

Microsoft®

SQL Server
™

2005
FOR

DUMmIES
‰

01_577557 ffirs.qxp 12/20/05 9:41 PM Page i

01_577557 ffirs.qxp 12/20/05 9:41 PM Page ii

Microsoft®

SQL Server
™

2005
FOR

DUMmIES
‰

by Andrew Watt

01_577557 ffirs.qxp 12/20/05 9:41 PM Page iii

Microsoft® SQL ServerTM 2005 For Dummies®

Published by
Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade
dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United
States and other countries, and may not be used without written permission. Microsoft and SQL Server
are trademarks or registered trademarks of Microsoft Corporation in the United States and/or other coun-
tries. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not asso-
ciated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REP-
RESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CON-
TENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CRE-
ATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CON-
TAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FUR-
THER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFOR-
MATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE
CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2005935163

ISBN-13: 978-0-7645-7755-0

ISBN-10: 0-7645-7755-7

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1O/RT/QR/QW/IN

01_577557 ffirs.qxp 12/20/05 9:41 PM Page iv

www.wiley.com

About the Author
Andrew Watt wrote his first computer programs in 1985. He is an indepen-
dent consultant, experienced author, and Microsoft MVP (Most Valuable
Professional). His areas of interest and expertise include XML, Microsoft
InfoPath 2003, and SQL Server 2005.

Andrew first used SQL Server in version 7.0 and has been an active partici-
pant in the SQL Server 2005 beta program since August 2003.

Among the books Andrew has written, or co-written, are Beginning Regular
Expressions, Beginning XML, 3rd Edition, Beginning RSS & Atom Programming,
Professional XML, 2nd Edition and Designing SVG Web Graphics.

Andrew is often to be seen answering questions in Microsoft’s SQL Server
newsgroups and other newsgroups. Feel free to get involved in the commu-
nity there. He can be contacted at SVGDeveloper@aol.com. Due to the
volume of e-mail he receives, he can’t guarantee a response to every e-mail.

01_577557 ffirs.qxp 12/20/05 9:41 PM Page v

01_577557 ffirs.qxp 12/20/05 9:41 PM Page vi

Dedication
To Jonathan, Stephen, Hannah, Jeremy, Peter, and Naomi. Each a very special
human being to me.

Author’s Acknowledgments
Every technical book is the product of teamwork and this book is no excep-
tion. I particularly want to thank the technical editor, Stephen Giles. Stephen
came up with many good suggestions for additional material but, unfortu-
nately, there wasn’t space to accept more than a few of them. It would be nice
if somebody invented elastic paper. Until then, books are limited to being of a
fixed size.

I would also like to thank my two acquisition editors on this book: Terri
Varveris and Tiffany Franklin. Terri had the most productive summer of the
whole team, ending it with a loveable new son. Thanks to Tiffany for her
patience as time slipped. Isn’t that supposed to happen only in science fic-
tion books?

It’s been great working with Nicole Sholly, my project editor, who has done so
much to move the project forward to a successful conclusion. I would also
like to thank Rebecca Senninger, copy editor, whose attention to detail picked
up a few of those little errors that the rest of us had missed.

Thanks to all the team. It has been a good experience for me working with
you all.

01_577557 ffirs.qxp 12/20/05 9:41 PM Page vii

Publisher’s Acknowledgments
We’re proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and
Media Development

Project Editor: Nicole Sholly

Acquisitions Editors: Tiffany Franklin,
Terri Varveris

Copy Editor: Rebecca Senninger

Technical Editor: Stephen Giles

Editorial Manager: Kevin Kirschner

Media Development Specialists: Angela Denny,
Kate Jenkins, Steven Kudirka, Kit Malone,
Travis Silvers

Media Development Coordinator:
Laura Atkinson

Media Project Supervisor: Laura Moss

Media Development Manager:
Laura VanWinkle

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant
(www.the5thwave.com)

Composition Services

Project Coordinator: Kathryn Shanks

Layout and Graphics: Carl Byers, Andrea Dahl,
Joyce Haughey, Barbara Moore

Proofreaders: Leeann Harney, Jessica Kramer,
Joe Niesen, TECHBOOKS Production
Services

Indexer: TECHBOOKS Production Services

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher

Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Acquisitions Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher

Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

01_577557 ffirs.qxp 12/20/05 9:41 PM Page viii

Contents at a Glance
Introduction ...1

Part I: SQL Server 2005: An Overview............................7
Chapter 1: Introducing SQL Server 2005 ...9
Chapter 2: New Features in SQL Server 2005..21
Chapter 3: Introducing and Configuring Management Studio35

Part II: Basic Operations...51
Chapter 4: Creating Databases, Tables, and Relationships with T-SQL.....................53
Chapter 5: Asking Questions and Getting Answers ...67
Chapter 6: Building a Simple Application..87

Part III: Working with SQL Server................................99
Chapter 7: Working with XML ...101
Chapter 8: Using the Common Language Runtime ...121
Chapter 9: Using Stored Procedures..131
Chapter 10: Error Handling in T-SQL..143

Part IV: Protecting Your Data155
Chapter 11: Securing Your Data..157
Chapter 12: Availability and Preventing Data Loss ..173
Chapter 13: Maintaining Integrity with Transactions ..185
Chapter 14: Maintaining Data Integrity with Constraints and Triggers...................191

Part V: Administering a SQL Server System209
Chapter 15: Configuring a SQL Server System ...211
Chapter 16: Scheduling SQL Server Agent Jobs ...231
Chapter 17: Sending Information Using Notification Services..................................253
Chapter 18: Maintaining a SQL Server System ...261
Chapter 19: Working with Multiple Servers ..283

02_577557 ftoc.qxp 12/20/05 9:41 PM Page ix

Part VI: Using SQL Server Business
Intelligence (BI) Services...305
Chapter 20: SQL Server Integration Services..307
Chapter 21: Analysis Services...337
Chapter 22: Building Business Reports with Reporting Services359

Part VII: The Part of Tens ..377
Chapter 23: Ten Sources of Information on SQL Server 2005379
Chapter 24: Products that Work with SQL Server 2005...383

Index ..387

02_577557 ftoc.qxp 12/20/05 9:41 PM Page x

Table of Contents
Introduction..1

About This Book...2
Foolish Assumptions ...2
Conventions Used in This Book ...3
How This Book Is Organized...3

Part I: SQL Server 2005: An Overview..3
Part II: Basic Operations..3
Part III: Working with SQL Server ...3
Part IV: Protecting Your Data ..4
Part V: Administering a SQL Server System..4
Part VI: Using SQL Server Business Intelligence (BI) Services.........4
Part VII: The Part of Tens ..4
About the Web site ...5

Icons Used in This Book..5
Where to Go from Here..5

Part I: SQL Server 2005: An Overview7

Chapter 1: Introducing SQL Server 2005 .9
Getting to Know SQL Server 2005 ..9
A Client-Server Database...10

OLTP...10
OLAP ..11

A Secure Database ...11
A Programmable Database..12

Transact-SQL...13
SQL Server Management Studio ...13
Business Intelligence Development Studio14

A Scalable Database...14
An Available Database ...15

Miscellaneous changes..15
Online indexing...16
Online page and file restore ..16

A Reliable Database ..16
Backing up data ..16
Replication ..17

02_577557 ftoc.qxp 12/20/05 9:41 PM Page xi

A Manageable Database ..17
Command-line tools ...18
Graphical tools ...18
SQL Server Agent..18
Performance tools ..18

A Database That Supports Business Intelligence18

Chapter 2: New Features in SQL Server 2005 .21
Security Enhancements...22

System catalog security...22
Password policy enforcement ..22
Schema and user separation...22
Automated certificate creation for SSL ...23

Transact-SQL Enhancements..23
Improved XML support ...23
Error handling...23
Transact-SQL templates ..24

Other Developer-Orientated Enhancements ..24
Support for the Common Language Runtime24
New datatypes ..25
SQL Management Objects (SMO) ...25
Scripting actions...25
HTTP endpoints..26

Manageability Enhancements...26
New management tools ...26
Profiler ...27
SQL Server Agent..27
Dynamic configuration ..27
Full-text search ...28
SQL Server Service Broker ..28
Dedicated Administrator connection ..28
SQLCMD...28
Easier updates ..29
Replication ..29
WMI configuration..29
Database Mail..29

Availability Enhancements..29
Concurrent data access...30
Availability after server failure ...30
Availability during database maintenance..30

Scalability Enhancements ...31
Installing in a cluster..31
Partitioning data...31
Database Engine Tuning Advisor ...32
Hot-add memory support..32
Replication ..32

Microsoft SQL Server 2005 For Dummies xii

02_577557 ftoc.qxp 12/20/05 9:41 PM Page xii

Business Intelligence Enhancements ...32
Integration Services ...33
Analysis Services..33
Reporting Services ...33

Chapter 3: Introducing and Configuring Management Studio35
Starting Management Studio and Connecting to SQL Server36
Using Registered Servers ..36
Exploring Database Objects Using the Object Explorer38

View and modify database properties...39
Security..41
Replication ..42

Getting an Overview on the Summary Tab...43
Asking Questions in the Query Pane ...45
Customizing the Environment ..46

Setting Startup options..47
Displaying results ...47
Keyboard shortcuts ...48
Restoring the default configuration ...49
Using templates in Management Studio ..49

Part II: Basic Operations ...51

Chapter 4: Creating Databases, Tables, and Relationships
with T-SQL .53

Firing Up SQL Server 2005...54
Exploring the Object Explorer..55
Creating Databases ..57
Creating Tables...58
Defining Relationships...61
Adding Constraints ..63
Adding Data to the Database ..65

Chapter 5: Asking Questions and Getting Answers 67
Using the Query Editor..67
Using the SELECT Statement ..69
Filtering with the WHERE Clause ...72
Sorting with ORDER BY...75
Retrieving Data from Multiple Tables..77
Joins...81
Modifying a Template ..83

Chapter 6: Building a Simple Application .87
Designing the Application...88
Creating a New Project ..90

xiiiTable of Contents

02_577557 ftoc.qxp 12/20/05 9:41 PM Page xiii

Building the Connection to the Data ...92
Building the User Interface ...96
Debugging the Application..97

Part III: Working with SQL Server99

Chapter 7: Working with XML .101
Introducing XML...102

XML and SQL Server 2000 ...103
XML and SQL Server 2005 ...103
The xml datatype..104

Creating XML Documents and Fragments...104
Using Untyped and Typed XML..105

Using untyped XML..105
Understanding the XML Schema Definition language108
Using typed XML ..110

Querying XML...113
Understanding XQuery ..113
Creating indexes for the xml datatype ..116

Using the XML Data Modification Language...116
Converting Data to and from XML ...118

Using the FOR XML statement ..119
Using the OPENXML keyword...120

Chapter 8: Using the Common Language Runtime 121
Introducing CLR Integration ...122

Development ...123
Manual coding and deployment ...123

Comparison with Traditional Approaches ...125
Potential benefits of CLR integration...126
CLR and T-SQL comparison ..127
CLR and extended stored procedure comparison128
CLR and middle tier comparison..129

CLR Code Access Security ..129

Chapter 9: Using Stored Procedures .131
What a Stored Procedure Is ..131

Types of stored procedure..132
What a stored procedure does ...132
Reasons to use a stored procedure ...133
System stored procedures ..134

Creating a Stored Procedure...137
Creating a procedure without parameters......................................138
Creating a stored procedure with a parameter139
Naming stored procedures..140

Microsoft SQL Server 2005 For Dummies xiv

02_577557 ftoc.qxp 12/20/05 9:41 PM Page xiv

Calling a Stored Procedure ...141
CLR Stored Procedures ...141

Chapter 10: Error Handling in T-SQL .143
Handling Errors with T-SQL ..143
The TRY...CATCH Construct..144

Rules for the TRY...CATCH construct...144
Error message severity levels...144

Using Error Functions..145
Using error codes ...147
RAISERROR..149
Using nested TRY...CATCH constructs...150
@@Error ...151

Part IV: Protecting Your Data.....................................155

Chapter 11: Securing Your Data .157
Introducing The New Security Model ..158

Security terminology..159
Principals hierarchy...159
Securables hierarchy ...159
New security features ..160
Granular permissions control...161
Permissions basics...161
Permission levels..162
How permissions apply to specific securables162

Working with the New Security Model ..165
Logins and users...166
Separation of users and schemas...166
The default schema..167
Granting permissions to a user ..168
Module Execution Context ..170
Catalog security..170
Password policy enforcement ..170

Using Common Language Runtime Security...172

Chapter 12: Availability and Preventing Data Loss 173
Availability Overview...174
Reducing Downtime with Database Mirroring ...174

Database mirroring overview ...175
Transparent client redirect ...176
Database views ...176
Differences from failover clustering...176
Similarities to failover clustering ...177
Recovery models..177

xvTable of Contents

02_577557 ftoc.qxp 12/20/05 9:41 PM Page xv

Speeding Recovery with Checkpointing ...178
Automatic checkpoints..178
Setting the recovery interval ..179

Using Failover Clustering ..179
Database Snapshots...180

Naming database snapshots ...181
Creating a database snapshot ..181
Deleting unwanted database snapshots..182
Reverting to a database snapshot..182

Backing Up and Restoring Data..183
Assessing the risks to protect against...183
Backing up data ..183
Checking backups ..184
Restoring data...184

Chapter 13: Maintaining Integrity with Transactions 185
Understanding Transactions ..186

ACID..186
The transaction log ..186

Coding Transactions..187
A simple update..187
A simple transaction ..187
Implicit transactions ..190

Chapter 14: Maintaining Data Integrity
with Constraints and Triggers .191

Understanding Constraints, Defaults, Rules, and Triggers.....................192
Constraints..192
Defaults..192
Rules...194
Triggers..195

Using Check Constraints ...196
Creating a check constraint visually..197
Dropping a check constraint visually ..200
Creating a check constraint with T-SQL ..200

DDL Triggers ...201
Preventing undesired changes ...201
Auditing changes ..203

DML Triggers ..205
The inserted and deleted tables...206
Triggers for auditing DML ...206

Microsoft SQL Server 2005 For Dummies xvi

02_577557 ftoc.qxp 12/20/05 9:41 PM Page xvi

Part V: Administering a SQL Server System209

Chapter 15: Configuring a SQL Server System 211
Using SQL Server Configuration Manager...211

Adding SQL Server Configuration Manager
to an MMC console ...213

Managing SQL Server services ...216
Connecting to a remote computer ...219
Configuring network protocols...221
Configuring client computers ...223

Configuring Using SQLCMD ..223
Getting started with SQLCMD...223
Executing a T-SQL script with SQLCMD ..226
Logging in as a specified user...226
Connecting to a remote SQL server instance227

Configuring Using SQL Server Management Studio.................................228
SQL Server instance level configuration ...228
Configuring at the database level...229

Chapter 16: Scheduling SQL Server Agent Jobs 231
Introducing SQL Server Agent ..232

Managing Agent from SQL Server Management Studio.................232
Starting and stopping SQL Server Agent...234
Setting SQL Agent to start automatically ..234
Using Agent in Business Intelligence ...237

Security..237
Permissions for SQL Agent ...237
Permissions for users ..238

Configuring SQL Server Agent ..240
Windows permissions..240
Enabling SQL Agent extended stored procedures242

Creating Jobs and Alerts ...243
Creating a SQL Agent job...243
Creating a SQL Agent alert ..249

Using T-SQL with SQL Server Agent ..250
Using the Maintenance Plan Wizard ..250

Chapter 17: Sending Information Using Notification Services 253
The Notification Services Approach..254

The basic steps...254
New notification features in SQL Server 2005.................................255

xviiTable of Contents

02_577557 ftoc.qxp 12/20/05 9:41 PM Page xvii

How Notification Services works ...255
Working with events...256

Application Definition and Instance Configuration Files257
The Application Definition file..257
The Instance Configuration file ..259

Chapter 18: Maintaining a SQL Server System 261
Using Maintenance Plans ..261

Backing up...262
Different types of backup ..270
Restoring from backups ..270

Checking Error Logs ..270
Working with Indexes ..274
Halting Runaway Queries with the Dedicated

Administrator Connection...277
Looking under the Covers with Profiler ...278
Using the Database Engine Tuning Advisor..280

Chapter 19: Working with Multiple Servers .283
Replication Overview ..284

Replication jargon ..284
Replication enhancements in SQL Server 2005285
Security for replication..285

Replicating Your Data ..286
Setting up a publisher and distributor ..286
Creating a new publication ...293
Creating a subscription ...297

Introducing Service Broker...301
Queues ...302
Messages ...302
Behind the scenes ..303
Security..304

Part VI: Using SQL Server Business
Intelligence (BI) Services ...305

Chapter 20: SQL Server Integration Services .307
Overview of Business Intelligence ...308

Business intelligence tools..308
Data warehouses ..308

Microsoft SQL Server 2005 For Dummies xviii

02_577557 ftoc.qxp 12/20/05 9:41 PM Page xviii

Integration Services Overview ...309
Creating an Integration Services package310
Sources ..311
Transformations ...312
Destinations ..314
Task flows..315
Error flows...315
Event handling ..315
Logging options ..315
Package restart ...316
Digital signing ...316

Business Intelligence Development Studio...316
The Control Flow tab ...317
The Data Flow tab ..319
The Event Handlers tab ...319
The Package Explorer tab ...320
The Toolbox ..321
The Solution Explorer ..321

Import/Export Wizard..321
Creating an Integration Services Project ..329
Deploying an Integration Services Project..336

Chapter 21: Analysis Services .337
Introducing Analysis Services ..337

New features in Analysis Services 2005...338
Key Performance Indicators ...339
Managing Analysis Services..340

Business Intelligence Development Studio and Analysis Services........341
Creating an Analysis Services Project ...342
Data Mining ...358

Chapter 22: Building Business Reports
with Reporting Services .359

Overview of Reporting Services...360
Replicating to a Report Server ...361
Database mirroring and database views ...361

Creating Reports ..361
Viewing Reports ..370
Managing Reports ..371

Managing in Report Manager..371
Managing in SQL Server Management Studio.................................372
Distributing reports to those who need them................................372

xixTable of Contents

02_577557 ftoc.qxp 12/20/05 9:41 PM Page xix

Report Definition Language ..372
Report Builder ..373
Report Viewer Controls...375

Part VII: The Part of Tens...377

Chapter 23: Ten Sources of Information on SQL Server 2005379
Books Online...379
The Public Newsgroups...380
Microsoft Forums...380
The SQL Server 2005 Web Site..380
The SQL Server Developer Center ..381
The Business Intelligence Site ..381
The Integration Services Developer Center ...381
The Reporting Services Web Site ..381
Channel 9 ..382
Other Web Sites ...382

Chapter 24: Products that Work with SQL Server 2005383
Visual Studio 2005 ..383
Microsoft Office InfoPath 2003 ...384
Red-Gate Tools..384
Quest Software ...384
PromptSQL..385

Index ...387

Microsoft SQL Server 2005 For Dummies xx

02_577557 ftoc.qxp 12/20/05 9:41 PM Page xx

Introduction

Welcome to the world of SQL Server 2005. I am excited by the many new
capabilities of SQL Server 2005 and I hope that you are too.

SQL Server 2005 is the new edition of Microsoft’s SQL Server client-server
relational database. It’s a major release; the first in five years. SQL Server
2005 has many new features that help you manage a relational database and,
in many editions, adds important new business intelligence functionality.

SQL Server 2005, quite simply, is bigger and better than SQL Server 2000. It
offers functionality and pricing to help businesses of many sizes handle their
crucial business data more effectively and more efficiently. No, I am not a
Microsoft marketing person. It’s quite simply true that a lot of new features
and tools in SQL Server 2005 can help you look after your data.

SQL Server 2005 comes in several different editions:

� Enterprise: Has the full functionality to support scalability and availabil-
ity needed by large enterprises. It supports an unlimited number of CPUs.
In addition, it has the full suite of Business Intelligence functionality.

� Standard: Supports up to 4 CPUs. Has only some Business Intelligence
functionality; for example, it includes only basic Integration Services
transforms.

� Workgroup: It has limited Business Intelligence support. No Analysis
Services or Integration Services support. No Web services support.

� Developer: Has all the functionality included in Enterprise Edition, but it
is not licensed for production use.

� Mobile: Microsoft’s mobile database solution. The successor to SQL
Server CE.

� Express: A low-end free database with maximum 4GB database size. The
successor to MSDE. No full-text search. This edition is not covered in
this book, but another book — Microsoft SQL Server 2005 Express For
Dummies, by Robert Schneider (Wiley) — is dedicated to it.

At the time of writing a full feature comparison of the editions of SQL Server
2005 is at www.microsoft.com/sql/prodinfo/features/
compare-features.mspx.

03_577557 intro.qxp 12/20/05 9:42 PM Page 1

About This Book
SQL Server 2005 is huge. No book of this size can hope to cover it all. I have
had to make choices about the topics to include in this book to help you
understand how SQL Server works and how to use a range of its functionality.

Here are some of the things you can do with this book:

� Find out how to use SQL Server Management Studio, the new manage-
ment tool in SQL Server 2005 that replaces Enterprise Manager and
Query Analyzer.

� Create databases and tables.

� Retrieve data from a SQL Server database.

� Create maintenance plans.

� Create an Integration Services project.

� Create a simple Analysis Services project.

� Use Reporting Services.

Foolish Assumptions
I make a few assumptions about what you already know. I assume that you
know how to read. Without that skill, this book won’t be much use to you.

I assume you know how to turn your computer on and off, and how to use a
mouse and a keyboard.

More important, I also assume that you have installed SQL Server 2005 in a way
that suits your circumstances. SQL Server 2005 has so many ways that you can
install it that I could have used half the book to cover all the possibilities.

If you haven’t installed SQL Server 2005 yet, you can access SQL Server Books
Online, the official documentation set, on the Microsoft Web site. As I write this
they haven’t been released but it looks likely they will be at www.microsoft.
com/technet/prodtechnol/sql/2005/downloads/books.mspx. If not, a
Google search for SQL Server 2005 Books Online site:microsoft.com finds the
online documents for the final release build.

The setup utility for SQL Server 2005 is pretty self-explanatory. If you choose
the correct operating system to install on and read the hardware require-
ments, then you’re in good shape.

If you’ve installed all components of the Developer Edition, you have the
components to work through every step-by-step example in this book.

2 Microsoft SQL Server 2005 For Dummies

03_577557 intro.qxp 12/20/05 9:42 PM Page 2

Conventions Used in This Book
By conventions, I simply mean I’ve implemented certain formatting to convey
that whatever text is treated in a special way means something to you. For
instance, anything bolded denotes user entry — that is, it’s for you to type
somewhere. Anything formatted in monofont is a URL, an e-mail address, or
lines of code. Italics highlight a new term that I’ve defined in the context of
SQL Server 2005.

How This Book Is Organized
Microsoft SQL Server 2005 For Dummies is split into seven parts. You don’t
have to read it sequentially, and you don’t even have to read all the sections
in any particular chapter. You can use the Table of Contents and the Index to
find the information you need and quickly get your answer. In this section, I
briefly describe what you find in each part.

Part I: SQL Server 2005: An Overview
In Chapters 1 and 2, I give you a high-level view of what SQL Server 2005 does
and cover the new features that Microsoft has added in this version.

In Chapter 3, I show you how to find your way around the new management
tool, SQL Server Management Studio.

Part II: Basic Operations
You find out how to create databases and tables and how to retrieve informa-
tion from SQL Server 2005 databases.

You also find out how to create a simple Visual Studio 2005 application to
retrieve information from SQL Server 2005.

Part III: Working with SQL Server
This part covers XML in SQL Server 2005 and the new CLR (Common
Language Runtime) functionality.

I also show you how to create stored procedures and handle errors in your
code.

3Introduction

03_577557 intro.qxp 12/20/05 9:42 PM Page 3

Part IV: Protecting Your Data
Turn to this part to do the following tasks:

� Secure your data

� Prevent data loss

� Maintain your installation

� Create triggers

Part V: Administering a
SQL Server System
In this part, I cover the following topics:

� Configure your SQL Server installation

� Use SQL Server Agent

� Set up Notification Services

� Replication

� Use SQL Server Service Broker

Part VI: Using SQL Server Business
Intelligence (BI) Services
I explain the new Integrate, Analyze, Report paradigm in Business
Intelligence. You can create solutions by using SQL Server Integration
Services, Analysis Services, and Reporting Services.

Part VII: The Part of Tens
In this part, I point you towards other resources and tools that you can use
with SQL Server 2005.

4 Microsoft SQL Server 2005 For Dummies

03_577557 intro.qxp 12/20/05 9:42 PM Page 4

About the Web site
Because I wanted to make code samples available to you, this book has an
accompanying Web site — located at www.dummies.com/go/sqlserver —
where you can find all the code I use in the book.

Icons Used in This Book
What’s a For Dummies book without icons pointing you in the direction of
really great information that’s sure to help you along your way? In this sec-
tion, I briefly describe each icon I use in this book.

The Tip icon points out helpful information that is likely to make your job
easier.

This icon marks a general interesting and useful fact — something that you
might want to remember for later use.

The Warning icon highlights lurking danger. With this icon, I’m telling you to
pay attention and proceed with caution.

When you see this icon, you know that there’s techie stuff nearby. If you’re
not feeling very techie, you can skip this info.

This icon highlights the new features you’ll find in this latest version of SQL
Server 2005.

Where to Go from Here
If you are new to SQL Server and want to get a handle on what SQL Server
2005 is about, go to Chapter 1. If you are new to SQL Server 2005 and want to
know about its new features, take a look at Chapter 2.

One chapter that you might want to spend time with early on, though, is the
chapter on SQL Server Management Studio (Chapter 3). When you work with
SQL Server 2005, you spend a lot of your time there and the SQL Server
Management Studio is relevant to several later chapters.

5Introduction

03_577557 intro.qxp 12/20/05 9:42 PM Page 5

6 Microsoft SQL Server 2005 For Dummies

03_577557 intro.qxp 12/20/05 9:42 PM Page 6

Part I
SQL Server 2005:

An Overview

04_577557 pt01.qxp 12/20/05 9:42 PM Page 7

In this part . . .

I introduce you to the characteristics of SQL Server
2005 and tell you about many of the features that are

new in SQL Server 2005.

I also introduce you to the SQL Server Management Studio,
the main administrative tool for SQL Server 2005. SQL
Server Management Studio replaces Enterprise Manager
and Query Analyzer that you may know from SQL Server
2000. It allows you to manage SQL Server 2005 servers
whether they are Database Engine, Analysis Services,
Integration Services, or Reporting Services server instances.

04_577557 pt01.qxp 12/20/05 9:42 PM Page 8

Chapter 1

Introducing SQL Server 2005
In This Chapter
� Figuring out which SQL Server Edition is best for you

� Discovering what SQL Server 2005 is all about

In this chapter, I introduce you to SQL Server 2005. SQL Server 2005 is a
multi-component relational database management system centered

around a high-performance, highly available database engine.

The quality of the database engine in SQL Server is crucial to the reliability of
SQL Server 2005 in handling large quantities of data. However, SQL Server
2005 is much more than a database engine and consists of a suite of tools and
components that support you in designing, managing, maintaining, and pro-
gramming a SQL Server 2005 installation and its associated data. In addition,
there are powerful new or improved tools for business intelligence.

I introduce you to many of the important features and tools that you can find
in SQL Server 2005. SQL Server 2005 is such an extensive suite of programs
that I can only touch briefly on each of these many features. I show you how
to put many of these features and tools to work in later chapters.

Getting to Know SQL Server 2005
You can use SQL Server 2005 to store information for personal use, for depart-
mental use, for mid-size company use, or for enterprise use. SQL Server 2005
has editions (Microsoft provides a full comparison of the editions online at
www.microsoft.com/sql/2005/productinfo/sql2005features.mspx)
to meet the needs in each of those scenarios:

� Enterprise: Provides a relational database to meet the exacting needs of
the largest enterprises and busiest online databases. The Enterprise
Edition includes high-end business intelligence support and clustering. I
introduce you to business intelligence in Chapters 20 through 22. This
book does not cover clustering.

05_577557 ch01.qxp 12/20/05 9:43 PM Page 9

� Standard: Meets the needs of medium-sized companies or large depart-
ments in larger companies.

� Workgroup: Meets the needs of small- to medium-sized businesses that
don’t require the features of Standard Edition.

� Mobile: Formerly called SQL Server CE. This book does not cover
Mobile Edition.

� Express: A lightweight edition intended for use by application program-
mers. To find out more about Express Edition, see Microsoft SQL Server
2005 Express For Dummies, by Robert D. Schneider (Wiley).

A Client-Server Database
SQL Server 2005 is a client-server database. Typically, the SQL Server 2005
database engine is installed on a server machine to which you connect any-
thing from a few machines to many hundreds or thousands of client machines.

A client-server architecture can handle large amounts of data better than a
desktop database such as Microsoft Access. The SQL Server instance provides
security, availability, and reliability features that are absent from databases
such as Access. A client-server architecture also can reduce network traffic.

The server side of a SQL Server installation is used for two broad categories
of data processing: Online Transaction Processing (OLTP) and Online
Analytical Processing (OLAP).

OLTP
Online Transaction Processing is the kind of processing that the databases of
Amazon.com or any other large online retailer needs to do. A large number of
orders come in every minute and the information from each of those orders
needs to be written to the database quickly and reliably.

With OLTP, you can group certain actions together. For example, the different
aspects of a bank transfer between accounts would be carried out together,
so that if money is moved out of one account, it is also moved into another
account. Actions such as these that must be done together are called a trans-
action. In the account transfer, either both the transfers take place or neither
do. The all or nothing characteristic of a transaction ensures that the data
remains in a consistent state. An OLTP database is tuned to support high

10 Part I: SQL Server 2005: An Overview

05_577557 ch01.qxp 12/20/05 9:43 PM Page 10

volumes of transactions that frequently change the data in the database. SQL
Server 2005 performs well as an OLTP database management system.

The transaction log stores information about transactions and the data
changes made in transactions, which are not rolled back. The transaction log
is an important container for information about recent changes made to a
database.

OLAP
An Online Analytical Processing database is intended to process large
amounts of data that doesn’t change often. For example, an online retailer
might want to store summary data about sales by month, by region, by prod-
uct category, and so on. In SQL Server 2005, the OLAP functionality is carried
out in Analysis Services. In Analysis Services, you create cubes that allow you
to examine dimensions of a cube. I describe Analysis Services in more detail
in Chapter 21.

OLAP often takes place in a data warehouse. Getting large amounts of data
into good shape before putting it into a data warehouse is a major task, an
important aspect of which is to maximize data quality.

After all the data is aggregated, it is unlikely to change in the future. However,
you can query it in complex ways, so an OLAP database is typically opti-
mized to support fast querying.

A Secure Database
If the data on which your business depends is stored in SQL Server, you need
to keep the wrong people from accessing the data or, worse, changing or
deleting the data. Imagine if a hacker could change the price for certain
goods and then buy a huge quantity for a nominal amount — your business
could soon be a former business. Similarly, you don’t want your competitors
to be able to access information about the performance of your business.

SQL Server 2005 implements Microsoft’s recent emphasis on security. Unlike
its predecessor (SQL Server 2000), SQL Server 2005 is much more secure by
default. Many potential attack points are turned off until you explicitly turn
them on, so reducing the exposed risk of a default installation. The Surface
Area Configuration tool is one way to configure this.

11Chapter 1: Introducing SQL Server 2005

05_577557 ch01.qxp 12/20/05 9:43 PM Page 11

SQL Server 2005 builds on the authentication and authorization features pre-
sent in SQL Sever 2000. If you want to allow users to use SQL Server 2005 in
particular ways, you — as the administrator for SQL Server — can allow them
access.

Table 1-1 summarizes some key security features in SQL Server 2005.

Table 1-1 Key Security Features of SQL Server 2005
Feature Express Workgroup Standard Enterprise

Edition Edition Edition Edition

Authentication and Yes Yes Yes Yes
authorization

Data encryption and Yes Yes Yes Yes
key management

Best Practices Yes Yes Yes Yes
Analyzer

Integration with Yes Yes Yes Yes
Microsoft Baseline
Security Analyzer

Integration with Yes Yes Yes Yes
Microsoft Update

As you can see from the table, all editions of SQL Server 2005 support an exten-
sive range of important security features. I discuss security issues in Part IV.

A Programmable Database
SQL Server 2005 is a great environment for programmers. If you’re a devel-
oper, you might even find that your DBA (database administrator) is afraid of
the programmability of SQL Server 2005 because it offers so many options.
The good thing is that the increased programmability is accompanied by a
detailed system of security permissions that greatly reduces the chances of
rogue code doing harm to SQL Server itself.

Table 1-2 summarizes some key programmability support features in SQL
Server 2005.

12 Part I: SQL Server 2005: An Overview

05_577557 ch01.qxp 12/20/05 9:43 PM Page 12

Table 1-2 Key Programmability Support Features
Feature Express Workgroup Standard Enterprise

Edition Edition Edition Edition

Stored procedures Yes Yes Yes Yes
and triggers

New enhancements Yes Yes Yes Yes
to T-SQL

Integration of the Yes Yes Yes Yes
Common Language
Runtime and .NET
support

User-defined types Yes Yes Yes Yes

XML datatype Yes Yes Yes Yes

XQuery support Yes Yes Yes Yes

I introduce stored procedures in Chapter 9 and triggers in Chapter 14. I intro-
duce the Common Language Runtime in Chapter 8, and I describe use of the
XML datatype in Chapter 7.

Transact-SQL
SQL Server 2005 supports the Structured Query Language (SQL). In fact SQL is
the main language that SQL Server uses. Like many other databases, SQL
Server satisfies some standard SQL syntax and adds its own extensions to
SQL, allowing you to easily write code.

The Microsoft flavor of SQL is called Transact-SQL (T-SQL). T-SQL allows you
to add, modify, or query relational or XML data held in SQL Server 2005. In
Chapter 5, I introduce you to using T-SQL to retrieve desired data. I introduce
the manipulation of XML in Chapter 7.

SQL Server Management Studio
Transact-SQL programming is commonly done in the query pane of SQL
Server Management Studio. I cover SQL Server Management Studio in
Chapter 3.

13Chapter 1: Introducing SQL Server 2005

05_577557 ch01.qxp 12/20/05 9:43 PM Page 13

You can also use the SQLCMD utility to issue T-SQL commands interactively
or to run T-SQL script files. In applications you create, you can use T-SQL to
retrieve or manipulate data. I don’t describe these uses of T-SQL in this book.

Business Intelligence Development Studio
You can use Business Intelligence Development Studio (BIDS), which is based
on Visual Studio components, to create business intelligence applications.
BIDS is used to create SQL Server Integration Services, Analysis Services, and
Reporting Services projects.

I cover business intelligence (BI) in Part VI. In Chapter 20, I show you how to
use BIDS to create Integration Services projects. In Chapter 21, I introduce
Analysis Services. And in Chapter 22, I introduce you to using BIDS with
Reporting Services.

A Scalable Database
A database management system, such as SQL Server 2005, must grow as your
business grows. Table 1-3 summarizes some key features of the various edi-
tions of SQL Server 2005 and lists the limitations of each. I do not cover in
detail in this book how to make decisions on the most appropriate scalability
decisions for your business.

Table 1-3 SQL Server 2005 Editions and Their Limitations
Feature Express Workgroup Standard Enterprise

Edition Edition Edition Edition

CPU 1 2 4 No limit

RAM 1GB 3GB No limit No limit

Database size 4GB No limit No limit No limit

Partitioning No No No Yes

Commercial decisions regarding which functionality is in which edition are
subject to change up to the time of product release. Therefore, functionality
may differ slightly from the information I give in this chapter.

14 Part I: SQL Server 2005: An Overview

05_577557 ch01.qxp 12/20/05 9:43 PM Page 14

An Available Database
If your business uses the World Wide Web to sell goods or provide informa-
tion to customers, your customers may be located around the world. In that
case, your SQL Server 2005-based applications need to be available 24 hours
a day, 7 days a week. This need for continuous availability has stimulated
many availability features in SQL Server 2005. Table 1-4 summarizes availabil-
ity features in different editions of SQL Server 2005.

Table 1-4 The Availability Features of SQL Server 2005 Editions
Feature Express Workgroup Standard Enterprise

Edition Edition Edition Edition

Database mirroring No No Partial Yes

Failover clustering No No Limited to Yes
2 nodes

Backup log shipping No Yes Yes Yes

Online system changes Yes Yes Yes Yes

Online indexing No No No Yes

Online page and No No No Yes
file restore

If you cluster multiple server machines, they can operate together to give
availability that would either be unavailable or very expensive with a single
server. Each machine in a cluster is called a node. If a node fails, then another
node in the cluster picks up the work of the failed machine. This significantly
reduces downtime, at a cost of increased hardware.

Miscellaneous changes
You can add memory to the SQL Server machine if you have the relevant
hardware. This allows you to add memory to a machine while it is available
to users, so reducing downtime.

The Dedicated Administrator Connection (DAC) allows a database adminis-
trator to take control of the server even if an operation is using virtually all
the CPU cycles. If a server process fails to complete, it can use virtually 100

15Chapter 1: Introducing SQL Server 2005

05_577557 ch01.qxp 12/20/05 9:43 PM Page 15

percent of CPU time, making a server almost unusable or very slow. The DAC
allows a server administrator to connect to the server and stop the runaway
process without having to restart the server.

Online indexing
Online indexing is available only in the Enterprise Edition. Online indexing
improves the availability of a database by avoiding the need to take a table or
database offline while, for example, an index is rebuilt. I do not cover online
indexing further in this book.

Online page and file restore
This feature is available only in Enterprise Edition. If you have to restore data
from backups, the database becomes available for use more quickly than was
possible in SQL Server 2000. I do not cover this feature further in this book.

A Reliable Database
Disasters, small and large, can happen. If the hard drive crashes on your SQL
Server machine, your business doesn’t need to crash with it.

Backing up data
You can back up your data with SQL Server Management Studio (see Chapter 3).
You need to back up all your data regularly, especially the following system
databases, with the exception of tempdb:

� Master: The master database contains system level information for a
SQL Server 2005 system.

� Model: The model database is the template that is used when you
create a new database.

� Msdb: The msdb database is used by SQL Server Agent to record infor-
mation for scheduling alerts and jobs.

� Resource: The resource database is new in SQL Server 2005 and con-
tains the system objects for SQL Server 2005. When you update SQL
Server 2005 — for example a service pack — the new version replaces

16 Part I: SQL Server 2005: An Overview

05_577557 ch01.qxp 12/20/05 9:43 PM Page 16

the resource database. Be careful not to restore an out-of-date version
after applying a service pack.

� Distribution: The distribution database exists only if the SQL Server
machine is a distributor for replication. The database contains metadata
about replication.

� Temp: The temp database is deleted when you close down SQL Server
2005. Although tempdb is a system database, you cannot back it up.

Replication
SQL Server 2005 supports replication of data by using a publish/subscribe
metaphor. I describe replication in more detail in Chapter 19.

A Manageable Database
You need to manage many aspects of a SQL Server 2005 installation. Table 1-5
summarizes some features of manageability in SQL Server 2005. I cover SQL
Server Management Studio in Chapter 3. I don’t describe the Database Engine
Tuning Advisor or Full Text Search in detail in this book.

Table 1-5 SQL Server 2005 Manageability Features
Feature Express Workgroup Standard Enterprise

Edition Edition Edition Edition

Automatic Yes Yes Yes Yes
performance
tuning

SQL Server No Yes Yes Yes
Management
Studio

Database Engine No Yes Yes Yes
Tuning Advisor

Full text search No Yes Yes Yes

SQL Agent job No Yes Yes Yes
scheduling

17Chapter 1: Introducing SQL Server 2005

05_577557 ch01.qxp 12/20/05 9:43 PM Page 17

Command-line tools
In SQL Server 2005, the main command-line tool is SQLCMD. The SQLCMD
utility allows you to manage a SQL Server 2005 installation by using the T-SQL
language. You can use T-SQL interactively from the command line or can use
SQLCMD to run T-SQL scripts. I do not cover the SQLCMD in detail in this book.

Graphical tools
The main graphical tool for administering SQL Server 2005 is SQL Server
Management Studio. Management Studio allows you to administer many SQL
Server 2005 database engine instances, Analysis Services instances, Integration
Services instances, and Reporting Services instances from a single interface. I
describe SQL Server Management Studio in more detail in Chapter 3.

SQL Server Agent
Any database administrator has tasks that need to be carried out repeatedly
and, often, these tasks take place at set times. SQL Server Agent (or simply
SQL Agent) is the software component that allows you to carry out such tasks
automatically. For example, you may need to back up data at 2 a.m. every day.
It is much more convenient for you to be at home asleep and let SQL Server
Agent take the strain. See Chapter 16 for more about SQL Server Agent.

Performance tools
SQL Server Profiler allows you to monitor and analyze performance of a SQL
Server instance. New in SQL Server 2005 is the ability to monitor and analyze
the performance of Analysis Services. I do not cover SQL Server Profiler in
detail in this book.

A Database That Supports
Business Intelligence

SQL Server 2005 supports many pieces of business intelligence functionality,
grouped under the headings of Integration Services, Analysis Services, and

18 Part I: SQL Server 2005: An Overview

05_577557 ch01.qxp 12/20/05 9:43 PM Page 18

Reporting Services. Table 1-6 summarizes the availability of business intelli-
gence functionality by SQL Server 2005 edition.

Table 1-6 Business Intelligence Functionality
Feature Express Workgroup Standard Enterprise

Edition Edition Edition Edition

Data can be used Yes Yes Yes Yes
by Report Server

Report Builder No Yes Yes Yes

Scale out of No No No Yes
Report Servers

Data warehousing No No Yes Yes

Business Intelligence Not included Not included Yes Yes
Development Studio but is but is

compatible compatible

Analysis Services No No Yes Yes

Advanced analytic No No Yes Yes
functions

Data mining No No Yes Yes

Integration Services No No No Yes

Chapter 20 describes SQL Server Integration Services. Chapter 21 has more
on Analysis Services. And Chapter 22 includes information on Reporting
Services.

19Chapter 1: Introducing SQL Server 2005

05_577557 ch01.qxp 12/20/05 9:43 PM Page 19

20 Part I: SQL Server 2005: An Overview

05_577557 ch01.qxp 12/20/05 9:43 PM Page 20

Chapter 2

New Features in SQL Server 2005
In This Chapter
� Checking out SQL Server’s improved security features

� Finding out about other SQL Server 2005 enhancements

SQL Server 2005 is the most exciting release of SQL Server for years. It
may be the only release in the last five years, but it’s genuinely an excit-

ing release full of new and useful features. In addition to new features, SQL
Server 2005 also includes many features that are big improvements on their
counterparts in SQL Server 2000.

In this chapter, I briefly describe many of SQL Server 2005’s new and
improved features.

To get a good feel for the range of new and improved features in SQL Server
2005, be sure to read all sections of the chapter.

To describe all these features in detail and explain how to use them would
need a book maybe ten times as long as this one. I had to make choices about
which tools or features to cover in detail later in the book. I often assume
that you have some familiarity with SQL Server 2000, but you should be able
to follow along even if you are new to SQL Server 2005. For many topics I tell
you where I describe the functionality in more detail.

Because one of the most important aspects of any database is security (a topic
I explore further in Part IV), I start there.

Security Enhancements
Security is a major focus for new features in SQL Server 2005. In part, this
focus reflects a response to issues such as the Slammer worm that hit SQL
Server 2000. In part, it reflects a world where more business data is potentially

06_577557 ch02.qxp 12/20/05 9:43 PM Page 21

exposed on the Internet. SQL Server has to give you the tools to keep your
data safe in order to allow the right people to access data that you want them
to access and to stop other people from accessing data that you don’t want
them to access.

I describe security in SQL Server 2005 in more detail in Chapter 11.

System catalog security
The system catalog in SQL Server 2005 consists of views of the underlying
system data structures. Users do not see any underlying tables, so unskilled
or malicious users can’t change or otherwise corrupt them. This stops you or
anyone else from damaging the core structures on which your SQL Server
installation depends.

Password policy enforcement
When installed on Windows 2003 Server, you can apply to SQL Server 2005
any Windows password policy that you have in effect. You can enforce poli-
cies for password expiration and strength on SQL Server 2005 in exactly the
same way as for Windows logins. Windows 2000 Server does not support this.

You can turn off (or on, in some cases) password policy enforcement for indi-
vidual logins. For example, you can turn off password policy enforcement
when you’re using an application with built-in authentication information that
you can’t change.

I show you how to alter password enforcement in Chapter 11.

Schema and user separation
SQL Server 2000 had no concept of a schema: A user owned a database object.
So if a user User1 created an object called myTable, then the object’s qualified
name was User1.myTable. If User1 is deleted — for example, when the indi-
vidual leaves the company — you needed to change the name of the object,
which caused problems for applications that depended on the name of the
object for data access. In SQL Server 2005, a user can create a schema, which
in turn contains database objects, which has a different name from the user.
User1 can create a schema called HR. and create an object called myTable.
You refer to that object as HR.myTable. So if User1 leaves the company, you
can leave the schema name unchanged, which means you can leave your appli-
cation code unchanged because the object is still called HR.myTable.

22 Part I: SQL Server 2005: An Overview

06_577557 ch02.qxp 12/20/05 9:43 PM Page 22

Automated certificate creation for SSL
In SQL Server 2000, when using Secure Sockets Layer (SSL) to log in to a SQL
Server instance, you had to manually create a certificate to underpin the use
of SSL. SQL Server 2005 creates a certificate automatically. That allows you to
use SSL without manually creating a certificate.

Transact-SQL Enhancements
SQL Server 2005 has added several new features to Transact-SQL.

Transact-SQL is the version of the Structured Query Language (SQL) used by
SQL Server 2005. Transact-SQL is often abbreviated to T-SQL. T-SQL has many
features, which are not included in ANSI SQL.

Improved XML support
SQL Server 2000 allowed you to retrieve relational data as XML with the FOR
XML clause or store XML as relational data in SQL Server, using the OPEN XML
clause. SQL Server 2005 has a new xml datatype that allows you to write
code to retrieve XML data as XML, avoiding the transformation from XML to
relational data that occurred when using OPEN XML. You can also use a
schema document expressed in the W3C XML Schema Definition language
(sometimes called XSD schema) to specify allowed structures in the XML.

Note: Strictly speaking, the xml datatype stores data in a proprietary binary
format. For practical purposes, you can retrieve and manipulate the data
as XML.

The xml datatype supports several keywords in T-SQL. I show you how to
use these keywords in Chapter 7.

Error handling
SQL Server 2005 allows you to use TRY ... CATCH blocks in your T-SQL
code. So, if your code causes an error, the code in the CATCH block allows
you to specify what to do when an error occurs. I show you how to use
TRY ... CATCH blocks in Chapter 10.

23Chapter 2: New Features in SQL Server 2005

06_577557 ch02.qxp 12/20/05 9:43 PM Page 23

Transact-SQL templates
In SQL Server Management Studio, you can find many templates to help you
carry out common tasks with Transact-SQL. To view the range of T-SQL tem-
plates, choose View➪Template Explorer in SQL Server Management Studio.
The Template Explorer displays. View the nodes to see the range of templates
available. Check out Chapter 5 for more on templates.

Other Developer-Orientated
Enhancements

SQL Server 2005 has several new developer-orientated enhancements. I
describe those in the following sections.

Support for the Common
Language Runtime
The Common Language Runtime (CLR), which is used by .NET code, is
embedded in the SQL Server 2005 database engine. You can write stored pro-
cedures, triggers, functions, aggregates, and user-defined datatypes by using
languages such as Visual Basic .NET or C#. Stored procedures written in a
.NET language are a good replacement for SQL Server 2000 extended stored
procedures, because you can specify a security level for the .NET code.

You find three security levels for .NET code:

� Safe: This level allows no access outside SQL Server. For example, your
code cannot access the file system, registry, environment variables, or
the network. This security level is the most secure.

� External Access: This security level allows limited external access by
your code. Specifically, you can access the registry, the file system, envi-
ronment variables, and the network.

� UnSafe: You can access any desired functionality outside SQL Server
2005 with the UnSafe security level. You should use the UnSafe security
level only if you are certain that the code is well written and you trust
the author of the code.

24 Part I: SQL Server 2005: An Overview

06_577557 ch02.qxp 12/20/05 9:43 PM Page 24

New datatypes
SQL Server 2005 supports several new datatypes:

� varchar(max): This allows you to use sequences of characters greater
than 8000 bytes (8000 characters). The maximum size is 2GB.

� nvarchar(max): This allows you to use sequences of Unicode characters
greater than 8000 bytes (4000 characters). The maximum size is 2GB.

� varbinary(max): This allows you to use binary data greater than 8000
bytes.

Each of the preceding datatypes can be up to 2GB in size. This allows major
size increases in size compared to varchar(8000) and nvarchar(8000),
which were each limited to 8K.

SQL Management Objects (SMO)
SQL Management Objects (SMO) replaces Distributed Management Objects
(DMO), which were used in SQL Server 2000. SQL DMO applications run on
SQL Server 2005 but no updating of DMO objects took place for SQL Server
2005. Developers use SMO. However, applications created with SMO often
provide custom management tools for administrators.

SMO is faster than SQL Server 2000 DMO in many settings because each
object is only partially instantiated. For example, if you want to enumerate
what might be thousands of databases on a powerful server, you don’t need
fully instantiated objects to populate a tree view. You need only the object’s
name. Having partially instantiated objects saves a lot of time for commonly
used, simple tasks because you probably need a fully instantiated object for
only a small number of the total number of objects.

Scripting actions
If you have used Microsoft programs such as Access and Excel you’ll know
that you can create macros to allow you to automate certain tasks. SQL
Server 2005 now has a feature that automatically creates Transact-SQL
scripts from actions you take using the graphical user interface in SQL Server
Management Studio. You can use these scripts exactly as SQL Server
Management Studio creates them or you can modify them in ways to exactly
suit your intentions.

25Chapter 2: New Features in SQL Server 2005

06_577557 ch02.qxp 12/20/05 9:43 PM Page 25

HTTP endpoints
HTTP access to SQL Server 2005 is a new feature that allows programmers to
access SQL Server without depending on an IIS server running on the same
machine. SQL Server can coexist with IIS but unlike with SQL Server 2000, IIS
is no longer required for SQL Server 2005. HTTP endpoints allow developers
to use XML Web services with SQL Server 2005. The HTTP endpoint can exe-
cute T-SQL batch statements or stored procedures.

For security reasons, HTTP endpoints are disabled by default. To use HTTP
endpoints you need to specify which users, stored procedures, and data-
bases are enabled to support it.

Manageability Enhancements
The management tools in SQL Server 2005 have changed greatly from SQL
Server 2000. The main change is the arrival of SQL Server Management
Studio, which I describe in more detail in Chapter 3.

New management tools
SQL Server 2005 has new management tools. SQL Server Management Studio
replaces Enterprise Manager and Query Analyzer that you may be familiar
with from SQL Server 2000. SQL Server Management Studio also allows you to
manage Analysis Services instances and, therefore, also replaces Analysis
Manager.

SQL Server Management Studio allows you to manage multiple SQL Server
instances more easily. From one interface you can manage multiple instances
of the SQL Server database engine, Analysis Services, Integration Services,
and Reporting Services. I describe SQL Server Management Studio in detail in
Chapter 3.

SQL Server Configuration Manager is a new tool that allows you to control
services associated with SQL Server 2005. SQL Server Configuration Manager
replaces Service Manager and the server and client networking tools. You can
use SQL Server Configuration Manager to control the following:

� SQL Server

� SQL Agent

� SQL Server Analysis Services

26 Part I: SQL Server 2005: An Overview

06_577557 ch02.qxp 12/20/05 9:43 PM Page 26

� DTS Server (for SQL Server Integration Services)

� Full-text Search

� SQL Browser

Profiler
Profiler has many features that allow you to analyze performance problems in
SQL Server 2005. For example, Profiler opens trace files that you store in the
file system, which allows you to replay and analyze interesting SQL Server
processes. Profiler can display a graphical representation of a trace so you
can easily see what is happening.

Profiler can import data recorded by using the Windows Performance
Monitor. You can display the data graphically, letting you see performance
over a selected period of time. From the graph, you can enter the trace at the
point where a problem lies — for example, where CPU usage spikes. You can
then closely examine what is causing a performance problem.

I don’t cover Profiler in detail in this book.

SQL Server Agent
The capabilities of SQL Server Agent, the component that supports sched-
uled jobs, have been enhanced. For example, the number of concurrent jobs
that SQL Server Agent can run has increased. SQL Server 2000 used SQL
Agent only in relation to jobs for the database engine. SQL Server 2005 also
uses SQL Server Agent to run jobs for Analysis Services and Integration
Services. I discuss SQL Server Agent jobs further in Chapter 16.

SQL Server Agent uses Windows Management Instrumentation (WMI). WMI
support allows you to write code to avoid running a job, such as when the
disk space is insufficient to let the job run successfully.

Dynamic configuration
In SQL Server 2005, you can make many configuration changes without
having to restart SQL Server (if you’re running on the Windows Server 2003
operating system). This is a big improvement over SQL Server 2000 when you
often had to restart SQL Server after making configuration changes. In SQL
Server 2005, you can change CPU affinity or I/O affinity if you need to. If you
have the necessary hardware you can hot-add extra memory to your server.

27Chapter 2: New Features in SQL Server 2005

06_577557 ch02.qxp 12/20/05 9:43 PM Page 27

Full-text search
You can back up and restore Full-text Search catalogs (the databases where
the metadata is stored) in the same way as you back up and restore any
other SQL Server 2005 databases.

SQL Server Service Broker
SQL Server Service Broker allows you to create asynchronous message-based
applications. The asynchronous nature of Server Broker messages means
that processing tasks needn’t be done all at the same time, which can slow
the server down. Instead, messages are queued for processing when the
server load is lighter, improving overall performance.

Turn to Chapter 19 for more info on Service Broker.

Dedicated Administrator connection
This is not a connection only for dedicated administrators but a connection
that only administrators can use. The connection is used when a runaway
process is on the server and you need access to the database engine to kill
the process. Even if the runaway process is using close to 100 percent of the
CPU cycles, the Dedicated Administrator connection allows administrators to
get a share of CPU cycles and so kill the runaway process. This capability
allows you to kill a runaway process without having to restart the server.

SQLCMD
The SQLCMD command-line utility is the recommended command-line tool in
SQL Server 2005. You can write SQLCMD commands individually or use
SQLCMD to execute T-SQL scripts.

The SQLCMD utility allows you to use command-line parameters to replace vari-
ables in a T-SQL script. For example, suppose you had a simple backup script

BACKUP DATABASE $(db) TO DISK = “$(path)\$(db).bak”

called backup.sql. It backs up a specified database to a specific location.
You can run that script from the command line, replacing the $db and $path
variables with the relevant database name and file path. For example, to back
up AdventureWorks into the C:\Backups folder, you write:

sqlcmd -E -i Backup.sql -v db=”AdventureWorks”
path=”C:\Backups”

28 Part I: SQL Server 2005: An Overview

06_577557 ch02.qxp 12/20/05 9:43 PM Page 28

Easier updates
System objects are in the resource database in SQL Server 2005. When a
service pack or other update is applied to a SQL Server instance, replacing
the resource database updates all the system objects. This gives a more
easily manageable upgrade path.

Replication
The setup and administration of replication has been improved in SQL Server
2005. This is carried out from SQL Server Management Studio. There is a new
system health monitor to allow you to check on replication settings and per-
formance. For example, it can tell you how long replicated data takes to reach
subscribers.

WMI configuration
Windows Management Instrumentation (WMI) allows you to carry out a range
of configuration tasks such as specifying client and network settings. You can
also use WMI to determine whether you can safely and effectively carry out a
task at a particular time. For example, you can test whether a target drive has
enough disk space to carry out a backup.

Database Mail
Database Mail is a new feature. It replaces SQLMail, which was present in SQL
Server 2000. Database Mail uses Simple Mail Transfer Protocol (SMTP). There
is no longer any dependency on the Messaging Application Programming
Interface (MAPI), and Outlook is no longer required. The removal of these
dependencies avoids many of the availability problems that SQL Server 2000
users had with SQLMail. In addition, Database Mail is cluster aware, unlike
SQLMail. Database Mail supports logging and auditing.

Availability Enhancements
SQL Server 2005 supports three broad types of enhanced availability:

� Concurrent data access

� Availability after server failure or other disaster

� Availability during database maintenance and repair

29Chapter 2: New Features in SQL Server 2005

06_577557 ch02.qxp 12/20/05 9:43 PM Page 29

Concurrent data access
Concurrent data access is about getting to data when others are also access-
ing it:

� Database snapshots: Creates a logical copy of a database at a specific
point in time. You can use snapshots as the basis for Reporting Services
reports without putting a load on the live copy of the database.

� Snapshot isolation: This is a new transaction isolation level that
improves availability for read applications, because writes do not block
reads. Write applications are subject to mandatory conflict detection.

� Online Indexing: During the time that an index is being rebuilt, it
remains possible to use the index for accessing data. This is likely to
improve performance during that period.

Availability after server failure
SQL Server 2005 provides better availability in scenarios relating to server
failure or some other catastrophic situation. The following features are addi-
tional to server failover clustering that was supported in SQL Server 2000
Enterprise edition:

� Faster Recovery: After a server failure, databases are made available to
users more quickly during the recovery process, which improves avail-
ability.

� Database Mirroring: Using standard hardware, a mirror server always
maintains an up-to-date copy of the database. On failure of the principal
server, the mirror server is available within three seconds, making the
server failure invisible to users.

� Transparent Client Redirect: Under the covers, Database Mirroring uses
Transparent Client Redirect. The MDAC (Microsoft Data Access
Components) layer notes the mirror server when connecting to a princi-
pal server. If the principal server fails, MDAC redirects the connection to
the mirror server.

Availability during database maintenance
The backup and restore process must be reliable if you are to restore a data-
base effectively, such as after a hardware failure. Here are the relevant fea-
tures of SQL Server 2005:

30 Part I: SQL Server 2005: An Overview

06_577557 ch02.qxp 12/20/05 9:43 PM Page 30

� Finer Grained Online Repairs: You can restore data filegroup by file-
group with the database being available after the primary filegroup is
restored.

� Enhanced Backup Verification: The verifying of backups is more com-
plete than in previous versions of SQL Server. The RESTORE VERIFY
ONLY syntax checks everything that can be checked, short of writing the
backup to the server.

� Backup Media Mirroring: This allows you to make extra copies of back-
ups to minimize the chance of a failed restore or to make an archival
copy for offsite storage, for example.

� Database Page Checksums: Checksums are added to individual pages in
the database to detect errors that otherwise might go undetected.

� Backup Checksums: Adds an additional error detection mechanism
during backup. It is possible to proceed past errors and fix them later.

� Backup Data and Logs: The former problems with log backups at the same
time as data backups have been remedied. It is now possible to carry out a
data backup at the same time as the corresponding log backup.

Scalability Enhancements
One of the key aims of SQL Server 2005 is to improve the scalability of data-
bases and the applications that depend on them.

Installing in a cluster
You can install SQL Server 2005 in a cluster of up to eight nodes with status
reporting of install progress on each node. SQL Server 2005 setup has the
ability to install Analysis Services in a cluster. New in SQL Server 2005 is the
ability to carry out unattended installation to a cluster.

Partitioning data
Some database objects are very large. Partitioning splits large database
objects into multiple more manageable pieces. Suppose you have a huge
table that contains many months of data. You could improve performance by
partitioning the table into several smaller partitions with each partition con-
taining the data for a single month.

31Chapter 2: New Features in SQL Server 2005

06_577557 ch02.qxp 12/20/05 9:43 PM Page 31

You can also partition indexes. If the partitions for data and for indexes are
aligned, you can move partitions into or out of a table. This is useful if you
have data for the last 12 months, partitioned by month. You can move the
data for 12 months ago out and create a new partition for the current month.

Database Engine Tuning Advisor
The Database Engine Tuning Advisor (DTA) is the SQL Server 2005 replace-
ment for the SQL Server 2000 Index Tuning Wizard. The Database Tuning
Advisor can help you tune performance for the whole database, not just for
indexes, as previously.

The DTA can handle partitions and can assist in tuning some operations that
involve using multiple databases. It has a high availability recommendation
mode that recommends creation of indexes only if those indexes can be built
online, which improves availability of a database during creation of indexes.
You can specify a maximum time for DTA to reach its recommendations to
avoid very long running scenarios. You can also explore what if analyses in
the Database Tuning Advisor to allow you to explore the effects of possible
approaches.

Hot-add memory support
If the demands on your SQL Server increase markedly and you have the
appropriate hardware and are running SQL Server on Windows Server 2003,
you can take advantage of hot-add memory support. This allows you to
improve performance under high load and also allows you to avoid downtime.

Replication
Replication performance has been improved in SQL Server 2005. The number
of subscribers supported in replication is increased.

Business Intelligence Enhancements
Business Intelligence is a prominent strength of SQL Server 2005. Features
have been added to Analysis Services, Integration Services has replaced Data

32 Part I: SQL Server 2005: An Overview

06_577557 ch02.qxp 12/20/05 9:43 PM Page 32

Transformation Services, and Reporting Services builds on the features of
Reporting Services 2000 that was first released early in 2004.

Business Intelligence in SQL Server 2005 uses an Integrate, Analyze, and
Report paradigm. You can use Integration Services to bring data together
from various sources. Use Analysis Services to provide insight into the data.
You can create reports to present the analyses to business users with
Reporting Services.

Integration Services
SQL Server Integration Services replaces SQL Server 2000 Data
Transformation Services. You can use Integration Services to import and
restructure data. You can also load data into a data warehouse with
Integration Services. I describe Integration Services in detail in Chapter 20.

Analysis Services
SQL Server 2005 extends Analysis Services functionality. You use Analysis
Services to extract information that is meaningful in a business context.
Analysis Services contains two major parts: OnLine Analytical Processing
(OLAP) and Data Mining. I describe Analysis Services in more detail in
Chapter 21.

