Knight’s

Microsoft
SQL Server 2012
Integration Services

%4 24-Hour Trainer

Brian Knight, Devin Knight, Mike Davis, Wayne Snyder

KNIGHT’S MICROSOFT® SQL SERVER® 2012
INTEGRATION SERVICES 24-HOUR TRAINER

PREFACE XXV
WELCOME TO SSIS ...ttt ittt ittt ittt ttaee e ennneennanns 1
» SECTIONI1 INSTALLATION AND GETTING STARTED
LESSON 1 Moving Data with the Import and Export Wizard. 1
LESSON 2 Installing SQL Server Integration Services...................... 17
LESSON 3 Installing the Sample Databases, 21
LESSON 4 Creating a Solutionand Project 25
LESSON 5 Exploring SQL ServerDataTools. ..., 29
LESSON 6 Creating Your FirstPackage, 35
LESSON 7 Upgrading Packages to SQL Server 2012 41
LESSON 8 Upgrading to the Project Deployment Model 47
» SECTION 2 CONTROL FLOW
LESSON 9 Using Precedence Constraints........ o it 59
LESSON 10 Manipulating Files with the File System Task. 63
LESSON 11 Coding Custom Script Taskso 71
LESSON 12 Usingthe Execute SQL Task. ... 79
LESSON 13 Using the Execute Process Task., 87
LESSON 14 Using the Expression Task.t 93
LESSON 15 Usingthe Send Mail Task.o i 99
LESSON 16 Usingthe FTP Task 107
LESSON 17 CreatingaDataFlow i, 13
» SECTION 3 DATA FLOW
LESSON 18 Extracting Datafrom Sources........ i i, 121
LESSON 19 Loading Data to a Destination............. 139

Continues

LESSON 20
LESSON 21

LESSON 22
LESSON 23
LESSON 24
LESSON 25
LESSON 26
LESSON 27
LESSON 28
LESSON 29
LESSON 30
LESSON 31

SECTION 4

LESSON 32
LESSON 33
LESSON 34
LESSON 35

» SECTION 5

LESSON 36
LESSON 37
LESSON 38
LESSON 39
LESSON 40

» SECTION 6

LESSON 41
LESSON 42
LESSON 43

Changing Data Types with the Data Conversion Transform 151

Creating and Replacing Columns

with the Derived Column Transform 159
Rolling Up Data with the Aggregate Transform................ 167
Ordering Data with the Sort Transform....................... 173
Joining Data with the Lookup Transform 179
Auditing Data with the Row Count Transform 189
Combining Multiple Inputs with the Union All Transform........ 193
Cleansing Data with the Script Component................... 197
Separating Data with the Conditional Split Transform.......... 203
Altering Rows with the OLE DB Command Transform 21
Handling Bad Data with the Fuzzy Lookup.................... 221
Removing Duplicates with the Fuzzy Grouping Transform 231

MAKING PACKAGES DYNAMIC

Making a Package Dynamic with Variables 241
Making a Package Dynamic with Parameters 249
Making a Connection Dynamic with Expressions.............. 255
Making a Task Dynamic with Expressions 261

COMMON ETL SCENARIOS

Loading DataIncrementally.......... 269
Using the CDC ComponentsinSSIS......................... 2831
Using Data Quality Services i 295
Using the DQS Cleansing Transform......................... 309
CreatingaMasterPackage, 317
CONTAINERS

Using Sequence Containers to Organize a Package 327
Using For Loop Containers to Repeat Control Flow Tasks 331

Using the Foreach Loop Container
to Loop Through a Collection of Objects 337

» SECTION 7
LESSON 44
LESSON 45
LESSON 46

» SECTION 8
LESSON 47
LESSON 48
LESSON 49
LESSON 50
LESSON 51

» SECTION 9
LESSON 52
LESSON 53
LESSON 54
LESSON 55
LESSON 56
LESSON 57
LESSON 58
LESSON 59

» SECTION 10
LESSON 60
LESSON 61

» SECTION 11
LESSON 62
APPENDIX A
APPENDIX B
APPENDIX C

CONFIGURING PACKAGES

Easing Deployment with Configuration Tables 347
Easing Deployment with Configuration Files.................. 357
Configuring Child Packages 365
TROUBLESHOOTING SSIS

LoggingPackage Data............c i 375
Using EventHandlers........ i 381
Troubleshooting Errors. i e 387
Using Data Viewers. i 393
Using Breakpoints. i 399

ADMINISTERING SSIS

Creating and Configuring the SSIS Catalog................... 407
Deploying Packages to the Package Catalog a1
Configuringthe Packagest 415
Configuringthe Service i 421
Securing SSIS Packagesovi i 425
Running SSISPackages......... ... 431
Running Packages in T-SQL and Debugging Packages. 437
Scheduling Packages.......... ... o i i i 443
LOADING A WAREHOUSE

DimensionLoad. 451
FactTableLoad 459

WRAP UP AND REVIEW

Bringing It All Together. 465
SSIS ComponentCribNotes. i 473
Problem and Solution CribNotes. 477
What'sonthe DVD? 481

KNIGHT!S

Microsoft® SQL Server® 2012
Integration Services

24-HOUR TRAINER

Brian Knight
Devin Knight
Mike Davis
Wayne Snyder

WILEY
John Wiley & Sons, Inc.

Knight’s Microsoft® SQL Server® 2012 Integration 24-Hour Trainer

Published by John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com
Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-47958-2

ISBN: 978-1-118-47960-5 (ebk)
ISBN: 978-1-118-53914-9 (ebk)
ISBN: 978-1-118-53915-6 (ebk)

Manufactured in the United States of America
10987654321

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax

(201) 748-6008, or online at http: //www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including
without limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or pro-
motional materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold
with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional services.

If professional assistance is required, the services of a competent professional person should be sought. Neither the pub-
lisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to
in this work as a citation and/or a potential source of further information does not mean that the author or the publisher
endorses the information the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared between when this work was
written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with stan-
dard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you purchased, you may download this material at http://
booksupport .wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012948658

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other coun-
tries, and may not be used without written permission. Microsoft and SQL Server are registered trademarks of Microsoft
Corporation. All other trademarks are the property of their respective owners. John Wiley & Sons, Inc., is not associated
with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://�booksupport.wiley.com
http://�booksupport.wiley.com
http://�booksupport.wiley.com
http://www.wiley.com
V413HAV
Typewritten Text
V413HAV

To the person who gave me my first

chance at writing, Steve Wynkoop.
—BRIAN KNIGHT

Philippians 4:13
—DEevVIN KNIGHT

To my wife Jessy, my son Gabriel, and my daughter

Sydney; they are the reason I strive for more.
—MIKE Davis

Vickie is my wife’s name. She is patient, where I am
impatient. She is at ber best when things seem to be

at their worst. In my experience, that is a rare trait.
Her love, support, and understanding is what allows
me, from a personal standpoint, to work on a project
such as this. Most of my work on this project has been
nights and weekends, in addition to a regular work
week. For me, this is not possible without a good

