
IN A NUTSHELL
A Desktop Quick Reference

SOSOLLSOSOL

sql_titlepg.qxd 10/13/00 5:27 PM Page 1

sql_titlepg.qxd 10/13/00 5:27 PM Page 2

Kevin Kline with Daniel Kline

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

IN A NUTSHELL
A Desktop Quick Reference

SOSOLLSOSOL

sql_titlepg.qxd 10/13/00 5:27 PM Page 3

SQL in a Nutshell
by Kevin Kline with Daniel Kline

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Gigi Estabrook

Production Editor: Mary Sheehan

Cover Designer: Ellie Volckhausen

Printing History:

January 2001: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly & Associates, Inc. The association between the
image of a chameleon and the topic of SQL is a trademark of O’Reilly & Associates,
Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and O’Reilly & Associates, Inc. was aware of a trademark claim, the designations
have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

Library of Congress Cataloging-in-Publication Data

Kline, Kevin E., 1966-
SQL in a nutshell : a desktop quick reference/Kevin Kline with Daniel Kline.
 p. cm.
Includes index.
ISBN 1-56592-744-3
1. SQL server 2. SQL (Computer program language) 3. Client/server computing.

I. Kline, Daniel.

QA76.73.S67 K55 2000
005.75'85--dc21 00-065206

ISBN: 1-56592-744-3 [4/01]
[M]

,COPYRIGHT.12247 Page iv Friday, March 23, 2001 10:05 AM

About the Author

Kevin Kline is the team leader for Information Architecture within Shared Informa-
tion Services at Deloitte & Touche LLP. Kevin and his team perform data and
infrastructure architecture in support of major knowledge management and transac-
tion processing systems for Deloitte’s Client Service Technology organization. Kevin
is also the author of Transact-SQL Programming (O’Reilly, 1999) (http://
www.oreilly.com/catalog/wintrnssql/) and numerous magazine articles on Microsoft
SQL Server. When he’s not pulling his hair out over work issues, Kevin likes to
romance his wife, play with his three kids, tinker with his ’66 Chevy pickup, and
garden.

Other than being Kevin’s brother, Daniel Kline is an Assistant Professor of English at
the University of Alaska, Anchorage, where he specializes in medieval literature, liter-
ary and cultural theory, and computer-assisted pedagogy. He completed his Ph.D. at
Indiana University, Bloomington, and in addition to numerous scholarly presentations,
Dan recently has published academic essays in Literary and Linguistic Computing,
Philological Quarterly, Chaucer Review, and Essays in Medieval Studies. When he’s not
spending time with his wife and two boys, Dan frets over his pet project, the
Electronic Canterbury Tales (http://cwolf.uaa.alaska.edu/~afdtk/ext_main.htm). Dan
can be reached at afdtk@ uaa.alaska.edu.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of SQL in a Nutshell is a chameleon. There are approxi-
mately 85 species of chameleons existing in the world today. They are mostly
indigenous to Africa, although there are a few species found in Asia and in Europe.
Most are tree dwellers. The chameleon is relatively small; the average adult size is
between 6 inches and 12 inches. It lives mostly on insects, and uses its long tongue
to capture its prey. Indeed, the tongue is a critical tool. It can stretch up to 1.5 times
the lizard’s body length, and there is an adhesive pad on the end, which the insects
are trapped on. There are several other characteristics common to all species of cha-
meleons. For example, its eyes are large and protruding, and the lizard can see 360
degrees around without moving its head or body. Its toes are on either side of its
feet, usually with three on one side and two on the other. This is ideal for moving
quickly and efficiently through tree branches.

Chameleons are best known for their ability to change their appearance to adapt to
their physical environment. Actually, several types of reptiles can change their skin
color, but the chameleon is far and away the most accomplished. This skill, which
is moderated by the nervous system, obviously is invaluable for hunting prey and
avoiding predators, and also helps to stablize body temperature. The extent of this
camouflage capability is related to the gender, age, and species of the lizard.

,AUTHOR.COLO.12098 Page 1 Friday, March 23, 2001 10:05 AM

Mary Sheehan was the production editor and proofreader for SQL in a Nutshell, and
Jeffrey Holcomb was the copyeditor. Emily Quill and Colleen Gorman provided
quality control. Linley Dolby provided production assistance. Brenda Miller wrote
the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is a 19th-century engraving from the Dover Pictorial
Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe’s ITC Garamond font.

Melanie Wang designed the interior layout based on a series design by Nancy Priest.
The text and heading fonts are ITC Garamond Light and Garamond Book. The illus-
trations that appear in the book were produced by Robert Romano using
Macromedia FreeHand 8 and Adobe Photoshop 5. This colophon was written by
Mary Sheehan.

Whenever possible, our books use a durable and flexible lay-flat binding. If the page
count exceeds this binding’s limit, perfect binding is used.

,AUTHOR.COLO.12098 Page 2 Friday, March 23, 2001 10:05 AM

iii

Computer Crime: A Crimefighter’s Handbok, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Table of Contents

Preface .. v

Chapter 1—SQL, Vendor Implementations,
and Some History ... 1

The Relational Database Model ... 1
The Databases Described in This Book .. 2
The SQL Standard ... 2
Dialects of SQL ... 6
Principles of Relational Databases ... 7

Chapter 2—Foundational Concepts ... 9

Row Processing Versus Set Processing ... 9
The Relational Model ... 10
SQL99 and Vendor-Specific Datatypes .. 10
Processing NULLS ... 18
Categories of Syntax ... 19
Using SQL ... 23
Conclusion .. 26

Chapter 3—SQL Statements Command Reference 27

Recommended Reading Approach .. 27
Quick SQL Command Reference ... 27
DROP Statements ... 96
Conclusion .. 162

,sql_ianTOC.fm.14129 Page iii Wednesday, November 29, 2000 4:45 PM

iv Table of Contents

Computer Crime: A Crimefighter’s Handbok, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 4—SQL Functions .. 163

Deterministic and Nondeterministic Functions 163
Types of Functions ... 164
Vendor Extensions ... 175

Chapter 5—Unimplemented SQL99 Commands 194

Appendix—SQL99 and Vendor-Specific Keywords 197

Index .. 205

,sql_ianTOC.fm.14129 Page iv Wednesday, November 29, 2000 4:45 PM

v

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Preface

The explosive growth of the information technology industry and the constantly
growing need to compile, store, access, and manipulate increasingly larger masses
of data have required the development of ever more sophisticated database
management tools.

Since its first incarnation in the 1970s, Structured Query Language (SQL) has been
developed hand in hand with the information boom, and as a result, is the most
widely used database manipulation language in business and industry. A number
of different software companies and program developers, including those in the
open source movement, have concurrently developed their own SQL dialects in
response to specific needs. All the while, standards bodies have developed a
growing list of common features.

SQL in a Nutshell identifies the differences between the various vendor implemen-
tations of SQL. Readers will find a concise explanation of the Relational Database
Management System (RDBMS) model, a clear-cut explanation of foundational
RDBMS concepts, and thorough coverage of basic SQL syntax and commands.
Most importantly, programmers and developers who use SQL in a Nutshell will
find a concise guide both to the most popular commercial database packages on
the market (Microsoft SQL Server and Oracle8i), and to two of the best known
open source (http://www.opensource.org) database products (MySQL and
PostgreSQL). SQL in a Nutshell ’s attention to open source SQL products is an affir-
mation of the growing importance of the open source movement within the
computing community.

As a result, SQL in a Nutshell benefits several distinct groups of users: the knowl-
edgeable programmer who requires a concise and handy reference tool, the
developer who needs to migrate from one SQL dialect to another, and the user
who comes to SQL from another programming language and wants to learn the
basics of SQL programming.

,ch00.13241 Page v Wednesday, November 29, 2000 4:41 PM

vi Preface

How This Book Is Organized

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

How This Book Is Organized
This book is divided into five chapters and one appendix:

Chapter 1, SQL, Vendor Implementations, and Some History
This chapter discusses the Relational Database Model, describes the current
and previous SQL standards, and introduces the SQL vendor implementations
covered in this book.

Chapter 2, Foundational Concepts
This chapter describes the fundamental concepts necessary for understanding
relational databases and SQL commands.

Chapter 3, SQL Statements Command Reference
This chapter is an alphabetical command reference. It details each SQL99
command, as well as the implementations of each command by Oracle,
Microsoft SQL Server, MySQL, and PostgreSQL.

Chapter 4, SQL Functions
This chapter is an alphabetical reference of the SQL99 functions, describing
vendor implementations of these functions and vendor extensions.

Chapter 5, Unimplemented SQL99 Commands
This chapter lists commands that are included in the SQL standards, but have
not yet been implemented by any of the vendors.

Appendix, SQL99 and Vendor-Specific Keywords
The appendix provides a table that displays keywords declared in SQL99 and
by the various database vendors.

Conventions Used in This Book
Constant Width

Used to indicate programming syntax, code fragments, and examples.

Italic
Used to introduce new terms, for emphasis, and to indicate commands or
user-specified file and directory names.

Bold
Used to display the names of database objects, such as tables, columns, and
stored procedures.

UPPERCASE
Used to indicate SQL keywords.

The owl icon indicates a tip, suggestion, or general note.

,ch00.13241 Page vi Wednesday, November 29, 2000 4:41 PM

Preface vii

Preface

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The turkey icon indicates a warning or caution.

How to Contact Us
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made
mistakes!). Please let us know about any errors you find, as well as your sugges-
tions for future editions, by writing to:

O’Reilly & Associates
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

We have a web site for the book, where we’ll list any examples, errata, or plans
for future editions. You can access this page at:

http://www.oreilly.com/catalog/sqlnut/

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers,
and the O’Reilly Network, see the O’Reilly web site:

http://www.oreilly.com

Resources
The following web sites provide additional information about the various vendors
covered in this book:

MySQL
The corporate resource for MySQL is http://www.tcx.se. A great developer
resource with lots of useful tips is Devshed.com: see http://www.devshed.com/
Server_Side/MySQL/ for MySQL-specific information.

Microsoft SQL Server
The official Microsoft SQL Server web site is http://www.microsoft.com/sql/.
Microsoft also hosts a strong technical site for SQL Server at http://www.
microsoft.com/technet/sql/default.htm. Another good resource is found at the
home of the Professional Association for SQL Server (PASS) at http://www.
sqlpass.org.

,ch00.13241 Page vii Wednesday, November 29, 2000 4:41 PM

viii Preface

Acknowledgments

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PostgreSQL
The home for this open source database is located at http://www.postgresql.org.
This site contains a great deal of useful information available for download, as
well as mailing lists that enable exchanges with other PostgreSQL users. Addi-
tional PostgreSQL sites worth investigating are http://www.pgsql.com and http://
www.GreatBridge.com, which offer support for commercial customers.

Oracle
Oracle’s cyberspace home is http://www.oracle.com. A great resource for hard-
core Oracle users is http://technet.oracle.com.

Acknowledgments
We’d like to take a moment to thank a few special individuals at O’Reilly &
Associates. First, we owe a huge debt of gratitude to Gigi Estabrook, the initial
editor of this book, and Robert Denn, the ultimate editor of this book. Gigi’s
outstanding work and caring attitude were always refreshing and rejuvenating.
Robert’s attention to detail and exceptional management skills are the reason this
book is here today. Thank you both! And of course, thanks to Tim O’Reilly for
having a direct hand in the birth of this book.

We also owe a debt to our fine technical reviewers. To Thomas Lockhard
(PostgreSQL and SQL99), Matthew Toennies and Jonathan Gennick (Oracle), Baya
Pavliachvili and Ron Talmage (Microsoft SQL Server), and George Reese (MySQL):
we owe you a hearty thanks! Your contributions have greatly improved the accu-
racy, readability, and value of this book. Without you, our sections on each of the
language extensions would have been on shaky ground.

,ch00.13241 Page viii Wednesday, November 29, 2000 4:41 PM

1

History

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 1History

CHAPTER 1

SQL, Vendor Implementations,
and Some History

In the 1970s, IBM developed a product called SEQUEL, or Structured English
Query Language, which ultimately became SQL, the Structured Query Language.

IBM, along with other relational database vendors, wanted a standardized method
for accessing and manipulating data in a relational database. Over the decades,
many competing languages have allowed programmers and developers to access
and manipulate data. However, few have been as easy to learn and as universally
accepted as SQL. Programmers and developers now have the benefit of learning a
language that, with minor adjustments, is applicable to a wide variety of database
applications and products.

SQL in a Nutshell describes four implementations of the current SQL standard,
SQL99 (also known as SQL3): Microsoft’s SQL Server, MySQL, Oracle, and
PostgreSQL. For those migrating from implementations of the earlier SQL stan-
dard, this chapter describes the current SQL standard and the ways in which it
differs from the earlier standard. This chapter also provides a bit of history of the
standards evolution.

The Relational Database Model
Relational Database Management Systems (RDBMSs), such as SQL Server and
Oracle, are the primary engines of information systems worldwide, particularly
Internet/Intranet applications and distributed client/server computing systems.

An RDBMS is defined as a system whose users view data as a collection of tables
related to each other through common data values. Data is stored in tables, and
tables are composed of rows and columns. Tables of independent data can be
linked (or related) to one another if they each have columns of data (called keys)
that represent the same data value. This concept is so common as to seem trivial;
however, it was not so long ago that achieving and programming a system capable
of sustaining the relational model was considered a long shot that would have
limited usefulness.

,ch01.13361 Page 1 Wednesday, November 29, 2000 4:41 PM

2 Chapter 1 – SQL, Vendor Implementations, and Some History

The Databases Described in This Book

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Relational data theory was developed by E. F. Codd in the 1960s. Codd
compiled a list of criteria a database product must meet to be considered rela-
tional. For those who are curious, Codd’s list appears at the end of this
chapter.

The Databases Described in This Book
SQL in a Nutshell describes the SQL standard and the vendor implementa-
tions of four leading RDBMSs—two that are from leading commercial vendors
(Microsoft SQL Server and Oracle) and two that are from the chief open
source database projects (MySQL and PostgreSQL):

Microsoft SQL Server
Microsoft SQL Server is a popular RDBMS that runs only on the Windows
platform. Its features include ease of use, low cost, and high performance.
This book covers Microsoft SQL Server 2000.

MySQL
MySQL is a popular open source Database Management System (DBMS) that
is known for its blistering performance. It runs on numerous operating
systems, including most Linux variants. To improve performance, it has a
slimmer feature set than do many other DBMSs. Its critics point out that it is
not a fully relational DBMS since it does not support many key features of
relational databases, particularly in how it processes transactions. This book
covers MySQL 3.22.9.

Oracle
Oracle is a leading RDBMS in the commercial sector. It runs on a multitude of
operating systems and hardware platforms. Its scalable and reliable architec-
ture have made it the platform of choice for many users. Because of their
highly tunable nature, Oracle RDBMSs require a well-trained database admin-
istrator (DBA). SQL in a Nutshell covers Oracle Release 8.1.

PostgreSQL
PostgreSQL is one of the most feature-rich RDBMSs of the open source world.
Its compliance with SQL standards is unmatched by other open source
RDBMSs. In addition to its rich set of features, PostgreSQL runs on a wide
variety of operating systems and hardware platforms. This book covers
PostgreSQL 6.5.

The SQL Standard
To bring greater conformity among vendors, the American National Standards
Institute (ANSI) published its first SQL standard in 1986 and a second widely
adopted standard in 1989. ANSI released updates in 1992, known as SQL92 and
SQL2, and again in 1999, termed both SQL99 and SQL3. Each time, ANSI added
new features and incorporated new commands and capabilities into the language.
Unique to the SQL99 standard is a group of capabilities that handle object-oriented
datatype extensions. The International Standards Organization (ISO) has also

,ch01.13361 Page 2 Wednesday, November 29, 2000 4:41 PM

The SQL Standard 3

History

The SQL Standard

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

approved SQL99. An important change from SQL92 is that SQL99 expands on
SQL92’s levels of conformance.

Levels of Conformance

SQL92 first introduced levels of conformance by defining three categories: Entry,
Intermediate, and Full. Vendors had to achieve Entry-level conformance to claim
ANSI SQL compliance. The U.S. National Institute of Standards and Technology
(NIST) later added the Transitional level between the Entry and Intermediate
levels. So, NIST’s levels of conformance were Entry, Transitional, Intermediate, and
Full, while ANSI’s were only Entry, Intermediate, and Full. Each higher level of the
standard was a superset of the subordinate level, meaning that each higher level of
the standard included all the features of the lower level of conformance.

SQL99 altered the base levels of conformance. Gone are the Entry, Intermediate,
and Full levels of conformance. With SQL99, vendors must implement all the
features of the lowest level of conformance, Core SQL:1999, in order to claim (and
publish) that they are SQL99 ready. Core SQL:1999—or Core SQL99, for short—
includes the old Entry SQL92 feature set, features from other SQL92 levels, and
some brand new features. This upgrade to the SQL standard enabled vendors to
go quickly from the Entry SQL92 feature set to the Core SQL99 feature set.

Whereas SQL92 featured the Intermediate and Full levels of conformance, SQL99
has Enhanced SQL:1999. Any DBMS that supports the Core SQL99 benchmarks,
plus one or more of nine additional feature packages, is now said to meet
Enhanced SQL:1999 standards defined in SQL99 (also called Enhanced SQL99).

Supplemental Features Packages

The SQL99 standard represents the ideal, but very few vendors immediately meet
or exceed the Core SQL99 requirements. The Core SQL99 standard is like the inter-
state speed limit: some drivers go above, others go below, but few go exactly the
speed limit. Similarly, vendor implementations can vary greatly.

Two committees—one within ANSI and the other within ISO—composed of
representatives from virtually every RDBMS vendor drafted these definitions. In
this collaborative and somewhat political environment, vendors must compromise
on exactly which proposed feature and implementation will be incorporated into
the new standard. Many times, a new feature in the ANSI standard is derived from
an existing product or is the outgrowth of new research and development from
the academic community. Consequently, many vendors adopt some features in the
standard, and later add still more.

The nine supplemental features packages, representing different subsets of
commands, are vendor-optional. Some SQL99 features might show up in multiple
packages, while others do not appear in any of the packages. These packages and
their features are described in Table 1-1.

,ch01.13361 Page 3 Wednesday, November 29, 2000 4:41 PM

4 Chapter 1 – SQL, Vendor Implementations, and Some History

The SQL Standard

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Table 1-1: SQL99 Supplemental Features Packages

ID Name Features

PKG001 Enhanced datetime
facilities

• Interval datatype
• Time zone specification
• Full datetime
• Optional interval qualifier

PKG002 Enhanced integrity
management

• Assertions
• Referential delete actions
• Referential update actions
• Constraint management
• Subqueries in CHECK constraint
• Triggers
• FOR EACH STATEMENT triggers
• Referential action RESTRICT

PKG003 OLAP capabilities • CUBE and ROLLUP
• INTERSECT operator
• Row and table constructs
• FULL OUTER JOIN
• Scalar subquery values

PKG004 SQL Persistent Stored
Modules (PSM)

• A programmatic extension to SQL that makes it
suitable for developing more functionally
complete applications

• The commands CASE, IF, WHILE, REPEAT,
LOOP, and FOR

• Stored Modules
• Computational completeness
• INFORMATION_SCHEMA views

PKG005 SQL Call-level Interface
(CLI)

• SQL Call-level Interface support: an Application
Programming Interface (API) that enables SQL
operations to be called that is very similar to the
Open Database Connectivity (ODBC) standard

PKG006 Basic object support • Overloading SQL-invoked functions and
procedures

• User-defined types with single inheritance; basic
SQL routines on user-defined types (including
dynamic dispatch)

• Reference types
• CREATE TABLE
• Array support: basic array support, array

expressions, array locators, user-datatype (UDT)
array support, reference-type array support, SQL
routine on arrays

• Attribute and field reference
• Reference and dereference operations

PKG007 Enhanced object
support

• ALTER TABLE, ADD
• Enhanced user-defined types (including

constructor options, attribute defaults, multiple
inheritance, and ordering clause)

• SQL functions and type-name resolution
• Subtables
• ONLY in queries
• Type predicate
• Subtype treatment
• User-defined CAST functions
• UDT locators
• SQL routines on user-defined types such as

identity functions and generalized expressions

,ch01.13361 Page 4 Wednesday, November 29, 2000 4:41 PM

The SQL Standard 5

History

The SQL Standard

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Be aware that a DBMS vendor may claim Enhanced SQL99 compliance by meeting
Core SQL99 standards plus only one of nine added packages; so read the vendor’s
fine print for a full description of its program features. By understanding what
features comprise the nine packages, programmers and developers gain a clear
idea of the capabilities of a particular DBMS, and how the various features behave
when SQL code is transported to other database products.

The ANSI standards—which cover retrieval, manipulation, and management of
data in commands, such as SELECT, JOIN, ALTER TABLE, and DROP—formalized
many SQL behaviors and syntax structures across a variety of products. These
standards become even more important as open source database products, such as
MySQL, miniSQL, and PostgreSQL, grow in popularity and are developed by
virtual teams rather than large corporations.

SQL in a Nutshell explains the SQL implementation of four popular RDBMSs.
These vendors do not meet all the SQL99 standards; in fact, all RDBMS vendors
play a constant game of tag with the standards bodies. Many times, as soon as
vendors close in on the standard, the standards bodies update, refine, or other-
wise change the benchmark.

SQL99 Statement Classes

Comparing statement classes further delineates SQL92 and SQL99. In SQL92, SQL
statements are grouped into three broad categories: the Data Manipulation
Language (DML), the Data Definition Language (DDL), and the Data Control
Language (DCL). The DML provides specific data-manipulation commands such as
SELECT, INSERT, UPDATE, and DELETE. The DDL contains commands that handle
the accessibility and manipulation of database objects, including CREATE and
DROP, while the DCL contains the permission-related commands GRANT and
REVOKE.

In contrast, SQL99 supplies seven Core categories that provide a general frame-
work for the types of commands available in SQL. These statement “classes” are
slightly different than the SQL92 statement classes, since they attempt to identify
the statements within each class more accurately and logically. Furthermore,
because SQL is constantly under development, new features and commands enter
the standard and may necessitate new statement classes. So, to accommodate
future growth, SQL99 developed new sets of statement classes, making them
somewhat more comprehensible and logical. Additionally, the new statement
classes now allow some “orphaned” statements—which did not fit well into any of
the old categories—to be properly classified.

PKG008 Active database
features

• Triggers

PKG009 SQL Multimedia (MM)
support

• Handling for streaming multimedia data and for
large and complex audio and video data

Table 1-1: SQL99 Supplemental Features Packages (continued)

ID Name Features

,ch01.13361 Page 5 Wednesday, November 29, 2000 4:41 PM

6 Chapter 1 – SQL, Vendor Implementations, and Some History

Dialects of SQL

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Table 1-2 identifies the SQL99 statement classes and lists a few commands in each
class, each of which is fully discussed later. At this point, the key is to remember
the statement class title.

Those who work with SQL regularly should become familiar with both the old
(SQL92) and the new (SQL99) statement classes, since many programmers and
developers still use the old nomenclature to refer to current SQL features.

Dialects of SQL
The constantly evolving nature of the SQL standard has given rise to a number of
SQL dialects among the various vendors and products. These dialects most
commonly evolved because the user community of a given database vendor
required capabilities in the database before the ANSI committee created a stan-
dard. Occasionally though, a new feature is introduced by the academic or
research communities due to competitive pressures from competing technologies.
For example, many database vendors are augmenting their current programmatic
offerings with Java (as is the case with Oracle and Sybase) or VBScript (as
Microsoft is doing). In the future, programmers and developers will use these
programming languages in concert with SQL to build SQL programs.

Nonetheless, each of these dialects includes conditional processing (such as that
controlled through IF . . . THEN statements), control-of-flow functions (such as
WHILE loops), variables, and error handling. Because ANSI had not yet developed
a standard for these important features, RDBMS developers and vendors were free
to create their own commands and syntax. In fact, some of the earliest vendors
from the 1980s have variances in the most elementary commands, such as SELECT,
because their implementations predate the standards. (ANSI is now refining stan-
dards that address these shortcomings.)

Some of these dialects have introduced procedural commands to support the func-
tionality of a much more complete programming language. For example, these
procedural implementations contain error-handling commands, control-of-flow

Table 1-2: SQL Statement Classes

Class Description Example Commands

SQL Connection
Statements

Start and end a client connection CONNECT,
DISCONNECT

SQL Control
Statements

Control the execution of a set of SQL
statements

CALL,
RETURN

SQL Data
Statements

Have a persistent and enduring effect
upon data

SELECT, INSERT,
UPDATE, DELETE

SQL Diagnostic
Statements

Provide diagnostic information and raise
exceptions and errors

GET DIAGNOSTICS

SQL Schema
Statements

Have a persistent and enduring effect on
a database schema and objects within that
schema

ALTER, CREATE, DROP

SQL Session
Statements

Control default behavior and other
parameters for a session

SET

SQL Transaction
Statements

Set the starting and ending point of a
transaction

COMMIT, ROLLBACK

,ch01.13361 Page 6 Wednesday, November 29, 2000 4:41 PM

Principles of Relational Databases 7

History

Principles of Relational Databases

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

language, conditional commands, variable handling, arrays, and many other exten-
sions. Although these are technically divergent procedural implementations, they
are called dialects here.

Some popular dialects of SQL include:

PL/SQL
Found in Oracle. PL/SQL stands for Procedural Language/SQL and contains
many similarities to the language Ada.

Transact-SQL
Uses both Microsoft SQL Server and Sybase Adaptive Server. As Microsoft and
Sybase have moved away from the common platform they shared early in the
1990s, their implementations of Transact-SQL have also diverged.

PL/pgSQL
The name of the SQL dialect and extensions implemented in PostgreSQL. The
acronym stands for Procedural Language/postgreSQL.

However, even if a vendor conforms to the SQL99 standards, its commands differ
from other DBMSs because SQL statements may be parsed, compiled, and
executed in different ways, especially if differing binding styles are used. There are
three common binding styles:

SQL Module Language
Causes the SQL statements to be prepared when the module is created, and
executed when the module is called (like a stored procedure).

Embedded SQL Syntax
Allows the SQL statements to be prepared when the host language program is
precompiled, and executed when the host program is called (like PRO*C or
PRO*Fortran).

Direct SQL Invocation
Causes a static SQL statement to be prepared then immediately executed.

Therefore, differences in binding style may be one more reason DBMSs function
differently. Binding styles go deep into the heart of the database code. In general,
the SQL commands discussed in this book utilize the Direct SQL Invocation
binding style. However, when the situation warrants, other relevant binding styles
are discussed within the command reference of each specific command.

Principles of Relational Databases
Following are E.F. Codd’s Twelve Principles of Relational Databases. These princi-
ples continue to be the litmus test used to validate the “relational” characteristics of
a database product; a database product that does not meet all of these rules is not
fully relational. These rules do not apply to applications development, but they do
determine whether the database engine itself can be considered truly “relational.”
Currently, most RDBMSs pass Codd’s test, including all of the databases discussed
in this book, except MySQL. (MySQL does not currently support views or atomic
transactions. Therefore, it does not qualify as a true relational DBMS under Codd’s
rules.)

,ch01.13361 Page 7 Wednesday, November 29, 2000 4:41 PM

8 Chapter 1 – SQL, Vendor Implementations, and Some History

Principles of Relational Databases

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Knowing and understanding these principles assists programmers and developers
in the proper development and design of Relational Databases (RDBs).

Codd’s Rules for a Truly Relational Database System

Codd’s criteria provide the benchmarks for defining RDBs. Knowing and
understanding these principles will help you develop and design RDBs:

1. Information is represented logically in tables.
2. Data must be logically accessible by table, primary key, and column.
3. Null values must be uniformly treated as “missing information,” not as

empty strings, blanks, or zeros.
4. Metadata (data about the database) must be stored in the database just as

regular data is.
5. A single language must be able to define data, views, integrity constraints,

authorization, transactions, and data manipulation.
6. Views must show the updates of their base tables and vice versa.
7. A single operation must be able to retrieve, insert, update, or delete data.
8. Batch and end-user operations are logically separate from physical

storage and access methods.
9. Batch and end-user operations can change the database schema without

having to recreate it or the applications built upon it.
10. Integrity constraints must be available and stored in the RDB metadata,

not in an application program.
11. The data manipulation language of the relational system should not care

where or how the physical data is distributed and should not require
alteration if the physical data is centralized or distributed.

12. Any row processing done in the system must obey the same integrity
rules and constraints that set-processing operations do.

,ch01.13361 Page 8 Wednesday, November 29, 2000 4:41 PM

9

Concepts

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 2Concepts

CHAPTER 2

Foundational Concepts

SQL provides an easy, intuitive way to interact with a database. The SQL99 stan-
dard does not define the concept of a “database,” but it does define all the
functions and concepts needed for a user to create, retrieve, update, and delete
data. It is important to review a few of the concepts upon which the SQL standard
is based.

Row Processing Versus Set Processing
Other database manipulation languages, such as Xbase or Visual Basic, perform
their data operations quite differently from SQL. These languages require the
programmer to tell the program exactly how to treat the data, one record at a time.
Since the program cycles down through a list of records, performing its logic on
one record after another, this style of programming is frequently called row
processing or procedural programming.

SQL programs operate in logical sets of data. Set theory is applied when the FROM
clause is used, as in the SELECT statement. In effect, data is selected from a set
called a table. Unlike the row processing style, set processing allows a programmer
to tell the database simply what is required, not how each individual piece of data
should be handled. Sometimes set processing is referred to as declarative
processing, since a programmer declares only what data is necessary, as in “Give
me all employees in the southern region who earn more than $70,000 per year,”
rather than describes the exact procedure used to manipulate the data.

Set theory was the brainchild of Russian mathematician Georg
Cantor, who developed it at the end of the nineteenth century. At
the time, set theory (and his theory of the infinite) was quite contro-
versial; today, set theory is such a common part of life that it is
learned in elementary school.

,ch02.13481 Page 9 Wednesday, November 29, 2000 4:41 PM

10 Chapter 2 – Foundational Concepts

The Relational Model

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Examples of set theory in conjunction with relational databases are detailed in the
following section.

The Relational Model
Effective SQL programming requires that the programmer think in terms of sets of
data, rather than of individual rows. The RDBS model follows a linguistic protocol
to define the hierarchy of data sets within the SQL99 standard.

Figure 2-1 is a description of the SQL99 terminology used to describe the hierar-
chical working sets used by a relational database—clusters contain sets of catalogs;
catalogs contain sets of schemas; schemas contain sets of objects, such as tables
and views; and tables and views are composed of sets of records.

In the relational model, data is shown logically as a two-dimensional table that
describes a single entity (for example, business expenses). Data in the table is
displayed in columns and rows. Each column of the table describes a specific
attribute of the entity. For example, in a Business_Expense table, a column called
Expense_Date might show when the expense was incurred. Each record in the
table describes a specific entity; in this case, everything that makes up a business
expense (when it happened, how much it cost, who incurred the expense, what it
was for, and so on). The specific values of each attribute are supposed to be
atomic; that is, they are supposed to contain one, and only one, value. If a table is
constructed in which the intersection of a row and column can contain more than
one distinct value, then one of SQL’s primary design guidelines has been violated.

There are rules of behavior specified for column values. Foremost is that the
column values must share a common domain, better known as a datatype. For
example, the value ‘ELMER’ should not be placed into the Expense_Date field. The
Expense_Date field should contain only dates; therefore, this column would be
defined as having a date datatype. In addition, SQL99 further controls the values of
such a field through the application of rules. A SQL rule might limit Expense_Date
to expenses less than a year old.

Additionally, data access for all individuals and computer processes is controlled at
the schema level by an <AuthorizationID> or user. Permissions to specific sets of
data may be granted or restricted to each user.

Moreover, SQL databases also employ character sets and collations. Character sets
are the “symbols” used by the “language” of the data. Character sets can contain
multiple collations. A collation is the basic set of rules that define how SQL sorts
the data. For example, an American English character set might be sorted either by
character-order, case-insensitive, or by character-order, case-sensitive.

SQL99 and Vendor-Specific Datatypes
The previous section mentioned that a table could contain one or many columns,
each with a single defining datatype. In real world applications, datatypes provide
some control and efficiency as to how tables are defined. Using specific datatypes
enables better, more understandable queries and controls the integrity of data.

,ch02.13481 Page 10 Wednesday, November 29, 2000 4:41 PM

SQL99 and Vendor-Specific Datatypes 11

Concepts

SQL99 and Vendor-Specific Datatypes

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The tricky thing about SQL99 datatypes is that they do not map directly to an iden-
tical implementation in a given vendor’s product. Although the vendors provide
“datatypes” that correspond to the SQL99 datatypes, these vendor-specific
datatypes are not true SQL99 datatypes. Nonetheless, each vendor’s datatypes are
close enough to the standard to be both easily understandable and job-ready.

The official SQL99 datatypes (as opposed to vendor-specific) fall into the general
categories described in Table 2-1.

Figure 2-1: SQL99 Dataset hierarchy

CLUSTERS A cluster is a uniquely named set of catalogs available to a SQL session. This is roughly
comparable to an installation of an RDBMS product. According to the ANSI standard,
clusters also control who gets access to the data and what sort of permissions the users
might have. However, most implementations, such as Oracle and Microsoft SQL Server,
track permissions at the catalog layer.Contain one

or many

CATALOGS

SCHEMAS A schema is a uniquely named set of objects and data owned by a given user. Every
catalog must contain the INFORMATION_SCHEMA, which contains metadata about all
the other objects stored in the catalog. A schema is the rough equivalent of a database.

Contain one
or many

Contain one
or many

OBJECTS An object is a uniquely named set of data or SQL functionality. Schema objects include
tables, views, modules, and routines; i.e., stored procedures and functions.

If the object is a table or view,
it may contain one or many

COLUMNS A column is a uniquely named set of values that defines a specific attribute of a table entity.

Contain one
or many

DOMAIN and
USER DEFINED

TYPES

These identify the set of valid and allowable values for a given column.

RULES and
ASSERTIONS

These identify further rules that define valid and allowable values for a given column. For
example, a trigger is a SQL rule.

A catalog is a uniquely named set of schemas. If you’re an Oracle or Microsoft SQL Server
user, you might be more comfortable with the term instance.

,ch02.13481 Page 11 Wednesday, November 29, 2000 4:41 PM

12 Chapter 2 – Foundational Concepts

SQL99 and Vendor-Specific Datatypes

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Table 2-2 through Table 2-5 map the SQL99 datatypes onto the various vendor-
implemented datatypes. Descriptions are provided for non-SQL99 datatypes.

Microsoft SQL Server Datatypes

Table 2-2 shows that Microsoft SQL Server supports most SQL99 datatypes. It also
supports additional datatypes used to uniquely identify rows of data within a table

Table 2-1: SQL99 Datatypes

Category
Example Datatypes
and Abbreviations Description

binary binary large object (BLOB) This datatype stores binary string
values in hexadecimal format.

bit string bit
bit varying

These datatypes store either
binary or hexadecimal data. BIT
has a fixed length, while BIT
VARYING has a variable length.

boolean boolean This datatype stores truth values
—either TRUE, FALSE, or
UNKNOWN.

character char
character varying (VARCHAR)
national character (NCHAR)
national character varying
(NVARCHAR)
character large object (CLOB)
national character large object
(NCLOB)

These datatypes can store any
combination of characters from
the applicable character set. The
varying datatypes allow variable
lengths, while the other
datatypes allow only fixed
lengths. Also, the variable-length
datatypes automatically trim
trailing spaces, while the other
datatypes pad all open space.

numeric integer (INT)
smallint
numeric
decimal (DEC)
float(p,s)
real
double precision

These datatypes store exact
numeric values (integers or deci-
mals) or approximate (floating
point) values. INT and SMALLINT
store exact numeric values with
a predefined precision and a
scale of zero. NUMERIC and DEC
store exact numeric values with
a predefined precision and a
definable scale. FLOAT stores
approximate numeric values
with a definable scale, while
REAL and DOUBLE PRECISION
have predefined precisions. You
may define a precision (p) and
scale (s) for a float to indicate
the total number of allowed
digits in the floating point
number and the number of
decimal places, respectively.

temporal date
time
time with time zone
timestamp
timestamp with time zone
interval

These datatypes handle values
related to time. DATE and TIME
are self-explanatory. Datatypes
with the WITH TIME ZONE suffix
also include a time zone offset.
The TIMESTAMP datatypes store
values that are calculated at
current machine runtime.
INTERVAL specifies a value or
increment of time.

,ch02.13481 Page 12 Wednesday, November 29, 2000 4:41 PM

SQL99 and Vendor-Specific Datatypes 13

Concepts

SQL99 and Vendor-Specific Datatypes

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

and across multiple servers hosting the same databases. These datatypes support
Microsoft’s hardware philosophy of deploying on many Intel-based servers, rather
than deploying on huge, high-end Unix servers.

Table 2-2: Microsoft SQL Server Datatypes

Microsoft
SQL Server
Datatype

SQL92 or SQL99
Datatype Description

bigint Stores signed or unsigned integers between
–9223372036854775808 and
9223372036854775807.

binary binary Describes a fixed-length binary value up to
8000 bytes in size.

bit bit Stores 1 or 0 value.

char(n) character Holds fixed-length character data up to 8000 char-
acters in length.

cursor Describes a cursor.

datetime Holds date and time data within the range of
1753-01-01 00:00:00 through 9999-12-31 23:59:59.

decimal(p,s) decimal Stores precision and scale values up to 38 digits
long.

float float Holds floating precision numbers of –1.79E + 308
through 1.79E + 308.

image Describes a variable-length binary value up to
2147483647 bytes in length.

int integer Stores signed or unsigned integers between
–2147483648 and 2147483647.

money Stores monetary values within the
range of -922337203685477.5808 and
–922337203685477.5807.

nchar(n) national character Holds fixed-length Unicode data up to 4000
characters in length.

ntext Holds Unicode text passages up to 1,073,741,823
characters in length.

numeric(p,s) A synonym for decimal.

nvarchar(n) national character
varying

Holds variable-length Unicode data up to
4000 characters in length.

real Holds floating precision numbers of –3.40E + 38
through 3.40 + 38.

rowversion A unique number within a database that is
updated whenever a row is updated. Called
“timestamp” in earlier versions.

smalldatetime Holds data and time data within the range of
1900-01-01 00:00:00 through 2079-12-31 23:59:59.

smallint smallint Stores signed or unsigned integers between
–32768 and 32767.

smallmoney Stores monetary values within the range of
–214748.3648 and 214748.3647.

sql_variant Stores values of other SQL Server–supported
datatypes, except text, ntext, rowversion, and
other sql_variants.

table Stores a result set for a later process.

,ch02.13481 Page 13 Wednesday, November 29, 2000 4:41 PM

14 Chapter 2 – Foundational Concepts

SQL99 and Vendor-Specific Datatypes

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Notice that Microsoft SQL Server supports dates starting with the year 1752. This is
because the English-speaking world used the Julian calendar prior to September
1752 and refiguring dates prior to that time is an inconvenience.

MySQL Datatypes

Table 2-3 shows that MySQL supports most of the SQL99 datatypes, plus several
additional datatypes used to contain lists of values, as well as datatypes used for
BLOBs.

text Stores very large passages of text up to
2147483647 characters in length.

tinyint Stores signed or unsigned integers between 0 and
255.

unique-
identifier

Represents a value that is unique across all
databases and all servers.

varbinary binary varying Describes a variable-length binary value up to
8000 bytes in size.

varchar(n) character varying Holds fixed-length character data up to 8000
characters in length.

Table 2-3: MySQL Datatypes

MySQL
Datatype

SQL92 or SQL99
Datatype Description

bigint Stores signed or unsigned integers within the
range of –9223372036854775808 to
9223372036854775807.

char(n)
[binary]

character(n) Contains a fixed-length character string of 1 to 255
characters in length, but trims spaces as varchar
does. The BINARY option allows binary searches
rather than dictionary-order, case-insensitive
searches.

datetime datetime Stores data and time values within the range of
1000-01-01 00:00:00 to 9999-12-31 23:59:59.

decimal decimal(precision,
scale)

Stores exact numeric values.

double(p,s),
double preci-
sion

double precision Holds double-precision numeric values.

enum(“val1,”
“val2,” . . . n)

Is a char datatype whose value must be one of
those contained in the list of values. Up to 65535
distinct values are allowed.

float float(p) Stores floating-point numbers with a precision of 8
or less.

int, integer int, integer Stores signed or unsigned integers within the
range of –2147483548 to 2147483547.

longblob,
longtext

binary large object Stores BLOB or TEXT data up to 4294967295
characters in length.

Table 2-2: Microsoft SQL Server Datatypes (continued)

Microsoft
SQL Server
Datatype

SQL92 or SQL99
Datatype Description

,ch02.13481 Page 14 Wednesday, November 29, 2000 4:41 PM

SQL99 and Vendor-Specific Datatypes 15

Concepts

SQL99 and Vendor-Specific Datatypes

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In general, MySQL supports many of the SQL99 datatypes, but provides added
datatypes for BLOB and TEXT fields.

Oracle Datatypes

As shown in Table 2-4, Oracle supports a rich variety of datatypes, including most
of the SQL99 datatypes. Oracle includes unique datatypes that write directly to the
filesystem or handle extremely large files.

mediumblob,
mediumtext

Stores BLOB or TEXT data up to 65535 characters
in length.

mediumint Stores signed or unsigned integers within the
range of –8388608 to 8388607.

nchar(n)
[binary]

national character Holds Unicode character strings, but is otherwise
the same as char.

numeric(p,s) numeric(p,s) A synonym of decimal.

nvarchar(n)
[binary]

nvarchar Holds Unicode variable length character strings up
to 255 characters in length.

real(p,s) double precision Is a synonym of double precision.

set(“val1,”
“val2,” . . . n)

Is a char datatype whose value must be equal to
zero or more values specified in the list of values.
Up to 64 items are allowed in the list of values.

smallint smallint Stores signed or unsigned integers within the
range of –32758 to 32757.

times-
tamp(size)

timestamp Stores the date and time within the range of
1970-01-01 00:00:00 to 2037-12-31 23:59:59.

tinyblob,
tinytext

Is a BLOB or TEXT column of 255 characters or
less.

tinyint Stores signed or unsigned integers within the
range of –128 to 127.

varchar(n) character
varying(n)

Stores variable-length character strings trimmed
up to 255 characters in length.

year(2, 4) Stores either 2 or 4 year values, in the range of
(19)70–(20)69 for 2-year format and 0000,
1901–2155 in 4-year format.

Table 2-4: Oracle Datatypes

Oracle Datatype
SQL92 or SQL99
Datatype Description

bfile Holds a value for a BLOB stored outside the
database of up to 4 GB in size. The database
streams input (but not output) access to the
external BLOB.

BLOB Holds a binary large object (BLOB) value up
to 4 GB in size.

char(n),
character(n)

character Holds fixed-length character data up to 2000
bytes in length.

Table 2-3: MySQL Datatypes (continued)

MySQL
Datatype

SQL92 or SQL99
Datatype Description

,ch02.13481 Page 15 Wednesday, November 29, 2000 4:41 PM

16 Chapter 2 – Foundational Concepts

SQL99 and Vendor-Specific Datatypes

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CLOB Stores a character large object (CLOB) of
either fixed-width or variable-width char
character sets. It may be up to 4 gigabytes in
size.

date date Stores a valid date and time within the range
of 4712BC-01-01 00:00:00 to 9999AD-12-31
23:59:59.

decimal decimal A synonym of NUM that accepts precision or
scale arguments.

double
precision

double precision Stores NUM values with double precision, the
same as FLOAT(126).

float (n) float Stores floating-point numeric values with a
precision of up to 126.

integer(n) integer Stores signed and unsigned integer values
with a precision of up to 38. It does not
accept decimals (scale) as an argument.

long Stores variable-length character data up to
2 gigabytes in size.

long raw Stores raw variable-length binary data up to
2 gigabytes in size.

national character
varying (n),
national char
varying (n),
nchar varying (n)

national character
varying

The same as NVARCHAR2.

nchar(n),
national
character(n),
national char(n)

national character Holds fixed-length standard and UNICODE
character data up to 2000 bytes in length.

nclob Represents a CLOB that supports multibyte
and UNICODE characters.

number (p,s),
numeric (p,s)

numeric May have a precision of 1 to 38 and a scale
of –84 to 127.

nvarchar2(n) Represents Oracle’s preferred Unicode
variable-length character datatype. It can
hold up to 4000 bytes.

raw(n) Stores raw binary data up to 2000 bytes in
size.

real real The same as FLOAT.

rowID Represents a unique hexadecimal identifier
for each row in a table, often used in
conjunction with the ROWID pseudocolumn.

smallint smallint The same as INT.

urowid [(n)] Stores a hexadecimal value showing the
logical address of the row in its index. It
defaults to 4000 bytes in size, but you may
optionally specify its size.

Table 2-4: Oracle Datatypes (continued)

Oracle Datatype
SQL92 or SQL99
Datatype Description

,ch02.13481 Page 16 Wednesday, November 29, 2000 4:41 PM

SQL99 and Vendor-Specific Datatypes 17

Concepts

SQL99 and Vendor-Specific Datatypes

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PostgreSQL Datatypes

As shown in Table 2-5, the PostgreSQL database supports most SQL99 datatypes,
plus an extremely rich set of datatypes that store spacial and geometric data. As is
evident, PostgreSQL supports additional versions of existing datatypes that are
smaller and take up less disk space.

varchar,
character varying,
char varying

character varying The same as VARCHAR2.

varchar2 Holds variable-length character data up to
4000 characters in length.

Table 2-5: PostgreSQL Datatypes

PostgresSQL
Datatype

SQL92 or SQL99
Datatype Description

bool boolean Contains a logical Boolean (true/false) value.

box Contains a rectangular box in a 2D plane.

char(n) character(n) Contains fixed-length character string with
spaces.

cidr Describes an IP–version 4 network or host
address.

circle Describes a circle in a 2D plane.

date date Holds a calendar date without time of day.

datetime Holds a calendar date and specific time of day.

decimal decimal(preci-
sion, scale)

Stores exact numeric values.

float4 float(p) Stores floating-point numbers with a precision of
8 or less and 6 decimal places.

float8 float(p),
7 <= p < 16

Stores floating-point numbers with a precision of
16 or less and 15 decimal places.

inet Stores an IP-Version 4 network or host address.

int2 smallint Stores signed or unsigned 2-byte integers within a
range of –32768 to 32767.

int4 int, integer Stores signed or unsigned 4-byte integers within a
range of –2147483648 to 2147483648.

int8 Stores signed or unsigned 8-byte integers with a
range of 18 decimal places positive or negative.

interval interval Holds general-use time span values.

line Holds infinite line in 2D plane values.

lseg Holds values for line segments in a 2D plane.

macaddr Holds a value for the MAC address of a
computer’s network interface card.

money decimal(9,2) Stores US-style currency values.

numeric(p,s) numeric(p,s) Stores exact numeric values for p � 9, s = 0.

Table 2-4: Oracle Datatypes (continued)

Oracle Datatype
SQL92 or SQL99
Datatype Description

,ch02.13481 Page 17 Wednesday, November 29, 2000 4:41 PM

18 Chapter 2 – Foundational Concepts

Processing NULLS

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Processing NULLS
Most databases allow any of their supported datatypes to store NULL values. Inex-
perienced SQL programmers and developers tend to think of NULL as zero or
blank. In fact, NULL is neither of these. In the relational database world, NULL
literally means that the value is unknown or indeterminate. (This question alone—
whether NULL should be considered unknown or indeterminate—is the subject of
academic debate.) This differentiation enables a database designer to distinguish
between those entries that represent a deliberately placed zero and those where
either the data is not recorded in the system or where a NULL has been explicitly
entered. For an example of this semantic difference, consider a system that tracks
payments. A payment with a NULL amount does not mean that the product is free;
instead, a NULL payment indicates that the amount is not known or perhaps not
yet determined.

One side effect of the indeterminate nature of a NULL value is it cannot be used in
a calculation or a comparison. Here are a few brief, but very important rules to
remember about the behavior of NULL values:

• A NULL value cannot be inserted into a column defined as NOT NULL.

• NULL values are not equal to each other. It is a frequent mistake to compare
two columns that contain NULL and expect the NULL values to match. (A
NULL value can be identified in a WHERE clause or in a Boolean expression
using phrases such as ‘value IS NULL’ and ‘value IS NOT NULL’.)

• A column containing a NULL value is ignored in the calculation of aggregate
values such as AVG, SUM, or MAX.

path Describes an open and closed geometric path in a
2D plane.

point Stores values for a geometric point in a 2D plane.

polygon Stores values for a closed geometric path in a 2D
plane.

serial Stores a unique ID for indexing and cross-
reference up to 2147483647.

time time Holds the time of day.

timespan Holds a value that represents a specific span of
time.

timestamp timestamp with
time zone

Stores the date and time. The optional WITH
TIME ZONE keyword allows the declaration of a
specially defined time zone value.

timetz time with
time zone

Holds the time of day, including time zone.

varchar(n) character
varying(n)

Stores variable-length character strings with
spaces trimmed.

Table 2-5: PostgreSQL Datatypes (continued)

PostgresSQL
Datatype

SQL92 or SQL99
Datatype Description

,ch02.13481 Page 18 Wednesday, November 29, 2000 4:41 PM

Categories of Syntax 19

Concepts

Categories of Syntax

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

• When columns that contain NULL values in a GROUP BY clause of a query are
listed, the query output contains rows for those NULL values.

• Joins between tables, in which one join condition contains values and the
other contains NULL, are governed by the rules for “outer joins.” Joins are
described completely later in this chapter.

Categories of Syntax
SQL commands contains three main categories of syntax: identifiers, literals, and
reserved and key words. Identifiers name objects that a user or a system process
has created, such as a database, a table, the columns in a table, or a view. Literals
are non-NULL values supplied to the system. Reserved and key words are words
that have special meaning to the database SQL parser, such as SELECT, GRANT,
DELETE, or CREATE.

Identifiers

Keep in mind that RDBMSs are built upon set theory: clusters contain sets of cata-
logs, catalogs contain sets of schemas, schemas contain sets of objects, and so on.
At each level of this structure, each item requires a unique name or identifier.

This means that each object (whether a database, table, view, column, index, key,
trigger, stored procedure, or constraint) in a RDBMS must be named. When issuing
the command that creates a server object, a name for that new object must be
specified.

There are two important sets of rules that experienced programmers keep in mind
when choosing an identifier for a given item:

• The first set of rules include logical rules of thumb or conventions that ulti-
mately create better database structures and data tracking. These are not so
much required by SQL as they are the distilled experience of practiced
programmers.

• The second set of rules are those set by the SQL standard and implemented
by the vendors. The conventions for each vendor are covered later in this
chapter.

Naming conventions

The naming conventions suggested for identifiers in the following list are based on
long years of experience by many in the industry, although they aren’t necessarily
required by SQL:

Select a name that is meaningful, relevant, and descriptive
Do not name a database XP03; instead, name it Expenses_2003, showing that
it stores expenses for the year 2003. Remember that other people will likely
be using the database too, and the names should make sense at a glance.
Each database vendor has limits on object name size, but names generally
may be long enough to make sense to anyone reading them.

Choose and apply the same case throughout
Use either all uppercase or all lowercase for all objects throughout the data-
base. Remember, too, that some database servers are case-sensitive, so using
mixed-case identifiers might cause problems later.

,ch02.13481 Page 19 Wednesday, November 29, 2000 4:41 PM

20 Chapter 2 – Foundational Concepts

Categories of Syntax

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Use abbreviations consistently
Once an abbreviation has been chosen, it should be used consistently
throughout the database. For example, if EMP is used as an abbreviation for
EMPLOYEE, then EMP should be used throughout the database. Do not use
EMP in some places and EMPLOYEE in others.

Use complete, descriptive, meaningful names with underscores for reading clarity
A column name UPPERCASEWITHUNDERSCORES is not as easy to read as
UPPERCASE_WITH_UNDERSCORES.

Do not put company or product names in database object names
Companies get acquired and products change names. These elements are too
transitory to be included in database object names.

Do not use overly obvious prefixes or suffixes
For example, don’t use “DB_” as a prefix for a database or prefix every view
with “V_”. However, some prefixes and suffixes are very useful when applied
consistently.

Do not fill up all available space for the object name
If the database platform allows a 32-character table name, try to leave at least
a few free bytes at the end. Different database vendors sometimes append
prefixes or suffixes to the table name when manipulating temporary copies of
the tables.

Do not use quoted identifiers
This is discussed in the following section, “Identity rules.”

There are several benefits to following these guidelines. First, the SQL code
becomes, in a sense, self-documenting, because the chosen names are meaningful
and understandable to the reader. Second, the SQL code and database objects are
easier to maintain—especially for users other than the original programmer—
because they are consistently named. And finally, maintaining consistency
increases database functionality. If the database ever has to be transferred or
migrated to another application, consistent and descriptive naming saves both time
and energy. Giving a few minutes of thought to naming SQL objects in the begin-
ning can prevent problems later on.

Identity rules

Identity rules are rules for naming objects within the database, which are enforced
by the database product. Note that the SQL99 standard specifies identity rules that
may differ from those of a specific database vendor. Here are the SQL99 rules for
naming server objects:

• The identifier can be no longer than 128 characters. (Many databases limit the
identifier to 32 or fewer characters.)

• The identifier may contain numbers, characters, and symbols.

• The identifier must begin with a letter (or certain other allowable symbols).

• The identifier may not contain spaces or other special characters.

• The identifier may not be a reserved word or keyword (discussed shortly).

,ch02.13481 Page 20 Wednesday, November 29, 2000 4:41 PM

Categories of Syntax 21

Concepts

Categories of Syntax

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

• In many circumstances, identifiers must be unique for each owner within its
scope. For example, although Oracle allows two separate schemas to have an
object with the same name, databases generally should be uniquely labeled
and the tables of a database should all have unique names.

• Quoted identifiers (object names within double quotes) may be used to break
some of the rules specified above. For example, a table could be named
“expense##ratios”, but not named expense##ratios because the first table is a
quoted identifier. These are sometimes known as delimited identifiers.

Literals

SQL judges literal values as any explicit numeric, character, string, date, or
Boolean value that is not an identifier. SQL databases allow a variety of literal
values in a SQL program. Literal values are allowed for most of the numeric, char-
acter, and date datatypes. For example, SQL Server numeric datatypes include
(among others) integer, real, and money. Thus, numeric literals could look like:

30
-117
+883.3338
-6.66
$70000
2E5
7E-3

As the example illustrates, SQL Server allows signed or unsigned numerals, in
scientific or normal notation. And since SQL has a money datatype, even a dollar
sign can be included. SQL does not allow other symbols in numeric literals
(besides 0 1 2 3 4 5 6 7 8 9 + - $. E e), so do not include commas. Most data-
bases interpret a comma in a numeric literal as a list item separator. Thus, the
literal value 3,000 would be interpreted by the database as 3 and, separately, 000.

Oracle provides support for an interesting literal type called a
interval literal, which is used to specify an interval of time. Refer to
Oracle’s documentation discussing INTERVAL for more information.

Character and string literals should always be enclosed by single quotation marks
(‘’). As long as the literal is opened and closed with the same delimiter, SQL allows
both kinds. The only difference between character and string literals is that a char-
acter literal contains only a single character, whereas a string literal contains lots of
them. Additionally, character and string literals are not restricted just to the
alphabet. In fact, any printable character in the server character set can be repre-
sented as a literal. All of the following are string literals:

'1998'
'$70,000 + 14000'
'There once was a man from Nantucket,'
'Oct 28, 1966'

,ch02.13481 Page 21 Wednesday, November 29, 2000 4:41 PM

22 Chapter 2 – Foundational Concepts

Categories of Syntax

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

All of these examples are, in fact, compatible with the CHARACTER datatype.
Remember not to confuse the string literal ‘1998’ with the numeric literal 1998. On
one hand, string literals are associated with CHAR datatypes and cannot be used
in arithmetic operations. On the other hand, many database products do perform
automatic conversion of string literals when compared against DATE datatypes.

Doubling the delimiter can effectively represent a single quotation mark in a literal
string, if necessary. These can be nested within the string. That is, use double
quotation marks (even double double quotation marks) each time a single quota-
tion mark (or double quotation mark) should appear. This example taken from
Microsoft SQL Server illustrates the idea:

SELECT 'So he said "Who''s Le Petomaine?"!'

This gives the result:

So he said "Who's Le Petomaine?"!

In this example, single quotation marks serve as the outer delimiters of the string
literal, while double quotation marks serve only as a string value, and the double
apostrophe is used to show an apostrophe in the string. Except for Oracle, double
quotation marks could have been used just as easily as delimiters and apostro-
phes within the string literal.

System Delimiters and Operators

String delimiters mark the boundaries of a string of alphanumeric characters.
System delimiters are those symbols within the character set that have special
significance to your database server. Delimiters are symbols that are used to judge
the order or hierarchy of processes and list items. Operators are those delimiters
used to judge values in comparison operations, including symbols commonly used
for arithmetic or mathematic operations. Table 2-6 lists the system delimiters and
operators allowed by SQL Server.

Table 2-6: SQL Delimiters and Operators

Symbol Usage

+ Addition operator; also concatenation operator

- Subtraction operator; also a range indicator in CHECK constraints

* Multiplication operator

\ Division operator

= Equality operator

<> != Inequality operators

< Less-than operator

> Greater-than operator

<= Less-than or equal-to operator

>= Greater-than or equal-to operator

(Expression or hierarchy delimiter

) Expression or hierarchy delimiter

% Wildcard attribute indicator

,ch02.13481 Page 22 Wednesday, November 29, 2000 4:41 PM

Using SQL 23

Concepts

Using SQL

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Keywords and Reserved Words

Just as certain symbols have special meaning and functionality within SQL, certain
words and phrases have special significance. SQL keywords are words whose
meanings are so closely tied to the operation of the RDBMS that they cannot be
used for any other purpose; generally, they are words used in a SQL command.
For example, the word SELECT cannot be used as a table name.

It is generally a good idea to avoid naming columns or tables after a
keyword that occurs in a major database, because database applica-
tions are often converted from one implementation to another.

Reserved words, on the other hand, do not have special significance now, but they
probably will in a future release. Thus, they are reserved for future use and should
not be used as an object name. Unlike keywords, a reserved word is not always a
word used in a SQL command. Most reserved words are words commonly associ-
ated with database technology, but they may or may not have an explicit link to
commands in SQL. For example, the database term CASCADE is used to describe
data manipulations that allow their action, such as a delete or update, to “flow
down,” or cascade, to any sub tables. Database vendors specify reserved words in
current releases so that programmers will not encounter them as keywords at
some later revision.

