High Availability

server. Failure of the principal database will require manually forcing the service on the witness server
to promote its principal. The process of forcing the service is described later in this chapter. In the case of
a mirror server failure, the principal will remain available to clients, but the mirroring session will be in
a disconnected state.

High-Safety with Automatic Failover Mode
In the high-safety with automatic failover mode, a witness server is used to provide automatic failover. The
witness server does not directly participate in the mirroring process but acts as an overseer between the
two servers. As long as two of the three servers participating in this mode can vouch for connectivity, a
database will be available to client requests. When two of the servers agree on the status of the mirroring
session, it is called a quorum, similar to the idea of a quorum disk in a Windows Cluster.

If a quorum is lost by the mirror or principal server, the mirroring configuration will change. The follow-
ing table describes some possible scenarios:

Mirror Configuration Description

Loss of the principal
server

If the mirror server and the witness server agree that the principal
server is no longer available, the witness server will promote itself to
principal and begin accepting client requests. Once the principal
server is returned to service, it will contact the witness and original
mirror server to discover the status of the mirror configuration, and
then the witness server will demote itself to mirror status and
synchronize with the new principal.

Loss of the mirror
server

When the principal server and the witness server agree that the mirror
server is no longer available, the principal server will remain online
and service client requests, but the mirroring state will be changed to
disconnected. Once the mirror server becomes available again, it will
synchronize itself with the principal and the mirror session will
continue.

Loss of the witness
server

As long as the principal and mirror server can establish a quorum, the
principal database will remain online and available to client requests.
However, no automatic failover will be available as long as the
witness server is out-of-commission.

Loss of the principal
and witness servers

Without the possibility of a quorum, the mirror server will also be un-
available because it cannot verify the status of the principal or witness
server. To restore the mirror database to service, it will be necessary to
remove mirroring from the mirror and manually recover it.

Loss of the mirror and
witness servers

If the principal server loses contact with both the witness and the
mirror servers, it will take its database offline and change the
database’s status to RESTORING. This is to avoid the possibility that
the mirror server and witness server have established a quorum and
the mirror server is answering client requests, preventing a ‘‘dual
brain’’ scenario where both the mirror and principal are responding to
client requests. To bring the principal database back online, database
mirroring must be removed and the principal manually restored.

576



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 577

Chapter 12: SQL Server High Availability

Configuring Database Mirroring
This section explains how to configure database mirroring between two servers, with an optional witness
server to monitor the mirror. I’ll begin by showing you how to set up database mirroring from SQL
Server Management Studio and then showing you the Transact-SQL alternative. Before you use either,
though, you must perform a full backup of your database and restore it on the mirror server using the
NO RECOVERY option. Refer to Chapter 9 for the backup-and-restore process.

Using SQL Server Management Studio
To set up mirroring, begin by opening the Mirroring page on the Properties sheet of the database. You
can also get to this page by selecting Mirror from the Tasks menu of the database. As you can see in
Figure 12-12, the first step you will need to execute is configuring security for database mirroring:

1. Clicking on the ‘‘Configure Security’’ button will launch a Wizard that will ask you to pro-
vide the connection options for the principal, mirror, and witness server endpoints.

2. The first page of the Wizard, like many other wizards, includes a summary of the tasks
that will be completed when the Wizard is complete. Click Next to move to the next page,
which will ask you if you will be configuring a witness server. While the witness is certainly
optional, it’s a good idea to have one for applications that need automatic failover.

Figure 12-12: Database mirroring Properties page.

577



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 578

Chapter 12: SQL Server High Availability

3. The next page of the Wizard asks you to identify which servers will be configured through
this wizard. You will want to check all participating servers, including the witness server if
one is being used.

4. Moving on to the next page of the Wizard, you can configure the options for the principal
server, including the TCP port and name that will be used by the endpoint on the princi-
pal server. (Refer to Chapter 7 for a more detailed explanation of endpoints.) You can also
specify whether or not the endpoint will use encryption. The default values for all endpoints
use 5022 as the port number, Mirroring as the name, and encryption is enabled, but you can
change these values as necessary. Figure 12-13 shows an example of the page you will see
when configuring the endpoints. If you’ve already created an endpoint for mirroring, you
will only be able to view the properties of this page.

5. Next, you will configure the same information for the mirror server. Note that when you are
creating the endpoints on each of the servers, you must have the appropriate permissions to
create and configure security on endpoints.

Figure 12-13: Configuring the mirror server.

6. If configuring a witness server, the next page will ask you to provide the server name and
endpoint configuration for the witness. If you look at Figure 12-13, there is a note that spec-
ifies that if more than one role is on the same physical server, the port numbers must be
different. For example, if you install another instance of SQL Server on the same server as
your mirror database to act as the witness, when you create the witness endpoint, you will
have to use a different port number.

Note that if a SQL Server has more than one database that will participate in database
mirroring, all databases will share the same endpoint. This prevents you from having
to create five endpoints for the same purpose, but for five different databases. Make sure,
however, that endpoint security is properly configured, especially if the databases are owned
by different users.

578



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 579

Chapter 12: SQL Server High Availability

7. Because database mirroring is designed to work without requiring that all machines be
identically configured, or even members of the same domain, the Wizard then allows you
to specify the account information for each server (see Figure 12-14). Note that the Wizard
informs you that if the SQL Servers all use the same account, local accounts, or domain
accounts in non-trusting domains, you should leave the values blank.

Figure 12-14: Specifying service accounts.

On my testbed, I have three instances defined: AUGHTEIGHT (principal), AUGHTEIGHT\DAGOBAH
(mirror), and AUGHTEIGHT\HOTH (witness). I ensured that all servers were configured the same way
(using the same service accounts and mixed mode authentication). I backed up and restored my sample
database (for this example, I used the AdventureWorksDW2008 database) using both a Full database and a
Transaction Log backup.

Once you have entered this information, the summary page of the Wizard allows you to review your
configuration. If you are satisfied with your settings, click Finish to create the endpoints, and, if neces-
sary, apply the appropriate permissions. Figure 12-15 shows a sample summary page. Note that the two
endpoints that participate in the actual mirroring process have their roles identified as partners, whereas
the witness server is simply identified as witness.

Now that you’ve completed the Wizard. SQL Server will prompt you to see if you want to start mirroring
now or to delay mirroring. If you are satisfied that the configuration is correct and the mirror server is
consistent with the principal server, then click on the button to begin mirroring.

Using Transact-SQL
The T-SQL commands for configuring database mirroring are easy to use and understand. Creating an
endpoint for database mirroring is often a lot less complex than other endpoints you might create. Again,
refer to Chapter 7 for a more detailed explanation on what endpoints are and how they work.

579



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 580

Chapter 12: SQL Server High Availability

Figure 12-15: Wizard summary.

For database mirroring, execute the following to create an endpoint that does not use encryption:

USE Master;
GO
CREATE ENDPOINT MirroringEndPoint

STATE = STARTED
AS TCP ( LISTENER_PORT = 5022 )
FOR DATABASE_MIRRORING (ROLE=PARTNER)

GO

Executing this statement on both the principal and mirrored servers creates identical endpoints that can
be used for mirroring. If you are just testing mirroring for practice and don’t have a separate physical
server to use, installing another instance will allow you to mirror databases, as long as the endpoints use
different port numbers.

Note that SQL Server will only let you configure one database mirroring endpoint per instance, so if a
database mirroring endpoint already exists, the operation will fail.

When using a witness server, execute the following command on the witness instance to create the appro-
priate endpoint:

USE Master;
GO
CREATE ENDPOINT WitnessEndPoint

STATE = STARTED
AS TCP ( LISTENER_PORT = 5024 )
FOR DATABASE_MIRRORING (ROLE=WITNESS)

GO

580



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 581

Chapter 12: SQL Server High Availability

Note that the only things different are the endpoint name and the role, and of those two, only one is
required to be different. (That would be the role; the name is irrelevant to the process.)

Additional options for creating database mirroring endpoints allow you to specify authentication and
encryption options. Authentication allows you to choose from the following authentication methods:

❑ Windows NT LAN Manager (NTLM)

❑ Windows Kerberos

❑ Windows Negotiate (Use Kerberos if available; if not, fall back to NTLM.)

❑ Certificate certificate_name

You can also specify to try certificate authentication first, and failing that, use Windows authentication,
or vice versa. Additionally, you can specify that encryption is disabled, supported, or required, and, if
supported or required, which encryption algorithm to use, Advanced Encryption Standard (AES) or RC4.
If you specify both AES and RC4, you can choose the preferred order for each. For more on encryption
and certificates, refer to Chapter 6.

So, if you were to create a new endpoint that used Windows authentication and AES encryption, you
might use the following code:

USE Master;
GO
CREATE ENDPOINT WitnessEndPoint

STATE = STARTED
AS TCP ( LISTENER_PORT = 5024 )
FOR DATABASE_MIRRORING (AUTHENTICATION = WINDOWS NEGOTIATE,
ENCRYPTION = REQUIRED ALGORITHM AES, ROLE = WITNESS);

GO

Now that you have your endpoints created; the next step is to establish the mirror. This is done simply
by pointing the database on each server to the target partner. You will use an ALTER DATABASE statement
to accomplish this, as in the following example (you may need to change the URLs to match your server
names). In this example, I am reusing the endpoints I created through SSMS, but this time, I will be
mirroring the AdventureWorksLT2008 database. (I’ve already backed up and restored it to my target
server.)

-- Begin by configuring the Mirror database

USE Master;
GO
ALTER DATABASE AdventureWorksLT2008
SET PARTNER = ‘TCP://AUGHTEIGHT:5022’;

-- Execute this statement on the principal server
-- to specify the endpoint for the mirror

USE Master;
GO
ALTER DATABASE AdventureWorksLT2008
SET PARTNER = ‘TCP://AUGHTEIGHT:5023’;

-- Execute this statement on the principal server

581



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 582

Chapter 12: SQL Server High Availability

-- to specify the endpoint for the witness

USE Master;
GO
ALTER DATABASE AdventureWorksLT2008
SET WITNESS = ‘TCP://AUGHTEIGHT:5024’;

When both the principal and mirror servers have been configured to recognize one another, the mirroring
process begins. By default, database mirroring is configured to use the Synchronous mode, but you can
change this after mirroring has begun by executing the following statement at the principal server:

USE Master;
GO
ALTER DATABASE AdventureWorksLT2008
SET PARTNER SAFETY OFF;

To turn the Synchronous mode back on, use the SET PARTNER SAFETY FULL option.

Monitoring Database Mirroring
Monitoring your mirrored database can give you an idea of how well your mirroring solution is work-
ing and whether or not there are latency or consistency issues that must be addressed. On both the
principal and mirror servers, you can query the following system catalog views to view the status and
configuration of all mirrors on that server:

❑ sys.database_mirroring

❑ sys.database_mirroring_endpoints

You can also query the sys.database_mirroring_witnesses on the witness server (if there is one) to
view the witness server’s summary of the mirrors that it is aware of. Microsoft also provides a nice UI
tool that can be launched from the context menu of any user database on any SQL Server. You will need
to provide the appropriate connection options to either the principal or the mirror to register a particular
database, but the fact that you can launch the tool from anywhere makes it a handy resource. Just follow
these steps:

1. Choose the option to ‘‘Launch Database Mirroring Monitor’’ from the Tasks menu of a
database (see Figure 12-16), and a new window appears.

2. By default, you will be taken to the status page of the database from which you launched the
tool (see Figure 12-17); however, you can also register additional mirrored sets by clicking on
the Database Mirroring Monitor link in the tree navigation. As you can see in Figure 12-18,
in the details pane you can click the link to register a new mirrored database that will be
monitored by this tool.

3. In the Registration page, click on the Connect button to connect to either the principal or the
mirror server, using the appropriate authentication and connection options.

4. You are then presented with a list of mirrored databases on that instance. Select the appro-
priate database(s) to register, and click OK.

582



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 583

Chapter 12: SQL Server High Availability

Figure 12-16: Launching the Database Mirroring Monitor.

Figure 12-17: The Database Mirroring Monitor.

583



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 584

Chapter 12: SQL Server High Availability

Figure 12-18: Monitoring the mirroring session.

5. If you need to use different authentication credentials between the principal and the mirror,
you can also select the ‘‘Show the Manage Server Connections dialog box when I click OK’’
option to specify per-server connection options.

Additional information is available that will help you identify potential latency properties
by showing the stats for the principal and mirror logs.

6. Clicking on the Warnings tab allows you to view or configure the current settings for gener-
ating alerts based on mirroring conditions. The warnings can be generated on the following
conditions:

❑ Threshold in kilobytes for the unsent log

❑ Threshold in kilobytes for the unrestored log

❑ Oldest unsent transaction in minutes

❑ Mirror commit overhead in milliseconds

As you can see from Figure 12-19, the thresholds can be defined on both the principal and the mirror, and
you can, in fact, use different values on each. Your warning threshold should be based on known and
expected performance values and may need to be adjusted to accommodate changes to your mirroring
system. In any event, it’s a good idea to make sure that you use consistent values between the principal
and the mirror, so that you can respond appropriately to the alert.

584



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 585

Chapter 12: SQL Server High Availability

Figure 12-19: Configuring alert thresholds.

Managing Database Mirroring
Among the maintenance tasks associated with database mirroring are pausing a session, resuming a
paused session, initiating mirror failover, forcing principal service, and removing mirroring for the
database.

Pausing a Mirror Session
If there is a significant delay in database responsiveness that may be caused by the additional work of
having to maintain constant communications between the principal and its mirror, you may want to
consider temporarily suspending the communications. To pause the session using SQL Server Manage-
ment Studio, navigate to the Mirroring page on the database Properties sheet, and simply click Pause (see
Figure 12-20).

Using Transact-SQL, execute an ALTER DATABASE statement with the SET PARTNER SUSPEND option, as in
the following example:

USE Master;
ALTER DATABASE AdventureWorksLT2008 SET PARTNER SUSPEND;
GO

Resuming a Mirror Session
Although pausing the session will allow you to resume the session later with no data loss, the transaction
log cannot be truncated until the mirror has been resumed. For this reason, it is a good idea to resume

585



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 586

Chapter 12: SQL Server High Availability

the mirroring session as quickly as possible. To resume mirroring from SQL Server Management Studio,
simply click on the Resume button, which replaced the Pause button when the session was suspended.

Figure 12-20: The Database Mirroring Properties page.

Use the SET PARTNER RESUME option for the ALTER DATABASE statement to resume the mirror from
Transact-SQL, as in the following example:

USE Master;
ALTER DATABASE AdventureWorksLT2008 SET PARTNER RESUME;
GO

Manual Failover
Regardless of the operating mode of the mirror, you can manually initiate failover at any time from
SQL Server Management Studio or T-SQL. When initiating failover, be aware that any clients that are
connected to the original principal are immediately disconnected, and the mirror is brought online. The
original principal, if online, is then converted to a mirror, and will remain in the NO RECOVERY state
until failover is executed again.

Be aware of the effects that failover will have on your clients. Client applications that use the SQL Native
Client or the .NET Framework Data Provider for SQL Server can be configured to use database mirroring,

586



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 587

Chapter 12: SQL Server High Availability

allowing clients to be re-directed to a mirror server in the event of a failover. Users may notice a slight
delay or interruption after a failover, but, for the most part, operations should continue as normal, as
long as a few precautions are in place.

Because database mirroring only copies the contents of a specific database, specific server-wide resources
(such as logins) must be available on the mirror either prior to or immediately after the failover. For
this reason, when using database mirroring, it’s a good idea to create and schedule an Integration Ser-
vices package, which will regularly copy additional objects. See Chapter 16 for an introduction to the
Integration Services tools.

To initiate failover from SQL Server Management Studio, click on the Failover button in the Mirroring
Properties page of the principal database. That’s it. SQL handles the rest (see Figure 12-21). If you need
to restore a former principal back to its ‘‘principalian’’ state, you must connect to the new principal, the
original mirror, and click on the Failover button on that database’s properties.

Figure 12-21: Manual failover.

To manually initiate failover using Transact-SQL, again, you must be connected to the principal server,
then execute the following:

USE Master;
ALTER DATABASE AdventureWorksLT2008 SET PARTNER FAILOVER;
GO

This will immediately bring the principal down as a mirror and promote the original mirror to the prin-
cipal database.

Forcing Service on the Mirror
As previously described, the mirror server is not automatically available in the case of a principal server
failure when operating in high-performance or high-safety without automatic failover modes. To force
the mirror server to promote itself and service client requests, the following command must be issued on
the mirror server:

USE Master;
ALTER DATABASE AdventureWorksLT2008 SET PARTNER FAILOVER;
GO

587



Leiter c12.tex V3 - 03/25/2009 12:46pm Page 588

Chapter 12: SQL Server High Availability

Removing a Database Mirror
Once you no longer need a database mirroring session, you can ‘‘break the mirror.’’ Breaking the mirror
allows both participating servers to maintain a copy of the database. The principal will remain online,
and the mirror will remain in Recovery mode.

Breaking the mirror will not delete, remove, or alter the endpoints, which is a very good thing, because
they may still be used by other databases that are using database mirroring.

To break the mirror from SQL Server Management Studio, click on the ‘‘Remove Mirror’’ button on the
Mirroring Properties page of the principal database. Using Transact-SQL, use the SET PARTNER OFF option
for the ALTER DATABASE statement, as shown here:

USE Master;
ALTER DATABASE AdventureWorksLT2008 SET PARTNER OFF;

Optionally, you can then bring the mirror server online by using the
RESTORE DATABASE AdventureWorksLT2008 WITH RECOVERY option. Just ensure that your clients
know which one is the real database, and which one is the imposter!

Summary
There is no ‘‘magic bullet’’ for business continuity. In order to provide a highly available database envi-
ronment for your users and applications, you will need to evaluate the different strategies and solutions
that are available both out-of-the-box, as well as through after-market products. The best way to provide
for a highly available and highly reliable solution is to use a combination of tools and techniques to allow
your database to stay operational, even during the most serious outages.

This chapter introduced you to three options for keeping your data available to users. At the server
level, you can leverage Windows Clustering services. At the database level, you can use log shipping or
database mirroring as necessary. While I tend to prefer database mirroring as a rule, it works best when
you have applications that leverage the Native SQL client.

If you’ve been reading this chapter in sequence, you will have already gotten a lot of good, detailed infor-
mation that database administrators should know. The remaining chapters in this book introduce topics
that may not be part of the daily maintenance of a SQL Server 2008 environment, but an understanding
of the key components may be helpful.

In Chapter 13, you will be introduced to SQL Server replication. That chapter will cover the basics
of replication topologies and strategies and familiarize you with the components of a replication imple-
mentation.

588



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 589

13
Introduction to Replication

As the amount of data we store increases, so does the need for making that data available. Many
of us want to access our data from any place, at any time, and from any device. And we work for
companies that have a global presence, or a mobile sales force. We can increase the accessibility of
our data through SQL Server Replication.

This chapter is designed to provide you with a high-level understanding of SQL Server Replication.
You will learn about the different replication methods and tools that are available in SQL Server
2008, including replication components and the physical and logical design options for replication.

Replication Overview
I may be dating myself by using the analogy, but replication is similar to how the print media oper-
ates. In fact, many of the terms used in replication are also used with newspaper and magazine
distribution. Replication begins at the server known as the publisher. Just as a newspaper collects
articles its readership is interested in, the publisher compiles and arranges data into articles, and
one or more articles are included in a publication. To get data to subscribers, the newspaper needs to
employ a distributor.

In SQL Server Replication, just as in the newspaper business, the subscribers can choose to have
the distributor deliver the publication to them (although SQL distributors don’t usually expect a tip
during the holidays), or they can go to the distributor to pick up the publication — not unlike going
to a newsstand or your favorite coffee shop and picking up a newspaper. In the SQL replication
world, a publisher might also be a distributor. This is not unlike the newspaper hiring carriers
directly versus outsourcing the work to a third party.

Here’s a review of some of the key terms used in the last paragraph, and a preview of some of the
terms used in the next section, to help provide a better understanding of the way replication works:

❑ Publisher — The server providing the source data that will be made available to subscribers

❑ Article — A collection of data that exists as part of a replication publication

❑ Publication — One or more articles that act as a unit of replication



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 590

Chapter 13: Introduction to Replication

❑ Distributor — The server that is responsible for providing data to subscribers

❑ Subscriber — A server or client that receives a publication

❑ Push Replication — A method of replication whereby the distributor delivers the data to the
subscriber

❑ Pull Replication — A method of replication whereby the subscriber requests the data from the
distributor

❑ Publisher/Distributor — A publishing server that acts as its own distributor

Replication has many uses. It can provide a copy of the production system data to another database for
reporting, as well as allow remote users to enter data at a local server that will get aggregated or merged
with data at a central office. It can also be used with client applications for offline or asynchronous
use. When choosing a replication strategy, you must have a solid understanding of how the data will
be used.

Consider the following:

❑ Do the users need access to up-to-the-minute data, or can they work with data that is provided
on a regular schedule but may be several hours old (or older)?

❑ Do the users need to be able to make changes to the data, and should those changes be synchro-
nized with the original source material?

❑ Will the data originate from a single source, or will multiple sources be used to provide data to a
centralized database?

Finding answers to these questions (and more) can help you make the appropriate decisions about your
replication topology. You can use this information to help build solutions to make your database appli-
cations more responsive and more useful to your users.

Also note that when replication is configured, a new system database named distribution is created.
This database is used for storing metadata and historical information about your replication topology.
In SQL Server 2008, you may elect to use a single distribution database for all replication tasks, or you
may create additional distribution databases, each with a unique name, to handle distribution requests
from multiple publishers.

SQL Server Replication Agents
Now that you’ve got the terminology down and have an idea of what your users’ needs are, it’s time
to take a look at the mechanics behind replication. This section introduces the various replication agents
that are available for your solution. Replication agents are programs that run certain tasks to control prepa-
ration and distribution of your data. The agents that are used depend on the type of replication used in
your solution. Some of these agents are available to all replication types, and some are specific to just one
type of replication.

Replication relies on the SQL Server Agent Service when the server is a publisher or distributor to auto-
mate the replication process. Although it is possible to execute the replication agents manually, it would
be more work than it’s probably worth. Ensure that your SQL Server Agent Service is running, and, in
most cases, it should be configured to start when the server starts.

590



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 591

Chapter 13: Introduction to Replication

Snapshot Agent
With SQL Server Replication, the Snapshot Agent is used for almost all replication types. The Snapshot
Agent is executed at the distributor and is responsible for preparing the initial data files and schema
information about the articles that will be published. The data is written to a snapshot folder on the file
system, and synchronization data is written to the distribution database. It often acts as the baseline for
other replication agents. In this way, it’s not unlike the way a Full backup works when using Differential
or Transaction Log backups.

Log Reader Agent
The Log Reader Agent is used specifically with transactional replication. When a transaction that is part of
a publication is written to the transaction log, the Log Reader Agent copies those transactions from the
publisher to the distribution database on the distributor. This allows those transactions to be executed
then, on the subscriber databases. Each database that participates in transactional replication has its own
Log Reader Agent.

Distribution Agent
Used with both snapshot and transactional replication, the Distribution Agent applies snapshots to sub-
scribers, and, in the case of transactional replication, moves the transactions to the subscribers. If pull
replication is used, the Distribution Agent is executed at the subscriber. If push replication is used, it is run
at the distributor.

Merge Agent
When merge replication is used, the Merge Agent provides the initial snapshot to the subscriber, not unlike
the Distribution Agent. Each subscription has its own Merge Agent that handles the reconciliation of
data between the publisher and the subscriber. Another similarity it shares with the Distribution Agent
is that it runs at the distributor for push subscriptions and at the subscriber for pull subscriptions. When
communicating between publishers and the subscribers, the Merge Agent typically downloads the changes
to the subscriber and uploads changes to the publisher.

Queue Reader Agent
The Queue Reader Agent is used with a specific type of transactional replication that allows updatable
subscriptions. When updates from the subscriber are provided to the publisher, these updates can be
queued and then processed as a unit. This agent runs at the distributor, and only one instance is required
for all publications in the distribution database.

SQL Server Replication Types
The term replication type refers to the logical model of a replication topology, and although there are only
three main types (transactional, snapshot, and merge), each one offers additional configuration options
that allow you to have more granular control over how data gets from source to destination and what
happens to it when it gets there. Consideration for the different replication types is based on the way the
data is going to be used and how important it is that the data be current.

591



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 592

Chapter 13: Introduction to Replication

Two key terms to remember when choosing a replication type are autonomy and latency. Autonomy refers
to the amount of ‘‘hands-off-ness’’ of the data. Latency refers to the amount of time that elapses between
when a change is made to the data and when the data is replicated to the subscriber. In the different
replication types available, there is a direct correlation between autonomy and latency.

For example, let’s say that AdventureWorks has a regional office that uses quarterly updates on sales
figures for an employee incentive program. Because this program is only in place at the regional office,
there’s no need to provide updates back to the home office. Once the home office provides the data to the
regional office, they don’t do anything else with it. Any changes to the data will not be reflected back in
the corporate database, much to the relief of the company’s corporate auditors. In this scenario, a high
amount of autonomy and latency is evident. The regional office gets the updated data once every three
months; and once they get it, they own the data for their own needs.

Conversely, a retail chain requires real-time inventory tracking from their Point-of-Sale system that
would not only update the local inventory database, but also ensure that each retail and warehouse
location is aware of the product inventory at the other locations. This is an example of an application that
requires very low latency. In this scenario, when a customer is looking for a DVD player that’s out of
stock at the Seattle location, a sales clerk can inform the customer of the availability of that model at the
Bellevue and Tacoma locations.

Distributed Transactions
Although distributed transactions aren’t part of SQL Server replication, per se, it’s important to know
how they fit into the distributed data model. First and foremost, any transaction that executes across
more than one database, even if it is attached to the same instance, is considered a distributed transaction.
This is because the scope of the transaction exists outside of the context of the current database.

For example, the following SQL script executes in the context of the AdventureWorks2008 database, but
one of the tables is actually created in the tempdb database. Because both CREATE TABLE statements are
wrapped in the BEGIN TRANSACTION and COMMIT TRANSACTION statements, they must both execute, or the
entire transaction fails.

USE AdventureWorks2008;
GO
BEGIN TRANSACTION;
CREATE TABLE dbo.MyDTTable(col1 INT, col2 VARCHAR(10));
CREATE TABLE tempdb.dbo.MyOtherDTTable (col1 INT, col2 VARCHAR(10));
COMMIT TRANSACTION;

This is a very simplified example of how distributed transactions are designed to work, but you get the
idea. When an application executes distributed transactions against multiple servers, an additional step
may be taken in order to ensure the availability of the target servers. This is what’s known as a two-phase
commit (2 PC).

The first phase is the preparation phase. This step prepares the destination servers, known as resource
managers, by sending out a command to inform them that a transaction is coming. The resource man-
agers take every possible precaution to ensure that when the transaction is received, it can be processed
without failure. This helps ensure the stability and reliability of the distributed transaction. The resource
manager then informs the transaction manager, usually the Microsoft Distributed Transaction Coordinator
(MSDTC), whether or not the preparations were successful.

592



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 593

Chapter 13: Introduction to Replication

The second phase is executed when all the resource managers have reported successful preparation. In
this phase, the transaction manager expects to receive a successful commit from each of the resource
managers. When it does, then it can report the transaction as having been committed to the application.
If just one of the resource managers reports failure, the transaction must be rolled back from all resource
managers, and the transaction manager reports the failure to the application.

Distributed transactions can also be executed directly from stored procedures or other Transact-SQL
methods. You can use the BEGIN DISTRIBUTED TRANSACTION statement to explicitly invoke a distributed
transaction.

Distributed transactions do not define a publisher, distributor, and subscriber the way replication does.
Instead, they rely on the application design to control how data is processed across multiple servers. They
do offer the least amount of autonomy and latency, because the transactions are immediately processed
on destination servers.

Transactional Replication
Transactional replication has the lowest latency and autonomy of the three standard replication types.
With transactional replication, you begin with a snapshot of the data that will be used as a baseline for
further transactions to be applied against. As transactions are committed, those that apply to data that
participates in transactional replication are copied to the distribution database on the distributor. Then
the subscribers can receive the transactions and apply the changes to the copied data.

Standard Transactional Publication
Standard transactional publication replication is used when the subscriber accepts the publication for Read
Only use. This prevents the subscriber from being able to update the data on the publisher, but does not
prevent clients from updating data on the subscriber itself. For example, a remote server may use the
replicated data in conjunction with SQL Reporting Services to provide access to historical and trend data,
and modifications may be made locally, but no changes can be submitted at the remote server that will
be accepted at the original publisher.

Transactional Publications with Updatable Subscriptions in a Hierarchical
Topology

The Transactional Publications with Updatable Subscriptions in a Hierarchical Topology implementation of
transactional replication allows a model in which you have a single publisher with multiple subscribers.
Periodically, the subscribers may need to make changes to the replicated data, in which case, the update
is sent back to the original publisher. The original publisher provides those updates (through the distrib-
utor) to all the subscribers. This can be helpful in an environment where a remote site receives corporate
sales data but occasionally submits updates regarding its local sales department.

Updatable subscriptions in a hierarchical topology allow both immediate and queued updates to be
submitted from the subscribers. Immediate updates are processed similarly to distributed transactions,
in that a two-phase commit is used. If immediate updates are not necessary, subscriber updates can be
stored in a queue and then applied asynchronously whenever the publisher is available.

Transactional Publications in a Peer-to-Peer Topology
Peer-to-peer transactional replication creates an environment where all participants are both publishers
and subscribers. This implementation allows you to create a distributed database environment where

593



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 594

Chapter 13: Introduction to Replication

all SQL Servers can provide and receive updates with low latency. This further lowers the autonomy
previously offered by transactional replication, by allowing any data to be changed on any server, and
all participating servers will receive the updates. When using peer-to-peer transactional replication, use
SQL Server security features to take appropriate precautions to ensure that data can only be updated
from approved locations. Peer-to-peer replication was first introduced in SQL Server 2005 and has been
enhanced to include additional conflict resolution tools.

Snapshot Replication
Snapshot replication can be used in replication topologies where there can be significant latency between
when changes are committed on the publisher and when they are received by the subscriber. Rather than
providing updates on a transaction-by-transaction basis, snapshots of the entire article are taken at the
publisher periodically and then applied to the subscriber as a unit.

When a snapshot is generated, it is saved as a file to a file system that must be accessible to the publisher,
the distributor, and the subscriber. If one or more of these are on different physical servers, you should
specify a Universal Naming Convention (UNC) path for the snapshot folder location. If all the components
reside on the same server, which may sometimes be the case if you’re using replication to populate a
separate database on the same server, you can specify a local file system path for the snapshot location.
The files generated by snapshot replication are files that can be easily applied to the subscriber using the
Bulk Copy Program (BCP).

The obvious benefit of snapshot replication is for asynchronous environments where there can be a delay
between the publisher and subscriber. However, because the snapshots are copied and applied each
time replication occurs, it can be prohibitively resource-consuming for large amounts of data. There
are options that can allow you to compress the snapshot files, as well as to help reduce disk usage and
transfer times between the distributor and subscriber, though.

As with transactional replication, snapshot replication also supports the use of immediate or queued
updating subscriptions.

Merge Replication
Merge replication is used in environments where data entry tasks may be performed independently of one
another, and users or applications periodically need to connect to synchronize data. Merge replication
is often used in client/server application environments. For example, if you have a mobile sales force
where all members of the sales team need access to a Customer Relationship Management (CRM) appli-
cation, but will not always have connectivity to your server, being able to synchronize customer data to
a portable device such as a PDA or smartphone, will allow them to access information on the go. They
can also use the application to submit orders, track invoices, and keep notes about their clients. When
they are back in the office or can connect to the corporate network remotely, they can synchronize their
changes with their home servers.

Merge replication introduces a number of changes to your publishing databases that are used for tracking
and synchronization. This includes adding a column to published tables used for tracking, as well as
additional tables and triggers that are used to store row history data for published rows. These elements
are designed to be unobtrusive, and the triggers created by replication will not affect any user-defined
triggers that you have created.

594



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 595

Chapter 13: Introduction to Replication

Merge replication offers both a blessing and a curse with its ability to handle synchronizations from
multiple subscribers. Its blessings come from the ability to grant users offline access to data sets that are
critical to their needs. Its curse comes from the fact that multiple offline subscribers may be trying to
synchronize changes to the same data.

The Change Tracking mechanism used by merge replication allows you to define how conflicts are
resolved between multiple subscribers. For example, a particular subscriber may be given more weight
than others, and, therefore, its changes should be considered authoritative. There are also mechanisms
to programmatically build more complex resolvers. This allows you to create more granular rules about
conflict resolution, giving priority to certain subscribers only if specific criteria are met.

Oracle Replication
No, that’s not a typo. Microsoft SQL Server 2008 supports replication of Oracle objects. Oracle replica-
tion requires at least SQL Server 2005 and Oracle 9i, but replication will support any Oracle publisher,
regardless of the underlying platform.

Snapshot replication from an Oracle database operates similarly to SQL Server snapshots. The Snapshot
Agent connects to the Oracle publication and retrieves rows and creates schema scripts for each published
table. As with SQL snapshot replication, the entire data set is created each time the table is run.

Unlike homogeneous SQL Server transactional replication (which monitors the transaction log for
changes), transactional replication for Oracle requires that changes be made to the Oracle database
by creating tracking tables and triggers. When changes to a published Oracle table are made, the
triggers fire and insert the changes into the tracking table. This is not unlike the behavior seen in merge
replication. SQL Server, again acting as the distributor, executes the Log Reader Agent to move the
changes from the tracking table to the distribution database. The distributor then provides the changes
to the subscribers as would be expected.

SQL Server Replication Models
Now that you have an understanding of the different types of replication available, the next consideration
in building your replication topology is to identify the model that will be used. Whereas the type defines
the logical flow of data, the model defines the physical implementation of how the data will be distributed.
Any of the aforementioned SQL Server Replication types can use any of the SQL Server Replication
models. The overall design and topology for replication should be built around how the data is used,
and the accessibility requirements for your users and your applications.

Another consideration when choosing an appropriate replication model is whether to have the pub-
lisher and the distributor on the same instance. Geographical distribution and network availability may
influence your decision to use a local distributor versus a remote one.

Single Publisher/Multiple Subscribers
In cases in which the data should originate from one location only, a single publisher/multiple subscriber
model can be used to provide access to data for remote locations. For example, our fictional company,
AdventureWorks, has offices across the United States. The corporate office, headquartered in Tacoma,
needs to make its sales data available to its remote offices in Omaha, Baton Rouge, and Rochester for a

595



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 596

Chapter 13: Introduction to Replication

reporting application. In this case, the company may want to use a single distributor in the Tacoma office
to provide updates using snapshot replication to each of the field offices.

In this scenario, the AdventureWorks field office will get sales data updates through an asynchronous
delivery method. Because they will not be changing the data that is replicated, there is no need for updat-
able subscriptions, and each office will receive the same data.

Multiple Publishers/Single Subscriber
The multiple publishers/single subscriber model can be used when multiple servers will track and update
data, but that data will need to be consolidated on a single server. Let’s look at a retail chain as an example
of how this can work.

An electronics retailer uses an inventory-tracking database to keep track of product stock at each location.
Each store maintains its own inventory through its shipping department and point-of-sale application.
Each location uses transactional replication to provide changes to its local stock to a regional warehouse,
which holds the subscriber database. This helps the regional inventory manager keep track of when a
specific store is running low on a certain product, and they can make arrangements to provide the items
to the store. Because transactional replication is used in this topology, the inventory database at the
regional warehouse gets updated with minimal delay.

Multiple Publishers/Multiple Subscribers
The multiple publishers/multiple subscribers model works well for environments where data must be shared
among peers. This can be useful in applications in which the local database stores information about local
and remote operations. Each publisher can provide updates made locally to all other replication partners
that participate in this model and receive the updates, in turn.

For example, three friends decide to get into the fast-food business, and each buys several franchises
within their cities. Each restaurant keeps track of its own inventory, as well as being able to see the
inventory at the other locations. This is so that the local manager can call another store for spare ingre-
dients, just in case the supplier cannot deliver in time. To prevent having a separate inventory table
for each location, merge replication can be used. Each store updates its own inventory values daily
and then synchronizes with the other locations so that each store is aware of the inventory at the other
locations.

Replication Tools
When reviewing the options provided for designing the replication topology, additional consider-
ations may be evaluated for determining what data is replicated and how. This section provides an
overview of some of the available tools and procedures that can help provide a more robust replication
architecture.

Filtering
It is not always appropriate to replicate entire tables from one server to another. You can, in fact, use
filtering at the publisher to limit what will be available to the subscribers. Subscriptions can also use

596



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 597

Chapter 13: Introduction to Replication

filters at the subscriber to ensure that only data relevant to that subscriber is received and processed.
Four types of filters are available:

❑ Static row filters

❑ Column filters

❑ Parameterized row filters

❑ Join filters

Static Row Filters
Static row filters can be used with all types of replication. They are defined at the publisher and allow
you to limit which rows will be made available in a publication by simply using a WHERE clause. For
example, you could provide regional managers with Human Resources data about the employees at
only their respective locations by using a static row filter based on the employee’s city field, or another
location-identifying column.

Column Filters
Column filtering can be used to remove certain columns from all rows in a publication. For example, if you
have Human Resources data that will be made available to multiple databases for different applications, it
may not always be appropriate to include confidential data such as salary information or the employees’
Social Security numbers. In this case, you can create publications that eliminate the unnecessary data
from the publication without removing it from the base table.

Column filtering can be used with all types of replication. However, certain types of columns may be
excluded from filtering depending on which replication type you are using. You can use both column
filters and static row filters in a single publication to narrow the scope of the published data.

Parameterized Row Filters
Parameterized row filters are available only with merge replication and are similar in concept to static row
filters. In execution, though, they are significantly different. The purpose of parameterized row filters
is to be able to create multiple data partitions that will be replicated without having to create multiple
publications. For example, if you use the same base table and you have two different subscribers that
each needs a different subset of that same table, using standard row filters would require you to create
two publications, one for Subscriber A and the other for Subscriber B.

With parameterized row filters, you can specify that for Subscriber A, you are interested in rows that
have the values WA, NE, and OK in the state field. For Subscriber B, you are interested in providing rows
that contain the values CA, OR, and AK in the state field. Each of these data sets exists as part of the same
publication.

The partitions created by parameterized row filters can also overlap. Using the preceding example, if a
new subscriber wanted all the rows with the values WA, OR, NV, and TX in the state column, then that is an
example of an overlapping partition. You can configure overlapping partitions to allow updates from the
subscriber to any column, or only any non-shared column. Non-overlapping partitions can be made avail-
able to multiple subscribers, preventing the subscriber from updating the changes. If a non-overlapping
partition is available to only one subscriber, then that subscriber can make changes to all columns in that
partition.

597



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 598

Chapter 13: Introduction to Replication

Join Filters
Join filters are also limited to merge replication and are commonly used to extend the data in a publication
that uses parameterized row filters. This operates similar to a JOIN statement in Transact-SQL to combine
the data from one or more tables. The data in the related tables is published only if it meets the condition
of the JOIN FILTER clause.

Replicating Partitioned Tables and Indexes
SQL Server 2008 includes several enhancements that make it easier to manage partitioned tables and
indexes, and the replication tools are no exception. When configuring the properties of an article,
you will have the ability to specify the schema options that determine whether or not partitioned
objects are copied to the subscriber. This can be done through the New Publication Wizard (covered
in the next section), the Publication Properties dialog, or through the schema_option parameter of
the sp_addarticle, sp_addmergearticle, sp_changearticle, or sp_changemergearticle stored
procedures.

In case that data needs to be moved between partitions, these changes can also be published using trans-
actional replication. By default, SWITCH PARTITION operations are blocked when a table is enabled for
replication, but partition switching can be manually enabled if it is needed.

New Publication Wizard
Once the design of your replication topology has been decided on and you know what type of replication
you will be using, you can use the New Publication Wizard to create a new replication publication. To
launch the Wizard, start SQL Server Management Studio and expand the Replication folder. Right-click
on the Local Publications folder and choose ‘‘New Publication.’’ Then follow these steps:

1. Click Next on the New Publication Wizard introduction page. On the next page, you can
select which server will act as the distributor. As you can see in Figure 13-1, if you have
not already configured a server to be the distributor, you can use the local server. In this
case, it will create the distribution database and transaction log files. Click Next once you’ve
selected your distributor.

2. On the next page, you must specify the location that will be used to store the snapshot files.
Remember that if your subscriber is a remote client or server, you should specify a UNC path
instead of a local file system path to enable pull subscriptions. In my example, I created a
new folder called C:\Snapshots. This is because the SQL Server Agent account does not have
permissions to write to the default location.

3. Next, choose the database that will be providing the publication. For this example, select
the AdventureWorks2008 database from the list. After selecting the appropriate database,
click Next to move on to the next page, which will ask you about the type of replication you
will use.

4. When presented with the list of available replication options, note that a brief description of
each replication type is available to help you review which type is the appropriate selection
for your application. For this example, select ‘‘Transactional publication’’ and click Next.

5. On the next page, you can select which objects will be available for replication to the sub-
scribers. Figure 13-2 shows an example in which the Sales.CreditCard table is selected. A

598



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 599

Chapter 13: Introduction to Replication

single publication can include multiple articles, which may be tables, views, or other SQL
Server objects.

Figure 13-1: Choosing the distributor.

Figure 13-2: Publishing credit cards.

6. At this point, you can review or configure the article properties. The ‘‘Article Properties’’
button will allow you to configure the properties for a single (the currently highlighted arti-
cle) or for all selected articles. From here, you can control or define what information will be
copied to the subscriber.

599



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 600

Chapter 13: Introduction to Replication

7. The next page in the Wizard gives you the option of filtering the rows that will be included
in the publication. Clicking on the Add button allows you to create a new filter. Note that the
filter statement is prepared as a simple SELECT statement, where you can provide the value
for the WHERE clause.

8. The Wizard will then ask you how to provide Snapshot Agent details. This will allow you
to take a snapshot immediately, as well as define a schedule for managing the frequency of
your snapshots. Based on the type of replication you will be implementing, you may only
need the initial snapshot.

9. You can then select the accounts that the Snapshot Agent and Log Reader Agent will run
as. Although you can use the SQL Server Agent account, it is generally not a best security
practice, and the Wizard will warn you of that. You will also need to provide the credentials
that will be used to connect to the publisher. The default option impersonates the process
account, but you may also specify a SQL Server login and password.

10. Next, you can choose to create the publication immediately or simply generate a script that
can be used to create the publication later. You can also enable both options, which would
allow you to save the script information for reference, or to avoid having to rerun the Wizard
if you are going to be performing the same task on multiple servers. If you choose to save the
script, you will need to specify location and file format options before reaching the summary
page of the Wizard.

11. Finally, on the summary page, give the new publication a name and click Finish to create the
new publication. Figure 13-3 shows a summary of the options I selected in my example.

Figure 13-3: New Publication summary.

600



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 601

Chapter 13: Introduction to Replication

New Subscription Wizard
A newspaper is worthless if nobody reads it. Likewise, the purpose of publishing an article in SQL Server
is to provide it for subscribers. In my example, I will need to create a target database that will act as
the subscriber. If you’re following along, you can execute the following code to create a new database
called AWReplicationDemo. Because no options are specified when you create the target database, its
configuration is based on your model database and should only contain system objects.

USE master
CREATE DATABASE AWReplicationDemo;
GO

Once the database has been created, you can create a new subscription:

1. Right-click on the ‘‘Local Subscriptions’’ folder and select ‘‘New Subscriptions.’’ Once past
the introduction page of the Wizard, you will see a dropdown list of Publishers, and publi-
cations that exist on the currently selected Publisher (see Figure 13-4). If your server is not
listed, you can connect to another SQL or Oracle publisher.

Figure 13-4: Choosing a publication.

2. Once you’ve selected your publisher, you can then specify whether this will be a push sub-
scription or a pull subscription. (This example is a push subscription.) You will then be asked
to specify the target subscription database. Choose the destination database from the list of
databases on your server. If you look at Figure 13-5, note that you can also define other sub-
scribers including non-SQL (Oracle, DB2) subscribers.

3. You must then choose the security context under which the Distributor Agent will run and
connect to both the Distributor and Subscriber. You can specify a Windows account or use
SQL Server logins. For demonstration purposes only, I have selected the SQL Server Agent

601



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 602

Chapter 13: Introduction to Replication

account once again; however, in a production environment, I would want to use a Windows
account that has limited permissions to allow me to read from the distribution source and
write to the destination tables.

Figure 13-5: Defining subscribers.

4. Next, specify an appropriate schedule for the Distribution Agent. You can have the
synchronization run continuously, run when manually invoked, or create a job schedule
that will be run by the SQL Server Agent Service. For this example, I have chosen to run
continuously.

5. Before finishing, you will be prompted to initialize subscriptions. This is optional, and if
you enable initialization, you can choose to initialize immediately or at the first scheduled
synchronization. Just as when creating a publication, you have the option of creating the
subscription immediately, saving the Wizard steps as a SQL script, or both. Once you have
completed the Wizard, you will see the summary page, as shown in Figure 13-6

Replication Monitor
SQL Server 2008 includes a Replication Monitor that can be used to track the status of your publications
and subscriptions. It can provide information on latency, replication history, warnings, and alerts. You
can view the Replication Monitor by right-clicking on the Replication folder and selecting ‘‘Launch Repli-
cation Monitor.’’ Figure 13-7 shows you an example of the Subscription Watch List tab’s interface for the
Replication Monitor.

602



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 603

Chapter 13: Introduction to Replication

Figure 13-6: Creating the subscription.

Figure 13-7: Replication Monitor.

603



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 604

Chapter 13: Introduction to Replication

If you double-click on a subscription, you can view the details of the subscription, including the history
between the publication and distributor, and also between the distributor and subscriber. Figure 13-8
shows an example of the subscription details window. To test both the replication and see the Replication
Monitor in action, begin by enabling Auto Refresh from the Action menu of the Subscription details
window. Then, execute the following code to insert a new row in the Sales.CreditCard table on the
AdventureWorks2008 database, which should get replicated to the subscriber:

USE AdventureWorks2008;
GO
INSERT Sales.CreditCard (CardType, CardNumber, ExpMonth, ExpYear)
VALUES (’MisterClub’,’1234876510190210’,12,2025);

Figure 13-8: Subscription history details view.

Within a short period of time, you should see that the transaction was delivered from the publisher to
the distributor and from the distributor to the subscriber. You can also verify this by running a select
statement against AWReplicationDemo.Sales.CreditCard, and verify that the new entry appears.