Reporting Services
You can use SQL Server Reporting Services to create customized reports for
end users. Reporting Services for SQL Server 2000 was introduced in January
2004, but was originally intended as a new feature in SQL Server 2005. If you
are a developer, you create report projects in the Business Intelligence
Development Studio. If you have the Enterprise Edition of SQL Server 2005,
you can create a report model project in the Business Intelligence Development
Studio, and your end users can use report model projects to create ad hoc
reports with the new Report Builder design tool. I describe Reporting Services
in more detail in Chapter 22.

33Chapter 2: New Features in SQL Server 2005

06_577557 ch02.qxp 12/20/05 9:43 PM Page 33

34 Part I: SQL Server 2005: An Overview

06_577557 ch02.qxp 12/20/05 9:43 PM Page 34

Chapter 3

Introducing and Configuring
Management Studio

In This Chapter
� Running Management Studio

� Registering a SQL Server instance

� Exploring the Object Explorer

� Looking over the Summary tab

� Querying with the query pane

� Applying templates in Management Studio

SQL Server Management Studio is the main tool that you’re likely to use to
administer SQL Server 2005 databases. You can also use it to administer

SQL Server 2000 databases.

You cannot use SQL Server Management Studio to administer SQL Server 7.0
databases.

Note: SQL Server Management Studio has replaced familiar tools such as
Enterprise Manager and Query Analyzer in SQL Server 2000. If you go looking
for Enterprise Manager and Query Analyzer, you won’t find them in a SQL
Server 20005 installation.

SQL Server Management Studio allows you to administer SQL Server
instances, Analysis Services instances, Integration Services instances, and
Reporting Services instances.

07_577557 ch03.qxp 12/20/05 9:43 PM Page 35

Starting Management Studio and
Connecting to SQL Server

To run SQL Server Management Studio, you must choose to install Client
Tools in the Setup utility when you install SQL Server 2005.

To start SQL Server Management Studio, choose Start➪All Programs➪
Microsoft SQL Server 2005➪SQL Server Management Studio.

When SQL Server Management Studio starts, the Connect to Server dialog
box opens (see Figure 3-1). You can choose to connect to an instance of SQL
Server or start SQL Server Management Studio without connecting to a SQL
Server instance.

To connect to a local instance of the SQL Server Database Engine, select
Database Engine from the Server Type drop-down menu and select (or enter)
a period character or type (local) in the Server Name drop-down menu.
Select the authentication method that you prefer and then click the Connect
button. The Object Explorer displays containing a tree of nodes, which repre-
sents the local default instance of the SQL Server database engine. I describe
how to use the Object Explorer in the “Exploring Database Objects Using the
Object Explorer” section, later in this chapter.

Using Registered Servers
The Registered Servers pane in Management Studio allows you to specify
instances of the SQL Server 2005 database engine, Analysis Services,

Figure 3-1:
The

Connect
to Server

dialog box.

36 Part I: SQL Server 2005: An Overview

07_577557 ch03.qxp 12/20/05 9:43 PM Page 36

Reporting Services, SQL Server Mobile, and Integration Services. Each of
these five categories has its own view in the Registered Servers pane. You
can see only one of those views at any one time.

The dialog boxes for the Registered Servers pane (and the name of the pane
itself) refer to servers. In fact, you connect to a SQL Server instance — not a
server. You connect to one instance. On some servers, multiple instances
may be displayed that you can connect to.

If the Registered Servers pane is not visible, choose View➪Registered
Servers. The Registered Servers pane opens on the left side of Management
Studio, unless you have altered its position previously.

Use the Registered Servers pane for the following tasks:

� Save connection information for SQL Server instances on the network

� Display whether or not an instance is running

� Connect to an instance in the Object Explorer or the Query Editor

� Edit the information about a registered server

� Group your servers

To register a SQL Server instance, follow these steps:

1. On the Registered Servers toolbar, click the icon for the type of the
instance you want to connect to.

The available options are Database Engine, Analysis Services, Reporting
Services, SQL Server Mobile, and SQL Server Integration Services.

2. If the instance you want to connect to isn’t displayed, right-click a
blank part of the Registered Servers pane and choose New➪Server
Registration from the context menu.

The New Server Registration dialog box appears.

3. Enter or select the name of the instance you want to connect to.

In the Server Name drop-down menu, enter the name in the form
machineName\instanceName. To connect to an instance named Test on
a server machine named OnlineStore, enter OnlineStore\Test.

4. Click the Test button to confirm that the connection is working correctly.

5. If the test of the connection is successful, click the Save button. If test-
ing the connection is unsuccessful, carefully check and correct the
information you entered in Step 3.

The newly registered server displays in the Registered Servers pane.

37Chapter 3: Introducing and Configuring Management Studio

07_577557 ch03.qxp 12/20/05 9:44 PM Page 37

To connect to a SQL Server instance and display its node tree in the Object
Explorer, follow these steps:

1. Click the relevant icon on the Registered Servers toolbar to select the
type of instance to connect to.

The available options are Database Engine, Analysis Services, Reporting
Services, SQL Server Mobile, and Integration Services. The instances of
the selected type are displayed.

2. Right-click the SQL Server instance that you want to connect to.

3. From the context menu, choose Connect➪Object Explorer.

To connect to a SQL Server instance and create a new query connected to
that instance, follow these steps:

1. Click the relevant icon on the Registered Servers toolbar to select the
type of instance to connect to.

2. Right-click the SQL Server instance that you want to connect to.

3. From the context menu, choose Connect➪New Query.

The query pane opens or (if you already have the query pane open) a
new tab is created in the query pane.

Exploring Database Objects
Using the Object Explorer

When SQL Server Management Studio starts, you are presented with the
Connect to Server dialog box (refer to Figure 3-1). You can choose to connect to
an instance of SQL Server (database engine, Analysis Services, Reporting
Services or Integration Services) or to start SQL Server Management Studio
without connecting to a SQL Server instance. To explore and manage a SQL
Server instance, specify the server name and the type of instance to connect to.

The left pane in SQL Server Management Studio typically displays the Object
Explorer (and the Registered Servers pane). If the Object Explorer is not visi-
ble at startup of SQL Server Management Studio, choose View➪Object
Explorer. The Object Explorer opens.

The Object Explorer allows you to carry out several management tasks in
Management Studio, depending which instance type you chose:

38 Part I: SQL Server 2005: An Overview

07_577557 ch03.qxp 12/20/05 9:44 PM Page 38

� Create and manage databases

� View and modify database properties

� Create and manage database objects such as tables and views

� Grant and revoke privileges and permissions

� Configure replications

� Manage SQL Server Integration Services packages (Integration Services
packages are created in Business Intelligence Development Studio.)

� View SQL Server and Windows log files

� Manage SQL Server Agent

Chapter 4 describes the steps to create databases and database objects.

Figure 3-2 shows the top-level nodes in the Object Explorer.

View and modify database properties
To view and modify the properties of a database, follow these steps:

1. Click the + sign to the left of the Databases node.

The System Databases node and the individual user database nodes
display.

2. If you want to view the properties of a system database, click the System
Databases node to display the individual system database nodes.

3. Right-click the name of the database.

I selected AdventureWorks in Figure 3-3.

4. From the context menu, click the Properties option.

The Database Properties dialog box opens (see Figure 3-3).

Figure 3-2:
The top-

level nodes
in the Object

Explorer.

39Chapter 3: Introducing and Configuring Management Studio

07_577557 ch03.qxp 12/20/05 9:44 PM Page 39

5. Select each of the tabs in the left pane to inspect the available
properties.

The options available in database properties are grouped under the fol-
lowing tabs:

• General

• Files

• Filegroups

• Options

• Permissions

• Extended Properties

• Mirroring

• Transaction Log Shipping

You can alter properties of the database, as appropriate.

To view the system databases (or more precisely views of the hidden system
databases), follow these steps:

1. Click the + sign to the left of the System Databases node.

The nodes for the system databases display. On a minimum install the
system databases are master, model, msdb, and tempdb.

Figure 3-3:
The

Database
Properties
dialog box.

40 Part I: SQL Server 2005: An Overview

07_577557 ch03.qxp 12/20/05 9:44 PM Page 40

2. Click the + sign to the left of the master database node.

The nodes for the master database display. The nodes displayed are
Tables, Views, Synonyms, Programmability, Service Broker, Storage, and
Security.

3. Explore the nodes displayed in the previous step by clicking the +
sign to the left of each node.

Security
There are Security nodes at two levels: SQL Server instance level and data-
base level.

The Security node you see when the Object Explorer opens contains informa-
tion about the SQL Server instance. You use this Security node to view or
manage security settings that are relevant at the SQL Server instance level.

To add a new login for the SQL Server instance, follow these steps:

1. Right-click the Security node and choose New➪Login from the
context menu.

The Login - New dialog box displays.

2. On the General tab, give the new login a name.

Assuming that you want to grant access to the instance, leave the Grant
Server Access radio button checked.

3. If you want to add the new login to an existing built-in role, click the
Server Roles tab and check one or more check boxes.

4. If you want to grant permissions on specific databases, click the
Database Access tab and check the check box(es) for the database(s)
that you want to grant access to.

To work at the database level, you create a user (not a login). Follow these
steps to create a new user for the AdventureWorks database (or another
database):

1. If the Databases node is not expanded, click the + sign to the left of
the Databases node.

The subsidiary nodes display.

2. Click the + sign to the left of the AdventureWorks node.

The subsidiary nodes for the AdventureWorks database display. Select
a different database node if you don’t have the AdventureWorks data-
base installed.

41Chapter 3: Introducing and Configuring Management Studio

07_577557 ch03.qxp 12/20/05 9:44 PM Page 41

3. Right-click the Security node (which is a subsidiary node to the
AdventureWorks node) and choose New➪User.

The Database User - New dialog box opens (see Figure 3-4).

4. Supply a name for the new user.

5. As appropriate, associate the new user with an existing login and/or a
default schema.

6. If you want to make the new user the owner of an existing schema,
check one or more relevant check boxes on the General tab.

7. If you want to add the new user to an existing role (or roles), check
one or more check boxes.

I tell you more about how to work with security settings in Chapter 11.

Replication
You can define the participation of a SQL Server instance in replication from
the Replication node. In SQL Server 2005, replication uses the metaphor of
publication and subscription. SQL Server Management Studio allows you to
create both publications and subscriptions.

Figure 3-4:
The

Database
User - New
dialog box.

42 Part I: SQL Server 2005: An Overview

07_577557 ch03.qxp 12/20/05 9:44 PM Page 42

Click the + sign to the left of the Replication node to see the subsidiary nodes —
Local Publications and Local Subscriptions, by default. The context menus
for those nodes allow you to create new publications and subscriptions.

I describe replication in more detail in Chapter 19.

Getting an Overview
on the Summary Tab

When you first open SQL Server Management Studio, you see the Summary
tab to the right of the Registered Servers pane and the Object Explorer. The
Summary tab provides information that summarizes some characteristics of
the SQL Server instance to which you have most recently connected.

Figure 3-5 shows the appearance of the Summary tab when the SQL Server
instance is selected.

Notice the navigation icons near the top of the Summary tab. The List icon
contains an extensive menu, as shown in Figure 3-6.

Figure 3-5:
The

Summary
tab.

43Chapter 3: Introducing and Configuring Management Studio

07_577557 ch03.qxp 12/20/05 9:44 PM Page 43

Figure 3-7 shows the Server Dashboard for a default database engine
instance.

Explore the other options shown on the List icon’s menu to fully understand
the information available to you on the Summary tab.

Figure 3-7:
The Server

Dashboard.

Figure 3-6:
The options

on the
List icon.

44 Part I: SQL Server 2005: An Overview

07_577557 ch03.qxp 12/20/05 9:44 PM Page 44

Asking Questions in the Query Pane
To create a new query, click the New Query button on the Standard toolbar.
In the default layout, the New Query button is positioned at the top-left of
Management Studio. In addition, five icons allow you to select the type of
query you want to create (see Figure 3-8).

The five types of query supported in Management Studio are

� Transact-SQL: Runs against the relational database engine

� MDX (Multi-Dimensional Expressions): Runs against Analysis Services

� DMX (Data Mining Extensions): Runs against Analysis Services

� XMLA (XML for Analysis): Runs against Analysis Services

� SQL Server Mobile Query: Runs against an instance of SQL Server 2005
Mobile Edition

To create a simple query, using the AdventureWorks sample database,
follow these steps:

1. Click the Database Engine Query icon.

The Query Pane opens or a new tab is added to the query pane.

2. On the new query tab, type the following Transact-SQL code:

USE AdventureWorks
SELECT LastName, FirstName, Title FROM Person.Contact
ORDER BY LastName

The first line of the code specifies that the AdventureWorks database is
used. The second line of the code is a SELECT statement that selects
three columns, LastName, FirstName, and Title from the Contact
table in the Person schema. The third line, which isn’t strictly necessary,
ensures that the returned rows are ordered by the content of the
LastName column.

3. Click the Execute button on the toolbar.

If you prefer, you can use the F5 keyboard shortcut to execute the T-SQL
code.

Figure 3-8:
These icons

allow you
to choose

query type.

45Chapter 3: Introducing and Configuring Management Studio

07_577557 ch03.qxp 12/20/05 9:44 PM Page 45

Depending on whether you have customized how results of queries dis-
play you see the results in a grid (see Figure 3-9) or as text.

Notice that the specified three columns are displayed in the grid and they are
ordered by last name.

In Chapter 5, I describe querying SQL Server by using T-SQL in more detail.

Customizing the Environment
SQL Server 2005 gives you many options to adjust how SQL Server
Management Studio works.

To see the available options, choose Tools➪Options. Figure 3-10 shows some
of the options. Expand the nodes in the left part of the Options dialog box to
see all the options available.

Figure 3-9:
Results

returned
from a

T-SQL query
on the

Adventure
Works

database.

46 Part I: SQL Server 2005: An Overview

07_577557 ch03.qxp 12/20/05 9:44 PM Page 46

Setting Startup options
On the Environment, General tab you can specify what displays when you
open SQL Server Management Studio (see Figure 3-11).

Displaying results
To alter the display of query results, select the Query Results, SQL Server
tab. You can display the results in a grid or as text or send the results to a
file. Figure 3-12 shows how you choose the option.

Figure 3-11:
Adjust

startup
options for

SQL Server
Manage-

ment Studio.

Figure 3-10:
Some of
the cus-

tomization
options in

SQL Server
Manage-

ment Studio.

47Chapter 3: Introducing and Configuring Management Studio

07_577557 ch03.qxp 12/20/05 9:44 PM Page 47

Keyboard shortcuts
SQL Server Management Studio supports two options for using keyboard
shortcuts. One option follows the Visual Studio conventions for keyboard
shortcuts. The other closely follows shortcuts available in SQL Server 2000
Query Analyzer.

To select a keyboard scheme, choose Tools➪Options. In the Options dialog
box, choose General➪Keyboard. You can select the keyboard scheme from a
drop-down menu, as shown in Figure 3-13.

Figure 3-13:
Choosing a

keyboard
scheme.

Figure 3-12:
Selecting

how to
display or

process
results of a

query.

48 Part I: SQL Server 2005: An Overview

07_577557 ch03.qxp 12/20/05 9:44 PM Page 48

Restoring the default configuration
SQL Server Management Studio allows you to modify many aspects of the
appearance. It is possible that you can create a configuration that you don’t
like so that you want to restore the original settings. To restore the default
configuration of windows in SQL Server Management Studio, choose
Window➪Reset Window Layout.

Using templates in Management Studio
When you are creating a Transact-SQL query, it can be useful to have a tem-
plate that you tweak to get the effect that you want. In SQL Server 2005,
Microsoft has provided a large number of templates that you can adapt to
your specific needs.

To view the available templates, choose View➪Template Explorer.

49Chapter 3: Introducing and Configuring Management Studio

07_577557 ch03.qxp 12/20/05 9:44 PM Page 49

50 Part I: SQL Server 2005: An Overview

07_577557 ch03.qxp 12/20/05 9:44 PM Page 50

Part II
Basic Operations

08_577557 pt02.qxp 12/20/05 9:44 PM Page 51

In this part . . .

I show you how to use Transact-SQL (T-SQL) to create
SQL Server databases and tables. I introduce you to

how to use T-SQL to retrieve data from a SQL Server
database.

I also show you how easily you can create basic Windows
applications based on SQL Server 2005 data.

08_577557 pt02.qxp 12/20/05 9:44 PM Page 52

Chapter 4

Creating Databases, Tables,
and Relationships with T-SQL

In This Chapter
� Starting SQL Server 2005

� Digging into the Object Explorer

� Developing databases

� Building tables

� Using keys to define relationships

� Adding constraints

� Adding data to the database

SQL Server 2005 is a relational database management system that can
have multiple instances on one server. Each instance of SQL Server 2005

can manage multiple relational databases. Relational databases consist of
tables. Most relational databases contain multiple tables with logical relation-
ships between data in different tables expressed with keys.

SQL Server Management Studio allows you to have access to database
objects, such as tables, controlled by SQL Server 2005. It replaces the
Enterprise Manager and Query Analyzer from SQL Server 2000.

In this chapter, I show you how to navigate database objects with the Object
Explorer in SQL Server Management Studio and how to use SQL Server
Management Studio to create database objects, which are essential in typical
business databases that you use in SQL Server 2005.

Each thing in a database, including the database itself, can be thought of as a
database object. Examples of database objects include tables, views, indexes,
and stored procedures.

To carry out the tasks of creating databases and tables, you need to have SQL
Server 2005 installed.

09_577557 ch04.qxp 12/20/05 9:44 PM Page 53

Firing Up SQL Server 2005
To carry out the tasks that I describe in this chapter, you must have SQL
Server 2005 running. Typically, with Windows 2003 or Windows XP, you can
run SQL Server 2005 as a service. When you install SQL Server 2005, you can
set the SQL Server service to run automatically when Windows starts; if not,
you must start SQL Server manually.

Opening the Services window differs slightly depending on the operating
system you’re using. To check that the SQL Server 2005 service is running,
and to start the service if necessary, follow these steps:

1. With Windows XP, choose Start➪Control Panel➪Administrative Tools➪
Services. With Windows 2003, choose Start➪Administrative Tools➪
Services.

The Services window lists the available services, as shown in Figure 4-1.

2. Scroll down to the SQL Server (MSSQLSERVER) option, which is high-
lighted in Figure 4-1.

If you installed SQL Server as a named instance, the name of the service
is displayed as SQL Server (instancename).

3. Check the values in the Status column and the Startup Type column. If
SQL Server is not already started, select the Start option or icon in the
upper-left corner of the Services window.

You can also set SQL Server to start automatically by following these steps:

1. Right-click the Startup Type column and choose Properties to start
SQL Server automatically upon startup.

The SQL Server (MSSQLSERVER) Properties dialog box appears.

Figure 4-1:
The

Services
window.

54 Part II: Basic Operations

09_577557 ch04.qxp 12/20/05 9:44 PM Page 54

2. Select Automatic from the Startup Type drop-down menu on the
General tab.

To carry out the tasks that I describe later in this chapter, you must also start
SQL Server Management Studio (Start➪All Programs➪Microsoft SQL Server
2005➪SQL Server Management Studio).

When SQL Server Management Studio starts, you must connect to a SQL
Server database engine instance if you want to create a database or add data-
base objects to an existing database. The Connect To Server dialog box
appears automatically when SQL Server Management Studio starts. Follow
these steps to connect to a server:

1. Select Database Engine in the Server Type drop-down menu.

2. Select an appropriate server name in the Server Name drop-down menu.

If you installed a default instance you can type . (a period) or (local). If
you installed a named instance, type .\instancename (a period followed
by a backslash and then the instance name). If you’re connecting to a
remote server, type servername\instancename (server name followed
by a backslash followed by the instance name).

3. Select the appropriate authentication mode.

The choices offered depend on how you installed SQL Server 2005.

You can have several copies of SQL Server 2005 installed on one physical
server. Each copy of SQL Server is called an instance. One instance is the
default instance and is not named. All other instances must be named. If you
have multiple instances running, each instance has its own entry in the
Services window.

Exploring the Object Explorer
The Object Explorer in SQL Server Management Studio allows you to access
objects in any of possibly several databases in an instance controlled by SQL
Server 2005. To access the Object Explorer, you need to have SQL Server
Management Studio open. The Object Explorer in SQL Server Management
Studio displays by default and its default position is to the left of the SQL
Server Management Studio window.

If the Object Explorer is not visible, choose View➪Object Explorer. The
Object Explorer is empty until you connect successfully to a SQL Server
instance by using the Connect To Server dialog box. After you connect to a
server, a hierarchy of database objects displays in the Object Explorer, as
shown in Figure 4-2.

55Chapter 4: Creating Databases, Tables, and Relationships with T-SQL

09_577557 ch04.qxp 12/20/05 9:45 PM Page 55

The Registered Servers pane resides above the Object Explorer. In that pane,
you can see multiple instances of SQL Server if you have installed and regis-
tered more than one SQL server instance. To access a server in the Object
Explorer, you must register it in Registered Servers.

To register a Database Engine instance, follow these steps:

1. Click the Database Engine icon on the Registered Servers toolbar.

2. Right-click the Database Engine registration group that appears, and
choose New.

3. Select New Server Registration.

The New Server Registration dialog box opens.

4. Type the name of the server.

5. Click the Test button to test whether or not you can connect to the
chosen server by using the default connection settings.

6. If the test connection succeeds, click Save.

The server displays below the Database Engine registration group in the
Registered Servers pane.

To display objects in a registered server, right-click it and choose Connect➪
Object Explorer. The selected server displays in the Object Explorer with its
highest-level folders visible.

Figure 4-2:
SQL Server

Manage-
ment Studio,

showing
database
objects in

the Object
Explorer.

56 Part II: Basic Operations

09_577557 ch04.qxp 12/20/05 9:45 PM Page 56

The objects in the Object Explorer are arranged in a hierarchy. Each part of
the hierarchy that you can expand is called a folder or node. The terms are
used interchangeably.

In Figure 4-2, the single registered server is called Helios. The first line of the
Object Explorer shows the Helios server is open and that it is a SQL Server
2005 instance, and it is version 9.0. By default, all the nodes in the Object
Explorer are unexpanded.

Creating Databases
To store your business data, you need to design and create databases that
match your business needs. To create a new database with the Object
Explorer, right-click the Databases node in the Object Explorer and choose
New Database from the context menu. The New Database dialog box opens
(see Figure 4-3).

Back up the master database before you create a new database. The master
database contains information about all databases managed by an instance of
SQL Server 2005. Backing up the master database protects you from the
effects of inappropriate choices and allows you to restore the situation
before you created the database.

You must supply a name for the new database on the General tab of the New
Database dialog box. You also need to specify who is the owner of the data-
base that you are about to create. The default owner is the login sa.

Figure 4-3:
The New
Database

dialog box.

57Chapter 4: Creating Databases, Tables, and Relationships with T-SQL

09_577557 ch04.qxp 12/20/05 9:45 PM Page 57

All instances of SQL Server 2005 have several system databases. System data-
bases contain information that SQL Server 2005 uses to correctly manage
databases that you create. To see the system databases, click the Databases
node, and then choose System Databases. Among the system databases are
the master and model databases.

Do not alter or delete system databases unless you fully understand the
effects of the action you are about to take.

The default properties of the database you create are inherited from the
model database, which is one of the databases visible when you click the
System Databases node under the Databases node in the Object Explorer.

If you want the databases you create to share custom properties, customizing
the model database before creating other databases is efficient.

When you finish adding the name of the database and selecting the options
that you want, click the OK button in the New Database dialog box. A file with
a .mdf extension is created that holds the data and a file with a .ldf exten-
sion is created that holds log information for the database that you create.

To confirm that you just created a new database, click the Databases node in
the Object Explorer to expand it. Databases that are not system databases
are listed in their individual folder below the System Databases node. Your
new database displays there.

The content of the Object Explorer doesn’t always refresh automatically
when you add or delete database objects. To refresh the object hierarchy, if
necessary, right-click and choose Refresh.

Creating Tables
After you create a new database, you need to design and create tables to hold
your data.

In a relational database, data is held in tables. A table is a two-dimensional
grid consisting of columns and rows.

Each column in the grid contains information about a particular characteris-
tic. The data in each column is of a specified datatype. For example, in a table
holding information about an order, an ItemCost column might contain the
cost of an item and might be of the money data type.

The Cheat Sheet lists all the SQL Server 2005 datatypes.

58 Part II: Basic Operations

09_577557 ch04.qxp 12/20/05 9:45 PM Page 58

A row contains all the information about a particular entry. For example, a row
that contains information about an order might contain values in columns for
ItemPrice, NumberOfItems, and TotalPrice. Each row in a table contains
information about one item; for example, an orders table row usually contains
information about one order. Typically, each row contains a column (or combi-
nation of columns) that allows SQL Server to uniquely identify the row.

To store data, you must add tables to a database. To add a table to a data-
base, follow these steps:

1. Click the node that contains the database name.

2. Right-click the Tables node and choose New Table from the context
menu.

A new tab, called the Table Designer, displays in the right pane of SQL
Server Management Studio (see Figure 4-4).

The Table Designer contains columns for Column Name, Data Type, and
Allow Nulls. Each row in the Table Designer contains the specification
for a column in the database table that you are about to create.

3. In the Table Designer, add the name of each column in the new table,
specify its datatype, and indicate whether or not to allow NULL values.
You can also add indexes by using the context menu (see Figure 4-5)
and specify full-text indexing.

Figure 4-4:
The New

Table tab.

59Chapter 4: Creating Databases, Tables, and Relationships with T-SQL

09_577557 ch04.qxp 12/20/05 9:45 PM Page 59

An index provides a quick way for SQL Server to retrieve information
from a database. An index contains keys corresponding to one or more
columns in a table (or a view). A table can have these types of index:
clustered and nonclustered.

SQL Server automatically updates indexes when you modify a table or view.

4. When you’re done specifying the column names and datatypes and
making any other choices, press Ctrl+S to save the definition of the
table columns.

The Choose Name dialog box displays (see Figure 4-6).

Note: Names of tables and columns must follow specified rules. The first
character of the name must be a letter, @, underscore, or #. In English,
the first character can be a through z or A through Z. Names beginning
with @ or # are used for specific purposes, and I recommend that you
don’t use those characters for the first character of the name of a table
or column. Subsequent characters of a name can also include numbers
and the dollar sign, $. Names for tables and columns must not be
Transact-SQL reserved words.

Figure 4-5:
The context

menu in
the Table
Designer.

60 Part II: Basic Operations

09_577557 ch04.qxp 12/20/05 9:45 PM Page 60

5. Specify an appropriate name for the newly created table and click OK.

Test whether you created the table and columns correctly by clicking the
node for your new database in the Object Explorer:

1. Click the Tables node.

The new table has its own node.

2. Click that node to expand it.

The columns you created display.

Your table has no data yet, but you can run a Transact-SQL query
against the table.

3. In Management Studio, click the New Query button on the toolbar, select
Database Engine Query, and type the following code in the Query Editor:

USE TestDB
SELECT * FROM Customers

4. Click the Results to Grid button on the toolbar.

5. Click the Execute button on the toolbar.

A grid displays the column names you created in the table.

Defining Relationships
Relational databases operate by using relationships that are defined between
tables contained in each database. Relationships help avoid duplication of
information. Avoiding duplicate data reduces the chance of inconsistent data.
You specify relationships by using primary and foreign keys in related tables.

A primary key is a unique identifier for each row in a table. The primary key is
often contained in one column of the row, although in some situations two or
more columns are used together as a primary key. If a relationship is with
another table, then another column of the row contains a key that matches a
primary key unique identifier column in another table. That key is called a
foreign key. The column that is the foreign key in one table is also present as
the primary key in another table.

Figure 4-6:
The Choose

Name
dialog box.

61Chapter 4: Creating Databases, Tables, and Relationships with T-SQL

09_577557 ch04.qxp 12/20/05 9:45 PM Page 61

To add a relationship, follow these steps:

1. If the Table Designer is not open, right-click the table in the Object
Explorer and choose Modify Table from the context menu.

2. Right-click the Table Designer for the table that contains the foreign key.

3. Select Relationships from the context menu.

The Foreign Keys dialog box opens.

4. Click Add in the Foreign Keys dialog box to create a new foreign key
relationship.

A default name is provided in the left pane for the new relationship and
its default properties display in the right pane.

5. In the right pane, click the ellipsis (shown in Figure 4-7) to open the
Tables and Columns dialog box.

6. In the Tables and Columns dialog box (see Figure 4-8), choose an
appropriate name for the relationship.

Figure 4-8:
The Tables

and
Columns

dialog box.

Figure 4-7:
Expand the
Tables and

Columns
Specificatio

ns node.

62 Part II: Basic Operations

09_577557 ch04.qxp 12/20/05 9:45 PM Page 62

7. Specify the table and column that contain the primary key that the
foreign key relates to.

8. Specify the appropriate column that contains the primary key in the
other table.

9. Specify the column in the current table that contains the foreign key.

10. Click OK to accept the changes you have made.

11. Click Close to close the Foreign Keys dialog box and confirm the new
relationship.

Adding Constraints
SQL Server 2005 allows you to constrain the values allowed in a particular
column so that inappropriate data is not permitted. The datatype in the Table
Designer also constrains the values allowed in a column but is not consid-
ered to be a constraint.

SQL Server 2005 supports five types of constraint:

� NOT NULL: When this constraint is specified, you are not allowed to
have a field in a column with no data in it.

� CHECK: This constraint specifies allowed values. For example, you
might want age of employees to be between 16 and 65.

� UNIQUE: This constraint specifies that you can’t repeat the value in a
field in any other field in the same column.

� PRIMARY KEY: This constraint specifies a unique identifier for the value
in a field, which uniquely identifies a row.

� FOREIGN KEY: This constraint references a unique identifier in another
table in the database.

When you create a table, you typically add a primary key to the table. A table
may have only one primary key.

If you do not designate a column (or combination of columns) as the primary
key when you create the table you can specify a primary key later, provided
certain conditions are met. A column intended as a primary key can’t have
NULL values and each value in the column must be unique. If the table has
data and those conditions are not met, your attempt to create a primary key
on that column causes an error and no primary key is created.

Choose a primary key when you first create a table. By doing so, you avoid
possible time-consuming changes to a table after it contains data.

63Chapter 4: Creating Databases, Tables, and Relationships with T-SQL

09_577557 ch04.qxp 12/20/05 9:45 PM Page 63

If you want to change the column (or combination of columns) that is the
primary key, you need to delete the primary key constraint on the original
column(s) and add a primary key constraint. If the original primary key is
referenced by a foreign key constraint, you must delete the foreign key con-
straint first, and then delete the original primary key constraint.

To add a CHECK constraint, follow these steps:

1. Right-click the row that specifies the relevant column.

2. Choose Check Constraints from the context menu.

3. In the Check Constraints dialog box, click the Add button to add a
new constraint.

4. Click the ellipsis in the Expression row of the right pane of the Check
Constraints window (see Figure 4-9).

The Check Constraints dialog box opens.

5. Enter an expression that specifies the constraint.

The allowed expressions depend on the datatype of the column. For example,
in an Age column, you can specify that allowed ages are between 16 and 70
by using the following expression:

Age >= 16 AND Age <= 70

Figure 4-9:
Click the

ellipsis to
open the

Check
Constraints
dialog box.

64 Part II: Basic Operations

09_577557 ch04.qxp 12/20/05 9:45 PM Page 64

Adding Data to the Database
When you design and create a database and its tables, you must add data to
it. To add data to a database, follow these steps:

1. In the Object Explorer, select the database that you want to add data to.

2. Expand the database node and then expand the Tables node.

3. Right-click the node for the table you want to add data to and choose
Open Table.

The table opens in the right pane of SQL Server Management Studio. You
can then add data directly to the table.

4. Enter data a row at a time.

Make sure that you provide a value for each field, if you have specified
that the field cannot contain a NULL value.

Figure 4-10 shows data being added to a Customers table.

If you try to add data to a table that has a foreign key, you can’t add data if no
corresponding primary key is in the table with which it has a relationship.

Figure 4-10:
Adding data

to a table.

65Chapter 4: Creating Databases, Tables, and Relationships with T-SQL

09_577557 ch04.qxp 12/20/05 9:45 PM Page 65

66 Part II: Basic Operations

09_577557 ch04.qxp 12/20/05 9:45 PM Page 66

Chapter 5

Asking Questions and
Getting Answers

In This Chapter
� Querying with the Query Editor

� Retrieving data with the SELECT statement

� Specifying what data to return

� Sorting with ORDER BY

� Retrieving data from multiple tables through querying and joins

� Modifying a template

One of the commonest things you do with a database is ask questions
about the data that it contains. The Query Editor in SQL Server

Management Studio allows you to easily query SQL Server.

In this chapter, I show you how to ask questions of a SQL Server database by
using the Query Editor in SQL Server Management Studio.

Using the Query Editor
To open the Query Editor in SQL Server Management Studio, click the New
Query button on the toolbar. A Connect to Server dialog box displays (see
Figure 5-1). This allows you to specify whether you connect to a database
engine instance (the default) or to an instance of Analysis Services or SQL
Server Mobile. You also specify the name of the instance of the selected type
that you want to connect to. Finally, you specify whether you want to use
Windows Authentication or SQL Server Authentication.

10_577557 ch05.qxp 12/20/05 9:45 PM Page 67

A new tab opens in the right pane of SQL Server Management Studio with a
surface on which you type T-SQL code.

If you want to run a second query against the same instance, simply click the
New Query button again. If you want to change the instance, click the
Database Engine Query, Analysis Services MDX Query, Analysis Services DMX
Query, Analysis Services XMLA Query, or SQL Server Mobile Query button on
the toolbar. The buttons for the preceding queries are shown in Figure 5-2.

You can have multiple tabs open in the query pane at one time. Each tab has
its own connection. For example, you can connect to a database engine
instance in one tab and an Analysis Services instance in another.

When running a T-SQL query, clicking the Execute button on the toolbar (or
pressing F5) runs the whole query. Highlighting some T-SQL code and then
clicking the Execute button runs only the highlighted code. This is a conve-
nient way to step through T-SQL scripts.

By default, the output goes to a results grid. If you want to output to text,
choose Query➪Results To➪Results to Text. If you want the output of a query
to be sent to a file, choose Query➪Results To➪Results to File.

Figure 5-2:
The buttons

to run
queries in
the query

pane.

Figure 5-1:
The

Connect
to Server

dialog box.

68 Part II: Basic Operations

10_577557 ch05.qxp 12/20/05 9:45 PM Page 68

Using the SELECT Statement
Much of the T-SQL programming that you do involves retrieving data by using
one of the many syntax variants of the SELECT statement.

The examples I show you use the sample databases that Microsoft has dis-
tributed for some time: AdventureWorks (which is not the same as the
AdventureWorks2000 database that Microsoft distributed with SQL Server
2000) and pubs. At the time of writing, AdventureWorks is available as
installation options with SQL Server 2005 editions. You can download the
pubs (and Northwind) databases from here:

www.microsoft.com/downloads/details.aspx?FamilyId=06616212
-0356-46A0-8DA2-EEBC53A68034&displaylang=en

To install the pubs database, follow these steps:

1. Choose Start➪All Programs➪Microsoft SQL Server 2000 Sample
Database Scripts.

The folder containing the T-SQL installation scripts opens.

2. Double-click instpubs.sql.

The instpubs.sql T-SQL script opens in a tab in the query pane in
SQL Server Management Studio.

3. Click the Execute button on the toolbar in SQL Server Management
Studio (or use the F5 keyboard shortcut).

4. To confirm successful installation of the pubs database, create a new
Database Engine query:

USE pubs
SELECT *
FROM authors

5. Click the Execute button.

The results grid displays rows of data returned from the Authors table
of the pubs database.

If the URLs for download have changed from those given in the preceding
paragraph, I suggest you find the AdventureWorks database by going to
Google and entering AdventureWorks site:microsoft.com in its Search box.
To find the pubs database, enter pubs download site:microsoft.com in
Google’s Search box.

69Chapter 5: Asking Questions and Getting Answers

10_577557 ch05.qxp 12/20/05 9:45 PM Page 69

To retrieve data from a SQL Server database, you use the SELECT statement.
In SQL Server 2005, you can specify the table that you want to retrieve data
from with the database drop-down menu on the toolbar of SQL Server
Management Studio (see Figure 5-3).

I sometimes forget which database I have selected. I often use the USE state-
ment to specify the database. The following T-SQL code specifies that you
want to retrieve data from the pubs database:

USE pubs

To retrieve a list of the last names and first names of the authors in the pubs
database, follow these steps:

1. Open SQL Server Management Studio and connect to the instance of
SQL Server where you installed the pubs database.

2. Click the New Query button on the toolbar and select the Database
Engine Query option.

A new tab opens in the query pane.

3. In the query pane, enter the following T-SQL code:

USE pubs
SELECT au_lname, au_fname
FROM dbo.authors

4. Click the Execute button on the toolbar.

Depending on how you set the results to display (see Chapter 3 for how
to set SQL Server Management Studio options), you see an appearance
similar to that in Figure 5-4.

Figure 5-3:
The

database
drop-down

menu in SQL
Server

Management
Studio.

70 Part II: Basic Operations

10_577557 ch05.qxp 12/20/05 9:45 PM Page 70

The second line of the T-SQL code specifies that the pubs database contains
the data you want to retrieve. The line

SELECT au_lname, au_fname

contains a SELECT statement. The SELECT statement is often used to
retrieve data from columns in a table but can also be used with string literals
or the result of an expression. The names listed after the SELECT keyword
specify a list of one or more column names (in this case two) from which data
is to be retrieved.

The From clause

FROM dbo.authors

specifies the table in the pubs database from which you’re retrieving data.
The name of the table (dbo.authors) is in two parts: The first is the
schema, dbo, and the second is the name of the table, authors.

A schema is a way to avoid naming collisions in SQL Server 2005. If a company
holds data on people who are customers and who are employees, that data
may be held in Person tables. If there is a Person table in the Employees
schema and a Person table in the Customers schema, there is no chance of
the two Person tables being confused, provided that the schema name is
used when retrieving data from a Person table.

Figure 5-4:
The results

grid displays
the results

of the
SELECT

statement.

71Chapter 5: Asking Questions and Getting Answers

10_577557 ch05.qxp 12/20/05 9:45 PM Page 71

You may often want to retrieve data from a table with which you are not fully
familiar. But to retrieve data, you need to know the names of all the columns
in the table. To do so, use the * wildcard character, as follows:

SELECT *
FROM dbo.authors

An alternative way to explore the columns contained in a table is to navigate
down the folder hierarchy in the Object Explorer in SQL Server Management
Studio. When you click the Columns node, a list of the columns displays (see
Figure 5-5). One advantage of using the Object Explorer is that the datatype of
the column displays with an indication of whether or not NULL values are
allowed for each column.

A NULL value indicates the absence of a value. It is not the same as a space char-
acter, an empty string, or a zero. If a column does not allow NULL values then,
before you can add a row to the table, you must provide a value in that column.

Simple SELECT statements like these allow you to specify which columns you
want to retrieve data from. Often you want to filter the data so that only some
of the rows in the table are returned. Filtering the returned data is where the
WHERE clause comes in.

Filtering with the WHERE Clause
The WHERE clause is part of the SELECT statement. The WHERE clause allows
you to specify which rows of data to return. For example, you may want to
retrieve data for a specific sales year or authors with a specific surname.

You can easily filter authors returned from the pubs database. To retrieve
information on authors whose surname is Ringer, follow these steps:

1. Open SQL Server Management Studio. Click the Database Engine
Query button.

Figure 5-5:
Examining
columns in
the Object

Explorer.

72 Part II: Basic Operations

10_577557 ch05.qxp 12/20/05 9:45 PM Page 72

2. Type the following code (or you can add the WHERE clause to the pre-
vious T-SQL query):

USE pubs
SELECT au_lname, au_fname
FROM dbo.authors
WHERE au_lname = ‘Ringer’

3. Click the Execute button on the toolbar.

The WHERE clause means that it returns only rows where the last name of the
author exactly matches the name Ringer in the au_lname column. In the
pubs database, it returns only two rows. Notice that the value you want to
match is enclosed in paired single quotes.

In the WHERE clause, you can also use other operators to select a range of
values in the au_lname column. To retrieve all rows where the author last
name is Ringer or comes later than Ringer in the alphabet, modify the T-SQL
code as follows:

USE pubs
SELECT au_lname, au_fname
FROM dbo.authors
WHERE au_lname >= ‘Ringer’

By simply changing the = sign in the WHERE clause to >= (greater than or
equal to), you can select a range of surnames. Table 5-1 summarizes some of
the operators that you can use in a WHERE clause.

Table 5-1 Operators with the WHERE Clause
Operator Description

= The value in the row is equal to the specified value.

<> The value in the row is not equal to the specified value.

!= The value in the row is not equal to the specified value.

>= The value in the row is equal to or greater than the
specified value.

<= The value in the row is equal to or less than the speci-
fied value.

NOT Can be used with other operators. Negates the normal
sense of any other operators.

BETWEEN Returns rows where the value is between two specified
values.

(continued)

73Chapter 5: Asking Questions and Getting Answers

10_577557 ch05.qxp 12/20/05 9:45 PM Page 73

Table 5-1 (continued)
Operator Description

IN Returns rows where the value is in a specified list of
values.

LIKE Returns rows where the value in a column has a pattern
similar to a specified value.

In the WHERE clause, you can also retrieve rows where the values in a column
are similar to a particular value, using the LIKE keyword. You can use the
LIKE keyword to retrieve matches that begin with a particular sequence of
characters or contain a specified sequence of characters.

The LIKE keyword uses two wildcard characters. The underscore (_) wild-
card character matches any single character. The % character matches zero
or more characters.

To retrieve authors whose surname begins with the characters green, follow
these steps:

1. Open SQL Server Management Studio and click the Database Engine
Query button.

2. In the query pane, type the following T-SQL code:

USE pubs
SELECT au_lname, au_fname
FROM dbo.authors
WHERE au_lname LIKE ‘Green%’

3. Click the Execute button on the toolbar.

The sequence of characters in the last line of the T-SQL matches literal char-
acters, Green, plus the % wildcard character (which matches zero or more
characters). So, in the data in the authors table, the WHERE clause limits
returned rows to those where the value in the au_lname column is Green or
Greene, as shown in Figure 5-6. If the authors table had contained books by
Greening and Greenberg, those would also be returned.

To retrieve all authors whose surnames begin with B, C, or D, follow these steps:

1. Modify the last line of the T-SQL code:

USE pubs
SELECT au_lname, au_fname
FROM dbo.authors
WHERE au_lname BETWEEN ‘B’ AND ‘E’

2. Click the Execute button on the toolbar.

74 Part II: Basic Operations

10_577557 ch05.qxp 12/20/05 9:45 PM Page 74

As you can see in Figure 5-7, authors whose surname begins with B, C, or D
are retrieved from the pubs database.

Sorting with ORDER BY
You can use the ORDER BY clause to sort the results from a SELECT state-
ment in any way you want. If you don’t use the ORDER BY clause, you cannot
rely on data being returned in any specific order.

To specify the sort order, follow these steps:

1. Create a new query in SQL Server Management Studio and click the
Database Engine Query button.

2. In the query pane, type the following T-SQL code:

USE pubs
SELECT au_lname, au_fname
FROM dbo.authors
ORDER BY au_lname ASC

Figure 5-7:
Using the
BETWEEN
keyword in

a WHERE
clause.

Figure 5-6:
Using the

LIKE
keyword.

75Chapter 5: Asking Questions and Getting Answers

10_577557 ch05.qxp 12/20/05 9:45 PM Page 75

The ASC keyword specifies that rows are sorted by last name in ascend-
ing order.

3. Click the Execute button on the toolbar.

The data displays in the grid in ascending order (refer to Figure 5-2).

4. To display the data in descending order by the author’s last name,
modify the code as follows:

USE pubs
SELECT au_lname, au_fname
FROM dbo.authors
ORDER BY au_lname DESC

The DESC keyword specifies that the rows returned are sorted in
descending order.

5. Click the Execute button.

The data displays with the last names in the alphabet first, as shown in
Figure 5-8.

Figure 5-8:
Author
names

sorted in
descending

order by
last name.

76 Part II: Basic Operations

10_577557 ch05.qxp 12/20/05 9:45 PM Page 76

Retrieving Data from Multiple Tables
In the previous section, I show you how to retrieve data from a single table. In
real life, you’re more likely to retrieve data from at least two tables — and
sometimes from more than two tables. In this section, I show you how to
retrieve data from multiple tables.

First, I show you how to retrieve data from the pubs database to find any titles
written by authors with the last name of Green. Follow these steps to do so:

1. Open SQL Server Management Studio and create a new database
engine query by clicking the Database Engine Query button.

2. In the query pane, type the following T-SQL code:

USE pubs
SELECT authors.au_lname, authors.au_fname,

titleauthor.au_id, titles.title
FROM dbo.authors, dbo.titleauthor, dbo.titles
WHERE authors.au_lname = ‘Green’
AND titleauthor.au_id = authors.au_id
AND titles.title_id = titleauthor.title_id

The preceding code constructs a join by using the WHERE clause.
Alternatively, you can use the FROM clause to construct the same join
with the following code:

USE Pubs
SELECT authors.au_lname, authors.au_fname,

titleauthor.au_id, titles.title
FROM dbo.authors
JOIN dbo.titleauthor
ON (authors.au_id = titleauthor.au_id)
JOIN dbo.titles
ON (titleauthor.title_id = titles.title_id)
WHERE authors.au_lname = ‘Green’

The syntax using the FROM clause is the recommended approach, but
both forms work in T-SQL. I discuss the JOIN syntax later in the chapter.

3. Click the Execute button to run the code.

The results appear (see Figure 5-9). You can see that two titles are by
Marjorie Green.

77Chapter 5: Asking Questions and Getting Answers

10_577557 ch05.qxp 12/20/05 9:45 PM Page 77

To understand how querying multiple tables works, first take a step back and
take a look at the way the tables in the pubs database are structured.

I suggest you follow these steps with SQL Server Management Studio open.

To explore the tables in the pubs database, follow these steps:

1. Open SQL Server Management Studio.

2. In the Registered Servers, select the SQL Server instance that contains
the pubs database. Right-click and choose Connect➪Object Explorer.

3. Expand the Databases node. Expand the pubs node, and then expand
the Tables node.

You now see an appearance similar to Figure 5-10.

The three tables that I queried in the previous steps are the dbo.authors,
dbo.titleauthor, and dbo.titles tables. Expand the nodes for each of
these tables and look at the columns they contain.

Figure 5-10:
The Tables
node in the

pubs
database.

Figure 5-9:
Retrieving

titles written
by anybody

called
Green.

78 Part II: Basic Operations

10_577557 ch05.qxp 12/20/05 9:45 PM Page 78

The dbo.authors table has the following columns:

� au_id: The primary key for the table

� au_lname: The author’s last name

� au_fname: The author’s first name

The table has several other columns, but I use these three columns in the
current query.

If you look at all the columns in the dbo.authors table, you can see that no
column shows the titles each author has written. This is a typical situation in
a relational database. The design of a relational database means that each
piece of information is recorded only once. If the table contained author and
title information, then the author information would have to be duplicated. In
a relational database, the author information is contained in one table and
the title information is stored in another table. In the pubs database, the title
information is stored in the dbo.titles table.

If you use the Object Explorer to examine the columns in the dbo.titles
table, you see that it includes these columns:

� title_id: The primary key for the table

� title: The title of the book

� price: The price of the book

So you can find the title information in the title column of the dbo.titles
table. But how do you connect a title to its author(s)?

Here you need to think about the relationship between an author (or authors)
and a book or books. One author can write many books. Similarly, a single title
can have multiple authors. This is called a many-to-many relationship.

A typical way to represent a many-to-many relationship is to have an extra
table containing two columns that correspond to the primary key columns of
two other tables.

In this example, the table that contains this information is the dbo.
titleauthor table. It contains the following columns that I use in the query:

� au_id: The au_id column in the dbo.titleauthor table allows you to
make a logical connection to the au_id column in the dbo.authors
table.

� title_id: The title_id column in the dbo.titleauthor table
allows you to make a logical connection to the title_id column in the
dbo.titles table.

79Chapter 5: Asking Questions and Getting Answers

10_577557 ch05.qxp 12/20/05 9:45 PM Page 79

This is how the many-to-many relationship between authors and titles is
expressed in the pubs database.

With that background, you’re now ready to look in more detail at the T-SQL
code.

First, I describe how the WHERE clause syntax works, which I show again here
for convenience:

USE pubs
SELECT authors.au_lname, authors.au_fname,

titleauthor.au_id, titles.title
FROM dbo.authors, dbo.titleauthor, dbo.titles
WHERE authors.au_lname = ‘Green’
AND titleauthor.au_id = authors.au_id
AND titles.title_id = titleauthor.title_id

The first line specifies to query the pubs database.

The next line retrieves data from four columns: the au_lname and au_fname
columns from the dbo.authors table, plus the au_id column from the dbo.
titleauthor table plus the title column from the dbo.titles table.

The FROM clause specifies that you’re can retrieve data from three different
tables: dbo.authors, dbo.titleauthor, and dbo.titles.

The first line in the WHERE clause specifies that you retrieve data where the
author’s last name is Green.

Click the Comment Out the Selected Lines button on the toolbar to comment
out the last two lines of the code. Click the Execute button to run the query.

The query results in 450 rows. But, as you can probably guess if you examine
the results, Marjorie Green hasn’t written 25 different books called But Is It
User Friendly?

So what is happening? Without the last two rows of the code, you’re making
this query: “Create a new table that has an au_lname column containing the
string Green plus the au_fname, au_id, title, and royaltyper columns
created by retrieving data from the relevant tables.”

You want a query equivalent to “Create a new table where content of the
au_lname column is Green and find rows in the dbo.titles table where
the author is somebody with the last name of Green.”

If you uncomment the second last line the number of returned rows
decreases to 35. There is a row for each value in the title column in the

80 Part II: Basic Operations

10_577557 ch05.qxp 12/20/05 9:45 PM Page 80

dbo.titles table. You still need to specify that only titles written by Green
are to be returned. After you uncomment the last line only two titles return
both written by Marjorie Green.

The technique I have showed you uses the WHERE clause to specify how to
retrieve columns from multiple tables. You can do the same thing by using
joins, which I describe next.

Joins
You can use the WHERE clause, as described in the preceding section to con-
struct inner joins, which is the most commonly used type of join. For any-
thing other than fairly simple joins, the WHERE syntax becomes unwieldy. In
more complex queries, the JOIN syntax is recommended.

SQL Server 2005 supports several types of joins. I describe only the INNER
JOIN in this chapter. The types of join are listed here:

� INNER JOIN: Matches rows on common columns and returns rows
where there are matches for the columns used in the join.

� OUTER JOIN: There are two types — RIGHT OUTER JOIN and LEFT
OUTER JOIN.

� FULL JOIN.

� SELF JOIN.

A join allows you to retrieve data from multiple tables. Using the JOIN syntax
to write complex queries is usually easier than using the WHERE clause.

I show you how to achieve the same result as in the previous example by
using an inner join. Follow these steps:

1. Open SQL Server Management Studio and open a new database
engine query by clicking on the Database Engine Query button.

2. Type the following T-SQL code:

USE pubs
SELECT authors.au_lname, authors.au_fname,

titleauthor.au_id, titles.title
FROM dbo.authors INNER JOIN dbo.titleauthor
ON titleauthor.au_id = authors.au_id
INNER JOIN dbo.titles
ON titles.title_id = titleauthor.title_id
WHERE authors.au_lname = ‘Green’

81Chapter 5: Asking Questions and Getting Answers

10_577557 ch05.qxp 12/20/05 9:45 PM Page 81

3. Click the Execute button to run the code.

Figure 5-11 shows the results.

The SELECT clause specifies that you want to retrieve four columns:
authors.au_lname, authors.au_fname, titleauthor.au_id, and
titles.title.

The first two lines in the FROM clause

FROM dbo.authors INNER JOIN dbo.titleauthor
ON titleauthor.au_id = authors.au_id

specify that you want an inner join on two tables, dbo.authors and
dbo.titleauthor, where the value of titleauthor.au_id and
authors.au_id are equal.

Because the relationship between the authors and titles is many-to-many, you
need a second inner join:

INNER JOIN dbo.titles
ON titles.title_id = titleauthor.title_id

so that you correctly associate an author’s name with the title(s) that he/she
has written.

The final WHERE clause

WHERE authors.au_lname = ‘Green’

filters the results so that only rows containing results where the author last
name is Green are returned.

Figure 5-11:
Using an
INNER
JOIN

multi-table
query.

82 Part II: Basic Operations

10_577557 ch05.qxp 12/20/05 9:45 PM Page 82

You can use the full range of the WHERE clause with such queries. To return all
authors from Carson to Panteley, modify the WHERE clause to the following:

WHERE authors.au_lname BETWEEN ‘C’ AND ‘R’

You can also use the ORDER BY clause with such queries. Add the following
code:

ORDER BY titles.title

to display the results sorted alphabetically by title.

The inner join is the most commonly used join. Other types of join that I
don’t describe here are LEFT JOIN, RIGHT JOIN, and CROSS JOIN.

Modifying a Template
SQL Server 2005 provides a large number of templates containing T-SQL
code. You access the Template Explorer from SQL Server Management
Studio. If the Template Explorer is not visible, choose View➪Template
Explorer. The Template Explorer displays, as shown in Figure 5-12.

Figure 5-12:
The

Template
Explorer.

83Chapter 5: Asking Questions and Getting Answers

10_577557 ch05.qxp 12/20/05 9:45 PM Page 83

I suggest you explore the huge range of templates by navigating through the
hierarchy of nodes.

One of many uses for a template is when creating a database. Follow these
steps to create a new database with T-SQL:

1. Click the Databases node in Template Explorer to expand it.

2. Double-click the Create Database node.

A new query window opens and, depending on which panes you have
visible, looks something similar to Figure 5-13.

Notice that some of the code is contained between angled brackets
(< and >).

3. Choose Query➪Specify Values for Template Parameters.

The Specify Values for Template Parameters dialog box opens, as shown
in Figure 5-14.

Figure 5-13:
The new

query
created

from a
template.

84 Part II: Basic Operations

10_577557 ch05.qxp 12/20/05 9:45 PM Page 84

If you compare the columns in the Specify Values for Template
Parameters dialog box with the values inside the angled brackets in the
query pane you see that they are the same. The Specify Values for
Template Parameters dialog box allows you to enter a value once for a
parameter. SQL Server 2005 adds that value at each appropriate place in
the T-SQL code.

4. Double-click in the Value column of the Specify Values for Template
Parameters dialog box and enter FromTemplate.

5. Click OK. Examine the code in the query pane and note that the para-
meter has been replaced by the name FromTemplate.

The angled brackets are no longer there because they are no longer
needed as placeholders.

6. Click the Execute button on the toolbar to run the code.

7. In the Object Explorer, right-click the Databases node and choose
Refresh from the context menu.

The FromTemplate database displays.

Figure 5-14:
The Specify

Values for
Template

Parameters
dialog box.

85Chapter 5: Asking Questions and Getting Answers

10_577557 ch05.qxp 12/20/05 9:45 PM Page 85

86 Part II: Basic Operations

10_577557 ch05.qxp 12/20/05 9:45 PM Page 86

Chapter 6

Building a Simple Application
In This Chapter
� Customizing the development environment

� Adding a connection

� Creating the user interface

� Diagnosing problems

You can use SQL Server 2005 in many ways. If you are a database adminis-
trator, you can use the management tools such as SQL Server Management

Studio to help you administer one or more instances of SQL Server. If you are a
database developer, you can create custom applications based on SQL Server
2005. Typically, to create such custom applications you use one of the several
editions of Visual Studio 2005 as the tool to create an application that uses SQL
Server 2005 as the database layer.

You can use the Business Intelligence Development Studio that is part of SQL
Server 2005 to create specialized applications for SQL Server Integration
Services, Analysis Services, and Reporting Services. I describe using the
Business Intelligence Development Studio to create such applications in
Chapters 20, 21, and 22.

In this chapter, I show you basic techniques to create a simple application
that uses SQL Server 2005 as the back end database. I use Visual Studio 2005
to create the front end of the application. To create the sample application
shown in this chapter you need some edition of Visual Studio installed. Because
Visual Studio has multiple editions, I do not describe installation here.

The editions of Visual Studio or related products are listed here:

� Visual Basic 2005 Express Edition

� Visual C# 2005 Express Edition

� Visual C++ 2005 Express Edition

� Visual Web Developer 2005 Express Edition

� Visual Studio 2005 Standard Edition

11_577557 ch06.qxp 12/20/05 9:46 PM Page 87

� Visual Studio 2005 Professional Edition

� Visual Studio 2005 Team Suite

� Visual Studio 2005 Team Foundation Server

� Visual Basic 2005 Standard Edition

� Visual C# 2005 Standard Edition

Note: Throughout this chapter, I use the term “Visual Studio” to refer to any
of the preceding products. Where I refer to Visual Studio, you can use any
product you have from the preceding list.

For fuller information on Visual Studio 2005, see Visual Basic 2005 For Dummies,
by Bill Sempf (Wiley).

Designing the Application
Visual Studio 2005 has a complex user interface with numerous options that
you can adapt to customize the development environment. In this section, I
haven’t changed the default settings. If you have an edition of Visual Studio
2005 and have changed options through Tools➪Options, then you may have
to take slightly different actions and/or you may see a slightly different
appearance than the one you see in the figures. The example application that
I create in this chapter uses basic functionality of Visual Studio so you can
create a similar application with any version of Visual Studio.

When designing an application, you must ensure that you have stored all the
relevant data in SQL Server 2005. To correctly design the database, you need
to consider a range of business needs — both current and future. In practical
applications, you need to spend significant amounts of time deciding what
data to store and how to store it.

When creating an application, consider points such as the following:

� Will users access the application through your company network or
through the Internet?

� How many people need to access the data? What are peak user numbers
at any one time?

� Will users view data only or will they have the capability to add or
update data?

� How can you best present the information to users? For example, you
need to consider whether different groups of users need different inter-
faces to meet their business needs.

88 Part II: Basic Operations

11_577557 ch06.qxp 12/20/05 9:46 PM Page 88

Depending on the answers to some of the preceding points you want to
choose an appropriate edition of SQL Server 2005 to ensure good availability
of the data to the anticipated users of the application. I describe the available
editions of SQL Server 2005 in Chapter 1.

In Chapter 11, I describe the security functionality that is available in SQL
Server 2005 and show you how to use that functionality to take control of
your SQL Server 2005 data. When designing an application, you need to give
careful thought about how to secure your data and how to allow access to
legitimate users.

For simplicity, in this example I use one of Microsoft’s sample databases for
SQL Server, the pubs database. In the example application I want to retrieve
information about authors in the pubs database. The aim of this simple appli-
cation is to display author names and phone numbers for users in alphabeti-
cal order.

Instructions for downloading and installing the pubs database are in Chapter 5.

When creating an application, it is useful to have a good understanding of the
data and how it is stored. In practical applications, you can study the table
and column structure of a database by following these steps:

1. Open SQL Server Management Studio by choosing Start➪All Programs➪
Microsoft SQL Server 2005➪SQL Server Management Studio.

2. Connect to the SQL Server instance you want to use while developing
your application.

Typically that won’t be a production server.

3. In the Registered Servers pane of SQL Server Management Studio,
right-click the server you want to use and choose Connect➪Object
Explorer.

4. In the Object Explorer, navigate down the tree of nodes for the server
until you find the node for the database you plan to use for your
application.

In this example, after expanding the node for the SQL Server instance, I
expand the Databases node, and then the pubs node, and then the
Tables node, the node for dbo.authors next, and finally, the Columns
node for the dbo.authors table. You can then study the columns in the
dbo.authors table, as shown in Figure 6-1. Notice that the Object
Explorer displays information about the datatypes of the columns in the
table.

89Chapter 6: Building a Simple Application

11_577557 ch06.qxp 12/20/05 9:46 PM Page 89

For this example, I use the au_lname, au_fname, and phone columns.

In large databases, you may have two tables with the same table name. If so,
you need to be careful to include the name of the schema that the table
belongs to. In this example, the authors table belongs to the dbo schema so
I select the dbo.authors table.

Creating a New Project
In a production application you need to give careful consideration as to how
you display information to users and whether you allow them to add new
data to the database.

In this example, I create a very simple application that retrieves author name
and phone number information and displays it in a simple on-screen tabular
layout.

To create a basic Windows Forms application in Visual Studio, follow these
steps:

1. Choose Start➪Microsoft Visual Studio 2005➪Microsoft Visual
Studio 2005.

If you’re using one of the Express products the path is similar.

2. To create a new project, choose File➪New➪Project.

A New Project dialog box, shown in Figure 6-2, displays.

The selection of options offered to you in the Project Types pane of the
New Project dialog box varies according to the edition of Visual Studio
that you are using.

Figure 6-1:
The

Columns
node of

the pubs
database

expanded.

90 Part II: Basic Operations

11_577557 ch06.qxp 12/20/05 9:46 PM Page 90

3. If available, select Visual Basic in the Project Types pane. Select
Windows. In the Templates pane, select Windows Application.

If you’re using Visual C# or Visual C# Express, select the options for a
Windows Application.

4. In the Name text box, enter SimpleProject as the name of the project.
Ensure that the Create Directory for Solution check box is checked.

The appearance should be similar to Figure 6-3.

Figure 6-3:
Creating

and naming
a new

project.

Figure 6-2:
The New

Project
dialog box.

91Chapter 6: Building a Simple Application

11_577557 ch06.qxp 12/20/05 9:46 PM Page 91

5. Check that a file location is displayed in the Location text box.

The path displayed depends on where you installed Visual Studio.
Unless you want to customize the location where you create Visual
Studio projects, you can simply accept the default location that Visual
Studio provides.

6. Click the OK button.

After a pause, usually of a few seconds, you see an appearance similar to
that in Figure 6-4. The gray rectangle is the form that you can customize
to provide the user interface.

Notice the information in the Data Sources pane of Visual Studio that no data
source has been configured. So, next, you need to create a data source for the
project, which I show you how to do in the next section.

Building the Connection to the Data
To add a connection to the pubs database by using the Data Source
Configuration Wizard, follow these steps:

1. Click the Add New Data Source link in the Data Sources pane.

The Data Source Configuration Wizard displays, as shown in Figure 6-5.