Although SQL99 specifies its own list of reserved words and keywords, so do
vendors because they have their own extensions of the SQL command set. SQL
keywords, as well as the keywords in the different vendor implementations, are
shown in the Appendix, SQL99 and Vendor-Specific Keywords. Check the vendor
documentation for reserved words information.

Using SQL
Up to this point, the chapter has been about the individual aspects of a SQL state-
ment. Following is a high-level overview of the most important SQL command,
SELECT, and some of its most salient points—namely, the relational operations
known as projections, selections, and joins.

, List item separator

@ Local variable indicator

@@ Global variable indicator

. Identifier qualifier separator

‘’ “” Character string indicators

“” Quoted identifier indicators

-- Single-line comment delimiter

/* Beginning multiline comment delimiter

*/ Ending multiline comment indicator

Table 2-6: SQL Delimiters and Operators (continued)

Symbol Usage

,ch02.13481 Page 23 Wednesday, November 29, 2000 4:41 PM

24 Chapter 2 – Foundational Concepts

Using SQL

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Although at first glance it might appear that the SELECT statement deals only with
the selection operation; in actuality, SELECT embodies all three operations. (The
SELECT statement is treated in detail in Chapter 3, SQL Statements Command Refer-
ence.) Projection operations retrieve specific columns of data. Selection operations
retrieve specific rows of data. And join operations bring together the data from
two or more different tables.

This overly simplified example of a SELECT statement focuses more on the under-
lying concepts than on difficult syntax:

SELECT select_list
FROM table_list
WHERE search_criteria

The following statement actually embodies two of the three relational operations,
selection and projection:

SELECT expense_date, expense_amount, expense_description
FROM expenses
WHERE employee_last_name = 'Fudd'
 AND employee_first_name = 'Elmer'

Projections

Projection is the relational operation of retrieving specific columns of data. As
illustrated in the prior generic example, and the more realistic example that
follows, the select_list is the component of a SELECT statement that allows the
programmer to perform a projection. Here, we select the first and last names of an
author, plus his home state, in the authors table:

SELECT au_fname, au_lname, state
FROM authors

The results from any such SELECT statement are presented as another table of
data:

au_fname au_lname state
-------------------- -- -----
Johnson White CA
Marjorie Green CA
Cheryl Carson CA
Michael O'Leary CA

The resulting data is sometimes called a work table, or a derived table, differenti-
ating it from base tables in the database.

Selections

Selection is the relational operation of retrieving specific rows of data. This func-
tionality is enabled through the use of the WHERE clause in a SELECT statement.
WHERE acts to filter out unnecessary rows of data and retrieves only the requested
rows. Building off the previous example, the following example selects authors
from states other than California:

SELECT au_fname, au_lname, state
FROM authors
WHERE state <> 'CA'

,ch02.13481 Page 24 Wednesday, November 29, 2000 4:41 PM

Using SQL 25

Concepts

Using SQL

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The previous query retrieved all authors; the result of this query is a much smaller
subset of records:

au_fname au_lname state
-------------------- -- -----
Meander Smith KS
Morningstar Greene TN
Reginald Blotchet-Halls OR
Innes del Castillo MI

Combining the capabilities of a projection and a selection together in a single
query allows SQL to retrieve only the desired columns and records.

Joins

Joins are one of the most important operations in a relational database. Joins
retrieve data from one or more tables in the result set of a single query. Different
vendors allow varying numbers of tables to join in a single join operation. For
example, Oracle is unlimited in the number of allowable joins, while Microsoft
SQL Server allows up to 256 tables in a join operation.

The ANSI standard method of performing joins is to use the JOIN clause in a
SELECT statement. An older method, know as a theta join, performs the join anal-
ysis in the WHERE clause. Here is an example of both approaches:

-- ANSI style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e
JOIN jobs j ON e.job_id = j.job_id

-- Theta style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e,
 jobs j
WHERE e.job_id = j.job_id

For vendors that do not support ANSI JOIN syntax, outer joins are handled by
placing special characters in the WHERE clause. For example, Oracle requires that
the outer join operator, a plus sign (+), be placed next to the foreign key column
in the join. In older versions, Microsoft SQL Server accomplished the same func-
tionality using an asterisk (*). For example:

-- ANSI style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e
LEFT JOIN jobs j ON e.job_id = j.job_id

,ch02.13481 Page 25 Wednesday, November 29, 2000 4:41 PM

26 Chapter 2 – Foundational Concepts

Conclusion

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In the ANSI style example just shown, all employee records (the table on the left)
will be returned along with job descriptions where available:

-- Theta-join on Microsoft SQL Server
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e,
 jobs j
WHERE e.job_id *= j.job_id

Although Microsoft SQL Server supports ANSI joins, the older theta-style outer join
is still supported. The query shown before is functionally equivalent to the ASNI
style query that precedes it:

-- Oracle Style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e,
 jobs j
WHERE e.job_id = j.job_id(+)

This query in Oracle is essentially the same as the other two. Here, all records
from the employee table are required in the result set, while the values in the job
table are optional and are returned only when there is a match between the two
tables.

Conclusion
This chapter discussed the concepts that serve as the foundation for learning the
Structured Query Language. The differences between row processing applications
and set processing applications (such as relational databases) were discussed. The
basic structure of the relational model, both in terms of the ANSI standard and
typical database implementations, was illustrated. A quick overview of the datatypes
provided by the SQL99 standard, as well as those provided by each database
vendor, was also provided. The categories of SQL syntax, including identifiers,
literals, system delimiters and operators, and keywords were described. Examples
of SQL and an explanation of SQL projections, selections, and joins were included.

,ch02.13481 Page 26 Wednesday, November 29, 2000 4:41 PM

27

Statem
ents

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 3Statements

CHAPTER 3

SQL Statements Command Reference

This chapter is the heart of SQL in a Nutshell: it is an alphabetical listing of SQL
commands with detailed explanations and examples. Each command and function
is identified in a master table as being “supported,” “supported with variations,”
“supported with limitations,” or “not supported,” for each of the four SQL dialects
covered in this book: SQL Server, MySQL, Oracle, and PostgreSQL. After a brief
description of the SQL99 standard, each vendor application is discussed briefly but
thoroughly, with supporting examples and sample coding.

Recommended Reading Approach
When researching a command in this chapter, first read the introductory para-
graph, vendor support table, and the section on SQL99 syntax and description.
The reason for this is that any common features between all the implementations
of the command are discussed once under the SQL99 topic. Thus, reading directly
about a vendor’s implementation of a particular command may not describe every
aspect of that command, since some of its details may be covered in the opening
comments.

Quick SQL Command Reference
The following list offers useful tips for reading Table 3-1, as well as what each
abbreviation stands for. The sections that follow describe the table’s commands in
detail:

1. The first column contains the alphabetized SQL commands.

2. The SQL statement class for each command is indicated in the second left-
hand column.

3. The command’s implementation in SQL99 is indicated in the next column.

,ch03.13605 Page 27 Wednesday, November 29, 2000 4:42 PM

28 Chapter 3 – SQL Statements Command Reference

Quick SQL Command Reference

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

4. The subsequent columns list the vendor’s level of support:

Supported (S)
The vendor supports the SQL99 standard for the particular command.

Supported, with variations (SWV)
The vendor supports the SQL99 standard for the particular command,
using vendor-specific code or syntax.

Supported, with limitations (SWL)
The vendor supports some but not all of the functions specified by the
SQL99 standard for the particular command.

Not supported (NS)
The vendor does not support the particular command according to the
SQL99 standard.

5. Remember that even if a specific SQL99 command is listed as “Not
Supported,” the vendor usually has alternative coding or syntax to enact the
same command or function. Therefore, be sure read the discussion and exam-
ples for each command later in this chapter.

Table 3-1: Alphabetical Quick SQL Command Reference

Command

SQL
Statement
Class SQL99

Microsoft
SQL
Server MySQL Oracle

Postgre
SQL

ALTER
PROCEDURE

SQL-
schema

Yes SWV NS SWV NS

ALTER
TABLE

SQL-
schema

Yes SWV SWL SWV SWV

ALTER
TRIGGER

SQL-
schema

No SWV NS SWV NS

ALTER
VIEW

SQL-
schema

No SWV NS SWV NS

CALL SQL-
control

Yes NS NS S S

CASE SQL-data Yes S S NS S

CAST SQL-data Yes S NS NS S

CLOSE
CURSOR

SQL-data Yes S NS S S

COMMIT
TRANSACTION

SQL-
transaction

Yes SWV NS S S

CONCAT-
ENATION
OPERATORS

SQL-data Yes SWV SWV S S

CONNECT SQL-
connection

Yes SWL NS S NS

CREATE
DATABASE

SQL-
schema

No SWV S S SWV

CREATE
FUNCTION

SQL-
schema

Yes SWV SWV SWV SWV

CREATE
INDEX

SQL-
schema

Yes SWV SWV SWV SWV

CREATE
PROCEDURE

SQL-
schema

Yes S NS S NS

,ch03.13605 Page 28 Wednesday, November 29, 2000 4:42 PM

Quick SQL Command Reference 29

Statem
ents

Quick SQL Command Reference

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CREATE
ROLE

SQL-
schema

Yes NS NS SWV NS

CREATE
SCHEMA

SQL-
schema

Yes S NS S NS

CREATE
TABLE

SQL-
schema

Yes SWV SWV SWV SWV

CREATE
TRIGGER

SQL-
schema

Yes SWV NS SWV SWV

CREATE
VIEW

SQL-
schema

Yes SWV NS SWV SWV

DECLARE
CURSOR

SQL-data Yes S NS S S

DELETE SQL-data Yes SWV SWV S S

DISCONNECT SQL-
connection

Yes SWL NS SWV NS

DROP
DATABASE

SQL-
schema

Yes SWV SWV NS SWV

DROP
FUNCTION

SQL-
schema

Yes SWV SWV SWV SWV

DROP
INDEX

SQL-
schema

Yes SWV SWV SWV SWV

DROP
PROCEDURE

SQL-
schema

Yes S NS S NS

DROP
ROLE

SQL-
schema

Yes NS NS SWV NS

DROP
TABLE

SQL-
schema

Yes SWV SWV SWV SWV

DROP
TRIGGER

SQL-
schema

Yes SWV NS SWV SWV

DROP
VIEW

SQL-
schema

Yes S NS S S

FETCH SQL-data Yes S NS S SWV

GRANT SQL-
schema

Yes SWV SWV SWV SWV

INSERT SQL-
schema

Yes SWV SWV S S

JOIN clause SQL-data Yes S SWL NS (theta
joins
supp-
orted)

SWV
(theta
joins
supp-
orted)

LIKE operator SQL-
schema

Yes SWV SWV SWV SWV

OPEN SQL-
schema

Yes S NS S S

OPERATORS SQL-
schema

Yes SWV SWV SWV SWV

RETURN SQL-
control

Yes S S S S

Table 3-1: Alphabetical Quick SQL Command Reference (continued)

Command

SQL
Statement
Class SQL99

Microsoft
SQL
Server MySQL Oracle

Postgre
SQL

,ch03.13605 Page 29 Wednesday, November 29, 2000 4:42 PM

30 Chapter 3 – SQL Statements Command Reference

ALTER PROCEDURE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ALTER PROCEDURE

The ALTER PROCEDURE statement allows changes to be made to an existing
stored procedure. Depending on the vendor, the kind and degree of change varies
widely.

In SQL Server, this statement alters a previously created procedure (using the
CREATE PROCEDURE statement) but doesn’t change permissions or affect depen-
dent stored procedures or triggers.

In Oracle, this command simply recompiles a PL/SQL stored procedure, but does
not allow the code to be changed. Instead, use the Oracle command CREATE OR
REPLACE PROCEDURE to achieve the same functionality.

REVOKE SQL-
schema

Yes SWV SWV SWV SWV

ROLLBACK SQL-
transaction

Yes SWV NS S S

SAVEPOINT SQL-
transaction

Yes SWV NS S NS

SELECT SQL-data Yes SWV SWV SWV SWV

SET
CONNECTION

SQL-
connection

Yes SWL NS NS NS

SET
ROLE

SQL-
session

Yes NS NS SWV NS

SET TIME
ZONE

SQL-
session

Yes NS NS SWV NS

SET
TRANSACTION

SQL-
session

Yes SWV NS SWL S

START
TRANSACTION

SQL-
transaction

Yes NS
(supports
BEGIN
TRAN)

NS NS NS
(supports
BEGIN
TRAN)

TRUNCATE
TABLE

SQL-data Yes S NS SWV S

UPDATE SQL-data Yes SWV SWV SWV S

Vendor Command

SQL Server Supported, with variations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

Table 3-1: Alphabetical Quick SQL Command Reference (continued)

Command

SQL
Statement
Class SQL99

Microsoft
SQL
Server MySQL Oracle

Postgre
SQL

,ch03.13605 Page 30 Wednesday, November 29, 2000 4:42 PM

ALTER PROCEDURE 31

Statem
ents

ALTER PROCEDURE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SQL99 Syntax and Description

ALTER PROCEDURE procedure_name {CASCADE | RESTRICT}
[LANGUAGE | PARAMETER STYLE | <SQL data access> | <null clause behavior>
| DYNAMIC RESULT SETS | NAME]
[parameter datatype [,...n]

As discussed under CREATE PROCEDURE, the LANGUAGE, PARAMETER STYLE,
SQL data access method (i.e., NO SQL, CONTAINS SQL, etc.), null clause behavior
(e.g., CALL ON NULL INPUT), DYNAMIC RESULT SET, and the procedure NAME all
may be altered.

The ALTER PROCEDURE command also may be used to alter the number or type
of input parameters.

Microsoft SQL Server Syntax and Variations

ALTER PROC[EDURE] procedure_name [;number]
[{@parameter datatype } [VARYING] [= default] [OUTPUT]][,...n]
[WITH { RECOMPILE | ENCRYPTION | RECOMPILE , ENCRYPTION }]
[FOR REPLICATION]
AS
T-SQL Block

In SQL Server, this command allows the change of any existing parameters for the
previously created stored procedure. In effect, this command is just a shortcut
around issuing a DROP PROCEDURE statement, followed by a modified CREATE
PROCEDURE statement. Such grants or permissions to the stored procedure do not
have to be reestablished. Review the command CREATE PROCEDURE for a full
explanation of the syntax. This command may be executed on SQL Server by the
owner of the stored procedure or a member of the db_owner and ddl_admin fixed
database roles.

Oracle Syntax and Variations

ALTER PROCEDURE [user.]procedure_name COMPILE [DEBUG];

In Oracle, the procedure or package name that needs to be compiled must be
provided. The COMPILE keyword is required. The COMPILE [DEBUG] option
regenerates PL/SQL information. This command may be executed only by the
owner of the stored procedure or by those who have specific privileges to ALTER
ANY PROCEDURE.

Example

This example using Microsoft SQL Server creates a procedure called get_next_br
that generates a unique CHAR(22) output string. Then, when the procedure must
be changed to retrieve unique INT output value, ALTER PROCEDURE is used to
redefine the stored procedure:

-- A Microsoft SQL Server stored procedure
CREATE PROCEDURE get_next_nbr
 @next_nbr CHAR(22) OUTPUT
AS
BEGIN
 DECLARE @random_nbr INT
 SELECT @random_nbr = RAND() * 1000000

,ch03.13605 Page 31 Wednesday, November 29, 2000 4:42 PM

32 Chapter 3 – SQL Statements Command Reference

ALTER TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SELECT @next_nbr =
RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))AS CHAR(6), 6) +

 RIGHT('0000' + CAST(DATEPART (yy, GETDATE()) AS CHAR(4)), 2) +
 RIGHT('000' + CAST(DATEPART (dy, GETDATE()) AS CHAR(3)), 3) +
 RIGHT('00' + CAST(DATEPART (hh, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (mi, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (ss, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('000' + CAST(DATEPART (ms, GETDATE()) AS CHAR(3)), 3)
END
GO

ALTER PROCEDURE get_next_nbr
 @next_nbr INT OUTPUT
AS
BEGIN
 DECLARE @convert_to_nbr CHAR(22)
 DECLARE @random_nbr INT
 SELECT @random_nbr = RAND() * 1000000

SELECT @convert_to_nbr =
RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))AS CHAR(6), 6) +

 RIGHT('0000' + CAST(DATEPART (yy, GETDATE()) AS CHAR(4)), 2) +
 RIGHT('000' + CAST(DATEPART (dy, GETDATE()) AS CHAR(3)), 3) +
 RIGHT('00' + CAST(DATEPART (hh, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (mi, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (ss, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('000' + CAST(DATEPART (ms, GETDATE()) AS CHAR(3)), 3)

SELECT @next_nbr = CAST(@convert_to_nbr AS INT)

END
GO

ALTER TABLE

The ALTER TABLE statement allows an existing table to be modified without drop-
ping the table or altering existing permissions on the table. In this way, certain
incremental changes are performed easily on an existing table.

Both Oracle and Microsoft SQL Server support this command with a number of
variations to service their differing physical file-allocation methods.

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with limitations

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 32 Wednesday, November 29, 2000 4:42 PM

ALTER TABLE 33

Statem
ents

ALTER TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SQL99 Syntax and Description

ALTER TABLE table_name
[ADD [COLUMN] column_name datatype attributes]
| [ALTER [COLUMN] column_name SET DEFAULT default_value]
| [ALTER [COLUMN] column_name DROP DEFAULT]
| [ALTER [COLUMN] column_name ADD SCOPE table_name
| [ALTER [COLUMN] column_name DROP SCOPE {RESTRICT | CASCADE}]
| [DROP [COLUMN] column_name {RESTRICT | CASCADE}]
| [ADD table_constraint_name]
| [DROP CONSTRAINT table_constraint_name {RESTRICT | CASCADE}]

The SQL99 ALTER TABLE statement allows many useful modifications to be made
to an existing table. This versatile command allows users to ADD COLUMN or table
constraint; add or drop a DEFAULT; add or drop SCOPE on columns that are set
up to reference a user-defined type; and DROP both a column and a table
constraint. DROP RESTRICT tells the host DBMS to abort the command if it sees
that other objects in the database depend on the column or table constraint. DROP
CASCADE tells the host DBMS to drop any database object that depends on the
column or table constraint. Refer to the CREATE TABLE statement for additional
explanations of these elements of the command.

Microsoft SQL Server Syntax and Variations

ALTER TABLE table_name
[ALTER COLUMN column_name new_data_type attributes {ADD | DROP}
 ROWGUIDCOL]
| [ADD [COLUMN] column_name datatype attributes][,...n]
| [WITH CHECK | WITH NOCHECK] ADD table_constraint][,...n]
| [DROP { [CONSTRAINT] constraint_name | COLUMN column_name }] [,...n]
| [{ CHECK | NOCHECK } CONSTRAINT { ALL | constraint_name [,...n] }]

| [{ ENABLE | DISABLE } TRIGGER { ALL | trigger_name [,...n] }]

Microsoft SQL Server offers many features in its implementation of ALTER TABLE.
ALTER COLUMN allows the change of an existing column, such as datatype,
nullability, identity functions, and so on. ADD puts a new column, computed
column, or constraint in the table in the very last column position. (There is, at
present, no way to insert a column in the middle or in some other position of the
table.) The optional word COLUMN is provided for clarity, but is not necessary.
The new column must be defined in the same way as using the CREATE TABLE
statement, including any constraints, defaults, and collations.

The WITH CHECK and WITH NOCHECK clauses tell SQL Server whether the data
in the table should be validated against any newly added constraints or keys.
When constraints are added with WITH NOCHECK, the query optimizer ignores
them until they are enabled via ALTER TABLE table_name CHECK CONSTRAINT
ALL. Constraints may be dropped with DROP CONSTRAINT (though the
CONSTRAINT keyword is not necessary) and enabled/disabled with CHECK
CONSTRAINT and NOCHECK CONSTRAINT, respectively.

Similarly, a named trigger on a table may be enabled or disabled using the
ENABLE TRIGGER and DISABLE TRIGGER clauses. All triggers on a table may be
enabled or disabled by substituting the keyword ALL for the table name, as in
ALTER TABLE employee DISABLE TRIGGER ALL.

,ch03.13605 Page 33 Wednesday, November 29, 2000 4:42 PM

34 Chapter 3 – SQL Statements Command Reference

ALTER TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

MySQL Syntax and Variations

ALTER [IGNORE] TABLE table_name
[ADD [COLUMN] column_name datatype attributes]
 [FIRST | AFTER column_name]] [,...n]

| [ADD INDEX [index_name] (index_col_name,...)] [,...n]
| [ADD PRIMARY KEY (index_col_name,...)] [,...n]
| [ADD UNIQUE [index_name] (index_col_name,...)] [,...n]
| [ALTER [COLUMN] column_name {SET DEFAULT literal | DROP DEFAULT}] [,...n]
| [CHANGE [COLUMN] old_col_name create_definition] [,...n]
| [MODIFY [COLUMN] column_name datatype attributes] [,...n]
| [DROP [COLUMN] column_name] [,...n]
| [DROP PRIMARY KEY] [,...n]
| [DROP INDEX index_name] [,...n]
| [RENAME [AS] new_tbl_name] [,...n]
| [table_options]

Refer to the CREATE TABLE statement for more details on allowable column
attributes and table constraints.

The IGNORE option tells MySQL to delete duplicate rows when defining a new
unique key. If IGNORE is not specified, the operation aborts when duplicate
records exist on the unique key.

The FIRST option is used when adding a new column as the first column of the
table. The AFTER column_name may be to add a new column into a table after
the specified column_name.

In addition, MySQL allows some additional flexibility in the ALTER TABLE state-
ment by allowing users to issue multiple ADD, ALTER, DROP, and CHANGE
clauses in a single ALTER TABLE statement. However, be aware that the CHANGE
column_name and DROP INDEX clauses are MySQL extensions not found in
SQL99. MySQL also supports the Oracle extension MODIFY column_name. The
ALTER COLUMN clause allows a new default value for a column to be set or
dropped.

A table may be renamed by using RENAME AS, and a column may be renamed
using CHANGE. For example, this code renames both a table and a column:

ALTER TABLE employee RENAME AS emp;
ALTER TABLE employee CHANGE employee_ssn emp_ssn INTEGER;

Since MySQL allows the creation of indexes on a portion of a column (for
example, on the first ten characters of a column), the CHANGE or MODIFY
commands may not be used to create a column of less length than its indexes.
When DROP COLUMN is used, the column is removed from both the table and any
indexes built with that column.

DROP PRIMARY KEY does not automatically fail if there is no primary key on the
table. Instead, MySQL will drop the first unique index on the table.

MySQL allows a datatype on an existing column to be redefined without losing
any data. The values contained in the column must be compatible with the new

,ch03.13605 Page 34 Wednesday, November 29, 2000 4:42 PM

ALTER TABLE 35

Statem
ents

ALTER TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

datatype. For example, a date column could be redefined to a character datatype,
but not a character datatype to an integer. Here’s an example:

ALTER TABLE mytable MODIFY mycolumn LONGTEXT

MySQL allows the FOREIGN KEY, CHECK, and REFERENCES clauses, but they are
empty. Commands containing these clauses may be issued, but they do nothing.
They are provided primarily for porting compatibility.

Oracle Syntax and Variations

ALTER TABLE [owner_name.]table_name
[ADD column_name datatype attributes]
| [MODIFY {column_name datatype
 | column_constraint
 | physical_storage_attributes [LOGGING | NOLOGGING]
 | nested_table_attributes}]
| [MODIFY CONSTRAINT {constraint_name {constraint_state}
 | drop_constraint_clause
 | drop_column_clause
 | [ALLOCATE | DEALLOCATE extent_clause]
 | [CACHE | NOCACHE]
 | [LOGGING | NOLOGGING]
 | [MONITORING | NOMONITORING]]
| [DROP {[COLUMN] column_name | constraint_name}]
| [ALLOCATE EXTENT details]
| [DEALLOCATE UNUSED details]
| [RENAME TO new_table_name]
| [OVERFLOW physical_storage_attributes]
| [ADD OVERFLOW physical_storage_attributes]
| [{ADD | DROP | MODIFY | MOVE | TRUNCATE | SPLIT | EXCHANGE | MODIFY}
 PARTITION partition_details]

The ALTER TABLE statement details Oracle’s multitude of powerful features for
controlling the physical storage and manipulation of a table, such as handling data
extents, handling overflow extents, and partitioning tables to better handle
extreme usage loads. Check Oracle’s implementation of CREATE TABLE to see the
specific syntax allowed for some of the previous lines, such as column_constraint,
physical_storage_attributes, and nested_table_attributes.

This command may be used to ADD a new column or constraint or MODIFY and
DROP existing columns and constraints. When a new column is added, it should
be defined as NULL, unless the table has no rows. The MODIFY keyword allows
you to alter characteristics of a previously created table. The MODIFY
CONSTRAINT allows you to drop or alter constraints on a table, including whether
LOGGING, CACHE, or MONITOR is activated, as well as whether to ALLOCATE or
DEALLOCATE storage extents. It also utilizes the keywords ENABLE and DISABLE
to activate or deactivate constraints on a table.

Oracle’s implementation of ALTER TABLE is very sophisticated and
complex. Refer to the CREATE TABLE statement for complete discus-
sions on subclauses to the commands that are held in common.

,ch03.13605 Page 35 Wednesday, November 29, 2000 4:42 PM

36 Chapter 3 – SQL Statements Command Reference

ALTER TRIGGER

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

For example, the following code adds a new column to a table in Oracle and adds
a new, unique constraint to that table:

ALTER TABLE titles
ADD subtitle VARCHAR2(32) NULL
CONSTRAINT unq_subtitle UNIQUE;

When a foreign key constraint is added to a table, the DBMS verifies that all
existing data in the table meets that constraint. If they do not, the ALTER TABLE
fails.

Any applications that use SELECT * return the new columns, even if
this was not planned. On the other hand, precompiled objects, such
as stored procedures, may not return any new columns.

Oracle also allows multiple actions, such as ADD or MODIFY, to multiple columns
to be performed by enclosing the action within parentheses. For example, the
following command adds several columns to a table with this single statement:

ALTER TABLE titles
ADD (subtitles VARCHAR2(32) NULL,
 year_of_copyright INT,
 date_of_origin DATE);

PostgreSQL Syntax and Variations

ALTER TABLE table [*]
[ADD [COLUMN] column_name datatype attributes]
| [ALTER [COLUMN] column_name {SET DEFAULT value | DROP DEFAULT}]
| [RENAME [COLUMN] column_name TO new_column_name]
| [RENAME TO new_table_name]

PostgreSQL’s implementation of ALTER TABLE allows the addition of extra columns
using the ADD keyword. Existing columns may have new default values assigned
to them using ALTER COLUMN . . . SET DEFAULT, while ALTER COLUMN . . . DROP
DEFAULT allows the complete erasure of a column-based default. In addition, new
defaults may be added to columns using the ALTER clause, but only newly
inserted rows will be affected by the default value. RENAME allows new names for
existing columns and tables.

ALTER TRIGGER

The ALTER TRIGGER statement modifies a preexisting trigger definition without
altering permissions or dependencies.

Vendor Command

SQL Server Supported, with variations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

,ch03.13605 Page 36 Wednesday, November 29, 2000 4:42 PM

ALTER TRIGGER 37

Statem
ents

ALTER TRIGGER

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SQL99 Syntax and Description

Currently, there is no SQL99 standard for this command.

Microsoft SQL Server Syntax and Variations

ALTER TRIGGER trigger_name
ON {table_name | view_name}
[WITH ENCRYPTION]
{FOR | AFTER | INSTEAD OF} {[DELETE] [,] [INSERT] [,] [UPDATE]}
[WITH APPEND]
[NOT FOR REPLICATION]
AS
 T-SQL_block
| [FOR { [INSERT] [,] [UPDATE] }
[NOT FOR REPLICATION]
AS

 { IF UPDATE(column) [{AND | OR} UPDATE(column)] [...n]
 |
 IF (COLUMNS_UPDATED() {bitwise_operator} updated_bitmask)
 { comparison_operator} column_bitmask [...n] }
 T-SQL_block] }]

Microsoft SQL Server allows the specification of FOR | AFTER | INSTEAD OF
{ [DELETE] [,] [UPDATE] [,][INSERT] } | { [INSERT] [,] [UPDATE] } to describe which
data-modification statement trigger is affected by the command. At least one of
these is required, but any combination is allowed with extra options separated by
commas. The options FOR and AFTER are essentially the same, causing the trigger
code to fire after the data-manipulation operation has completed. Alternately, the
INSTEAD OF key phrase tells SQL Server to substitute the data-manipulation opera-
tion completely with the code of the trigger.

The WITH APPEND key phrase tells SQL Server to append an additional trigger of
the specified type to the base table. This option is allowed only on FOR triggers.
The NOT FOR REPLICATION key phrase tells SQL Server not to execute the trigger
when the action is caused by a replication login, such as sqlrepl. The IF UPDATE
(column) clause tests for an INSERT or UPDATE action (but not DELETE) on a
specific column and is very useful when doing row-based operations using a
cursor. The {AND | OR} operators allow additional columns in the same phrase to
be tested. The IF (COLUMNS_UPDATED()) test an INSERT or UPDATE trigger to
see if the mentioned column(s) were affected. The results are returned as bitwise
operators.

Oracle Syntax and Variations

ALTER TRIGGER [user.]trigger_name [ENABLE | DISABLE | COMPILE [DEBUG]];

Oracle does not allow the underlying code of the trigger to be completely altered
using this command (although the same functionality can be attained using
Oracle’s implementation of CREATE OR REPLACE TRIGGER). Oracle’s ALTER
TRIGGER allows a trigger to be enabled, disabled, or recompiled. The COMPILE
[DEBUG] option regenerates PL/SQL information.

,ch03.13605 Page 37 Wednesday, November 29, 2000 4:42 PM

38 Chapter 3 – SQL Statements Command Reference

ALTER VIEW

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Oracle allows triggers only on tables (though INSTEAD OF triggers
are allowed on views). Microsoft SQL Server allows triggers on tables
and updateable views.

ALTER VIEW

While there is currently no SQL99 standard for the ALTER VIEW, it is important to
note that this command behaves differently in each major vendor application that
supports it. Oracle uses this command to recompile a view; Microsoft SQL Server
uses this command to allow modifications to a view without also updating any
dependent stored procedures, triggers, or permissions.

SQL99 Syntax and Description

Currently, there is no SQL99 standard for this command.

Microsoft SQL Server Syntax and Variations

ALTER VIEW view_name [(column [,...n])]
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA]
AS
select_statement
[WITH CHECK OPTION]

As with the CREATE VIEW statement, ALTER VIEW allows a programmer to specify
the column aliases that the view uses to name the columns, as well as the entire
SELECT statement that is the core component of the view.

The other clauses of the ALTER VIEW statement are described under the CREATE
VIEW statement.

Microsoft SQL Server can maintain the column permissions only if the column
names remain the same after the command has been executed. The ENCRYPTION
keyword allows the encryption of the views code within the syscomments system
table in SQL Server. The keywords CHECK OPTION force all data modifications
executed against the view to pass the criteria of its defining select_statement. If the
view previously contained either of these options, they must be enabled with the
ALTER VIEW statement to stay active.

Oracle Syntax and Variations

ALTER VIEW [user.]view_name COMPILE

The ALTER VIEW statement recompiles a view in Oracle. It is useful to validate a
view after making changes to a base table. A view becomes invalid if its base
tables have changed and it is not recompiled.

Vendor Command

SQL Server Supported, with variations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

,ch03.13605 Page 38 Wednesday, November 29, 2000 4:42 PM

CALL 39

Statem
ents

CALL

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Example

This example from SQL Server creates a view called california_authors that
contains authors from California. Then, ALTER VIEW is used to expand and replace
the view:

CREATE VIEW california_authors
AS
SELECT au_lname, au_fname, city, state
FROM authors
WHERE state = 'CA'
WITH CHECK OPTION
GO

ALTER VIEW california_authors
AS
SELECT au_fname, au_lname, address, city, state, zip
FROM pubs..authors
WHERE state = "CA"
GO

CALL

The CALL statement invokes a stored procedure.

SQL99 Syntax and Description

CALL procedure_name [(parameter [,...n])]

The CALL statement makes it easy to invoke a stored procedure. Simply provide
the name of the stored procedure and include any parameters used by the stored
procedure, enclosing them within parentheses. If the stored procedure has only
OUT parameters, or has no parameters, empty parentheses may be included.

Microsoft SQL Server does not support the CALL statement. How-
ever, nearly identical functionality can be achieved using the
EXECUTE statement. Refer to the vendor documentation for a full
explanation of this SQL Server extension.

Oracle Syntax and Variations

CALL [schema.][{type_name | package_name}.]procedure_name@dblink
[(parameter [,...n])]
[INTO :variable_name [INDICATOR :indicator_name]]

Vendor Command

SQL Server Not supported

MySQL Not supported

Oracle Supported

PostgreSQL Supported

,ch03.13605 Page 39 Wednesday, November 29, 2000 4:42 PM

40 Chapter 3 – SQL Statements Command Reference

CASE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Oracle allows the CALL statement to invoke standalone stored procedures, func-
tions, methods, as well as stored procedures and functions contained within a type
or package. If the procedure or function resides in another database, simply
declare the database via a dblink statement, stating where the object resides, as
part of the CALL statement. dblink must refer to a previously created database link.

If the called routine is a function, Oracle requires the INTO clause. Conversely,
INTO can be used only when invoking functions. The variable that will store the
value returned by the function must be provided. Finally, an indicator also may be
specified to retain the condition of the host variable, if the function is a precom-
piled Pro*C/C++ routine.

Example

This example creates a simple stored procedure, then calls it independently:

CREATE PROCEDURE update_employee_salary
(emp_id NUMBER, updated_salary NUMBER)
IS
BEGIN
 UPDATE employee SET salary = updated_salary WHERE employee_id =emp_id ;
END;

CALL update_employee_salary(1517, 95000);

CASE

The CASE function provides IF-THEN-ELSE functionality within a SELECT or
UPDATE statement. It evaluates a list of conditions and returns one value out of
several possible values.

CASE has two usages: simple and searched. Simple CASE expressions compare one
value, the input_value, with a list of other values, and return a result associated with
the first matching value. Searched CASE expressions allow the analysis of several
logical conditions and return a result associated with the first one that is true.

SQL99 Syntax and Description

-- Simple comparison operation
CASE input_value
WHEN when_condition THEN resulting_value
[...n]
[ELSE else_result_value]
END

Vendor Command

SQL Server Supported

MySQL Supported

Oracle Not Supported (refer to
the DECODE function in
vendor documentation for
similar functionality)

PostgreSQL Supported

,ch03.13605 Page 40 Wednesday, November 29, 2000 4:42 PM

CASE 41

Statem
ents

CASE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

-- Boolean searched operation
CASE
WHEN Boolean_condition THEN resulting_value
[...n]
[ELSE else_result_expression]
END

In the simple CASE function, the input_value is evaluated against each WHEN
clause. The resulting_value is returned for the first TRUE instance of input_value =
when_condition. If no when_condition evaluates as TRUE, the else_result_value is
returned. If no else_result_value is specified, then NULL is returned.

In the more elaborate Boolean searched operation, the structure is essentially the
same as the simple comparison operation, except that each WHEN clause has its
own Boolean comparison operation.

In either usage, multiple WHEN clauses are used, although only one ELSE clause is
necessary.

Examples

Here is a simple comparison operation where the CASE function alters the display
of the contract column to make it more understandable:

SELECT au_fname,
 au_lname,
 CASE contract
 WHEN 1 THEN 'Yes'
 ELSE 'No'
 END 'contract'
FROM authors
WHERE state = 'CA'

Here is an elaborate searched CASE function in a SELECT statement that reports
how many titles have been sold in different year-to-date sales ranges:

SELECT CASE
 WHEN ytd_sales IS NULL THEN 'Unknown'
 WHEN ytd_sales <= 200 THEN 'Not more than 200'
 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'
 WHEN ytd_sales <= 5000 THEN 'Between 1001 and 5000'
 WHEN ytd_sales <= 10000 THEN 'Between 5001 and 10000'
 ELSE 'Over 10000'
 END 'YTD Sales',
 COUNT(*) 'Number of Titles'
FROM titles
GROUP BY CASE
 WHEN ytd_sales IS NULL THEN 'Unknown'
 WHEN ytd_sales <= 200 THEN 'Not more than 200'
 WHEN ytd_sales <= 1000 THEN 'Between 201 and 1000'
 WHEN ytd_sales <= 5000 THEN 'Between 1001 and 5000'
 WHEN ytd_sales <= 10000 THEN 'Between 5001 and 10000'
 ELSE 'Over 10000'
 END
ORDER BY MIN(ytd_sales)

,ch03.13605 Page 41 Wednesday, November 29, 2000 4:42 PM

42 Chapter 3 – SQL Statements Command Reference

CAST

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

This results in the following:

YTD Sales Number of Titles
---------------------- ----------------
Unknown 2
Not more than 200 1
Between 201 and 1000 2
Between 1001 and 5000 9
Between 5001 and 10000 1
Over 10000 3

Here is an UPDATE statement that applies discounts to all the titles. The more
complicated command that follows discounts all personal computer-related titles
by 25%, all other titles by 10%, and applies only a 5% discount to titles with year-
to-date sales exceeding 10,000 units.

The following UPDATE query uses a searched CASE expression to perform price
adjustment:

UPDATE titles
SET price = price *
 CASE
 WHEN ytd_sales > 10000 THEN 0.95 -- 5% discount
 WHEN type = 'popular_comp' THEN 0.75 -- 25% discount
 ELSE 0.9 -- 10% discount
 END
WHERE pub_date IS NOT NULL

The update has now completed three separate update operations in a single
statement.

CAST

The CAST command explicitly converts an expression of one datatype to another.

SQL99 Syntax and Description

CAST(expression AS data_type[(length)])

The CAST function converts any expression, such as a column value or variable,
into another defined datatype. The length of the datatype may be supplied option-
ally for those datatypes (such as CHAR or VARCHAR) that support lengths.

Vendor Command

SQL Server Supported

MySQL Not supported

Oracle Not supported

PostgreSQL Supported

,ch03.13605 Page 42 Wednesday, November 29, 2000 4:42 PM

CLOSE CURSOR 43

Statem
ents

CLOSE CURSOR

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Be aware that some conversions, such as DECIMAL values to
INTEGER, result in rounding operations. Also, some conversion oper-
ations may result in an error if the new datatype does not have suffi-
cient space to display the converted value.

Example

This example retrieves the year-to-date sales as a CHAR and concatenates it with a
literal string and a portion of the book title. It converts ytd_sales to CHAR(5), plus
it shortens the length of the title to make the results more readable:

SELECT CAST(ytd_sales AS CHAR(5)) + "Copies sold of " + CAST(title AS
VARCHAR(30))
FROM titles
WHERE ytd_sales IS NOT NULL
 AND ytd_sales > 10000
ORDER BY ytd_sales DESC

This results in the following:

22246 Copies sold of The Gourmet Microwave
18722 Copies sold of You Can Combat Computer Stress
15096 Copies sold of Fifty Years in Buckingham Pala

CLOSE CURSOR

The CLOSE CURSOR command closes a server-side cursor created with a DECLARE
CURSOR statement. MySQL does not support server-side cursors, but does support
extensive C programming extensions.

SQL99 Syntax and Description

CLOSE { cursor_name }

The cursor_name is the name of the cursor created with the DECLARE CURSOR
command.

Vendor Command

SQL Server Supported

MySQL Not supported

Oracle Supported

PostgreSQL Supported

,ch03.13605 Page 43 Wednesday, November 29, 2000 4:42 PM

44 Chapter 3 – SQL Statements Command Reference

COMMIT TRANSACTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Example

This example from Microsoft SQL Server opens a cursor and fetches all the rows:

DECLARE employee_cursor CURSOR FOR
 SELECT lname, fname
 FROM pubs.dbo.authors
 WHERE lname LIKE 'K%'

OPEN employee_cursor

FETCH NEXT FROM employee_cursor

WHILE @@FETCH_STATUS = 0
BEGIN
 FETCH NEXT FROM Employee_Cursor
END

CLOSE employee_cursor

DEALLOCATE employee_cursor

The DEALLOCATE statement in Microsoft SQL Server releases the
resources and data structures used by the cursor, but Oracle,
PostgreSQL, and MySQL do not use it.

COMMIT TRANSACTION

The COMMIT TRANSATION statement explicitly ends an open transaction, whether
explicitly opened with BEGIN, or implicitly opened as part of an INSERT, UPDATE,
or DELETE statement. This command allows the manual and permanent end to a
data-manipulation operation.

SQL99 Syntax and Description

COMMIT [WORK]

In addition to finalizing a single or group of data-manipulation operation(s),
COMMIT has some interesting effects on other aspects of a transaction. First, it
closes any associated open cursors. Second, any temporary table(s) specified with
ON COMMIT DELETE ROWS are cleared of data. Third, all locks opened by the
transaction are released. Finally, all deferred constraints are checked. If the
deferred constraints are violated, the transaction is rolled back.

Vendor Command

SQL Server Supported, with variations

MySQL Not supported

Oracle Supported

PostgreSQL Supported

,ch03.13605 Page 44 Wednesday, November 29, 2000 4:42 PM

COMMIT TRANSACTION 45

Statem
ents

COMMIT TRANSACTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Please note that SQL99 dictates that transactions are implicitly opened when one of
these statements is executed:

ALTER
CLOSE
COMMIT AND CHAIN (new for SQL99)
CREATE
DELETE
DROP
FETCH
FREE LOCATOR
GRANT
HOLD LOCATOR
INSERT
OPEN
RETURN
REVOKE
ROLLBACK AND CHAIN (new for SQL99)
SELECT
START TRANSACTION (new for SQL99)
UPDATE

SQL99 offers the new, optional keywords AND CHAIN. None of our vendors yet
support this command. This new syntax is:

COMMIT [WORK] [AND [NO] CHAIN]

The AND CHAIN option tells the DBMS to treat the following transaction as if it
were a part of the preceding. In effect, the two transactions are separate units of
work, but they share a common transaction environment (such as transaction
isolation level). The AND NO CHAIN option simply ends the single transaction.
The COMMIT command is functionally equivalent to the command COMMIT
WORK AND NO CHAIN.

Microsoft SQL Server Syntax and Variations

COMMIT [TRAN[SACTION] [transaction_name | @tran_name_variable]]
|
COMMIT [WORK]
GO

Microsoft SQL Server allows a specific, named transaction to be made permanent.
The COMMIT command must be paired with a BEGIN TRAN command. The
COMMIT TRANSACTION syntax allows programmers to specify an explicit transac-
tion to close or to store a transaction name in a variable. Curiously, SQL Server still
commits only the last open transaction, despite the name of the transaction that is
specified. When using COMMIT WORK, a transaction name or a variable
containing a transaction name may not be specified.

However, this syntax is misleading in the event of nested named triggers, since it
closes the outermost transaction. Transactions in SQL Server are identified numeri-
cally by the @@TRANCOUNT global variable. All transactions are committed only
when @@TRANCOUNT equals 0.

,ch03.13605 Page 45 Wednesday, November 29, 2000 4:42 PM

46 Chapter 3 – SQL Statements Command Reference

Concatenation Operators

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Oracle Syntax and Variations

COMMIT [WORK];

Oracle does not allow specifically named transactions (but it does allow save-
points); thus, the COMMIT command simply makes permanent all data-
manipulation operations since the last implicit or explicit COMMIT statement was
executed. Oracle allows the WORK keyword, but it is entirely optional.

PostgreSQL Syntax and Variations

COMMIT [WORK | TRANSACTION];

In PostgreSQL, both the WORK and TRANSACTION keywords are optional. The
effect of the command is the same with or without either keyword. When
completed, all committed transactions have been written to disk and are visible to
other users.

Example

INSERT INTO sales VALUES('7896','JR3435','Oct 28 1997',25,'Net
60','BU7832');

COMMIT WORK;

Concatenation Operators

When it is necessary to combine the data of multiple columns into a single column
in SELECT result set, the concatenation symbol supported by the DBMS may be
used to achieve this result.

Example and Description

SELECT lname || ', ' || fname FROM customers WHERE cust_id = 41;

The ANSI standard is a double-pipe mark (||), as shown in the previous code
example, and is supported by Oracle and PostgreSQL.

Microsoft SQL Server uses a plus sign (+) as its concatenation symbol.

MySQL uses the CONCAT(string1, numeric1, string2, numeric2 [,…n]) function to
accomplish concatenation.

CONNECT

The CONNECT statement establishes a connection to the DBMS and to a specific
database within the DBMS.

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported

PostgreSQL Supported

,ch03.13605 Page 46 Wednesday, November 29, 2000 4:42 PM

CONNECT 47

Statem
ents

CONNECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SQL99 Syntax and Description

CONNECT [TO] DEFAULT
| {[server_specification] [AS connection_name] [USER user_name] }

If the CONNECT statement is invoked without explicitly disconnecting, the old
session becomes dormant and the new session becomes active. The period
between issuing the CONNECT and DISCONNECT statements is commonly called a
session. Typically, users complete all work on a DBMS during an explicitly
invoked session.

The Oracle tool SQL*Plus uses the CONNECT command somewhat
differently: to connect a user to a specific schema.

The CONNECT TO DEFAULT statement has somewhat variable results, since
different vendors implement it differently. But according to the standard, this
command should initiate a default session with the server where the user authori-
zation is the default and the current database is the default.

In contrast to CONNECT TO DEFAULT, CONNECT TO server_name allows you to
specify the server. Here, the connection is made to the server that is explicitly
named. In addition, the connection may be declared using AS and a specific user
with USER.

Oracle Syntax and Variations

CONN[ECT] [[username/password] [AS [SYSOPER | SYSDBA]]]

The CONNECT clause allows a database connection as a specific username. Alter-
nately, a connection can be established for special privileges with AS SYSOPER or
AS SYSDBA. If another connection is already open, CONNECT commits any open
transactions, closes the current session, and opens the new one.

PostgreSQL does not explicitly support the CONNECT command.
However, it does support the statement SPI_CONNECT under the
Server Programming Interface and PG_CONNECT under the PG/tcl
programming package.

Vendor Command

SQL Server Supported, with limitations

MySQL Not supported

Oracle Supported

PostgreSQL Not supported

,ch03.13605 Page 47 Wednesday, November 29, 2000 4:42 PM

48 Chapter 3 – SQL Statements Command Reference

CREATE DATABASE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Examples

To connect under a specific user ID, a user or automated program might issue the
command:

CONNECT TO USER pubs_admin

If the DBMS requires named connections, then alternative syntax might be used:

CONNECT TO USER pubs_admin AS pubs_administrative_session;

Microsoft SQL Server supports CONNECT TO only within embedded SQL (ESQL):

EXEC SQL CONNECT TO new_york.pubs USER pubs_admin

CREATE DATABASE

SQL99 does not actually contain a CREATE DATABASE statement. The closest
SQL99 gets to the CREATE DATABASE statement is the CREATE SCHEMA and
CREATE CATALOG statements. (CREATE SCHEMA is detailed later.) However, it is
nearly impossible to operate a SQL database without this command. Almost all
database vendors support some version of this command.

SQL99 Syntax and Description

CREATE database_name

In this syntax, database_name is the identifier of the new database to be created.
This command creates a new, blank database with a specific name. Most vendors
require a user to be in the root, master, or system database to create a new data-
base. Once the new database is created, it can then be filled with database objects
(such as tables, views, triggers, and so on), and the tables populated with data.

Microsoft SQL Server Syntax and Variations

In SQL Server and Oracle, the database is instantiated in a pre-created file struc-
ture. These files act as go-betweens for the database system and the operating
system. As a result, the SQL Server and Oracle variants of CREATE DATABASE are
similarly more sophisticated.

The syntax for Microsoft SQL Server looks like this:

CREATE DATABASE database_name
[ON [PRIMARY]
[<file> [,...n]]
[, <file_group> [,...n]]
]
[LOG ON { <file> [,...n]}]
[FOR LOAD | FOR ATTACH]
GO

Vendor Command

SQL Server Supported, with variations

MySQL Supported

Oracle Supported

PostgreSQL Supported, with variations

,ch03.13605 Page 48 Wednesday, November 29, 2000 4:42 PM

CREATE DATABASE 49

Statem
ents

CREATE DATABASE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In this implementation, not only can the name of the database be supplied, but
the location where the database is to be stored also can be specified. Both Oracle
and SQL Server use files (a predefined space created on the disk structure) to act
as a repository for databases. The databases may be stored on one or more files or
filegroups. SQL Server also allows the transaction log to be placed in a separate
location from the database using the LOG ON clause. These functions allow sophis-
ticated file planning for optimal control of disk I/O.

The FOR LOAD clauses specify that the database will be immediately loaded from
a backup after creation, thus speeding up the initial creation. The FOR ATTACH
clause tells SQL Server that the database is attached from an existing operating-
system file structure, such as a DVD-ROM, CD-ROM, or portable hard drive.

MySQL and PostgreSQL Syntax and Variations

In MySQL, CREATE DATABASE essentially creates a new directory that holds the
database objects. So, with these vendors, creating a database is just a step above
creating a filesystem directory. The database is created as a directory under the
vendor’s main directory, and any new objects created within the database are
placed in that folder. PostgreSQL provides the same functionality, although
PostgreSQL allows the database’s location to be specified using the WITH
LOCATION option:

CREATE DATABASE name [WITH LOCATION = 'dbpath'];

For example, to create the database sales_revenue in the /home/teddy/private_db
directory:

CREATE DATABASE sales_revenue WITH LOCATION = '/home/teddy/private_db';

Oracle Syntax and Variations

CREATE DATABASE [database_name]
[CONTROLFILE REUSE]
[LOGFILE [GROUP1 integer] file1 integer [K | M] [,...n] [REUSE]]
 [MAXLOGFILES integer]
 [[MAXLOGMEMBERS] integer]
 [[MAXLOGHISTORY] integer]
[DATAFILE file1 [AUTOEXTEND [,...n] [ON | OFF]]
 [NEXT integer [K | M]]
 [MAXSIZE [UNLIMITED | integer [K | M]]
 [MAXDATAFILES integer]
 [,...n]]
[MAXINSTANCES integer]
[MAXDATAFILES integer]
[ARCHIVELOG | NOARCHIVELOG]
{CHARACTER SET charset}
{NATIONAL CHARACTER SET charset};

CREATE DATABASE is a very powerful command in Oracle and
should be utilized only by experienced DBAs. Novices should be
aware that the existing database can be destroyed using this
command.

,ch03.13605 Page 49 Wednesday, November 29, 2000 4:42 PM

50 Chapter 3 – SQL Statements Command Reference

CREATE FUNCTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

As with Microsoft SQL Server, Oracle provides an extraordinary level of control
over the database file structures beyond merely naming the database and speci-
fying a path for the database files. Also unique to the Oracle environment is the
INIT.ORA file, which specifies the database name and a variety of other options
when creating and starting up the database. The INIT.ORA file always must be
used and point to the control files, or the database does not start up.

When the file1 [,…n] option is available, the filename and file size may be speci-
fied in bytes, kilobytes, or megabytes in this format:

'file_path_and_name' SIZE bytes [K | M] REUSE

The [K | M] options multiply the file’s byte size by 1024 and 1048576, respec-
tively. While the REUSE option creates the file if it does not exist, and reuses it if it
does, the CONTROLFILE REUSE option causes control files to be overwritten. Simi-
larly, LOGFILE . . . REUSE causes logfiles to be overwritten.

When a group of logfiles are listed, they are usually shown in parentheses. The
parentheses aren’t needed when creating a group with only one member, but this
is seldom done. Here’s an example of a parenthetical list of logfiles:

CREATE DATABASE publications
LOGFILE ('/s01/oradata/loga01','/s01/oradata/loga02') SIZE 5M
DATAFILE

Additionally, the LOGFILE and DATAFILE options and suboptions allow precise
control of the size and growth patterns of the database’s redo logs and database
files. The MAXLOGFILES and MAXDATAFILES define the absolute upper limit of
files allowed for redo logs and database files, respectively. When AUTOEXTEND is
enabled, the datafile grows in increments of NEXT until it reaches MAXSIZE, unless
it is set to UNLIMITED. MAXLOGMEMBERS controls the maximum number of
copies of a redo log group. MAXLOGHISTORY, used in Oracle Parallel Server,
controls the maximum number of archived redo logs so that the right amount of
space is recorded in the control file.

The MAXINSTANCES parameter sets the maximum number of instances that may
mount the database being created. ARCHIVELOG | NOARCHIVELOG are mutually
exclusive options that define how redo logs operate. ARCHIVELOG saves data to
an additional archiving file, providing for media recoverability. Both options
provide recoverability, although NOARCHIVELOG (the default) usually does not
provide media recovery. CHARACTER SET, which is operating-system dependent,
controls the language and character set in which the data is stored.

CREATE FUNCTION

The CREATE FUNCTION statement creates a user-defined function (UDF), which
takes input arguments and returns a single value in the same way as CAST(). A
UDF can be called in a query just like any other system function.

See Chapter 4, SQL Functions, for a full description of SQL functions and the indi-
vidual vendor implementations.

,ch03.13605 Page 50 Wednesday, November 29, 2000 4:42 PM

CREATE FUNCTION 51

Statem
ents

CREATE FUNCTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The CREATE FUNCTION statement allows database programmers to create user-
defined functions. These functions, once created, can be called in queries and
data-manipulation operations, such as INSERT, UPDATE, and the WHERE clause of
DELETE statements. Although the basic syntax for the statement was shown
before, there is so much variety in how vendors have implemented the command
that they are each described later in this section.

SQL99 Syntax and Description

CREATE FUNCTION function_name
[(parameter datatype attributes [,...n])]
RETURNS datatype

 [LANGUAGE {ADA | C | FORTRAN | MUMPS | PASCAL | PLI | SQL}]
 [PARAMETER STYLE {SQL | GENERAL}]
 [SPECIFIC specific_name]
 [DETERMINISTIC | NOT DETERMINISTIC]
 [NO SQL | CONTAINS SQL | READS SQL DATA | MODIFIES SQL DATA]
 [RETURNS NULL ON NULL INPUT | CALL ON NULL INPUT]
 [STATIC DISPATCH]

code block

The SQL99 standard for the CREATE FUNCTION statement has a primary compo-
nent and a more advanced component that is used less often. In most UDFs, users
define the function name, any input parameters, and the value that the UDF
returns. These form the basic uses of the command.

However, the SQL99 standard allows much more. The LANGUAGE clause allows
the language in which the function is written (e.g., PostgreSQL) to be declared.
The PARAMETER STYLE clause is used to declare a parameter style, other than the
typical SQL style, via the GENERAL keyword. (SQL is the default.) The SPECIFIC
declaration is used to further refine the function name in a user-defined type. The
DETERMINISTIC versus NOT DETERMINISTIC clause tells the host DBMS whether
the function will always return the same result when given the same input parame-
ters (i.e., it is deterministic). Only deterministic functions may be used in
constraints.

The SQL data access clause tells the host DBMS whether the function contains NO
SQL, contains SQL code with CONTAINS SQL, uses the SELECT or FETCH state-
ment with READS SQL DATA, or uses any of the data-modification statements with
MODIFIES SQL DATA. The default is CONTAINS SQL.

For host languages that cannot handle nulls, RETURNS NULL ON NULL INPUT may
be declared, telling the function to immediately return a null when handed a null.

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 51 Wednesday, November 29, 2000 4:42 PM

52 Chapter 3 – SQL Statements Command Reference

CREATE FUNCTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In contrast, CALL ON NULL INPUT (the default) processes the null parameter
normally with possible unknown results.

The STATIC DISPATCH clause is used for non-SQL functions that contain parame-
ters that use user-defined types or ARRAYS.

Microsoft SQL Server Syntax and Variations

CREATE FUNCTION [owner_name.]function_name
([{@parameter1 datatype [=default]} [,...n]])
RETURNS {datatype | TABLE]
[WITH {ENCRYPTION | SCHEMABINDING}]
AS <Transact-SQL body>
GO

SQL Server functions can return multiple values via the TABLE datatype. The
TABLE datatype is considered inline if it has no accompanying column list and is
defined with a single SELECT statement. If the RETURN clause returns multiple
values via the TABLE datatype, and if the TABLE has defined columns and their
datatypes, this function is a multistatement table-valued function.

SQL Server requires that one or more user-supplied parameters be declared for a
given user-defined function. All SQL Server datatypes are supported as parame-
ters, except timestamp. Values returned by the function can be any datatype
except timestamp, text, ntext, or image. If an inline table value is required, the
TABLE option without an accompanying column list may be used.

Microsoft SQL Server user-defined functions, like many other database objects in
SQL Server, may be created with the ENCRYPTION or SCHEMABINDING option.
The ENCRYPTION option tells SQL Server to encrypt the system column table that
stores the text of the function, thus preventing unwarranted review of the func-
tion code. The SCHEMABINDING option specifies that the function is bound to a
specific database object, such as a table or view. That database object cannot be
altered or dropped as long as the function exists (or maintains the
SCHEMABINDING option).

The Transact-SQL body of code is either a single SELECT statement for an inline
function, in the format RETURN (SELECT . . .), or a series of Transact-SQL state-
ments for a multistatement operation. The Transact-SQL body held within a
BEGIN . . . END block cannot make any permanent changes to data or cause other
lasting side effects. The last statement of the block must be an unconditional
RETURN that returns a single datatype value or TABLE value.

The Transact-SQL block may not contain any global variables that return a perpet-
ually changing value, such as @@CONNECTIONS or GETDATE. But it may contain
those that return a single unchanging value, such as @@SERVERNAME. A number
of other restrictions exist, since the code cannot make any permanent changes to
data or cause other lasting side effects. For example, INSERT, UPDATE, and
DELETE statements may modify only TABLE variables local to the function.