604



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 605

Chapter 13: Introduction to Replication

Summary
Replication is a topic that every database administrator should be familiar with. This chapter should have
helped you understand the different options that SQL Server Replication offers. This chapter looked at
the following topics:

❑ An overview of how SQL Server Replication works

❑ The agents used by SQL Server Replication

❑ The different replication types

❑ The different physical replication models

❑ Some of the tools used in SQL Server Replication

In Chapter 14, you will learn about configuring and using the Common Language Runtime (CLR) for
administering database objects through a .NET programming interface.

605



Leiter c13.tex V3 - 03/25/2009 12:50pm Page 606



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 607

14
Introduction to the

Common Language Runtime

In this chapter, we will look at how to manage the configuration and settings related to maintaining
the security and stability of the SQL Common Language Runtime (CLR). Since this is not a pro-
gramming book, I will use a short (but useful) code example, but it will certainly paint the picture
of what is possible using the CLR. The main purpose of this chapter is to show you how to create
and manage the CLR objects that developers have created for you.

Databases and Programming
If you’re a career database administrator, then you probably know that I represent the contingent
of unruly coders who often want to deploy precarious, custom-built applications on your servers.
In the process of finding new and creative ways to solve problems with program code, pro-
grammers tend to break things. Because the administrator’s job is to maintain a stable and secure
server environment, it would naturally make sense to keep programmers (and their pesky program
code) as far away from the servers as possible.

If you are a developer and you are reading this, you may think that I am making a great to-do
about nothing, but most of the seasoned database administrators in the enterprise space (especially
those with development skills) have learned to be very cautious of custom code and assemblies that
could bring their servers down or cause hard-to-solve performance problems. I fully acknowledge
the fact that many of you wear both a programming hat and an administrator hat from time to
time, and, as you read this chapter, I may seem to present a single-minded view of the DBA role.
This is to simply keep us focused on our purpose, which is database administration. Therefore, I
ask that if you consider yourself to be a programmer/DBA, please place only your DBA hat
squarely on your head and read on.

So, why in the world would you consider allowing new program code to run on your database
server? I have good news. Managing custom code can now be completely secure, stable, and fully
integrated into the SQL Server database server environment. Best of all, the control over these
components is completely in the hands of our esteemed database administrators.



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 608

Chapter 14: Introduction to the Common Language Runtime

In past versions of SQL Server, database-programming objects (mainly stored procedures) could be
extended using custom programming technologies. Even before Microsoft began to extend the original
Sybase SQL Server product, extended stored procedures could be written using complex C and C++ pro-
gramming. In later versions, a set of System Stored Procedures was added, allowing COM components
to be called. Many production SQL Server–based applications use these procedures to send e-mail, auto-
mate Windows services, and to interact with the file system. Relying on extended stored procedures and
custom-written COM objects can be risky business because these technologies provide no built-in protec-
tion from memory leaks, buffer overruns, and unstable operations. In contrast, the .NET Framework run
time provides a rigid layer of protection of both stability and security.

Transact-SQL has been pushed to and beyond its limits for a long time now. Not too many years ago,
the words database and programming were rarely used in the same sentence, especially when discussing
work performed in a database, rather than in a separate application. However, these two words are
commonly juxtaposed today and are often used to describe the day-to-day activities of a new breed of IT
professionals who write stored procedures, user-defined functions, triggers, types, and aggregations for
database solutions. The two isolated worlds of database management and programming began to collide
about the time that the SQL Server product began to mature.

With the current state of the economy, many IT shops have been restructured with most technical
professionals filling multiple roles. Although it’s still true in larger companies that programmers are
programmers and administrators are administrators, now it’s not uncommon to find seasoned program-
mers who often build and configure development servers. It’s also not uncommon to find administrators
who write script and program code to perform automated administrative tasks. And in smaller shops,
it’s quite common to find one person who does both.

Is Transact-SQL Going Away?
Not even close! The Transact-SQL language is the most efficient way to retrieve and manipulate data
stored in a relational database. The main purpose of SQL is to return results from one or more tables
that are combined by using joins and unions. It is also the best way to insert new rows, update exist-
ing rows, and delete rows in a table. From the beginning, SQL was designed to operate on sets of data
and was never really meant to perform procedural tasks. Although SQL may be used to efficiently per-
form common value comparisons, mathematical operations, numeric aggregation, string parsing, and
concatenation, when it comes to processing complex business logic, SQL has its limits.

The capabilities to perform looping, enumeration, or conditional branching are very limited in the
Transact-SQL language, and, even with structured error handling, exception handling is still a matter of
failing gracefully, rather than recovering from and managing the program logic following an exception.
Transact-SQL will remain for the foreseeable future the best language choice for standard data-retrieval
and data-manipulation operations. However, for implementing complex business rule logic requiring
row-by-row operations, loops and counters, decision structures, or including values from sources outside
of SQL databases, extending database programming through the CLR may offer many advantages.

The SQL language has certainly been around longer than some modern-day object-oriented program-
ming languages such as C# and Java, but for its purpose, SQL is by no means obsolete. It is definitely
here to stay and should be used to perform the day-to-day administrative, management, and program-
ming tasks in SQL Server. Many things in SQL Server 2008 have been enhanced, and the Transact-SQL
language is one of them. It’s lean and efficient and is the easiest way to get the best performance out of
your SQL Server databases for most types of operations.

608



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 609

Chapter 14: Introduction to the Common Language Runtime

.NET and the CLR
Software developers know that the Microsoft .NET CLR is at the core of an entire application develop-
ment platform. In simple terms, the CLR is really just a set of installed components that allow software
and custom-built components to run on a computer. In addition to this capability, the CLR also provides
a safety net to ensure that software runs safely and securely, and that it doesn’t misuse or waste system
resources. Because this book is designed for database administrators and not developers, I am making
an assumption that you haven’t had a lot of exposure to development terminology. In order to make it
easier to talk about certain concepts later in the chapter, I am going to go ahead and hit a few high points.
If you already feel comfortable in the development arena, then skip ahead to the next section.

Assemblies
A .NET assembly is the unit of deployment in the .NET world and contains various program objects. An
assembly that contains SQL CLR objects is built as a class library with a .DLL file extension. A newly built
assembly actually contains semicompiled Microsoft Intermediate Language (MSIL) code. An assembly
is stored in this intermediate, semicompiled state so that it can be fully compiled into the most optimal
form when it runs on the target computer, rather than the computer where it was developed.

SQL CLR object assemblies are fully manageable objects that are stored in the database rather than on
the file system as DLL files, and just like any other object within the database, they can be secured and
controlled. A single assembly can host many SQL Server objects such as functions, stored procedures,
aggregates, or data types, each of which are defined programming objects organized into a simple hier-
archy, consisting of namespaces, classes, and methods.

Namespaces
A namespace is an organizational structure used to group classes into manageable categories. A name-
space may contain any number of subordinate namespaces that are used to group and manage similar
object classes. The .NET Framework consists of scores of nested namespaces, which, in turn, contain
thousands of classes. A namespace provides no inherent functionality other than to be a container for
classes. In the case of SQL Server assemblies, the namespaces contained in the assemblies help organize
the functionality of the assembly by using descriptive names to specify each embedded procedure or
function contained in the assembly.

Classes
A class defines a programming object used to represent data and all functionality that can be performed
on that data. For example, a Customer class can be used to encapsulate all data related to a customer such
as name, address, phone number, and anything else you could think of. Classes are also used to define
programming structures for collections and hierarchies of objects. A class provides the definition, or
blueprint, for an object that is created by program code. If a programmer needed to represent a customer
in memory, he would be able to create one by using the Customer class. Once created, it is known as an
instance of the class. If you were learning to program with objects, this would be a very long and tedious,
perhaps even philosophical, discourse about how you should use classes to implement object-oriented
design patterns for designing software solutions. Luckily for you, as a database administrator using the
SQL CLR, you won’t be required to use classes at this level of depth. For our purposes, a class is merely a
logical container for related program code.

609



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 610

Chapter 14: Introduction to the Common Language Runtime

Methods
Within classes, program code may define several things such as members, properties, structures, enumer-
ations, events, and methods. For our purpose, the only thing really exposed to SQL Server is methods.
In simple terms, a method is a function or procedure used to return values or structured data to its call-
ing object. Just like a user-defined function in Transact-SQL, a method may accept any number of input
parameters and return a value or some type of object.

SQL Server CLR Objects
We’ve survived for a long time without combining programming with databases. Business has driven
technology (and, to some degree perhaps, technology has driven business) to the point where it’s neces-
sary to raise the bar. Business applications now require more than just the capability to put information
into a database so that you can take it back out. Complex business processes require complex program
logic, which goes beyond the scope of simple CRUD (‘‘create, read, update, and delete’’) database opera-
tions.

For this reason, SQL Server 2008 allows five types of database objects (stored procedures, functions,
triggers, aggregates, data types) that were traditionally defined either internally or in Transact-SQL code
to now be created with .NET program code. This gives programmers and solution architects the ability
to control the behavior of database operations and to provide advanced capabilities in the data storage
layer of a solution.

SQL Server CLR objects are programming routines built into .NET assemblies that are stored and man-
aged within a database. The execution of the objects occurs within the SQL Server process space, accord-
ing to the rules and security context of the database and SQL Server. To behave well in this environment,
certain restrictions apply:

❑ All assembly code must be type-safe. This means that all values exchanged between objects con-
form to standard data types and must be explicitly declared. The run time will not perform any
implicit type conversion from one object to another if the types are not already compatible.

❑ Several class and method attributes have been added to support SQL CLR functionality, security,
and features. Using unrelated attributes may render the assembly incompatible and not allow it
to execute.

❑ All static (or shared) data members must be Read Only.

❑ SQL CLR doesn’t support code with Finalizer methods. Assemblies containing this code will
not be allowed to execute.

Only a subset of the .NET Framework is supported by the SQL CLR. Although unsupported assemblies
can still be used by your code, you have to do a little extra work. All unsupported assemblies used must
be imported into SQL Server. This makes using Visual Studio 2008 for deployment of your assembly a
bit more difficult since it will only handle your assembly and not the unsupported assemblies. In fact,
the Add Reference dialog will only show supported assemblies to prevent this problem. The following
assemblies are the only supported assemblies for SQL CLR development:

❑ Microsoft.VisualBasic.dll

❑ Mscorlib.dll

610



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 611

Chapter 14: Introduction to the Common Language Runtime

❑ System.Data.dll

❑ System.dll

❑ System.Xml.dll

❑ Microsoft.VisualC.dll

❑ CustomMarshalers.dll

❑ System.Security.dll

❑ System.Web.Services.dll

❑ System.Data.SqlXml.dll

❑ System.Transactions.dll

❑ System.Data.OracleClient.dll

❑ Microsoft.SqlServer.Types.dll

Some Transact-SQL statements have been added to support new SQL CLR capabilities, and other state-
ments have been updated. Generally, the CREATE and ALTER statements have been extended with provi-
sions for the new programming paradigm. Some of these changes are noted in the following sections for
the database objects supported by SQL CLR.

Enabling SQL CLR
The SQL CLR feature is disabled by default and must be explicitly enabled on the database server. This
is done using the sp_configure System Stored Procedure. Pass the character value clr enabled in the
first argument and the numeric value 1 (for True) in the second argument. The setting is then applied by
executing the RECONFIGURE command after changing this setting. The following script demonstrates how
this is done:

USE master
GO
sp_configure ‘clr enabled’, 1;
RECONFIGURE;
GO

The results of this command should look something like this:

Configuration option ‘clr enabled’ changed from 0 to 1.
Run the RECONFIGURE statement to install.

Creating a SQL CLR Assembly
To fully explore working with the SQL CLR, it would be helpful to have an assembly to work with.
The following exercise guides you through the process of creating a simple function that will return the
operating system version of the server when called from a T-SQL command:

1. To follow along with this exercise, you must have Visual Studio 2008 installed with C#. Open
Visual Studio 2008, and create a new project by selecting New � Project on the File menu
(see Figure 14-1).

611



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 612

Chapter 14: Introduction to the Common Language Runtime

Figure 14-1: Starting a new project.

2. In the resulting New Project window (see Figure 14-2), expand the C# node, choose Database
as the ‘‘Project type,’’ and be sure the ‘‘SQL Server Project’’ is selected as the Template for
the project. SQL Server projects are used to create all managed objects for SQL Server 2008
and can contain any combination of stored procedures, functions, aggregates, and triggers.

Figure 14-2: New database project.

3. By default, the solution has the same name as the project, but I changed it to make it
a bit less redundant. Assign the project the name DBUtilities, the solution the name
DBUtilitiesSolution, and click OK.

612



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 613

Chapter 14: Introduction to the Common Language Runtime

4. If connections have been created in Visual Studio from previous projects, you will be
prompted to select one. If a connection object already exists for the AdventureWorks2008
database (as shown in Figure 14-3), choose it. Otherwise, if a connection object does not
exist for the needed database, you will need to create one by clicking on the ‘‘Add New
Reference’’ button and supplying the appropriate values for a connection to the database, as
shown in Figure 14-4.

Figure 14-3: Add Database
Reference.

Figure 14-4: New Database Reference.

613



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 614

Chapter 14: Introduction to the Common Language Runtime

5. If this is a new connection or if SQL/CLR debugging has not been enabled previously on
this connection, the message box shown in Figure 14-5 will appear. Click Yes to enable this
feature.

Figure 14-5: Enable SQL/CLR debugging.

6. If you didn’t select a database connection during the creation of the project, don’t fret. You
can either select one or add one by clicking on the Browse button on the Database page of
the Project Properties as shown in Figure 14-6. You can access this page by clicking Project �
DBUtilities Properties or by right-clicking DBUtilities in the Solution Explorer and selecting
Properties. Again, if the connection hasn’t been enabled for SQL/CLR debugging, you will
be prompted to enable it.

Figure 14-6: Project Properties page.

7. If you chose not to enable SQL/CLR debugging, you will not be able to use the debugging
features of Visual Studio such as breakpoints and code step-through. You could later enable

614



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 615

Chapter 14: Introduction to the Common Language Runtime

or disable SQL/CLR debugging on a connection by right-clicking on the connection in
the Server Explorer window and selecting ‘‘Allow SQL/CLR Debugging,’’ as shown in
Figure 14-7.

Figure 14-7: Server Explorer page.

8. You should now have an empty project with no objects. Database objects are added by either
right-clicking on the project in Solution Explorer and choosing an object from the Add con-
text menu, or by choosing an Add option from the Project menu (see Figure 14-8).

Figure 14-8: Adding a new
item.

615



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 616

Chapter 14: Introduction to the Common Language Runtime

It really doesn’t matter which approach you use, or for that matter which menu item you
select. Clicking on any of the choices in the Project menu or the Add menu will launch the
Add New Item dialog (see Figure 14-9). The only difference will be which template is ini-
tially selected. In this case, ensure that ‘‘User-Defined Function’’ is selected in the template
pane, and give the function the name OSVersion.

Figure 14-9: New Item dialog.

9. Creating any of the objects will generate the appropriate class or structure file in the
Designer with a set of skeleton code to get you started. In the case of the function you just
created, a simple class file will be added to the project. Figure 14-8 shows a new user-defined
function code file added to a C# database project. Note the namespaces referenced in the
using statements. These namespaces are either required or typically used in database
projects. Also note the method attribute ([Microsoft.SqlServer.Server.SqlFunction])
that marks this function as a SQL CLR user-defined function.

10. To return the current version of the operating system, replace the code in the OSVersion
method with the following code. Your screen should look like Figure 14-10 when completed.

return System.Environment.Version.ToString();

11. On the Build menu, click on the ‘‘Build DBUtilities’’ option to create the DLL that you
will use in the following exercises. Note that another option is to ‘‘Deploy DBUtilities.’’
Deploying the project will create the assembly and the function in the AdventureWorks2008
database. Because you want to explore this process more systematically, just build it for
now.

616



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 617

Chapter 14: Introduction to the Common Language Runtime

Figure 14-10: Function code file.

When I created the solution, I saved it to the C:\SQLServerSolutions folder and had Visual Studio create
a new solution folder upon creation. As a result, the built DBUtilities.DLL file is now located in the
C:\SQLServerSolutions\DBUtilitiesSolution\DBUtilities\bin\Debug folder. Next you’ll explore how to
add this assembly to the AdventureWorks2008 database and manage it.

Adding an Assembly
Prior to defining any SQL CLR object, the .NET assembly containing the executable code must be loaded
into the database. This is performed with the CREATE ASSEMBLY statement. Note that the ALTER ASSEMBLY
and DROP ASSEMBLY statements were also added for managing these objects. In its simplest form, the
CREATE ASSEMBLY statement syntax is as follows:

CREATE ASSEMBLY <assembly name>
FROM <source file path>
WITH PERMISSION_SET = <permission set>

The following example shows this statement used to load the DBUtilities assembly file into the database.
After this statement is executed, this file is no longer necessary because the executable code will be
contained in a database object called ManagedUtilities.

617



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 618

Chapter 14: Introduction to the Common Language Runtime

USE AdventureWorks2008;
GO
CREATE ASSEMBLY DBUtilities
FROM
‘C:\SQLServerSolutions\DBUtilitiesSolution\DBUtilities\bin\Debug\DBUtilities.dll’
WITH PERMISSION_SET = SAFE

The assembly contains only the code that will be executed; a SQL Server object is still needed to call
from within T-SQL code. Once the assembly has been loaded into the database, you can create the T-SQL
function that will be linked to the method within the assembly. Remember that assemblies can actually
contain many objects, so one imported assembly can be referenced to create any number of new functions,
stored procedures, aggregates, and types.

Compatible Data Types
As .NET programming procedures are defined and then integrated with SQL Server CLR objects,
it is crucial that all data types be matched with compatible types. Most SQL Server data types have
compatible equivalent native types in the .NET Framework. Note that variables, method arguments,
and return values may be defined using either native .NET types or the data types defined within the
System.Data.SqlTypes namespace. The types that are found in the System.Data.SqlTypes namespace
are exact equivalents that map to each SQL Server type through internal wrapper code. Not all SQL
Server types have compatible equivalents, though. If execution fails, reporting a type mismatch or
invalid cast, you likely have an incompatible data type issue. The following table shows common SQL
Server types with .NET equivalent types:

SQL Server Type .NET Framework Type

bigint Int64

binary Byte[]

bit Boolean

date DateTime

datetime DateTime

datetime2 DateTime2

datetimeoffset DateTimeOffset

decimal Decimal

float Double

int Int32

money Decimal

nchar String, Char[]

numeric Decimal

618



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 619

Chapter 14: Introduction to the Common Language Runtime

SQL Server Type .NET Framework Type

nvarchar String, Char[]

real Single

rowversion Byte()

smalldatetime DateTime

smallint Int16

smallmoney Decimal

sql_variant Object

time TimeSpan

tinyint Byte

uniqueIdentifier Guid

User-Defined Type Same class that defines user-defined type

varbinary Byte[]

User-Defined Functions
When a standard Transact-SQL user-defined function executes, SQL Server uses a work table to store
intermediate values while a Table-Valued Function executes. In contrast, a SQL CLR function will use
only available memory on the server to store intermediate rows and values. This doesn’t necessarily mean
that a SQL CLR function will always be faster because of the added overhead of calling into the .NET
CLR. However, for complex operations and especially for larger result sets, using CLR-based functions
may provide a significant performance edge over traditional functions.

To work with SQL CLR functions, the CREATE FUNCTION and ALTER FUNCTION statements have been
extended. A SQL CLR function is created in the same manner as a traditional T-SQL function. The only
real difference is that in place of the function body, there is a pointer to a method within an imported
assembly. The following code creates the SQL CLR function for the OSVersion method in the assembly
imported in the previous example:

USE AdventureWorks2008;
GO
CREATE FUNCTION dbo.GetOSVersion()
RETURNS nvarchar(255)
AS
EXTERNAL NAME DBUtilities.UserDefinedFunctions.OSVersion;

Scalar Functions
Outside of data access, there are some things that Transact-SQL just doesn’t do very effectively. The
mathematical, computational, and string-manipulation functions in Transact-SQL are limited and very
basic when compared with classes in the .NET Framework.

619



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 620

Chapter 14: Introduction to the Common Language Runtime

Once the SQL CLR class has been loaded into memory and the necessary objects have been instantiated,
the .NET function code should execute considerably faster than Transact-SQL. The performance improve-
ment isn’t as apparent in a simple demonstration because SQL CLR functions typically excel when used
to perform complex operations on a large volume of data.

Table-Valued Functions
User-defined functions may be used to return table-valued result sets, much like a stored procedure or
parameterized view. The implementation code for this type of function is quite a bit different from a
standard .NET function or method routine. Because this is not a comprehensive programming reference,
a simple example should serve to give you a starting point and introduce the concepts necessary to
support this type of programming effort.

Two .NET methods are required to return a table-valued result set from a SQL CLR function. The first
method is mapped to the SQL CLR function within the database, while the second method is used to
populate each row of the result set. The first method, which is used to initialize the result set, must
have a return type of IEnumerable. The [SqlFunction] attribute must set the FillRowMethodName
property to the name of the second method and also define the table-valued result set with the
TableDefinition property. Any discussion beyond this is out of the scope of this book. In other words,
creating table-valued user-defined functions requires a bit of programming effort and must conform to a
very specific pre-defined pattern to generate an appropriate table-valued result set. The following code
is a simple example of a managed function that reads all entries from any event log on the system:

using System;
using System.Collections;
using System.Diagnostics;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

public partial class UserDefinedFunctions
{

[Microsoft.SqlServer.Server.SqlFunction(
FillRowMethodName = "FillRow",
TableDefinition = "TimeWritten datetime,

Message nvarchar(255),
Category nvarchar(255),
InstanceId bigint")]

public static IEnumerable ReadEventLog(string logName)
{

return new EventLog(logName, Environment.MachineName).Entries;
}

public static void FillRow( object obj,
out DateTime timeWritten,
out string message,
out string category,
out long instanceId)

{

620



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 621

Chapter 14: Introduction to the Common Language Runtime

EventLogEntry eventLogEntry = (EventLogEntry)obj;
timeWritten = eventLogEntry.TimeWritten;
message = eventLogEntry.Message;
category = eventLogEntry.Category;
instanceId = eventLogEntry.InstanceId;

}
}

Stored Procedures
Many of today’s systems use a variety of extended stored procedures that call into COM components and
other forms of unmanaged code. These are referred to as extended stored procedures and have been used
for many years to perform operations that SQL Server doesn’t provide out-of-the-box. The following are
examples of operations that may have been performed using extended stored procedures and custom
program code:

❑ Reading, writing, and manipulating files in the file system

❑ Interacting with the system event log

❑ Consuming data or services from a Web Service

❑ Interacting with the system registry

These extended stored procedures are great candidates for conversion to managed code. Aside from
being a security risk and at times compromising system stability, some of these extended stored pro-
cedures may not be supported in future releases of SQL Server. Now, I don’t suggest that you rush to
replace all of your existing code, unless, of course, it’s not working well or you have some other com-
pelling reason to do so. However, you should make it a point to review these options and begin planning
to make appropriate changes before it becomes a problem.

To create a SQL CLR stored procedure, simply add the Microsoft.SqlServer.Server.SqlProcedure
attribute to any static method that returns either void or an int. The method used can accept any number
of parameters. The following code is a simple method that is used to write an entry to the event log:

using System;
using System.Data;
using System.Diagnostics;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

public partial class StoredProcedures
{

[Microsoft.SqlServer.Server.SqlProcedure]
public static void LogEvent(string message)
{

EventLog.WriteEntry("SQL Server 2008", message);
}

};

621



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 622

Chapter 14: Introduction to the Common Language Runtime

Once the managed code is compiled and imported into the database, a T-SQL stored procedure must be
created to point to the managed method. The syntax for creating a SQL CLR stored procedure from an
assembly, in its simplest form, is as follows:

CREATE PROCEDURE <procedure name>
(<parameter list i.e. @Param1, @Param2...>)
AS EXTERNAL NAME <namespace.class.method>

The following example shows a stored procedure defined from a SQL CLR assembly called DBUtilities:

CREATE PROCEDURE LogInEventLog(@Message nvarchar(255))
AS EXTERNAL NAME DBUtilities.StoredProcedures.LogEvent

Triggers
Triggers are really just special stored procedures that instead of being executed by T-SQL code are exe-
cuted automatically when certain database object actions occur. A trigger can be designated to execute
for pretty much any action within SQL Server and for a variety of reasons. For tables, related triggers
may execute when a record is inserted, updated, or deleted. Objects may have multiple triggers defined
as well.

To create a SQL CLR trigger, the Microsoft.SqlServer.Server.SqlTrigger attribute simply needs to be
applied to any static method. Because traditional triggers can’t return any data or accept any parameters,
the managed method should have a return type of void and require no arguments.

It is often useful to know the type of action the trigger is performing from the trigger code. The
SqlTriggerContext class in the Microsoft.SqlServer.Server namespace can provide this type of
information. This class provides a variety of useful metadata about the current trigger call. This object’s
properties include event data (such as the time, process ID, and event type), the trigger action (such as
Insert, Update, or Delete), specific column update flags, and the count of affected columns.

The following is an example of a managed trigger that prevents the update of a record based on what the
update value is:

using System;
using System.Data;
using System.Data.SqlClient;
using Microsoft.SqlServer.Server;
using System.Transactions;
using System.Text.RegularExpressions;

public partial class Triggers
{

[Microsoft.SqlServer.Server.SqlTrigger(Name = "LogVendorModification",
Target = "[Purchasing].[Vendor]",
Event = "FOR UPDATE")]

public static void LogVendorModification()
{

using (SqlConnection connection =

622



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 623

Chapter 14: Introduction to the Common Language Runtime

new SqlConnection(@"context connection=true"))
{

SqlCommand command;
SqlDataReader reader;
string emailAddress;

// Open the connection.
connection.Open();

// Get the inserted value.
command = new SqlCommand(@"SELECT PurchasingWebServiceURL

FROM INSERTED", connection);
reader = command.ExecuteReader();
reader.Read();
emailAddress = (string)reader[0];
reader.Close();

Regex regex =
new Regex(@"\w+([-+.’]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*");

// Rollback transaction if invalid email address was inserted
if (!regex.IsMatch(emailAddress))

Transaction.Current.Rollback();

// Close the connection.
connection.Close();

}
}

Extensions have been made to the Transact-SQL standard for the CREATE and ALTER TRIGGER statements
to support SQL CLR triggers. They are nearly identical to the traditional Transact-SQL counterparts, with
the addition of the EXTERNAL NAME statement:

CREATE TRIGGER VendorAudit
ON Purchasing.Vendor
FOR UPDATE
AS EXTERNAL NAME DBUtilities.Triggers.LogVendorModification

User-Defined Types
User-defined types (UDTs) in Transact-SQL are not really user-defined data types — they are simply
an alias for standard SQL Server data types. A UDT may be used to apply the correct data type and
behaviors to many tables and columns in a database, but the Transact-SQL version of UDTs is very
simple and extremely limited. User-defined types implemented through SQL CLR can be much more
than just an aliased data type. They can enforce business logic rules and restrictions on data values. You
can now apply a UDT to complex, structured data rather than just simple, scalar values.

In fact, Microsoft used SQL CLR UDTs when implementing many new features of SQL Server 2008. Both
the Geography and Geometry data types in SQL Server 2008 are implemented using the SqlGeography
and SqlGeometry data types, and the new HierarchyId data type uses the SqlHierarchyId data type, all
of which are found in the Microsoft.SqlServer.Types assembly.

623



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 624

Chapter 14: Introduction to the Common Language Runtime

The most notable difference between a UDT and the previous database objects you have looked at is that a
UDT is implemented as a structure or class, rather than as a method, in program code. The recommended
technique is to use a .NET standard structure, rather than a class. Structures are similar to classes, but
don’t have to be instantiated in the same way that objects are. The following is the auto-generated C#
code created by adding a new UDT called Point in a Visual Studio Database project:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedType(Format.Native)]
public struct Point : INullable
{

public override string ToString()
{

// Replace the following code with your code
return "";

}

public bool IsNull
{

get
{

// Put your code here
return m_Null;

}
}

public static Point Null
{

get
{

Point h = new Point ();
h.m_Null = true;
return h;

}
}

public static Point Parse(SqlString s)
{

if (s.IsNull)
return Null;

Point u = new Point();
// Put your code here
return u;

}

// This is a place-holder method
public string Method1()
{

624



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 625

Chapter 14: Introduction to the Common Language Runtime

//Insert method code here
return "Hello";

}

// This is a place-holder static method
public static SqlString Method2()
{

//Insert method code here
return new SqlString("Hello");

}

// This is a place-holder field member
public int var1;
// Private member
private bool m_Null;

}

In this example, the Point type is used to manage the x and y coordinates within a coordinate system. A
number of standard methods are used to provide common functionality. For example, the ToString(),
IsNull(), and Parse() methods are common for most .NET types implemented as SQL CLR objects and
provide the means for interrogating and returning a value.

Specific implementation code needs to be added to give this UDT its appropriate behavior. For example,
the Parse() method is used when converting a string value to a UDT. In our Point UDT, this may include
the validation of the value and breaking it up into its parts such as x and y. The ToString() method is
called when the values need to be displayed to the user and can be used for formatting the value. The
following is the final, working code for the Point UDT:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;
using System.Text.RegularExpressions;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedType(Format.Native)]
public struct Point : INullable
{

private int x;
private int y;
private bool isNull;

public override string ToString()
{

return string.Format("{0}, {1}", this.x, this.y);
}

public bool IsNull
{

get

625



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 626

Chapter 14: Introduction to the Common Language Runtime

{
return this.isNull;

}
}

public static Point Null
{

get
{

Point point = new Point();
point.isNull = true;

return point;
}

}

public static Point Parse(SqlString s)
{

string[] coordinates = s.ToString().Split(new char[] { ‘,’ });

Point point = new Point();
point.x = Convert.ToInt32(coordinates[0]);
point.y = Convert.ToInt32(coordinates[1]);

return point;
}

public int X
{

get
{

return this.x;
}

}

public int Y
{

get
{

return this.y;
}

}
}

Once the assembly containing the UDT is imported into the database, you can create the SQL CLR object
with the following T-SQL:

CREATE TYPE dbo.Point
EXTERNAL NAME DBUtilities.Point

It can now be used as any built-in data type is used. The following is an example of using the new Point
data type:

DECLARE @p Point = ‘5,7’
SELECT @p.X AS X, @p.Y AS Y

626



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 627

Chapter 14: Introduction to the Common Language Runtime

Aggregates
Creating custom aggregations with managed code is a relatively complex process compared to what we
have looked at so far. This is because multiple methods must be implemented that are called to build
the aggregate value as the result set is populated. Throughout this process, the aggregate structure is
initialized, values are added and may be merged with those previously collected, and then, finally, the
resulting value is calculated and the structure is disposed of.

After the user-defined aggregate (UDA) assembly has been programmed, tested, and deployed to an
external assembly, the database aggregation is defined using the following Transact-SQL syntax:

CREATE AGGREGATE [schema_name.]aggregate_name
(@param_name <input_sqltype> )

RETURNS <return_sqltype>
EXTERNAL NAME assembly_name[.class_name]

Using the automated UDA feature in a Visual Studio SQL CLR project produces the following starting
code:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.Native)]
public struct AverageWordCount
{

public void Init()
{

// Put your code here
}

public void Accumulate(SqlString Value)
{

// Put your code here
}

public void Merge(AverageWordCount Group)
{

// Put your code here
}

public SqlString Terminate()
{

// Put your code here
return new SqlString("");

}

// This is a place-holder member field
private int var1;

}

627



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 628

Chapter 14: Introduction to the Common Language Runtime

As you see, four methods and one variable are defined by the template. Each of these methods has a
specific purpose and may be called multiple times under certain conditions as a query is executed.

In SQL CLR UDAs, you define an initializing (Init) method that occurs on the start of a query’s group-
ing (initiated by the SQL GROUP BY clause), an Accumulate method to aggregate new values within the
grouping, and a Terminate method to return the final result. In addition, UDAs have a Merge method
that the SQL Server engine may use when the optimizer chooses to implement the UDA with multiple
threads. The Merge method combines the results of multiple instances of the UDA back into the parent
thread to return a unified result. The ability to create custom aggregations allows you to add to a limited
list of aggregation functions that are defined by the T-SQL language. This opens the possibility of making
complex queries much easier to both write and understand. For example, imagine you require a list of
CustomerIDs and the SalesOrderNumbers for each customer during a specific time frame. I know what
you are thinking — that would be easy. But what I left out was that you need the SalesOrderNumbers
returned as a semicolon-delimited string as shown in Figure 14-11. No longer is this a trivial query using
just a T-SQL SELECT statement. Until user-defined aggregates, that is!

The following is a custom user-defined aggregate that produces the required output.

using System;
using System.Text;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.UserDefined,
MaxByteSize=4000)]
public struct Concatenate : IBinarySerialize
{

private StringBuilder tempValue;

public void Init()
{

this.tempValue = new StringBuilder();
}

public void Accumulate(SqlString inString)
{

if (inString.IsNull)
return;

this.tempValue.Append(inString.Value);
this.tempValue.Append(";");

}

public void Merge(Concatenate group)
{

this.tempValue.Append(group.tempValue);
}

public SqlString Terminate()
{

if (this.tempValue != null && this.tempValue.Length != 0)

628



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 629

Chapter 14: Introduction to the Common Language Runtime

return this.tempValue.ToString();
else

return new SqlString();
}

public void Read(System.IO.BinaryReader r)
{

this.tempValue = new StringBuilder(r.ReadString());
}

public void Write(System.IO.BinaryWriter w)
{

w.Write(this.tempValue.ToString());
}

}

To use this custom user-defined aggregate, simply import the assembly and create the aggregate. The
syntax for creating the SQL CLR aggregate for the previous example is as follows:

CREATE AGGREGATE dbo.Concatenate(@Value nvarchar(4000))
RETURNS nvarchar(4000)
EXTERNAL NAME DBUtilities.Concatenate;

It can then be used just as any built-in aggregate function is used. The following code uses the custom
Concatenate aggregate function:

SELECT CustomerId, dbo.Concatenate(SalesOrderId) as SalesOrderNumbers
FROM Sales.SalesOrderHeader
GROUP BY CustomerId

Figure 14-11: Results of using a custom aggregate.

Deployment with Visual Studio
In a previous exercise, you saw how to create a simple user-defined function using Visual Studio and how
to add that assembly to SQL Server using the CREATE ASSEMBLY command. In the following sections, you
will build on that exercise and explore additional features and capabilities of the Visual Studio Database
Project.

629



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 630

Chapter 14: Introduction to the Common Language Runtime

Although it’s important to understand how to import assemblies and create programming objects in SQL
Server by referencing those assemblies, all of the SQL CLR objects can be developed, debugged, tested,
and deployed from the Visual Studio development environment. I’ll take you on a brief tour and step
through this process. Once again, remember that this is not a book on programming, so I’m simply intro-
ducing the basic features. There are many elements to a complete solution, and considerations depend
on the security restrictions and required access to external resources.

Follow these steps:

1. Drop the assembly and function created in earlier exercises. To do this, execute the following
command:

USE AdventureWorks2008;
GO
DROP TYPE dbo.Point
DROP TRIGGER dbo.LogVendorModificationDROP PROCEDURE dbo.LogInEventLog;
DROP FUNCTION dbo.GetOSVersion;
DROP AGGREGATE dbo.Concatenate
DROP ASSEMBLY DBUtilities;

If you created any of the other SQL CLR objects that we talked about, you will have to drop
those as well before continuing.

2. Open the previous DBUtilitiesSolution solution.

3. You can set several optional properties for a project using the Project Property pages. For
example, a digital signature can be added to the assembly. To view these tabbed dialogs,
right-click on the DBUtilities project in the Solution Explorer tree, and select Properties. The
Properties page has several tabs that enable the configuration of the project. The number
of tabs will vary, depending on the installation of Visual Studio and add-ins such as Visual
Source Safe 2005 or Visual Studio Team System. A fairly typical arrangement is shown in
Figure 14-12.

4. To deploy the assembly directly to the database, you can right-click on the project in Solution
Explorer and select Deploy from the menu or choose Deploy from the Build menu.

This action saves the project, builds the assembly DLL file, adds the assembly to the
database using the CREATE ASSEMBLY command, and executes the appropriate commands for
all objects defined within the project. Visual Studio is actually using the attributes that we
defined earlier on each method and class to determine what to execute. The attributes are
not necessarily required by SQL Server but more so for Visual Studio to deploy the objects.
After deploying the project, open SQL Server Management Studio to examine the newly
created function and assembly.

5. Expand the AdventureWorks2008 database, then the Programmability folder and Assemblies
folder. Note that the DBUtilities assembly has been added. Expanding the Functions and
‘‘Scalar-valued Functions’’ folder in the Programmability folder will expose several func-
tions, of which one is the OSVersion function just created by deploying the project with
Visual Studio (see Figure 14-13).

630



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 631

Chapter 14: Introduction to the Common Language Runtime

Figure 14-12: Project Properties page.

6. Test the function to make sure it works. Open a new Query window in Management Studio,
and execute the following command:

USE AdventureWorks2008;
GO
SELECT dbo.OSVersion() AS OperatingSystemVersion;

You should see something similar to the following results:

OperatingSystemVersion----------------------
---------------------------------------
Microsoft Windows NT 6.0.6001 Service Pack 1
(1 row(s) affected)

Now, wasn’t that easy! You will likely not have much use for an OSVersion function in your database, but
it is not any more difficult to create very robust functions that execute complex mathematical calculations
or complex string manipulation. Offloading these types of processes to the CLR will result in a great
improvement over executing them with T-SQL.

As you can see, in an integrated environment where a developer has connectivity to the database server,
Visual Studio can be used to manage the entire development, debugging, testing, and deployment cycle.

631



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 632

Chapter 14: Introduction to the Common Language Runtime

As an administrator, you will need to decide what level of access developers should have, which will
determine just how simple and convenient this process may be for your development staff.

Figure 14-13: Deployed programming objects.

In a formal production environment, you may elect to set up a development database server and allow
rights and connectivity for the developers to this machine. After objects have been properly tested and
validated using the development server, you can either use these Visual Studio projects for deployment to
production from the integrated development environment or execute Transact-SQL scripts manually. The
object scripts can also be generated from the development server and then executed on the production
server, saving you much of the manual scripting effort.

Now that you know how the SQL CLR object development process works, I’d like to spend the remainder
of this chapter dealing with the common administrative tasks that you will need to understand to support
these features in a production environment. I’ll show you how to perform some of the same actions
manually, and discuss some of the decisions you will need to make to maintain a safe and secure server
to host SQL CLR objects and assemblies.

Programming Support
Taking database objects beyond the capabilities of Transact-SQL will require that your team understands
the advantages afforded by using the .NET Framework and CLR. SQL Server already has strong features

632



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 633

Chapter 14: Introduction to the Common Language Runtime

built in to take advantage of performance-enhancing features such as parallel code execution and explicit
memory management. Solution designers and administrators see these capabilities as black box features
and can do little to control the Database Engine’s behavior. Programmers have the ability to work at
a much lower level, and can determine how program code uses system resources under very specific
conditions. The .NET CLR contains several security options. For example, program methods can be
explicitly tagged to use external code known to be safe that might not otherwise be permitted to execute.
Following are just a few common capabilities offered by custom code written for the .NET CLR.

Threading
The .NET Framework supports both implicit and explicit multi-threading. A thread is a distinct unit of
execution that shares memory with the other threads in a process space. By spawning multiple threads
of execution within an application, long-running code will not block the execution of another thread.
Under the right conditions, this enables a component to perform multiple tasks in parallel with improved
efficiency.

The SQL Server Database Engine is inherently multi-threaded, but threads are managed only by inter-
nal logic without input from the user or query designer. You can see evidence of this by viewing the
execution plan for a complex query. Some steps in the plan will execute simultaneously. Buffers and
in-memory tables may be used to synchronize the results of parallel operations. Again, this is a deci-
sion the Database Engine makes for you that may be influenced by the syntax of a query, but cannot be
declared explicitly. In .NET program code, threads may be created either implicitly by using delegates,
callbacks, and events, or explicitly by declaring and managing thread objects. Multi-thread programming
can be a tricky business and often requires a high level of programming expertise.

Advanced programmers may use multi-threading to launch simultaneous operations. The results may be
queued and then combined after all threads report completion. Because threads execute independently,
some form of synchronization code must be used to determine when a threaded routine has completed.
The overall effect, when used appropriately, may be a much faster set of coordinated operations.

Impersonation
Impersonation is the process of passing a security context from one area of execution to another, allowing
access to multiple objects (which could exist in multiple components) having to authenticate only once.
For example, say that a CLR stored procedure is executed (either interactively or by an automated pro-
cess) and the procedure needs to write to the file system. Impersonation would copy the current user
security context for the database object and apply it to the assembly and other related running code. SQL
Server does not provide this for you, and it has to be done explicitly. In the context of this book, what is
important to know is that when a SQL CLR object is executed, it will execute under the security context
of the account that the SQL Server process is running unless programmed to impersonate the identity of
the executing user.

Security Options
As a database system administrator, one of your primary concerns should be the safety and security
of your server infrastructure. The very thought of allowing custom code to run on a production server
may be enough to keep system administrators up at night. As an application developer, I’ve sat with
many a database administrator, asking to have components installed, jobs scheduled, and script enabled

633



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 634

Chapter 14: Introduction to the Common Language Runtime

to perform some task on a live server. In nearly every case, my code was viewed as a threat, and the
administrator’s job was to prevent my alien code from opening security holes on his server. I understand
and fully embrace this as a working system of checks and balances. This works as long as coders under-
stand the need for security restrictions and administrators appreciate the need to extend database and
application functionality.

One of the first things you should know about .NET security from the beginning is that it is inherently
designed to be safe right out-of-the-box and without additional configuration. Unlike many program-
ming models in the past, default settings are restrictive and set to protect code from accessing volatile
system resources and to prevent system invasion. That said, it is important that you understand what
settings are necessary for program code to run and to have access to only the resources it needs to get the
job done. You will likely be required to enable specific capabilities in order for CLR code to run on your
servers. In addition to standard SQL Server permissions, there are two separate security measures that
affect .NET code running within SQL CLR objects: one applied by SQL Server to restrict an assembly’s
freedom and one applied by the .NET run time itself.

.NET Security
Before any custom code can execute, the request must pass through many separate layers of authentica-
tion and permissions. First, any user request must be authenticated by Windows (assuming you are using
Windows-integrated security in SQL Server), and then SQL Server must authenticate the user and grant
object-level permission for the request. These measures apply to any database object and are not spe-
cific to an assembly. Next, the specific SQL CLR Permission Set, discussed in the next section, is checked
to see whether SQL Server grants the assembly permission to use certain features of the .NET runtime
classes and whether it can access any external resources. Finally, the assembly must satisfy the rules of
Code Access Security (CAS), which is enforced by the .NET CLR. This security layer may also determine
whether the assembly or certain class methods within the assembly can have access to external resources.

SQL CLR Permission Sets (managed by SQL Server) are applied to the assembly, which resides within
the database and encapsulates SQL CLR database objects. These Permission Sets control what each object
within the assembly is allowed to do (such as the file system, external data sources, and external managed
or unmanaged components). This is the point of greatest potential risk and should be carefully planned
and coordinated with application developers.

Securing SQL CLR
SQL CLR objects may be secured at different levels. After considering a user’s access to the database
server and permissions granted or denied within SQL Server to any objects, special execution permissions
are set for SQL CLR objects. This gives an administrator a simple (but effective) blanket of control over
each CLR object in the database. Without contending with the complexities of programming objects, SQL
CLR Permission Sets simply allow you to enable varying levels of access to managed assemblies.

SQL Server CLR Permission Sets
To simplify the security model for assemblies added to a database, a set of three permission levels is
defined within SQL Server. These are used to allow assemblies to have access to resources known to be
safe. These settings are implemented by restricting the assembly’s access to specific .NET Framework
runtime system class libraries. The Permission Set is applied when a SQL CLR assembly is imported

634



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 635

Chapter 14: Introduction to the Common Language Runtime

into the database. For example, the following code is used to import the DBUtilities assembly into the
database and grant it the permission level of External Access:

USE AdventureWorks2008;
GO
CREATE ASSEMBLY DBUtilities
FROM
‘C:\SQLServerSolutions\DBUtilitiesSolution\DBUtilities\bin\Debug\DBUtilities.dll’
WITH PERMISSION_SET = External_Access

The preceding command will fail with an "Assembly not authorized for PERMISSION_
SET = EXTERNAL_ACCESS" error if certain criteria are not met, as described in the end of this section.

SAFE Permission
This setting only allows safe .NET code to run in SQL CLR assemblies. You should use this setting when
an assembly doesn’t require the use of external data or components outside the SQL Server database
server environment.

The SAFE Permission Set allows an assembly to execute with minimal permissions and to have access to
only internal database resources and .NET classes that are known to be safe. Many of the .NET assem-
blies and even some classes have had some functionality disabled to prevent security work-arounds.
In other words, the code can perform internal logic and access data from the local database server. The
SAFE setting does not allow access to external data, nor to external resources (such as the file system,
executables, or the system registry). Even though the use of this setting is fairly restrictive, this may be
advantageous because the code has access to most of the .NET system classes and can process program
logic beyond the capabilities of objects written in Transact-SQL. Beyond this, the SAFE permission setting
will allow the code to perform most any task that would normally be granted to a SQL stored procedure
or user-defined function. The SAFE Permission Set is the default Permission Set and is the recommended
setting for SQL CLR assemblies.

External Access Permission
This setting is more permissive than the SAFE setting yet doesn’t allow some of the more risky capabilities
of the UNSAFE setting described later. Using the External_Access setting will allow an assembly to use
.NET Framework class libraries to gain access to external system and network resources. These may
include the local or remote file system, Active Directory, the system registry, logs, files, and external data
sources. This setting will allow the code to send e-mail, use the Internet, and consume Web Services.
The External_Access setting doesn’t allow an assembly to call unmanaged code in any form, such as
COM-based DLLs, ActiveX controls, and VBScript.

This is a useful and reasonably safe setting when used along with disciplined programming practices
and thorough testing. Because the stability of .NET code is generally not a concern, an administrator’s
attention should be focused on ensuring that solution developers are accessing only essential resources,
and that all code is tested and verified prior to being deployed to production servers.

UNSAFE Permission
The UNSAFE permission setting is at the opposite end of the permission spectrum and allows complete
access to all of the .NET Framework classes. As such, code may access the file system, the system reg-
istry, network resources, and even the Internet. This setting also allows the assembly code to execute
unmanaged components and executables.