home life. Vickie—this is dedicated to you.
—WAYNE SNYDER

CREDITS

EXECUTIVE EDITOR
Robert Elliott

SENIOR PROJECT EDITOR

Kevin Kent

TECHNICAL EDITORS
Chris Albrektson
Chris Price

Anthony Coleman

PRODUCTION EDITOR
Christine Mugnolo

COPY EDITOR
Kimberly A. Cofer

EDITORIAL ASSISTANT
Rayna Erlick

EDITORIAL INTERN
Claire Johnson

EDITORIAL MANAGER
Mary Beth Wakefield

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER
Ashley Zurcher

BUSINESS MANAGER
Amy Knies

PRODUCTION MANAGER
Tim Tate

VICE PRESIDENT AND EXECUTIVE GROUP
PUBLISHER
Richard Swadley

VICE PRESIDENT AND EXECUTIVE PUBLISHER
Neil Edde

ASSOCIATE PUBLISHER
Jim Minatel

PROJECT COORDINATOR, COVER
Katie Crocker

COMPOSITOR
Cody Gates, Happenstance Type-O-Rama

PROOFREADER
Gillian McGarvey, Word One New York

INDEXER
Robert Swanson

COVER DESIGNER
Elizabeth Brooks

COVER IMAGE
Flying Colours Ltd / Getty Images

VERTICAL WEBSITES PROJECT MANAGER
Laura Moss-Hollister

VERTICAL WEBSITES SUPERVISING PRODUCER
Rich Graves

VERTICAL WEBSITES QUALITY ASSURANCE
Doug Kuhn

ABOUT THE AUTHORS

BRIAN KNIGHT, SQL Server MVP, MCITP, is the owner and founder of Pragmatic Works.
He is the cofounder of BIDN.com, SQLServerCentral.com, and SQLShare.com. He runs
the local SQL Server users group in Jacksonville (JSSUG). He is a contributing columnist
at several technical magazines. He is the author of 15 SQL Server books. Brian has spoken
at conferences like PASS, SQL Connections and TechEd, SQL Saturdays, Code Camps,
and many pyramid scheme motivational sessions. His blog can be found at http: //www.bidn.com, which
covers many BI topics and miniature donkey training tips. Brian lives in Jacksonville, Florida, where he
enjoys his kids and running marathons.

DEVIN KNIGHT is a Senior BI consultant at Pragmatic Works Consulting. Previously, he
has tech edited the book Professional Microsoft SQL Server 2008 Integration Services
and was an author on the books Knight's 24-Hour Trainer: Microsoft SQL Server
2008 Integration Services, Knight's Microsoft Business Intelligence 24-Hour Trainer,
and SharePoint 2010 Business Intelligence 24-Hour Trainer. Devin has spoken at past
conferences like PASS, SQL Saturdays, and Code Camps and is a contributing member to the PASS
Business Intelligence Virtual Chapter. Making his home in Jacksonville, Florida, Devin is the Vice
President of the local users’ group (JSSUG).

MIKE DAVIS, MCTS, MCITP, is the Managing Project Lead at Pragmatic Works. This
book is his fourth on the subject of business intelligence and specifically Integration
Services. He has worked with SQL Server for almost a decade and has led many
successful business intelligence projects with his clients. Mike is an experienced
speaker and has presented at many events such as several SQL Server User Groups,
Code Camps, SQL Saturday events, and the PASS Summit. Mike is an active member at his local user
group (JSSUG) in Jacksonville, Florida. In his spare time, he likes to play darts and guitar. You can
also find him on twitter @MikeDavisSQL, and his blog on MikeDavisSQL.com and BIDN.com.

WAYNE SNYDER has worked as a DBA for about 20 years, learning about databases and
the data which they contain. For the past 8 years, he has been entirely focused on business
intelligence, using the Microsoft BI Stack for Mariner (www.mariner-usa.com). His role at
Mariner is Distinguished Architect, and in that role he spends a lot of time with Integration
Services, Analysis Services, Reporting Services, and PowerPivot. There are hundreds of
packages in production right now that he had a hand in making. He is a SQL Server MVP and a former
President of PASS (Professional Association for SQL Server). When he is not working or writing, he plays
the keyboard in a regional cover band, Soundbarrier (www.soundbarrierband. com).

http://www.bidn.com
http://www.mariner-usa.com
http://www.soundbarrierband.com

ABOUT THE TECHNICAL EDITORS

CHRIS ALBREKTSON is an experienced BI Consultant and Trainer currently at Pragmatic Works in
Jacksonville, Florida. During his tenure at Pragmatic Works, he has designed and developed business
intelligence solutions using the Microsoft Business Intelligence stack for a wide variety of custom-
ers across multiple industries. Previously, he has been a technical editor for the book Professional
Microsoft SOL Server 2012 Reporting Services. Chris is an experienced speaker and has presented
at many SQL Saturdays and Code Camps events across the United States. He’s also an active mem-
ber of the Jacksonville SQL Server User Group (JSSUG), and is a regular blogger on BIDN.com.

CHRIS PRICE is a Senior Business Intelligence Consultant with Pragmatic Works based out of
Lakeland, Florida. He has a B.S. degree in Management Information Systems and a Master’s of
Business Administration, both from the University of South Florida. He began his career 12 years
ago as a developer and has extensive experience across a wide range of Microsoft technologies. His
current interests include ETL and Data Integration, Data Quality and Master Data Management,
Analysis Services, SharePoint, and Big Data. Chris has spoken at 24 Hours of PASS and regularly
presents at SQL Saturdays, Code Camps, and other community events. You can follow Chris on his
blog at http://bidn.com/blogs/cpricel979/ or on Twitter at @BluewaterSQL.

ANTHONY COLEMAN is an experienced BI Consultant and Trainer for Pragmatic Works. Currently
he designs, develops, and implements business intelligence solutions using the Microsoft BI

stack. Anthony blogs at BIDN and contributes to the local SQL Server Users Group (JSSUG) in
Jacksonville, Florida. In his free time, Anthony enjoys playing chess and poker.

http://bidn.com/blogs/cprice1979/

ACKNOWLEDGMENTS

THANKS TO EVERYONE who made this book possible. As always, I owe a huge debt to my wife Jenn
for putting up with my late nights and my children, Colton, Liam, Camille, and John for being so
patience with their tired dad who has always overextended. Thanks to Kevin Kent and my tech
editors Chris Albrektson, Chris Price, and Anthony Coleman for keeping me in my place. Thanks
also to the makers of Guinness for providing my special juice that helped me power through the
book. Thanks for all the user group leaders out there who work so hard to help others become
proficient in technology. You make a huge difference! Finally, thanks to my professional yodeling
coach, Helga Felenstein, for getting me ready for my debut this fall.

—BRr1AN KNIGHT

1 MUST GIVE THANKS TO GOD, who without in my life, I would not have such blessings. Thanks to
my wife Erin who has had amazing patience during the late nights of writing, editing, and video
recording. To our three children, Collin, Justin, and Lana, who have sacrificed time away from
daddy. Thanks to the group of writers Brian, Mike, and Wayne, who all worked very hard while
missing time with their families, too. Finally, I would like to thank my jousting mentor, Shane
Adams, for showing me the way to become a real knight. Competitive jousting has always been a
dream of mine, and I look forward to competing at the Liverpool Renaissance Fair.

—DEevIN KNIGHT

THANKS TO MY PRAGMATIC WORKS TEAM for their support in this book. Thank you to Brian Knight
for giving me the opportunity of a lifetime. Thank you to Adam Jorgensen for growing me. Thank
you to the Wiley team, especially Kevin and Bob. Thank you to the technical editors for their help
in making this book great. Thank you to my mother for raising me to be the man I am today.
Thank you to my wife and kids for being by my side. And finally, thank you to the Flying Spaghetti
Monster for his noodlely blessings, ramen.

—MIKE DaAvis

THIS BOOK IS THE CULMINATION OF THE WORK of many people, smart people, all who have
worked very hard. To Kevin Kent, the senior project editor — you have been great to work with.
Kim Cofer, the copy editor, who has taken my sloppy, southern version of English and made my
chapters sound intelligent. And to Chris Albrektson, Chris Price, and Anthony Coleman, whose
eagle eyes have enabled the work to actually be intelligent and technically accurate. Thank you
all so much. Working with you all on this book has been a great pleasure!

To the reader — Do not be afraid of SSIS. You can learn this and be successful. This book will
help you get started. Do not simply download the completed packages and look through them. Go
through each Try It yourself. Do not let your brain go into auto-pilot mode. Engage your brain and
think about each step. As you develop your skills, you will become very comfortable with the tool.
You will be able to solve difficult ETL problems using SSIS. With the combination of Integration
Services and your hard work, great things can happen for you, your company, and your customers.