The following is an example of a scalar function that returns a single value:

CREATE FUNCTION metric_volume -- Input dimensions in centimeters.
 (@length decimal(4,1),

,ch03.13605 Page 52 Wednesday, November 29, 2000 4:42 PM

CREATE FUNCTION 53

Statem
ents

CREATE FUNCTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

 @width decimal(4,1),
 @height decimal(4,1))
RETURNS decimal(12,3) -- Cubic Centimeters.
AS BEGIN
 RETURN (@length * @width * @height)
 END
GO

This user-defined function could then be utilized in a query or other operation just
like any other function. For example, the project name and metric volume for all
construction projects with more than 300,000 in metric volume can be found like
this:

SELECT project_name,
 metric_volume(construction_height,
 construction_length,
 construction_width)
FROM housing_construction
WHERE metric_volume(construction_height,
 construction_length,
 construction_width) >= 300000
GO

User-defined functions that return a table value are often selected as a result set
value or are used in the FROM clause of a SELECT statement, just as a regular table
is used. In a FROM clause, a table alias function can be assigned just like a regular
table. For example:

SELECT co.order_id, co.order_price
FROM construction_orders AS co,
 fn_construction_projects('Cancelled') AS fcp
WHERE co.construction_id = fcp.construction_id
ORDER BY co.order_id
GO

MySQL Syntax and Variations

CREATE [AGGREGATE] FUNCTION function_name
RETURNS {STRING | REAL | INTEGER}
SONAME shared_program_library_name ;

CREATE FUNCTION under MySQL aggregates user-defined functions, such as SUM()
and COUNT(), using the AGGREGATE option. The type of value returned may be
either STRING for character data, REAL for floating point numbers, or INTEGER for
whole numbers.

The implementation of CREATE FUNCTION in MySQL differs dramatically from the
other vendors, since the procedural code must be C/C++ under an operating
system that supports dynamic loading. The C/C++ program is named in the shared_
program_library_name option. The function may be compiled either directly into
the MySQL server, making the function permanently available, or as a dynamically
callable program. Since the user-defined function is written as a C/C++ program, a
full description of this implementation is beyond the scope of this book.

,ch03.13605 Page 53 Wednesday, November 29, 2000 4:42 PM

54 Chapter 3 – SQL Statements Command Reference

CREATE FUNCTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Oracle Syntax and Variations

CREATE [OR REPLACE] FUNCTION [owner_name.]function_name
[(parameter1 [IN | OUT | IN OUT] [NOCOPY] datatype][,...n)]]
RETURN datatype [DETERMINISTIC | AUTHID {CURRENT_USER | DEFINER}]
 {IS | AS} {PL/SQL block | external program};

In Oracle, user-defined functions and stored procedures are very similar in compo-
sition and structure. The primary difference is that stored procedures cannot return
a value to the invoking process, while a function may return a single value to the
invoking process.

In Oracle user-defined functions, the arguments and parameters specified include
IN, OUT, and IN OUT. The IN qualifier is provided when invoking the function,
and it passes a value to the function; OUT arguments pass a value back to the
invoking process. In other words, the IN qualifier is supplied by the user or
process that calls the function, while the OUT argument is returned by the func-
tion. IN OUT arguments perform both IN and OUT functionality. The NOCOPY
keyword is used to speed up performance when an OUT or IN OUT argument is
very large, as with a varray or record datatype.

The RETURN keyword specifies the datatype of the return value provided by the
function. The DETERMINISTIC keyword is used to speed processing by functions
that have been declared explicitly as deterministic. The stored returning value
might come from a materialized view, another concurrent function call to the same
function, or a function-based index. The function also may be forced to run in the
permission context of either the current user or the person who owns the func-
tion, using the AUTHID CURRENT_USER or AUTHID DEFINER phrases, respectively.

For example, a construction project’s profit can be determined by passing in the
name of the project in this function:

CREATE FUNCTION project_revenue (project IN varchar2)
RETURN NUMBER
AS
 proj_rev NUMBER(10,2);
BEGIN
 SELECT SUM(DECODE(action,'COMPLETED',amount,0)) –
 SUM(DECODE(action,'STARTED',amount,0)) +
 SUM(DECODE(action,'PAYMENT',amount,0))
 INTO proj_rev
 FROM construction_actions
 WHERE project_name = project;
 RETURN (proj_rev);
END;

In this example, the user-defined function accepts the project name as an argu-
ment. Then, it processes the project revenue, behind the scenes, by subtracting the
starting costs from the completion payment and adding any other payments into
the amount. The RETURN(proj_rev); line returns the amount to the invoking
process.

PostgreSQL Syntax and Variations

CREATE FUNCTION name ([parameter1 [,...n]])
RETURNS datatype

,ch03.13605 Page 54 Wednesday, November 29, 2000 4:42 PM

CREATE INDEX 55

Statem
ents

CREATE INDEX

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

AS {definition | object_file, link_symbol}
LANGUAGE {'C' | 'SQL' | 'PLPGSQL' | 'PLTCL' | 'PLTCLU' | 'PLPERL'
 | 'internal'}
[WITH ISCACHABLE];

The PostgreSQL variation of CREATE FUNCTION is among the most flexible imple-
mentations of the command. As with the other implementations, parameters are
invoked and return a value of datatype. PostgreSQL also allows function over-
loading where the same function name is allowed for different functions, as long
as they accept distinct input parameters.

The WITH ISCACHABLE datatype attribute optimizes PostgreSQL performance by
indicating that the function always returns the same values when provided with
the same parameter values. This setting then allows the optimizer to preevaluate
the call of the function.

The definition can be a string defining the function (dependent on the language in
which the function is written), such as an internal function name, the path and
name of an object file, SQL query, or the text of a procedural language. The defi-
nition also can be an object file and link symbol to a C-language function.

Here’s an example of a simple SQL function in PostgreSQL:

CREATE FUNCTION max_project_nbr
RETURNS int4
AS "SELECT MAX(project_ID) FROM housing_construction AS RESULT"
LANGUAGE 'sql';

PostgreSQL uses CREATE FUNCTION as a substitute for CREATE
PROCEDURE, as well as to define actions for CREATE TRIGGER.

The LANGUAGE keyword allows the PostgreSQL function to call an external
program. Since these are programs compiled in other languages, they are beyond
the scope of this book. However, the LANGUAGE ‘sql’ clause should be used when
writing SQL user-defined functions.

CREATE INDEX

Indexes are special objects built on top of tables that speed many data-
manipulation operations, such as SELECT, UPDATE, and DELETE statements. When
an index is created, the location and spread of values (called statistics) are built for
the column that is indexed. The selectivity of a given WHERE clause is usually
based upon the quality of indexes that have been placed on the table.

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 55 Wednesday, November 29, 2000 4:42 PM

56 Chapter 3 – SQL Statements Command Reference

CREATE INDEX

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The CREATE INDEX command varies greatly among vendors. One reason is that
some DBMS vendors use the CREATE INDEX command to direct how the data in a
given table is physically sorted and arranged on disk.

SQL99 Syntax and Description

CREATE INDEX index_name ON table_name (column_name [, ...n])

All major vendors support composite indexes, also known as concatenated indexes.
These indexes are used when two or more columns are best searched as a unit—
for example, last name and first name.

Microsoft SQL Server Syntax and Variations

CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name
ON {table | view} (column [ASC | DESC] [,...n])
[WITH [PAD_INDEX]
 [[,] FILLFACTOR = fillfactor]
 [[,] IGNORE_DUP_KEY]
 [[,] DROP_EXISTING]
 [[,] STATISTICS_NORECOMPUTE]]
[ON filegroup]
GO

Microsoft SQL Server has some important options. For example, ascending or
descending indexes can be created on tables, as can indexes on views and calcu-
lated columns (such as UPPER(book_name) or ((qty * amt) / royalty)). SQL Server
also allows specification of several optional arguments: UNIQUE, CLUSTERED, or
NONCLUSTERED (the default). Unique indexes require that no two values in the
indexed column(s) are identical. Any attempt to insert or update a value so that
there are duplicate values within the index will fail with an error. Clustered indexes
specify the physical sort order of the data on the disk. Nonclustered indexes create
a logical ordering of the table, which is used to speed data-manipulation
operations.

SQL Server allows some additional syntax:

• PAD_INDEX specifies that space should be left open on each index data page,
according to the value established by the FILLFACTOR setting.

• FILLFACTOR is a percentage value (from 1 to 100) and tells SQL Server how
much of its 8K data page should be filled at the time the index is created.
This is useful to reduce page splits when an 8K data page fills up, thus reduc-
ing I/O-intensive disk operations. Creating a clustered index with an explic-
itly defined fillfactor can increase the size of the index and speed up
processing in certain circumstances.

• IGNORE_DUP_KEY controls what happens when a duplicate record is placed
into a unique index through an insert or update operation. If this value is set
for a column, only the duplicate row is excluded from the operation. If this
value is not set, then all records in the operation (even nonduplicate records)
are rolled back.

• DROP_EXISTING is a helpful feature that tells SQL Server to drop any
preexisting indexes and rebuild the specified index.

,ch03.13605 Page 56 Wednesday, November 29, 2000 4:42 PM

CREATE INDEX 57

Statem
ents

CREATE INDEX

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

• STATISTICS_NORECOMPUTE stops SQL Server from recomputing index statis-
tics. This can speed the CREATE INDEX operation, but it may mean that the
index is less valuable.

• ON filegroup creates the index on a given preexisting filegroup. This creates
the capability of placing indexes on a specific hard disk or RAID device.

Creating an index usually takes 1.2 to 1.5 times more space than the
table currently occupies. Most of that space is released after the
index has been created.

MySQL Syntax and Variations

CREATE [UNIQUE] INDEX index_name ON table_name (column_name(length) [,...n])

MySQL supports the basic ANSI standard for the CREATE INDEX statement,
including the ability to build an index upon multiple columns. An index may be
defined further as UNIQUE, forcing that index to accept only unique values. Any
insertion of a non-unique value to the table with a UNIQUE index is rejected.

Interestingly, MySQL also lets you build an index on the first (length) characters of
a CHAR or VARCHAR column. This can be useful when selectivity is sufficient in
the first, say, 10 characters of a column, and in those situations where saving disk
space is very important.

Oracle Syntax and Variations

CREATE [UNIQUE | BITMAP] INDEX [owner_name.]index_name
ON [schema.]{table ({column | expression} [ASC | DESC] [,...n])
 | CLUSTER cluster_name}
[physical_attributes_clause | {LOGGING | NOLOGGING} |
 | [ONLINE] | [COMPUTE [STATISTICS]]
 | {TABLESPACE tablespace_name | DEFAULT}
 | {COMPRESS int | NOCOMPRESS}
 | {NOSORT |REVERSE}],...
 [GLOBAL PARTITION BY RANGE (column_list)
 (PARTITION [partition_name] VALUES LESS THAN (value_list)
 [physical_attributes_clause | {LOGGING | NOLOGGING}] ,...n)
| LOCAL [(PARTITION [partition_name]
 [physical_attributes_clause | {LOGGING | NOLOGGING}] ,...n)]]
[PARALLEL [int] | NOPARALLEL]

Oracle allows the creation of indexes that are based not only on column values,
but also on calculated expressions, such as UPPER(book_name) or ((qty * amt) /
royalty). Indexes may be UNIQUE or non-unique. Oracle also allows the creation
of a BITMAP index, which is useful for columns that have few distinct values. In
addition, Oracle allows the construction of both ascending (ASC) and descending
(DESC) indexes. However, be aware Oracle treats DESC indexes as function-based
indexes. There is some difference in functionality between ASC indexes and DESC
indexes. A cluster key also may be specified for the index using the CLUSTER
option. (Clusters are created with the Oracle-specific command CREATE CLUSTER.)

,ch03.13605 Page 57 Wednesday, November 29, 2000 4:42 PM

58 Chapter 3 – SQL Statements Command Reference

CREATE INDEX

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Oracle and SQL Server differ significantly in their definition of a clus-
tered index. In SQL Server, a clustered index designates the physical
sort order of the data held in a table. In Oracle, a cluster is a special
index between two or more tables that greatly speeds join operations.

The physical_attributes_clause refers to the settings that can be established for the
following:

[PCTFREE int
| PCTUSED int
| INITRANS int
| MAXTRANS int
| STORAGE storage...]

PCTFREE is similar to SQL Server’s FILLFACTOR ; that is, it designates the
percentage of free space to leave in the index for new entries and updates.
PCTFREE can be used only for indexes that are not UNIQUE. PCTUSED is the
percentage of space available in a block that must exist before Oracle will allow
insertions to that block. PCTUSED is allowable for tables, but may not be used for
indexes. STORAGE, INITRANS, and MAXTRANS are discussed in the CREATE
TABLE statement topic, in the section, “Oracle Syntax and Variations.”

The TABLESPACE clause assigns the index to a specific tablespace. Leaving out the
TABLESPACE clause places the index on the default tablespace, or the DEFAULT
keyword achieves the same results.

LOGGING tells Oracle to log the creation of the index on the redo log file, while
NOLOGGING prevents such logging. This keyword also sets the default behavior
for subsequent bulk loads using Oracle Direct Loader. When building index parti-
tions, there are some special behaviors for these keywords, so refer to the vendor
documentation when attempting such activities.

ONLINE tells Oracle to allow data manipulations on the table while the index is
being created. The COMPUTE STATISTICS command collects statistics while the
index is created. The statistics are collected at relatively little cost. COMPRESS acti-
vates key compression on nonpartitioned indexes, which frees space by
eliminating repeated key values. The integer value that accompanies COMPRESS
gives the number of prefix columns to compress. NOCOMPRESS, the default,
disables compression.

Oracle allows the creation of partitioned indexes and tables with the PARTITION
clause. Consequently, Oracle’s indexes also support partitioned tables. The LOCAL
clause tells Oracle to create separate indexes for each partition of a table. The
GLOBAL clause tells Oracle to create a common index for all the partitions, though
specific index value ranges may differ from the ranges stored by the partitions.

The NOSORT option allows an index to be created quickly for a column that is
already sorted in ascending order. If the values of the column are not in perfect
ascending order, the operation aborts, allowing a retry without the NOSORT
option. REVERSE, by contrast, places the index blocks in storage by reverse order
(excluding rowed). REVERSE is mutually exclusive of NOSORT and cannot be used
on a bitmap index or an index-organized table.

,ch03.13605 Page 58 Wednesday, November 29, 2000 4:42 PM

CREATE INDEX 59

Statem
ents

CREATE INDEX

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The PARALLEL clause allows for the parallel creation of the index by distinct CPUs
to speed the operation. An optional integer value may be supplied to define the
exact number of parallel threads used in the operation. NOPARALLEL, the default,
causes the index to be created serially.

PostgreSQL Syntax and Variations

CREATE [UNIQUE] INDEX index_name ON table
[USING [BTREE | RTREE | HASH]]
(function_name (column [operator_class] [, ...]))

PostgreSQL allows the creation of standard ascending-order indexes, as well as
UNIQUE indexes. Its implementation also includes a performance enhancement
under the WITH access_method clause. This clause allows one of three dynamic
access methods to optimize performance:

BTREE
This is the default method when no other is specified. This method utilizes
Lehman-Yao high-concurrency btrees.

RTREE
This method utilizes standard rtrees using Guttman’s quadratic-split algorithm.

HASH
This method is an implementation of Litwin’s linear hashing.

In PostgreSQL, columns also may have an associated operator class based on the
datatype of the column. An operator class specifies the operators for a particular
index. Although users are free to define any valid operator class for a given
column, the default operator class is the appropriate operator class for that field
type.

PostgreSQL also allows users to define an index using a function, a user-defined
function, or an expression. For example, an index could be defined on
UPPER(book_name) to speed a transformation operation that is regularly applied
to the base data of the index.

Examples

This example in MySQL creates a simple ascending index on the au_id column of
the authors table:

CREATE INDEX au_id_ind
ON authors (au_id);

This example creates a housing_construction table (as used in the CREATE
FUNCTION topic) and places a clustered index on it. This index physically orders
the data on disk because the CLUSTERED clause is specified:

CREATE TABLE housing_construction
 (project_number INT NOT NULL,
 project_date DATETIME NULL,
 project_name VARCHAR(50)
 COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
 construction_color NCHAR(20)
 COLLATE SQL_Latin1_General_CP1_CI_AS NULL ,
 construction_height DECIMAL(4, 1) NULL ,

,ch03.13605 Page 59 Wednesday, November 29, 2000 4:42 PM

60 Chapter 3 – SQL Statements Command Reference

CREATE PROCEDURE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

 construction_length DECIMAL(4, 1) NULL ,
 construction_width DECIMAL(4, 1) NULL ,
 construction_volume INT NULL
GO

CREATE UNIQUE CLUSTERED INDEX project_id_ind
ON housing_construction(project_id)
GO

It is often necessary to build indexes that span several columns—i.e., a concate-
nated key. Here is an example:

CREATE UNIQUE INDEX project2_ind
ON housing_construction(project_name, project_date)
WITH PAD_INDEX, FILLFACTOR = 80
GO

Adding the PAD_INDEX clause and setting the FILLFACTOR to 80 tells SQL Server
to leave the index and data pages 80% full, rather than 100% full.

The following example constructs the same index in Oracle on a specific
tablespace with specific instructions for how the data is to be stored:

CREATE UNIQUE INDEX project2_ind
ON housing_construction(project_name, project_date)
STORAGE (INITIAL 10M NEXT 5M PCTINCREASE 0)
TABLESPACE construction;

If the housing_construction table is created as a partitioned table on an Oracle
server, a partitioned index should also be created:

CREATE UNIQUE CLUSTERED INDEX project_id_ind
ON housing_construction(project_id)
GLOBAL PARTITION BY RANGE (project_id)
 (PARTITION part1 VALUES LESS THAN ('K')
 TABLESPACE construction_part1_ndx_ts,
 PARTITION part2 VALUES LESS THAN (MAXVALUE)
 TABLESPACE construction_part2_ndx_ts);

CREATE PROCEDURE

Stored procedures provide conditional processing and programmatic capabilities in
the database-server environment. Stored procedures are capsules of programming
code that may accept passed parameters and accomplish complicated tasks. Stored
procedures also are very valuable because they are precompiled: they execute
their tasks quickly and efficiently because the database optimizer has already built
an execution plan for the code.

Vendor Command

SQL Server Supported

MySQL Not supported (see the
“CREATE FUNCTION”
command)

Oracle Supported

PostgreSQL Not supported

,ch03.13605 Page 60 Wednesday, November 29, 2000 4:42 PM

CREATE PROCEDURE 61

Statem
ents

CREATE PROCEDURE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Like many of the other CREATE statements, the vendors have built a great deal of
variety into this command.

SQL99 Syntax and Description
CREATE PROCEDURE procedure_name
[parameter data_type attributes][,...n]
AS
code block

For a more complete listing of the SQL99 syntax, refer to CREATE FUNCTION. The
advanced features of CREATE FUNCTION also apply to CREATE PROCEDURE.

Because each vendor has implemented his own procedural extensions to the SQL
language, a broad discussion about coding stored procedures is not appropriate
for this book. However, the basics of stored-procedure programming is discussed.
Other O’Reilly books, such as Transact-SQL Programming, by Kevin Kline, Lee
Gould & Andrew Zanevsky (1999), and Oracle PL/SQL Programming, Second
Edition, by Steven Feuerstein with Bill Pribyl (1997), provide excellent discussions
about their respective programming languages.

Microsoft SQL Server Syntax and Variations

CREATE PROC[EDURE] procedure_name [;number]
[{@parameter_name datatype} [VARYING] [= default] [OUTPUT]][,...n]
[WITH {RECOMPILE | ENCRYPTION | RECOMPILE, ENCRYPTION}]
[FOR REPLICATION]
AS
Transact-SQL_block
GO

In addition to a procedure name, Microsoft SQL Server also lets you specify a
version number in the format procedure_name;1, where 1 is an integer indicating
the version number. This allows multiple versions of a single stored procedure to
be accessed.

Like tables (see CREATE TABLE), local and global temporary procedures may be
declared by prefixing a pound symbol (#) and double-pound symbol (##) to the
name of the procedure, respectively. Temporary procedures exist only for the
duration of the user or process session that created them. When that session ends,
the temporary procedure automatically deletes itself.

A SQL Server stored procedure may have as many as 1024 input parameters, speci-
fied by the “at” symbol (@) and any acceptable SQL Server datatype. (Parameters
of cursor datatype must be both VARYING and OUTPUT.) The VARYING keyword
is used only with parameters of the cursor datatype to indicate that the result set is
constructed dynamically by the procedure.

The values for input parameters must be supplied by the user or calling process.
However, a default value can be supplied to allow the procedure to execute
without a user- or process-supplied value. The default must be a constant or
NULL, but it may contain wildcard characters, as discussed under the topic LIKE.

Similarly, a parameter may be declared a return parameter by using the OUTPUT
keyword. The value stored in the return parameter is passed back to any calling

,ch03.13605 Page 61 Wednesday, November 29, 2000 4:42 PM

62 Chapter 3 – SQL Statements Command Reference

CREATE PROCEDURE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

procedure through the return variables of the SQL Server EXEC[UTE] command.
Output parameters can be any datatype except TEXT and IMAGE.

The options WITH RECOMPILE, WITH ENCRYPTION, and WITH RECOMPILE,
ENCRYPTION are as follows:

WITH RECOMPILE
Tells SQL Server not to store a cache plan for the stored procedure, but
instead to recompile the cache plan each time it is executed. This is useful
when using atypical or temporary values in the procedure.

WITH ENCRYPTION
Encrypts the code of the stored procedure in the SQL Server syscomments
table.

WITH RECOMPILE, ENCRYPTION
Allows both options at one time.

The FOR REPLICATION clause, which is mutually exclusive of WITH RECOMPILE,
disables execution of the stored procedure on a subscribing server. It is used
primarily to create a filtering stored procedure that is executed only by SQL
Server’s built-in replication engine.

The AS Transact-SQL_block clause contains one or more Transact-SQL commands,
up to a maximum size of 128 MB. Microsoft SQL Server allows most valid
Transact-SQL statements, but SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL are
prohibited. Some other commands have restricted usages within stored proce-
dures, including ALTER TABLE, CREATE INDEX, CREATE TABLE, all DBCC
statements, DROP TABLE, DROP INDEX, TRUNCATE TABLE, and UPDATE
STATISTICS.

SQL Server allows deferred name resolution, meaning that the stored procedure
compiles without an error even though it references an object that has not yet
been created. It creates an execution plan and fails only at execution time, if the
object still doesn’t exist.

Stored procedures can be nested easily in SQL Server. Whenever a stored proce-
dure invokes another stored procedure, the system variable @@NESTLEVEL is
incremented by 1. It is decreased by 1 when the called procedure completes.
SELECT @@NESTLEVEL is specified to find how many layers of nesting occur in the
current session.

Oracle Syntax and Variations

CREATE [OR REPLACE] PROCEDURE [owner_name.]procedure_name
[(parameter1 [IN | OUT | IN OUT] [NOCOPY] datatype][,...n)]]
[AUTHID {CURRENT_USER | DEFINER}]
{IS | AS} {PL/SQL block | LANGUAGE {java_spec | C_spec}};

In Oracle, user-defined functions and stored procedures are very similar in compo-
sition and structure. The primary difference is that stored procedures cannot return
a value to the invoking process, while a function may return a single value to the
invoking process.

In an Oracle stored procedure, the specified arguments and parameters include IN,
OUT, or IN OUT. The IN qualifier is provided when invoking the function and

,ch03.13605 Page 62 Wednesday, November 29, 2000 4:42 PM

CREATE ROLE 63

Statem
ents

CREATE ROLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

passes a value in to the function, while OUT arguments pass a value back to the
invoking process. In other words, the IN qualifier is supplied by the user or
process that calls the function, while the OUT argument is returned by the func-
tion. IN OUT arguments perform both IN and OUT functionality. The NOCOPY
keyword is used to speed performance when an OUT or IN OUT argument is very
large, like a varray or record datatype.

The function also may be forced to run in the permission context of either the
current user or the person who owns the function, using the AUTHID CURRENT_
USER or AUTHID DEFINER phrases, respectively.

Oracle also allows the procedure to call external programs through the LANGUAGE
keyword. The external programs must be C or Java programs; the specific syntax
for calling external programs is beyond the scope of this book. Refer to the vendor
documentation for more information on this capability.

Microsoft SQL Server stored procedures can be used to return result
sets, while Oracle stored procedures cannot return a result set to the
calling process.

Example

This Microsoft SQL Server stored procedure generates a unique 22-digit value
(based on elements of the system date and time) and returns it to the calling
process:

-- A Microsoft SQL Server stored procedure
CREATE PROCEDURE get_next_nbr
 @next_nbr CHAR(22) OUTPUT
AS
BEGIN
 DECLARE @random_nbr INT
 SELECT @random_nbr = RAND() * 1000000

SELECT @next_nbr =
RIGHT('000000' + CAST(ROUND(RAND(@random_nbr)*1000000,0))AS CHAR(6), 6) +

 RIGHT('0000' + CAST(DATEPART (yy, GETDATE()) AS CHAR(4)), 2) +
 RIGHT('000' + CAST(DATEPART (dy, GETDATE()) AS CHAR(3)), 3) +
 RIGHT('00' + CAST(DATEPART (hh, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (mi, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('00' + CAST(DATEPART (ss, GETDATE()) AS CHAR(2)), 2) +
 RIGHT('000' + CAST(DATEPART (ms, GETDATE()) AS CHAR(3)), 3)
END
GO

CREATE ROLE

CREATE ROLE allows the creation of a named set of privileges that may be
assigned to users of a database. When a user is granted a role, that user also gets
all the privileges and permissions of that role.

,ch03.13605 Page 63 Wednesday, November 29, 2000 4:42 PM

64 Chapter 3 – SQL Statements Command Reference

CREATE SCHEMA

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Microsoft SQL Server does not support the CREATE ROLE command, but has the
equivalent capability via the system stored procedure sp_add_role.

SQL99 Syntax and Description

CREATE ROLE role_name [WITH ADMIN {CURRENT_USER | CURRENT_ROLE}]

This statement creates a new role, and differentiates that role from a host-DBMS
user. The WITH ADMIN clause allows assigns a role immediately to the currently
active user or currently active role. By default, the statement defaults to WITH
ADMIN CURRENT_USER.

Oracle Syntax and Variations

CREATE ROLE role_name [NOT IDENTIFIED | IDENTIFIED
 {BY password | EXTERNALLY | GLOBALLY}]

In Oracle, the role is created first, then granted privileges and permissions as if it is
a user via the GRANT command. When users want to get access to the permis-
sions of a role protected by a password, they use the SET ROLE command. If a
password is placed on the role, any user wishing to access it must provide the
password with the SET ROLE command.

Oracle ships with several preconfigured roles. CONNECT, DBA, and RESOURCE are
available in all versions of Oracle. EXP_FULL_DATABASE and IMP_FULL_
DATABASE are newer roles used for import and export operations.

Example

The following example uses CREATE to specify a new role in Oracle, GRANT it
privileges, assign it a password with ALTER ROLE, and GRANT that role to a couple
of users:

CREATE ROLE boss;

GRANT ALL ON employee TO boss;
GRANT CREATE SESSION, CREATE DATABASE LINK TO boss;

ALTER ROLE boss IDENTIFIED BY le_grande_fromage;

GRANT boss TO nancy, dale;

CREATE SCHEMA

This statement creates a schema—i.e., a named group of related objects. A schema
is a collection of tables, views, and their associated permissions. The schema is
associated with an existing, valid user ID (called the owner).

Vendor Command

SQL Server Not supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

,ch03.13605 Page 64 Wednesday, November 29, 2000 4:42 PM

CREATE SCHEMA 65

Statem
ents

CREATE SCHEMA

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SQL99 Syntax and Description

CREATE SCHEMA [schema_name] [AUTHORIZATION owner_name]
[DEFAULT CHARACTER SET char_set_name]
[PATH schema_name [,...n]]

 [<create_table_statement1> [...n]]
 [<create_view_statement1> [...n]]
 [<grant statement1> [...n]]

The CREATE SCHEMA statement is a container that can hold many other CREATE
and GRANT statements. As an option, a DEFAULT CHARACTER SET names the
schema’s default character set. The PATH also may be declared for any objects in
the schema that reside on the filesystem.

Microsoft SQL Server and Oracle Syntax

CREATE SCHEMA AUTHORIZATION owner_name
 [<create_table_statement1> [...n]]
 [<create_view_statement1> [...n]]
 [<grant statement1> [...n]]

If any statement fails within the CREATE SCHEMA statement, then the entire state-
ment fails. One good thing about CREATE SCHEMA is that the objects within do
not need to be organized according to any dependency. For example, a GRANT
statement normally could not be issued for a table that does not exist yet.
However, all the GRANT statements first could be placed in the CREATE SCHEMA
statement, followed by the CREATE statements where the grants are being given.

Many implementations do not explicitly support the CREATE SCHEMA command.
However, they implicitly create a schema when a user creates database objects.
On the other hand, Oracle creates a schema whenever a user is created. The
CREATE SCHEMA command is simply a single-step method of creating all the
tables, views, and other database objects along with their permissions.

Example

In Oracle, the CREATE SCHEMA does not create a schema—only CREATE USER
does that. CREATE SCHEMA allows a user to perform multiple steps in one SQL
statement. The following Oracle example places the permissions before the objects
within the CREATE SCHEMA statement:

CREATE SCHEMA AUTHORIZATION emily
 GRANT SELECT, INSERT ON view_1 TO sarah
 GRANT ALL ON table_1 TO sarah

 CREATE VIEW view_1 AS
 SELECT column_1, column_2

Vendor Command

SQL Server Supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

,ch03.13605 Page 65 Wednesday, November 29, 2000 4:42 PM

66 Chapter 3 – SQL Statements Command Reference

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

 FROM table_1
 ORDER BY column_2

 CREATE TABLE table_1(column_1 INT, column_2 CHAR(20));

CREATE TABLE

The CREATE TABLE statement does what it says: create a table. However, most
vendors also allow a wide variety of other functions to be exercised through the
CREATE TABLE statement, such as the assignment of keys, cascading referential
integrity, constraints, and default values.

This command defines a table name, its constituent columns, and any properties to
the columns and/or table. Typically, a great deal of consideration goes into the
design and creation of a table. This discipline is known as database design. The
discipline of analyzing the relationship of a table to its own data and to other
tables within the database is known as normalization.

It is strongly recommended that programmers and developers study
both database design and normalization principles thoroughly before
issuing CREATE TABLE commands.

In general, the table name always starts with an alphabetic character. The allow-
able length of the name varies by vendor; Oracle allows only 30 characters, but it
can be much bigger than 30 characters when necessary. Numbers may be used in
the name of the table, but do not use any symbol other than the underscore (_).
Some vendors allow many other symbols in the name of a table, but it’s good
practice not to use them since they can create confusing identifiers.

When defining column characteristics, all vendors support the NULL and NOT NULL
options. (A bare NULL is not a requirement of SQL99.) When a column is defined
as NULL, regardless of its datatype, that column may contain null values. Typi-
cally, nullable columns consume an extra bit of space per record. If NOT NULL is
specified, the column can never contain null values. Any INSERT operation that
attempts to insert a null value or any UPDATE operation that attempts to modify a
value to null on a NOT NULL column fails and is rolled back.

All vendors also support the PRIMARY KEY declaration, at both the column- and
table-level. A primary key is a special designation that describes how each row of
a table is uniquely identified. The primary key is composed of one or more
columns in the table that provide each row with a unique identity. A table may

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 66 Wednesday, November 29, 2000 4:42 PM

CREATE TABLE 67

Statem
ents

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

have only one primary key. All values in the primary key must be unique and may
not be null. Foreign keys then can be declared on a table that establishes a direct
relationship to the primary key of another table. In this way, parent/child or
master/detail relationships among tables may be created. A cascading action may
further augment this action. For example, a user may wish to prevent the deletion
of a customer record from the customer table, if sales records exist for that
customer in the sales table. The syntax for a foreign key varies among the vendors.

Most vendors also support a DEFAULT value for a given column. Any time a
record is inserted in a table and no value is provided for the column, its default
value is inserted.

The basic syntax for CREATE TABLE is shown here; this is enough to get started
building tables and populating them with data:

CREATE TABLE table_name
 (
 column_name datatype[(length)] [NULL | NOT NULL],...n
)

Here’s a simple example:

CREATE TABLE housing_construction
 (project_number INT NOT NULL,
 project_date DATETIME NOT NULL,
 project_name VARCHAR(50) NOT NULL,
 construction_color NCHAR(20) NULL,
 construction_height DECIMAL(4,1) NULL,
 construction_length DECIMAL(4,1) NULL,
 construction_width DECIMAL(4,1) NULL,
 construction_volume INT NULL)
GO

In Microsoft SQL Server, this statement defines a table called housing_construction
that contains eight columns. Each column is defined as NULL or NOT NULL, with a
datatype appropriate for the type of information it contains. Notice that the list of
column definitions is always encapsulated in parentheses and that a comma closes
each column definition when another definition follows it.

SQL99 Syntax and Description

CREATE [GLOBAL TEMPORARY | LOCAL TEMPORARY] TABLE table_name
[ON COMMIT {PRESERVE ROWS | DELETE ROWS}
(column_name datatype attributes [,...n]
 | [LIKE table_name]
 | [table_constraint][,...n]]

The SQL99 CREATE TABLE statement creates TEMPORARY tables that are instanti-
ated when the table is created and are automatically dropped when the current
user session ends. Temporary tables may be GLOBAL and available to all active
user sessions, or LOCAL and available only to the user session that created it. An
ON COMMIT value for the temporary table also may be specified. ON COMMIT
PRESERVE ROWS preserves any data modifications to the temporary table on a
COMMIT, while ON COMMIT DELETE ROWS flushes the table after a COMMIT.

,ch03.13605 Page 67 Wednesday, November 29, 2000 4:42 PM

68 Chapter 3 – SQL Statements Command Reference

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The LIKE table_name option creates a new table with the same column defini-
tions and table constraints as a preexisting table. When using LIKE, column or
table constraints do not need to be defined.

Because the implementation of CREATE TABLE varies so widely and the command
is such an important one, each vendor implementation is dealt with separately and
in detail.

Microsoft SQL Server Syntax and Variations

CREATE TABLE [database_name.[owner]. | owner.] table_name
({column_name datatype [[DEFAULT default_value]
 | {IDENTITY [(seed,increment) [NOT FOR REPLICATION]]]
 [ROWGIDCOL]]
 [NULL | NOT NULL]
 | [{PRIMARY KEY | UNIQUE}
 [CLUSTERED | NONCLUSTERED]
 [WITH FILLFACTOR = int] [ON {filegroup | DEFAULT}]]
 | [[FOREIGN KEY]
 REFERENCES reference_table[(reference_column[,...n])]
 [ON DELETE {CASCADE | NO ACTION}]
 [ON UPDATE {CASCADE | NO ACTION}]
 [NOT FOR REPLICATION]
 | [CHECK [NOT FOR REPLICATION] (expression)
 | [COLLATE collation_name]
|column_name AS computed_column_expression
[,...n]
|[table_constraint][,...n])
[ON {filegroup | DEFAULT}]
[TEXTIMAGE_ON {filegroup | DEFAULT}]

SQL Server offers a plethora of options when defining a table, its columns, and its
table-level constraints. SQL Server allows any column-level constraint to be named
by specifying CONSTRAINT constraint_name. . ., and then the text of the
constraint. Several constraints may be applied to a single column, as long as they
are not mutually exclusive (for example, PRIMARY KEY and NULL).

SQL Server also allows a local temporary table to be created, which is stored in the
tempdb database, by prefixing a single pound sign (#) to the name of the table.
The local temporary table is usable by the person or process that created it, and is
deleted when the person logs out or the process terminates. A global temporary
table, which is usable to all people and processes that are currently logged in, can
be established by prefixing two pound signs (##) to the name of the table. The
global temporary table is deleted when its process terminates or its creator logs
out.

Since SQL Server supports built-in replication, many of the properties of a column
can be set to NOT FOR REPLICATION, meaning that the values of an IDENTITY or
FOREIGN KEY is not replicated to subscribing servers. This helps in situations in
which different servers require the same table structures, but not the exact same
data.

Also useful for replication is ROWGUIDCOL. This identifies a column as a global
unique identifier, which ensures no two values are ever repeated across any

,ch03.13605 Page 68 Wednesday, November 29, 2000 4:42 PM

CREATE TABLE 69

Statem
ents

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

number of servers. Only one such column may be identified per table. It does not,
however, create the unique values itself. They must be inserted using the NEWID
function.

The IDENTITY property, when applied to an integer column, is similar to MySQL’s
AUTO_INCREMENT, automatically creating and populating the column with a
monotonically increasing number. However, it is more versatile and flexible.
Where AUTO_INCREMENT always starts at 1, the IDENTITY starts counting at the
value of seed. Where AUTO_INCREMENT increases by 1 each time a new row is
inserted, IDENTITY increases by the value of increment.

In SQL Server, DEFAULT can be applied to any column except those with a
timestamp datatype or an IDENTITY property. The DEFAULT must be a constant
value such as a character string or a number, and a system function such as
GETDATE() or NULL.

One PRIMARY KEY called name per table also may be specified, and multiple
UNIQUE or FOREIGN KEY columns may be specified per table. They may be clus-
tered or nonclustered, and may be defined with a starting fillfactor. Refer to the
topic CREATE INDEX for more information.

When specifying a FOREIGN KEY, the table and columns that maintain referential
integrity may be specified using the REFERENCES clause. It can only reference
columns that are defined as a PRIMARY KEY or UNIQUE index on the referencing
table. A referential action may be specified to take place on the reference_table
when the record is deleted or updated. If NO ACTION is specified, then nothing
happens on the referring table when a record is deleted or updated. If CASCADE
is specified, then the delete or update also takes place on the referring table to any
records dependent on the value of the FOREIGN KEY.

The CHECK constraint ensures that a value inserted into the specified column of
the table is a valid value based on the CHECK expression. For example, the
following shows a table with several column-level constraints:

CREATE TABLE people
 (people_id CHAR(4)
 CONSTRAINT pk_dist_id PRIMARY KEY CLUSTERED
 CONSTRAINT ck_dist_id CHECK (dist_id LIKE '[A-Z][A-Z][A-Z][A-Z]'),

 people_name VARCHAR(40) NULL,
 people_addr1 VARCHAR(40) NULL,
 people_addr2 VARCHAR(40) NULL,
 city VARCHAR(20) NULL,
 state CHAR(2) NULL
 CONSTRAINT def_st DEFAULT ("CA")
 CONSTRAINT chk_st REFERENCES states(state_ID),

 zip CHAR(5) NULL
 CONSTRAINT ck_dist_zip
 CHECK(zip LIKE '[0-9][0-9][0-9][0-9][0-9]'),

 phone CHAR(12) NULL,
 sales_rep empid NOT NULL DEFAULT USER)
GO

The CHECK constraint on the people_id ensures an all-alphabetic ID, while the one
on zip ensures an all-numeric value. The REFERENCES constraint on state performs

,ch03.13605 Page 69 Wednesday, November 29, 2000 4:42 PM

70 Chapter 3 – SQL Statements Command Reference

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

a look-up on the states table. The REFERENCES constraint is essentially the same
as a CHECK constraint, except that it derives its list of acceptable values from the
values stored in another column. This example illustrates how column-level
constraints are named using the CONSTRAINT constraint_name. . . syntax.

Also new to SQL Server 2000 is the COLLATE column-level property. This feature
allows programmers to change, on a column-by-column basis, the sort order and
character set that is used by the column. Since this is an advanced technique, refer
to the vendor documentation if the default sort order or character set of a given
column needs to be changed. The CREATE FUNCTION topic shows an example of
this syntax.

SQL Server also allows the creation of tables with columns that contain a
computed value. The column does not actually contain data. Instead, it is a virtual
column containing an expression using other columns already in the table. For
example, a computed column could have an expression, such as order_cost AS
(price * qty). Computed columns also can be a constant, function, variable,
noncomputed column, or any of these combined with each other with operators.

Any of the column-level constraints shown earlier also may be declared at the
table level. That is, PRIMARY KEY constraints, FOREIGN KEY constraints, CHECK
constraints, and others may be declared after all the columns have been defined in
the CREATE TABLE statement. This is very useful for constraints that cover more
than one column. For example, when declaring a column-level UNIQUE constraint,
it can be applied only to that column. However, declaring the constraint at the
table level allows it to span several columns. Here is an example of both column-
level and table-level constraints:

-- Creating a column-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) PRIMARY KEY NONCLUSTERED,
 book_name VARCHAR(40) UNIQUE,
 category VARCHAR(40) NULL,
 subcategory VARCHAR(40) NULL,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL)
GO

-- Creating a table-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) NOT NULL,
 book_name VARCHAR(40) NOT NULL,
 category VARCHAR(40) NULL,
 subcategory VARCHAR(40) NULL,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL,
 CONSTRAINT pk_book_id PRIMARY KEY NONCLUSTERED (isbn)
 WITH FILLFACTOR=70,
 CONSTRAINT unq_book UNIQUE CLUSTERED (book_name,pub_date))
GO

These two commands provide nearly the same results, except that the table-level
UNIQUE constraint has two columns, whereas only one column is included in the
column-level UNIQUE constraint.

,ch03.13605 Page 70 Wednesday, November 29, 2000 4:42 PM

CREATE TABLE 71

Statem
ents

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Finally, Microsoft SQL Server has two separate clauses controlling how the table
(or primary key or unique indexes) are to be physically placed: [ON {filegroup |
DEFAULT}] and [TEXTIMAGE_ON {filegroup | DEFAULT}]. The ON filegroup clause
stores the table or index within the named file group, as long as it exists within
the database. If ON DEFAULT is specified or the ON clause is not used at all, the
table or index is stored in the default filegroup for the database. The TEXTIMAGE
clause works in very much the same way, except that it controls the placement of
text, ntext, and image columns. These columns are normally stored in the default
filegroup with all other tables and database objects.

MySQL Syntax and Variations

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] table_name
(column_name datatype [NULL | NOT NULL] [DEFAULT default_value]
 [AUTO_INCREMENT]
 [PRIMARY KEY] [reference_definition] |
 [CHECK (expression) |
 [INDEX [index_name] index_col_name1[(length)],...n)] |
 [UNIQUE [INDEX] [index_name] (index_col_name1,...n)] |
 [CONSTRAINT symbol] FOREIGN KEY index_name (index_col_name1,...n)
 [REFERENCES table_name [(index_col_name,...)]
 [MATCH FULL | MATCH PARTIAL]
 [ON DELETE {RESTRICT | CASCADE | SET NULL | NO ACTION | SET
DEFAULT}]
 [ON UPDATE {RESTRICT | CASCADE | SET NULL | NO ACTION | SET
DEFAULT}])
{[TYPE = {ISAM | MYISAM | HEAP} |
 AUTO_INCREMENT = int |
 AVG_ROW_LENGTH = int |
 CHECKSUM = {0 | 1} |
 COMMENT = "string" |
 DELAY_KEY_WRITE = {0 | 1} |
 MAX_ROWS = int |
 MIN_ROWS = int |
 PACK_KEYS = {0 | 1} |
 PASSWORD = "string" |
 ROW_FORMAT= { default | dynamic | static | compressed }] }
[[IGNORE | REPLACE] SELECT_statement]

MySQL allows a great many options when creating a table. The TEMPORARY
option creates a table that persists for the duration of the connection under which
it was created. Once that connection closes, the temporary table is automatically
deleted. The IF NOT EXISTS option prevents an error if the table already exists.

When a table is created in MySQL, three operating-system files are typically
created: a table definition file with the extension .frm, a datafile with the exten-
sion .myd, and an index file with the extension .myi.

The AUTO_INCREMENT clause sets up an integer column so that it automatically
increases its value by 1 (starting with a value of 1). MySQL only allows one AUTO_
INCREMENT column per table. When the max value is deleted, the value is reused.
When all records are deleted, the values start over.

A PRIMARY KEY column or columns may be defined, as long as they also are
defined as NOT NULL. When an INDEX characteristic is assigned to a column, a

,ch03.13605 Page 71 Wednesday, November 29, 2000 4:42 PM

72 Chapter 3 – SQL Statements Command Reference

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

name for the index also can be included. (A MySQL synonym for INDEX is KEY.)
If a name is not assigned, MySQL assigns a name of index_column_name plus a
numeric suffix (_2, _3,. . .) to make it unique. Only the MyISAM table type
supports indexes on NULL columns or on BLOB or TEXT datatype columns.

The FOREIGN KEY, CHECK, and REFERENCES clauses do nothing. They add no
functionality to the table and are supported only to improve compatibility with
other SQL databases.

The table TYPE options describe how the data should be physically stored. ISAM is
the original table definition. MyISAM is a newer, binary, more portable storage
structure. HEAP stores the table in memory. Other options exist to optimize perfor-
mance for the table:

AUTO_INCREMENT
Sets the auto_increment value for the table (MyISAM only).

AVG_ROW_LENGTH
Sets an approximate average row length for tables with variable-size records.
MySQL uses avg_row_length * max_rows to decide how big a table may be.

CHECKSUM
When set to 1, maintains a checksum for all rows in the table (MyISAM only).
Makes processing slower, but less prone to corruption.

COMMENT
Allows a comment of up to 60 characters.

DELAY_KEY_WRITE
When set to 1, delays key table updates until the table is closed (MyISAM
only).

MAX_ROWS
Sets a maximum number of rows to store in the table. The default max is 4
GB of space.

MIN_ROWS
Sets a minimum number of rows to store in the table.

PACK_KEYS
When set to 1, compacts the indexes of the table, making reads faster but
updates slower (MyISAM and ISAM only). By default, only strings are packed.
When set to 1, both strings and numeric values are packed.

PASSWORD
Encrypts the .frm file with a password, but not the table.

ROW_FORMAT
Determines how future rows should be stored in the table.

The SELECT_statement clause creates a table whose fields are based upon the
elements in the SELECT statement. If it does not, as some implementations do,
then the table can be populated with the results of the SELECT statement. For
example:

CREATE TABLE test_example
 (column_a INT NOT NULL AUTO_INCREMENT,
 PRIMARY KEY(column_a),

,ch03.13605 Page 72 Wednesday, November 29, 2000 4:42 PM

CREATE TABLE 73

Statem
ents

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

 INDEX(column_b))
TYPE=HEAP
SELECT column_b,column_c FROM samples;

This creates a heap table with three columns: column_a, column_b, and column_c.

Oracle Syntax and Variations

CREATE [GLOBAL TEMPORARY] TABLE [schema.]table_name
(column_name datatype [DEFAULT] {column_constraint [...]} [,...n]
| table_constraint [,...n] })
[ON COMMIT {DELETE | PRESERVE} ROWS]
(physical_characteristics)
(table_characteristics)

This simple and small block of code is deceptive! Oracle’s extremely sophisticated
implementation of the CREATE TABLE statement has the potential to become one
of the most complex single commands in just about any programming language
under the sun.

The code for Oracle’s CREATE TABLE clause contains many sub-
clauses. Rather than show them all in one command, the command
is broken out into subclauses that in turn contain other subclauses.
The average SQL programmer might never use some of these
subclauses.

To explain the most immediate differences between the SQL99 version of CREATE
TABLE and Oracle’s version, note that tables created as GLOBAL TEMPORARY must
be basic tables. Global temporary tables cannot possess most of the special
features that Oracle allows for regular tables, such as partitioning, index orga-
nizing, or clustering tables. A global temporary table is available to all sessions, but
the data stored within a global temporary table is visible only to the session that
inserted it. The ON COMMIT clause, which is allowed only when creating tempo-
rary tables, tells Oracle either to truncate the table after each commit against the
table (DELETE ROWS) or to truncate the table when the session terminates
(PRESERVE ROWS). For example:

CREATE GLOBAL TEMPORARY TABLE shipping_schedule
 (ship_date DATE,
 receipt_date DATE,
 received_by VARCHAR2(30),
 amt NUMBER)
ON COMMIT PRESERVE ROWS;

The CREATE TABLE statement shown earlier creates a global temporary table,
shipping_schedule, that retains inserted rows across multiple sessions.

The physical characteristics of an Oracle table are defined using the next several
blocks of code and their subblocks of code:

-- physical_characteristics
{[{[physical_attributes]
| TABLESPACE tablespace_name

,ch03.13605 Page 73 Wednesday, November 29, 2000 4:42 PM

74 Chapter 3 – SQL Statements Command Reference

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

| {LOGGING | NOLOGGING} }]
| {ORGANIZATION {HEAP [{[physical_attributes]
 | TABLESPACE tablespace_name
 | {LOGGING | NOLOGGING} }]
| INDEX indexed_table_clause)}
| CLUSTER cluster_name (column [,...n]) }
[special_storage_clause]

The physical_characteristics clause controls how data is stored physically on the disk
subsystem.

The TABLESPACE clause assigns the table to a specific, preexisting tablespace. The
TABLESPACE clause can be left out, which places the index on the default
tablespace, or DEFAULT keyword can be used to achieve the same results.

The LOGGING and NOLOGGING clauses define whether the table, large object
(LOB), or partition is logged in the redo log.

The ORGANIZATION HEAP clause tells Oracle to physically place the rows of the
table in any order. It may optionally be associated with a segment_characteristic
clause. Alternately, the rows of the table may be physically ordered according to a
named index using ORGANIZATION INDEX index_name.

The physical_attributes clause (as shown in the following code block) defines
storage characteristics for the entire table, or if the table is partitioned, for a
specific partition (discussed later):

-- physical_attributes
[{PCTFREE int | PCTUSED int | INITRANS int | MAXTRANS int | storage_

clause}]

PCTFREE defines the percentage of free space reserved for each data block in the
table. For example, a value of 10 reserves 10% of the data space for new rows to
be inserted. PCTUSED defines the minimum percentage of space allowed in a
block before it can receive new rows. For example, a value of 90 means new rows
are inserted in the data block when the space used falls below 90%. The sum of
PCTFREE and PCTUSED cannot exceed 100. INITRANS is rarely tinkered with; it
defines the allocation of from 1 to 255 initial transactions to a data block.
MAXTRANS defines the maximum number of concurrent transactions on a data
block.

The storage_clause controls a number of attributes governing the physical storage
of data:

-- storage_clause
STORAGE ([{INITIAL int [K | M]
 | NEXT int [K | M]
 | MINEXTENTS int
 | MAXEXTENTS {int | UNLIMITED}
 | PCTINCREASE int
 | FREELISTS int
 | FREELIST GROUPS int
 | OPTIMAL [{int [K | M] | NULL}]
 | BUFFER_POOL {KEEP | RECYCLE | DEFAULT}] [...])

,ch03.13605 Page 74 Wednesday, November 29, 2000 4:42 PM

CREATE TABLE 75

Statem
ents

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

When delineating the storage clause attributes, enclose them in parentheses and
separate them with spaces—for example, (INITIAL 32M NEXT8M). INITIAL int [K |
M] sets the initial extent size of the table in bytes, kilobytes (K), or megabytes (M).
NEXT int [K | M] tells how much additional space to allocate after INITIAL is filled.
PCTINCREASE int controls the growth rate of the object after the first growth. The
initial extent gets allocated as specified. The second extent is the size specified by
NEXT. The third extent is NEXT + (NEXT * PCTINCREASE). When PCTINCREASE is
set to 0, NEXT is always used. Otherwise, each added extent of storage space is
PCTINCREASE larger than the previous extent.

MINEXTENTS int tells Oracle to create a minimum number of extents. By default,
only 1 is created, but more can be created when the object is initialized.
MAXEXTENTS int tells Oracle the maximum extents allowed. It may be set to
UNLIMITED. (Note that UNLIMITED should be used with caution. There are situa-
tions in which it can cause database damage.) FREELISTS int establishes the
number of freelists for each group, defaulting to 1. FREELIST GROUPS int sets the
number of groups of freelists, defaulting to 1. For example:

CREATE TABLE book_sales
 (qty NUMBER,
 period_end_date DATE,
 period_nbr NUMBER)
TABLESPACE sales
STORAGE (INITIAL 8M NEXT 8M MINEXTENTS 1 MAXEXTENTS 8);

The table books_sales is defined on the sales tablespace as consuming an initial 8
MB of space, to grow by no less than 8 MB when the first extent is full. The table
has no less than 1 and no more than 8 extents, limiting its maximum size to 64 MB.

The ORGANIZATION HEAP clause tells Oracle to physically place the rows of the
table in any order. It may be optionally associated with a segment_characteristic_
clause. Alternately, the rows of the table may be physically ordered according to a
named INDEX.

The CLUSTER clause includes the table in an existing cluster based upon a clus-
tered key. (Refer to Oracle’s CREATE CLUSTER command.) All tables in the cluster
must possess columns that correspond to the columns of the clustered key.

The special_storage_clause details three special types of data storage possible
within an Oracle table: LOB (large object, such as image files), varrays, and nested
tables:

{LOB { (LOB_item [,n]) STORE AS {ENABLE | DISABLE} STORAGE IN ROW
 | (LOB_item) STORE AS
 {LOB_segment_name ({ENABLE | DISABLE} STORAGE IN ROW)
 | LOB_segment_name
 | ({ENABLE | DISABLE} STORAGE IN ROW)}
 | VARRAY varray_item STORE AS
 | NESTED TABLE nested_item STORE AS storage_table
 [(physical_characteristics)]
 [RETURN AS {LOCATOR | VALUE}] }

The LOB clause defines the storage attributes of LOB data segment. The LOB item
is the name of the LOB column or columns declared in the table. The LOB objects

,ch03.13605 Page 75 Wednesday, November 29, 2000 4:42 PM

76 Chapter 3 – SQL Statements Command Reference

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

may be stored within the row if they are less than 4000 bytes in length, using the
ENABLE STORAGE IN ROW clause, or they may be stored outside the row regard-
less of size, using the DISABLE STORAGE IN ROW clause. Refer to the Oracle
documentation for more information about the LOB storage using the LOB_
storage_clause. For example:

CREATE TABLE large_objects
 (pretty_picture BLOB,
 interesting_text CLOB)
STORAGE (INITIAL 256M NEXT 256M)
LOG (pretty_picture, interesting_text)
 STORE AS (TABLESPACE large_object_segment
 STORAGE (INITIAL 512M NEXT 512M)
 NOCACHE LOGGING);

The large_objects table is used to store pictures and text. The storage characteris-
tics, as well as logging and caching characteristics, are also detailed.

A varray is a special Oracle object. Oracle allows distinct storage parameters for
LOBs stored in a varray, using essentially the same syntax as the LOB clause. Refer
to the vendor documentation for more information for varrays.

Oracle allows declaration of a NESTED TABLE clause in which a table is virtually
stored within a column of another table. The STORE AS clause enables a proxy
name for the table within a table, but the nested table must be created initially as a
user-defined datatype. This capability is valuable for sparse arrays of values, but it
is not a generally recommended approach for day-to-day tasks. For example:

CREATE TYPE prop_nested_tbl AS TABLE OF props_nt;

CREATE TABLE proposal_types
 (proposal_category VARCHAR2(50),
 proposals PROPS_NT)
NESTED TABLE props_nt STORE AS props_nt_table;

Oracle allows a wide variety of table characteristics to be defined for a given table.
Some of those characteristics are shown in the following list:

-- table_characteristics
{ PARTITION characteristics }
[CACHE | NOCACHE] [MONITORING | NOMONITORING]
[{NOPARALLEL | PARALLEL [int] }]
[{ENABLE | DISABLE} [VALIDATE | NOVALIDATE]
 {UNIQUE (column [,...n])
 | PRIMARY KEY
 | CONSTRAINT constraint_name}
[index_clause]
[EXCEPTION INTO [schema.]table_name]
[CASCADE]]
[AS select_statement]

Oracle uses the PARTITION clause as a performance enhancement by spreading
the table across multiple partitions. However, the full syntax describing all permu-
tations of a table partition would be prohibitively long. Furthermore, it is not used
by most beginning SQL programmers. Refer to the Oracle vendor documentation
for more information on table partitioning.

,ch03.13605 Page 76 Wednesday, November 29, 2000 4:42 PM

CREATE TABLE 77

Statem
ents

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CACHE buffers a table for rapid reads, while NOCACHE turns off this behavior.
Index-organized tables offer CACHE behavior. MONITORING collects statistics on a
table for added performance, while NOMONITORING turns this function off.

For the CREATE TABLE statement, the INDEX clause is just for primary key and
unique indexes that are created along with the table. Refer to the Oracle documen-
tation for a full discussion on the available means of manipulating an index using
the CREATE TABLE command. For most purposes, the CREATE INDEX command is
the recommended approach. (Note that Oracle automatically creates an index
when creating a table with a primary key constraint. There is no need for the user
to create an index in that situation.)

The PARALLEL clause allows for the parallel creation of the table by distinct CPUs
to speed the operation. It also enables parallelism for queries and other data-
manipulation operations against the table after its creation. An optional integer
value may be supplied to define the exact number of parallel threads used in the
operation, as well as the parallel threads allowed to service the table in the future.
(Oracle calculates the best number of threads to use in a given parallel operation,
so this is an optional feature.) NOPARALLEL, the default, creates the table serially
and disallows future parallel queries and data-manipulation operations.

The DISABLE and ENABLE clauses deactivate or activate constraints on a table,
respectively. Basically, the DISABLE clause can deactivate any active integrity
constraint or trigger. Conversely, ENABLE can activate any disabled integrity
constraint or trigger. The syntax for this clause is:

DISABLE | ENABLE {{UNIQUE(column[,...n] |
 PRIMARY KEY |
 CONSTRAINT constraint_name}
 [CASCADE]}
 [EXCEPTIONS INTO [owner.]table_name]
 [USING INDEX [INITRANS int][MAXTRANS int]
 [TABLESPACE tablespace_name][storage_characteristics]
 [PCTFREE int] |

The CASCADE keyword, usable only with DISABLE, does not disable a cascading
constraint or trigger. Instead, it cascades the disablement/enablement to any integ-
rity constraints that depend on the constraint named in the clause. The
EXCEPTIONS INTO clause, usable only with ENABLE, tells Oracle to store the infor-
mation of any integrity-constraint violation in an existing exceptions table. The
USING INDEX clause, also usable only with ENABLE, provides a mechanism to
specify different storage characteristics for the named index, particularly primary
and unique keys. The default is for all constraints to be enabled.

The AS SELECT_statement clause populates the new table with records from a
valid SELECT statement. Unlike PostgreSQL’s implementation of CREATE . . . AS
SELECT, the columns of the CREATE TABLE statement must match those in the
SELECT statement. Logging of CREATE . . . AS SELECT may be turned off by using
the NOLOGGING keyword. Logging to the redo log is the default behavior.

Oracle supports a number of object-oriented features that are beyond the scope of
this book.