2. The default option is Database, which is what you want for this exam-
ple. Click the Next button.

On the next screen you specify where the data is to come from.

Figure 6-4:
A new

project in
Visual

Studio.

92 Part II: Basic Operations

11_577557 ch06.qxp 12/20/05 9:46 PM Page 92

3. To create a new connection, click the New Connection button.

The Choose Data Source dialog box, shown in Figure 6-6, displays.

4. Select the Microsoft SQL Server option. Click Continue.

The Add Connection dialog box opens, as shown in Figure 6-7.

Figure 6-7:
The Add

Connection
dialog box.

Figure 6-6:
The Choose

Data Source
dialog box.

Figure 6-5:
The Data

Source Con-
figuration

Wizard.

93Chapter 6: Building a Simple Application

11_577557 ch06.qxp 12/20/05 9:46 PM Page 93

5. In the Server Name text box, enter a single period character (which
means the connection is to the local development machine) or the
server name and instance name (if you’re using a named instance of
SQL Server).

6. In the Select or Enter a database name drop-down menu, select the
pubs database, as shown in Figure 6-8.

If the pubs database isn’t displayed in the drop-down menu, check that
you are connecting to the desired SQL Server instance and that you have
correctly installed the pubs database.

7. Click the Test Connection button to test the connection.

If everything is working correctly, the dialog box, shown in Figure 6-9,
displays.

Figure 6-9:
The

confirmation
that you can

make a
connection

to the
desired data

source.

Figure 6-8:
Selecting a
connection

to the pubs
database as
data source.

94 Part II: Basic Operations

11_577557 ch06.qxp 12/20/05 9:46 PM Page 94

8. Click OK in that dialog box and then click the OK button in the Add
Connection dialog box.

If the connection fails, check the choices you made in the earlier steps. If
you’re connecting across a network, check that you can access the SQL
Server instance by using SQL Server Management Studio.

You return to the Data Source Configuration Wizard.

9. Click the Next button in the Data Source Configuration Wizard.

10. The next screen that appears in the Data Source Configuration Wizard
offers you a choice about storing the connection string; click Next.

The next screen displays, as shown in Figure 6-10.

You now need to select which database objects you want to connect to.
For these steps, choose data from the au_lname, au_fname, and phone
columns of the dbo.authors table.

11. Expand the Tables node, expand the authors node, and check the
check boxes for the au_lname, au_fname and phone columns.

Notice that in this dialog schema information is not displayed.

12. Click the Finish button.

You return to the Visual Studio main window. Notice that the Data
Sources pane now contains a data source called pubsDataSet (see
Figure 6-11), assuming you didn’t change the default name.

Figure 6-10:
Selecting

the
database

objects.

95Chapter 6: Building a Simple Application

11_577557 ch06.qxp 12/20/05 9:46 PM Page 95

You now have successfully created a data source. The next step is to display
data from that data source.

Building the User Interface
To add a simple user interface to display the data, follow these steps:

1. In the Data Sources pane, expand the pubsDataSet node.

2. Drag the authors table to the form.

After a few seconds the form looks similar to Figure 6-12. You may need
to expand the gray area to get it to look exactly like Figure 6-12.

In the main area of the form a DataGridView control has been added. In
the lower part of the window, notice the controls that enable access to
the data have been added to the form. These four controls are not visi-
ble when you run your application but provide the functionality to
retrieve the data you want to see.

Figure 6-12:
After

dragging the
authors

table to
the form.

Figure 6-11:
A data
source

added to
the Data
Sources

pane.

96 Part II: Basic Operations

11_577557 ch06.qxp 12/20/05 9:46 PM Page 96

3. Choose File➪Save All to save all the project files.

4. Press F5 to run the application in debug mode.

If all is working correctly, data displays in the form with an appearance
similar to Figure 6-13.

Visual Studio offers many techniques to add more interesting visual appear-
ances and more sophisticated functionality. Hopefully this simple example
shows you how easy you can create a simple custom database application.
Did you notice that although I told you to select a Visual Basic project that
you didn’t have to write a single line of code?

Debugging the Application
Visual Studio provides powerful debugging features to help you diagnose
problems when you create applications. The drop-down menu beside the
green arrow button on the toolbar allows you to specify to run code in debug
mode. That code can be code that you have written or, as in the preceding
example, code that Visual Studio generated automatically for you.

If your code has problems, helpful error messages are provided and Visual
Studio displays multiple additional widows to help you diagnose the source
of the problem.

Figure 6-13:
Author

information
displayed in
a Windows

form.

97Chapter 6: Building a Simple Application

11_577557 ch06.qxp 12/20/05 9:46 PM Page 97

98 Part II: Basic Operations

11_577557 ch06.qxp 12/20/05 9:46 PM Page 98

Part III
Working with

SQL Server

12_577557 pt03.qxp 12/20/05 9:46 PM Page 99

In this part . . .

I introduce you to working with the new xml datatype in
SQL Server 2005 and using the Common Language

Runtime (CLR) that is now part of SQL Server 2005.

I show you how to work with stored procedures and
handle errors.

12_577557 pt03.qxp 12/20/05 9:46 PM Page 100

Chapter 7

Working with XML
In This Chapter
� Introducing XML

� Creating XML documents and fragments

� Storing XML by using untyped and typed XML

� Querying XML

� Modifying data with XML Data Modification Language

� Converting data to and from XML

Not all data is ideally suited to storage in relational tables, using rela-
tions to express logical associations between parts of the data. XML,

eXtensible Markup Language, is a very useful alternate way to represent cer-
tain types of data, particularly data that has a hierarchical structure.
Hierarchical data is quite common in real-life business data. For example, an
invoice contains various elements such as date, invoice number, and line
items. You can envisage the invoice as the top of a hierarchy and the other
elements as subsidiary elements in the hierarchy. The line items section may,
in turn, contain several individual line items. You can easily represent this
type of conceptual data structure as XML.

XML is also useful for storing or transmitting across a network information
that can vary in structure from one document to another. XML was devel-
oped as a specification produced by the World Wide Web Consortium (W3C)
and therefore is widely accepted internationally.

Sometimes the term semi-structured is used to refer to XML because it is not
structured in the same way as relational data. In reality, XML data is always
structured. It simply isn’t structured in the same way as relational data.

SQL Server 2005 provides several tools to allow you to store XML and to
retrieve selected parts of that XML for use in your applications. You can break
XML data into a structure that can be stored in SQL Server and you can take
the results of relational data queries and combine that data into an XML struc-
ture. SQL Server 2005 allows you, for the first time, to store your XML data in
SQL Server and query it as if it was XML. Strictly speaking, SQL Server 2005
stores XML in a proprietary binary format, not as a sequence of characters.

13_577557 ch07.qxp 12/20/05 9:47 PM Page 101

The binary format allows you to search your XML data quicker, because the
indexes you can create on the binary format allow you to navigate the logical
structure of the XML quickly and efficiently.

Introducing XML
XML is a markup language that is highly flexible. Unlike HTML, which has var-
ious specified element names, you can define your own element names in
XML documents. This makes it very flexible but that flexibility can cause
problems too. If you don’t know how a business partner is going to structure
a purchase order written in XML, you will likely have problems in creating a
way to process the purchase order automatically. A common approach to
ensuring that a class of XML documents are structured in a predictable way
is to validate the structure of each document of that class, using a schema. A
schema simply defines the allowed structure of that class of XML documents.
You can use two schema languages to specify a schema for XML: Document
Type Definition (DTD) and XSD (also called W3C XML Schema Definition lan-
guage). SQL Server 2005 supports the XSD schema language. I describe it
briefly later in this chapter, in the “Understanding the XML Schema Definition
language” section.

An XML document has to conform to several rules, including

� An XML document must have a single document element and all other
elements must be contained inside it. An XML fragment needn’t meet this
criterion.

� Each start tag of an element must have a matching end tag, unless the
element is empty when you can use an empty element structure.

� Attributes are added to a start tag (or empty element).

You can express a simple purchase order like this in XML
(PurchaseOrder.xml):

<?xml version=”1.0”?>
<PurchaseOrder>
<Date></Date>
<From>Some Fictional Company</From>
<Contact>Fred Smith</Contact>
<ContactPhone>123-456-7890</ContactPhone>
<LineItems>
<LineItem Quantity=”3”>Some article</LineItem>
<LineItem Quantity=”12”>Some other article</LineItem>
<LineItem Quantity=”300”>Yet another kind of

article</LineItem>
</LineItems>
</PurchaseOrder>

102 Part III: Working with SQL Server

13_577557 ch07.qxp 12/20/05 9:47 PM Page 102

The first line of the code is the XML declaration. It isn’t compulsory but it can
include information about the version of XML and the encoding of the charac-
ters in the document. By default XML parsers support Unicode UTF-8 and
UTF-16. If you want to use other character encoding, you add an encoding
attribute whose value specifies the encoding of the document.

The PurchaseOrder element is the document element (sometimes called the
root element). It has a start tag, on the second line of the code, and an end
tag, on the last line of the code. All other elements are contained between the
start tag and the end tag of the PurchaseOrder element.

All other elements in the document must have matching start and end tags
unless they are empty. Notice that the Date element is written as

<Date></Date>

Because it has no content — that is, it’s empty — you can also use the special
syntax for an empty element:

<Date/>

The order of elements is significant in an XML document. If an element has
two or more attributes, the order of those attributes in the document is not
significant.

XML and SQL Server 2000
SQL Server 2000 was the first version of SQL Server that included support for
XML. SQL Server 2000 provided two pieces of XML functionality. The first was
the FOR XML clause that you use to query relational data to return that data
as XML. The second was the OPENXML keyword that you use to split up XML
into components that could be stored in the tables of a relational database.

XML and SQL Server 2005
SQL Server 2005 builds on the XML support by adding several new pieces of
functionality:

� A new datatype for XML, the xml datatype. I describe that
datatype in the next section.

� Support for querying XML by using the XML Query Language, XQuery.

� An XML Data Manipulation Language (a proprietary extension to
XQuery), which you can use to insert, update, or delete components of
XML data held as the xml datatype.

103Chapter 7: Working with XML

13_577557 ch07.qxp 12/20/05 9:47 PM Page 103

� Enhancements to the T-SQL FOR XML clause.

� The ability to create indexes on the xml datatype.

� The ability to use XML Web services, using HTTP Endpoints.

The xml datatype
SQL Server 2005 supports an xml datatype that wasn’t supported in SQL Server
2000. SQL Server 2005 supports two flavors of XML: XML documents and XML
fragments. I discuss these two entities and how to use them in the next section.

You can use the xml datatype in the following situations:

� Columns in a SQL Server 2005 table

� Variables

� Stored procedures

� Function parameters

You create a column of the xml datatype in a table to store purchase orders
written in XML as follows:

CREATE TABLE xmlSample (ID int primary key, PurchaseOrder
xml)

You create a variable of the xml datatype as follows:

DECLARE @myXMLVariable xml

You create a stored procedure with a parameter of the xml datatype as follows:

CREATE PROCEDURE myProcedure (myXMLDoc xml)
AS -- the rest of the stored procedure goes here

Later in the chapter, I show you how to store and retrieve XML data in and
from a column that contains data of the xml datatype. I show you how to
retrieve XML data in the “Querying XML” section.

Creating XML Documents and Fragments
The XML specification has many rules that define how to construct XML docu-
ments and fragments. Detailed discussion of those rules is beyond the scope of
this chapter. If you have access to one, I suggest that you use an XML editor
such as XML Spy, XMLwriter, and Stylus Studio. These and other tools check that
the XML is well-formed and typically even highlighted where any errors occur.

104 Part III: Working with SQL Server

13_577557 ch07.qxp 12/20/05 9:47 PM Page 104

Many editors also provide automated element completion. As soon as you
create a start tag, the editor automatically adds an end tag. If you use that
functionality, you need to be careful to create the elements in the order
where autocompletion is a help, not a hindrance.

Many XML editors also allow you to validate an XML document against an
XSD schema document. Validation allows you to be sure that any XML you
attempt to store in SQL Server is created correctly according to the con-
straints of the schema. You can use SQL Server to validate XML when you
have a typed XML column, which I describe in the next section.

An XML document is often the most convenient flavor of XML to use. All XML
parsers and editors recognize it as well-formed.

An XML fragment doesn’t satisfy the requirement to have a single document ele-
ment that contains every other element. However, the fragment must otherwise
be well-formed so that you can successfully insert it in an XML document. If you
use XML fragments, some editors and parsers may report inappropriate errors.

Using Untyped and Typed XML
SQL Server 2005 allows you to store XML in two broad ways. Untyped XML is
XML that is stored without having a schema specified for it. Typed XML is XML
that has an associated schema document that defines which structure(s) are
allowed in the XML that is stored.

Untyped XML is easier to use, because you don’t need to create a schema
document. It is also more flexible because you can change the structure of
XML documents. A downside of untyped XML is that the data stored in that
column can contain errors that you may avoid with typed XML instead.

If you use typed XML, then each XML document is checked to ensure that it
has the correct structure — for example, before it is stored in a column in a
SQL Server table.

Stored XML, whether it is untyped or typed, cannot exceed 2GB in size per
instance. That means that the data in a column that has the xml datatype
cannot exceed 2GB. For many purposes that size limit won’t be a problem.

Using untyped XML
To demonstrate how to use untyped XML, I use the Purchase order document
from earlier in this chapter.

105Chapter 7: Working with XML

13_577557 ch07.qxp 12/20/05 9:47 PM Page 105

In the examples in this chapter, you can either type the code or you can use
the T-SQL file that contains the code. To run the code in the file for each step,
highlight the relevant part of the code and then press the F5 key.

To create a PurchaseOrders table and add a single purchase order to it,
follow these steps:

1. Open the SQL Server Management Studio and create a new database
engine query.

The code is included in the UntypedXML.sql file.

2. Create a database called Chapter7 by using this code:

CREATE DATABASE Chapter7

3. Elect to use the newly created Chapter7 database by using this code:

USE Chapter7

4. Create a table called PurchaseOrders with two columns.

The PurchaseID column contains an integer value and the
PurchaseOrder column contains an XML document. Use the following
code:

CREATE TABLE PurchaseOrders (PurchaseID int primary
key, PurchaseOrder xml)

5. Add a purchase order to the PurchaseOrders table with the follow-
ing code:

INSERT INTO PurchaseOrders VALUES(1, ‘<?xml
version=”1.0”?>

<PurchaseOrder>
<Date>2005/12/31</Date>
<From>Some Fictional Company</From>
<Contact>Fred Smith</Contact>
<ContactPhone>123-456-7890</ContactPhone>
<LineItems>
<LineItem Quantity=”3”>Some article</LineItem>
<LineItem Quantity=”12”>Some other

article</LineItem>
<LineItem Quantity=”300”>Yet another kind of

article</LineItem>
</LineItems>
</PurchaseOrder>’)

6. Retrieve the purchase order that you added to the PurchaseOrders
table in Step 5 using the following code:

SELECT PurchaseOrder FROM PurchaseOrders

Figure 7-1 shows the results of the query.

106 Part III: Working with SQL Server

13_577557 ch07.qxp 12/20/05 9:47 PM Page 106

7. To view the XML document that displays in the grid shown in Figure 7-1,
drag the column separator to the right.

8. To view the entire XML document, displayed in a hierarchical way,
click the XML.

A window opens similar to Figure 7-2.

Figure 7-2:
The

retrieved
XML

document
displays
in a new
window.

Figure 7-1:
The results

of query-
ing for

purchase
orders.

107Chapter 7: Working with XML

13_577557 ch07.qxp 12/20/05 9:47 PM Page 107

Understanding the XML Schema
Definition language
The W3C has defined a Schema Definition language, often called W3C XML
Schema Definition language and abbreviated to XSD. In SQL Server 2005, the
only schema definition language supported is XSD, which replaces the propri-
etary XML Data Reduced (XDR) schema language that Microsoft provided in
SQL Server 2000.

An XSD schema can apply the following constraints to associated instance
XML documents:

� The structure of elements in the document.

� The number of similar elements allowed in a place in the XML structure.
For example, you can specify whether an element is optional (occurs
zero or one time) or that it occurs a specified number of times.

� Whether or not a particular element has one or more attributes.

� The values allowed in a particular element or attribute. For example, in
an element to store the date of an invoice, you can specify that the ele-
ment stores only valid dates. Similarly, if an element is specified as con-
taining string data, you won’t be allowed to carry out arithmetic on data
contained in it.

These constraints remove important classes of possible problems or variabil-
ity in the data you store. This improves data quality at the cost of creating
and applying an XSD schema document.

SQL Server validates the XML to be stored every time that you add or change
data in a column.

W3C XML Schema is a complex topic that deserves a book of its own.

If you have a copy of Visual Studio 2005, you can create an XSD schema for
the purchase order document used in the earlier example (in the “Using
untyped XML” section) by following these steps:

1. Open Visual Studio 2005.

2. Open the PurchaseOrder.xml file in Visual Studio by choosing
File➪Open and navigating to the directory that you stored
PurchaseOrder.xml in.

3. To create an XSD schema, choose XML➪Create Schema.

The XML menu displays in Visual Studio only when you have an XML file
open.

After a pause while Visual Studio creates the XSD schema, you see an
appearance similar to Figure 7-3.

108 Part III: Working with SQL Server

13_577557 ch07.qxp 12/20/05 9:47 PM Page 108

The schema that Visual Studio created is in the PurchaseOrder.xsd file.
For convenience, I show the XSD schema here:

<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema attributeFormDefault=”unqualified”

elementFormDefault=”qualified”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”PurchaseOrder”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Date” type=”xs:string” />
<xs:element name=”From” type=”xs:string” />
<xs:element name=”Contact” type=”xs:string” />
<xs:element name=”ContactPhone” type=”xs:string” />
<xs:element name=”LineItems”>
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs=”unbounded” name=”LineItem”>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=”xs:string”>
<xs:attribute name=”Quantity”
type=”xs:unsignedShort” use=”required” />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>

Figure 7-3:
An XSD

Schema
created,

using Visual
Studio 2005.

109Chapter 7: Working with XML

13_577557 ch07.qxp 12/20/05 9:47 PM Page 109

Notice that the XSD schema is itself an XML document. The document element
is an xs:schema element. The name of the xs:schema element defines it as
being a W3C XML Schema element. The prefix, xs, is associated with a URL
that is unique to W3C XML Schema in the start tag of the xs:schema element:

<xs:schema attributeFormDefault=”unqualified”
elementFormDefault=”qualified”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

The association of a namespace prefix with a namespace URI is called a
namespace declaration.

As is often the case, the XSD schema document is much longer than the XML
instance document it describes. In this document, the first xs:element

<xs:element name=”PurchaseOrder”>

tells you that the name of the document element of PurchaseOrder.xml
and other documents of the same class is PurchaseOrder. The rest of the
schema defines the allowed structure of the purchase order.

Now you have an XSD schema that you can use to work with a typed XML
column.

Using typed XML
Typed XML is used in a similar way to untyped XML but you must specify the
schema(s) to be associated with the typed XML before the XML is stored, if
you want SQL Server to automatically validate XML data as you add it to the
database.

You can associate an XSD schema with XML in the following situations:

� Column

� Function parameter

� Variable

The following steps show you how to create a table to hold a typed XML
column. You can omit Steps 1 and 2 if you created the Chapter7 database in
the earlier example (in the “Using untyped XML” section) and left SQL Server
Management Studio open.

1. Open SQL Server Management Studio and click the Database Engine
Query button to create a new database engine query.

2. Create the Chapter7 database by using the following code:

CREATE DATABASE Chapter7

110 Part III: Working with SQL Server

13_577557 ch07.qxp 12/20/05 9:47 PM Page 110

3. Elect to use the newly created Chapter7 database using this code:

USE Chapter7

4. Create an XML schema collection called PurchaseOrderCollection
in the Chapter7 database using the following code:

CREATE XML SCHEMA COLLECTION PurchaseOrderCollection
AS

‘<?xml version=”1.0” encoding=”utf-8”?>
<xs:schema attributeFormDefault=”unqualified”

elementFormDefault=”qualified”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>

<xs:element name=”PurchaseOrder”>
<xs:complexType>
<xs:sequence>
<xs:element name=”Date” type=”xs:string” />
<xs:element name=”From” type=”xs:string” />
<xs:element name=”Contact” type=”xs:string” />
<xs:element name=”ContactPhone” type=”xs:string”

/>
<xs:element name=”LineItems”>
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs=”unbounded”
name=”LineItem”>
<xs:complexType>
<xs:simpleContent>
<xs:extension base=”xs:string”>
<xs:attribute name=”Quantity”

type=”xs:unsignedShort” use=”required” />
</xs:extension>
</xs:simpleContent>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>’

The CREATE SCHEMA COLLECTION statement specifies the name for
the schema collection and you supply a literal XSD schema document as
the argument.

5. Verify that the schema collection has been created by using the fol-
lowing code:

SELECT name, create_date
FROM sys.xml_schema_collections

You see an appearance similar to Figure 7-4.

111Chapter 7: Working with XML

13_577557 ch07.qxp 12/20/05 9:47 PM Page 111

6. Create the TypedPurchaseOrders table by using the following code:

CREATE TABLE TypedPurchaseOrders (PurchaseID int
primary key,

PurchaseOrder xml (PurchaseOrderCollection))

Notice that after you specify the PurchaseID and PurchaseOrder
columns in the normal way, you supply the name of an XML schema col-
lection to specify which schema is to apply to the PurchaseOrder
column.

7. Add a valid purchase order to the TypedPurchaseOrders table using
the following code:

INSERT INTO TypedPurchaseOrders VALUES(1, ‘<?xml
version=”1.0”?>

<PurchaseOrder>
<Date>2005/12/31</Date>
<From>Some Fictional Company</From>
<Contact>Fred Smith</Contact>
<ContactPhone>123-456-7890</ContactPhone>
<LineItems>
<LineItem Quantity=”3”>Some article</LineItem>
<LineItem Quantity=”12”>Some other

article</LineItem>
<LineItem Quantity=”300”>Yet another kind of

article</LineItem>
</LineItems>
</PurchaseOrder>’)

Apart from the change in the name of the table, this syntax is the same
as the untyped XML syntax. After you associate the schema with a
column in Step 6, you simply add the XML to the column in the same
way as with untyped XML.

Figure 7-4:
Verifying

that the
Purchase
Orders

Collection
schema

collection
has been

created
successfully.

112 Part III: Working with SQL Server

13_577557 ch07.qxp 12/20/05 9:47 PM Page 112

8. Check that the purchase order was added correctly, using the follow-
ing code:

SELECT PurchaseOrder FROM TypedPurchaseOrders

9. Attempt to add an invalid purchase order to the
TypedPurchaseOrders table by using the following code.

Notice that the XML contains two Contact elements, when the schema
specifies that only one is allowed. You see an error.

INSERT INTO TypedPurchaseOrders VALUES(2, ‘<?xml
version=”1.0”?>

<PurchaseOrder>
<Date>2005/12/31</Date>
<From>Some Fictional Company</From>
<Contact>Fred Smith</Contact>
<Contact>Not allowed here.</Contact>
<ContactPhone>123-456-7890</ContactPhone>
<LineItems>
<LineItem Quantity=”3”>Some article</LineItem>
<LineItem Quantity=”12”>Some other

article</LineItem>
<LineItem Quantity=”300”>Yet another kind of

article</LineItem>
</LineItems>
</PurchaseOrder>’)

I show you how to store both untyped and typed XML. You also need to
retrieve XML data.

Querying XML
You will have realized that XML is stored differently from traditional rela-
tional data. Not surprisingly, the way to query XML isn’t quite the same as
querying relational data. However, because you’re retrieving data from a SQL
Server column, you use T-SQL code as the framework.

Understanding XQuery
The language used to retrieve data in columns that are of the xml datatype is
called the XML Query Language (XQuery). Microsoft has chosen to use a
subset of the XQuery specification and is aware that the specification is,
at the time of writing, not yet finalized at the W3C. The hope is that the
subset of XQuery that Microsoft used doesn’t change between the draft that
Microsoft used in SQL Server 2005 and the final release of XQuery but that is
not guaranteed.

113Chapter 7: Working with XML

13_577557 ch07.qxp 12/20/05 9:47 PM Page 113

XQuery is based on an earlier XML specification called the XML Path
Language (XPath). If you have worked with XML, you may have worked with
XPath 1.0. XQuery is based on XPath 2.0.

Among the XQuery syntax you can use to retrieve XML data are

� XPath expressions

� FLWOR expressions

A FLWOR expression has the following components:

� FOR

� LET

� WHERE

� ORDER BY

� RETURN

The LET keyword is not supported in SQL Server 2005.

Both XPath expressions and FLWOR expressions in SQL Server 2005 use the
query keyword. Broadly the syntax is as follows:

SELECT ColumnList
FROM ColumnName.query(‘XPathOrXQueryExpression’)

To demonstrate how to use XPath expressions, I retrieved some data from
the PurchaseOrders table from the earlier example. This is untyped XML
but the same syntax is used for typed XML.

To retrieve selected parts of the PurchaseOrder column, follow these steps:

1. Open SQL Server Management Studio and click the Database Engine
Query button to create a new query.

2. Ensure that you’re using the Chapter7 database by using this code:

USE Chapter7

3. Confirm that you can retrieve data from the PurchaseOrders table
by using the following code:

SELECT * FROM PurchaseOrders

4. Retrieve the PurchaseOrder element and its children using the fol-
lowing code:

SELECT PurchaseOrder.query(‘/PurchaseOrder’)
AS Result
FROM dbo.PurchaseOrders

114 Part III: Working with SQL Server

13_577557 ch07.qxp 12/20/05 9:47 PM Page 114

5. Retrieve the Date element and its content by using the following code:

SELECT PurchaseOrder.query(‘/PurchaseOrder/Date’)
AS Result
FROM dbo.PurchaseOrders

The Date element and its content displays in the results grid.

6. Retrieve the value contained in the Date element using the following
code:

SELECT
PurchaseOrder.query(‘/PurchaseOrder/Date/text(
)’)

AS Result
FROM dbo.PurchaseOrders

The text() function is an XPath function that retrieves the value con-
tained in an XML element.

7. To test the use of XPath expressions in combination with the WHERE
clause, add a new purchase order to the table by using the following
code:

INSERT INTO PurchaseOrders VALUES(2, ‘<?xml
version=”1.0”?>

<PurchaseOrder>
<Date>2006/01/01</Date>
<From>Some Other Fictional Company</From>
<Contact>John Jones</Contact>
<ContactPhone>234-567-8901</ContactPhone>
<LineItems>
<LineItem Quantity=”3”>Some article</LineItem>
<LineItem Quantity=”12”>Some other

article</LineItem>
<LineItem Quantity=”300”>Yet another kind of

article</LineItem>
</LineItems>
</PurchaseOrder>’)

8. Confirm that the row has been successfully added using the following
code:

SELECT * FROM PurchaseOrders

Notice that two rows now display in the results grid.

9. To retrieve the date of the purchase order that has a value of 2 for the
PurchaseID, use the following code:

SELECT PurchaseID,
PurchaseOrder.query(‘/PurchaseOrder/Date’)

AS Result
FROM dbo.PurchaseOrders
WHERE PurchaseID = 2

The result is similar to Figure 7-5.

115Chapter 7: Working with XML

13_577557 ch07.qxp 12/20/05 9:47 PM Page 115

Creating indexes for the xml datatype
When you query for XML data as I did in the preceding examples, every row
of the PurchaseOrders table is queried in turn. In production size data-
bases, this way is very inefficient and is likely to produce poor performance.
To improve performance, you can create one or more XML indexes.

There are two types of XML index:

� Primary: A primary XML index must exist before you can create a sec-
ondary XML index.

� Secondary: There are three types: PATH, VALUE, and PROPERTY.

A PATH secondary index can give improved performance when using XPath
expressions, such as those demonstrated in the preceding section. A VALUE
index can give improved performance when using value comparisons, for
example in XPath predicates.

Using the XML Data Modification
Language

XQuery, which I briefly introduce in the previous section, is a W3C standard
in development. Version 1.0 of XQuery doesn’t include any syntax to support
inserting, deleting, or updating of XML data. SQL Server 2005 contains a
proprietary extension to XQuery that provides this data modification func-
tionality. The XQuery Working Group at W3C are likely to adopt a syntax
very similar to the one that Microsoft has added to SQL Server 2005, but it
remains possible that there may be significant differences. As far as the initial

Figure 7-5:
Using the
WHERE

clause with
an XPath

expression.

116 Part III: Working with SQL Server

13_577557 ch07.qxp 12/20/05 9:47 PM Page 116

release of SQL Server 2005 is concerned, three new keywords allow you to
modify data:

� insert

� delete

� change value of

Each of the preceding keywords is case sensitive, so it’s important that you
get the case correct to avoid errors when running your code.

To insert XML, you use the insert keyword. You can specify where to insert
the new piece of XML with the following keywords:

� after: Inserts after the specified point in the existing XML structure.

� before: Inserts before the specified point in the existing XML structure.

� into: Inserts into a position specified by using the as first or as
last keywords.

In the following example, I create a variable that is of xml datatype, set its value
to a Contact element, and then modify it to add a ContactName element. To
run the example, follow these steps. I explain the code after the steps.

1. Open the SQL Server Management Studio and click the Database
Engine Query button to create a new database engine query.

2. Specify to use the Chapter7 database with the following code:

USE Chapter7

3. Enter the following code, highlight it all, and then press F5 to run it.

It is important that you run all the code in a single batch or you get
errors about undeclared variables.

DECLARE @insertXML xml
SET @insertXML = ‘<Contact>This contact was

inserted.</Contact>’
SELECT @insertXML

SET @insertXML.modify(‘
insert <ContactName>Jimmy Case</ContactName>

after
/Contact[1]
‘)
SELECT @insertXML

In the first line you declare an insertXML variable. The second line sets the
value of the insertXML variable. The SELECT statement in the third line of

117Chapter 7: Working with XML

13_577557 ch07.qxp 12/20/05 9:47 PM Page 117

code causes the value of the insertXML variable to display in the results
grid. In Figure 7-6, that value displays in the upper part of the results grid.

The next SET statement uses the modify keyword (it must be all lowercase)
to modify the value of the insertXML variable. A ContactName element is
added. Notice the after keyword that specifies that the new element is
added after the Contact element.

The final SELECT statement retrieves the value of the insertXML variable
after it has been modified.

Converting Data to and from XML
The earlier parts of this chapter describe using the xml datatype. The SQL
Server 2000 functionality to retrieve relational data using the FOR XML state-
ment has been extended in SQL Server 2005. Also, the OPENXML keyword
functionality is used to shred XML into relational data, if that fits with your
storage needs.

Figure 7-6:
The value

of the
@insert

XML
variable at
two points

in the
sample

code.

118 Part III: Working with SQL Server

13_577557 ch07.qxp 12/20/05 9:47 PM Page 118

Using the FOR XML statement
A T-SQL SELECT statement retrieves relational data as a rowset. The FOR
XML clause of a SELECT statement lets you optionally convert a retrieved
rowset as XML.

In SQL Server 2005, the FOR XML clause has the following options:

� AUTO: The AUTO option automatically creates an XML hierarchy that, for
the most part, is outside your control. You can use nested FOR XML
queries to take some control of the XML structure. The document ele-
ment is created automatically using the table name.

� EXPLICIT: The EXPLICIT option gives you enormous control over the
structure of returned XML, but at a cost of very complex syntax that’s
not easy to understand nor to modify or debug.

� PATH: The PATH option is new to SQL Server 2005 and gives the full con-
trol that the EXPLICIT option gives but with less complex syntax.

� RAW: The RAW option creates a single row element for each row returned
in the rowset. To create a hierarchy of XML elements, you can nest FOR
XML queries.

To retrieve some relational data from the AdventureWorks database and
display it by using the AUTO option, follow these steps:

1. Open SQL Server Management Studio and click the Database Engine
Query button to create a new database engine query.

2. Type the following code (also available as ForXML.sql in the code
download):

USE AdventureWorks

SELECT *
FROM Person.Contact
WHERE ContactID = 1
FOR XML AUTO

The first line of the code specifies to use the AdventureWorks data-
base. The SELECT statement retrieves all columns from the
Person.Contact table. The WHERE clause specifies to filter the data so
that only data where ContactID = 1 displays. The FOR XML AUTO
specifies to transform the filtered data into XML.

3. Click the data that returns and you see an appearance similar to
Figure 7-7.

119Chapter 7: Working with XML

13_577557 ch07.qxp 12/20/05 9:47 PM Page 119

Using the OPENXML keyword
The OPENXML keyword takes an XML document and shreds it into rowsets
that can be stored in relational columns in SQL Server.

The sp_xml_preparedocument stored procedure is used to parse the XML
document. Then you specify which parts of the XML document are to consti-
tute rows in SQL Server.

Figure 7-7:
Contact

data
retrieved

using FOR
XML AUTO.

120 Part III: Working with SQL Server

13_577557 ch07.qxp 12/20/05 9:47 PM Page 120

Chapter 8

Using the Common
Language Runtime

In This Chapter
� Introducing CLR integration

� Comparing CLR integration with other approaches

� Securing CLR

In SQL Server 2000 and earlier versions of SQL Server, you had one lan-
guage to use in the database layer: T-SQL (Transact-SQL). T-SQL is well

suited to tasks such as data storage and retrieval but it is not an all-purpose
programming language. Many programming tasks were difficult or impossible
to do with T-SQL.

If it was possible to do these tasks in T-SQL, often the code to carry out the
tasks was verbose and complex. Writing the necessary code was difficult and
maintaining the code was problematic. Another result of the limitations of
T-SQL for tasks other than data manipulation was that developers often
turned to extended stored procedures to carry out tasks that T-SQL was poorly
suited to undertake. Problems with extended stored procedures include lack
of security and reliability.

In SQL Server 2005, Microsoft has added support to allow you to use man-
aged code in the database layer. Managed code is code that runs in the .NET
Framework’s Common Language Runtime (CLR). The support for the Common
Language Runtime means that you, or developer colleagues, can use code cre-
ated in Visual Basic .NET or Visual C# .NET inside SQL Server 2005.

Languages such as Visual Basic.NET and C#.NET are much better suited than
T-SQL to many programming tasks, such as numeric manipulation, just to
name one. So, for example, if you have complex number crunching that you
want to do on some data, how could you best get the job done? In SQL Server
2000, you would probably have had to use an extended stored procedure. In
SQL Server 2005, you have a new, more reliable, and more secure option to
use the built-in Common Language Runtime capabilities.

14_577557 ch08.qxp 12/20/05 9:47 PM Page 121

SQL Server 2005 controls how the code runs in the CLR. If a CLR process is
using too much memory or CPU cycles, SQL Server can shut the process
down, which ensures that SQL Server continues to run efficiently.

Introducing CLR Integration
SQL Server 2005 hosts the .NET Framework 2.0 Common Language Runtime
(CLR). This is the same version of the .NET Framework that Visual Studio
2005 uses. You can write code in any .NET language including

� Visual Basic .NET

� Visual C# .NET

� Visual C++

Other .NET language can also produce the intermediate language (IL) that the
CLR supports. In Visual Studio 2005, it is the previously listed languages that
are supported in terms of creating .NET projects. Most developers of CLR
code that’s intended to run in SQL Server 2005 use one of these three lan-
guages and create the project in Visual Studio 2005.

You can possibly use a development environment other than Visual Studio
2005. However, Visual Studio 2005 provides such closely integrated support,
including a SQL Server Project template, that many developers make it their
first choice for creating managed code to run in SQL Server 2005.

You can use one of the .NET languages to create any of the following:

� Procedures

� Triggers

� Functions

� User-defined types

� User-defined aggregates

Visual Studio 2005 supports the following tasks for managed code intended
for use in SQL Server 2005:

� Development

� Deployment

� Debugging

I briefly discuss each of these aspects of CLR use with SQL Server 2005 in the
section that follows.

122 Part III: Working with SQL Server

14_577557 ch08.qxp 12/20/05 9:47 PM Page 122

Development
Visual Studio 2005 has a new project type — the SQL Server Project — for
development of CLR projects in SQL Server 2005. You use that to create a CLR
project.

The Visual Studio environment makes working with Visual C# code or Visual
Basic .NET code easy. The SQL Server project has many new screens.
Detailed steps of using the SQL Server project in the Visual Studio environ-
ment are beyond the scope of this chapter.

Visual Studio 2005 has support for many useful debugging features. You can
debug seamlessly across the language boundaries between T-SQL and Visual
Basic .NET or Visual C#. Equally, the type of connection to the SQL Server
isn’t important because both HTTP (HyperText Transfer Protocol, the protocol
used on the World Wide Web) and TDS (Tabular Data Stream, the protocol
used by SQL Server) are supported.

Manual coding and deployment
If you choose to create your .NET code manually and deploy it in the same
way, you need to follow these broad steps:

� When writing stored procedures, functions, and triggers, the .NET class
is specified as static if written in C# or specified as shared if written
in Visual Basic .NET.

� User-defined types and user-defined aggregates are written as full
classes.

� The developer compiles the code that he has written. This creates an
assembly.

� After creating the assembly, you use the CREATE ASSEMBLY statement
to upload the assembly into SQL Server.

� To create a T-SQL object corresponding to a procedure contained in an
assembly, you use the CREATE PROCEDURE statement. You use the
CREATE FUNCTION, CREATE TRIGGER, CREATE TYPE, and CREATE
AGGREGATE statements for the same purpose for functions, triggers,
types, and aggregates respectively.

� After creating a T-SQL object, then you can use the object in your T-SQL
code in the normal way.

To create a simple Visual C# example and deploy it manually to the local SQL
Server instance, follow these steps:

123Chapter 8: Using the Common Language Runtime

14_577557 ch08.qxp 12/20/05 9:47 PM Page 123

1. Open a text editor and type the following C# code:

using System;
using System.Data;
using Microsoft.SqlServer.Server;
using System.Data.SqlTypes;

public class Chapter8Proc
{
[Microsoft.SqlServer.Server.SqlProcedure]
public static void Chapter8()
{
SqlContext.Pipe.Send(“The Chapter 8 example

works!\n”);
}

}

Notice the use of the System, System.data, Microsoft.SQLServer.
Server, and System.Data.SqlTypes namespaces. You use these
namespaces often when writing .NET code for use in SQL Server 2005.

2. Navigate to the location of the C# compiler. It’s located in C:\Windows\
Microsoft.NET\Framework\v2.0.50727. At the command line, type

csc /target:library C:\location of CSharp
File\Chapter8.cs

A dll called chapter8.dll is created in the .NET Framework folder.
More often, you would add the .NET Framework folder to your PATH
environment variable.

3. Open SQL Server Management Studio and click the Database Engine
Query button to create a new database engine query. Create an
assembly in the desired SQL Server 2005 instance, using this code:

CREATE ASSEMBLY Chapter8
FROM

‘c:\windows\microsoft.net\framework\v2.0.50727
\chapter8.dll’

WITH PERMISSION_SET = SAFE

Notice the permission setting is SAFE, because the procedure does not
need to access anything external to SQL Server.

4. Create a procedure called Chapter8 by using this code:

CREATE PROCEDURE Chapter8
AS EXTERNAL NAME chapter8.Chapter8Proc.Chapter8

5. Try to execute the Chapter8 procedure by using the following code:

EXEC Chapter8 --Will fail since CLR is not enabled

124 Part III: Working with SQL Server

14_577557 ch08.qxp 12/20/05 9:47 PM Page 124

Unless you have explicitly turned on the CLR support, attempting to run
the stored procedure fails.

6. To enable the CLR, run the following code:

sp_configure ‘clr enabled’, 1
GO
RECONFIGURE
GO

7. Execute the Chapter8 user-defined procedure that you created earlier.

EXEC Chapter8 -- Now it will execute successfully

The result of execution is the display of a message in the Results pane,
as shown in Figure 8-1.

Comparison with Traditional Approaches
In this section, I look briefly at the potential benefits of CLR integration in
SQL Server 2005 and then briefly compare using CLR with each of three tradi-
tional approaches:

� T-SQL

� Extended stored procedures

� Middle tier techniques

Figure 8-1:
Successful

execution
of the

Chapter8
user-

defined
procedure.

125Chapter 8: Using the Common Language Runtime

14_577557 ch08.qxp 12/28/05 5:05 PM Page 125

Potential benefits of CLR integration
The integration of the CLR offers developers the following advantages:

� A richer programming model: You have access to programming con-
structs that are absent from T-SQL. In addition, you have access to the
classes of the .NET Framework and can use those classes as a basis for
your code.

� Improved security: Compared to the extended stored procedures you
might have used with SQL Server 2000 to carry out tasks not possible or
convenient with T-SQL, the CLR offers improved security.

� User-defined types and aggregates: You can use .NET languages to
create your own user-defined types and aggregates.

� Development in a familiar development environment: Many develop-
ers are already familiar with using one of the versions of Visual Studio
before Visual Studio 2005. For such developers, creating SQL Server
projects in Visual Studio 2005 is an easy step, building on what they
already know.

� Potentially improved performance: The .NET languages potentially
offer improved performance and scalability.

T-SQL lacks many constructs used in more general purpose programming lan-
guages. For example, it does not have arrays, for each loops, collections, or
classes. By contrast .NET languages, such as Visual Basic .NET and Visual C#
.NET, has support for the preceding constructs and also has object-oriented
capabilities such as inheritance, encapsulation, and polymorphism. When the
purpose of the code is not simply to manipulate data, the .NET languages and
the CLR can be a better choice.

The Base Class Library has many classes that support useful functionality
including numeric manipulation, string manipulation, file access, and cryp-
tography. If you need to carry out complex numeric manipulation of data, it is
likely that Visual Basic .NET or Visual C# .NET is a better choice than T-SQL.
Similarly, if you need to carry out complex text handling, the regular expres-
sion support in Visual Basic .NET and Visual C# .NET provides much more
control than, for example, the LIKE keyword in T-SQL.

SQL Server 2005 doesn’t support all the classes that are part of the .NET
Framework 2.0. The code is intended to run inside SQL Server 2005, so some
classes — for example, those for windowing — are inappropriate in that con-
text and are not supported.

126 Part III: Working with SQL Server

14_577557 ch08.qxp 12/20/05 9:47 PM Page 126

The Common Language Runtime provides a safer environment for code to run
in. For example, it prevents code reading memory that hasn’t been written and
helps avoid situations where code accesses unmanaged memory. In addition,
type safety in the CLR ensures that types are manipulated only in appropriate
ways. Taken together, these features of the CLR remove many causes of errors.

For larger projects, the ability to organize code by using classes and name-
spaces allows the developer to structure the code in a way that is more easily
understood. Such improved code structure allows you to easily create code
and also more easily maintain the code.

CLR and T-SQL comparison
T-SQL has two broad components: a Data Definition Language (DDL) and a
Data Modification Language (DML). The DML has set-based constructs and
procedural constructs. Set-based constructs include the SELECT and INSERT
statements. Procedural constructs include stored procedures and triggers.

When the task you need to carry out is primarily or only a data manipulation
task, then T-SQL is almost always the way to go. It is designed for data manip-
ulation, whereas languages such as Visual Basic .NET and Visual C# are not.
This means that the set-based processing of T-SQL give better performance.

The .NET languages have data structures, such as lists and arrays, which
T-SQL lacks. In addition, the .NET languages are well suited to numerical com-
putation. When complex calculations are required, the .NET languages can
likely do what’s needed even if it is beyond the capabilities of T-SQL.

The regular expression support in the .NET languages provides the ability to
control the values in selected columns in ways that T-SQL cannot. User-defined
datatypes, which use .NET languages, potentially provide tight control over
desired values.

The .NET datatypes and the SQL Server datatypes are not the same. When
running CLR code and T-SQL code together, take care to understand any dif-
ferences between the two kinds of datatypes.

Because of similarities in using .NET languages to access data with the client
layer and middle tier, developers can leverage their understanding of
ADO.NET. However, code can be more verbose than when using T-SQL and
using the right tool (often T-SQL) to access data is important, not least for
reasons of performance.

127Chapter 8: Using the Common Language Runtime

14_577557 ch08.qxp 12/20/05 9:47 PM Page 127

In the situation in which data access is forward only, read only, the .NET lan-
guages, which use SQLDataReader, may be faster than using a T-SQL cursor.
However, set-based operations may often be faster still.

CLR and extended stored
procedure comparison
In SQL Server 2000, if you needed to write code that T-SQL couldn’t express,
you had to write an extended stored procedure.

Using the CLR provides better control of security for administrators than was
available with extended stored procedures. The CLR security permission sets
of SAFE, EXTERNAL_ACCESS, and UNSAFE provide a consistent way for admin-
istrators to assess what a .NET language stored procedure is allowed to do.

Using .NET languages also provides a better degree of protection against
stored procedures corrupting memory that belongs to SQL Server. Extended
stored procedures could manipulate SQL Server’s memory space without
SQL Server having control over execution of the extended stored procedure.
By contrast, managed code processes can be shut down by SQL Server if
their execution uses too much memory or too many CPU cycles.

Data access to the local SQL Server instance is easier and more efficient than
the loop-back mechanism used with extended stored procedures.

If you want to use the datatypes that are new in SQL Server 2005 — xml,
varchar(max), nvarchar(max), and varbinary(max) in an extended
stored procedure — you must use a .NET language. Extended stored proce-
dures do not support these new datatypes.

When using managed code, SQL Server can monitor the execution of processes.
Any process that runs for an unacceptably long time can be terminated to allow
other SQL Server processes to run unhindered. SQL Server doesn’t have compa-
rable monitoring capabilities for extended stored procedures, so it can’t auto-
matically correct any runaway extended stored procedure.

CLR and middle tier comparison
The introduction of CLR support inside the database management system
in SQL Server 2005 gives developers an additional, but possibly controver-
sial, choice about where to run code written in .NET languages. In principle,

128 Part III: Working with SQL Server

14_577557 ch08.qxp 12/20/05 9:47 PM Page 128

writing .NET code in SQL Server rather than on the middle tier reduces net-
work traffic. The downside is that moving processing from the middle tier to
the database tier uses valuable CPU cycles that may be better used by SQL
Server for other purposes.

CLR Code Access Security
Quite naturally, many database administrators are concerned about the secu-
rity implications of allowing CLR-based code to run inside SQL Server 2005.

Managed code (code that runs in the CLR) uses Code Access Security to con-
trol what the code is allowed to do.

Managed code can run with the following settings:

� Safe: Only allows computation and local data access.

� External access: Same as for SAFE, plus access to files, environment
variables, the registry, and the network.

� Unsafe: Unrestricted access to the environment in which SQL Server is
running. In particular, code designated UNSAFE can call unmanaged code.

129Chapter 8: Using the Common Language Runtime

14_577557 ch08.qxp 12/20/05 9:47 PM Page 129

130 Part III: Working with SQL Server

14_577557 ch08.qxp 12/20/05 9:47 PM Page 130

Chapter 9

Using Stored Procedures
In This Chapter
� Discovering stored procedures

� Creating a stored procedure

� Calling a stored procedure

� Creating a CLR stored procedure

In this chapter, I introduce you to stored procedures, what they are, and
how you can use them in SQL Server 2005.

Much of the system stored procedure functionality continues unchanged
from previous versions of SQL Server but, when planning new code, you do
need to read the SQL Server Books Online because some system stored pro-
cedures have been deprecated and marked for removal in a future version of
SQL Server.

You can create user-defined stored procedures in SQL Server 2005 by using T-
SQL or with the .NET languages and the Common Language Runtime (CLR).

What a Stored Procedure Is
A stored procedure is a module of code that allows you to reuse a desired
piece of functionality and call that functionality by name. Another way to
look at a stored procedure is to view it as a routine that cannot be used in a
scalar expression. This is a crucial way in which a stored procedure differs
from a function (which you can use in a scalar expression).

A stored procedure is a database object in SQL Server 2005. You can assign
permissions to individual stored procedures to control who can execute them.

Optionally, a stored procedure may take one or more parameters. I show you
later in this chapter how to create and use stored procedures with and with-
out parameters.

15_577557 ch09.qxp 12/20/05 9:48 PM Page 131

A user-defined stored procedure provides a way to store code, which you can
call from applications that you or developer colleagues create. Such stored
procedures offer security advantages. Text entered in, for example a Web
page, isn’t executed directly but is passed as a parameter to a stored proce-
dure. This approach can prevent SQL injection attacks.

Types of stored procedure
When using SQL Server 2005, you have several types of stored procedure
available:

� T-SQL user-defined stored procedures: A T-SQL stored procedure con-
sists of several T-SQL statements. It can, optionally, take one or more
input parameters and output one or more output parameters.

� CLR user-defined stored procedures: A CLR stored procedure is a refer-
ence to a method written by using one of the .NET Framework lan-
guages. If you are unfamiliar with CLR in SQL Server 2005, turn to
Chapter 8. Like a T-SQL stored procedure, it can optionally take one or
more input parameters and/or output one or more output parameters.

� Extended stored procedures: An extended stored procedure is proce-
dural code often written in C, which runs in the SQL Server memory
space. These are now deprecated. However, existing extended stored
procedures are fully supported in SQL Server 2005. You can still create
extended stored procedures in SQL Server 2005 but Microsoft will drop
them in a future release of SQL Server. I recommend using CLR stored
procedures rather than creating new extended stored procedures. In
addition, if you have any extended stored procedures in existing applica-
tions, you should replace them with CLR stored procedures when time
and resources allow.

In addition to this list of user-defined stored procedures, SQL Server 2005
provides a large number of system stored procedures that I describe later in
this chapter.

What a stored procedure does
A stored procedure can, in principle, do anything that you can do using
either T-SQL or a .NET language. For example, you can use a stored proce-
dure to insert or update data in a table or you can use it to return data from
one or more tables to a client application.

132 Part III: Working with SQL Server

15_577557 ch09.qxp 12/20/05 9:48 PM Page 132

In an online scenario, a user may specify a locality where they want to find a
company store. You can then pass the locality they choose to a stored proce-
dure as an input parameter.

Reasons to use a stored procedure
System stored procedures, which I describe in the next section, provide code
to support many SQL Server administrative tasks. Because these system
stored procedures are intended to support efficient execution of common
tasks, it usually makes good sense to make use of them.

Another important reason for using stored procedures is to reuse code for
tasks that you can use in several ways in a SQL Server database. If you later
make changes in the code, you can potentially make those changes in a single
place — inside the stored procedure. This helps to make maintenance of the
functionality in response to changing business circumstances an easier task.

Another advantage of stored procedures is that you can make changes in the
database layer in multi-tier applications without changing the client applica-
tion. You can change the code inside a user-defined stored procedure but, so
long as you don’t alter the parameters it takes, you can leave the client appli-
cation unchanged.

If you use a stored procedure that uses a parameter, it provides a level of
protection against SQL injection attacks in a Web application. A SQL injec-
tion attack uses T-SQL code entered by a user to access unauthorized infor-
mation. This can make SQL Server more vulnerable to future attack, as a
hacker gathers information about the structures used in SQL Server. By
using a stored procedure with a parameter, any information entered by a
user doesn’t execute. If it is not appropriately structured for use as the
parameter, an ill-intentioned hacker is unlikely find out the structure of
your SQL Server installation.

A SQL injection attack can occur when you create an application that exe-
cutes dynamic T-SQL. Suppose you have a publisher that makes its catalog
available online. A form might include a text box where a user can insert an
author name. The application code might include code like this:

var sql = “SELECT * FROM Titles WHERE Author = ‘“ +
SelectedAuthor + “‘“;

When the user enters a value of Andrew Watt, the T-SQL code returns titles
for that author. However, if a malicious user enters the following in the text
box, the Titles table is dropped.

133Chapter 9: Using Stored Procedures

15_577557 ch09.qxp 12/20/05 9:48 PM Page 133

Andrew Watt’; DROP TABLE Titles --

This happens because the T-SQL code to be executed becomes

SELECT * FROM Titles WHERE Author = ‘Andrew Watt’;
DROP TABLE Titles --

The first line executes as desired by the application developer. The DROP
TABLE statement deletes the Titles table, which wasn’t the expected effect
of accepting user input.

On the other hand, if you created a user-defined stored procedure that
accepts an Author parameter, the attempt to insert malicious code fails and
an empty rowset is returned because there is no author whose name is
Andrew Watt’; DROP TABLE Titles --.

System stored procedures
SQL Server 2005 provides a huge range of stored procedures, ready made for
your use. System stored procedures are stored in the Resource database. You
can use these system stored procedures for a broad range of administrative
purposes. System stored procedures can help you with several types of
tasks, which Table 9-1 summarizes.

Table 9-1 Categories of System Stored Procedures
Category Purpose

Active Directory These stored procedures are used to register SQL
Server instances and databases in Active Directory.

Catalog These relate to ODBC functionality.

Cursor These allow you to retrieve information relating to
cursor variable functionality.

Database Engine These are used in the maintenance of an instance of
SQL Server.

Database Mail These are used to support the new Database Mail func-
tionality in SQL Server 2005.

Database These support administrative tasks relate to data-
Maintenance base maintenance plans. These stored procedures
Plan have been replaced in SQL Server 2005 by maintenance

plans that do not use this group of stored procedures.

134 Part III: Working with SQL Server

15_577557 ch09.qxp 12/20/05 9:48 PM Page 134

Category Purpose

Distributed Queries These stored procedures are used to implement and
manage distributed queries.

Full-text Search These stored procedures allow you to create or remove
full-text catalogs and to control indexing operations.

Log Shipping These stored procedures allow you to configure,
modify, and monitor log shipping configurations.

Notification Services These stored procedures allow you to administer SQL
Server 2005 Notification Services. For example, you can
administer, debug, and troubleshoot Notification
Services by using this group of stored procedures.

OLE Automation These stored procedures allow you to use OLE automa-
tion objects from inside a T-SQL batch.

Replication These stored procedures allow you to manage replica-
tion. You can use them for one-time tasks or in batch
files and scripts.

Security These stored procedures provide a wide range of tech-
niques to manage SQL Server security. Some of these
are deprecated and will be removed in a future version
of SQL Server.

SQL Mail These are used to support SQL Mail functionality. This
group of stored procedures has been deprecated in
SQL Server 2005 and will be removed in a future version
of SQL Server.

SQL Server Agent SQL Server Agent uses this large group of stored pro-
cedures to manage scheduled and event-driven
subscriptions.

SQL Server Profile SQL Server Profiler uses this group of stored
procedures.

Web Task These stored procedures are used to create Web
pages. They are not enabled by default. This group of
stored procedures has been deprecated. Use Reporting
Services for new development work.

XML These stored procedures support the management of in
memory representations of XML documents based on
the MSXML parser.

General Extended These stored procedures provide an interface from an
instance of SQL Server 2005 to external programs used
for maintenance. These stored procedures are turned
off by default.

135Chapter 9: Using Stored Procedures

15_577557 ch09.qxp 12/20/05 9:48 PM Page 135

An alternative approach to replication stored procedures is to use the
Replication Management Objects that are new to SQL Server 2005.
Replication Management Objects are beyond the scope of this book.

To access some system stored procedures you need to use the sp_configure
system stored procedure to enable advanced options. For example, to enable
the Web Assistant that is required for the Web Task system stored procedures,
use the following T-SQL code (which itself makes use of the sp_configure
stored procedure):

sp_configure ‘show advanced options’, 1;
GO
RECONFIGURE;
GO
sp_configure ‘Web Assistant Procedures’, 1;
GO
RECONFIGURE
GO

When using XML system stored procedures, be aware that the MSXML parser
uses one eighth of the memory in the SQL Server cache. To free up memory
used by an XML document, use the sp_xml_removedocument stored
procedure.

To use extended stored procedures you need to turn the relevant module on.
To do that, use this code:

sp_configure ‘show advanced options’, 1
RECONFIGURE
GO
sp_configure ‘xp_cmdshell’, 1;
RECONFIGURE
GO

The preceding code enables you to use the xp_cmdshell system stored pro-
cedure. To run the xp_cmdshell extended stored procedure to show the
files in the root directory on drive C use the following code:

EXEC master..xp_cmdshell ‘dir c:*.*’

Figure 9-1 shows the result from running the preceding code.

You can use many command-line commands as the argument to the xp_
cmdshell extended stored procedure. This allows you to retrieve informa-
tion from the operating system or manipulate aspects of the environment in
which SQL Server operates.

136 Part III: Working with SQL Server

15_577557 ch09.qxp 12/20/05 9:48 PM Page 136

Individual system stored procedures each have an associated permission
level associated with them. A full description of the permission levels needed
to use the large number of system stored procedures that SQL Server 2005
supports is beyond the scope of this chapter. The SQL Server 2005 Books
Online describes the individual system stored procedures and the permis-
sion levels you need to use each one. Assuming you chose to install SQL
Server 2005 Books Online, choose Start➪All Programs➪Microsoft SQL Server
2005➪Documentation and Tutorials➪SQL Server Books Online.

Creating a Stored Procedure
To create a user-defined stored procedure, you use the CREATE PROCEDURE
statement. You can create a stored procedure only in the current database.

In a T-SQL user-defined stored procedure, you cannot use some T-SQL state-
ments inside the CREATE PROCEDURE statement. These are listed here:

� CREATE DEFAULT

� CREATE PROCEDURE

� CREATE RULE

� CREATE TRIGGER

� CREATE VIEW

Figure 9-1:
Using the
xp_cmd
shell
stored

procedure
to list files.

137Chapter 9: Using Stored Procedures

15_577557 ch09.qxp 12/20/05 9:48 PM Page 137

To create a stored procedure, you need certain permissions. You need the
CREATE PROCEDURE permission in the database. You also need the ALTER
SCHEMA permission in that database, because stored procedures are schema-
scoped objects.

To create a CLR stored procedure, you need to own the assembly referenced
or have the REFERENCES permission on that assembly.

Creating a procedure without parameters
In describing how to create a stored procedure, I assume that you have the
permissions specified in the preceding section. If you are unfamiliar with how
to grant permissions, see Chapter 11 on security in SQL Server 2005.

This example creates a stored procedure that retrieves name and e-mail
information about contacts in the Person.Contact table of the
AdventureWorks database. To do that, use this T-SQL code:

USE AdventureWorks
GO

CREATE PROCEDURE Person.sp_getContactNames
AS
SELECT LastName, FirstName, EmailAddress
FROM Person.Contact
GO

The first line of the CREATE PROCEDURE statement specifies the name of the
stored procedure you create. Notice that the name of the stored procedure
includes a schema name, Person. Because the stored procedure is in a
schema other than the dbo schema, you run no risk of naming problems
occurring if Microsoft adds a similarly named system stored procedure
(which goes in the dbo schema) in a future version of SQL Server.

To run the stored procedure, run this code:

EXEC Person.sp_getContactNames

Figure 9-2 shows the result from running the stored procedure.

If you want to return the AdventureWorks database to its original state, you
can drop the stored procedure by using the following code:

DROP PROCEDURE Person.sp_getContactNames

138 Part III: Working with SQL Server

15_577557 ch09.qxp 12/20/05 9:48 PM Page 138

Creating a stored procedure
with a parameter
In this section, I show you how to create a stored procedure that takes a single
parameter. The stored procedure makes the same selection as in the preced-
ing stored procedure except that it has a single parameter. Use this code:

USE AdventureWorks
GO
CREATE PROCEDURE Person.sp_getContactNames2
@lastName varchar(10)
AS
SELECT LastName, FirstName, EmailAddress
FROM Person.Contact
WHERE LastName = @lastName

Notice in the fourth line of the code, you specify a parameter @lastName
whose type is varchar(10). That parameter is used in the WHERE clause of
the SELECT statement.

To select contact details where the last name of the contact is Smith, use the
following code:

EXEC Person.sp_getContactNames2 ‘Smith’

Figure 9-3 shows the result of running the preceding code.

Figure 9-2:
The result of
running the
Person.
sp_get
Contact
Names
stored

procedure.

139Chapter 9: Using Stored Procedures

15_577557 ch09.qxp 12/20/05 9:48 PM Page 139

To remove the Person.sp_getContactNames2 stored procedure and return
the AdventureWorks database to its original state, use the following code:

DROP PROCEDURE Person.sp_getContactNames2

Naming stored procedures
Many of the system stored procedures provided with SQL Server 2005 uses a
prefix of sp_. You can create your own stored procedures using that prefix,
but Microsoft strongly recommends that you don’t. Microsoft may use the
name that you choose for a user-defined stored procedure in a future version
of SQL Server. This situation can cause unpredictable problems in your code.
If you create a user-defined stored procedure using the problematic prefix
(and it is either not schema-qualified or is in the dbo schema) and Microsoft
creates an identically named stored procedure, your code breaks.

You can avoid the risk of your code breaking two different ways. One way is
simply to avoid using the sp_ prefix. The second option is to use schema-
qualified names for the user-defined stored procedures that you create. Using
the schema name makes it clear that your user-defined stored procedure is
not a system stored procedure. Therefore any future system stored proce-
dure is in a different schema so the clash of names is avoided.

Figure 9-3:
Using a

parameter
when

executing a
stored

procedure.

140 Part III: Working with SQL Server

15_577557 ch09.qxp 12/20/05 9:48 PM Page 140

Calling a Stored Procedure
Calling a stored procedure is straightforward. Use the EXEC statement together
with the name of a system stored procedure or a user-defined stored proce-
dure. Because a user-defined stored procedure is associated with an individual
database, you must ensure that the correct database is the current database.

To execute a user-defined stored procedure called Person.sp_getContact
Names that is associated with the AdventureWorks database, use the fol-
lowing code:

USE AdventureWorks
GO
EXEC Person.sp_getContactNames

The preceding code works with whatever the current database is when you exe-
cute it. The USE statement specifies that the current database is Adventure
Works before executing the Person.sp_getContactNames stored procedure.

CLR Stored Procedures
The presence of the Common Language Runtime (CLR) in SQL Server is new
in SQL Server 2005. One of the uses for .NET language code is to create stored
procedures written in a .NET language.

To create a CLR stored procedure, you need to follow these broad steps:

� Create a static method of a class using your .NET language of choice.

� Using the relevant language compiler, compile the class into an assembly.

� Register the assembly in SQL Server 2005 using the CREATE ASSEMBLY
statement.