—WAYNE SNYDER

CONTENTS

PREFACE XXV

WELCOME TO SSIS

-

Import and Export Wizard
SQL Server Data Tools
Architecture
Packages
Tasks
Data Flow Elements
Sources
Destinations
Transformations
SSIS Capabilities Available in Editions of SQL Server 2012
Summary

SECTION 1: INSTALLATION AND GETTING STARTED

LESSON 1: MOVING DATA WITH THE IMPORT

Nt uh~BSBNNS

AND EXPORT WIZARD 11
Try It 14
Lesson Requirements 14
Hints 14
Step-by-Step 14
LESSON 2: INSTALLING SQL SERVER INTEGRATION SERVICES 17
LESSON 3: INSTALLING THE SAMPLE DATABASES 21
Try It 22
Lesson Requirements 22
Hints 22
Step-by-Step 23
LESSON 4: CREATING A SOLUTION AND PROJECT 25
Try It 26
Lesson Requirements 27
Hints 27

Step-by-Step 27

CONTENTS

Xiv

LESSON 5: EXPLORING SQL SERVER DATA TOOLS 29
The Solution Explorer 29
Deployment Models 31
The Properties Window 31
The Toolbox 32
The SSDT Design Environment 32

LESSON 6: CREATING YOUR FIRST PACKAGE 35
Creating and Using Connection Managers 36
Using and Configuring Tasks 37
Exploring Package Encryption 38
Executing Packages 39
Try It 39

Lesson Requirements 39
Hints 39
Step-by-Step 39

LESSON 7: UPGRADING PACKAGES TO SQL SERVER 2012 41

Try It 43
Lesson Requirements 43
Hints 43
Step-by-Step 43

LESSON 8: UPGRADING TO THE PROJECT DEPLOYMENT MODEL 47

Try It 48
Lesson Requirements 49
Hints 49
Step-by-Step 49

SECTION 2: CONTROL FLOW

LESSON 9: USING PRECEDENCE CONSTRAINTS 59
Try It 61
Lesson Requirements 61
Hints 61
Step-by-Step 62
LESSON 10: MANIPULATING FILES WITH THE FILE SYSTEM TASK 63
Try It 67
Lesson Requirements 67
Hints 67
Step-by-Step 67

CONTENTS

LESSON 11: CODING CUSTOM SCRIPT TASKS 1
Try It 76
Lesson Requirements 76
Hints 76
Step-by-Step 76
LESSON 12: USING THE EXECUTE SQL TASK 79
Try It 85
Lesson Requirements 85
Hints 85
Step-by-Step 85
LESSON 13: USING THE EXECUTE PROCESS TASK 87
Try It 89
Lesson Requirements 89
Hints 90
Step-by-Step 90
LESSON 14: USING THE EXPRESSION TASK 93
Try It 95
Lesson Requirements 95
Hints 95
Step-by-Step 96
LESSON 15: USING THE SEND MAIL TASK 99
Try It 103
Lesson Requirements 103
Hints 103
Step-by-Step 103
LESSON 16: USING THE FTP TASK 107
Try It 10
Lesson Requirements 110
Hints 110
Step-by-Step m
LESSON 17: CREATING A DATA FLOW 113
Try It 15
Lesson Requirements 15
Hints 15
Step-by-Step 15

XV

CONTENTS

Xvi

SECTION 3: DATA FLOW

LESSON 18: EXTRACTING DATA FROM SOURCES 121
Source Assistant 121
OLE DB Source 122

Try It 125
Excel Source 128
Try It 129
Flat File Source 131
Try It 133

LESSON 19: LOADING DATA TO A DESTINATION 139
Destination Assistant 140
OLE DB Destination 140

Try It 141
Flat File Destination 145
Try It 145
Excel Destination 147
Try It 147

LESSON 20: CHANGING DATA TYPES

WITH THE DATA CONVERSION TRANSFORM 151
Try It 154

Lesson Requirements 154
Hints 154
Step-by-Step 154

LESSON 21: CREATING AND REPLACING COLUMNS WITH

THE DERIVED COLUMN TRANSFORM 159
Try It 163

Lesson Requirements 163
Hints 163
Step-by-Step 164

LESSON 22: ROLLING UP DATA WITH THE AGGREGATE TRANSFORM 167

Try It 169
Lesson Requirements 169
Hints 169

Step-by-Step 169

CONTENTS

LESSON 23: ORDERING DATA WITH THE SORT TRANSFORM 173
Try It 175
Lesson Requirements 176
Hints 176
Step-by-Step 176
LESSON 24: JOINING DATA WITH THE LOOKUP TRANSFORM 179
Cache Modes 179
Try It 181
The Cache Connection Manager and Transform 184
Try It 186
LESSON 25: AUDITING DATA WITH THE ROW COUNT TRANSFORM 189
Try It 189
Lesson Requirements 190
Hints 190
Step-by-Step 190
LESSON 26: COMBINING MULTIPLE INPUTS WITH
THE UNION ALL TRANSFORM 193
Try It 194
Lesson Requirements 194
Hints 194
Step-by-Step 195
LESSON 27: CLEANSING DATA WITH THE
SCRIPT COMPONENT 197
Try It 199
Lesson Requirements 200
Hints 200
Step-by-Step 200
LESSON 28: SEPARATING DATA WITH
THE CONDITIONAL SPLIT TRANSFORM 203
Try It 205
Lesson Requirements 205
Hints 206
Step-by-Step 206

xvii

CONTENTS

xviii

LESSON 29: ALTERING ROWS WITH THE OLE DB

COMMAND TRANSFORM 21
Try It 214
Lesson Requirements 214
Hints 215
Step-by-Step 215
LESSON 30: HANDLING BAD DATA WITH THE FUZZY LOOKUP 221
Try It 224
Lesson Requirements 224
Hints 224
Step-by-Step 224
LESSON 31: REMOVING DUPLICATES WITH
THE FUZZY GROUPING TRANSFORM 231
Try It 234
Lesson Requirements 234
Hints 234
Step-by-Step 234

SECTION 4: MAKING PACKAGES DYNAMIC

LESSON 32: MAKING A PACKAGE DYNAMIC WITH VARIABLES 241
Try It 244
Lesson Requirements 244
Hints 244
Step-by-Step 244
LESSON 33: MAKING A PACKAGE DYNAMIC
WITH PARAMETERS 249
Try It 250
Lesson Requirements 251
Hints 251
Step-by-Step 251
LESSON 34: MAKING A CONNECTION DYNAMIC
WITH EXPRESSIONS 255
Try It 256
Lesson Requirements 256

CONTENTS

Hints 257
Step-by-Step 257
LESSON 35: MAKING A TASK DYNAMIC WITH EXPRESSIONS 261
Try It 263
Lesson Requirements 263
Hints 263
Step-by-Step 263

SECTION 5: COMMON ETL SCENARIOS

LESSON 36: LOADING DATA INCREMENTALLY 269
Try It 271
Lesson Requirements 272
Hints 272
Step-by-Step 272
LESSON 37: USING THE CDC COMPONENTS IN SSIS 281
CDC Control Task 283
CDC Source Task 284
CDC Splitter Task 286
Try It 286
Lesson Requirements 286
Hints 286
Step-by-Step 287
LESSON 38: USING DATA QUALITY SERVICES 295
Try It 299
Lesson Requirements 300
Hints 300
Step-by-Step 300
LESSON 39: USING THE DQS CLEANSING TRANSFORM 309
Try It 312
Lesson Requirements 312
Hints 312
Step-by-Step 313