,ch03.13605 Page 77 Wednesday, November 29, 2000 4:42 PM

78 Chapter 3 – SQL Statements Command Reference

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PostgreSQL Syntax and Variations

CREATE [TEMPORARY | TEMP] TABLE table
(column_name datatype [NULL | NOT NULL] [DEFAULT value]

| [UNIQUE]
| [PRIMARY KEY (column[,...n])]

 | [CHECK (expression)]
 | REFERENCES reference_table (reference_column)
 [MATCH {FULL | PARTIAL | default}]
 [ON DELETE {CASCADE | NO ACTION | RESTRICT | SET NULL | SET
 DEFAULT}]
 [ON UPDATE {CASCADE | NO ACTION | RESTRICT | SET NULL | SET
 DEFAULT}]
 [[NOT] DEFERRABLE] [INITIALLY {DEFERRED | IMMEDIATE}] } [,...n]
|[table_constraint][,...n]
[INHERITS (inherited_table [,...n])]

| [ON COMMIT {DELETE | PRESERVE} ROWS]

| AS SELECT_statement

Using a syntax similar to MySQL, PostgreSQL allows the creation of a TEMPORARY
table. Temporary tables exist only for the session in which they were created and
automatically drop themselves when the session ends.

Constraints such as UNIQUE, PRIMARY KEY, and CHECK are essentially the same
as in Microsoft SQL Server. However, unique to PostgreSQL is the ability to create
column-level constraints with multiple columns. Since PostgreSQL also supports
standard table-level constraints, the ANSI-standard approach is still the recom-
mended approach.

The REFERENCES constraint is similar to a CHECK constraint, except that it checks
a value against the values of another column in another table. It also can be used
as part of a FOREIGN KEY declaration. The MATCH options are FULL, PARTIAL,
and default (where MATCH has no other keyword). Full match forces all columns
of a multicolumn foreign key either to be null or to contain a valid value. The
default allows mixed nulls and values. Partial matching is a valid syntax, but is not
supported.

The REFERENCES clause also allows several different behaviors to be declared for
ON DELETE and/or ON UPDATE referential integrity:

NO ACTION
Produces an error when the foreign key is violated (the default)

RESTRICT
A synonym for NO ACTION

CASCADE
Sets the value of the referencing column to the value of the referenced
column

SET NULL
Sets the referencing column value to NULL

SET DEFAULT
Sets the referencing column to its declared default value or null, if no default
value exists

,ch03.13605 Page 78 Wednesday, November 29, 2000 4:42 PM

CREATE TABLE 79

Statem
ents

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The DEFERRABLE option of the REFERENCES clause tells PostgreSQL to defer all
constraints to the end of a transaction. NOT DEFERRABLE is the default behavior
for the REFERENCES clause. Similar to the DEFERRABLE clause is the INITIALLY
clause. Specifying INITIALLY DEFERRED checks constraints at the end of a transac-
tion; INITIALLY IMMEDIATE checks constraints after each statement (the default).

Note that, like Microsoft SQL Server, all column-level constraints may be declared
as table-level constraints. Importantly, the FOREIGN KEY constraint can be
declared only as a table-level constraint and not as a column-level constraint. All
options for the REFERENCES clause are supported as part of the FOREIGN KEYS
clause. The syntax follows:

 [FOREIGN KEY (column[,...n]) REFERENCES...]

The INHERITS inherited_table clause specifies a table or tables from which this
table inherits all columns. The newly created table also inherits functions attached
to tables higher in the hierarchy. If any inherited column appears more than once,
the statement fails.

If a temporary or global temporary table is created in PostgreSQL, the ON COMMIT
clause also may be appended to the command. This clause controls the behavior
of the temporary table after records are committed to the table. ON COMMIT
DELETE ROWS clears the temporary table of all rows after each commit. This is the
default. ON COMMIT PRESERVE ROWS saves the rows in the temporary table after
the transaction has committed.

The AS SELECT_statement clause enables a programmer to create and populate a
table with data from a valid SELECT statement. The columns, datatypes, or
constraints do not need to be defined, since they are inherited from the query. It is
similar in functionality to SELECT . . . INTO, but its syntax seems more readable.

Examples

This example adds a foreign key to the example table:

-- Creating a column-level constraint
CREATE TABLE favorite_books
 (isbn CHAR(100) PRIMARY KEY NONCLUSTERED,
 book_name VARCHAR(40) UNIQUE,
 category VARCHAR(40) NULL,
 subcategory VARCHAR(40) NULL,
 pub_date DATETIME NOT NULL,
 purchase_date DATETIME NOT NULL,
 CONSTRAINT fk_categories FOREIGN KEY (category)
 REFERENCES category(cat_name));

The foreign key on the categories column relates it to the cat_name table in the
category table. This syntax is supported by all the vendors mentioned in this book.
Similarly, the foreign key could have been declared as a multicolumn key
including both the category and subcategory columns:

...
CONSTRAINT fk_categories FOREIGN KEY (category, subcategory)
 REFERENCES category(cat_name, subcat_name));

,ch03.13605 Page 79 Wednesday, November 29, 2000 4:42 PM

80 Chapter 3 – SQL Statements Command Reference

CREATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Listed here are two more full examples from the pubs database (jobs and
employee):

-- For a Microsoft SQL Server database
CREATE TABLE jobs
 (job_id SMALLINT IDENTITY(1,1) PRIMARY KEY CLUSTERED,
 job_desc VARCHAR(50) NOT NULL DEFAULT 'New Position',
 min_lvl TINYINT NOT NULL CHECK (min_lvl >= 10),
 max_lvl TINYINT NOT NULL CHECK (max_lvl <= 250))

-- For a MySQL database
CREATE TABLE employee
 (emp_id INT AUTO_INCREMENT CONSTRAINT PK_emp_id PRIMARY KEY,
 fname VARCHAR(20) NOT NULL,
 minit CHAR(1) NULL,
 lname VARCHAR(30) NOT NULL,
 job_id SMALLINT NOT NULL DEFAULT 1
 REFERENCES jobs(job_id),
 job_lvl TINYINT DEFAULT 10,
 pub_id CHAR(4) NOT NULL DEFAULT ('9952')
 REFERENCES publishers(pub_id),
 hire_date DATETIME NOT NULL DEFAULT (CURRENT_DATE());

CREATE TABLE publishers
 (pub_id char(4) NOT NULL
 CONSTRAINT UPKCL_pubind PRIMARY KEY CLUSTERED
 CHECK (pub_id IN ('1389', '0736', '0877', '1622', '1756')
 OR pub_id LIKE '99[0-9][0-9]'),
 pub_name varchar(40) NULL,
 city varchar(20) NULL,
 state char(2) NULL,
 country varchar(30) NULL DEFAULT('USA'))

The following is an example of an Oracle CREATE TABLE statement with many
storage properties:

CREATE TABLE classical_music_cds
 (music_id INT,
 composition VARCHAR2(50),
 composer VARCHAR2(50),
 performer VARCHAR2(50),
 performance_date DATE DEFAULT SYSDATE,
 duration INT,
 cd_name VARCHAR2(100),
CONSTRAINT pk_class_cds PRIMARY KEY (music_id)
 USING INDEX TABLESPACE index_ts
 STORAGE (INITIAL 100K NEXT 20K),
CONSTRAINT uq_class_cds UNIQUE (composition, performer, performance_date)
 USING INDEX TABLESPACE index_ts
 STORAGE (INITIAL 100K NEXT 20K))
TABLESPACE tabledata_ts;

,ch03.13605 Page 80 Wednesday, November 29, 2000 4:42 PM

CREATE TRIGGER 81

Statem
ents

CREATE TRIGGER

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CREATE TRIGGER

A trigger is a special kind of stored procedure that fires automatically (hence, the
term trigger) when a data-modification statement is executed. Triggers are associ-
ated with a specific data-modification statement (INSERT, UPDATE, or DELETE) on
a specific table.

SQL99 Syntax and Description

CREATE TRIGGER trigger_name
{BEFORE | AFTER} {[DELETE] | [INSERT] | [UPDATE] [OF column [,...n]}
ON table_name
[REFERENCING {OLD [ROW] [AS] old_name | NEW [ROW] [AS] new_name
 OLD TABLE [AS] old_name | NEW TABLE [AS] new_name}]
[FOR EACH { ROW | STATEMENT }]
[WHEN (conditions)]
code block

Triggers, by default, fire once at the statement level. That is, a single INSERT state-
ment might insert 500 rows into a table, but an insert trigger on that table fires
only one time. Some vendors allow a trigger to fire for each row of the data-
modification operation. So, a statement that inserts 500 rows into a table that has a
row-level insert trigger fires 500 times, once for each inserted row.

In addition to being associated with a specific data-modification statement
(INSERT, UPDATE, or DELETE) on a given table, triggers are associated with a
specific time of firing. In general, triggers can fire BEFORE the data-modification
statement is processed, AFTER it is processed, or (when supported by the vendor)
INSTEAD OF processing the statement. Triggers that fire before or instead of the
data-modification statement do not see the changes that the statement renders,
while those that fire afterwards can see and act upon the changes that the data-
modification statement renders.

Microsoft SQL Server Syntax and Variations

CREATE TRIGGER trigger_name
ON {table_name | view_name}
[WITH ENCRYPTION]
{FOR | AFTER | INSTEAD OF} {[DELETE] [,] [INSERT] [,] [UPDATE]}
[WITH APPEND]
[NOT FOR REPLICATION]
AS
 {
 T-SQL_block
 |

Vendor Command

SQL Server Supported, with variations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 81 Wednesday, November 29, 2000 4:42 PM

82 Chapter 3 – SQL Statements Command Reference

CREATE TRIGGER

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

 { IF UPDATE(column) [{AND | OR} UPDATE(column)] [...n]
 |
 IF (COLUMNS_UPDATED() {bitwise_operator} updated_bitmask)
 { comparison_operator} column_bitmask [...n] }
 T-SQL_block [...n]
 }

Microsoft SQL Server supports a number of interesting features in its CREATE
TRIGGER statement. First, SQL Server allows multiple triggers for a given data-
manipulation operation on a table or view. Thus, three UPDATE triggers are
possible on a single table.

The WITH ENCRYPTION clause encrypts the text of the trigger where it is stored in
the syscomments system table. The WITH APPEND clause adds an additional
trigger of an existing type to a table or view. This clause is added for backward
compatibility with earlier versions of the product and can be used only with FOR
triggers. The NOT FOR REPLICATION clause disables the trigger on data-manipula-
tion operations invoked through SQL Server’s built-in replication capabilities.

The FOR, AFTER, and INSTEAD OF clauses tell SQL Server when the trigger
should fire. The FOR and AFTER keywords are synonymous and serve the same
function. In effect, they specify that the trigger fire only after the triggering data-
modification statement (and any cascading actions and constraint checks) have
completed successfully. Many AFTER triggers are possible on a given table. Their
order is undefined, though the first and last triggers can be specified using the
sp_settriggerorder system stored procedure.

AFTER triggers cannot be defined on views.

The INSTEAD OF clause is functionally equivalent to Oracle’s BEFORE trigger. It
specifies that the trigger fire before (and thus, instead of) the triggering data-modi-
fication statement, but only one INSTEAD OF trigger is possible per INSERT,
UPDATE, or DELETE statement on a given table (though multiple AFTER triggers
are possible). This kind of trigger is usable on views, but only if they do not use
the WITH CHECK OPTION clause. INSTEAD OF DELETE triggers cannot be used
when there is a cascading action on the delete.

The DELETE, INSERT, and UPDATE specifications identify the data-modification
statement that fires the trigger. In SQL Server, any combination of these are made
possible in a trigger definition by separating each option with a comma. (When
doing so, the same code fires for each statement in the combination definition.)

The AS T-SQL_block clause contains the procedural code that the trigger fires
whenever the data-manipulation operation is performed. This section should be
enclosed within the Transact-SQL BEGIN and END clauses. Traditionally, this
section contains control-of-flow commands and checks against the type and
amount of data changed.

,ch03.13605 Page 82 Wednesday, November 29, 2000 4:42 PM

CREATE TRIGGER 83

Statem
ents

CREATE TRIGGER

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SQL Server instantiates two important pseudo-tables when a trigger is fired:
deleted and inserted. These tables are identical in structure to the table on which
the triggers are defined, except that they contain the old data before the data-
modification statement fired (deleted) and the new values of the table after the
data-modification statement fired (inserted).

Only INSTEAD OF triggers can access text, ntext, or image columns.

The AS IF UPDATE(column) clause tests specifically for INSERT or UPDATE actions
on a given column or columns. Multiple columns may be specified by adding sepa-
rate UPDATE(column) clauses after the first; follow the clause with a Transact-SQL
BEGIN . . . END block to allow multiple Transact-SQL operations to fire when the
condition is met. This clause is functionally equivalent to the IF . . . THEN . . . ELSE
operation.

The AS IF (COLUMNS_UPDATE()) clause is similar to the AS IF UPDATE() clause
in that it fires only on an INSERT or UPDATE operation against the column speci-
fied. It returns a varbinary bit pattern that tells which columns were inserted or
updated and allows bitwise operations that compare the column values in various
ways. The comparison operators are the equal sign (=), used to check if all
columns specified in the updated bitmask were changed, and the greater-than sign
(>), used to check whether one or some of the columns were changed.

Triggers are used often to control declarative referential integrity.
However, primary and foreign key declarations via a CREATE TABLE
or ALTER TABLE statement are preferable.

SQL Server does not allow the following statements within the Transact-SQL block
of a trigger: ALTER, CREATE, DROP, DENY, GRANT, REVOKE, LOAD, RESTORE,
RECONFIGURE, or TRUNCATE. In addition, it does not allow any DISK statements
or the UPDATE STATISTICS command.

SQL Server also allows triggers to fire recursively using the recursive triggers
setting of the sp_dboption system stored procedure. Recursive triggers, by their
own action, cause themselves to fire again. For example, if an INSERT trigger on
table T1 performs an INSERT operation on table T1, it might perform a recursive
operation. Since recursive triggers can be dangerous, this functionality is disabled
by default.

Similarly, SQL Server allows nested triggers up to 32 levels deep. If any one of the
nested triggers performs a ROLLBACK operation, no further triggers execute. An
example of nested triggers is a trigger on table T1 firing an operation against table
T2, which also has a trigger that fires an operation against table T3. The triggers
cancel if an infinite loop is encountered. Nested triggers are enabled with the

,ch03.13605 Page 83 Wednesday, November 29, 2000 4:42 PM

84 Chapter 3 – SQL Statements Command Reference

CREATE TRIGGER

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

nested triggers setting of the system stored procedure sp_configure. If nested trig-
gers are disabled, recursive triggers are disabled as well, despite the recursive
triggers’ setting of sp_dboption.

SQL Server CREATE statements allow deferred name resolution, meaning that the
command is processed even if it refers to a database object that does not yet exist
in the database.

Oracle Syntax and Variations
CREATE [OR REPLACE] TRIGGER [owner.]trigger_name
{BEFORE | AFTER | INSTEAD OF}
{[DELETE] [OR] [INSERT] [OR] [UPDATE [OF column [,...n]]] [...n]}
ON {table_name | view_name}
[REFERENCING {OLD [AS] old_name | NEW [AS] new_name}]
[FOR EACH { ROW | STATEMENT }]
[WHEN (conditions)]
PL/SQL block

As is typical of the CREATE TRIGGER statement, the command specifies the data-
modification operation (INSERT, UPDATE, or DELETE) that fires the PL/SQL block
of code and when it is fired (BEFORE, AFTER, or INSTEAD OF the data-
modification operation). On UPDATE operations, an UPDATE OF a column or
columns may be specified to indicate that the update trigger should fire only when
those specific column(s) are changed.

Oracle allows INSTEAD OF triggers to process only against views, not tables.

Oracle also allows triggers to fire on certain database events, such as DROP TABLE
or SHUTDOWN.

The REFERENCING clause specifies a name for the pseudo-tables that hold the OLD
and NEW versions of the table. (SQL Server automatically names these pseudo-
tables inserted and deleted.) In Oracle, the default name for these pseudo-tables is
OLD and NEW, respectively. These pseudo-tables compare record values before
they are altered by the data-manipulation operation (via the OLD pseudo-table) and
compared to the values after the data-manipulation operation (via the NEW pseudo-
table). Pseudo-tables also perform conditional operations on the PL/SQL_block.

When referencing values in the OLD and NEW pseudo-tables, the
value must be prefaced with a colon (:), except in the trigger’s
WHEN clause, where no colons are used.

The FOR EACH ROW clause tells the trigger to operate on each individual row
(firing once for each row affected by the operation), rather than operate as an
implicit statement trigger (firing once for the entire transaction). The WHEN clause
specifies a SQL condition that restricts the execution of the trigger to happen only
when the condition is met. The WHEN clause also allows comparisons of the OLD
and NEW tables without having to build a PL/SQL block to compare them.

Multiple trigger types may be combined into a single trigger command if they are
of the same level (row or statement) and they are on the same table. When
triggers are combined in a single statement, the clauses IF INSERTING THEN, IF

,ch03.13605 Page 84 Wednesday, November 29, 2000 4:42 PM

CREATE TRIGGER 85

Statem
ents

CREATE TRIGGER

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

UPDATING THEN, and IF DELETING THEN may be used in the PL/SQL block to
break the code logic into distinct segments. An ELSE clause also can be used in
this structure.

PostgreSQL Syntax and Variations

CREATE TRIGGER trigger_name
{ BEFORE | AFTER }
{ {[DELETE] [OR | ,] [INSERT] [OR | ,] [UPDATE]} [OR ...] }
ON table_name
FOR EACH { ROW | STATEMENT }
EXECUTE PROCEDURE function_name (parameters)

The PostgreSQL implementation of CREATE TRIGGER functions in a similar
manner to that of the other vendors. It may fire BEFORE the data-modification
operation is attempted on the record and before any constraints are fired. Or it
may fire AFTER the data-manipulation operation has processed (and after
constraints have been checked), making all operations involved in the transaction
visible to the trigger.

Rather than process a block of procedural code (as Oracle and SQL Server do),
PostgreSQL executes a function via the EXECUTE PROCEDURE clause created
using the CREATE FUNCTION. Also, other vendors implicitly process upon all rows
in the transaction. PostgreSQL executes the trigger on each row or once for the
entire transaction, using the FOR EACH ROW and FOR EACH STATEMENT clauses,
respectively.

Examples

Following is an example of a PostgreSQL BEFORE trigger that checks at a row
level to ensure that the specified distributor code exists in the distributors table
before inserting or updating a row in the sales table:

CREATE TRIGGER if_dist_exists
BEFORE INSERT OR UPDATE ON sales
FOR EACH ROW
EXECUTE PROCEDURE check_primary_key ('did', 'distributors', 'did');

BEFORE triggers alter the values committed to a table by a data-modification oper-
ation, since the processing on the affected records happens before they are
changed in the table. AFTER triggers are used often for auditing processes, since
they cannot fire until after the row has been changed in the table. INSTEAD OF
completely skips the data-modification operation in favor of code that the user
provides for the transaction.

Here is an Oracle BEFORE trigger that uses the OLD and NEW pseudo-tables to
compare values. (By way of comparison, SQL Server uses the DELETED and
INSERTED pseudo-tables in the same way.) This trigger creates an audit record
before changing an employee’s pay record:

CREATE TRIGGER if_emp_changes
BEFORE DELETE OR UPDATE ON employee
FOR EACH ROW
WHEN (new.emp_salary <> old.emp_salary)
BEGIN

,ch03.13605 Page 85 Wednesday, November 29, 2000 4:42 PM

86 Chapter 3 – SQL Statements Command Reference

CREATE VIEW

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

 INSERT INTO employee_audit
 VALUES ('old', :old.emp_id, :old.emp_salary, :old.emp_ssn);
END;

The following example builds an Oracle insert and update trigger that uses the IF
INSERTED THEN clauses:

CREATE TRIGGER if_emp_changes
BEFORE DELETE OR UPDATE ON employee
FOR EACH ROW
BEGIN
 IF DELETING THEN
 INSERT INTO employee_audit
 VALUES ('DELETED', :old.emp_id, :old.emp_salary, :old.emp_ssn);
 ELSE
 INSERT INTO employee_audit
 VALUES ('UPDATED', :old.emp_id, :new.emp_salary, :old.emp_ssn);
 END IF;
END;

This SQL Server example adds a new table called contractor to the database. All
records in the employee table that indicate that the employee is a contractor were
moved into the contractor table. Now all new employees inserted into the
employee table will go into the contractor table instead through an INSTEAD OF
trigger:

CREATE TRIGGER if_emp_is_contractor
INSTEAD OF INSERT ON employee
BEGIN
 INSERT INTO contractor
 SELECT * FROM inserted WHERE status = 'CON'

 INSERT INTO employee
 SELECT * FROM inserted WHERE status = 'FTE'
END
GO

CREATE VIEW

This statement creates a view, also known as a virtual table. A view acts just like a
table but is actually defined as a query. Almost any valid SELECT statement can
define the contents of a view, though an ORDER BY clause is usually prohibited.

When a view is referenced in a statement, the result set of the query becomes the
content of the view for the duration of that statement. In some cases, views can be
updated, causing the view changes to be translated to the underlying data in the
base tables.

Vendor Command

SQL Server Supported, with variations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 86 Wednesday, November 29, 2000 4:42 PM

CREATE VIEW 87

Statem
ents

CREATE VIEW

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Views even can be built upon other views, but this is inadvisable
and usually considered bad practice.

SQL99 Syntax and Description

CREATE VIEW view_name [(column list)]
AS
(SELECT_statement
[WITH [CASCADED | LOCAL] CHECK OPTION])

Views are usually as effective as the query upon which they are based. That is
why it is important to be sure that the defining SELECT statement is speedy and
well-written.

A column list also may be specified after the view name. The optional column list
contains aliases serving as names for each element in the result set of the SELECT
statement.

The WITH CHECK OPTION clause is used only on views that allow updates to the
base table. It ensures that only data that may be read by the view may be inserted,
updated, or deleted by the view. For example, if a view of employees showed
only salaried employees, but not hourly employees, it would be impossible to
insert, update, or delete hourly employees through that view. The CASCADE and
LOCAL options of the CHECK OPTION clause are used for nested views. The
CASCADE option performs the check option for the current view and all views it is
built on top of. The LOCAL option performs the check option only for the current
view, even when it is built upon other views.

ANSI SQL99 views can update the base table(s) they are based upon if they meet
the following conditions:

• The defining SELECT statement is based upon one table.

• The view does not have UNION, MINUS, or INTERSECT operators.

• The defining SELECT statement does not contain GROUP BY or HAVING
clauses.

• The defining SELECT statement does not contain any reference to pseudo-col-
umns such as ROWNUM or ROWGUIDCOL.

• The defining SELECT statement does not contain any group functions.

• The defining SELECT statement does not contain the DISTINCT clause.

Microsoft SQL Server Syntax and Variations

CREATE [owner_name.]VIEW view_name [(column [,...n])]
[WITH {ENCRYPTION | SCHEMABINDING | VIEW_METADATA} [,...n]]
AS
select_statement
[WITH CHECK OPTION]

,ch03.13605 Page 87 Wednesday, November 29, 2000 4:42 PM

88 Chapter 3 – SQL Statements Command Reference

CREATE VIEW

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Microsoft SQL Server allows two new options not in SQL99: ENCRYPTION and
SCHEMABINDING. The ENCRYPTION option encrypts the text of the view in the
syscomments table. The SCHEMABINDING option binds the view to a specific
schema, meaning that all objects in the view must be referenced by their full name
(both owner and object name). Views created with SCHEMABINDING (and tables
referenced by these views) must have the schema binding dropped (via ALTER
VIEW) before they may be dropped or altered. VIEW_METADATA specifies that
SQL Server returns metadata about the view (rather than the base table) to calls
made from DBLIB and OLEDB APIs. Views created or altered with VIEW_
METADATA enable their columns to be updated by INSERT and UPDATE INSTEAD
OF triggers.

SQL Server allows indexes to be created on views (see CREATE INDEX). By
creating a unique, clustered index on a view, a SQL Server essentially stores a
physical copy of the view on the database. Changes to the base table are automati-
cally updated in the indexed view.

Indexed views should be built on base tables using only the
SCHEMABINDING clause. This is an advanced technique and should
be used only by experts. Refer to the vendor documentation for
more information on this technique.

Oracle Syntax and Variations

CREATE [OR REPLACE] [FORCE | NO FORCE] VIEW [owner_name.]view_name
 [(column [,...n])]
AS
SELECT_statement
[WITH [READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]]]

The OR REPLACE clause tells Oracle that any existing view with the same name
should be replaced by the new view. The FORCE clause creates the view regard-
less of whether the base tables exist or the user creating the view has privileges to
the base tables. The NO FORCE clause creates the view only if the base tables and
proper privileges are in place.

Oracle allows the use of the CHECK OPTION, including the ability to name the
constraint using the CONSTRAINT clause. The CHECK OPTION clause may be used
on nested views, but only if the top level view’s CHECK OPTION is enforced. If
the constraint is not named, Oracle names the constraint SYS_Cn, where n is an
integer.

Oracle allows data-manipulation operations through views, as long as they meet
the SQL99 requirements, and the added requirement does not contain any expres-
sions. The WITH READ ONLY clause ensures the view is used only to retrieve data.

,ch03.13605 Page 88 Wednesday, November 29, 2000 4:42 PM

DECLARE CURSOR 89

Statem
ents

DECLARE CURSOR

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PostgreSQL Syntax and Variations

CREATE VIEW view_name AS SELECT_statement

PostgreSQL’s CREATE VIEW does not support some of the more complex options
that other vendors do. However, it does allow views to be built on tables and
other defined class objects. PostgreSQL views are typically built only upon other
tables, not upon other views, and are not used to perform data modifications on
the underlying base tables.

Examples

The simplest view is based on the entire contents of a single table:

CREATE VIEW employees
AS
SELECT *
FROM employee_tbl;

This example shows a view named california_authors that allows data modifica-
tions to apply only to authors within the state of California:

CREATE VIEW california_authors
AS
SELECT au_lname, au_fname, city, state
FROM authors
WHERE state = 'CA'
WITH CHECK OPTION
GO

DECLARE CURSOR

The DECLARE CURSOR command enables the retrieval and manipulation of
records from a table one row at a time. This provides row-by-row processing,
rather than the traditional set processing offered by SQL. To use this procedure
properly, you should:

1. DECLARE the cursor

2. OPEN the cursor

3. FETCH rows from the cursor

4. When finished, CLOSE the cursor

MySQL does not support server-side cursors in the ANSI SQL style, but does
support extensive C-programming extensions that provide the same functionality.

Vendor Command

SQL Server Supported

MySQL Not supported

Oracle Supported

PostgreSQL Supported

,ch03.13605 Page 89 Wednesday, November 29, 2000 4:42 PM

90 Chapter 3 – SQL Statements Command Reference

DECLARE CURSOR

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SQL99 Syntax and Description

The DECLARE CURSOR command works by specifying a SELECT statement. Each
row returned by the SELECT statement may be individually retrieved and manipu-
lated. The DECLARE CURSOR command also defines the characteristics of a server-
side cursor. The characteristics might include how the cursor scrolls and the
SELECT statement used to retrieve a result set.

Microsoft SQL Server allows the INSENSITIVE and SCROLL options to be identi-
fied. The INSENSITIVE keyword specifies that the cursor build a temporary copy of
the result set used by the cursor. All requests to the cursor are answered from the
temporary table, not the base table. The cursor does not allow modifications.
Subsequent fetches by the cursor do not reflect any changes made by the cursor.
The SCROLL keyword enables all FETCH options for the cursor (FIRST, LAST,
PRIOR, NEXT, RELATIVE, and ABSOLUTE). Refer to the FETCH command for more
details. If SCROLL is not declared, only NEXT is available as a FETCH option. A
read-only cursor also can be declared using the FOR READ ONLY clause.

In Oracle, variables are not allowed in the WHERE clause of the SELECT statement
unless they are first declared as variables. The parameters are not assigned at the
DECLARE; instead, they are assigned values at the OPEN command.

PostgreSQL has an implementation that is very similar to Microsoft SQL Server,
except that it allows a BINARY option. BINARY forces the cursor to retrieve binary-
formatted data rather than text-formatted data.

Microsoft SQL Server Syntax

DECLARE cursor_name [INSENSITIVE] [SCROLL] CURSOR
FOR select_statement
[FOR {READ ONLY | UPDATE [OF column_name [,...n]]}]

 Oracle Syntax

DECLARE CURSOR cursor_name [parameter1 datatype1 [,...parameterN
datatypeN]
IS select_statement
[FOR UPDATE [OF column_name [,...n]]}]

PostgreSQL Syntax

DECLARE cursor_name [BINARY] [INSENSITIVE] [SCROLL] CURSOR
FOR select_statement
[FOR {READ ONLY | UPDATE [OF column_name [,...n]]}]

Microsoft SQL Server Syntax and Variations

Microsoft SQL Server supports the standard format described previously in this
chapter, but also has a more elaborate extension. The syntax for this is:

DECLARE cursor_name CURSOR
[LOCAL | GLOBAL] [FORWARD_ONLY | SCROLL]
[STATIC | KEYSET | DYNAMIC | FAST_FORWARD]
[READ_ONLY | SCROLL_LOCKS | OPTIMISTIC]
[TYPE_WARNING]
FOR select_statement
[FOR UPDATE [OF column_name [,...n]]]

,ch03.13605 Page 90 Wednesday, November 29, 2000 4:42 PM

DECLARE CURSOR 91

Statem
ents

DECLARE CURSOR

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

This syntax works in the same way as the ANSI-standard cursor declaration, but it
offers many new functionalities. First, the scope of the cursor may be declared as
LOCAL or GLOBAL. If LOCAL, the cursor is available only within the current
Transact-SQL batch, stored procedure, or trigger in which it was declared. If
GLOBAL, the cursor is available as the OPEN and FETCH commands throughout
the connection.

Transact-SQL notation should not be mixed with the ANSI-standard
cursor declaration in Microsoft SQL Server.

The next several options determine how the cursor searches through the record
set. FORWARD_ONLY, as opposed to SCROLL, specifies that the cursor can scroll
only from the first record to the last. It cannot be used in conjunction with STATIC,
KEYSET, or DYNAMIC. It acts as a DYNAMIC cursor.

STATIC functions similarly to the keyword INSENSITIVE. KEYSET is similar to
STATIC and INSENSITIVE, except that it allows modifications to the result set. The
keyset is unaware of records inserted by other users once the cursor has been
opened, though records deleted by other users produce an @@FETCH_STATUS of -
2. New values are made visible when updates are done by specifying WHERE
CURRENT OF. DYNAMIC reflects all data changes made to the result set during
work with the cursor. The result set can change during any FETCH. FETCH
ABSOLUTE is not supported by DYNAMIC cursors. FAST_FORWARD is shorthand
for FORWARD_ONLY, READ_ONLY, but it also enables extra functionality. FAST_
FORWARD is mutually exclusive of SCROLL, FOR_UPDATE, SCROLL_LOCKS,
OPTIMISTIC, and FORWARD_ONLY.

Two other options also are allowed for READ_ONLY : SCROLL_LOCKS and
OPTIMISTIC. SCROLL_LOCKS forces a record-level lock whenever a new record is
fetched, ensuring that updates and deletes made through the cursor succeed.
OPTIMISTIC specifies that positioned updates and deletes made through the cursor
fail if the row is changed by another user.

Finally, the TYPE_WARNING option tells SQL Server that a warning message
should be sent to the client if it is transformed from one type to another (for
example, KEYSET to DYNAMIC).

Examples

In this simple example from Microsoft SQL Server, a cursor from the publishers
table is declared and opened. The cursor takes the first record from publisher that
matches the SELECT statement and inserts it into another table; it then moves to
the next record and the next, until all records are processed. Finally, the cursor is
closed and deallocated (deallocate is only used in Microsoft SQL Server):

DECLARE @publisher_name VARCHAR(20)

DECLARE pub_cursor CURSOR
FOR SELECT pub_name FROM publishers
 WHERE country <> 'USA'

,ch03.13605 Page 91 Wednesday, November 29, 2000 4:42 PM

92 Chapter 3 – SQL Statements Command Reference

DELETE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

OPEN pub_cursor
FETCH NEXT FROM pub_cursor INTO @publisher_name
WHILE @@FETCH_STATUS = 0
BEGIN
 INSERT INTO foreign_publishers VALUES(@publisher_name)
END

CLOSE pub_cursor
DEALLOCATE pub_cursor

In this Oracle example, the cursor is declared in the declaration block along with
some other variables, and the rest of the cursor is then processed:

DECLARE
 new_price NUMBER(10,2);
 CURSOR title_price_cursor IS
 SELECT title, price
 FROM titles
 WHERE price IS NOT NULL;
 title_price_val title_price_cursor%ROWTYPE;
BEGIN
 OPEN title_price_cursor;
 FETCH title_price_cursor INTO title_price_val;
 new_price := "title_price_val.price" * 1.25
 INSERT INTO new_title_price VALUES (title_price_val.title, new_price)
 CLOSE title_price_cursor;
END;

Because this example uses a lot of PL/SQL, much of the code is beyond the scope
of this book. However, the DECLARE block clearly shows that the cursor is
declared. In the PL/SQL execution block, the cursor is initialized with the OPEN
command, values are retrieved with the FETCH command, and the cursor finally is
terminated with the CLOSE command.

DELETE

The DELETE statement erases records from a specified table or tables. It is a
logged operation, meaning that it can be undone with a ROLLBACK command.

It is rare to issue a DELETE statement without a WHERE clause,
because this results in deleting all rows from the affected table.

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported

PostgreSQL Supported

,ch03.13605 Page 92 Wednesday, November 29, 2000 4:42 PM

DELETE 93

Statem
ents

DELETE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SQL99 Syntax and Description

DELETE [FROM] [owner.]table_name [WHERE clause]

If it becomes necessary to remove all the rows in a table, it is preferable to use the
TRUNCATE TABLE statement. In those databases that support the command, this is
usually a faster method to physically remove all rows. TRUNCATE TABLE is faster
than DELETE because TRUNCATE is not logged, making rollback impossible. The
reduction of logging overhead saves considerable time when erasing a large
number of records.

Microsoft SQL Server Syntax and Variations

DELETE [FROM] [owner.] {table_name | view_name}
[WITH (query_hint[,...n]]
[FROM table_source[,...n]]
[WHERE clause | [CURRENT OF [GLOBAL] cursor_name]]
[OPTION (query_hint[,...n])]

Microsoft SQL Server allows records to be deleted both from tables and from views
that describe a single table. (There are some other special rules that allow dele-
tion from a multitable view, but they are quite complex and beyond the scope of
this book.) At two points in the command, after the first FROM and at the end of
the statement, SQL Server’s default optimizer behavior can be overridden, but this
should be done only by experts. These hints are not a part of the ANSI standard,
but they are part of most vendor documentation.

Additionally, SQL Server allows a second FROM clause. The second FROM allows
the use of the JOIN statement and makes it quite easy to delete rows from the
table in the first FROM (based on corresponding rows of a table declared in the
second FROM).

The WHERE CURRENT OF clause is used for positioned deletes through a cursor.
In conjunction with a cursor, this form of DELETE erases only the row that
currently is opened by the cursor.

MySQL Syntax and Variations

DELETE [LOW_PRIORITY] FROM table_name [WHERE clause] [LIMIT rows]

MySQL is optimized for speed. With that in mind, it allows the option of speci-
fying LOW PRIORITY, which delays the execution of DELETE until no other clients
are reading from the table. MySQL also can place an arbitrary cap on the number
of records deleted before control is passed back to the client using the LIMIT nbr_
of_rows clause.

Oracle Syntax and Variations

DELETE FROM [schema.]{table_name | view_name | snapshot_name}
 {PARTITION (partition_name) | SUBPARTITION (subpartition_name)} |
[WHERE clause]
[subquery WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]}]
[RETURNING expression[,...] INTO variable[,...]

,ch03.13605 Page 93 Wednesday, November 29, 2000 4:42 PM

94 Chapter 3 – SQL Statements Command Reference

DELETE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Oracle allows you to delete rows from tables, views, and partitioned views and
tables.

PARTITION and SUBPARTITION specify the name of the partition or subpartition
within the table that should be deleted.

The WITH clause is used in conjunction with a subquery. It restricts the actions of
the DELETE statement. The WITH READ ONLY option specifies that any subquery
used in the command cannot be updated. WITH CHECK OPTION tells Oracle to
DELETE any rows that are not in the subquery.

RETURNING retrieves the rows affected by the command. When used for a single-
row delete, the values of the row are stored in PL/SQL variables and bind vari-
ables. When used for a multirow delete, the values of the rows are stored in bind
arrays. The INTO keyword specifies that the deleted values should be stored in the
variables list.

PostgreSQL Syntax and Variations

DELETE FROM [ONLY] table
[WHERE {clause | CURRENT OF cursor_name}]

PostgreSQL uses the DELETE command to remove rows from the table and any
defined subclasses from the table. When deleting rows from only the table speci-
fied, use the ONLY clause. The WHERE CURRENT OF clause tells PostgreSQL to
delete only the currently open row of the named, open cursor.

Examples

To delete all records from the titles table:

DELETE titles

To delete all records in the authors table where the last name starts with ‘Mc’:

DELETE FROM authors
WHERE au_lname LIKE 'Mc%'

To delete all titles with an old ID number:

DELETE titles WHERE title_id >= 40

To delete all titles that have no sales:

DELETE titles WHERE ytd_sales IS NULL

To delete all records in one table based on the results of a subquery against
another table (in this case, the records are erased in the titleauthor table that have
a match concerning ‘computers’ in the titles table):

DELETE FROM titleauthor
WHERE title_id IN
 (SELECT title_id
 FROM titles
 WHERE title LIKE '%computers%')

,ch03.13605 Page 94 Wednesday, November 29, 2000 4:42 PM

DISCONNECT 95

Statem
ents

DISCONNECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

DISCONNECT

The DISCONNECT statement terminates a connection to the DBMS.

SQL99 Syntax and Description

DISCONNECT {CURRENT | ALL | connection_name}

This command ends one or more connections created between the current SQL
process and the database server. The CURRENT clause closes the currently active
user connection. The ALL clause closes all open connections for the current user.
Alternately, it’s possible to close only a specific connection.

Microsoft SQL Server Syntax and Variations

Microsoft SQL Server supports DISCONNECT in Embedded-SQL (ESQL) only, not
within its ad hoc querying tool, SQL Query Analyzer. It supports the full SQL99
syntax. When disconnecting from Microsoft SQL Server in an ESQL program, the
DISCONNECT ALL command should be used to disconnect cleanly from the data-
base server.

Oracle Syntax and Variations

DISC[ONNECT]

In contrast to SQL Server, Oracle allows DISCONNECT only in its ad hoc query
tool, SQL*Plus. In this usage, the command ends the current session with the data-
base server but otherwise allows work in SQL*Plus to continue. For example, a
programmer can continue to edit the buffer, save run files, and so on. However, a
reconnection must be established to issue any SQL commands. Exiting SQL*Plus
and returning to the filesystem requires the EXIT or QUIT commands.

Oracle also supports this functionality with the command ALTER SYSTEM
DISCONNECT SESSION. However, this is a privileged command available only to
the DBA for forcibly disconnecting a session (usually a rogue session) from the
database.

PostgreSQL

PostgreSQL does not explicitly support the DISCONNECT command. However,
every programming interface does support a disconnect operation; for example,
SPI_FINISH is available under the Server Programming Interface, and PG_
CONNECT is available under the PL/tcl programming package.

Vendor Command

SQL Server Supported, with limitations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

,ch03.13605 Page 95 Wednesday, November 29, 2000 4:42 PM

96 Chapter 3 – SQL Statements Command Reference

DROP Statements

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Examples

End the current connection with an Oracle server:

DISCONNECT;

Microsoft SQL Server supports DISCONNECT within ESQL programs only:

EXEC SQL DISCONNECT new_york;

DROP Statements
All of the database objects created with CREATE commands may be destroyed
using complementary DROP statements. The DROP command is irreversible and
permanent, so it must be used with care. The syntax follows this format:

DROP object_type [owner_name.]object_name

With most vendors, the DROP command fails if the database object is in use by
another user. With some vendors, the DROP command fails if the database object
has other characteristics. For example, Microsoft SQL Server does not drop a table
that is replicated. The table must be removed from replication before it can be
dropped.

It is important to be aware that most vendors do not notify a user if
the DROP command creates a dependency problem. Thus, if a table
is dropped that is used by a few views and stored procedures else-
where in the database, no warning is issued. Those other objects
simply return failures when they are accessed.

DROP DATABASE

DROP DATABASE undoes all the work done by the CREATE DATABASE command.
It drops all existing database objects and releases the space used by them. With
most vendors this command cannot be executed while users (including the owner)
are active in the database.

SQL99 Syntax and Description

DROP DATABASE database_name

Like CREATE DATABASE, DROP DATABASE is supported by ANSI SQL only as an
extension and not as a core command. SQL99 prefers commands relating to
SCHEMA and DOMAIN to cover areas that roughly correspond to what most imple-
mentations would consider “database” issues.

Vendor Command

SQL Server Supported

MySQL Supported

Oracle Not supported

PostgreSQL Supported

,ch03.13605 Page 96 Wednesday, November 29, 2000 4:42 PM

DROP FUNCTION 97

Statem
ents

DROP FUNCTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The system databases created by the database vendor should never be dropped.
Dropping a database requires explicit permissions, unless performed by the data-
base owner or the system administrator.

Microsoft SQL Server Syntax and Variations

DROP DATABASE database_name [,...n]

In SQL Server, multiple databases may be dropped in the same command by
adding a comma between each database name. A database may be dropped only
by a user in the master database, a user who has sys admin privileges, or the data-
base owner. The database must be ONLINE to be dropped.

MySQL and PostgreSQL Syntax and Variations

In MySQL and PostgreSQL, this command removes an entire database and all asso-
ciated files. The DB sends a message indicating how many files were deleted. A
database that is open and in use under the PostgreSQL implementation may not be
dropped.

Oracle Syntax and Variations

Oracle does not support DROP DATABASE. A database may be destroyed by
issuing the command CREATE DATABASE database_name (without parameters),
using the same name as the database to be destroyed.

DROP FUNCTION

This command removes a user-defined function from the current database.

SQL99 Syntax and Description

DROP FUNCTION function_name {RESTRICT | CASCADE}

This command permanently destroys a function. The RESTRICT clause ensures that
the command fails if other database objects, such as a view, depend upon the
function. On the other hand, the CASCADE option drops the function, any grants
based on the function, and any dependent database objects!

Microsoft SQL Server Syntax and Variations

DROP FUNCTION [owner_name.]function_name [,...n]

As with other SQL Server DROP commands, more than one database object of the
same type may be dropped by placing a comma between the names of each data-
base object.

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 97 Wednesday, November 29, 2000 4:42 PM

98 Chapter 3 – SQL Statements Command Reference

DROP INDEX

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

MySQL Syntax and Variations

This command does not actually delete the file containing the function. Instead, it
deletes the function reference from the system table, which can be added back by
using the CREATE FUNCTION statement.

Oracle Syntax and Variations

DROP FUNCTION [owner_name.]function_name

As with other Oracle DROP commands, the name of the function owner may be
specified. Otherwise, Oracle assumes the current-user context, and only functions
owned by the current user to be dropped. Alternately, those users with DROP ANY
FUNCTION system privilege are allowed to drop any function anywhere.

PostgreSQL Syntax and Variations

DROP FUNCTION name ([type [,...n]])

PostgreSQL allows functions declared in any programming language to be
dropped. Type is the input argument of the function to be dropped. Type must be
specified, since only the function with the given name and parameter types is
destroyed.

DROP INDEX

The DROP INDEX command destroys one or more indexes within the current data-
base. When an index is dropped, all the space it previously consumed is
immediately regained. DROP INDEX does not, however, destroy PRIMARY KEY or
UNIQUE constraints, which must be done with the ALTER TABLE . . . DROP
command. Refer to the CREATE TABLE command for more information about
primary key and unique constraints.

SQL99 Syntax and Description

DROP INDEX table_name.index_name

PostgreSQL follows the SQL99 standard, with variations.

Microsoft SQL Server Syntax and Variations

 DROP INDEX {table_name | view_name}.index_name [,...n]

Microsoft SQL Server allows indexes created on both tables and views to be
dropped. If a clustered index on a table that contains nonclustered indexes is
dropped, all nonclustered indexes are rebuilt and assigned new pointers.

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 98 Wednesday, November 29, 2000 4:42 PM

DROP ROLE 99

Statem
ents

DROP ROLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

MySQL Syntax and Variations

DROP INDEX table_name.index_name [,...n]

Older versions of MySQL include this command only for compatibility reasons;
however, newer versions actually destroy the specified index. The statement is
functionally equivalent to the MySQL statement ALTER TABLE . . . DROP INDEX.

MySQL allows multiple indexes to be dropped by separating each table and index
name with a comma.

Oracle Syntax and Variations

DROP INDEX [owner_name.]index_name

Oracle allows indexes to be dropped directly by name without providing the table
name. Oracle also allows the index to be dropped based on the owner name.

DROP PROCEDURE

This command destroys an existing stored procedure in the current user database.

SQL99 Syntax and Description

DROP PROCEDURE procedure_name {RESTRICT | CASCADE}

This command is essentially the same as DROP FUNCTION, except that it acts
upon stored procedures rather than functions.

Microsoft SQL Server Syntax and Variations

DROP PROCEDURE [owner_name.]procedure_name [,...n]

Microsoft SQL Server allows the removal of multiple stored procedures by placing
a comma between the name of each one. Individual versions of stored proce-
dures cannot be dropped. The entire group of stored-procedure versions must be
dropped.

Oracle Syntax and Variations

DROP PROCEDURE [owner_name.]procedure_name

Oracle also allows any procedure to be dropped based on the owner name. Users
with the system privilege, DROP ANY PROCEDURE, may drop procedures owned
by other users.

DROP ROLE

This command destroys a named set of user privileges in the current user
database.

Vendor Command

SQL Server Supported

MySQL Not supported

Oracle Supported

PostgreSQL Not supported

,ch03.13605 Page 99 Wednesday, November 29, 2000 4:42 PM

100 Chapter 3 – SQL Statements Command Reference

DROP TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SQL99 Syntax and Description

DROP ROLE role_name

The DROP ROLE command destroys the specified role. Only users who have WITH
ADMIN OPTION may drop roles.

Oracle Syntax

DROP ROLE [owner_name.]role_name;

Executing the DROP ROLE command destroys the role in the current user data-
base. It is no longer usable by any users or roles who previously had the role
assigned to them.

DROP TABLE

This command removes a table definition and all data, indexes, triggers,
constraints, and permission specifications for that table. Any view or stored proce-
dure that references the dropped table encounters problems, unless they are
explicitly altered or dropped as well.

Some vendors do not allow a table to be dropped unless certain other characteris-
tics of the table are dropped first. For example, Microsoft SQL Server requires that
the table be dropped from any replication scheme and FOREIGN KEY references
be dropped before the table itself is dropped.

SQL99 Syntax and Description

DROP TABLE table_name RESTRICT | CASCADE

In the SQL99 syntax, RESTRICT prohibits the DBMS from executing the command
if views or constraints currently reference the table to be dropped. The CASCADE
clause causes any referencing objects to be dropped along with the table.

Microsoft SQL Server Syntax and Variations

DROP TABLE [database_name.][owner_name.]table_name [,...n]
GO

Vendor Command

SQL Server Not supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 100 Wednesday, November 29, 2000 4:42 PM

DROP TRIGGER 101

Statem
ents

DROP TRIGGER

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Microsoft SQL Server allows more than one table to be dropped at a time by
including a comma between each table name. Tables also may be dropped in
databases outside of the current context by specifying the database name
(assuming the user has the right permissions). Any constraints or triggers on the
table are dropped with the table. Explicitly declared rules and defaults lose their
bindings when their underlying table is dropped. Views and stored procedures
that reference a dropped table produce an error when they are executed and the
table is found to be missing.

MySQL Syntax and Variations

DROP TABLE [IF EXISTS] table_name;

MySQL permanently and completely deletes the table and all associated files when
this command is executed. The IF EXISTS syntax can be added to avert a returned
error when attempting to drop a table that might not exist.

Oracle Syntax and Variations

DROP TABLE [owner_name.]table_name [CASCADE CONSTRAINTS];

Dropping a table in Oracle frees the space used by the table and commits any
pending changes to the database. When a table is dropped, all the space it previ-
ously consumed is immediately regained. All indexes and grants associated with
the table are lost. Objects, such as views, stored procedures, and synonyms built
upon the table, are marked invalid and cease to function.

Take into account that in Oracle, executing any ALTER, CREATE, or
DROP command causes any other pending transactions to commit.

The CASCADE CONSTRAINTS clause drops all integrity constraints referring to keys
in the dropped table.

PostgreSQL Syntax and Variations

DROP TABLE table_name;

PostgreSQL supports only the basic DROP TABLE command.

DROP TRIGGER

The DROP TRIGGER command removes a trigger for a table within the current
database.

Vendor Command

SQL Server Supported, with variations

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 101 Wednesday, November 29, 2000 4:42 PM

102 Chapter 3 – SQL Statements Command Reference

DROP VIEW

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SQL99 Syntax and Description

DROP TRIGGER trigger_name

DROP TRIGGER removes a trigger from the current database. MySQL does not
support this command.

Microsoft SQL Server Syntax and Variations

DROP TRIGGER [owner_name.]trigger_name [,...n]
GO

Microsoft SQL Server allows multiple triggers to be dropped by placing a comma
between each trigger name.

Oracle Syntax and Variations

DROP TRIGGER [owner_name.]trigger_name;

Oracle drops the indicated trigger and commits pending changes to the database
when this command is executed.

PostgreSQL Syntax and Variations

DROP TRIGGER trigger_name ON table_name;

PostgreSQL requires that the table where the trigger resides is named. It then
drops all references to an existing trigger when this command is executed.

DROP VIEW

This command permanently removes a view from the current database.

SQL99 Syntax and Description

DROP VIEW view_name RESTRICT | CASCADE

In the SQL99 syntax, RESTRICT tells the DBMS to prohibit the drop if views or
assertions that currently reference the table are to be dropped. The CASCADE
clause causes any referencing objects to be dropped along with the view.

This command is not currently supported by MySQL.

Microsoft SQL Server Syntax and Variations

DROP VIEW [owner_name.]view_name [,...n]
GO

Microsoft SQL Server allows multiple views to be dropped in a single command by
placing a comma between each view name. The views must reside in the same
database. Information about the view is removed from all system tables.

Vendor Command

SQL Server Supported

MySQL Not supported

Oracle Supported

PostgreSQL Supported

,ch03.13605 Page 102 Wednesday, November 29, 2000 4:42 PM

FETCH 103

Statem
ents

FETCH

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Oracle Syntax and Variations

DROP VIEW [owner_name.]view_name;

As with other Oracle DROP commands, the owner name may be specified along
with the view name. Users with the system privilege, DROP ANY VIEW, may drop
views owned by other users.

PostgreSQL Syntax and Variations

DROP VIEW view_name;

In PostgreSQL, the DROP VIEW command drops an existing view from the current
database. Only the owner of the view may drop it. The PostgreSQL command
DROP TABLE also can be used to drops views.

FETCH

The FETCH command is one of four commands used in cursor processes. FETCH
retrieves a specific row from a server-side cursor.

SQL99 Syntax and Description

The FETCH command retrieves a record from the cursor_name (created by the
DECLARE CURSOR statement), based on either the NEXT, PRIOR, FIRST, LAST,
ABSOLUTE, or RELATIVE keyword. The values retrieved by the FETCH statement
optionally may be stored in variables. The FETCH operations are:

NEXT
Tells the cursor to return the record immediately following the current row,
and increments the current row to the row returned. FETCH NEXT is the
default behavior for FETCH and retrieves the first record if it is performed as
the first fetch against a cursor. (PostgreSQL uses the keyword FORWARD or
the string FETCH RELATIVE NEXT.)

PRIOR
Tells the cursor to return the record immediately preceding the current row,
and decrements the current row to the row returned. FETCH PRIOR does not
retrieve a record if it is performed as the first fetch against the cursor.
(PostgreSQL uses the keyword BACKWARD or the string FETCH RELATIVE
PRIOR.)

FIRST
Tells the cursor to return the first record in the cursor and makes it the current
row. (Not supported by PostgreSQL.)

LAST
Tells the cursor to return the last record in the cursor and makes it the current
row. (Not supported by PostgreSQL.)

Vendor Command

SQL Server Supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 103 Wednesday, November 29, 2000 4:42 PM

104 Chapter 3 – SQL Statements Command Reference

FETCH

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ABSOLUTE { n }
Tells the cursor to return the nth record from the cursor record set counting
from the top (if n is positive), or nth record counting from the bottom (if n is
negative), making the returned record the new current record of the cursor. If
n is 0, no rows are returned. (Not supported by PostgreSQL.)

RELATIVE { n }
Tells the cursor to return the record n rows after the current record (if n is
positive) or n rows before the current record (if n is negative), making the
returned record the new current row of the cursor. If n is 0, the current row is
returned. (Supported as described by PostgreSQL except where n is 0.)

The INTO keyword allows data from each column in the FETCH command to be
placed into a local variable. Each column in the FETCH command must have a
corresponding variable of a matching datatype in the INTO clause. (INTO is not
supported by PostgreSQL.)

PostgreSQL cursors may be used only within explicitly declared transactions using
BEGIN, COMMIT, or ROLLBACK. PostgreSQL allows either a specific number of
records to be retrieved or all of them, using either a number or the keyword ALL.

Oracle Syntax and Variations

FETCH cursor_name
{INTO variable_name1 [,...n]]
| BULK COLLECT INTO [collection_name [,...n] }

Oracle cursors are forward-scrolling cursors. They must either insert the retrieved
values into matching variables, or using the BULK COLLECT clause, bulk-bind the
output before passing it back to the PL/SQL parser. FETCH often is paired with a
PL/SQL FOR loop to process all the rows in the cursor.

PostgreSQL Syntax and Variations

FETCH [FORWARD | BACKWARD | RELATIVE [{ [# | ALL | NEXT | PRIOR] }]]
[count]
FROM cursor_name

PostgreSQL cursors may be used only within explicitly declared transactions using
BEGIN, COMMIT, or ROLLBACK.

The cursor can be FORWARD scrolling, BACKWARD scrolling, or RELATIVE
scrolling. The RELATIVE clause may include either a number of records to retrieve
or all of them, using either a number or the keyword ALL.

Examples

This Oracle example retrieves several elements of the employee_new_hires_cursor
(refer to the example under DECLARE CURSOR) into some local variables:

FETCH FROM employee_new_hires_cursor
INTO : emp_id, :fname, :lname, :job_id

This PostgreSQL retrieves five records from the employee table:

FETCH FORWARD 5 IN employee_new_hires_cursor;

,ch03.13605 Page 104 Wednesday, November 29, 2000 4:42 PM

GRANT 105

Statem
ents

GRANT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

GRANT

In SQL99, the GRANT statement authorizes users and roles to access and use data-
base objects. Most database vendors also use the GRANT statement to authorize
users and roles to create database objects and execute stored procedures, func-
tions, and so on.

SQL99 Syntax and Description

GRANT { ALL [PRIVILEGES] }
| SELECT
| INSERT [(column_name [,...n])]
| DELETE
| UPDATE [(column_name [,...n])]
| REFERENCES [(column_name [,...n])]
| USAGE }[,...n]
ON { [TABLE] table_name
| DOMAIN domain_name
| COLLATION collation_name
| CHARACTER SET character_set_name
| TRANSLATION translation_name }
TO {grantee_name | PUBLIC}
[WITH GRANT OPTION]

The GRANT statement allows users to be authorized for one or more access
privileges—SELECT, INSERT, UPDATE, DELETE, REFERENCES, or USAGE—by an
authority who can grant those privileges. Each privilege allows the user to execute
the specified command, while REFERENCES and USAGE provide other privileges.
Multiple access privileges are specified by placing a comma between each privi-
lege, or access to all privileges is granted with ALL. The PRIVILEGES keyword is
entirely optional.

The USAGE privilege applies to any database object besides a table, while the
others apply only to tables. The USAGE privilege lets users create objects based
upon the definition of another, such as using a translation to construct a collation.
The REFERENCES privilege enables a table in a constraint or foreign key to be
used.

The INSERT, UPDATE, and REFERENCES privileges may be assigned against
specific columns within a table. If no columns are specified, then all columns are
assumed.

The ON clause declares the specific table or database object where the user is
receiving privileges.

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 105 Wednesday, November 29, 2000 4:42 PM

106 Chapter 3 – SQL Statements Command Reference

GRANT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The TO clause tells exactly which user or role receives a given authorization. Alter-
nately, privileges may be granted to PUBLIC, meaning that all users (including
those that will be created in the future) have the specified privilege. Authorization
may be granted to other users using WITH GRANT OPTION. In turn, this clause
tells the database that users who receive an access privilege can then grant that
same access privilege to other users.

Depending on the specific database implementation, views may or
may not have independent access privileges from their base tables.

Microsoft SQL Server Syntax and Variations

GRANT { ALL [PRIVILEGES] }
| SELECT
| INSERT
| DELETE
| UPDATE
| REFERENCES
| EXECUTE
| CREATE {DATABASE | DEFAULT | FUNCTION | PROCEDURE | RULE | TABLE | VIEW}
| BACKUP {DATABASE | LOG} } [,...n]
ON { {table_name | view_name} [(column [,...n])]
| stored_procedure_name
| extended_stored_procedure_name
| user_defined_function_name
| [(column [,...n] ON {table_name | view_name} }
TO {grantee_name | PUBLIC} [,...n]
[WITH GRANT OPTION]
[AS {group | role}]

Microsoft SQL Server allows the SELECT, INSERT, UPDATE, DELETE, and
REFERENCES access permissions to be granted on a table. A column list may be
identified only for SELECT and UPDATE access permissions. By default, all
columns are granted SELECT and UPDATE access privileges.

Only the EXECUTE permission may be granted on stored procedures, extended
stored procedures, and user-defined functions; a user must have the REFERENCES
privilege to create a FOREIGN KEY constraint. This permission also is required
when creating a function or view that depends upon an object with
SCHEMABINDING.

The AS clause grants privileges as if under a different group or role context. Since
groups and roles cannot execute the GRANT command, this is an easy way to
grant privileges to someone outside of the group or role. Privileges may not be
granted in a database other than the current database context.