635



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 636

Chapter 14: Introduction to the Common Language Runtime

Looking beyond security concerns for the moment, .NET code is generally stable because of the CLR’s
isolated process space and exception-handling model. Even if buggy code were to crash, the CLR would
shut down the process gracefully without taking system processes with it. This built-in stability changes,
however, when .NET code calls older, unmanaged code.

Before you get excited about using terms like unsafe, let’s put this into perspective. We have had the
capability to extend SQL Server’s reach using external applications and components for several years in
the form of command-line executables and extended stored procedures. Many trustworthy SQL Server
solutions send e-mail messages using COM-based Collaboration Data Object (CDO) code or interact with
the file system using external VBScript. Older custom, extended stored procedures are written in C++
and may use the MFC libraries. The point is that these are all examples of what is now called unmanaged
code and fall into the category of unsafe code from the perspective of a SQL Server CLR object.

Using the UNSAFE setting to enable access to external resources isn’t necessarily a bad thing. This just
means that the .NET CLR can’t guarantee that it’s safe — you and your developers have to do that, just
like many of us have been doing for the past 10 or 12 years. If you have existing components that your
solution relies on that have been tested and verified to be safe, you can use the UNSAFE setting to call them
from a CLR stored procedure, trigger, or user-defined function.

It is best practice to segregate code based on the required level of access. In other words, if one or two
methods need the UNSAFE Permission Set, then they should be isolated into their own assembly. This
prevents code from having a Permission Set that is not required just because another method within the
assembly requires it.

Enabling External Access and Unsafe Permissions
In order to set an assembly’s permission level to External Access or UNSAFE, one of two conditions
must be met. Either the database Trustworthy attribute must be True and the database owner has the
EXTERNAL ACCESS ASSEMBLY or UNSAFE ASSEMBLY permission (the sa login does by default), or the assem-
bly must be signed with a certificate or asymmetric key and that key is mapped to a login with the
EXTERNAL ACCESS ASSEMBLY or UNSAFE ASSEMBLY permission. If either of these conditions is not met, any
attempt to change the Permission Set of the assembly will fail with the error shown in Figure 14-14. Fol-
lowing the principle of least privilege, the recommended configuration is the use of a certificate or key
and not to set the Trustworthy attribute to True if the only requirement is to allow CLR objects greater
access. See Chapter 6 for more information on SQL Server certificates and asymmetric keys.

Figure 14-14: Unauthorized assembly error.

636



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 637

Chapter 14: Introduction to the Common Language Runtime

Summary
As a system administrator, you probably have your hands full with servers and databases that need to be
stable and secure. Adding custom programming components to the mix has always been risky business,
not to mention one more thing to worry about affecting your corporate infrastructure. Your task should
be to minimize this risk and support only components that are easy to manage, and those that will play
fairly with other applications. The .NET-managed Common Language Runtime (CLR) offers greater
peace-of-mind with little risk of affecting anything else running on your servers.

Adding custom-programmed objects to your database opens a whole new world of opportunity for
SQL Server users, developers, and administrators. SQL CLR takes database object security to the next
level with a simple, integrated model. Executable assemblies reside in a SQL Server database rather than
the file system. Database programming objects (such as stored procedures, triggers, types, user-defined
functions, and aggregates) run as compiled .NET program code within the SQL Server processing space.

Applications developed with .NET-managed code are inherently secure and offer many choices for com-
ponent configuration and flexibility, but along with these options comes a great deal of complexity. The
SQL CLR security model makes security very simple by distilling the task of securing an object to three
basic settings. As an administrator, you decide whether to allow an object to execute only code known to
be absolutely safe to access external resources, or whether to let down your defenses to allow potentially
unsafe code run. The latter choice allows you to depend on and trust the capable (but more complicated)
features of .NET code access security. For most objects, trusting only safe code will be sufficient, and
your task remains simple and uncomplicated. However, more sophisticated custom code objects may
require a greater investment of knowledge and skill. In such cases, you will likely need to work closely
with application developers to make appropriate trade-off decisions to provide the right functionality for
your users, along with a manageable level of security for your peace-of-mind.

637



Leiter c14.tex V3 - 03/25/2009 12:52pm Page 638



Leiter c15.tex V3 - 03/25/2009 12:54pm Page 639

15
An Administrator’s Guide
to Business Intelligence

As I mentioned in Chapter 1, SQL Server 2008 is much more than a relational Database Engine.
SQL Server 2008 is really a data platform that provides tools for collecting, manipulating, moving,
analyzing, and presenting information. The next three chapters will introduce you to the specific
services and technologies that compose SQL Server’s Business Intelligence (BI) toolset.

If you’re new to database administration or just new to SQL Server Administration, you might not
have had much exposure to BI technologies and methods. Speaking from experience, my back-
ground has primarily been in Systems and Network Administration. Business Intelligence had
never been part of my vocabulary until the last couple of years. I wanted to write this chapter for
those of you who, like myself, had little exposure to BI, but are suddenly involved in a BI project or
initiative.

This chapter will begin with an introduction to Business Intelligence, as well as define Performance
Management. Then, you will learn how the different components in the Microsoft BI stack can be
used to help business users get more from their data. In addition to talking about SQL Server, there
are two other products that bear mentioning in this chapter, as well — Microsoft Office SharePoint
Server (MOSS) 2007 and Microsoft Office PerformancePoint Server (PPS) 2007. Finally, this chapter
will end with a summary of the database administrator’s role in a BI initiative.

Understanding BI
Not everyone uses the same definition of Business Intelligence, but most of them agree on the basic
concepts. Business Intelligence is defined as a set of tools, applications, and business practices for
collecting data used in decision support systems, analytical processing, and reporting.

So what does that mean? Sometimes it’s hard to talk about Business Intelligence without sounding
like you’re just mixing up ‘‘word salad.’’ Business Intelligence is really about collecting data, and
getting information from that data that can help you make better business decisions. For a finance
department, that might include identifying where the company can afford to cut costs, increase
revenue, or make better investment decisions. An IT or Operations Department might analyze



Leiter c15.tex V3 - 03/25/2009 12:54pm Page 640

Chapter 15: An Administrator’s Guide to Business Intelligence

information about their response time to customer requests, the amount of time it takes to complete a
service request, and the level of customer satisfaction with the services delivered.

A misconception about Business Intelligence is that it’s all about numbers. The truth is, it’s all about
facts. Facts may be measured or scored using numbers, but a number without context is just a number.
Business Intelligence is about putting meaning behind these numbers and allowing that meaning to be
shared and understood.

Performance Management
Performance Management is the process by which a set of objectives is defined, and actual performance
is monitored, analyzed, and compared to these defined targets using a combination of management,
methodologies, and information technology. Performance Management is often considered a subset of
BI that can be used to measure progress toward clearly defined goals. In fact, it’s not uncommon to see
Performance Management objectives included as part of an overall BI initiative.

An effective Performance Management strategy will address five key questions that can be answered
through planning, monitoring, and analysis. These key questions are:

❑ What has happened?

❑ What is happening?

❑ Why?

❑ What will happen?

❑ What do I want to happen?

Answering these questions can be done through monitoring, analysis, and planning, and although SQL
Server includes several features that can help perform these tasks, Microsoft Office PerformancePoint
Server is a product that is geared specifically to address these questions.

Business Intelligence Components
Now that you understand what Business Intelligence and Performance Management are, you should
learn a little bit about the tools that are used to create and manage a BI solution. This section will provide
you with a high-level overview of how the Microsoft BI components are used. This includes defining
the roles of SQL Server Integration Services, SQL Server Analysis Services, and SQL Server Reporting
Services, as well as how MOSS and PPS fit into the BI stack.

Data Goes In, Data Comes Out
OLTP databases are very good at writing and storing data. High transaction-processing applications such
as point-of-sale systems need to be able to insert and update information very quickly. As you may have
read in Chapter 11, OLTP databases are often normalized, meaning that duplication and redundancy of
data are kept to a minimum. This makes it very easy to perform INSERT, UPDATE, and DELETE operations.

640



Leiter c15.tex V3 - 03/25/2009 12:54pm Page 641

Chapter 15: An Administrator’s Guide to Business Intelligence

However, you might want to retrieve information that uses actual names, for example, you have to
perform JOIN operations on several tables to be able to present the information in a readable fashion, not
to mention additional operations that might need to be performed to ensure that only the relevant data
is returned. In this case, data retrieval might be a costly operation that could cause bottlenecks in system
performance, preventing Write operations from occurring.

The best plan of action would be to move data into another database designed for Read performance.
This is where SQL Server Integration Services comes in. As you will read in Chapter 16, SSIS is an
Extract-Transform-Load (ETL) service application. As the moniker suggests, you can use Integration Ser-
vices to extract data from a data source. If the destination has specific requirements that the source data
does not yet conform to, an ETL application will allow the data to be transformed prior to reaching its
destination. Finally, once the data conforms to the target database requirements, the data is loaded into
the destination database.

Analyze This!
While Chapter 17 will go into greater details about the tools and features of Analysis Services, this section
will help you understand where SQL Server Analysis Services fits into the Microsoft BI Stack. As the
name suggests, Analysis Services includes the ability to create and manage Online Analytical Processing
(OLAP) databases. OLAP databases are used to create multi-dimensional storage objects, known as cubes,
which allow data to be quickly retrieved using a variety of criteria. For example, if someone asked you
to provide the sales revenue and total number of units of the BK-T18Y-62 Touring Bike sold by Linda
Mitchell in Phoenix, AZ from October 2007 through December 2007, you would have to write one heck
of a query. You’d have to join quite a few tables in your query to get that information, but it could be
done. Of course, the minute you provide them with that information, they will then follow up with a
request for the day-to-day sales numbers.

An easier way to provide access to this information is by building a cube, which allows data to be stored
across a variety of hierarchically structured facets known as dimensions. Storing the data this way opti-
mizes it for data retrieval, which makes it easier to analyze and report against. Also, the hierarchical
nature of the dimensions makes it easier to break the data apart into smaller chunks through a process
known as slicing. This allows a user who might be looking at monthly data to slice a month into smaller
pieces like weeks or days.

Often, Analysis Services Databases are part of a corporate strategy to build a data warehouse. As the name
suggests, data warehousing is about building an enterprise-wide data collection that can be used to get
better insight into company performance. There are two competing schools of data warehousing meth-
ods. Ralph Kimball, a leading expert in data warehousing, favors a bottom-up approach that proposes
building a warehouse by creating a series of smaller data marts. These data marts contain smaller subsets
of multi-dimensional data that when grouped together help form the larger data warehouse. This is also
(for obvious reasons) referred to as the Kimball Method.

The Inmon Method, named after Bill Inmon, one of the premier authors on data warehousing, favors
a top-down approach. In this case, all data is built into a single data repository first, and that data
can be provisioned into smaller data marts, which would be used for specific business processes. The
‘‘right’’ method for building a data warehouse is going to depend on the specific business needs of your
organization.

641



Leiter c15.tex V3 - 03/25/2009 12:54pm Page 642

Chapter 15: An Administrator’s Guide to Business Intelligence

For more information on applying the Kimball Method using Microsoft SQL Server, I recommend The
Microsoft Data Warehouse Toolkit: With SQL Server 2005 and the Microsoft Business Intel-
ligence Toolset by Joy Mundy and Warren Thornthwaite (Wiley, 2006). If you’re interested in the
Inmon approach, check out Building the Data Warehouse, 4th ed., by W.H. Inmon (Wiley, 2005).

Did You Get the Memo about Cover Pages?
While Analysis Services provides a mechanism for being able retrieve business data quickly, there is no
true Analysis Services ‘‘client tool’’ that is part of the SQL Server Product Suite. Technically, you could
deploy SQL Server Management Studio and Business Intelligence Development Studio to your users’
desktops and let them write their own ad hoc MDX queries against relational and multi-dimensional
databases, respectively; however, that is far from a recommended solution. Microsoft Office Excel 2007
includes the ability to browse SSAS cubes as pivot tables and pivot charts, but that will have to be pur-
chased and licensed separately, and it may not meet all of your business needs for performing analytics.

This is where SQL Server Reporting Services can come in handy. SSRS, covered in more detail in
Chapter 18, allows you to create dynamic, interactive reports. The level of customization and flexibility
is both a blessing and a curse. Using Visual Studio (or BIDS, if you prefer) is not something the average
user will want to learn in order to create useful reports; however, developers have practically limitless
design options for building reports that are both useful and aesthetically pleasing. SQL Server 2008’s
Reporting Services provide several new features for creating and managing reports.

If you find BIDS to be too intimidating for the average end-user who wants to build a simple report, you
might find yourself in good company. Shortly after the release of SQL Server 2008, Microsoft released a
new client tool for building reports, which they called Report Builder 2.0. The new Report Builder provides
an easier-to-manage interface for creating a variety of reports.

Beyond SQL
One can’t argue with the fact that SQL Server 2008 includes a rich set of tools for creating and managing
a BI solution. If it has one failing, however, it is the fact that these tools are very developer-centric. While
developers who are building a BI solution may find Business Intelligence Development Studio a very
comfortable and familiar environment, it won’t help the end-user who needs to perform ad hoc analysis
or be able to generate interactive dashboards and scorecards. As a database administrator, it’s important
that you get at least a basic introduction to these tools, and the features that they offer, so that you can
support them appropriately.

The BI Side of SharePoint
SharePoint is the product that just keeps on giving. You may already be familiar with some of the more
heavily used features of SharePoint, such as its document management and collaboration tools. The
Enterprise Edition of Microsoft Office SharePoint Server (MOSS) 2007 also includes a number of features
for building dashboards and defining Key Performance Indicators (KPI).

MOSS 2007 also includes a SharePoint site template known as the Report Center. The Report Center is
designed to be the intranet repository for creating and publishing dashboards, KPIs, and reports gener-
ated from SSRS or other applications. Another compelling feature of MOSS 2007 is Excel Web Services,

642



Leiter c15.tex V3 - 03/25/2009 12:54pm Page 643

Chapter 15: An Administrator’s Guide to Business Intelligence

which provides Read Only access to spreadsheets for clients that may not have the full Excel client
installed. Because Excel Web Services is designed to look and feel like the rich Excel client, it includes
the same PivotTable and PivotChart functions that users may already be using to browse and report
against Analysis Services cubes.

ProClarity and PerformancePoint Server
In 2006, Microsoft acquired ProClarity Corp., makers of ProClarity Analytics Server and ProClarity
Desktop Professional. ProClarity’s product line includes tools for performing advanced analysis and
visualizations of business data. Some of the more advanced visualization ProClarity offers are Per-
formance Maps (also known as Heat Maps) and Decomposition Trees. One of the key benefits of the
ProClarity tools is the benefit to publish these charts and graphs as interactive analytics that allow users
to get more detailed information as they drill into the reports.

After the acquisition of ProClarity, Microsoft decided to integrate some of the features of ProClarity with
its own Business Scorecard Manager (BSM), to create a new monitoring and analytics product known as
Microsoft Office PerformancePoint 2007. PerformancePoint is actually several products in one. The first, the
Monitoring Server, is centered around the creation and management of interactive dashboards that allow
you to publish several reports, charts, and scorecards on one or more dashboard pages.

Although the PerformancePoint Monitoring Server includes several features that operate best when
using a multi-dimensional data source like an Analysis Services cube, it also supports the use of SQL
Server tables and views, Excel files, and SharePoint lists as additional data sources. PerformancePoint
dashboards are designed to be published to a SharePoint document (or report) library. Because of its
tight integration with SharePoint, it allows publishing reports from other applications as additional web
parts in a dashboard page. For example, a PerformancePoint dashboard page might contain a scorecard,
a ProClarity Performance Map, and a SQL Server Reporting Services Report that all provide information
about a particular business unit or division.

In addition to the Monitoring Server, PerformancePoint includes another server component known as
the Planning Server. The Planning Server is a unique offering from Microsoft that is designed to support
building budgeting and forecasting scenarios. Although the use of the Planning Server is not limited to
financial applications, it includes a number of Financial Intelligence (FI) features that support Generally
Accepted Accounting Principles (GAAP) and International Financial Reporting Standards (IFRS).

The Planning Server is designed with the end-user in mind. Although there are some components that
will require DBA or developer intervention, for the most part, the goal of a Planning Server implementa-
tion is to allow finance and other budget managers to have a tool they can use for building and managing
their own data. What is somewhat unique about the Planning Server is the fact that it manages and main-
tains both the OLTP and OLAP databases that are used to store the data. Users can build their own data
marts by defining the structure and properties of the models, which represent an Analysis Services cube.

The third component of the PerformancePoint Server is the PerformancePoint Management Reporter.
As another offering in Microsoft’s BIPM solution stack, the Management Reporter is designed to be
a financial report-building tool. This includes templates and features for building some of the more
common financial report types such as Cash Flow, Income Statement, and Balance Sheet reports. The
Management Reporter is actually a re-design and re-branding of the Microsoft Dynamics and Microsoft
FRx financial management reporting tool, which includes new features designed specifically to allow
reporting against a PerformancePoint Planning Server data application.

643



Leiter c15.tex V3 - 03/25/2009 12:54pm Page 644

Chapter 15: An Administrator’s Guide to Business Intelligence

Shortly before publication of this book, Microsoft had announced a new Microsoft BI roadmap, which
unfortunately no longer includes PerformancePoint as a separate product; however, the Monitoring and
Analytic components of PPS are expected to be added to the next version of SharePoint.

So Many Tools, So Little Time
It can be easy for a DBA, even a seasoned one, to be overwhelmed by the different BI offerings from
Microsoft and other vendors. Quite often, I am asked by my clients what the best tool or solution is.
Unfortunately, there is no absolutely right or wrong answer. The answer will vary based on what the
business needs are, what the IT Department is capable of delivering, and what the total cost of ownership
is for the applications and solutions that are being considered.

It is important to know that the role of a DBA can be, and sometimes is, more than just administering and
maintaining a database server environment. A good DBA will also be able to understand the business
needs being addressed by the applications their database server depends on. When you understand
the data and understand the business value of the data, you can be more proactive about ensuring the
integrity as well as the safety and security of said data.

Understanding Microsoft’s BI offerings, and how they can meet the needs of your business, will also
help you make the right decisions and provide good insight into which products have the lowest total
cost of ownership and offer the greatest return on investment. It’s also important to understand that
Microsoft SQL Server 2008 is the foundation for all of these applications, which can help make the case
for upgrading or migrating to SQL Server 2008.

If you’re interested in learning more about Microsoft’s Business Intelligence roadmap, you can find more
information at www.microsoft.com/bi. There, you will also find a BI IT Solution Accelerator, to help IT
departments use Business Intelligence to gain insight into their performance.

Summary
Business Intelligence is more than just a buzzword that gets thrown around by marketing people. It’s
about using a set of tools and practices to help add context to the data you already collect. BI tools can
allow you to identify trends that you might have otherwise missed if you hadn’t charted them in a line
graph. Or it can help you identify which areas of your business need the most improvement, and where
you’re succeeding.

Database administrators play a key role in any Business Intelligence initiative because they will ulti-
mately be responsible for the core services on top of which these application components run. Your
role may be limited to just supporting the database. It may also include supporting and helping design
solutions around analysis tools, reporting tools, and visualization tools.

This chapter sets the tone for the topics that you will be reading about in the next three chapters. You will
begin by reading about SQL Server Integration Services in Chapter 16, and learn about the methods for
moving and manipulating data. From there, you will learn more about Analysis Services and Reporting
Services in the chapters following Chapter 16.

644



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 645

16
Introduction to SQL Server

Integration Services

An important part of any Business Intelligence solution is moving the data from a source environ-
ment that isn’t optimized for analysis into one that is. Sometimes this process can be straightfor-
ward; at other times, you will need to make structural or formatting changes to ensure that the data
has value. This is known as the ETL process.

The Extract, Transform, and Load (ETL) process can be managed through a SQL Server service known
as SQL Server Integration Services, or SSIS for short. This chapter will cover the basics of SSIS in SQL
Server 2008. The following topics will be covered:

❑ A general introduction to SSIS and its features

❑ The import and export tools used to move data around

❑ The different options for transforming data using SSIS

About SSIS
Prior to SSIS in SQL Server 2005, SQL Server included a lightweight ETL product known as Data
Transformation Services (DTS). Although DTS was a useful tool for moving data from one location to
another, it was prohibitively difficult for many administrators who lacked significant programming
or scripting skills to perform complex transformations. SSIS builds on the basic principles of DTS,
but expands its capabilities to include additional, easier-to-manage, features.

Integration Services is part of a suite of tools included in the Business Intelligence Development
Studio. As you may have read earlier, BIDS is simply an instance of Visual Studio, which includes
add-ins for designing solutions for Integration Services, Analysis Services, and Reporting Services.
One of the benefits of using BIDS is that it allows you to develop Integration Services solutions
without having to maintain an active connection to an existing SQL Server. This gives you the
flexibility to design solutions that can run on multiple servers or can be executed from a file system.



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 646

Chapter 16: Introduction to SQL Server Integration Services

The ETL process, in its most simple definition, begins by defining a data source. From that data source,
you define which data you are interested in copying to a new destination. As the data is being retrieved
from the source, you may need to perform one or more transformations on the data to prepare it for its
destination. For example, you may want to take a column that stores a string value that is either ‘‘True’’
or ‘‘False’’ into a Boolean value, ‘‘1’’ or ‘‘0,’’ respectively. This allows you to match the current data type
of the destination. Finally, the load sequence takes the transformed data and injects it into the appropriate
destination.

SQL Server Integration Services is actually made up of four different components:

❑ Integration Services itself

❑ Integration Services object model

❑ Integrated Services run time

❑ Integrated Services data flow

Each of these components is used to create a robust experience for designing, managing, and executing
packages built for SSIS. In the next few sections, you learn about each of these components.

Integration Services
Integration Services itself is actually managed through SQL Server Management Studio, not unlike many
of the other SQL Server components. This component is used to handle the management and monitoring
of both stored and running packages. Packages can be stored in the file system or they can be stored in
the msdb database on a running instance of SQL Server 2008.

Integration Services, when installed, assumes that the local default instance contains the msdb database
that will be used for the package repository. However, because SQL Server 2008 can coexist with older
versions of SQL Server installed on the same machine, it is possible that your default instance is running
a legacy version of SQL Server. If this is the case, you must manually edit the <ServerName> element
in the MSDtsSrvr.ini.xml file to reflect the correct instance name of your server. This file is in the
100\DTS\Binn directory of your SQL Server installation folder.

You can use SQL Server Management Studio to connect to an instance of SSIS, as shown in Figure 16-1.
The following is a list of Integration Services features that can be managed through SQL Server Manage-
ment Studio:

❑ Connect to multiple Integration Services servers.

❑ Manage package storage.

❑ Customize storage folders.

❑ Import and export packages.

❑ Start local and remote stored packages.

❑ Stop local and remote running packages.

❑ Monitor local and remote running packages.

❑ View the Windows Event log.

646



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 647

Chapter 16: Introduction to SQL Server Integration Services

Figure 16-1: Connecting to Integration Services.

Once you’ve connected to Integration Services, you can manage packages using Object Explorer, as
shown in Figure 16-2.

Figure 16-2: The Integration Services package store.

From Object Explorer, you can create additional folders for organizing your packages, import or export
packages to the package stores, and execute packages or stop packages. You can also upgrade SQL Server
2005 packages to SQL Server 2008 using the SSIS Package Upgrade Wizard.

Integration Services Object Model
Integration Services includes a new object model for including both native and managed application
programming interfaces (APIs) for customizing the behavior of your Integration Services solutions. You
can use these APIs for accessing SSIS tools, command-line functions, or custom applications. You can
also use the object model for executing SSIS tools and packages from within your own applications.
The Integration Services object model will support any language that is compliant with the Common
Language Runtime (CLR), described in Chapter 14.

647



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 648

Chapter 16: Introduction to SQL Server Integration Services

Integration Services Run Time
The Integration Services runtime engine is responsible for saving the control flow logic and execution of
SSIS packages. Integration Services runtime executables include packages, containers, pre-defined and
custom tasks, and event handlers. The run time handles execution order, logging, variables, and event
handling. Programming the Integration Services runtime engine allows you to automate the creation,
configuration, and execution of packages through the object model.

Integration Services Packages
Packages are units of execution that are composed of a series of other elements, including containers, tasks,
and event handlers. You can create and manage packages through Business Intelligence Development
Studio or programmatically using the Integration Services object model. Each package contains a control
flow, which is a series of tasks (related or not) that will execute as a unit. Similar to jobs in the SQL Server
Agent Service (see Chapter 8), Integration Services packages use a customizable logic flow that controls
the timed or constrained execution of individual tasks. An Integration Services project may contain
multiple packages, and some packages may be instantiated by other packages in the same project or
solution.

Integration Services Tasks
Tasks are the basic unit of work within an Integration Services package. Each task defines an action that
will be taken as part of the execution of this package. Some of the basic task types include the Execute SQL
task, in which a T-SQL script will be executed; a file system task, which interacts with a local or remote
file system; and data flow tasks, which control how data is copied between a source and a destination.
Many other types of tasks are discussed later in this chapter.

Integration Services Containers
Containers are objects that exist within the Integration Services environment to allow you to define one
or more tasks as a unit of work. You can use containers to define parameters for the execution of these
tasks. Four types of containers are available, and you learn more about them later in this chapter.

Integration Services Event Handlers
Event handlers are similar to packages, in that within them, you can define tasks and containers. One
major difference, though, is that event handlers are reactionary. This means that the tasks defined within
an event handler will only be executed when a specific event occurs. These events are defined on tasks,
containers, or the package itself and include events that are fired before, during, and after the execution
of the package.

Integration Services Data Flow
One of the most significant benefits of the SSIS features is the separation of the control flow from the data
flow. Each package that contains a data flow task (such as an import or export) will identify that there is
a data flow task to the runtime engine, but a separate data flow engine is invoked for that task. The data
flow engine manages what is typically the whole point of an SSIS package, and that is extracting, trans-
forming, and loading data. The data flow engine will extract data from data files or relational databases,
manage any and all transforms that manipulate that data, and then provide that transformed data to the
destination. A package may have more than one data flow task, and each task will execute its own data
flow process for moving and manipulating data.

648



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 649

Chapter 16: Introduction to SQL Server Integration Services

Importing and Exporting Data
One of the easiest ways to understand SSIS and to see it in action is through the Import/Export Wizard,
which can be run from the Management Studio. The process is essentially the same for both operations.
The primary difference between the import operation and the export operation is whether your SQL
Server is the source or the destination. It should be noted, however, that SSIS doesn’t need to use a SQL
Server as either the source or the destination! You can use SSIS to import data from a flat-file source (such
as a comma-separated value file) into a Microsoft Access database.

Using the Import Wizard
In this example, you use a simple comma-separated value (CSV) file that contains a list of additional pro-
motions the AdventureWorks sales team will use for 2007. The contents of this file will then be imported
into the Sales.SpecialOffer table. Begin by creating a folder on the root of your C: drive called
SSISDemos. Create a new text file in this folder, and enter the following data into the text file:

Description,DiscountPct,Type,Category,StartDate,EndDate
President’s Day Sale,0.1,Holiday Promotion,Customer,2/16/2007,2/19/2007
Memorial Day Madness,0.25,Holiday Promotion,Customer,5/28/2007,5/28/2007
Fourth of July Sale,0.05,Holiday Promotion,Customer,7/1/2007,7/7/2007
Seasonal Discount,0.075,Seasonal Discount,Reseller,10/1/2007,10/31/2007

Save the file as Promos.csv, and then follow these steps:

1. Start or open SQL Server Management Studio. Connect to the Database Engine.

2. In Object Explorer, select your server and expand Databases.

3. Right-click AdventureWorks2008 and select Tasks � Import Data. This will launch the SQL
Server Import and Export Wizard. As with many other wizards in SQL Server Management
Studio, you can elect to not see the introductory page of the Wizard in the future.

4. Click Next to move to the Data Source selection page.

On this page, you can select the data source that will be used for the import process. Figure 16-3 shows the
data source as you will configure it for this exercise. You should note that the options in the window will
change to reflect the parameters of whichever data source you choose. Also note that several connection
providers are already available out-of-the-box from SQL Server 2008, including the SQL Native Client,
OLE DB providers for Analysis Services and Oracle, and Microsoft Office Excel and Access file formats,
with support for the new Office 2007 XML-based file types.

Now, follow these steps to configure the data source:

1. Select ‘‘Flat File Source’’ as your data source.

2. In the ‘‘File name’’ box, you can enter the path to the file you created earlier
(C:\SSISDemos\Promos.csv), or you can use the Browse button to find the file. Note
that if you use the Browse button, it defaults to the .txt file extension, and you must select
‘‘.csv’’ from the dropdown list.

649



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 650

Chapter 16: Introduction to SQL Server Integration Services

3. Based on the contents of the file, it should recognize the correct locale, code page, and for-
mat. You should select the ‘‘Column names in the first data row’’ checkbox because you have
included the header row in your file.

4. Click Next on the Data Source selection page to take you to the Columns page.

Figure 16-3: Configuring a flat-file data source.

This page, as shown in Figure 16-4, allows you to configure the row and column delimiters that are used
in your flat file source. For example, if you used a pipe character ( | ) instead of a comma, you could enter
that into the ‘‘Column delimiter’’ field.

This window also provides you with a columnized preview window of the data source, so that you can
verify the configuration of the data source provider. If the columns appear to be misaligned or the data
does not appear in the correct format, you may be using a different column or row delimiter and will
need to adjust your settings accordingly.

Before clicking on the Next button, choose the Advanced window. This window, represented in
Figure 16-5, allows you to view or configure the properties of each column. This can be helpful when
preparing data for the destination and ensuring that it is in the correct format. You also have the ability
to add or remove columns as needed and can use the ‘‘Suggest Types’’ button to evaluate the data in the
file (Figure 16-6) and provide recommendations for the data types prior to importing the data.

650



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 651

Chapter 16: Introduction to SQL Server Integration Services

Figure 16-4: Setting the flat-file source options.

Click the ‘‘Suggest Types’’ button to have it change (or validate) the default data types for the
DiscountPct, StartDate, and EndDate columns, then click on the Next button.

The next step in the Wizard asks you to provide configuration information for the data destination.
As mentioned earlier, you can use any of the available providers for both source and destination, and
neither of them has to be SQL Server. You could, in fact, use this Import Wizard to import the flat file
into a Microsoft Excel spreadsheet, a Microsoft Access database, an Oracle database, or even another flat
file. This functionality allows you to use SSIS to build complex packages that may have very distinct data
migration paths before the execution can complete.

For this example, though, you’re going to make it easy on yourself and choose the SQL Server Native
Client 10.0 as your destination provider (this should be the default). When choosing the SQL Server
Native Client 10.0, follow these steps:

1. Select your server name from the dropdown list if it is not already provided.

2. Choose ‘‘Windows Authentication.’’

3. Ensure that AdventureWorks2008 is selected as the target database.

651



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 652

Chapter 16: Introduction to SQL Server Integration Services

Figure 16-5: Setting the data type option.

Figure 16-6: Suggest types parameters.

652



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 653

Chapter 16: Introduction to SQL Server Integration Services

The New button on this screen allows you to create a new database on this server for your data import.
Figure 16-7 displays the configuration information you should use.

Figure 16-7: Choosing the destination.

The next page in the Wizard allows you to define the specific views or tables that will be used as the
destination for the data in your file. The default behavior of the Wizard is to create a new table based on
the name of the file, using the data types that were specified in the source configuration. You can use the
dropdown list to select the correct table, as shown in Figure 16-8. Additionally, if the destination table
does not yet exist in the database, you can type a new name in the Destination column, and the Wizard
will create a new table for you.

Clicking on the ‘‘Edit Mappings’’ button, as seen in Figure 16-8, activates the Column Mappings window.
This displays the column name in the data source and allows you to match it to a column name in the
destination. Fortunately, the file you created earlier happens to use the exact same column names as the
destination table, so there is no guesswork as to where the data will go. However, you can use this utility
to specify that certain columns will be ignored, or simply mapped to a different target column.

You can also see in Figure 16-9 that there are options to delete or append rows in the destination table.
In some cases, you may want to drop the table and then re-create it. This can be especially helpful if you
want to completely purge the table and there are no foreign-key constraints on it.

653



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 654

Chapter 16: Introduction to SQL Server Integration Services

Figure 16-8: Selecting the destination table.

Figure 16-9: Destination table options.

654



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 655

Chapter 16: Introduction to SQL Server Integration Services

Because the data types in the source and destination may not match, you have the option to review the
data type mappings and specify whether or not the package should fail if there is an error or data needs
to be truncated before reaching the destination. If you refer to Figure 16-10, you will note that several of
the data types are inconsistent between the source and destination. In most cases, it’s simply a matter
of converting non-Unicode data into Unicode data. For the DiscountPct column, you need to convert it
from a float to a smallmoney data type. For all columns, the convert option has been enabled. You can
set the ‘‘On Error’’ or ‘‘On Truncation’’ behavior per column or use a global setting. In this example, I
have specified to Ignore Truncate warnings.

Figure 16-10: Review Data Type Mappings.

Once you have provided all the information about the source and destination, the Wizard will ask if you
want to execute the package immediately and if you want to save your configuration as an SSIS package
in either the msdb database or the file system (see Figure 16-11). For now, just choose to execute the
package immediately, and don’t worry about saving the package. You can either click Finish on this page
to begin package execution, or you can click Next to view the summary information about the package
before executing.

As long as all the steps have been followed as indicated, your data should now be imported successfully!
You can execute a simple SELECT * FROM Sales.SpecialOffer query to see the imported data. If there
was a problem with the execution of the package, use the error report information to pinpoint where the
problem occurred and what could be done to resolve it.

655



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 656

Chapter 16: Introduction to SQL Server Integration Services

Figure 16-11: Execute the package without saving.

Using the Export Wizard
Now that you’ve had a chance to see the Import Wizard at work, you should see the Export Wizard in
action! It’s actually the exact same wizard. This time, however, you can export data using a query and
save the results as a pipe-delimited file. Follow these steps:

1. Begin by right-clicking on the AdventureWorks2008 database and selecting Tasks � Export
Data.

2. In the ‘‘Choose a Data Source’’ page, ensure that the SQL Server Native Client 10.0 is
specified as the Data Source, Windows Authentication is selected, and the database is
AdventureWorks2008.

3. Once you’ve configured or confirmed as necessary, click Next.

4. In the ‘‘Choose a Destination’’ page, choose ‘‘Flat File Destination’’ as the destination.

5. Enter C:\SSISDemos\EmployeeData.txt as the filename. Leave the default locale and code
page options.

656



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 657

Chapter 16: Introduction to SQL Server Integration Services

6. Ensure that ‘‘Column names in the first data row’’ is selected, and click Next (see
Figure 16-12 as a reference).

Figure 16-12: Choosing a destination.

7. In the next window, you will be asked if you want to select data from existing tables and
views, or if you want to specify a query to find the data to transfer. Choose the second
option, ‘‘Write a query to specify the data to transfer,’’ and click Next.

8. In the Source Query window, enter the following query and click Next:

SELECT PC.FirstName, PC.LastName, PE.EmailAddress, HRE.MaritalStatus,
HRE.Gender, HRE.VacationHours, HRE.SickLeaveHours, HRE.SalariedFlag,

HREP.Rate
FROM Person.Person AS PC
INNER JOIN HumanResources.Employee AS HRE

ON PC.BusinessEntityID = HRE.BusinessEntityID
INNER JOIN HumanResources.EmployeePayHistory AS HREP

ON HRE.BusinessEntityID = HREP.BusinessEntityID
INNER JOIN Person.EmailAddress AS PE

ON PC.BusinessEntityID = PE.BusinessEntityID
ORDER BY PC.LastName;

657



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 658

Chapter 16: Introduction to SQL Server Integration Services

9. In the Configure Flat File Destination window, you can change the delimiter and column
mapping options. Change the Column Delimiter to Vertical Bar {|} and click Next to con-
tinue. Feel free to explore the other options, but do not change them.

10. When asked to run or save the package, leave the defaults, and click Next, and then click
Finish on the next page to execute the package immediately.

Your results should look something like Figure 16-13.

Figure 16-13: Viewing the exported text data.

Transforming Data with SSIS
Now the fun really begins. By now you should have a basic understanding of the concepts of how Inte-
gration Services can manage control and data flow, and you’ve seen a simple example of how to get
data into and out of the SQL Server using the basic tools. In this section, you’re going to see how those
components can be expanded on to provide a more complete scenario for working with Integration
Services.

You should first become familiar with the Integrated Development Environment (IDE). Integration
Services, along with Analysis Services and Reporting Services, relies heavily on Business Intelligence
Development Studio. BIDS is really just a fancy name for Visual Studio, and is, in fact, the Visual Studio
2008 IDE, but when installed by itself, it includes only add-ins for SQL Server BI components. If you
install the full version of Visual Studio 2008 or the language compilers for Visual Basic and C#, you’ll
find that it starts the same environment. For the sake of simplicity, I will continue to refer to the IDE as
BIDS.

To begin creating new SQL Server Integration Services packages, launch BIDS and create a new project.
Of the types of projects available, the Integration Services Project is available under Business Intelligence
Projects (see Figure 16-14). You may also notice another project type called Integration Services Connection
Project Wizard. This template uses a wizard-based approach to creating an SSIS project, similar to what
you did in the previous example. For this example, select ‘‘Integration Services Project.’’

658



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 659

Chapter 16: Introduction to SQL Server Integration Services

Figure 16-14: Creating a new Integration Services project.

Once you’ve created your new project, notice that as with other Visual Studio projects, you have a tool-
box that contains controls and resources for your projects. The development environment is broken up
into four different sections, each of which allows you to control different aspects of your project. These
sections include a management area for the Control Flow, management of the Data Flow, Event Han-
dlers, and a Package Explorer. During the execution or debugging of a package, a fifth tab appears,
allowing you to view package execution progress. In the next few sections, you will learn about each
of the different management areas, how they’re used, and what options are available when working in
those areas.

Understanding the Development Environment
As mentioned earlier, the development environment includes several tools and features that will allow
you to have complete control over your Integration Services packages. In this section, you learn how to
navigate your way through the different resources available to you. Chapter 3 covered the different tools
and features of the SQL Server Management Studio development environment. The environment used
by Integration Services is very similar. As with SQL Server Management Studio, you can pin and unpin
different control boxes as needed to customize the look and feel of your workspace. Figure 16-15 shows
an example of a typical development environment for Integration Services.

Toolbox
As with many other Visual Studio projects, the Toolbox is invaluable for finding the controls and fea-
tures you need to make your project easy to design and configure. Integration Services packages are no
exception and can provide you with a host of different elements. For the most part, you have two main
toolboxes. The main Toolbox window contains Control Flow Items and Maintenance Plan Tasks and is
your primary toolbox. The other contains data flow items such as sources, transforms, and destinations;
it is only available while configuring a data flow task. The individual toolbox items are described later in
this chapter.

659



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 660

Chapter 16: Introduction to SQL Server Integration Services

Figure 16-15: The Integration Services designer.

Solution Explorer
The Solution Explorer (shown on the right side of the screen in Figure 16-15) is a repository that allows
you to manage multiple Integration Services packages and related resources. It is broken down into four
main sections:

❑ Data Sources — These allow you to create Data Source objects that can be used by multiple
packages in the same project. You can create a new data source using a wizard or choose an
existing one.

❑ Data Source Views (DSVs) — These are objects that refer to a configurable subset of objects in
your database and provide benefits such as caching metadata or defining relationships. These
DSVs can also be used by multiple packages.

❑ SSIS Packages — You then have the SSIS Packages themselves.

❑ Miscellaneous — Finally, you have any Miscellaneous files that are used by your Integration
Services packages.

660



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 661

Chapter 16: Introduction to SQL Server Integration Services

Note that the package names end with a .dtsx file extension. This is the default extension for Integration
Services packages that is kind of a holdover from when it was still called Data Transformation Services.

Properties
The Properties tab is a dynamically updating box that allows you to view or update the properties of the
currently selected item. You can sort the list of property elements alphabetically or categorically.

Connection Managers
The Connection Managers tab (at the bottom of the screen of Figure 16-15) contains a list of connec-
tion objects specific to the package you are currently editing. Connections can be based on existing
data sources, or you can create unique connections for only that package. Connections can use OLE
DB, ADO.NET, Flat File, and other connection types. Connections can also be made on-the-fly, such as
when defining a data flow task that uses a Microsoft Excel data source for an import operation. You will
not need to create the connection to the Excel file beforehand, but once you define the source, it will be
added to the list of connections.

Package Elements
When creating a new SSIS package, it’s important that you be familiar with the different elements avail-
able. Familiarizing yourself with the variety of tools available will help you create more robust packages,
which can execute a complex series of tasks. This section introduces you to these resources.

Control Flow
Your main environment is the Control Flow section, shown on the left side of Figure 16-15. The con-
trol flow environment allows you to define one or more tasks that will be executed for this Integration
Services project and specify the order in which those tasks are executed (hence the term Control Flow).
You can choose to define tasks that are serialized, meaning that one task must reach a completion state
before the next task begins. You can also execute tasks in parallel, allowing multiple operations to be exe-
cuted simultaneously. As long as there are no dependencies between these tasks, this can take advantage
of your system resources and dramatically decrease the execution time of your packages with parallel
execution.

To add items to your package’s control flow, simply choose the appropriate item and drag it into the
Control Flow pane. Once you’ve dragged an item into the Control Flow pane, you can then configure
that item. Some tasks may display with an error symbol (the red circle with the white X) or a warning
symbol (the yellow triangle with the black exclamation point) to indicate that further configuration is
needed for that task to be able to execute properly. In many cases, simply configuring the task can ‘‘fix’’
the problem. You can also view the Error List (by pressing [Ctrl]+E or selecting View � Error List) and
review the available errors and warnings. You can also double-click on an error or warning to have BIDS
take you straight to where you need to go to fix the event.

661



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 662

Chapter 16: Introduction to SQL Server Integration Services

Control Flow Tasks
This section briefly identifies each of the control flow tasks that can be used to build your packages. Also
listed are database maintenance plan tasks that may be useful to you as well. These items are listed in the
order they appear in the Toolbox (refer to the left side of Figure 16-15).

Task Description

For Loop
Container

Containers are interesting in that they are both a task and a collection of tasks
at the same time. In this case, the For Loop container allows you to execute
one or more tasks that will continually execute until the result of the executed
task returns a Boolean false value.

ForEach Loop
Container

Similar to the For Loop container, ForEach Loop containers allow you to
execute tasks for each instance of a type of object. The ForEachLoop includes
enumerators for files, items, ADO record sets, ADO.NET schemas, variables,
XML nodes, and SQL Management Objects.

Sequence
Container

Allows you to define a series of tasks that will execute in sequence. It is
similar in many regards to simply grouping tasks, which is covered later in
this section, but allows additional functionality (such as limiting the scope of
a variable to only the tasks within this container).

Each of the following tasks is also a container unto itself. This is referred to as the Task Host Container
and is not a container type you need to separately manage or add to your package.

Task Description

ActiveX Script Task Allows you to run scripts that use VBScript or JavaScript as a step in
your process flow. This has been largely superseded by the Script
Task, which uses VisualBasic.Net scripts. ActiveX scripts are primarily
used with older packages that have been upgraded from DTS 2000.

Analysis Services
Execute DDL Task

Allows you to execute a Data Definition Language (DDL) statement in
Analysis Services.

Analysis Services
Processing Task

Contains configuration options for processing Analysis Services cubes
and dimensions.

Bulk Insert Task Used to import a large amount of data from a flat-file source.

Data Flow Task Pretty much the bread and butter of Integration Services. It allows you
to define how data is processed as it moves from source to destination.

Data Mining Query
Task

Use the Data Mining Query task to run prediction queries using a
Data Mining Extension (DMX) statement.

662



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 663

Chapter 16: Introduction to SQL Server Integration Services

Task Description

Data Profiling Task Helps identify potential problems with your data, such as data that
doesn’t conform to an expected format (such as phone numbers) or
computational problems with aggregate data.

Execute DTS 2000
Package Task

Executes packages created in DTS from SQL 2000, but that have not
yet been upgraded or migrated to Integration Services.

Execute Package Task Launches another Integration Services package.

Execute Process Task Executes a Windows application or batch file.

Execute SQL Task Executes a SQL script. Second only to the Data Flow Task, this is
probably one of the more commonly used tasks.

File System Task Used to interact with the file system, such as creating files and
directories.

FTP Task Use this to upload or download files to FTP servers.

Message Queue Task Allows you to configure your package to interact with Microsoft
Message Queuing (MSMQ) services.

Script Task Executes a Microsoft Visual Basic.Net script.

Send Mail Task Sends e-mail messages during the execution of a package.

Transfer Database Task Transfers entire databases between different instances of SQL Server.

Transfer Error
Messages Task

Allows you to copy user-defined error messages (with an error
number above 50,000) between instances of SQL Server. The data is
stored in the sysmessages table of the master database.

Transfer Jobs Task Copies jobs between instances of SQL Server.

Transfer Logins Task Copies logins between SQL Servers. This can be useful when creating
a redundant server for fault-tolerance.

Transfer Master Stored
Procedures Task

Use this task if you’ve created user-defined stored procedures in the
master database that you want to copy to another instance of SQL
Server.

Transfer SQL Server
Object Task

Use this task to transfer other SQL objects such as tables, views, stored
procedures, and triggers between instances.

Web Service Task Initiates a connection to a web site, and can be used to return
information to a variable or file.

WMI Data Reader Task Used to query Windows Management Instrumentation (WMI)
namespaces to return information about the computer system.

WMI Event Watcher
Task

Used to query WMI for events relating to system behavior or
performance.

Continued

663



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 664

Chapter 16: Introduction to SQL Server Integration Services

Task Description

XML Task Adds XML tasks to work with XML files and data sets.

Back Up Database Task Does exactly what the name suggests, and allows you to configure a
database backup as part of a package.

Check Database
Integrity Task

Checks the structural integrity and space allocation of all objects
within a specified database.

Execute SQL Server
Agent Job Task

You can also configure an Integration Services package to launch a
SQL Server Agent Job as part of its process flow.

Execute T-SQL
Statement Task

Similar to the Execute SQL task, this requires that you specifically use
the Transact-SQL dialect of the SQL language.

History Cleanup Task This task can be used to remove extemporaneous data from the msdb
database, specifically historical information about backups, restores,
jobs, and maintenance plans.

Maintenance Cleanup
Task

Use this task to remove leftover data from maintenance plans, such as
backup files or text reports.

Notify Operator Task During the execution of a package, you may want to notify an
operator that a certain step has completed or failed.

Rebuild Index Task You can use this task to rebuild an index during the execution of your
package.