Xix

CONTENTS

LESSON 40: CREATING A MASTER PACKAGE 317

Try It 319
Lesson Requirements 319
Hints 319
Step-by-Step 320

SECTION 6: CONTAINERS

LESSON 41: USING SEQUENCE CONTAINERS

TO ORGANIZE A PACKAGE 327
Try It 328
Lesson Requirements 328
Hints 328
Step-by-Step 328
LESSON 42: USING FOR LOOP CONTAINERS TO
REPEAT CONTROL FLOW TASKS 331
Try It 332
Lesson Requirements 332
Hints 332
Step-by-Step 332
LESSON 43: USING THE FOREACH LOOP CONTAINER
TO LOOP THROUGH A COLLECTION OF OBJECTS 337
Try It 339
Lesson Requirements 339
Hints 339
Step-by-Step 339

SECTION 7: CONFIGURING PACKAGES

LESSON 44: EASING DEPLOYMENT WITH

CONFIGURATION TABLES 347
Try It 354
Lesson Requirements 354
Hints 354
Step-by-Step 354

Final Deployment 356

XX

CONTENTS

LESSON 45: EASING DEPLOYMENT WITH CONFIGURATION FILES 357
Try It 360
Lesson Requirements 361
Hints 361
Step-by-Step 361
Final Deployment 362
LESSON 46: CONFIGURING CHILD PACKAGES 365
Configuring an Execute Package Task 366
Configuring a Child Package 368
Try It 369
Lesson Requirements 369
Hints 370
Step-by-Step 370
LESSON 47: LOGGING PACKAGE DATA 375
Try It 379
Lesson Requirements 379
Hints 379
Step-by-Step 379
LESSON 48: USING EVENT HANDLERS 381
Creating Event Handlers 382
Common Uses for Event Handlers 383
Try It 384
Lesson Requirements 384
Hints 384
Step-by-Step 384
LESSON 49: TROUBLESHOOTING ERRORS 387
Working in the Progress Tab 388
Troubleshooting Steps 389
Try It 390
Lesson Requirements 390
Hints 390
Step-by-Step 390

XXi

CONTENTS

LESSON 50: USING DATA VIEWERS 393
Try It 396
Lesson Requirements 396
Hints 396
Step-by-Step 396
LESSON 51: USING BREAKPOINTS 399
Try It 402
Lesson Requirements 402
Hints 402
Step-by-Step 402
LESSON 52: CREATING AND CONFIGURING THE SSIS CATALOG 407
Creating the Catalog 407
Configuring the Catalog 408
Creating and Using Folders 409
Try It 409
Lesson Requirements 410
Hints 410
Step-by-Step 410
LESSON 53: DEPLOYING PACKAGES TO THE PACKAGE CATALOG a1
Using the Deployment Wizard 411
Deploying Packages in the Package Deployment Model 412
Try It 414
Lesson Requirements 414
Hints 414
Step-by-Step 414
LESSON 54: CONFIGURING THE PACKAGES 415
Creating Environments 415
Configuring the Package 417
Try It 419
Lesson Requirements 419
Hints 420
Step-by-Step 420

xXii

CONTENTS

LESSON 55: CONFIGURING THE SERVICE 421
Try It 423
Lesson Requirements 423
Hints 423
Step-by-Step 423
LESSON 56: SECURING SSIS PACKAGES 425
Securing Packages in the Package Deployment Model 425
Securing Packages in the Project Deployment Model 426
Try It 427
Lesson Requirements 427
Hints 427
Step-by-Step 428
LESSON 57: RUNNING SSIS PACKAGES 431
Executing Packages in the Package Deployment Model 431
Running Packages in the Project Deployment Model 434
Try It 435
Lesson Requirements 436
Hints 436
Step-by-Step 436
LESSON 58: RUNNING PACKAGES IN T-SQL
AND DEBUGGING PACKAGES 437
Running the Package 437
Debugging When Something Goes Wrong 439
Try It 440
Lesson Requirements 441
Hints 441
Step-by-Step 441
LESSON 59: SCHEDULING PACKAGES 443
Using Proxy Accounts 444
Try It 446
Lesson Requirements 446
Hints 446
Step-by-Step 446

xxiii

CONTENTS

XXiv

SECTION 10: LOADING A WAREHOUSE

LESSON 60: DIMENSION LOAD 451
Try It 454
Lesson Requirements 454
Hints 454
Step-by-Step 454
LESSON 61: FACT TABLE LOAD 459
Try It 460
Lesson Requirements 460
Hints 460
Step-by-Step 460

SECTION 11: WRAP UP AND REVIEW

LESSON 62: BRINGING IT ALL TOGETHER 465
Lesson Requirements 465
Hints 466
Step-by-Step 467

APPENDIX A: SSIS COMPONENT CRIB NOTES 473
When to Use Control Flow Tasks 473
When to Use Data Flow Transforms 474

APPENDIX B: PROBLEM AND SOLUTION CRIB NOTES 477

APPENDIX C: WHAT’S ON THE DVD? 481
System Requirements 481
Using the DVD 481
What’s on the DVD 482
Troubleshooting 482
Customer Care 482

INDEX 483

PREFACE

IF YOU’VE PICKED UP THIS BOOK, Knight’s Microsoft SOL Server 2012 Integration Services 24-Hour
Trainer, you’ve decided to learn one of SQL Server’s most exciting applications, SQL Server Integration
Services (SSIS). SSIS is a platform to move data from nearly any data source to nearly any destination
and helps you by orchestrating a workflow to organize and control the execution of all these events.
Most who dive into SSIS use it weekly, if not daily, to move data between partners, departments, or
customers. It’s also a highly in-demand skill—even in the worst of economic environments, jobs are
still posted for SSIS developers. This is because no matter what happens in an economy, people still
must move and transform data.

This book, then, is your chance to start delving into this powerful and marketable application. And
what’s more, this is not just a book you’re holding right now. It’s a video learning tool, as well. We
became passionate about video training a number of years ago when we realized that in our own
learning we required exposure to multiple teaching techniques to truly understand a topic—

a fact that is especially true with tutorial books like this one. So, you’ll find hours of videos on the
DVD in this book to help you learn SSIS better than reading about the topic alone could and to help
demonstrate the various tutorials in the book.

WHO THIS BOOK IS FOR

This is a beginner book and assumes only that you know SQL Server 2012 to run queries against
the database engine (T-SQL skills are assumed and used throughout this book). Because this book

is structured for a beginner, providing many tutorials and teaching you only what you’ll likely use at
work, it is not a reference book filled with a description of every property in a given task. It instead
focuses on only the essential components for you to complete your project at work or school.

WHAT THIS BOOK COVERS

This book covers SQL Server 2012 and assumes no knowledge of previous versions of SQL Server.
The differences between SQL Server 2005/2008 and SQL Server 2012 mostly exist around the
administration of SSIS, and there are a few new components. By the time you’ve completed this
book, you’ll know how to load and synchronize database systems using SSIS by using some of the
new SQL Server 2012 features. You’ll also know how to load data warehouses, which is a very hot
and specialized skill. Even in warehousing, you’ll find features in the new SQL Server 2012 release
that you’ll wonder how you lived without, like Change Data Capture (CDC)!

PREFACE

HOW THIS BOOK IS STRUCTURED

Our main principle in this book is to teach you only what we think you need to perform your job
task. Because of that, it’s not a comprehensive reference book. You won’t find a description of every
feature of SSIS in here. Instead the book blends small amounts of description, a tutorial, and videos
to enhance your experience. Each lesson walks you through how to use components of SSIS and
contains a tutorial. In this tutorial, called “Try It,” you can choose to read the requirements to com-
plete the lesson, the hints of how to go about it, and begin coding, or you can read the step-by-step
instructions if you learn better that way. Either way if you get stuck or want to see how one of us
does the solution, watch the video on the DVD to receive further instruction.

WHAT THIS BOOK COVERS

This book contains 62 lessons, which are broken into 11 sections. The lessons are usually only a few
pages long and focus on the smallest unit of work in SSIS that we could work on. Each section has a
large theme around a given section in SSIS:

XXVi

>

Section 1: Installation and Getting Started—This section covers why you would use SSIS and
the basic installation of SSIS and the sample databases that you’ll use throughout this book. If
you already have SSIS and the sample databases installed, you can review this section quickly.