,ch03.13605 Page 106 Wednesday, November 29, 2000 4:42 PM

GRANT 107

Statem
ents

GRANT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Example

First, CREATE DATABASE and CREATE TABLE are used to grant permissions to the
users Emily and Sarah. Next, numerous permissions are granted on the titles table
to the editors group. The editors are then able to grant these permission to others:

GRANT CREATE DATABASE, CREATE TABLE TO emily, sarah
GO

GRANT SELECT, INSERT, UPDATE, DELETE ON titles
TO editors
WITH GRANT OPTION
GO

MySQL Syntax and Variations

GRANT { ALL PRIVILEGES
| SELECT
| INSERT [(column_name [,...n])]
| DELETE
| UPDATE [(column_name [,...n])]
| REFERENCES [(column_name [,...n])]
| USAGE
| ALTER
| CREATE
| DROP
| FILE
| INDEX
| PROCESS
| RELOAD
| SHUTDOWN }[,...n]
ON {table_name | * | *.* | database_name.*}
TO grantee_name [IDENTIFIED BY 'password'] [,...n]
[WITH GRANT OPTION]

MySQL provides additional access privileges, primarily relating to object manipula-
tion within a database. As with the other privileges, granting any of the access
privileges (such as ALTER, CREATE, INDEX, or RELOAD) allows the user to
execute the command. REFERENCES is supported, but has no functionality. USAGE
actually disables a grantee’s privileges.

The following are access privileges that are usable with tables: SELECT, INSERT,
UPDATE, DELETE, CREATE, DROP, GRANT, INDEX, and ALTER. INSERT, UPDATE,
and SELECT may be applied at the column level.

MySQL’s implementation of the ON clause allows some interesting options. Global
privileges can be set, applying to all databases on the server, by specifying ON *.*.
Database-wide privileges may be set by specifying ON database_name.* or ON *
within the current database. The host, table, database, and column name must be
60 or fewer characters.

MySQL supports the possibility of granting rights to a specific user on a specific
host if the grantee_name is in the form USER@HOST. Wildcards can be included in
a grantee_name to provide the access privilege to a large number of users at one

,ch03.13605 Page 107 Wednesday, November 29, 2000 4:42 PM

108 Chapter 3 – SQL Statements Command Reference

GRANT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

time. The grantee_name must be 16 or fewer characters. When specifying the
user, password protection may be enforced by including the IDENTIFIED BY
clause.

Example

This example grants permissions to two users with passwords:

GRANT SELECT ON employee TO Dylan IDENTIFIED BY 'porsche',
 kelly IDENTIFIED BY 'mercedes',
 emily IDENTIFIED BY 'saab';

Oracle Syntax and Variations

GRANT { ALL [PRIVILEGES] }
{| GRANT ANY PRIVILEGE }
{| SELECT | INSERT | DELETE | UPDATE | REFERENCES }
{| CREATE [ANY] {CLUSTER | CONTEXT | DATABASE| DATABASE LINK | DIMENSION
 | DIRECTORY | INDEXTYPE | INDEX | LIBRARY | OPERATOR | OUTLINE
 | PROCEDURE | PROFILE | ROLE | ROLLBACK SEGMENT | SEQUENCE | SESSION
 | SNAPSHOT | SYNONYM | TABLE | TABLESPACE | TRIGGER | TYPE |
 | USER | [MATERIALIZED] VIEW}
| DROP [ANY] {...as CREATE...}
| ALTER [ANYh] {...as CREATE...}
| AUDIT SYSTEM
| EXECUTE [ANY] {INDEXTYPE | OPERATOR | PROCEDURE | TYPE
| BACKUP [ANY] {TABLE | DATABASE | LOG} } [,...n] }
ON { [schema_name.]
{table_name | view_name} [(column [,...n])]
| stored_procedure_name
| extended_stored_procedure_name
| user_defined_function_name
| DIRECTORY directory_name
| JAVA {SOURCE | RESOURCE} [schema_name.]object_name }
TO {{grantee_name | role_name} [,...n] | PUBLIC}
[WITH ADMIN OPTION];

It is plainly clear that Oracle has an exhaustive GRANT command. In fact, the
syntax shown does not cover every permutation of the statement. Note that there
are two general classes of privileges available under GRANT: object privileges
(such as the privilege to SELECT or DELETE from a specific table) and system privi-
leges (such as CREATE CLUSTER or DROP ANY TABLE).

Oracle does not allow the combination of object and system privi-
leges in a single GRANT command. Multiple object privileges or sys-
tem privileges may be granted to a single user or role in a GRANT
command, but a GRANT command may not grant both object and
system privileges.

Nearly every supported Oracle feature is permitted under a GRANT command.
Privileges can be granted not only on database objects (such as tables and views)

,ch03.13605 Page 108 Wednesday, November 29, 2000 4:42 PM

GRANT 109

Statem
ents

GRANT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

and system commands (such as CREATE ANY TABLE), but also on schema objects
(such as DIRECTORY, JAVA SOURCE, and RESOURCE).

The ANY option grants the privilege to execute a given statement against objects
of a specific type owned by any user within the schema. A more complete list of
Oracle system privileges is shown in Table 3-2.

Table 3-2: Oracle System Privileges

Category of
Privilege System Privilege Description

CLUSTER CREATE CLUSTER Grants privilege to create a cluster in
the grantee’s own schema.

CREATE ANY CLUSTER Grants privilege to create a cluster in
any schema.

ALTER ANY CLUSTER Grants privilege to alter clusters in any
schema.

DROP ANY CLUSTER Grants privilege to drop clusters in any
schema.

CONTEXT CREATE ANY
CONTEXT

Grants privilege to create any context
namespace.

DROP ANY CONTEXT Grants privilege to drop any context
namespace.

DATABASE ALTER DATABASE Grants privilege to alter the database.

ALTER SYSTEM Issues ALTER SYSTEM statements.

AUDIT SYSTEM Issues AUDIT sql_statements statements.

DATABASE LINKS CREATE DATABASE
LINK

Grants privilege to create private
database links in grantee’s own schema.

CREATE PUBLIC
DATABASE LINK

Grants privilege to create public
database links.

DROP PUBLIC
DATABASE LINK

Grants privilege to drop public
database links.

DIMENSIONS CREATE DIMENSION Grants privilege to create dimensions in
the grantee’s own schema.

CREATE ANY
DIMENSION

Grants privilege to create dimensions in
any schema.

ALTER ANY
DIMENSION

Grants privilege to alter dimensions in
any schema.

DROP ANY
DIMENSION

Grants privilege to drop dimensions in
any schema.

DIRECTORIES CREATE ANY
DIRECTORY

Grants privilege to create directory
database objects.

DROP ANY
DIRECTORY

Grants privilege to drop directory
database objects.

INDEXTYPES CREATE INDEXTYPE Grants privilege to create an indextype
in the grantee’s own schema.

CREATE ANY
INDEXTYPE

Grants privilege to create an indextype
in any schema.

ALTER ANY
INDEXTYPE

Modifies indextypes in any schema.

DROP ANY
INDEXTYPE

Grants privilege to drop an indextype in
any schema.

,ch03.13605 Page 109 Wednesday, November 29, 2000 4:42 PM

110 Chapter 3 – SQL Statements Command Reference

GRANT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

EXECUTE ANY
INDEXTYPE

References an indextype in any schema.

INDEXES CREATE ANY INDEX Grants privilege to create a domain
index in any schema or an index on
any table in any schema.

ALTER ANY INDEX Grants privilege to alter indexes in any
schema.

DROP ANY INDEX Grants privilege to drop indexes in any
schema.

QUERY REWRITE Enables rewrite using a materialized
view, or creates a function-based index,
when materialized view or index
references tables and views are in the
grantee’s own schema.

GLOBAL QUERY
REWRITE

Enables rewrite using a materialized
view, or creates a function-based index,
when materialized view or index
references tables views are in any
schema.

LIBRARIES CREATE LIBRARY Grants privilege to create external
procedure/function libraries in grantee’s
own schema.

CREATE ANY LIBRARY Grants privilege to create external
procedure/function libraries in any
schema.

DROP LIBRARY Grants privilege to drop external
procedure/function libraries in the
grantee’s own schema.

DROP ANY LIBRARY Grants privilege to drop external
procedure/function libraries in any
schema.

MATERIALIZED
VIEWS (identical
to SNAPSHOTS)

CREATE MATERIAL-
IZED VIEW

Grants privilege to create a materialized
view in the grantee’s own schema.

CREATE ANY MATERI-
ALIZED VIEW

Grants privilege to create materialized
views in any schema.

ALTER ANY MATERIAL-
IZED VIEW

Grants privilege to alter materialized
views in any schema.

DROP ANY MATERIAL-
IZED VIEW

Grants privilege to drop materialized
views in any schema.

GLOBAL QUERY
REWRITE

Enables rewrite using a materialized
view, or creates a function-based index,
when materialized view or index refer-
ences tables or views are in any
schema.

QUERY REWRITE Enables rewrite using a materialized
view, or creates a function-based index,
when that materialized view or index
references tables and views that are in
the grantee’s own schema.

OPERATORS CREATE OPERATOR Grants privilege to create an operator
and its bindings in the grantee’s own
schema.

CREATE ANY
OPERATOR

Grants privilege to create an operator
and its bindings in any schema.

Table 3-2: Oracle System Privileges (continued)

Category of
Privilege System Privilege Description

,ch03.13605 Page 110 Wednesday, November 29, 2000 4:42 PM

GRANT 111

Statem
ents

GRANT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

DROP ANY OPERATOR Grants privilege to drop an operator in
any schema.

EXECUTE ANY
OPERATOR

References an operator in any schema.

OUTLINES CREATE ANY OUTLINE Grants privilege to create outlines that
can be used in any schema that uses
outlines.

ALTER ANY OUTLINE Modifies outlines.

DROP ANY OUTLINE Grants privilege to drop outlines.

PROCEDURES CREATE PROCEDURE Grants privilege to create stored proce-
dures, functions, and packages in
grantee’s own schema.

CREATE ANY
PROCEDURE

Grants privilege to create stored proce-
dures, functions, and packages in any
schema.

ALTER ANY
PROCEDURE

Grants privilege to alter stored proce-
dures, functions, or packages in any
schema.

DROP ANY
PROCEDURE

Grants privilege to drop stored proce-
dures, functions, or packages in any
schema.

EXECUTE ANY
PROCEDURE

Executes procedures or functions
(standalone or packaged).

PROFILES CREATE PROFILE Grants privilege to create profiles.

ALTER PROFILE Grants privilege to alter profiles.

DROP PROFILE Grants privilege to drop profiles.

ROLES CREATE ROLE Grants privilege to create roles.

ALTER ANY ROLE Grants privilege to alter any role in the
database.

DROP ANY ROLE Grants privilege to drop roles.

GRANT ANY ROLE Grants any role in the database.

ROLLBACK
SEGMENTS

CREATE ROLLBACK
SEGMENT

Grants privilege to create rollback
segments.

ALTER ROLLBACK
SEGMENT

Grants privilege to alter rollback
segments.

DROP ROLLBACK
SEGMENT

Grants privilege to drop rollback
segments.

SEQUENCES CREATE SEQUENCE Grants privilege to create sequences in
grantee’s own schema.

CREATE ANY
SEQUENCE

Grants privilege to create sequences in
any schema.

ALTER ANY SEQUENCE Grants privilege to alter any sequence
in the database.

DROP ANY SEQUENCE Grants privilege to drop sequences in
any schema.

SELECT ANY
SEQUENCE

References sequences in any schema.

SESSIONS CREATE SESSION Connects to the database.

ALTER RESOURCE
COST

Sets costs for session resources.

Table 3-2: Oracle System Privileges (continued)

Category of
Privilege System Privilege Description

,ch03.13605 Page 111 Wednesday, November 29, 2000 4:42 PM

112 Chapter 3 – SQL Statements Command Reference

GRANT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ALTER SESSION Issues ALTER SESSION statements.

RESTRICTED SESSION Logs on after the instance is started
using the SQL*Plus STARTUP RESTRICT
statement.

SNAPSHOTS
(identical to
MATERIALIZED
VIEWS)

CREATE SNAPSHOT Grants privilege to create snapshots in
grantee’s own schema.

CREATE ANY
SNAPSHOT

Grants privilege to create snapshots in
any schema.

ALTER ANY SNAPSHOT Grants privilege to alter any snapshot in
the database.

DROP ANY SNAPSHOT Grants privilege to drop snapshots in
any schema.

GLOBAL QUERY
REWRITE

Enables rewrite using a snapshot, or
creates a function-based index, when
that snapshot or index references tables
and views in any schema.

QUERY REWRITE Enables rewrite using a snapshot, or
creates a function-based index, when
that snapshot or index references tables
and views are in the grantee’s own
schema.

SYNONYMS CREATE SYNONYM Grants privilege to create synonyms in
grantee’s own schema.

CREATE ANY
SYNONYM

Grants privilege to create private
synonyms in any schema.

CREATE PUBLIC
SYNONYM

Grants privilege to create public
synonyms.

DROP ANY SYNONYM Grants privilege to drop private
synonyms in any schema.

DROP PUBLIC
SYNONYM

Grants privilege to drop public
synonyms.

TABLES CREATE ANY TABLE Grants privilege to create tables in any
schema. The owner of the schema
containing the table must have a space
quota on the tablespace to contain the
table.

ALTER ANY TABLE Grants privilege to alter any table or
view in the schema.

BACKUP ANY TABLE Uses the Export utility to incrementally
export objects from the schema of other
users.

DELETE ANY TABLE Deletes rows from tables, table
partitions, or views in any schema.

DROP ANY TABLE Grants privilege to drop or truncate
tables or table partitions in any schema.

INSERT ANY TABLE Inserts rows into tables and views in
any schema.

LOCK ANY TABLE Locks tables and views in any schema.

UPDATE ANY TABLE Updates rows in tables and views in
any schema.

Table 3-2: Oracle System Privileges (continued)

Category of
Privilege System Privilege Description

,ch03.13605 Page 112 Wednesday, November 29, 2000 4:42 PM

GRANT 113

Statem
ents

GRANT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SELECT ANY TABLE Queries tables, views, or snapshots in
any schema.

TABLESPACES CREATE TABLESPACE Grants privilege to create tablespaces.

ALTER TABLESPACE Grants privilege to alter tablespaces.

DROP TABLESPACE Grants privilege to drop tablespaces.

MANAGE TABLESPACE Takes tablespaces offline and online,
and begins and ends tablespace
backups.

UNLIMITED
TABLESPACE

Uses an unlimited amount of any
tablespace. This privilege overrides any
specific quotas assigned. If you revoke
this privilege from a user, the user’s
schema objects remain, but further
tablespace allocation is denied unless
authorized by specific tablespace
quotas. You cannot grant this system
privilege to roles.

TRIGGERS CREATE TRIGGER Grants privilege to create a database
trigger in grantee’s own schema.

CREATE ANY TRIGGER Grants privilege to create database
triggers in any schema.

ALTER ANY TRIGGER Enables, disables, or compiles database
triggers in any schema.

DROP ANY TRIGGER Grants privilege to drop database trig-
gers in any schema.

ADMINISTER DATA-
BASE TRIGGER

Grants privilege to create a trigger on
DATABASE. (You also must have the
CREATE TRIGGER or CREATE ANY
TRIGGER privilege.)

TYPES CREATE TYPE Grants privilege to create object types
and object-type bodies in grantee’s own
schema.

CREATE ANY TYPE Grants privilege to create object types
and object-type bodies in any schema.

ALTER ANY TYPE Grants privilege to alter object types in
any schema.

DROP ANY TYPE Grants privilege to drop object types
and object-type bodies in any schema.

EXECUTE ANY TYPE Uses and references object types and
collection types in any schema, and
invokes methods of an object type in
any schema if you make the grant to a
specific user. If you grant EXECUTE ANY
TYPE to a role, users holding the
enabled role will not be able to invoke
methods of an object type in any
schema.

USERS CREATE USER Grants privilege to create users. This
privilege also allows the creator to:
• Assign quotas on any tablespace
• Set default and temporary

tablespaces
• Assign a profile as part of a CREATE

USER statement

Table 3-2: Oracle System Privileges (continued)

Category of
Privilege System Privilege Description

,ch03.13605 Page 113 Wednesday, November 29, 2000 4:42 PM

114 Chapter 3 – SQL Statements Command Reference

GRANT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PostgreSQL Syntax and Variations

GRANT { ALL
| SELECT

ALTER USER Grants the privilege to alter any user.
This privilege authorizes the grantee to:
• Change another user’s password or

authentication method
• Assign quotas on any tablespace
• Set default and temporary

tablespaces, and
• Assign a profile and default roles

BECOME USER Becomes another user (required by any
user performing a full database import).

DROP USER Grants privilege to drop users.

VIEWS CREATE VIEW Grants privilege to create views in
grantee’s own schema.

CREATE ANY VIEW Grants privilege to create views in any
schema.

DROP ANY VIEW Grants privilege to drop views in any
schema.

MISCELLANEOUS ANALYZE ANY Analyzes any table, cluster, or index in
any schema.

AUDIT ANY Audits any object in any schema using
AUDIT schema_objects statements.

COMMENT ANY TABLE Comments on any table, view, or
column in any schema.

FORCE ANY
TRANSACTION

Forces the commit or rollback of any in-
doubt distributed transaction in the
local database; induces the failure of a
distributed transaction.

FORCE TRANSACTION Forces the commit or rollback of
grantee’s own in-doubt distributed
transactions in the local database.

GRANT ANY
PRIVILEGE

Grants any system privilege.

SYSDBA Authorizes the user to:
• Performs STARTUP and SHUTDOWN

operations
• ALTER DATABASE: open, mount,

back up, or change character set
• CREATE DATABASE
• ARCHIVELOG and RECOVERY
• Includes the RESTRICTED SESSION

privilege

SYSOPER Authorizes the user to:
• Performs STARTUP and SHUTDOWN

operations
• ALTER DATABASE OPEN/MOUNT/

BACKUP—ARCHIVELOG and
RECOVERY

• Includes the RESTRICTED SESSION
privilege

Table 3-2: Oracle System Privileges (continued)

Category of
Privilege System Privilege Description

,ch03.13605 Page 114 Wednesday, November 29, 2000 4:42 PM

INSERT 115

Statem
ents

INSERT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

| INSERT
| DELETE
| UPDATE
| RULE } [,...n]
ON { object_name }
TO {grantee_name | PUBLIC | GROUP group_name}

PostgreSQL does not support the WITH GRANT OPTION clause or column-level
permissions. PostgreSQL’s implementation of GRANT behaves as if WITH GRANT
OPTION is always enabled. Any user granted a permission is able to grant that
privilege to other users. PostgreSQL allows permissions to be assigned to a
GROUP, provided it is a valid, preexisting group_name.

PostgreSQL does not support GRANT on system commands, but several other data-
base vendors do.

Example

PostgreSQL support for the GRANT statement is elementary:

GRANT INSERT ON publishers TO PUBLIC;

GRANT SELECT, UPDATE ON sales TO emily;

INSERT

The INSERT statement adds rows of data to a table or view. The INSERT statement
allows records to be entered into a table through one of several methods:

• The first method is to insert records using the DEFAULT values created on the
columns given table via the CREATE TABLE or ALTER TABLE statements. (This
method is not supported by Oracle.)

• The second and most common method is to declare the actual values to be
inserted into each column of the record.

• The third method, which quickly populates a table with many records, is to
insert the result set of a SELECT statement into a table.

SQL99 Syntax and Description

INSERT [INTO] [[database_name.]owner.] {table_name | view_name} [(column_
list)]

{[DEFAULT] VALUES | VALUES (value[,...]) | SELECT_statement }

To use the INSERT statement, first declare the table (or view) where the data is to
be inserted. The INTO keyword is optional. Specify the columns in the table that
receives data by enclosing them in parentheses separated by commas in the

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported

,ch03.13605 Page 115 Wednesday, November 29, 2000 4:42 PM

116 Chapter 3 – SQL Statements Command Reference

INSERT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

column_list. The column_list can be left off, but all columns that are defined for
the table are then assumed.

The DEFAULT VALUES method is mutually exclusive from the list_of_values and
SELECT_statement methods.

The INSERT . . . VALUES statement adds a single row of data to a table using literal
values supplied in the statement. The INSERT statement, combined with a nested
SELECT statement, allows a table to be quickly populated with multiple rows.
When using INSERT . . . SELECT between two tables, it is important to ensure that
the tables possess compatible datatypes and structures, although any incompatibili-
ties between the two tables can be compensated for in the SELECT statement.
INSERT . . . SELECT also is supported by PostgreSQL.

Microsoft SQL Server Syntax and Description

INSERT [INTO] [[database_name.]owner.]
 {table_name | view_name} [(column_list)]
{[DEFAULT] VALUES | list_of_values | SELECT_statement |
 EXEC[UTE] { procedure_name }
 [[@parameter_name=] {value [OUTPUT] | DEFAULT}[,...]}

Microsoft SQL Server’s implementation of the INSERT command differs in that it
allows the DEFAULT keyword. DEFAULT tells the INSERT statement simply to
create a new record using all of the default values declared for a given table.

The major difference in this vendor’s implementation is the EXECUTE keyword.
The EXECUTE clause tells SQL Server to store the result set returned by a dynamic
Transact-SQL statement, a system-stored procedure, a user-stored procedure, a
Remote Procedure Call (RPC), or extended stored procedure into a local table.

For example, the following INSERT retrieves the C:\temp directory and stores it in
the temporary table called #ins_exec_container :

INSERT INTO #ins_exec_container
EXEC master..xp_cmdshell "dir c:\temp"
GO

MySQL Syntax and Variations

INSERT [LOW_PRIORITY | DELAYED] [IGNORE]
[INTO] [[database_name.]owner.] {table_name | view_name} [(column_list)]
{VALUES (value[,...]) | SELECT_statement | SET column=value[,...n]}

The option LOW_PRIORITY tells MySQL to defer the execution of INSERT until no
other clients are reading from the table. This could result in a long wait. The
DELAYED option allows the client to continue at once, even if the INSERT has not
yet completed. The IGNORE keyword tells MySQL not to attempt to insert records
that would duplicate a value in a primary key or unique key; otherwise, without
this clause, the INSERT fails. The SET column=value syntax allows the columns of
the table to be declared and the values to insert in them.

Oracle Syntax and Description

INSERT [INTO] [[database_name.]owner.] {table_name | view_name}
 [PARTITION partition_name | SUBPARTITION subpartition_name]

,ch03.13605 Page 116 Wednesday, November 29, 2000 4:42 PM

INSERT 117

Statem
ents

INSERT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

[(column_list)]
{VALUES (value1[,...n]) RETURNING expression1 [,...n] INTO variable1 [,...n]

|
SELECT_statement
[WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]} }

Oracle’s implementation of the INSERT statement allows data insertion not only
into a given table, view, or snapshot, but also into a given partition or subparti-
tion within a table using the PARTITION and SUBPARTITION keywords.

When the INSERT statement is correlated with a SELECT clause, some new rules
come into play. If the SELECT clause is coupled with a VALUES clause, only one
row is inserted into the table—the first row returned by the SELECT clause. If
SELECT is used without VALUES, then all rows returned by the query are inserted
into the table.

The RETURNING clause is not used to insert the values into a table, but into vari-
ables instead. There must be a one-for-one match between the expressions and
variables of the RETURNING clause. The expressions returned by the clause do not
necessarily have to be those mentioned in the VALUES clause. For example, the
following INSERT statement places a record into the sales table, but places a
completely distinct value into a bind variable:

INSERT authors (au_id, au_lname, au_fname, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', 1)
RETURNING hire_date INTO :temp_hr_dt;

Notice that the RETURNING clause returns the hire_date even though hire_date is
not one of the values listed in the VALUES clause. (In this example, it is reason-
able to assume a default value was established for the hire_date column.) LONG
datatypes may not be manipulated by RETURNING. RETURNING cannot be used on
views with INSTEAD OF triggers.

Additionally, the SELECT clause may utilize the WITH option. WITH READ ONLY
specifies that the result set retrieved by the SELECT clause cannot be altered by the
INSERT statement. The WITH CHECK OPTION clause tells Oracle to prohibit any
data change that would produce rows that are not included in the result set of the
SELECT clause.

PostgreSQL Syntax and Description

PostgreSQL supports the SQL99 standard for the INSERT statement. Refer to the
earlier section for the SQL99 syntax and usage.

Examples

In this example, a new row in the authors table is inserted for the author Jessica
Rabbit on a Microsoft SQL Server database:

INSERT INTO authors (au_id, au_lname, au_fname, phone, address, city,
 state, zip, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT, '1717 Main St',
NULL,
 'CA', '90675', 1)

,ch03.13605 Page 117 Wednesday, November 29, 2000 4:42 PM

118 Chapter 3 – SQL Statements Command Reference

LIKE Operator

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Every column is assigned a specific, literal value except the phone column, which
is assigned the default value (as assigned during the CREATE TABLE or ALTER
TABLE statement), and the city column, which is null.

Here is a partial INSERT on a Microsoft SQL Server database of the same data:

INSERT authors (au_id, au_lname, au_fname, phone, contract)
VALUES ('111-11-1111', 'Rabbit', 'Jessica', DEFAULT, 1)

To load data from sales table into the new_sales table, INSERT . . . SELECT can be
used:

INSERT sales
 (stor_id,
 ord_num,
 ord_date,
 qty,
 payterms,
 title_id)
SELECT
 CAST(store_nbr AS CHAR(4)),
 CAST(order_nbr AS VARCHAR(20)),
 order_date,
 quantity,
 SUBSTRING(payment_terms,1,12),
 CAST(title_nbr AS CHAR(1))
FROM new_sales
WHERE order_date >= '01/01/2000' -- retrieve only the newer
records

LIKE Operator

The LIKE operator enables specified string patterns in SELECT, INSERT, UPDATE,
and DELETE statements to be matched. The specified pattern can even include
special wildcard characters.

SQL99 Syntax and Description

WHERE expression [NOT] LIKE string_pattern

The usefulness of LIKE is based on the wildcard operators that it supports. LIKE
returns a TRUE Boolean value when the comparison finds one or more matching
values. Note that the default case sensitivity of the DBMS is very important to the
behavior of LIKE. For example, Microsoft SQL Server is not case-sensitive by
default (though it can be configured that way). So the query:

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 118 Wednesday, November 29, 2000 4:42 PM

OPEN 119

Statem
ents

OPEN

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SELECT *
FROM authors
WHERE lname LIKE 'LARS%'

would find authors whose last names are stored as ‘larson’ or ‘lars,’ even though
the search was for uppercase ‘LARS%’. Oracle is case-sensitive to “%” and “_”
pattern characters, and has other regular-expression pattern matching available
using operators other than LIKE. The wildcard operators are as follows in
Table 3-3.

When performing string comparisons with LIKE, all characters in the
pattern string are significant, including all leading or trailing blank
spaces.

OPEN

The OPEN command opens a server cursor created with a DECLARE CURSOR state-
ment. MySQL does not support ANSI-style server-side cursors.

Table 3-3: Wildcard Operators and Sample Code

Wildcard
Operator Example Description

% Retrieves any record of city with “ville” in its
name. (Supported by all vendors.)

SELECT * FROM authors
WHERE city LIKE '%ville%'

Matches any
string; resem-
bles * in DOS
operations.

[] Retrieves any author with a last name like Carson,
Carsen, Karson, or Karsen. (Not supported by
Oracle. Supported by Microsoft SQL Server.)

SELECT * FROM authors
WHERE au_lname LIKE '[CK]ars[eo]n'

Matches any
value in the
specified set, as
in [abc], or any
range, as in
[k-n].

[^] Retrieves any author with a last name that ends in
arson or arsen, but not Larsen or Larson.
(Supported by Microsoft SQL Server.)

SELECT * FROM authors
WHERE au_lname LIKE '[A-Z^L]ars[eo]n'

Matches any
characters not in
the specified set
or range.

_ (underscore) Retrieves any author with a first name not like
Sheryl or Cheryl. (Supported by all vendors.)

SELECT * FROM authors
WHERE au_fname NOT LIKE '_heryl'

Matches any
single character.

Vendor Command

SQL Server Supported

MySQL Not supported

Oracle Supported

PostgreSQL Supported

,ch03.13605 Page 119 Wednesday, November 29, 2000 4:42 PM

120 Chapter 3 – SQL Statements Command Reference

Operators

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SQL99 Syntax and Description

OPEN { cursor_name }

The cursor_name is the name of the cursor created with the DECLARE CURSOR
command.

In addition to standard server cursors, Microsoft SQL Server allows global cursors
to be declared (in the format OPEN GLOBAL cursor_name) that can be referenced
by multiple users. Plus, Oracle allows parameters to be passed directly into the
cursor when it is opened (in the format OPEN cursor_name parameter1 [,…n]).

Example

The following example from Microsoft SQL Server opens a cursor and fetches all
the rows. The same functionality in Oracle and PostgreSQL could be accom-
plished without the final DEALLOCATAE clause:

DECLARE employee_cursor CURSOR FOR
 SELECT lname, fname
 FROM pubs.dbo.authors
 WHERE lname LIKE 'K%'

OPEN employee_cursor

FETCH NEXT FROM employee_cursor

WHILE @@FETCH_STATUS = 0
BEGIN
 FETCH NEXT FROM Employee_Cursor
END

CLOSE employee_cursor

DEALLOCATE employee_cursor
-- DEALLOCATE is specific to Microsoft SQL Server and non-ANSI
-- standard.

Operators

An operator is a symbol specifying an action that is performed on one or more
expressions. Operators are used most often in DELETE, INSERT, SELECT, or
UPDATE statements but also are used frequently in the creation of database
objects, such as stored procedures, functions, triggers, and views.

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 120 Wednesday, November 29, 2000 4:42 PM

Operators 121

Statem
ents

Operators

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Operators typically fall into these logical categories:

Arithmetic operators
Supported by all databases

Assignment operators
Supported by all databases

Bitwise operators
Supported by Microsoft SQL Server

Comparison operators
Supported by all databases

Logical operators
Supported by Oracle, Microsoft SQL Server, and PostgreSQL

Unary operators
Supported by Oracle

Arithmetic Operators

Arithmetic operators perform mathematical operations on two expressions of any
datatypes in the numeric datatype category. See Table 3-4 for a listing of the arith-
matic operators.

In Oracle and SQL Server, the + and - operators also can be used to
perform arithmetic operations on date values.

Assignment Operators

Except in Oracle, the assignment operator (=) assigns the value to a variable or the
alias of a column heading. In Microsoft SQL Server, the keyword AS may be
assigned as an operator for table- or column-heading aliases.

Bitwise Operators

Microsoft SQL Server provides bitwise operators as a shortcut to perform bit
manipulations between two-integer expressions (see Table 3-5). Valid datatypes

Table 3-4: Arithmetic Operators

Arithmetic Operator Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

% Modula (SQL Server only);
returns the remainder of a
division operation as an
integer value.

,ch03.13605 Page 121 Wednesday, November 29, 2000 4:42 PM

122 Chapter 3 – SQL Statements Command Reference

Operators

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

that are accessible to bitwise operators include binary, bit, int, smallint, tinyint,
and varbinary.

Comparison Operators

Comparison operators test whether two expressions are equal or unequal. The
result of a comparison operation is a Boolean value: TRUE, FALSE, or UNKNOWN.
Also, note that the ANSI standard behavior for a comparison operation where one
or more of the expressions are NULL is NULL. For example, the expression 23 +
NULL returns NULL, as does the expression Feb 23, 2002 + NULL. See Table 3-6 for
a list of the comparison operators.

Boolean comparison operators are used most frequently in a WHERE clause to
filter the rows that qualify for the search conditions. The following Microsoft SQL
Server example uses the greater than or equal to comparison operation:

SELECT *
 FROM Products
 WHERE ProductID >= @MyProduct

Logical Operators

Logical operators are commonly used in a WHERE clause to test for the truth of
some condition. Logical operators return a Boolean value of either TRUE or FALSE.
Logical operators also are discussed under the SELECT topic. Not all RDBMS
support all operators. See Table 3-7 for a list of logical operators.

Table 3-5: Bitwise Operators

Bitwise Operators Meaning

& Bitwise AND (two operands)

| Bitwise OR (two operands)

^ Bitwise exclusive OR (two
operands)

Table 3-6: Comparison Operators

Comparison Operators Meaning

= Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

!= Not equal to (not ANSI
standard)

!< Not less than (not ANSI
standard)

!> Not greater than (not ANSI
standard)

,ch03.13605 Page 122 Wednesday, November 29, 2000 4:42 PM

Operators 123

Statem
ents

Operators

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Unary Operators

Unary operators perform an operation on only one expression of any of the
datatypes of the numeric datatype category. Unary operators may be used on
integer datatypes, though positive and negative may be used on any numeric
datatype (see Table 3-8).

Operator Precedence

Sometimes operator expressions become rather complex. When an expression has
multiple operators, operator precedence determines the sequence in which the
operations are performed. The order of execution can significantly affect the
resulting value.

Operators have the following precedence levels. An operator on higher levels is
evaluated before an operator on a lower level:

• () (parenthetical expressions)

• +, -, ~ (unary operators)

• *, /, % (mathematical operators)

• +, - (arithmetic operators)

• =, >, <, >=, <=, <>, !=, !>, !< (comparison operators)

• ^ (Bitwise Exclusive OR), & (Bitwise AND), | (Bitwise OR)

• NOT

• AND

Table 3-7: Logical Operators

Logical Operators Meaning

ALL TRUE if all of a set of comparisons are TRUE

AND TRUE if both Boolean expressions are TRUE

ANY TRUE if any one of a set of comparisons is TRUE

BETWEEN TRUE if the operand is within a range

EXISTS TRUE if a subquery contains any rows

IN TRUE if the operand is equal to one of a list of expressions

LIKE TRUE if the operand matches a pattern

NOT Reverses the value of any other Boolean operator

OR TRUE if either Boolean expression is TRUE

SOME TRUE if some of a set of comparisons are TRUE

Table 3-8: Unary Operators

Unary Operators Meaning

+ Numeric value is positive

- Numeric value is negative

~ A bitwise NOT, returns the complement of the number (not in
Oracle)

,ch03.13605 Page 123 Wednesday, November 29, 2000 4:42 PM

124 Chapter 3 – SQL Statements Command Reference

RETURN

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

• ALL, ANY, BETWEEN, IN, LIKE, OR, SOME

• = (variable assignment)

Operators are evaluated from left to right when they are of equal precedence.
However, parentheses are used to override the default precedence of the opera-
tors in an expression. Expressions within a parentheses are evaluated first, while
operations outside the parentheses are evaluated next.

For example, the following expressions in an Oracle query return very different
results:

SELECT 2 * 4 + 5 FROM dual
-- Evaluates to 8 + 5 which yields an expression result of 13.

SELECT 2 * (4 + 5) FROM dual
-- Evaluates to 2 * 9 which yields an expression result of 18.

In expressions with nested parentheses, the most deeply nested expression is eval-
uated first.

This example contains nested parentheses, with the expression 5–3 in the most
deeply nested set of parentheses. This expression yields a value of 2. Then, the
addition operator (+) adds this result to 4, which yields a value of 6. Finally, the 6
is multiplied by 2 to yield an expression result of 12:

SELECT 2 * (4 + (5 - 3)) FROM dual
-- Evaluates to 2 * (4 + 2) which further evaluates to 2 * 6, and
-- yields an expression result of 12.

RETURN

The RETURN statement terminates processing within a SQL-invoked function (as
opposed to a host-invoked function) and returns the function’s result value.

SQL99 Syntax and Description

RETURNS return_parameter_value | NULL

The RETURN function is used within a function to end its processing. Using the
NULL clause terminates the function without returning an actual value. Otherwise,
the parameter value specified is returned either as a variable or as a literal
expression.

Although the RETURN statement is categorized as a separate command within SQL,
it is deeply intertwined with the CREATE FUNCTION statement. Check the CREATE
FUNCTION statement for a more complete understanding of each vendor’s imple-
mentation of RETURN.

Vendor Command

SQL Server Supported

MySQL Supported

Oracle Supported

PostgreSQL Supported

,ch03.13605 Page 124 Wednesday, November 29, 2000 4:42 PM

REVOKE 125

Statem
ents

REVOKE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Examples

This example creates a function. The function returns the value that is stored in
the proj_rev variable to the calling session:

CREATE FUNCTION project_revenue (project IN varchar2)
RETURN NUMBER
AS
 proj_rev NUMBER(10,2);
BEGIN
 SELECT SUM(DECODE(action,'COMPLETED',amount,0) –
 SUM(DECODE(action,'STARTED',amount,0) +
 SUM(DECODE(action,'PAYMENT',amount,0)
 INTO proj_rev
 FROM construction_actions
 WHERE project_name = project;
 RETURN (proj_rev);
END;

This example creates a function that returns a calculated value to the calling
session:

CREATE FUNCTION metric_volume -- Input dimensions in centimeters.
 (@length decimal(4,1),
 @width decimal(4,1),
 @height decimal(4,1))
RETURNS decimal(12,3) -- Cubic Centimeters.
AS
BEGIN
 RETURN (@length * @width * @height)
END
GO

REVOKE

The REVOKE statement removes permissions for a user, group, or role on a
specific database object or system command.

SQL99 Syntax and Description

REVOKE [GRANT OPTION FOR]
{ ALL PRIVILEGES }
| SELECT
| INSERT
| DELETE
| UPDATE
| REFERENCES
| USAGE }[,...n]

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported, with variations

,ch03.13605 Page 125 Wednesday, November 29, 2000 4:42 PM

126 Chapter 3 – SQL Statements Command Reference

REVOKE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ON { [TABLE] table_name
| DOMAIN domain_name
| COLLATION collation_name
| CHARACTER SET character_set_name
| TRANSLATION translation_name }
FROM {grantee_name | PUBLIC} [,...n]
{CASCADE | RESTRICT}

A specific privilege on a specific database object can be revoked for a single user
using REVOKE privilege_name ON object_name FROM grantee_name. A specific
privilege on a specific object may be revoked from all users via the PUBLIC clause.
As an alternative, the WITH GRANT OPTION can be used to revoke permissions
using the REVOKE GRANT OPTION FOR clause.

The RESTRICT option revokes only the specified privilege. The CASCADE option
revokes the specified privilege and any privileges that are dependent upon the
granted privilege. A cascading revocation may exhibit different behavior on
different database platforms, so be sure to read the vendor documentation for the
correct implementation of this option.

Microsoft SQL Server Syntax and Variations

REVOKE [GRANT OPTION FOR]
{ALL [PRIVILEGES]
| SELECT
| INSERT
| DELETE
| UPDATE
| REFERENCES
| EXECUTE
| CREATE {DATABASE | DEFAULT | FUNCTION | PROCEDURE | RULE | TABLE | VIEW}
| BACKUP {DATABASE | LOG} } [,...n]
ON { {table_name | view_name} [(column [,...n])]
| stored_procedure_name
| extended_stored_procedure_name
| user_defined_function_name
| [(column [,...n] ON {table_name | view_name} }
{TO | FROM} {grantee_name} [,...n]
[CASCADE]
[AS {group_name | role_name}]

This command is essentially SQL99 compatible, with the exception of the augmen-
tations introduced in the GRANT command.

If commands were granted to a user WITH GRANT OPTION enabled, the privilege
should be revoked using both WITH GRANT OPTION and CASCADE.

REVOKE can only be used in the current database. REVOKE also is used to disable
any DENY settings.

Microsoft SQL Server additionally supports the DENY statement.
DENY is syntactically similar to REVOKE. However, it is conceptually
different in that REVOKE neutralizes a user’s privileges while DENY
explicitly prohibits a user’s privileges. Use the DENY statement to
keep a user or role from accessing a privilege.

,ch03.13605 Page 126 Wednesday, November 29, 2000 4:42 PM

REVOKE 127

Statem
ents

REVOKE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Example

REVOKE CREATE DATABASE, CREATE TABLE FROM emily, sarah
GO

REVOKE GRANT OPTION FOR
SELECT, INSERT, UPDATE, DELETE ON titles
TO editors
GO

MySQL Syntax and Variations

REVOKE { ALL PRIVILEGES
| SELECT
| INSERT [(column_name [,...n])]
| UPDATE [(column_name [,...n])]
| REFERENCES [(column_name [,...n])]
| DELETE
| USAGE
| ALTER
| CREATE
| DROP
| FILE
| INDEX
| PROCESS
| RELOAD
| SHUTDOWN } [,...n]
ON {table_name | * | *.* | database_name.*}
FROM user_name [,...n]

The REVOKE statement rolls back any permissions previously granted to one or
more users. Permissions may be revoked globally, as described in the GRANT
statement. Furthermore, MySQL’s implementation of REVOKE does not explicitly
roll back permissions on objects that are dropped. Thus, it is necessary to explic-
itly REVOKE permissions on a table, even if the table is dropped. MySQL otherwise
conforms to the SQL99 standard for the REVOKE command.

Example

The first command revokes all privileges on the sales table for Emily and Dylan,
while the second command revokes all privileges for the user Kelly in the current
database:

REVOKE ALL PRIVILEGES ON sales FROM emily, dylan;

REVOKE * employee FROM kelly;

Oracle Syntax and Variations

REVOKE {ALL [PRIVILEGES] | [object_privilege] }
ON { [schema_name.][object] | [DIRECTORY directory_object_name] }
FROM {grantee_name | role | PUBLIC} [,...n]
[CASCADE [CONSTRAINTS]] [FORCE];

REVOKE {system_privilege | role}
FROM {grantee_name | role | PUBLIC} [,...n];

,ch03.13605 Page 127 Wednesday, November 29, 2000 4:42 PM

128 Chapter 3 – SQL Statements Command Reference

REVOKE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The REVOKE command not only can revoke object and system privileges, it also
can revoke a role from a given user or other role. Refer to the GRANT statement
for more information on the specific object and system privileges supported by the
REVOKE command.

The two forms of the REVOKE command, REVOKE object_privilege
and REVOKE system_privilege, are mutually exclusive. Do not
attempt to do both operations in a single statement.

When a user’s privileges are revoked, the privileges of all users who received their
privileges from the revoked user also are revoked.

Users who are granted GRANT ANY ROLE system privilege also can revoke any
role. The REVOKE command can only revoke privileges specifically granted with
the GRANT command, not privileges available through roles or the operating
system.

The ON DIRECTORY clause identifies a directory object where permissions are
revoked. The CASCADE CONSTRAINTS clause drops any referential integrity
constraints users create if their REFERENCES privilege is revoked. The FORCE
clause revokes EXECUTE permissions on dependent user-defined table and type
objects. Consequently, those objects are marked as invalid and unusable until they
are recompiled.

Examples

To revoke a user from a role:

REVOKE read-only FROM sarah;

To revoke a system-command privilege:

REVOKE CREATE ANY SEQUENCE, CREATE ANY DIRECTORY FROM read_only;

To revoke a REFERENCES privilege:

REVOKE REFERENCES
ON pubs_new_york.emp
FROM dylan
CASCADE CONSTRAINTS;

PostgreSQL Syntax and Variations

REVOKE { ALL
| SELECT
| INSERT
| DELETE
| UPDATE
| RULE
| REFERENCES
| USAGE} [,...n]
ON {object_name}
TO {grantee_name | PUBLIC | GROUP group_name}
{CASCADE | RESTRICT}

,ch03.13605 Page 128 Wednesday, November 29, 2000 4:42 PM

ROLLBACK 129

Statem
ents

ROLLBACK

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Access to tables, views, and sequences can be revoked in PostgreSQL. It is other-
wise identical to the SQL99 command. Refer to the SQL99 REVOKE syntax
discussion, as well as the SQL99 GRANT discussion.

ROLLBACK

The ROLLBACK statement undoes a transaction to its beginning or a previously
declared SAVEPOINT. It closes open cursors and releases locks in the same way as
COMMIT.

SQL99 Syntax and Description

ROLLBACK [WORK]
[TO SAVEPOINT savepoint_name]

In addition to finalizing a single or group of data-manipulation operations, the
ROLLBACK statement undoes transactions up to the last issued BEGIN or
SAVEPOINT statement.

SQL99 offers the new, optional keywords AND CHAIN. None of the four vendors
yet support this command. This new syntax is:

ROLLBACK [WORK] [AND [NO] CHAIN]

The AND CHAIN option tells the DBMS to end the current transaction, but to share
the common transaction environment (such as transaction isolation level) with the
next transaction. The AND NO CHAIN option simply ends the single transaction.
The ROLLBACK command is functionally equivalent to the command, ROLLBACK
WORK AND NO CHAIN.

Microsoft SQL Server Syntax and Variations

ROLLBACK [TRAN[SACTION] [transaction_name | @tran_name_variable |
savepoint_name | @savepoint_variable]]

ROLLBACK clears all data modifications made to the current open transaction or to
a specific, existing savepoint. If ROLLBACK is issued alone, it rolls back the current
open transaction. ROLLBACK normally frees locks, but it does not free locks when
rolling back to a savepoint. ROLLBACK behaves similarly to COMMIT with regards
to nested triggers, decrementing the @@TRANCOUNT system variable by one.

ROLLBACK TRANSACTION, when issued in a trigger, undoes all data modifica-
tions, including those performed by the trigger, up to the point of the ROLLBACK
statement. Nested triggers are not executed if they follow a ROLLBACK within a
trigger; however, any statements within the trigger that follow the rollback are not
impacted by the rollback.

Vendor Command

SQL Server Supported, with variations

MySQL Not supported

Oracle Supported

PostgreSQL Supported

,ch03.13605 Page 129 Wednesday, November 29, 2000 4:42 PM

130 Chapter 3 – SQL Statements Command Reference

SAVEPOINT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Oracle Syntax and Variations

ROLLBACK [WORK] [TO savepoint_name] [FORCE text];

ROLLBACK clears all data modifications made to the current open transaction or to
a specific, existing savepoint. Oracle’s implementation closely follows the SQL
standard with the exception of the FORCE option. ROLLBACK FORCE rolls back to
an in-doubt distributed transaction. These transactions are described in the Oracle
system view, DBA_2PC_PENDING.

PostgreSQL Syntax and Variations

{ROLLBACK | ABORT} [WORK | TRANSACTION];

ROLLBACK clears all data modifications made to the current open transaction or to
a specific, existing savepoint. PostgreSQL supports both the SQL99 WORK option
and the TRANSACTION option. It does not support rolling back to a savepoint. The
ABORT option may be used as a full synonym of ROLLBACK.

Example

Here is a Transact-SQL batch using COMMIT and ROLLBACK in Microsoft SQL
Server. It inserts a record into the sales table. If it fails, the transaction is rolled
back; if the statement succeeds, the transaction is committed:

BEGIN TRAN –- initializes a transaction

-- the transaction itself
INSERT INTO sales
VALUES('7896','JR3435','Oct 28 1997',25,'Net 60','BU7832')

-- some error-handling in the event of a failure
IF @@ERROR <> 0
BEGIN
 -- raises an error in the event log and skips to the end
 RAISERROR 50000 'Insert of sales record failed'
 ROLLBACK WORK
 GOTO end_of_batch
END

-- the transaction is committed if no errors are detected
COMMIT TRAN

-- the GOTO label that enables the batch to skip to the end without
-- committing
end_of_batch:
GO

SAVEPOINT

This command creates a savepoint in the current transaction. Transactions can be
divided into logical breakpoints using the SAVEPOINT command. Multiple save-
points may be specified within a single transaction. The main benefit of the

,ch03.13605 Page 130 Wednesday, November 29, 2000 4:42 PM

SAVEPOINT 131

Statem
ents

SAVEPOINT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SAVEPOINT command is that transactions may be partially rolled back to a unique
savepoint marker using the ROLLBACK command.

SQL99 Syntax and Description

SAVEPOINT savepoint_name

Some vendors allow duplicate savepoint names within a transaction, but this is not
recommended. Substitute savepoint identifiers (in the format :X) also may be
included to enable DBMS to track the savepoint with an integer rather than a
name. Not all vendors support this approach, and it is not recommended as the
best practice.

Note that SQL99 supports the statement RELEASE SAVEPOINT savepoint_name,
enabling an existing savepoint to be eliminated. However, this statement is not
supported by any of the vendors covered in this book.

Microsoft SQL Server Syntax and Variations

SAVE TRAN[SACTION] {savepoint_name | @savepoint_variable}

Microsoft SQL Server does not support the SAVEPOINT command. Instead, it uses
the SAVE command. Rather than declaring the literal name of the savepoint, you
can reference a variable containing the name of the savepoint.

When the ROLLBACK TRAN savepoint_name command is executed, SQL Server
rolls the transaction back to the appropriate savepoint, then continues processing
at the next valid Transact-SQL command following the ROLLBACK statement.
Finally, the transaction must be concluded with a COMMIT or a final ROLLBACK
statement.

Oracle Syntax and Variations

SAVEPOINT savepoint_name

Oracle fully supports the SQL99 implementation.

Example

This example performs several data modifications, rolls back to a savepoint, and
then rolls back the transaction completely:

INSERT INTO sales VALUES('7896','JR3435','Oct 28 1997',25,'Net
60','BU7832');

SAVEPOINT after_insert;

UPDATE sales SET terms = 'Net 90'
WHERE sales_id = '7896';

Vendor Command

SQL Server Supported, with variations

MySQL Not supported

Oracle Supported

PostgreSQL Not supported

,ch03.13605 Page 131 Wednesday, November 29, 2000 4:42 PM

132 Chapter 3 – SQL Statements Command Reference

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SAVEPOINT after_update;

DELETE sales;

ROLLBACK TO after_insert;
ROLLBACK;

 SELECT

The SELECT statement retrieves rows, columns, and derived values from one or
many tables of a database.

SQL99 Syntax and Description

The full syntax of the SELECT statement is powerful and complex, but can be
broken down into these main clauses:

SELECT [ALL | DISTINCT] select_list
FROM table_name1 [,..., table_nameN]
[JOIN join_condition]
[WHERE search_condition]
[GROUP BY group_by_expression]
[HAVING search_condition]
[ORDER BY order_expression [ASC | DESC]]

Each clause of the SELECT statement has a specific use. Thus, it is possible to
speak individually of the FROM clause, the WHERE clause, or the GROUP BY
clause. However, not every query needs every clause. At a minimum, a query
needs a SELECT item list and a FROM clause. (Microsoft SQL Server and Postgr-
eSQL both support certain types of queries that do not need a FROM clause. Refer
to the examples below for more information.)

The SELECT item list

The SELECT item list basically includes all items of information a user wants to
retrieve from the server. Different types of elements can appear in the select item
list. It’s possible to retrieve literal strings, aggregate functions, and mathematical
calculations. In Microsoft SQL Server, the SELECT item list may contain a subquery.

Vendor Command

SQL Server Supported, with variations
(ANSI joins supported)

MySQL Supported, with variations
(ANSI joins partially
supported)

Oracle Supported, with variations
(ANSI joins not supported)

PostgreSQL Supported, with variations
(ANSI joins partially
supported)

,ch03.13605 Page 132 Wednesday, November 29, 2000 4:42 PM

SELECT 133

Statem
ents

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ALL is the default, meaning all records are returned, including defaults. DISTINCT
is a keyword that tells the query to filter out all duplicate records. Thus, the result
set includes only one instance of identical records.

There are several other rules for what can appear in the SELECT item list:

• Most commonly, all the columns desired should be listed out using a comma
between each one.

• An asterisk (*) serves as shorthand to retrieve all the columns in every table
shown in the FROM clause, as they are listed in the CREATE TABLE statement.

• Column aliases are added in to replace the default column headings used in
the results. Use the format column AS “alias” or column alias. This is espe-
cially useful when a column heading is too cryptic or lengthy to be readily
understood. For example:

-- alias format
SELECT au_lname AS "Last Name"
FROM authors

-- alternative alias format
SELECT au_lname "Last Name"
FROM authors

• Local and global variables, where supported, may appear as a select list item.

• Comments may be dispersed throughout any SQL or Transact-SQL statement
by using either the double-dash (--) or the slash-asterisk (/* ... */). The dou-
ble-dash causes the query to ignore any text that follows the double-dash
until the end of line. The slash causes the query to ignore any text within the
slash-asterisk and inverse slash-asterisk.

• The table name should be prefixed to the column name in a query using mul-
tiple tables. Technically, the table name needs to apply to any column in both
tables; it is commonly considered good practice to do so anyway. For exam-
ple, both the jobs and employee tables contain the job_id column:

SELECT employee.emp_id,
 employee.fname,
 employee.lname,
 jobs.job_desc
FROM employee,
 jobs
WHERE employee.job_id = jobs.job_id
ORDER BY employee.fname,
 employee.lname

• The schema or owner name should be prefixed to a column when extracted
from a context outside of the current user. If the table is owned by another
username, then the username must be included in the column reference. For
example, assume that this example query is run in the PUBS database but also
retrieves data from the SALES database:

SELECT employee.emp_id,
 salesadmin.sales_summary.total_amt

,ch03.13605 Page 133 Wednesday, November 29, 2000 4:42 PM

134 Chapter 3 – SQL Statements Command Reference

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

 -- the schema, table, and then column name must be listed!
FROM employee,
 salesadmin.sales_summary
WHERE employee.emp_id = salesadmin.sales_summary.emp_id
ORDER BY employee.emp_id;

• Literal expressions may be used as a select list item.

• Mathematics calculations can be entered as a select list item. In Microsoft SQL
Server, no FROM statement is needed. In Oracle, the calculation should be
executed against the system table called DUAL. The table allows the SELECT
command to retrieve values where no table exists. For example:

--QUERY (Microsoft)
SELECT 2 + 2

--QUERY (Oracle)
SELECT 2 + 2
FROM dual

--RESULTS
4

The FROM clause

The FROM clause generally serves two purposes: to list the tables and views
where a query retrieved its data (with a comma between each tablename); and to
assign an alias for long table names, making coding lengthy queries a lot easier.
An alias can be assigned in the FROM clause by two means: by typing the table-
name, a space, and the alias; or by typing the tablename, AS, and the alias. The
example below illustrates each of these techniques. An example of a query that
extracts data from multiple tables might have a FROM and WHERE clause that is
coded in the following manner:

SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e,
 jobs j
WHERE e.job_id = j.job_id
ORDER BY e.fname,
 e.lname

Once an alias has been assigned in a query, be sure to use it exclu-
sively for table references within that query. Do not mix references
to the full table name and the alias in a query.

This query retrieves the emp_id (first and last name of each employee stored in
the employee table) and joins the job_id of the employee, which is a code
number, with the full job description found in the JOBS table.

,ch03.13605 Page 134 Wednesday, November 29, 2000 4:42 PM

SELECT 135

Statem
ents

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The JOIN clause

In non-ANSI standard implementations, the join operation is performed in the
WHERE clause (described in the section on WHERE clauses). In the ANSI SQL-92
standards, joins are performed in the JOIN clause of the query. These join methods
are known as the theta style and the ANSI style of joins, respectively.

To retrieve joined data from two or more tables, the tables first must share a
meaningful relationship. The tables to be joined must possess a column or columns
that share a common set of values that allow the tables to be meaningfully linked.
This column, or columns, is called the join key or common key. Most—but not all
—of the time, the join key is the primary key of one table and a foreign key in
another table. As long as the data in the columns match, the join can be
performed.

In the PUBS database, both the employee table and the jobs table contain a job_id
column. Thus, job_id is the common key between the employee and jobs tables.

To perform a query using an ANSI-style join, list the first table and the keyword
JOIN, followed by the table to be joined. Once the second table is typed in, type
the keyword ON and the join condition that would have been used in the old style
query. The following shows the original query now in ANSI style:

SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee AS e
JOIN jobs AS j ON e.job_id = j.job_id
ORDER BY e.fname,
 e.lname

Join types

These problems are solved by the use of join types in the ANSI style and the
equal-asterisk (‘=* ’) combination for Microsoft SQL Server or plus-asterisk (‘+* ’) for
Oracle in theta joins. The following list shows how to control this behavior in
joins:

Cross Join
Specifies the complete cross product of two tables. For each record in the first
table, all the records in the second table are joined, creating a huge result set.
This command has the same effect as leaving off the join condition and is also
know as a “Cartesian Product.” Cross joins are not advisable or recom-
mended (currently supported by Microsoft SQL Server):

-- theta style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e,
 Jobs j

,ch03.13605 Page 135 Wednesday, November 29, 2000 4:42 PM

136 Chapter 3 – SQL Statements Command Reference

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

-- ANSI style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e
CROSS JOIN jobs j

Inner Join
Specifies that unmatched rows in either table of the join should be discarded.
If no join type is explicitly defined in the ANSI style, then this is the default
(currently supported by Microsoft SQL Server, PostgreSQL and MySQL):

-- theta style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e,
 jobs j
WHERE e.job_id = j.job_id

-- ANSI style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e
JOIN jobs j ON e.job_id = j.job_id

Left [Outer] Join
Specifies that all records be returned from the table on the left side of the join
statement. If a record is returned from the left table has no matching record in
the table on the right side of the join, it is still returned. Columns from the
right table return NULL values. (In this case, all employees are returned
whether they have a job description or not.) Many professionals recommend
configuring outer joins as left joins wherever possible for consistency
(currently supported by Microsoft SQL Server):

-- Oracle theta style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e,
 jobs j
WHERE j.job_id (+) = e.job_id

-- ANSI style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e
LEFT JOIN jobs j ON e.job_id = j.job_id

,ch03.13605 Page 136 Wednesday, November 29, 2000 4:42 PM

SELECT 137

Statem
ents

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Right [Outer] Join
Specifies that all records be returned from the table on the right side of the
join statement, even if the table on the left has no matching record. Columns
from the left table return NULL values. (In the example, all records in the jobs
table are returned with or without a matching record in the employee table
(currently supported by Microsoft SQL Server):

-- Oracle theta style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e,
 jobs j
WHERE j.job_id = (+) e.job_id

-- ANSI style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e
RIGHT JOIN jobs j ON e.job_id = j.job_id

Full Join
Specifies that all rows from either table be returned, regardless of matching
records in the other table. The result set shows NULL values where no data
exists in the join (currently supported by Microsoft SQL Server):

-- theta style does not support this
-- function

-- ANSI style
SELECT e.emp_id,
 e.fname,
 e.lname,
 j.job_desc
FROM employee e
FULL JOIN jobs j ON e.job_id = j.job_id

Joins in the ANSI style are actually easier to understand than those in theta style,
since the query itself clearly indicates which table is on the left in a LEFT JOIN and
which table is on the right in a RIGHT JOIN.

The syntax to perform a similar query with multipart keys and multiple tables
joined together is largely an extension of the same technique.