Reorganize Index Task Rather than rebuilding, you can also reorganize one or more indices
from one or more databases.

Shrink Database Task Use this task to shrink one or more databases.

Update Statistics Task This task allows you to execute a controlled UPDATE STATISTICS task
for one or more databases.

Precedence Constraints
Now that you’ve been introduced to the different tasks available for your control flow, you must under-
stand how you can arrange or use these tasks together. When you add tasks to the control flow, you must
specify how and when to execute these tasks. If you were to just add a bunch of tasks into the control flow
and then run the package, all of the tasks would try to execute at the same time. That may be desirable
in some instances, but in most cases, you want to ensure that there is a defined logic to how and when
the different tasks will execute. In more complex packages, some steps may not be executed at all unless
there is a problem.

Precedence constraints are used to control the order in which tasks are executed, and whether or not they
are executed based on the prior task failing, succeeding, or either. Tasks may also have more than one
precedence constraint defined. When defining multiple precedence constraints on a task, you can specify
whether they are evaluated using the AND operator, which requires both constraints to evaluate to true;
or the OR operator, which will execute the task as long as one of the constraints is met.

664



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 665

Chapter 16: Introduction to SQL Server Integration Services

Remember that using multiple precedence constraints on a task could mean that either all conditions
must be met, or just one condition must be satisfied. The conditions, however, could be completely
different. For example, Task C has two precedence constraints defined. The first one requires that Task
A succeeds, and the second one requires that Task B fails. If the AND operator is specified, then Task A
must succeed, and Task B must fail. If Task B executes successfully, Task C will not run. If the OR operator
is used, then Task C will run if Task A succeeds, regardless of the outcome of Task B, or if Task B fails,
regardless of the outcome of Task A.

Figure 16-16 shows three tasks included in the control flow of a package. The first task will execute a SQL
statement, and if it succeeds, the Data Flow task will execute. If the SQL Task fails, then the Send Mail
Task will execute and notify the appropriate personnel. The solid line indicates that a logical AND condi-
tion is specified, meaning that all constraints must evaluate to TRUE, whereas the dotted line indicates an
OR condition, requiring only one constraint to be met.

Figure 16-16: Control flow.

Task Grouping
There is also a feature in Integration Services that allows you to add multiple tasks and containers to
a group (see Figure 16-17). Unlike containers, groups are not treated as a unit of execution, but they
can help clean up the logic flow. As a UI enhancement more than anything else, when you group tasks
together, you can ‘‘hide’’ the tasks from view by collapsing the group. This can be helpful when you
have a complex package and want to simplify the view. Also, note that precedence constraints cannot be
defined on a group, but are defined on the tasks within that group.

Data Flow
As mentioned earlier, one of the biggest improvements to managing Integration Services over DTS is
removing the data flow logic from the control flow. This allows you to create more complex transfor-
mations that are easier to design and are more manageable. Data Flow Tasks appear as a single unit of
execution in the control flow, but may have many complex steps in the data flow view.

When you switch to the data flow view, a dropdown list appears with all Data Flow Tasks in the package.
Each Data Flow Task will allow you to configure at least a source and a destination. You can optionally
apply one or more transforms that can modify or prepare the data before it reaches its destination.

665



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 666

Chapter 16: Introduction to SQL Server Integration Services

Figure 16-17: Control flow between a container and group.

Data Sources
Out-of-the-box, SQL Server 2008 includes six data sources you can use in your data flow. You can, in fact,
use multiple data sources in any given Data Flow Task. This allows you to use a merge transformation to
join the data sets before the data reaches the destination. The following data sources are available:

Source Description

ADO.NET Source Uses an Active Data Object connection manager to connect to a .NET
provider. In SQL Server 2005, this was called the DataReader Data
Source.

Excel Source Use with Microsoft Excel workbooks.

Flat File Source Allows you to import from a variety of flat-file formats (such as
comma-separated, tab-separated, and fixed-length fields).

OLE DB Source Use with any OLE DB data source.

Raw File Source A specialized flat-file format that is optimized for quick use. This is
typically created by Raw File destinations to allow fast processing of
the data, because minimal translation is required.

XML Source Allows you to use an XML file as a data source. You must ensure
that elements within your XML file can be mapped to SQL fields.
You can do this by creating a schema mapping file, using an inline
schema within the file, or allowing Integration Services to try to
create an XSD mapping file for this data source.

666



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 667

Chapter 16: Introduction to SQL Server Integration Services

Transformations
Integration Services includes several built-in transforms to help modify or improve your data during the
transfer process. With DTS 2000, many of these transforms had to be built programmatically, making
the process of performing complex transformations burdensome. Although there are still programmatic
options that let you build your own custom transforms, you can use the following transforms to create
complex packages with minimal programming ability:

Transform Description

Aggregate Used to perform aggregate calculations, such as AVERAGE, GROUP BY, and
COUNT.

Audit Outputs additional data about the environment.

Cache Transform Allows the creation of a cache (.caw) file managed through a Cache
Connection Manager. This allows you to manage and transform data and
metadata from the cache.

Character Map Lets you transform string data. You can use this to convert uppercase to
lowercase, and traditional Chinese to simplified Chinese, for example.

Conditional Split Sends different data sets from the same source to different destinations.

Copy Column As the name suggests, this copies a column and its associated properties to
the destination. It is possible to change the properties of these columns as
they reach the destination. For example, you might convert a non-Unicode
column into a Unicode column.

Data Conversion Use this when you need to change the data type between source and
destination.

Data Mining
Query

Performs prediction queries against data-mining models.

Derived Column Modifies the data itself during transformation.

Export Column This transform exports data into a file.

Fuzzy Grouping Helps standardize your data. It allows you to look for string data that is
similar, and replaces the variants with a standard value.

Fuzzy Lookup Similar to the Lookup Transform, the Fuzzy Lookup uses values in a
reference table, but accepts variants on the data.

Import Column Reads data from a file and adds it to the data flow.

Continued

667



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 668

Chapter 16: Introduction to SQL Server Integration Services

Transform Description

Lookup Existing data is joined to data being imported. This references values in a
lookup table, but with an exact match.

Merge As the name suggests, this merges data between two data sets. Use the Union
All Transform to join more than two data sources.

Merge Join Similar to the Merge Transform, this transform uses JOIN statements to
combine the data.

Multicast Allows the data to be sent to multiple destinations (or multiple
transformation tasks).

OLE DB
Command

Executes a SQL command for each row in the input flow.

Percentage
Sampling

Returns a random sampling of data from the input. When using this
transform, specify a percentage of the total rows that will be sent to the
output.

Pivot This can be used to denormalize data.

Row Count Use this transform to return a count of the total number of rows passed
through to a variable.

Row Sampling Similar to Percentage Sampling, Row Sampling outputs random rows, but
you specify the total number of rows to be returned.

Script
Component

This transform allows you to execute a custom Script Task that will transform
the data.

Slowly Changing
Dimension

Used with dimension tables to perform changing attribute, historical
attribute, fixed attribute, and inferred member changes.

Sort This transform allows you to sort the data on one or more import columns.

Term Extraction You can use this transform to extract English nouns or noun phrases and
re-direct the terms to the output.

Term Lookup This transform uses a reference table and returns a count of the items in the
reference table that appear in the data flow.

Union All This transform can be used to merge multiple data sets.

Unpivot Use the Unpivot Transform to normalize data.

Data Destinations
Integration Services allows you to specify one or more destinations in a Data Flow Task. The following is
a list of data flow destinations that are available with SQL Server out-of-the-box:

668



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 669

Chapter 16: Introduction to SQL Server Integration Services

Destinations Description

ADO.NET
Destination

Similar to an ADO.NET Source, this allows connection to a variety of
database types that use the Active Data Objects data provider.

Data Mining
Model Training

Passes data through data-mining model algorithms to train the data-mining
model.

DataReader
Destination

Specifically uses the DataReader interface in ADO.NET.

Dimension
Processing

Loads data into an Analysis Services dimension.

Excel Destination Use this to output your data to a Microsoft Excel file.

Flat File
Destination

Use to output the data to a comma-separated, tab-separated, or fixed-length
file.

OLE DB
Destination

Uses an OLE DB provider.

Partition
Processing

Use to output the data to an Analysis Services partition.

Raw File
Destination

Use as an intermediary output between data flow tasks; this format allows for
quick processing as minimal formatting options need to be defined.

Recordset
Destination

Outputs the data to an ADO recordset.

SQL Server
Compact Edition
Destination

Use for SQL Server Compact Edition clients.

SQL Server
Destination

Inserts data into a Microsoft SQL Server destination.

Event Handling
Event handling is another feature of Integration Services that provides more granular control over the
execution of your packages and the tasks within them. Frequently associated with error handling, event
handling allows you to execute additional tasks before a task executes, during task execution, and after
task execution.

Any well-designed package includes the ability to control or monitor the execution of the tasks within.
Using efficient error handling and event handling is the cornerstone for creating packages that require
minimal maintenance and hands-on execution. The Event Handling tab includes options for configuring
tasks that execute for the following 12 packages — or task-level events:

❑ OnError

❑ OnExecStatusChanged

669



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 670

Chapter 16: Introduction to SQL Server Integration Services

❑ OnInformation

❑ OnPostExecute

❑ OnPostValidate

❑ OnPreExecute

❑ OnPreValidate

❑ OnProgress

❑ OnQueryCancel

❑ OnTaskFailed

❑ OnVariableValueChanged

❑ OnWarning

Configuring additional tasks on these events can improve error handling and provide you with more
precise control over execution of your packages. Be careful, though. Too much granularity can cause
more administrative work than necessary.

Package Explorer
The Package Explorer is a useful utility that allows you to view the different elements of your package in
an organized, hierarchical structure. Although this view isn’t representative of the control or data flow, it
can help you quickly find an element of either. You can view or modify the properties, or delete unused
elements from your package.

Creating a Simple Package
So, now that you have a fairly good understanding of the different elements of an Integration Services
package, it’s time to put it to use. In this scenario, the employees at AdventureWorks have decided to
pool some of their resources to keep a DVD library of titles in the office to share among themselves.
Anyone is welcome to participate, but if you’re going to borrow, you’re going to contribute!

Up until now, the employees had been keeping track of their collection using an InfoPath form. However,
over the last couple of months, the collection has grown significantly, and the core group who started the
library wants a better way to manage it. They’ve decided to store the data in SQL, but rather than having
to re-enter all the data by hand, they would prefer to import the XML file into the database.

For this example, you can download an XML file from http://p2p.wrox.com/ (search for the
ISBN — 04700440919 — or title of this book), or you could build your own sample file. The one provided
uses the following format:

<?xml version="1.0" standalone="yes"?>
<DVDs>

<Table>
<Title>Movie Title</Title>
<Year>YYYY</Year>
<Run-time>hh:MM</Run-time>
<Rating>XX</Rating>

</Table>
</DVDs>

670



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 671

Chapter 16: Introduction to SQL Server Integration Services

Save the file as C:\SSISDemos\DVDLib.xml.

Creating the Connection
You’ll begin by creating a new Integration Services project called AdventureWorks IS Project. When you
create the project, a new package named Package.dtsx is created. Rename the package XMLImport.dtsx.
A box will pop up, asking if you want to rename the package object as well — click Yes.

Follow these steps:

1. Although you’ll only be creating one package in this exercise, create a new Data Source that
will be available to all packages that are part of this project. Right-click Data Sources and
select ‘‘New Data Source’’ to launch the Wizard.

2. In the Wizard, click Next on the introduction page. Then, on the next page, ‘‘Select how to
define the connection,’’ click New. In the Connection Manager dialog box, either enter your
server name or select it from the dropdown list. Use Windows Authentication, and select
AdventureWorks2008 as the database. Click OK when these options have been selected.

3. Click Next to go to the ‘‘Completing the Wizard’’ page, and leave the default Data Source
name. Click Finish to complete the Wizard.

4. Now, below the Control Flow pane, you should see the Connection Managers pane.
Right-click anywhere in the pane, then select ‘‘New Connection from Data Source.’’

5. Select AdventureWorks2008 and click OK.

Creating the Data Flow Task
Now it’s time to put the package to work. Follow these steps:

1. Create a new Data Flow Task. From your Toolbox, drag the Data Flow Task into the Control
Flow window, and rename it XML Transfer. This can be done from either the Properties
window, or by pressing [F2] with the Data Flow Task selected.

2. Click the Data Flow tab. You should see ‘‘XML Transfer’’ in the dropdown list. If you had
more than one Data Flow Task in your package, you could navigate through them without
having to go back to the Control Flow Task to manage it.

3. Now, the next step to build the data flow is to specify the source. Drag the XML Source from
the Toolbox into the Data Flow pane, and then double-click on it to open up the XML Source
Editor.

4. For the Data Access mode, ensure that ‘‘XML file location’’ is selected. Type the path or
browse to the DVDLib.xml file. Because there is no schema mapping file, you can have the
SQL Server generate one. Click on the ‘‘Generate XSD’’ button, and use the default filename
and location.

5. You can navigate to the Columns page to view the columns that will be imported into your
database, but you should not need to change anything in there. You may also get a message
that indicates that since no maximum field length was specified for the text columns, it will
use a default of 255 characters. Click OK to accept the message. Click OK to exit the Editor.

6. Because the table you are going to create will store the Year and Run-Time columns as a
smallint value, you can change the output of the XML file to use a 2-byte signed integer,

671



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 672

Chapter 16: Introduction to SQL Server Integration Services

rather than the default of a 2-byte unsigned integer. This also gives you an opportunity to
see the Advanced Editor. Right-click on the XML Source object and select ‘‘Show Advanced
Editor.’’

7. Click on the ‘‘Input and Output Properties’’ tab and expand Output Columns. Select Year,
and, in the right pane, under Data Type Properties, change the value 2-byte unsigned integer
[DT_UI2] to 2-byte signed integer [DT_I2].

8. Next, change the value of the Run-Time column to a 2-byte signed integer [DT_I2] as well.
See Figure 16-18 for an example.

Figure 16-18: Using the Advanced Editor to change the output data type.

At this point, you could simply provide the data to a destination, but that wouldn’t be much fun. To see
how transforms work, you can apply a simple transform to your data before it reaches the destination. In
this example, you’ll use the Sort Transform to sort based on the title. Drag the Sort Transform from the
Toolbox into the Data Flow pane.

672



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 673

Chapter 16: Introduction to SQL Server Integration Services

Two things must happen next in order for the sort to work:

❑ You must configure the output of your XML Source to go to the Sort Transform. Select the XML
Source, and then click and drag the green arrow to the Sort Transform.

❑ You must tell the transform which column or columns to sort on. Double-click on the Sort Trans-
form to open the Editor.

In the Sort Transformation Editor, the top pane lists the available fields, and the bottom shows you which
ones have been selected for sorting.. Your configuration should look like Figure 16-19.

Figure 16-19: Configuring the sort options.

Defining the Destination
Now it’s time to define the destination. Follow these steps:

1. Drag the SQL Server Destination object from the Toolbox into the Data Flow. Before you con-
figure the destination options, select the Sort Transform, and drag the green output arrow to
the SQL Server Destination object (see Figure 16-20).

673



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 674

Chapter 16: Introduction to SQL Server Integration Services

Figure 16-20: Data flow from XML to SQL.

2. Double-click on the SQL Server Destination to open the Editor. Because you’ve already
defined a connection manager, Adventure Works should already be populated. Under ‘‘Use
a table or view,’’ click New, and replace the existing SQL code with the following:

CREATE TABLE [dbo].[Library] (
[ID] int IDENTITY NOT NULL,
[Title] NVARCHAR(255),
[Year] SMALLINT,
[Run-time] SMALLINT,
[Rating] NVARCHAR(255)

)

3. Select the Mappings page and review the mapping, then click OK to close the Editor.

So That’s It, Right? Applying Additional Transforms
You could save and execute the package now, and you’d have a new table with some movie data in it. But
I’m not really happy with this data. The person who was adding the titles to the InfoPath form had no
consideration for how to sort titles. When you execute this task, all of the movies that begin with articles
like The, An, and A will be grouped together. For example, The Black Hole should be sorted alphabetically
under B, not under T.

You could always fix this after the fact, but one of the requirements of being an effective database admin-
istrator is that you understand your data and how it will be used. So, before you can consider this package
a success, you need to fix someone else’s mistake:

1. Go back into the Control Flow Items list and drag an Execute SQL task into your Control
Flow.

2. Define a precedence constraint (On Success) linking the Data Flow Task to the Execute SQL
Task.

674



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 675

Chapter 16: Introduction to SQL Server Integration Services

3. Double-click on the Execute SQL Task to open the Task Editor. On the General page, find the
Connection parameter, and select AdventureWorks2008 from the dropdown list.

4. Find the SQL Statement parameter and click on the ‘‘ . . . ’’ button. Enter the following code
in the SQL Query window:

Update dbo.Library
Set Title = CASE

When Title like ‘The %’ THEN (SUBSTRING(Title, 5, 255) + ‘, The’)
When Title like ‘An %’ THEN (SUBSTRING(Title, 4, 255) + ‘, An’)
When Title like ‘A %’ THEN (SUBSTRING(Title, 3, 255) + ‘, A’)
Else Title
END;

5. Click OK to exit the Query window, and then OK again to exit the Task Editor.

6. Save your package and then right-click on the package name from Solution Explorer. Select
‘‘Execute Package.’’ All steps should execute successfully. When they do, select ‘‘Stop
Debugging’’ from the Debug menu.

7. Open SQL Server Management Studio, and execute the following query:

USE AdventureWorks2008;
GO
SELECT * FROM dbo.Library
ORDER BY Title;

The query should return the data sorted by title, without articles like The being grouped together.

Summary
SQL Server Integration Services is a very powerful tool for controlling data transformation operations
between SQL Servers and other data stores. It allows you to create very simple data flow models, or
very complex ones. It is also extensible, allowing you to build additional transformations and controls
programmatically. This chapter provided you with a high-level overview of how Integration Services
works, how to use the Import and Export Wizards, and how to build simple packages using the SSIS
designer. If you would like to learn more about Integration Services, check out Professional Microsoft SQL
Server 2008 Integration Services by Brian Knight, Erik Veerman, Grant Dickinson, Douglas Hinson, and
Darren Herbold (Wiley, 2008).

The next chapter continues with the BI toolset by introducing you to one of the most important compo-
nents of a Business Intelligence solution — SQL Server Analysis Services.

675



Leiter c16.tex V3 - 03/25/2009 12:56pm Page 676



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 677

17
Introduction to SQL Server

Analysis Services

Analysis is at the heart of Business Intelligence; with it, you can put context to your data. SQL
Server includes a very powerful engine for building multi-dimensional data structures that allow
you to arrange, aggregate, and analyze your data, known as SQL Server Analysis Services. Collect-
ing information for the sake of collecting it is a waste of time, money, and manpower. Using that
information to discover trends, identify problems, and address shortfalls adds business value to the
data.

SQL Server Analysis Services uses an Online Analytic Processing (OLAP) engine for building and
storing multi-dimensional databases. In this chapter, you will learn about the basics of OLAP tech-
nology, the tools used to build OLAP databases, and the components used within.

Understanding OLAP
OLAP databases are built around the concept of the cube. Cubes are multi-dimensional objects
whose structures are defined by hierarchical objects known as dimensions. An example of a
commonly used dimension is Date. Units of time can be divided or combined as needed based on
the level or depth of data that will be stored in the database. For example, the Date dimension
might consist of a decade level, a year level, a quarter level, and so on, all the way down to the day
(or lower, if necessary).

Another important concept when working with cubes is the understanding that most of the data
being accessed is aggregated, or at least can be aggregated. This means that when building a cube,
you don’t need to store every possible calculation for data, but instead, you can define the way the
lowest-level data is combined to provide you with the answer you need. For example, if I track my
sales numbers daily, but I want to know what my total sales were for the last quarter, based on the
way my cube is designed, it can automatically add the daily sales totals for the last 90 (or so) days
together. Depending on how my Date dimension has been defined, I can also look at the same data
broken up by month or by week without having to perform additional complex calculations.



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 678

Chapter 17: Introduction to SQL Server Analysis Services

OLAP cubes can also store summarized values as well as the lowest-level data. This makes it easier to
retrieve information, such as the last 90 days of sales data, because that sum is already stored in the cube
as a calculated value.

OLAP Terminology
You’ve already been introduced to a few key terms used in OLAP environments, but this section will
present you with a more structured list of terms and definitions that are commonly used. Understanding
the different components of an OLAP solution will better prepare you for managing OLAP databases
(see the following table).

Key Term Definition

OLAP Database Essentially the container for different objects that are included in an Analysis
Services solution. In addition to the dimensions and cubes mentioned in prior
pages, this will also include other objects, such as data sources, which will be
identified in this list.

Data Source Data doesn’t originate in an OLAP database, but instead uses another
database, often a relational database as its source. Microsoft supports using
the included OLE DB providers for connecting to Microsoft SQL Server 7.0
and later databases, as well as the SQL Native Client for SQL Server 2005 and
2008. Some third-party databases can be used as a data source, as long as you
have an appropriate OLE DB driver.

Dimension The structural building blocks of a cube. Dimensions are based on data source
tables or views and will contain attributes that are based on the columns from
those tables or views. Although dimensions are used to build cubes, the
dimension definitions are not stored in the cube until they are added to a
cube. The dimension definitions are also stored in the dimension collection of
the OLAP database. This allows a single dimension to be used in one or more
cubes.

Hierarchies There are two types of hierarchies in SQL Server Analysis Services. Attribute
hierarchies are built using the properties of the dimension to define a
hierarchical structure. User-defined hierarchies, on the other hand, are built
manually, by defining the method in which a cube can be sliced on a particular
dimension. In addition to the example of the date hierarchy from the previous
section, another example you might use is a geography dimension, which
would allow you to analyze your data based on continent, country, state,
province, county, parish or city, as necessary.

Level Identifies a position within a hierarchy to which individual items (known as
members) belong.

Member Objects within a hierarchy that represent one or more instances of fact data.
For example, the geography hierarchy might define the country level, which
includes the United States, Canada, and Japan members. The city level would
include Seattle, Vancouver, and Tokyo members.

678



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 679

Chapter 17: Introduction to SQL Server Analysis Services

Key Term Definition

Measures Measures represent quantifiable fact data in your database. Measures
typically consist of numeric data that can be aggregated. A measure can also
be calculated.

Measure Groups Used to associate dimensions with the measures from underlying fact tables
as well as when a distinct count is used as the aggregation behavior for the
fact data. This allows aggregation processing to be optimized.

Cube Primary objects created in an OLAP database. There are two main
components to a cube: The dimensions, which are used to define the structure
of the cube, and the measures, which contain the fact data that is referenced by
the cube, are the essential building blocks of your OLAP databases.

Key Performance
Indicator (KPI)

Calculations of measure group data that are used to compare actual
performance against a defined target value. For example, the Sales
Department might define two goals to help identify sales performance. The
first goal would set a target value for the number of units sold, and the
second would identify the projected revenue from all sales. Each of these
goals could be tracked as a Key Performance Indicator, and you could
compare your actual year-to-date sales against the defined targets.

Working with SSAS
As with other Business Intelligence services, you can use both the Business Intelligence Development
Studio and SQL Server Management Studio to manage different aspects of SQL Server Analysis Services.
BIDS is used primarily for creating and managing dimensions, building cubes, defining KPIs, and other
tasks related to arranging and structuring the data, while SSMS will be used to manage the databases
that are created from SSAS projects. Although database design is beyond the scope of this chapter, you
will learn about using SSAS through a series of exercises that will allow you to gain an understanding of
the tools used to build and manage multi-dimensional databases.

Creating the Project
Begin by creating a new Analysis Services Project. In BIDS, you will want to create a new project that uses
the Analysis Services Project template. You may also note that there is an option to import an existing
SSAS database into a new project. For my example, I will create a project called AdventureWorks 2008 Data
Warehouse. See Figure 17-1 as a reference.

Defining a Data Source
Once you have created the project, the next step is to create a data source that will be used by the
OLAP database. For this example, you will need the AdventureWorks2008DW database from Codeplex
(www.codeplex.com). Follow these steps:

1. Begin by right-clicking on the Data Sources folder in Solution Explorer, and select ‘‘New
Data Source.’’ This launches the New Data Source Wizard. As with most SQL Wizards, the
first page of the Wizard is introductory in nature and can be skipped without consequence.

679



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 680

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-1: Creating an Analysis Services Project.

2. The next page of the Wizard allows you to define the data connection. You may already have
data connections defined, but I would recommend for the purposes of this example to create
a new data connection. Click on the New button (as seen in Figure 17-2) to create the new
connection.

Figure 17-2: Choosing a data connection.

680



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 681

Chapter 17: Introduction to SQL Server Analysis Services

3. As you can see in Figure 17-3, you can select the properties of the data connection, includ-
ing the OLE DB provider (which in this example should be the SQL Server Native Client
10.0), the server name, and the database name. Although your server name may be differ-
ent from the one I use in my examples, you will want to make sure that you are using the
AdventureWorks2008DW database. Click OK to return to the Wizard.

Figure 17-3: Creating a new data connection.

4. Once you have the appropriate data connection, click Next to continue to the Wizard. The
following page allows you to specify the login information used to connect to the data
source. In this case, you can define a specific Windows or Active Directory account and
password, use the SQL Server Analysis Services service account, use the credentials of
the current user, or inherit the login information from the application. When building a
data source for OLAP processing, it is not uncommon to use a shared account or the SSAS
service account to build and process Analysis Services objects. Because this operation may
be performed either manually by an administrator or as part of a scheduled job, using the
current user credentials may not always be the best option. However, you should make
sure that the account does have Read permissions to the objects in the source database that
will be imported into the SSAS database. For data-mining operations, discussed later in this
chapter, using the current user credentials is the preferred option since you do not want to
expose any data that the current user doesn’t currently have permissions to in the source
database. For this exercise, choose the ‘‘Use the service account’’ option.

681



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 682

Chapter 17: Introduction to SQL Server Analysis Services

5. The last page of the Wizard allows you to configure a name for the data source, as well as
shows you a preview of the connection string that will be used to connect to the source
database. Click Finish to complete the Wizard and create the data source.

Creating the Data Source View
After you have created the initial data source, you will need to create a Data Source view before you can
begin building your new cube. The Data Source view serves two purposes:

❑ It allows you to identify which tables and views from the data source will be used in your Anal-
ysis Services Project.

❑ It retrieves and stores the metadata about those objects, which allows you to build your cubes
without having to maintain an active open connection to the data source.

A DSV can contain tables and views from multiple data sources, but it requires that one data source be
first identified as the primary data source. Create the DSV as follows:

1. As you did when creating a data source, right-click on the Data Source Views folder, and
select ‘‘New Data Source View.’’

2. After bypassing the informational page in the Wizard, the next page requires you to select
the data source to use. Select the AdventureWorks2008DW data source created in the last
section, and click Next to continue. Note that you can create a new data source from this
Wizard, as well. The Advanced button allows you to restrict the Wizard to specific schemas
in the relational database.

3. The next page in the Wizard allows you to specify which tables and views to include in your
OLAP database. For the sake of simplicity, you will only use a subset of the available dimen-
sion and fact data in the relational database. Choose the following tables to add to your DSV:

❑ DimDate

❑ DimGeography

❑ DimProduct

❑ DimProductCategory

❑ DimProductSubCategory

❑ DimReseller

❑ FactResellerSales

Once you have selected the required tables, click Next to give the DSV a name, and preview
the list of objects that will be included in the DSV. As you can see from Figure 17-4, I have
changed the default name of the DSV to AW2008DW_DSV.

Once you’ve finished the Wizard, the main workspace in your project will show you a diagram of the
tables and views in your DSV. You can re-size the diagram and move the tables to better fit them within
the available window. This operates not unlike the Database Diagramming tool in SQL Server Manage-
ment Studio.

682



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 683

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-4: Creating a Data Source view.

Before you begin building the cube, you will want to rename the tables and views you added to your
DSV in order to make them more user-friendly. Keep in mind that this just creates an alias that will
be used by Analysis Services and will have no impact on the relational database at all. If you have the
Properties window visible, you can simply select an object and change the FriendlyName attribute of the
object. If the Properties window is not visible, you can enable it by pressing [F4], enabling it from the
View menu of BIDS, or by right-clicking on a table and selecting Properties. Use the following list as a
guide for renaming objects:

Object Renamed Object

DimDate →Date

DimGeography →Geography

DimProduct →Product

DimProductCategory →Product Category

DimProductSubcategory →Product Subcategory

DimReseller →Reseller

FactResellerSales →Reseller Sales

It’s a good idea at this point to save your project, so click on the ‘‘Save All’’ button on the Toolbar, or
choose ‘‘Save All’’ from the File menu.

683



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 684

Chapter 17: Introduction to SQL Server Analysis Services

Defining Dimensions
Before you can build a cube, you need to define the dimensions and hierarchies that will be used to
define the structure of the cube. In this example, you will start by building the Date dimension with the
Dimension Wizard:

1. Right-click on the Dimensions folder, and run the New Dimension Wizard. Read the infor-
mational text in the first page of the Wizard (opting to skip it in the future if you wish), and
click Next. You will choose to create the dimension using an existing table, but you should
review the options for creating time-based and non-time-based dimension tables in the data
source, or a Time dimension on the server. Ensure that the first option is selected, and click
Next to continue.

2. In the Specify Source Information page, ensure that your Data Source view is listed, and
select the Date table from the Main Table dropdown list. DateKey should be listed as a col-
umn that will be included in the Key Columns list. Click Next to continue.

3. Now you will need to enable the following attributes and change the attribute types. Use the
following table to find the appropriate attribute type for each dimension:

FullDateAlternateKey Date →Calendar →Date

DayNumberOfMonth Date→Calendar→Day of Month

MonthNumberOfYear Date→Calendar→Month of Year

CalendarQuarter Date→Calendar→Quarter of Year

CalendarYear Date→Calendar→Year

4. Figure 17-5 should provide you with a reference for mapping the appropriate attributes.
Click Next to review the Date dimension settings and change the dimension name if you
wish. If you are satisfied with your options, click Finish.

Creating the Cube
You have manually created the Date dimension, but you’re going to need more. Fortunately, you’ll be
able to create the required dimensions when you create the cube through the New Cube Wizard:

1. Right-click on the Cubes folder in Solution Explorer and choose ‘‘New Cube.’’ Skip past the
first page of the Wizard to get to the Select Creation Method screen. Review the different
options for creating a new cube, but select the first option to ‘‘Use Existing tables,’’ and click
Next.

2. The next page of the Wizard requires you to specify a table that contains measure group
information. Because the Reseller Sales table is the only one that contains fact data, select
that, and click Next.

3. For the sake of simplicity, you’re going to track only two measures in this cube. De-select all
measures except Sales Amount and Reseller Sales Count (see Figure 17-6), and click Next.

684



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 685

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-5: Enabling browsing on Date dimension attributes.

Figure 17-6: Selecting the measures.

685



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 686

Chapter 17: Introduction to SQL Server Analysis Services

4. You will now be asked to select existing dimensions; select the Date dimension and click
Next. Based on the measures you selected, the Wizard will recommend additional dimen-
sions that will be used with this cube. Select the Products and Reseller dimensions, if they’re
not already selected. Clear the check next to the Reseller Sales dimension, and click Next (see
Figure 17-7).

Figure 17-7: New dimensions.

5. Name the cube AW2008 Reseller Sales and then click Finish to generate the cube. Once the
cube has been created, you will see a database diagram similar to the one you saw when you
created the DSV, only with a subset of the available tables. Also note that the headers for fact
tables are yellow, while dimensions are blue. Click ‘‘Save All’’ to save your changes. Note in
Solution Explorer that you now have the two additional dimensions created from the Cube
Wizard.

6. One other thing you may want to change, to help make the data a little more presentable,
is the formatting of the measures, so that they’re shown to the user in a friendlier way. For
example, select the Sales Amount measure from the list of measures and, in the Properties
window, change the FormatString value to ‘‘Currency’’ from the dropdown list. For the
Reseller Sales Count measure, select the ‘‘Standard’’ value.

Create Hierarchies
Before you can use the cube, you need to define hierarchies that can be used for slicing and dicing the
cube. Begin by creating hierarchies for the Product, Reseller, and Date dimensions. In one case, you will
need to create two hierarchies in the same dimension. Use the following chart as a reference:

686



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 687

Chapter 17: Introduction to SQL Server Analysis Services

Dimension Hierarchy Level 1 Level 2 Level 3

Product Products Category Subcategory Product

Reseller Resellers Business Type Reseller

Reseller Geographies Country State or Province City

Date Calendar Year Quarter Month

Create the Products Hierarchy
To create the Products Hierarchy, follow these steps:

1. Double-click on the Product dimension in Solution Explorer to open it, or switch focus to
it if it’s already open. You should see a three-pane view that includes the list of available
attributes, a Hierarchies pane, and a Data Source View pane that contains the table.
Note that you have three attributes defined for the Product dimension. These are the
Product Category Key, Product Key, and Product Subcategory Key attributes. Rename each
of these to remove the word Key from each attribute.

2. Click on the Product Category attribute, and view its properties. Look for a property called
Name Column. It will be under the Source section near the bottom of the list. Click on the ellip-
sis ( . . . ) button.

3. In the Name Column window, verify that ‘‘Column binding’’ is selected for the
‘‘Binding type,’’ Product Category is selected as the ‘‘Source table,’’ and select
EnglishProductCategoryName as the ‘‘Source column.’’ Your example should look
like Figure 17-8. Click OK to continue.

You may also wish to change the Order By property from Key to Name to allow the list of
products to be sorted alphabetically.

4. Perform the same task for each of the remaining attributes, binding EnglishProductName to
the Product attribute and EnglishProductSubcategoryName to the Product Subcategory
attribute.

5. Next, you must build the hierarchy. Drag the Product Category attribute to the Hierarchies
pane. It will create a new hierarchy called Hierarchy. Because that name isn’t very helpful,
you can right-click on Hierarchy and choose Rename to give it a new name. Name the new
hierarchy Products.

6. Drag the remaining attributes into the Products hierarchy using Figure 17-9 as a reference.

7. Next, you will want to define the attribute relationships so that Analysis Services under-
stands how the Categories, Subcategories, and Products are related. This helps optimize
cube performance. Begin by selecting the Attribute Relationships tab (Figure 17-10).

687



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 688

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-8: Name Column binding.

Figure 17-9: Product dimension.

688



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 689

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-10: Product attribute relationships (before).

8. Notice that an attribute relationship has already been defined based on the hierarchy you
created. If you built the hierarchy before changing the name, there may be a couple of warn-
ings that would need to be addressed. Select the arrow that points from the Product attribute
to the Product Subcategory attribute. In the Properties window, change the Name value to
just Product Subcategory (removing the word Key). This will remove the warning sign.

9. Also in the Properties window, change the RelationshipType value to Rigid. This informs
SSAS that the relationship will not change over time, meaning that a particular product will
always be a member of the same subcategory. If a products subcategory will change over
time, then the relationship should be Flexible.

10. Perform the same task for the Product Subcategory to Category relationship, renaming the
relationship to just Product Category, and changing the relationship type to Rigid. When fin-
ished, the Attribute Hierarchy should look like Figure 17-11. Click on the ‘‘Save All’’ button
to save your changes.

Create the Resellers and Geographies Hierarchies
To create the Reseller and Geographies Hierarchies, follow these steps:

1. Double-click on the Reseller dimension in Solution Explorer to open it, or switch focus to
it if it’s already open. You should see a three-pane view that includes the list of available

689



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 690

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-11: Product attribute relationships (after).

attributes, a Hierarchies pane, and a Data Source View pane that contains the table. Begin by
renaming the Geography Key attribute to City and the Reseller Key attribute to Reseller.

2. Select the City attribute, and in the Properties pane, bind the City column using the
NameColumn property.

3. For the Reseller attribute, bind the ResellerName column to the NameColumn property.

4. Drag the following attributes to the Attribute List, renaming and binding the NameColumn
property as described in the following table:

Attribute Source Table New Name NameColumn

BusinessType Reseller Business Type <leave empty>

CountryRegionCode Geography Country EnglishCountryRegionName

StateProvinceCode Geography State or Province StateProvinceName

5. Create a new hierarchy called Resellers with the following attributes: Business
Type→Reseller.

6. Create a new hierarchy called Geographies with the following attributes: Country→State or
Province→City→Reseller.

690



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 691

Chapter 17: Introduction to SQL Server Analysis Services

7. When finished, your hierarchies should look like Figure 17-12. Note the warning for the
Geographies hierarchy. You will fix this when you define the Attribute Relationships in the
next step. Click ‘‘Save All.’’

Figure 17-12: Reseller dimension.

Reseller Attribute Relationships
Now it’s time to establish the Reseller Attribute Relationships. To do so, follow these steps:

1. Click the Attribute Relationships tab in the Reseller dimension. Notice that the Reseller
attribute is linked to all the other attributes directly, but this isn’t what you want. Begin by
selecting the link to the City attribute.

2. Rename the attribute relationship to City (if not already so named), and change the
RelationshipType to Rigid.

3. Delete the attribute relationships from Reseller to State or Province and Country.

4. Right-click on the City attribute and select ‘‘New Attribute Relationship.’’

5. As seen in Figure 17-13, define City as the ‘‘Source Attribute,’’ State or Province as the
‘‘Related Attribute,’’ and define the relationship type as Rigid.

691



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 692

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-13: New attribute relationships.

6. Create a new attribute relationship with State or Province as the source, Country as the
related attribute, and the type as Rigid.

7. Change the Business Type→Reseller attribute relationship to Rigid.

8. Ensure that your Attribute Relationships look like Figure 17-14, and click ‘‘Save All.’’

Build the Calendar Hierarchy
To build the Calendar Hierarchy, follow these steps:

1. Double-click on the Date dimension in Solution Explorer to open it, or switch focus to it if it’s
already open. You should see a three-pane view that includes the list of available attributes,
a Hierarchies pane, and a Data Source View pane that contains the table.

2. You already have the attributes you want to use in the Date dimension, but you will need to
rename the Month Number of Year column to Calendar Month.

3. With Calendar Month selected, in the Properties window, select the KeyColumns property,
and click on the ellipsis ( . . . ) when it appears in the value field.

4. Add the Calendar Year column to the KeyColumns field. This will essentially create a com-
posite key that includes the month number and year number to guarantee uniqueness. See
Figure 17-15.

5. While still in the Calendar Month properties, bind the NameColumn property to the
EnglishMonthName column.

6. Now add the Calendar Year column to the KeyColumns property of the Calendar Quarter
attribute, just as you did with the Calendar Month attribute. Because attributes with com-
posite keys must have a NameColumn defined, add Calendar Quarter as the NameColumn
property.

7. Create a new hierarchy by dragging the Calendar Year attribute to the Hierarchies pane.

692



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 693

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-14: Reseller attribute relationships.

Figure 17-15: The Date dimension.

693



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 694

Chapter 17: Introduction to SQL Server Analysis Services

8. Change the name of the new hierarchy to Calendar.

9. Drag and drop Calendar Quarter below Calendar Year in the Time hierarchy to create a
new level.

10. Finally, drag the Calendar Month into the Calendar hierarchy. When finished, your hierarchy
should look like Figure 17-16.

Figure 17-16: The Date dimension.

Calendar Attribute Relationships
To create the Calendar Attribute Relationships, follow these steps:

1. Select the Attribute Relationships tab in the Date dimension.

2. Right-click on the Calendar Month attribute, and select ‘‘New Attribute Relationship.’’

3. Ensure that Calendar Month is selected as the source, and, if necessary, select
Calendar Quarter as the related attribute. Change the relationship type to Rigid.
Note that once the new relationship is built, the relationship between Calendar Month and
Calendar Quarter is automatically deleted.

4. Create a new attribute between Calendar Quarter and Calendar Year as Rigid.

5. Verify that your attribute relationships look similar to Figure 17-17, and click ‘‘Save All.’’

694



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 695

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-17: Date attribute relationships.

Deploying the Project
At this point, you cannot browse the cube because you have not actually built the cube. You’ve defined
the structure for how data will be accessed, but the data is not available yet. You will need to deploy
the cube to make the data available for browsing. In order to be able to deploy the cube, you will need
to give the Analysis Services service account permissions to read from the source database. If you are
using the same account for the OLTP and OLAP engines, which is not recommended, no further config-
uration should be necessary. In my case, I am running Analysis Services under a separate account called
ASService. I will need to grant Read permissions to the dimension and fact tables that this project will be
using. For demonstration purposes only, I will create a login for ASService, and grant it db_datareader
permissions on the AdventureWorks2008DW database. For information on creating the logins, database
users, and granting permissions, review Chapter 6.

To deploy the database and create the cube, select the Deploy option from the Build menu in Business
Intelligence Development Studio (see Figure 17-18).

Figure 17-18: Deploying the
database.

A Deployment Progress window will appear while the database is being deployed. This will provide you
with detailed information about the deployment process. As long as you get a ‘‘Deployment Completed
Successfully’’ message (Figure 17-19), you’re good to go! Often, deployment errors can be related to an
invalid hierarchy or incorrect user permissions. Evaluate the error list to troubleshoot any problems.

695



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 696

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-19: Deployment Progress.

Managing SSAS
Although you could use the Browse feature in BIDS to browse the cube, this is a good opportunity to
step away from the development side of things and get into the administration side of things. Click
‘‘Save All’’ to save all your changes inside the AdventureWorks 2008 Data Warehouse project. Open SQL
Server Management Studio, and create a new connection to Analysis Services (Figure 17-20). One thing
you might notice about this connection window is that it does not allow you to choose an authentication
method other than Windows Authentication. Unlike the relational Database Engine, the Analysis Services
Database Engine can only use Windows or Active Directory logins. SQL Server logins cannot be created
or used on Analysis Services databases.

Figure 17-20: Connecting to Analysis Services.

696



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 697

Chapter 17: Introduction to SQL Server Analysis Services

Unlike the relational engine, there are only two folders for organizing the components of SSAS in Object
Explorer:

❑ Databases — You will only see those databases that have been deployed. In this case, you
should see the AdventureWorks 2008 Data Warehouse. If you expand the database, you will
see the same folders that you saw in the Solution Explorer in BIDS. In fact, you can perform
many of the same tasks in BIDS that you can in SSMS, such as creating and managing roles.
Unfortunately, the same cannot be said the other way around.

❑ Assemblies — Not unlike those that you would use in the relational database, Analysis Ser-
vices has four assemblies that are pre-defined for being able to access the service and query the
databases.

Browsing the Cube
In this exercise, you are going to use SQL Server Management Studio to browse the cube you just created.
Follow these steps:

1. Expand the Cubes folder of your database.

2. Right-click on the AW2008 Reseller Sales cube, and select Browse. As you can see in
Figure 17-21, you will have a list of measures and dimensions that you can drag into the
totals, columns, rows, or filters section of the cube browser.

3. Expand the Measures folder.

4. Expand Reseller Sales.

5. Select and drag the Sales Amount measure into the ‘‘Drop Totals or Detail Fields Here’’
section of the browser. You should see the total sales amount in the browser window.

6. Expand the Reseller dimension.

7. Select the Geographies user hierarchy, and drag it to the Row Fields section. You should now
see the Sales Amount based on Country, plus the Grand Total in the bottom row.

8. Expand the Order Date dimension.

9. Drag the Order Date.Calendar hierarchy into the Column Fields section. You will see the
total for each country in a separate column for each year.

10. Click on the down arrow next to Calendar Year, and select only 2003 and 2004.

11. Expand the Product dimension.

12. Drag the Products hierarchy into the Filter Fields section.

13. Click on the down arrow next to Product, and select only Bikes.

Your matrix should now look like Figure 17-22. Feel free to expand the rows or columns to get more
detailed information within the hierarchies.

697



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 698

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-21: The cube browser.

SSAS Security
As mentioned earlier in this chapter, SQL Server Analysis Services relies solely on Windows-based
authentication. One aspect of security is managing permissions through roles.

Roles operate similarly to the way they behave in the relational engine; however, because the structure
of an OLAP database is significantly different from that of an OLTP database, it is important to introduce
the concept of OLAP security. While this will not be an exhaustive review of SSAS security, this section
should serve as a good introduction to the topic.

Creating a Role
Roles can be created in either SQL Server Management Studio or Business Intelligence Development
Studio. Both tools will allow you to perform the same functions, but with a slightly different user interface
for each. I personally tend to favor SSMS, but that’s because it’s a tool that I use more regularly than
BIDS. You can create a role by right-clicking on the Roles folder in your SSAS database and selecting
‘‘New Role.’’

698



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 699

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-22: Bike reseller sales by country.

As seen in Figure 17-23, you can name the new role and provide a useful description. For this example,
create a role called NA Reseller, which will have access only to the data for North American countries.
Also note on this screen that you can define database-level permissions that would allow the user to have
Full Control, the ability to process the entire database or read the metadata for objects in the database. For
this role, do not select any of these options.

The next step is to add a user to the role. You can accomplish this by selecting the Membership page in
the Create Role window and clicking on the Add button. In this case, I am going to use Bob, one of the
Windows accounts I created in Chapter 6. For this exercise, you can use any non-administrative account
or you can leave the role empty.

When creating the role, you can define what permissions this role will have on Data Sources, Cubes,
Cell Data, Dimensions, Dimension Data, and Mining Structures. Feel free to browse through and review
the different options for each. In this example, you are going to set permissions on specific dimension
members by performing the following steps.

699



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 700

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-23: Creating the NA Reseller role.

First, you will need to grant Read permission on the AW2008 Reseller Sales cube:

1. Select the Cubes page in the Create Role window.

2. In the dropdown list in the Access column of the AW2008 Reseller Sales row, select Read.

3. Select the Dimension Data page in the Create Role window.

4. In the Dimension dropdown list, select the Reseller dimension from the AdventureWorks
2008 Data Warehouse.

5. Select the Country member set from the Attribute Hierarchy dropdown list.

6. Select the ‘‘Deselect All Members’’ radio button.

7. Check the boxes next to Canada and the United States. See Figure 17-24 as a guide.

8. Click on the Advanced tab. Note the MDX in the ‘‘Allowed member set’’ box. Click on the
checkbox next to ‘‘Enable Visual Totals.’’ This will allow the members of this role to see only
the aggregate totals for the countries they have permissions to. Click OK to finish creating
the role.

700



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 701

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-24: Creating the NA Reseller role.

Testing Security
SQL Server Analysis Services includes a great feature for testing security against one or more roles with-
out having to log in as a different user:

1. Go back to your Cube Browser window, and click on the ‘‘Change User’’ button
(Figure 17-25). You will see a Security Context window (Figure 17-26), which will allow you
to select one or more roles to browse the cube as. This can be extremely handy when you
want to test the permissions a particular user might have if he or she belongs to multiple
roles, without having to log in as that user. Select the ‘‘NA Reseller’’ role, and click OK.