Section 2: Control Flow—This section explains how to use tasks in the Control Flow of SSIS.

Section 3: Data Flow—Seventy-five percent of your time as an SSIS developer is spent in the
Data Flow tab. This section focuses on the configuration of the core sources, transforms, and
destinations.

Section 4: Making Packages Dynamic—Now that you’ve created your first package, you
must make it dynamic. This section covers how you can use variables, parameters, and
expressions to make your package change at run time.

Section 5: Common ETL Scenarios—In an effort to show you some real-world business sce-
narios, this section covers some of the common ETL scenarios like performing incremental
loads and using SQL Server’s newest component, Data Quality Services (DQS), with SSIS.

Section 6: Containers—This section covers one of the key Control Flow items, containers,
which control how SSIS does looping and grouping.

Section 7: Configuring Packages—Here you learn how to configure your packages externally
through configuration files, tables, and other ways.

Section 8: Troubleshooting SSIS—No sooner do you have an SSIS package developed than
you start experiencing problems. This section shows you how to troubleshoot these problems.

Section 9: Administering SSIS—Now that your package is developed, here you learn how to
deploy and configure the service.

PREFACE

> Section 10: Loading a Warehouse—A little more on the advanced side, this section teaches
you how to load a data warehouse using SSIS.

> Section 11: Wrap Up and Review—This section was one of our favorites to write. It contains
a lesson to bring everything together and also Appendices A and B, which contain crib notes
for quick reference. As trainers and consultants, we are constantly asked to leave behind a
quick page of crib notes of common code. In these appendices, you find guides on when to
use which SSIS components and useful solutions and code snippets that address common
situations you might face.

INSTRUCTIONAL VIDEOS ON DVD

As mentioned earlier in this preface, because we believe strongly in the value of video training,

this book has an accompanying DVD containing hours of instructional video. At the end of each
lesson in the book, you will find a reference to an instructional video on the DVD that accompanies
that lesson. In that video, one of us will walk you through the content and examples contained in
that lesson. So, if seeing something done and hearing it explained helps you understand a subject
better than just reading about it does, this book and DVD combination is just the thing for you to
get started with SSIS. You can also find the instructional videos available for viewing online at

WWW .Wrox.com/go/ssis2012video.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

WARNING Boxes like this one hold important, not-to-be forgotten information
that is directly relevant to the surrounding text.

NOTE Notes, tips, hints, tricks, and asides to the current discussion are offset
and placed in italics like this.

References like this one point you to the DVD to watch the instructional video
that accompanies a given lesson.

XXVii

http://www.wrox.com/go/ssis2012video

PREFACE

As for styles in the text:
> We highlight new terms and important words when we introduce them.
» We show URLs and code within the text like so: persistence.properties.

> We present code in the following way:

We use a monofont type for code examples.

SUPPORTING PACKAGES AND CODE

As you work through the lessons in this book, you may choose either to type in all the code and cre-
ate all the packages manually or to use the supporting packages and code files that accompany the
book. All the packages, code, and other support files used in this book are available for download at
www . wrox.com. Once at the site, simply locate the book’s title (either by using the Search box or by
using one of the title lists) and click the Download Code link on the book’s detail page to obtain all
the source code for the book.

NOTE Because many books have similar titles, you may find it easiest to search
by ISBN; this book’s ISBN is 978-1-118-47958-2.

Once you download the code, just decompress it with your favorite compression tool. Alternatively,
you can go to the main Wrox code download page at www.wrox . com/dynamic/books/download. aspx
to see the code available for this book and all other Wrox books.

You will need two sample databases for the tutorial, both provided by Microsoft for use with SQL
Server: AdventureWorks2012 and AdventureWorksDW2012. The two sample databases are not
installed by default with SQL Server 2012. You can download versions of the sample databases used
for this book at the Wrox website at www.wrox.com/go/SQLSever2012DataSets. Lesson 3 also cov-
ers how to install and configure the databases.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration and at the same time you will be helping us provide even
higher quality information.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the Book Search Results page, click the Errata link. On this page
you can view all errata that has been submitted for this book and posted by Wrox editors.

Xxviii

http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/go/SQLSever2012DataSets
http://www.wrox.com

PREFACE

NOTE A complete book list including links to errata is also available at
WWW.Wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Errata page, click the Errata Form link and complete the form
to send us the error you have found. We’ll check the information and, if appropriate, post a message
to the book’s errata page and fix the problem in subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics

of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.
2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P but in order to
post your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

XXiX

http://www.wrox.com/misc-pages/booklist.shtml
http://p2p.wrox.com

Welcome to SSIS

SQL Server Integration Services (SSIS) is one of the most powerful applications in your arsenal
for moving data in and out of various databases and files. Like the rest of the business intel-
ligence (BI) suite that comes with SQL Server, SSIS is already included in your SQL Server
license when you pay for the Standard, BI, or Enterprise editions of SQL Server. Even though
SSIS is included in SQL Server, you don’t even need to have SQL Server installed to make it
function. Because of that, even if your environment is not using a lot of SQL Server, you can
still use SSIS as a platform for data movement.

Though ultimately this book is more interactive in nature, this introduction first walks you
through a high-level tour of SSIS so you have a life preserver on prior to jumping in the pool.
Each topic touched on in this introduction is covered in much more depth throughout the
book in lesson form and in the supporting videos on the DVD.

IMPORT AND EXPORT WIZARD

If you need to move data quickly from almost any data source to a destination, you can

use the SSIS Import and Export Wizard (shown in Figure 1). The wizard is a quick way to
move the data and perform very light transformations of data, such as casting of the data into
new data types. You can quickly check any table you want to transfer, as well as write a query
against the data to retrieve only a selective amount of data.

2 | WELCOME TOSSIS

L 5QL ServerImport and Export Wizard

Select Source Tables and Views
Chocse one or more tables and views to copy.

Tables and views

[E=S EER =)

|—| Source: {ocal) | Destination: (ocal)

o o o (o o N e B D R o o o
B e R E e R B G BB

[Production]. [Product Madel]
[Production]. [Preduct Model llustration]
[Production]. [Product Model Product Descri..
[Production].[Preduct Photo]
[Production]. [Product Product Phota]
[Production].[Product Review]
[Production]. [Product Subcategory]
[Production].[ScrapReason]
[Production]. [TransactionHistory]
[Production] [TransactionHistory Archive]
[Production]. [Unit Measure]

[Production] [WorkOrder]

[Production]. [WorkOrderRouting]

[Production]. [Preduct Review]
[Production]. [Product Subcategory]
[Production].[ScrapReason]

Z [Production].[TransactionHistory]

[Purchasing].[ProductVendor] [Purchasing].[Product Vendor]

[Purchasing].[PurchaseOrderDetail]
[Purchasing].[PurchaseOrderHeader]
[Purchasing].[Ship Method]
[Purchasing].[Vendar]

m

Edit Mappings | Preview. |

Help <Back [Next> |

Cancel |

A

FIGURE 1

SQL SERVER DATA TOOLS

SQL Server Data Tools (SSDT) is the central tool that you’ll spend most of your time in as an SSIS
developer (really as a SQL Server developer). Like the rest of SQL Server, the tool’s foundation is
the Visual Studio 2010 interface (shown in Figure 2), and SSDT is installed when you install SQL
Server 2012. The nicest thing about the tool is that it’s not bound to any particular SQL Server. In
other words, you won’t have to connect to a SQL Server to design an SSIS package. You can design
the package disconnected from your SQL Server environment and then deploy it to your target SQL

Server or the filesystem on which you’d like it to run.

ARCHITECTURE

Although SSIS has been a major extraction, transformation, and loading (ETL) platform for several
releases of SQL Server, SQL Server 2012 has simplified the platform for developers and administra-
tors. Because of its scalability and lower cost, SSIS is also a major player in the ETL market. What’s
especially nice about SSIS is its price tag, which is free with the purchase of SQL Server. Other ETL
tools can cost hundreds of thousands of dollars based on how you scale the software.