� When the assembly is registered, you can use the CREATE PROCEDURE
statement to create a stored procedure that runs the method you created.

141Chapter 9: Using Stored Procedures

15_577557 ch09.qxp 12/20/05 9:48 PM Page 141

142 Part III: Working with SQL Server

15_577557 ch09.qxp 12/20/05 9:48 PM Page 142

Chapter 10

Error Handling in T-SQL
In This Chapter
� Catching errors with T-SQL

� Discovering the TRY...CATCH construct

� Using error functions and @@Error

One of the new features available to you in SQL Server 2005 is the ability
to easily handle errors that occur in T-SQL code. In earlier versions of

SQL Server, T-SQL visibly lacked well-structured error handling comparable
to the approaches in languages such as Visual C++ or C#. The information
available about individual errors was fairly limited. As the complexity and
length of T-SQL code increased with time, the lack of easy-to-use error han-
dling was a significant deficiency in T-SQL that needed to be corrected.

Handling Errors with T-SQL
There are two broad approaches to working with errors in T-SQL. Using the
TRY...CATCH construct that I describe in the next section is something new
in SQL Server 2005. You can use the TRY...CATCH construct with error func-
tions, but you can also use it with the @@Error function that was also sup-
ported in SQL Server 2000. I talk more about error functions in the “Using
Error Functions” section, later in this chapter.

If you need to write code that runs on SQL Server 2005 and also on (for exam-
ple) SQL Server 2000, you need to use the @@Error function that provides
less information than the error functions introduced in SQL Server 2005. You
also cannot use the TRY...CATCH construct in code intended to run on SQL
Server 2000.

16_577557 ch10.qxp 12/20/05 10:07 PM Page 143

The TRY...CATCH Construct
The TRY...CATCH construct is the pivot of error handling in T-SQL code in SQL
Server 2005. The TRY...CATCH construct takes the following general form:

BEGIN TRY
-- T-SQL code goes here.
-- If an error is raised execution switches to the CATCH

block
END TRY
BEGIN CATCH
-- Other T-SQL code can go here which is executed
-- when there is an error in the code between BEGIN TRY
-- and END TRY
END CATCH

Inside the TRY block or inside the CATCH block you can have any T-SQL state-
ment or block of T-SQL statements that you want. You can nest TRY...CATCH
constructs and I show you how to do that later in the chapter in the “Using
nested TRY...CATCH constructs” section.

If no error occurs during execution of the T-SQL code between BEGIN TRY
and END TRY, then the code in the CATCH block doesn’t execute. After all the
code in the TRY block is done executing, control passes to the code that fol-
lows the END CATCH line.

Rules for the TRY...CATCH construct
To use the TRY...CATCH construct correctly, you must follow these rules:

� There must be no code between the END TRY line and the BEGIN
CATCH line. A syntax error occurs if you attempt to put any T-SQL code
between those lines.

� A TRY...CATCH construct cannot span multiple batches.

� A TRY...CATCH construct cannot span multiple blocks of T-SQL code.

Error message severity levels
In SQL Server, each error message has a severity level associated with it. The
TRY...CATCH construct in SQL Server 2005 catches errors where the sever-
ity level is greater than 10. However, the TRY...CATCH construct doesn’t

144 Part III: Working with SQL Server

16_577557 ch10.qxp 12/20/05 10:07 PM Page 144

catch errors with severity levels that exceed 10 if the error results in a loss of
the database connection.

You can find a full list of error severity levels in SQL Server Books Online in
the Database Engine Error Severity topic.

Using Error Functions
Several error functions in SQL Server 2005 provide information that you can
use inside the CATCH statement.

The error functions available in T-SQL in SQL Server 2005 are the following:

� ERROR_LINE: Gives the line at which the error appears to have occurred.

The line given by the ERROR_LINE function may not be the line that
actually contains the error. You may need to examine the control flow —
for example, of nested script objects — to see exactly where the error
occurs.

� ERROR_MESSAGE: Gives a brief message indicating the nature of the error.

Many SQL Server error messages include parameters that provide
information about the specific context in which an error arose. The
ERROR_MESSAGE function substitutes values relevant to the context for
those parameters and returns the substituted message. You can access
error messages from the text column of the sys.messages catalog.

� ERROR_NUMBER: Gives the number of the error. If the error occurs in a
stored procedure or trigger, it returns the line number in the routine.

The ERROR_NUMBER function returns the number of an error when it is
executed inside the CATCH block. If you attempt to use the ERROR_NUMBER
function outside a CATCH block, it returns NULL.

� ERROR_PROCEDURE: Returns NULL if the error doesn’t occur in a stored
procedure. When the error occurs in a stored procedure or trigger, this
function returns the name of the stored procedure or trigger.

� ERROR_SEVERITY: This returns the severity of a SQL Server error.

� ERROR_STATE: Returns an int value. Returns NULL if called outside a
CATCH block. It provides information complementary to ERROR_NUMBER.

The ERROR_STATE function provides additional information to help
you understand the information returned by the ERROR_NUMBER
function. Some error numbers can have different values returned by
ERROR_STATE in different situations. When trying to understand and
process errors, you may need to know both pieces of information —
for example, to effectively use the Microsoft knowledge base.

145Chapter 10: Error Handling in T-SQL

16_577557 ch10.qxp 12/20/05 10:07 PM Page 145

The sys.messages catalog contains a complete list of error numbers and
the corresponding messages. To view all errors and their corresponding mes-
sages, run this code:

SELECT * FROM sys.messages
ORDER BY message_id

Figure 10-1 shows the results grid scrolled to include error 8134.

Notice that the severity column indicates the severity of the error. The
is_event_logged column shows whether or not the error is currently
being logged. A value of 0 (zero) indicates that a particular error is not cur-
rently being logged.

To find the error number and severity for errors relating to a particular topic
when you don’t know the error number but do know part of the message,
simply use code like the following:

SELECT * FROM sys.messages
WHERE text LIKE ‘%zero%’

This example finds all error messages that contain the word zero, including
error 8134.

Figure 10-1:
Displaying
errors and

corre-
sponding

messages.

146 Part III: Working with SQL Server

16_577557 ch10.qxp 12/20/05 10:07 PM Page 146

The LIKE keyword in the WHERE clause allows you to use the % wildcard
character. The % wildcard character matches zero or more characters. By
using it at the beginning and end of the word you’re looking for, you find any
occurrence of the word zero in the text column.

If you want to find information on errors that the TRY...CATCH construct
can trap, use the following code.

SELECT * FROM sys.messages
WHERE severity > 10 AND severity < 20
ORDER BY severity

The TRY...CATCH construct allows you to trap errors where the severity
level is greater than 10, except where the database connection is disrupted.
Errors with a severity level of 10 or less provide warnings that are for infor-
mation purposes only. Some errors of severity level 20 and above may also be
processed using the CATCH block, if the database connection is not disrupted
by the error.

Using error codes
The following code demonstrates how you can use the error functions in SQL
Server 2005 to display information about an error that occurs in the TRY
block. It uses an attempt to divide by zero to raise an error:

USE master
GO

BEGIN TRY
SELECT 1/0 -- Produces a divide by zero error.
END TRY
BEGIN CATCH
SELECT
ERROR_LINE() AS ErrorLine,
ERROR_MESSAGE() AS ErrorMessage,
ERROR_NUMBER() AS ErrorNumber,
ERROR_PROCEDURE() AS ErrorProcedure,
ERROR_SEVERITY() AS ErrorSeverity,
ERROR_STATE() AS ErrorState
END CATCH

Figure 10-2 shows the results of running the code.

147Chapter 10: Error Handling in T-SQL

16_577557 ch10.qxp 12/20/05 10:07 PM Page 147

The first result displays nothing because the attempt to divide by zero
returns nothing. In the second grid, the result returned by each error func-
tion displays in its own named column.

If you want to store the values returned by the error functions, you must cap-
ture them in variables. You can then INSERT the values of the variables in an
audit table.

RAISERROR
The RAISERROR function can access a user-defined message that is stored in
sys.messages or you can code an error dynamically by using RAISERROR.

When writing code with RAISERROR, the code takes the following form:

RAISERRROR(50100, 12, 1, ‘Text of message goes here.’)

Use the following code to add a new user-defined error to sys.messages,
and then to raise an error with that number. In the next section, I look at
using RAISERROR in nested TRY...CATCH constructs. To add a new message
to sys.messages, use this code:

sp_addmessage @msgnum = 50100,
@severity = 12,
@msgtext = N’This is a test error.’

Figure 10-2:
Displaying
the results

of the error
functions.

148 Part III: Working with SQL Server

16_577557 ch10.qxp 12/20/05 10:07 PM Page 148

The sp_addmessage system stored procedure is used to add a new message
to sys.messages. In this example, it takes three parameters that consist of
the number, the severity, and the message text of the new message.

You can test that the new message has been added successfully by using
this code:

SELECT * FROM sys.messages
WHERE message_id = 50100

You can then use RAISERROR inside a TRY...CATCH construct as follows:

BEGIN TRY
RAISERROR(50100, 12, 1, ‘’)
END TRY
BEGIN CATCH
SELECT ERROR_MESSAGE() AS ErrorMessage
END CATCH

Figure 10-3 shows the result of running the preceding code.

You remove the message from sys.messages by using the following code:

sp_dropmessage @msgnum = 50100

Figure 10-3:
Using

RAISERROR
to raise

an error.

149Chapter 10: Error Handling in T-SQL

16_577557 ch10.qxp 12/20/05 10:07 PM Page 149

Using nested TRY...CATCH constructs
In some situations, you may want to nest TRY...CATCH constructs. The
nested TRY...CATCH construct is nested inside the CATCH block of the outer
TRY...CATCH construct.

The following example uses RAISERROR to demonstrate how to code nested
TRY...CATCH constructs.

First add two new messages to the sys.messages catalog by using the fol-
lowing code. Notice that the message describes which construct it occurs in.

sp_addmessage
@msgnum = 50200,
@severity = 12,
@msgtext = N’This is in the outer TRY block.’

sp_addmessage
@msgnum = 50300,
@severity = 14,
@msgtext = N’This is in the **INNER** TRY block.’

Now that you have added two user-defined messages, you can use these to
see how errors in a nested TRY...CATCH construct are handled. The follow-
ing code shows a nested TRY...CATCH construct with RAISERRROR used to
raise an error in each of the constructs:

BEGIN TRY
RAISERROR(50200,12,1,’’)
END TRY
BEGIN CATCH
SELECT ERROR_NUMBER() AS OuterErrorNumber,
ERROR_MESSAGE() AS OuterErrorMessage
BEGIN TRY
RAISERROR(50300, 14, 1, ‘’)
END TRY
BEGIN CATCH
SELECT ERROR_NUMBER() AS InnerErrorNumber,
ERROR_MESSAGE() AS InnerErrorMessage

END CATCH -- Nested CATCH
END CATCH -- Outer CATCH

Figure 10-4 shows the result of running the code.

150 Part III: Working with SQL Server

16_577557 ch10.qxp 12/20/05 10:07 PM Page 150

@@Error
The @@Error function was the main way to get information about errors in
SQL Server 2000 and earlier versions of SQL Server. If you need to write T-SQL
code to run both on SQL Server 2005 and earlier versions, you need to under-
stand how to use the @@Error function to capture information about errors.

The @@Error differs in several respects from the error functions described in
earlier sections. The @@Error function returns the error number only in the
next T-SQL statement after the occurrence of the error or when @@Error is
used in the first statement in a CATCH block. If the preceding T-SQL statement
executes correctly, @@ERROR returns zero.

The following code demonstrates that @@Error only contains a meaningful
value in the first line of a CATCH block:

BEGIN TRY
SELECT 1/0;
PRINT @@ERROR;
END TRY
BEGIN CATCH
SELECT @@ERROR
SELECT @@ERROR
IF @@ERROR = 8134
SELECT ‘Divide by Zero Error found.’
ELSE
SELECT ‘No divide by Zero Error found.’
END CATCH

Figure 10-4:
Error

information
returned
from the

outer and
inner

TRY...
CATCH

constructs.

151Chapter 10: Error Handling in T-SQL

16_577557 ch10.qxp 12/20/05 10:07 PM Page 151

Notice that the first two lines of the CATCH block are the same. Figure 10-5
shows the appearance after running the code in SQL Server Management
Studio.

The first result in the results grid is from the attempted division by zero,
which fails; therefore, no value is displayed — in Figure 10-5, I had scrolled
that blank result out of sight. The second result displays the value 8134,
which indicates a divide by zero error and is produced by the first SELECT
@@ERROR in the CATCH block. The third result displays the value 0, demon-
strating that @@Error (in the second line of the CATCH block) is reset after
each T-SQL statement executes. However when testing if @@Error = 8134
in the IF statement, you can see that @@Error no longer contains the value
8134 (in fact it is now 0) because the text “No divide by Zero Error found” is
displayed.

If you comment out the two SELECT @@ERROR lines, then the first line of the
CATCH block is IF @@ERROR=8134, which is now true (because this is the
first line in the CATCH block) and the Divide by Zero Error found.
error message displays in the results grid.

If, instead of using @@ERROR, you use the ERROR_NUMBER function,
ERROR_NUMBER returns the same value whenever you use the function, as
when you run the following code:

BEGIN TRY
SELECT 1/0;
PRINT @@ERROR;
END TRY
BEGIN CATCH
SELECT ERROR_NUMBER() AS ErrorNumber

Figure 10-5:
Using the
@@Error

function.

152 Part III: Working with SQL Server

16_577557 ch10.qxp 12/20/05 10:07 PM Page 152

IF ERROR_NUMBER() = 8134
SELECT ‘Divide by Zero Error found.’
ELSE
SELECT ‘No divide by Zero Error found.’
END CATCH

Figure 10-6 shows the result grid.

As you can see in Figure 10-6, the number returned in the second result is
8134. However, the test in the IF statement is TRUE (because ERROR_NUMBER
still returns 8134) so the Divide by Zero Error found. error message
displays.

If you need to use @@Error to give compatibility with earlier versions of SQL
Server, then assign the value of @@Error to a variable. You can then use the
value of that variable in a way similar to the way you can use ERROR_NUMBER.

Figure 10-6:
Using the
ERROR_
NUMBER
function.

153Chapter 10: Error Handling in T-SQL

16_577557 ch10.qxp 12/20/05 10:07 PM Page 153

154 Part III: Working with SQL Server

16_577557 ch10.qxp 12/20/05 10:07 PM Page 154

Part IV
Protecting
Your Data

17_577557 pt04.qxp 12/20/05 9:49 PM Page 155

In this part . . .

I introduce you to techniques that will help you secure
your data and prevent data loss.

I show you how to use transactions and how to create and
use database triggers.

17_577557 pt04.qxp 12/20/05 9:49 PM Page 156

Chapter 11

Securing Your Data
In This Chapter
� Discovering the new security model

� Carrying out common security tasks

� Using Common Language Runtime security

O ne of the key considerations when you use any serious database man-
agement system is to control who has access to what data. For exam-

ple, you don’t want your competitors to see your financial data or to have
access to information on a product that you haven’t announced yet and you
don’t want your employees to see other employees’ salary information or
similar sensitive information. On the other hand, you must make it as easy
and convenient as possible for your users to get access to the data that they
legitimately should have access to in order to get their work done, place
orders with your company, and so on.

The SQL Server 2005 security model attempts to enable you to both assure
security and make SQL Server easy to use for authorized users and customers.
In attempting to achieve that, SQL Server 2005 has several significant differ-
ences in its security model compared to the SQL Server 2000 security model.

The various parts of the SQL Server 2005 security model are interdependent.
I suggest that you read quickly through this chapter initially so that you gain
an overview of SQL Server 2005 security. Then read the chapter again care-
fully to understand the detail in context.

In the space available in this chapter, I can’t cover every detail of every sce-
nario in which you might use SQL Server 2005. When designing security in
any particular situation, make sure that you consider all likely threats and
then, with some careful thinking, try to identify less obvious threats too.
Time spent in considering the risks to your data is time well spent. Microsoft
tries to provide you with the tools to keep your data secure. Take time to
understand those security tools and think through how they apply to your
usage scenario.

18_577557 ch11.qxp 12/20/05 9:49 PM Page 157

Introducing The New Security Model
Microsoft, after some embarrassing security problems with SQL Server 2000,
has put great emphasis on improving security in SQL Server 2005. The broad
aims are to make SQL Server 2005

� Secure by design: During the development of SQL Server 2005,
Microsoft carried out a detailed threat analysis of SQL Server. All the
possible threats that Microsoft could identify or imagine were consid-
ered. This analysis was, in part, stimulated by security problems that
occurred with early versions of SQL Server 2000. Any potential security
weaknesses in SQL Server 2005 that identified potential threats were
addressed by improvements in the design of the security model and the
design changes were rigorously tested.

� Secure by default: The default settings for a SQL Server 2005 installation
are to have many features turned off. By turning off features, this reduces
the attack surface of a default SQL Server 2005 installation, leaving fewer
places for hackers to attack. Having features turned off by default avoids
the situation where a new feature is active and potentially vulnerable to
hackers but you, as the database administrator, don’t know that the fea-
ture is there and therefore you don’t realize that it may contain a poten-
tial security risk and take appropriate precautions. If you want one of
those features to be turned on, you have to turn it on yourself. You are
expected to take time to understand the feature and its security implica-
tions before turning it on.

From a security point of view, turning features off by default is a good
thing. From the point of view of the database administrator, you need to
be aware that you need to explicitly turn on many features before you
can use them. Increased security is achieved at a cost in convenience.

The Surface Area Configuration tool provides a single place where you
can configure the surface area of a SQL Server 2005 install. To open the
Surface Area Configuration tool, choose Start➪All Programs➪Microsoft
SQL Server 2005➪Configuration Tools➪SQL Server Surface Area
Configuration.

� Secure in deployment: The Principle of Least Privileges is applied in SQL
Server 2005 deployments. This means that you should use the account
or login that has just enough security privileges to get the job done but
avoid using accounts or logins that have unnecessary privileges. This
means that if a hacker gets unauthorized access to the system (which
you obviously take steps to avoid), he, generally, has access only to an
account or login that has limited permissions. The result is that the
hacker can do less damage or has to work much harder to cause serious
damage than if he had gained access to an account with higher permis-
sions. The fewer unnecessary permissions you grant a user, the less the
damage that can result if a hacker impersonates a user.

158 Part IV: Protecting Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 158

The most dangerous accounts for a hacker to attack are the sa account and
other administrator accounts.

Security terminology
When you consider SQL Server 2005 security, it helps to think in terms of
securables — things that can be secured, such as servers, databases, tables,
and assemblies — and principals (for example, logins and users) to whom
permissions on securables can be granted.

Both principals and securables belong to the hierarchies, which I describe
next.

Principals hierarchy
You can view security, as it applies to SQL Server 2005, as a three-level hierar-
chy relating to principals:

Level Principals

Windows Groups

Domain logins

Local logins

SQL Server instance Fixed server roles

Logins

Database Fixed database roles

Users

Application roles

Groups

I discuss several of these principals in more detail later in the chapter.

Securables hierarchy
The Windows level has no SQL Server 2005 securables, but the schema level
does have securables so again it has a three-level hierarchy:

159Chapter 11: Securing Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 159

SQL Server Securables

SQL Server login Endpoint Database

Database Securables

Application role Assembly

Asymmetric key Certificate

Contract Full-text catalog

Message type Remote Service Binding

Role Route

Schema Service

Symmetric Key User

Schema Securables

Function Table

Procedure Type

Queue View

Synonym XML Schema Collection

The T-SQL keywords GRANT, DENY and REVOKE handles the authorization for
these securables. I demonstrate use of these later in the chapter.

New security features
SQL Server 2005 introduces the following new or changed security features. I
show several of these in use later in this chapter.

� Logins: Logins are (SQL Server) instance-level principals.

� Users: Users are database-level principals.

� Separation of users and schemas: Each schema has a user who is the
owner of the schema. A schema is the owner of the objects in the
schema. It is possible to change the owner of a schema without having
to change any application code that uses objects in that schema. This
avoids the problems that occur if a user who owns database objects, for
example, leaves the company.

� Catalog security: Metadata is visible only for the tables that a user has
permissions on. This helps to hide unauthorized information from users.

160 Part IV: Protecting Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 160

� Module execution context: This supplements Ownership Chaining that
was present in SQL Server 2000.

� Granular permissions control: Granting of permissions is more granular
than in SQL Server 2000. This means that you can now use lower privi-
lege accounts to do some tasks for which you needed to use an adminis-
trator account in SQL Server 2000.

� Password policy enforcement: If you run SQL Server 2005 on Windows
2003 Server, you have the option to enforce in SQL Server any password
policy that already exists for the Windows user accounts.

Granular permissions control
In SQL Server 2000, permissions were granted in terms of the fixed server
roles supported by SQL Server 2000. That does not provide a sufficiently
granular approach to security. The least privileges principle specifies suffi-
cient permissions to perform an action are granted without granting other
potentially superfluous permissions.

In SQL Server 2005, the following levels of granular permissions control are
supported:

� Server: At the server level, permissions can be granted to logins.

� Database: At the database level, permissions can be granted to users,
database roles, or application roles.

� Schema: Each schema in a database has its own associated permissions.

� Object: Objects within schemas can have their own associated
permissions.

Permissions basics
SQL Server 2005 supports three keywords that affect permissions:

� GRANT: Gives a right.

� DENY: Explicitly denies a right.

� REVOKE: Revokes a previous GRANT or DENY.

A DENY at any level in a hierarchy of permissions always takes precedence.
For example, if a user has been granted a read permission on a database but
belongs to a group that has been denied the read on that database, the DENY
takes precedence and the user can’t read data in that database.

161Chapter 11: Securing Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 161

The GRANT and DENY keywords can apply together. For example, as a man-
ager, Fred may be granted read access to a view because he is a member of
the Managers group. However, he as an individual user may, for business rea-
sons, be denied authorization to access the view. The denial of permission
takes precedence.

Permission levels
You can control a range of permission levels with the GRANT, DENY and REVOKE
keywords. The SQL Server 2005 permission levels are listed here. In the follow-
ing descriptions, a grantee is the person to whom a permission is granted.

� CONTROL: This effectively grants ownership-like rights on an object. A
principal to whom CONTROL is granted has all defined permissions on
the securable, including the ability to grant permissions on that secur-
able to other principals.

� ALTER: Grants permission to alter an entity and to CREATE, ALTER, and
DROP subentities. For example, granting ALTER permissions on a data-
base also grants CREATE, ALTER, and DROP permissions for tables in
that database. This permission does not allow the grantee to alter the
ownership of the securable on which it is granted.

� ALTER ANY X: Grants permission to alter any object of the specified
kind. This permission can be granted at the server level or at the data-
base level. For example, ALTER ANY TABLE grants permission to alter
any table in a database.

� CREATE <server securable>: Grants the permission to CREATE any
server-level securable.

� CREATE <database securable>: Grants the permission to CREATE
any database-level securable.

� IMPERSONATE <login>: Allows the grantee to impersonate the speci-
fied login.

� IMPERSONATE <user>: Allows the grantee to impersonate the specified
user.

� TAKE OWNERSHIP: Gives the grantee the ability to take ownership of a
securable.

How permissions apply to
specific securables
Table 11-1 summarizes which specific securables are affected by specific
permissions.

162 Part IV: Protecting Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 162

Table 11-1 Permissions and Their Securables
Permission Securables

ALTER Assemblies

Certificates

Indexes

Procedures (whether T-SQL or CLR)

Scalar and aggregate functions (whether T-SQL or CLR)

Schemas

Service Broker queues

Tables

Table-valued functions (whether T-SQL or CLR)

Views

CONTROL Procedures (whether T-SQL or CLR)

Scalar and aggregate functions (whether T-SQL or CLR)

Service Broker queues

Synonyms

Tables

Table-valued functions (whether T-SQL or CLR)

Views

EXECUTE Procedures (whether T-SQL or CLR)

Scalar and aggregate functions (whether T-SQL or CLR)

Synonyms

INSERT Synonyms

Tables and columns

Views and columns

RECEIVE Service Broker queues

REFERENCES Scalar and aggregate functions (whether T-SQL or CLR)

Service Broker queues

(continued)

163Chapter 11: Securing Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 163

Table 11-1 (continued)
Permission Securables

Tables and columns

Table-valued functions (whether T-SQL or CLR) and
columns

Views and columns

SELECT Synonyms

Tables and columns

Table-valued functions (whether T-SQL or CLR) and
columns

Views and columns

TAKE OWNERSHIP Procedures (whether T-SQL or CLR)

Scalar and aggregate functions (whether T-SQL or CLR)

Synonyms

Tables

Table-valued functions (whether T-SQL or CLR)

Views

UPDATE Synonyms

Tables and columns

Views and columns

VIEW DEFINITION Procedures (whether T-SQL or CLR)

Services broker queues

Scalar and aggregate functions (whether T-SQL or CLR)

Synonyms

Tables

Table-valued functions (whether T-SQL or CLR)

Views

164 Part IV: Protecting Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 164

A complete listing of all SQL Server 2005 permissions is available in SQL Server
2005 Books Online. To access SQL Server 2005 Books Online, choose Start➪
All Programs➪Microsoft SQL Server 2005➪Documentation and Tutorials➪
SQL Server Books Online. You can also list all permissions from inside SQL
Server Management Studio query pane by running the following code:

SELECT * FROM sys.fn_builtin_permissions(default)

It returns over 180 rows in the results grid. You can supply a parameter to
view the permissions that apply to a particular class of object. The following
code shows how you retrieve all permissions that apply to a database object:

SELECT * FROM sys.fn_builtin_permissions(‘database’)

To view permissions on a server, use the following T-SQL code:

SELECT * FROM sys.server_permissions
WHERE class = 100

To view permissions for endpoints on a server, use the following code:

SELECT * FROM sys.server_permissions
WHERE class = 105

Working with the New Security Model
In this section, I show you examples of how you can use the SQL Server 2005
security model and permissions to carry out common security tasks.

The code examples shown in this section assume that you’re running the T-
SQL inside the Query Editor in SQL Server Management Studio. To run the
code, type the code in the Query Editor, select it, and press F5.

The system catalog and metadata are more secure than in SQL Server 2000.
Previously you could see database objects that you didn’t have permissions
on. A hacker could use that information to plan further attacks. In SQL Server
2005, you can see only those database objects for which you have permis-
sions. A hacker who gains unauthorized access to your login sees only what
you can see and can’t see other database objects. For example, if you use

SELECT * FROM sysobjects

to see system objects, you see only objects for which you have permissions.

165Chapter 11: Securing Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 165

Logins and users
Logins are SQL Server instance-level objects. Users are database-level
objects. To create a user JSmith with a specified password, use the following
statement:

CREATE LOGIN JSmith WITH PASSWORD = ‘ABC123’

You have created a login with access to a SQL Server instance. You now need
to specify a corresponding user for one or more databases. To create a user
JSmith for the Sales database, use the following statement:

USE Sales
CREATE USER JSmith

Separation of users and schemas
In SQL Server 2000 the concepts of a user and a schema were, for practical
purposes, one and the same. This caused problems when, for example, a user
User1 left a company. The schema disappeared when you removed the user.
So you had to make edits, possibly many of them, in an application that refer-
enced User1.Object to keep the application working or delete objects in
the schema, delete the schema, or create a new schema and add schema
objects.

In SQL Server 2005, a user User1 can own a schema, say, Accounts. If User1
leaves the company, you can change the owner of the Accounts schema.
You don’t need to make changes to an application that uses the Accounts
schema because the Accounts schema still exists and the schema name
hasn’t been changed.

More strictly, the separation is between principals and schemas. To see all
principals in a SQL Server instance, use the following T-SQL:

SELECT * FROM sys.server_principals

The preceding code displays all the built-in principals plus any principals you
have added. To view the built-in principals and any added principals at the
level of an individual database, use the following code:

USE databaseName
SELECT * FROM sys.database_principals

166 Part IV: Protecting Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 166

To see all schemas in a SQL Server instance, use the following T-SQL
statement:

SELECT * FROM sys.schemas

To create a schema, Accounts, and specify the schema owner as JohnJones,
use the following T-SQL (this assumes that the principal JohnJones already
exists):

CREATE SCHEMA Accounts AUTHORIZATION JohnJones

The default schema
A principal has a default schema. I show here how to create a login, a corre-
sponding user, and specify which schema is the default for that user.

To specify a user, you must first create a login. To specify the login
FredHamid, use the following T-SQL:

CREATE LOGIN FredHamid WITH PASSWORD = ‘TemporaryPassword’

The login FredHamid is now created on the current SQL Server instance.
After you create the login, you can create a user for a specified database. To
specify a default schema Accounts for a user FredHamid, use the following
statement:

USE FinanceDB
CREATE USER FredHamid
FOR LOGIN FredHamid
WITH DEFAULT_SCHEMA = Accounts

If you omit the WITH DEFAULT_SCHEMA clause, the default schema for the
user is the dbo schema.

If the Accounts schema does not already exist, you can create it and assign
permissions to the user FredHamid using

CREATE SCHEMA Accounts AUTHORIZATION FredHamid

To see the default schema for a principal — for example a user — use the fol-
lowing T-SQL statement:

SELECT name, default_schema_name
FROM sys.database_principals
WHERE name= ‘FredHamid’

167Chapter 11: Securing Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 167

If Fred Hamid tries to access a table named Sales, the Accounts schema is
searched first, because that is his default schema. If a table Accounts.
Sales is found, it is used. If such a table is not found, SQL Server looks for a
table named Sales in the dbo schema.

To retrieve the name of the owner of each schema, use the following:

SELECT S.name AS schema_name, S.schema_id,
O.name as owner_name, O.principal_ID as owner_id
FROM sys.database_principals AS O, sys.schemas AS S
WHERE O.principal_id = S.principal_id

This returns system schemas and user-created schemas, as shown in Figure
11-1. You can see that I created the Accounts schema as dbo, and therefore
dbo is the owner of the Accounts schema.

Granting permissions to a user
At this point, Fred Hamid is identified as the user FredHamid. To see the per-
missions he has on the FinanceDB database, follow these steps:

1. In the Object Explorer, expand the Databases node to display the
FinanceDB database node.

If you already have the Object Explorer open, you may need to right-
click Databases and choose Refresh from the context menu.

Figure 11-1:
Retrieving
the names

of the
owners of

each
schema.

168 Part IV: Protecting Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 168

2. Navigate through the tree until you get to the Users node by expand-
ing the FinanceDB, Security, and Users nodes in turn.

The user FredHamid is listed among the users. (See Figure 11-2.)

3. Right-click FredHamid and choose Properties from the context menu.

The Database User – FredHamid dialog box opens, as shown in
Figure 11-3.

As you can see in Figure 11-3, the user FredHamid exists but initially has no
permissions (all the options are unchecked). You click the appropriate check
boxes to add any desired permissions for the user FredHamid. This provides
a convenient alternative to using T-SQL code to achieve the same end.

Figure 11-3:
The

Database
User dialog

box.

Figure 11-2:
Listing users

for a
database.

169Chapter 11: Securing Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 169

Module Execution Context
The concept of Module Execution Context means the login or user who exe-
cutes a module. In this context, a module can be a stored procedure, a func-
tion, or a trigger.

� Execute as caller: The user executes the module. The user needs to
have permissions on the module and appropriate permissions for any-
thing that’s referenced by the module — for example, any databases.

� Execute as a specified username: The username must exist in the rele-
vant database and be a singleton principal (not a group). The statements
in the module execute in the context of the named user.

� Execute as owner: Executes as the owner of a module. If the owner of a
module changes in the future, the user runs as that new owner.

� Execute as self: Executes as the original owner of a module. If the owner
of the module changes, the user still runs as the original owner.

Catalog security
You can use the built-in catalog security in SQL Server 2005 to secure
metadata.

At the server level, the sa login can see everything on the server. At the
database level, the dbo can see everything in the database. Other logins and
users see only metadata on objects where they have relevant permissions.
In previous versions of SQL Server, a user could see metadata for objects to
which he had no permissions. A malicious user could use that information
to plan or attempt unauthorized access to such database objects. By hiding
metadata, in SQL Server 2005, such a malicious user can’t see what objects
exist. This makes any attack on data more difficult.

Password policy enforcement
Microsoft recommends that Windows Integrated Security is the preferred
authentication mechanism for SQL Server 2005. However, Microsoft also
recognizes that some SQL Server 2005 installations also allow SQL Server
logins. Therefore, you need to ensure that SQL Server logins are as secure
as practicable.

170 Part IV: Protecting Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 170

If you’re running SQL Server 2005 on Windows Server 2003, you can enforce
an existing password policy on SQL logins.

The following aspects are supported:

� Password Strength: You can specify to use strong passwords.

� Password Expiration: You can specify that SQL passwords expire
regularly.

� Account Lockouts: If the SQL Server is under a brute force attack, it is
helpful if the account(s) being attacked are locked out before a hacker
gains access to the server through those accounts.

This improves on the SQL Server 2000 situation where you could only specify
the password strength for the SQL Server.

To create a strong password for login FredHamid, use the following T-SQL:

CREATE LOGIN FredHamid WITH PASSWORD = ‘Passw0rd!’

Notice that the fourth to the last character in the password is a zero. The
password has both upper and lowercase characters, a numeric character,
and a punctuation character, so it meets the requirements for password
complexity.

In SQL Server 2005, you have an option to turn off the password policy for
selected logins. You can also specify that some passwords never expire. For
example, if applications use a particular login, it makes sense not to enforce a
need to change passwords in applications. An application obviously has no
way to change its password.

If you want to continue to enforce password complexity policy on the
FredHamid login but not enforce password expiration, you can use the fol-
lowing T-SQL:

ALTER LOGIN FredHamid WITH CHECK_EXPIRATION = OFF

If you want to create a login with a simple password, you can turn off pass-
word policy for that login by using syntax like the following:

CREATE LOGIN TooSimple
WITH PASSWORD = ‘Fred’, CHECK_POLICY = OFF

Turning off the password policy is not recommended, however; it allows
users to create passwords that are more vulnerable to cracking than strong
passwords.

171Chapter 11: Securing Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 171

To check the status of password policy enforcement on all logins, you can
use the following T-SQL:

SELECT name, is_policy_checked, is_expiration_checked
FROM sys.sql_logins

A value of 1 in the relevant columns indicates that the policy indicated in the
column name is enforced.

Using Common Language
Runtime Security

The Common Language Runtime (CLR) allows .NET code to be run inside the
SQL Server 2005 database engine. Three levels of security are specified:

� Safe: Code that runs under the Safe setting is unable to access anything
external to SQL Server. Specifically, the code cannot access environment
variables, the registry, files, and the network. Code running with a Safe
permission set poses minimal or no security risk.

If you don’t specify a permission set, then Safe is used as a default.

� External Access: Code running with an External Access permission set
can access environment variables, the registry, files, and the network.
Unmanaged code cannot be run.

� UnSafe: UnSafe doesn’t mean that the code is necessarily dangerous.
It means that the code is permitted unlimited access outside the SQL
Server database engine. That means that the code is potentially unsafe.
A database administrator has to be very sure about what is in the code
and be sure that he understands what the code does.

You specify the permission set by using the CREATE ASSEMBLY statement.
For example, to add an assembly called myAssembly that uses the Safe per-
mission set, use the following code:

CREATE ASSEMBLY myAssembly
WITH PERMISSION_SET = SAFE

172 Part IV: Protecting Your Data

18_577557 ch11.qxp 12/20/05 9:49 PM Page 172

Chapter 12

Availability and Preventing
Data Loss

In This Chapter
� Keeping your hardware secure

� Taking advantage of database mirroring

� Creating checkpoints

� Keeping your database running with clustering

� Producing database snapshots

� Backing up and restoring data

In a connected world, your colleagues and customers need almost continu-
ous access to data. This means that you need to avoid users temporarily

losing access to data. Or, if you can’t completely avoid such temporary prob-
lems, make sure that you can recover from them quickly. More important,
you must take careful steps to ensure that the chance of users permanently
losing access to data is as close to zero as possible.

SQL Server 2005 supports many features that improve the chances of keeping
your SQL Server databases available to users. For example, database mirror-
ing is a new feature that allows almost instant switching to a backup SQL
Server if a primary server goes down.

As well as achieving high availability of data, it is crucially important that you
avoid the permanent loss of any business data that is needed for the running
of your business. Losing important business data can be fatal for your contin-
ued employment and can, in some cases, also be fatal for the business.
Taking appropriate steps to back up data and ensure that you can restore it is
of enormous importance.

19_577557 ch12.qxp 12/20/05 9:50 PM Page 173

Availability Overview
Preventing poor availability is not simply a matter of using SQL Server 2005
features. Availability of data can be threatened in several layers:

� Hardware: Modern computer hardware is highly reliable, but reliability
is not quite 100 percent. Therefore, you need to plan for the possible fail-
ure of hardware. Among the approaches you should consider are

• Redundant servers (with failover clustering or database mirroring)

• RAID rather than single hard drives

• Uninterruptible power supplies to allow SQL Server to shut down
properly in the case of a local power failure

• Hot swapping of RAM (requires special hardware)

� System Software: Specifically, SQL Server 2005.

� Application Software: Improperly written application software can also
produce errors or loss of data. For example, application software needs
to protect against SQL injection attacks and potential loss or corruption
of data.

� User/Operator Error: User or operator error forms an increasing pro-
portion of total downtime as the reliability of hardware and system and
application software improves. To achieve improved availability and
avoid data loss, properly train your users and colleagues on how to use
SQL Server.

Among the most important issues is ensuring that one individual is
responsible for carrying out data backups and that appropriate proce-
dures are in place to carry out and test backups if that individual is
absent for any reason. A manager should be responsible for ensuring
that backing up and testing of backups has been done every time!

Reducing Downtime with
Database Mirroring

Database mirroring is an option to improve the availability of a SQL Server
database or databases. Database mirroring is new in SQL Server 2005. You
choose to mirror the databases on a SQL Server instance on a database-by-
database basis.

174 Part IV: Protecting Your Data

19_577557 ch12.qxp 12/20/05 9:50 PM Page 174

Database mirroring was intended to be available in the November 2005
release of SQL Server 2005. Microsoft has delayed support of the database
mirroring feature in a production environment, although you can enable it in
the November 2005 release for evaluation purposes by using trace flag 1400.
Microsoft recommends that you do not use database mirroring in the original
release in a production environment.

Database mirroring overview
You have three server machines in a common setup for database mirroring.
One machine (the principal) has the copy of a database that applications read
and write to. Another machine (the mirror) has a copy of the principal data-
base. The mirror database is kept almost instantaneously in synch with the
principal database via a network connection. All transactions that are applied
to the principal database are also applied to the mirror database.

You might wonder how, with two copies of the data, applications know which
copy of the database to read and write to. The third machine is a witness and
has the “casting vote” as to which of the other two machines is running the
principal database.

Database mirroring gives very fast switching if the principal database
becomes unavailable. Typically, it takes less than three seconds to be up and
running again, using the mirror database. Many users don’t notice an inter-
ruption of response; at the most, perhaps just a slightly slower response than
normal.

Microsoft claims zero data loss for database mirroring. Transactions are sent
to the mirror database’s log at the same time as they are written to the princi-
pal database’s log. The chances of any transaction being lost on the mirror
are extremely low.

Note: You cannot mirror the master, msdb, tempdb, or model databases.

You can switch control to the mirror database either manually or automati-
cally. Given that one of the advantages of database mirroring is the really
rapid switching that can occur automatically, I envisage automatic switching
being the typical scenario.

Another useful feature of database mirroring is that any changes that are
made on the new principal database (the former mirror database) are auto-
matically synchronized with the former principal database when the former
principal server is available again.

175Chapter 12: Availability and Preventing Data Loss

19_577557 ch12.qxp 12/20/05 9:50 PM Page 175

You can use database mirroring together with replication. For example, if
you’re replicating the data from a headquarters SQL Server instance to
branch offices, all or any of the headquarters or branch office instances to
which replication takes place can be a database mirroring configuration.
While replication and database mirroring are separate processes, you can, in
appropriate circumstances, usefully combine them.

Transparent client redirect
Database mirroring depends on a companion new technology on the client
side that is called transparent client redirect. Essentially the client knows
about both the principal database and the mirror database. While the princi-
pal database is working correctly, the client only connects to it. When the
principal database fails and the former mirror database becomes the new
principal database, the client automatically connects to the new principal
database.

Database views
You can use another new feature, called database views, with database mir-
roring. Database views allow you to make read-only use of the mirror data-
base. The mirror database is only minimally out of synchronization with the
principal database, because the transaction log of the principal database is
immediately sent to and applied to the mirror database. For any data
retrieval that doesn’t require absolutely up-to-date, real-time information, the
mirror database is satisfactory. Any database access that involves writing to
the database must use the principal database.

One important potential use of database views is as the data source for
Reporting Services. Because reporting requires only read access to the data-
base, you can retrieve any data you need while taking some load off the prin-
cipal database.

Differences from failover clustering
I list here some key differences between database mirroring and failover clus-
tering (discussed later in the chapter):

� Database mirroring allows failover at the database level. Failover clus-
tering allows failover at the server level or SQL Server instance level.

� Database mirroring works with standard computers, standard storage,
and standard networks. Failover clustering requires specific, certified
hardware.

176 Part IV: Protecting Your Data

19_577557 ch12.qxp 12/20/05 9:50 PM Page 176

� Database mirroring has no shared storage components. Failover clus-
tering uses shared hard drives.

� Database mirroring allows Reporting Services to run against the
mirror database. Reporting Services cannot be run against a currently
inactive node in a failover cluster.

� Database mirroring has two (or more) copies of a database. Failover
clustering works with a single copy of databases, which are stored on
shared hard drives.

� Database mirroring is much faster than failover clustering. Typical fig-
ures might be 3 seconds versus 60 seconds, although exact figures
depend on various factors specific to your setup.

Similarities to failover clustering
The following points apply to both database mirroring and failover clustering:

� Both support automatic detection and failover.

� Each has a manual failover option.

� Each supports transparent client connection to the backup database or
server.

� Each achieves “zero” work loss.

� Database views minimize the effects of DBA or application errors.

Recovery models
Database mirroring is available only on databases that have the full recovery
model associated with them. In this list, I briefly summarize the available
recovery models so that you can make a decision regarding whether you
need to consider database mirroring:

� Simple: You are likely to use simple recovery only on test or develop-
ment machines. Data is recoverable only as far as the most recent full
backup or differential backup.

You should not use simple recovery on a production system where the
loss of recent changes is unacceptable.

� Full: The full recovery model provides protection against data loss in
many scenarios and provides complete protection against media failure.
The full recovery model supports all restore scenarios.

� Bulk-logged: Bulk-logged recovery may be an appropriate choice for
production systems. It has less flexibility to recover to a point in time

177Chapter 12: Availability and Preventing Data Loss

19_577557 ch12.qxp 12/20/05 9:50 PM Page 177

than full recovery. When bulk-loading data, you can switch from full
recovery model to bulk-logged recovery model to achieve better perfor-
mance during the bulk-load operation.

Speeding Recovery with Checkpointing
To achieve best performance, SQL Server performs many operations in
memory. At a checkpoint, the cache buffer that holds information about com-
mitted transactions not yet written to disk is flushed so that all dirty
(changed) data pages are then written to disk.

As time increases since the most recent checkpoint (or, more precisely, as
the number of changes since the most recent checkpoint increases) the time
to write all changes to disk takes longer. Each time SQL Server starts, a
checkpoint is created automatically so all changes not already written to disk
are written to disk at startup. In the absence of a recent checkpoint, more
operations need to be written to disk at startup for each database. If many
operations need to be written for each database, the SQL Server instance can
be unavailable for longer than it needs to be.

To avoid lengthy startup delays when you restart SQL Server for any reason,
you need to make sure that checkpoints are created at appropriate intervals
or in appropriate circumstances. The following activities cause a checkpoint
to be created:

� You execute a T-SQL CHECKPOINT statement.

� You perform a minimally logged operation on the database. One example
is a bulk copy operation when you’re using the bulk-logged recovery
model.

� You use the ALTER DATABASE statement to add or remove database
files.

� You change to the simple recovery model.

� You stop a SQL Server instance by using the T-SQL SHUTDOWN statement
or by stopping the MSSQLSERVER service.

� A SQL Server instance automatically generates a checkpoint to keep
recovery time within the specified limit.

� You back up the database.

Automatic checkpoints
To ensure that checkpoints are made at appropriate intervals, you can use
the automatic checkpointing facility of SQL Server 2005.

178 Part IV: Protecting Your Data

19_577557 ch12.qxp 12/20/05 9:50 PM Page 178

The need for a checkpoint depends on how many changes have been made in
a particular database. If many changes are made, the interval between check-
points decreases. For rarely used databases, you don’t need to have check-
points made often.

SQL Server doesn’t require that you make complex calculations to determine
how often checkpoints are created automatically. You specify how long a
database should take to have outstanding operations written to disk on
startup, which is called the recovery interval. By setting the recovery interval,
SQL Server then works out when an automatic checkpoint is created for you.

Setting the recovery interval
To set the recovery interval, follow these steps:

1. Open SQL Server Management Studio. If the Object Explorer is not
already open, choose View➪Object Explorer.

2. Right-click a SQL Server instance in the Object Explorer and choose
Properties from the context menu.

The Server Properties dialog box opens.

3. In the left pane of Server Properties, select the Database Settings option.

In the main pane, the Recover Interval text box displays, about halfway
down the pane.

4. Enter a desired value for the recovery interval (in minutes).

Note: SQL Server 2005 has improved recovery times compared to SQL Server
2000. After the redo portion of recovery is complete, a database is brought
online. This can significantly increase availability.

Using Failover Clustering
Failover clustering was introduced in SQL Server 7, was refined in SQL Server
2000, and has been further improved in SQL Server 2005.

Failover clustering depends on Microsoft Clustering Services. A failover clus-
ter typically consists of two or more servers that use two or more shared
disks. A failover cluster is also known as a virtual server or a resource group.

Having two servers is the simplest situation. One server has a SQL Server
service running. If that server fails (due to hardware or operating system fail-
ure, for example), the other server in the cluster starts the SQL Server serv-
ice. Apart from the time required to start up the SQL Server service, the

179Chapter 12: Availability and Preventing Data Loss

19_577557 ch12.qxp 12/20/05 9:50 PM Page 179

cluster continues to operate despite the failure of the server to which con-
nections were originally made.

The new features or improvements in failover clustering in SQL Server 2005 are

� Increase in number of nodes supported (now limited only by operating
system limits).

� Unattended setup is supported.

� All SQL Server 2005 services participate. Now supports database engine,
SQL Server Agent, Analysis Services, Full-text Search.

A virtual server appears on the network as if it were a single machine.

The time taken to failover from one server to another in a virtual server is
significantly longer than the equivalent time for database mirroring. For
failover clustering, time taken to have a standby server up and running can
vary from tens of seconds up to two or three minutes. Database mirroring
uses a standby server within two or three seconds.

Database Snapshots
Any real-world SQL Server installation periodically needs maintenance. When
you carry out maintenance tasks, it is important that SQL Server or individ-
ual databases are unavailable for as short a time as possible.

When you work with databases, you always have the possibility of human
error. With any luck, it’s a low risk most of the time. No matter the risk
involved, though, you need to be able to undo any changes you make.

Note: Database snapshots are available only on Microsoft SQL Server 2005
Enterprise Edition.

Database snapshots allow you to take a snapshot of a database before you
carry out a major operation. If something goes wrong, you can simply revert
to the snapshot (assuming that the database is not live). The important thing
is to realize that you must make the snapshot before carrying out the major
or risky operation.

You can use database snapshots on a single server install of SQL Server, with
database mirroring, or with failover clustering.

180 Part IV: Protecting Your Data

19_577557 ch12.qxp 12/20/05 9:50 PM Page 180

Naming database snapshots
When creating database snapshots, make sure you choose a naming scheme
that contains the following pieces of information:

� The database of which it is a snapshot.

� That it is a snapshot.

� A sequence number or date and time that indicates the time when you
made the snapshot or its place in a sequence of snapshots (so that you
can easily identify the most recent snapshot).

How you name snapshots may depend on the way you use them. If you have
a daily cycle of four snapshots made regularly for a database in use around
the clock, then a name similar to

databaseName_snapshot_0800

lets you know that this is the daily snapshot made at 08:00. Alternatively, if
you want to create snapshots on an as needed basis, a name similar to

databaseName_snapshot_20060418

can tell you that this is the snapshot made on April 18, 2006. If you’re carry-
ing out several operations that need snapshots on the same day, simply add a
time also.

Creating a database snapshot
To create a database snapshot, you use the CREATE DATABASE statement
with code like this, which you run in SQL Server Management Studio:

CREATE DATABASE myDatabaseName_snapshot_20060418 ON
(NAME = myDatabaseName_Data, FILENAME =
‘C:\Program Files\Microsoft SQL

Server\MSSQL.1\MSSQL\Data\myDatabaseName_snapsh
ot_20060418.ss’)

AS SNAPSHOT OF myDatabaseName;
GO

When you create a database snapshot, consider whether the target disk has
enough disk space. The size of the snapshot may be as large as the database
on which the snapshot is being made.

181Chapter 12: Availability and Preventing Data Loss

19_577557 ch12.qxp 12/20/05 9:50 PM Page 181

Deleting unwanted database snapshots
If you keep creating database snapshots without deleting them, they take up
unnecessary disk space. When reverting to a snapshot (which I describe in the
next section), you need to delete any unwanted snapshots before doing so.

To view the existing database snapshots in SQL Server Management Studio,
follow these steps:

1. Open SQL Server Management Studio. If the Object Explorer is not vis-
ible, choose View➪Object Explorer.

2. Connect to the relevant SQL Server instance.

3. Expand the Databases node and the Database Snapshots node.

4. Delete the database snapshot that you want to delete by using the fol-
lowing T-SQL:

DROP DATABASE databaseSnapshotName

Reverting to a database snapshot
If a significant error occurs during an administrative operation, you likely
need to revert to the database snapshot you made immediately before start-
ing the operation that failed.

To revert to a database snapshot, follow these steps:

1. In SQL Server Management Studio, open the Object Explorer by
choosing View➪Object Explorer, if it is not already open. Connect to
the relevant SQL Server 2005 instance.

2. Navigate to the desired database under the Databases node.

3. Delete any database snapshots other than the one you want to revert to.

I cover how to delete a database snapshot in the preceding section.

4. Remove any full-text catalogs on the database.

5. If the database uses the full recovery model, back up the log.

6. To revert to the snapshot, use the following T-SQL code:

RESTORE databaseName
FROM DATABASE_SNAPSHOT = databaseSnapshotName

During the revert operation, both the database and the database snap-
shot are unavailable.

182 Part IV: Protecting Your Data

19_577557 ch12.qxp 12/20/05 9:50 PM Page 182

Note: The reverted database retains the permissions and configuration
options used when the database snapshot was created.

7. Start the database.

8. Back up the reverted database.

Backing Up and Restoring Data
Losing access to data for a short time can be a significant inconvenience for
your business. Losing the data permanently can be a major disaster and for
some businesses losing important data can be fatal to the business. For many
businesses, cash flow can be a situation that has to be fine-tuned. If you lose
key data, it can take weeks to reconstitute the data. Technically, you may be
able to reproduce the data at the time of the problem. In the meantime, cash
flow has potentially become a serious problem and many of your customers
may have left, perhaps forever. The business message is clear. Take adequate
steps to protect important data!

Assessing the risks to protect against
One of the key things to do in order to avoid being thrown into a crisis is to
consider the scenarios where data loss can occur and to plan an approach
that minimizes or, better, totally avoids the risks you can anticipate.

Among the scenarios that you need to consider are the following:

� Hardware failure

� Theft of hardware

� Unauthorized access to data and damage to the data

Backing up data
Typically, you use scripts to create backups. In this section, I briefly describe
how to back up a database.

Note: Before a backup, SQL Server 2005 automatically creates a checkpoint
so that the data you back up contains all changes to database pages.

To back up a database, use the BACKUP DATABASE statement. You specify
the database to be backed up and the destination it is to be backed up to. For

183Chapter 12: Availability and Preventing Data Loss

19_577557 ch12.qxp 12/20/05 9:50 PM Page 183

example, to back up to a hard drive, use the following T-SQL code (which
assumes you’ve formatted the destination drive):

USE myDatabaseName
GO
BACKUP DATABASE myDatabaseName
TO DISK = ‘C:\filePath\myDatabaseName.bak’
NAME = ‘The name of the back up.’

Checking backups
I give this topic a separate section because it is crucially important and all
too easy to overlook. You must check that you can restore from the backup
tapes or other backup media. Just imagine — you’ve been backing up faith-
fully for months, secure in the knowledge that you’re safe if disaster happens,
only to discover that you can’t use the backups.

The longer you leave between checking that you can restore a backup, the
greater the possibility that none of the backups are usable! Therefore, you
should frequently check that you can restore your backup tapes or other
backup media. Bypassing this crucially important task is false economy.

The exact frequency that you choose to check backups depends on your situ-
ation. The more important the data, the more often you need to confirm that
you can restore from tapes or other media.

Restoring data
Backups are only useful if you know how to restore the data. You can carry
out a simple full restore by using T-SQL code like the following:

RESTORE databaseName
FROM DISK = ‘C:\filePath\backupFilename’

The RESTORE command has many options that are described in SQL Server
2005 Books Online.

184 Part IV: Protecting Your Data

19_577557 ch12.qxp 12/20/05 9:50 PM Page 184

Chapter 13

Maintaining Integrity
with Transactions

In This Chapter
� Discovering how transactions work

� Coding transactions

Many business activities depend on an action being accompanied by a
corresponding action. For example, if you are a customer and pay for

goods but don’t receive them, something is wrong. Similarly, if you take
goods and don’t pay for them, again, something is wrong. The expected typi-
cal scenario is a transaction where you pay for goods and you receive the
goods. More than one action is required to make up a transaction.

Another common example of more than one operation making up a transac-
tion is when you transfer money from one bank account to another. Suppose
you’re transferring a regular payment to a company. Your bank takes the
money out of your account and puts it into the account of the company or
person that you’re paying. You would be annoyed if the money was taken out
of your account and didn’t reach the account where it was supposed to go. If
the money was never transferred to the company’s account you, as a cus-
tomer of a bank, would not be happy whether the money was put in the
wrong account or just disappeared. The different parts of that transaction
must be kept together. There are two possible scenarios:

� No money is taken from your account and nothing is transferred to the
other account (possibly because of insufficient funds in your account or
a network problem is preventing the transfer).

� The right amount of money is taken from your account and is placed in
the other account.

In a SQL Server transaction, either all the component parts of a transaction
are carried out or none of them are. This concept is called atomicity.

20_577557 ch13.qxp 12/20/05 9:50 PM Page 185

Understanding Transactions
In SQL Server 2005, there are several levels of transaction. In the preceding
paragraphs, I mention business level transactions. These are the subject of
this chapter. Behind the scenes in SQL Server 2005, other transactions take
place routinely. For example, if you add data to a table that has an index,
both the table and the index need to be updated or neither is updated. If that
coordination of operations doesn’t happen, then the index and table are
inconsistent with each other, which is unacceptable.

ACID
ACID describes four essential characteristics of a transaction:

� Atomicity: Atomicity means that the transaction cannot be divided and
still make sense. With the transfer between bank accounts, either both
parts of the transaction take place successfully or neither happens.

� Consistency: Consistency means that the database is in a consistent
state before the transaction takes place and remains in a consistent
state after the transaction. For example, if you add a row to a table, then
the index must also be updated.

� Isolation: This is the idea that a transaction should be able to proceed as
if it were completely isolated from any other transaction. For multi-user
databases, it is increasingly important that the product supports this.

� Durability: This is the concept that a transaction survives even if there
is a hardware failure. It should be possible to re-create the data up to the
last completed transaction that completed a split second before the
hardware failure.

The transaction log
Each SQL Server 2005 database has an associated transaction log. The trans-
action log contains information about recent changes that have been made in
the database that have not yet been committed to disk. When SQL Server is
restarted, any transactions not yet committed to disk are committed to disk
during startup. This facility supports durability of the ACID acronym that I
discuss in the preceding section.

186 Part IV: Protecting Your Data

20_577557 ch13.qxp 12/20/05 9:50 PM Page 186

Coding Transactions
When a transaction involves, for example, removing money from one account
and transferring it to another account, then both accounts are updated. First,
look at how SQL Server carries out a simple update.

A simple update
Imagine that you have a database called Departments that has columns,
which include DepartmentName and DepartmentManager. When the man-
ager of the IT department is replaced, you need to update the information in
the DepartmentManager column. To do this, you use code like the following:

UPDATE Departments
SET DepartmentManager = ‘John Smith’
WHERE Department = ‘IT’

The WHERE clause works much as it does in a SELECT statement. It selects
the rows where the Department column contains the IT value and the SET
clause causes the value in the DepartmentManager column to update to the
John Smith value.

A simple transaction
To demonstrate a simple transaction, I create a database called Chapter13.
In that database, I create a couple of tables called PersonalAccount and
CompanyAccount:

CREATE DATABASE Chapter13

USE Chapter13
CREATE TABLE PersonalAccount (AccountID INT PRIMARY KEY,

Name VARCHAR(30), BALANCE MONEY)

I create two accounts, one for John Smith and one for Jane Doe, with each
individual having a balance of $100.00:

INSERT INTO PersonalAccount
VALUES (1, ‘John Smith’, 100.00)
INSERT INTO PersonalAccount
VALUES (2, ‘Jane Doe’, 100.00)

187Chapter 13: Maintaining Integrity with Transactions

20_577557 ch13.qxp 12/20/05 9:50 PM Page 187

Similarly, I create a CompanyAccount table:

CREATE TABLE CompanyAccount (AccountID INT PRIMARY KEY,
Name VARCHAR(30), BALANCE MONEY)

Then I create two rows in it, with each company having a balance of $10,000:

INSERT INTO CompanyAccount
VALUES (1, ‘Acme Company’, 10000.00)
INSERT INTO CompanyAccount
VALUES (2, ‘XMML.com’, 10000.00)

To confirm that the two tables have been created with appropriate values in
each column, use the following code:

SELECT * FROM PersonalAccount
SELECT * FROM CompanyAccount

Figure 13-1 shows the initial values in each column of the two tables.

The following code transfers $50.00 from John Smith’s personal account to
XMML.com’s company account by using a transaction:

BEGIN TRANSACTION
UPDATE PersonalAccount
SET BALANCE = 50.00
WHERE Name = ‘John Smith’
UPDATE CompanyAccount

Figure 13-1:
Initial values

in the
Personal
Account

and
Company
Account

tables.

188 Part IV: Protecting Your Data

20_577557 ch13.qxp 12/20/05 9:50 PM Page 188

SET BALANCE = 10050.00
WHERE Name = ‘XMML.com’
COMMIT TRANSACTION
GO

Confirm that the balance in John Smith’s personal account and XMML.com’s
company account have changed appropriately by using the following code:

SELECT * FROM PersonalAccount
SELECT * FROM CompanyAccount

Figure 13-2 shows the changed balances in the two desired accounts.

Often, a transaction has some error checking included in the code. To include
error checking when making a transfer from Jane Doe to Acme Company, you
can use @@ERROR:

BEGIN TRANSACTION
UPDATE PersonalAccount
SET BALANCE = 0.00
WHERE Name = ‘Jane Doe’
IF @@ERROR <> 0
PRINT N’Could not set balance in PersonalAccount.’
UPDATE CompanyAccount
SET BALANCE = 10100.00

Figure 13-2:
Changed
balances

in the
Personal
Account

and
Company
Account

tables.

189Chapter 13: Maintaining Integrity with Transactions

20_577557 ch13.qxp 12/20/05 9:50 PM Page 189

WHERE Name = ‘Acme Company’
IF @@ERROR <> 0
PRINT N’Could not set balance in CompanyAccount.’
COMMIT TRANSACTION
GO

To confirm that you have changed the row for Jane Doe in the Personal
Account table and the row for Acme Company in the CompanyAccount
table, use the following code:

SELECT * FROM PersonalAccount
SELECT * FROM CompanyAccount

The BEGIN TRANSACTION statement marks the beginning of the T-SQL code
to be treated as a transaction. If the T-SQL code in the transaction executes
successfully, the COMMIT TRANSACTION statement is reached and the trans-
action is committed.

If an error occurs during processing, the ROLLBACK TRANSACTION statement
executes. After the COMMIT TRANSACTION statement executes, you cannot
use a ROLLBACK TRANSACTION statement to roll back the transaction.

Implicit transactions
The preceding examples showed explicit transactions. T-SQL also supports
implicit transactions.

To start implicit transactions, you use the SET IMPLICIT_TRANSACTIONS
ON statement. Each statement after that statement until a transaction is com-
mitted is considered to be part of that transaction. After you do that, you
must explicitly commit the statements that make up each transaction by
using the COMMIT TRANSACTION statement. The statements after the
COMMIT TRANSACTION statement are considered to be the first statement of
the next transaction. Again, that transaction must be explicitly committed.

To turn implicit transactions off, you use the SET IMPLICIT_TRANSACTIONS
OFF statement.

The default behavior, if you do not SET IMPLICIT TRANSACTIONS ON, is
that each individual T-SQL statement is treated as a transaction rather than
as a group of T-SQL statements.

You can’t combine Data Definition Language (DDL) statements in a single
transaction.

190 Part IV: Protecting Your Data

20_577557 ch13.qxp 12/20/05 9:50 PM Page 190

Chapter 14

Maintaining Data Integrity with
Constraints and Triggers

In This Chapter
� Ensuring data integrity with constraints

� Adding check constraints to your data

� Keeping track of changes with DDL triggers

� Adding and deleting data with DML triggers

Maintaining the integrity of the data in a SQL Server 2005 instance is cru-
cially important to the reliable operation of your business that uses

SQL Server data. SQL Server uses several mechanisms, including constraints
and triggers, to help ensure data integrity. In this chapter, I tell you about
constraints and triggers that are tools to help maintain data integrity in SQL
Server 2005.

A constraint is a rule that is enforced by SQL Server 2005. Microsoft suggests
that, in SQL Server 2005, constraints are the preferred way to enforce busi-
ness rules.