Multi-table Join Example

--theta style query with multiple tables
SELECT a.au_lname,
 a.au_fname,
 t2.title
FROM authors a,
 titleauthor t1,
 titles t2

,ch03.13605 Page 137 Wednesday, November 29, 2000 4:42 PM

138 Chapter 3 – SQL Statements Command Reference

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

WHERE a.au_id = t1.au_id
 AND t1.title_id = t2.title_id
ORDER BY t2.title

-- ANSI style query with multiple tables
SELECT a.au_lname,
 a.au_fname,
 t2.title
FROM authors a
JOIN titleauthor AS t1 ON a.au_id = t1.au_id
JOIN titles AS t2 ON t1.title_id = t2.title_id
ORDER BY t2.title

Multi-key Join Example:

--theta style query with multipart key
SELECT s1.store_id,
 s1.title_id,
 s2.qty
FROM sales s1,
 sales_projections s2
WHERE s1.store_id = s2.store_id
 AND s1.title_id = s2.title_id
ORDER BY s1.store_id, s2.title_id

-- ANSI style query with multipart key
SELECT s1.store_id,
 s1.title_id,
 s2.qty
FROM sales s1
JOIN sales_projections s2 ON s1.store_id = s2.store_id
 AND s1.title_id = s2.title_id
ORDER BY s1.store_id, s2.title_id

The WHERE clause

The WHERE clause is an extremely potent component of the SELECT statement.
The WHERE clause provides most of the search conditions that cull unwanted data
from the query; the remaining search conditions are satisfied by the HAVING
clause (explained later in this section).

A poorly written WHERE clause can ruin an otherwise beautiful SELECT statement,
so the nuances of the WHERE clause must be mastered thoroughly. This is an
example of a typical query and a multipart WHERE clause:

SELECT a.au_lname,
 a.au_fname,
 t2.title,
 convert(char,t2.pubdate)
FROM authors a
JOIN titleauthor t1 ON a.au_id = t1.au_id
JOIN titles t2 ON t1.title_id = t2.title_id
WHERE (t2.type = 'business' OR t2.type = 'popular_comp')
 AND t2.advance > $5500
ORDER BY t2.title

,ch03.13605 Page 138 Wednesday, November 29, 2000 4:42 PM

SELECT 139

Statem
ents

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

In examining the query, note that parentheses impact the order in which WHERE
criteria are processed according to Operators Precedence.

The database’s default sort order determines how the WHERE clause retrieves
results sets for a query. For example, Microsoft SQL Server is (by default)
dictionary-order and case-insensitive, making no differentiation between “Smith”,
“smith”, and “SMITH”. But Oracle uses dictionary-order and case-sensitive, finding
the values “Smith”, “smith”, and “SMITH” to be unequal.

There are more specific capabilities of the WHERE clause than what is illustrated in
the example. Table 3-9 helps provide a quick summary of the common capabili-
ties of the WHERE clause.

,ch03.13605 Page 139 Wednesday, November 29, 2000 4:42 PM

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

T
a

bl
e

3
-9

:
Se

a
rc

h
 C

on
d

it
io

n
s

U
si

n
g

th
e

W
H

E
R

E
 C

la
u

se

Se
a

rc
h

 C
on

d
it

io
n

Sh
or

th
a

n
d

Sy
n

ta
x

E
xa

m
pl

e
U

sa
ge

 &
 D

es
cr

ip
ti

on

Si
m

p
le

 B
o
o
le

an
ch

ec
k

WH
ER
E
[N
OT
]
ex
pr
es
si
on

co
mp
ar
is
on
_o
pe
ra
to
r
 e
xp
re
ss
io
n

SE
LE
CT
 a
u_
id

FR
OM

 a
ut
ho
rs

WH
ER
E
 a
u_
id
 =
 '
17
2-
32
-1
17
6'

SE
LE
CT
 a
u_
id

FR
OM

 a
ut
ho
rs

WH
ER
E
 a
u_
ln
am
e
NO
T
LI
KE
 '
Jo
hn
%'

T
h
e

o
p
er

at
o
rs

<
,
>
,
<
>
,
>
=
,
<
=

,
an

d
=

ca
n
 b

e
u
se

d
 w

h
en

 c
o
m

p
ar

in
g

ex
p
re

ss
io

n
s.

T
h
er

e
ar

e
al

so
a

n
u
m

b
er

o
f
sp

ec
ia

lc
o
m

p
ar

is
o
n

o
p
er

at
o
rs

,s
u
ch

as
LI

K
E
,
d
es

cr
ib

ed
 l
at

er
 i
n
 t
h
is

 t
ab

le
.

T
h
e

ke
yw

o
rd

N
O

T
 c

h
ec

ks
 f
o
r

th
e

in
ve

rs
e

o
f
an

y
B
o
o
le

an
 c

h
ec

k
b
as

ed
o
n
 t
h
e

re
gu

la
r

o
p
er

at
o
rs

 <
,
>
,
<
>
,
>
=
,

<
=
 ,
 a

n
d
 =

,
in

 a
d
d
iti

o
n
 t
o
 s

p
ec

ia
l

o
p
er

at
o
rs

 s
u
ch

 a
s

LI
K

E
,

N
U

LL
,

B
E
T
W

E
E
N

,
IN

,
E
X

IS
T
S,

A
N

Y
,
an

d
A

LL
.

M
u
lti

p
le

 s
ea

rc
h

co
n
d
iti

o
n
s

WH
ER
E
[N
OT
]
ex
pr
es
si
on

co
mp
ar
is
on
_o
pe
ra
to
r
ex
pr
es
si
on

{A
ND
 |
 O
R}

ex
pr
es
si
on
 c
om
pa
ri
so
n_
op
er
at
or

ex
pr
es
si
on

SE
LE
CT
 a
u_
id

FR
OM

 a
ut
ho
rs

WH
ER
E
 a
u_
id
 =
 '
17
2-
32
-1
17
6'

AN
D
 a
u_
ln
am
e
=
'W
hi
te
'

A
N

D
 m

er
ge

s
m

u
lti

p
le

 c
o
n
d
iti

o
n
s

an
d

re
tu

rn
s

re
su

lts
 w

h
en

bo
th

 c
o
n
d
iti

o
n
s

ar
e

tr
u
e.

A
N

D
ta

ke
s

p
ri
o
ri
ty

o
ve

r
o
th

er
o
p
er

at
o
rs

.
P
ar

en
th

es
es

 i
n
 t
h
e

W
H

E
R

E
 c

la
u
se

fu
rt
h
er

 a
ff
ec

t
th

e
p
ri
o
ri
ty

 o
f
o
p
er

at
o
rs

.
O

R
 m

er
ge

s
m

u
lti

p
le

 c
o
n
d
iti

o
n
s

an
d

re
tu

rn
s

re
su

lts
 w

h
en

ei
th

er
 c

o
n
d
iti

o
n

is
 t
ru

e.
O

R
 t
ak

es
 p

ri
o
ri
ty

 a
ft
er

A
N

D
.

N
U

LL
 c

h
ec

k
WH
ER
E
[N
OT
]
co
lu
mn
_n
am
e
IS

[N
OT
]

NU
LL

SE
LE
CT
 *

FR
OM

 t
it
le
s

WH
ER
E
 p
ri
ce
 I
S
NU
LL

IS
 N

U
LL

 a
n
d

IS
 N

O
T
 N

U
LL

 t
el

l
th

e
q
u
er

y
to

 c
h
ec

k
fo

r
n
u
ll

va
lu

es
 (

o
r

al
l

va
lu

es
 e

xc
ep

t
n
u
ll

va
lu

es
).

,c
h0

3.
13

60
5

 P
ag

e
14

0
 W

ed
ne

sd
ay

, N
ov

em
be

r
29

, 2
00

0
 4

:4
2

PM

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

JO
IN

 c
h
ec

k
WH
ER
E
[N
OT
]
co
lu
mn
_v
al
ue
(s
)

[(
+)
]=
[(
+)
]
co
lu
mn
_v
al
ue
(s
)

 O
r WH
ER
E
[N
OT
]
co
lu
mn
_v
al
ue
(s
)

[*
]=
[*
]
co
lu
mn
_v
al
ue
(s
)

SE
LE
CT
 a
.a
u_
ln
am
e,

 a
.a
u_
fn
am
e,

 t
2.
ti
tl
e

FR
OM

au
th
or
s
a,

ti
tl
ea
ut
ho
r
t1
,

ti
tl
es
 t
2

WH
ER
E
a.
au
_i
d
=
t1
.a
u_
id

AN
D
t1
.t
it
le
_i
d
=
t2
.t
it
le
_i
d

OR
DE
R
BY
 t
2.
ti
tl
e

JO
IN

 c
h
ec

ks
 c

an
 b

e
p
er

fo
rm

ed
 b

y
ev

al
u
at

in
g

th
e

co
m

m
o
n
 k

ey
 b

et
w

ee
n

tw
o
 o

r
m

o
re

 t
ab

le
s.

 O
u
te

r
jo

in
s

ar
e

ac
co

m
p
lis

h
ed

 i
n
 P

o
st

gr
eS

Q
L

b
y

ad
d
in

g
th

e
as

te
ri
sk

 t
o
 t
h
e

si
d
e

w
h
er

e
al

l
re

co
rd

s
sh

o
u
ld

b
e

re
tr
ie

ve
d
.
O

u
te

r
jo

in
s

in
 O

ra
cl

e
ar

e
ac

co
m

p
lis

h
ed

 b
y

ad
d
in

g
th

e
p
lu

s
si

gn
 i
n
 p

ar
en

th
es

es
(+

)
to

 t
h
e

si
d
e

w
h
er

e
n
u
ll

va
lu

es
 a

re
al

lo
w

ed
(b

as
ic

al
ly

,t
h
e

o
p
p
o
si

te
o
f
th

e
as

te
ri
sk

 m
et

h
o
d
).
 R

ef
er

 t
o
 t
h
e

p
re

vi
o
u
s

se
ct

io
n
 o

n
JO

IN
s

fo
r

m
o
re

in
fo

rm
at

io
n
.

LI
K

E
 c

h
ec

k
WH
ER
E
[N
OT
]
co
lu
mn
_n
am
e
[N
OT
]

LI
KE
 '
ma
tc
h_
st
ri
ng
'

/*
ge
t
an
y
ph
on
e
nu
mb
er

st
ar
ti
ng

wi
th

41
5
*/

SE
LE
CT
 *
 F
RO
M
au
th
or
s

WH
ER
E
ph
on
e
LI
KE
 '
41
5%
'

LI
K

E
 t
el

ls
 t
h
e

q
u
er

y
to

 u
se

 p
at

te
rn

m
at

ch
in

g
o
n
 t
h
e

st
ri
n
g

in
 q

u
o
ta

tio
n

m
ar

ks
.
T
h
e

w
ild

ca
rd

 s
ym

b
o
ls

 a
re

d
et

ai
le

d
 u

n
d
er

 t
h
e

LI
K

E
en

tr
y.

E
X

IS
T
en

ce
 c

h
ec

k
WH
ER
E
[N
OT
]
EX
IS
TS
 (
su
bq
ue
ry
)

SE
LE
CT
 p
1.
pu
b_
na
me

FR
OM
 p
ub
li
sh
er
s
p1

WH
ER
E
EX
IS
TS

(S
EL
EC
T
*

FR
OM
 t
it
le
s
t1

WH
ER
E
pu
b_
id
 =
p1
.p
ub
_i
d

AN
D
ty
pe
 =

'p
sy
ch
ol
og
y'
)

E
X

IS
T
S

is
 a

lw
ay

s
u
se

d
 i
n
 c

o
n
ju

n
ct

io
n

w
ith

a
su

b
q
u
er

y;
ra

th
er

th
an

re
tu

rn
in

g
d
at

a,
th

e
su

b
q
u
er

y
is

a
B
o
o
le

an
te

st
o
f

w
h
et

h
er

th
e

d
at

a
ex

is
ts

.
T
h
is

ex
am

p
le

w
ill

 r
et

u
rn

 a
ll

p
u
b
lis

h
er

s
o
f

p
sy

ch
o
lo

gy
 b

o
o
ks

.

B
E
T
W

E
E
N

 r
an

ge
ch

ec
k

WH
ER
E
[N
OT
]
ex
pr
es
si
on
 [
NO
T]

BE
TW
EE
N
ex
pr
es
si
on
 A
ND

ex
pr
es
si
on

SE
LE
CT
 *

FR
OM
 t
it
le
s

WH
ER
E
yt
d_
sa
le
s
BE
TW
EE
N
40
00
 A
ND
 9
00
0

B
E
T
W

E
E
N

 p
er

fo
rm

s
an

 i
n
cl

u
si

ve
ra

n
ge

ch
ec

k.
It

is
th

e
sa

m
e

as
W

H
E
R

E
(e

xp
re

ss
io

n
>
=

x
a

n
d

ex
pr

es
si

on
<
=

y)
.

T
a

bl
e

3
-9

:
Se

a
rc

h
 C

on
d

it
io

n
s

U
si

n
g

th
e

W
H

E
R

E
 C

la
u

se
 (

co
n

ti
n

u
ed

)

Se
a

rc
h

 C
on

d
it

io
n

Sh
or

th
a

n
d

Sy
n

ta
x

E
xa

m
pl

e
U

sa
ge

 &
 D

es
cr

ip
ti

on

,c
h0

3.
13

60
5

 P
ag

e
14

1
 W

ed
ne

sd
ay

, N
ov

em
be

r
29

, 2
00

0
 4

:4
2

PM

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

IN
 r

an
ge

 c
h
ec

k
WH
ER
E
[N
OT
]
ex
pr
es
si
on
 [
NO
T]
 I
N

(v
al
ue
_l
is
t
|
su
bq
ue
ry
)

SE
LE
CT
 *

FR
OM
 s
to
re
s

WH
ER
E
st
at
e
IN
 (
'W
A'
,'
IL
',
'N
Y'
)

SE
LE
CT
 *

FR
OM
 s
to
re
s

WH
ER
E
st
or
_i
d
IN

(S
EL
EC
T
st
or
_i
d

FR
OM
 s
al
es

WH
ER
E
or
d_
da
te
 L
IK
E

'O
ct
%'
)

IN
 r

et
u
rn

s
a

re
su

lt
se

t
th

at
 m

at
ch

es
an

y
o
f
a

lis
t
o
f
va

lu
es

 o
r

re
tu

rn
s

a
re

su
lt

se
t
o
f
th

e
o
u
te

r
q
u
er

y
w

h
o
se

va
lu

e
m

at
ch

es
 t
h
o
se

 v
al

u
es

 r
et

u
rn

ed
b
y

a
su

b
q
u
er

y.
 T

h
e

va
lu

e_
li

st
 o

r
su

b
q
u
er

y
sh

o
u
ld

 b
e

en
cl

o
se

d
 i
n

p
ar

en
th

es
es

.

T
a

bl
e

3
-9

:
Se

a
rc

h
 C

on
d

it
io

n
s

U
si

n
g

th
e

W
H

E
R

E
 C

la
u

se
 (

co
n

ti
n

u
ed

)

Se
a

rc
h

 C
on

d
it

io
n

Sh
or

th
a

n
d

Sy
n

ta
x

E
xa

m
pl

e
U

sa
ge

 &
 D

es
cr

ip
ti

on

,c
h0

3.
13

60
5

 P
ag

e
14

2
 W

ed
ne

sd
ay

, N
ov

em
be

r
29

, 2
00

0
 4

:4
2

PM

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SO
M

E
 |

 A
LL

 r
an

ge
ch

ec
k

WH
ER
E
[N
OT
]
ex
pr
es
si
on

co
mp
ar
is
on
_o
pe
ra
to
r

{[
AN
Y
|
SO
ME
]
|
AL
L}
 (
su
bq
ue
ry
)

--
 t
o
du
pl
ic
at
e
th
e
fu
nc
ti
on
al
it
y
of

IN SE
LE
CT
 a
u_
ln
am
e,

 a
u_
fn
am
e

FR
OM

 a
ut
ho
rs

WH
ER
E
ci
ty
 =
 A
NY

(S
EL
EC
T
ci
ty

 F
RO
M

pu
bl
is
he
rs
)

--
 t
o
du
pl
ic
at
e
th
e
fu
nc
ti
on
al
it
y
of

NO
T
IN

SE
LE
CT
 a
u_
ln
am
e,

 a
u_
fn
am
e

FR
OM
 a
ut
ho
rs

WH
ER
E
ci
ty
 <
>
AL
L

(S
EL
EC
T
ci
ty

 F
RO
M

pu
bl
is
he
rs
)

/*
 t
o
fi
nd
 t
he
 t
it
le
s
th
at
 g
ot
 a
n

ad
va
nc
e
la
rg
er
 t
ha
n
th
e
mi
ni
mu
m

ad
va
nc
e
am
ou
nt
 p
ai
d
Ne
w
Mo
on
 B
oo
ks
*/

SE
LE
CT
 t
it
le

FR
OM

 t
it
le
s

WH
ER
E
 a
dv
an
ce
 >
 A
NY

(S
EL
EC
T
 a
dv
an
ce

 F
RO
M
pu
bl
is
he
rs
,

ti
tl
es

 W
HE
RE
 t
it
le
s.
pu
b_
id
 =

 p
ub
li
sh
er
s.
pu
b_
id

 A
ND
 p
ub
_n
am
e
=
'N
ew

 M
oo
n
Bo
ok
s'
)

A
LL

an
d

SO
M

E
ar

e
al

w
ay

s
u
se

d
w

ith
a

su
b
q
u
er

y
an

d
a

co
m

p
ar

is
o
n

o
p
er

at
o
r,

su
ch

as
<
,>

,<
>
,>

=
,o

r
<
=
.A

q
u
er

y
o
f

th
e

A
LL

ty
p
e

ev
al

u
at

es
ei

th
er

T
R
U

E
o
r

FA
LS

E
 w

h
en

a
ll

va
lu

es
 r

et
ri
ev

ed
 b

y
th

e
su

b
q
u
er

y
m

at
ch

 t
h
e

va
lu

e
in

 t
h
e

W
H

E
R

E
(o

r
H

A
V

IN
G

)
cl

au
se

,o
r
w

h
en

th
e

su
b
q
u
er

y
re

tu
rn

s
n
o
 r

o
w

s
o
f
th

e
o
u
te

r
st

at
em

en
t.

SO
M

E
 h

as
 t
h
e

sa
m

e
fu

n
ct

io
n
al

ity
 a

s
E
X

IS
T
S.

 I
t
w

o
rk

s
th

e
sa

m
e

as
A

LL
,

ex
ce

p
t
th

at
it

ev
al

u
at

es
to

T
R
U

E
w

h
en

a
n

y
va

lu
e

re
tr
ie

ve
d
 i
n
 t
h
e

su
b
q
u
er

y
sa

tis
fi
es

 t
h
e

co
m

p
ar

is
o
n
 p

re
d
ic

at
e

in
th

e
W

H
E
R

E
 c

la
u
se

o
f
th

e
o
u
te

r
st

at
em

en
t.

T
a

bl
e

3
-9

:
Se

a
rc

h
 C

on
d

it
io

n
s

U
si

n
g

th
e

W
H

E
R

E
 C

la
u

se
 (

co
n

ti
n

u
ed

)

Se
a

rc
h

 C
on

d
it

io
n

Sh
or

th
a

n
d

Sy
n

ta
x

E
xa

m
pl

e
U

sa
ge

 &
 D

es
cr

ip
ti

on

,c
h0

3.
13

60
5

 P
ag

e
14

3
 W

ed
ne

sd
ay

, N
ov

em
be

r
29

, 2
00

0
 4

:4
2

PM

144 Chapter 3 – SQL Statements Command Reference

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

As mentioned in Table 3-9, wildcard characters can augment the search options,
especially with the LIKE operator. Refer to the LIKE topic for more information on
types of wildcard operations.

Aggregates and the GROUP BY clause

The GROUP BY clause (and the HAVING clause) are needed only in queries that
utilize aggregate functions (discussed earlier in this chapter). Queries using aggre-
gate functions provide many types of summary information. The most common
aggregate functions include:

• AVG returns the average of all non-NULL values in the specified column(s).

• COUNT counts the occurrences of all non-NULL values in the specified
column(s).

• COUNT DISTINCT counts the occurrences of all unique, non-null values in the
specified column(s).

• COUNT(*) counts every record in the table.

• MAX returns the highest non-NULL value in the specified column(s).

• MIN returns the lowest non-NULL value in the specified column(s).

• SUM totals all non-NULL values in the specified column(s).

The aggregate functions are limited by the datatypes on which they may be used.
Only COUNT and COUNT DISTINCT can be used on a column of any datatype.
MIN and MAX operate on numeric columns (of any type), as well as date and
character columns. The SUM and AVG functions may operate only on numeric
column datatypes.

If it is necessary to perform aggregate functions on columns contain-
ing null values, use the ISNULL() function in SQL Server or the NVL
function in Oracle to assign a value to the null columns.

Queries that return a sole value are known as a scalar aggregate values. Scalar
aggregates do not need a GROUP BY clause. For example:

--Query
SELECT AVG(price)
FROM titles

--Results
14.77

Queries that return both regular column values and aggregate functions are
commonly called vector aggregates. Vector aggregates use the GROUP BY clause and
return one or many rows. There are a few rules to follow when using GROUP BY:

• Place GROUP BY in the proper clause order—after the WHERE clause and
before the ORDER BY clause.

• Include all non-aggregate columns in the GROUP BY clause.

• Do not use a column alias in the GROUP BY clause, though table aliases are
acceptable.

,ch03.13605 Page 144 Wednesday, November 29, 2000 4:42 PM

SELECT 145

Statem
ents

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Suppose it is necessary to know how many employees occupy each type of job
within the firm:

--Query
SELECT j.job_desc AS "Job Description",
 COUNT(e.job_id) AS "Nbr in Job"
FROM employee e
JOIN jobs j ON e.job_id = j.job_id
GROUP BY j.job_desc

--Results
Job Description Nbr in Job
-- -----------
Acquisitions Manager 4
Business Operations Manager 1
Chief Executive Officer 1
Chief Financial Officer 1
Designer 3
Editor 3
Managing Editor 4
Marketing Manager 4
Operations Manager 4
Productions Manager 4
Public Relations Manager 4
Publisher 7
Sales Representative 3

The HAVING clause

The HAVING clause adds search conditions on the result of the GROUP BY clause.
HAVING does not affect the rows used to calculate the aggregates; it affects only
the rows returned by the query.

HAVING works very much like the WHERE clause. The HAVING clause uses all the
same search conditions as the WHERE clause detailed in Table 3-9.

For example, to find out which jobs have more than three people:

--Query
SELECT j.job_desc "Job Description",
 COUNT(e.job_id) "Nbr in Job"
FROM employee e
JOIN jobs j ON e.job_id = j.job_id
GROUP BY j.job_desc
HAVING COUNT(e.job_id) > 3

--Results
Job Description Nbr in Job
-- -----------
Acquisitions Manager 4
Managing Editor 4
Marketing Manager 4
Operations Manager 4
Productions Manager 4
Public Relations Manager 4
Publisher 7

,ch03.13605 Page 145 Wednesday, November 29, 2000 4:42 PM

146 Chapter 3 – SQL Statements Command Reference

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

HAVING should not be used to eliminate rows that can be elimi-
nated using the WHERE clause. HAVING conditions should always
involve aggregate values.

The ORDER BY clause

A result set can be sorted through the ORDER BY clause, in accordance with the
database’s sort order. The result set may be sorted in either ascending (ASC) or
descending (DESC) order. (Ascending order is the default.) For example:

--QUERY
SELECT e.emp_id "Emp ID",
 rtrim(e.fname) || " " || rtrim(e.lname) "Name",
 j.job_desc "Job Desc"
FROM employee e,
 jobs j
WHERE e.job_id = j.job_id
 AND j.job_desc = 'Acquisitions Manager'
ORDER BY e.fname DESC,
 e.lname ASC

--RESULTS
Emp ID Name Job Desc
--------- ------------------------------ --------------------
M-R38834F Martine Rancé Acquisitions Manager
MAS70474F Margaret Smith Acquisitions Manager
KJJ92907F Karla Jablonski Acquisitions Manager
GHT50241M Gary Thomas Acquisitions Manager

After the result set is pared down to meet the search conditions, the result set is
sorted by the authors’ last names in descending order. Where the authors’ last
names are equal, the authors’ first names are sorted in ascending order.

All implementations discussed here also allow the use of ordinal positions in the
ORDER_BY clause. The order of the result set may be ordered by specifying the
integer of the column_position rather than the column name or alias. For example,
to order by the au_id, au_fname, and finally by the au_lname :

SELECT au_fname, au_lname, au_id
FROM authors
ORDER BY 3, 1, 2

In general, use an ORDER BY clause to control the order of the query result set. If
no ORDER BY clause is specified, most implementations return the data according
to the physical order of data within the table or according to the order of an index
utilized by the query. This can cause problems if the index or physical sort order
of the data is ever changed. Instead, explicitly state the order.

Microsoft SQL Server Syntax and Variations

Microsoft offers several variations on the SELECT statement, including optimizer
hints, the INTO clause, the TOP clause, GROUP BY variations, COMPUTE, and
WITH OPTIONS.

,ch03.13605 Page 146 Wednesday, November 29, 2000 4:42 PM

SELECT 147

Statem
ents

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SELECT . . . INTO

SELECT select_list
INTO new_table_name
FROM table_source
WHERE clause

The SELECT . . . INTO feature is a somewhat controversial command option found
only in SQL Server. The SELECT . . . INTO command quickly copies the rows and
columns queried from other table(s) into a new table using a non-logged
operation.

This example creates a table called non_mgr_employees using SELECT . . . INTO.
The table contains the emp_id, first name, and last name of each non-manager
from the employee table, joined with their job description taken from the jobs
table:

--QUERY
SELECT e.emp_id "emp_id",
 convert(char(25),rtrim(e.fname) + " " + rtrim(e.lname)) "name",
 substring(j.job_desc,1,30) "job_desc"
INTO non_mgr_employee
FROM employee e
 JOIN jobs AS j ON e.job_id = j.job_id
WHERE j.job_desc NOT LIKE '%MANAG%'
ORDER BY 2,3,1

The newly created and loaded table non_mgr_employee now can be queried. A
simple query returns that data:

--QUERY
SELECT emp_id,
 name,
 job_desc
FROM non_mgr_emp
ORDER BY 3,2,1

--RESULTS
emp_id name job_desc
--------- ------------------------- ------------------------------
PTC11962M Philip Cramer Chief Executive Officer
F-C16315M Francisco Chang Chief Financial Officer
<...edited for brevity...>
PMA42628M Paolo Accorti Sales Representative
TPO55093M Timothy O'Rourke Sales Representative

SELECT . . . INTO should be used only in development or non-
production code.

,ch03.13605 Page 147 Wednesday, November 29, 2000 4:42 PM

148 Chapter 3 – SQL Statements Command Reference

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The TOP clause

The TOP clause follows this syntax:

SELECT [TOP n [PERCENT] [WITH TIES]] select list
FROM table_name

This command specifies that only the first n rows are to be retrieved in the query
result set. If a percentage also is specified, only the first n percent of the rows are
retrieved. The WITH TIES keyword can be used only on queries with an ORDER
BY clause. This variation specifies that additional rows are returned from the base
result set using the same value in the ORDER BY clause, appearing as the last of
the TOP rows.

GROUP BY Variations

GROUP BY in Microsoft SQL Server supports the ALL, WITH CUBE, and WITH
ROLLUP variations:

[GROUP BY [ALL] group_by_expression [,...n]
[WITH { CUBE | ROLLUP }]]

The ALL variation forces the result set to include all groups, even those that do not
have any rows matching the filters in the WHERE clause. ALL cannot be used with
CUBE or ROLLUP. CUBE specifies that additional summary rows for every combi-
nation of group and subgroup should be retrieved with the result set. ROLLUP
functions similarly to CUBE except that it returns groups in a summarized hierar-
chical order—from lowest level to highest level in the group.

The COMPUTE Clause

The COMPUTE clause generates totals that appear as additional summary columns
at the end of the result set. The COMPUTE BY clause generates control breaks and
subtotals in the result set. Both COMPUTE BY and COMPUTE can be specified in
the same query:

[COMPUTE { { AVG | COUNT | MAX | MIN | STDEV | STDEVP |VAR | VARP | SUM }
(expression) } [,...n]
[BY expression [,...n]]]

The arguments (AVG, COUNT, MAX, MIN, STDEV, STDEVP, VAR, VARP, SUM)
specify the aggregation to be performed by the COMPUTE clause. The expression
value is typically a column name. The BY expression value can be one or more
columns shown in the queries’ ORDER BY clause. COMPUTE appears in a query
after the ORDER BY clause.

The OPTION Clause

The OPTION clause is the last clause that may appear in a Microsoft SQL Server
query. It specifies that a query hint should be used throughout the entire query.
Query hints are a non-ANSI-standard method of overriding the default processing
of a query. Query hints and the complete syntax and usage of OPTION are beyond
the scope of this book, but may be found in SQL Server documentation.

,ch03.13605 Page 148 Wednesday, November 29, 2000 4:42 PM

SELECT 149

Statem
ents

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

MySQL Syntax and Variations

SELECT [STRAIGHT_JOIN][SQL_SMALL_RESULT][SQL_BIG_RESULT][HIGH_PRIORITY]
[INTO {OUTFILE | DUMPFILE} 'file_name' options]
FROM...
JOIN...
[LIMIT [[offset_record,] number_of_rows]];

MySQL extensions include changes to the default SELECT keyword, partial JOIN
support, the LIMIT clause, and the PROCEDURE clause.

The first extension to the default SELECT clause is STRAIGHT_JOIN. STRAIGHT_
JOIN forces the optimizer to join tables in the exact order they appear in the
FROM clause. SQL_SMALL_RESULT and SQL_BIG_RESULT can be used when the
query has a GROUP BY clause or a DISTINCT clause to tell the optimizer to expect
a small or large result set, respectively. Since MySQL builds a temporary table
when a query has a DISTINCT or GROUP BY clause, these optional clauses tell
MySQL to build a fast temporary table in memory (for SQL_SMALL_RESULT) and a
slower, disk-based temporary table (for SQL_BIG_RESULT) to process the work-
table. HIGH_PRIORITY gives the query a higher priority than statements that
modify data within the table. It should only be used for special, high-speed
queries. The LIMIT clause constrains the number of rows returned by the query,
starting at the offset_record and returning number_of_rows. If only one integer is
supplied, this number is assumed to be the number of records wanted, and a
default offset of 0 is assumed.

The SELECT . . . INTO OUTFILE ‘file_name’ clause writes the result set of the query
to a file on the host filesystem. The file_name must not already exist. The syntax
SELECT . . . INTO DUMPFILE writes a single continuous line of data without
column terminations, line terminations, or escape characters. This option is used
mostly for blob files.

MySQL supports only these types of JOIN syntax:

[CROSS JOIN]
INNER JOIN
STRAIGHT_JOIN
LEFT [OUTER] JOIN
NATURAL LEFT [OUTER] JOIN

Oracle Syntax and Variations

SELECT {[ALL] [DISTINCT] | [UNIQUE]}...
{columns_and_expressions_list} [,...n] AS alias
[INTO {variable[,...n] | record}]
FROM {[table_name [@database_link]| view_name | snapshot_name]
 | subquery [WITH {READ ONLY | CHECK OPTION [CONSTRAINT constraint_name]}]
 | TABLE {(nested_tbl_column)}
 [PARTITION {partition_name}]
 [SUBPARTITION {subpartition_name}
 [SAMPLE [BLOCK] [sample_percentage]}
WHERE
[[START WITH clause] CONNECT BY clause]

,ch03.13605 Page 149 Wednesday, November 29, 2000 4:42 PM

150 Chapter 3 – SQL Statements Command Reference

SELECT

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

GROUP BY...
[ORDER BY... [NULLS FIRST | NULLS LAST] |
 FOR UPDATE [OF [schema.]table[,...n]] [NOWAIT]]

Oracle allows several extensions to SELECT support-added functionality within the
server. For example, since nested tables and partitioned tables both can be created
(see CREATE TABLE), the SELECT statement allows queries from those specifically
named structures. (The PARTITION clause is not needed to query from the default
partition.)

The SAMPLE clause tells Oracle to select records from a random sampling of rows
within the result set, rather than from the entire table. The SAMPLE BLOCK clause
tells Oracle to use block sampling rather than row sampling. The sampling
percentage, telling Oracle the total block or row count to be included in the
sample, may be anywhere between .000001 to 99. Sampling may be used only on
single-table queries.

The SELECT . . . INTO syntax is usable only in PL/SQL code and
allows the SELECT statement to assign values to variables.

When querying a nested table, the FROM TABLE nested_table_column clause must
be used. The @database_link clause allows the query to access tables stored in
other databases and on other servers when those databases and servers have been
declared as a db_link. (Refer to the vendor documentation for more information
on db_link.)

The NULL FIRST and NULL LAST options to the ORDER BY clause specify that the
result set order rows containing nulls end should appear either first or last,
respectively.

Oracle allows the specification of result sets in a hierarchical order. These so-
called hierarchical queries have a number of rules and unique behaviors. Refer to
the vendor documentation for complete rules on using this type of query. The
START WITH clause is essential for hierarchical queries and specifies the root rows
of a hierarchy. The CONNECT BY clause describes the relationship between parent
and child rows in the hierarchy.

The FOR UPDATE OF clause exclusively locks the row returned by the query. It
should be followed immediately by an UPDATE . . . WHERE command, COMMIT,
or ROLLBACK. The NOWAIT option tells Oracle not to wait if that record is already
locked. Instead, the query terminates and immediately returns to the user.

PostgreSQL Syntax and Variations

SELECT...
[INTO [TEMPORARY | TEMP] [TABLE] new_table_name]
FROM...
WHERE...
[FOR UPDATE [OF class_name[,...n]]
[LIMIT {count | ALL} [offset [,number_of_records]]]

,ch03.13605 Page 150 Wednesday, November 29, 2000 4:42 PM

SET CONNECTION 151

Statem
ents

SET CONNECTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PostgreSQL allows the creation of a new table using the SELECT . . . INTO syntax,
which is essentially the same as that supported by Microsoft SQL Server. It helps
the FOR UPDATE clause to exclusively lock records selected by the query. It also
supports the LIMIT clause, similar to that of MySQL, to constrain the number of
rows returned by the query.

SET CONNECTION

The SET CONNECTION statement allows users to switch between several open
connections on one or more database servers.

SQL99 Syntax and Description

SET CONNECTION {DEFAULT | connection_name}

This command does not end a connection. Instead, it switches from the current
connection to the connection named in the command, or to the current connec-
tion using the DEFAULT clause. When switching between connections, the old
connection becomes dormant (without committing any changes), while the new
connection becomes active.

The CONNECT command must be used to create a new connection; the
DISCONNECT command is used to terminate one.

Microsoft SQL Server Syntax and Variations

Microsoft SQL Server supports SET CONNECTION only in Embedded-SQL (ESQL),
but not within its ad hoc querying tool, SQL Query Analyzer. It supports the full
SQL99 syntax.

Example

Here is a full ESQL program in SQL Server that shows CONNECT, DISCONNECT,
and SET CONNECTION :

EXEC SQL CONNECT TO chicago.pubs AS chicago1 USER sa;
EXEC SQL CONNECT TO new_york.pubs AS new_york1 USER read-only;
// opens connections to the servers named "chicago" //
// and "new_york"//

EXEC SQL SET CONNECTION chicago1;
EXEC SQL SELECT name FROM employee INTO :name;
// sets the chicago1 connection as active and performs work //
// within that session //

EXEC SQL SET CONNECTION new_york1;
EXEC SQL SELECT name FROM employee INTO :name;

Vendor Command

SQL Server Supported, with limitations

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported

,ch03.13605 Page 151 Wednesday, November 29, 2000 4:42 PM

152 Chapter 3 – SQL Statements Command Reference

SET ROLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

// sets the new_york1 connection as active and performs work //
// within that session //

EXEC SQL DISCONNECT ALL;
// Terminates all sessions. You could alternately use two //
// DISCONNECT commands, one for each named connection. //

SET ROLE

The SET ROLE command enables and disables specific security roles for the current
session. Sessions are created using the CONNECT statement, while roles are
created using the CREATE ROLE statement.

SQL99 Syntax and Description

SET ROLE {NONE | role_name}

The session is opened using the CONNECT statement. Once a user session is initi-
ated, issuing the SET ROLE statement grants that session a set of privileges
associated with a role. The SET ROLE command can be issued only outside of a
transaction.

SET ROLE NONE assigns the current session to a NULL role.

When a role is assigned to the currently active user session, a character string,
database variable, or even a system function such as CURRENT_ROLE or SYSTEM_
ROLE may be used. In any case, the value specified must be a valid role name.

Oracle Syntax and Variations

SET ROLE {role_name [IDENTIFIED BY password] [,...n]
| [ALL [EXCEPT role_name [,...]]
| NONE;

When a user initiates a connection, Oracle explicitly assigns the privileges that are
roles to the user. The role(s) under which the session is operating can be changed
with the SET ROLE command. Oracle uses the MAX_ENABLED_ROLES initializa-
tion parameter to control the maximum number of roles that can be opened
concurrently.

The role_name specified must be a valid role name already created within Oracle.
Any roles not specified are unavailable for the current session. If the role_name
has a password, it must be listed using the IDENTIFIED BY password clause.
Multiple roles are identified by placing a comma between each.

Vendor Command

SQL Server Not supported

MySQL Not supported

Oracle Supported, with variations

PostgreSQL Not supported

,ch03.13605 Page 152 Wednesday, November 29, 2000 4:42 PM

SET TIME ZONE 153

Statem
ents

SET TIME ZONE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

The SET ROLE ALL statement enables all roles that are granted to the current
session, including roles that are granted through other roles; other roles may be
exempted using the EXCEPT clause. SET ROLE ALL cannot be used when a pass-
word must be specified. Roles with passwords may be accessed only through the
statement SET ROLE role_name IDENTIFIED BY password.

The SET ROLE NONE statement disables all roles, including the default role.

Examples

To enable the specific roles read_only and updater, identified by the passwords
editor and red_marker, respectively, for the current session:

SET ROLE read_only IDENTIFIED BY editor, updater IDENTIFIED BY red_marker;

To enable all roles, except the read_write role:

SET ROLE ALL EXCEPT read_write;

SET TIME ZONE

The SET TIME ZONE statement changes the current session’s time zone if it needs
to be different from the default time zone.

SQL99 Syntax and Description

SET TIME ZONE {LOCAL | INTERVAL {+ | -}'00:00' HOUR TO MINUTE}

Like most SET commands, SET TIME ZONE can be executed only outside of an
explicit transaction. The LOCAL clause resets the current-session time values to
those of the default time zone for the server. Otherwise, an interval value can be
set to increase (with +) or decrease (with -) over the default time.

PostgreSQL Syntax and Variations

SET TIME ZONE {'timezone' | LOCAL | DEFAULT
| INTERVAL {+ | -}'00:00' HOUR TO MINUTE};

PostgreSQL allows a session’s time value to be set to the server default by using
either the LOCAL or DEFAULT clause.

The value specified for time zone is dependent on the operating system. For
example, ‘PST8PDT’ is a valid time zone for California on Linux systems, while
‘Europe/Rome’ is a valid time zone for Italy on Linux and other systems. If an
invalid time zone is specified, the command sets the time zone to Greenwich
Mean Time (GMT).

The time zone also may be set as an interval of the default server time zone.

Vendor Command

SQL Server Not supported

MySQL Not supported

Oracle Not supported

PostgreSQL Supported, with variations

,ch03.13605 Page 153 Wednesday, November 29, 2000 4:42 PM

154 Chapter 3 – SQL Statements Command Reference

SET TRANSACTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Examples

In the following example, the time zone is advanced three hours over the current
default time zone:

SET TIME ZONE INTERVAL +'03:00' HOUR TO MINUTE;

Next, the current time for the current session is set back by four-and-a-half hours:

SET TIME ZONE INTERVAL -'04:30' HOUR TO MINUTE;

Finally, the time for the current session is returned to the default:

SET TIME ZONE LOCAL;

SET TRANSACTION

The SET TRANSACTION statement controls many characteristics of a data modifica-
tion, such as read/write or its isolation level.

SQL99 Syntax and Description

SET [LOCAL] TRANSACTION { {READ ONLY | READ WRITE}[,...]
| ISOLATION LEVEL
 {READ COMMITTED
 | READ UNCOMMITTED
 | REPEATABLE READ
 | SERIALIZABLE}[,...]
| DIAGNOSTIC SIZE INT};

When issued, this command is outside the context of a transaction but applies to
the next valid transaction. More than one option may be applied with this
command, each separated by a comma.

The transaction settings may be applied only to the local server via the LOCAL
command. Otherwise, the transaction settings are assumed to apply regardless of
where the transaction is run. This option is new to SQL99.

A transaction also can be specified as READ ONLY or READ WRITE. The
DIAGNOSTIC SIZE clause, followed by an integer, designates the specific number
of error messages to capture for a transaction. The GET DIAGNOSTICS statement
retrieves this information.

The ISOLATION LEVEL clause controls a number of behaviors in a transaction
concerning concurrent transactions. Isolation levels control how transactions
behave with regards to dirty reads, non-repeatable reads, and phantom records:

Vendor Command

SQL Server Supported, with variations

MySQL Not supported

Oracle Supported, with limitations

PostgreSQL Supported

,ch03.13605 Page 154 Wednesday, November 29, 2000 4:42 PM

SET TRANSACTION 155

Statem
ents

SET TRANSACTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Dirty reads
Occur when a transaction reads the altered records of another transaction
before the other transaction has completed. This allows a data modification to
occur on a record that might not be committed to the database.

Non-repeatable reads
Occur when one transaction reads a record while another modifies it. So, if
the first transaction attempts to reread the record, it can’t find it.

Phantom records
Occur when a transaction reads a group of records, but a data modification
adds or changes the data so that more records satisfy the first transaction.

Setting the isolation level impacts these anomalies as depicted in Table 3-10.

For SQL99, SERIALIZABLE is the default isolation level. READ WRITE transactions
may not be READ UNCOMMITTED.

Microsoft SQL Server Syntax and Variations

SET TRANSACTION ISOLATION LEVEL
{READ COMMITTED
| READ UNCOMMITTED
| REPEATABLE READ
| SERIALIZABLE}

READ COMMITTED is the SQL Server default, as opposed to serializable as the
default in SQL99. The isolation level is established for the duration of the entire
session, not just the transaction as in SQL99.

Oracle SQL Server Syntax and Variations

SET TRANSACTION READ ONLY;

Oracle does not support the full syntax of the SET TRANSACTION statement, and
its implementation of READ ONLY differs somewhat as well. Oracle only supports
READ COMMITTED and SERIALIZABLE. READ COMMITTED is the default behavior.
In Oracle, this command starts a transaction in SERIALIZABLE isolation level.
Oracle allows only the SELECT commands when the following commands are set:
READ ONLY, ALTER SESSION, ALTER SYSTEM, LOCK TABLE, and SET ROLE.

PostgreSQL Syntax and Variations

SET TRANSACTION ISOLATION LEVEL {READ COMMITTED | SERIALIZABLE};

PostgreSQL does not support the full syntax of the SET TRANSACTION statement.
In PostgreSQL, SET TRANSACTION ISOLATION LEVEL READ COMMITTED specifies

Table 3-10: Isolation Level and Anomaly Impact

Isolation Level Dirty Reads Non-Repeatable Reads Phantom Records

READ COMMITTED No Yes Yes

READ UNCOMMITTED Yes Yes Yes

REPEATABLE READ No No Yes

SERIALIZABLE No No No

,ch03.13605 Page 155 Wednesday, November 29, 2000 4:42 PM

156 Chapter 3 – SQL Statements Command Reference

START TRANSACTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

that the current transaction’s read-only rows committed before the transaction
began. This is the default. SERIALIZABLE, which is the ANSI-default isolation level,
specifies that the current transaction’s read-only rows committed before the first
data modification in the batch is executed.

START TRANSACTION

New in SQL99, the START TRANSACTION statement allows all the functions of SET
TRANSACTION to be performed and allows a new transaction to be initiated.

SQL99 Syntax and Description

START TRANSACTION { {READ ONLY | READ WRITE}[,...]
| ISOLATION LEVEL
 {READ COMMITTED
 | READ UNCOMMITTED
 | REPEATABLE READ
 | SERIALIZABLE}[,...]
| DIAGNOSTIC SIZE INT};

The only difference between SET and START is that SET is considered outside of
the current transaction, while START is considered the marking of a new
transaction.

BEGIN TRANSACTION

The command BEGIN TRANSACTION provides similar functionality to START
TRANSACTION. Both Microsoft SQL Server and PostgreSQL support BEGIN
TRANSACTION, though they have slight variations in their syntax. Oracle supports
implicit, but not explicit, transactions. MySQL doesn’t support atomic transactions
at all. BEGIN TRANSACTION declares an explicit transaction, but it does not set
isolation levels.

The Microsoft SQL Server syntax is:

BEGIN TRAN[SACTION] [transaction_name | @transaction_variable
[WITH MARK ['log_description']]]

Microsoft SQL Server allows a name to be assigned to a transaction or to refer-
ence transactions using a variable. It does not affect or add to functionality. When

Vendor Command

SQL Server Not supported; see BEGIN
TRAN later

MySQL Not supported

Oracle Not supported

PostgreSQL Not supported; see BEGIN
TRAN later

,ch03.13605 Page 156 Wednesday, November 29, 2000 4:42 PM

START TRANSACTION 157

Statem
ents

START TRANSACTION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

nesting transactions, only the outermost BEGIN . . . COMMIT or BEGIN . . .
ROLLBACK pair should reference the transaction name (if it has one).

The WITH MARK option logs the transaction to the SQL Server event log. By speci-
fying WITH MARK ‘log_description’, a descriptive string may be added for the
event to be logged.

The PostgreSQL syntax is:

BEGIN [WORK | TRANSACTION]

PostgreSQL normally runs in autocommit mode where each data modification or
query is its own transaction. PostgreSQL normally applies an implicit COMMIT or
ROLLBACK at the end of the transaction. Using the BEGIN statement allows the
next COMMIT or ROLLBACK to be declared explicitly.

Be sure to issue BEGIN in a pair with either COMMIT or ROLLBACK.
Otherwise, the DBMS does not complete the command(s) until it
encounters COMMIT or ROLLBACK. This could lead to potentially
huge transactions with unpredictable results on the data.

Manually coded transactions are much faster in PostgreSQL than are autocom-
mitted transactions. The SET TRANSACTION ISOLATION LEVEL should be set to
SERIALIZABLE just after the BEGIN statement to bolster the transaction isolation.
There could be many data-modification statements (INSERT, UPDATE, DELETE)
within a BEGIN . . . COMMIT block. When the COMMIT command is issued, either
all or none of the transactions takes place, depending on the success or failure of
the command.

Example

In the following example, the three INSERT statements all be treated as a single
transaction:

BEGIN TRANSACTION
 INSERT INTO sales VALUES('7896','JR3435','Oct 28 2001',25,
 'Net 60','BU7832')

 INSERT INTO sales VALUES('7901','JR3435','Oct 28 2001',17,
 'Net 60','BU7832')

 INSERT INTO sales VALUES('7907','JR3435','Oct 28 2001',6,
 'Net 60','BU7832')

COMMIT
GO

However, the entire group of transactions would fail, for example, if a primary key
restraint is in any one of the INSERT statements.

,ch03.13605 Page 157 Wednesday, November 29, 2000 4:42 PM

158 Chapter 3 – SQL Statements Command Reference

TRUNCATE TABLE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

TRUNCATE TABLE

The TRUNCATE TABLE command is a non-ANSI statement that removes all rows
from a table without logging the individual row deletes. It is a very handy
command because it quickly erases all the records in a table without altering the
table structure, while taking very little space in the redo logs or transaction logs.
However, it has a dark side; since it is not logged, it cannot be recovered or
backed up.

SQL99 Syntax and Description

TRUNCATE TABLE name

The TRUNCATE TABLE statement has the same effect as a DELETE statement with
no WHERE clause; both erase all rows in a given table. However, there are two
important differences. TRUNCATE TABLE is faster, and it is non-logged, meaning it
cannot roll back if issued in error.

Typically, TRUNCATE TABLE does not activate triggers and does not function when
foreign keys are in place on a given table.

Example

This example removes all data from the publishers table:

TRUNCATE TABLE publishers

Oracle Syntax and Variations

TRUNCATE { CLUSTER [owner.]cluster
 | TABLE [owner.]table [{PRESERVE | PURGE} SNAPSHOT LOG]}
[{DROP | REUSE} STORAGE]

Oracle allows a table or an indexed cluster (but not a hash cluster) to be
truncated.

When truncating a table, Oracle allows the option of preserving or purging the
snapshot log, if one is defined on the table. PRESERVE maintains the snapshot log
when the master table is truncated, while PURGE clears out the snapshot log.

If the DROP STORAGE clause is added, the disk space freed by the deleted rows is
deallocated. If the REUSE STORAGE clause is added, the space of the deleted rows
allocated to the table or cluster is left in place.

Microsoft SQL Server and PostgreSQL Note

Both of these implementations support the SQL99 default syntax.

Vendor Command

SQL Server Supported

MySQL Not supported

Oracle Supported

PostgreSQL Supported

,ch03.13605 Page 158 Wednesday, November 29, 2000 4:42 PM

UPDATE 159

Statem
ents

UPDATE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

UPDATE

The UPDATE command changes existing data in a table.

SQL99 Syntax and Description

UPDATE {table_name | view_name}
SET {column_name | variable_name} = {DEFAULT | expression} [,...n]
WHERE conditions

As with the DELETE statement, an UPDATE command is seldom issued without a
WHERE clause, since the statement affects every row in the entire table.

It is good practice to issue a SELECT command using the same
WHERE clause before issuing the actual UPDATE statement. This
checks all rows in the result set before actually performing the
UPDATE. Whatever rows are returned by the SELECT are modified
by the UPDATE.

Examples

A basic UPDATE statement without a WHERE clause looks like this:

UPDATE authors
SET contract = 0

Without a WHERE clause, all authors in the authors table have their contract status
set to 0 (meaning they don’t have a contract any more). Similarly, values can be
adjusted mathematically with an UPDATE statement:

UPDATE titles
SET price = price * 1.1

This UPDATE statement would increase all book prices by 10%.

Adding a WHERE clause to an UPDATE statement allows records in the table to be
modified selectively:

UPDATE titles
SET type = 'pers_comp',
 price = (price * 1.15)
WHERE type = 'popular_com'

This query makes two changes to any record of the type ‘popular_com’. The
command increases their price by 15% and alters their type to ‘pers_comp’.

Vendor Command

SQL Server Supported, with variations

MySQL Supported, with variations

Oracle Supported, with variations

PostgreSQL Supported

,ch03.13605 Page 159 Wednesday, November 29, 2000 4:42 PM

160 Chapter 3 – SQL Statements Command Reference

UPDATE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

There are times when it’s required to update values in a given table based on the
values stored in another table. For example, if it is necessary to update the publi-
cation date for all the titles written by a certain author, it is also necessary to find
the author and list of titles first through subqueries:

UPDATE titles
SET pubdate = 'Jan 01 2002'
WHERE title_id IN
 (SELECT title_id
 FROM titleauthor
 WHERE au_id IN
 (SELECT au_id
 FROM authors
 WHERE au_lname = 'White'))

Microsoft Syntax and Variations

UPDATE {table_name | view_name} [WITH (table_hint [,...n])]
SET {column_name | variable_name} = {DEFAULT | expression | NULL} [,...n]
[FROM {table [,...n]}]
WHERE {conditions | CURRENT OF [GLOBAL] cursor_name}
[OPTION (query_hint [,...n])]

Microsoft SQL Server is capable of updating both views and tables. Table- and
query-level optimizer hints may be declared using the WITH table_hint and
OPTION clauses. Optimizer hints override the default functionality of the query
optimizer. Consult the vendor documentation for a full discussion of optimizer
hints.

Microsoft SQL Server supports the FROM clause in an UPDATE statement. The
chief benefit of this variation is much easier multitable joins. The following is a
sample of table joins using both styles of syntax:

-- ANSI style
UPDATE titles
SET pubdate = GETDATE()
WHERE title_id IN
 (SELECT title_id
 FROM titleauthor
 WHERE au_id IN
 (SELECT au_id
 FROM authors
 WHERE au_lname = 'White'))

-- Microsoft Transact-SQL style
UPDATE titles
SET pubdate = GETDATE()
FROM authors a,
 titleauthor t2
WHERE a.au_id = t2.au_id
 AND t2.title_id = titles.title_id
 AND a.au_lname = 'White'

To perform the update using the Transact-SQL style is simply a matter of three
table joins between authors, titles, and titleauthor. But to perform the same opera-
tion using ANSI-compliant code, first the au_id in author must be found and

,ch03.13605 Page 160 Wednesday, November 29, 2000 4:42 PM

UPDATE 161

Statem
ents

UPDATE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

passed up to the titleauthors table, where the title_id must be identified and then
passed up to the main update statement.

The clause WHERE CURRENT OF cursor_name tells SQL Server, when used in
combination with a cursor, to update only the single record where the cursor is
currently positioned. The cursor may be a global or local cursor as designated by
the keyword GLOBAL.

This example updates the state column for the first 10 authors from the authors
table:

UPDATE authors
SET state = 'ZZ'
FROM (SELECT TOP 10 * FROM authors ORDER BY au_lname) AS t1
WHERE authors.au_id = t1.au_id

MySQL Syntax and Variations

UPDATE [LOW PRIORITY] table_name
SET {column_name | variable_name} = {DEFAULT | expression}
WHERE conditions
[LIMIT integer]

MySQL supports the SQL99 standard with two variations: the LOW PRIORITY
clause and the LIMIT clause. The LOW PRIORITY clause tells MySQL to delay the
execution of the UPDATE statement until no other client is reading from the table.
The LIMIT clause restricts the UPDATE action to a specific number of rows as
designated by the integer value.

Oracle Syntax and Variations

UPDATE [schema.]{view_name | snapshot_name
 | table_name [@database_link]
 {[PARTITION partition_name] | [SUBPARTITION subpartition_name]}
 | subquery [WITH {[READ ONLY]
 | [CHECK OPTION [CONSTRAINT constraint_name]]
SET {column [,...] = {expression [,...n] | subquery} | VALUE value}
WHERE conditions | CURRENT OF cursor_name}
RETURNING expression [,...n] INTO variable [,...n];

The Oracle implementation of UPDATE allows updates against views, snapshots,
and tables in an allowable schema. When updating tables, the table can be a local
table or one made available via @dblink. Updates always occur against the parti-
tion; however, the UPDATE command supports updates against a named
PARTITION or SUBPARTITION, if preferred.

When updating against a subquery, the WITH clause becomes available. The WITH
READ ONLY clause specifies that the subquery cannot be updated. The WITH
CHECK OPTION tells Oracle to abort any changes to the updated table that would
not appear in the result set of the subquery. The CONSTRAINT subclause tells
Oracle to further restrict changes based upon a specific constraint.

The SET VALUE clause allows the user to set the entire row value for any table
datatype values.

In Oracle, the WHERE CURRENT OF clause indicates that the UPDATE should be
performed only on the current record within the cursor context.

,ch03.13605 Page 161 Wednesday, November 29, 2000 4:42 PM

162 Chapter 3 – SQL Statements Command Reference

Conclusion

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

RETURNING retrieves the rows affected by the command. When used for a single-
row update, the values of the row can be stored in PL/SQL variables and bind
variables. When used for a multirow delete, the values of the rows are stored in
bind arrays. The INTO keyword indicates that the updated values should be stored
in the variables list.

PostgreSQL Notes

PostgreSQL supports the SQL99 standard. Refer to the earlier section, “SQL99
Syntax and Description,” for a full description of the UPDATE command.

Conclusion
The breadth and scope of the SQL commands provide the capability to create and
manipulate a wide variety of database objects using the various CREATE, ALTER,
and DROP commands. Those database objects then can be loaded with data using
commands such as INSERT. The data can be manipulated using a wide variety of
commands, such as SELECT, DELETE, and TRUNCATE, as well as the cursor
commands, DECLARE, OPEN, FETCH, and CLOSE. Transactions to manipulate the
data are controlled through the SET command, plus the COMMIT and ROLLBACK
commands. And finally, other commands covered in this chapter include those that
control a user’s access to database resources through commands such as GRANT
and REVOKE.

,ch03.13605 Page 162 Wednesday, November 29, 2000 4:42 PM

163

Functions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 4Functions

CHAPTER 4

SQL Functions

A function is a special type of command word in the SQL99 command set. In
effect, functions are one-word commands that return a single value. The value of a
function can be determined by input parameters, as with a function that averages a
list of database values. But many functions do not use any type of input param-
eter, such as the function that returns the current system time, CURRENT_TIME.

The SQL99 standard supports a number of useful functions. This chapter covers
those functions, providing detailed descriptions and examples. In addition, each
database vendor maintains a long list of their own internal functions that are
outside of the scope of the SQL standard. Lists and descriptions are provided for
each database implementation’s internal functions.

In addition, most database vendors support the ability to create user-defined func-
tions (UDF). For more information on UDFs, refer to the CREATE FUNCTION
command in Chapter 3, SQL Statements Command Reference.

Deterministic and Nondeterministic Functions
Functions can be either deterministic or nondeterministic. A deterministic function
always returns the same results if given the same input values. A nondeterministic
function returns different results every time it is called, even when the same input
values are provided.

Why is this important? It is important because of how functions may be used
within views, user-defined functions, and stored procedures. The restrictions vary
across implementations, but these objects sometimes allow only deterministic func-
tions within their defining code. For example, Microsoft SQL Server allows the
creation of an index on a column expression—as long as the expression does not
contain nondeterministic functions. Rules and restrictions vary between the
vendors, so check their documentation when using functions.

,ch04.13730 Page 163 Wednesday, November 29, 2000 4:43 PM

164 Chapter 4 – SQL Functions

Types of Functions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Types of Functions
There are several basic types and categories of functions in SQL99 and vendor
implementations of SQL. The basic types of functions are:

Aggregate functions
Operate against a collection of values, but return a single, summarizing value.

Scalar functions
Operate against a single value, and return a single value based on the input
value. Some scalar functions, CURRENT_TIME for example, do not require any
arguments.

Aggregate Functions

Aggregate functions return a single value based upon a set of other values. If used
among many other expressions in the item list of a SELECT statement, the SELECT
must have a GROUP BY clause. No GROUP BY clause is required if the aggregate
function is the only value retrieved by the SELECT statement. The supported aggre-
gate functions and their syntax are listed in Table 4-1.

Technically speaking, ANY, EVERY, and SOME are considered aggregate functions.
However, they have been discussed as range search criteria since they are most
often used that way. Refer to the SELECT . . . WHERE topic in the previous chapter
for more information on these functions.