WELCOMETOSSIS | 3

File Edit View

il

©0 Integration Services Project3 - Microsoft Visual Studio (Administrator)

Project Build Debug Team BlxPress SQL Data Fermat SSIS Tools

Architecture Test Analyze Window Help

e (S ol | & a9 - - S0 b [Development -] | (%

Ml Package.dtsk [Design]*

D% Bk BE - -

4 Favorites

B3 Data Flow Task

2] Data Profiling Task
|55 Execute 3QL Task

4 Common
@ Analysis Services Processing Task
| [Bulk Insert Task
_1 Execute Package Task
[Execute Process Task
Fe Expression Task
1) File System Task
& FTP Task
T Seript Task

£.o Con.. G4 Det.. | @ Par. | F Eve...

(o[- sl

Solution Explorer

=)

v Data Flow Task L]

Moves data between sources and
destinations while transforming and

- I Leop Over Files
-

U] woadrie

H

Archive File

M

E Solution Integration Services Project «
4 23 Introduction
& Project.params
4 [Zy Connection Managers £
13, AdventureWarks2012.con
4 [SSIS Packages
| Package.dtsx

[Mirrallananie
n

An errer has occurred while loading
Getting Started information. The remote
name could not be resolved:

cleaning. Data can be moved between tables
and files while efficently processing the...

Find Samples

EE SQL Server Object Bx.. [EREE R ETEN

Connection Managers

go.microsoft.com’

| Extract || (project) AdventureWorks2012

P Getting Started (3515) [Rlta

"% Expressions # Variables
Ready

FIGURE 2

The SSIS architecture consists of five main components:

> The SSIS service (there for legacy SSIS packages)

The SSIS runtime engine and the runtime executables

The SSIS catalog

Y Y Y VY

The SSIS clients

The SSIS Data Flow engine and the Data Flow components

Let’s boil this down to the essentials that you need to know to do your job. The SSIS service (for
packages running in legacy mode) and now the SSIS catalog handle the operational aspects of SSIS.
The service is a Windows service that is installed when you install the SSIS component of SQL
Server 2012, and it tracks the execution of packages (a collection of work items) and helps with the
storage of the packages. You don’t need the SSIS service to run SSIS packages, but if the service is
stopped, all the SSIS packages that are currently running will, in turn, stop by default.

This service is mainly used for packages stored in the older style of storing packages, the package
deployment model. The new model, the project deployment model, uses something called the package
catalog. The catalog is the newer way of storing packages that gives you many new options, like run-
ning packages with T-SQL. The catalog also stores basic operational information about your package.

The SSIS runtime engine and its complimentary programs actually run your SSIS packages. The
engine saves the layout of your packages and manages the logging, debugging, configuration, con-
nections, and transactions. Additionally, it manages handling your events to send you e-mails or log

4 | WELCOME TO SSIS

in to a database when an event is raised in your package. The runtime executables provide the fol-
lowing functionality to a package; these are discussed in more detail throughout this book:

> Containers—Provide structure and scope to your package
> Tasks—Provide the functionality to your package

> Event handlers—Respond to raised events in your package
>

Precedence constraints—Provide an ordinal relationship between various items in your
package

Packages

A core component of SSIS is the notion of a package. A package best parallels an executable pro-
gram in Windows. Essentially, a package is a collection of tasks that execute in an orderly fashion.
Precedence constraints help manage the order in which the tasks will execute. A package can be
saved onto a SQL Server, which in actuality is saved in the msdb or package catalog database. It can
also be saved as a .dtsx file, which is an XML structured file much like .rdl files are to Reporting
Services. The end result of the package looks like what’s displayed in Figure 2, which was shown
earlier.

Tasks

A task can best be described as an individual unit of work. Tasks provide functionality to your
package, much like a method does in a programming language. A task can move a file, load a file
into a database, send an e-mail, or write a set of .NET code for you, to name just a few of the things
it can do. A small subset of the common tasks available to you comprises the following:

> Bulk Insert Task—Loads data into a table by using the BULK INSERT SQL command.

> Data Flow Task—This is the most important task that loads and transforms data into an
OLE DB Destination.

> Execute Package Task—Enables you to execute a package from within a package, making
your SSIS packages modular.

> Execute Process Task—Executes a program external to your package, like one to split your
extract file into many files before processing the individual files.

\

Execute SQL Task—Executes a SQL statement or stored procedure.

File System Task—This task can handle directory operations like creating, renaming, or
deleting a directory. It can also manage file operations like moving, copying, or deleting files.

FTP Task—Sends or receives files from an FTP site.
Script Task—Runs a set of VB.NET or C# coding inside a Visual Studio environment.
Send Mail Task—Sends a mail message through SMTP.

Y VYV VY

Analysis Services Processing Task—This task processes a SQL Server Analysis Services cube,
dimension, or mining model.

WELCOMETOSSIS | B

Web Service Task—Executes a method on a web service.

WMI Data Reader Task—This task can run WQL queries against the Windows Management
Instrumentation (WMI). This enables you to read the event log, get a list of applications that
are installed, or determine hardware that is installed, to name a few examples.

> WMI Event Watcher Task—This task empowers SSIS to wait for and respond to certain
WMI events that occur in the operating system.

» XML Task—Parses or processes an XML file. It can merge, split, or reformat an XML file.

These are only a few of the many tasks you have available to you. You can also write your own task
or download a task from the web that does something else. Writing such a task only requires that
you learn the SSIS object model and know VB.NET or C#. You can also use the Script Task to do
things that the native tasks can’t do.

Data Flow Elements

Once you create a Data Flow Task, the Data Flow tab in SSDT is available

to you for design. Just as the Control Flow tab handles the main workflow U s

of the package, the Data Flow tab handles the transformation of data. Every l
package has a single Control Flow, but can have many Data Flows. Almost con
anything that manipulates data falls into the Data Flow category. You can

see an example of a Data Flow in Figure 3, where data is pulled from an - l
OLE DB Source and transformed before being written to a Flat File fi Derved Column
Destination. As data moves through each step of the Data Flow, the data l
changes based on what the transform does. For example, in Figure 3, a new

column is derived using the Derived Column Transform and that new col- o i Tl Desinatin

umn is then available to subsequent transformations or to the destination.
FIGURE 3

You can add multiple Data Flow Tasks onto the Control Flow tab. You’ll

notice that after you click on each one, it jumps to the Data Flow tab with the Data Flow Task name
you selected in the drop-down box right under the tab. You can toggle between Data Flow Tasks
easily by selecting the next Data Flow Task from that drop-down box.

Sources

A source is where you specify the location of your source data to pull from in the data flow. Sources
will generally point to a connection manager in SSIS. By pointing them to the connection manager,
you can reuse connections throughout your package because you need only change the connection in
one place. Here are some of the common sources you’ll be using in SSIS:

> OLE DB Source—Connects to nearly any OLE DB Data Source like SQL Server, Access,
Oracle, or DB2, to name just a few.

> Excel Source—Source that specializes in receiving data from Excel spreadsheets. This source
also makes it easy to run SQL queries against your Excel spreadsheet to narrow the scope of
the data that you want to pass through the flow.

» Flat File Source—Connects to a delimited or fixed-width file.

6 | WELCOME TOSSIS

» XML Source—Can retrieve data from an XML document.

> ODBC Source—The ODBC Source enables you to connect to common data sources that
don’t use OLE DB.

Destinations

Inside the Data Flow, destinations accept the data from the data sources and from the transforma-
tions. The flexible architecture can send the data to nearly any OLE DB—compliant data source or
to a flat file. Like sources, destinations are managed through the connection manager. Some of the
more common destinations in SSIS and available to you are as follows:

> Excel Destination—Outputs data from the Data Flow to an Excel spreadsheet that must
already exist.