A trigger is a special kind of stored procedure that executes in response to an
event inside SQL Server. A common use of triggers is to create an audit trail.
For example, suppose you want to keep an audit trail of who makes changes
to prices in your online store. Each time someone modifies a row in the rele-
vant table, a trigger executes, which could store information such as the time
of the change, who made the change, what the original price was, and what
the new price is. Such information allows your business to monitor trends in
prices and also to find out who made any possibly wrong changes in price.

21_577557 ch14.qxp 12/20/05 9:51 PM Page 191

Understanding Constraints, Defaults,
Rules, and Triggers

In this section, I describe constraints, defaults, rules, and triggers, which pro-
vide a range of ways to enforce business rules inside SQL Server databases.

In this chapter, I create a simple database by using the following code.
Examples later in this chapter use the Chapter14 database.

CREATE DATABASE Chapter14

Constraints
Constraints (rules enforced by SQL Server 2005) provide a key way to ensure
several aspects of data integrity. Microsoft recommends that you use con-
straints rather than triggers in SQL Server 2005 to ensure data integrity.

The constraints supported in SQL Server 2005 are

� Primary key: Provides a way to uniquely identify each row in a table.
A primary key constraint is a specialized form of a unique constraint.

� Unique constraint: Specifies that each value in a column is unique.

One difference between a unique constraint and a primary key constraint
is that a column with a unique constraint can contain NULL values, which
are not permitted in a column that has a primary key constraint. If a
column is a primary key or part of a primary key, you cannot also set
up a unique constraint for that column.

� Check constraint: Specifies rules that values in a column must obey.
A check constraint uses an expression to define the permitted values
in a column. Later in this chapter, I show you how to define check con-
straints on a column.

Defaults
A default is a database object that you define and bind to a column. If during
an insert operation, you don’t supply a value for a column to which the
default is bound, then the default is inserted into that column.

The following example creates a default of Unknown for values inserted into a
table that records student grades.

192 Part IV: Protecting Your Data

21_577557 ch14.qxp 12/20/05 9:51 PM Page 192

First, specify that you use the Chapter14 database:

USE Chapter14

Then create the default called StudentGradeUnknown, specifying that it is
the string Unknown:

CREATE DEFAULT StudentGradeUnknown AS ‘Unknown’

Then create a simple table to store student grades:

CREATE TABLE StudentGrades
(StudentID int PRIMARY KEY,
Examination varchar(10),
Grade varchar(7))

At this stage, the StudentGradeUnknown default exists in the Chapter14
database. You need to bind it to the Grade column in the StudentGrades
table. Use this code, which makes use of the sp_bindefault system stored
procedure:

sp_bindefault ‘StudentGradeUnknown’, ‘StudentGrades.Grade’
GO

To confirm that the default operates, use the following INSERT statement.
Notice that no value is supplied for the Grade column:

INSERT INTO StudentGrades(StudentID, Examination)
VALUES(1, ‘XML101’)

Also, insert a row where you supply a value in the Grade column:

INSERT INTO StudentGrades
VALUES(2, ‘SVG101’, ‘A’)

You can confirm the values in the StudentGrades table by using the follow-
ing code:

SELECT * FROM StudentGrades

In the first row shown in Figure 14-1, the value Unknown in the Grade column
was supplied by the default bound to that column. In the second row, you
supplied a value for the Grade column so the default was not used.

193Chapter 14: Maintaining Data Integrity with Constraints and Triggers

21_577557 ch14.qxp 12/20/05 9:51 PM Page 193

Rules
Rules are included in SQL Server 2005 for backwards compatibility with SQL
Server 2000. Check constraints in SQL Server 2005 provide similar functional-
ity. Microsoft recommends that you use check constraints rather than rules
in new code.

The following example that demonstrates how to create and use a rule uses a
test table called TestTable in the Chapter14 database, which I created
with this code:

USE Chapter14
CREATE TABLE TestTable
(ID int PRIMARY KEY,
Data char(1))

To create a rule in the Chapter14 database, use the following code:

CREATE RULE aThroughcOnly
AS
@ruleval >= ‘a’ AND @ruleval <= ‘c’

The preceding rule specifies that the value must be lowercase, between low-
ercase a and lowercase c. You also need to bind the rule you have created to
a column. The following code binds it to the Data column in the TestTable
table:

sp_bindrule aThroughcOnly, ‘TestTable.[Data]’

Figure 14-1:
The effect of

the default
on the
Grade

column.

194 Part IV: Protecting Your Data

21_577557 ch14.qxp 12/20/05 9:51 PM Page 194

To insert a row with an allowed value, use the following code:

INSERT INTO dbo.TestTable
VALUES (1, ‘b’)

You should be prevented from entering a value that doesn’t correspond to
the rule you created. The following attempts to insert a disallowed character
in the Data column.

INSERT INTO dbo.TestTable
VALUES (2, ‘d’)

After you create a rule, you’re likely to leave it in place unless you want to
convert it to a constraint as described in the preceding section. To unbind a
rule from a specified column, use the following code:

sp_unbindrule ‘dbo.TestTable.Data’

Triggers
Triggers are used to help maintain data integrity and enforce business rules.
(Remember that a trigger is a special kind of stored procedure that executes
in response to an event inside SQL Server.) They complement the protection
of data integrity that constraints, defaults, and rules can provide.

A trigger is a specialized stored procedure. Unlike regular stored procedures,
you cannot use an input parameter with a trigger, nor can a trigger return a
value. A trigger is associated with a particular table. When a specified event
occurs, the trigger executes.

Triggers are broadly divided into two groups:

� DDL triggers: Data Definition Language triggers

� DML triggers: Data Modification Language triggers

Triggers are classified as follows:

� INSTEAD OF triggers: These execute instead of the statement to which
they are related.

� AFTER triggers: These execute after the statement to which they are
related.

I describe and demonstrate several of these types of triggers later in this
chapter.

195Chapter 14: Maintaining Data Integrity with Constraints and Triggers

21_577557 ch14.qxp 12/20/05 9:51 PM Page 195

Auditing who does what in your database is one of the most important uses
of triggers. Depending on which actions of users you want, or are required
by legislation to monitor, you may choose to audit Data Definition Language
statements, Data Modification Language statements, or both.

Using Check Constraints
You have two options to create and drop (delete) check constraints. You can
either use the visual tools in SQL Server Management Studio or you can use
T-SQL (either in the query pane of SQL Server Management Studio or from
the command line with the SQLCMD utility). I show you both techniques.

Check constraints can use simple and complex expressions. You specify that
the value in some column meets some specified criterion or criteria. For
example, an expression to specify that the value in an InStock column must
be greater than zero would look like this:

InStock > 0

You can use the keywords AND, OR, and NOT to combine conditions. For exam-
ple, to specify that the quantity purchased of a special offer must be at least 1
and less than 5, you could use the following expression:

QtyBought > 0 AND QtyBought < 5

In this section, I use a sample table named ConstraintTest. To create the
table, use the following T-SQL code:

USE Chapter14
CREATE TABLE ConstraintTest
(ID int PRIMARY KEY,
PartNum char(6))

You can use the limited regular expression support for the T-SQL LIKE key-
word to create a check constraint based on a pattern. For example, suppose a
valid part number in your company consists of three uppercase characters
followed by three numeric digits. To specify that a value in the PartNum
column must consist of exactly six characters with the first three being
uppercase alphabetic characters and the last three being numeric digits, use
the following regular expression:

[A-Z][A-Z][A-Z][0-9][0-9][0-9]

The [A-Z] pattern is a regular expression pattern that matches any upper-
case character. Because there are three in a row of those, a sequence of
exactly three uppercase alphabetic characters is matched. Similarly, the
[0-9] pattern matches any numeric digit. The full expression for the check

196 Part IV: Protecting Your Data

21_577557 ch14.qxp 12/20/05 9:51 PM Page 196

constraint uses this regular expression with the LIKE keyword and column
name:

PartNum LIKE ‘[A-Z][A-Z][A-Z][0-9][0-9][0-9]’

Creating a check constraint visually
To create a check constraint with the visual tools, follow these steps:

1. Open SQL Server Management Studio. Use the Registered Servers
pane to connect to the desired SQL Server instance, which contains
the Chapter14 database, in the Object Explorer.

2. Expand the Databases node, the Chapter14 node, and then the Tables
node.

You should see the node for the dbo.ConstraintTest database.

3. Right-click the dbo.ConstraintTest node and choose Modify from the
context menu.

The Table Designer opens in the right pane of SQL Server Management
Studio (see Figure 14-2).

4. Right-click in the left area of the Table Designer (note where the
cursor is visible in Figure 14-2 to see where). Select the Check
Constraints option on the context menu.

The Check Constraints dialog box opens (see Figure 14-3).

5. Click the Add button in the Check Constraints dialog box.

Some text boxes appear in the right part of the Check Constraints
dialog box.

6. In the Expression text box, type the following expression:

PartNum LIKE ‘[A-Z][A-Z][A-Z][0-9][0-9][0-9]’

Figure 14-2:
The Table
Designer

shows the
columns of

the dbo.
Con

straint
Test table.

197Chapter 14: Maintaining Data Integrity with Constraints and Triggers

21_577557 ch14.qxp 12/20/05 9:51 PM Page 197

Attempting to insert any other pattern than the three uppercase alpha-
betic characters (followed by three numeric digits) in the PartNum
column is a violation of the check constraint.

7. In the Name text box, type PartNum_Constraint.

Notice that you have options in the lower part of the Check Constraints
dialog box to check existing data and to enforce the check constraint for
inserts and updates (see Figure 14-4). The default behavior is for existing
data to be checked and for the check constraint to be enforced on
inserts and updates.

8. Click Close to close the Check Constraint dialog box.

9. Right-click the tab for the pane that contains the Table Designer (refer
to Figure 14-2). Click Save ConstraintTest (the table name may be
different if you created a different table).

10. To test that you have successfully created the check constraint, create
a new query.

Figure 14-4:
The

completed
Check

Constraint
dialog box

for the
PartNum_

Con
straint

check
constraint.

Figure 14-3:
The Check

Constraints
dialog box.

198 Part IV: Protecting Your Data

21_577557 ch14.qxp 12/20/05 9:51 PM Page 198

To do that, click the Database Engine Query button. In the Connection
dialog box, connect to the appropriate SQL Server instance.

11. Test that the table is correctly created by using this code:

SELECT *
FROM dbo.ConstraintTest

The ID and PartNum columns display in the results grid but with no
rows displayed.

12. Add two rows with a correctly constructed part number by using the
following code:

INSERT INTO dbo.ConstraintTest
VALUES (1, ‘ABC123’)

INSERT INTO dbo.ConstraintTest
VALUES (2, ‘XYZ234’)

13. Confirm that the two rows have been inserted successfully by running
this code:

SELECT *
FROM dbo.ConstraintTest

14. Attempt to update the second row with an incorrect value in the
PartNum column by using the following code:

UPDATE dbo.ConstraintTest
SET PartNum = ‘ABC23A’
WHERE ID = 2

The following error message displays:

Msg 547, Level 16, State 0, Line 1
The UPDATE statement conflicted with the CHECK

constraint
“PartNum_Constraint”. The conflict occurred in

database
“Chapter14”, table “ConstraintTest”, column ‘PartNum’.
The statement has been terminated.

15. Attempt to insert a row that doesn’t have a correctly constructed part
number:

INSERT INTO dbo.ConstraintTest
VALUES (3, ‘123ABC’)

The following error message displays:

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the CHECK

constraint
“PartNum_Constraint”. The conflict occurred in

database
Chapter14”, table “ConstraintTest”, column ‘PartNum’.
The statement has been terminated.

199Chapter 14: Maintaining Data Integrity with Constraints and Triggers

21_577557 ch14.qxp 12/20/05 9:51 PM Page 199

As you can see in the two preceding error messages, the check constraint
constrains both the INSERT and UPDATE statements. The check constraint is
evaluated before the INSERT or UPDATE operation takes place, so in both
cases no change is made to the table.

Dropping a check constraint visually
When business rules change, you may need to drop an existing check con-
straint. To drop the check constraint created in the preceding section, follow
these steps. If you left SQL Server Management Studio open, you can skip to
Step 4.

1. Open SQL Server Management Studio and connect to the desired SQL
Server instance by using the Registered Servers pane.

2. In the Object Explorer, expand the Databases node, the Chapter14
node.Tables node, the dbo.ConstraintTest node, the Constraints node,
and then the PartNum_Constraint nose.

3. Right-click the PartNum_Constraint node and select the Delete option.

The constraint is deleted.

Creating a check constraint with T-SQL
To create a check constraint in a table called ConstraintTest2 with T-SQL,
follow these steps:

1. Open SQL Server Management Studio.

2. Click the Database Engine Query option.

3. Enter and execute the following T-SQL code to create the
ConstraintTest2 table:

USE Chapter14

CREATE TABLE ConstraintTest2
(ID int PRIMARY KEY,
PartNum char(6),
CHECK (PartNum LIKE ‘[A-Z][A-Z][A-

Z][0-9][0-9][0-9]’))

Notice that the CHECK clause uses the expression that you used earlier
when you created a check constraint with the visual tools.

4. Try to insert a value with an incorrectly constructed part number:

INSERT INTO ConstraintTest2
VALUES (1, ‘ABCDEF’)

200 Part IV: Protecting Your Data

21_577557 ch14.qxp 12/20/05 9:51 PM Page 200

An error message displays, similar to those shown in the preceding
section.

5. Insert a correctly formed part number into the PartNum column.

INSERT INTO ConstraintTest2
VALUES (1, ‘ABC123’)

6. Confirm the successful insert by using the following code:

SELECT * FROM ConstraintTest2

DDL Triggers
DDL triggers respond to an event associated with a Data Definition Language
(DDL) statement. These DDL statements are

� CREATE

� ALTER

� DROP

You use DDL triggers for the following purposes:

� To prevent changes being made to a schema

� To log who makes changes to a schema

� To respond in some desired way to changes made in a schema

Preventing undesired changes
The following example shows you how to prevent undesired changes being
made to the tables of the Chapter14 database.

1. Use SQL Server Management Studio to connect to the desired SQL
Server 2005 instance.

2. Click the New Database Query button.

3. Ensure you’re using the Chapter14 database:

USE Chapter14

4. Create a trigger to prevent changes being made to the Chapter14
database:

CREATE TRIGGER PreventChanges
ON DATABASE
FOR DROP_TABLE, ALTER_TABLE, CREATE_TABLE
AS

201Chapter 14: Maintaining Data Integrity with Constraints and Triggers

21_577557 ch14.qxp 12/20/05 9:51 PM Page 201

PRINT ‘Making alterations to the Chapter14 database
is not permitted.’

PRINT ‘To make changes you must disable this DDL
trigger.’

ROLLBACK

The first line provides a name for the trigger. The second line specifies
that the trigger apply the database changes. A trigger is bound to a data-
base object; in this case, the current database, Chapter14. The third
line specifies that the trigger executes for DROP TABLE, ALTER TABLE,
and CREATE TABLE statements. The FOR keyword indicates that the
trigger runs before the DDL statement executes.

5. Attempt to create a new table called DDLTriggerTest:

CREATE TABLE DDLTriggerTest
(ID int PRIMARY KEY,
SomeColumn varchar(30))

An error message displays, as shown in Figure 14-5.

6. Attempt to drop the dbo.ConstraintTest table that you created ear-
lier in this chapter:

DROP TABLE dbo.ConstraintTest

The attempted change is prevented with a message similar to the mes-
sage shown in Figure 14-5.

Figure 14-5:
A DDL
trigger

preventing
creation of a

new table.

202 Part IV: Protecting Your Data

21_577557 ch14.qxp 12/20/05 9:51 PM Page 202

7. Drop the trigger:

DROP TRIGGER PreventChanges
ON DATABASE

8. Retry creating the DDLTriggerTest table, which failed in Step 5:

CREATE TABLE DDLTriggerTest
(ID int PRIMARY KEY,
SomeColumn varchar(30))

Because you dropped the trigger in Step 7, you can now successfully create
the DDLTriggerTest table.

Auditing changes
Another use of a DDL trigger is to log how and when changes are made in
database or table structure.

In the following example, I show you how to create a DDL trigger for the
ALTER TABLE statement. Follow these steps:

1. Ensure you are using the Chapter14 database:

USE Chapter14

2. Create a table called AuditedTable. Later you monitor this table for
changes in its structure made by using the ALTER TABLE statement.

CREATE TABLE AuditedTable
(MessageID int PRIMARY KEY,
Message varchar(100))

3. Insert a sample row into the AuditedTable table.

INSERT INTO AuditedTable
VALUES (1, ‘Hello World!’)

4. Confirm that the row has been inserted (see Figure 14-6).

SELECT *
FROM AuditedTable

5. Create a table DDLAudit to contain the information used for auditing.

Using a TIMESTAMP column allows easy monitoring of the sequence of
alterations made:

CREATE TABLE DDLAudit
(
Changed TIMESTAMP,
DateChanged DateTime,
TableName char(30),
UserName varchar(50)
)

203Chapter 14: Maintaining Data Integrity with Constraints and Triggers

21_577557 ch14.qxp 12/20/05 9:51 PM Page 203

6. Confirm that the DDLAudit table has been created and is empty.

SELECT *
FROM DDLAudit

7. Insert a sample row manually into the DDLAudit table.

INSERT INTO DDLAudit (DateChanged, UserName)
VALUES (GetDate(), ‘John Smith’)

8. Confirm that the sample row has been inserted (see Figure 14-7).

SELECT *
FROM DDLAudit

9. Create a trigger named AuditDDL, which responds to an ALTER
TABLE statement.

Notice that in the FOR clause, you write ALTER_TABLE with an under-
score. Notice too that the GetDate() function is used to retrieve the
date and time when the row is inserted into the DDLAudit table. The
suser_sname() function is used to retrieve the system name of the
user making the change in the table schema.

CREATE TRIGGER AuditDDL
ON DATABASE
FOR ALTER_TABLE
AS
INSERT INTO dbo.DDLAudit(DateChanged,
TableName, UserName)
SELECT GetDate(), ‘AuditedTable’, suser_sname()
-- End of Trigger

Figure 14-7:
A sample

row in the
DDLAudit

table.

Figure 14-6:
A sample

row inserted
into the

Audited
Table

table.

204 Part IV: Protecting Your Data

21_577557 ch14.qxp 12/20/05 9:51 PM Page 204

The trigger now responds to any attempt to use the ALTER TABLE
statement to alter the structure of the AuditedTable table.

10. Use the following code to attempt to add an additional column to the
AuditedTable table.

ALTER TABLE AuditedTable
ADD Comment varchar(30)

11. Inspect the content of the DDLAudit table.

SELECT *
FROM DDLAudit

Figure 14-8 shows two rows in the DDLAudit table. The first row you added
manually in Step 7. The DDL trigger added the second row when you exe-
cuted the ALTER TABLE statement in Step 10.

DML Triggers
A DML trigger is executed in response to an event associated with a Data
Modification Language (DML) statement. A DML trigger is associated with
one of the following statements:

� INSERT

� UPDATE

� DELETE

You can use DML triggers either to replace a DML statement or to execute
after a DML statement. A trigger that replaces a DML statement is called an
INSTEAD OF trigger. A trigger that executes after a DML statement is called
an AFTER trigger.

Figure 14-8:
An

additional
row added

to the
DDLAudit

table
following

the ALTER
TABLE

statement.

205Chapter 14: Maintaining Data Integrity with Constraints and Triggers

21_577557 ch14.qxp 12/20/05 9:51 PM Page 205

The inserted and deleted tables
SQL Server automatically manages the deleted and inserted tables. If you
delete rows from a table, the deleted table contains a row that matches the
rows deleted from the other table. Similarly, if you update a row, the deleted
table contains a row with the old values. When you execute an UPDATE,
values are inserted into both the inserted and deleted tables.

If you insert data into a table, a copy of that row or those rows is contained in
the inserted table.

You can use the inserted and deleted tables to determine what kind of
change has been made to the data, as I show you in the next section.

Triggers for auditing DML
A common use for DML triggers is to record, for audit purposes, changes
made to data. The following steps show you how to create a DML trigger to
store information about who changed data:

1. Open a new database engine query in SQL Server Management Studio.

2. Ensure you are working in the Chapter14 database.

USE Chapter14

3. Create a table to store messages called DMLAuditedTable:

CREATE TABLE DMLAuditedTable
(MessageID int PRIMARY KEY,
Message varchar(100))

This is the table you want to audit.

4. Enter a sample value in the DMLAuditedTable table:

INSERT INTO DMLAuditedTable
VALUES (1, ‘Hello World!’)

5. Confirm the successful INSERT operation:

SELECT *
FROM DMLAuditedTable

6. Create a table, DMLAudit, to store the audit information:

CREATE TABLE DMLAudit
(
Changed TIMESTAMP,
DateChanged DateTime,
TableName char(30),
UserName varchar(50),
Operation char(6)
)

206 Part IV: Protecting Your Data

21_577557 ch14.qxp 12/20/05 9:51 PM Page 206

The changed column is of type TIMESTAMP to store information about
the sequence in changes made to the DMLAuditedTable table. In the
Operation column, you store information about whether the DML
change was an INSERT or an UPDATE operation.

7. Enter a sample row manually into the DMLAudit table:

INSERT INTO DMLAudit (DateChanged, UserName)
VALUES (GetDate(), ‘John Smith’)

8. Confirm the successful INSERT operation into the DMLAudit table:

SELECT *
FROM DMLAudit

9. Create a DML trigger called AuditDML:

CREATE TRIGGER AuditDML
ON dbo.DMLAuditedTable
AFTER INSERT, UPDATE
-- NOT FOR REPLICATION
AS
DECLARE @Operation char(6)

IF EXISTS(SELECT * FROM deleted)
SET @Operation = ‘Update’
ELSE
SET @Operation = ‘Insert’

INSERT INTO dbo.DMLAudit(DateChanged,
TableName, UserName, Operation)
SELECT GetDate(), ‘DMLAuditedTable’, suser_sname(),

@Operation
-- End of Trigger

Notice the IF clause that uses information from the deleted table to
determine whether the operation is an UPDATE or an INSERT. That infor-
mation is stored in the @Operation variable. The GetDate() function
retrieves the data and time of the operation and the suser_sname()
function retrieves the username. The Operation column stores the
value in the @Operation variable.

10. Test whether the DML trigger responds to an INSERT operation on the
DMLAuditedTable table by using the following code:

INSERT INTO DMLAuditedTable
VALUES (2, ‘To be or not to be, that is the

question.’)

11. Execute a SELECT statement on the DMLAudit table to confirm that
the INSERT operation has been executed:

SELECT *
FROM dbo.DMLAudit

Notice in Figure 14-9 that the AuditDML trigger added a second row to
the DMLAudit table.

207Chapter 14: Maintaining Data Integrity with Constraints and Triggers

21_577557 ch14.qxp 12/20/05 9:51 PM Page 207

12. Execute an UPDATE statement against the DMLAuditedTable table:

UPDATE DMLAuditedTable
SET Message = ‘Goodbye World!’
WHERE MessageID = 1

13. Test whether the AuditDML trigger has added a row to the DMLAudit
table by using the following code:

SELECT *
FROM DMLAudit

Figure 14-10 shows that the UPDATE operation also caused a row to be
added to the DMLAudit table. Notice that the value in the Operation
column is Update.

The information you store in an audit table can be much more extensive than
shown in this example. The scope is limited only by your knowledge of T-SQL
and your business setting.

Figure 14-10:
A further

row added
to the

DMLAudit
table

in response
to an

UPDATE
operation.

Figure 14-9:
A row

added to the
DMLAudit

table in
response

to an
INSERT
operation.

208 Part IV: Protecting Your Data

21_577557 ch14.qxp 12/20/05 9:51 PM Page 208

Part V
Administering a

SQL Server System

22_577557 pt05.qxp 12/20/05 9:51 PM Page 209

In this part . . .

I show you techniques to configure SQL Server and how
to create SQL Server Agent jobs.

I introduce you to SQL Server Notification Services, show
you how to create maintenance plans, and introduce you
to topics relevant to working with multiple servers.

22_577557 pt05.qxp 12/20/05 9:51 PM Page 210

Chapter 15

Configuring a SQL Server System
In This Chapter
� Configuring using SQL Server Configuration Manager

� Configuring using SQLCMD

� Configuring using SQL Server Management Studio

Microsoft has put a lot of thought into making SQL Server work well out
of the box. However, over time, almost inevitably you will want to con-

figure some of the settings to make SQL Server better suited to work opti-
mally in your own environment. In this chapter, I show you how to use the
configuration tools available with SQL Server 2005 to carry out several con-
figuration tasks.

Microsoft has given you several tools that you can use to configure a SQL
Server 2005 instance. In this chapter, I describe three configuration tools:

� SQL Server Configuration Manager

� The SQLCMD command-line utility

� SQL Server Management Studio

Using SQL Server Configuration Manager
SQL Server Configuration Manager is a GUI tool that is new in SQL Server
2005. It is intended to replace Client Network Utility, Server Network Utility,
and Service Manager. You still use those tools to manage instances of SQL
Server 2000 in your network. You use SQL Server Configuration only for con-
figuring SQL Server 2005 instances.

23_577557 ch15.qxp 12/20/05 9:52 PM Page 211

SQL Server Configuration Manager allows you to carry out the following tasks:

� Manage the services associated with the various components of SQL
Server 2005

� Configure the network protocols used by SQL Server 2005

� Manage the configuration of network connectivity for client computers

You can use SQL Server Configuration Manager to manage the following
services:

� Database engine: MSSQLServer for a default instance and
MSSQLServer$instanceName for a named instance. Each instance of
SQL Server 2005 is managed separately but in the same interface. This
lets you run the SQL Server relational database engine.

� Analysis Services: This lets you run the Analysis Services service. I
describe Analysis Services in Chapter 21.

� Integration Services: This lets you run the Integration Services service.
(In some places, this is still referred to as “DTS.”) I describe Integration
Services in Chapter 20.

� Reporting Services: This lets you run the Reporting Services service. I
describe Reporting Services in Chapter 22.

� SQL Agent: This lets you execute scheduled tasks in SQL Server 2005.

� SQL Browser: This enables SQL Server to match ports with SQL Server
instances.

� SQL Server Full Text Search: This enables full-text search.

SQL Server Configuration Manager lets you enable or disable the following
network protocols:

� Shared Memory

� Named Pipes

� TCP/IP

� VIA

You can use SQL Server Configuration Manager in two ways:

� As a stand-alone application

� As part of a Microsoft Management Console (MMC)

Using SQL Server Configuration Manager as a stand-alone application is par-
ticularly convenient on a development machine when you may only want to
configure local settings. However, you cannot use stand-alone SQL Server
Configuration Manager to manage a remote machine.

212 Part V: Administering a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 212

Adding SQL Server Configuration Manager
to an MMC console
SQL Server Configuration Manager uses Microsoft Management Console
(MMC) snap-in technology. On a typical SQL Server 2005 install, the SQL
Server management console is installed as a stand-alone application that you
can access from the Start menu: Start➪All Programs➪Microsoft SQL Server
2005➪Configuration Tools➪SQL Server Configuration Manager.

Alternatively, you can add SQL Server Configuration Manager inside another
Microsoft management console. You can add it to a new MMC console or to
an existing one. To add it to a new MMC console, follow these steps:

1. Choose Start➪Run.

2. In the Run dialog box, type MMC and click OK.

A blank Microsoft Management Console opens, as displayed in Figure 15-1.

If you want to add SQL Server Configuration Manager to an existing
Microsoft Management Console, start your selected MMC application at
this step, and then continue to Step 3.

3. Choose File➪Add/Remove Snap-in in the Microsoft Management
Console.

The Add/Remove Snap-in dialog box opens, as shown in Figure 15-2.

Figure 15-1:
A blank

Microsoft
Management

Console.

213Chapter 15: Configuring a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 213

4. Click the Add button.

5. In the Add Standalone Snap-in dialog box that appears, scroll down
until you see the SQL Server Configuration Manager option. Highlight
it as shown in Figure 15-3 and then click the Add button.

The SQL Server Configuration Manager is added to the Add/Remove
Snap-in dialog box.

Figure 15-3:
Select the

SQL Server
Configuration
Manager in

the Add
Standalone

Snap-in
dialog box.

Figure 15-2:
The Add/
Remove
Snap-in

dialog box.

214 Part V: Administering a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 214

6. Click the Close button in the Add Standalone Snap-in dialog box.

7. Click OK in the Add/Remove Snap-in dialog box.

SQL Server Configuration Manager displays in the Microsoft
Management Console window, as shown in Figure 15-4.

You can now use SQL Server Configuration Manager inside the Microsoft
Management Console. Figure 15-5 shows the nodes of SQL Server Configura-
tion Manager expanded in the left pane of the management console, with the
node for management of network protocols for a default instance of SQL
Server 2005 selected.

Figure 15-5:
The nodes

contained in
SQL Server

Configuration
Manager.

Figure 15-4:
SQL Server

Configu-
ration

Manager
added to
an MMC

application.

215Chapter 15: Configuring a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 215

Managing SQL Server services
SQL Server Configuration Manager provides an alternative way to manage
services associated with SQL Server.

The conventional way to access and manage services is to choose Start➪
Control Panel ➪Administrative Tools➪Services (Windows XP with Classic
view). If you’re using Windows 2003 Server, you can access the Services
window by choosing Start➪Administrative Tools➪Services. The big downside
to the conventional Services window is that you can have a large number of
services running and it is difficult to clearly view all services together that
relate to SQL Server. SQL Server Configuration Manager makes it much easier
to see what is happening with SQL Server-related services. Another advantage
of using SQL Server Configuration Manager is that it forces a checkpoint on all
databases. That speeds recovery and SQL Server startup.

To view the installed SQL Server-related services on the local machine, follow
these steps:

1. Start SQL Server Configuration Manager by choosing Start➪
All Programs➪Microsoft SQL Server 2005➪Configuration Tools➪
SQL Server Configuration Manager.

SQL Server Configuration Manager opens (see Figure 15-6).

2. Choose one of two ways to open the Services pane: Either single-click
SQL Server 2005 Services in the left pane or double-click SQL Server
2005 Services in the right pane.

The services display in the right pane; see Figure 15-7.

Figure 15-6:
The default
settings of

SQL Server
Configuration

Manager.

216 Part V: Administering a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 216

If a service that relates to SQL Server 2005 doesn’t display, then it’s
likely not installed or some problem occurred during installation.

Notice that several pieces of information display about each service.
Most important is whether or not the service is running. A small right-
pointing green arrow indicates that a service is running. A small red
square indicates that the service is not running.

To start, stop, or inspect the properties of a service, you must first
select the service.

3. To stop a running service, right-click the service and select Stop from
the context menu.

The dialog box shown in Figure 15-8 displays.

4. To start a stopped service, right-click the service and select Start from
the context menu.

5. To display the properties of a service, right-click the service and
select Properties from the context menu.

Figure 15-9 shows the Log On tab of the SQL Server (MSSQLServer)
Properties dialog box. The name of the service displays in brackets in
the title bar of the dialog box.

Figure 15-8:
The dialog

box displays
when

stopping a
service.

Figure 15-7:
The SQL

Server 2005
services

display in
the right

pane.

217Chapter 15: Configuring a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 217

If the dialog box relates to Integration Services, Analysis Services, or
Reporting Services, the service name displays in the title bar of the
Properties dialog box. In the Reporting Services properties dialog box, you
can access the Reporting Services Configuration tool by clicking the
Configure button (see Figure 15-10).

Figure 15-10:
The

Reporting
Services

Properties
dialog box.

Figure 15-9:
The SQL

Server
(MSSQL
Server)

Properties
dialog box.

218 Part V: Administering a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 218

Chapter 21 goes into more detail about Analysis Services; Chapter 20 includes
Integration Services; and you find more about Reporting Services in Chapter 22.

You can use the preceding steps to start and stop services on a remote com-
puter after you connect to the remote computer. Connecting to a remote
computer is described in the next section.

Connecting to a remote computer
The stand-alone SQL Server Configuration Manager has no functionality to
allow an administrator to connect to a remote computer. To connect to a
remote computer, you must use Windows Computer Management MMC con-
sole. The following steps show you how to make the connection to the
remote computer:

1. Click the Start button. Right-click My Computer and select Manage
from the context menu.

Windows Computer Management console opens.

2. Expand the Services and Applications node in Windows Computer
Management console and you see the SQL Services Configuration
Manager as a node under the Services and Applications node (see
Figure 15-11).

Figure 15-11:
SQL Server

Configuration
Manager in

Windows
Computer

Management
console.

219Chapter 15: Configuring a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 219

3. Right-click the Computer Management (Local) node and select Connect
to Another Computer from the context menu (see Figure 15-12).

4. In the Select Computer dialog box that appears, enter the name of a
remote computer to which you have access and click OK.

Figure 15-13 shows a connection targeted at a computer named
SQLSERVER2005.

After you click OK, the Select Computer dialog box closes. You’re
returned to Windows Computer Management console. Notice in Figure
15-14 that the name of the remote computer you’ve connected to dis-
plays in the top node (highlighted in the figure).

Figure 15-13:
Enter a

computer
name in the

Select
Computer

dialog box.

Figure 15-12:
Selecting

the Connect
to Another
Computer

option.

220 Part V: Administering a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 220

You can now (on the remote computer) stop, start, or inspect services as
described in the preceding section. Or configure network protocols as
described in the next section.

SQL Server Configuration Manager supports the Shared Memory Named
Pipes, TCP/IP, and VIA protocols only.

Configuring network protocols
To configure network protocols, follow these steps. The steps are the same
whether you are connected to a local machine or connected remotely. Be sure
that you know which machine you are connected to when making changes.

1. Open SQL Server Configuration Manager by choosing Start➪
All Program➪Microsoft SQL Server 2005➪Configuration Tools➪
SQL Server Configuration Manager.

2. If appropriate, switch to the machine where you want to configure
SQL Server 2005.

3. Click the SQL Server 2005 Network Configuration node in the left
pane of Configuration Manager.

The node expands to display each SQL Server 2005 instance that is avail-
able for configuration on the chosen machine. Figure 15-15 shows the sit-
uation on a machine that has a default instance of SQL Server 2005 and a
named instance (SQLExpress).

Figure 15-14:
The name of

the remote
computer

displays in
Windows
Computer

Management
console.

221Chapter 15: Configuring a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 221

Notice in the right pane in Figure 15-15 that the network protocols for a
SQL Server 2005 instance display together with their current status.

4. To change the status of a protocol, right-click the protocol and select
Enable or Disable from the context menu.

If the protocol is currently disabled, only the Enable option displays on
the context menu. Similarly, if the protocol is currently enabled, only the
Disable option displays.

5. To inspect, and optionally change, the properties of a protocol, right-
click the desired protocol and select Properties from the context menu.

The content of the Properties dialog box for each protocol is different.
Figure 15-16 shows the Properties dialog box for the TCP/IP protocol.

Figure 15-16:
The TCP/IP
Properties
dialog box.

Figure 15-15:
The SQL

Server 2005
Network

Configura-
tion node.

222 Part V: Administering a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 222

Configuring client computers
Many client computers will already be configured to use a network protocol
like TCP/IP. If you need to configure a client computer to run a network proto-
col, follow these steps after installing SQL Server Configuration Manager on
the client machine or using SQL Server Configuration Manager inside Windows
Computer Management to connect to a client machine across the network:

1. Navigate to the SQL Native Client Configuration node and expand it.

2. Click the Client Protocols option in the left pane.

The available network protocols display in the right pane. If the network
protocol you desire to enable is already enabled you don’t need to do
anything more.

3. To enable a protocol, select the protocol and then right-click and
select Enable from the context menu.

Configuring Using SQLCMD
The SQLCMD utility allows you to send T-SQL code to an instance of SQL
Server 2005 from the command prompt and, assuming you have the neces-
sary permissions, configure the SQL Server instance or database objects to
behave in desired ways.

Getting started with SQLCMD
SQLCMD is installed if you select client tools when you install SQL Server 2005.

If SQLCMD is installed and you’re connecting to a local instance of SQL
Server — for example, on a development machine — follow these steps to
connect to the default instance of SQL Server 2005:

1. Open a Windows command prompt by choosing Start➪Run, typing
CMD in the Run dialog box, and then clicking OK.

A command line console opens.

2. At the command line, type SQLCMD.

The prompt changes to:

1>

and you can then type T-SQL commands. Figure 15-17 shows the prompt.

223Chapter 15: Configuring a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 223

You can now execute any T-SQL command. In this example, you create a
database and add a new login and user. Because this is a command-line
interface, you must type each line, and then press Return to get to the
next line. The number that makes up part of the command prompt
increases at each line.

3. To create a database called Chapter15, type this code (I have included
the prompts; DO NOT type those when you enter the T-SQL):

1>CREATE DATABASE Chapter15
2>GO

and then press Return. The GO statement is not a T-SQL statement.
SQLCMD interprets GO to mean that a batch of T-SQL statements are to
be sent for execution. The prompt changes back to 1> indicating that
the command has run without errors. If there are any error messages,
those are displayed.

4. To add a CMDTest table, use the following code:

1>CREATE TABLE CMDTest
2> (ID int PRIMARY KEY,
3> Message varchar(150))
4>GO

and then press Return to execute it. Again the prompt returns to 1>.

5. To add a login, type the following code and then press Return:

1>CREATE LOGIN CMDTest WITH PASSWORD = ‘abc123’
2>GO

6. Before you add a user, which has permissions in the scope of a data-
base, switch the context to the Chapter15 database:

1>USE Chapter15
2>GO

Figure 15-17:
The

SQLCMD
prompt.

224 Part V: Administering a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 224

7. Add the user to the Chapter15 database:

1>CREATE USER CmdTest
2>GO

8. Open SQL Server Management Studio and connect to the SQL Server
instance.

9. In the Object Explorer, expand the Security node for the SQL Server
instance.

10. Expand the Logins node.

The new login, CMDTest, is listed in the logins, as shown in Figure 15-18.

11. To confirm that the user CMDTest has been added to the Chapter15
database, expand the node with this path: Databases➪Chapter15➪
Security➪Users.

The CMDTest user is listed, as shown in Figure 15-19.

You can carry out any configuration task that you have permissions for and
the knowledge of T-SQL to carry out.

Figure 15-19:
A new user
added with

SQLCMD.

Figure 15-18:
A new

login added
by using

SQLCMD.

225Chapter 15: Configuring a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 225

Executing a T-SQL script with SQLCMD
You can execute any saved T-SQL script with the SQLCMD utility. The exam-
ple accesses a GetDate.sql script, which has a single line of T-SQL code
that retrieves the current date and time:

SELECT GetDate()

To run the GetDate.sql script, type the following at the command prompt
on a single line, and then press Return. (The instructions assume that
GetDate.sql is in the Chapter15 folder.)

sqlcmd -i “C:\Documents and Settings\All Users\Documents\
Chapter15\GetDate.sql”

The current date and time displays, as shown in Figure 15-20.

Logging in as a specified user
To log in as a particular user to an instance of SQL Server 2005 by using
SQLCMD, follow these steps:

1. Open a command window prompt by choosing Start➪Run, typing
CMD in the Run dialog box, and then clicking OK.

2. At the command prompt type

sqlcmd -U username

For example, if you want to log in as the sa user, type the following:

sqlcmd -U sa

The username in the preceding code is a login for SQL Server 2005.
Unlike T-SQL code, the login is case sensitive. The -U argument is also
case sensitive.

Figure 15-20:
Using

SQLCMD to
run a T-SQL

script to
find the date

and time.

226 Part V: Administering a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 226

A prompt displays.

3. You type in the password and you have access to the SQL Server
instance as before.

When you type the password, the keystrokes are not echoed to the con-
sole. So you need to be precise about pressing the keys in order to avoid
a mistake.

You can log in to SQLCMD by using the -U and -P arguments as in the follow-
ing command:

sqlcmd -u sa -p myPassword

This does not conceal the characters in the password on-screen. If there is
any possibility of somebody watching over your shoulder while you type or
having access to an open command console that you used to log in, you
should avoid this approach, because the password is readable in plain text. I
suggest that if you don’t use Windows Authentication to log in that you only
use -U and avoid the -P argument. By doing that, you supply the password
separately and it is not echoed to the screen.

Connecting to a remote
SQL server instance
You can also use SQLCMD to connect to an instance of SQL Server 2005 across
a Windows network. To do that, use the -S argument. You use the CmdTest
login that I show you how to create in the “Getting started with SQLCMD” sec-
tion, earlier in the chapter. You must have Named Pipes enabled on both
machines for the remote login to work. I show you earlier in this chapter (in
the “Configuring network protocols” section) how to enable network protocols
by using SQL Server Configuration Manager. Named Pipes is one of the network
protocols that you can use SQL Server Configuration Manager to enable.

To connect to the default instance of SQL Server 2005 on a server that is
named SQLServer2005, follow these steps:

1. At the command line, type the following:

sqlcmd -S SQLServer2005 -U CmdTest

The prompt displays, requesting a password.

2. Enter the password and press Return.

The 1> prompt displays, shown in Figure 15-21, indicating a successful
connection to the remote instance of SQL Server 2005.

227Chapter 15: Configuring a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 227

Configuring Using SQL Server
Management Studio

SQL Server Management Studio, which I introduce you to in Chapter 3, has
many options that allow you to configure aspects of a SQL Server 2005 instal-
lation. The examples I show assume that you’re connecting locally to a
default instance of SQL Server 2005.

SQL Server instance level configuration
You can carry out many tasks at the SQL Server instance level by using SQL
Server Management Studio. To access the dialog boxes to allow you to carry
out those tasks, follow these steps:

1. Open SQL Server Management Studio and open the Object Explorer
with the desired instance of SQL Server 2005 selected.

2. Right-click the name of the instance and choose Properties from the
context menu.

The Server Properties dialog box opens, as shown in Figure 15-22.

Notice in Figure 15-22 the names in the left pane. Clicking these names allows
you to access and configure a large number of server properties. At the risk
of stating the obvious, be sure that you only configure properties if you
understand the effects of the changes you make.

Figure 15-21:
Connecting

remotely
by using

SQLCMD.

228 Part V: Administering a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 228

The following panes contain configuration options:

� Memory

� Processors

� Security

� Connections

� Database settings

� Advanced

� Permissions

Inspect the different panes to see which properties are read only and which
you can change.

Configuring at the database level
SQL Server Management Studio gives you access to many properties that you
can configure at the database level. To configure properties for the Chapter15
database, follow these steps:

Figure 15-22:
The Server
Properties
dialog box.

229Chapter 15: Configuring a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 229

1. Open the Databases node.

2. Right-click the Chapter15 node and select Properties from the
context menu.

The Database Properties dialog box, shown in Figure 15-23, opens.

The Database Properties dialog box gives you access to properties under the
following headings:

� Files

� Filegroups

� Options

� Permissions

� Extended Properties

� Mirroring

� Transaction Log Shipping

Figure 15-23:
The

Database
Properties
dialog box.

230 Part V: Administering a SQL Server System

23_577557 ch15.qxp 12/20/05 9:52 PM Page 230

Chapter 16

Scheduling SQL Server
Agent Jobs

In This Chapter
� Discovering SQL Server Agent

� Setting permissions for SQL Agent

� Setting up SQL Server Agent

� Enabling jobs and alerts

� Controlling SQL Server Agent with T-SQL

� Setting up automated maintenance tasks

As a database administrator, you must carry out many tasks several
times in order to keep a SQL Server 2005 database installation in good

shape. Often such repeated tasks must be done at particular times. For exam-
ple, some must be done every day, some every week. Because of the repeti-
tive, but essential, nature of these tasks, SQL Server supports a way to carry
out such necessary tasks automatically. Carrying out the tasks individually by
hand is expensive in time (and therefore money) and can produce boredom
and error (after all, most administrators are human). Therefore an automated
approach is preferable. SQL Server Agent is in charge of automated tasks.

In SQL Server Agent, you create a job to carry out a task in an automated way.
You use an alert to inform a database administrator or other human being of
a particular situation that needs human assessment or intervention. You may
want, for example, to back up SQL Server data on a fixed schedule. SQL
Server Agent is ideal to carry out this task.

In this chapter, I often refer to SQL Server Agent simply as SQL Agent. I use
the terms interchangeably. Microsoft uses both terms.

In the final part of the chapter, I introduce the Maintenance Plan Wizard that
allows you to automate maintenance tasks. The Maintenance Plan Wizard cre-
ates SQL Server Agent jobs under the covers.

24_577557 ch16.qxp 12/20/05 9:53 PM Page 231

Introducing SQL Server Agent
SQL Server Agent is a service that allows you to automate administrative
tasks. It stores the information needed to carry out its function in SQL Server.

You can use SQL Server Agent for two types of tasks: monitoring and mainte-
nance. You can use SQL Server Agent to do two types of thing:

� Carry out a task, whether monitoring or maintenance, on one or several
instances of SQL Server.

� Inform, or alert, a database administrator or other professional if certain
situations arise.

The two preceding bullet points relate, respectively, to a job and an alert in
SQL Server Agent.

The following are examples of tasks that you might want to use SQL Server
Agent to carry out:

� Backing up data

� Moving or copying data to a data warehouse

� Scheduled database maintenance

Managing Agent from SQL Server
Management Studio
You can manage SQL Server Agent from SQL Server Management Studio. A
basic task is to find out whether or not SQL Server Agent is running. To
access information on SQL Server Agent, follow these steps:

1. Start SQL Server Management Studio.

Use the Registered Servers pane to connect to the desired SQL Server
instance by using the Object Explorer.

2. If the Registered Servers pane is not visible, choose View➪Registered
Servers. In the Registered Servers pane, select the desired instance,
and then right-click and choose Connect➪Object Explorer from the
context menu.

3. In the Object Explorer, click the desired SQL Server instance. Expand
the instance node, if it is not already expanded.

The SQL Agent icon is visible below all other nodes for that SQL Server
instance. In Figure 16-1, you see the appearance when SQL Agent is not
running. Notice the message that Agent XPs are disabled. Later in this

232 Part V: Administering a SQL Server System

24_577557 ch16.qxp 12/20/05 9:53 PM Page 232

chapter, in the “Enabling SQL Agent extended stored procedures” sec-
tion, I explain how to enable Agent extended stored procedures. Notice,
too, that no + sign allows you to expand the SQL Agent node.

Figure 16-2 shows the appearance when SQL Agent is running. Notice in Figure
16-2 that, when SQL Agent is running, the node can be expanded. Figure 16-3
shows the features that display when the SQL Agent node is expanded.

The most important nodes in Figure 16-3 are Jobs, Alerts, and Operators,
which you use to create and configure jobs, alerts, and operators, respec-
tively. I show you how to carry out those tasks later in this chapter.

A SQL Server Agent proxy allows SQL Agent to carry out a job step by using
the security credentials of an appropriate user.

Figure 16-3:
The SQL

Agent
features in

Object
Explorer.

Figure 16-2:
SQL Agent

icon
displayed

when SQL
Agent is
running.

Figure 16-1:
SQL Agent

icon
displayed

when SQL
Agent is not

running.

233Chapter 16: Scheduling SQL Server Agent Jobs

24_577557 ch16.qxp 12/20/05 9:53 PM Page 233

Starting and stopping SQL Server Agent
Using SQL Server Management Studio, you can easily start or stop the SQL
Server Agent service.

The following descriptions assume you have SQL Server Management Studio
open as described in the preceding section.

To start SQL Agent if it’s stopped, right-click the SQL Agent node in the
Object Explorer and select the Start option from the context menu.

To stop SQL Agent when it’s running, right-click the SQL Agent node in the
Object Explorer and select the Stop option from the context menu.

As well as needing to be able to start and stop SQL Agent, you also need to be
able to configure SQL Agent to start when the server on which SQL Server
2005 is installed is restarted.

Setting SQL Agent to start automatically
All SQL Server automation depends on the SQL Server Agent service. If you
configure SQL Agent to carry out a task at specified times and forget to
ensure that the SQL Agent service is running, then the task isn’t carried out.
Depending on how often you monitor the results of SQL Agent jobs, you may
be unaware of this for some time.

If you stop the SQL Server service the SQL Server Agent service is also
stopped.

To ensure that SQL Agent is always running, be sure to set it, and the SQL
Server service, to start automatically when the SQL Server machine starts.
Then if the machine reboots after a software update or reboots after a tempo-
rary power outage, you can be sure that the SQL Agent service is running.

SQL Agent is a Windows service. You have two options to make SQL Agent
start automatically when the server machine starts: SQL Server Configuration
Manager or the Services utility.

To use SQL Server Configuration Manager to set SQL Agent to start automati-
cally, follow these steps:

234 Part V: Administering a SQL Server System

24_577557 ch16.qxp 12/20/05 9:53 PM Page 234

1. Open SQL Server Configuration Manager (or a Microsoft Management
Console to which SQL Server Configuration Manager has been added,
as I describe in Chapter 15).

2. Select SQL Server 2005 Services in the left pane.

The SQL Server services display in the right pane.

3. Select the SQL Server Agent service, right-click, and choose
Properties from the context menu.

The SQL Server Agent Properties dialog box opens.

4. On the Service tab (shown in Figure 16-4), check the Start Mode drop-
down menu to see when (or if) the SQL Agent service starts when the
server restarts. If you want the SQL Agent service to start automati-
cally, select the Automatic option.

5. Assuming that you don’t want to make any other changes to SQL
Agent properties, click Apply and then click OK.

You can also set the SQL Agent service to start automatically by using the
SQL Server Surface Area Configuration Manager. Follow these steps:

1. Choose Start➪All Programs➪Microsoft SQL Server 2005➪
Configuration Tools➪SQL Server Surface Area Configuration.

Figure 16-5 shows the SQL Server 2005 Surface Area Configuration tool.

Figure 16-4:
Selecting

the
Automatic
option for

SQL Agent.

235Chapter 16: Scheduling SQL Server Agent Jobs

24_577557 ch16.qxp 12/20/05 9:53 PM Page 235

2. Select the Surface Area Configuration for Services and Connections.

The Surface Area Configuration for Services and Connections dialog box
opens (see Figure 16-6).

3. Select the SQL Agent option in the left pane.

The right pane displays information about the SQL Agent service.

4. Select Automatic from the Startup Type drop-down menu.

5. Click Apply and then click OK.

Figure 16-6:
The Surface
Area Config-

uration for
Services

and
Connections

dialog box.

Figure 16-5:
The SQL

Server
Surface

Area Con-
figuration

tool.

236 Part V: Administering a SQL Server System

24_577557 ch16.qxp 12/20/05 9:53 PM Page 236

Using Agent in Business Intelligence
In addition to handling routine administration tasks, you can use SQL Server
Agent to schedule the execution of Integration Services packages or the exe-
cution or distribution of Reporting Services reports.

You might want to run a SQL Server Integration Services package to trans-
form and transport a day’s data each evening to a data warehouse. SQL
Server Agent is used to schedule running of the Integration Services package.
Similarly, if you schedule report delivery in Reporting Services, SQL Server
Agent is responsible for correct scheduling.

I describe SQL Server Integration Services in Chapter 20 and SQL Server
Reporting Services in Chapter 22.

Security
In SQL Server 2005, you must use Windows Authentication when using SQL
Agent. SQL Server Authentication is available only when using SQL Agent
with instances of earlier versions of SQL Server.

Each job step can have its own security context. This provides granular secu-
rity so that each step is carried out with minimum permissions, so cutting
down the risk of inappropriate use of a SQL Agent task.

You should create specific proxy user accounts (they display in the Proxies
node in Object Explorer) to run job steps. Each proxy user account should be
granted only the permissions necessary to carry out a particular job step.

For SQL Agent to automate tasks successfully, it must have appropriate per-
missions for each aspect of what it needs to do.

Permissions for SQL Agent
You can use the SQL Agent service to carry out jobs locally or across a net-
work. When SQL Agent is carrying out jobs only on a local server, you can
run SQL Agent as a local machine account. When you want SQL Agent to
carry out jobs across a network, you use a domain user account.

After you install SQL Server Agent and start the service, you can view or
change the account under which SQL Agent runs by following these steps:

1. Start SQL Server Configuration Manager by choosing Start➪
All Programs➪Microsoft SQL Server 2005➪Configuration Tools➪
SQL Server Configuration Manager.

237Chapter 16: Scheduling SQL Server Agent Jobs

24_577557 ch16.qxp 12/20/05 9:53 PM Page 237

2. Select SQL Server 2005 Services in the left pane.

The available SQL Server services display in the right pane.

3. Right-click the desired SQL Agent service and select the Properties
option from the context menu.

The SQL Server Agent Properties dialog box opens (see Figure 16-7). The
Log On tab displays by default.

4. You can view the options by clicking the Built-in Account drop-down
menu, as shown in Figure 16-7.

5. To change to a specified account other than one of the built-in
accounts, select the This Account radio button, and then supply an
account name and password.

Permissions for users
Following installation of SQL Server 2005, only system administrators can
view, modify, create, or execute SQL Server Agent jobs. For any other type of
user to even view the Agent node in SQL Server Management Studio, the
administrator must grant the relevant permissions.

To grant sysadmin permissions to the login CMDTest that you create in
Chapter 15, follow these steps. Choose another appropriate login, if needed,
as appropriate to your circumstances.

Figure 16-7:
The SQL

Server
Agent

Properties
dialog box

showing the
Log On tab.

238 Part V: Administering a SQL Server System

24_577557 ch16.qxp 12/20/05 9:53 PM Page 238

1. Open SQL Server Management Studio. Select the instance in Registered
Servers. Right-click and choose Connect➪Object Explorer.

2. Expand the Security node.

3. Right-click the CMDTest login (or other desired login). Select
Properties from the context menu.

The Login Properties dialog box displays (see Figure 16-8).

4. Select the User Mapping option in the left pane of the Login Properties
dialog box.

The right pane changes to show options for User Mapping.

5. In the Users Mapped to This Login area of the right pane, select the
check box for the msdb database.

The options in the lower part of the right pane become available for
selection.

6. Scroll down the Database Role Membership For list.

The options relevant to SQL Agent display (see Figure 16-9).

Figure 16-8:
The Login

Properties
dialog box.

239Chapter 16: Scheduling SQL Server Agent Jobs

24_577557 ch16.qxp 12/20/05 9:53 PM Page 239

7. Check the options SQLAgentOperatorRole, SQLAgentReaderRole
and/or SQLAgentUserRole, as appropriate.

8. Click OK to confirm the changes that you’ve made.

To enable other users to use SQL Server Agent, you must assign a user to one
of two roles: SQLAgentUserRole or MaintenanceUserRole. Users to
whom you grant permissions for these roles can create SQL Server agent
jobs. They can manage jobs that they have created.

Configuring SQL Server Agent
You need to correctly set several configuration options for SQL Agent to per-
form some or all the actions you’re likely to need.

Windows permissions
To run successfully, SQL Agent needs the following Windows permissions:

� Adjust memory quotas for a process

� Act as a part of the operating system

� Bypass traverse checking

� Log in as a batch job

Figure 16-9:
Selecting

SQL Agent
roles in

the msdb
database.

240 Part V: Administering a SQL Server System

24_577557 ch16.qxp 12/20/05 9:53 PM Page 240

� Log in as a service

� Replace a process level token

If you’re having problems running SQL Agent, you may want to check that
each of these permissions has been granted to the SQLAgentUserRole
account. To check granting of those Windows permissions locally, follow
these steps:

1. Choose Start➪Administrative Tools➪Local Security Policy (Windows
2003) or Start➪Control Panel➪Administrative Tools➪Local Security
Policy (Windows XP).

Figure 16-10 shows the appearance of the Local Security Settings dialog
box on Windows 2003.

2. Expand the Local Policies node, and then select User Rights
Assignment.

The individual policies display in the right pane.

3. To check whether SQL Agent has permissions — for example, to log in
as a service — select the Log On as a Service option in the right pane.
Right-click and select Properties from the context menu.

The Log On as a Service Properties dialog box displays.

4. Examine the list in the dialog box and check whether the
SQLAgentUser role is listed.

It is highlighted in Figure 16-11.

Figure 16-10:
The Local

Security
Settings

dialog box.

241Chapter 16: Scheduling SQL Server Agent Jobs

24_577557 ch16.qxp 12/20/05 9:53 PM Page 241

5. Repeat Steps 3 and 4 to check the status of the other permissions
listed in the preceding bulleted list.

Enabling SQL Agent extended
stored procedures
To enable SQL Server Agent extended stored procedures, you use the
sp_configure system stored procedure. To turn on Agent extended proce-
dures, follow these steps.

1. Open SQL Server Management Studio.

2. Click the Database Engine Query button.

3. Because you must enable the advanced options to make the necessary
change, run this T-SQL code:

sp_configure ‘show_advanced_options’, 1
GO

4. Run the following code to apply the change:

Reconfigure
GO

5. Run the following code to enable Agent extended stored procedures:

sp_configure ‘Agent XPs’, 1
GO
Reconfigure
GO

Figure 16-11:
The Log On

as a Service
Properties
dialog box.

242 Part V: Administering a SQL Server System

24_577557 ch16.qxp 12/20/05 9:53 PM Page 242

6. Check that the config_value column now contains a value of 1 by
using the following code.

sp_configure
GO

Figure 16-12 shows the desired appearance.

Creating Jobs and Alerts
When using SQL Server Agent in a production setting, you’ll likely want to
create both jobs and alerts.

Creating a SQL Agent job
The following example uses a database, Chapter16, which you create by
using the following T-SQL code:

CREATE DATABASE Chapter16

Add a DateTimeInserts table by using the following code:

CREATE TABLE DateTimeInserts
(ID INT PRIMARY KEY,
DateFromAgent DateTime)

Insert a sample value into the table and view it by using the following code:

INSERT INTO DateTimeInserts
VALUES(1, GetDate())

SELECT *
FROM DateTimeInserts

Figure 16-12:
Enabling the

Agent
Extended

stored
procedures.

243Chapter 16: Scheduling SQL Server Agent Jobs

24_577557 ch16.qxp 12/20/05 9:53 PM Page 243

The example job inserts a row into the DateTimeInserts table with the
value of the current date and time stored in the DateFromAgent column.

To create a SQL Server Agent job in SQL Server Management Studio, follow
these steps:

1. Open SQL Server Management Studio. Select a desired SQL Server
instance in Registered Servers. Right-click the desired instance and
choose Connect➪Object Explorer from the context menu.

The desired instance displays in the Object Explorer.

2. Expand the SQL Agent node.

You can expand it only if the SQL Agent service is running. If the service
is not running, follow the steps in the “Starting and stopping SQL Server
Agent” section, earlier in this chapter.

3. Right-click the Jobs node and select New Job from the context menu.

The New Job dialog box opens, as shown in Figure 16-13.

4. Give the new job a name and description, as shown in Figure 16-14.

You can leave the category as unclassified.

Figure 16-13:
The New

Job dialog
box.

244 Part V: Administering a SQL Server System

24_577557 ch16.qxp 12/20/05 9:53 PM Page 244

5. Select Steps in the left pane of the New Job dialog box. In the right
pane, click the Add button to add a new step (the only step in this
example) to the job.

The New Job Step dialog box displays as shown in Figure 16-15.

Figure 16-15:
The New
Job Step

dialog box.

Figure 16-14:
Supplying a

name and
description

for the
new SQL

Agent job.

245Chapter 16: Scheduling SQL Server Agent Jobs

24_577557 ch16.qxp 12/20/05 9:53 PM Page 245

6. Give the step a name such as “Inserting a date value”. In the code
area, insert the following code:

USE Chapter16

INSERT INTO DateTimeInserts (DateFromAgent)
VALUES(GetDate())

7. Click the OK button.

You return to the New Job dialog box. In Figure 16-16, you can see that
the new step has been added to the job.

8. Click Schedules in the left pane of the New Job dialog box.

9. Give the schedule a name. Specify a schedule of every 1 minute and
give the schedule a name, as shown in Figure 16-17. Click OK.

You can have more than one schedule, so be sure that you use a unique
name for each schedule.

In this example, you won’t define alerts or notification for the job.

10. Return to SQL Server Management Studio and run this code:

USE Chapter16
SELECT *
FROM DateTimeInserts

Figure 16-16:
A step

added to
the SQL

Agent job.

246 Part V: Administering a SQL Server System

24_577557 ch16.qxp 12/20/05 9:53 PM Page 246

11. Wait a few minutes and then execute the preceding SELECT statement
again.

The appearance is similar to Figure 16-18, with several rows added to
the DateTimeInserts table by the SQL Agent job.

12. To monitor the activity of SQL Agent jobs, expand the SQL Agent
node, if necessary. Double-click the Job Activity Monitor icon.

The Job Activity Monitor opens. Figure 16-19 shows the appearance after
the SQL Agent job has failed to run successfully.

Figure 16-18:
Several

rows added
by the

SQL Agent
job to the

DateTime
Inserts

table.

Figure 16-17:
Defining a

schedule for
the SQL

Agent job.

247Chapter 16: Scheduling SQL Server Agent Jobs

24_577557 ch16.qxp 12/20/05 9:53 PM Page 247

13. You can also check error logs. Expand the Error Logs node and
double-click the Current log.

The Log File Viewer opens. The appearance is similar to Figure 16-20.

Figure 16-20:
Viewing SQL
Agent error
logs in Log

File Viewer.

Figure 16-19:
The Job
Activity

Monitor.

248 Part V: Administering a SQL Server System

24_577557 ch16.qxp 12/20/05 9:53 PM Page 248

Creating a SQL Agent alert
At Step 9 of the preceding example, you could have added an alert or a notifi-
cation to the SQL Agent job you created.

To add an alert to an existing job, follow these steps:

1. Right-click the name of the SQL Agent job to which you want to add an
alert and select Properties from the context menu.

2. Select Alerts in the left pane of the Job Properties dialog box.

3. Click the Add button.

The New Alert dialog box opens, as shown in Figure 16-21. The General
tab allows you to give the alert a name, specify which database it applies
to, and specify when the alert will be generated depending on criteria
such as error severity or a specific error message.

4. Click the Response option in the left pane.

You then have the option to specify one or more operators (human
beings) to be notified when an alert occurs.

5. Click the Options option in the left pane.

You then have options of whether to include the error text in the alert.

Figure 16-21:
The General

tab of the
New Alert

dialog box.