The number of values processed by an aggregate varies depending on the number
of rows queried from the table. This behavior makes aggregate functions different
from scalar functions, which require a fixed number and fixed type of parameters.

The general syntax of an aggregate function is:

aggregate_function_name ([ALL | DISTINCT] expression)

The aggregate function name may be AVG, COUNT, MAX, MIN, or SUM. The ALL
clause, which is the default behavior and does not actually need to be specified,
evaluates all rows when aggregating the value of the function. The DISTINCT clause
uses only distinct values when evaluating the function.

AVG and SUM

The AVG function computes the average of values in a column or an expression.
SUM computes the sum. Both functions work with numeric values and ignore

Table 4-1: SQL99 Aggregate Functions

Function Usage

AVG(expression) Computes the average value of a column by the expression

COUNT(expression) Counts the rows defined by the expression

COUNT(*) Counts all rows in the specified table or view

MIN(expression) Finds the minimum value in a column by the expression

MAX(expression) Finds the maximum value in a column by the expression

SUM(expression) Computes the sum of column values by the expression

,ch04.13730 Page 164 Wednesday, November 29, 2000 4:43 PM

MIN and MAX 165

Functions

MIN and MAX

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

NULL values. They also can be used to compute the average or sum of all distinct
values of a column or expression.

AVG and SUM are supported by Microsoft SQL Server, MySQL, Oracle, and
PostgreSQL.

Example

The following query computes average year-to-date sales for each type of book:

SELECT type, AVG(ytd_sales) AS "average_ytd_sales"
FROM titles
GROUP BY type;

This query returns the sum of year-to-date sales for each type of book:

SELECT type, SUM(ytd_sales)
FROM titles
GROUP BY type;

COUNT

The COUNT function has three variations. COUNT(*) counts all the rows in the
target table whether they include nulls or not. COUNT(expression) computes the
number of rows with non-NULL values in a specific column or expression.
COUNT(DISTINCT expression) computes the number of distinct non-NULL values
in a column or expression.

Examples

This query counts all rows in a table:

SELECT COUNT(*) FROM publishers;

The following query finds the number of different countries where publishers are
located:

SELECT COUNT(DISTINCT country) "Count of Countries"
FROM publishers

MIN and MAX

MIN(expression) and MAX(expression) find the minimum and maximum value
(string, datetime, or numeric) in a set of rows. DISTINCT or ALL may be used with
these functions, but they do not affect the result.

MIN and MAX are supported by Microsoft SQL Server, MySQL, Oracle, and
PostgreSQL.

MySQL also supports the functions LEAST() and GREATEST(), providing the same
capabilities.

Examples

The following query finds the best and worst sales for any title on record:

SELECT 'MIN' = MIN(ytd_sales), 'MAX' = MAX(ytd_sales)
FROM titles;

,ch04.13730 Page 165 Wednesday, November 29, 2000 4:43 PM

166 Chapter 4 – SQL Functions

MIN and MAX

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Aggregate functions are used often in the HAVING clause of queries with GROUP
BY. The following query selects all categories (types) of books that have an
average price for all books in the category higher than $15.00:

SELECT type 'Category', AVG(price) 'Average Price'
FROM titles
GROUP BY type
HAVING AVG(price) > 15

Scalar Functions

Scalar functions fall into the categories listed in Table 4-2.

Note that CASE and CAST are both functions. However, they are detailed in
Chapter 3 because of their complexity and frequent usage in SQL-data statements.

Built-in Scalar Functions

SQL99 built-in scalar functions identify the current user session, and also character-
istics of the current user session, such as the current session privileges. Built-in
scalar functions are almost always nondeterministic. The first three functions listed
in Table 4-3 are built-in functions that fall into the date-and-time category of func-
tions. Although the four vendors provide many additional functions beyond these
SQL built-ins, the SQL standard declares only those listed in Table 4-3.

Table 4-2: Categories of Scalar Functions

Function Category Explanation

Built-in Performs operations on values or settings built into the
database.
Oracle uses the term “built-in” to describe all the specialty
functions that are provided by Oracle, and thus “built into”
their DBMS. This is a distinct and separate usage from the
built-in functions described here.

Date & Time Performs operations on datetime fields and returns values in
datetime format.

Numeric Performs operations on numeric values and returns numeric
values.

String Performs operations on character values (char, varchar,
nchar, nvarchar, and CLOB) and returns a string or numeric
value.

Table 4-3: SQL99 Built-in Scalar Functions

Function Usage

CURRENT_DATE Identifies the current date.

CURRENT_TIME Identifies the current time.

CURRENT_TIMESTAMP Identifies the current date and time.

CURRENT_USER Identifies the currently active user within the database server.

SESSION_USER Identifies the currently active Authorization ID, if it differs
from the user.

SYSTEM_USER Identifies the currently active user within the host operating
system.

,ch04.13730 Page 166 Wednesday, November 29, 2000 4:43 PM

MIN and MAX 167

Functions

MIN and MAX

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Microsoft SQL Server supports all the built-in scalar functions. Oracle does not
support the built-in scalar functions shown above; however, it supports USER as a
synonym of CURRENT_USER and SYSDATE as a synonym of CURRENT_
TIMESTAMP. MySQL supports all the SQL99 built-in scalar functions, plus both of
Oracle’s variants. PostgreSQL supports USER, as defined in SQL99, as a synonym
for CURRENT_USER. In addition, MySQL supports NOW() and UNIX_TIMESTAMP()
as synonyms of the function CURRENT_TIMESTAMP. PostgreSQL supports all the
SQL99 built-in scalar functions except SESSION_USER.

Example

The following queries retrieve the values from built-in functions. Notice that the
various vendors return dates in their native formats:

/* On MySQL */
SELECT CURRENT_TIMESTAMP;
-> '2001-12-15 23:50:26'

/* On Microsoft SQL Server */
SELECT CURRENT_TIMESTAMP
GO
-> 'Dec 15,2001 23:50:26'

/* On Oracle */
SELECT USER FROM dual;
-> dylan

Numeric Scalar Functions

The list of official SQL99 numeric functions is rather small. The various vendors
provide quite a large supplement of mathematical and statistical functions. MySQL
supports many of these commands in its SQL99 incarnations. The other database
products offer the same capabilities of numeric scalar functions through their own
internally defined functions, but they do not share the same name as those
declared by the SQL standard. The supported numeric functions and syntax are
listed in Table 4-4.

Table 4-4: SQL99 Numeric Functions

Function Usage

BIT_LENGTH(expression) Returns an integer value representing the number of
bits in an expression.

CHAR_LENGTH(expression) Returns an integer value representing the number of
characters in an expression.

EXTRACT(datetime_expression
datepart FROM expression)

Allows the datepart to be extracted (YEAR, MONTH,
DAY, HOUR, MINUTE, SECOND, TIMEZONE_HOUR,
or TIMEZONE_MINUTE) from an expression.

OCTET_LENGTH(expression) Returns an integer value representing the number of
octets in an expression. This value is the same as
BIT_LENGTH/8.

POSITION(starting_string
IN search_string)

Returns an integer value representing the starting
position of a string within the search string.

,ch04.13730 Page 167 Wednesday, November 29, 2000 4:43 PM

168 Chapter 4 – SQL Functions

BIT_LENGTH, CHAR_LENGTH, and OCTET_LENGTH

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

BIT_LENGTH, CHAR_LENGTH, and OCTET_LENGTH

The closest any of the vendors get to the BIT_LENGTH function is Oracle. Oracle
supports the LENGTHB function, which returns an integer value representing the
number of bytes in an expression.

MySQL and PostgreSQL support CHAR_LENGTH and the SQL99 synonym
CHARACTER_LENGTH(). PostgreSQL also supports EXTRACT(), OCTET_LENGTH(),
and POSITION() as per the SQL99 standard. The other two vendors each have a
similar function that provides identical functionality. SQL Server provides the LEN
function and Oracle provides the LENGTH function.

MySQL and PostgreSQL also fully support the OCTET_LENGTH function.

Example

The following example determines the length of a string and a value retrieved
from a column:

/* On MySQL and PostgreSQL */
SELECT CHAR_LENGTH('hello');
SELECT OCTET_LENGTH(book_title) FROM titles;

/* On Microsoft SQL Server */
SELECT DATALENGTH(title)
FROM titles
WHERE type = 'popular_comp'
GO

/* On Oracle */
SELECT LENGTH('HORATIO') "Length of characters"
FROM dual;

EXTRACT

The EXTRACT function is not supported by the database vendors, except for
PostgreSQL and MySQL.

Each vendor supports a separate command to accomplish the same functionality.
Oracle uses the TO_CHAR function to extract a portion of a date into a character
string. SQL Server uses the CONVERT function to extract a portion of a date.

MySQL implementation is extended somewhat beyond the SQL99 standard. The
SQL99 standard does not have a provision for returning multiple fields in the same
call to EXTRACT() (e.g., “DAY_HOUR”). The MySQL extensions try to accomplish
what the combination DATE_TRUNC() and DATE_PART() do in PostgreSQL.
MySQL supports the dateparts listed in Table 4-5.

Table 4-5: MySQL Dateparts

Type value Meaning Expected format

SECOND Seconds SECONDS

MINUTE Minutes MINUTES

,ch04.13730 Page 168 Wednesday, November 29, 2000 4:43 PM

POSITION 169

Functions

POSITION

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Example

This example extracts dateparts from several datetime values:

/* On MySQL */
SELECT EXTRACT(YEAR FROM "2013-07-02");
-> 1999
SELECT EXTRACT(YEAR_MONTH FROM "2013-07-02 01:02:03");
-> 199907
SELECT EXTRACT(DAY_MINUTE FROM "2013-07-02 01:02:03");
-> 20102

POSITION

The POSITION function returns an integer that indicates the starting position of a
string within the search string. MySQL and PostgreSQL support the POSITION func-
tion with no variation from the SQL99 syntax. PostgreSQL has a synonymous
function, TEXTPOS, while MySQL has the synonymous function, LOCATE.

Oracle’s equivalent function is called INSTR. Microsoft SQL Server has both
CHARINDEX and PATINDEX. The CHARINDEX and PATINDEX are very similar,
except that PATINDEX allows the use of wildcard characters in the search criteria.
For example:

/* On MySQL */
SELECT LOCATE('bar', 'foobar');
-> 4

/* On MySQL and PostgreSQL */
SELECT POSITION('fu' IN 'snafhu');
-> 0

/* On Microsoft SQL Server */
SELECT CHARINDEX('de', 'abcdefg')
GO
-> 4

HOUR Hours HOURS

DAY Days DAYS

MONTH Months MONTHS

YEAR Years YEARS

MINUTE_SECOND Minutes and seconds “MINUTES:SECONDS”

HOUR_MINUTE Hours and minutes “HOURS:MINUTES”

DAY_HOUR Days and hours “DAYS HOURS”

YEAR_MONTH Years and months “YEARS-MONTHS”

HOUR_SECOND Hours, minutes, seconds “HOURS:MINUTES:SECONDS”

DAY_MINUTE Days, hours, minutes “DAYS HOURS:MINUTES”

DAY_SECOND Days, hours, minutes,
seconds

“DAYSHOURS:MINUTES:SECONDS”

Table 4-5: MySQL Dateparts (continued)

Type value Meaning Expected format

,ch04.13730 Page 169 Wednesday, November 29, 2000 4:43 PM

170 Chapter 4 – SQL Functions

CONCATENATE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SELECT PATINDEX('%fg', 'abcdefg')
GO
-> 6

String Functions

Basic string functions offer a number of capabilities and return a string value as a
result set. Some string functions are dyadic, indicating that they operate on two
strings at once. SQL99 supports the string functions listed in Table 4-6.

CONCATENATE

SQL99 defines a concatenation operator (||), which joins two distinct strings into
one string value. The CONCATENATE function appends two or more strings
together, producing a single output string. PostgreSQL and Oracle support the
double-pipe concatenation operator. Microsoft SQL Server uses the plus sign (+)
concatenation operator.

MySQL supports a similar function, CONCAT(). Refer to the “Concatenation Opera-
tors” section Chapter 3, SQL Statements Command Reference, for more information
on concatenation within Oracle, PostgreSQL, and Microsoft SQL Server.

SQL99 Syntax

CONCATENATE('string1' || 'string2')

MySQL Syntax

CONCAT(str1, str2, [,...n])

If any of the concatenation values are null, the entire returned string is null. Also,
if a numeric value is concatenated, it is implicitly converted to a character string:

SELECT CONCAT('My ', 'bologna ', 'has ', 'a ', 'first ', 'name...');
-> 'My bologna has a first name...'
SELECT CONCAT('My ', NULL, 'has ', 'first ', 'name...');
-> NULL

Table 4-6: SQL String Functions

Function Usage

CONCATENATE
(expression || expression)

Appends two or more literal expressions, column values, or
variables together into one string.

CONVERT Converts a string to a different representation within the same
character set.

LOWER Converts a string to all lowercase characters.

SUBSTRING Extracts a portion of a string.

TRANSLATE Converts a string from one character set to another.

TRIM Removes leading characters, trailing characters, or both from
a character string.

UPPER Converts a string to all uppercase characters.

,ch04.13730 Page 170 Wednesday, November 29, 2000 4:43 PM

CONVERT and TRANSLATE 171

Functions

CONVERT and TRANSLATE

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

CONVERT and TRANSLATE

The CONVERT function alters the representation of a character string within its
character set and collation. For example, CONVERT might be used to alter the
number of bits per character.

TRANSLATE alters the character set of a string value from one base-character set to
another. Thus, TRANSLATE might be used to translate a value from the English
character set to a Kanji (Japanese) or Russian character set. The translation must
already exist, either by default or having been created using the CREATE
TRANSLATION command.

SQL99 Syntax

CONVERT (char_value target_char_set USING form_of_use source_char_name)

TRANSLATE(char_value target_char_set USING translation_name)

Among the database vendors, only Oracle supports CONVERT and TRANSLATE
with the same meaning as SQL99. Oracle’s implementation of TRANSLATE is very
similar to SQL99, but not identical. In its implementation, Oracle accepts only two
arguments and allows translating only between the database character set or the
national language support character set.

MySQL’s implementation of the CONVERT function only translates numbers from
one base to another. In contrast, Microsoft SQL Server’s implementation of
CONVERT is a very rich utility that alters the base datatype of an expression, but is
otherwise dissimilar to the SQL99 CONVERT function. PostgreSQL does not
support CONVERT, and its implementation of TRANSLATE serves to morph any
occurrence of a character string to any other character string.

MySQL Syntax and Variations

CONV(int, from_base, to_base)

MySQL does not support TRANSLATE. This implementation of CONVERT returns a
string value representing the number as it is converted from the from_base value
to the to_base value. If any of the numbers are NULL, then the function returns
NULL. Following are some examples:

SELECT CONV("a",16,2);
-> '1010'
SELECT CONV("6E",18,8);
-> '172'
SELECT CONV(-17,10,-18);
-> '-H'

Microsoft SQL Server Syntax and Variations

CONVERT (data_type[(length) | (precision,scale)], expression[,style])

Microsoft SQL Server does not support TRANSLATE. Microsoft’s implementation of
the CONVERT function does not follow the SQL99 specification. Instead, it is func-
tionally equivalent to the CAST function. The style clause is used to define the

,ch04.13730 Page 171 Wednesday, November 29, 2000 4:43 PM

172 Chapter 4 – SQL Functions

LOWER and UPPER

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

format of a date conversion. Refer to the vendor documentation for more informa-
tion. Following is an example:

SELECT title, CONVERT(char(7), ytd_sales)
FROM titles
ORDER BY title
GO

Oracle Syntax and Variations

CONVERT('char_value', target_char_set, source_char_set)

TRANSLATE('char_value', 'from_text', 'to_text')

Under Oracle’s implementation, the CONVERT function returns the char_value in
the target character set. The char_value is the string being converted, while the
target_char_set is the name of the character set where the char_value is converted.
Source_char_set is the name of the character set where the char_value was origi-
nally stored.

Both the target and source character set can be either literals strings, variables, or
columns containing the name of the character set. Note that inadequate replace-
ment characters might be substituted when converting from or to a character set
that does not support a representation of all the characters used in the conversion.

Oracle supports several common character sets including US7ASCII, WE8DECDEC,
WE8HP, F7DEC, WE8EBCDIC500, WE8PC850, and WE8ISO8859P1. For example:

SELECT CONVERT('Groß', 'US7ASCII', 'WE8HP')
FROM DUAL;
->Gross

PostgreSQL Syntax and Variations

TRANSLATE (character_string, from_text, to_text)

PostgreSQL does not support CONVERT. PostgreSQL’s implementation of the
TRANSLATE function offers a large superset of functions compared to that found in
the SQL99 specification. Instead, it converts any occurrence of one text string to
another within another specified string. Here is an example:

SELECT TRANSLATE('12345abcde', '5a', 'XX');
-> 1234XXbcde

SELECT TRANSLATE(title, 'Computer', 'PC')
FROM titles
WHERE type = 'Personal_computer'

LOWER and UPPER

The functions LOWER and UPPER allow the case of a string to be altered quickly
and easily, so that all the characters are lower- or uppercase, respectively. These
functions are supported in all the database implementations covered in this book.

,ch04.13730 Page 172 Wednesday, November 29, 2000 4:43 PM

SUBSTRING 173

Functions

SUBSTRING

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Example

SELECT LOWER('You Talkin To ME?'), UPPER('you talking to me?!');
-> you talking to me?, YOU TALKIN TO ME?!

The various database vendors also support a variety of other text formatting func-
tions that are specific to their implementation.

SUBSTRING

The SUBSTRING function allows one character string to be extracted from another.

SQL99 Syntax

SUBSTRING(extraction_string FROM starting_position [FOR length]
[COLLATE collation_name])

If any of the inputs are NULL, the SUBSTRING function returns a NULL. The
extraction_string is where the character value is extracted from. It may be a literal
string, a column in a table with a character datatype, or a variable with a char-
acter datatype. The starting_position is an integer value telling the function at
which position to perform the extract. The optional length is an integer value that
tells the function how many characters to extract, starting at the starting_position.

MySQL Syntax and Variations

SUBSTRING(extraction_string FROM starting_position)

MySQL’s implementation assumes that the characters are to be extracted from the
starting position continuing to the end of the character string.

Microsoft SQL Server Syntax and Variations

SUBSTRING(extraction_string [FROM starting_position] [FOR length])

Microsoft SQL Server largely supports the SQL99 standard, except that it does not
allow the COLLATE clause. Microsoft allows this command to be applied to text,
image, and binary datatypes; however, the starting_position and length represent
the number of bytes rather than the number of characters to count.

Oracle Syntax and Variations

SUBSTR(extraction_string, starting_position [, length])

Oracle’s implementation, SUBSTR, largely functions the same way as SQL99. It
does not support the COLLATE clause. When a starting_value is a negative
number, Oracle counts from the end of the extraction_string. If length is omitted,
the remainder of the string (starting at starting_position) is returned.

PostgreSQL Syntax and Variations

SUBSTRING(extraction_string [FROM starting_position] [FOR length])

PostgreSQL largely supports the SQL99 standard, except that it does not accept the
COLLATE clause.

,ch04.13730 Page 173 Wednesday, November 29, 2000 4:43 PM

174 Chapter 4 – SQL Functions

TRIM

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Examples

These examples generally work on any one of the four database vendors profiled
in this book. Only the second Oracle example, with a negative starting position,
fails on the others (assuming, of course, that Oracle’s SUBSTR is translated into
SUBSTRING):

/* On Oracle, counting from the left */
SELECT SUBSTR('ABCDEFG',3,4) FROM DUAL;
-> CDEF

/* On Oracle, counting from the right */
SELECT SUBSTR('ABCDEFG',-5,4) FROM DUAL;
-> CDEF

/* On MySQL */
SELECT SUBSTRING('Be vewy, vewy quiet',5);
-> 'wy, vewy quiet''

/* On PostgreSQL or SQL Server */
SELECT au_lname, SUBSTRING(au_fname, 1, 1)
FROM authors
WHERE au_lname = 'Carson'
-> Carson C

TRIM

The TRIM function removes leading spaces, trailing characters, or both from a
specified character string. This function also removes other types of characters
from a specified character string. The default function is to trim the specified char-
acter from both sides of the character string. If no removal string is specified, TRIM
removes spaces by default.

SQL99 Syntax

TRIM([[{LEADING | TRAILING | BOTH}] [removal_string] FROM]
 target_string
 [COLLATE collation_name])

The removal_string is the character string to be stripped out. The target _string is
the character string from which characters are to be taken. If a removal_string is
not specified, then TRIM strips out spaces. The COLLATE clause forces the result
set of the function into another preexisting collation set.

MySQL, PostgreSQL, and Oracle support the SQL99 syntax of TRIM.

Microsoft SQL Server (and the other vendors for that matter) provide the functions
LTRIM and RTRIM to trim off leading spaces or trailing spaces, respectively. LTRIM
and RTRIM cannot be used to trim other types of characters.

Examples

SELECT TRIM(' wamalamadingdong ');
-> 'wamalamadingdong'

,ch04.13730 Page 174 Wednesday, November 29, 2000 4:43 PM

Vendor Extensions 175

Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SELECT TRIM(LEADING '19' FROM '1976 AMC GREMLIN');
-> '76 AMC GREMLIN'

SELECT TRIM(BOTH 'x' FROM 'xxxWHISKEYxxx');
-> 'WHISKEY'

SELECT TRIM(TRAILING 'snack' FROM 'scooby snack');
-> 'scooby '

Vendor Extensions
The following section provides a full listing and description of each vendor-
supported function. These functions are vendor-specific. Thus, a MySQL function,
for example, is not guaranteed to be supported by any other vendor. MySQL func-
tions are provided to give an idea of the capabilities available within the various
products. Refer to the vendor’s documentation for exact syntax usage.

Microsoft SQL Server–Supported Functions

Table 4-7 provides an alphabetical listing of Microsoft SQL Server–supported
functions.

Table 4-7: Microsoft SQL Server–Supported Functions

Function Description

abs(numeric_expression) Returns absolute value.

acos(float_expression) Returns angle (in radians) whose cosine is the specified
argument.

app_name() Returns application name for current session; set by
application.

ascii(character_
expression)

Converts character to a numeric ASCII code.

asin(float_expression) Returns angle (in radians) whose sine is the specified
argument.

atan(float_expression) Returns angle (in radians) whose tangent is the specified
argument.

atn2(float_expression,
float_expressioin)

Returns angle (in radians) whose tangent is
argument1/argument1.

avg([All| Distinct]
Expression)

Computes average of a column.

binary_checksum(* |
expression [,…n])

Returns binary checksum for list of expressions or row of a
table.

cast(Expression as
Data Type)

Converts a valid SQL Server expression to the specified
datatype.

ceiling(numeric_
expression)

Returns smallest integer greater than or equal to the
argument.

char(integer_expression) Converts a numeric ASCII code to a character.

charindex(expression1,
expression2 [, start_
location])

Returns position of the first occurrence of a substring in a
string.

checksum(* |
expression [,…n])

Returns checksum value (computed over row values or
expressions provided).

,ch04.13730 Page 175 Wednesday, November 29, 2000 4:43 PM

176 Chapter 4 – SQL Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

checksum_agg([ALL |
Distinct] expression)

Returns checksum of the values in group.

coalesce(expression
[,…n])

Returns the first non-NULL argument from a list of arguments.

col_length(‘table’,
‘column’)

Returns column length in bytes.

col_name(table_id,
column_id)

Returns column name, given table ID and column ID.

contains({column | },
‘contains_search_
condition’})

Searches columns on exact or “fuzzy” matches of contains_
seach_criteria. It is an elaborate function used to perform
full-text searches. Refer to the vendor documentation for
more information.

containsable(table,
column, contains_
search_condition)

Returns a table with exact and “fuzzy” matches of contains_
search_condition. It is an elaborate function used to perform
full-text searches. Refer to the vendor documentation for
more information.

convert(data_type
[(length)], expression
[, style])

Converts data from one datatype to another.

cos(float_expression) Returns cosine.

cot(float_expression) Returns cotangent.

count({[All |
Distinct] expression]| *})

Counts rows.

count(*) Computes the number of rows, including those with NULL
values.

count(DISTINCT
expression)

Calculates the number of distinct non-NULL values in a
column or expression. Each group of rows with the same
value of expression adds 1 to the result.

count(expression) Returns the number of rows with non-NULL values in a
certain column or expression.

count_big([All | Distinct]
expression)

Same as count except returns big integer.

current_timestamp Returns current date and time.

current_user Returns username in the current database of the current
session.

datalength(expression) Returns number of bytes in a character or binary string.

databasepropertyex(data
base, property)

Returns database option or property.

dateadd(datepart,
number, date)

Adds a number of dateparts (e.g., days) to a datetime value.

datediff(datepart,
startdate, enddate)

Calculates difference between two datetime values expressed
in certain dateparts.

datename(datepart,
date)

Returns name of a datepart (e.g., month) of a datetime
argument.

datepart(datepart, date) Returns value of a datepart (e.g., hour) of a datetime
argument.

day(date) Returns an integer value representing the day of the date
provided as a parameter.

db_id(‘[database_
name]’)

Returns database ID and given name.

db_name(database_id) Returns the database name.

Table 4-7: Microsoft SQL Server–Supported Functions (continued)

Function Description

,ch04.13730 Page 176 Wednesday, November 29, 2000 4:43 PM

Vendor Extensions 177

Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

degrees(numeric_
expression)

Converts radians to degrees.

difference(character_
expression, character_
expression)

Compares how two arguments sound and returns a number
from 0 to 4. Higher result indicates better phonetic match.

exp(float_expression) Returns exponential value.

floor(numeric_
expression)

Returns largest integer less than or equal to the argument.

file_id(‘file_name’) Returns the file ID for the logical filename.

file_name(file_id) Returns the logical filename for file ID.

filegroup_id
(‘filegroup_name’)

Returns filegroup ID for the logical filegroup name.

filegroup_name
(filegroup_id)

Returns the logical filegroup name for filegroup ID.

filegroupproperty
(filegroup_name,
property)

Returns filegroup property value for the specified property.

fileproperty
(file, property)

Returns file property value for the specified property.

fulltextcatalog
property(catalog_name,
property)

Returns full-text catalog properties.

fulltextservice
property(property)

Returns full-text service level properties.

formatmessage
(msg_number, param_
value [,… n])

Constructs a message from an existing message in
SYSMESSAGES table (similar to RAISERROR).

freetexttable(table
 { column |*}, ‘freetext_
string’ [, top_n_by_rank])

Used for full-text search; returns a table with columns that
match the meaning but don’t exactly match value of freetext_
string.

getdate() Returns current date and time.

getansinull([‘database’]) Returns default nullability setting for new columns.

getutcdate() Returns Universal Time Coordinate (UTC) date.

grouping(column_
name)

Returns 1 when the row is added by CUBE or ROLLUP; other-
wise, returns 0.

host_id() Returns workstation ID of a given process.

host_name() Returns process hostname.

ident_incr
(‘table_or_view’)

Returns identity-column increment value.

ident_seed
(‘table_or_view’)

Returns identity seed value.

ident_current
(‘table_name’)

Returns the last identity value generated for the specified
table.

identity(data_type [,
seed, increment]) As
column_name

Used in SELECT INTO statement to insert an identity column
into the destination table.

index_col(‘table’,
index_id, key_id)

Returns index column name, given table ID, index ID, and
column sequential number in the index key.

indexproperty(table_id,
index, property)

Returns index property (such as Fillfactor).

Table 4-7: Microsoft SQL Server–Supported Functions (continued)

Function Description

,ch04.13730 Page 177 Wednesday, November 29, 2000 4:43 PM

178 Chapter 4 – SQL Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

MySQL-Supported Functions

Table 4-8 provides an alphabetical listing of MySQL-supported functions.

isdate(expression) Validates if a character string can be converted to DATETIME.

is_member({‘group’ |
‘role’})

Returns true or false (1 or 0) depending on whether user is a
member of NT group or SQL Server role.

is_srvrolemember
(‘role’ [,’login’])

Returns true or false (1 or 0) depending on whether user is a
member of specified server role.

isnull(check_expression,
replacement_value)

Returns the first argument if it is not NULL; otherwise, returns
the second argument.

isnumeric(expression) Validates if a character string can be converted to NUMERIC.

left(character_
expression, integer_
expression)

Returns a portion of a character expression, starting at
integer_expression from left.

len(string_expression) Returns the number of characters in the expression.

log(float_expression) Returns natural logarithm.

log10(float_expression) Returns base-10 logarithm.

lower(character_
expression)

Converts a string to lowercase.

ltrim(character_
expression)

Trims leading-space characters.

max([All | Distinct]
expression)

Finds maximum value in a column.

min([All | Distinct]
expression)

Finds minimum value in a column.

month(date) Returns month part of the date provided.

nchar(integer_
expression)

Returns the unicode character with the given integer code.

newid() Creates a new unique identifier of type uniqueidentifier.

nullif(expression,
expression)

Returns NULL if two specified expressions are equivalent.

object_id(‘object’) Returns object ID and given name.

object_name(object_id) Returns object name and given ID.

objectproperty
(id, property)

Returns properties of objects in the current database.

Table 4-8: MySQL-Supported Functions

Function Description

abs(X) Returns the absolute value of X.

acos(X) Returns the arc cosine of X, i.e., the value whose cosine is X;
returns NULL if X is not in the range –1 to 1.

ascii(str) Returns the ASCII code value of the leftmost character of the
string str; returns 0 if str is the empty string; returns NULL if
str is NULL.

asin(X) Returns the arc sine of X, i.e., the value whose sine is X;
returns NULL if X is not in the range –1 to 1.

Table 4-7: Microsoft SQL Server–Supported Functions (continued)

Function Description

,ch04.13730 Page 178 Wednesday, November 29, 2000 4:43 PM

Vendor Extensions 179

Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

atan(X) Returns the arctangent of X, i.e., the value whose tangent is
X.

atan2(X,Y) Returns the arctangent of the two variables X and Y.

avg(expr) Returns the average value of expr.

benchmark(count,expr) Executes the expression expr count times. It may be used to
time how fast MySQL processes the expression. The result
value is always 0.

binary Casts the string following it to a binary string.

bin(N) Returns a string representation of the binary value of N,
where N is a long (BIGINT) number.

bit_count(N) Returns the number of bits that are set in the argument N.

bit_and(expr) Returns the bitwise AND of all bits in expr. The calculation is
performed with 64-bit (BIGINT) precision.

bit_or(expr) Returns the bitwise OR of all bits in expr. The calculation is
performed with 64-bit (BIGINT) precision.

CASE value WHEN
[compare-value] THEN
result [WHEN [compare-
value] THEN result ...]
[ELSE result] END
CASE WHEN [condition]
THEN result [WHEN
[condition] THEN result ..
.] [ELSE result] END

The first version returns the result where value=compare-
value. The second version returns the result for the first
condition that is true.
If there is no matching result value, then the result after ELSE
is returned. If there is no ELSE part, NULL is returned.

ceiling(X) Returns the smallest integer value not less than X.

char(N,...) Interprets the arguments as integers and returns a string
consisting of the characters given by the ASCII code values of
those integers. NULL values are skipped.

coalesce(list) Returns first non-NULL element in the list.

concat(str1,str2,...) Returns the string that results from concatenating the
arguments.

concat_ws(separator,
str1, str2,...)

Stands for CONCAT With Separator and is a special form of
CONCAT(). The first argument is the separator for the rest of
the arguments. The separator and the rest of the arguments
can be a string. If the separator is NULL, the result is NULL.
The function skips any NULLs and empty strings after the
separator argument. The separator is added between the
strings to be concatenated.

connection_id() Returns the connection ID (thread_id) for the connection.
Every connection has its own unique ID.

conv(N,from_base,to_
base)

Converts numbers between different number bases; returns a
string representation of the number N, converted from base
from_base to base to_base ; returns NULL if any argument is
NULL.

cos(X) Returns the cosine of X, where X is given in radians.

cot(X) Returns the cotangent of X.

count(DISTINCT
expr,[expr...])

Returns a count of the number of different values.

count(expr) Returns a count of the number of non-NULL values in the
rows retrieved by a SELECT statement.

curdate()
current_date

Returns today’s date as a value in ‘YYYY-MM-DD’ or
YYYYMMDD format, depending on whether the function is
used in a string or numeric context.

Table 4-8: MySQL-Supported Functions (continued)

Function Description

,ch04.13730 Page 179 Wednesday, November 29, 2000 4:43 PM

180 Chapter 4 – SQL Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

curtime()
current_time

Returns the current time as a value in ‘HH:MM:SS’ or
HHMMSS format, depending on whether the function is used
in a string or numeric context.

database() Returns the current database name.

date_
add(date,INTERVAL expr
type)
date_sub(date,INTERVAL
expr type)
adddate(date,INTERVAL
expr type)
subdate(date,INTERVAL
expr type)

These functions perform date arithmetic. ADDDATE() and
SUBDATE() are synonyms for DATE_ADD() and DATE_
SUB(). date is a DATETIME or DATE value specifying the
starting date. expr is an expression specifying the interval
value to be added or subtracted from the starting date. expr
may start with a - for negative intervals. type indicates how
the expression should be interpreted.

date_format
(date,format)

Formats the date value according to the format string.

dayname(date) Returns the name of the weekday for date.

dayofmonth(date) Returns the day of the month for date, in the range 1 to 31.

dayofweek(date) Returns the weekday index for date (1 = Sunday, 2 =
Monday, . . . 7 = Saturday).

dayofyear(date) Returns the day of the year for date, in the range 1 to 366.

decode(crypt_str,
pass_str)

Decrypts the encrypted string crypt_str using pass_str as the
password. crypt_str should be a string returned from
ENCODE().

degrees(X) Returns the argument X, converted from radians to degrees.

elt(N,str1,str2,str3,...) Returns str1 if N = 1, str2 if N = 2, and so on. Returns NULL if
N is less than 1 or greater than the number of arguments.
ELT() is the complement of FIELD().

encode(str,pass_str) Encrypts str using pass_str as the password. To decrypt the
result, use DECODE(). The result is a binary string the same
length as the string.

encrypt(str[,salt]) Encrypts str using the Unix crypt() system call. The salt argu-
ment should be a string with two characters.

exp(X) Returns the value of e (the base of natural logarithms) raised
to the power of X.

export_set
(bits,on,off,[separator,
[number_of_bits]])

Returns a string where every bit set in ‘bit’ gets an ‘on’ string
and every reset bit gets an ‘off’ string. Each string is separated
with ‘separator’ (default ‘,’) and only ‘number_of_bits’ (default
64) of ‘bits’ is used.

field(str,str1,str2,str3,...) Returns the index of str in the str1, str2, str3, . . . list. Returns
0 if str is not found. FIELD() is the complement of ELT().

find_in_set(str,strlist) Returns a value 1 to N if the string str is in the list strlist
consisting of N substrings. A string list is a string composed of
substrings separated by ‘,’ characters. Returns 0 if str is not in
strlist or if strlist is the empty string. Returns NULL if either
argument is NULL. This function does not work properly if
the first argument contains a ‘,’.

floor(X) Returns the largest integer value not greater than X.

format(X,D) Formats the number X to a format like ‘#,###,###.##’, rounded
to D decimals. If D is 0, the result has no decimal point or
fractional part.

from_days(N) Given a daynumber N, returns a DATE value. Not intended
for use with values that precede the advent of the Gregorian
calendar (1582), due to the days lost when the calendar was
changed.

Table 4-8: MySQL-Supported Functions (continued)

Function Description

,ch04.13730 Page 180 Wednesday, November 29, 2000 4:43 PM

Vendor Extensions 181

Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

from_unixtime(unix_
timestamp)

Returns a representation of the unix_timestamp argument as
a value in ‘YYYY-MM-DD HH:MM:SS’ or YYYYMMDDH-
HMMSS format, depending on whether the function is used in
a string or numeric context.

from_unixtime(unix_
timestamp,format)

Returns a string representation of the unix_timestamp,
formatted according to the format string. Format may contain
the same specifiers as those listed in the entry for the DATE_
FORMAT() function.

get_lock(str,timeout) Tries to obtain a lock with a name given by the string str,
with a timeout of timeout seconds. Returns 1 if the lock is
obtained successfully, 0 if the attempt times out, or NULL if
an error occurs.

greatest(X,Y,...) Returns the largest (maximum-valued) argument.

hex(N) Returns a string representation of the hexadecimal value of N,
where N is a long (BIGINT) number. This is equivalent to
CONV(N,10,16). Returns NULL if N is NULL.

interval(N,N1,N2,N3,...) Returns 0 if N < N1, 1 if N < N2, and so on. All arguments are
treated as integers. It is required that N1 < N2 < N3 < . . .
< Nn for this function to work correctly.

hour(time) Returns the hour for time, in the range 0 to 23.

if(expr1,expr2,expr3) If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL), then
IF() returns expr2, else it returns expr3. IF() returns a
numeric or string value, depending on the context in which it
is used.

ifnull(expr1,expr2) If expr1 is not NULL, IFNULL() returns expr1; otherwise it
returns expr2. IFNULL() returns a numeric or string value,
depending on the context in which it is used.

isnull(expr) If expr is NULL, ISNULL() returns 1; otherwise it returns 0.

insert(str,pos,len,newstr) Returns the string str. The substring begins at position pos and
is 10 characters long, replaced by the string newstr.

instr(str,substr) Returns the position of the first occurrence of substring substr
in string str.

last_insert_id([expr]) Returns the last automatically generated value that was
inserted into an AUTO_INCREMENT column.

lcase(str)
lower(str)

Returns the string str with all characters changed to lowercase
according to the current character-set mapping (default is
ISO-8859-1 Latin1).

least(X,Y,...) With two or more arguments, returns the smallest (minimum-
valued) argument.

left(str,len) Returns the leftmost len characters from the string str.

length(str)
octet_length(str)
char_length(str)
character_length(str)

These functions return the length of the string str.

load_file(file_name) Reads the file and returns the file contents as a string. The file
must be on the server, and the user must specify the full path-
name to the file and have the file privilege.

locate(substr,str)
position(substr IN str)

Returns the position of the first occurrence of substring substr
in string str. Returns 0 if substr is not in str.

locate(substr,str,pos) Returns the position of the first occurrence of substring substr
in string str, starting at position pos; returns 0 if substr is not in
str.

Table 4-8: MySQL-Supported Functions (continued)

Function Description

,ch04.13730 Page 181 Wednesday, November 29, 2000 4:43 PM

182 Chapter 4 – SQL Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

log(X) Returns the natural logarithm of X.

log10(X) Returns the base-10 logarithm of X.

lpad(str,len,padstr) Returns the string str, left-padded with the string padstr until
str is 10 characters long.

ltrim(str) Returns the string str with leading-space characters removed.

make_set(bits,str1,str2, . .
.)

Returns a set (a string containing substrings separated by ‘,’
characters) consisting of the strings that have the corre-
sponding bits in bit set. str1 corresponds to bit 0, str2 to bit 1,
etc. NULL strings in str1, str2, . . . are not appended to the
result.

md5(string) Calculates a MD5 checksum for the string. Value is returned
as a 32-long hex number.

min(expr)
max(expr)

Returns the minimum or maximum value of expr. MIN() and
MAX() may take a string argument; in such cases they return
the minimum or maximum string value.

minute(time) Returns the minute for time, in the range 0 to 59.

mod(N,M) % Modulo (like the % operator in C); returns the remainder of
N divided by M.

month(date) Returns the month for date, in the range 1 to 12.

monthname(date) Returns the name of the month for date.

now()
sysdate()
current_timestamp

Returns the current date and time as a value in ‘YYYY-MM-
DD HH:MM:SS’ or YYYYMMDDHHMMSS format, depending
on whether the function is used in a string or numeric
context.

nullif(expr1,expr2) If expr1 = expr2 is true, returns NULL; otherwise returns
expr1.

oct(N) Returns a string representation of the octal value of N, where
N is a long number. This is equivalent to CONV(N,10,8).
Returns NULL if N is NULL.

ord(str) If the leftmost character of the string str is a multibyte
character, returns the code of multibyte character by returning
the ASCII code value of the character in the format of:
((first byte ASCII code)*256+(second byte ASCII
code))[*256+third byte ASCII code...]
If the leftmost character is not a multibyte character, returns
the same value as the ASCII() function does.

password(str) Calculates a password string from the plain-text password str.
This is the function that is used for encrypting MySQL
passwords for storage in the Password column of the user
grant table.

period_add(P,N) Adds N months to period P (in the format YYMM or
YYYYMM). Returns a value in the format YYYYMM. Note that
the period argument P is not a date value.

period_diff(P1,P2) Returns the number of months between periods P1 and P2.
P1 and P2 should be in the format YYMM or YYYYMM. Note
that the period arguments P1 and P2 are not date values.

pi() Returns the value of _π.

pow(X,Y)
power(X,Y)

Returns the value of X raised to the power of Y.

quarter(date) Returns the quarter of the year for date, in the range 1 to 4.

radians(X) Returns the argument X, converted from degrees to radians.

Table 4-8: MySQL-Supported Functions (continued)

Function Description

,ch04.13730 Page 182 Wednesday, November 29, 2000 4:43 PM

Vendor Extensions 183

Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

rand()
rand(N)

Returns a random floating-point value in the range 0 to 1.0.
If an integer argument N is specified, it is used as the seed
value.

release_lock(str) Releases the lock named by the string str that was obtained
with GET_LOCK(). Returns 1 if the lock is released, 0 if the
lock isn’t locked by this thread (in which case the lock is not
released), and NULL if the named lock doesn’t exist.

repeat(str,count) Returns a string consisting of the string str repeated count
times. If count <= 0, returns an empty string. Returns NULL if
str or count are NULL.

replace(str,from_str,to_
str)

Returns the string str with all occurrences of the string
from_str replaced by the string to_str.

reverse(str) Returns the string str with the order of the characters
reversed.

right(str,ten) Returns the rightmost 10 characters from the string str.

round(X) Returns the argument X, rounded to an integer.

round(X,D) Returns the argument X, rounded to a number with D
decimals. If D is 0, the result has no decimal point or frac-
tional part.

rpad(str,len,padstr) Returns the string str, right-padded with the string padstr until
str is ten characters long.

rtrim(str) Returns the string str with trailing space characters removed.

sec_to_time(seconds) Returns the seconds argument, converted to hours, minutes,
and seconds, as a value in ‘HH:MM:SS’ or HHMMSS format,
depending on whether the function is used in a string or
numeric context.

second(time) Returns the second for time, in the range 0 to 59.

sign(X) Returns the sign of the argument as –1, 0, or 1, depending on
whether X is negative, zero, or positive.

sin(X) Returns the sine of X, where X is given in radians.

soundex(str) Returns a soundex string from str. Two strings that sound
“about the same” should have identical soundex strings.
A “standard” soundex string is four characters long, but the
SOUNDEX() function returns an arbitrarily long string. A
SUBSTRING() can be used on the result to get a “standard”
soundex string. All non-alphanumeric characters are ignored
in the given string. All international alphabetic characters
outside the A–Z range are treated as vowels.

space(N) Returns a string consisting of N space characters.

sqrt(X) Returns the nonnegative square root of X.

std(expr)
stddev(expr)

Returns the standard deviation of expr. The STDDEV() form
of this function is provided for Oracle compatability.

strcmp(expr1,expr2) STRCMP() returns 0 if the strings are the same, –1 if the first
argument is smaller than the second according to the current
sort order, and 1 otherwise.

substring(str,pos,len)
substring(str FROM
 pos FOR len)
mid(str,pos,len)

Returns a substring 10 characters long from string str, starting
at position pos. The variant form that uses FROM is ANSI
SQL92 syntax.

Table 4-8: MySQL-Supported Functions (continued)

Function Description

,ch04.13730 Page 183 Wednesday, November 29, 2000 4:43 PM

184 Chapter 4 – SQL Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Oracle SQL–Supported Functions

Table 4-9 provides an alphabetical listing of the SQL functions specific to Oracle.

substring_index
(str,delim,count)

Returns the substring from string str after count occurrences
of the delimiter delim. If count is positive, everything to the
left of the final delimiter (counting from the left) is returned.
If count is negative, everything to the right of the final
delimiter (counting from the right) is returned.

substring(str,pos)
substring(str FROM pos)

Returns a substring from string str starting at position pos.

sum(expr) Returns the sum of expr. Note that if the return set has no
rows, it returns NULL.

tan(X). Returns the tangent of X, where X is given in radians.

time_format
(time,format)

This is used like DATE_FORMAT(), but the format string may
contain only those format specifiers that handle hours,
minutes, and seconds. Other specifiers produce a NULL value
or 0.

time_to_sec(time) Returns the time argument, converted to seconds.

to_days(date) Given a date, returns a daynumber (the number of days since
year 0).

trim([[BOTH | LEADING
| TRAILING] [remstr]
FROM] str)

Returns the string str with all remstr prefixes and/or suffixes
removed. If none of the specifiers BOTH, LEADING, or
TRAILING are given, BOTH is assumed. If remstr is not
specified, spaces are removed.

truncate(X,D) Returns the number X, truncated to D decimals. If D is 0, the
result has no decimal point or fractional part.

ucase(str)
upper(str)

Returns the string str with all characters changed to uppercase
according to the current character set mapping (default is
ISO-8859-1 Latin1).

unix_timestamp()
unix_timestamp(date)

If called with no argument, returns a Unix timestamp
(seconds since ‘1970-01-01 00:00:00’ GMT). If UNIX_
TIMESTAMP() is called with a date argument, it returns
the value of the argument as seconds since ‘1970-01-01
00:00:00’ GMT.

user()
system_user()
session_user()

These functions return the current MySQL username.

version() Returns a string indicating the MySQL server version.

week(date)
week(date,first)

With a single argument, returns the week for date, in the
range 0 to 53. (The beginning of a week 53 is possible during
some years.) The two-argument form of WEEK() allows the
user to specify whether the week starts on Sunday (0) or
Monday (1).

weekday(date) Returns the weekday index for date (0 = Monday, 1 =
Tuesday, . . . 6 = Sunday).

year(date) Returns the year for date, in the range 1000 to 9999.

yearweek(date)
yearweek(date,first)

Returns year and week for a date. The second argument
works exactly like the second argument to WEEK(). Note that
the year may be different from the year in the date argument
for the first and the last week of the year.

Table 4-8: MySQL-Supported Functions (continued)

Function Description

,ch04.13730 Page 184 Wednesday, November 29, 2000 4:43 PM

Vendor Extensions 185

Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Table 4-9: Oracle-Supported Functions

Function Description

abs(number) Returns the absolute value of number.

acos(number) Returns the arc cosine of number ranging from –1 to 1. The
result ranges from 0 to π and is expressed in radians.

add_months(date, int) Returns the date date plus int months.

ascii(string) Returns the decimal value in the database character set of the
first character of string; returns an ASCII value when the
database character set is 7-bit ASCII; returns EBCDIC values if
the database character set is EBCDIC Code Page 500.

asin(number) Returns the arc sine of number ranging from –1 to 1. The
resulting value ranges from −π/2 to π /2 and is expressed in
radians.

atan(number) Returns the arctangent of any number. The resulting value
ranges from −π /2 to p/2 and is expressed in radians.

atan2(number,nbr) Returns the arctangent of number and nbr. The values for
number and nbr are not restricted, but the results range from
−π to π and are expressed in radians.

avg([DISTINCT]
expression) over
(analytics)

Returns the average value of expr. It can be used as an
aggregate or analytic function (analytic functions are beyond
the scope of this text).

bfilename(‘directory’,’file
name’)

Returns a BFILE locator associated with a physical LOB binary
filename on the server’s filesystem in directory.

ceil(number) Returns smallest integer greater than or equal to number.

chartorowid(char) Converts a value from a character datatype (CHAR or
VARCHAR2 datatype) to ROWID datatype.

chr(number [USING
NCHAR_CS])

Returns the character having the binary equivalent to number
in either the database character set (if USING NCHAR_CS is
not included) or the national character set (if USING NCHAR_
CS is included).

concat(string1, string2) Returns string1 concatenated with string2. It is equivalent to
the concatenation operator (||).

convert(char_value,
target_char_set, source_
char_set)

Converts a character string from one character set to another;
returns the char_value in the target_char_set after converting
char_value from the source_char_set.

corr(expression1,
expression2) over
(analytics)

Returns the correlation coefficient of a set of numbered pairs
(expressions 1 and 2). It can be used as an aggregate or
analytic function (analytic functions are beyond the scope of
this text).

cos(number) Returns the cosine of number as an angle expressed in
radians.

cosh(number) Returns the hyperbolic cosine of number.

count Returns the number of rows in the query; refer to the earlier
section on COUNT for more information.

covar_pop(expression1,
expression2) over
(analytics)

Returns the population covariance of a set of number pairs
(expressions 1 and 2). It can be used as an aggregate or
analytic function (analytic functions are beyond the scope of
this text).

covar_samp(expression1,
expression2)
over(analytics)

Returns the sample covariance of a set of number pairs
(expressions 1 and 2). It can be used as an aggregate or
analytic function (analytic functions are beyond the scope of
this text).

cume_dist() ([OVER
(query)] ORDER BY…)

The cumulative distribution function computes the relative
position of a specified value in a group of values.

,ch04.13730 Page 185 Wednesday, November 29, 2000 4:43 PM

186 Chapter 4 – SQL Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

decode(expr search ,
result [,. n] [,default])

Compares expr to the search value; if expr is equal to a
search, returns the result. Without a match, DECODE returns
default, or NULL if default is omitted. Refer to Oracle docu-
mentation for more details.

dense_rank() ([OVER
(query)] ORDER BY…)

Computes the rank of each row returned from a query with
respect to the other rows, based on the values of the value_
exprs in the ORDER_BY_clause.

deref(expression) Returns the object reference of expression, where expression
must return a REF to an object.

dump(expression
[,return_format [,
starting_at [,length]]])

Returns a VARCHAR2 value containing a datatype code,
length in bytes, and internal representation of expression. The
resulting value is returned in the format of return_format.

empth[B | C]lob() Returns an empty LOB locator that can be used to initialize a
LOB variable. It can also be used to initialize a LOB column
or attribute to empty in an INSERT or UPDATE statement.

exp(number) Returns E raised to the numbered power, where
E = 2.71828183.

first_value(expression)
over (analytics)

Returns the first value in an ordered set of values.

floor(number) Returns largest integer equal to or less than number.

greatest(expression
[,…n])

Returns the greatest of the list of expressions. All expressions
after the first are implicitly converted to the datatype of the
first expression before the comparison.

grouping(expression) Distinguishes null cause by a super-aggregation in GROUP BY
extension from an actual null value.

hextoraw(string) Converts string containing hexadecimal digits into a raw
value.

initcap(string) Returns string, with the first letter of each word in uppercase
and all other letters in lowercase.

instr(string1, string2,
start_at, occurrence)

Searches one character string for another character string.
INSRT search char1 with a starting position of start_at (an
integer) looking for the numeric occurrence within string2.
Returns the position of the character in string1 that is the first
character of this occurrence.

instrb(string1, string2,
[start_a[t, occurrence]])

The same as INSTR, except that start_at and the return value
are expressed in bytes instead of characters.

lag(expression
[,offset][,default])
over(analytics)

Provides access to more than one row of a table at the same
time without a self join; refer to the vendor documentation
for more information.

last_day(date) Returns the date of the last day of the month that contains
date.

last_value(expression)
over (analytics)

Returns the last value in an ordered set of values; refer to the
vendor documentation for more information.

lead(expression
[,offset][,default])
over(analytics)

Provides access to more than one row of a table at the same
time without a self join. Analytic functions are beyond the
scope of this text.

least(expression [,…n]) Returns the least of the list of expressions.

length(string) Returns the integer length of string, or null if string is null.

lengthb(string) Returns the length of char in bytes; otherwise, the same as
LENGTH.

ln(number) Returns the natural logarithm of number, where the number
is greater than 0.

Table 4-9: Oracle-Supported Functions (continued)

Function Description

,ch04.13730 Page 186 Wednesday, November 29, 2000 4:43 PM

Vendor Extensions 187

Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

log(base_number,
number)

Returns the logarithm of any base_number of number.

lower(string) Returns string in the same datatype as it was supplied with all
characters lowercase.

lpad(string1, number
[,string2])

Returns string1, left-padded to length number using
characters in string2; string2 defaults to a single blank.

ltrim(string[, set]) Removes all characters in set from the left of string. Set
defaults to a single blank.

make_ref({table_name |
view_name} , key [,…n])

Creates a reference (REF) to a row of an object view or a row
in an object table whose object identifier is primary
key-based.

max([DISTINCT]
expression) over
(analytics)

Returns maximum value of expression. It can be used as an
aggregate or analytic function (analytic functions are beyond
the scope of this text).

min([DISTINCT]
expression) over
(analytics)

Returns minimum value of expression. It can be used as an
aggregate or analytic function (analytic functions are beyond
the scope of this text).

mod(dividend, divider) Returns remainder of dividend divided by divider ; returns the
dividend if divider is 0.

months_between
(date1, date2)

Returns number of months between dates date1 and date2.
When date1 is later than date2, the result is positive. If it is
earlier, the result is negative.

new_time(date, time_
zone1, time_zone2)

Returns the date and time in time_zone2 when date and time
in time_zone1 are date. Time_zones 1 and 2 may be any of
these text strings:
• AST, ADT: Atlantic Standard or Daylight Time
• BST, BDT: Bering Standard or Daylight Time
• CST, CDT: Central Standard or Daylight Time
• EST, EDT: Eastern Standard or Daylight Time
• GMT: Greenwich Mean Time
• HST, HDT: Alaska-Hawaii Standard Time or Daylight Time
• MST, MDT: Mountain Standard or Daylight Time
• NST: Newfoundland Standard Time
• PST, PDT: Pacific Standard or Daylight Time
• YST, YDT: Yukon Standard or Daylight Time

next_day(date, string) Returns the date of the first weekday named by string that is
later than date. The argument string must be either the full
name or the abbreviation of a day of the week in the date
language of the session.

nls_charset_decl_
len(bytecnt, csid)

Returns the declaration width (bytecnt) of an NCHAR column
using the character set ID (csid) of the column.

nls_charset_id(text) Returns the NLS character set ID number corresponding to
text.

nls_charset_
name(number)

Returns the VARCHAR2 name for the NLS character set
corresponding to the ID number.

nls_initcap(string
[,’nlsparameter’])

Returns string with the first letter of each word in uppercase
and all other letters in lowercase. The nlsparameter offers
special linguistic sorting features.

nls_lower(string,
[,’nlsparameter’])

Returns string with all letters lowercase. The nlsparameter
offers special linguistic sorting features.

nlssort(string
[,’nlsparameter’])

Returns the string of bytes used to sort string. The
nlsparameter offers special linguistic sorting features.

nls_upper string
[,’nlsparameter’])

Returns string with all letters uppercase. The nlsparameter
offers special linguistic sorting features.

Table 4-9: Oracle-Supported Functions (continued)

Function Description

,ch04.13730 Page 187 Wednesday, November 29, 2000 4:43 PM

188 Chapter 4 – SQL Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ntile(expression) over
(query_partition ORDER
BY…)

Divides an ordered data set into a number of buckets
numbered 1 to expression and assigns the appropriate bucket
number to each row.

numtodsinterval
(number, ‘string’)

Converts number to an INTERVAL DAY TO SECOND literal,
where number is a number or an expression resolving to a
number, such as a numeric datatype column.

numtoyminterval
(number, ‘string’)

Converts number to an INTERVAL DAY TO MONTH literal,
where number is a number or an expression resolving to a
number, such as a numeric datatype column.

nvl(expression1,
expression2)

If expression1 is null, expression2 is returned in the place of a
null value. Otherwise, expression1 is returned. The
expressions may be any datatype.

nvl2(expression1,
expression2, expression3)

Similar to NLV, except that if expression1 is not null,
expression2 is returned. If expression1 is null, expression3 is
returned. The expressions may be any datatype, except
LONG.

percent_rank() over
(query_partition ORDER
BY…)

Similar to the CUME_DIST analytical function. Rather than
return the cumulative distribution, it returns the percentage
rank of a row compared to the others in its result set. Refer to
the vendor documentation for more assistance.

power(number, power) Returns number raised to the nth power. The base and the
exponent can be any numbers, but if number is negative,
power must be an integer.

rank (value_expression)
over (query_partition
ORDER BY …)

Computes the rank of each row returned from a query with
respect to the other rows returned by the query, based on the
values of the value_expression in the ORDER_BY_clause.

ratio_to_report
(value_exprs) over
(query_partition)

Computes the ratio of a value to the sum of a set of values. If
values_expr is null, the ratio-to-report value also is null.

rawtohex(raw) Converts a raw value to a string (character datatype) of its
hexadecimal equivalent.

ref(table_alias) REF takes a table alias associated with a row from a table or
view. A special reference value is returned for the object
instance that is bound to the variable or row.

reftohex(expression) Converts argument expression to a character value containing
its hexadecimal equivalent.

regr_ xxx(expression1,
expression2) over
(analytics)

Linear regression functions fit an ordinary-least-squares
regression line to a set of number pairs where expression1 is
the dependent variable and expression2 is the independent
variable. The linear regression functions are:
• REGR_SLOPE: returns the slope of the line
• REGR_INTERCEPT: returns the y-intercept of the

regression line
• REGR_COUNT: returns the number of non-null pairs

fitting the regression line
• REGR_R2: returns the coefficient of determination for the

regression
• REGR_AVGX: returns the average of the independent

variable
• REGR_AVGY: returns the average of the dependent

variable
• REGR_SXX: calculates REGR_COUNT(exp1, exp2) *

VAR_POP(exp2)
• REGR_SYY: calculates REGR_COUNT(exp1, exp2) *

VAR_POP(exp1)
• REGR_SXY: calculates REGR_COUNT(exp1, exp2) *

COVAR_POP(exp1, exp2)
These can be used as aggregate or analytic functions.