> Flat File Destination—Enables you to write data to a comma-delimited or fixed-width file.

> OLE DB Destination—Outputs data to an OLE DB data connection like SQL Server, Oracle,
or Access.

> SQL Server Destination—The destination that you use to write data to SQL Server most
efficiently. To use this, you must run the package from the destination.

Transformations

Transformations (or transforms) are a key component to the Data Flow that change the data to a
format that you’d like. For example, you may want your data to be sorted and aggregated. Two
transformations can accomplish this task for you. The nicest thing about transformations in SSIS is
they are all done in-memory, and because of this they are extremely efficient. Memory handles data
manipulation much faster than disk IO does, and you’ll find if disk paging occurs, your package that
ran in 20 minutes will suddenly take hours. Here are some of the more common transforms you’ll
use on a regular basis:

> Aggregate—Aggregates data from a transform or source similar to a GROUP BY statement
in T-SQL.

> Conditional Split—Splits the data based on certain conditions being met. For example, if the
State column is equal to Florida, send the data down a different path. This transform is simi-
lar to a CASE statement in T-SQL.

> Data Conversion—Converts a column’s data type to another data type. This transform is
similar to a CAST statement in T-SQL.

> Derived Column—Performs an in-line update to the data or creates a new column from a
formula. For example, you can use this to calculate a Profit column based on a Cost and
SellPrice set of columns.

> Fuzzy Grouping—Performs data cleansing by finding rows that are likely duplicates.

> Fuzzy Lookup—Matches and standardizes data based on fuzzy logic. For example, this can
transform the name Jon to John.

WELCOMETOSSIS | 7

> Lookup—Performs a lookup on data to be used later in a transformation. For example, you
can use this transformation to look up a city based on the ZIP code.

> Multicast—Sends a copy of the data to an additional path in the workflow and can be
used to parallelize data. For example, you may want to send the same set of records to
two tables.

> OLE DB Command—Executes an OLE DB command for each row in the Data Flow. Can
be used to run an UPDATE or DELETE statement inside the Data Flow.

> Row Count—Stores the row count from the Data Flow into a variable for later use by,
perhaps, an auditing solution.

> Script Component—Uses a script to transform the data. For example, you can use this to
apply specialized business logic to your Data Flow.

> Slowly Changing Dimension—Coordinates the conditional insert or update of data in a
slowly changing dimension during a data warehouse load.

Sort—Sorts the data in the Data Flow by a given column and removes exact duplicates.
Union All—Merges multiple data sets into a single data set.

> Unpivot—Unpivots the data from a non-normalized format to a relational format.

SSIS CAPABILITIES AVAILABLE IN EDITIONS OF SQL SERVER 2012

The features in SSIS and SQL Server that are available to you vary widely based on what edition of
SQL Server you’re using. As you can imagine, the higher-end edition of SQL Server you purchase,
the more features are available. As for SSIS, you’ll have to use at least the Standard Edition to
receive the bulk of the SSIS features. In the Express and Workgroup Editions, only the Import and
Export Wizard is available to you. You’ll have to upgrade to the Enterprise or Developer Editions to
see some features in SSIS. The advanced transformations available only with the Enterprise Edition
are as follows:

> Data Mining Query Transformation

Fuzzy Lookup and Fuzzy Grouping Transformations
Term Extraction and Term Lookup Transformations
Data Mining Model Training Destination
Dimension Processing Destination

Partition Processing Destination

Change Data Capture components

Y Y Y VY VY Y Y

Higher speed data connectivity components such as connectivity to SAP or Oracle

8 | WELCOMETOSSIS

SUMMARY

This introduction exposed you to the SQL Server Integration Services (SSIS) architecture and some
of the different elements you’ll be dealing with in SSIS. Tasks are individual units of work that are
chained together with precedence constraints. Packages are executable programs in SSIS that are

a collection of tasks. Finally, transformations are the Data Flow items that change the data to the
form you request, such as sorting the data the way you want. Now that the overview is out of the

way, it’s time to start the first section and your first set of lessons, and time for you to get your
hands on SSIS.

As mentioned earlier, the print book comes with an accompanying DVD contain-
ing hours of instructional supporting video. At the end of each lesson in the book,
you will find a box like this one pointing you to a video on the DVD that accom-
panies that lesson. In that video, one of us will walk you through the content and
examples contained in that lesson. So, if seeing something done and hearing it
explained helps you understand a subject better than just reading about it does,
this text and video combination provides exactly what you need. There’s even

an Introduction to SSIS video that you can watch to get started. Simply select

the Intro to SSIS lesson on the DVD. You can also view the instructional videos
online at www.wrox.com/go/ssis2012video.

http://www.wrox.com/go/ssis2012video

SECTION 1
Installation and Getting Started

» LESSON 1: Moving Data with the Import and Export Wizard
» LESSON 2: Installing SQL Server Integration Services

» LESSON 3: Installing the Sample Databases

» LESSON 4: Creating a Solution and Project

» LESSON 5: Exploring SQL Server Data Tools

» LESSON 6: Creating Your First Package

» LESSON 7: Upgrading Packages to SQL Server 2012

» LESSON 8: Upgrading to the Project Deployment Model

Moving Data with the Import
and Export Wizard

The Import and Export Wizard is the easiest method to move data from sources like Excel,
Oracle, DB2, SQL Server, and text files to nearly any destination. This wizard uses SSIS as
a framework and can optionally save a package as its output prior to executing. The pack-
age it produces will not be the most elegant, but it can take a lot of the grunt work out of
package development and provide the building blocks that are necessary for you to build
the remainder of the package. Oftentimes as an SSIS developer, you’ll want to relegate the
grunt work and heavy lifting to the wizard and do the more complex coding yourself. The
wizard does no transformations or cleansing, but instead only moves data from point A to
point B.

As with most SQL Server wizards, you have numerous ways to open the tool:

> To open the Import and Export Wizard, right-click the database you want to import
data from or export data to SQL Server Management Studio and select Tasks & Import
Data (or Export Data based on what task you’re performing).

> You can also open the wizard by right-clicking SSIS Packages in SQL Server Data Tools
(SSDT) and selecting SSIS Import and Export Wizard.

> Another common way to open it is from the Start menu under SQL Server 2012 by
choosing Import and Export Data.

> The last way to open the wizard is by typing dtswizard.exe at the command line or Run
prompt.

Regardless of whether you need to import or export the data, the first few screens in the
wizard look very similar.

Once the wizard comes up, you see the typical Microsoft wizard welcome screen. Click
Next to begin specifying the source connection. If you opened the wizard from Management
Studio by selecting Export Data, this screen is prepopulated. In this screen, you specify where

12 | SECTION1 INSTALLATION AND GETTING STARTED

your data is coming from in the Source drop-down box. Once you select the source, the rest of the
options on the dialog box may vary based on the type of connection. The default source is SQL
Native Client, and it looks like Figure 1-1. You have OLE DB Sources like SQL Server, Oracle, and
Access available out of the box. You can also use text files and Excel files. After selecting the source,
you have to fill in the provider-specific information.

., SQL Server Import and Export Wizard E

Choose a Data Source
Select the source from which to copy data.

Data source: 8 SQL Server Native Client 11.0 -
Server name localhost -
Authentication
@ Use Windows Authentication
@) Use SQL Server Authertication

Database: AdventureWorks2012 - Refresh
Help < Back Next > Finish >> Cancel
FIGURE 1-1

For SQL Server, you must enter the server name (localhost means go to your local machine’s

SQL Server instance, if applicable) and the username and password you want to use. If you’re
going to connect with your Windows account, simply select Use Windows Authentication.
Windows Authentication will pass your Windows local or domain credentials into the data source.
Lastly, choose a database that you’d like to connect to. For most of the examples in this book, you
use the AdventureWorks2012 database. You can see Lesson 3 of this book for more information on
installing this sample database.