249Chapter 16: Scheduling SQL Server Agent Jobs

24_577557 ch16.qxp 12/20/05 9:53 PM Page 249

Using T-SQL with SQL Server Agent
You can control SQL Server Agent by using T-SQL code. Several system
stored procedures are designed to help you work with SQL Server Agent.

I list a few of the several dozen stored procedures here:

� sp_add_alert

� sp_add_job

� sp_add_jobstep

� sp_add_schedule

Detailed consideration of how to use the full range of stored procedures to
work with SQL Agent is beyond the scope of this chapter. To reference informa-
tion, use SQL Server Books Online, which you can access by choosing Start➪
All Programs➪Microsoft SQL Server 2005➪Documentation and Tutorials➪
SQL Server Books Online.

Using the Maintenance Plan Wizard
The Maintenance Plan Wizard is a tool that assists you in setting up auto-
mated maintenance tasks. Undercover, the Maintenance Plan Wizard creates
SQL Server Agent jobs appropriate to what you want to do.

Use the Maintenance Plan Wizard to automate tasks such as the following:

� Reorganize data on data and index pages

� Compress data files and remove empty database pages

� Perform internal consistency checks on the data

To access the Maintenance Plan Wizard, you must have Agent extended pro-
cedures turned on. I show you how to do that earlier in this chapter (in the
aptly named section, “Enabling SQL Agent extended stored procedures”).

To access the Maintenance Plan Wizard, follow these steps:

1. Open SQL Server Management Studio. Select a SQL Server Instance in
Registered Servers. Right-click the desired instance and choose
Connect➪Object Explorer from the context menu.

The desired instance displays in the Object Explorer.

2. Expand the Management node.

250 Part V: Administering a SQL Server System

24_577557 ch16.qxp 12/20/05 9:53 PM Page 250

3. Select the Maintenance Plan node and right-click it. Select the New
Maintenance Plan option from the context menu.

The New Maintenance Plan dialog box opens, which contains a text box
so that you can specify a name for the maintenance plan that you’re
about to create.

4. Enter a name.

A Toolbox containing several maintenance tasks displays with a large
pane where you can define aspects of the maintenance plan. Depending
on how you’ve configured SQL Server Management Studio, you see an
appearance similar to Figure 16-22.

You have a very large number of options available so that you can cus-
tomize a maintenance plan. The next steps indicate the steps necessary
to back up a database.

5. To add a Backup Database Task, drag it to the design pane.

6. You need to define a connection for the Backup Database Task. To do
that, double-click it the task.

The Backup Database Task dialog box opens.

7. In the Back Up Database Task dialog box, specify which server you
want to back up and which databases.

The appearance is similar to Figure 16-23.

Figure 16-22:
The initial

appearance
when

running the
Maintenance
Plan Wizard.

251Chapter 16: Scheduling SQL Server Agent Jobs

24_577557 ch16.qxp 12/20/05 9:53 PM Page 251

8. After you define the server and databases to be backed up, click OK.

9. Click the ellipsis next to the Schedule text box (see the position of the
mouse pointer in Figure 16-24).

The Job Schedule Properties dialog box opens, where you specify the
schedule on which the backup task is to be carried out.

You build up a maintenance plan by using steps such as those described. The
wizard is sufficiently powerful to allow you to fairly easily create complex
maintenance plans.

I describe the use of the Maintenance Plan Wizard further in Chapter 18.

Figure 16-24:
The Job

Schedule
Properties
dialog box.

Figure 16-23:
Specifying

connections
for the

Back Up
Database

Task.

252 Part V: Administering a SQL Server System

24_577557 ch16.qxp 12/20/05 9:53 PM Page 252

Chapter 17

Sending Information Using
Notification Services

In This Chapter
� Sending notifications and setting up events

� Creating a Notification Services application

Communication is a key to any successful business or successful life in
the modern world. You need to be aware of what is going on. In various

contexts, you need to know that something is happening, has happened, has
changed, or whatever. And it’s also very useful to be able to choose when you
are informed about events that interest you. Some things you want to know
about immediately; other events are less urgent. Notification Services in SQL
Server 2005 is one approach to informing you of events to which you have
subscribed.

One issue that any communication system must deal with is to target rele-
vant information. The world is full of a deluge of information, only some of
which is relevant to you. In Notification Services applications, you make a
choice to opt in to subscriptions that interest you. You may not want to know
that the stock price that you pinned your future hopes on has crashed, but
it’s certainly important to know if and when it happens. That kind of informa-
tion is something that you need to know about straightaway, because you
need to take action based on what has happened. For other information,
being informed of events or situations on a scheduled basis, perhaps daily or
even on the hour, is suitable.

You can use Notification Services to send notifications to thousands, even
millions, of subscribers. To do that, you likely need to make use, as appropri-
ate, of the scalability and availability features of SQL Server 2005 to ensure
that your solution can cope with peak loadings and be available to sub-
scribers globally throughout each 24-hour period.

25_577557 ch17.qxp 12/20/05 9:54 PM Page 253

The Notification Services Approach
Notification Services is a platform, which is part of SQL Server 2005, and that
can be used to build applications that produce and send notifications to sub-
scribers. A notification is a message or piece of information that can be sent
to a range of devices. A subscriber is a person who has expressed an interest
in being notified of a specified range of events.

You can have notifications sent to a range of devices or media, depending on
whether subscribers are mobile or are always logged on to a network.
Examples include

� E-mail

� Mobile phone

� Personal Digital Assistant (PDA)

� Windows Messenger

The basic steps
From the viewpoint of the persons subscribing to a SQL Server Notification
Services application, the process appears like this:

� Users subscribe to one or more notifications offered to them, specifying
the criteria of events that interest them and they also specify how and
when they want to be notified.

� In response to chosen events, or at specified times, the subscribers are
notified by using the medium (such as e-mail or mobile phone text mes-
saging) selected when subscribing.

Your application collects events. Events can consist of individual pieces of
information, perhaps delivered as XML files, relational data, or some aspect
of business performance as measured by SQL Server 2005 Analysis Services.

Notification Services attempts to match events and subscriptions. When it
finds a match, Notification Services generates a notification. The choice of
delivery method made by a subscriber determines how the notification is for-
matted for delivery.

254 Part V: Administering a SQL Server System

25_577557 ch17.qxp 12/20/05 9:54 PM Page 254

New notification features
in SQL Server 2005
Notification Services was added to SQL Server 2000 after the original release.
Several features are new in Notification Services in SQL Server 2005:

� Installation of Notification Services is integrated into SQL Server 2005
setup.

� Management is integrated into SQL Server Management Studio.

� Subscribers can influence some queries through new functionality called
condition actions.

� Notification Services applications can use an existing database.

� A new API, Notification Services Management Objects (NMO), allows you
to create and manage Notification Services applications. It uses the
Microsoft.SqlServer.Management.Nmo namespace.

� A new Analysis Services event provider (which I describe in the
“Working with events” section).

� You can host the Notification Services engine in your own applications.

In the SQL Server Management Studio Object Explorer, you can carry out
many tasks on Notification Services instances that previously could only be
carried out from the command line. You can also use SQL Server Management
Studio as an XML editor and T-SQL editor.

How Notification Services works
You, or a developer colleague, create a notification application by using
either of the two approaches described in the next paragraph. Notification
Services hosts that application. The data and metadata for the application is
hosted in SQL Server 2005.

You can create a Notification Services application in two ways:

� Use two XML files: An Application Definition file and an Instance
Configuration file to specify the properties of the application.

These files provide Notification Services with the information it needs to
respond appropriately to events, to construct notifications appropri-
ately, and to distribute those notifications in the appropriate way that

255Chapter 17: Sending Information Using Notification Services

25_577557 ch17.qxp 12/20/05 9:54 PM Page 255

subscribers chose. See the “Application Definition and Instance
Configuration Files” section, later in this chapter, for more information.

� Create an application programmatically: Using Notification Services
Management Objects, NMO. I don’t describe the use of NMO further in
this book.

The internals of Notification Services consist of three parts:

� Event provider: This component responds to selected data events,
which I describe in the next section.

� Generator: This component matches events with subscribers and sub-
scriptions. Raw notifications are passed to the distributor.

� Distributor: The distributor converts and styles the raw notifications for
the chosen output methods and distributes these final notifications to
the relevant subscribers.

Working with events
Notification Services has several standard event providers. Alternatively, you
can create a custom event provider if the standard event providers don’t pro-
vide the functionality you need. You use an event provider to detect whether
or not an event of interest has occurred or not.

The standard event providers are the following:

� File System Watcher: This event provider watches a specified directory
for the addition of an XML file to it. The XML file must have an .xml file
extension. File System Watcher ignores non-XML files. You can define
how locked XML files are handled. If a new XML file’s security settings
prevent the event provider from immediately accessing it, Notification
Services monitors the file until it can be accessed.

The File System Watcher Event Provider can queue files when your
application starts. This prevents files being missed due to the relevant
buffer being full. It can also add a file to the queue if processing of the
file fails. Before passing the XML to your application, it’s validated
against a W3C XML Schema document. After an XML file is processed, a
.done extension and timing information is concatenated (or appended)
to the original filename.

� SQL Server: Uses a T-SQL query to get data from a SQL Server database.

� Analysis Services: Uses an MDX (MultiDimensional Expression) query
to retrieve data from an Analysis Services cube.

The Analysis Services Event Provider monitors an Analysis Services
cube, in a way similar to the monitoring of a folder by the File System

256 Part V: Administering a SQL Server System

25_577557 ch17.qxp 12/28/05 5:07 PM Page 256

Watcher Event Provider. Changes in the parts of the cube relevant to the
MDX query are treated as events and notifications are generated.

The result set of an MDX query used in the Analysis Services Event
Provider can have multiple dimensions. However, Notification Services
can process only a flat rowset. You are responsible for ensuring that
Notification Services can process the result of the query.

Whichever standard event provider you use, information is written to the
events table.

Application Definition and Instance
Configuration Files

The Application Definition file and Instance Configuration files allow you to
define key aspects of a Notification Services application. Each of these files is
an XML file that allows you to declaratively create a Notification Services
application.

As the names suggest, the Application Definition file contains the information
that defines a Notification Services application and the Instance
Configuration file contains information about how to configure a Notification
Services instance.

The Application Definition file
The Application Definition file allows you to define the following properties of
a Notification Services application:

� Application version and history

� Definition of the application database (optional)

� Event class properties, such as names, schemas, and indexes

� Subscription class properties, such as names, schemas, rules, and
indexes

� Notification class properties, such as names, schemas, content format-
ters, protocols, and delivery options

� Event provider properties

� Generator properties

� Distributor properties

� Operational settings

257Chapter 17: Sending Information Using Notification Services

25_577557 ch17.qxp 12/28/05 5:07 PM Page 257

The application properties are specified by adding XML elements to the
Application Definition file corresponding to these properties. The comments
in the following skeletal Application Definition file indicate where to add ele-
ments, as you create a functioning Notification Services application.

<?xml version=”1.0” encoding=”utf-8” ?>
<Application xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns=”http://www.microsoft.com/MicrosoftNotificationServices/ApplicationDefinit

ionFileSchema”>

<!-- Version -->
<!-- History -->
<!-- Database Definition -->
<!-- Event Classes -->

<!-- Subscription Classes -->
<SubscriptionClasses></SubscriptionClasses>

<!-- Notification Classes -->
<NotificationClasses></NotificationClasses>

<!-- Event Providers -->

<!-- Generator Settings -->
<Generator>
<SystemName>%SystemName%</SystemName>

</Generator>

<!-- Distributor Settings -->
<Distributors>
<Distributor>
<SystemName>%SystemName%</SystemName>

</Distributor>
</Distributors>

<!-- Application Execution Settings -->
<!-- Important: At minimum, you should define
a vacuuming schedule and turn off some or all
distributor logging. -->

</Application>

To specify properties of the application database, you provide information
inside the following XML structure:

<Database>
<DatabaseName></DatabaseName>
<SchemaName></SchemaName>
<!--Multiple NamedFileGroup Elements are Allowed-->
<NamedFileGroup>

<FileGroupName></FileGroupName>
<FileSpec>

258 Part V: Administering a SQL Server System

25_577557 ch17.qxp 12/28/05 5:07 PM Page 258

<LogicalName></LogicalName>
<FileName></FileName>
<Size></Size>
<MaxSize></MaxSize>
<GrowthIncrement></GrowthIncrement>

</FileSpec>
</NamedFileGroup>
<LogFile>

<LogicalName></LogicalName>
<FileName></FileName>
<Size></Size>
<MaxSize></MaxSize>
<GrowthIncrement></GrowthIncrement>

</LogFile>
<DefaultFileGroup></DefaultFileGroup>
<CollationName></CollationName>

</Database>

You can add similar XML structures to an Application Definition file to specify
the properties listed in the earlier bulleted list. Microsoft provides a template
for a complete Application Definition file in the SQL Server Books Online.

The Instance Configuration file
You use the Instance Configuration file to configure a Notification Services
instance.

<?xml version=”1.0” encoding=”utf-8”?>
<NotificationServicesInstance
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns=”http://www.microsoft.com/MicrosoftNotificationServices/ConfigurationFileS

chema”>

<!-- Notification Services Instance Name -->
<InstanceName></InstanceName>

<!-- Database Engine Instance -->
<SqlServerSystem></SqlServerSystem>

<!-- Applications -->
<Applications>
<Application>
<ApplicationName></ApplicationName>
<BaseDirectoryPath></BaseDirectoryPath>
<ApplicationDefinitionFilePath></ApplicationDefinitionFilePath>

</Application>
</Applications>

<!-- Delivery Channels -->

259Chapter 17: Sending Information Using Notification Services

25_577557 ch17.qxp 12/28/05 5:07 PM Page 259

<DeliveryChannels>
<DeliveryChannel>
<DeliveryChannelName></DeliveryChannelName>
<ProtocolName></ProtocolName>
</DeliveryChannel>
</DeliveryChannels>

</NotificationServicesInstance>

The SQL Server 2005 Books Online gives details of the permitted values
allowed in the XML structure.

260 Part V: Administering a SQL Server System

25_577557 ch17.qxp 12/28/05 5:07 PM Page 260

Chapter 18

Maintaining a SQL Server System
In This Chapter
� Automating maintenance tasks

� Viewing log files for errors

� Working with indexes

� Stopping runaway queries

� Creating Profiler traces

� Examining database workloads

After you set up a working SQL Server 2005 installation, your work is not
over. As time passes, you need to carry out various maintenance tasks.

How often you carry out tasks and which tasks you carry out depends on the
situation in which you are running SQL Server 2005. Your needs are very dif-
ferent on a development machine from a production server on which your
business depends.

One crucial task is the backing up of databases and log files. If you’re running
an Enterprise Edition database with large numbers of transactions on which
your business crucially depends, you must be very sure that you are making
frequent backups (as well as taking steps to ensure high availability).

Using Maintenance Plans
SQL Server 2005 provides a visual way to carry out common maintenance
tasks using SQL Server Management Studio. The visual designer (which is a
limited version of the SQL Server Integration Services functionality discussed
in Chapter 20) supports these tasks:

� Back up databases

� Check database integrity

� Execute SQL Server Agent jobs

� Execute T-SQL statements

26_577557 ch18.qxp 12/20/05 9:54 PM Page 261

� Clean up history

� Clean up maintenance

� Notify operators

� Rebuild indexes

� Reorganize indexes

� Shrink databases

� Update statistics

You can combine these tasks visually using the designer inside SQL Server
Management Studio. You also have an option to extend maintenance plans
inside the Business Intelligence Development Studio inside a SQL Server
Integration Services package. However, if you extend a maintenance plan in
that way, you can no longer modify it inside SQL Server Management Studio.

Backing up
Making backups and being able to restore successfully from backups is one of
the most important tasks that a database administrator has to carry out.
Imagine a scenario where your company has thousands of employees who
cannot access crucial data because your backups are corrupted (so that
parts of the business grind to a halt) or where thousands of customer orders
have been lost. If you allow yourself to get into that situation, you have a high
chance of becoming a former employee. If you really foul up, the company
could even stand a chance of becoming a former company. Impossible?
Imagine you lost a week’s orders because of corrupt backup tapes. The loss
of cash flow and the costs of putting things right could sink some companies.

If you’re now feeling nervous about the whole issue of backing up and restor-
ing, that’s a good thing. Treat the whole activity with respect and treat it as
important. Don’t cut corners. Take time to get it right. Take time, also, to
ensure that you can restore from backups. Regularly check that you can
restore the backups on a test server. It’s the only way to be absolutely sure!

You can back up by using T-SQL or you can use either the Maintenance Plan
Wizard or the New Maintenance Plan options from the Object Explorer in SQL
Server Management Studio.

To back up the Chapter16 database, using the New Maintenance Plan option
in the Object Explorer, follow these steps:

1. Open SQL Server Management Studio. In the Registered Servers pane,
select the desired SQL Server instance, right-click, and choose Connect➪
Object Explorer.

A node for the SQL Server instance displays in the Object Explorer.

262 Part V: Administering a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 262

2. Expand the node for the desired SQL Server instance, expand the
Management node, and then right-click the Maintenance Plans node
and select New Maintenance Plan from the context menu.

The New Maintenance Plan dialog box displays, as shown in Figure 18-1.

3. Supply a name for the plan, such as BackupPlan, and click OK.

The New Maintenance Plan dialog box closes.

4. Supply a description for the BackupPlan maintenance plan.

Figure 18-2 shows the BackupPlan in SQL Server Management Studio.
Notice the Toolbox on the left side of SQL Server Management Studio.

5. Drag the Back Up Database Task shape from the Toolbox to the design
surface.

6. Right-click the Back Up Database Task shape and select Rename from
the context menu. Enter a name, such as Backup Chapter16 Database.
Click outside the shape to confirm the edit of the name.

Figure 18-2:
Creating a

new mainte-
nance plan.

Figure 18-1:
Supply

a name for
the new
mainte-

nance plan.

263Chapter 18: Maintaining a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 263

7. Right-click the Backup Chapter16 Database and select Autosize.

The appearance is similar to Figure 18-3. Notice the red X on the right
indicating that configuration of the shape is not complete.

8. Right-click the Backup Chapter16 Database shape and select Edit.

The Back Up Database Task dialog box opens, as shown in Figure 18-4.

Figure 18-4:
The

Back Up
Database

Task
dialog box.

Figure 18-3:
The Backup

Chapter16
Database

shape after
renaming

and
autosizing.

264 Part V: Administering a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 264

9. Select an existing connection from the Connection drop-down menu
to connect to a SQL Server instance.

If the desired connection is available from the drop-down menu, skip
ahead to Step 13.

10. Alternatively, you can click the New button to create a new connection.

11. In the New Connection dialog box that opens (shown in Figure 18-5),
name the connection, specify the SQL Server instance name, and
whether you connect with Windows Authentication or SQL Server
Authentication, and then click OK after you have made the relevant
choices.

12. After returning to the Back Up Database Task dialog box, select a SQL
Server instance to connect to from the Connection drop-down menu.

13. In the Back Up Database Task dialog box, choose which database or
databases you want to back up. See Figure 18-6.

Your choices are

• All databases

• System databases (master, msdb, and model)

• All user databases

• Specified databases

In this example, select the Chapter16 database to back up.

Figure 18-5:
The New

Connection
dialog box.

265Chapter 18: Maintaining a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 265

14. Choose which type of backup you want to make. You have three
options (Full, Differential, and Transaction Log), but choose Full for
this occasion.

I discuss the backup options in the next section, “Different types of
backup.”

15. Select if you want to back up to disk or tape. On this occasion,
select Disk.

16. Select the Create a Backup File for Every Database radio button.

17. Click the Verify Backup Integrity check box.

18. To view the T-SQL that your choices created, click the View T-SQL
button.

The Transact-SQL (Task Generated) dialog box opens (see Figure 18-7).

19. Click Close in the Transact-SQL (Task Generated) dialog box. Click OK
in the Back Up Database Task dialog box.

You are back on the design surface. The red X that indicated that the
task wasn’t fully configured should now be absent.

Figure 18-6:
Select one

or more
databases
to back up.

266 Part V: Administering a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 266

20. Right-click the tab for Backup Plan and select Save Selected Items
from the context menu to save the modified maintenance plan.

You’ve created a maintenance plan. Now you need to create a schedule
to run it on.

21. Click the ellipsis (...) button to the right of the Schedule drop-down
menu (which is currently grayed out).

Note the position of the cursor in Figure 18-8.

Figure 18-8:
The Job

Schedule
Properties -
BackupPlan

- Schedule
dialog box.

Figure 18-7:
The T-SQL
generated
by choices

you make in
the Back Up

Database
dialog box.

267Chapter 18: Maintaining a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 267

22. You can modify the name of the schedule to aid easy identification, if
you want.

23. Select how the schedule runs.

You have the following options (as shown in Figure 18-9):

• Start automatically when SQL Server Agent starts

• Start whenever the CPUs become idle

• Recurring

• One time

24. To create a schedule that runs at five minutes to midnight on Monday,
Tuesday, Wednesday, Thursday, and Friday, select Weekly from the
Occurs drop-down menu, and then check the check boxes for Monday,
Tuesday, Wednesday, Thursday, and Friday. Finally, to specify the
time that the job runs, enter 23:55:00 in the Occurs Once At control.

See Figure 18-10 for the appearance at the end of this step.

25. Click OK to finish creating a schedule.

26. Right-click the BackupPlan tab and select Save Selected Items to save
the maintenance plan together with its schedule.

If you expand the node for SQL Server Agent, you see that BackupPlan is
added to the scheduled SQL Server Agent jobs, as shown in Figure 18-11.

Figure 18-9:
Selecting
when the

SQL Server
agent job

runs.

268 Part V: Administering a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 268

The BackupPlan maintenance plan is a very simple example. You would likely
combine it with other maintenance tasks. To do that, simply drag the relevant
tasks from the Toolbox to the design surface and connect the shapes by
using the precedence constraints (blue or green lines) to show the order
(precedence) in which to execute the tasks.

The purpose of making backups is so that you can successfully restore data
from them. Think about worst-case scenarios, such as a fire in the room or
building where you run your SQL Server machine and also store the backups.
Result? No live data and no backups either! Make sure that you have a plan to
cope with these worst-case scenarios. Why? Because worst-case scenarios
happen eventually to someone. If you’re the unfortunate someone, be sure
that you have a routine in place that lets you efficiently get the data up and
running again.

Figure 18-11:
The Backup

Plan mainte-
nance plan

added to
SQL Server
Agent jobs.

Figure 18-10:
Specifying a
schedule to

run on five
days each

week.

269Chapter 18: Maintaining a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 269

Different types of backup
In this section, I describe the types of backup you might consider using.
There are three broad types of backup available to you:

� Full: Backs up the entire database together with the part of the transac-
tion log that allows the database to be restored corresponding to the
point in time that the full backup is made. A full backup can take up a lot
of space on your storage media and takes longer than a full differential
backup. Typically, a full backup is carried out on a regular schedule.

� Full differential (often just called Differential): Backs up data that has
changed since the last full backup. A full differential backup takes up
less media space than a full backup and is faster. A full differential
backup is based on a full backup termed the base backup. When restor-
ing from a full differential backup, you must restore its base backup first.

� Transaction log: Backs up the transaction log only. A transaction log
backup uses less media space than a full backup and is also faster. When
restoring from transaction log backups, you need a full backup as base
and then the chain of transaction log backups in order to restore to a
point of time or point of failure.

Restoring from backups
It is a major disaster if you omit testing of the restore procedure, and then
find that the backups are corrupt for the past week or two when a hard drive
goes down on the live server.

After you make a backup, or series of backups, make time to routinely test
whether you can restore the data to a test server. It may not be practical with
frequent backups to check every backup, but think through the consequences
of going a day or week without detecting a fault in your backup tapes.

Checking Error Logs
The maintenance plans described in the preceding section allow you to auto-
mate tasks that need to be carried out routinely. Part of your task in maintaining
a SQL Server installation is to check for the occurrences of errors in log files.

To view SQL Server log files, follow these steps:

1. Open SQL Server Management Studio and select the desired SQL
Server instance in the Registered Servers pane. Right-click and choose
Connect➪Object Explorer.

270 Part V: Administering a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 270

2. Expand the Management node in the Object Explorer and expand the
SQL Server Logs node.

3. Right-click the SQL Server Logs node and choose View➪SQL Server
Log, as shown in Figure 18-12.

Notice that you can choose to view SQL Server log files and Windows log
files together.

The Log File Viewer opens, as shown in Figure 18-13. By default, only the
content of the current log displays.

In a production server, the number of entries in a SQL Server log file can
soon become enormous. Therefore, you need to filter the display to look
for more serious events that may require some sort of intervention.

Figure 18-13:
The Log File

Viewer.

Figure 18-12:
Selecting to

view the
SQL Server

log files.

271Chapter 18: Maintaining a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 271

4. To increase the number of entries in a development machine, select
all logs. To filter the display, click the Filter button in the Log File
Viewer window.

The Filter Settings dialog box opens (see Figure 18-14). You can filter by
several criteria.

5. To view all events for the Chapter16 database, enter Chapter16 (no
spaces) in the Message Contains Text box.

6. Check the Apply Filter check box to apply the filter, and then click OK.

The filtered messages appear in the Log File Viewer, as shown in
Figure 18-15.

Figure 18-15:
Events

filtered for
Chapter16.

Figure 18-14:
The Filter
Settings

dialog box.

272 Part V: Administering a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 272

In real life, you would often be particularly interested in terms such as
“error”, “failure”, or “severity”.

7. To filter for log entries containing the word “severity”, click the Filter
button; in the Filter Settings dialog box, edit the text in the Message
Contains Text box to “severity”, ensure that the Apply Filter check
box is checked, and click OK.

Figure 18-16 shows the results.

8. To export log files, click the Export button; in the dialog box that
opens (shown in Figure 18-17), navigate to a directory where you
want to save SQL Server log files, enter an appropriate name for the
log file you want to export, and click Save.

Figure 18-17:
Selecting a
location to
export SQL
Server log

files to.

Figure 18-16:
Entries

filtered for
the text

severity.

273Chapter 18: Maintaining a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 273

Working with Indexes
An index in a database management system provides a way to access desired
data, similar to the principles used in the index of a book. Apart from situa-
tions where the quantity of data is small, using an index is often an efficient
way to find out where to look for a particular piece of information. A database
index, similarly, contains information to assist the rapid retrieval of data by
specifying the location of a desired row.

Designing indexes involves a number of trade-offs. In essence, you trade off
speed of inserting data versus speed of retrieving data. The more indexes you
add, the longer each INSERT or UPDATE statement takes to run because,
when a row of data is inserted or changed, the corresponding index(es) also
must be changed.

Over time, the changes made automatically to indexes by SQL Server when
you insert, update, or delete rows can cause the indexes to become frag-
mented. A fragmented index performs less well. The need to defragment
indexes means that, periodically, you need to rebuild or reorganize indexes to
restore optimum performance.

You can find out how fragmented the indexes for a particular table are by fol-
lowing these steps:

1. Open SQL Server Management Studio. Click the New Query button.

2. Create two variables to hold values representing the ID of the data-
base and table that you are interested in.

DECLARE @db_id SMALLINT;
DECLARE @object_id INT;

3. Specify the database and table of interest:

SET @db_id = DB_ID(N’AdventureWorks’);
SET @object_id = OBJECT_ID(N’AdventureWorks.Person.

Contact’);

4. Specify that you want to see the avg_fragmentation_in_percent
column of sys.dm_db_index_physical_stats.

SELECT avg_fragmentation_in_percent
FROM sys.dm_db_index_physical_stats (@db_id,

@object_id, DEFAULT, DEFAULT, N’Detailed’)

Figure 18-18 shows the percentage of fragmentation in the indexes for the
Person.Contact table of the AdventureWorks database.

274 Part V: Administering a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 274

As you can see in Figure 18-18, these indexes have minimal fragmentation, so
you don’t need to rebuild or reorganize them.

To rebuild or reorganize the indexes for the Person.Contact table of the
Adventureworks database in a maintenance plan, follow these steps:

1. Open SQL Server Management Studio. Select the desired SQL Server
instance in the Registered Servers pane. Right-click and choose
Connect➪Object Explorer.

2. Expand the Management node. Right-click Maintenance Plans and
select New Maintenance Plan.

3. Give the maintenance plan the name Reorganize_AdventureWorks_
Person_Contact_Index.

You cannot use a space character or a period in the name.

4. Drag a Reorganize Index Task to the design surface.

5. Right-click the Reorganize Index Task shape and select Edit from the
context menu.

The Reorganize Index Task dialog box opens.

6. Click the Databases drop-down menu. Select the These Databases
radio button, and then select the Adventureworks check box, and
then click OK.

7. From the Object drop-down menu, select Table.

Figure 18-18:
Data on

index
fragmen-

tation.

275Chapter 18: Maintaining a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 275

8. From the Selection drop-down menu, select the These Objects radio
button, check the Person.Contact table (as shown in Figure 18-19),
and then click OK.

9. In the Reorganize Index Task dialog box, click the View T-SQL button.

You see a dialog box with the following code:

USE [AdventureWorks]
GO
ALTER INDEX [AK_Contact_rowguid] ON [Person].[Contact]

REORGANIZE WITH (LOB_COMPACTION = ON)
GO
USE [AdventureWorks]
GO
ALTER INDEX [IX_Contact_EmailAddress] ON

[Person].[Contact] REORGANIZE WITH (
LOB_COMPACTION = ON)

GO
USE [AdventureWorks]
GO
ALTER INDEX [PK_Contact_ContactID] ON

[Person].[Contact] REORGANIZE WITH (
LOB_COMPACTION = ON)

GO
USE [AdventureWorks]
GO
ALTER INDEX [PXML_Contact_AddContact] ON

[Person].[Contact] REORGANIZE WITH (
LOB_COMPACTION = ON)

10. Close the dialog box that displays the T-SQL code. Click OK.

11. Optionally, you can create a schedule to run the maintenance plan on
a regular schedule.

I show you how to create a schedule as part of backing up a database in
the earlier section, “Backing up.”

Figure 18-19:
Specify the
Person.
Contact

table.

276 Part V: Administering a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 276

Halting Runaway Queries with the
Dedicated Administrator Connection

The Dedicated Administrator Connection is a new feature in SQL Server 2005.
It is intended to allow a database administrator to be able to stop a SQL Server
query that would in earlier versions of SQL Server require a restart of SQL
Server. The Dedicated Administrator Connection is a reserved connection that
is still available to an administrator even when CPU usage is maxing out.

The following example demonstrates how you can use the Dedicated
Administrator Connection to terminate a runaway script:

DECLARE @myVariable int;
SET @myVariable = 1;
WHILE (@myVariable=1)
BEGIN
SELECT *
FROM sys.databases
-- Do nothing
END
GO

It has a WHILE loop that continues endlessly querying for the databases on
that SQL Server instance.

1. Run the WhileLoop.sql script by using the SQLCMD utility, entering
a command like the following at the command line (depending on
where you have saved the T-SQL script):

sqlcmd -i “\\machinename\shareddocs\Chapter 18\
WhileLoop.sql”

The path to the script goes in the paired quotes.

2. Press Enter and the script runs.

CPU usage rises to about 99 percent.

3. To create a query by using the Dedicated Administrator Connection,
click the Database Engine Query on the SQL Server Management
Studio toolbar.

4. In the Connection dialog box, enter the following to connect to
serverName:

ADMIN:serverName

A query pane using the Dedicated Administrator Connection opens.

277Chapter 18: Maintaining a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 277

5. Run the following query to find out which request is using up CPU time:

SELECT session_id, cpu_time
FROM sys.dm_exec_requests

Figure 18-20 shows that a process with session_id equal to 61 is using a
lot of CPU time. When you run the code, the session_id may be different.

6. To kill the runaway process, run the following code from the
Dedicated Administrator Connection query window:

KILL 61

Using the Dedicated Administrator Connection in a similar way allows you to
kill a runaway process or processes and avoid having to restart the SQL
Server instance.

Looking under the Covers with Profiler
SQL Server Profiler is a tool that allows you to examine the performance of a
SQL Server instance.

To create a new trace (a record of events that take place in a SQL Server
instance) and examine the characteristics of the endless loop script used in
the preceding section, follow these steps.

Figure 18-20:
Finding the

session with
high CPU

usage.

278 Part V: Administering a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 278

1. Open SQL Server Profiler by choosing Start➪All Programs➪Microsoft
SQL Server 2005➪Performance Tools➪SQL Server Profiler.

2. Choose File➪New Trace.

3. In the Connect to Server dialog box that opens, specify the desired
SQL Server instance and authentication method.

The Trace Properties dialog box opens.

4. On the General tab, specify a name for the trace and select a template
from the Use the Template drop-down menu (as shown in Figure 18-21).

5. On the Events Selection tab of the Trace Properties dialog box, shown
in Figure 18-22, select which events to monitor in the trace you are
creating.

Figure 18-22:
The Events

Selection
tab of the

Trace
Properties
dialog box.

Figure 18-21:
The General

tab of the
Trace

Properties
dialog box.

279Chapter 18: Maintaining a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 279

6. Click Run to start running the trace.

7. Start the SQLCMD script (as described in the preceding section), and
allow it to run for several seconds.

8. Stop the SQLCMD script (also described in the preceding section) by
using the Dedicated Administrator Connection (or pressing Ctrl+C in
the command window).

9. Click the Stop button in SQL Server Profiler to stop the trace.

10. Look for a line showing SQLCMD in the ApplicationName column (as
shown in Figure 18-23).

11. Examine the values in the CPU, Reads, and Duration columns.

As you can see in Figure 18-23, the SQLCMD script, as you already knew,
consumed a lot of CPU time.

You can save traces to disk or load traces with specified characteristics to
run for particular purposes.

Using the Database Engine
Tuning Advisor

The Database Engine Tuning Advisor, a new tool in SQL Server 2005, allows
you to test the effect on performance of loads applied to a database. It
replaces the Index Tuning Wizard that was in SQL Server 2000. The function-
ality of the Database Tuning Advisor goes beyond the capabilities of the
Index Tuning Wizard.

Figure 18-23:
The

SQLCMD
script’s

characteris-
tics shown

in SQL
Server

Profiler.

280 Part V: Administering a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 280

To start the Database Engine Tuning Advisor and connect to a selected
instance of SQL Server, follow these steps:

1. Choose Start➪All Programs➪Microsoft SQL Server 2005➪
Performance Tools➪Database Engine Tuning Advisor.

2. In the Connect to Server dialog box, enter the name of the desired SQL
Server instance and specify the appropriate means of authentication.

Figure 18-24 shows the appearance when Database Engine Tuning
Advisor opens.

You can select databases whose response to workload you want to examine.

Figure 18-24:
The

Database
Engine
Tuning

Advisor.

281Chapter 18: Maintaining a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 281

282 Part V: Administering a SQL Server System

26_577557 ch18.qxp 12/20/05 9:54 PM Page 282

Chapter 19

Working with Multiple Servers
In This Chapter
� Discovering the basics of replication

� Replicating data

� Taking a look at Service Broker

� Sending messages with Service Broker

In this chapter, I introduce two topics — replication and SQL Server 2005
Service Broker — that you’ll often use in a scenario where you have multi-

ple instances of SQL Server. Each feature of SQL Server 2005 allows you to
send information between instances of SQL Server. How and when you use
these features differ significantly, as I show you in this chapter.

Replication is important in many business scenarios where you and colleagues
need to work with multiple copies of the same information. For simple situa-
tions where data is not changing fast and/or the volumes of data are small, you
might simply choose to send a copy of the database between business sites. In
many real-life business situations, however, such an approach isn’t fast enough,
granular enough, or reliable enough. So you need a better way to keep different
copies of your company’s data up to date and synchronized. Replication is one
solution.

Service Broker is designed so that you can build a new type of messaging appli-
cation that allows asynchronous communication from inside a SQL Server
instance. Asynchronous processing of messages inside multiple instances of
SQL Server 2005 means that processing may be deferred until, for example,
CPU utilization is low and also allows communication when one instance is not
available at the time of initially sending a message. Asynchronous messaging
avoids slowing response times in the SQL Server instance at times when load is
higher. If synchronous processing of messages takes place at times of high CPU
load, then the whole server can slow down. You can look at asynchronous pro-
cessing as a way of making better use of CPU cycles over a day.

27_577557 ch19.qxp 12/20/05 9:55 PM Page 283

Replication Overview
A common business scenario is that you need to have information available
at multiple sites. For example, the head office may replicate business data to
several regional offices. Or a regional office may want to replicate data to
sales personnel in the field who use SQL Server Mobile Edition.

It is important that the various copies of the data say the same thing. The
problem is how to keep the copies saying the same thing. More precisely, for
them to differ slightly at some points in time is acceptable, but at other points
you need to know that the copies of the data are consistent with each other.

Replication jargon
A lot of jargon is used in relation to the process of replication. The following
list contains definitions of some commonly used terms:

� Article: A database object that you replicate.

� Distributor: The server that contains the distribution database. In a pro-
duction setting, snapshots are typically stored on the distributor.

� Filtering: The process of limiting what data is sent to a subscriber.

� Publisher: The server that contains the data to be replicated. Each pub-
lisher has only one associated distributor.

� Subscriber: A principal to which data is replicated. You can use SQL Server
2005 Express Edition or SQL Server Mobile Edition as a subscriber.

SQL Server 2005 supports the following types of replication:

� Merge: Typically used for bidirectional replication. Subscribers often
need to change data and merge it back, when online, to the publisher.

� Snapshot: Distributes data at specified moments in time. Does not moni-
tor the data for updates. At synchronization, the entire snapshot is sent
to subscribers.

� Transactional: After initial synchronization, using a snapshot, data
changes at the publisher are distributed to the subscribers in close to
real time.

284 Part V: Administering a SQL Server System

27_577557 ch19.qxp 12/20/05 9:55 PM Page 284

Replication enhancements
in SQL Server 2005
SQL Server 2005 provides you with many enhancements in several cate-
gories, some of which I list here:

� Security: Security is more granular; you no longer need to run replica-
tion under the context of SQL Server Agent. If you change a password,
you can now do it in one place. To make use of the new security features
replication scripts, you must upgrade from SQL Server 2000 and SQL
Server 7.0.

� Manageability: You can manage replication from SQL Server
Management Studio. There is a new Replication Monitor.

� Availability: The ability to make schema changes to published tables.
Peer-to-peer transactional replication.

� Programmability: Replication Management Objects (RMO) provide a
new managed code programming model.

� Mobility: Merge replication can be carried out over HTTPS.

� Scalability and performance: Performance is improved and solutions
are more scalable.

� Updatable transactional subscription: Can now handle updates to large
data types at a subscriber.

� Heterogeneous data: You can publish data by using transactional and
snapshot replication from an Oracle publisher.

Security for replication
Because the reason for using replication is, typically, to share important busi-
ness data, you need to fully secure the replication process in your company.
Replication security builds on existing Windows security and SQL Server
security.

To implement a fully secure replication configuration, you must give careful
thought to the following aspects of security:

� Authentication: Verify that a principal is who or what it claims to be.

� Authorization: Control access of an authenticated principal to resources
such as a table in a database.

285Chapter 19: Working with Multiple Servers

27_577557 ch19.qxp 12/20/05 9:55 PM Page 285

� Encryption: Convert data to a form that can be read only by the
intended recipient, often decoded by means of a key.

� Filtering: Filter the data available to a subscriber.

Authentication and authorization are used to control access to servers that
participate in a replication process and to control access to replicated data-
base objects. Appropriate authentication and authorization rely on the fol-
lowing aspects of security:

� Agent security: Use the replication agent security model appropriately.

� Administration roles: Use the appropriate server and database roles for
setup, maintenance, and processing of replication.

� Publication Access List (PAL): Grants access to a replication publica-
tion. The PAL is an access control list for replication.

Replication does not directly encrypt data held in tables or sent across a net-
work. To encrypt data during replication, use a transport layer encryption
process — for example, Virtual Private Network (VPN), Secure Sockets Layer
(SSL), or IP Security (IPSEC).

Appropriate filtering also forms part of a well-thought-out security configura-
tion for replication. SQL Server 2005 supports two types of filtering: row and
column. For example, if you replicate sales information to a field salesperson,
you would likely omit data from other sales representatives or territories.
Similarly, if you’re replicating human resources information to a branch
office, you might include contact information but omit sensitive information
about salary and other contract terms. If you replicate information to a part-
ner company, you might explicitly share only information that has a value of
Yes in a SharedInformation column.

Replicating Your Data
In this section, I show you some aspects of the process of replicating data. In
the space available for the topic, I can describe some key information only.

Setting up a publisher and distributor
A publisher is a computer on which you publish data that is to be replicated.

286 Part V: Administering a SQL Server System

27_577557 ch19.qxp 12/20/05 9:55 PM Page 286

To set up a computer as a publisher, follow these steps:

1. Open SQL Server Management Studio. Select the desired SQL Server
2005 instance in the Registered Servers pane. Right-click and choose
Connect➪Object Explorer.

2. Right-click the Replication node. Select Configure Distribution from
the context menu.

Despite the name suggesting that you can configure distribution only,
you can use the Configure Distribution Wizard for the following pur-
poses (as shown in Figure 19-1):

• Configure the server as a distributor.

• Configure the server as a publisher with the distributor on the
same server.

• Configure the server as a publisher with the distributor on another
server.

3. Click Next.

On the following screen, you have two options. The first is to configure
the current server as distributor. The second is to specify that the cur-
rent server is to be a publisher only and use an already configured dis-
tributor. See Figure 19-2.

Figure 19-1:
The opening

screen
of the

Configure
Distribution

Wizard.

287Chapter 19: Working with Multiple Servers

27_577557 ch19.qxp 12/20/05 9:55 PM Page 287

4. Select the option where the current server is distributor. Click Next.

5. On the Snapshot Folder screen (see Figure 19-3), specify the location
to store snapshots. Specify a network location and click Next.

I have chosen a shared folder on a machine whose name is
SQLServer2005.

6. On the Distribution Database screen, specify the name of the distribu-
tion database, the location of the distribution database file, and the
distribution database log file, and then click Next.

Figure 19-3:
Specifying
a location

where
snapshots
are stored.

Figure 19-2:
Selecting a

publisher
and

distributor.

288 Part V: Administering a SQL Server System

27_577557 ch19.qxp 12/20/05 9:55 PM Page 288

In this case, I have accepted the default values. See Figure 19-4. A distrib-
ution database stores changes until they can be replicated to subscribers.

On the Publishers screen, which appears next, you can add other pub-
lishers that can use the distribution database.

7. To add other publishers, click the Add button, as shown in Figure 19-5.

You can add a SQL Server publisher or an Oracle publisher. In this exam-
ple, I did not add another publisher.

Figure 19-5:
Adding an
additional
publisher
to use the

distribution
database.

Figure 19-4:
Naming the
distribution

database
and

selecting its
location.

289Chapter 19: Working with Multiple Servers

27_577557 ch19.qxp 12/20/05 9:55 PM Page 289

8. Click Next to move to the Wizard Actions screen; leave the Configure
Distribution check box checked (see Figure 19-6), and then click Next.

9. On the Complete the Wizard screen, review the choices you have
made (see Figure 19-7).

10. If you need to modify some aspect of the wizard, click Back; if you’re
satisfied that the wizard will do what you intended, click Finish.

Figure 19-7:
The

Complete
the Wizard

screen
summarizes

your
choices.

Figure 19-6:
Choosing

the wizard
actions.

290 Part V: Administering a SQL Server System

27_577557 ch19.qxp 12/20/05 9:55 PM Page 290

When you click Finish, the wizard proceeds to configure the distributor
and the publisher. When completed, you see an appearance like
Figure 19-8.

11. Click Close.

Now that you’ve configured the publisher and distributor, new options
are available to you on the context menu when you right-click the
Replication node in the Object Explorer (see Figure 19-9).

12. From the context menu, select Launch Replication Monitor.

The Replication Monitor opens. See Figure 19-10.

Figure 19-9:
The context
menu for a
configured

publisher
and

distributor.

Figure 19-8:
A suc-

cessfully
configured
distributor

and
publisher.

291Chapter 19: Working with Multiple Servers

27_577557 ch19.qxp 12/20/05 9:55 PM Page 291

Now you need to create a database to be replicated. To create a database
called Chapter19ForReplication, follow these steps:

1. Click the Database Engine Query button in SQL Server Management
Studio.

2. Create a new database, Chapter19ForReplication.

CREATE DATABASE Chapter19ForReplication

3. Create a Messages table and insert some sample data into it.

USE Chapter19ForReplication
CREATE TABLE Messages
(MessageID timestamp,
Message varchar(1000))

INSERT INTO Messages (Message)
VALUES (‘Hello World!’)
INSERT INTO Messages (Message)
VALUES (‘This is a second message.’)

4. Confirm that the sample data can be retrieved.

SELECT *
FROM Messages

To create a matching database on another machine (the database that you’re
replicating data into), follow these steps:

1. Create a new query in SQL Server Management Studio, ensuring that
you’re connecting to the SQL Server instance that you want to repli-
cate data to.

Figure 19-10:
The

Replication
Monitor.

292 Part V: Administering a SQL Server System

27_577557 ch19.qxp 12/20/05 9:55 PM Page 292

2. Create a database, Chapter19AsSubscriber.

CREATE DATABASE Chapter19AsSubscriber

3. In that database, create a Messages table.

USE Chapter19AsSubscriber
CREATE TABLE Messages
(MessageID timestamp,
Message varchar(1000))

4. Confirm that the Messages table on that machine is empty.

SELECT *
FROM Messages

Creating a new publication
Now that the publisher is configured and you have a database to replicate and
a database to replicate into, you create a new publication. Follow these steps:

1. In the Object Explorer, expand the Replication node.

2. Right-click the Local Publications node and select New Publication
from the context menu.

The New Publication Wizard opens. Figure 19-11 shows the options avail-
able to you.

3. Click Next. On the Publication Database screen, select the
Chapter19ForReplication database, as shown in Figure 19-12.

Figure 19-11:
The New

Publication
Wizard
splash

screen.

293Chapter 19: Working with Multiple Servers

27_577557 ch19.qxp 12/20/05 9:55 PM Page 293

4. Click Next. On the Publication Type screen, select Snapshot
Publication, as shown in Figure 19-13.

5. Click Next. On the Articles screen, expand the Tables node and check
the Messages table, as shown in Figure 19-14.

Figure 19-13:
Selecting

the type of
replication

to use in the
publication.

Figure 19-12:
Selecting

a database
to be

published.

294 Part V: Administering a SQL Server System

27_577557 ch19.qxp 12/20/05 9:55 PM Page 294

6. Click Next. You are shown the Filter Table Rows screen. In this exam-
ple you don’t need to filter rows, so click Next.

7. On the Snapshot Agent screen, check the Create a Snapshot
Immediately option, as shown in Figure 19-15.

Creating a snapshot allows you to replicate straightaway. If you don’t
create a snapshot in this step, you have to wait until a schedule snap-
shot is created.

8. Click Next. On the Agent Security screen, click the Security Settings
button.

The Snapshot Agent Security dialog box opens (as shown in Figure 19-16).

Figure 19-15:
Creating a
snapshot

of the
Chapter
19For
Repli-
cation

database.

Figure 19-14:
Selecting

the articles
to be

replicated.

295Chapter 19: Working with Multiple Servers

27_577557 ch19.qxp 12/20/05 9:55 PM Page 295

9. For simplicity in running this example, choose the SQL Server Agent
Account. Click OK. When you return to the Agent Security screen,
click Next.

10. On the Wizard Actions screen, ensure that the Create the Publication
check box is checked and click Next.

11. On the Complete the Wizard screen, name the publication A Test
Publication and click Finish.

The Creating Publication screen shows the steps in creating the publica-
tion. When each has succeeded, you see an appearance similar to
Figure 19-17.

Figure 19-17:
Success

creating the
A Test

Publication
publication.

Figure 19-16:
Choosing an

account to
use with the
publication.

296 Part V: Administering a SQL Server System

27_577557 ch19.qxp 12/20/05 9:55 PM Page 296

12. Click Close.

13. In the Object Explorer, if necessary, expand the Local Publications node.

Notice that a new publication has been created, as shown in Figure 19-18.

In Replication Monitor, the newly created publication displays.

Now that you have created a publication, you can subscribe to it.

Creating a subscription
To create a subscription, you would normally do so on another machine.
Follow these steps.

1. Open SQL Server Management Studio. In the Registered Servers pane,
select another SQL Server 2005 instance. Right-click and choose
Connect➪Object Explorer.

Alternatively, you can switch to the other machine and run SQL Server
Management Studio there. That is the approach I take in the following
steps.

2. In the Object Explorer, expand the Replication node. Right-click on
the Local Subscriptions node and select New Subscriptions from the
context menu.

The New Subscription Wizard opens, as shown in Figure 19-19.

Figure 19-18:
A new

publication
has been

added in the
Object

Explorer.

297Chapter 19: Working with Multiple Servers

27_577557 ch19.qxp 12/20/05 9:55 PM Page 297

3. Click Next.

The Publication screen opens, as shown in Figure 19-20. Because the
machine has no publications, an error message displays on the
Publication screen.

4. In the Publisher drop-down menu, select <Find SQL Server Publisher>
if you have no other publications of which the instance of SQL Server
is aware. Type the name of the server that is the publisher — in my
case, the machine name is SQLServer2005. Click Connect.

You return to the Publication screen, but now you can choose a publica-
tion, as shown in Figure 19-21. You can see A Test Publication that you
created earlier.

Figure 19-20:
An error
displays

if there are
no local

publications.

Figure 19-19:
The New

Subscription
Wizard.

298 Part V: Administering a SQL Server System

27_577557 ch19.qxp 12/20/05 9:55 PM Page 298

5. Be sure A Test Publication is highlighted, and then click Next.

6. On the Distribution Agent Location screen that’s displayed, select the
Pull Subscription option and click Next.

The distribution agent can run on the subscriber or distributor. In this
case, it runs on the subscriber and generates a pull subscription. If it
runs on the distributor it generates a push subscription.

7. On the Subscribers screen, select the Chapter19AsSubscriber data-
base from the Subscription Database drop-down menu, as shown in
Figure 19-22, and click Next.

8. On the Distribution Agent Security screen, click the ellipsis button
and select to run as SQL Server Agent (not recommended in a produc-
tion setting). Click Next.

Figure 19-22:
Selecting

the sub-
scription

database,
Chapter
19AsSub-
scriber.

Figure 19-21:
You can

now
choose a

publication
on the

Publication
screen.

299Chapter 19: Working with Multiple Servers

27_577557 ch19.qxp 12/20/05 9:55 PM Page 299

9. On the Synchronization Schedule screen, select Run on Demand Only
from the Agent Schedule drop-down menu. Click Next.

10. On the Initialize Subscriptions screen, select Immediately from the
Initialize When drop-down menu. Click Next.

11. On the Wizard Actions screen, ensure that the Create Subscription(s)
check box is checked. Click Next.

12. Review your choices on the Complete the Wizard screen (shown in
Figure 19-23), and then click Finish.

The Creating Subscription(s) dialog box shows success, as shown in
Figure 19-24.

If you see an error at this point, one possible cause is that you omitted
to create a snapshot.

Figure 19-24:
A new

subscription
created

successfully.

Figure 19-23:
Review the

choices you
made about

the new
subscription.

300 Part V: Administering a SQL Server System

27_577557 ch19.qxp 12/20/05 9:55 PM Page 300

13. On the publisher machine, confirm that Replication Monitor recog-
nizes the subscription, as shown in Figure 19-25.

14. Run the following code on the subscriber machine to show the data
replicated to the subscriber machine.

USE Chapter19AsSubscriber
SELECT *
FROM Messages

You now see the two sample rows from the publisher displayed in the
Chapter19AsSubscriber database.

Introducing Service Broker
SQL Server 2005 Service Broker is a new feature in SQL Server 2005. Service
Broker is a platform for building asynchronous queued distributed database
applications. Service Broker is intended to allow you to create a new type of
messaging application that is based on an instance of SQL Server 2005. Service
Broker allows you to create transaction-based messaging applications.

What kind of things is Service Broker useful for? Imagine a situation where
you have an order entry application that uses SQL Server 2005 and a ship-
ping application that also uses SQL Server 2005. Messages have to pass reli-
ably between the applications. High reliability is crucial because you don’t
want a scenario where a customer places an order, you acknowledge the
items are ordered, but they’re never shipped. Asynchronous communication
may be acceptable in at least some scenarios, because you don’t necessarily
need to ship instantly. And of course, in some situations, you can’t possibly
ship immediately — such as when you’re out of stock.

Figure 19-25:
The new

subscription
recognized

in the
Replication

Monitor
on the

publisher
machine.

301Chapter 19: Working with Multiple Servers

27_577557 ch19.qxp 12/20/05 9:55 PM Page 301

Service Broker is part of the SQL Server 2005 database engine. You can look
at a normal SQL Server table as a type of queue — some applications add a
row or rows to the table, one or more other applications can take data from
the table. As I hope you can see, a message queue has similarities.

Service Broker, because it is in the SQL Server 2005 database engine, has the
same benefits as the operations of SQL Server itself. It has high availability and
high scalability. Service Broker transactions are written to the SQL Server trans-
action logs, so you have minimal chance of losing data. If you use database mir-
roring, when a SQL Server goes down, your data and messages are processed
on the mirroring server as if nothing had happened (after a short pause).

When you back up a SQL Server instance that hosts a Service Broker applica-
tion, then the data and messages relating to Service Broker back up, too.

Queues
Queues, if they are well managed, can help get things done. But not all queues
are equally well managed. Compare a supermarket with multiple queues (and
you don’t know which is best to process) and an airport queue with a single
queue for all passengers who are waiting to check in. A properly ordered
queue is important in order to process messages efficiently and reliably.

Related messages also need to be processed appropriately. For example, two
different queue readers simultaneously processing two messages from the
same conversation could lead to data corruption. Service Broker removes
that risk by taking a lock on a group of messages (called a dialog group or con-
versation group). All messages in that dialog group are pulled from the queue
by one queue reader and processed appropriately as a group.

In Service Broker, you typically have multiple reader queues. This is impor-
tant in order to achieve good scalability. The dialog group locks help ensure
that related messages are processed in the correct order.

Queues are first-class database objects in SQL Server 2005. In addition, new
extensions to T-SQL in SQL Server 2005 allow you to manipulate queues from
T-SQL.

Messages
Service Broker is based on messages and offers advantages over some tradi-
tional messaging approaches.

When delivering messages, it can be necessary to retry delivery. Similarly,
the route that a message takes can vary. This means that messages may enter

302 Part V: Administering a SQL Server System

27_577557 ch19.qxp 12/20/05 9:55 PM Page 302

a queue at the receiving end in a different order from which they were sent
out. Service Broker can preserve the ordering of messages so that messages
that are sent out first are processed first. Service Broker guarantees correct
processing order in the following situations:

� Across transactions

� Across sending threads

� Across receiving threads

Service Broker does that by using dialogs. Dialogs in Service Broker have
these characteristics:

� Guaranteed delivery.

� Support one-way or two-way dialogs.

� Sent so messages are received exactly once. Service Broker keeps retry-
ing until the message is received once.

� Messages are processed in order.

� Dialogs are persistent. A dialog can survive the restarting of one of the
servers taking part in the dialog.

� A dialog is a logical connection process rather than a physical connec-
tion process.

Behind the scenes
So far, I have described Service Broker in terms of the functionality that you
see as a database developer. In this section, I briefly describe what happens
in Service Broker to achieve that functionality.

A dialog between two instances of Service Broker has dialogs with this set of
logical characteristics:

� Exactly once delivery

� In order delivery

� Uses encryption and authentication

However, in reality, two instances of Service Broker have no direct physical net-
work connection. The underlying transport protocol has these characteristics:

� Efficient binary message format

� Built on TCP/IP

� Bidirectional and multiplexed (multiple dialogs going across a single
connection), best efforts protocol

303Chapter 19: Working with Multiple Servers

27_577557 ch19.qxp 12/20/05 9:55 PM Page 303

In ways analogous to how the Internet is “reliable” despite the possibility that
any packet of data can be lost, so Service Broker ensures reliability at a logi-
cal level while the underlying transport protocol can, for practical reasons,
only have a best-efforts aim.

Another assumption in Service Broker is that an application is running that is
able to process messages in a queue. Server Broker uses a process called acti-
vation to ensure that messages that arrive in a queue (essentially a table in a
SQL Server database) are then processed. For example, if messages from a
queue are processed by a particular stored procedure, Service Broker checks
whether the stored procedure is running. If it’s not running, then Service
Broker starts the relevant stored procedure and the message is processed.

Another aspect of activation in Service Broker is that the performance of a
stored procedure is measured against the number of messages arriving in the
relevant queue. If too many messages are arriving too fast for a single copy of
the stored procedure to keep up, then an additional copy of the stored proce-
dure is started. In principle, the number of copies of the stored procedure
that are running is adjusted upwards to cope with the number of messages
arriving in the queue. However, you can specify a maximum number of copies
of the stored procedure to run.

Security
Because Service Broker communicates asynchronously, you can’t use con-
nection-oriented security. After all, the two applications at the two ends of a
dialog may never run at the same time. The approach used in Service Broker
is a private key/public key pair.

In test situations you can turn encryption off, with the following clause:

WITH ENCRYPTION = OFF

304 Part V: Administering a SQL Server System

27_577557 ch19.qxp 12/20/05 9:55 PM Page 304

Part VI
Using SQL Server

Business
Intelligence (BI)

Services

28_577557 pt06.qxp 12/20/05 9:56 PM Page 305

In this part . . .

I introduce you to the Integrate, Analyze, Report para-
digm that allows you to combine data from various

sources, analyze it and report on it with one SQL Server
2005 solution.

I show you how to use the Business Intelligence Develop-
ment Studio to create projects using SQL Server Integra-
tion Services, Analysis Services, and Reporting Services.

28_577557 pt06.qxp 12/20/05 9:56 PM Page 306

Chapter 20

SQL Server Integration Services
In This Chapter
� Finding out about business intelligence

� Using an ETL approach with Integration Services

� Exploring the Business Intelligence Development Studio

� Going through the Import/Export Wizard

� Creating an Integration Services project

� Deploying an Integration Services project

Business intelligence is one of the key new emphases of SQL Server 2005.
One of the aims of any installation of SQL Server 2005 is to provide

information that is relevant to the financial and other operations and perfor-
mance of a business. At one level, you can use T-SQL queries or applications
built on T-SQL or the CLR (Common Language Runtime) to process data in an
almost infinite number of ways. In SQL Server 2005, Microsoft has put a lot of
effort into supporting developers in manipulating and displaying information
in ways that are particularly relevant to overall business activity and perfor-
mance. Business intelligence refers to the processing of data in these ways to
create information that relates to business performance.

In this chapter, I introduce you to SQL Server 2005 Integration Services, one
of the three aspects of Microsoft’s Business Intelligence paradigm:

� Integrate (SQL Server Integration Services — the topic of this chapter)

� Analyse (SQL Server Analysis Services — Chapter 21)

� Report (SQL Server Reporting Services — Chapter 22)

Business intelligence, based on SQL Server 2005 business intelligence func-
tionality, is a significant focus of the upcoming Office 12 product suite.
However, because Office 12 is at an early stage of development at the time of
this writing, I don’t cover integrating Office with SQL Server 2005 Business
Intelligence applications in this book.

29_577557 ch20.qxp 12/20/05 9:56 PM Page 307

Overview of Business Intelligence
SQL Server 2005 has made huge improvements in the support for Business
Intelligence compared to SQL Server 2000. The all-new, more scalable and
powerful SQL Service Integration Services replaces Data Transformation
Services from SQL Server 2000. A new programming model in SQL Server
2005 Analysis Services enables you to make improvements in how you
process data in Analysis Services cubes. New functionality has been added to
that available in SQL Server 2000 Reporting Services.

You can view the SQL Server 2005 business intelligence workflow as the fol-
lowing sequence:

� Integrate: Bringing relevant data together with Integration Services.

� Analyze: Analyzing the content of data, using Online Analytical
Processing (OLAP) or Data Mining with Analysis Services.

� Report: Presenting to end users the data that may have been integrated
by using Integration Services and analyzed by using Analysis Services.

Business intelligence tools
In SQL Server 2005, most development work is done in the Business Intelligence
Development Studio. You have the option to install the Business Intelligence
Development Studio when you install SQL Server 2005. If you install an edition
of Visual Studio 2005, the business intelligence design functionality is automati-
cally integrated inside Visual Studio 2005.

In SQL Server Management Studio, you have tools to manage Integration
Services, Analysis Services, and Reporting Services servers. The buttons in
the Registered Servers pane of SQL Server Management Studio allow you to
view and select servers in any of the preceding categories.

Data warehouses
Many companies aggregate data in specifically tuned databases called data
warehouses. A data warehouse may contain data aggregated from many
sources. For historical reasons, perhaps because of different systems being
used in individual subsidiaries, the data to be aggregated may be held in
varied formats. To store that data together, you must structure that data in a
standard way in the data warehouse. Integration Services is an ideal tool to
restructure and clean data before placing it in a data warehouse.

308 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 308

Data warehouses may contain enormous amounts of data. To get optimal per-
formance, you can use the partitioning of tables introduced in SQL Server 2005.

Analysis of the data in data warehouses is a typical use of SQL Server 2005
Analysis Services. SQL Server 2005 Reporting Services is an ideal Enterprise
grade reporting tool.

Integration Services Overview
Integration Services is an ETL (Extract, Transform, and Load) tool. Integration
Services can extract data from various sources, transform the loaded data into
a different structure, and load that altered structure into, for example, a SQL
Server 2005 database.

The ETL approach allows you to handle many real-life business problems.
Examples of scenarios where you would consider using Integration Services
are the following:

� A store chain where sales data is collected at each store and needs to be
aggregated centrally for analysis.

� Scenarios where two companies share human resources data for secu-
rity reasons but hold the data in different formats. This need may occur
at an airport where individual airlines would inform the airport of
staffing changes.

� Aggregating and filtering data from Weblogs (or blogs).

� Process financial transactions and split off transactions according to
specified criteria to identify outliers and process them for further
human examination — for example, to identify fraud or human error.