Table 4-9: Oracle-Supported Functions (continued)

Function Description

,ch04.13730 Page 188 Wednesday, November 29, 2000 4:43 PM

Vendor Extensions 189

Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

replace(string, search_
string [,replacement_
string])

Returns string with every occurrence of search_string
replaced with replacement_string.

round (number,
decimal)

Returns number rounded to decimal places right of the
decimal point. When decimal is omitted, number is rounded
to 0 places. Note that decimal, an integer, can be negative to
round off digits left of the decimal point.

round (date[, format]) Returns the date rounded to the unit specified by the format
model format. When format is omitted, date is rounded to the
nearest day.

row_number () over
(query_partition ORDER
BY …)

Assigns a unique number to each row where it is applied in
the ordered sequence of rows specified by the ORDER_BY_
clause, beginning with 1.

rowidtochar(rowid) Converts a rowid value to VARCHAR2 datatype, 18 characters
long.

rpad(string1, number [,
string2])

Returns string1, right-padded to length number with the
value of string2, repeated as needed. String2 defaults to a
single blank.

rtrim(string[,set]) Returns string, with all the rightmost characters that appear in
set removed; set defaults to a single blank.

sign(number) When number < 0, returns –1. When number = 0, returns 0.
When number > 0, returns 1.

sin(number) Returns the sine of number as an angle expressed in radians.

sinh(number) Returns the hyperbolic sine of number.

soundex(string) Returns a character string containing the phonetic
representation of string. This function allows words that are
spelled differently but sound alike in English to be compared
for equality.

sqrt(number) Returns square root of number, a nonnegative number.

stddev([DISTINCT]
expression) over
(analytics)

Returns sample standard deviation of a set of numbers shown
as expression.

stdev_pop(expression)
over (analytics)

Computes the population standard deviation and returns the
square root of the population variance.

seddev_samp(expression)
over (analytics)

Computes the cumulative sample standard deviation and
returns the square root of the sample variance.

substr(extraction_string
[FROM starting_position]
[FOR length])

Refer to the earlier section on SUBSTR.

substrb(extraction_string
[FROM starting_position]
[FOR length])

SUBSTRB is the same as SUBSTR, except that the arguments m
starting_position and length are expressed in bytes, rather
than in characters.

sum([DISTINCT]
expression) over
(analytics)

Returns sum of values of expr ; refer to vendor documentation
for assistance with analytics and the OVER subclause.

sys_context
(‘namespace’,’attribute’
[,length])

Returns the value of attribute associated with the context
namespace, usable in both SQL and PL/SQL statements.

sys_guid() Generates and returns a globally unique identifier (RAW
value) made up of 16 bytes.

sysdate Returns the current date and time, requiring no arguments.

tan(number) Returns the tangent of number as an angle expressed in
radians.

Table 4-9: Oracle-Supported Functions (continued)

Function Description

,ch04.13730 Page 189 Wednesday, November 29, 2000 4:43 PM

190 Chapter 4 – SQL Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

tanh(number) Returns the hyperbolic tangent of number

to_char (date [, format
 [, ‘nls_parameter’]])

Converts date to a VARCHAR2 in the format specified by the
date format format. When fmt is omitted, date is converted to
the default date format. The nls_parameter option offers
additional control over formatting options.

to_char (number
 [, format [, ‘nls_
parameter’]])

Converts number to a VARCHAR2 in the format specified by
the number format format. When fmt is omitted, number is
converted to a string long enough to hold the number. The
nls_parameter option offers additional control over
formatting options.

to_date(string [, format
 [, ‘nls_parameter’]])

Converts string (in CHAR or VARCHAR2) to a DATE datatype.
The nls_parameter option offers additional control over
formatting options.

to_lob(long_column) Usable only by LONG or LONG RAW expressions, it converts
LONG or LONG RAW values in the column long_column to
LOB values. It is usable only in the SELECT list of a subquery
in an INSERT statement.

to_multi_byte(string) Returns string with all of its single-byte characters converted
to their corresponding multi-byte characters.

to_number(string [,
format [,’nls_
parameter’]])

Converts a numeric string (of CHAR or VARCHAR2 datatype)
to a value of a NUMBER datatype in the format specified by
the optional format model format. The nls_parameter option
offers additional control over formatting options.

to_single_byte(string) Returns string with all of its multi-byte characters converted to
their corresponding single-byte characters.

translate(‘char_value’,
‘from_text’, ‘to_text’)

Returns char_value with all occurrences of each character in
from_text replaced by its corresponding character in to_text;
refer to the section “CONVERT and TRANSLATE” earlier in
this chapter for more information on TRANSLATE.

translate (text USING
[CHAR_CS | NCHAR_CS]
)

Converts text into the character set specified for conversions
between the database character set or the national character
set.

trim({[LEADING |
TRAILING | BOTH] trim_
char | trim_char }
FROM trim_source})

Enables leading or trailing characters (or both) to be trimmed
from a character string.

trunc (base [, number]) Returns base truncated to number decimal places. When
number is omitted, base is truncated to 0 places. Number can
be negative to truncate (make zero) number digits left of the
decimal point.

trunc (date [, format]) Returns date with any time data truncated to the unit
specified by format. When format is omitted, date is trun-
cated to the nearest whole day.

uid Returns an integer that uniquely identifies the session user
who logged on. No parameters are needed.

upper(string) Returns string with all letters in uppercase.

user Returns the name of the session user who logged on in
VARCHAR2.

userenv(option) Returns information about the current session in VARCHAR2.

value(table_alias) Takes as a table alias associated with a row in an object table
and returns object instances stored within the object table.

var_pop(expression)
over (analytics)

Returns the population variance of a set of numbers after
discarding the nulls in the expression number set. Analytic
functions are covered in the vendor documentation.

Table 4-9: Oracle-Supported Functions (continued)

Function Description

,ch04.13730 Page 190 Wednesday, November 29, 2000 4:43 PM

Vendor Extensions 191

Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PostgreSQL–Supported Functions

Table 4-10 lists the functions specific to PostgreSQL.

var_samp(expression)
over (analytics)

Returns the sample variance of a set of numbers after
discarding the nulls in the expression number set. Analytic
functions are covered in the vendor documentation.

variance([DISTINCT]
expression) over
(analytics)

Returns variance of expression calculated as follows:
• 0 if the number of rows in expression = 1
• VAR_SAMP if the number of rows in expression > 1

vsize(expression) Returns the number of bytes in the internal representation of
expression. When expression is null, it returns null.

Table 4-10: PostgreSQL–Supported Functions

Function Description

abstime(timestamp) Converts to abstime

abs(float8) Returns absolute value

acos(float8) Returns arccosine

age(timestamp) Preserves months and years

age(timestamp,
timestamp)

Preserves months and years

area(object) Returns area of item

asin(float8) Returns arcsine

atan(float8) Returns arctangent

atan2(float8,float8) Returns arctangent

box(box,box) Returns intersection box

box(circle) Converts circle to box

box(point,point) Returns points to box

box(polygon) Converts polygon to box

broadcast(cidr) Constructs broadcast address as text

broadcast(inet) Constructs broadcast address as text

CASE WHEN expr THEN
expr [...] ELSE expr END

Returns expression for first true WHEN clause

cbrt(float8) Returns cube root

center(object) Returns center of item

char(text) Converts text to char type

char(varchar) Converts varchar to char type

char_length(string) Returns length of string

character_length(string) Returns length of string

circle(box) Converts to circle

circle(point,float8) Converts point to circle

COALESCE(list) Returns first non-NULL value in list

cos(float8) Returns cosine

cot(float8) Returns cotangent

Table 4-9: Oracle-Supported Functions (continued)

Function Description

,ch04.13730 Page 191 Wednesday, November 29, 2000 4:43 PM

192 Chapter 4 – SQL Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

date_
part(text,timestamp)

Returns portion of date

date_part(text,interval) Returns portion of time

date_
trunc(text,timestamp)

Truncates date

degrees(float8) Converts radians to degrees

diameter(circle) Returns diameter of circle

exp(float8) Raises e to the specified exponent

float(int) Converts integer to floating point

float4(int) Converts integer to floating point

height(box) Returns vertical size of box

host(inet) Extracts host address as text

initcap(text) Converts first letter of each word to uppercase

interval(reltime) Converts to interval

integer(float) Converts floating point to integer

isclosed(path) Returns a closed path

isopen(path) Returns an open path

isfinite(timestamp) Returns a finite time

isfinite(interval) Returns a finite time

length(object) Returns length of item

ln(float8) Returns natural logarithm

log(float8) Returns base-10 logarithm

lower(string) Converts string to lowercase

lseg(box) Converts box diagonal to lseg

lseg(point,point) Converts points to lseg

lpad(text,int,text) Returns left-pad string to specified length

ltrim(text,text) Returns left-trim characters from text

masklen(cidr) Calculates netmask length

masklen(inet) Calculates netmask length

netmask(inet) Constructs netmask as text

npoint(path) Returns number of points

NULLIF(input,value) Returns NULL if input = value, else returns input

octet_length(string) Returns storage length of string

path(polygon) Converts polygon to path

pclose(path) Converts path to closed

pi() Returns fundamental constant

polygon(box) Returns 12-point polygon

polygon(circle) Returns 12-point polygon

polygon(npts,circle) Returns npts polygon

polygon(path) Converts path to polygon

point(circle) Returns center

point(lseg,lseg) Returns intersection

point(polygon) Returns center

Table 4-10: PostgreSQL–Supported Functions (continued)

Function Description

,ch04.13730 Page 192 Wednesday, November 29, 2000 4:43 PM

Vendor Extensions 193

Functions

Vendor Extensions

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

position(string in string) Returns location of specified substring

pow(float8,float8) Raises a number to the specified exponent

popen(path) Converts path to open path

reltime(interval) Converts to reltime

radians(float8) Converts degrees to radians

radius(circle) Returns radius of circle

round(float8) Rounds to nearest integer

rpad(text,int,text) Converts right pad string to specified length

rtrim(text,text) Converts right trim characters from text

sin(float8) Returns sine

sqrt(float8) Returns square root

substring(string [from
int] [for int])

Extracts specified substring

substr(text,int[,int]) Extracts specified substring

tan(float8) Returns tangent

text(char) Converts char to text type

text(varchar) Converts varchar to text type

textpos(text,text) Locates specified substring

timestamp(date) Converts to timestamp

timestamp(date,time) Converts to timestamp

to_char(timestamp, text) Converts timestamp to string

to_char(int, text) Converts int4/int8 to string

to_char(float, text) Converts float4/float8 to string

to_char(numeric, text) Converts numeric to string

to_date(text, text) Converts string to date

to_number(text, text) Converts string to numeric

to_timestamp(text, text) Converts string to timestamp

translate(text,from,to) Converts character in string

trim([leading|trailing|
both] [string] from string)

Trims characters from string

trunc(float8) Truncates (towards zero)

upper(text) Converts text to uppercase

varchar(char) Converts char to varchar type

varchar(text) Converts text to varchar type

width(box) Returns horizontal size

Table 4-10: PostgreSQL–Supported Functions (continued)

Function Description

,ch04.13730 Page 193 Wednesday, November 29, 2000 4:43 PM

194 Chapter 5 – Unimplemented SQL99 Commands

Unimplemented SQL99 Commands

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Chapter 5New Commands

CHAPTER 5

Unimplemented SQL99 Commands

The SQL92 and SQL99 standards specify many commands. However, RMBDS
vendors are not able to implement all of them immediately. In fact, many
commands specified in the new SQL99 standard are nowhere near being imple-
mented by any of the database vendors covered in SQL in a Nutshell. In effect,
these commands exist because the standard says they exist, but they cannot
currently be executed anywhere. As a result, these commands are described only
briefly in Table 5-1.

Nonetheless, it should be noted that although these commands are not imple-
mented yet, they could be eventually. Consequently, it is important to check
vendor documentation to see if the newest version has implemented any of these
commands.

Table 5-1: Unimplemented SQL99 Commands

Commands Description

ALLOCATE CURSOR The ALLOCATE CURSOR statement is used in Dynamic SQL to
link a SELECT statement initialized with the PREPARE
statement. This statement differs from DECLARE CURSOR in
that ALLOCATE CURSOR creates multiple precompiled cursor
statements while DECLARE CURSOR is created and compiled
dynamically each time it is run.

ALLOCATE DESCRIPTOR This statement prepares a dynamic area that stores
information about the parameters in a dynamically generated
SQL statement. In effect, this command allows the amount of
space set aside for dynamic SQL statements to be controlled
precisely.

,ch05.13852 Page 194 Wednesday, November 29, 2000 4:43 PM

Unimplemented SQL99 Commands 195

New
Com

m
ands

Unimplemented SQL99 Commands

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

ALTER DOMAIN A domain is generally a user-defined datatype. According to
the SQL99 standard, the ALTER DOMAIN command allows the
definition of a domain to be changed by adding or dropping
a default or constraint. Typically, only the owner of the
schema that contains the domain may alter it. Any changes
specified with the command instantly affect all columns based
on the domain.

CREATE ASSERTION An assertion is a generic CHECK constraint that may be
applied over and over again. Thus, a check constraint that
controls the emp_id column can be applied as an assertion in
every table that holds emp_id. This command is not
supported by the database vendors covered in this book;
however, Microsoft SQL Server supports the CREATE RULE
statement, which is functionally equivalent.

CREATE CHARACTER
SET

This statement creates individualized character sets for
improved internationalization of a database platform.
However, most vendors ship their products with a wide range
of character sets. Although some make it possible to create or
change character sets, they do not support this command.

CREATE COLLATION A collating sequence determines the order in which text
strings are sorted. Like character sets, the database platform
normally ships with one or more collations. This command
creates new sorting sequences for a given character set.

CREATE TRANSLATION A translation is a descriptor that translates strings from one
character set to another. Character strings then can be
translated using the TRANSLATE command. New translations
based upon old ones can be built using this command.

DEALLOCATE
DESCRIPTOR

This statement removes a previously declared descriptor
created using ALLOCATE DESCRIPTOR.

DEALLOCATE PREPARE This statement destroys a previously prepared SQL statement
created using the PREPARE statement.

DESCRIBE This command stores parameterized information about a SQL
statement held in the named descriptor area created using the
ALLOCATE DESCRIPTOR statement. Note: Oracle possesses a
DESCRIBE command that is used to report information on a
table, describing its columns, datatypes, and so on.

DROP ASSERTION This statement removes an assertion from the database that
was previously created using the CREATE ASSERTION
statement.

DROP CHARACTER SET This command removes a character set from the database that
was previously created using the CREATE CHARACTER SET
statement.

DROP COLLATION This statement removes a collation from the database that was
previously created using the CREATE COLLATION statement.

DROP TRANSLATION This command removes a translation from the database that
was previously created using the CREATE TRANSLATION
statement.

GET DESCRIPTOR The GET DESCRIPTOR statement retrieves information from
the descriptor areas, primarily about input and output
parameters used in Dynamical SQL statements.

GET DIAGNOSTICS The GET DIAGNOSTICS command provides information
(taken from the diagnostics area) about the last SQL statement
executed or about a specific error message encountered
while processing a SQL statement.

Table 5-1: Unimplemented SQL99 Commands (continued)

Commands Description

,ch05.13852 Page 195 Wednesday, November 29, 2000 4:43 PM

196 Chapter 5 – Unimplemented SQL99 Commands

Unimplemented SQL99 Commands

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PREPARE The PREPARE statement creates a Dynamic SQL from a text
variable so that it can be executed many times using the
EXECUTE command.

SET
CATALOG

This command defines the current catalog, which holds the
current schema, used by the current session.

SET CONSTRAINTS
MODE

This statement determines whether constraints are checked
immediately upon completion of a transaction or deferred until
the end of the transaction. Constraints also might be checked
immediately, meaning after each statement. Many vendors
offer alternative methods for achieving this sort of
functionality. For example, Oracle offers this functionality
through the command ALTER SESSION SET CONSTRAINTS.
Research the vendor documentation for other possible alterna-
tives.

SET DESCRIPTOR The SET DESCRIPTOR statement places values into previously
allocated cursors or alters the behavior of a descriptor.

SET NAMES This command sets the default character set for a session.

SET SESSION
AUTHORIZATION

The SET SESSION AUTHORIZATION statement alters the
authorization under which statements are processed.

SET SESSION
CHARACTERISTICS

The SET SESSION CHARACTERISTICS statement allows the
same properties to be set for all of the transactions processed
in an entire session, just like using other SET statements for a
single transaction.

Table 5-1: Unimplemented SQL99 Commands (continued)

Commands Description

,ch05.13852 Page 196 Wednesday, November 29, 2000 4:43 PM

197

Keyw
ords

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Keywords

APPENDIX

SQL99 and Vendor-Specific Keywords

The tables below display the keywords in the SQL99 standard and in the four
vendor implementations of SQL that are discussed in this book. SQL keywords are
described in more detail in Chapter 2, Foundational Concepts.

Table A-1: SQL Keywords

ABSOLUTE ACTION ADD ADMIN
AFTER AGGREGATE ALIAS ALL
ALLOCATE ALTER AND ANY
ARE ARRAY AS ASC
ASSERTION AT AUTHORIZA-

TION
BEFORE

BEGIN BINARY BIT BLOB
BOOLEAN BOTH BREADTH BY
CALL CASCADE CASCADED CASE
CAST CATALOG CHAR CHARACTER
CHECK CLASS CLOB CLOSE
COLLATE COLLATION COLUMN COMMIT
COMPLETION CONDITION CONNECT CONNECTION
CONSTRAINT CONSTRAINTS CONSTRUCTOR CONTAINS
CONTINUE CORRE-

SPONDING
CREATE CROSS

CUBE CURRENT CURRENT_DATE CURRENT_PATH
CURRENT_ROLE CURRENT_TIME CURRENT_

TIMESTAMP
CURRENT_USER

CURSOR CYCLE DATA DATALINK
DATE DAY DEALLOCATE DEC
DECIMAL DECLARE DEFAULT DEFERRABLE
DELETE DEPTH DEREF DESC
DESCRIPTOR DIAGNOSTICS DICTIONARY DISCONNECT
DO DOMAIN DOUBLE DROP
END-EXEC EQUALS ESCAPE EXCEPT
EXCEPTION EXECUTE EXIT EXPAND
EXPANDING FALSE FIRST FLOAT

,appa.13975 Page 197 Wednesday, November 29, 2000 4:44 PM

198 SQL99 and Vendor-Specific Keywords

SQL99 and Vendor-Specific Keywords

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

FOR FOREIGN FREE FROM
FUNCTION GENERAL GET GLOBAL
GOTO GROUP GROUPING HANDLER
HASH HOUR IDENTITY IF
IGNORE IMMEDIATE IN INDICATOR
INITIALIZE INITIALLY INNER INOUT
INPUT INSERT INT INTEGER
INTERSECT INTERVAL INTO IS
ISOLATION ITERATE JOIN KEY
LANGUAGE LARGE LAST LATERAL
LEADING LEAVE LEFT LESS
LEVEL LIKE LIMIT LOCAL
LOCALTIME LOCALTIME-

STAMP
LOCATOR LOOP

MATCH MEETS MINUTE MODIFIES
MODIFY MODULE MONTH NAMES
NATIONAL NATURAL NCHAR NCLOB
NEW NEXT NO NONE
NORMALIZE NOT NULL NUMERIC
OBJECT OF NUMERIC OBJECT
OF OFF OLD ON
ONLY OPEN OPERATION OPTION
OR ORDER ORDINALITY OUT
OUTER OUTPUT PAD PARAMETER
PARAMETERS PARTIAL PATH PERIOD
POSTFIX PRECEDES PRECISION PREFIX
PREORDER PREPARE PRESERVE PRIMARY
PRIOR PRIVILEGES PROCEDURE PUBLIC
READ READS REAL RECURSIVE
REDO REF REFERENCES REFERENCING
RELATIVE REPEAT RESIGNAL RESTRICT
RESULT RETURN RETURNS REVOKE
RIGHT ROLE ROLLBACK ROLLUP
ROUTINE ROW ROWS SAVEPOINT
SCHEMA SCROLL SEARCH SECOND
SECTION SELECT SEQUENCE SESSION
SESSION_USER SET SETS SIGNAL
SIZE SMALLINT SPECIFIC SPECIFICTYPE
SQL SQLEXCEPTION SQLSTATE SQLWARNING
START STATE STATIC STRUCTURE
SUCCEEDS SUM SYSTEM_USER TABLE
TEMPORARY TERMINATE THAN THEN
TIME TIMESTAMP TIMEZONE_

HOUR
TIMEZONE_
MINUTE

TO TRAILING TRANSACTION TRANSLATION
TREAT TRIGGER TRUE UNDER
UNDO UNION UNIQUE UNKNOWN
UNTIL UPDATE USAGE USER
USING VALUE VALUES VALUES
VARIABLE VARYING VIEW WHEN
WHENEVER WHERE WHILE WITH
WRITE YEAR ZONE

Table A-1: SQL Keywords (continued)

,appa.13975 Page 198 Wednesday, November 29, 2000 4:44 PM

SQL99 and Vendor-Specific Keywords 199

Keyw
ords

SQL99 and Vendor-Specific Keywords

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Table A-2: Microsoft SQL Server Keywords

ADD ALL ALTER AND

ANY AS ASC AUTHORIZATION

BACKUP BEGIN BETWEEN BREAK

BROWSE BULK BY CASCADE

CASE CHECK CHECKPOINT CLOSE

CLUSTERED COALESCE COLLATE COLUMN

COMMIT COMPUTE CONSTRAINT CONTAINS

CONTAINSTABLE CONTINUE CONVERT CREATE

CROSS CURRENT CURRENT_DATE CURRENT_TIME

CURRENT_TIMES-
TAMP

CURRENT_USER CURSOR DATABASE

DBCC DEALLOCATE DECLARE DEFAULT

DELETE DENY DESC DISK

DISTINCT DISTRIBUTED DOUBLE DROP

DUMMY DUMP ELSE END

ERRLVL EXCEPT EXEC EXECUTE

EXISTS EXIT FETCH FILE

FILLFACTOR FOR FOREIGN FREETEXT

FREETEXTTABLE FROM FULL FUNCTION

GOTO GRANT GROUP HAVING

HOLDLOCK IDENTITY IDENTITY_INSERT IDENTITY_INSERT

IF IN INDEX INNER

INSERT INTERSECT INTO IS

JOIN KEY KILL LEFT

LIKE LINENO LOAD NATIONAL

NOCHECK NONCLUSTERED NONCLUSTERED NULL

NULLIF OF OF OFFSETS

ON OPEN OPENDATA-
SOURCE

OPENQUERY

OPENROWSET OPENXML OPTION OR

ORDER OUTER PERCENT PLAN

PRECISION PRIMARY PRINT PROC

READTEXT RECONFIGURE REFERENCES REPLICATION

RESTORE RESTRICT RETURN REVOKE

RIGHT ROLLBACK ROWCOUNT ROWGUID-COL

RULE SAVE SCHEMA SELECT

SESSION_USER SET SETUSER SHUTDOWN

SOME STATISTICS SYSTEM_USER TABLE

TEXTSIZE THEN TO TOP

TRAN TRANSACTION TRIGGER TRUNCATE

TSEQUAL UNION UNIQUE UPDATE

UPDATETEXT USE USER VALUES

VARYING VIEW WAITFOR WHEN

WHERE WHILE WITH WRITETEXT

,appa.13975 Page 199 Wednesday, November 29, 2000 4:44 PM

200 SQL99 and Vendor-Specific Keywords

SQL99 and Vendor-Specific Keywords

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Table A-3: MySQL Keywords

ACTION ADD AFTER AGGREGATE

ALL ALTER AND AS

ASC AUTO_INCREMENT AVG AVG_ROW_
LENGTH

BETWEEN BIGINT BINARY BIT

BLOB BOOL BOTH BY

CASCADE CASE CHANGE CHAR

CHARACTER CHECK CHECKSUM COLUMN

COLUMNS COMMENT CONSTRAINT CREATE

CROSS CURRENT_DATE CURRENT_TIME CURRENT_
TIMESTAMP

DATA DATABASE DATABASEs DATE

DATETIME DAY DAY_HOUR DAY_MINUTE

DAY_SECOND DAYOFMONTH DAYOFWEEK DAYOFYEAR

DEC DECIMAL DEFAULT DELAY_KEY_
WRITE

DELAYED DELETE DESC DESCRIBE

DISTINCT DISTINCTROW DOUBLE DROP

ELSE ENCLOSED END ENUM

ESCAPE ESCAPED EXISTS EXPLAIN

FIELDS FILE FIRST FLOAT

FLOAT4 FLOAT8 FLUSH FOR

FOREIGN FROM FULL FUNCTION

GLOBAL GRANT GRANTS GROUP

HAVING HEAP HIGH_PRIORITY HOSTS

HOUR HOUR_MINUTE HOUR_SECOND IDENTIFIED

IF IGNORE IN INDEX

INFILE INNER INSERT INSERT_ID

INT INT1 INT2 INT3

INT4 INT8 INTEGER INTERVAL

INTO IS ISAM JOIN

KEY KEYS KILL LAST_INSERT_ID

LEADING LEFT LENGTH LIKE

LIMIT LINES LOAD LOCAL

LOCK LOGS LONG LONGBLOB

LONGTEXT LOW_PRIORITY MATCH MAX

MAX_ROWS MEDIUMBLOB MEDIUMINT MEDIUMTEXT

MIDDLEINT MIN_ROWS MINUTE MINUTE_SECOND

MODIFY MONTH MONTHNAME MYISAM

NATURAL NO NOT NULL

NUMERIC ON OPTIMIZE OPTION

OPTIONALLY OR ORDER OUTER

OUTFILE PACK_KEYS PARTIAL PASSWORD

PRECISION PRIMARY PRIVILEGES PROCEDURE

,appa.13975 Page 200 Wednesday, November 29, 2000 4:44 PM

SQL99 and Vendor-Specific Keywords 201

Keyw
ords

SQL99 and Vendor-Specific Keywords

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

PROCESS PROCESSLIST READ REAL

REFERENCES REGEXP RELOAD RENAME

REPLACE RESTRICT RETURNS REVOKE

RLIKE ROW ROWS SECOND

SELECT SET SHOW SHUTDOWN

SMALLINT SONAME SQL_BIG_RESULT SQL_BIG_SELECTS

SQL_BIG_TABLES SQL_LOG_OFF SQL_LOG_UPDATE SQL_LOW_
PRIORITY_
UPDATES

SQL_SELECT_LIMIT SQL_SMALL_
RESULT

SQL_WARNINGS STARTING

STATUS STRAIGHT_JOIN STRING SQL_SMALL_
RESULT

TABLES TEMPORARY TERMINATED TEXT

THEN TIME TIMESTAMP TINYBLOB

TINYINT TINYTEXT TO TRAILING

TYPE UNIQUE UNLOCK UNSIGNED

UPDATE USAGE USE USING

VALUES VARBINARY VARCHAR VARIABLES

VARYING WHEN WITH WRITE

ZEROFILL

Table A-4: Oracle Keywords

ACCESS ADD ALL ALTER

AND ANY ARRAY AS

ACS AUDIT AUTHID AVG

BEGIN BETWEEN BINARY INTEGER BODY

BOOLEAN BULK BY CHAR

CHAR_BASE CHECK CLOSE CLUSTER

COLLECT COLUMN COMMENT COMMIT

COMPRESS CONNECT CONSTANT CREATE

CURRENT CURRVAL CURSOR DATE

DAY DECLARE DECIMAL DEFAULT

DELETE DESC DISTINCT DO

DROP ELSE ELSIF END

EXCEPTION EXCLUSIVE EXECUTE EXISTS

EXIT EXTENDS FALSE FETCH

FILE FLOAT FOR FORALL

FROM FUNCTION GOTO GRANT

GROUP HAVING HEAP HOUR

IDENTIFIED IF IMMEDIATE IN

INCREMENT INDEX INDICATOR INITIAL

INSERT INTEGER INTERFACE INTERSECT

INTERVAL INTO IS ISOLATION

Table A-3: MySQL Keywords (continued)

,appa.13975 Page 201 Wednesday, November 29, 2000 4:44 PM

202 SQL99 and Vendor-Specific Keywords

SQL99 and Vendor-Specific Keywords

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

JAVA LEVEL LIKE LIMITED

LOCK LONG LOOP MAX

MAXEXTENTS MIN MINUS MINUTE

MLSLABEL MOD MODE MODIFY

MONTH NATURAL NATURALN NEW

NEXTVAL NOAUDIT NOCOMPRESS NOCOPY

NOT NOWAIT NULL NUMBER

NUMBER_BASE OCIROWID OF OFFLINE

ON ONLINE OPAQUE OPEN

OPERATOR OPTION OR ORDER

ORGANIZATION OTHERS OUT PACKAGE

PARTITION PCTFREE PLS_INTEGER POSITIVE

POSITIVEN PRAGMA PRIOR PRIVATE

PRIVILEGES PROCEDURE PUBLIC RAISE

RANGE RAW REAL RECORD

REF RELEASE RENAME RESOURCE

RETURN REVERSE REVOKE ROLLBACK

ROW ROWS ROWID ROWLABEL

ROWNUM ROWTYPE SAVEPOINT SECOND

SELECT SEPERATE SESSION SET

SHARE SIZE SMALLINT SPACE

SQL SQLCODE SQLERRM START

STDDEV SUBTYPE SUCCESSFUL SUM

SYNONYM SYSDATE TABLE THEN

TIME TIMESTAMP TO TRIGGER

TRUE TYPE UID UNION

UNIQUE UPDATE USE USER

VALIDATE VALUES VARCHAR VARCHAR2

VARIANCE VIEW WHEN WHENEVER

WHERE WHILE WITH WORK

WRITE YEAR ZONE

Table A-5: PostgreSQL Keywords

ABORT ADD ALL ALLOCATE

ALTER ANALYZE AND ANY

ARE AS ASC ASSERTION

AT AUTHORIZATION AVG BEGIN

BETWEEN BINARY BIT BIT_LENGTH

BOTH BY CASCADE CASCADED

CASE CAST CATALOG CHAR

CHAR_LENGTH CHARACTER CHARACTER_
LENGTH

CHECK

CLOSE CLUSTER COALESCE COLLATE

Table A-4: Oracle Keywords (continued)

,appa.13975 Page 202 Wednesday, November 29, 2000 4:44 PM

SQL99 and Vendor-Specific Keywords 203

Keyw
ords

SQL99 and Vendor-Specific Keywords

Book Title, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

COLLATION COLUMN COMMIT CONNECT

CONNECTION CONSTRAINT CONTINUE CONVERT

COPY CORRESPONDING COUNT CREATE

CROSS CURRENT CURRENT_DATE CURRENT_SESSION

CURRENT_TIME CURRENT_
TIMESTAMP

CURRENT_USER CURSOR

DATE DEALLOCATE DEC DECIMAL

DECLARE DEFAULT DELETE DESC

DESCRIBE DESCRIPTOR DIAGNOSTICS DISCONNECT

DISTINCT DO DOMAIN DROP

ELSE END ESCAPE EXCEPT

EXCEPTION EXEC EXECUTE EXISTS

EXPLAIN EXTEND EXTERNAL EXTRACT

FALSE FETCH FIRST FLOAT

FOR FOREIGN FOUND FROM

FULL GET GLOBAL GO

GOTO GRANT GROUP HAVING

IDENTITY IN INDICATOR INNER

INPUT INSERT INTERSECT INTERVAL

INTO IS JOIN LAST

LEADING LEFT LIKE LISTEN

LOAD LOCAL LOCK LOWER

MAX MIN MODULE MOVE

NAMES NATIONAL NATURAL NCHAR

NEW NO NONE NOT

NOTIFY NULL NULLIF NUMERIC

OCTET_LENGTH OFFSET ON OPEN

OR ORDER OUTER OUTPUT

OVERLAPS PARTIAL POSITION PRECISION

PREPARE PRESERVE PRIMARY PRIVILEGES

PROCEDURE PUBLIC REFERENCES RESET

REVOKE RIGHT ROLLBACK ROWS

SCHEMA SECTION SELECT SESSION

SESSION_USER SET SETOF SHOW

SIZE SOME SQL SQLCODE

SQLERROR SQLSTATE SUBSTRING SUBSTRING

SYSTEM_USER TABLE TEMPORARY THEN

TO TRAILING TRANSACTION TRANSLATE

TRANSLATION TRIM TRUE UNION

UNIQUE UNKNOWN UNLISTEN UNTIL

UPDATE UPPER USAGE USER

USING VACUUM VALUE VALUES

VARCHAR VARYING VERBOSE VIEW

WHEN WHENEVER WHERE WITH

WORK WRITE

Table A-5: PostgreSQL Keywords (continued)

,appa.13975 Page 203 Wednesday, November 29, 2000 4:44 PM

,appa.13975 Page 204 Wednesday, November 29, 2000 4:44 PM

205

Computer Crime: A Crimefighter’s Handbok, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Index

Symbols
+ addition arithmetic operator, 121
= assignment operator, 121
* asterisk, 25
@ at symbol, 61
& bitwise AND operator, 122
^ bitwise exclusive OR operator, 122
| bitwise OR operator, 122
: colon, 84
/ division arithmetic operator, 121
’ ’ double apostrophe, 22
|| double-pipe mark, 46, 170
double-pound sign, 61, 68
“ ” double quotation marks, 22
= equal to comparison operator, 122
=* equal-asterisk, 135
> greater than operator, 122
>= greater than or equal to operator, 122
< less than operator, 122
<= less than or equal to operator, 122
% modula arithmetic operator, 121
* multiplication arithmetic operator, 121
!= not equal to operator, 122
< > not equal to operator, 122
!> not greater than operator, 122
!< not less than operator, 122
+ outer join operator, 25
+ plus sign, 46, 170
+* plus-asterisk, 135
pound sign, 61, 68
‘ ’ single quotation marks, 21, 22
- subtraction arithmetic operator, 121
+ unary operator, 123
- unary operator, 123

~ unary operator, 123
_ underscore, 66

A
abbreviations, using consistently, 20
ABSOLUTE operation (FETCH

statement), 104
access privileges (see privileges)
ADD keyword (PostgreSQL), 36
adding

columns (PostgreSQL), 36
records/rows, 115

addition (+) arithmetic operator, 121
aggregate functions, 144, 164–166
ALL clause, DISCONNECT statement

and, 95
ALL logical operator, 123
alphabetical reference of

statements, 30–162
list in table, 28–30

ALTER PROCEDURE statement, 30
ALTER TABLE statement, 32

multiple clauses issued in (MySQL), 34
ALTER TRIGGER statement, 36
ALTER VIEW statement, 38
altering

procedures, 30
tables, 32
triggers, 36
views, 38

American National Standards Institute
(ANSI), 2

AND CHAIN keyword, 45
AND logical operator, 123

,sql_ianIX.fm.14249 Page 205 Wednesday, November 29, 2000 4:45 PM

206 Index

Computer Crime: A Crimefighter’s Handbok, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

anomalies, 155
ANSI (American National Standards

Institute), 2
ANSI joins, 25
ANSI standards, 5
ANSI style of joins, 135
ANY logical operator, 123
ANY option (GRANT statement,

Oracle), 109
arithmetic operators, 121
AS keyword, assignment operator

and, 121
ascending indexes, creating

(PostgreSQL), 59
assignment (=) operator, 121
asterisks

asterisk (*), SQL Server and, 25
equal-asterisk (=*), 135
plus-asterisk (+*), 135

at symbol (@) specifying stored procedure
input parameters (SQL Server), 61

atomic values, 10
Authorization ID, 10

function for currently active, 166
AVG aggregate function, 144
AVG function, 164

B
base tables, 24

(see also tables)
BEGIN TRANSACTION statement, 156

vs. START TRANSACTION statement
and SET TRANSACTION
statement, 156

BETWEEN logical operator, 123
binding styles, 7
BIT_LENGTH function, 168
BITMAP indexes (Oracle), 57
bitwise AND (&) operator, 122
bitwise exclusive OR (^) operator, 122
bitwise OR (|) operator, 122
blank spaces, LIKE operator and, 119
BLOBs, MySQL datatypes for, 14
boolean comparison operators, 122
built-in scalar functions, 166

C
CALL statement, 39
Cantor, Georg, 9
CASE function, 40
case of strings, changing, 172
case sensitivity

LIKE operator and, 118
naming conventions and, 19

CAST function, 42
vs. CONVERT function with

SQL Server, 171
vs. CREATE FUNCTION statement, 50

categories of syntax for SQL
statements, 19–23

changes committed to databases, DROP
TABLE statement and
(Oracle), 101

character literals, 21
character sets, 10

translating, 171
character strings

converting, 171
extracting one from another, 173
leading spaces, removing from, 174
trailing characters, removing from, 174

CHARACTER_LENGTH function (MySQL,
PostgreSQL), 168

CHARINDEX function (SQL Server), 169
CHAR_LENGTH function, 168
CLOSE CURSOR statement, 43
closing server-side cursors, 43
clustered indexes, 56

as defined in Oracle vs. SQL Server, 58
clusters created with Oracle-specific

command, 57
Codd, E.F., 2

Twelve Principles of Relational
Databases, 7, 8

collations, 10
colon (:) prefacing OLD/NEW

pseudo-tables, 84
column lists, 87
columns, 1, 10

ALTER TABLE statement and, 33
Oracle, 35
PostgreSQL, 36

calculated, indexes created on
(SQL Server), 56

multiple
building indexes upon (MySQL), 57
comma indicating, 67
multiple actions to (Oracle), 36

renaming (MySQL), 34
retrieving, 132–151

comma
identifying multiple roles with, 152
indicating multiple column definitions

with, 67
specifying multiple access privileges

with, 105
SQL and, 21

commands (see statements)

,sql_ianIX.fm.14249 Page 206 Wednesday, November 29, 2000 4:45 PM

Index 207

Computer Crime: A Crimefighter’s Handbok, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

COMMIT TRANSACTION statement, 44
BEGIN statement and, 157
ROLLBACK statement and, 129

committing changes to databases, DROP
TABLE statement and
(Oracle), 101

company names, naming conventions
and, 20

comparison operators, 122
composite indexes, 56
COMPUTE clause (SELECT statement,

SQL Server), 148
CONCAT function (MySQL), 46, 170
CONCATENATE function, 170
concatenated indexes, 56
concatenated key, 60
concatenation operators, 46
conformance, levels of, 3
CONNECT statement, 46
CONNECT TO DEFAULT statement, 47
connections

disconnecting, 95
open, switching between, 151

CONVERT function, 171
in SQL Server, 168

Core SQL99 standard, 3
COUNT aggregate function, 144
COUNT(*) aggregate function, 144
COUNT DISTINCT aggregate

function, 144
COUNT function, 165
CREATE CLUSTER command (Oracle), 57
CREATE commands, destroying with

DROP statements, 96
CREATE DATABASE statement, 48

caution when using in Oracle, 49
DROP DATABASE statement and, 96

CREATE FUNCTION statement, 50
in MySQL, 53
RETURN statement and, 124
as substitute for CREATE PROCEDURE

statement (PostgreSQL), 55
CREATE INDEX statement, 55
CREATE PROCEDURE statement, 60

ALTER PROCEDURE statement and, 30
CREATE FUNCTION statement as

substitute for (PostgreSQL), 55
(see also CREATE FUNCTION

statement)
CREATE ROLE statement, 63
CREATE SCHEMA statement, 64
CREATE TABLE statement, 66
CREATE TRIGGER statement, 81
CREATE USER statement (Oracle), 65
CREATE VIEW statement, 86

ALTER VIEW statement and, 38

creating
databases, 48
functions, 50
indexes, 55
procedures, 60
roles, 63
schemas, 64
tables, 66
triggers, 81
views, 86

cross joins, 135
current session

changing time zone for, 153
enabling/disabling roles for, 152

CURRENT_DATE function, 166
CURRENT_TIME function, 166
CURRENT_TIMESTAMP function, 166
CURRENT_USER function, 166
cursors

closing
open, 44
server-side, 43

opening, 119
ROLLBACK statement and, 129

D
data

manipulation of
ending, 44
speeding with indexes, 55

modifying, controlling characteristics
of, 154

updating, 159
data values, 1
database design, 66
database objects

operators and, 120
privileges for accessing/using, 105

databases, 1
connecting to within DBMS, 46
creating, 48
dropping objects from, 96
location of (Oracle), 49
naming (Oracle), 49
(see also relational databases)

datatypes, 10
MySQL, 14

redefining, 34
Oracle, 15–17
PostgreSQL, 17
SQL Server, 12–14
SQL99, 10–12
vendor-specific, 10–12

dateparts (MySQL), 168

,sql_ianIX.fm.14249 Page 207 Wednesday, November 29, 2000 4:45 PM

208 Index

Computer Crime: A Crimefighter’s Handbok, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

date/time
Julian calendar, 14
MySQL dateparts, 168
scalar functions and, 166

dblink statement (Oracle), 40
DBMS

connecting to, 46
disconnecting from, 95

DEALLOCATE statement (SQL Server), 44
declarative processing, 9
DECLARE CURSOR statement, 89

CLOSE CURSOR statement and, 43
DEFAULT value, 67
deferred name resolution

(SQL Server), 62, 84
defining functions, 55
DELETE privilege (GRANT

statement), 105
DELETE statement, 92

CREATE TRIGGER statement and, 81
LIKE operator and, 118
operators and, 120
vs. TRUNCATE statement, 158

deleting
records, 92
(see also dropping)

delimited identifiers, 20, 21
DENY statement (SQL Server), 126
derived tables, 24
derived values, retrieving, 132–151
deterministic/nondeterministic

functions, 163
dialects of SQL, 6
Direct SQL Invocation, 7
dirty reads, 155
disabling roles, 152
DISCONNECT statement, 95

CONNECT statement and, 47
distinct values, computing average or sum

of, 165
division (/) arithmetic operator, 121
domains (see datatypes)
double apostrophe (’ ’), 22
double-pipe mark (||) for

concatenation, 46, 170
double-pound sign (##)

for declaring global temporary stored
procedures, 61

for global temporary tables, 68
double quotation marks (“ ”), 22
DROP DATABASE statement, 96
DROP FUNCTION statement, 97
DROP INDEX statement, 98
DROP PROCEDURE statement, 99
DROP ROLE statement, 99
DROP statements, 96

DROP TABLE statement, 100
dropping views with (PostgreSQL), 103

DROP TRIGGER statement, 101
DROP VIEW statement, 102
dropping, 101

databases, 96
functions from databases, 97
indexes, 98
roles, 99
stored procedures, 99
table definitions, 100
views, 102

in PostgreSQL, 103
(see also deleting, records)

E
Embedded SQL Syntax, 7
enabling/disabling roles, 152
ENCRYPTION option (SQL Server), 88
Enhanced SQL99, 3

supplemental features packages and, 5
Entry-level conformance, 3
equal to (=) comparison operator, 122
equal-asterisk (=*), 135
EXECUTE privilege (GRANT

statement), 106
EXECUTE statement used instead of CALL

statement (SQL Server), 39
EXISTS logical operator, 123
expressions

converting from one datatype to
another, 42

operator precedence and, 123
EXTRACT function, 168

F
FETCH statement, 103
files, 49
firing triggers, 81
FIRST operation (FETCH statement), 103
foreign languages, translating character

sets for, 171
FROM clause, SELECT statement and, 134
full joins, 137
Full-level conformance, 3
functions, 163–193

aggregate, 164–166
alphabetical listings of by

vendor, 175–193
defining, 55
deterministic/nondeterministic, 163
dropping from database, 97
invoked by CALL statement

(Oracle), 40
operators and, 120

,sql_ianIX.fm.14249 Page 208 Wednesday, November 29, 2000 4:45 PM

Index 209

Computer Crime: A Crimefighter’s Handbok, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

overloading, 55
returning multiple via TABLE datatype

(SQL Server), 52
scalar, 166–170
string, 170–175
terminating processing of, 124
types of, 164–175
user-defined, 163

G
global temporary tables, 68
GRANT statement, 105

contained in CREATE SCHEMA
statement, 65

revoking privileges and, 126
greater than (>) operator, 122
greater than or equal to (>=)

operator, 122
GREATEST function (MySQL), 165
GROUP BY clause (SELECT

statement), 144
SQL Server, 148

groups, revoking privileges of, 125
guidelines for assigning names, 19

H
HAVING clause, 145

aggregate functions and, 166
hierarchical queries, 150
host operating system, function for

currently active user, 166
host-DBMS user, 64

I
identifiers, 19–21
identity rules, 20
IF-THEN-ELSE functionality provided by

CASE function, 40
IN logical operator, 123
indexes

ascending
creating (PostgreSQL), 59
vs. descending (Oracle), 57

BITMAP (Oracle), 57
building upon multiple columns

(MySQL), 57
clustered, as defined in Oracle vs.

SQL Server, 58
creating, 55
dropping, 98
partitioned (Oracle), 58
space required for (SQL Server), 57
spanning several columns, 60
unique (PostgreSQL), 59

INIT.ORA file, 50

inner joins, 136
input parameters

altering, 31
for stored procedures (SQL Server), 61

INSENSITIVE option (SQL Server), 90
INSERT privilege (GRANT statement), 105
INSERT statement, 115

CREATE TRIGGER statement and, 81
LIKE operator and, 118
operators and, 120

INSTR function (Oracle), 169
Intermediate-level conformance, 3
International Standards Organization

(ISO), 2
interval literals (Oracle), 21
INTO clause (Oracle), 40
ISNULL() function (SQL Server), 144
ISO (International Standards

Organization), 2
isolation levels, 154

J
JOIN clause, 25

SELECT statement and, 135
joins, 25, 135–138

NULL values and, 19
Julian calendar, 14

K
keys, 1
keywords, 23

in MySQL, 200
in Oracle, 201
in PostgreSQL, 202
in SQL Server, 199
in SQL99 standard, 197

L
language extensions by vendor

(lists), 175–193
LAST operation (FETCH statement), 103
LEAST function (MySQL), 165
left (outer) joins, 136
length of a column, 57
LENGTHB function (Oracle), 168
less than (<) operator, 122
less than or equal to (<=) operator, 122
levels of conformance, 3
LIKE logical operator, 123
LIKE operator, 118
list item separator, 21
literal values (literals), 21
LOCATE function (MySQL), 169
locks, releasing opened, 44
logical operators, 122

,sql_ianIX.fm.14249 Page 209 Wednesday, November 29, 2000 4:45 PM

210 Index

Computer Crime: A Crimefighter’s Handbok, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

LOWER function, 172
LTRIM function, 174

M
matching patterns, 118
mathematical functions, 167–170
MAX aggregate function, 144
MAX function, 165
methods invoked by CALL statement

(Oracle), 40
Microsoft SQL Server (see SQL Server)
MIN aggregate function, 144
MIN function, 165
modula (%) arithmetic operator

(SQL Server), 121
multiplication (*) arithmetic operator, 121
MySQL, 2

datatypes, 14
functions supported by (alphabetical

list), 178–184
keywords in, 200
relational database principles and, 7

N
name resolution, deferred

(SQL Server), 62, 84
naming conventions, 19

keywords and, 23
National Institute of Standards and

Technology (NIST), 3
nested parentheses, operator precedence

and, 124
nested triggers (SQL Server), 83
NEXT operation (FETCH statement), 103
NIST (National Institute of Standards and

Technology), 3
nonclustered indexes, 56
nondeterministic functions, 163
non-NULL values, computing number

of, 165
non-repeatable reads, 155
normalization, 66
not equal to (!=) operator, 122
not equal to (< >) operator, 122
not greater than (!>) operator, 122
not less than (!<) operator, 122
NOT logical operator, 123
NOT NULL option, 66
not supported (NS), 28
NOW function (MySQL), 167
NS (not supported), 28
NULL option, 66
NULL values (NULLS), 18
numeric datatype, unary operators

and, 123

numeric literals, 21
vs. string literals, 22

numeric scalar functions, 167–170
NVL function (Oracle), 144

O
OCTET_LENGTH function, 168
OPEN statement, DECLARE CURSOR

statement and, 119
operating system, function for currently

active user, 166
operator class for columns

(PostgreSQL), 59
operator precedence, 123
operators, 22, 120
OPTION clause (SELECT statement,

SQL Server), 148
OR logical operator, 123
Oracle, 2

datatypes, 15–17
functions supported by (alphabetical

list), 184–191
joins and, 25
keywords in, 201

ORDER BY clause, 146
outer join operator (+), 25
outer joins, 25, 136
overloading of functions, 55
owners, 64

P
parameters, 55
parentheses

nested, operator precedence and, 124
WHERE clause and, 139

partitioned indexes, creating (Oracle), 58
partitioned tables, creating (Oracle), 58
PATINDEX function (SQL Server), 169
patterns, matching, 118
permissions (see privileges)
PG_CONNECT, support for by

PostgreSQL, 47
phantom records, 155
PL/pgSQL (Procedural Language/

postgreSQL), 7
PL/SQL (Procedural Language/SQL), 7
plus sign (+) for concatenation

(MySQL), 46, 170
plus-asterisk (+*), 135
POSITION function, 169
PostgreSQL, 2

datatypes, 17
functions supported by (alphabetical

list), 191–193
keywords in, 202

,sql_ianIX.fm.14249 Page 210 Wednesday, November 29, 2000 4:45 PM

Index 211

Computer Crime: A Crimefighter’s Handbok, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

pound sign (#)
for declaring local temporary stored

procedures, 61
indicating temporary table (SQL

Server), 68
pound sign, double (##), 61, 68
pre-created file structure, 48
primary key, 66
PRIMARY KEY declaration, 66
PRIOR operation (FETCH statement), 103
privileges, 10

access, specifying multiple, 105
GRANT statement and, 105
revoking, 125
system, in Oracle (list), 109

Procedural Language/postgreSQL
(PL/pgSQL), 7

Procedural Language/SQL (PL/SQL), 7
procedural programming, 9
product names, naming conventions

and, 20
projections, 24
PUBLIC, privileges granted to, 106

Q
query hints, 148
quotation marks

double (“ ”), 22
single (‘ ’), 21, 22

quoted identifiers, 20, 21

R
RDBMSs (Relational Database

Management Systems), 1
RDBs (see relational databases)
records

adding, 115
deleting, 92
manipulating, 89
retrieving, 89, 103

REFERENCES privilege (GRANT
statement), 105

Relational Database Management Systems
(RDBMSs), 1

relational databases, 1
model for, 10
principles of, 7, 8

RELATIVE operation (FETCH
statement), 104

reserved words, 23
retrieving

columns/rows, 132–151
derived values, 132–151
records, 103

return result sets, 63

RETURN statement, 124
REVOKE object_privilege vs. REVOKE

system_privilege, 128
REVOKE statement, 125
right joins, 137
roles

creating, 63
dropping, 99
enabling/disabling, 152
multiple, identifying, 152
preconfigured, available with

Oracle, 64
privileges for

accessing/using database
objects, 105

revoking, 125
ROLLBACK statement, 129

BEGIN statement and, 157
row processing, 9
rows, 1, 10

adding, 115
counting, 165
filtering, comparison operators

and, 122
number of, computing, 165
removing from table, 158
retrieving, 132–151

RTRIM function, 174
rules, 10

S
S (supported), 28
SAVE command (SQL Server), 131
SAVEPOINT statement, 130

ROLLBACK statement and, 129
savepoints, 130
scalar aggregates, 144
scalar functions, 166–170

built-in, 166
date/time, 166
numeric, 167–170

SCHEMABINDING option
(SQL Server), 88

schemas, creating, 64
SCROLL option (SQL Server), 90
search conditions

WHERE clause for, 138–144
wildcard characters and, 144

search strings, POSITION function
and, 169

searched CASE expressions, 40
SELECT . . . INTO feature (SELECT

statement, SQL Server), 147
SELECT item list, SELECT statement

and, 132
SELECT keyword (Oracle), 36

,sql_ianIX.fm.14249 Page 211 Wednesday, November 29, 2000 4:45 PM

212 Index

Computer Crime: A Crimefighter’s Handbok, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

SELECT result set, 46
SELECT statement, 23–26, 132–151

COMPUTE clause (SQL Server), 148
CREATE VIEW statement and, 87
GROUP BY clause (SQL Server), 148
IF-THEN-ELSE functionality provided

by CASE function, 40
LIKE operator and, 118
MySQL application of, 149
operators and, 120
OPTION clause (SQL Server), 148
Oracle application of, 149
PostgreSQL application of, 150
SELECT . . . INTO feature

(SQL Server), 147
SQL Server application of, 146–148
TOP clause (SQL Server), 148

selections, 24
SEQUEL (Structured English Query

Language), 1
(see also SQL)

server cursors, opening, 119
server objects, SQL99 identity rules

for, 20
sessions, 47

current
roles for, enabling/disabling, 152
time zone of, changing, 153

SESSION_USER function, 166
SET CONNECTION statement, 151
set processing, 9
SET ROLE statement, 152
set theory, 9
SET TIME ZONE statement, 153
SET TRANSACTION statement, 154

vs. START TRANSACTION statement
and BEGIN TRANSACTION
statement, 156

simple CASE expressions, 40
single quotation marks (‘ ’)

enclosing character or string literals, 21
as outer delimiters of string literals, 22

SOME logical operator, 123
sort order, WHERE clause and, 139
space required for indexes

(SQL Server), 57
spaces, removing from character

strings, 174
sp_add_role system stored procedure

(SQL Server), 64
SPI_CONNECT statement, support for by

PostgreSQL, 47
SQL Module Language, 7
SQL Server, 2

datatypes, 12–14
delimiters and operators, 22

functions supported by (alphabetical
list), 175–178

joins and, 25
keywords in, 199
triggers and, 38

SQL (Structured Query Language), 1–8,
9–26

dialects of, 6
functions (see functions)
language extensions by vendor

(lists), 175–193
statements (see statements)
using, 23–26
vendor implementations of, 1, 2

SQL2, 2
SQL3 (see SQL99 standard)
SQL92 standard, 2
SQL99 standard, 1, 3

Core SQL99 standard, 3
dataset hierarchy of, 10, 11
datatypes, 10–12
keywords in, 197
new, 194
supplemental features packages, 3–5

SQL*Plus (Oracle), CONNECT statement
and, 47

START TRANSACTION statement, 156
vs. SET TRANSACTION statement and

BEGIN TRANSACTION
statement, 156

statement classes, 5
statements

alphabetical reference of, 27–162
listed in table, 27–30

categories of syntax, 19–23
new, 194–196

statistical functions, 167–170
statistics (spread of values), 55
stored procedures

altering, 30
creating, 60
dropping, 99
external programs, calling in

Oracle, 63
invoking, 39
operators and, 120
resources for further reading, 61
temporary (SQL Server), 61
vs. user-defined functions (Oracle), 54,

62
version numbers for (SQL Server), 61

string delimiters, 22
string functions, 170–175
string literals, 21
strings

case of, changing, 172
joining, 170

,sql_ianIX.fm.14249 Page 212 Wednesday, November 29, 2000 4:45 PM

Index 213

Computer Crime: A Crimefighter’s Handbok, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

Structured English Query Language
(SEQUEL), 1

(see also SQL)
Structured Query Language (see SQL)
SUBSTRING function, 173
subtraction (-) arithmetic operator, 121
SUM aggregate function, 144
SUM function, 164
supplemental features packages, 3–5
supported (S), 28
supported, with limitations (SWL), 28
supported, with variations (SWV), 28
symbols in numeric literals, 21
syntax, categories of for SQL, 19–23
SYSDATE function (Oracle, MySQL), 167
system delimiters, 22
system privileges in Oracle (list), 109
SYSTEM_USER function, 166

T
TABLE datatype, 52
table definitions, dropping, 100
tables, 1, 10, 24

altering, 32
creating, 66

ascending/descending indexes on
(SQL Server), 56

database design of, 66
manipulation and (Oracle), 35
naming, 66
partitioned (Oracle), 58
renaming (MySQL), 34
TEMPORARY, 67
temporary

global (SQL Server), 68
specified with ON COMMIT DELETE

ROWS, clearing of data, 44
triggers on (SQL Server), 38
truncating, 158

TEMPORARY tables, 67
temporary tables (SQL Server), 68
TEXTPOS function (PostgreSQL), 169
theta joins, 25

(see also JOIN clause)
theta style of joins, 135
time scalar functions, 166
time (see date/time)
time zone, changing for current

session, 153
TO_CHAR function (Oracle), 168
TOP clause (SELECT statement,

SQL Server), 148
@@TRANCOUNT global variable, 45
TRANSACTION keyword

(PostgreSQL), 46

transaction logs, storing separately from
database (SQL Server), 49

transactions
beginning, 156
ending open, 44
opened implicitly, 45
rolling back, 129
savepoint in, 130
setting, 154
starting, 156

Transact-SQL, 7
commands, 62

Transitional-level conformance, 3
TRANSLATE function, 171
triggers, 101

altering, 36
creating, 81
dropping, 101
operators and, 120

TRIM function, 174
TRUNCATE TABLE statement, 158

vs. DELETE statement, 93
Twelve Principles of Relational

Databases, 7, 8

U
UDFs (see user-defined functions)
unary operators, 123
underscore (_)

in table names, 66
naming conventions and, 20

unique indexes, 56
creating (PostgreSQL), 59

UNIX_TIMESTAMP (MySQL), 167
UPDATE privilege (GRANT

statement), 105
UPDATE statement, 159

CREATE TRIGGER statement and, 81
IF-THEN-ELSE functionality provided

by CASE function, 40
LIKE operator and, 118
operators and, 120

UPPER function, 172
URLs

MySQL, vii
open source, v
Oracle, vii
PostgreSQL, vii
SQL Server, vii

USAGE privilege (GRANT statement), 105
user-defined functions (UDFs), 163

creating, 50
vs. stored procedures (Oracle), 54, 62

USER function (Oracle, MySQL,
PostgreSQL), 167

,sql_ianIX.fm.14249 Page 213 Wednesday, November 29, 2000 4:45 PM

214 Index

Computer Crime: A Crimefighter’s Handbok, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

users
current, functions for, 166
privileges for

accessing/using database
objects, 105

revoking, 125
roles, creating for, 63
specifying user for server, 47

users (data access), 10

V
values

average of, computing, 164
minimum/maximum, finding, 165
sum of, computing, 164

varrays, 76
vector aggregates, 144
vendor implementations, 1, 2

supplemental features packages
and, 3–5

vendors
functions supported by, alphabetical

listings of, 175–193
support for SQL99 standard, 28

vendor-specific datatypes, 10–12
views

altering, 38
creating, 86

dropping, 102
indexes on (SQL Server), 56
modifications to, allowing

(SQL Server), 38
operators and, 120
recompiling (Oracle), 38
triggers on, 38

virtual tables (see views)

W
WHERE clause (SELECT statement), 24,

138–144
comparison operators and, 122
DELETE statement and, 92
vs. HAVING clause, 145, 146
joins and, 25
logical operators and, 122
UPDATE statement and, 159

wildcard characters, search conditions
and, 144

wildcard operators, LIKE operator
and, 118

WORK keyword
Oracle, 46
PostgreSQL, 46

work tables, 24

,sql_ianIX.fm.14249 Page 214 Wednesday, November 29, 2000 4:45 PM