For example purposes, I have created another role called EU Sales. This role is only there
to illustrate that multiple roles can be selected. You will not need this role.

Figure 17-25: ‘‘Change User’’ button.

701



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 702

Chapter 17: Introduction to SQL Server Analysis Services

Figure 17-26: Selecting another role to browse
as.

2. Note that the browser window has cleared all settings. Repeat the steps from earlier to
add the OrderDate.Calendar hierarchy on columns, Reseller.Geographies on rows, and
Product.Products on filter. Don’t forget to add the Sales Amount measure to the body of the
browser.

As you can see in Figure 17-27, the NA Reseller role can only access data that is applicable to the United
States and Canada. Even the totals provided are limited to the totals of those two countries. Designing
your security model can be one of the most critical steps of building a data warehouse. Understanding
who needs access to which data will be the key to a successful SSAS deployment.

One very important thing to note when working with SQL Server Analysis Services is that you should
avoid mixing and matching the management tools. Although this exercise showed you the option of
creating a role in SQL Server Management Studio, that role will not be included as part of the project
definition for the Analysis Services Project in BIDS. You can, however, open a new project in BIDS and
select the ‘‘Import Analysis Services 2008 Database’’ template; this will allow you to ‘‘reverse engineer’’
the database as a new project that will include all the changes made via SSMS. If you’re not careful, you
can potentially overwrite an existing database with valid configuration performed through SSMS by
re-deploying the project in BIDS.

Advanced SSAS Concepts
There are several other features and components of SSAS that simply can’t be covered in detail in an
introductory chapter. These topics are covered in greater detail in Professional Microsoft SQL Server

702



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 703

Chapter 17: Introduction to SQL Server Analysis Services

Analysis Services 2008 with MDX by Sivakumar Harinath, Robert Zare, Sethu Meenakshisundaram, Matt
Carroll, and Denny Guang-Yeu Lee (Wiley, 2009); however, I just wanted to make mention of them here,
so that you would be aware of them.

Figure 17-27: Browsing as NA Reseller.

MDX
SQL Server Analysis Services uses a query language known as MultiDimensional eXpression language, or
MDX for short. MDX was developed by Microsoft, and although it is not an open standard, has been
adopted by other vendors of OLAP database technology. MDX uses a different syntax from T-SQL, in
that you will need to define what data appears in rows and columns, but the basic select concept is very
similar. Below you will see a sample MDX query that returns the number of bikes sold in 2003 and 2004
in the United States and Canada:

Select ([Measures].[Reseller Sales Count],
{[Order Date].[Time].[Calendar Year].&[2003],
[Order Date].[Time].[Calendar Year].&[2004] })ON COLUMNS,
{[Resellers].[Geography].[Country].&[Canada],
[Resellers].[Geography].[Country].&[United States]} ON ROWS
FROM [AW2008 Reseller Sales]
WHERE ([Products].[Product].[Category].&[Bikes])

Note that the statement begins by selecting the Reseller Sales Count measure, and the years 2003 and 2004
in the columns. Canada and the United States will appear on rows. This query will be executed against
the AW2008 Reseller Sales cube, using the Bikes product category as a filter.

703



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 704

Chapter 17: Introduction to SQL Server Analysis Services

This is just a simple example of how MDX works. Whole books have been written on the topic, and I
personally only know a small handful of people who could be considered experts in the language. As
your role as a database administrator expands beyond managing only the relational database, it may be
in your best interest to learn MDX as well.

Data Mining
At the beginning of this chapter, I mentioned that having a whole bunch of data that you don’t do any-
thing with is just a waste of resources. The point of this chapter is to help you understand the tools that
are used to put context to your data. The examples in this chapter focus on looking at historical infor-
mation, and specifically looking at reseller performance based on geography, time, and product. This
type of analysis helps provide insight into what has happened and will hopefully lead to better business
decisions. Another type of analysis, however, can be used for getting a better idea of what is likely to
happen.

This predictive analysis is known as data mining, and is part of the SQL Server Analysis Services tools.
Since much of the data in a cube, data mart, or data warehouse is numeric fact data, it lends itself better
to the proprietary data-mining algorithms that Microsoft has developed. Microsoft SQL Server 2008
supports building data-mining models that can be used for tasks such as targeting advertisements to
customers based on their purchase history, identifying loss-leaders that will bring more customers into
the store, and so on.

One of my favorite online retailers has kept track of my purchase history going back to prior to 2000.
Because of this, they often offer me special deals and discounts on DVDs or electronics that they think
that I might like. And it works. I often make impulse purchases based on their recommendations. Grocery
stores do the same thing. Whenever I swipe my club card at the local food mart, not only am I saving 20
cents on milk, but they know how often I buy milk, and in what quantities. They can use this information
to send me coupons tailored to my buying habits, or they can look at the sales data for all customers and
decide how well a certain product line sells in my zip code.

Microsoft has a language that is separate from T-SQL or MDX for working with and building data-mining
models called the Data Mining eXtensions language, or DMX for short. Similar to T-SQL, it includes Data
Definition Language (DDL) and Data Manipulation Language (DML) statements, functions, and opera-
tors.

Data Mining Structures can be created in BIDS, as part of an existing Analysis Services Project, and can
be built from either a relational data source or an existing OLAP cube. Microsoft supports the following
proprietary data-mining techniques:

Technique Short Description

Microsoft Association
Rules

Builds rules that describe which items are most likely to appear
together as part of the same transaction.

Microsoft Clustering Iterative techniques that group records that share similar
characteristics into a data set

Microsoft Decision Trees Predictive modeling of discrete and continuous attributes

704



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 705

Chapter 17: Introduction to SQL Server Analysis Services

Technique Short Description

Microsoft Linear
Regression

Specific implementation of decision trees that disable splits and use a
single root node for prediction of continuous attributes

Microsoft Logistic
Regression

Regression-based implementation of Microsoft Neural Network that
supports prediction of discrete and continuous attributes

Microsoft Naı̈ve Bayes Classification algorithm that uses discrete attributes and considers
all input attributes as independent

Microsoft Neural Network Allows the combination of each possible state of an input attribute
with each possible state of a predictable attribute to calculate
probabilities

Microsoft Sequence
Clustering

Combination of sequence analysis and clustering that identifies
clusters that are part of a similarly ordered sequence

Microsoft Time Series Regression algorithms used to forecast continuous values over time

Each of the data-mining techniques will allow you to input specific parameters when building a
data-mining model. You should take some time to experiment with the different techniques and options
in the Mining Structures Wizard. Although data-mining functions are often outside the scope of a DBA’s
job, you should review some of the material in Books Online, specifically the ‘‘Special Considerations for
Data Mining’’ section of the Security Overview (Analysis Services — Data Mining) topic.

Summary
In this chapter, you learned about the basic elements of an Analysis Services solution, including building
a cube based on a relational data source. It is my hope that you walk away from this chapter with a basic
understanding of some of the features that SQL Server Analysis Services brings to the table. As a database
administrator, it is important that you understand more than just how your data is being stored, but also
how it’s being used.

The next chapter will introduce you to what is probably the most user-accessible portion of the Microsoft
SQL Server 2008 BI stack — SQL Server Reporting Services.

705



Leiter c17.tex V3 - 03/25/2009 1:00pm Page 706



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 707

18
Introduction to SQL Server

Reporting Services

In today’s business world, companies tend to collect massive amounts of information, from the
products they sell to what the weather was like when it was sold. This often leads to accumulat-
ing many terabytes of information. Because companies collect vast amounts of information, it is
often difficult to present that information in a useful way let alone gain insight into the health of
their business to make effective business decisions. For the decision makers to make effective use
of the information, they must have easy access to intuitive and useful reports that combine infor-
mation from many different locations to provide a detailed account of business activity. Combining
detailed information with a graphical representation aids in understanding and can provide a com-
prehensive view of various trends and comparisons. SQL Server Reporting Services has all of these
capabilities and then some.

SQL Server Reporting Services Overview
SQL Server Reporting Services (SSRS) was first introduced in 2004 as an add-on product to SQL
Server 2000 and was accepted with great fanfare. SQL Server 2005 didn’t add all that much new
functionality to Reporting Services but did fully integrate Reporting Services as part of the installa-
tion. By including Reporting Services as part of the product rather than just an add-on, SQL Server
was able to provide a full Business Intelligence infrastructure. Reporting Services underwent a sig-
nificant overhaul for the SQL 2008 release with many new features being added and the bulk of the
architecture re-designed for added performance.

Reporting Services provides all the necessary tools and services to create, deploy, and manage
reports in an enterprise environment. You can either use it right out-of-the-box or have developers
extend it to fully customize the reporting experience. As a server-based platform, SSRS can provide
reporting functionality that targets almost any relational, multi-dimensional, or XML data source.
In addition to reports that developers create, Reporting Services also allows for more savvy users
to create ad hoc reports based on report models. Report models provide an abstraction of the data
in the form of entities so that users are not bothered with having to know the intricate details of the
actual data sources.



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 708

Chapter 18: Introduction to SQL Server Reporting Services

Components and Tools
Reporting Services consists of a collection of components, tools, and APIs that you use to create and
distribute rich reports for end-users. Each of these tools serves a specialized purpose in the reporting
life cycle. There are tools designed to create the reports, configure and manage the reports and server
instance, and for viewing the reports. The following sections discuss some of the common components
and tools.

Report Server
The Report Server component is the heart of a SQL Server Reporting Services instance. It consists of
three applications — Report Manager, Reporting Web Services, and Background Processing — all run-
ning within a single Windows Services, as shown in Figure 18-1. These applications use a combina-
tion of specialized processors to perform specific functions such as report processing, data processing,
or report delivery. Two of these processors — the report processor and the scheduling and delivery
processor — are considered the core processors, and they perform the initial processing of reports and all
scheduling operations. The core processors maintain the integrity of the reporting system and supply an
infrastructure that allows developers to add new functionality but cannot be extended themselves. These
extensibility points are referred to as extensions, and Reporting Services provides default implementations
for each of them.

HTTP Listener (HTTP.sys)

Authentication

Report Manager

Report Viewing and Management

User Interface Extensions

Web Services Background Processing

Report ProcessorProgrammatic Interfaces

Report Processor

Authentication Extensions

Authentication Extensions

Data Processing Extensions

Report Processing Extensions

Report Processing Extensions

Data Processing Extensions

Rendering Extensions

Rendering Extensions

Scheduling and Delivery
Processor

Figure 18-1: Report Server architecture.

708



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 709

Chapter 18: Introduction to SQL Server Reporting Services

Report Processor
The report processor is the component responsible for generating reports requested, either by an end-user
or a scheduled process, and is considered one of the two core processors in a Reporting Services installa-
tion. The report processing happens in three distinct phases:

❑ Report Definition Processing — In this phase, the report processor retrieves the report defini-
tion from the Report Server database and prepares it to accept data. This includes the initializa-
tion of any parameters or variables that are used in expressions and all preliminary processing
that is required by the report.

❑ Data Processing — By using the appropriate data processing extensions, the report processor
retrieves any data required by the report and combines it with the report definition. The
result does not produce an actual viewable report, but creates a report in an intermediate
format.

❑ Rendering — The creation of an intermediate format allows the report processor to apply many
rendering extensions to the same set of data to obtain different viewing formats.

Scheduling and Delivery Processor
The other core processor is the scheduling and delivery processor. This handles all scheduled operations and
controls the delivery of reports to end-users. The scheduling and delivery processor works in conjunction
with the SQL Server Agent to deliver reports to end-users. When a schedule is created, Reporting Services
creates a corresponding SQL Server Agent job that executes on the schedule provided. The job executes
the dbo.AddEvent stored procedure found in the ReportServer database, which adds an event to a
queue maintained by Reporting Services. Reporting Services pools the queue at regular intervals to
check for new events. The queue is checked every 10 seconds by default but can be adjusted by setting the
PollingInterval setting in the RSReportServer.config file. When a new event is detected in the queue,
the scheduling and delivery processor calls the report processor to handle the request in a background
process. During the processing of the request, the report processor uses the delivery extension that is
defined by the schedule to send the report to the proper destination. Delivery extensions are discussed
later in this section.

To prevent users from gaining access to information they no longer have permission for, the scheduling
and delivery processor performs an authentication step to verify the current permission set for the sub-
scription owner prior to processing the report request. Later sections in this chapter discuss assigning
permissions to users and creating scheduled events.

Reporting Services depends on the SQL Server Agent Service to process schedules
and must be running in order for events to be placed into the queue. If the SQL
Server Agent Service is stopped, no events will be added to the queue, and any
events that would have been generated will be lost.

709



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 710

Chapter 18: Introduction to SQL Server Reporting Services

Extensions
Reporting Services was designed using a very modular architecture allowing for maximum extensi-
bility both by Microsoft and developers. In addition to the core set of processors discussed in the last
section, Reporting Services provides many processes that can either be replaced or extended by develop-
ers to expand the processing capabilities of the server. The report processor then uses these extensions
while processing reports. For example, imagine that you need to have a report faxed to one of your
business partners every morning. This can be done by creating a custom delivery extension that faxes
reports.

Reporting Services supports several types of extensions such as authentication, rendering, data pro-
cessing, and delivery. Of these extensions, the Report Server requires at least one authentication, data
processing, and rendering extension. The following table lists all of the default extensions that are
included in a Report Server installation:

Extension Included Extensions

Authentication Windows Authentication, including impersonation and delegation
features when enabled in the domain

Data Processing SQL Server, Analysis Services, Oracle, Hyperion Essbase, Teradata,
SAPBW, OLE DB, and ODBC data sources

Rendering HTML, Excel, CSV, XML, Image, Word, and PDF

Delivery e-mail and a file share (if configured for SharePoint integration,
SharePoint library)

❑ Security Extensions — Used by Reporting Services for authentication and authorization of users
and groups. A default extension based on Windows Authentication is included in Reporting Ser-
vices, although it can be replaced with your own extension if you require a different authentica-
tion approach. However, only one security extension at a time is supported for each installation
of Reporting Services. Using Windows Authentication is the recommended approach but is not
always an option. For example, if you were exposing the reporting solution over the Internet or
an extranet, using a custom security extension would eliminate the need to create user accounts
in the Active Directory. In this situation, using Forms-based authentication allows you to fully
integrate the reporting system with the rest of the site. Both the site and the reporting system can
share a single authentication store.

❑ Data Processing Extensions — Reporting Services relies on data processing extensions to get
information from a data store. Each type of data source has its own data processing extension.
The data processing extension is responsible for such actions as opening a connection to the data
source, passing any required parameter values to the query, running the query against the data
source and returning a rowset, and iterating over the rowset to retrieve the data. The eight
data processing extensions included with Reporting Services are SQL Server, Analysis Services,
Oracle, SAP NetWeaver Business Intelligence, Hyperion Essbase, Teradata, OLE DB, and ODBC.
In addition to these eight, any .NET data provider can be used from within Reporting Services.

710



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 711

Chapter 18: Introduction to SQL Server Reporting Services

❑ Rendering Extensions — These create viewable forms of the reports from the intermediate form
of the report created by the report processor. Reporting Services provides seven rendering exten-
sions, which are described in the following table:

Rendering Extension Description

CSV The Comma-Separated Value (CSV) rendering extension
renders reports in comma-delimited text files containing no
formatting instructions. The file can be opened with any
application that has the capability of reading text files.

HTML When a report is requested and viewed through a web
browser, the report processor will use the HTML rendering
extension to render the report in UTF-8 encoded HTML.

Image When using the HTML rendering extension, the appearance of
the report can vary depending on the version of the user’s
browser, browser settings, and available fonts. If you require
that reports have a consistent look no matter what the
browser, you may want to consider the image rendering
extension, which renders the report on the server, so all users
see the exact same image. Because the report is being rendered
on the server, all fonts used in the report must also be installed
on the server. By default, the extension will render the report
as a TIFF image but can render it in the following formats:
BMP, EMF, GIF, JPEG, PNG, TIFF, and WMF.

Microsoft Excel This extension renders the report as an Excel spreadsheet that
can be viewed or modified in Microsoft Excel 97 or later. The
rendered report supports all the features available for any
regular spreadsheet.

Microsoft Word All I have to say is, finally! In every single Reporting Services
class I have taught, there would be at least one student who
would ask why they couldn’t render in Microsoft Word, and
honestly, I never had a good answer. Now I do: ‘‘You can in
2008.’’ With this rendering extension, you can render a report
as a Microsoft Word document that is compatible with
Microsoft Office Word 2000 or later.

PDF Renders reports in Portable Document Format (PDF) files that
can be opened and viewed with Adobe Acrobat 6.0 or later.

XML XML files provide a platform-independent view of the data,
allowing you to send reports to a third party to be processed.
You could also use an XSL Transformation to turn the report
into another XML schema for use by another application. The
XML generated by this extension is UTF-8 encoded.

711



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 712

Chapter 18: Introduction to SQL Server Reporting Services

❑ Report Processing Extensions — Can be added to provide custom report processing for report
items that are not included with Reporting Services. By default, Reporting Services can process
items such as tables, charts, matrices, lists, textboxes, and images. If you would like to host addi-
tional items within your reports, such as a Microsoft MapPoint map, you can create a report
processing extension to do so.

❑ Delivery Extensions — As discussed before, the scheduling and delivery processor uses deliv-
ery extensions to deliver reports to various locations. Reporting Services includes three delivery
extensions, which are discussed in the following table:

Delivery Extension Description

File share Allows you to place reports on a shared folder on your network.
Users who want to view the report would then navigate to this
location and open the report. The location of the shared folder,
filename, rendering extension to use, and overwrite options are all
configurable when using this extension. This approach is very useful
for very large reports or if you need to keep copies for archival
purposes.

e-mail Uses Simple Mail Transfer Protocol (SMTP) to send a message to
end-users. This message can contain the actual report or simply a
URL to the report. It is recommended that the URL link to the report
is sent rather than the report itself. There are two reasons for this.
First, if you have several large reports sent to a large number of
people, I can assure you that you will be getting a call from your mail
server administrator. Second, when just the URL is sent, the user
who is viewing the report will have to authenticate with the Report
Server before seeing the information. This way if somebody other
than the intended user gets the link, say through an accidently
forwarded e-mail, they won’t be able to see the information
contained in the report unless they have permissions.

SharePoint Document
Library

When using Reporting Services in SharePoint Integrated mode, there
is also the option of having the report stored in a document library.
This takes advantage of some of SharePoint’s features such as
versioning and workflow to create solutions for more complex
scenarios.

Reporting Services Configuration Manager
The Reporting Services Configuration Manager (see Figure 18-2) is used to modify the configuration of a
Reporting Services instance. Although it is mostly used to modify an already existing configuration, it is
necessary to use this tool to complete the installation if you install Reporting Services using the Files-Only
option. Until this has been completed, the instance will be unusable. Any of the following actions can be
performed using the Reporting Services Configuration Manager:

❑ Configure the account that the Report Server service uses.

❑ Configure the account used for unattended report execution.

712



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 713

Chapter 18: Introduction to SQL Server Reporting Services

❑ Create and configure URLs that are used by the Report Server and Report Manager.

❑ Create and configure the Report Server database.

❑ Manage encryption keys that are used to protect stored connection strings and credentials.

❑ Configure e-mail settings for the Report Server.

Not all Reporting Services settings can be modified from the Reporting Services Configuration Manager.
To configure certain server-level settings such as time-outs, logging, or security, SQL Server Manage-
ment Studio is required.

Figure 18-2: Reporting Services Configuration Manager.

SQL Server Management Studio
SQL Server Management Studio provides database administrators and developers with an integrated
environment to manage and configure all aspects of SQL Server. Introduced in SQL Server 2005, Man-
agement Studio combines the features of Enterprise Manager, Analysis Manager, and Query Analyzer
into a single application. This reduces the need to have multiple applications open and having to switch
between them.

In SQL Server 2005, Management Studio was used to manage almost all aspects of Reporting Services,
from creating roles and assigning permissions to managing reports that were deployed to the server. This
has changed with SQL Server 2008. Although Management Studio is still used to control permissions and

713



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 714

Chapter 18: Introduction to SQL Server Reporting Services

server settings, you can’t use it to assign permissions, create folders, or manage the reports that are on
the server. When you need to manage the content of a Report Server, such as reports or the creation of
schedules, you must use Report Manager.

Business Intelligence Development Studio
Business Intelligence Development Studio (BIDS) (see Figure 18-3) really isn’t part of SQL Server 2008;
rather, it is an instance of Visual Studio 2008 that includes the required add-ins to work with SQL Server
2008. When SQL Server 2008 is installed, it checks to see if Visual Studio 2008 is installed on the machine.
If found, the installation process installs a collection of project templates and designers that create the
various SQL Server 2008 projects. If not found, the installation process installs the Visual Studio 2008
shell and then continues with the installation of the project templates and designers. Either way you end
up with an instance of Visual Studio 2008.

Figure 18-3: Business Intelligence Development Studio.

Business Intelligence Development Studio is used to create reports and report models for use in SQL
Server 2008 Reporting Services. Report definitions use an XML-based schema called Report Definition
Language (RDL). There were many changes made to the schema between the 2005 and 2008 versions of
SQL Server. Because of this, BIDS can only be used to create reports for SQL Server 2008. If you open a
SQL Server 2005 report, it will be upgraded to the 2008 RDL and will not be able to be deployed to a 2005
server.

714



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 715

Chapter 18: Introduction to SQL Server Reporting Services

Report Builder
Report Builder is a report authoring environment that can be used by business and power users to create
ad hoc reports. There are actually two versions of Report Builder; version 1.0 is included with SQL Server
2008. One of the major downfalls of Report Builder 1.0 is that you have to build your report based on
an already existing report model. Version 2.0 of Report Builder, which can be downloaded from the
Microsoft web site, does not have this limitation. Version 2.0 is based on Microsoft Office (see Figure 18-4)
and was designed for users advanced enough to create reports yet who do not need all the functionality
of BIDS.

Figure 18-4: Report Builder 2.0.

Both BIDS and Report Builder generate RDL files, and reports can be modified in either tool regardless
of where they were initially designed. This allows a more experienced report developer to use Business
Intelligence Development Studio to initially create the report and then have users customize it using
Report Builder to suit their needs.

Report Manager
Of all the tools used in Reporting Services, you’ll likely use Report Manager the most. Report Manager
is a web-based tool that performs actions such as deploying reports, viewing reports, creating schedules,
and assigning permissions. Although you can use almost any web browser to view reports, only the
Windows versions of Internet Explorer 6 with SP1 and Internet Explorer 7 guarantee all functionality.

715



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 716

Chapter 18: Introduction to SQL Server Reporting Services

Report Manager (see Figure 18-5) is only used if Reporting Services is configured to run in Native mode.
When Reporting Services is installed in SharePoint Integrated mode, then the SharePoint itself is used to
manage the reports.

Figure 18-5: Report Manager in IE7.

Integrating Reporting Services with SharePoint is outside the scope of this book, and we will assume a
Native mode installation from this point forward.

To open Report Manager, navigate to the Report Server URL using your web browser. The default URL is
http://<server_name>/reports, but it can be changed either during or after installation. Using Report
Manager, you can browse reports and folders, view reports, or even subscribe to a report to have it
delivered to your inbox or shared folder on your computer. The actions you can perform will vary based
on the permissions that have been assigned to you. We will visit security and permissions later in the
chapter.

If you are installing Reporting Services on either Windows Vista or Windows Server 2008, you must
configure the Report Server for local administration before you can use Report Manager to manage a
local Report Server instance. This can be done by adding the Reporting Services URLs to the trusted
sites zone within Internet Explorer.

716



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 717

Chapter 18: Introduction to SQL Server Reporting Services

Installation and Configuration
All components in SQL Server 2008 are installed through a single Setup application known as the SQL
Server Installation Center. Using this application, you can select which features of Reporting Services
you want installed (see Figure 18-6) so you don’t have to install the client design tools like Business
Intelligence Development Studio on your production report server.

Figure 18-6: Feature Selection.

Hardware and Software Requirements
One of the biggest improvements in SQL Server 2008 Reporting Services is that it no longer depends
on IIS. This is a huge step forward and allows companies that would not allow SQL Server Components
installed on a Web Server to consider Reporting Services. Also, by removing the IIS dependency, it makes
troubleshooting connectivity issues a bit easier because there is one less layer that needs to be configured.

Although IIS is no longer a required component, in order for Reporting Services to answer web requests
using http.sys, a URL reservation needs to be made. To create a URL reservation, an IP address, TCP
port, URL, and virtual directory are required. The installation program will use default values for these
at installation, but you can change them afterwards on the Web Service URL page of the Reporting
Services Configuration Manager tool.

717



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 718

Chapter 18: Introduction to SQL Server Reporting Services

Reporting Services has the same minimum requirements for processor and memory as the Database
Engine. Please refer to Chapter 2, which goes into detail on what these requirements are for various
scenarios. In addition to this, Reporting Services will require at least 120 MB of free disk space to install
the core services and Report Manager.

Security Considerations
As discussed earlier in the chapter, all aspects of Reporting Services run within a single Windows Ser-
vice. Because there is no default value, you will be required to select a user account for this service during
installation, as shown in Figure 18-7. You can choose either a domain user account or one of the built-in
accounts (Local System, Local Service, or Network Service). Honestly, the only good choices here are
either a domain user account or the Network Service account. The Local Service does not have the appro-
priate permissions for Reporting Services, such as connecting to the Active Directory to authenticate
users, and the Local System is a highly privileged account with far too many permissions. Best practice
is to use a domain user account specifically created for Reporting Services. This allows you not only to
have an account with a very low level of permissions, but also to audit the actions of the account, making
it easier to detect if the account was compromised.

Figure 18-7: Specifying service accounts for SQL Server Reporting Services.

If you decide that you need to change the account that Reporting Services uses, you can only use the
Reporting Services Configuration Manager tool after installation. Don’t use the MMC service snap-in or

718



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 719

Chapter 18: Introduction to SQL Server Reporting Services

you may get yourself into some trouble. The service account that is used is stored in many locations, and
if you use the MMC snap-in, it will not be updated in all the locations necessary for Reporting Services
to run correctly.

One important note to keep in mind is that although Report Manager is an ASP.NET application, it
doesn’t run under the context of the ASP.NET worker process defined in IIS. Reporting Services hosts
its own copy of ASP.NET in the Windows Service that Report Manager is running in.

Installation Mode
When installing Reporting Services, you have the option to have it configured or not. During installation,
Reporting Services will prompt you for how you would like to configure the newly installed instance, as
shown in Figure 18-8. There are three options that you can choose from: Native mode, SharePoint Inte-
grated mode, or Files-Only installation. Some of these options may or may not be available for selection
based on what components are being installed or what is already installed. For example, the Native mode
will only be available if you are installing Reporting Services and the Database Engine at the same time.
Let’s take a closer look at what each of these modes does:

❑ Native Mode — Of the three options, this is the easiest to use and will install the server with
default values. In order for this option to be chosen, you will have to install Reporting Services
and a local Database Engine at the same time. The option creates a fully functional server that
can be used immediately after installation is complete.

❑ SharePoint Integrated Mode — This option requires a bit more work on your part. Like a Native
mode installation, this option will only be available if you are installing Reporting Services and a
local Database Engine at the same time. Setup will install Reporting Services with default values.
This includes creating a database that has the necessary objects to work with SharePoint data
storage such as a SOAP endpoint for communication with the SharePoint server. Once Reporting
Services is installed, you will need to install the Microsoft SQL Server 2008 Reporting Services
add-in for Microsoft SharePoint Technologies on the SharePoint server and make a few changes
in SharePoint before the Report Server is fully functional.

❑ Files-Only Installation Option — If you need full control over the configuration of the Report
Server, such as using an existing or remote Database Engine instance, then this is the option
for you. This will also be your only choice if you are not installing both Reporting Services and
the Database Engine at the same time. A Files-Only installation will only copy the program
files to the server and register the Report Server WMI provider. You must configure the Report
Server using the Reporting Services Configuration Manager tool before anything can be done
with it.

Multiple Instances and Versions
As discussed in Chapter 2, it is possible to have multiple instances of SQL Server 2008 components
installed on the same computer. Reporting Services is one of the instance-aware components and allows
you to have a total of 50 instances running on the same computer. You can even run Reporting Services
2008 side-by-side with Reporting Services 2000 or 2005. Because the 2000 version of Reporting Services
was not instance-aware, if you plan on having 2000 and 2008 on the same machine, you will need to
install the 2008 version as a named instance leaving the default instance for Reporting Services 2000. You
can install multiple instances by running the install on the same computer by running the setup program
multiple times.

719



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 720

Chapter 18: Introduction to SQL Server Reporting Services

Figure 18-8: Choosing the installation mode.

When you are dealing with multiple instances of Reporting Services and they are different versions, be
sure to install all the tools for each version. You can’t use any of the Report Authoring, Configuration,
or Management tools for one version on a different version.

Creating Reports
Now that you understand what makes up Reporting Services and how to install it, it is time to see Report-
ing Services in action and create some reports. In total, there are three tools that can be used to author
reports in Reporting Services 2008: Report Designer, Report Builder 1.0, and Report Builder 2.0. Each of
them provides ways to connect to a database, define report layouts, and deploy the reports. However,
the amount of work on your part and the options that are available will differ between them. Let’s take a
look at each of these tools.

Report Designer
Report Designer is a developer-centric report authoring tool that is hosted within Business Intelligence
Development Studio, which we saw earlier is really just Visual Studio 2008. It provides the report devel-
oper with all of the options you would expect in a full-featured report designer and is intended for use
by more advanced designers who need to create or modify reports. BIDS has many features that make

720



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 721

Chapter 18: Introduction to SQL Server Reporting Services

working with large reporting solutions easier and more productive such as the ability to integrate with
source control systems and organization of reports into projects. Report Designer also provides many
additional features on top of BIDS for more advanced reporting needs like free-form reports and graphs.

One really useful feature that the Report Designer brings to BIDS is the Report Wizard. This tool allows
you to quickly create reports by providing some basic information making the initial report creation
extremely easy; however, you cannot use it to modify an already-existing report. To create a report, you
provide the Report Wizard with a data source, query, and layout and formatting information. Using this
information, the Report Wizard generates a report that you can either deploy to the Report Server as is
or use as a starting point to further customize with either Report Builder or Report Designer. You can
access the Report Wizard tool one of two ways: Create a project using the Report Server Project Wizard
template, or you could simply right-click on the project and choose ‘‘Add Report’’ from the context menu.

Report Builder
Although the Report Wizard is a quick way to create and deploy a report in minutes, it still requires
the use of Business Intelligence Development Studio. For most users, this tool is overkill to create basic
reports and is often a bit intimidating to non-developers. Report Builder was created for those business
users who have the need to create reports yet do not require the full feature set of BIDS. As mentioned
before, Report Builder comes in two versions, and the latest version is not installed as part of SQL
Server 2008. Report Builder 1.0 shipped as part of SQL Server 2008, and if you would like to have the
latest and greatest with Report Builder 2.0, you will have to download the Microsoft SQL Server 2008
Feature Pack. Report Builder 2.0 was designed after the familiar Office 2007 user interface, making it
possible for anybody who regularly works in Microsoft Word 2007 to very quickly be able to create
reports.

All existing reports can be opened and customized by either of these authoring tools; however, once
customized by Report Designer 2008 or Report Builder 2.0, you will not be able to work with them in any
of the older versions. Both tools convert the SQL Server 2000 or SQL Server 2005 reports’ RDL to the new
SQL Server 2008 RDL schema, thereby preventing any older tool from being able to work with it.

Let’s work through creating a simple report using Report Builder 2.0 to see how this tool can be used by
both report designers and also regular business users. Once you have downloaded and installed Report
Builder 2.0, you can launch the application from the Start Menu, as shown in Figure 18-9.

Connecting to Data
Before you can start building your report, you must first define where the report will get its data from by
creating a data source. Data sources contain metadata that describes how to connect to the underlying data.
Reporting Services supports many types of data sources such as SQL Server databases, Oracle databases,
ODBC databases, XML files, and many more. For the most part, a data source contains the server name,
database name, provider, and credentials to use and can be either shared between reports or specific
to a single report. Using Report Builder, you can create report specific data sources that are embedded
in your report. However, if you would like to create a shared data source for use in many reports, you
will have to use either BIDS or Report Manager. In an ideal world, the administrator of your Report
Server — maybe this is you — creates several data sources that are stored on the server. This way the
users only have to select the appropriate data source from a list rather than having to remember all of the
connection details.

721



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 722

Chapter 18: Introduction to SQL Server Reporting Services

Figure 18-9: Launching Report Builder 2.0.

You can create a new data source by doing the following:

1. Click New � Data Source from the toolbar in the Report Data pane. After connecting to the
Report Server to download any shared data sources that are available, the Data Source Prop-
erties dialog, shown in Figure 18-10, will be displayed.

2. After providing a name for the data source, you can either specify a connection string to cre-
ate an embedded data source, or you can select a shared data source that is stored on the
server. Each report can contain multiple data sources, either embedded or shared, so the
name that you choose for your data source must be unique within the scope of the report.
For this example, complete the Data Source Properties dialog box as shown in Figure 18-10
and click OK.

Now that you have a data source that defines where to get the data from, you need to specify what data
needs to be retrieved. You do this by creating a data set for the report. A data set contains a reference
to a data source, a query that will be executed against that data source, parameters that specify values
to the query, a collection of fields that is exposed to the report, and various other data options. Every
non-trivial report requires at least one data set, but it is more likely that you will have multiple data sets
defined.

Every data set is based on a single existing data source defined in the report. To create a data set,
right-click on the data source that contains the data and choose Add Dataset from the context menu.
This will display the Dataset Properties dialog (Figure 18-11), which is divided into five pages — Query,
Parameters, Fields, Options, and Filters — allowing you to configure the data set. The type of data source
that the data set is based on will determine some of the options that are available.

722



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 723

Chapter 18: Introduction to SQL Server Reporting Services

Figure 18-10: Creating a data source.

Figure 18-11: Creating a data set for the report.

❑ Query — The Query page is used to define the query type, such as text, table, or stored proce-
dure, and the actual query itself. When defining the query, you can type it in directly, import the
query from another report, or click on the Query Designer button and build the query graphi-
cally (as long as your data source supports it).

723



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 724

Chapter 18: Introduction to SQL Server Reporting Services

❑ Parameters and Filters — There are two ways that you can reduce the amount of data that
is displayed to your users — parameters and filters. The difference between the two is when
the filtering occurs, before or after the data is retrieved for the report. Parameters are used to
pass values to the data source, and then the data source handles the filtering of the data — for
example, a WHERE clause in a T-SQL statement or a FILTERS clause in a MDX query. Try
describing parameters without using the word filters — it makes the distinction a bit easier to
follow. This approach is often the best choice because less memory and network bandwidth is
needed during the retrieval of the data; however, there are times when retrieving all the data
is a better choice. You can alternatively create filters on the Filters page to have all of the data
returned from the data source and the Report Server do the filtering. This approach may be a
better choice if you have multiple data regions displaying subsets of the data. With filters the
data is only retrieved once, and each data region applies the appropriate filters.

❑ Fields — Data sets are an abstraction of the data found in the data source, exposing the actual
data through a collection of elements known as data set fields. Data set fields are used to popu-
late items on the report such as tables and charts with the report data. The fields themselves can
either be a direct link to a column returned by the query or a calculated field that you create in
the data set. A customer’s full name made up of the first and last name columns is an example
of a calculated field. You can add and remove fields from the data set on the Fields page of the
Dataset Properties window.

❑ Options — The Options page allows you to change how the data in the data set is treated and
supports six settings that can be adjusted as shown in the following table:

Option Description

Collation Determines the collation that should be used when sorting data. By
default, the server will try to use the collation used by the data source.

Case sensitivity Specifies whether SQL Server distinguishes between uppercase and
lowercase characters. If not selected, SQL Server considers them to be
identical for sorting purposes. For example, A would be equal to a.

Accent sensitivity Specifies whether SQL Server distinguishes between accented and
unaccented characters. If not selected, SQL Server considers them to be
identical for sorting purposes. For example, a would be equal to ´̂a.

Kanatype
sensitivity

Specifies whether SQL Server distinguishes between the two types of
Japanese kana characters: Hiragana and Katakana. If not selected,
Hiragana and Katakana characters are considered equal.

Width sensitivity Specifies whether SQL Server distinguishes between the single-byte
representation and the double-byte representation of the same
character. If not selected, the single-byte and double-byte
representations of the same character are considered identical.

Interpret subtotals
as detail rows

Indicates whether subtotal rows are to be treated as detail rows rather
than aggregate rows.

724



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 725

Chapter 18: Introduction to SQL Server Reporting Services

If you are going to follow along with the example, you will need to create a data set for the sales data that
we will be working with:

1. Right-click on the AdventureWorks data source and select ‘‘Add Dataset’’ from the context
menu.

2. Set the Name property for the data set to SalesTotals and ensure that AdventureWorks is
selected as the data source.

3. Use the following query to return the total quarterly sales for each Subcategory.
Leave all other options set to their default values. Your screen should look similar to
Figure 18-11:

SELECT → PC.Name AS Category,
PS.Name AS Subcategory,
DATEPART(yy, SOH.OrderDate) AS Year,
’Q’ + DATENAME(qq, SOH.OrderDate) AS Qtr,
SUM(SOD.UnitPrice * SOD.OrderQty) AS Sales

FROM Sales.SalesOrderHeader SOH
INNER JOIN Sales.SalesOrderDetail SOD
ON SOH.SalesOrderID = SOD.SalesOrderID
INNER JOIN Production.Product P
ON SOD.ProductID = P.ProductID
INNER JOIN Production.ProductSubcategory PS
ON P.ProductSubcategoryID = PS.ProductSubcategoryID
INNER JOIN Production.ProductCategory PC
ON PS.ProductCategoryID = PC.ProductCategoryID

GROUP BY DATEPART(yy, SOH.OrderDate),
PC.Name,
PS.Name,
‘Q’ + DATENAME(qq, SOH.OrderDate),
PS.ProductSubcategoryID

Laying out Report Data
Once you have selected the data that you want to use in your report, it is time to define how the report
will look. You do this by arranging the report data on the Designer surface using a combination of layout
elements called report items. Report items give the report its structure; are bound to the data in the data
sets; and include data regions, images, lines, rectangles, textboxes, and subreports. Each report item can
have its individual properties, such as its font, color, and style set either by using the Ribbon in the Report
Builder user interface or at run time by using an expression.

The report item that you will most likely use is a data region. Data regions allow you to group, sort, filter,
and aggregate data from a single data set and come in five different flavors: Table, Matrix, List, Chart,
and Gauge. The type of data region that you choose will largely depend on the type and volume of
data that you have and what you are trying to communicate in your report. To make the best choice as
to what data region to use, you must have a good understanding of your data and the purpose of the

725



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 726

Chapter 18: Introduction to SQL Server Reporting Services

report. The following table breaks down the various types of data regions that are available in Report
Builder 2.0:

Data Region Description

Table Displays the data grouped by row. Tables will dynamically expand down
a page but have a fixed number of columns. Static rows can be added for
labels or totals.

Matrix Displays the data groups by row and column. A matrix must have at
least one row group and one column group. Both rows and columns are
dynamic and will expand both across the page for column groups and
down the page for row groups. Static rows can be added for labels or
totals.

List Lists allow you to work with data in a free-form format. You define a
template that is used for each value in the data set. For example, you may
want to arrange textboxes in a vertical pattern alongside an image
instead of having them in a single row. The template is then repeated for
each row in the data set.

Chart Helps to visualize summary data. Many chart types are available in
Reporting Services 2008 such as pie charts and bar graphs.

Gauge Gauges provide a visual representation of a value within a finite range of
values. Gauges can be used either in a Table or List to show the relative
strength of a value. Gauges can also be used individually to show an
aggregated value.

Although you can add an empty table, matrix, list, gauge, or chart manually and configure its data source
and properties, it is far easier to use the Table, Matrix, List, Gauge, or Chart Wizard, which can be found
on the Insert tab of the Ribbon. The Wizard steps you through the process of creating the data region. For
this example:

1. Click Insert �Matrix �Matrix Wizard. After selecting the data set containing the data,
you need to specify how the data fields should be arranged in the report as shown in
Figure 18-12. For this report, you want to display the total sales grouped by category
and subcategory on rows, and by year and quarter on columns. In previous versions of
Reporting Services, this type of report would have been extremely difficult, but the Wizard
in Report Builder makes it as simple as drag-and-drop.

2. After dragging the appropriate data fields to the row groups, column groups, and values
sections, your screen should look similar to Figure 18-12. Click Next and you will be
prompted to select a pre-defined layout for your report (see Figure 18-13). This determines
whether or not you want to display totals and subtotals for the groups and how you want
them to be displayed. For our report, simply accept the defaults by clicking Next.

3. The final screen of the Wizard asks that you choose a style for the report, as shown in
Figure 18-14. Choose any style that you want and click the Finish button to close the Wizard
and have the matrix created for you.

726



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 727

Chapter 18: Introduction to SQL Server Reporting Services

Figure 18-12: Arranging data fields.

Figure 18-13: Choosing a layout for the report.

4. You could continue to fine-tune the layout and formatting of the report after the Wizard is
complete; however, you will not be able to return to the Wizard for the data region. At this
point you have a completed report that you can run. Test your report by clicking on the Run
button on the Home tab of the Ribbon.

727



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 728

Chapter 18: Introduction to SQL Server Reporting Services

Figure 18-14: Choosing a style for the report.

Figure 18-15: Report Builder Options.

728



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 729

Chapter 18: Introduction to SQL Server Reporting Services

Publishing Reports
After you have designed and tested a report, you will need to publish it to a Report Server instance before
users can actually use it. This can be done by simply saving the report’s RDL file to the Report Server. In
order for you to do this, you will need to have permissions to add content to the Report Server. Report
Builder tries to save reports to whatever Report Server is marked as the default. This can be changed in
the Report Builder Options dialog, as shown in Figure 18-15. It is also important to note that when saving
reports to your Report Server you will not be able to create folders. You will have to use Report Manager
to create the folder before attempting to save your report.

Report Delivery
Now that we have our report published to the Report Server, there are two general ways end-users can
gain access to the reports. Users could either execute a report on-demand (seeing the report immediately)
or they could subscribe to a report (having it delivered on a regular basis). When using on-demand
reports, the reports are essentially ‘‘refreshed’’ every time a user views them, thereby providing the user
with the most current information. However, there will be times when this approach is not possible,
such as when the report is resource-intensive, requiring some form of caching to meet the performance
requirements. Alternatively, we could schedule the report to execute during idle times to reduce the
load on the server and have the results delivered to the end-users. Let’s take a closer look at caching and
snapshots to increase server performance and subscriptions to have reports delivered to end-users.

Caching
Reporting Services can cache the results of a processed report to reduce the time required to retrieve it.
This can be very handy if the report is large or frequently accessed; however, it is important to note that
the content of the cache is extremely volatile. The cached reports are stored in memory only and therefore
will not survive a server restart. The report is also not guaranteed to be present in the cache since reports
may be removed from the cache as new reports are added or replaced. Also, not all reports have the
ability to be cached. For instance, reports that are based on user-dependent data, use Windows Authenti-
cation, or need to prompt the user for credentials cannot be added to the cache. Use the Report Manager
to configure caching for a report. The settings can be found on the Execution page on the Properties tab
of the report.

Snapshots
Report caching can certainly improve performance, but can also be unpredictable because of the volatility
of the cache. Report snapshots offer a much more predictable caching strategy. Snapshots can either be
created at scheduled intervals or manually by a Report Server administrator. Just like the report cache,
reports that are based on user-dependent data, use Windows Authentication, or need to prompt the user
for credentials cannot have a snapshot generated for them.

When a snapshot is created, many elements besides the report snapshot are stored in the database.
Everything that is needed to re-create the report as it existed when the snapshot was created is stored,

729



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 730

Chapter 18: Introduction to SQL Server Reporting Services

including the report data, any parameter values used to obtain the report data, the report definition, and
any embedded resources such as images. Use the Report Manager to configure snapshot settings for a
report. The settings can be found on the Execution page on the Properties tab of the report.

Subscriptions
Subscriptions offer a way to have a report generated and delivered in a specified format either at a specific
time or in response to a particular event. This provides an alternative to having to actively select the
report each time you want to view it. Subscriptions are used to schedule the execution of reports and
have the report ready for the users. For example, users may want to have the weekly report run every
Friday at midnight and then delivered to their e-mail inbox so that it is ready when they come into work
on Monday morning.

As mentioned earlier, the scheduling and delivery processor is responsible for all scheduled opera-
tions and controls the delivery of reports to end-users. The processor uses delivery extensions that are
deployed on the Report Server to handle the actual delivery of the report after it is processed. Reporting
Services provides three delivery extensions out-of-the-box: You can have a report delivered to a shared
folder, an e-mail address, or a SharePoint document library. In order for subscriptions to be processed,
the Report Server Events and Delivery feature must be enabled on the Report Server. This can be done
by setting the ScheduleEventsAndReportDeliveryEnabled property on the Surface Area Configuration
for Reporting Services facet to true. Also, to actually create subscriptions for a report, the report must
use stored credentials, and the user creating the subscription must have permissions to view the report
and to create subscriptions.

Two types of subscriptions are supported by Reporting Services — Standard subscriptions and
Data-driven subscriptions. With a Standard subscription, an end-user configures a subscription for a single
rendered report to be delivered to a single destination such as a file share or e-mail address. You can
create a new Standard subscription when viewing the report you want to subscribe to and clicking on
the ‘‘New Subscription’’ button in the toolbar. On the New Subscription page (Figure 18-16), you must
select a delivery provider and schedule that the report will execute on.

Data-driven subscriptions work very much like Standard subscriptions with the exception that it is possi-
ble to have a single report delivered in multiple different formats to many destinations. A Data-driven
subscription gets its subscription settings from an external database table that you create. This allows
the subscription to be very dynamic because updates to the table affect how the subscription will for-
mat and deliver the report. Data-driven subscriptions become extremely useful when you have a large
number of recipients who require the data in different formats. Creating Data-driven subscriptions
requires a bit more work than standard subscriptions, requiring a database table to hold the subscrip-
tion information and a query to return it. The results of the query are them mapped to the param-
eters of the subscription such as report format and destination. When the subscription is processed,
each row is evaluated in the table and handled like an individual Standard subscription. Because it
requires a bit more skill, Data-driven subscriptions are usually created and managed by the Report Server
administrators.