SQL Server Integration Services can accept data from many sources, includ-
ing the following database and enterprise planning products:

� SQL Server

� Oracle

� IBM DB2

� SAP

Integration Services is based on packages. In the next section, I tell you a
little about the process of creating an Integration Services package. Later in
the chapter, I show you step by step how to create a package.

309Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 309

Creating an Integration Services package
Broadly, an Integration Services package consists of sources, transforma-
tions, and destinations. A source is where you get data that you want to trans-
form. A transformation is how you restructure data to make sure it is clean
and compatible with the destination’s table structure. A destination is where
you send transformed data.

You create an Integration Services package by selecting tasks from the
Toolbox and dragging those tasks, as appropriate, to the Control Flow tab
design surface or the Data Flow tab design surface. See Figure 20-1.

You set the properties of each task. After you do so, you join the tasks
together by using precedence constraints. I show you the process in more
detail in the later section, “Creating an Integration Services Project,” after I
summarize the wide range of tasks that are available to you in Integration
Services.

On the Control Flow tab, you specify the overall logic of the package. In the
Data Flow tab, you specify the way data is processed in an Integration
Services pipeline.

Figure 20-1:
An empty

Integration
Services

project
showing

the Control
Flow tab.

310 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 310

Sources
SQL Server Integration Services supports a useful number of sources for
data. Select the Data Flow tab to use shapes representing data sources. You
configure a connection manager that you associate with each data source.

The sources supported in SQL Server 2005 are the following:

� DataReader: A datareader source consumes data from a .NET data
provider. Typically, it uses an ADO.NET connection manager.

� Excel: An Excel source retrieves data from a worksheet or a range in an
Excel workbook.

� Flat File: A Flat File source retrieves data from a text file that can contain
delimited (such as comma delimited), fixed width, or mixed data.

� OLE DB: An OLE DB source retrieves data from an OLE DB-enabled data-
base, such as Access or SQL Server.

� Raw File: Reads a file where the data is stored in Integration Services’s
native format. Typically, the Raw file is saved from an Integration
Services Raw File destination. The Raw File source does not need a con-
nection manager.

� XML: Reads an XML file. An XSD schema file is needed, either as a sepa-
rate file or inline, to allow Integration Services to create an appropriate
tabular structure from the hierarchical XML data.

The types of connection manager supported in SQL Server 2005 Integration
Services are the following:

� ADO: Connect to an ActiveX Data Object (ADO), or a data source, such
as a recordset.

� ADO .NET: Connect a package to data by means of a .NET provider.

� EXCEL: Use with an Excel source.

� FILE Allow a source to reference a single existing file or folder.

� FLATFILE: Use with the Flat File source. The connection manager allows
you to specify how Integration Services should parse the source text file.

� FTP: Enable an Integration Services package to connect to a FTP server.

� HTTP: Enable a package to retrieve files from a Web server with HTTP.

� MSMQ: Connect to a Microsoft Message Queue (MSMQ) message queue.

� MSOLAP90: Allow a package to connect to an Analysis Services server
to retrieve data from an Analysis Services database or project.

311Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 311

� MULTIFILE: Allow a source to reference multiple files or folders.

� MULTIFLATFILE: Allow a source to reference multiple text files.

� ODBC: Connect to a database management system by using Open
Database Connectivity (ODBC).

� OLE DB: Use with the OLE DB source.

� SMOServer: Used with the Transfer Logins task (which I describe later
in this chapter).

� SMTP: Enable a package to connect to a Simple Mail Transfer Protocol
(SMTP) server.

� SQLMOBILE: Enable a package to connect to a SQL Server Mobile
database.

� WMI: Enables a package to use Window Management Instrumentation.

The Connection Managers tab is shown in the lower part of Figure 20-1. Right-
clicking in that area allows you to select which type of connection manager
to create. To view the full list of connection managers, select New Connection
in the context menu.

The preceding lists of data sources and connection managers show you how
flexible SQL Server Integration Services is in accepting data from diverse data
sources.

Transformations
After you retrieve (loaded) information in the Extract, Transform, Load para-
digm, you then transform it. SQL Server Integration Services supports many
types of data transformation.

Select the Data Flow tab to access SQL Server Integration Services from the
Toolbox. The following transforms are part of Integration Services:

� Aggregate: Calculates aggregates. Functionality includes sum, average,
count, minimum, and maximum.

� Audit: Enables an Integration Services package to have access to infor-
mation about the environment in which it is running.

� Character Map: Enables functions to be applied to character data; for
example, conversion to uppercase or lowercase.

� Conditional Split: Enables data to route separately depending on speci-
fied values in the data.

� Copy Column: Creates a copy of an input column. The original column
and the copy column can then be processed in different ways later.

312 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 312

� Data Conversion: Converts data in an input column to a different datatype.

� Data Mining Query: Enables you to create a Data Mining Extensions
(DMX) query.

� Derived Column: Enables you to manipulate data in an input column to
create a different value in an output column. For example, you can con-
vert pounds to kilograms.

� Export Column: Enables you to read data in a data flow and export it to
a file.

� Fuzzy Grouping: Cleans data and increases standardization.

� Fuzzy Lookup: Similar to the Lookup transformation, except that it uses
fuzzy matching and assists increasing standardization of data.

� Import Column: Reads data from files and inserts the data into columns
in a data flow.

� Lookup: Joins data in a reference dataset with data in a column in a
data flow.

� Merge: Combines two sorted datasets into one dataset.

� Merge Join: This join takes place in the Integration Services pipeline.
The Merge join doesn’t take place in a SQL Server database.

� Multicast: Enables data to be sent to two or more outputs. Each row in
the input is sent to every output.

� OLE DB Command: Enables you to run a T-SQL statement for each row
in a data flow.

� Percentage Sampling: Enables you to randomly sample the data in the
data flow. The number of rows sampled depends on the percentage
chosen.

� Pivot: Enables you to manipulate data in a data flow similarly to the
Excel pivot operation.

� Row Count: Counts the rows that pass through a data flow and stores
the count in a variable.

� Row Sampling: Enables you to randomly sample the rows passing
through a data flow.

� Script Component: Enables you to create custom code in Visual Basic.
NET, using the Visual Studio for Applications development environment.

� Slowly Changing Dimension: Coordinates the updating of dimension
tables in a data warehouse.

� Sort: Enables you to sort input data. You can apply multiple sorts in a
Sort transformation.

� Term Extraction: Enables you to extract terms from input columns.

313Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 313

� Term Lookup: Enables you to match terms in input against a reference
dataset.

� Union All: Combines multiple inputs into one output.

� Unpivot: Carries out the opposite operation from the Pivot transformation.

When you use this extensive range of transformations, particularly in combi-
nation, you have a very powerful and flexible tool to manipulate input data in
a huge number of useful ways. If the built-in transformations don’t already do
exactly what you need, the Script component allows you to construct custom
transformations in Visual Basic.NET.

Destinations
After you transform your data in the way(s) that you want, you then have
several choices of where you can output the data. In Integration Services ter-
minology, you output data in destinations.

In many scenarios, you’re loading transformed data into SQL Server 2005
databases or data warehouses. However, Integration Services supports a
broad range of destinations:

� Data Mining Model Training: Use output data to train a data mining
model in SQL Server 2005 Analysis Services.

� DataReader: Expose the output data, using an ADO.NET DataReader
interface. The data can be used as the basis of a SQL Server 2005
Reporting Services report.

� Dimension Processing: Use the output data as input to a SQL Server
2005 Analysis Services dimension.

� Excel: Load output data into an Excel workbook.

� Flat File: Write data to a text file in a specified format — for example, a
comma-delimited file.

� OLE DB: Load data into an OLE DB compliant database.

� Partition Processing: Load data into a SQL Server 2005 Analysis
Services partition.

� Raw File: Save data in SQL Server Integration Services’s native data
format.

� Recordset: Create and populate an ADO recordset.

� SQL Server: Load data into a SQL Server table or view.

� SQL Server Mobile: Load data into a SQL Server Mobile database.

314 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 314

Task flows
In SQL Server Integration Services, ETL tasks are contained in task flows. Task
flows allow you to specify the order in which tasks take place, using prece-
dence constraints.

You use precedence constraints to define the order in which tasks are executed.

Error flows
When you process potentially huge volumes of data, often from multiple
sources, some errors almost inevitably occur. It therefore makes sense to
expect errors during the execution of a SQL Server Integration Services pack-
age and handle errors in a way that does not prevent a package executing. In
Integration Services, error flows handle errors. You can create an error flow
on any task in an Integration Services package. You can save the output in an
error flow — for example, in an Error table in SQL Server for manual review
or to process automatically in some appropriate way.

In addition to error flows, Integration Services supports data viewers. You use
data viewers to review data at one or more points in the execution of an
Integration Services package. Visually checking the data can provide an
assessment of how well, or not, a transformation is handling data.

Event handling
Tasks and containers in an Integration Services package raise events as they
execute. You can write code to create custom event handlers to add function-
ality. For example, you could e-mail a staff member if an error occurs during
the execution of a package.

Logging options
You can log runtime events during the execution of an Integration Services
package. You can configure logging for the following destinations:

� SQL Server

� SQL Server Profiler

� Text file

315Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 315

� Windows Event Log

� XML file

You can enable logging on a task, a container, or a package.

Package restart
When large packages run, they can hit problems. When processing poten-
tially many millions of rows of data, you can save significant amounts of time
if the package doesn’t have to run again from the beginning. If a problem hap-
pens, and you have defined one or more checkpoints in the package, you can
restart the package from the checkpoint.

Digital signing
The tasks that Integration Services packages carry out can be crucial to the
functioning of a business. It therefore makes sense in some scenarios to be
sure that the packages that you run are trustworthy. You can have Integration
Services packages digitally signed.

Business Intelligence
Development Studio

The Business Intelligence Development Studio (BIDS) is a Visual Studio-like
programming environment that allows you to create business intelligence
projects. During SQL Server 2005 setup, you need to install the Business
Intelligence Development Studio.

If you install BIDS and Visual Studio on the same development machine, the
two pieces of software are merged. When you create a project, both business
intelligence projects and conventional Visual Studio projects are offered in
the same Visual Studio development environment.

These types of business intelligence projects are supported in BIDS:

� Analysis Services project (see Chapter 21)

� Import Analysis Services 9.0 database (see Chapter 21)

� Integration Services project (in the “Creating an Integration Services
Project” section, later in this chapter)

� Report Model project (see Chapter 22)

316 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 316

� Report project (see Chapter 22)

� Report Project Wizard (see Chapter 22)

The Integration Services Designer has these tabs:

� Control Flow: One of the visual design surfaces in BIDS. You drag shapes
from the Toolbox to the design surface and connect the shapes to spec-
ify the order of execution of tasks.

� Data Flow: The second visual design surface in BIDS. You drag shapes
that represent data sources, transformations, and destinations to the
design surface.

� Event Handlers: The third visual design surface in BIDS. You choose an
Integration Services event and drag a shape representing the action to
be taken when the event fires. For example, you may use the Send Mail
task to send e-mail to an administrator if an error occurs during package
execution.

� Package Explorer: Visually displays the structure of a package.

� Progress: This is not visible when you first create the package. It dis-
plays when you run the package in debug mode. After you complete
debug mode, the label of the tab changes to Execution Results.

The Control Flow tab
On the Control Flow tab, you design the logic of your package.

When you’re on the Control Flow tab, you have access to a large number of
tasks that you can drag to the design surface. You can group tasks in containers.

The shapes available from the Toolbox are the following:

� For Loop container: Iterate a specified number of times. Similar in effect
to a for loop in a programming language.

� Foreach Loop container: Iterate through a set of data; for example, all
the files in a directory.

� Sequence container: Group other control flow tasks. This is useful — for
example, during debugging — when a group of tasks in a Sequence con-
tainer can easily be disabled.

� ActiveX Script: Create custom code written in Visual Basic.NET.

� Analysis Services Execute DDL: Execute DDL (Data Definition Language)
statements on data mining models or Analysis Services cubes.

� SQL Server Analysis Services Processing: Process Analysis Services
objects; for example, cubes and data mining models.

317Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 317

� Bulk Insert: Quickly copy large amounts of data into SQL Server 2005.

� Data Flow: A data flow task can have data sources, transformations, and
destinations as I describe earlier in this chapter.

� Data Mining Query: Run DMX prediction queries based on Analysis
Services data mining models.

� Execute DTS 2000 Package: Run a SQL Server 2000 Data Transformation
Services package.

� Execute Package: Run another SQL Server 2005 Integration Services
package.

� Execute Process: Run a Windows application or a batch file.

� Execute SQL: Run T-SQL statements or stored procedures.

� File System: Set attributes on files and folders or move, create, or delete
them.

� FTP: Upload or download files and manage directories on an FTP server.

� Message Queue: Enables you to use Microsoft Message Queuing
(MSMQ) to send and receive messages.

� Script: Add custom functionality by using code written in Visual Basic.NET.

� Send Mail: Send an e-mail message. A common use is to inform an
administrator of the result of package execution.

� Transfer Database: Transfer a database between two SQL Server
instances.

� Transfer Error Messages: Transfer user-defined error messages between
SQL Server instances.

� Transfer Jobs: Transfer SQL Server Agent jobs between SQL Server
instances.

� Transfer Logins: Transfer logins between SQL Server instances.

� Transfer Master Stored Procedures: Transfer user-defined stored proce-
dures between the master databases on two SQL Server instances.

� Web Service: Execute a Web service method.

� WMI Data Reader: Retrieve data from Windows Management
Instrumentation (WMI).

� WMI Event Watcher: Monitor for the occurrence of a Windows
Management Instrumentation (WMI) event.

� XML: Retrieve or manipulate XML documents.

In addition to what you could call the general Integration Services tasks, the
Toolbox also contains several tasks that you can use to write or extend
Maintenance Plans.

318 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 318

The Maintenance Plan tasks are

� Back Up Database: Carry out SQL Server database backups.

� Check Database Integrity: Check the structural integrity of one or more
databases.

� Execute SQL Server Agent Job: Execute a SQL Server Agent job.

� Execute T-SQL Statement: Execute a T-SQL statement.

� History Cleanup: Delete history information in the msdb database.

� Maintenance Cleanup: Remove old files related to maintenance plans.

� Notify Operator: Send messages to SQL Server Agent operators.

� Rebuild Index: Rebuild SQL Server indexes.

� Reorganize Index: Reorganize SQL Server indexes.

� Shrink Database: Shrink the size of SQL Server database and log files.

� Update Statistics: Update information about key values in one or multi-
ple statistics groups in a table or indexed view.

The preceding tasks are adequate for many straightforward maintenance
plans. If the functionality available from the Maintenance Plan Wizard (see
Chapter 18) is inadequate, you can extend the functionality by adding addi-
tional Integration Services tasks. After you add other Integration Services
tasks, you must modify the package in Business Intelligence Development
Studio. You can no longer use SQL Server Management Studio to modify the
maintenance plan.

The Data Flow tab
The Data Flow tab is a way of looking inside a Data Flow task. Alternatively,
you can look on it as the place where you design the functionality of a Data
Flow task.

You specify the components of the Data Flow task by dragging sources, trans-
formations, and destinations from the Toolbox, specifying their properties
and joining them by using precedence constraints to specify the order in
which the code executes.

The Event Handlers tab
The Event Handlers tab allows you to design functionality to execute in
response to specified Integration Services events.

319Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 319

You can design an event handler with these events:

� OnError: Raised when an error occurs.

� OnExecStatusChanged: Raised when the status of an executable — for
example, a container — changes.

� OnInformation: Raised during the validation and execution of an
executable.

� OnPostExecute: Raised by an executable immediately after it executes.

� OnPostValidate: Raised when validation of an executable is complete.

� OnPreExecute: Raised by an executable immediately before execution
begins.

� OnPreValidate: Raised by an executable immediately before validation
begins.

� OnProgress: Raised by an executable when progress is made.

� OnQueryCancel: Raised by an executable to specify when it should stop.

� OnTaskFailed: Raised by a task when it fails.

� OnVariableValueChanged: Raised by an executable when the value of
a variable changes.

� OnWarning: Raised when a warning occurs.

The Package Explorer tab
The Package Explorer tab allows you to explore the structure of a package.
Figure 20-2 shows the appearance in the Package Explorer tab when debug-
ging the example package I create later in the chapter.

Figure 20-2:
The

Package
Explorer tab.

320 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 320

The Toolbox
The Toolbox contains the shapes available to you to design functionality in
an Integration Services package. The contents of the Toolbox depend on
which tab you select.

The Solution Explorer
The Solution Explorer gives a visual display of the components of an
Integration Services package (solution). Figure 20-3 shows the appearance
after I created the example package later in this chapter.

Import/Export Wizard
One of the easiest ways to use Integration Services is to use the Import/
Export Wizard. The Import/Export Wizard allows you to connect to the fol-
lowing data sources:

� Access

� ADO.NET

� Excel

� Flat files

� OLE DB

� SQL Server

Figure 20-3:
The Solution

Explorer.

321Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 321

The Import/Export Wizard has very limited transformation capabilities com-
pared to a full Integration Services project.

In the following example, I import data from the Northwind database that is
a sample database that comes with recent versions of Microsoft Access. If
you don’t have a copy of the database file, select an alternate data source in
Steps 7 and 8.

To create an Integration Services Project with the Import/Export Wizard,
follow these steps:

1. Open the Business Intelligence Development Studio.

2. Choose File➪New➪Project.

3. In the New Project dialog box, select the Integration Services Project
option and name the project Import Export Wizard Example (see
Figure 20-4). Then click OK.

After a pause, the blank project opens. See Figure 20-5. Notice the
Solution Explorer in the upper right of the screen.

Figure 20-4:
The New

Project
dialog box.

322 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 322

4. In the Solution Explorer, right-click the SSIS Packages node and select
SSIS Import and Export Wizard, as shown in Figure 20-6.

5. On the first screen of the Import/Export Wizard screen, click Next.

The Choose a Data Source screen opens.

6. From the Data source drop-down menu, select Microsoft Access (see
Figure 20-7, which also shows several of the other options for a data
source).

Figure 20-6:
Selecting

the Import/
Export

Wizard.

Figure 20-5:
A new

Integration
Services
project.

323Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 323

7. In the File Name text box, enter a path to the Northwind.mdb file or
use the Browse button to browse to an appropriate location, and then
click Next.

The Choose a Destination screen opens (see Figure 20-8).

Figure 20-8:
Specify a

location for
the source

Access
database

file.

Figure 20-7:
Selecting a

Microsoft
Access data

source.

324 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 324

8. Select SQL Native Client from the Destination drop-down menu. If con-
necting locally, leave the Servername as (local).

9. To create a new table in the desired SQL Server instance, click the
New button to the right of the Database drop-down menu.

The Create Database dialog box opens.

10. Name the database NorthwindImport (see Figure 20-9) and click OK.

11. Back in the Choose a Destination screen, click Next.

12. In the Specify Table Copy or Query area, select the Write a Query to
Specify the Data to Transfer radio button and then click Next.

The Provide a Source Query opens.

13. Enter the following SQL statement (see Figure 20-10) and click Next:

SELECT *
FROM Employees

Figure 20-9:
Naming a

database to
hold the

imported
data.

325Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 325

14. On the Select Source Tables and Views screen, click Next.

15. On the Complete the Wizard screen (see Figure 20-11), review the actions
you have chosen. If you’re satisfied with the description, click Finish.

If the wizard created the package successfully, you see an appearance
similar to Figure 20-12.

Figure 20-11:
The

Complete
the Wizard

screen
summarizes

your
choices.

Figure 20-10:
Specifying
the data to

import.

326 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 326

16. Click Close.

You return to the Business Intelligence Development Studio. The Control
Flow tab looks like Figure 20-13. You’re now ready to run the package
you created with the wizard.

Figure 20-13:
The Control

Flow tab
with the
needed
shapes.

Figure 20-12:
Successful

creation
of the

package.

327Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 327

17. To run in debug mode, press F5.

After a pause, the window layout changes significantly as BIDS enters
debug mode. If the package runs successfully, each shape changes
appearance from its original appearance of yellow to green. After suc-
cessfully running the package, the appearance is similar to Figure 20-14.

18. To be able to create the package in the next example, you need to exit
debug mode, so press Shift+F5 to stop debugging.

19. To confirm that the table is created in the desired SQL Server
instance, open SQL Server Management Studio, select the desired
instance in the Registered Servers pane, right-click and choose
Connect➪Object Explorer. In the Object Explorer, expand the
Databases node. If the NorthwindImport database is not visible,
right-click and select Refresh.

The content of the Databases node shows the database created by the
Integration Services package, as shown in Figure 20-15.

Figure 20-15:
The

Northwind
Import
database

visible in the
Object

Explorer.

Figure 20-14:
Appearance

after suc-
cessfully

running the
package.

328 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 328

20. To view the data you imported, expand the NorthwindImport node,
expand the Tables node, right-click dbo.Query (the name given by the
package) and select Open Table.

The names from the Access database appear in the right pane of SQL
Server Management Studio.

Creating an Integration Services Project
In this section, I show you how to create a simple Integration Services pro-
ject. First, you create a simple source file that contains comma-separated
data. The content of the source file, Patients.txt, is shown here:

LastName,FirstName,Diagnosis,DateOfBirth
Smith,James,lymphoma,1955-11-20
Schmidt,Peter,acne,1943-10-03
Carlton,Sheila,breast carcinoma,1965-03-28
Nutten,Patrick,gangrene,1933-02-19
Craven,Alicia,cirrhosis,1955-10-23

Notice that the columns are delimited by commas and that the first line con-
tains the names for the columns.

Also, you need to create a database in the desired SQL Server instance to put
the data into by running this code:

USE master
CREATE DATABASE Chapter20

Then create a table to hold the data:

USE Chapter20
CREATE TABLE PatientData
(LastName nvarchar(25),
FirstName nvarchar(25),
Diagnosis nvarchar(50),
DateOfBirth datetime)

To create an Integration Services project, follow these steps:

1. Open Business Intelligence Development Studio. Choose File➪
New➪Project.

The New Project dialog box opens.

2. Highlight the Business Intelligence Projects option in the left pane of
the New Project dialog box.

3. Click the Integration Services Project option in the right pane.

329Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 329

4. Click in the Name text box, delete the default name and type the pro-
ject name: Chapter20.

5. Edit the location to save the solution if you don’t want to accept the
default location.

6. Make sure that the Create Directory for Solution check box is checked
and then click the OK button.

The Integration Services Designer displays. You need to create a connec-
tion manager for the source of the data.

7. Right-click in the Connection Manager tray on the Control Flow tab
and select the New Flat File Connection option from the context menu.

8. In the Flat File Connection Manager Editor dialog box that opens,
supply a name for the connection: Retrieve Patient Data.

9. Add a description such as Retrieves file containing information on new
patients.

10. Click the Browse button to the right of the File Name text box and nav-
igate to the location of the Patients.txt file. Select Patients.txt
and click Open.

11. Because Patients.txt has titles for columns in the first row, check
the Column Names in First Data Row check box.

12. Click Columns in the left pane of the Flat File Connection Manager
Editor.

The appearance is similar to that shown in Figure 20-16.

Figure 20-16:
The Flat File
Connection

Manager
Editor dis-

playing the
source data.

330 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 330

13. Click Advanced in the left pane.

The name of each column in the source file displays. In the right part of
the dialog box, the properties of the LastName column display. A width
of 50 characters for a last name is excessive.

14. Edit the value of the OutputColumnWidth property to 25 and change
the datatype to Unicode String.

15. Click on FirstName. Edit the value of its OutputColumnWidth prop-
erty to 25 and change the datatype to Unicode String.

16. Don’t change the length of the Diagnosis column because that could
be up to 50 characters, but change its datatype to Unicode String.

17. Click on DateOfBirth. Click the drop-down menu for the DataType
property and select the Database Timestamp option.

You need to scroll up to see it. See Figure 20-17.

18. Click the Preview button in the left column and review the data to
ensure that it is not being truncated. Click OK.

You have created a connection manager. It appears in the Connection
Managers tray in the lower part of the BIDS designer.

19. To create a data flow, switch to the Data Flow tab and click the text in
the middle of the design surface.

After a pause, its color changes to cream, indicating that you can use it
as a design surface.

Figure 20-17:
Changing

datatype for
the Date
OfBirth

column.

331Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 331

At this point, you have specified that the project consists of a single Data
Flow task. You now need to define what the Data Flow Task consists of.

20. Drag a Flat File source from the Toolbox onto the Data Flow design
surface.

The Flat File source has a red X on it, indicating that it isn’t connected
correctly.

21. Right-click the Flat File Source icon and select Edit.

The Flat File Source Editor opens, as shown in Figure 20-18.

The Connection Manager is highlighted in the left pane of the Flat File
Source Editor. The Retrieve Patient Data connection manager is
selected by default, because there is only one available connection man-
ager in the package.

22. Click Columns in the left pane of the Flat File Source Editor to confirm
that the external columns (those in Patients.txt) match the
columns in the output columns. See Figure 20-19.

Figure 20-18:
The Flat File

Source
Editor.

332 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 332

23. If you want to omit some input columns, uncheck the relevant check
box. If you want to rename an output column, click in its name and
edit it. In this case, accept the defaults and click OK.

The Flat File source no longer displays the red X you saw earlier. You now
know that the information necessary to retrieve the flat file data is defined.

24. Right-click the Flat File Source icon and select Rename from the con-
text menu. Rename the Flat File source as Retrieve Patient Data.

25. Right-click and select Autosize on the context menu.

Now you define a destination for the data.

26. In the Connection Managers tray, right-click and select New OLE DB
Connection.

27. In the Configure OLE DB Connection, click New.

28. In the Connection Manager dialog box, select . (a period character) as
the server name and Chapter20 as the database name. Click OK.

29. Drag an OLE DB Destination from the Toolbox to the design surface.
(It has a red X indicating that it is not yet fully configured.) Click the

Figure 20-19:
Selecting
columns

and defining
mappings.

333Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 333

Retrieve Patient Data shape and drag the green line (a precedence
constraint) so that it joins to the new OLE DB Destination shape.

30. Right-click the OLE DB Destination shape and select Edit. You may
receive a warning. Click OK.

The OLE DB Destination Editor dialog box opens. See Figure 20-20.

Because one appropriate connection manager is defined, it’s selected by
default.

31. Click the Name of The Table or The View drop-down menu. After a
pause, confirm that the PatientData table (the only option in the
Chapter20 database) displays in the menu.

32. Click Mappings in the left pane of the OLE DB Destination dialog box.

You see an appearance similar to Figure 20-21, indicating that the input
columns nicely match the output columns.

Figure 20-20:
The OLE DB
Destination

Editor
dialog box.

334 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 334

The OLE DB Destination shape no longer has a red X visible.

33. To run the package, press F5.

The shapes successively turn yellow and then green, indicating success-
ful running of the package.

34. Review package progress by clicking the Progress tab. See Figure 20-22.

Figure 20-22:
The

Progress
tab.

Figure 20-21:
The Map-

pings in the
OLE DB

Destination
Editor

dialog box.

335Chapter 20: SQL Server Integration Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 335

35. Press Shift+F5 to exit debug mode.

36. Choose File➪Save to save the package.

You can use SQL Server Integration Services to create much more complex
packages than the example shown in this section. However, I have shown you
several of the key techniques that you use to create complex Integration
Services packages.

Deploying an Integration Services Project
You have two options to deploy an Integration Services project. You can
deploy it to the msdb database inside SQL Server 2005, or you can deploy it
to the file system.

Before deployment, you create a package configuration. For deployment to
SQL Server 2005, you create a configuration in the msdb database. For file
system deployment, you have several options — including using an XML con-
figuration file.

To enable a package for deployment, right-click the package in the Solution
Explorer and select Properties. The Property Pages dialog box opens. You
have options to specify that a deployment utility is created when the package
is built (see Figure 20-23). You also specify the location for the deployment
folder. After you specify the deployment information, rebuild the package.

Figure 20-23:
Enabling

creation of a
deployment

utility.

336 Part VI: Using SQL Server Business Intelligence (BI) Services

29_577557 ch20.qxp 12/20/05 9:56 PM Page 336

Chapter 21

Analysis Services
In This Chapter
� Looking at your data by using Analysis Services

� Comparing BIDS and Analysis Services

� Creating an Analysis Services project

� Predicting scenarios with data mining

� Securing Analysis Services data

SQL Server Analysis Services is the second component of the Integrate,
Analyze, Report paradigm that underlies business intelligence in SQL

Server 2005. You use SQL Server Integration Services to gather data from pos-
sibly heterogeneous sources. You use Analysis Services to analyze the data.
You use Reporting Services to create reports for other colleagues to use.

Analysis Services allows you to analyze data by using Online Analytical
Processing (OLAP) or Data Mining techniques. To use Online Analytical
Processing, you create multidimensional structures that contain data aggre-
gated from several sources. To use Data Mining functionality, you create data
mining models.

Unfortunately, in the space available, I can introduce only a small part of the
huge range of features in SQL Server 2005 Analysis Services. For further infor-
mation, see Professional SQL Server Analysis Services 2005 with MDX, by
Sivakumar Harinath and Stephen R. Quinn (Wiley).

Introducing Analysis Services
Analysis Services helps you find out what is happening in your business. You
can view Analysis Services as a way to make sense out of the huge volumes of
data that many modern businesses accumulate.

Analysis Services consists of two main types of processing: OLAP (Online
Analytical Processing) and Data Mining

30_577557 ch21.qxp 12/20/05 9:57 PM Page 337

Analysis Services consists of both client-based and server-based components.
The server components consist of one or more instances of SQL Server 2005
Analysis Services server. Clients communicate with Analysis Services by using
XML for Analysis (XMLA). XMLA is a SOAP-based protocol, exposed as a Web
service that supports sending requests and receiving responses.

The server components of Analysis Services undertake the following tasks:

� Parsing statements received from client applications

� Handling transactions

� Executing calculations

� Storing dimension data

� Creating aggregations

� Scheduling queries

� Managing server resources

� Managing metadata

You can write Analysis Service queries in any of the following languages:

� T-SQL

� Multi Dimensional Expressions (MDX)

� Data Mining Extensions (DMX)

The Analysis Services server returns client components process data. They
also allow the user to specify what analyses they want carried out.

You can manage Analysis Services objects directly by using Analysis Services
Scripting Language (ASSL). Often you can use other applications to conceal
ASSL. For example, both SQL Server Management Studio and Business
Intelligence Studio use ASSL to interact with Analysis Services. ASSL consists
of two components:

� A Data Definition Language (DDL)

� A command language

New features in Analysis Services 2005
The following features are new or enhanced in Analysis Services in SQL
Server 2005:

� Business Intelligence Development Studio as a development environment

� SQL Server Management Studio as a management tool.

338 Part VI: Using SQL Server Business Intelligence (BI) Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 338

� Unified Dimensional Model as a single way to model or view your data.

� Proactive caching supports great performance as underlying data
updates.

� Key Performance Indicators (KPI) summarize key measures of business
performance.

� Translations provide access to metadata in multiple languages for easier
use of Analysis Services analyses internationally.

� Multiple instances of Analysis Services.

� Failover clustering of Analysis Services.

� XML for Analysis support.

� Multiple fact tables are supported in a cube.

� Perspectives are predefined subsets of a cube that allow specified
aspects of the business data to be viewed more clearly.

� Attributes allow more meaningful navigation of the information in a
dimension.

� Multiple hierarchies are now supported in a dimension.

� Now only two dimension types — standard and linked (compare to four
in Analysis Services 2000).

� Support for SQL Server 2005 Integration Services.

� Business intelligence wizards carry out complex tasks.

Key Performance Indicators
A Key Performance Indicator (KPI) allows you to display summary data for
information workers and executives in a way that is meaningful for them to
compare performance to business goals.

A KPI allows you to compare business performance, as judged by a selected
measure, against actual performance. Threshold values are defined and the
display graphically summarizes actual performance versus target performance.

A Key Performance Indicator includes the following components. However,
you may choose to display or use only some of these in individual settings:

� A business goal for performance

� An actual performance

� Compare actual performance to the target performance

� Assess the change in status over time

� Visually display status

339Chapter 21: Analysis Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 339

� Visually display trend

� Attach an importance to individual KPIs

Managing Analysis Services
SQL Server Management Studio is the tool you use to carry out many man-
agement tasks on a SQL Server 2005 Analysis Services instance.

To register an Analysis Services instance and view its properties by using
SQL Server Management Studio, follow these steps:

1. Open SQL Server Management Studio. If the Registered Servers pane
is not visible, choose View➪Registered Servers.

2. In the Registered Servers pane, click the Analysis Services button at
the top of the pane.

The Analysis Services button is second from the left in Figure 21-1.

3. Right-click in the Registered Servers pane and choose New➪Server
Registration.

The New Server Registration dialog box opens.

4. Supply a server name and, optionally, an instance name in the Server
name text box. Click Test to test the connection. Click Save.

An Analysis Services instance is added to the Registered Servers pane.

5. To view the properties of an Analysis Services instance, right-click the
desired instance of Analysis Services and choose Connect➪Object
Explorer.

The Object Explorer opens with an appearance similar to Figure 21-2.

Figure 21-1:
The

Registered
Servers

pane in SQL
Server

Manageme
nt Studio.

340 Part VI: Using SQL Server Business Intelligence (BI) Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 340

6. Expand the Databases and Assemblies nodes.

If you just installed Analysis Server, the Databases node is empty. Figure
21-3 shows the Assemblies node.

Business Intelligence Development
Studio and Analysis Services

You use the Business Intelligence Development Studio to create Analysis
Services solutions, similar to how you create Integration Services solutions (see
Chapter 20). However, the designer for Analysis Services 2005 solutions has
many differences from Integration Services as I show you later in this chapter.

When you use an Analysis Services project, you use several objects repeat-
edly in the Business Intelligence Development Studio:

� Data Sources: A data source is a representation of a connection to a
source of data. Often you use a data source that is a relational database,
as in the example later in the chapter. However, you can also use XML,
Excel files, Active Directory, and so on, as a data source.

You specify the SQL Server instance, the database, tables, and columns
you want to use.

Figure 21-3:
Viewing the
Assemblies
node in an

Analysis
Server

instance in
the Object

Explorer.

Figure 21-2:
An Analysis

Services
instance in
the Object

Explorer.

341Chapter 21: Analysis Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 341

� Data Source Views: A data source view is a view on to the tables that
make up a data source. Just as you can have views in ordinary relational
databases, you can have views in Analysis Services. Views allow devel-
opers, for example, to create calculated columns that exist only in the
data source view. The user may not have permissions to access the
underlying tables to add any additional columns.

� Cubes: A cube is a multidimensional model of business data. Each
dimension expresses an aspect of the business data. In Analysis Services
2005, each cube can have multiple dimensions.

� Dimensions: Each dimension represents one dimension in the multi-
dimensional cube.

� Mining Structures: The Data Mining tools in SQL Server 2005 allow you
to explore your data to find patterns in it. I describe the supported algo-
rithms in Analysis Services 2005 Data Mining later in this chapter.

� Roles: Roles are used to manage security for Analysis Services objects
and models.

In this chapter, I describe how to create an Analysis Services solution by
using the Business Intelligence Development Studio. You can also program-
matically create Analysis Services solutions, using Analysis Management
Objects (AMO) in projects created in Visual Studio 2005. Details of using
Analysis Management Objects are beyond the scope of this chapter.

Creating an Analysis Services Project
In this section, I describe one approach to creating an Analysis Services solu-
tion with the Business Intelligence Development Studio.

To create an Analysis Services solution, follow these steps:

1. Open the Business Intelligence Development Studio.

2. Choose File➪New➪Project.

The New Project dialog box opens.

3. In the New Project dialog box, select Business Intelligence Projects in
the left pane. Then select Analysis Services Project in the right pane.
Name the project Chapter21.

The New Project dialog box looks similar to Figure 21-4.

342 Part VI: Using SQL Server Business Intelligence (BI) Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 342

Notice in Figure 21-4 that the New Project dialog box includes an addi-
tional option to import an Analysis Services 9.0 database project. If you
have an existing Analysis Services 2005 database, you can use that option.

4. Click OK.

After a pause, you see the initial appearance, similar to that shown in
Figure 21-5. If you use the Start Page, you see that as a background.

Notice the folders contained in the Solution Explorer, towards the upper
right of Figure 21-5.

Figure 21-5:
The initial

appearance
of an

Analysis
Services

project in
BIDS.

Figure 21-4:
Creating an

Analysis
Services

project in
the New

Project
dialog box.

343Chapter 21: Analysis Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 343

First, you need to define where the data is to come from. You do that by
creating a data source for the solution.

5. Right-click the Data Sources folder in the Solution Explorer. Select
New Data Source from the context menu.

6. When the Data Source Wizard opens, click Next.

7. On the Select How to Define a Connection screen, click the New
button to create a connection.

The Connection Manager dialog box opens.

8. In the Server Name text box, enter a single period if you’re connect-
ing to a local instance of SQL Server. If you’re connecting to a remote
SQL Server instance, enter the information in the form
machineName\instanceName when connecting to a named instance
or machineName when connecting to a default instance. Select the
AdventureWorksDW database from the Select or Enter a Database
drop-down menu, as shown in Figure 21-6.

9. Click the Test Connection button to confirm that a connection can be
made and then click OK.

If a connection cannot be made, check that you haven’t mistyped the
server or instance name. If no obvious error is there, check that the
desired instance of SQL Server is running and that the network connec-
tion is intact.

Figure 21-6:
Selecting a
server and

database to
connect to.

344 Part VI: Using SQL Server Business Intelligence (BI) Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 344

10. Click OK in the Connection Manager dialog box.

You return to the Select How to Define the Connection screen (see
Figure 21-7).

11. Click Next.

The Impersonation Information screen opens.

12. Select the Use the Service Account radio button (see Figure 21-8), and
then click Next.

Figure 21-8:
Selecting

creden-
tials for

connection.

Figure 21-7:
The

connection
is defined.

345Chapter 21: Analysis Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 345

The Completing the Wizard screen displays.

13. Name the data source AdventureWorksDW Source (see Figure 21-9).
Inspect the connection information. Click Finish.

The newly created data source is added to the Data Sources folder in the
Solution Explorer (see Figure 21-10).

Next you create a data source view. The data source has access to all the
data in the AdventureWorksDW database. When you define a data
source view, you specify which parts of that data you want to make use
of in the project you’re creating.

14. Right-click the Data Source Views folder and select New Data
Source View.

After a pause, the Data Source View Wizard opens (see Figure 21-11).

Figure 21-10:
A data
source

is added to
the Data
Sources

folder.

Figure 21-9:
Naming the

data source.

346 Part VI: Using SQL Server Business Intelligence (BI) Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 346

15. Click Next.

The Select a Data Source screen opens.

16. Select a data source to use in the data source view you are creating.

If you’ve created only the data source specified earlier in this example,
you see the appearance shown in Figure 21-12.

Figure 21-12:
Selecting a

data source
to use for

the data
source

view.

Figure 21-11:
The Data

Source
View

Wizard.

347Chapter 21: Analysis Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 347

17. When you have chosen a data source, click Next.

After a pause, the Select Tables and Views screen displays.

You now choose which tables and/or views in the AdventureWorksDW
database you want to include in the data source view that you’re creating.

18. To make it easier to see the available choices, resize the Select Tables
and Views screen, as shown in Figure 21-13. Also uncheck the Show
System Objects check box.

19. Notice in the names of the tables that some are dimension tables and
some are fact tables. Select the following tables so that you can examine
the sales data for customer, geographical locality, product, and time:

• DimCustomer

• DimGeography

• DimProduct

Figure 21-13:
The Select
Tables and

Views
screen.

348 Part VI: Using SQL Server Business Intelligence (BI) Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 348

• DimTime

• FactInternetSales

Make sure at this stage that you always select at least one fact table.

You have now selected some tables with information relevant to what
you want. However, to create the desired data source view, you need
information from associated tables, too. The wizard can help you find
related tables.

20. With all the listed tables selected, as shown in Figure 21-14, click the
Add Related Tables button.

Several more tables are added to the right pane of the Select Tables and
Views screen, as shown in Figure 21-15. The tables that the wizard added
for you are shown with a gray background.

Figure 21-14:
The desired

tables are
selected.

349Chapter 21: Analysis Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 349

21. Click Next.

22. On the Completing the Wizard screen that opens, name the data
source view AdventureWorksDW Data Source View. Inspect the compo-
nents of the data source view in the lower pane. Click Finish.

The appearance of the Business Intelligence Development Studio
changes markedly, as shown in Figure 21-16.

23. In the Solution Explorer, confirm that the data source view you cre-
ated has been added to the Data Source Views folder.

24. Navigate around the data source view design surface.

For reasons of space, accept the data source view as created by the
wizard. You have options to, for example, add additional columns.

You now create a cube from the data source view.

25. In the Solution Explorer, right-click the Cubes folder and choose
New Cube.

Figure 21-15:
Associated

tables
are now

selected.

350 Part VI: Using SQL Server Business Intelligence (BI) Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 350

26. When the Cube Wizard opens, click Next.

The Select Build Method screen opens (see Figure 21-17).

Figure 21-17:
Specify the

method
used to

build the
cube.

Figure 21-16:
The design
surface for

the data
source

view.

351Chapter 21: Analysis Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 351

27. Accept the default choices on the screen (which creates attributes
and hierarchies for you), leave the Auto Build check box checked,
and then click Next.

The Select Data Source View screen opens.

28. Select the AdventureWorksDW Data Source View that you created ear-
lier and click Next.

The Detecting Fact and Dimension Tables screen displays. The wizard
automatically inspects the tables in the data source view and attempts
to assign them as a fact table, a dimension table or, occasionally, a table
that it thinks is both a fact table and a dimension table.

29. Click Next.

The Identify Fact and Dimension Tables screen displays (see Figure 21-18
that is resized so you can see all the tables).

30. Select the DimTime table from the Time Dimension Table drop-down
menu.

On the Diagram tab, the graphical relationship between tables is shown
in Figure 21-19.

31. Click Next.

The Select Time Periods screen opens.

Figure 21-18:
Tables auto-

matically
classified
as fact or

dimension
tables.

352 Part VI: Using SQL Server Business Intelligence (BI) Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 352

32. Map properties in the left column to column names in the right
column of the screen, as shown in Figure 21-20, and then click Next.

The Select Measures screen displays (see Figure 21-21).

Figure 21-20:
Mapping

time
properties

to columns
in the

DimTime
table.

Figure 21-19:
A graphical

represen-
tation of
the rela-

tionships
between
fact and

dimension
tables.

353Chapter 21: Analysis Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 353

33. On this screen, you would typically select and deselect measures. For
simplicity, leave all the measures checked and click Next.

The Detecting Hierarchies screen displays. The wizard detects hierar-
chies in the cube you’re creating.

34. Click Next when you see the message that detecting hierarchies is
complete.

The Review New Dimensions screen displays. Explore the hierarchies
that have been created, as shown in Figure 21-22.

Figure 21-22:
Inspect the
dimension

hierarchies.

Figure 21-21:
You can
choose

which
measures to

select and
deselect.

354 Part VI: Using SQL Server Business Intelligence (BI) Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 354

35. Click Next. In the Completing the Wizard screen that appears, name
the cube AdventureWorksDW Cube. Click Finish.

After a pause, the design surface changes again, as shown in Figure 21-23.

36. Save the solution by choosing File➪Save All.

Notice that several new tabs display:

� Cube Structure

� Dimension Usage

� Calculations

� KPIs

� Actions

� Partitions

� Perspectives

� Translations

� Browser

Each of the preceding tabs has an associated designer. I suggest you click on
each tab and inspect its appearance and functionality.

Notice too that a cube has been added to the Cubes folder and several dimen-
sions have been added to the Dimensions folder in the Solution Explorer.

Typically, you would explore and modify aspects of the project you have cre-
ated. For reasons of space, I show you how to deploy the project.

Figure 21-23:
New tabs
display on
the design

surface.

355Chapter 21: Analysis Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 355

To deploy the project you created, follow these steps:

1. In the Solution Explorer, right-click the project name, Chapter21, and
choose Properties.

The Property Pages dialog box opens.

2. Select Deployment in the left pane of the Property Pages dialog box
(see Figure 21-24).

3. Modify the properties as appropriate to your deployment scenario.
Click OK to confirm any changes.

If you intend to deploy on the local machine, leave the properties
unchanged.

To deploy an Analysis Services project, follow these steps:

1. In Solution Explorer, right-click the project name and choose Deploy
from the context menu.

After a significant pause, the Deployment Progress pane appears.

2. Monitor progress in that pane until a message indicating success (as
shown in Figure 21-25) or failure displays.

3. After the project is successfully deployed, click the Browser tab.

Figure 21-26 shows the appearance.

Figure 21-24:
Select the

deployment
properties.

356 Part VI: Using SQL Server Business Intelligence (BI) Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 356

4. You can drag items from the left pane to the design surface.

The designer gives you visual cues as to where you can drop items.

To create a simple display of sales by year by territory, follow these steps:

1. Expand the Measures node in the left (metadata) pane.

2. Drag Sales Amount to the Drop Totals or Details Fields Here area.

3. Expand the DimSalesTerritory node.

4. Drag SalesTerritory Country to the Drop Row Fields Here area.

5. Expand the Dim Time and the DimTime.CalendarYear nodes.

6. Drag Calendar Year to the Drag Column Fields Here area.

Figure 21-27 shows the appearance of the simple display of data.

Figure 21-26:
The

Browser tab
after project
deployment.

Figure 21-25:
The

Deployment
Progress

pane
displays

how deploy-
ment is

progressing.

357Chapter 21: Analysis Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 357

In a real project, you would tidy formatting and so on. But this example gives
you an impression of what you can do with Analysis Services projects.

Data Mining
Data mining allows you to predict what is going to happen. For example, you
can estimate which target group you can best send a product mailing to. You
can also predict sales or other business performance by analyzing relation-
ships between factors in your existing data.

Data mining in SQL Server 2005 supports the use of several complex mathemati-
cal algorithms. SQL Server 2005 Data Mining supports the following algorithms:

� Association

� Clustering

� Decision Trees

� Linear Regression

� Logistic Regression

� Naive Bayes

� Neural Network

� Sequence Clustering

� Time Series

Details of data mining and how to use the wizards that support it is beyond
the scope of this chapter.

Figure 21-27:
A simple
analysis

created with
Analysis

Services.

358 Part VI: Using SQL Server Business Intelligence (BI) Services

30_577557 ch21.qxp 12/20/05 9:57 PM Page 358

Chapter 22

Building Business Reports
with Reporting Services

In This Chapter
� Finding out what you can do with Reporting Services

� Creating reports

� Viewing reports

� Managing reports

� Distributing reports to others

� Viewing reports with Report Builder

The third component of SQL Server 2005’s Integrate, Analyze, Report para-
digm is SQL Server 2005 Reporting Services. SQL Server 2005 Reporting

Services builds on the functionality in SQL Server 2000 Reporting Services
that was released in January 2004.

One of the key aims of business reporting is to make available to users up-to-
date, relevant business information in a form that can be delivered or
accessed in a convenient way. Some users need text (numeric) data. Others
want graphical presentation of data. SQL Server Reporting Services can meet
both needs.

SQL Server 2005 Reporting Services allows you, as a developer, to create
business reports for end users such as managers, departmental heads, and
individual information workers. You have a choice of delivery mechanism for
reports that I discuss later in this chapter.

Used in that way, SQL Server 2005 has many similarities to SQL Server 2000
Reporting Services. However, SQL Server 2005 has a new tool, Report Builder,
which is intended to allow end users to create their own ad hoc business
reports. A developer needs to create the underlying report model by using
the Business Intelligence Development Studio. The end user then creates,
from the model, ad hoc reports.

31_577557 ch22.qxp 12/20/05 9:58 PM Page 359

Overview of Reporting Services
SQL Server 2005 Reporting Services is a server-based product designed to
produce a range of business reports.

SQL Server Reporting Services supports the following activities:

� Report authoring: Report Designer (part of Business Intelligence
Development Studio), Report Model Designer (also part of BIDS) and
Report Builder (an end user report design tool).

� Report Deployment: Report Designer and Report Model Builder (both
part of Business Intelligence Development Studio).

� Report management: Report Manager (a browser-based management
tool), SQL Server Management Studio.

� Report delivery: You can schedule the delivery of reports and can
deliver reports by e-mail or to a fileshare.

You use Reporting Services to produce the following types of report:

� Tabular

� Matrix

� Chart

� Free-form

You can create reports by using the following types of data source:

� SQL Server data

� Other relational data, for example, Oracle

� XML data

� Multidimensional data from an Analysis Services cube

You have options to present reports in the following formats:

� HTML

� Excel

� PDF

� XML

Installing Reporting Services can be a complex process. To minimize prob-
lems, I suggest that, for testing, you set up Reporting Services on the same
development machine as SQL Server 2005. Be sure to check the default con-
figuration option for Reporting Services.

360 Part VI: Using SQL Server Business Intelligence (BI) Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 360

You must install Internet Information Services (IIS) before you install
Reporting Services. During the System Configuration Check before installing
SQL Server and Reporting Services, you’re warned if IIS is missing, but you
are allowed to continue with the SQL Server install.

You can register a Reporting Services server in the Registered Servers pane
of SQL Server Management Studio. You can view information about the report
server by right-clicking the report server in the Registered Servers pane and
choosing Connect➪Object Explorer.

A report server contains the metadata that define reports and how and when
to deliver them. It also holds credentials for connecting to data sources used
in reports.

Replicating to a Report Server
You can replicate data to the Reporting Services server so that creating
reports does not add load to your main server. The Report Server accesses
data on the server containing replicated data and leaves resources on the
main server uninterrupted by the sometimes heavy needs of retrieving data
for Reporting Services reports.

Database mirroring and database views
Another approach to creating a Reporting Services server is to use database
mirroring to create a server that has a copy of the transaction database that
is up-to-date almost to the second. You cannot report directly against a data-
base mirror but you can create a database view on the database mirror and
create reports against the database view. A database view is a read-only copy
of a database at a specific point in time.

Combining a database mirror and database view provides a good way to have
a reporting server that is not likely to be heavily loaded. If you anticipate that
the Reporting Services server will be heavily loaded, you must consider how
to cope with the occasional and temporary increased load on the machine
when the original primary server fails and the database mirror server takes
over that transaction load.

Creating Reports
If you install only SQL Server 2005 on a development machine, Business
Intelligence Development Studio (BIDS) is the tool you use to create
Reporting Services reports. If you also install Visual Studio 2005, then the

361Chapter 22: Building Business Reports with Reporting Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 361

Visual Studio 2005 shell incorporates BIDS and you can also create Reporting
Services reports there too.

I show you how to use Business Intelligence Development Studio. The
process is almost identical in Visual Studio 2005, assuming that SQL Server
2005 is installed on the same machine.

You can design a report in two ways: with the Report Wizard or from a blank
report.

To create a Reporting Services report with the Report Wizard, follow these
steps:

1. Open Business Intelligence Development Studio (or Visual Studio 2005).

2. Choose File➪New➪Project.

The New Project dialog box opens.

3. Select Business Intelligence Projects in the left pane. In the right pane,
select Report Server Project Wizard (see Figure 22-1).

Notice in the right pane the options for a Report Server Project. If you
want to create a blank report project, choose that option.

4. Click OK.

After a pause, the Welcome to the Report Wizard screen displays (see
Figure 22-2). It lists the steps you follow when using the wizard.

5. Click Next.

The Select the Data Source screen opens. You now need to create a data
source.

Figure 22-1:
Create a

Report
Project
Wizard

project and
name it.

362 Part VI: Using SQL Server Business Intelligence (BI) Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 362

6. In the Name text box, enter Using Adventureworks as the name of the
data source.

7. Click the Edit button.

The Connection Properties dialog box opens (see Figure 22-3).

Figure 22-3:
The

Connection
Properties
dialog box.

Figure 22-2:
The

Welcome
screen for
the Report

Wizard.

363Chapter 22: Building Business Reports with Reporting Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 363

8. Type (local) (including the parentheses) in the Server Name drop-
down menu. If you’re connecting remotely to an instance of SQL
Server, replace (local) with the server name (for a default instance) or
serverName\instanceName for a named instance. In the Select or Type
a Server Name drop-down menu, select the Adventureworks option.

9. Click the Test Connection button. When the connection succeeds, click
OK to dismiss the message telling you that you connected successfully.

10. Click OK to return to the Select the Data Source screen.

It looks like Figure 22-4.

11. Click Next.

The Design the Query screen displays, as shown in Figure 22-5.

You have two options:

Write or paste a T-SQL query in the Query String text box: Click
Next and skip to Step 24.

Design a query visually: Continue with Step 12.

Figure 22-4:
The Select

the Data
Source
screen.

364 Part VI: Using SQL Server Business Intelligence (BI) Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 364

12. Click the Query Builder button to design a query visually.

The Query Builder opens, as shown in Figure 22-6.

Figure 22-6:
The Query

Builder,
where you

visually
design a T-
SQL query.

Figure 22-5:
The Design

the Query
screen.

365Chapter 22: Building Business Reports with Reporting Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 365

13. Click the button to the left of the exclamation mark in the top-left
corner of the Query Builder.

The visual design tools appear, as shown in Figure 22-7.

14. Maximize the Query Builder so that you can get a good view of all
the tools.

15. In the top blank area, right-click and select Add Table from the con-
text menu.

The Add Table dialog box opens, as shown in Figure 22-8.

16. Select each of these tables and click Add. After you add all tables,
click Close in the Add Tables dialog box.

Figure 22-8:
The Add

Table
dialog box.

Figure 22-7:
The Query

Builder with
visual

design tools
visible.

366 Part VI: Using SQL Server Business Intelligence (BI) Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 366

• Customer

• SalesTerritory

• CustomerAddress

• SalesOrderHeader

• Address

• StateProvince

17. In the Customer table, select the following check boxes: CustomerID
and TerritoryID.

18. In the SalesTerritory table, select the following check boxes:
TerritoryID, Name, Group, SalesYTD, and CostYTD.

19. In the CustomerAddress table, select the following check boxes:
CustomerID and AddressID.

20. In the SalesOrderHeader table, select the following check boxes:
SalesOrderID, OrderDate, TerritoryID, CustomerID, and
TotalDue.

21. In the Address table, select the following check boxes: AddressID,
StateProvinceID, and City.

22. In the StateProvince table, select the following check boxes:
StateProvinceID and Name.

The appearance is similar to Figure 22-9. I repositioned the shapes repre-
senting the tables to help you see the relationships among the tables.
Notice that a T-SQL statement is created automatically from the tables
and columns you selected.

Figure 22-9:
The Query

Builder after
creating a

query.

367Chapter 22: Building Business Reports with Reporting Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 367

23. Click OK; when you return to the Design the Query screen, click Next.

24. On the Select the Report Type screen, select Tabular and click Next.

25. On the Design the Table screen, select Group and click the Page
button. Select Name (it’s territory name) and click the Group button.
Select City, CustomerID, SalesYTD, and CostYTD and click Details.

26. Click Next.

27. On the Choose Table Layout screen, select Stepped and click Next.

28. On the Choose the Table Style screen, select Corporate. Click Next.

29. On the Completing the Wizard screen, name the report Chapter 22
Sample Report. Check the Display Preview check box. Click Finish.

After a delay, you see an appearance similar to Figure 22-10. The win-
dows may not be similarly laid out depending on your Business
Intelligence Development Studio preferences.

You can see that the SalesYTD and CostYTD columns have too many
decimal places.

30. Click the Layout tab.

The Layout tab displays.

31. Select the cell below SalesYTD and CostYTD by clicking the first and
Ctrl+clicking to select the second. In the Properties pane, find the
Format property and give it a value of c to indicate currency.

Figure 22-10:
Previewing

a report
created with

the Report
Wizard.

368 Part VI: Using SQL Server Business Intelligence (BI) Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 368

32. Drag the right edge of the design surface a little to the right to allow
you to increase column width.

33. Click above CostYTD and drag the column edge slightly to the right.

The column width increases.

34. Click above SalesYTD and drag the column edge slightly to the right.

The column width increases.

35. Click the Preview tab and the appearance is similar to Figure 22-11.

36. To save your report, choose File➪Save All.

On the Layout tab, you can alter the appearance of text, reposition items on
the page, and so on. This example is simply to give you an indication of how
you might use the Report Wizard.

After you design a report to give you an appearance that you’re satisfied
with, you deploy the report. To deploy a report, you need to specify where it
is going to be deployed and then deploy it.

To specify where a project is going to be deployed, follow these steps:

1. In the Solution Explorer, right-click the Chapter 22 at the top (not the
Chapter 22 Sample Report.rdl node) and select Properties.

The Chapter22 Property Pages dialog box opens, as shown in Figure 22-12.

Figure 22-11:
Sales

shown as
currency

and column
widths

increased.

369Chapter 22: Building Business Reports with Reporting Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 369

2. If you’re deploying locally, enter http://localhost/ReportServer as the
value of the TargetServerURL property.

3. Click OK to confirm the changes in deployment properties.

To deploy the report, right-click Chapter 22 in the Solution Explorer and
choose Deploy from the context menu that appears. In the Output window,
you see a message indicating that deployment has started and then com-
pleted successfully.

Viewing Reports
After you create some reports, you can view them by using the Report
Manager. To open Report Manager, follow these steps:

1. Open Internet Explorer.

2. Type the following URL in the address bar: http://localhost/Reports. If
you’re attempting to access a remote Reporting Services server, substi-
tute the server name for localhost in the URL.

3. Press the Enter key.

The Report Manager opens after a delay and displays a list of reports
deployed on the server (see Figure 22-13).

Figure 22-12:
The

Property
Pages

dialog box.

370 Part VI: Using SQL Server Business Intelligence (BI) Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 370

Managing Reports
SQL Server 2005 Reporting Services offers you two tools to manage reports:
through Report Manager and SQL Server Management Studio.

Managing in Report Manager
Report Manager is a browser-based tool that displays reports according to
the permissions granted to a user. If you are an administrator, you can see all
reports on a report server and adjust their properties.

You can grant appropriate properties to individual users or groups of users.
For example, a group called Developers may have access to a Test Reports
folder, which end users cannot see.

Figure 22-13:
The Report

Manager.

371Chapter 22: Building Business Reports with Reporting Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 371

Managing in SQL Server
Management Studio
In the Registered Servers pane of SQL Server Management Studio, you can
register Reporting Services instances. You can view and manage any regis-
tered Reporting Services instance in the Object Explorer.

Distributing reports to
those who need them
You can use Reporting Services to distribute reports in several ways. A sub-
scription to a report (or group of reports) consists of the following parts:

� A report that can run unattended. Typically, a report server stores the
credentials.

� A delivery method or location such as e-mail or a file share.

� A rendering extension to produce the report in the desired output
format.

� Conditions for processing the report — for example, a scheduled time or
a specified event.

� Parameters to use when the report runs.

Scheduled reports
Scheduled reports are distributed at scheduled times. Scheduled reports on a
Reporting Services report server use the SQL Server Agent service. If you
plan to use scheduled reports, be careful to ensure that SQL Server Agent is
set to start automatically. If you don’t do that and the Reporting Services
restarts, you can expect that the SQL Server Agent service won’t start and
your users won’t receive any scheduled reports.

E-mailing reports
You can use e-mail in two ways. You can send reports to users. Or you can
e-mail users a URL to access a desired version of the report.

Report Definition Language
The Report Designer in Business Intelligence Development Studio gives you a
design surface to specify data sources and create the visual appearance of
reports. Behind the scenes, a Report Definition Language (RDL) file is created.

372 Part VI: Using SQL Server Business Intelligence (BI) Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 372

When you deploy a report from Business Intelligence Development Studio, an
RDL file is deployed to the Reporting Services server. The RDL file contains
information about the data source(s) for the report, together with layout
information.

The version of RDL for SQL Server 2005 is different from the version of RDL
used in Reporting Services 2000. A Reporting Services 2000 server is unable
to run the RDL for SQL Server 2005.

Report Builder
Report Builder is a tool new in SQL Server 2005. Report Builder allows informa-
tion workers to create Reporting Services reports by using a graphical interface
that is significantly simpler than the Business Intelligence Development Studio.

Before an information worker can create a report in Report Builder, a
developer — you — must create a report model in Business Intelligence
Development Studio.

You create a report model in Business Intelligence Development Studio.

To create a Report Model project, follow these steps:

1. Open Business Intelligence Development Studio.

2. Choose File➪New➪Project.

The New Project dialog box opens.

3. Select Business Intelligence Projects in the left pane.

4. Select Report Model Project in the right pane (see Figure 22-14).

Figure 22-14:
Selecting

the Report
Model

Project
template
in BIDS.

373Chapter 22: Building Business Reports with Reporting Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 373

You then go on to select business data that the end user needs to design a
report. The Visual Studio solution that you create is deployed to a Reporting
Service server. Space constraints prevent me showing a fully worked example.

Users use Report Manager to access the Report Server. From Report
Manager, the user clicks to download, install, and run Report Builder (see
Figure 22-15). In Report Builder, the information worker then manipulates a
user-friendly representation of the report model to create table, matrix, or
chart reports.

When you choose from the available report models, the Report Builder dis-
plays a design surface. You can drag items from the Explorer to the design
surface to specify an ad hoc report (see Figure 22-16). To view the report,
click the Run Report button and the report is displayed.

Figure 22-15:
Report

Builder.

374 Part VI: Using SQL Server Business Intelligence (BI) Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 374

Report Viewer Controls
In the previous sections, I described server-based reporting functionality.
Microsoft has added, in Visual Studio 2005, reporting functionality based on
the client. You don’t need a connection to a Reporting Services server to view
a report.

The ReportViewer Controls are provided if you have Visual Studio 2005. You
use the ReportViewer controls in a Visual Studio Windows Forms solution.
These controls are not included with Business Intelligence Development
Studio.

Figure 22-16:
Designing a

report in
Report

Builder.

375Chapter 22: Building Business Reports with Reporting Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 375

376 Part VI: Using SQL Server Business Intelligence (BI) Services

31_577557 ch22.qxp 12/20/05 9:58 PM Page 376

Part VII
The Part of Tens

32_577557 pt07.qxp 12/20/05 9:59 PM Page 377

In this part . . .

In the confines of this book, I can cover only so much of
what you might want to know about SQL Server 2005.

So in this part, I show you resources where you can find
more information (Chapter 23) and third-party tools that
you can use with SQL Server 2005 (Chapter 24).