730



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 731

Chapter 18: Introduction to SQL Server Reporting Services

Figure 18-16: Creating a Standard subscription.

Summary
This chapter introduced you to Reporting Services for SQL Server 2008. You should be able to at least
understand the different parts of Reporting Services, and be able to install a new Reporting Services
instance if asked to do so. This chapter provided you with a brief introduction to Reporting Services
architecture, described how to install a Reporting Services instance, and how to create and publish a
basic report for users.

In Chapter 19, you will learn about using Service Broker in your applications to provide more accurate
and reliable asynchronous message delivery.

731



Leiter c18.tex V3 - 03/25/2009 1:06pm Page 732



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 733

19
Introduction to Service

Broker

SQL Server 2005 introduced a new feature, known as Service Broker, that allows you to build more
robust applications without having to rely on external technologies. Similar in concept to the
Microsoft Message Queuing (MSMQ) service, Service Broker allows you to define services within
one or more SQL Server databases that can all interact with one another and build communication
paths for more complete end-to-end connectivity using native SQL Server features.

This chapter examines the basics of how the Service Broker features operate and how they can
be leveraged to provide you with a mechanism for building inclusive application solutions. This
chapter covers the following topics:

❑ Service-Oriented Architecture

❑ Service Broker overview

❑ Service Broker elements

❑ Service Broker security

❑ A sample Service Broker application

Service-Oriented Architecture
Service Broker employs a model that uses Service-Oriented Architecture (SOA) for defining how
data is treated by the variety of applications that will interact with it. SOA is based on the idea
of separating data from the different processes that will view or manipulate that data. This allows
you to build applications that do one thing, and do it well, without having to format the data to fit
the application.

A good example of SOA in action is e-mail. Many of us use e-mail every day without thinking
about what happens behind the scenes when we send an electronic message to someone. When I
open up my Microsoft Outlook client, I need to specify to whom the message will be delivered and
what the message will say. I can also set other options, such as formatting the message with HTML
or requiring that a read-receipt be sent.



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 734

Chapter 19: Introduction to Service Broker

Now, just because I’ve set these options in my client doesn’t mean that the recipient has to conform to
them. That person could be using another mail client that is configured to display all messages in plain
text, regardless of source formatting. They can also explicitly specify not to return read-receipt messages
to the originator.

Regardless of how we each have our respective clients configured, e-mail is doing exactly what it is
supposed to, by providing an asynchronous message delivery that allows me to send information to an
interested party, which can be read at their leisure.

Service Broker Overview
Service Broker operates similarly to the e-mail example I just described. Applications can use the features
of Service Broker to create loosely coupled applications and services that provide asynchronous, ordered
delivery of messages for efficient and appropriate processing. That sounds good, but what does it mean?

Well, it means that when your developers are building applications that use SQL, they can take advantage
of features that allow them to submit updates without waiting for a response. It also means that when
certain conditions are met, users can be notified that the data has changed or a process requires their
attention. Service Broker provides you with the tools and the framework to build these types of solutions
without having to purchase costly third-party products.

Because there are already external and third-party solutions that provide some (if not all) of the features
that Service Broker offers, you may wonder why you would use Service Broker. The best advice is to
weigh the benefits of Service Broker against your other options and decide which works best for you.
One might argue in favor of using Service Broker because of its tight coupling with SQL Server and its
ability to handle larger message sizes than MSMQ. At the same time, another person might argue that its
integration with SQL might be considered a vulnerability, allowing for a single point of failure in your
application design.

The decision to use Service Broker will be made by your application developers, but as a SQL Server
2008 database administrator, you will be responsible for knowing what this Service Broker is and how
to manage it. Many of the features of Service Broker you learn about in this chapter build on an under-
standing of other topics covered elsewhere in this book. For example, you can refer to Chapter 6 for more
information about creating certificates, and Chapter 7 to learn more about creating endpoints.

Service Broker Elements
Service Broker employs a framework that uses messages as a unit of work. However, the handling and
processing of these messages are defined by a variety of elements, including the conversation architec-
ture, delivery contracts, queues, and services. In this section, you learn about the components that are
used in a Service Broker solution.

Conversations
Service Broker uses conversations to define a persistent communication architecture that is reliable and
asynchronous. The conversation architecture uses messages, dialogs, and conversation groups to control
the flow of data in a Service Broker application.

734



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 735

Chapter 19: Introduction to Service Broker

Messages
Messages are the unit of information in a conversation. When Service Broker applications communicate
with one another, they must agree on what type of data will be passed between them and what formatting
and data validation (if any) are required. Each message is tagged with the conversation identity, as well
as a sequence number so that the messages can be processed in sequential order.

The content and formatting of the message are defined by the application. When a message is received
by Service Broker, the message content is validated against the message type. Although the messages are
stored as varbinary(max), a message type object defines the message type and stores the type informa-
tion as a database object. The message type object must be created on any SQL Server that will use that
message type.

Creating a message type requires that you supply a validation parameter for the message to be considered
correctly formatted. Message types are usually validated by using either well-formed XML or XML
defined by a specific schema, but you can also define that the message type is empty, meaning that the
message body is NULL. You can also choose to forgo message validation altogether. Validation is eschewed
when Service Broker is using a data type other than XML.

Dialog Conversations
When messages are sent between two instances of Service Broker, a dialog conversation (or simply dialog) is
established. Dialogs use message delivery that is defined as exactly-once-in-order (EOIO). The conversation
identifier and sequence numbers for each message are used to identify related messages to ensure that
they are delivered in the correct order. Dialogs, therefore, establish a long-running stream of messages
that exist between two services.

For each dialog, one service acts as the initiator, which establishes the conversation. The target is the
service that will accept the conversation. A contract for the conversation, described later in this chapter,
determines the messages each participant can send.

Dialogs automatically generate acknowledgments when receiving a message to guarantee reliable delivery.
Each outgoing message is stored in a transmission queue until the acknowledgment is received. Automat-
ing this process prevents the application from needing a separate, explicit acknowledgment mechanism
for each message. These acknowledgment messages are part of the internal functions of Service Broker
and are not part of the official application message stream.

Because Service Broker is designed for asynchronous communications, if a remote service is unavailable,
the messages will be stored in a queue until the service is again available, or the lifetime for the dialog
has ended.

The lifetime of a dialog is dependent on several factors. The dialog can be ended when an application either
explicitly terminates it or receives an associated error message. Each participant is equally responsible
for ending the dialog when one of those two conditions is met. Common scenarios for ending a dialog
conversation require one of the participants to specify that the dialog will be ending without error and to
notify the other participant.

When designing Service Broker applications, the application developer can also specify a maximum
lifetime for the dialog. When this dialog lifetime is reached, a time-out error message is placed on the
service queue, and new messages for that dialog are refused. Messages that were generated prior to the

735



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 736

Chapter 19: Introduction to Service Broker

end of the conversation can still be received after the conversation has ended, but no new messages can
be sent or received after the conversation has ended.

Conversation Groups
Conversation groups are used to identify conversations that are related and typically part of the same busi-
ness logic. Conversation groups are associated with a specific service. Conversations that are members
in a conversation group are either sent to or received from that particular service. For each service, SQL
Server will associate the message with an appropriate conversation group, which guarantees that the
messages received by the application for each conversation are processed exactly in order. This allows
applications to receive messages from multiple sources but process related messages from those sources
in the order that they are received by all services.

Conversation groups are subjective, meaning that the initiator may treat a message as belonging to
Conversation Group A, whereas the target may treat the message as belonging to Conversation Group
24. This allows each participant to treat the message in a way that is appropriate for what it knows about
the application.

For example, a sales tracking application may receive messages from a service that manages pricing
information, as well as messages from an inventory service that tracks the availability of products in
stock. This sales tracking application can tag messages from the independent conversations of the pricing
and inventory services as being part of the same conversation group, which can be used to identify sales
trends of products based on whether the price goes up or down. Neither the inventory service nor the
pricing service is aware of this relationship because it is irrelevant to how they send messages to the sales
tracking application.

Conversation Priorities
The ability to assign priority values to conversations is a feature that is new in SQL Server 2008. Con-
versation priorities are used to ensure that certain messages are treated differently based on whether the
priority is higher or lower. The priority values range from 1 to 10, with 10 being the highest. If no priority
value is set, the default value of 5 is applied. Note that when priorities are defined, they apply to the
entire conversation from beginning to end, not just specific messages within a conversation.

Although it is common to set the same priority on both endpoints of a conversation, it is not a require-
ment. When the initiator and target have different priorities configured on them, the priority of the
endpoint is applied to that conversation as the messages pass through it. So if I have an initiator config-
ured with a conversation priority of 3 and the target has a priority of 9, messages are sent out from the
initiator with a relatively low priority (meaning that other messages in the queue might be sent first), but
received by the target with a high priority, which tells it to process those messages ahead of other, less
preferred messages. Conversely, the target might respond by sending outgoing messages to that initiator
before others, but the target would classify those messages received from that particular target as less
important.

Another important trait to know about conversation priorities is how they affect conversation groups.
Conversation groups are prioritized using the priority value of the highest active conversation with that
group. For example, if a conversation has a priority of 7, as long as there are messages in the queue
for that conversation, the whole group will inherit the higher priority. Once the conversation ends,
though, the conversation group will fall back to either its default value or the next-highest priority
conversation.

736



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 737

Chapter 19: Introduction to Service Broker

Contracts
Contracts are agreements between services about which messages each server will send to accomplish
certain tasks. For each message type, a contract is defined to specify who can send that message type.
Three types of contracts can be created:

❑ Initiator Only — Only the service initiator will be able to send messages of the type defined in
this contract.

❑ Target Only — The service target will be the only one sending this type of message.

❑ Any — Allows either the target or the initiator to send this type of message.

In Service Broker, a default contract is created and configured to use the default message type. This
contract uses the SENT BY ANY statement to allow either the initiator or target to send the default message
type.

Queues
Queues are a major component in the Service Broker architecture. Queues are used to provide the asyn-
chronous processing of data between applications and services as needed. Service Broker uses queues
to store messages. When a message is sent or received by a service, the messages are inserted into the
appropriate incoming or outgoing queue. Queues are managed by Service Broker, and the contents of the
queues can be queried like a table or view object.

When viewing a queue, each row contains the content of the message, the message type, the target
service, validation, contract, and conversation information for the message. Your application uses this
information to identify and process the message as expected. Queues are also used to help guarantee that
the messages are processed in the order they were sent, not the order they were received.

You can use stored procedures to process the messages in the queue when there is work to do. Service
Broker also allows you to execute multiple instances of the same stored procedure to more efficiently
process the messages in the queue.

Services
The term service when used in the Service Broker context refers to a software component that performs
a specific business task or set of tasks. Conversations, as noted earlier, are defined between services. The
service name is used as an addressable endpoint to deliver messages to the appropriate queue within the
context of a database and to route messages to the appropriate service, as well as to enforce contracts and
remote security requirements for a new conversation.

Services each use a specific queue for storing incoming messages, and the contracts used by the service
define which tasks are accepted for new conversations.

Routes
Routes are used to indicate where messages should be delivered. When messages are sent by an initiator,
Service Broker must be able to find the target service. Just as you might use a map to find the nearest

737



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 738

Chapter 19: Introduction to Service Broker

Italian restaurant, Service Broker must find a way to contact the target for a conversation. Routes are
composed of three components to help uniquely identify the correct target:

❑ Service Name — The name must exactly match the target service.

❑ Broker Instance Identifier — A value of the GUID data type used to identify the database that
holds the queue for the service

❑ Network Address — Usually a hostname or IP address of the system that hosts the target ser-
vice. Optionally, this can instead be the address of a forwarding broker, which knows how to
forward the message to the appropriate target.

When finding the appropriate route for a conversation, SQL Server must match the name and broker
instance identifier specified in a BEGIN DIALOG CONVERSATION statement with the service name and broker
instance identifier in the route. If the route does not provide a service name or broker identifier, any
service name or broker identifier can be matched. SQL Server will choose the appropriate route based on
a list defined in the sys.routes table of the database that contains the initiator service. If Service Broker
cannot find the correct route for the message, the message is dropped.

Each database contains a route named AutoCreatedLocal, which will match any service name and broker
instance. Message delivery is restricted to the current instance, however. Although this might be accept-
able for applications that use services that are all stored in the same SQL Service instance, it is generally
a good idea to manually create a route for each service to help guarantee the availability of the service.
This also prevents the AutoCreatedLocal route from being modified to the point of being unusable for
its intended purpose.

You can use the CREATE ROUTE statement to specify the connection option for the remote service. This is
typically the address and port number used to connect to an endpoint on the target server.

Security Considerations for Service Broker
Security, of course, is a concern when building Service Broker solutions. Whether your application is
completely localized to a single database or will span multiple databases on multiple servers, you need
to have an understanding of the impact that security will have on your Service Broker applications.

Service Broker uses two security models to determine how to secure communications for Service Broker
applications. Dialog security is used to handle encryption, remote authentication, and remote autho-
rization for conversations. Transport security, on the other hand, handles security between two server
instances.

Dialog Security
Dialog security focuses on securing individual conversations between services. If the initiator and target
services exist in the same database, encryption is automatically enabled, and a session key is used to
encrypt the communications. Encryption can also be turned off for intra-database service communica-
tions, but it’s generally not recommended. Dialog security also provides two modes in which to operate
when communicating between servers: Full security and Anonymous security.

738



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 739

Chapter 19: Introduction to Service Broker

Full Security
Full security requires that a mutual trust relationship be established between the initiator and target ser-
vices. This is accomplished through the use of Public Key Certificates. When the target service resides on
a remote server, a user with SEND permissions to the Service Broker service must own a certificate and the
corresponding private key. The user and certificate information (but not the private key) must be defined
on the database that holds the initiator service in a remote service binding. The remote service binding
ties the username, certificate, and remote target service together to find and establish a trusted connec-
tion. The certificate that is used in the Full security model must have the options to begin Service Broker
dialogs. This is done by using the ACTIVE FOR BEGIN_DIALOG = ON option in the CREATE CERTIFICATE
statement.

Anonymous Security
Anonymous security authenticates the target service to the initiator, but not the other way around. Unlike
the Full security model, this does not require a certificate mapping for the remote user, but the user
specified in the remote service binding must be a member of the public role in the target database. This
also requires that the public role in the target database be granted SEND permission on the target service.
Messages using Anonymous security are encrypted using a session key generated by the database that
contains the initiating service.

Transport Security
Transport security is managed by controlling access to the endpoints that are used to connect to a remote
service. When creating the endpoint, you can specify the authentication options, using Kerberos, NTLM,
or certificate-based authentication. You can also specify encryption options for the connection, using AES
or RC4. Again, remember that transport security is defined for the entire server instance, which includes
all services in all databases. Chapter 7 provides greater detail on creating endpoints.

Creating a Sample Application
This section provides some sample code that can help clarify some of the ambiguities in how Service
Broker works. In this example, AWHelpDesk has a helpdesk application they use to allow users to submit
trouble tickets using a web application. Service Broker will automate the process of inserting the data
into a table used by the helpdesk application, as well as sending the user a confirmation that the support
request has been received.

Figure 19-1 is a rough map of the sample application you will be using in this exercise. The intent is to
allow you to follow the path the application will take.

It begins with the end-user submitting a service request through a Web Form. The request is then
sent to the TicketInputService, which establishes a dialog with the TicketNotifyService. The
message will be immediately delivered to the TicketNotifyService, which stores the information
in the service queue until the HelpDesk.ProcessMessages stored procedure is executed. When the
stored procedure executes, an e-mail is sent to the person who submitted the request, the message
is logged to the HelpDesk.MessageLog table, and a response is automatically sent back to the
TicketInputService. The response messages are held in the queue for the TicketInputService until
the TroubleTicket.ProcessMessages stored procedure is executed, at which time the messages are
logged and the queue is cleared.

739



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 740

Chapter 19: Introduction to Service Broker

HelpDesk.MessageLog

TroubleTicket.MessageLog

TicketNotifyServiceDialog is
estabilished

Internal acknowledgement

TicketInputService

HelpDesk.ProcessMessage is executed.
User receives e-mail notification,
messages are written to the log,

and a response is sent to the TicketInputService.

Message is Submitted
To TicketInputService

User Submits
Helpdesk Request
Using Web Form

Figure 19-1: The sample application.

Creating and Preparing the Database
You need to begin by taking a couple of steps prior to building your Service Broker solution. In this case, I
recommend beginning by creating a new database. If you use the sample AdventureWorks2008 database,
you will have to execute an ALTER AUTHORIZATION ON DATABASE :: AdventureWorks2008 TO [yourlogin]
statement in order for the samples to work. Create the AWHelpDesk database by doing the following:

1. Issue the following statement:

USE master
CREATE DATABASE AWHelpDesk;
GO

2. Create a database master key. There is actually one case in which you can get away without
using a database master key, but it requires that your services all live in the same database
and you explicitly set ENCRYPTION = OFF when starting a conversation. You can find more
information about creating and using the database master key in Chapter 6. If you did not
read through Chapter 6 and have not already created a database master key, you can use the
following code to create one:

USE AWHelpDesk;
GO
CREATE MASTER KEY
ENCRYPTION BY PASSWORD = ‘P@ssw0rd’;
GO

740



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 741

Chapter 19: Introduction to Service Broker

3. Also, the sample scripts provided use a user-defined data type called Name, similar to the one
in AdventureWorks2008. Create this data type with the following statement:

CREATE TYPE Name
FROM nvarchar(50) NULL;
GO

One interesting thing about Service Broker services and the database master key is that if
encryption is enabled and no database master key exists, you can continue to submit mes-
sages to your services until you’re blue in the face, and they never show up in the queue.
However, if you later realize your mistake and then create the master key, the next time you
submit a message, all of the previous messages that seemed to have disappeared into the
ether will now be added to the service queue! I actually encountered this behavior several
years ago when preparing some demonstrations using a beta build of SQL Server 2005. I
had even deleted and re-created the queues and services several times before realizing my
mistake. When I finally got the service to receive messages into the queue, I had 10 sample
messages from previous attempts in addition to the one I had just submitted.

4. Ensure that the ENABLE_BROKER option has been set for the database. You can do this by
using an ALTER DATABASE statement. Also, if your application will also be accessing services
or resources outside the local database, you may need to set the TRUSTWORTHY setting to ON.
The following example configures the database with both settings:

USE master;
GO
ALTER DATABASE AWHelpDesk SET ENABLE_BROKER, TRUSTWORTHY ON;
GO

In SQL Server 2008, the ENABLE_BROKER is on by default; however, all databases except the msdb database
have TRUSTWORTHY turned off. You can also enable or disable the Service Broker open from the Properties
dialog box of the database, as seen in Figure 19-2. Note that you can see the status of the TRUSTWORTHY
option, but you cannot change it.

Creating the Service Broker Objects
Now that you’ve prepared the AWHelpDesk database for your Service Broker application, it’s time to begin
creating the Service Broker objects. For this example, you are going to create two queues, two services,
one message type, and one contract to use that message type between the services.

1. Begin by creating two new schemas for the objects you will create. Using different schemas
helps define a separation of the resources used by each service. In this example, you are
going to create a Helpdesk schema and a TroubleTicket schema. Use the following code
to create the schemas:

USE AWHelpDesk;
GO

CREATE SCHEMA TroubleTicket;
GO
CREATE SCHEMA HelpDesk;
GO

741



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 742

Chapter 19: Introduction to Service Broker

Figure 19-2: TRUSTWORTHY and ENABLE_BROKER options.

2. Create the message type and validation (if any) that will be used by the Service Broker appli-
cation. Because both of the services you will create exist in the AWHelpDesk database, you will
only need to define the message type once. Remember that if the initiator and target services
exist in different databases, you will need to create the same message type in both databases.
Use the CREATE MESSAGE TYPE statement to create a new message. This statement uses the
following syntax:

CREATE MESSAGE TYPE message_type_name
[ AUTHORIZATION owner_name ]
[ VALIDATION = validation_method ]

The message_type_name value must be unique within the database and commonly uses a
URL (or URL-like) convention that allows you to create a hierarchical namespace for cre-
ating multiple message types for different services. The AUTHORIZATION option allows the
creator to specify a different database user as the owner of the message type, provided the
creator has IMPERSONATE permissions, and the VALIDATION option can be one of the follow-
ing choices:

❑ NONE — No validation of the data is performed by Service Broker.

742



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 743

Chapter 19: Introduction to Service Broker

❑ EMPTY — The message body contains no data.

❑ WELL_FORMED_XML — The message body must use well-formed XML.

❑ VALID_XML WITH SCHEMA COLLECTION schema_collection — The message body
must contain XML data that conforms to a specific schema document, which
must be supplied separately. You can create a new schema collection using the
CREATE XML SCHEMA COLLECTION statement, providing the name and the schema
definition.

For this example, you will create a new message type called //AdventureWorks.com/
Helpdesk/SupportTicket that uses well-formed XML, as seen in the following code:

CREATE MESSAGE TYPE [//AdventureWorks.com/Helpdesk/SupportTicket]
VALIDATION = WELL_FORMED_XML;

3. Create the contract that will call this message type and specify who can send messages of
this type. The CREATE CONTRACT statement can contain multiple message types, each one
having a different SENT BY clause. Because this example only defines one message type that
will be sent by the initiator service (which you have yet to create), you can use the following
example:

CREATE CONTRACT [//AdventureWorks.com/HelpDesk/SubmitSupportTicket]
(

[//AdventureWorks.com/Helpdesk/SupportTicket]
SENT BY INITIATOR

);

4. Create the queues that will be used by the services. The first queue will be used by the ser-
vice that will receive the messages from the web application. This is the queue for the ini-
tiator service. The second queue, for the target service, will be used to receive the messages
from the initiator and then automatically notify the end-user that the support ticket has been
created. Use the following to create the queues:

CREATE QUEUE TroubleTicket.TicketInputQueue;
GO

CREATE QUEUE HelpDesk.UserNotifyQueue;
GO

5. The final step in this phase is to create the services. When creating a service, use the follow-
ing syntax for the CREATE SERVICE statement:

CREATE SERVICE service_name [ AUTHORIZATION owner_name ]
ON QUEUE [ schema_name. ]queue_name
[ contract_name ]

When you create a new service, the required parameters are at least the service name and the queue for
the service. If the service will be a target for an existing contract, you must specify the contract name.

For this demonstration, you will create two services. The first one, the initiator, will receive data from a
web application, which calls a stored procedure to insert the required values. The second service, acting

743



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 744

Chapter 19: Introduction to Service Broker

as the target, will be used to notify the end-user that the submission has been received. Execute the
following code to create the required services:

-- Creating the Initiator Service
CREATE SERVICE [//AdventureWorks.com/HelpDesk/TicketInputService]
ON QUEUE TroubleTicket.TicketInputQueue;

-- Creating the Target Service
CREATE SERVICE [//AdventureWorks.com/Helpdesk/TicketNotifyService]
ON QUEUE HelpDesk.UserNotifyQueue
([//AdventureWorks.com/HelpDesk/SubmitSupportTicket]);

Creating Objects for the TicketInputService
In this section, you create several objects used by the TicketInputService to receive and process the
messages, allowing them to move on to the next service. You will begin by creating a new table to store
the incoming data, so that it can be used by the helpdesk application. This table will not actually be
used by Service Broker, but will demonstrate how Service Broker can be implemented along with other
features and objects in SQL Server.

1. Use the following code to create the table that will store the data input by the user:

USE AWHelpDesk;
GO

-- Create a table to store Helpdesk Information

Create Table HelpDesk.TroubleTickets(
ID INT IDENTITY,
firstName Name,
lastName Name,
Issue nvarchar(max)
);
GO

Note that the Name data type is a user-defined data type that already exists in the AWHelpDesk
database.

2. Create a stored procedure that will take data from the Web Form. The stored procedure will
then insert the data into the table you just created and will create a well-formed XML mes-
sage with the same data that will be added to the queue for the TicketInputService. This
stored procedure also establishes the dialog between the initiator and target services.

USE AWHelpDesk;
GO
-- stored procedure to send issues to the ticket submission Service
CREATE PROCEDURE TroubleTicket.AddNewTicket
@firstName Name,
@lastName Name,
@emailAddress Name,
@issue nvarchar(max)
AS

744



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 745

Chapter 19: Introduction to Service Broker

BEGIN

Insert HelpDesk.TroubleTickets (firstname, lastname, issue)
VALUES (@firstname, @lastname, @issue)

DECLARE @message NVARCHAR(MAX)
SET @message = NCHAR(0xFEFF)

+ ‘<Customer>’
+ ‘<CustomerName>’ + @firstName + ‘ ‘ + @lastName

+ ‘</CustomerName>’
+ ‘<EmailAddress>’ + @emailAddress + ‘</EmailAddress>’
+ ‘<issue>’ + @issue + ‘</issue>’

+ ‘</Customer>’

DECLARE @conversationHandle UNIQUEIDENTIFIER

BEGIN DIALOG CONVERSATION @conversationHandle
FROM SERVICE [//AdventureWorks.com/HelpDesk/TicketInputService]
TO SERVICE ‘//AdventureWorks.com/Helpdesk/TicketNotifyService’,

‘CURRENT DATABASE’
ON CONTRACT [//AdventureWorks.com/HelpDesk/SubmitSupportTicket]

;SEND ON CONVERSATION @conversationHandle
MESSAGE TYPE [//AdventureWorks.com/Helpdesk/SupportTicket]
(@message)

END;
GO

Note that, in the BEGIN DIALOG CONVERSATION statement, the TO SERVICE parameter uses sin-
gle quotes rather than brackets to encapsulate the target service. You should also provide
routing information for the target service. As you can see, because this service exists within
the same database as the initiator, you can use ‘CURRENT SERVICE’. If the target service exists
in another database, you can use the remote service’s GUID.

3. Create a table that will log the activity of the TicketInputService. Do this by executing the
following code:

USE AWHelpDesk;
GO
-- log table for received messages
CREATE TABLE TroubleTicket.MessageLog(

messageID int IDENTITY PRIMARY KEY,
queueName nvarchar(25),
message nvarchar(max),
conversationID uniqueidentifier);

GO

4. Create a stored procedure that will write to the TroubleTicket.MessageLog table:

USE AWHelpDesk;
GO
-- stored procedure to log messages
CREATE PROCEDURE TroubleTicket.LogMessage

745



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 746

Chapter 19: Introduction to Service Broker

(@queuename nvarchar(25), @message nvarchar(max),
@conversation_id uniqueidentifier=NULL)

AS
IF (@conversation_id IS NULL)

PRINT ‘Queue: ‘ + @queuename
+ ‘ Message: ‘ + @message

ELSE
PRINT ‘Queue: ‘ + @queuename

+ ‘ Message: ‘ + @message
+ ‘ Conversation: ‘ + CAST(@conversation_id AS NVARCHAR(MAX))

INSERT INTO TroubleTicket.MessageLog (queueName, message,
conversationID)

VALUES (@queuename, @message, @conversation_id);
GO

5. The final step in creating the objects for the TicketInputService is creating a stored proce-
dure that will execute the stored procedure listed earlier, write the queued messages to the
log (if any), and write a notice indicating that no further messages have been found once the
queue has been cleared:

USE AWHelpDesk;
GO
-- stored procedure to read and process messages from queue
CREATE PROCEDURE TroubleTicket.ProcessMessages
AS

WHILE (1 = 1)
BEGIN

DECLARE @conversationHandle UNIQUEIDENTIFIER,
@messageTypeName NVARCHAR(256)

;RECEIVE TOP(1)
@conversationHandle = conversation_handle,
@messageTypeName = message_type_name

FROM TroubleTicket.TicketInputQueue

IF @@ROWCOUNT = 0
BEGIN

EXEC TroubleTicket.LogMessage ‘TicketInputQueue’,
‘No further messages found.’

RETURN
END

END CONVERSATION @conversationHandle
EXEC TroubleTicket.LogMessage ‘TicketInputQueue’,

@messageTypeName, @conversationHandle
END;

GO

Creating Objects for the TicketNotifyService
Now, you need to create the supporting objects for the target service. Remember that this service will be
used to notify the end-user that the submission has been received and a trouble ticket has been generated.

746



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 747

Chapter 19: Introduction to Service Broker

Your first object is a stored procedure that will extract the details of the message from the XML data so
that it can be used in the notification message.

1. Create the stored procedure using the following code:

USE AWHelpDesk;
GO

CREATE PROCEDURE HelpDesk.ExtractXML
(@XMLstring NVARCHAR(MAX), @customerName Name OUTPUT,

@emailAddress Name OUTPUT, @issue nvarchar(max) OUTPUT)
AS

DECLARE @idoc int
EXEC sp_xml_preparedocument @idoc OUTPUT, @XMLstring

SELECT @customerName = CustomerName,
@emailAddress = EmailAddress,
@issue = issue

FROM OPENXML (@idoc, ‘/Customer’,2)
WITH (CustomerName Name, EmailAddress Name, issue nvarchar(max))

EXEC sp_xml_removedocument @idoc;
GO

2. Just like you did with the last service, create a log table and a stored procedure that writes
to the log table. The commands are essentially the same as for the TicketInputService, but
these objects are located in the HelpDesk schema:

USE AWHelpDesk;
GO
CREATE TABLE HelpDesk.MessageLog(

messageID int IDENTITY PRIMARY KEY,
queueName nvarchar(25),
message nvarchar(max),
conversationID uniqueidentifier) ;

GO

-- stored procedure to log messages
CREATE PROCEDURE HelpDesk.LogMessage
(@queuename nvarchar(25), @message nvarchar(max),
@conversation_id uniqueidentifier=NULL)

AS
IF (@conversation_id IS NULL)

PRINT ‘Queue: ‘ + @queuename
+ ‘ Message: ‘ + @message

ELSE
PRINT ‘Queue: ‘ + @queuename

+ ‘ Message: ‘ + @message
+ ‘ Conversation: ‘ + CAST(@conversation_id AS NVARCHAR(MAX))

INSERT INTO HelpDesk.MessageLog (queueName, message, conversationID)
VALUES (@queuename, @message, @conversation_id) ;

GO

747



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 748

Chapter 19: Introduction to Service Broker

3. Create a stored procedure that will read and process messages in the queue:

USE AWHelpDesk;
GO
CREATE PROCEDURE HelpDesk.ProcessMessages
AS

WHILE (1 = 1)
BEGIN

DECLARE @conversationHandle UNIQUEIDENTIFIER,
@messageTypeName NVARCHAR(256),
@messageBody NVARCHAR(MAX);

RECEIVE TOP(1)
@conversationHandle = conversation_handle,
@messageTypeName = message_type_name,
@messageBody = message_body

FROM UserNotifyQueue

IF @@ROWCOUNT = 0
BEGIN

EXEC HelpDesk.LogMessage ‘UserNotifyQueue’,
‘No further messages found.’

RETURN
END

IF
@messageTypeName =
‘http://schemas.microsoft.com/SQL/ServiceBroker/Error’

OR
@messageTypeName =
‘http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog’

BEGIN
END CONVERSATION @conversationHandle
EXEC HelpDesk.LogMessage ‘UserNotifyQueue’,
@messageTypeName, @conversationHandle
CONTINUE

END

IF @messageTypeName <>
‘//AdventureWorks.com/Helpdesk/SupportTicket’

BEGIN
END CONVERSATION @conversationHandle

WITH ERROR = 500
DESCRIPTION = ‘Invalid message type.’

EXEC HelpDesk.LogMessage ‘UserNotifyQueue’,
‘Invalid message type found.’, @conversationHandle
CONTINUE

END

DECLARE @customerName Name, @emailAddress Name, @issue
nvarchar(max)

EXEC HelpDesk.ExtractXML @messageBody, @customerName OUTPUT,

748



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 749

Chapter 19: Introduction to Service Broker

@emailAddress OUTPUT, @issue OUTPUT

/* Send an Email using Database Mail
This section has been commented out so that the values may be
substituted with your own, if you have a valid database mail
profile, you can configure the stored proc to use it instead.
Leaving these lines commented out will not impact the operation
of the queues.

EXEC msdb.dbo.sp_send_dbmail
@profile_name = ‘HelpDesk’,
@recipients= @emailAddress,
@subject=’Trouble Ticket Issued’,
@body=’Your support call has been logged,
and someone will be contacting you soon.’

*/

DECLARE @output NVARCHAR(MAX)
SET @output = ‘A HelpDesk support ticket has been created for ‘

+ @customerName + ‘. ‘
+ ‘Email sent to ‘ + @emailAddress +
‘, regarding ‘ + @issue + ‘.’

EXEC HelpDesk.LogMessage ‘UserNotifyQueue’, @output,
@conversationHandle

END CONVERSATION @conversationHandle
END;

GO

Testing the Application
Now it’s time to see Service Broker in action. Because building a web-based front-end for your application
falls well outside the scope of this book, you can just execute the stored procedures manually. The effect
is still the same, and the results are no different.

1. So, begin by creating a couple of trouble tickets (from a couple of troublemakers):

USE AWHelpDesk;
GO
EXEC TroubleTicket.AddNewTicket

‘George’,
‘Costanza’,
‘George@adventureworks.com’,
‘My monitor display is fuzzy’;

GO

EXEC TroubleTicket.AddNewTicket
‘Comso’,
‘Kramer’,
‘Cosmo@adventureworks.com’,
‘The nnnnnnnnn key onnnn my keyboard sticks’;

GO

749



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 750

Chapter 19: Introduction to Service Broker

2. Because you have not configured the stored procedures that will process the messages to run
automatically, or through any other invocation method, you will have to manually execute
them as you step through this exercise. Before you process the messages, you can query the
queue directly to see the messages that are queued up. Since the conversation is established
when the AddNewTicket stored procedure is executed, the messages are delivered immedi-
ately to the queue for the TicketNotifyService. You can query its queue with the following
statement:

SELECT * FROM HelpDesk.UserNotifyQueue;

3. This should result in output similar to Figure 19-3.

4. To process the messages and deliver notification to the end-user, execute the
Helpdesk.ProcessMessages stored procedure:

EXEC HelpDesk.ProcessMessages;

Figure 19-3: The User Notify queue.

5. After executing this stored procedure, the following messages should be returned:

(1 row(s) affected)
Queue: UserNotifyQueue Message: A HelpDesk support ticket has been created
for George Costanza. Email sent to George@adventureworks.com, regarding
My monitor display is fuzzy. Conversation: 330A7982-2CB2-
DD11-BCA9-0003FF3FC1B5

(1 row(s) affected)

(1 row(s) affected)
Queue: UserNotifyQueue Message: A HelpDesk support ticket has been created
for Comso Kramer. Email sent to Cosmo@adventureworks.com, regarding The
nnnnnnnnn key onnnn my keyboard sticks. Conversation: 330A7982-2CB2-
DD11-BCA9-0003FF3FC1B5

(1 row(s) affected)

750



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 751

Chapter 19: Introduction to Service Broker

(0 row(s) affected)
Queue: UserNotifyQueue Message: No further messages found.

(1 row(s) affected)

This will generate the messages, as well as write to the message log you created in the last
exercise. You can view the log contents by using the following query:

SELECT * FROM HelpDesk.MessageLog;

You should see results similar to Figure 19-4.

Figure 19-4: The HelpDesk message log.

Additionally, when the messages were processed by the TicketNotifyService, response
messages were generated for the TicketInputService. You can view the queued messages
for the TicketInputService by querying its queue, also:

SELECT * FROM TroubleTicket.TicketInputQueue;

This should return output similar to that shown in Figure 19-5.

Figure 19-5: The Ticket Input queue.

751



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 752

Chapter 19: Introduction to Service Broker

6. To write the queued responses to the log for the TicketInputService, execute the
TroubleTicket.ProcessMessages stored procedure as listed here:

EXEC TroubleTicket.ProcessMessages;

As the messages get processed and logged, you should get messages similar to the following:

(1 row(s) affected)
Queue: TicketInputQueue Message:

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
Conversation: 300A7982-2CB2-DD11-BCA9-0003FF3FC1B5

(1 row(s) affected)

(1 row(s) affected)
Queue: TicketInputQueue Message:

http://schemas.microsoft.com/SQL/ServiceBroker/EndDialog
Conversation: 300A7982-2CB2-DD11-BCA9-0003FF3FC1B5

(1 row(s) affected)

(0 row(s) affected)
Queue: TicketInputQueue Message: No further messages found.

(1 row(s) affected)
Now that the queue has been cleared, you can view the response messages in the log:

SELECT * FROM TroubleTicket.MessageLog;

The response messages confirm that the dialog for each message has ended, as shown in
Figure 19-6.

Figure 19-6: The TroubleTicket message log.

752



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 753

Chapter 19: Introduction to Service Broker

Managing Service Broker with SSMS
SQL Server 2008 expands the ability to browse and view the properties of Service Broker objects. While
interaction with these components is limited to a Read Only state graphically, each object includes a
‘‘Create New or Modify’’ menu option that will open an object-specific CREATE or ALTER template in a
new Query window. The ability to navigate and get the details of objects through Management Stu-
dio provides a significant benefit to those of us who prefer visual tools rather than text-based output.
Figure 19-7 shows the expanded list of objects and their containers that you created in the previous
example.

Figure 19-7: Service Broker objects in
Management Studio.

Summary
Service Broker is a topic that can be intimidating to many DBAs, especially since it’s still considered
a fairly new feature. Hopefully, now that you’ve seen end-to-end delivery of messages using Service
Broker, it should be easier for you to envision how it can be implemented with other applications. It is
designed to create a more application-friendly architecture to meet the needs of many organizations, both
large and small.

In this chapter, you learned about the concepts of SOA, what the Service Broker is, and what components
are used in a Service Broker. You also had an opportunity to see Service Broker in action by building a
simple application that shows you the process flow of Service Broker messages between services.

753



Leiter c19.tex V3 - 03/25/2009 1:11pm Page 754



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 755

In
de

x

Index

A
Account Provisioning screen, Database Engine, 42
accounts

configuring Administrator, 43
specifying Reporting Services service, 718–719
system administrator. See sa (system administrator)

account
accounts, Database Mail

associating with profile, 303–304
changing sequence within profile, 305
creating new, 296–297, 302–303
deleting, 309
managing, 301
overview of, 295
removing from msdb database, 309
removing from profile, 309
updating properties of, 305

Accumulate method, SQL CLR UDAs, 628
acknowledgements, Service Broker, 735
Active Directory

SQLServerADHelper100 service, 13
Windows logins for, 205

Active IP address, TCP/IP, 263
active/active clustering, 557
active/passive clustering, 556–557
ActiveX Script, job steps, 328
Activity Monitor, 411–413
actual execution plans, Query Optimizer, 500
ad hoc workloads, Database Engine, 3
Add Database Reference, 613
Add New Item dialog, 616
administrative tasks, automating

best practices, 360–361
Central Management Servers, 292–294
Database Mail. See Database Mail
Event Notifications, 315–316
Maintenance Plans, 358–360
overview of, 285
Policy-Based Management. See Policy-Based

Management
SQL Server Agent. See SQL Server Agent

Administrator accounts, configuring, 43
administrators

Central Management servers, 4
creating logins for, 205–206
policy-based management, 4

Advanced Encryption Standard (AES), 580
Advanced Properties, SQL Server Agent, 317–319,

329

AES (Advanced Encryption Standard), 580
After triggers, 194
agents, replication, 590–591
aggregate functions

ANSI Warnings Enabled and, 141–142
defined, 193
granting, denying, revoking actions for, 227–228

aggregates, SQL CLR, 627–629
alerts, creating

database mirroring, 583–584
operators for, 342–345
overview of, 345
performance condition, 351–352
SQL Server Agent, 318–319
SQL Server event-based, 345–351
WMI Event, 352–353

aliases
backup devices as, 367–368
creating for Agent connection properties, 320
creating with filtered indexes, 495–497
creating with SQL Native Client Configuration, 100,

264–265
synonyms as, 192
user-defined types as, 196, 624

ALTER CERTIFICATE statement, 251–252
ALTER CREDENTIAL statement, 212
ALTER DATABASE statement

database mirroring, 580–581, 584–585, 587
ENABLE_BROKER, Service Broker, 741–742
initiating failover, 585–586
msdb database, 315–316

ALTER FUNCTION statement, SQL CLR, 619–621
ALTER INDEX command, 180–181
ALTER LOGIN statement, 209
ALTER SCHEMA statement, 155
ALTER SYMMETRIC KEY, 248–249
ALTER TABLE command

adding primary key constraint, 181
ANSI NULL Default setting, 140

ALTER TRIGGER statement, SQL CLR, 623
ALTER USER command, 395
AMOs (Analysis Management Objects), 12
Analysis Designers, 90
Analysis Management Objects (AMOs), 12
Analysis Services Script, Solution Explorer, 58–60
Anonymous dialog security, Service Broker, 739
ANSI NULL Default, database option, 140
ANSI NULLs Enabled, database option, 140–141
ANSI Padding Enabled, database option, 141
ANSI Warnings Enabled, database option, 141–142



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 756

ANSI-style join syntax

ANSI-style join syntax, 530–531
Any contract, Service Broker, 737
application roles, creating, 222–224
applications, security best practices, 258–259
architecture

communication, 11–12
Data Collection, 456–458
programming object models, 12
Report Server, 708
services, 13–15
supported languages, 12
table, 155

Arithmetic Abort Enabled, database option, 142
articles, replication

defined, 589
Snapshot Agent and, 592
using New Publication Wizard, 599

assemblies
adding, 617–618
creating SQL CLR, 611–612
deploying with Visual Studio, 630–631
.NET and CLR, 609
overview of, 196
types supported for SQL CLR, 610–611

asymmetric keys
defined, 243
encrypting data, 253–254
overview of, 248–250
public key certificates vs., 251

attribute hierarchies, SSAS, 678
Attribute Relationships tab

creating Calendar Attribute Relationships,
694–695

defining for Products Hierarchy, 687, 689
establishing Reseller Attribute Relationships,

691–692
audits

defined, 430
Kerberos and, 225
overview of, 430
results of DDL trigger, 195
security best practices, 258
using C2 Audit Mode, 440
using Login Auditing, 438–439
using Profile, 441–442
using SQL Server Audit. See SQL Server Audit
using SQL Trace, 442–443

authentication
Database Mail, 297
Database Mail credentials, 295
database mirroring, 580, 583
digital signatures, 255–256
Kerberos, 225
login, 205–210
Reporting Services, 710
Service Broker, 738–739

authentication modes
changing, 202–203
Database Engine, 42–43
overview of, 22, 201–202
SQL Server Agent, 321

authorization
Kerberos, 225
Service Broker, 742

Auto Close, database option, 142
Auto Create Statistics, database option, 142
Auto Shrink, database option, 142–143
Auto Update Statistics Asynchronously, database

option, 143
Auto Update Statistics, database option, 143
Auto-Commit Transactions, 124–125
AutoCreatedLocal route, Service Broker, 738
Autogrowth

database option, 137–138
setting transaction logs to, 126

autonomy, replication type, 592
Available Bytes counter, 405
Average Wait Time counter, 407
Avg. Disk Queue Length counter, 405

B
BACKUP CERTIFICATE statement, 251–252
BACKUP SERVICE MASTER KEY statement, 245
backup stripes, 372
backups

data encryption keys, 259
database/service master keys, 245
devices for, 367–368
exercise in performing, 368–369
individual filegroup, 136
options for, 372–375
overview of, 367
restore preparation, 386
SQLServerAgent service performing, 13
SQLWriter service performing, 15
strategies, 375–379
transaction log, 126, 559–560
types of, 369–372

backward compatibility
database users and roles, 224
login management, 210
logins using T-SQL, 207

backward compatibility views, 112
baselines, performance, 402, 403
Basic authentication, 297
BCM (Bulk Changed Map) pages, 123
BCP (Bulk Copy Program), 104–106, 594
BEGIN DIALOG CONVERSATION statement, 738
BEGIN DISTRIBUTED TRANSACTION statement, 593
BEGIN TRANSACTION, 125
Beginning SQL Server 2005 Administration (Wiley,

2006) , 7
Beginning T-SQL with Microsoft SQL Server 2005 and

2008 (Turley and Wood)
on cursors, 119
Instead Of triggers, 194
on LIKE command and Full-Text search, 14
on T-SQL, 12

BI (Business Intelligence)
Analysis Services and, 5
components, 640–642

756



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 757

In
de

xCLR (Common Language Runtime)

implementing, 92
overview of, 639
Performance Management and, 640
Performance Point Server and, 643–644
ProClarity and, 643
SharePoint and, 642–643
SQL Server 2005 and, 2–3
summary, 644
understanding, 639–640

BIDS (Business Intelligence Development Studio)
Analysis Services. See SSAS (SQL Server Analysis

Services)
creating new SSAS project, 679–680
creating reports, 642, 714
IDE as, 658
Integration Services. See SSIS (SQL Server Integration

Services)
managing SSAS, 679
overview of, 91–93
Reporting Services. See SSRS (SQL Server Reporting

Services)
bigint data type, 114
binary data, 140, 485
binary data type, 116
binary large object (BLOB) data, 118–119, 169
binary sorting, 41–42
bit data type, 114
Blank template, Trace Properties dialog, 420–421,

425
BLOB (binary large object) data, 118–119, 169
blocking, 497–499
Bookmark window, 60–61
breadth-first indexes, 168
Broker Enabled, database option, 143
Browse command, OLAP cube, 697–700
Browser Service, SQL, 40
Buffer Cache Hit Ratio counter, 406
Building the Data Warehouse (Inmon), 642
Bulk Changed Map (BCM) pages, 123
Bulk Copy Program (BCP), 104–106, 594
Bulk Log backup, Transaction Log, 371
bulkadmin server role, 213
Bulk-Logged recovery model

for optimization, 479–480
overview of, 366
setting database options, 139

business continuity, 554
Business Intelligence. See BI (Business Intelligence)
Business Intelligence Development Studio. See BIDS

(Business Intelligence Development Studio)
Bytes Total/Sec counter, 407

C
C2 Audit Mode, 440
caching

configuring Reporting Services, 729
execution plan, 500–501

Calendar Hierarchy, 692–695

capacity planning, databases, 130–131
Capture Job, Data Change Capture, 449–450
CAs (Certification Authorities), 250
CASCADE keyword, server permissions, 230–231
cascade settings, foreign key constraints, 187–188
case-sensitivity, SQLCMD utility, 102
catalog, defined, 16
Catalog views, 134–135, 191–192
categories, policy, 289
categories, Registered Servers window, 293
CDC (Change Data Capture)

configuring, 445–447
job control, 449–450
limitations of, 450–451
overview of, 444–445
related dynamic management views, 450
tables, 451–452
using, 447–449
using Change Tracking vs., 444

Central Management Servers. See CMS (Central
Management Servers)

certificates, 250–252
certificate chain, 250
creating, 252
Service Broker Full security using, 739

Certification Authorities (CAs), 250
Change Autogrowth dialog, 137–138
Change Data Capture. See CDC (Change Data

Capture)
Change Tables, 447–450
Change Tracking

Change Data Capture vs., 444
functions and views, 453
merge replication using, 595
overview of, 452
working with, 453–455

CHANGE_TRACKING flag, 452
char data type, 116, 484–485
character data

ANSI Padding Enabled setting for, 140
collation settings, 40–41

check constraints
enforcing data integrity, 188–189
for optimization, 485

CHECKPOINT event, 126
checkpoints

recording transactions, 126
Simple recovery model, 139, 366

CHECKSUM, RESTORE command, 383
Checksum option, Page Verify, 147–148
classes, .NET and CLR, 609
classifier functions, Resource Governor, 541,

543–545
Cleanup Job, Data Change Capture, 449–450
client redirection, database mirroring, 574
Close Cursor on Commit Enabled, database option,

143–144
CLR (Common Language Runtime)

assemblies, 196

757



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 758

CLR (Common Language Runtime) (continued)

CLR (Common Language Runtime) (continued)
data types, 117–118
databases and programming, 607–608
deployment with Visual Studio, 629–632
.NET and, 609–610
programming support, 632–633
security options, 633–636
Transact-SQL and, 608

CLR (Common Language Runtime), SQL CLR objects
adding assembly, 617–618
aggregates, 627–629
compatible data types, 618–619
creating assembly, 611–617
enabling, 611
overview of, 610–611
stored procedures, 621–622
triggers, 622–623
user-defined functions, 619–621
user-defined types, 623–626

cluster keys
designing efficient tables, 480
GUIDs as, 492–493
optimization using, 491–492

Cluster Security Policy configuration screen, 49
clustered indexes

non-clustered indexes on, 166–167
non-clustered indexes vs., 165
overview of, 166
primary XML indexes as, 170–171
scanning execution plans with, 502

clustered services, applying policies to, 47–48
cmdlets, PowerShell, 106–107
CMS (Central Management Servers)

defined, 4
enforcing policies on multiple servers, 60
overview of, 292–294

Code Editor
overview of, 56–57
using bookmarks in, 60–61

collation
Collation Designer, 40–41
database options, 138
table, 155–156

collection item, 456
collection mode, 456
collection sets

creating custom, 462–465
defined, 456
system data, 461–462

collector types, 456, 461
colors, customizing font, 82
Column Mappings, Import/Export Wizard, 650–653
columns

avoiding encryption on frequently searched, 259
filtering for replication, 597
granting, denying, revoking actions for, 227–228
including in leaf nodes of indexes, 167
limiting number per table, 480

command-line tools
BCP utility, 104–106

PowerShell, 106–109
SQLCMD utility, 102–104

Comma-Separated Value (CSV) extension, 711
COMMIT TRANSACTION, 125
Common Language Runtime. See CLR (Common

Language Runtime)
communication architecture, 11–12
Compact Edition, SQL Server Compact 3.5 SP1, 8–9,

77
Compatibility Catalog views, 192
compatibility level, database options, 139–140
composite primary keys, 491
compressed backups, 373
compression

index and table, 4
overview of, 164
row, 164–165

Concatenate Null Yields Null, database option, 144
conditions, Policy Management, 287
Configuration Manager, 100
Configure Management Data Warehouse Wizard,

458–460
CONNECT permission, endpoints, 278
Connection folders, projects, 59
Connection Managers tab, Solution Explorer, 660
Connection properties, SQL Server Agent, 321
connections, data

creating for new SSAS project, 680–681
creating Integration Services package, 671
creating Report Builder, 721–725
creating SQL CLR assembly, 613–614

constraints
check, 188–189
default, 189–190
deleting, 186
foreign key, 185–188
primary key, 181–183
unique, 183–184
using triggers vs., 488

containers, Integration Services runtime engine, 648
CONTINUE_AFTER_ERROR, RESTORE command, 383
contracts, Service Broker, 735, 737, 743
control flow, Integration Services

applying additional transforms, 674–675
Control Flow Items in, 659–660
creating new SSIS package, 661
tasks, 662–664

CONTROL permission, database master keys, 244–245
conversation groups, Service Broker, 736
conversation priorities, Service Broker, 736
conversations, Service Broker

defined, 734–736
finding appropriate route for, 738
between services, 737

Copy Only backups, 372
COUNT (*), 538–539
counters, performance

correlating database activity with, 523–525
disk counters, 404–405
memory counters, 405–406

758



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 759

In
de

xdata pages

monitoring file size with, 430
monitoring Resource Governor, 545
network counters, 406–407
processor counters, 403–404
SQL Server counters, 407–408

covered indexes, 167, 493–494
CPU idle threshold, SQL Server Agent, 317–319
CPUs

compressed backups and, 373
optimization and, 475
processor counters evaulating, 403

CREATE APPLICATION ROLE, 223–224
CREATE ASSEMBLY statement, 617–618,

630–631
CREATE ASYMMETRIC KEY, 248
CREATE CERTIFICATE statement, 251–252
CREATE CONTRACT statement, Service Broker,

743
CREATE CREDENTIAL statement, 212
CREATE ENDPOINT command, 273–277, 278
CREATE FUNCTION statement, SQL CLR,

619–621
CREATE INDEX command, 180
CREATE LOGIN statement, 207–208, 210
CREATE ROLE statement, 220–221
CREATE ROUTE statement, Service Broker, 738
CREATE SERVICE statement, Service Broker,

743–744
CREATE SYMMETRIC KEY, 247–248
CREATE TABLE statement, 140, 181
CREATE TRIGGER statement, 623
CREATE TYPE statement, 198–199
CREATE USER statement, 216, 218–219
credentials

creating proxies with, 354–356
Database Mail, 295
overview of, 210–212

Cross-database Ownership Chaining Enabled, database
option, 144

cross-joins, 502
CSV (Comma-Separated Value) extension, 711
Cube Browser window, 701–702
cubes, OLAP

Analysis Services and, 641
creating, 684–686
creating Data Source view, 682–683
creating hierarchies. See hierarchies, OLAP
creating new SSAS project, 679–680
defined, 679
defining data source, 679–682
defining dimensions, 684
deploying project, 695–696
understanding, 677–678

cursors
alternatives to, 533–534
Close Cursor on Commit Enabled, 143
cursor data type, 119
Default Cursor, 145–146

cycling log files, Log File Viewer, 410

D
DAC (Dedicated Administrator Connection)

endpoints, 266, 268
SQLCMD utility and, 102, 104

Data Collection, 455–468
architecture and processing, 456–458
configuring, 458–460
creating custom Data Collector set, 462–465
data collection sets, 461–462
Data Collector types, 461
error handling, 465–466
Management Data Warehouse, 466–468
overview of, 455–456
reporting, 466–467
terminology, 456

data collection sets, 461–465
Data Collector

creating new custom collector set, 462–465
error handling with, 465–466
overview of, 456–457
roles, 458
types, 461

Data Copy phase, restore process, 379
Data Definition Language. See DDL (Data Definition

Language)
Data Directories tab, Database Engine configuration,

43
Data File I/O section, Activity Monitor, 413
data files

capacity planning for new database, 130–131
changing path for, 138
database storage in, 21
restore process for, 381
setting Encryption Enabled option, 146
storage architecture, 120–123

data flow, Integration Services
Data Flow Task, 665
Data Flow Task, creating, 671–673
defined, 648
exporting data, 656–658
importing data, 649–656
specifying data destination, 668–669
specifying data source, 666
using transformations, 667–668

data integrity, enforcing
check constraints, 188–189
default constraints, 189–190
foreign key constraints, 185–188
primary key constraints, 181–183
unique constraints, 183–184

Data Manipulation Language (DML) triggers, 194, 256
data marts, 641
data mining, 703–704
Data Mining component, Analysis Services, 5
Data Mining eXtensions. See DMX (Data Mining

eXtensions) language
data pages

overview of, 121–122
table architecture, 156

759



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 760

data processing extensions, Reporting Services

data processing extensions, Reporting Services, 710
data processing, report processor, 709
data provider, 456
data regions, Report Builder 2.0, 725–726
data source

creating for Report Builder, 721–725
creating Integration Services package, 671
defining in ETL process, 646
importing data, SSIS, 649–656
specifying data flow, 666
specifying OLAP, 678–682, 684

Data Source View (DSV), 682–683
Data Tier Web Services, 6, 11–12
Data Transformation Services (DTS), 5, 645
data types

Change Data Capture, 450
compatible .NET and SQL Server, 618–619
designing tables using narrow, 480
importing data, SSIS, 650–655
Large Object. See Large Object data types
new spatial, 5
optimizing for columns in tables, 484–485
user-defined, 196–198

data types, physical storage
CLR, 117–118
fixed-length, 114–116
in-row, 118
other types of, 119
overview of, 114
variable-length and Large Object, 116–117

data warehouses, building, 641
database, 16, 129–200

diagrams, 190–191
disaster prevention and recovery. See disaster

prevention and recovery
distribution, 20
downloading samples used in this book, 49
enabling/disabling Change Data Capture, 445–447
overview of, 16
planning, 129–131
preparing for Service Broker, 740–741
programming, 607–608
programming objects, 193–200
schemas. See schemas
storage of, 20–22
synonyms, 192–193
system, 18–20, 129
user, 20, 129
views, 191–192

database, creating, 131–135
data compression, 164–165
database files, 135
enforcing data integrity, 181–190
file size, 137
filegroups, 135–137
generating scripts, 151–152
getting started, 132
indexes. See indexes
maintenance vs. performance, 136–137
overview of, 131–135

schemas, 152–155
setting options. See database options
table maintenance, 173–181
tables. See tables

Database area, Reporting Services Configuration
Manager, 101

Database Audit Specification, SQL Server Audit,
433–434, 436

Database Consistency Checker. See Database
Console Command (DDBC)

Database Console Command (DDBC), 113, 178–179
database diagrams, 68–69, 190–191
Database Encryption Key (DEK), 254
Database Engine

administrative best practices, 360
configuring, 42–43
features, 3–4
MSSQLServer service as, 13
queries supported by Code Editor, 56
Tuning Advisor, Query Optimizer, 517–523

Database Engine Tuning Advisor. See DTA (Database
Engine Tuning Advisor)

database files
Auto Shrink option, 142–143
Copy Only backups, 372
creating database with, 135
storage architecture, 119–120

Database Mail, 294–315
configuring, 295–300
configuring SQL Server Agent Alert system properties,

318–320
deleting mail objects, 309
how it works, 294–295
managing messages, 314–315
managing profiles and accounts, 301–309
overview of, 7, 294
sending mail, 310–314
using Log File Viewer for, 410

Database Mail Configuration Wizard, 295–300
database master key, 243–245
database mirroring

Change Data Capture limitations, 451
client redirection, 574
configuring, 576–581
endpoints, 270–272
forcing service on mirror, 586
manual failover, 585–586
modes, 574–575
monitoring, 581–584
overview of, 572–574
pausing mirror session, 584
removing mirror, 586–587
resuming mirror session, 584–585

Database Mirroring Monitor, 581–584
database objects

database scope, 16
granting permissions on, 233–235
names, 16–17
schema scope, 16
server, 15–16

760



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 761

In
de

xdeleting

database options
ANSI NULL Default, 140
ANSI NULLs Enabled, 140–141
ANSI Padding Enabled, 141
ANSI Warnings Enabled, 141–142
Arithmetic Abort Enabled, 142
Auto Close, 142
Auto Create Statistics, 142
Auto Shrink, 142–143
Auto Update Statistics, 143
Auto Update Statistics Asynchronously, 143
Autogrowth, 137–138
Broker Enabled, 143
changing path, 138
Close Cursor on Commit Enabled, 143–144
collation, 138
compatibility level, 139–140
Concatenate Null Yields Null, 144
Cross-database Ownership Chaining Enabled, 144
Database Mail, 300
Database Read-Only, 144
Database State, 144–145
Date Correlation Optimization Enabled, 145
Default Cursor, 145–146
Encryption Enabled, 146
Honor Broker Priority, 146
Numeric Round-Abort, 146–147
Page Verify, 147–148
Parameterization, 148–149
Quoted Identifiers Enabled, 149–150
recovery models, 138–139
Recursive Triggers Enabled, 150
Restrict Access, 150
Service Broker Identifier, 150–151
Trustworthy, 151
VarDecimal Storage Format Enabled, 151

database owner. See dbo user (database owner)
Database Read-Only option, 144
database scope

overview of, 16
permissions, 235–238

Database Snapshots
creating, 396–398
creating of mirrored database, 573
disaster recovery and, 398–400
limitations of, 398
overview of, 396

Database State, database option, 144–145
database users
CREATE USER statement, 216–217
creating new user, 218–219
overview of, 214–216

DatabaseMail.exe, 295
Data-driven subscriptions, Reporting Services, 730
Dataset Properties dialog, Reporting Services,

722–725
Date Correlation Optimization Enabled, database

option, 145
date data type, 116
datetime data type, 115

Date/Time option, optimization, 485
datetime2 data type, 115–116
datetimeoffset data type, 116
DBCC (Database Consistency Checker). See DBCC

(Database Console Command)
DBCC (Database Console Command), 113, 178–179
DBCC FREEPROCCACHE, 501
dbcreator server role, 213
dbo user (database owner)

created by default, 216
defined, 153
schema creation, 153–154
schema maintenance, 155

dc_admin role, Data Collector, 458
dc_operator role, Data Collector, 458
dc_proxy role, Data Collector, 458
DCM (Differential Changed Map) pages, 123
DDL (Data Definition Language)

Change Data Capture limitations, 450
creating scripts, 152
executing Event Notifications, 315–316
not using on table variables, 540

DDL (Data Definition Language) triggers
creating, 470–472
EVENTDATA function, 469–470
events used with, 469
overview of, 194–195
traditional triggers vs., 469

deadlocks
analyzing with Profiler, 420–425
minimizing blocking, 497–498
sample of events resulting in, 408
using Deadlocks/Sec counter, 407

Debug Location toolbar, 70
Debug toolbar, 70
debugging, SQL CLR, 614–615
decimal data type, 114–115
declarative referential integrity (DRI), 480, 485–488
decomposition phase, spatial indexes, 169
Decomposition Trees, ProClarity, 643
Dedicated Administrator Connection. See DAC

(Dedicated Administrator Connection)
default constraints

enforcing data integrity, 189–190
for optimization, 485

Default Cursor, database option, 145–146
default group, 542
default instances, configuring, 37–38, 47
default pools, 542
Default TCP endpoint, TSQL, 267–268
Default VIA endpoint, TSQL, 268
defense in depth, with permissions, 229
de-fragmentation, index, 508–509
degree of selectivity, index optimization, 493
DEK (Database Encryption Key), 254
DELETE statement, 124, 444–445
deleting

constraints, 186
mail messages from server, 314–315

761



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 762

deleting (continued)

deleting (continued)
mail objects, 309
undoing with Database Snapshots, 399

delimiting objects, 149–150
delivery extensions, Reporting Services, 712
de-normalization

designing efficient tables, 480
overview of, 483–484
using indexed views, 494

DENY permission state, 225–228, 231
Deploy option, BIDS, 695–696
Designers configuration, Management Studio IDE,

89–90
destination, Integration Services

data flow, 668–669
defining for new package, 671–673
exporting data, 656–657
importing data, 651–655

Developer Edition, SQL Server 2008, 8
diagrams, database, 68–69, 190–191
dialog conversations, Service Broker, 735–736
dialog security, Service Broker, 738–739
Differential backups, 370, 376, 378, 389
Differential Changed Map (DCM) pages, 123
Differential File/Filegroup backups, 370–371
digital signatures, 255–257
dimensions, OLAP

creating cube, 686
defined, 678
defining for new SSAS project, 684

disaster prevention and recovery, 363
backup, overview, 367–369
backup options, 372–375
backup strategies, 375–379
backup types, 369–372
Bulk-Logged recovery model, 366
as business continuity, 554
chapter preparation, 363–365
database snapshots, 396–400
Full recovery model, 365–366
overview of, 363
restoring databases. See restoring databases
Simple recovery model, 366

disk counters, 404–405
disk I/O performance, storage optimization, 476–477
disk space, capacity planning and, 130
% Disk Time counter, 405
Disk Usage collection set, Data Collector, 461
Disk Usage report, SSMS, 427–428
Disk Usage Summary report, Data Collector, 466
diskadmin server role, 213
distinct aggregation, 537–538
DISTINCT keyword

avoiding for T-SQL optimization, 526
distinct aggregation and, 537–538

Distributed Management Objects (DMOs), 12
distributed transactions, 592–593
Distribution Agent, 591, 602
distribution database, 20, 590

distributor
choosing for new publication, 598–599
defined, 590
replication types, 591–595

DML (Data Manipulation Language) triggers, 194, 256
DMOs (Distributed Management Objects), 12
DMVs (Dynamic Management Views)

creating performance baseline, 403
creating plan guides, 514
defined, 192
monitoring Change Data Capture, 450
monitoring performance, 408–409
storage architecture, 113

DMX (Data Mining eXtensions) language
Code Editor supporting, 56
overview of, 703–704
SQL Server support for, 12
SSAS Editors toolbar for, 77

dockable tool windows, 53–54
domain groups, for clustered services, 47–48
double quotation marks (‘‘ ’’), Quoted Identifiers,

149–150
DRI (declarative referential integrity), 480, 485–488
DROP CERTIFICATE statement, 251–252
DROP SYMMETRIC KEY, 248
DROP_EXISTING option, 180
drops, undoing with Database Snapshots, 399–400
DSV (Data Source View), 682–683
DTA (Database Engine Tuning Advisor), 97–100

analyzing existing indexes, 517–518
analyzing SQL script, 518–523
analyzing trace data with Profiler, 523
correlating performance data, 523–525
General tab, 98–99
overview of, 97
Tuning Options tab, 99–100
using with Profiler, 523–525

DTS (Data Transformation Services), 5, 645
Dynamic Management Views. See DMVs (Dynamic

Management Views)

E
editions, SQL Server 2008

operating system requirements, 32–33
overview of, 7–8
supporting Change Data Capture, 450

effective policies, Policy Management, 289–290
EFS (Encrypting File System), 250
EKM (Extensible Key Management), 246
e-mail. See also Database Mail

digital signatures, 255–256
as example of SOA, 733–734
Reporting Services, 101, 712

EMERGENCY database state, 145
ENABLE_BROKER option, Service Broker, 315, 360,

741
Enabled IP address setting, TCP/IP, 263
Enabled property, 262–263
Encrypting File System (EFS), 250

762



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 763

In
de

xFilegroup backups

encryption
algorithms, 243
asymmetric keys, 248–250
best practices, 258–259
certificates, 250–252
of data, 253–254
digital signatures, 255–257
Extensible Key Management, 246
overview of, 243–245
Service Broker security and, 738–739, 741
symmetric keys, 247–248
Transparent Data Encryption, 254–255

ENCRYPTION BY PASSWORD option, asymmetric keys,
249

Encryption Enabled, database option, 146
Encryption Keys, Reporting Services, 101–102
endpoints

creating, 279–284
database mirroring, 270–272, 578–580
granting server permissions for, 232
overview of, 265–266
securing, 278
Service Broker, 278
SOAP, 272–277
TSQL default, 266–268
TSQL TCP, 269–270

Enterprise Data Platform, 3
Enterprise Edition, SQL Server 2008, 8, 10–11
Environment configuration, Management Studio IDE,

82
Environment settings, Source Control, 90
EOIO (exactly-once-in-order), Service Broker dialogs,

735
error handling

with Data Collector, 465–466
managing transactions, 125
in SQL Server Agent General Properties, 317–318

Error List, 62
error reports, configuring, 44
estimated execution plans, Query Optimizer, 500
ETL (Extract-Transform-Load)

BIDS BI project templates for, 92
Data Transformation Services, 645
process of, 646
SSIS. See SSIS (SQL Server Integration Services)

Evaluation modes, policies, 288
event forwarding, SQL Server Agent, 317–319
event handling, Integration Services, 648, 669–670
Event Notifications, 315–316
event-based alerts, SQL Server, 345–351
EVENTDATA function, DDL triggers, 195, 469–472
events, monitoring Resource Governor, 545
Events Extraction Settings tab, Trace Properties

dialog, 96–97
Events Extraction tab, Trace Properties dialog, 420,

422, 426
Events Selection tab, Trace Properties dialog, 95–96,

420–421, 425–426
exactly-once-in-order (EOIO), Service Broker dialogs,

735

Excel Web Services, MOSS 2007, 642–643
Execution Account, Reporting Services Configuration

Manager, 101
execution plans

analyzing, 502–504
creating plan guides, 512–517
defined, 500
plan caching, 500–501
viewing, 501

Explicit transactions, 125
Export Wizard, SSIS, 656–658
Express Edition, SQL Server 2008, 8–9, 142
Extended Events engine, 4, 316, 430
extended stored procedures, 621
Extensible Key Management (EKM), 246
Extensible Markup Language for Analysis. See XMLA

(Extensible Markup Language for Analysis)
extensions, Reporting Services, 710–712
extents, data files and, 120–121
EXTERNAL NAME statement, 623
External_Access permission, 635–636

F
facets, Policy Management, 287
failover, initiating, 585–586
failover clustering

active/active clustering, 557
active/passive clustering, 556–557
components, 556
configuring virtual server name, 46–49
considering, 558
for high availability, 554–555
installing SQL Server to, 45–46
Windows Clustering, 555–556

Failover Partner attribute, database mirroring,
574

fail-safe operator, designating, 345
Feature Selection, Installation Wizard, 37
Fields page, Dataset Properties dialog, 724
File backups

Differential, 370–371
overview of, 370
performing, 377–378
restore process, 381, 389–390

file copy, log shipping for, 561–562
file extensions, Text Editors, 82
file share delivery, Reporting Services, 712
file size

Autogrowth option, 137–138
creating databases, 137
monitoring, 427–430

file system backups, SQLWriter service, 15
FILE=option, RESTORE command, 384
Filegroup backups

Differential, 370–371, 378
overview of, 370
performing, 377–378
restore process, 381, 389

763



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 764

filegroups

filegroups
database storage in, 21
grouping data files as, 119
optimizing maintenance vs. performance, 136–137
organizing database files as, 135–136
partial database backups on, 371
partitioning tables with, 158–159
restore process for, 381

files, solution folder, 59
Files-Only installation, Reporting Services, 719–720
FILESTREAM data

configuring Database Engine, 43
overview of, 4
storage architecture, 118–119

fill-factor, fragmentation, 179–181
filter scan, of execution plans, 503
filtered indexes, 167–168, 494–497
filtering, for replication, 596–597, 600
Finalizer method, SQL CLR, 610
first normal form, 481
five nines rule of availability, 554
fixed database roles, 219–220
fixed server roles, 212–214
fixed-length data types, 114–116
float data type, 115
floating tool windows, 53–54
folders, project, 59
fonts, Text Editor, 82
FOR SERVICE_BROKER command, 278
FORCESEEK table hint, 510
foreign key, as cluster key, 492
foreign key constraints

for optimization, 485
options, 186–188
overview of, 185–186

fragmentation
checking indexes for, 174–178
mitigating with fill-factor, 179–180
removing, 180–181

freezing plans, 514–515
freq_interval values, 340–341
freq_type values, 340–341
FROM DATABASE_SNAPSHOT, RESTORE command,

382
FROM DISK, RESTORE command, 382
FROM options, restoring databases, 381
FROM TAPE, RESTORE command, 382
Full backups

with Differential and Transaction Log backup, 377
with Differential backup, 376
with Differential restore, 387
and Differential with Transaction Log restore, 389
overview of, 369–370
restore process, 381, 387
strategy, 375–376
with Transaction Log backup, 376
with Transaction Log restore, 387–388

Full dialog security, Service Broker, 739
Full recovery model

log shipping prerequisite, 558

for optimization, 479–480
overview of, 365–366
setting database options, 139

full-text indexing, 14, 134
fully qualify object names, T-SQL, 526
functions

Change Tracking, 453
dynamic management, 113
overview of, 193–194
SQL CLR, 619–621
using digital signatures, 256

G
GAM (Global Allocation Map) pages, 122
genealogy, tracing certificate, 250
General Properties, SQL Server Agent, 317–318
General property sheet, 209, 214–215
General tab, DTA, 98–99
General tab, Trace Properties dialog, 94–95,

420–421
Geographies Hierarchy, 689–691
geography data type

defined, 5
overview of, 117
using SQL CLR UDTs to implement, 623

geometry data type
defined, 5
overview of, 117
spatial indexes using, 169
SQL CLR UDTs implementing, 623

Global Allocation Map (GAM) pages, 122
Globally Unique Identifiers. See GUIDs (Globally

Unique Identifiers)
GRANT command, 226–228
GRANT permission state, 225–226
GRANT_W_GRANT permission state, 225–226, 230
graphical plans, Query Optimizer views, 501
GROUP_MAX_REQUESTS parameter, workload groups,

542
grouping sets, 536–537
guest account, 217
GUIDs (Globally Unique Identifiers)

as cluster keys, 492–493
in multi-server jobs, 326
optimizing table columns, 485

H
hardware

installation requirements, 26–27
optimization, 474–478
Reporting Services requirements, 717–718

Hardware Security Models (HSM), 246
HASH join hint, 511
HASHED option, creating logins, 208
HAVING clause, limiting result sets, 529–530
heaps

clustered indexes vs., 166

764



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 765

In
de

xinternal pools

defined, 156
non-clustered indexes on, 166

Help
configuration settings, 82
toolbar, 70–71

HelpDesk.MessageLog, 739–740
HelpDesk.ProcessMessage, 739–740
hierarchical indexes, 168–173
hierarchies, OLAP

Calendar Hierarchy, 692–695
defined, 678
Products Hierarchy, 687–689
Reseller and Geographies Hierarchies, 689–692

hierarchyid data type, 117–118, 168–169
high availability

database mirroring. See database mirroring
failover clustering, 554–558
introduction to, 553–554
log shipping. See log shipping

high-performance mode, database mirroring, 574
high-safety with automatic failover mode, 575
high-safety without automatic failover mode, 574–575
hints, Query Optimizer, 510–512
History properties, SQL Server Agent, 320–321, 323
HOLDLOCK/SERIALIZABLE table hint, 511
Honor Broker Priority, database option, 146
horizontal partitioning, 480–481
Hot Add CPU, Database Engine, 3
HSM (Hardware Security Models), 246
HTML document, sending mail as, 313–314
HTML rendering extension, Reporting Services, 711
hyperthreading, disabling for optimization, 475

I
IAM (Index Allocation Map) pages, 122
iCSCI storage arrays, network design for, 477
IDE (Integration Development Environment), 658
IIS (Internet Information Services), 6
image data type, 117
Image rendering extension, Reporting Services, 711
IMPERSONATE permission, 220–221
impersonation, 633
Implicit transactions, 124–125
Import Wizard, SSIS, 649–656
IMPORTANCE parameter, workload groups, 542
importing

CLR assemblies, 196–197
Import/Export Wizard, Integration Services, 649–658

included columns, non-clustered indexes, 167
Index Allocation Map (IAM) pages, 122
INDEX(name) table hint, 511
index pages, 122
indexed views, for optimization, 494
indexes

clustered, 166
compressing, 4, 164–165
DTA analysis. See DTA (Database Engine Tuning

Advisor)

filtered, 167–168
generating statistics for columns without, 142–143
hierarchical, 168–169
included columns on non-clustered, 167
maintenance. See fragmentation
managing in Query Optimizer, 505–510
non-clustered, 166–167
overview of, 165
replicating partitioned, 598
spatial, 169
XML, 169–170

indexes, optimizing
cluster key choice, 491–492
degree of selectivity, 493
overview of, 488–489
primary key choice, 489–491
using covering index, 493–494
using filtered indexes, 494–497
using GUIDs as cluster keys, 492–493
using indexed views, 494
using narrow indexes, 493
using unique constraints, 494

Indexes/Keys dialog, 184
Information Schema views, 191
INFORMATION_SCHEMA, 217
Init method, SQL CLR UDAs, 628
Initiator Only contract, Service Broker, 737
initiators, Service Broker dialogs, 735, 742
Inmon method, 641
INNER joins, 485
in-row data, storage architecture, 118
INSERT statement

Auto-Commit Transactions and, 124
Change Data Capture and, 444–445

installation, SQL Server 2008
considerations, 27
hardware, 26–27
memory, 27–28
overview of, 25–26
Reporting Services, 717–720
setup support, 34–37
software, 32–33
with SQL Server Installation Center. See SQL Server

Installation Center
storage, 28–32
virtualization, 32

Installation Center. See SQL Server Installation Center
Instance Configuration screen, Installation Wizard,

37–38
instances, SQL Server 2008, 16
Instead Of triggers, 194
int data type, 114
integer data types, 485
Integration Development Environment (IDE), 658
Integration Services. See SSIS (SQL Server Integration

Services)
Integration Services Connection Project Wizard, 658
IntelliSense, 4, 56
internal groups, 542
internal pools, 542

765



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 766

Internet Information Services (IIS)

Internet Information Services (IIS), 6
IP addresses, 262–264
IPC (Interprocess Communication), Named Pipes, 262
iSCI, clustering solution, 556
isolating database, restore process, 385

J
job control, Change Data Capture, 449–450
Job History properties, SQL Server Agent, 320–323
Job Properties dialog box, 336–337
Job system properties, SQL Server Agent, 319–320
jobs, SQL Server Agent

creating, 323–327
History properties, 320–321, 323
managing categories, 327
multi-server, 356–358
operators, 342–345
schedules, 335–338
SQL Server Agent roles and, 321–323
steps, 328–333

join filters, 598
join hints, 511
join syntax, ANSI-style, 530–531
joins, merge, 534–536

K
Kana sensitivity, 41
Keep Alive property, TCP/IP Protocol tab, 262–263
Kerberos security protocol, 225
key lookup, execution plans, 502
Key Performance Indicator (KPI), OLAP, 679
key value, 243
keyboard shortcuts, configuration, 82
KILL command, 418
Kimball method, 641–642
KPI (Key Performance Indicator), OLAP, 679

L
languages, SQL Server 2008, 12
Large Object data types

in-row data, 118
performance advantage of filegroups, 136–137
storage architecture, 116–117
text/image pages, 122

latency, choosing replication type, 592
layout, Report Builder, 725–729
.ldf extension, 20, 119
leaf level, indexes, 165
levels, OLAP, 678
license, Installation Wizard, 35
lifetime of dialog, Service Broker, 735–736
Listen All property, TCP/IP Protocol tab, 262–263
local disk storage, 30, 32
Local Machine endpoint, TSQL, 268
Local Server Groups category, Registered Servers,

293

locks, SQL Server
minimizing blocking, 497–498
overview of, 497
sp_lock, 415–417
table variables not participating in, 540
working with, 419–420

Log File Viewer
monitoring using, 410–411
overview of, 90–91
viewing audit results, 437–438

log files
changing path for, 138
overview of, 21–22
restricting size of, 138
setting Encryption Enabled, 146
SQLWriter backups of, 15

Log Reader Agent, 591, 600
Log Sequence Numbers. See LSNs (Log Sequence

Numbers)
log shipping

configuring failover, 571–572
configuring with Management Studio, 558–563
configuring with Transact-SQL, 563–571
defined, 558
preparing for, 558

Log Shipping monitor, 562–563
Login Auditing, 438–439
logins

adding to fixed server roles, 213
creating in Management Studio, 206–207
creating in T-SQL, 207–208
managing, 209
for new SSAS project, 681–682
overview of, 205–206
security practices, 258
server permissions for, 233
setting Restrict Access options, 150
stored procedures for, 210
using CREATE LOGIN, 210

LOOP join hint, 511
LSNs (Log Sequence Numbers)

Change Data Capture using, 445
tracking changes and, 444
transaction log restores, 381
transaction logs and, 126

M
maintenance

implementing filegroups for, 136–137
schema, 154–155

Maintenance Plan
best practices, 361
overview of, 358–360
Tasks, SSIS Toolbox, 659–660

Maintenance Plan Designer
configuring, 90
Toolbox window and, 61
working with, 358–360

766



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 767

In
de

xmsdb database

majority node cluster, Windows Clustering, 555
Management Data Warehouse

configuring data collection, 458–460
defined, 456
overview of, 466–468

Management Reporter, Performance Point, 643
Management Studio. See SSMS (SQL Server

Management Studio)
Map Partitions page, Create a Partition wizard, 162,

164
mapping, SQL Server login, 206
master database

defined, 18–19
recovering, 393–394
storage location of, 21

master key, Service Broker, 740–741
master servers, for multi-server jobs, 356–358
.mdf extension, 20, 119–121
MDX (Multidimensional eXpression) language

additional reading for, 702–703
Code Editor support for, 56
overview of, 703–704
SQL Server 2008 support for, 12
SSAS Editors toolbar for, 77

measure groups, OLAP, 679, 684–686
measures, OLAP, 679, 684–686
member, OLAP, 678
memory

installation requirements, 27–28
optimization of, 475–476

memory counters, 405–406
Merge Agent, 591
MERGE join hint, 511
merge joins, 534–536
Merge method, SQL CLR UDAs, 628
merge replication, 594–595, 597–598
messages, Database Mail, 314–315
messages, Service Broker

contracts, 737
conversations, 735–736
creating, 742–743
delivering along routes, 737–738
using queues, 737

methods, .NET and CLR, 610
Microsoft

developing SQL Server, 2
Office PerformancePoint 2007, 643
partnership with Sybase, 1–2
Reporting Services rendering extensions, 711

Microsoft Cryptographic API (MSCAPI), 245
The Microsoft Data Warehouse Toolkit: With SQL

Server 2005 and the Microsoft Business
Intelligence Toolset (Mundy and Thornwaite),
642

Microsoft Distributed Transaction Coordinator
(MSDTC), 15, 45, 592

Microsoft Message Queing (MSMQ), 6
Microsoft Office SharePoint Server (MOSS) 2007,

642–643
minimal logging, 139, 366

mirror database, 572–574
mirror server

client redirection, 574
configuring database mirroring, 577–579
database mirroring and, 573
database mirroring modes, 574–575
forcing service on, 586
monitoring database mirroring, 581–584

mirrored backups, 372–373
mirroring. See database mirroring
miscellaneous folder, 59
Missing Index views, Query Optimizer, 505–508
mixed extents, data files, 120
Mixed Mode authentication

configuring Database Engine, 43
defined, 22
overview of, 201–202

Mobile Edition, SQL Server 2005, 8–9
model database, 18–19, 21
models, SQL Server Replication, 595–596
money data type, 115
monitoring

of database mirroring, 581–584
of database modifications, 468–472
of file sizes, 427–430
overview of, 401
of Resource Governor, 545–551
tracking changes with Change Data Capture,

444–452
tracking changes with Change Tracking, 452–455
using Activity Monitor, 411–413
using auditing. See audits
using Data Collection. See Data Collection
using Log File Viewer, 410–411
using Profiler, 420–427
using Replication Monitor, 602–604
using System Stored Procedures, 413–420

monitoring, performance
creating baseline, 403
disk counters, 404–405
Dynamic Management Views for, 408–409
memory counters, 405–406
network counters, 406–407
overview of, 401–402
processor counters, 403–404
SQL Server counters, 407–408
strategy, 402

Monitoring Server, Performance Point, 643
MOSS (Microsoft Office SharePoint Server) 2007,

642–643
MOVE...TO option, RESTORE command, 384–385
MSCAPI (Microsoft Cryptographic API), 245
msdb database

administrative best practices, 360
configuring for Event Notifications/Service Broker,

315–316
Database Mail configuration information in, 295

767



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 768

msdb database (continued)

msdb database (continued)
overview of, 19
storage location of, 21

MSDTC (Microsoft Distributed Transaction
Coordinator), 15, 45, 592

MSMQ (Microsoft Message Queing), 6
MSSQLFDLauncher (SQL Full-Text Filter Daemon

Launcher), 14
MSSQLServer (SQL Server) service, 13
MSX_DOP parameter, workload groups, 542
MSXOperator account, multi-server jobs, 357
Multidimensional eXpression. See MDX

(Multidimensional eXpression) language
multiple instances, installing, 6–7, 719–720
multiple publishers/multiple subscribers model,

replication, 596
multiple publishers/single subscriber model,

replication, 596
multi-server jobs

creating, 356–358
using GUIDs for, 326

N
name resolution

named instances, 14
schemas and, 153

named instances
configuring for installation, 38
name resolution, 14

Named Pipes protocol, 262, 266–270
namespaces

in database projects, 616
database schema and, 16
.NET and CLR, 609

naming conventions
configuring virtual server, 46–49
designing efficient tables, 481
managing database users, 214
new database, 132
objects, 16–17
schema objects, 152

narrow indexes, 493
NAS (network attached storage), 30–31
Native mode, Reporting Services installation,

719–720
natural keys, 489–491
navigation, bookmark, 61
nchar data type, 116
.ndf extension, 119, 121
.NET

and CLR, 609–610
data types compatible with, 618–619
security, 634–636
SQL Server CLR objects. See SQL CLR objects
support for threading, 633

NET SEND RECIPIENT, SQL Server Agent, 317–318
NET START command, SQL Server Agent, 317
NET STOP command, SQL Server Agent, 317

network attached storage (NAS), 30–31
network communication

Named Pipes protocol, 262
Shared Memory protocol, 262
SQL Native Client Configuration, 264–265
SQL Server endpoints. See endpoints
TCP/IP protocol, 262–264
Virtual Interface Adapter protocol, 264

Network Configuration node, Configuration Manager,
100

network counters, 406–407
network hardware, 477–478
Network Load Balancing (NLB), 555
Network Name, virtual server, 47
network protocols

Named Pipes, 262
overview of, 261–262
security best practices, 258
Shared Memory, 262
TCP/IP, 262–264
Virtual Interface Adapter, 264

New Data Source Wizard, 679–682
New Database Reference, 613
New Database screen, 132–133
New Dimension Wizard, 684
New Filegroup dialog, 135
New Job Schedule screen, 335–336
New login dialog box, 206
New Publication Wizard, 597–600
New Subscription Wizard, 601–602
NLB (Network Load Balancing), 555
NO_CHECKSUM, RESTORE command, 383
node table, primary XML indexes, 170
nodes, clustering, 554
NOEXPAND hint, 494
NOEXPAND table hint, 510
NOLOCK/READUNCOMMITTED table hint, 511
non-clustered indexes

clustered indexes vs., 165
filtered indexes as, 167–168
included columns on, 167
overview of, 166–167
performance advantage of filegroups, 136–137

None option, Page Verify, 147
non-overlapping partitions, 597
non-XML format file, BCP files, 104–105
NORECOVERY, RESTORE command, 382–383
normalization

de-normalization vs., 483–484
designing efficient tables, 480–483
minimizing blocking with, 498

Notification Services, 7
ntext data type, 117
NTFS file system, FILESTREAM storage for, 4
Null block, data pages, 121–122
NULL values

ANSI NULL Default setting, 140
ANSI NULLS Enabled setting, 140–141
Concatenate Null Yields Null option, 144
limiting result sets, 531–532

768



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 769

In
de

xparameterized row filters, merge replication

numeric data type, 114–115
Numeric Round-Abort, database option, 146–147
nvarchar data type, 116–117
nvarchar(MAX) data type, 117–118

O
Object Explorer

configuring log shipping, 558–559
controlling permission states, 226
creating logins in Management Studio, 206–207
creating new credential, 211–212
Details window, 62–64
overview of, 54–56

object model, Integration Services, 647
OEM (original equipment manufacturer) file, SQL

Server Agent, 317–318
OFFLINE database state, 145
OGC (Open Geospatioal Consortium) Simple Features

for SQL version 1.1.0, 117–118
OLAP (Online Analytical Processing) engine

Analysis Services using, 5, 641
hardware optimization, 474
terminology, 678–679
understanding, 677–678

OLAs (Operating Level Agreements), 553
OLTP (Online Transaction Processing)

Database Engine and, 3
hardware optimization, 474
normalizing, 640
OLAP engine vs., 5

On Change: Log Only Evaluation mode, policies, 288
On Change: Prevent Evaluation mode, policies, 288
ON DELETE CASCADE, foreign key constraints, 187
ON DELETE SET DEFAULT, foreign key constraints, 188
ON DELETE SET NULL, foreign key constraints, 187
On Demand Evaluation mode, policies, 288
On Schedule Evaluation mode, policies, 288
ON UPDATE CASCADE, foreign key constraints, 187
ON UPDATE SET DEFAULT, foreign key constraints, 188
ON UPDATE SET NULL, foreign key constraints,

187–188
Online Analytical Processing. See OLAP (Online

Analytical Processing) engine
ONLINE database state, 145
ONLINE option, rebuilding index, 180–181
online resources

altering database compatibility level, 140
Microsoft BI roadmap, 644
sample databases for this book, 49
software requirements, 32
user databases, 20

Online Transaction Processing. See OLTP (Online
Transaction Processing)

Open Geospatioal Consortium (OGC) Simple Features
for SQL version 1.1.0, 117–118

OPEN MASTER KEY statement, 243
Operating Level Agreements (OLAs), 553
operators, creating, 342–345

optimization, 473
constraints vs. triggers, 488
dangers of time-outs, 498–499
database recovery model, 479–480
deciding what to index, 488–494
declarative referential integrity, 485–488
designing efficient tables, 480–485
filtered indexes, 494–497
hardware, 474–478
indexed views, 494–497
minimizing blocking, 497–498
overview of, 473
query. See Query Optimizer
T-SQL. See T-SQL (Transact-Structured Query

Language) optimization
using Resource Governor. See Resource Governor

OPTION clause, query hints, 512
Options page, Dataset Properties dialog, 724
Options window. See database options
Oracle killer (SQL Server 2005), 2–3
Oracle replication, 595
ORDER BY clause, T-SQL, 527
original equipment manufacturer (OEM) file, SQL

Server Agent, 317–318
orphaned users, checking user databases, 394–395
overlapping partitions, 597
Overview section, Activity Monitor, 412
ownership. See also dbo user (database owner)

creating new database, 132–133
cross-database ownership chain option, 144
schema, 153–154
specifying for CREATE ROLE, 220–221

P
Package Explorer, Integration Services, 670
packages, SSIS

control flow, 661
control flow tasks, 662–664
creating, 658–659, 670–675
data flow, 665–669
event handling, 669–670
executing, 656
Integration Services runtime engine, 648
Package Explorer and, 670
precedence constraints, 664–665
task grouping, 665

Page Free Space (PFS) pages, 122
Page Life Expectancy counter, 406
page restore option, 381
Page Splits/Sec counter, 407–408
Page Verify, database option, 147–148
pages, data files, 121–123
Pages/Sec counter, 405
Parameterization, database option, 148–149
parameterized row filters, merge replication, 597

769



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 770

Parameters and Filters page, Dataset Properties dialog

Parameters and Filters page, Dataset Properties
dialog, 724

Partial database backup, 371, 378
PARTIAL option, RESTORE command, 385
Partial restore, 390–392
Partition Switching, 5
partitioning tables

data compression and, 164–165
overview of, 156–164
replicating indexes and, 598
using horizontal partitions, 480–481

passwords
for complex SQL logins, 205
creating logins with T-SQL, 208
security best practices, 258

PATH indexes, secondary XML, 171–172
Pause button, mirror sessions, 584–585
PDF rendering extension, Reporting Services, 711
PDS (Physical Design Structures), 99–100
peer-to-peer transactional replication, 593–594
performance

creating partitioned tables, 160–161
filegroups for, 136–137
increasing RAM for, 26
monitoring. See monitoring, performance

Performance (Heat) Maps, ProClarity, 643
performance condition alerts, 351–352
Performance Counters Collector type, 461
Performance Management, 640
Performance Point Server (PPS), 643–644
Permission sets, SQL CLR, 634–636
permissions

assembly, 196–197
database scope, 235–238
endpoint, 278
managing with Management Studio, 240–243
overview of, 225–229
schema scope, 238–239
server, 229–235
SSAS, 700–702

PFS (Page Free Space) pages, 122
Physical Design Structures (PDS), 99–100
physical security, 258
physical storage data types. See data types, physical

storage
Pipe Name property, Named Pipes, 262
piping, PowerShell cmdlets, 107
PKI (Public Key Infrastructure), 250, 739
plain-text documents, configuring, 82
plan cache, Query Optimizer, 500–501, 514
plan guides, Query Optimizer, 512–517

creating, 515–517
creating from plan cache, 514
defined, 512–513
freezing plans, 514–515
parameters for creating, 513–514

planning, database, 129–131
Planning Server, Performance Point, 643
Plug-In Selection, Source Control, 90
Plug-in Settings, Source Control, 90

Point-in-time restore, 392–393
policies. See also Policy-Based Management

Central Management Server, 293–294
clustered service, 47–48
enforcing on multiple servers, 60

Policy-Based Management
conditions, 287
defined, 4
effective policies, 289–290
facets, 287
naming policies, 290–292
overview of, 286
policies, 288
policy categories, 289
targets, 286–287

POP3 (Post Office Protocol) server, obtaining, 284
Post Office Protocol (POP3) server, obtaining, 284
PowerShell, 4, 106–109
PPS (Performance Point Server), 643–644
precedence constraints, Integration Services,

664–665, 674–675
preparation phase, distributed transactions, 592
primary clusters, 556
primary data files, 21
Primary filegroups, 21, 136
primary key

as cluster key, 492
constraints, 181–183, 485
designing efficient tables, 480
for optimization, 489–491

primary node, clusters, 556
primary server

configuring failover, 571–572
log shipping in Management Studio, 559
log shipping in T-SQL, 564–565
preparing log shipping, 558

primary XML indexes, 170–171
principal database, database mirroring, 572–573
principal server, database mirroring

configuring, 577–578
configuring in T-SQL, 579
modes, 574–575
monitoring, 581–584
overview of, 573

principals
CREATE APPLICATION ROLE statement, 223–224
CREATE ROLE statement, 221–222
credentials, 210–212
database users, 214–219
defined, 204
finding in database, 224–225
fixed database roles, 219–221
logins, 205–210
overview of, 204–205
security best practices, 258
server roles, 212–214

principle of least privilege, 229, 258
priority, Honor Broker Priority, 146
private keys, 248–250
private profiles, Database Mail, 298–299

770



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 771

In
de

xRAID (Redundant Array of Inexpensive Disks)

procedure cache, clearing, 501
processadmin server role, 213
Processes section, Activity Monitor, 412
processor counters, 403–404
Processor Queue Length counter, 404
processors, installation requirements, 27
ProClarity, 643
Products Hierarchy, 687–689
Professional Microsoft SQL Server 2008