32_577557 pt07.qxp 12/20/05 9:59 PM Page 378

Chapter 23

Ten Sources of Information
on SQL Server 2005

One of the biggest problems in getting fully to grips with SQL Server 2005
is the sheer size of the suite of programs. To say SQL Server is enormous

doesn’t do it justice. SQL Server 2005 consists of several components — the
database engine, Integration Services, and Analysis Services to name a few —
that are enormous by themselves.

In this chapter, I describe some of the many sources where you can find addi-
tional information about SQL Server 2005.

Books Online
Books Online is the official Microsoft documentation for SQL Server 2005. It is
often affectionately referred to as BOL. Despite its name, you’ll likely use it
offline.

If you are used to SQL Server 2000 Books Online, you will notice huge
changes in Books Online for SQL Server 2005. The interface has been com-
pletely redesigned. At first, this can make finding information difficult.

You can install Books Online separately from the rest of SQL Server 2005. It’s
located at www.microsoft.com/technet/prodtechnol/sql/2005/
downloads/books.msp. If it’s not there, do a Google search for SQL Server
2005 Books Online site:microsoft.com and you have a good chance of find-
ing it.

In the Index pane and Contents pane of BOL, you can filter content by major
topics such as Integration Services and Reporting Services. Filtering allows
you to find the information you want.

33_577557 ch23.qxp 12/20/05 9:59 PM Page 379

The Search functionality has been redesigned. The toolbar has a Search
button. You can filter searches by technology and content type.

If you also install Visual Studio 2005 and MSDN, you find all BOL content is
added to MSDN. Using the filters is a huge help if you want to reduce the
chance of being overwhelmed with information.

The Public Newsgroups
SQL Server newsgroups are a great place to get help with specific problems.

SQL Server has a broad range of public newsgroups where you can get sup-
port from Microsoft MVPs, Microsoft staff, and other users of SQL Server.

The news server is msnews.microsoft.com. Use a newsreader such as
Outlook Express, Thunderbird, or Agent to access the SQL Server news-
groups. The SQL Server newsgroups are at microsoft.public.sqlserver.*.

Microsoft Forums
Microsoft, shortly before this book was finalized, created several forums that
allow users to ask questions about SQL Server 2005.

At the time of writing, the forums are in beta. To access them, go to
forums.microsoft.com/msdn/default.aspx?ForumGroupID=19.

If the link has changed by the time you read this, try forums.microsoft.
com/msdn/default.aspx or http://forums.microsoft.com. You can
likely find a link to the SQL Server forums.

The SQL Server 2005 Web Site
Microsoft’s main Web site for information about SQL Server 2005 is at
www.microsoft.com/sql/2005/default.mspx. This provides overview
information with links to many sources of more detailed information includ-
ing technical white papers.

380 Part VII: The Part of Tens

33_577557 ch23.qxp 12/20/05 9:59 PM Page 380

If the preceding URL doesn’t work by the time you read this, try
www.microsoft.com/sql/. You should be able to find SQL Server 2005
information from there.

The SQL Server Developer Center
The SQL Server Developer Center at msdn.microsoft.com/sql/ contains
a lot of useful information for anyone carrying out development tasks on SQL
Server 2005.

The Business Intelligence Site
A dedicated SQL Server 2005 Business Intelligence Web site is at
www.microsoft.com/sql/bi/default.mspx. You can find useful infor-
mation about SQL Server Integration Services, SQL Server Analysis Services,
and SQL Server Reporting Services.

The Integration Services
Developer Center

As I mention earlier, SQL Server Integration Services is an extensive program. It
has its own Developer Center at msdn.microsoft.com/SQL/sqlwarehouse/
SSIS/default.aspx. You can find technical white papers, information
about Webcasts, blogs, and a host of other information to help you with
Integration Services development.

The Reporting Services Web Site
The Reporting Services Web site has information about SQL Server 2000 and
SQL Server 2005 Reporting Services. It’s at www.microsoft.com/sql/
reporting/default.mspx.

You can find downloads of sample reports, service packs, white papers, and a
range of other relevant information.

381Chapter 23: Ten Sources of Information on SQL Server 2005

33_577557 ch23.qxp 12/20/05 9:59 PM Page 381

Channel 9
Channel 9, channel9.msdn.com, has a host of interesting information on a
range of Microsoft products. There are a few videos that include interviews
with SQL Server 2005 team members.

Finding content on Channel 9 can be difficult. Often the best way to find spe-
cific topics is to use the Google site search feature.

Other Web Sites
A huge number of Web sites are available on SQL Server 2005. I could attempt
to list some here. Instead I’m recommending one of the best tools for finding
additional information about SQL Server 2005: Google.com.

If you want to find information on any SQL Server 2005 topic, a Google search
of the form SQL Server 2005 topic words site:microsoft.com is often the
quickest and most effective way to find any information about SQL Server
2005 on the Microsoft site.

Of course a simple SQL Server 2005 Integration Services search term in
Google can turn up some very interesting material.

If you are not familiar with Google syntax for searches, use the Advanced
Search option.

Remember that you can search Usenet newsgroups by clicking the Groups
link on the Google home page.

382 Part VII: The Part of Tens

33_577557 ch23.qxp 12/20/05 9:59 PM Page 382

Chapter 24

Products that Work with
SQL Server 2005

At the time I am writing this chapter, SQL Server 2005 has not yet been
released. Therefore I can mention useful products only in a preliminary

way. Many products intended to work with SQL Server 2005 won’t be released
in final versions until after SQL Server 2005 is released. So, check with third-
party Web sites for the situation that is current at the time you read this.

Other useful products will be made available as third-party developers see
the potential for synergy with the SQL Server 2005 platform. Some of these
are likely to be described on the SQL Server 2005 Web sites I mention in
Chapter 23.

Visual Studio 2005
Visual Studio 2005 and Business Intelligence Development Studio use the
same shell. If you install Visual Studio 2005 on the same machine that you
install Business Intelligence Development Studio, you will find that business
intelligence project templates are seamlessly added to Visual Studio.

If you want to create Windows or Web solutions that contain the new Report
Viewer controls, you need Visual Studio 2005. Similarly, to use SQL Server
Management Objects, Replication Management Objects, and other new APIs
(Application Programming Interface) in SQL Server 2005 you create projects
(often Windows Forms projects) in Visual Studio 2005.

34_577557 ch24.qxp 12/20/05 10:00 PM Page 383

Microsoft Office InfoPath 2003
InfoPath is new in Office 2003 Professional Enterprise Edition. It is a forms
design and completion tool. Its benefits include submitting data as XML. Data
sources and destinations include SQL Server and Microsoft Access.

You can find further information on InfoPath 2003 at www.microsoft.com/
office/infopath/prodinfo/default.mspx.

Red-Gate Tools
Red-Gate (at www.red-gate.com/) is well known as a manufacturer of prod-
ucts for SQL Server 2000. Versions of the following software for SQL Server
2005 are expected to be available by the time this book is in print:

� SQL Compare: Automates the comparison and synchronization of SQL
Server database schemas.

� SQL Data Compare: Automates the comparison and synchronization of
data in SQL Server databases.

� SQL Packager: Assists in deploying SQL Server databases, including as
part of a .NET application.

� SQL Backup: Creates compressed and encrypted SQL Server backups.

� DTS Compare: Compares DTS (Data Transformation Services) 2000 on
SQL Server instances. An updated version for Integration Services is
expected.

Quest Software
Quest Software (at www.quest.com/sql%5Fserver/) produces tools that
assist with performance, availability, and code quality and optimization for SQL
Server. Updates for SQL Server 2005 of the following products are expected:

� TOAD for SQL Server: Provides a development environment for creating
and debugging T-SQL code.

� Benchmark Factory: Allows you to load test SQL Server.

� DataFactory: Produces test data for use with SQL Server.

384 Part VII: The Part of Tens

34_577557 ch24.qxp 12/20/05 10:00 PM Page 384

� Quest Central for SQL Server: A data management workbench for DBAs
(database administrators).

� Spotlight on SQL Server: Diagnoses SQL Server problems in real time.

� LiteSpeed for SQL Server: Backup and recovery software for SQL
Server.

PromptSQL
The Query pane in SQL Server Management Studio does not provide
Intellisense. PromptSQL (www.promptsql.com/) provides Intellisense for
T-SQL code. Intellisense suggests context-sensitive completion for code state-
ments. A version of PromptSQL has been available for SQL Server 2000 Query
Analyzer for some time. I expect a version for SQL Server 2005 to by available
by the time you read this.

385Chapter 24: Products that Work with SQL Server 2005

34_577557 ch24.qxp 12/20/05 10:00 PM Page 385

386 Part VII: The Part of Tens

34_577557 ch24.qxp 12/20/05 10:00 PM Page 386

• Symbols •
* (asterisk), 72
= (equals sign), 73
>= (greater than or equal to operator), 73
<= (less than or equal to operator), 73
!= (not equal operator), 73
<>= (not equal operator), 73
% (percent sign), 147
' (single quote), 73

• A •
access, concurrent, 30
account login

Module Execution Context, 170
new, adding, 41, 224
password policy enforcement, turning on

or off, 22
principals security hierarchy, 159
Principle of Least Privileges, 158
security, 160, 166
as specified user, 226–227
SQL password policy, enforcing, 170–172
Windows Integrated Security

authentication mechanism, 170
ACID (atomicity, consistency, isolation, and

durability), 186
actions, grouping or paired. See

transactions
activation process, Service Broker, 304
Active Directory stored procedures, 134
administrator

connection, dedicated, 28
replication roles, 286
server, assuming control, 15–16
SQL Server Agent jobs, 238–240

ADO (ActiveX Data Object) connection
manager, 311

agent. See SQL Server Agent

agent security, 286
aggregate transform, 312
alert, 249. See also message, error
ALTER ANY X permission, 162
ALTER permission, 162, 163
Analysis Services

cube, creating from data source view,
350–355

data mining, 358
data source, defining, 344–346
data source view, creating, 346–350
deploying project, 356–357
described, 33, 337–338
event provider, 256–257
KPI, 339–340
managing, 340–341
new features, 338–339
new project, starting, 342–343
sales by year by territory, simple display,

357–358
Analysis Services Scripting Language

(ASSL), 338
application

asynchronous message-based, creating,
28, 283

availability problems, 174
data connection, building, 92–96
debugging, 98
definitions, 257–259
design, 88–90
new project, building, 90–92
Notification Services, creating, 255–256
user interface, 96–97
Windows Forms, creating, 90–92

Application Definition file, 257–259
assembly, loading, 123
ASSL (Analysis Services Scripting

Language), 338
asterisk (*), 72
asynchronous messaging, 28, 283

Index

35_577557 bindex.qxp 12/20/05 10:00 PM Page 387

atomicity, 185, 186
atomicity, consistency, isolation, and

durability (ACID), 186
attributes, XML

adding, 102
order, 103

audit transform, 312
auditing

DDL changes, 203–205
DML triggers, 190, 201–208
importance, 196

authentication, 170, 285–286
authorization, 285–286
availability. See also backups; database

mirroring; database snapshots
checkpointing, 178–179
described, 173–174
failover clustering, 179–180
features listed edition, 15
SQL Server enhancements, 29–31

• B •
backups

checking, 184
list of databases, 16–17
Management Studio, 49, 262–270
responsibility, 174
restoring, 184
risks, assessing, 183
scripts and statements, 28, 183–184
verifying, 31

Base Class Library, 126
BETWEEN operator, 73
BIDS (Business Intelligence Development

Studio)
Data Flow task, reviewing, 319
events, functions responding to (Event

Handlers tab), 315, 319–320
Package Explorer tab, 320
program logic, designing (Control Flow

tab), 317–319
projects supported by, 316–317
report model, creating, 373–375
scalability, 14
Solution Explorer, 321
Toolbox, 321

binary data, 25. See also XML
blocking. See also constraints

reading unwritten memory, 127
undesired changes, 201–203

Books Online, 379–380
buffer, cache (checkpointing)

automatic, 178–179
creating, 178
recovery interval, setting, 179

bulk-logged recovery model, 177
Business Intelligence

data warehouses, 11, 308–309
SQL Server Agent, 237
tools, 308
upgrades over 2004, 32–33
workflow, 308

Business Intelligence Analysis Services
cube, creating from data source view,

350–355
data mining, 358
data source, defining, 341, 344–346
data source view, creating, 346–350
deploying project, 356–357
described, 33, 337–338
event provider, 256–257
KPI, 339–340
managing, 340–341
new features, 338–339
new project, starting, 342–343
sales by year by territory, simple display,

357–358
Business Intelligence Development Studio

(BIDS)
Data Flow task, reviewing, 319
events, functions responding to (Event

Handlers tab), 315, 319–320
Package Explorer tab, 320
program logic, designing (Control Flow

tab), 317–319
projects supported by, 316–317
report model, creating, 373–375
scalability, 14
Solution Explorer, 321
Toolbox, 321

Business Intelligence Integration Services.
See also Import/Export Wizard

creating package, 310
creating project, 329–336

388 Microsoft SQL Server 2005 For Dummies

35_577557 bindex.qxp 12/20/05 10:00 PM Page 388

deploying project, 336
described, 33
designing, 317
destinations, 314
Developer Center Web site, 381
digital signing, 316
error flows, 315
ETL approach, 309
Event Handlers, 315, 319–320
Import/Export Wizard, 322–329
logging options, 315–316
package components, viewing, 321
restarting package, 316
sources, supported, 311–312
task flows, 315
Toolbox, 321
transformations, 312–314

Business Intelligence Reporting Services
creating report with Report Wizard,

362–370
database mirroring and database views,

176, 361
described, 33, 359–361
distributing reports, 372
Management Studio, 372
RDL, 372–373
replicating to server, 361
Report Builder, 373–375
Report Manager, 371
ReportViewer controls, 375
tool to create reports, 361–362
viewing reports in Report Manager,

370–371
Web site, 381

Business Intelligence Web site, 381

• C •
cache buffer (checkpointing)

automatic, 178–179
creating, 178
recovery interval, setting, 179

caller, executing as, 170
calling stored procedures, 141
catalog

full-text search, 28
security, 22, 160, 170
stored procedures, 134

changes
auditing DDL, 203–205
blocking undesired, 201–203
confirming, 190
database mirroring, 175
high level of, 10–11
transactions log, 11, 186, 270

Channel 9 Web site, 382
character map transform, 312
characters, sequences of, 25
check constraints

adding, 64
described, 63, 192, 196–197
dropping, 200
T-SQL, creating with, 200–201
visual tools, creating with, 197–200

checking data after backing up and
restoring, 184

checkpointing
automatic, 178–179
creating, 178
recovery interval, setting, 179

checksums, 31
client computer

SQL Server Configuration Manager,
configuring, 223

transparent redirect, database mirroring,
30, 176

CLR (Common Language Runtime)
benefits, 125–127
Code Access Security, 129
described, 121–122
development, 123
extended stored procedures, 128
manual coding and development, 123–125
middle tier comparison, 128–129
.NET language integration, 121, 122
security, 172
SQL Server 2005 support, 24
stored procedures, 132, 141
T-SQL versus, 127–128

clustering
database mirroring versus failover,

176–177
failover, 179–180
installation, 31
need for, 15
table, 60
tree, displaying in Object Explorer, 38, 57

389Index

35_577557 bindex.qxp 12/20/05 10:00 PM Page 389

Code Access Security, 129
code reuse. See also triggers

calling, 141
CLR, 141
creating with parameters, 139–140
creating without parameters, 138–139
described, 131–132
extended, 121, 128
naming, 140
.NET class, 123
permissions, 138
reasons to use, 133–134
system, categories of, 134–137
types, 132
unavailable statements, 137
uses, 132–133
xml datatype, creating, 104
XML document, parsing, 120

codes, error functions, 147–148
coding, CLR

benefits, 125–127
Code Access Security, 129
described, 121–122
development, 123
extended stored procedures, 128
manual coding and development, 123–125
middle tier comparison, 128–129
.NET language integration, 122
security, 172
SQL Server 2005 support, 24
stored procedures, 132, 141
T-SQL versus, 127–128

column
default database object, binding to,

192–194
described, 58
exploring all, 72
foreign key, 61
naming rules, 60–61
rule, binding, 194
transforms, 312–313
xml datatype, creating, 104

command-line tool, SQLCMD
connecting, 223–225
described, 28
remote instance, connecting, 227–228
T-SQL script, executing, 226
user, logging in as specified, 226–227

Common Language Runtime (CLR)
benefits, 125–127
Code Access Security, 129
described, 121–122
development, 123
extended stored procedures, 128
manual coding and development, 123–125
middle tier comparison, 128–129
.NET language integration, 121, 122
security, 172
SQL Server 2005 support, 24
stored procedures, 132, 141
T-SQL versus, 127–128

computer. See also server
client, 30, 176, 223
publisher and distributor, setting up,

286–293
publisher, setting up, 286–293
remote, connecting, 219–221, 227–228

concurrent data access, 30
condition actions, 255
conditional split transform, 312
configuration, 27. See also Configuration

Manager; Management Studio;
SQLCMD command-line utility

Configuration Manager
adding to MMC console, 213–215
client computers, configuring, 223
described, 26, 211–212
network protocols, configuring, 221–222
remote computer, connecting, 219–221
services, managing, 216–219

connecting
Analysis Services, 344–345
data source, 92–96, 311–312, 332
instance and displaying node tree, 38
Management Studio, 36
remote computer, 219–221, 227–228
SQLCMD, 223–225

connection manager, 311–312, 331
consistency, transactional, 186
constraints. See also DDL triggers; DML

triggers
adding, 63–64
described, 191, 192
precedence, task flows, 315
XSD schema, 108

390 Microsoft SQL Server 2005 For Dummies

35_577557 bindex.qxp 12/20/05 10:00 PM Page 390

constraints, check
adding, 64
described, 63, 192, 196–197
dropping, 200
T-SQL, creating with, 200–201
visual tools, creating with, 197–200

CONTROL permission, 162, 163
conversation group, 302
converting data to and from XML, 118–120
copy column transform, 312
CPU, dynamic configuration, 27
CREATE permissions, 162
cube

creating from data source view, 350–355
described, 11, 342

cursor stored procedures, 134
customizing Management Studio

environment, 46–49

• D •
DAC (Dedicated Administrator

Connection), 15–16
data

adding to database, 65
concurrent access, 30
connection, 92–96
consistent state, OLTP, 10
converting to and from XML, 118–120
OLAP database, 11
partitioning, 31–32
pipeline, Integration Services, 310
Windows Performance Manager,

importing and displaying, 27
data conversion transform, 313
Data Definition Language (DDL) triggers

auditing changes, 203–205
inability to combine in transactions, 190
preventing undesired changes, 201–203
statements, 201

data entry constraints. See also check
constraints; DDL triggers; DML triggers

adding, 63–64
described, 191, 192
precedence, task flows, 315
XSD schema, 108

Data Flow task, reviewing, 319
data mining

Analysis Services, 342, 358
query, creating, 313, 314

Data Mining Extensions (DMX) query,
creating, 313

Data Mining Model Training, 314
Data Modification Language (DML) triggers

auditing, 206–208
inserted and deleted tables, 206
statements, 205

data modification language, XML, 116–117
data source

Analysis Services, defining, 341, 344–346
Analysis Services view, creating, 342,

346–350
Import/Export Wizard, 321
Integration Services, supported, 311–312
view, creating cube from, 350–355

Data Source Configuration Wizard, 92–96
data viewers, 315
data warehouse, 11, 308–309
database

adding data, 65
availability during maintenance, 30–31
creating, 57–58
destinations, 314
granular permissions control, 161
partitioning, 31
principals security hierarchy, 159
securables hierarchy, 160
snapshots, 30
specifying (USE statement), 70
system, 58
views, Reporting Services, 361

database administrator
connection, dedicated, 28
replication roles, 286
server, assuming control, 15–16
SQL Server Agent jobs, 238–240

database engine stored procedures, 134
Database Engine Tuning Advisor (DTA), 32,

280–281
database level configuration, 229–230
Database Mail, 29, 134
Database Maintenance Plan stored

procedure, 134

391Index

35_577557 bindex.qxp 12/20/05 10:00 PM Page 391

database mirroring
availability, 30
database views, 176
described, 174–176
failover clustering versus, 176–177
recovery models, 177–178
Reporting Services, 361
transparent client redirect, 30, 176

database objects
described, 38–39
Replication node, 42–43
Security nodes, 41–42
viewing and modifying database

properties, 39–41
database snapshots

creating, 181
deleting unwanted, 182
described, 30, 180
naming, 181
replication, 284, 294–296
reverting to, 182–183

DataReader
data destination, 314
data source, 311

datatypes
new in SQL Server 2005, 25
table columns, specified, 58

date
current, retrieving, 226
inserting to table, 243–244
retrieving, 115

DDL (Data Definition Language) triggers
auditing changes, 203–205
inability to combine in transactions, 190
preventing undesired changes, 201–203
statements, 201

debugging
application, 98
Visual Studio features, 123

declaration, XML, 103
Dedicated Administrator Connection

(DAC), 15–16
default

described, 192–194
Management Studio configuration,

restoring, 49

deleted tables, DML triggers, 206
deleting

check constraints, 200
unwanted database snapshots, 182

DENY permission, 161–162
deploying Integration Services project, 336
Derived Column transform, 313
destinations, Integration Services, 310, 314,

333–334
Developer Edition, SQL Server, 1
development, manual CLR, 123–125
dialog group, 302
dialogs, Service Broker, 303–304
differential backup, 270
digital signing, Integration Services, 316
Dimension Processing, 314
dimensions, cube, 11, 342
display, Query Results, 47–48
Distributed Management Objects

(DMO), 25
distributed queries stored procedure, 135
distributing reports, 372
distributor computer, setting up, 286–293
DML (Data Modification Language) triggers

auditing, 206–208
inserted and deleted tables, 206
statements, 205

DMO (Distributed Management
Objects), 25

DMX (Data Mining Extensions) query,
creating, 313

document element, 103
Document Type Definition (DTD), 102
document, XML

editors’ view of, 105
rules, 102
shredding into rowsets (OPENXML

keyword), 120
downtime, reducing, 15
DTA (Database Engine Tuning Advisor)

scalability, 32, 280–281
DTD (Document Type Definition), 102
durability, transactional, 186

392 Microsoft SQL Server 2005 For Dummies

35_577557 bindex.qxp 12/20/05 10:00 PM Page 392

• E •
editor, query

basic queries, 68
JOIN syntax, 81–83
multiple tables, retrieving data from,

77–81
opening, 67–68
ORDER BY clause, sorting with, 75–76
SELECT statement, 69–72
WHERE clause, filtering with, 72–75

editor, XML, 104–105
e-mail

addresses, retrieving, 138–141
reports, 372

empty elements, XML, 103
encryption

described, 286
turning off, 304

end tag, XML, 102–103
Enterprise Edition, SQL Server

availability, 15
business intelligence functions, 19
database snapshots, 180–183
described, 1
manageability, 17
scalability, 14

equals sign (=), 73
@@Error function

described, 143, 151–153
transaction, checking, 189–190

error functions
available listed, 145
codes, 147–148
@@Error function, 143, 151–153, 189–190
nested TRY...CATCH constructs,

150–151
numbers and messages, 146
severity, 146–147
user-defined message (RAISERROR),

148–149
error handling, T-SQL

described, 23, 143
TRY...CATCH construct, 144–145

error log files
Management Studio, 270–273
SQL Agent, checking with Log File

Viewer, 248
error message

numbers, listed by, 145, 146
severity levels, 144–145
user-defined (RAISERROR), 148–149

errors
flows, Integration Services, 315
operator, 174

ETL (Extract, Transform, and Load) tool,
Integration Services as, 309

events
handling, Integration Services,

315, 319–320
notification services, 254
providers, Notification Services, 256–257

Excel (Microsoft)
data destination, 314
data source and connection manager, 311

EXECUTE permission, 163
expiration, password, 171
Export Column transform, 313
Export Wizard. See Import/Export Wizard
Express Edition, SQL Server

availability, 15
business intelligence functions, 19
described, 1
manageability, 17
scalability, 14

extended stored procedures
CLR comparison, 128
described, 121, 132
General, 135
SQL Server Agent, enabling, 242–243

eXtensible Markup Language (XML)
converting data to and from, 118–120
data modification language, 116–117
data source, 311
declaration, 103
described, 101–102
document rules, 102
document, shredding into rowsets

(OPENXML keyword), 120

393Index

35_577557 bindex.qxp 12/20/05 10:00 PM Page 393

eXtensible Markup Language (XML)
(continued)

editor, benefits of using, 104–105
Notification Services, 255–256, 258–259
querying, 113–116
Schema Definition Language, 108–110
SQL Server 2000, 103
SQL Server 2005, 103–104
stored procedures, 135, 136
Transact-2005 support, 23
typed, 105
typed, associating schema with, 110–113
untyped, 105–107
xml datatype, 104

External Access setting, CLR, 172
Extract, Transform, and Load (ETL) tool,

Integration Services as, 309

• F •
failover clustering

availability, 179–180
database mirroring versus, 176–177

File System Watcher event provider, 256
File Transfer Protocol (FTP) connection

manager, 311
filtering

data for security reasons, 286
name and e-mail addresses, retrieving

with stored procedure, 139–140
Query Editor, 72–75
simple transaction update, 187
SQL Server log file, 271–273
XPath expressions combined with, 115, 116

Flat File
data destination, 314
data source and connection manager, 311,

332–333
FLWOR expression (XQuery syntax), 114
folder, 57
FOR XML clause of SELECT statement,

119–120
foreign key

column, 61
constraint, 63
deleting before primary key, 64
described, 61

forums, Microsoft, 380
fragment, XML, 102

FTP (File Transfer Protocol) connection
manager, 311

full backup, 270
full differential backup, 270
full recovery model, 177
full-text search stored procedure, 135
functions. See also error functions

business intelligence, 19
events, responding to (Event Handlers

tab), 315, 319–320
.NET class, 123
stored procedure versus, 131
visual designer, 261–262

Fuzzy Grouping transform, 313
Fuzzy Lookup transform, 313

• G •
General Extended stored procedures, 135
GRANT permission, 161–162
grantee, permission, 162
granular permission control, 161
greater than or equal to operator (>=), 73

• H •
hardware

availability problems, 174
database mirroring and failover

clustering, 176
Harinath, Sivakumar (Professional SQL

Server Analysis Services 2005 with
MDX), 337

hierarchical data, representing. See XML
hot-add memory support, 32
HTTP (HyperText Transfer Protocol)

connection manager, 311
endpoints, 26

• I •
IIS (Internet Information Services), 361
IMPERSONATE permission, 162
implicit transactions, 190
Import Column transform, 313
Import/Export Wizard

creating project, 322–327
data sources, 321

394 Microsoft SQL Server 2005 For Dummies

35_577557 bindex.qxp 12/20/05 10:00 PM Page 394

running project, 327–328
viewing data, 328–329

IN operator, 74
indexes

Management Studio, 274–276
online, 15, 16, 30
partitioning, 32
querying XML, 116
table, clustered and nonclustered, 60

InfoPath 2003 (Microsoft), 384
information, sending (Notification

Services)
application, creating, 255–256
Application Definition file, 257–259
described, 253–254
event providers, 256–257
Instance Configuration file, 259–260
new features in SQL Server 2005, 255
stored procedure, 135

injection attack, protecting against,
133–134

inner joins, 81–83
INSERT permission, 163
inserted tables, DML triggers, 206
inserting XML, 117–118
installation

cluster, 31
IIS, required for Reporting Services, 361

instance
configuration, 228–229
connecting and displaying node tree, 38
connection, choosing, 67–68
Database Engine, registering, 56
Notification Services configuration file,

259–260
principals security hierarchy, 159
Profiler, 18, 27, 278–280
registering, 37
second query, running, 68
Security nodes, 41–42

Integration Services. See also
Import/Export Wizard

creating package, 310
creating project, 329–336
deploying project, 336
described, 33
designing, 317

destinations, 314
Developer Center Web site, 381
digital signing, 316
error flows, 315
ETL approach, 309
Event Handlers, 315, 319–320
Import/Export Wizard, 322–329
logging options, 315–316
package components, viewing, 321
restarting package, 316
sources, supported, 311–312
task flows, 315
Toolbox, 321
transformations, 312–314

integrity, maintaining. See constraints;
transactions; triggers

intelligence, business. See also Analysis
Services; Integration Services;
Reporting Services

data warehouses, 11, 308–309
SQL Server Agent, 237
tools, 308
upgrades over 2004, 32–33
workflow, 308

Internet Information Services (IIS), 361
interval, setting recovery, 179
invoices, hierarchical information, 101
I/O, dynamic configuration, 27
isolation, transactional, 186

• J •
job, SQL Server Agent, 243–248
JOIN syntax, Query Editor, 81–83

• K •
keyboard shortcuts, customizing, 48
keywords, permission, 161–162
KPI (Key Performance Indicator), 339–340

• L •
layout, business report, 369–370
less than or equal to operator (<=), 73

395Index

35_577557 bindex.qxp 12/20/05 10:00 PM Page 395

LIKE keyword, wildcard characters and,
74, 147

line, error occurrence, 145
locking out accounts, 171
log

auditing changes, 203–205
error, 270–273
Integration Services, 315–316
transaction, 11, 186, 270

log shipping stored procedure, 135
login

Module Execution Context, 170
new, adding, 41, 224
password policy enforcement, turning on

or off, 22
principals security hierarchy, 159
Principle of Least Privileges, 158
security, 160, 166
as specified user, 226–227
SQL password policy, enforcing, 170–172
Windows Integrated Security

authentication mechanism, 170
Lookup transform, 313

• M •
maintenance

Control Flow tasks, 319
database availability during, 30–31

Maintenance Plan Wizard, 250–252
managed code, 121
Management Studio

backups and restorations, 49, 262–270
connecting, 36
customizing environment, 46–49
Database Engine Tuning Advisor, 280–281
database level configuration, 229–230
database objects (Object Explorer), 38–43
described, 13–14, 18, 26, 35
error log files, 270–273
indexes, 274–276
instance, checking performance of

(Profiler), 278–280
instance level configuration, 228–229
overview (Summary tab), 43–44
query, 45–46

Registered Servers pane, 36–38
replication, 29
Reporting Services, managing, 372
runaway queries, halting, 277–278
SQL Server Agent, managing, 232–233
starting, 36, 55
visual designer functions, 261–262

managing
Analysis Services, 340–341
in Report Manager, 371
tools new to SQL Server 2005, 26–27

manual coding and development, CLR,
123–125

MDAC (Microsoft Data Access
Components), 30

memory
adding, 15
blocking reading unwritten, 127
dynamic configuration, 27
hot-add support, 32

Merge Join transform, 313
merge replication, 284
Merge transform, 313
message, error

numbers, listed by, 145, 146
severity levels, 144–145
user-defined (RAISERROR), 148–149

message, Service Broker, 302–303
Microsoft, 379–380. See also individual

products listed by name
Microsoft Data Access Components

(MDAC), 30
Microsoft Management Console (MMC),

213–215
middle tier comparison, CLR, 128–129
mining data

Analysis Services, 342, 358
query, creating, 313, 314

mirroring, database
availability, 30
database views, 176
described, 174–176
failover clustering versus, 176–177
recovery models, 177–178
Reporting Services, 361
transparent client redirect, 30, 176

396 Microsoft SQL Server 2005 For Dummies

35_577557 bindex.qxp 12/20/05 10:00 PM Page 396

MMC (Microsoft Management Console),
213–215

Mobile Edition, SQL Server
connection manager, 312
data destination, 314
features listed, 1

module execution context permissions,
161, 170

MSOLAP90 connection manager, 311
Multicast transform, 313
MULTIFILE connection manager, 312
MULTIFLATFILE connection manager, 312
multiple servers. See replication; Service

Broker

• N •
name and e-mail addresses

stored procedure retrieving, 138–139, 141
with WHERE clause, 139–140

namespace declaration, 110
naming

collisions, avoiding with schemas, 71, 90,
140

database snapshots, 181
schedules, 246
stored procedures, 140
tables and columns, 60–61

.NET (Microsoft)
ADO connection manager, 311
CLR language integration, 121, 122
security levels, 24

network protocols
configuring, 221–222
connection manager, 311
endpoints, 26

new project
Analysis Services, starting, 342–343
application, building, 90–92

newsgroups, public, 380
NMO (Notification Services Management

Objects), 255
node, cluster

described, 15
installation, 31
tree, displaying in Object Explorer, 38, 57

not equal operator (!=), 73
not equal operator (<>=), 73
NOT NULL constraint, 63
NOT operator, 73
Notification Services

application, creating, 255–256
Application Definition file, 257–259
described, 253–254
event providers, 256–257
Instance Configuration file, 259–260
new features in SQL Server 2005, 255
stored procedure, 135

Notification Services Management Objects
(NMO), 255

NULL value
constraint barring, 63
described, 72

numbers, error, 146
nvarchar (max) datatype, 25

• O •
Object Explorer

data, adding to database, 65
described, 38–39
hierarchy, 38, 57
replication, 42–43
Security nodes, 41–42
servers, accessing, 56
viewing, 39–41, 55

objects
described, 53
granular permissions control, 161
registered server, displaying, 56–57
system, 29
T-SQL, creating, 123

objects, database
described, 38–39
Replication node, 42–43
Security nodes, 41–42
viewing and modifying database

properties, 39–41
ODBC connection manager, 312
OLAP (Online Analytical Processing)

database, 11
OLE Automation stored procedure, 135

397Index

35_577557 bindex.qxp 12/20/05 10:00 PM Page 397

OLE DB
Command transform, 313
connection manager, 312
data destination, 314, 333–334
data source, 311

Online Analytical Processing (OLAP)
database, 11

online indexing, 15, 16, 30
online page and file restore, 16
Online Transaction Processing (OLTP)

database, 10–11
OPENXML keyword, 120
operator error, 174
ORDER BY clause, sorting with, 75–76
owner, executing as specified, 170

• P •
Package Explorer tab, BIDS, 320
package, Integration Services

components, viewing, 321
creating, 310
restart, 316

PAL (Publication Access List), 286
parameters, stored procedures

creating with, 139–140
creating without, 138–139

parsing XML document, 120
partition processing data destination, 314
partitioning data, 31–32
password

characters, typing without
concealing, 227

policy enforcement, 22, 161, 170–172
PATH
FOR XML clause option, 119
secondary index, XML, 116

percent sign (%), 147
Percentage Sampling transform, 313
performance

CLR integration, benefit of, 126
instance, checking, 278–280
KPI, 339–340
problems, analyzing, 27
tools, 18

permissions
control, granular, 161
granting to user, 167, 168–169
keywords, 161–162
levels, 162
module execution context, 161, 170
Principle of Least Privileges, 158
securables affected by, 162–165
SQL Server Agent, 237–240
stored procedures, 138

pipeline, Integration Services data
processing, 310

Pivot transform, 313
precedence constraints, 315
predictions. See data mining
primary key

changing, 64
constraint, 63, 192
described, 61

primary XML index, 116
principals security hierarchy, 159
Principle of Least Privileges, 158
private key/public key pair, 304
process execution, monitoring, 128
Profiler, 18, 27, 278–280
program logic, designing, 317–319
programmers, key support features, 13
PromptSQL, 385
properties, database, 39–41
public newsgroups, 380
Publication Access List (PAL), 286
publication, replication

creating, 293–297
described, 42
viewing, 43

publisher computer, setting up, 286–293
purchase order, sample XML

adding single purchase order, 106–107
creating, 102–103
query retrieving selected parts, 114–116
typed XML, 110–113
XSD schema, 108–110

398 Microsoft SQL Server 2005 For Dummies

35_577557 bindex.qxp 12/20/05 10:00 PM Page 398

• Q •
query

creating, 45–46
data mining, 313, 314
instance, connecting, 38
result display, altering, 47–48
runaway, halting, 277–278
templates, 24, 49

Query Editor
basic queries, 68
JOIN syntax, 81–83
multiple tables, retrieving data from, 77–81
opening, 67–68
ORDER BY clause, sorting with, 75–76
SELECT statement, 69–72
WHERE clause, filtering with, 72–75

querying XML
indexes, 116
XQuery, 113–116

Quest Software, 384–385
queue, Service Broker, 302
quote single ('), 73

• R •
Raw File

data destination, 314
data source, 311

RDL (Report Definition Language), 372–373
read-only mirror database, 361
RECEIVE permission, 163
recordset data destination, 314
recovery interval, checkpoint, 179
recovery models, database mirroring,

177–178
Red-Gate tools, 384
REFERENCES permission, 163–164
Registered Servers pane, Management

Studio, 36–38
registering Database Engine instance, 56
relationships

defining, 61–63
many-to-many, 79–81

remote computer, connecting
SQL Server Configuration Manager,

219–221
SQLCMD, 227–228

removing
check constraints, 200
unwanted database snapshots, 182

replication
database objects (Object Explorer), 42–43
described, 17, 283
jargon, 284
Management Studio, 29
merge, 284
publication, 42, 43, 293–297
publisher and distributor computers,

setting up, 286–293
Reporting Services to server, 360
scalability, 32
security, 285–286
SQL Server 2005 enhancements, 29, 285
stored procedures, 135, 136
subscription, creating, 297–301

Report Builder, 373–375
Report Definition Language (RDL), 372–373
Report Manager, 370–371
Report Wizard, 362–370
Reporting Services

creating report with Report Wizard,
361–370

database mirroring and database views,
176, 361

described, 33, 359–361
distributing reports, 372
Management Studio, 372
RDL, 372–373
replicating to server, 361
Report Builder, 373–375
Report Manager, 371
ReportViewer controls, 375
tool to create reports, 361–362
viewing reports in Report Manager,

370–371
Web site, 381

reports, e-mail, 372
resource group

availability, 179–180
database mirroring versus, 176–177

399Index

35_577557 bindex.qxp 12/20/05 10:00 PM Page 399

restorations
checking, 184
with Management Studio, 49, 262–270
restoring, 184
risks, assessing, 183
scripts and statements, 28, 183–184

reusing code. See also triggers
calling, 141
CLR, 141
creating with parameters, 139–140
creating without parameters, 138–139
described, 131–132
extended, 121, 128
naming, 140
.NET class, 123
permissions, 138
reasons to use, 133–134
system, categories of, 134–137
types, 132
unavailable statements, 137
uses, 132–133
xml datatype, creating, 104
XML document, parsing, 120

reverting to database snapshots, 182–183
REVOKE permission, 161
risk assessment, 183
roles, Analysis Services security, 342
root element, 103
Row Count transform, 313
Row Sampling transform, 313
rows

addition, confirming, 115
BETWEEN operator, 73
change, confirming, 190
described, 59
IN operator, 74
inserting with allowed value (rule), 195
LIKE operator, 74
output, transforming, 313
primary key, 61
sorting in ascending or descending

order, 76
rowsets

document, shredding into (OPENXML
keyword), 120

retrieving as XML, 119–120

rules
described, 194–195
names of tables and columns, 60–61
TRY...CATCH construct, 144
XML document, 102

runaway processes, halting, 28
runaway queries, halting, 277–278

• S •
Safe setting, CLR, 172
sales by year by territory, simple display,

357–358
scalability

cluster, installing in, 31
data partitioning, 31–32
DTA, 32
hot-add memory support, 32
issues, 14
replication, 32

scheduling jobs
reports, 372
support for, 27

schema
default security, 167–168
granular permissions control, 161
naming collisions, avoiding, 71, 90, 140
securables hierarchy, 159–160
typed XML, associating, 105, 110–113
users, separating, 22, 160, 166–167
XML, 102
XSD, 108

Schema Definition Language (XSD),
108–110

Script Component transform, 313
scripts

backing up and restoring data, 28,
183–184

SQL Server 2005 actions, 25
search, full-text, 28
secondary XML index, 116
securables

hierarchy, 159–160
permissions, 162–165

Secure Sockets Layer (SSL) automated
certificate creation, 23

400 Microsoft SQL Server 2005 For Dummies

35_577557 bindex.qxp 12/20/05 10:00 PM Page 400

security. See also permissions
Analysis Services roles, 342
CLR integration, 126
database objects (Object Explorer), 41–42
default schema, 167–168
design, default, and deployment, 158–159
key features, summarized, 11–12
logins and users, 160, 166
new or changed features in SQL Server

2005, 160–161
password policy enforcement, 22, 161,

170–172
principals hierarchy, 159
replication, 285–286
scheduling jobs, 243–248
schema and user separation, 22
securables hierarchy, 159–160
Service Broker (private key/public key

pair), 304
SQL injection attack, protecting against,

133–134
SQL Server 2005, 21–23
SSL automated certificate creation, 23
stored procedure, 135
system catalog, 22, 160, 170
terminology, 159
users and schemas, separating, 166–167

SELECT permission, 164
SELECT statement
FOR XML clause of, 119–120
Query Editor, 69–72

self, executing as specified, 170
semi-structured XML, 101
sending information (Notification Services)

application, creating, 255–256
Application Definition file, 257–259
described, 253–254
event providers, 256–257
Instance Configuration file, 259–260
new features in SQL Server 2005, 255
stored procedure, 135

server
administrator taking control of, 15–16, 28
clustering, need for, 15
dynamic configuration, 27

failure, availability after, 30
granular permissions control, 161
multiple copies of SQL Server 2005, 55
Registered Servers pane, Management

Studio, 36–38
registered, viewing, 56
Reporting Services, replicating, 361
virtual, 176–177, 179–180

Service Broker
described, 28, 283, 301–302
dialogs and transport protocol, 303–304
messages, 302–303
queues, 302
security (private key/public key pair), 304

services
SQL Server Configuration Manager,

managing, 26–27, 216–219
window, opening, 54

severity, error message, 144–147
Simple Mail Transfer Protocol (SMTP)

connection manager, 312
simple recovery model, 177
simple transaction, 187–190
simple update, 187
single quote ('), 73
Slowly Changing Dimension transform, 313
SMO (SQL Management Objects), 25
SMOServer connection manager, 312
SMTP (Simple Mail Transfer Protocol)

connection manager, 312
snapshots, database

creating, 181
deleting unwanted, 182
described, 30, 180
naming, 181
replication, 284, 294–296
reverting to, 182–183

software application
asynchronous message-based, creating,

28, 283
availability problems, 174
data connection, building, 92–96
debugging, 98
definitions, 257–259
design, 88–90

401Index

35_577557 bindex.qxp 12/20/05 10:00 PM Page 401

software application (continued)
new project, building, 90–92
Notification Services, creating, 255–256
user interface, 96–97
Windows Forms, creating, 90–92

software availability problems, 174
Solution Explorer, 321
sorting

input data, transforming, 313
ORDER BY clause, 75–76

source
Analysis Services, defining, 341, 344–346
Analysis Services view, creating, 342,

346–350
Import/Export Wizard, 321
Integration Services, supported, 311–312
view, creating cube from, 350–355

sp_ prefix, avoiding, 140
SQL Management Object (SMO), 25
SQL Server 2000 (Microsoft)

rules, 194–195
security problems, 21
XML in, 103

SQL Server 2005 (Microsoft)
availability, 15, 29–31
business intelligence functions, 19, 32–33
CLR support, 24
configuration changes, dynamic, 27
constraints, adding, 63–64
data, adding to database, 65
data destination, 314
Database Mail, 29
databases, creating, 57–58
editions listed, 1
full-text search, 28
HTTP endpoints, 26
manageability, 17–18
management tools, new, 26–27
new datatypes, 25
Notification Services, 255
Object Explorer, 55–57
performance problems, analyzing

(Profiler), 27
relationships, defining, 61–63
replication, 29, 285
scalability, 14, 31–32
scripting actions, 25

security features new to, 21–23, 160–161
SMO, 25
SQL Server Service Broker, 28
SQLCMD command-line utility, 28
SQLMail problems, 29
starting, 54–55
tables, creating, 58–61
Transact-2005 enhancements, 23–24
updates, easier, 29
WMI configuration, 29
XML, 103–104

SQL Server Agent
alert, creating, 249
automatic start, 234–236
in business intelligence, 237
described, 18, 231–232
extended stored procedures, enabling,

242–243
job, creating, 243–248
Maintenance Plan Wizard, 250–252
managing from Management Studio,

232–233
permissions, 237–238
starting and stopping, 234
stored procedure, 135
T-SQL, 250
user permissions, 238–240
Windows permissions, 240–242

SQL Server Authentication, 237
SQL Server Configuration Manager

adding to MMC console, 213–215
client computers, configuring, 223
described, 26, 211–212
network protocols, configuring,

221–222
remote computer, connecting, 219–221
services, managing, 216–219

SQL Server Development Center Web
site, 381

SQL Server Management Studio
backups and restorations, 49, 262–270
connecting, 36
customizing environment, 46–49
Database Engine Tuning Advisor, 280–281
database level configuration, 229–230
database objects (Object Explorer), 38–43
described, 13–14, 18, 26, 35

402 Microsoft SQL Server 2005 For Dummies

35_577557 bindex.qxp 12/20/05 10:00 PM Page 402

error log files, 270–273
indexes, 274–276
instance, checking performance of

(Profiler), 278–280
instance level configuration, 228–229
overview (Summary tab), 43–44
query, 45–46
Registered Servers pane, 36–38
replication, 29
Reporting Services, managing, 372
runaway queries, halting, 277–278
SQL Server Agent, managing, 232–233
starting, 36, 55
visual designer functions, 261–262

SQL Server Mobile
connection manager, 312
data destination, 314
features listed, 1

SQL Server Profile stored procedure, 135
SQL Server Profiler, 18, 27, 278–280
SQL Server Service Broker, 28
SQL (Structured Query Language). See also

SQL Server products
described, 13
injection attack, protecting against,

133–134
SQLCMD command-line utility

connecting, 223–225
described, 28
remote instance, connecting, 227–228
T-SQL script, executing, 226
user, logging in as specified, 226–227

SQLMail, 29, 135
SSL (Secure Sockets Layer) automated

certificate creation, 23
Standard Edition, SQL Server

availability, 15
business intelligence functions, 19
described, 1
manageability, 17
scalability, 14

start tag, XML, 102–103
starting

automatic, SQL Server Agent, 234–236
Management Studio, 36, 55
SQL Server 2005, 54–55
SQL Server Agent, 234

Startup options, Management Studio, 47
statements. See also SELECT statement

backing up and restoring data, 28,
183–184

database, specifying (USE statement), 70
DDL triggers, 201
DML triggers, 205
SELECT, 69–72, 119–120
unavailable to stored procedures, 137

stopping
runaway queries, 277–278
running service, 217
SQL Server Agent, 234

stored procedures. See also triggers
calling, 141
CLR, 141
creating with parameters, 139–140
creating without parameters, 138–139
described, 131–132
extended, 121, 128
naming, 140
.NET class, 123
permissions, 138
reasons to use, 133–134
system, categories of, 134–137
types, 132
unavailable statements, 137
uses, 132–133
xml datatype, creating, 104
XML document, parsing, 120

Structured Query Language. See also SQL
Server products

described, 13
injection attack, protecting against,

133–134
subscribers, sending notices to

(Notification Services)
application, creating, 255–256
Application Definition file, 257–259
described, 253–254
event providers, 256–257
Instance Configuration file, 259–260
new features in SQL Server 2005, 255
stored procedure, 135

403Index

35_577557 bindex.qxp 12/20/05 10:00 PM Page 403

subscription, replication
creating, 297–301
described, 42
viewing, 43

Surface Area Configuration tool, 11, 158
system catalog, 22, 160, 170
system databases, 58
system objects, 29

• T •
tables

creating, 58–61
date and time, inserting, 243–244
hiding with system catalog security, 22,

160, 170
inserted and deleted, DML triggers, 206
multiple, retrieving data from, 77–81
primary key, creating at onset, 63

tags, XML, 102–103
TAKE OWNERSHIP permission, 162, 164
tasks

Control Flow, 319
creating Integration Services package

with, 310
flows, Integration Services, 315
T-SQL templates, 24, 49

Term Extraction transform, 313
Term Lookup transform, 314
time

current, retrieving, 226
retrieving, 115

Toolbox
BIDS, 321
Control Flow tab, 317–318
Integration Services, 321

tools
business intelligence, 308
to create reports, 361–362

trace, creating new, 278–280
transactional replication, 284
transactions

ACID, 186
atomicity, 185, 186
committed but not written, 178–179
database mirroring, 175

implicit, 190
log, 11, 186, 270
OLTP, 10–11
simple transaction, 187–190
simple update, 187

Transact-SQL. See T-SQL
transformations, Integration Services, 310,

312–314
transparent client redirect, 30, 176
transport protocol, Service Broker,

303–304
triggers

DDL, 203–205
described, 191, 195–196
DML, 205–208
.NET class, 123

TRY...CATCH construct
described, 23, 143
error message severity levels,

144–145
nested, 150–151
rules, 144

T-SQL (Transact-SQL)
backing up hard drive, 184
check constraints, creating, 200–201
CLR versus, 127–128
code templates, modifying, 49, 83–85
described, 13
error handling, 23
running query, 68
script, executing, 226
SELECT statement, 69–72, 119–120
SQL Server Agent, 250
SQLCMD command-line utility, 28,

223–228
stored procedures, 132
templates, 24
XML support, 23

typed XML, 105, 110–113
types, stored procedures, 132

• U •
Unicode characters, sequence of, 25
Union All transform, 314
unique constraint, 63, 192

404 Microsoft SQL Server 2005 For Dummies

35_577557 bindex.qxp 12/20/05 10:00 PM Page 404

Unpivot transform, 314
UnSafe setting, CLR, 172
untyped XML, 105–107
UPDATE permission, 164
updates

simple, 187
SQL Server 2005, 29

URI, namespace, 110
user

adding, 225
application design considerations, 88–89
database, creating, 41–42
errors, availability problems and, 174
login as specified, 226–227
Module Execution Context, 170
permissions, granting, 168–169
principals security hierarchy, 159, 160
schemas, separating, 22, 160, 166–167
security, 166
specifying, 167
SQLCMD, logging in as specified, 226–227

user interface, 96–97
user-defined items

error message (RAISERROR), 148–149
stored procedures, 137–138
types and aggregates, 123

username, executing as specified, 170

• V •
varbinary (max) datatype, 25
varchar (max) datatype, 25
view

Analysis Services, creating, 342, 346–350
database, 176
database snapshots, 182
installed services on local machine,

216–217
Object Explorer, 55
reports in Report Manager, 370–371

VIEW DEFINITION permission, 164
virtual server

availability, 179–180
database mirroring versus, 176–177

Visual C# sample, creating and deploying,
123–125

visual designer functions, 261–262
Visual Studio 2005 (Microsoft)

CLR, 122–123
editions, 87–88
keyboard shortcuts, 48
need for, 383
Reporting Services projects, 361–362
XSD schema, creating, 108–110

visual tools
creating check constraints, 197–200
dropping check constraints, 200

volume, high level, 10–11

• W •
warehouse, data, 11, 308–309
W3C XML Schema Definition Language

(XSD), 102
Web, continuous availability needs. See

availability
Web site resources, 379–381
Web task stored procedure, 135
WHERE clause

name and e-mail addresses, retrieving
with stored procedure, 139–140

Query Editor, 72–75
simple transaction update, 187
XPath expressions combined with, 115,

116
WHILE loop, runaway queries, 277
wildcard characters

* (asterisk), 72
% (percent sign), 147
rows, LIKE keyword and, 74

Windows Management Instrumentation
(WMI), 27, 29, 312

Windows (Microsoft)
Authentication, 237
Forms application, creating, 90–92
Integrated Security authentication

mechanism, 170

405Index

35_577557 bindex.qxp 12/20/05 10:00 PM Page 405

Windows (Microsoft) (continued)
Performance Manager data, importing

and displaying, 27
permissions, 240–242
principals security hierarchy, 159

WMI (Windows Management
Instrumentation), 27, 29, 312

workflow, business intelligence, 308
Workgroup Edition, SQL Server

availability, 15
business intelligence functions, 19
described, 1
manageability, 17
scalability, 14

• X •
XDR (XML Data Reduced) schema

language, 108
xml datatype, 23, 104
XML (eXtensible Markup Language)

converting data to and from, 118–120
data modification language, 116–117
data source, 311
declaration, 103

described, 101–102
document rules, 102
document, shredding into rowsets

(OPENXML keyword), 120
editor, benefits of using, 104–105
Notification Services, 255–256, 258–259
querying, 113–116
Schema Definition Language, 108–110
SQL Server 2000, 103
SQL Server 2005, 103–104
stored procedures, 135, 136
Transact-2005 support, 23
typed, 105
typed, associating schema with, 110–113
untyped, 105–107
xml datatype, 104

XML for Analysis (XMLA), 338
XML Path Language (XPath), 114
XML Query Language (XQuery)

draft status of, 113
sample using, 114–115
syntax, 114
WHERE clause with

XSD (W3C XML Schema Definition
Language), 102

406 Microsoft SQL Server 2005 For Dummies

35_577557 bindex.qxp 12/20/05 10:00 PM Page 406

Notes

35_577557 bindex.qxp 12/20/05 10:00 PM Page 407

Notes

35_577557 bindex.qxp 12/20/05 10:00 PM Page 408

BUSINESS, CAREERS & PERSONAL FINANCE

Also available:
�Accounting For Dummies †

0-7645-5314-3
�Business Plans Kit For Dummies †

0-7645-5365-8
�Cover Letters For Dummies

0-7645-5224-4
�Frugal Living For Dummies

0-7645-5403-4
�Leadership For Dummies

0-7645-5176-0
�Managing For Dummies

0-7645-1771-6

�Marketing For Dummies
0-7645-5600-2

�Personal Finance For Dummies *
0-7645-2590-5

�Project Management For Dummies
0-7645-5283-X

�Resumes For Dummies †
0-7645-5471-9

�Selling For Dummies
0-7645-5363-1

�Small Business Kit For Dummies *†

0-7645-5093-4

Also available:
�Bass Guitar For Dummies

0-7645-2487-9
�Diabetes Cookbook For Dummies

0-7645-5230-9
�Gardening For Dummies *

0-7645-5130-2
�Guitar For Dummies

0-7645-5106-X
�Holiday Decorating For Dummies

0-7645-2570-0
�Home Improvement All-in-One

For Dummies
0-7645-5680-0

�Knitting For Dummies
0-7645-5395-X

�Piano For Dummies
0-7645-5105-1

�Puppies For Dummies
0-7645-5255-4

�Scrapbooking For Dummies
0-7645-7208-3

�Senior Dogs For Dummies
0-7645-5818-8

�Singing For Dummies
0-7645-2475-5

�30-Minute Meals For Dummies
0-7645-2589-1

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

0-7645-5307-0 0-7645-5331-3 *†

0-7645-5295-3 0-7645-5232-5

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

HOME & BUSINESS COMPUTER BASICS

Also available:
�ACT! 6 For Dummies

0-7645-2645-6
�iLife ‘04 All-in-One Desk Reference

For Dummies
0-7645-7347-0

�iPAQ For Dummies
0-7645-6769-1

�Mac OS X Panther Timesaving
Techniques For Dummies
0-7645-5812-9

�Macs For Dummies
0-7645-5656-8

�Microsoft Money 2004 For Dummies
0-7645-4195-1

�Office 2003 All-in-One Desk Reference
For Dummies
0-7645-3883-7

�Outlook 2003 For Dummies
0-7645-3759-8

�PCs For Dummies
0-7645-4074-2

�TiVo For Dummies
0-7645-6923-6

�Upgrading and Fixing PCs For Dummies
0-7645-1665-5

�Windows XP Timesaving Techniques
For Dummies
0-7645-3748-2

0-7645-4074-2 0-7645-3758-X

Also available:
�2005 Online Shopping Directory

For Dummies
0-7645-7495-7

�CD & DVD Recording For Dummies
0-7645-5956-7

�eBay For Dummies
0-7645-5654-1

�Fighting Spam For Dummies
0-7645-5965-6

�Genealogy Online For Dummies
0-7645-5964-8

�Google For Dummies
0-7645-4420-9

�Home Recording For Musicians
For Dummies
0-7645-1634-5

�The Internet For Dummies
0-7645-4173-0

�iPod & iTunes For Dummies
0-7645-7772-7

�Preventing Identity Theft For Dummies
0-7645-7336-5

�Pro Tools All-in-One Desk Reference
For Dummies
0-7645-5714-9

�Roxio Easy Media Creator For Dummies
0-7645-7131-1

INTERNET & DIGITAL MEDIA

0-7645-1664-7 0-7645-6924-4

* Separate Canadian edition also available
† Separate U.K. edition also available

36_577557 bob.qxp 12/20/05 10:00 PM Page 409

Also available:
�Adobe Acrobat 6 PDF For Dummies

0-7645-3760-1
�Building a Web Site For Dummies

0-7645-7144-3
�Dreamweaver MX 2004 For Dummies

0-7645-4342-3
�FrontPage 2003 For Dummies

0-7645-3882-9
�HTML 4 For Dummies

0-7645-1995-6
�Illustrator CS For Dummies

0-7645-4084-X

�Macromedia Flash MX 2004 For Dummies
0-7645-4358-X

�Photoshop 7 All-in-One Desk
Reference For Dummies
0-7645-1667-1

�Photoshop CS Timesaving Techniques
For Dummies
0-7645-6782-9

�PHP 5 For Dummies
0-7645-4166-8

�PowerPoint 2003 For Dummies
0-7645-3908-6

�QuarkXPress 6 For Dummies
0-7645-2593-X

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:
�Adoption For Dummies

0-7645-5488-3
�Basketball For Dummies

0-7645-5248-1
�The Bible For Dummies

0-7645-5296-1
�Buddhism For Dummies

0-7645-5359-3
�Catholicism For Dummies

0-7645-5391-7
�Hockey For Dummies

0-7645-5228-7

�Judaism For Dummies
0-7645-5299-6

�Martial Arts For Dummies
0-7645-5358-5

�Pilates For Dummies
0-7645-5397-6

�Religion For Dummies
0-7645-5264-3

�Teaching Kids to Read For Dummies
0-7645-4043-2

�Weight Training For Dummies
0-7645-5168-X

�Yoga For Dummies
0-7645-5117-5

Also available:
�Alaska For Dummies

0-7645-1761-9
�Arizona For Dummies

0-7645-6938-4
�Cancún and the Yucatán For Dummies

0-7645-2437-2
�Cruise Vacations For Dummies

0-7645-6941-4
�Europe For Dummies

0-7645-5456-5
�Ireland For Dummies

0-7645-5455-7

�Las Vegas For Dummies
0-7645-5448-4

�London For Dummies
0-7645-4277-X

�New York City For Dummies
0-7645-6945-7

�Paris For Dummies
0-7645-5494-8

�RV Vacations For Dummies
0-7645-5443-3

�Walt Disney World & Orlando For Dummies
0-7645-6943-0

TRAVEL

GRAPHICS, DESIGN & WEB DEVELOPMENT

0-7645-5146-9 0-7645-5418-2

0-7645-5438-7 0-7645-5453-0

0-7645-4345-8 0-7645-5589-8

Also available:
�A+ Certification For Dummies

0-7645-4187-0
�Access 2003 All-in-One Desk

Reference For Dummies
0-7645-3988-4

�Beginning Programming For Dummies
0-7645-4997-9

�C For Dummies
0-7645-7068-4

�Firewalls For Dummies
0-7645-4048-3

�Home Networking For Dummies
0-7645-42796

�Network Security For Dummies
0-7645-1679-5

�Networking For Dummies
0-7645-1677-9

�TCP/IP For Dummies
0-7645-1760-0

�VBA For Dummies
0-7645-3989-2

�Wireless All In-One Desk Reference
For Dummies
0-7645-7496-5

�Wireless Home Networking For Dummies
0-7645-3910-8

NETWORKING, SECURITY, PROGRAMMING & DATABASES

0-7645-6852-3 0-7645-5784-X

36_577557 bob.qxp 12/20/05 10:01 PM Page 410

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Get smart @ dummies.com®

• Find a full list of Dummies titles

• Look into loads of FREE on-site articles

• Sign up for FREE eTips e-mailed to you weekly

• See what other products carry the Dummies name

• Shop directly from the Dummies bookstore

• Enter to win new prizes every month!

Also available:
�Alzheimer’s For Dummies

0-7645-3899-3
�Asthma For Dummies

0-7645-4233-8
�Controlling Cholesterol For Dummies

0-7645-5440-9
�Depression For Dummies

0-7645-3900-0
�Dieting For Dummies

0-7645-4149-8
�Fertility For Dummies

0-7645-2549-2

�Fibromyalgia For Dummies
0-7645-5441-7

�Improving Your Memory For Dummies
0-7645-5435-2

�Pregnancy For Dummies †
0-7645-4483-7

�Quitting Smoking For Dummies
0-7645-2629-4

�Relationships For Dummies
0-7645-5384-4

�Thyroid For Dummies
0-7645-5385-2

HEALTH & SELF-HELP

0-7645-6820-5 *† 0-7645-2566-2

Also available:
�Algebra For Dummies

0-7645-5325-9
�British History For Dummies

0-7645-7021-8
�Calculus For Dummies

0-7645-2498-4
�English Grammar For Dummies

0-7645-5322-4
�Forensics For Dummies

0-7645-5580-4
�The GMAT For Dummies

0-7645-5251-1
�Inglés Para Dummies

0-7645-5427-1

�Italian For Dummies
0-7645-5196-5

�Latin For Dummies
0-7645-5431-X

�Lewis & Clark For Dummies
0-7645-2545-X

�Research Papers For Dummies
0-7645-5426-3

�The SAT I For Dummies
0-7645-7193-1

�Science Fair Projects For Dummies
0-7645-5460-3

�U.S. History For Dummies
0-7645-5249-X

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

0-7645-5194-9 0-7645-4186-2

* Separate Canadian edition also available
† Separate U.K. edition also available

36_577557 bob.qxp 12/20/05 10:01 PM Page 411

Check out the Dummies Specialty Shop at www.dummies.com for more information!

Do More with Dummies

Products for the Rest of Us!

From hobbies to health,
discover a wide

variety of fun products

DVDs/Videos • Music CDs • Games
Consumer Electronics • Software

Craft Kits • Culinary Kits • and More!

36_577557 bob.qxp 12/20/05 10:01 PM Page 412