Admininstration (Wiley, 2008), 136
Professional Microsoft SQL Server 2008 Analysis

Services 2008 with MDX (Wiley, 2009),
702–703

profile, Database Mail
associating with account, 303–304
changing default, 308
changing name or description, 304–305
changing sequence of accounts, 305
configuring, 298–299
controlling access to, 306–308
creating new, 301–302
deleting, 309
managing, 301
removing account from, 309
removing association between principal and, 308
removing from msdb database, 309

Profiler
analyzing deadlocks, 420–425
analyzing queries, 425–427
auditing security events, 441–442
auditing using, 441–442
monitoring, 420
SQL Server Trace, 93–94
Trace Properties dialog, 94–97
using DTA with, 523

programming objects, 193–200
assemblies, 196
defaults, 199
functions, 193–194
programming object models, 12
rules, 200
stored procedures, 193
triggers, 194–195
user-defined data types, 196–198
user-defined table types, 198–199
user-defined types, 199

project folders, Solution Explorer, 59
properties, plan guide, 516–517
Properties tab, Solution Explorer, 660
Properties window, 60
PROPERTY indexes, secondary XML, 173
Protocol tab, TCP/IP, 262–263
protocols. See network protocols
proxies, 353–356, 360
Public Key Infrastructure (PKI), 250, 739
public keys, 248–252
public profiles, Database Mail, 298
public server role, 212–213
publications, and replication, 591–597, 600
publishers, and replication

configuring New Subscription Wizard, 601
defined, 590
replication models, 595–596
replication types, 591–595
SQL Server replication types, 591
using filtering, 596–597

publishing reports, Reporting Services, 729
pull replication, 590
Pure Log backup, Transaction Log, 371
push replication, 590

Q
queries

analyzing with Profiler, 425–427
Central Management Server support for, 293–294
Code Editor support for, 56
Parameterization settings, 148–149
within sp_send_dbmail, 312–313
troubleshooting with Error List, 62

Queries folders, projects, 59
Query Activity Collector type, 461
Query Designer toolbar, 71–73, 80
Query Editor. See Code Editor
Query Execution section, SSMS, 83–85
query hints, 512
Query Optimizer, 499–500

correlating performance data, 523–525
Database Engine Tuning Advisor, 517–523
execution plans, 500–504
hints, 510–512
managing indexes, 505–510
overview of, 499–500
plan guides, 512–517
updating statistics, 504
using DTA with Profiler, 523

Query page, Dataset Properties dialog, 723
Query Results section, SSMS, 85–87
Query Statistics collection set, 462
Query Statistics History report, Data Collector, 466
Queue Reader Agent, 591
queues, Service Broker

creating, 743
granting, denying, revoking actions for, 227–228
overview of, 737
used by services, 737

quorum, Windows Clustering, 555
quorum device, Windows Clustering, 555
Quoted Identifiers Enabled, database option, 149–150

R
RAID (Redundant Array of Inexpensive Disks)

improving performance using, 137
installation requirements, 28–32
storage optimization, 476
types of, 28–30

771



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 772

RAM

RAM, 26–28
RDBMS (Relational Database Management Platform),

3
RDL (Report Definition Language), 712
Read Only

Database option, 144
marking all data within filegroups as, 136
resource database as, 18

READ_WRITE_FILEGROUPS, restore process, 381
real data type, 115
REBUILD option, ALTER INDEX, 180–181
Recent Expensive Queries, Activity Monitor, 413
recording transactions, 125–126
records, retrieving from table, 538–539
RECOVERING database state, 145
RECOVERY, RESTORE command, 382–383
recovery models, database

choosing for optimization, 479–480
overview of, 365–366
settings, 138–139

RECOVERY PENDING database state, 145
Recursive Triggers Enabled, database option, 150
Redo phase, restore process, 379
Redundant Array of Inexpensive Disks. See RAID

(Redundant Array of Inexpensive Disks)
Registered Servers window, 60, 293
Registration Information screen, Installation Wizard,

35
Relational Database Management Platform (RDBMS),

3
Remote Procedure Call (RPC), 262
remote service binding, Service Broker, 739
Remove Mirror button, 586
REMOVE PRIVATE KEY, 249
rendering, report processor, 709
rendering extensions, Reporting Services, 711
REPLACE option, RESTORE command, 385
replication

agents, 590–591
distributed transactions, 592–593
merge replication, 594–595
Oracle, 595
overview of, 589–590
replication models, 595–596
snapshot, 594
transactional, 593–594
types of, 591–595
using filtering, 596–597
using for partitioned tables and indexes, 597
using New Publication Wizard, 597–600
using New Subscription Wizard, 601–602
using Replication Monitor, 602–604

Replication job steps, 328
Replication Management Objects (RMOs), 12
Replication Monitor, 602–604
Replication Services, 6
Report Builder

connecting to data, 721–725
creating reports, 721
defined, 642

laying out report data, 725–729
overview of, 715
publishing reports, 720

Report Center, MOSS 2007, 642
Report Definition Language (RDL), 712
report definition process, report processor, 709
report delivery, Reporting Services, 729–731
Report Designer, 720–721
Report Manager, Reporting Services, 101, 715–716,

729
report processing extensions, Reporting Services, 712
report processor, Reporting Services, 709
Report Server, Reporting Services, 101, 708, 729
Report Wizard, 721
Reporting Services. See SSRS (SQL Server Reporting

Services)
Reporting Services Configuration Manager, 100–102,

712–713
Reporting Services Server, 15
reports. See also Report Builder; SSRS (SQL Server

Reporting Services)
configuring for error and usage, 44
Data Collector, 466–467
enabling in Object Explorer Details window, 62–63
minimizing blocking, 498

REQUEST_MAX_CPU_TIME_SEC parameter, 542
REQUEST_MAX_MEMORY_GRANT_PERCENT parameter,

542
REQUEST_MEMORY_GRANT_TIMEOUT_SEC parameter,

542
Reseller Attribute Relationships, 691–692
Reseller Hierarchy, 689–692
resource database

overview of, 19
storage location of, 21
working with, 112

Resource Governor
configuring, 541–545
defined, 4
monitoring, 545–546
overview of, 540–541
using, 546–551

resource groups, clusters, 47–48
resource managers, distributed transactions, 592
resource pools, Resource Governor, 541–542
ResourcePool Stats performance counter, 545
Resources Wait section, Activity Monitor, 412
RESTORE command, 380, 382
RESTORE DATABASE database_name statement, 380
RESTORE LOG database_name statement, 381
RESTORE MASTER KEY statement, 245
RESTORING database state, 145
restoring databases, 379–395

Change Data Capture limitations, 451
configuring log shipping, 562
from Database snapshots, 400
delaying recovery, 380
FROM options, 381
phases of, 379
preparation tasks, 385–386

772



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 773

In
de

xSelect a Partitioning Column page, partitions

RESTORE command, 380
RESTORE DATABASE database_name, 380
restore process, 379
system databases, 393–395
user databases, 387–393

Restrict Access, database option, 150
Restricted File Growth button, 138
RESTRICTED_USER mode, 385
result sets, limiting, 527–530
Resume button, mirror sessions, 584–585
Review Data Type Mappings, Import/Export Wizard,

655
REVOKE command, permissions, 226–228
revoked permissions, 226–228
RID lookup, execution plans, 502–503
RMOs (Replication Management Objects), 12
roles

application, 222–223
Data Collector, 458
fixed database, 219–220
fixed server, 212–214
Management Data Warehouse, 458–459
managing permissions in SSAS, 698–702
more information on, 224
SQL Server Agent, 321–323
user-defined database, 220–222

rollback transactions
closing explicit transactions, 125
closing implicit transactions, 124–125
closing open cursor, 85
table variables not affected by, 540

routes, Service Broker, 737–738
ROWGUID column, FILESTREAM, 119
rows

data compression for, 164–165
data pages containing data from, 121–122
determining changes to, 452–455

rowversion data type, 116
RPC (Remote Procedure Call), 262
rule of nines, 554
runtime engine, Integration Services, 648

S
sa (system administrator) account

overview of, 132–134
security best practices, 258
specifying password for, 206

SAFE Permission Set, 635
SAM (Security Accounts Manager), 205
SANs (storage area networks), 30–32
scalar functions

defined, 193
granting, denying, revoking actions for, 227–228
SQL CLR, 619–620

Scale-out Deployment, Reporting Services
Configuration Manager, 102

scheduled jobs, SQL Server Agent
creating, 335–338

creating with sp_add_schedule, 338–341
creating with sp_attach_schedule, 341
defined, 13
server configuration, 39
system properties, 319–321

scheduling and delivery processor, Reporting Services,
709, 730

schema scope, 16, 238–239
schemas

creating, 153–154
creating Service Broker objects, 741–742
maintenance of, 154–155
managing database users, 214–216
name resolution and, 153
overview of, 152–153
system view for, 191

Script button, 151–152
scripts

creating with Object Explorer, 54–56
generating, 151–152
Solution Explorer and, 58–60
SQLCMD accepting parameters of, 103
using bookmarks, 60–61

SCSI (Small Computer Systems Interface), and SANs,
30

search space, queries, 499
second normal form, 482
second phase, distributed transactions, 593
Secondary Global Allocation Map (SGAM) page, 122
secondary nodes, clustering, 556
secondary servers

configuring failover, 571–572
log shipping in SSMS, 560–562
log shipping in T-SQL, 565–566

secondary XML indexes, 171–173
Securables page, 214
security

application roles for, 222–224
applying clustered service policies, 47–48
authentication modes, 22, 201–203
best practices, 257–259
CLR options, 633–636
with CREATE ROLE statement, 221–222
Database Mail profiles for, 298
for New Subscription Wizard, 601–602
Reporting Services, 710, 718–719
Service Broker, 738–739
for Service Broker endpoints, 278
SSAS, 700–702
using encryption. See encryption
using permissions. See permissions

Security Accounts Manager (SAM), 205
Security Catalog Views, 214, 224
Security Context window, SSAS, 701–702
securityadmin server role, 213
segregation, data, 136
Select a Partition Function page, partitions, 162–163
Select a Partition Scheme page, partitions, 162–163
Select a Partitioning Column page, partitions,

161–162

773



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 774

self-signed certificates

self-signed certificates, 250–251
sending mail, with Database Mail, 310–314
Server Activity collection set, 461–462
Server Activity History report, Data Collector,

466–467
Server Audit Specification, SQL Server Audit,

431–432, 436
Server Network Interface (SNI), 11
Server restriction property, policies, 288
server roles, 212–214
serveradmin server role, 213, 216
server-level only action groups, Server Audit

Specification, 431–432
servers

active/passive clustering, 556–557
configuring database mirroring, 577–578
configuring Log Shipping monitor, 562–563
creating multi-server jobs, 356–358
database mirroring roles, 573
overview of, 15–16
permissions, 229–235
preparing for log shipping, 558
using in clustering solution, 556

Service Account, Reporting Services Configuration
Manager, 101, 718–719

Service Broker, 6, 730
configuring msdb database for, 315–316
contracts, 737
conversations, 734–736
database setting, 143
dialog security model, 738–739
endpoints, 277
granting, denying, revoking actions for, 227–228
Identifier, 150–151
managing with SSMS, 753
overview of, 6
queues, 737
routes, 737–738
services, 737
transport security model, 739
using SOA model, 733–734

Service Broker, sample application
creating objects for TicketInputService, 744–746
creating objects for TicketNotifyService,

746–749
creating Service Broker objects, 741–744
creating/preparing database, 740–741
overview of, 739–740
testing, 749–753

Service Level Agreements (SLAs), 553
service master key, 243, 245
Service Oriented Architecture (SOA), and Service

Broker, 6, 278, 733–734
services

applying policies to clustered, 47–48
configuring for installation, 38–39
configuring SQL Server Agent, 317
security best practices, 258–259
Service Broker. See Service Broker
types of, 13–15

Services node, Configuration Manager, 100
SET NOCOUNT ON command, 526
SET ROWCOUNT, 528–529
SET TRUSTWORTHY ON option, 315, 360
setup support rules, SQL Server, 34–37
setupadmin server role, 213
SETVAR command, 103–104
severity level(s), event-based alerts, 346
SGAM (Secondary Global Allocation Map) pages, 122
Shared Memory protocol, 262, 266–270
SharePoint

BI side of, 642–643
Document Library delivery extension, Reporting

Services, 712
Integrated mode, Reporting Services, 719–720

Shiloh code name, 2
Show Plan files, reading, 427
ShowPlan, XML, 507–508
SHOWPLAN options, Query Optimizer, 501
Simple Mail Transfer Protocol (SMTP) server

Database Mail using. See Database Mail
obtaining, 284

Simple Object Access Protocol (SOAP), 272–277
Simple recovery model

Full backup strategy for, 376
for optimization, 479–480
overview of, 366
setting database options, 139

single publisher/multiple subscriber model,
replication, 595–596

SINGLE_USER mode, 385
SLAs (Service Level Agreements), 553
Small Computer Systems Interface (SCSI), and SANs,

30
smalldatetime data type, 115
smallint data type, 114
smallmoney data type, 115
SMOs (SQL Management Objects), 12
SMTP (Simple Mail Transfer Protocol) server

Database Mail using. See Database Mail
obtaining, 284

snapshots
Database Snapshots. See Database Snapshots
replication, 591, 594
using Reporting Services, 729–730
using Snapshot Agent, 591, 600

SNI (Server Network Interface), 11
SOA (Service Oriented Architecture), and Service

Broker, 6, 278, 733–734
SOAP (Simple Object Access Protocol), 272–277
software requirements

Reporting Services installation, 717–718
SQL Server 2008 installation, 32–33

solid-state drives, 476, 477
Solution Explorer

adding solution to source control, 74
overview of, 58–60
Properties window, 60

solution file, Solution Explorer, 59–60
sort scan, execution plans, 503

774



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 775

In
de

xSQL Server Configuration Manager

sorting, T-SQL optimization, 527
Source Control configuration, Management Studio IDE,

90
Source Control toolbar, 73–75
sp_add_alert, 349–351
sp_add_job, 325–327
sp_add_jobserver, 326–327
sp_add_jobstep, 330–333
sp_add_notification, 349
sp_add_operator, 343–345
sp_add_schedule, 338–340
sp_addlogin, 207
sp_addmessage, 347
sp_attach_schedule, 341
sp_change_users_login, 395
sp_configure, 300, 610–611
sp_cycle_agent_errorlog, 410
sp_cycle_errorlog, 410
sp_grantlogin, 207
sp_helpdb, 133–134
sp_lock, 415
sp_purge_jobhistory, 322
sp_send_dbmail, 310–314
sp_spaceused, 428–429
sp_update_job, 344
sp_who, 414–415
sp_who2, 415
sparse columns, 451
spatial data types, 5
spatial indexes, 169
Sphinx code name, 2
spindles, 29
SQL CLR objects

adding assembly, 617–618
aggregates, 627–629
compatible data types, 618–619
creating assembly, 611–617
deployment with Visual Studio, 629–632
enabling, 611
overview of, 610–611
Permission sets, 634–636
securing, 634
stored procedures, 621–622
triggers, 622–623
user-defined functions, 619–621
user-defined types, 623–626

SQL Editor toolbar, 75–76
SQL Full-Text Filter Daemon Launcher

(MSSQLFDLauncher), 14
SQL logins, 205
SQL Mail

configuring Alert System properties, 318–320
Database Mail vs., 360
as legacy feature, 295

SQL Native Client Configuration, 100, 264–265
SQL Server 2000, 2
SQL Server 2005, 2, 5
SQL Server 2008, introduction

architecture, 11–15
Database Engine, 3

database objects, 15–17
database storage, 20–22
database types, 18–20
defined, 3
editions, 7–11
history of, 1–3
release of, 3
security, 22

SQL Server 4.2, 1–2
SQL Server 6.0, 2
SQL Server 6.5, 2
SQL Server 7.0, 2
SQL Server Agent

administrative best practices, 360
alerts. See alerts, creating
multi-server jobs, 356–358
operators, 342–345
proxies, 353–356
Reporting Services dependence on, 709
schedules, 335–341
scheduling jobs, 39
security, 321–323
using Log File Viewer, 410
using msdb database, 18

SQL Server Agent, configuring
Advanced Properties, 317–319
Alert System Properties, 318–320
connection properties, 320
General Properties, 317–318
History properties, 320–321, 323
Job System Properties, 319–320
New Publication Wizard, 600
New Subscription Wizard, 602
overview of, 316–317

SQL Server Agent, creating jobs, 323–335
adding job steps, 328–333
creating job categories, 327
overview of, 323–324
token replacement, 333–334
using tokens in job steps, 334–335
using T-SQL, 325–327

SQL Server Audit
Audit Destination, 434
Audit Package, 431
auditing security events, 435–438
Database Audit Specification, 433–434
enabling targeting of security log, 434–435
overview of, 430
Server Audit Specification, 431–432

SQL Server Authentication Mode, 22, 321
SQL Server Compact Edition

Editor toolbar, 77
overview of, 8–9
queries supported by Code Editor, 56
Script, Solution Explorer, 58–60

SQL Server Configuration Manager
configuring server protocols, 261
configuring SQL Server Agent, 317

775



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 776

SQL Server Configuration Manager (continued)

SQL Server Configuration Manager (continued)
overview of, 100
SQL Native Client Configuration,

264–265
SQL Server counters, 407–408
SQL Server endpoints. See endpoints
SQL Server event-based alerts, 345–351
SQL Server Extended Events. See Extended Events

engine
SQL Server Installation Center, 34–37

Analysis Services configuration, 43
collation settings, 40–42
configuring virtual server name, 46–49
Database Engine configuration, 42–43
error and usage reporting, 44
feature selection, 37–38
final steps, 45
instance configuration, 37–38
Reporting Services configuration, 43
sample databases, 49
server configuration, 38–40
validating Install Rules, 44
to Windows cluster, 45–46

SQL Server Log, 438–439
SQL Server Management Studio. See SSMS (SQL

Server Management Studio)
SQL Server (MSSQLServer) service, 13
SQL Server Object Explorer configuration section,

87–88
SQL Server Profiler. See Profiler
SQL Server Replication. See replication
SQL Server Reporting Services. See SSRS (SQL Server

Reporting Services)
SQL Server Resolution Protocol (SSRP), 14
SQL Server Script, 58–60
SQL Server Trace

capturing events using, 442–443
Collector type, 461
Event Notifications and, 315–316
monitoring Resource Governor events, 545
overview of, 93–94
viewing results of with Profiler, 420

SQL Solution Options file, 59
sql_variant data type, 117
SQLAgentOperatorRole, 322–323
SQLAgentReaderRole, 322
SQLAgentUserRole, 321–322
SQLCMD utility

overview of, 102–104
recovering master database, 393–394
using PowerShell to invoke, 108–109

sqlps utility, 107
SQLServerADHelper100 (SQL Server Active Directory

Helper) service, 13
SQLServerAgent (SQL Server agent) service, 13
SQLServerOLAPBrowser (SQL Server Browser) service,

14
SQLServerOLAPService (SQL Server Analysis

Services), 14
SQLWriter (SQL Server VSS Writer) service, 15

square brackets [ ], Quoted Identifiers, 149–150
SSAS (SQL Server Analysis Services)

BI and, 641
collation, 40
configuring, 43
defined, 5
Editors toolbar, 77
job steps, 328
OLAP and, 677–679
overview of, 677
Project template, 92
queries supported by Code Editor, 56
Query Execution, 85
Query Results, 87
run by SQLServerOLAPService, 14
security, 698–702
using data mining, 704–705
using MDX language, 703–704

SSAS (SQL Server Analysis Services), working with
browsing cube, 697–698
creating cube, 684–686
creating Data Source view, 682–683
creating hierarchies, 686–695
creating project, 679
defining data source, 679–682
defining dimensions, 684
deploying project, 695–696

SSIS (SQL Server Integration Services), 5, 645–646
Business Intelligence of, 641
exporting data, 656–658
importing data, 649–656
Integration Services, 646–647
Integration Services data flow, 648
Integration Services object model, 647
Integration Services runtime engine, 648
job steps, 328
MSDTSServer100 service creating/managing, 15
overview of, 5, 645–646

SSIS (SQL Server Integration Services), transforming
data, 658–659

control flow, 661
control flow tasks, 662–664
creating simple package, 670–675
data flow, 665–669
event handling, 669–670
overview of, 658–659
Package Explorer, 670
precedence constraints, 664–665
Solution Explorer, 660–661
task grouping, 665
Toolbox, 659–660

SSMS (SQL Server Management Studio)
changing authentication mode from, 202
configuring database mirroring, 576–578
configuring log shipping, 558–563
configuring SQL Server Agent, 317
creating database with. See database, creating
creating logins in, 206–207
creating new job in, 323–324
creating partition using, 161–164

776



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 777

In
de

xsubscribers

Log File Viewer, 90–91
managing database mirroring, 584–587
managing permissions with, 240–243
managing Reporting Services, 713–714
managing Service Broker with, 753
managing SSAS, 679, 696–702
overview of, 52–53
toolbars. See toolbars

SSMS (SQL Server Management Studio) configuring,
82–90

Designers section, 89–90
Environment section, 82
overview of, 82
Query Execution section, 83–85
Query Results section, 85–87
Source Control section, 90
SQL Server Object Explorer section, 87–88
Text Editor section, 82–83

SSMS (SQL Server Management Studio), tool
windows, 53–64

Bookmark window, 60–61
Code Editor, 56–57
Error List, 62
Object Explorer, 54–56
Object Explorer Details window, 62–64
Properties window, 60
Registered Servers window, 60
Solution Explorer, 58–60
Template Explorer, 64
Toolbox window, 61
Web Browser window, 64

.ssmssln extension, 58
SSRP (SQL Server Resolution Protocol), 14
SSRS (SQL Server Reporting Services)

Business Intelligence of, 642
configuring, 43
creating reports with Report Builder, 721–729
defined, 6
designing reports with Report Designer, 720–721
installation and configuration, 717–720
overview of, 707
publishing reports, 729
report delivery, 729–731
ReportingServicesServer service running, 15

SSRS (SQL Server Reporting Services), components
and tools

Business Intelligence Development Studio, 714
extensions, 710–712
Report Builder 2.0, 715
Report Manager, 715–716
report processor, 709
Report Server, 708
Reporting Services Configuration Manager, 712–713
scheduling and delivery processor, 709
SQL Server Management Studio, 713–714

Standard Edition, SQL Server 2008, 8, 10
Standard subscriptions, Reporting Services, 730–731
Standard toolbar, 77–78
Standard transactional publication replication, 593
STANDBY, RESTORE command, 383

started state, TSQL endpoints, 266
start-up options, configuration, 82
states, database options, 144–145
states, permission, 225–226
static row filters, replication, 597
statistics

Auto Create Statistics, 142
Auto Update Statistics, 143
Auto Update Statistics Asynchronously, 143
Date Correlation Optimization Enabled, 145
not calculated on table variables, 540
retrieving from tables, 181

statistics, Query Optimizer
identifying missing indexes, 506–507
overview of, 499–500
updating, 504

STATISTICS options, Query Optimizer views, 501
status bar, configuration settings, 82
STOP_ON_ERROR, RESTORE command, 383
stopped state, TSQL endpoints, 266
storage

architecture requirements, 30–32
in clustering solution, 556
FILESTREAM for, 4
optimization, 476–477
overview of, 20–22
RAID requirements, 28–30

storage architecture
data files, 120–123
database files, 119–120
Dynamic Management Views and functions, 113
FILESTREAM data, 118–119
overview of, 111
physical storage data types. See data types, physical

storage
resource database, 112
sys schema, 112
transaction log, 123–127

storage area networks (SANs), 30–32
stored procedures

configuring log shipping, 564–565
creating SQL CLR, 621–622
database users and roles, 224
managing logins, 210
minimizing blocking, 498
overview of, 193
processing message queues in Service Broker, 737
retrieving database information, 133–134
signing with digital signatures, 256

striping backups, 372
subscribers

defined, 590
replication models, 595–596
replication partitioned tables/indexes, 597
replication types, 591–595
SQL Server replication types, 591
using filtering, 596–597

777



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 778

subscriptions

subscriptions
configuring New Subscription Wizard, 601–602
Reporting Services, 730
tracking with Replication Monitor, 600

surrogate keys, 489–491
SUSPECT database state, 145
Sybase DataServer, 1–2
symmetric keys

creating, 247–248
defined, 243
encrypting data, 253–254

synonyms, 192–193, 227–228
sys schema, 112, 217
sysadmin role, 205–206
sysadmin server role, 213
sys.dm_db_index_physical_stats view, 174–178,

409
sys.dm_db_index_usage_stats view, 409
sys.dm_os_performance_counters view, 408–409
sysmail_add_account_sp, 302–303
sysmail_add_principalprofile_sp, 306–308
sysmail_add_profile_sp, 301
sysmail_add_profileaccount_sp, 303–304
sysmail_configure_sp, 300
sysmail_delete_account_sp, 309
sysmail_delete_mailitems_sp, 314–315
sysmail_delete_principalprofile_sp, 308
sysmail_delete_profile_sp, 309
sysmail_delete_profileaccount_sp, 309
sysmail_help_account_sp, 303
sysmail_help_profile_sp, 301–302
sysmail_mailitems table, 314
sysmail_update_account_sp, 305
sysmail_update_principalprofile_sp, 308
sysmail_update_profile_sp, 304–305
sysmail_update_profileaccount_sp, 305
sys.sm_db_index_physical_stats view, 510
sys.sp_cdc_enable_db, 445–446
sys.sp_cdc_enable_table, 445–446
sys.sysfiles, 429
system administrator account. See sa (system

administrator) account
System Area Network, 264
System Consistency Checker, 32
system data types, 196–198
system databases

defined, 18
master database, 18
model database, 18
msdb database, 19
overview of, 129
recovering, 393–395
resource database, 19
storage of, 20–22
tempdb database, 19

system functions, 194
System Stored Procedures

exercise using, 418–420
KILL command, 418
locking and, 416–417

monitoring with, 413–420
overview of, 193
sp_lock, 415
sp_who and sp_who2, 413–414

system tables, and backward compatibility, 112
system views, 191–192, 545

T
Tabbed Documents, tool windows as, 53–54
Table and Database Designers, 89–90
table data type, 119
Table Designer toolbar, 78
table hints, 510–511
table variables, 539–540
tables, 156–164

analyzing execution plans, 502
architecture, 155
capacity planning for, 130–131
Change Data Capture, 451–452
collation, 155–156
compressing, 4, 164–165
created by Change Data Capture, 451–452
creating for primary XML indexes, 170–171
Date Correlation Optimization Enabled option, 145
defined, 155
designing efficient, 480–485
DRI relationships between, 485–488
enabling/disabling Change Data Capture, 445–447
enforcing data integrity. See constraints
granting, denying, revoking actions for, 227–228
partitioning, 156–164
replicating partitioned, 598
user-defined types, 198–199
using constraints vs. triggers, 485
using DTA to analyze SQL script, 518–523

tables, maintaining
index fragmentation, 174–179
mitigating fragmentation with fill-factor, 179–180
removing fragmentation, 180–181

table-valued functions, 193, 620–621
Table-Valued Functions (TVFs), 447–449
Tabular Data Stream (TDS)

defined, 11
endpoints, 266–270

Tail Log backup, 371, 386
Target Only contract, Service Broker, 737
target servers

authentication in Central Management Server, 293
for multi-server jobs, 356–358

target type, data collection, 456
targets

data collection, 456
Policy Management, 286–287
Service Broker, 735–736, 742

task grouping, Integration Services, 665
Task Host Container, 662
tasks, Integration Services

control flow, 662–664

778



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 779

In
de

xtriggers

Data Flow Tasks, 665–669
grouping, 665–666
precedence constraints, 664–665
runtime engine, 648

TCP Dynamic Ports IP address, TCP/IP, 264
TCP endpoints, TSQL, 269–270
TCP Ports IP address, TCP/IP, 264
TCP/IP protocol

network communication, 262–264
SQL Native Client support for, 262–264
SQL Server communication, 11
TSQL endpoints for, 266–270

TDE (Transparent Data Encryption), 254–255, 259
TDS (Tabular Data Stream)

defined, 11
endpoints, 266–270

tempdb database
collation settings, 41
optimization, 476
overview of, 19
temporary tables, 539–540

template database, 18
Template Explorer, 64
templates, BIDS Project, 92, 679–680
temporary tables, 539–540
Terminate method, SQL CLR UDAs, 628
tessellation phase, spatial indexes, 169
testing

Service Broker application, 749–753
SSAS security, 701–702

Text data type, 117, 485
Text Editor, 79–83. See also Code Editor
text in row option, 118
text plans, Query Optimizer, 501
text/image pages, 122
third normal form, 480, 482–483
threading, 633
TicketInputService, 739–740, 744–746
TicketNotifyService, 739–740, 746–749
time data type, 116
time-outs, hidden dangers of, 498–499
timestamp data type, 116
tinyint data type, 114
tokens, 319, 333–335
tool windows. See SSMS (SQL Server Management

Studio), tool windows
toolbars

customizing, 67–68
Database Diagram, 68–69
Debug, 70
Debug Location, 70
Help, 70–71
overview of, 65–66
Query Designer, 71–73
Source Control, 73–75
SQL Editor, 75–76
SQL Server Analysis Services Editors, 77
SQL Server Compact Edition Editor, 77
Standard, 77–78
Table Designer, 78

Text Editor, 79–80
View Designer, 80
XML Editor, 80–81

Toolbars menu, 65–68
Toolbox, Integration Services, 659–660
Toolbox window, 61
tools

BCP utility, 104–106
BIDS, 91–93
Database Engine Tuning Advisor, 97–100
PowerShell, 106–109
Profiler, 93–97
Reporting Services Configuration Manager, 100–102
SQL Server Configuration Manager, 100
SQLCMD utility, 102–104

TOP N, 528–529
Torn_Page_Detection, Page Verify, 147–148
Trace Properties dialog, Profiler, 94–97
tracking changes

overview of, 444
using Change Data Capture. See CDC (Change Data

Capture)
using Change Tracking, 452–455

transaction date, choosing cluster key, 492
Transaction Log backup

Full and Differential backup with, 377
Full backup with, 376–377
overview of, 371
restore process, 387–388

transaction logs
Bulk-Logged recovery model and, 366
capacity planning for, 131
Change Data Capture and, 444
configuring log shipping. See log shipping
Copy Only backups on, 372
database storage in, 20–22
defined, 21
in Full recovery model, 365
overview of, 123
physical characteristics of, 126–127
recording transactions, 125–126
recovery model options, 138–139
restore process for, 381
in Simple recovery model, 366
transaction types, 123–125

transaction managers=, 592
Transactional Publications with Updatable

Subscriptions in a Hierarchical Topology, 593
transactional replication, 591, 593–594
Transact-SQL job steps, 328–329
Transact-Structured Query Language. See T-SQL

(Transact-Structured Query Language)
transformations, 667–668, 674–675
Transparent Data Encryption (TDE), 254–255,

259
transport security, Service Broker, 739
triggers

constraints vs., 488
DDL. See DDL (Data Definition Language) triggers
DML, 194

779



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 780

triggers (continued)

triggers (continued)
overview of, 194–195
Recursive Triggers Enabled option, 150
SQL CLR, 622–623

TroubleTicket.MessageLog, 745–746, 752
TroubleTicket.ProcessMessages, 746, 750, 752
TRUNCATE TABLE command, 365
TRUSTWORTHY option, Service Broker, 151, 741–742
T-SQL (Transact-Structured Query Language)

configuring, 82
creating new job, 325–326
database mirroring, 578–581, 584–587
getting best database performance, 608
log shipping, 563–571
logins, 207–208
permission states, 226
SQL Server 2008 support for, 12
SQLCMD utility and, 103
stored procedures written in, 193

T-SQL (Transact-Structured Query Language)
optimization, 526–527

ANSI-style join syntax, 530–531
cursor alternatives, 533–534
dealing with NULL values, 531–532
distinct aggregation, 537–538
grouping sets, 536–537
limiting result sets, 527–530
merge joins, 534–536
overview of, 526–527
Query Collector type, 461
retrieving records from table, 538–539
temp tables vs. table variables, 539–540

TSQL endpoints, 266–280
Tuning Options tab, DTA, 99–100, 519, 521
TVFs (Table-Valued Functions), 447–449
2PC (two-phased commit), 15, 592

U
UDA (user-defined aggregates), SQL CLRs, 627–629
UDPATE statement, CDC, 444–445
UDTs (user-defined types), 199, 623–626
UNC (Universal Naming Convention), 30, 594
Undo phase, restore process, 379
Unicode strings, table columns, 485
uniform extents, data files, 120
Uniform Resource Locator (URL), SOAP endpoints,

272–273
UNION ALL keyword, optimization, 527
unique constraints

enforcing data integrity, 183–184
for index optimization, 494
for optimization, 485

unique indexes, 183–184
uniqueidentifier data type, 116
uniqueifier, 166
Universal Naming Convention (UNC), 30, 594
UNSAFE Permission Set, 635–636
UPDATE statement, 124

UPDATE STATISTICS command, 504
updates, undoing with Database Snapshots, 398–399
UPDATEUSAGE command, 539
UPDLOCK table hint, 511
URL (Uniform Resource Locator), SOAP endpoints,

272–273
usage reports, 44
User Connections counter, 407
user databases

checking for orphaned users, 394–395
overview of, 20, 129
restoring, 387–393
storage of, 20–22

user-created stored procedures, 193
user-defined aggregates (UDA), SQL CLRs, 627–629
user-defined data types, 196–199
user-defined database roles, 220–221
user-defined filegroups, 136
user-defined functions, 193, 619–621
user-defined hierarchies, SSAS, 678
user-defined table types, 198–199
user-defined types (UDTs), 199, 623–626
users. See database users

V
validation tests, 34–37
VALUE indexes, secondary, 172–173
varbinary (MAX) data type, 117–119
varbinary data type, 116, 485
varchar (MAX) data type, 117–118
varchar data type, 116–117, 484–485
VarDecimal Storage Format Enabled, database option,

151
variable block, data pages, 122
variable-length data types, 116–117
VIA (Virtual Interface Adapter) protocol, 11, 264,

266–270
View Designer toolbar, 80
view server state permission, Activity Monitor, 411
views

Change Tracking, 453
dynamic management, 113
granting, denying, revoking actions for, 227–228
indexed, 494
monitoring Resource Governor, 545
overview of, 191
Query Optimizer execution plans, 501
resource database, 112
sys schema, 112
system, 191–192

Virtual Interface Adapter (VIA) protocol, 11, 264,
266–270

virtual servers, 556–557
virtualization

improving hardware utilization, 478
installation requirements, 32

Visual Studio
deploying SQL CLR objects with, 629–632
SQL Server Management Studio interface, 52–53

780



Leiter bindex.tex V2 - 03/25/2009 6:55pm Page 781

In
de

xzero normal form

Visual Studio for Applications (VSTA), 5
Volume Shadow Copy Service (VSS), 15
VSS (Volume Shadow Copy Service), 15
VSTA (Visual Studio for Applications), 5

W
Web Browser window, 64
Web Edition, SQL Server 2008, 8, 9–10
Web Service URL, Reporting Services Configuration

Manager, 101
Web Services, data-tier vs. XML, 272
WHERE clause, 529–530
while loops, alternatives to, 533–534
width sensitivity, collation settings, 40–41
Windows Application Log, 438–439
Windows Authentication Mode

Database Engine, 42–43
Database Mail, 297
database mirroring, 580
defined, 22
Mixed Mode, 22, 201–202
overview of, 201–202
Reporting Services, 710
SQL Server Agent connection properties, 321
SSAS relying on, 700
using when possible, 259

Windows Clustering
active/active clustering, 557
active/passive clustering, 556–557
configuring virtual server name, 46–49
considering, 558
installing SQL Server to, 45–46
overview of, 555–556

Windows collation, 40
Windows Executable (CmdExec) job steps, 328
Windows logins, 205, 293
Windows NT, 1–2
WITH CHECK, foreign key constraints, 186
WITH clause

database backup command, 373–374
RESTORE command, 382–385
table hints using, 510–511

WITH NOCHECK, foreign key constraints, 186
witness server, database mirroring, 573, 576–577,

579
WMI Event alerts, 352–353
WMI Query Language (WQL), 352
Workgroup Edition, SQL Server 2008, 8, 10
Working Set (sqlserver) counter, 405–406
workload groups, Resource Governor, 541–543
WorkloadGroup Stats performance counter, 545
workloads, 3. See also Resource Governor
WQL (WMI Query Language), 352
Write caching, 477

X
XACT_ABORT command, 499
XML (Extensible Markup Language)

CDC limitations, 451
configuration settings, 82
creating BCP files in, 105–106
SQL Server 2008 support for, 12

XML data type, 117, 485
XML Editor toolbar, 80–81
XML indexes, 169–173
XML plans, 501
XML rendering extension, Reporting Services,

711
XMLA (Extensible Markup Language for Analysis)

SQL Server Analysis Services Editors toolbar for,
77

SQL Server support for, 12
supported by Code Editor, 56

xp_instance-regwrite extended stored procedure,
202–203

Y
Yukon code name, 2

Z
zero normal form, 481

781



Take your library 
wherever you go.
Now you can access more than 200 complete Wrox books 
online, wherever you happen to be! Every diagram, description, 
screen capture, and code sample is available with your 
subscription to the Wrox Reference Library. For answers when 
and where you need them, go to wrox.books24x7.com and 
subscribe today!

Programmer to ProgrammerTM

• ASP.NET 
• C#/C++ 
• Database 
• General  
• Java
• Mac
• Microsoft Office 

• .NET 
• Open Source 
• PHP/MySQL 
• SQL Server 
• Visual Basic 
• Web
• XML 

Find books on

www.wrox.com

wrox_24x7_BOB_ad_final.indd   1wrox_24x7_BOB_ad_final.indd   1 9/8/2007   4:26:08 PM9/8/2007   4:26:08 PM



Beginning
Microsoft®

SQL Server® 2008 Administration
Professional Microsoft SQL Server 2008 Integration 
Services
978-0-470-24795-2
This book shows developers how to master the 2008 release of SSIS, covering topics 
including data warehousing with SSIS, new methods of managing the SSIS platform, 
and improved techniques for ETL operations. 

Professional SQL Server 2008 Reporting Services
978-0-470-24201-8
This book teaches solutions architects, designers, and developers how to use 
Microsoft’s reporting platform to create reporting and business intelligence solutions.

Professional Microsoft SQL Server 2008 Analysis Services
978-0-470-24798-3
This shows readers how to build data warehouses and multidimensional databases, 
query databases, and how to use Analysis Services and other components of SQL 
Server to provide end-to-end solutions. 

Professional Microsoft SQL Server 2008 Programming
978-0-470-25702-9
This updated new edition of Wrox’s best-selling SQL Server book has been expanded 
to include coverage of SQL Server 2008’s new datatypes, new indexing structures, 
manageability features, and advanced time-zone handling.

Professional Microsoft SQL Server 2008 Administration
978-0-470-24796-9
A how-to guide for experienced database administrators, this book is loaded with 
unique tips, tricks, and workarounds for handling the most difficult SQL Server 
administration issues. The authors discuss data capture, performance studio, Query 
Governor, and new techniques for monitoring and policy management.

Beginning Microsoft SQL Server 2008 Programming
978-0-470-25701-2
This comprehensive introduction to SQL Server covers the fundamentals and moves on to discuss how to create and change tables, manage 
keys, write scripts, work with stored procedures, and much more.

Beginning Microsoft SQL Server 2008 Administration
978-0-470-44091-9
This book teaches both novice and experienced database administrators how to leverage all of the features of SQL Server to deliver solid, 
reliable performance. All features and techniques are illustrated with real-world examples and step-by-step instructions. With this book, you’ll 
develop the skills required to successfully administer a SQL Server 2008 database, regardless of your experience level.

Beginning Database Design Solutions
978-0-470-38549-4
This introduces IT professionals—both DBAs and database developers—to database design. It explains what databases are, their goals, 
and why proper design is necessary to achieve those goals. It tells how to decide what should be in a database to meet the application’s 
requirements. It tells how to structure the database so the database performs well while minimizing the chance for error.

 Enhance Your Knowledge
Advance Your Career

Get more out of 
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in 
our P2P forums

Wrox Online Library
Hundreds of our books are available online 
through Books24x7.com

Wrox Blox 
Download short informational pieces and 
code to keep you up to date and out of 
trouble!

Chapters on Demand
Purchase individual book chapters in pdf 
format

Join the Community
Sign up for our free monthly newsletter at 
newsletter.wrox.com 

Browse
Ready for more Wrox? We have books and 
e-books available on .NET, SQL Server, Java, 
XML, Visual Basic, C#/ C++, and much more!

Contact Us. 
 We always like to get feedback from our readers. Have a book idea? 
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=1.632"



Beginning
Microsoft®

SQL Server® 2008 Administration

www.wrox.com

$49.99 USA
$59.99 CAN

Wrox Beginning guides are crafted to make learning programming languages and technologies easier than you think, providing a 
structured, tutorial format that will guide you through all the techniques involved.

Recommended 
Computer Book 

Categories

Programming

Software Development

ISBN: 978-0-470-44091-9

This book teaches both novice and experienced database administrators 
how to leverage all of the features of SQL Server to deliver solid, reliable 
performance.  All features and techniques are illustrated with real-world 
examples and step-by-step instructions. 

After a quick overview of SQL Server management tools and database 
components, you’ll walk through system installation and configuration, 
configuring and managing network communications, and automating 
administration tasks. You’ll gain insight into business continuity strategies, 
performance monitoring, and optimization. The authors also cover the 
complete suite of Business Intelligence tools, including SQL Server Integration 
Services, Reporting Services, Analysis Services, and Service Broker.

With this book, you’ll develop the skills required to successfully administer a 
SQL Server 2008 database, regardless of your experience level.

What you will learn from this book
● How to install, maintain, and manage a SQL Server 2008 implementation, 

and automate administrative tasks
● How to monitor performance using various tools and techniques
● Strategies for optimizing your database 
● Ways to ensure high availability
● How to begin using SQL Server as a BI platform
● How to configure and use BI components, including SQL Server Reporting 

Services
● How the Service Broker is used

Who this book is for
This book is for beginning to intermediate SQL Server database administrators 
who want to learn about managing a SQL Server environment.

 Enhance Your Knowledge
Advance Your Career

M
icro

so
ft

®

S
Q

L S
e
rve

r
® 20

08
 

A
dm

inistratio
n

Leiter, Wood, 
Cierkowski, Boettger

Beginning

spine=1.632"

Beginning
Microsoft® 

SQL Server® 2008
Administration

Chris Leiter, Dan Wood, Michael Cierkowski, Albert Boettger

Updates, source code, and Wrox technical support at www.wrox.com


	Beginning Microsoft® SQL Server® 2008 Administration
	Cover Page
	About the Authors
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Chapter 1: Introducing SQL Server 2008
	A Condensed History of SQL Server
	What Is SQL Server 2008?
	SQL Server 2008 Editions
	SQL Server 2008 Architecture
	SQL Server 2008 Database Objects
	SQL Server 2008 Databases
	SQL Server 2008 Database Storage
	SQL Server Security
	Summary

	Chapter 2: Installing SQL Server 2008
	SQL Server Installation Planning
	SQL Server Installation Center
	Installation Review
	Summary

	Chapter 3: SQL Server 2008 Tools
	SQL Server Management Studio
	Log File Viewer
	SQL Server Business Intelligence Development Studio
	SQL Server Profiler
	Database Engine Tuning Advisor
	SQL Server Configuration Manager
	Reporting Services Configuration Manager
	Command-Line Tools
	Summary

	Chapter 4: SQL Server 2008 Storage Architecture
	The Resource Database
	SQL Server Database Physical Structure
	Summary

	Chapter 5: SQL Server 2008 Databases
	System Databases
	User Databases
	Database Planning
	Creating Databases
	Database Diagrams
	Views
	Synonyms
	Programming Objects
	Summary

	Chapter 6: SQL Server 2008 Security
	SQL Server Authentication Modes
	Principals
	Permissions
	SQL Server Encryption
	Best Practices
	Summary

	Chapter 7: Configuring SQL Server Network Communication
	SQL Server 2008 Network Protocols
	SQL Native Client Configuration
	SQL Server Endpoints
	Summary

	Chapter 8: Automating Administrative Tasks
	Policy-Based Management
	Central Management Servers
	Database Mail
	Event Notifications
	SQL Server Agent
	Maintenance Plans
	Best Practices
	Summary

	Chapter 9: Disaster Prevention and Recovery
	Chapter Preparation
	Database Recovery Models
	SQL Server 2008 Database Backup
	SQL Server 2008 Backup Types
	Backup Options
	Backup Strategies
	Restoring Databases
	Command
	Database Snapshots
	Summary

	Chapter 10: Monitoring SQL Server
	Performance Monitoring
	Tools and Techniques for Monitoring
	Auditing
	Tracking Changes
	Data Collection
	Monitoring Database Modifications
	Summary

	Chapter 11 Optimizing SQL Server
	Hardware Optimization
	Design Considerations
	Query Optimization
	T-SQL Optimization Tips
	Resource Governor
	Summary

	Chapter 12: SQL Server High Availability
	Introduction to High Availability
	Failover Clustering
	Log Shipping
	Database Mirroring
	Summary

	Chapter 13: Introduction to Replication
	Replication Overview
	SQL Server Replication Agents
	SQL Server Replication Types
	SQL Server Replication Models
	Replication Tools
	Summary

	Chapter 14: Introduction to the Common Language Runtime
	Databases and Programming
	Is Transact-SQL Going Away?
	.NET and the CLR
	SQL Server CLR Objects
	Deployment with Visual Studio
	Programming Support
	Security Options
	Summary

	Chapter 15: An Administrator’s Guide to Business Intelligence
	Understanding BI
	Performance Management
	Business Intelligence Components
	Beyond SQL
	So Many Tools, So Little Time
	Summary

	Chapter 16: Introduction to SQL Server Integration Services
	About SSIS
	Importing and Exporting Data
	Transforming Data with SSIS
	Summary

	Chapter 17: Introduction to SQL Server Analysis Services
	Understanding OLAP
	Working with SSAS
	Managing SSAS
	Advanced SSAS Concepts
	Summary

	Chapter 18: Introduction to SQL Server Reporting Services
	SQL Server Reporting Services Overview
	Installation and Configuration
	Creating Reports
	Report Delivery
	Summary

	Chapter 19: Introduction to Service Broker
	Service-Oriented Architecture
	Service Broker Overview
	Service Broker Elements
	Security Considerations for Service Broker
	Creating a Sample Application
	Managing Service Broker with SSMS
	Summary

	Index