NOTE You can find the sample databases used for this book at the Wrox website
at www.wrox.com/go/SQLSever20l12DataSets.

http://www.wrox.com/go/SQLSever2012DataSets

LESSON1 MOVING DATA WITH THE IMPORT AND EXPORT WIZARD | 13

NOTE Additional sources such as Sybase and DB2 can also become available if
you install the vendors’ OLE DB or ODBC providers. You can download addi-
tional providers for free if you're using Enterprise Edition by going to the SOL
Server 2012 Feature Pack on the Microsoft website. You also have ODBC and
ADO.NET providers available to you in SOL Server 2012.

After you click Next, you are taken to the next screen in the wizard, where you specify the desti-
nation for your data. The properties for this screen are exactly identical to those for the previous
screen with the exception of the database. On the next screen, if you select the Copy data from one
or more tables or views option, you can simply check the tables you want. If you select the Write

a query to specify the data to transfer option, you can write an ad hoc query (after clicking Next)
addressing where to select the data from or what stored procedure to use to retrieve your data.

The next screen enables you to select the table or tables you want to copy over and which table
names you want them to be transferred to. If you want, you can click the Edit button to go to the
Column Mappings dialog box (shown in Figure 1-2) for each table. Here you can change the map-
ping between each source and destination column. For example, if you want the DepartmentID
column to go to the DepartmentID2 column on the destination, simply select the Destination drop-
down box for the DepartmentID column and point it to the new column, or choose <ignore > to
ignore the column altogether. By checking the Enabled identity insert box, you allow the wizard

to insert into a column that has an identity (or autonumber) value assigned. If the data types don’t
match between the source and destination columns, the wizard will add the necessary components
to convert the data to a proper data type if possible.

4 Column Mappings = e =]
Source: [Purchasing].[PurchaseQOrderHeader]
Destination: [Purchasing].[PurchaseOrderHeader]

@ Create destination table Edit SQL..

[] Drop and re-create destination table

2 Enable identity insert
Mappings:

5 Destination Type Nullable Size Precision Scale

| »

int B
I RevisionNumber RevisionNumber tinyint =}
Status Status tirint B B
EmployselD EmployesID int =}
VendorlD VendorlD int B
ShipMethodID ShipMethodID int B
OrderDate OrderDate datetime =}
ShipDate ShipDate datetime
SubTotal SubTotal money [l 4 i
Source column: PurchaseOrder|D int NOT NULL

FIGURE 1-2

14 | SECTION1 INSTALLATION AND GETTING STARTED

The next screen enables you to save the package or just choose to run it immediately. You can
uncheck Execute Immediately to just save the package for later modification and execution. You can
open the package that executed in SQL Server Data Tools (SSDT) if you'd like. You do this by creat-
ing a project in SSDT and adding the package to the project. You cannot edit the package without
an SSDT project to contain the package. We discuss how to create a project in Lesson 4 later in this
book. The final screen executes the process and shows you the output log.

TRY IT

In this Try It, you learn how to quickly load a flat file into a database using the Import and Export
Wizard. After this lesson, you’ll have a clear understanding of how the Import and Export Wizard
is the easiest way to load data into almost any destination and how it is accessed from Management
Studio or SSDT.

You can find the file associated with Lesson 1 on the companion website for this book at

WWW . Wrox.com.

Lesson Requirements

Load the ZipCodeExtract.csv file (which you can download at this book’s website at www.wrox. com)
into any database of your choosing. We are using the AdventureWorks2012 database as our target,
but that’s not a dependency. Note: The file’s first row holds the column names.

Hints

> One of the fastest ways to access the Import and Export Wizard to load the data is through
Management Studio. Right-click the target database and select Tasks @ Import Data.

Step-by-Step
1. Open SQL Server Management Studio in the SQL Server 2012 program group.

2. Right-click the target database of your choosing (like AdventureWorks2012) and select
Tasks = Import Data.

3. For the Data source, select Flat File Source, as shown in Figure 1-3. For the File name prop-
erty, select the ZipCodeExtract.csv file that you can download from this book’s website at
www . wrox . com. Check the Column names in the first data row option to read the column
names from the first row of data from the flat file. Click the Columns page in the left pane to
confirm that the file is delimited by commas.

4. Click Next to configure the destination. Point to any server and database you want.

5. On the Select Source Tables and Views screen, click Edit Mappings to go to the Column
Mappings page. Change the StateAbbr to a size of 2 and the Population column to an int
data type, as shown in Figure 1-4. Normally, you would evaluate each column to use the
proper data length in an effort to save space.

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

LESSON1 MOVING DATA WITH THE IMPORT AND EXPORT WIZARD | 15

4 5QL Server Import and Export Wizard
Choose a Data Source
Select the source from which to copy data. \
i
Data source: |@ Flat File Source |
General Select a file and specify the file properties and the file format.
Columns Fil . -
fr— ile name: |C:\Projects\CH01'ZpCode Exract csv Browse...
3 Prewi .
B B Locale [Engih (Unted States) ~| I Unicode
Code page: |1252 (ANSI - Latin 1) Ea|
Rt | Delimited |
Text gualifier: |<hone>
Header row delimiter d
Header rows to skip: Iﬂ ﬁ
¥ Column names in the first data row
Help | <Back [Hed> Cancel |
V.

FIGURE 1-3

5 Column Mappings

Source: C\Projects\CHO1'\ZipCodeExtract csv
Destination: [dbe] [ZipCodeExtract]

% Create destination table Edit SQL..

 Del ™ Drop and re-create destination table

€ Apper I Enable identity insert
Mappings
Source | Destination I Type | Mullable | Size I Precision I Scale I
StateFIPCode StateFIPCode varchar 50
ZipCode ZipCode varchar 50
StateAbbr StateAbbr varchar 2
City City varchar 50
Longitude Longitude varchar 50
Latituds Latitude warchar 50
Population Population int
AlocationPerce... AllocationPerce... wvarchar I 50
Source column Pepulation string [DT_STR] (50)

FIGURE 1-4

16 | SECTION1 INSTALLATION AND GETTING STARTED

Click OK to leave the Column Mappings page and then click Next to review any data type
mapping warnings. The Data Mapping Warnings screen shows you where you have any
columns for which the data types don’t match. You can ignore those warnings for the time
being and click Next a few times to execute the package. If you are successful, you should
see a total of 29,470 rows. You will see a truncation warning, which is a warning that you
receive when you try to insert a 50-character string into a smaller sized column like a var-
char(2), that you can also ignore.

Please select Lesson 1 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Installing SQL Server
Integration Services

This book requires that you have SQL Server Data Tools (SSDT) and the SQL Server
Integration Services (SSIS) service installed. To develop SSIS, you cannot use SQL Express.
The SSIS run time to run packages does ship with all editions, but on some of the lower edi-
tions that run time may not work with all SSIS components.

On the subject of editions of SQL Server, you have a decision to make as to which edition you
want to install: Standard Edition, Business Intelligence (BI), or Enterprise Edition. Developer
Edition is also available. It contains all the components of Enterprise Edition at a tiny fraction
of the cost but is licensed for development only. Enterprise Edition gives you a few additional
SSIS components that you may be interested in for SQL Server 2012:

> Data Mining components

Fuzzy Lookup and Group transforms
Dimension and Partition Processing destinations
Term Extraction and Lookup transforms

Higher performance components for ODBC, Oracle, and SAP

Y Y Y VY Y

Change Data Capture components

Additionally, the Enterprise Edition of SQL Server gives you database engine features that
complement or may affect SSIS. One such feature is the Change Data Capture (CDC) feature,
which enables you to easily synchronize two systems by querying SQL Server 2012 for only
the changes that have occurred after a given date or time. Data compression is another key
feature that may speed up your database reads and reduce your disk cost by 60-75 percent.

18 | SECTION1 INSTALLATION AND GETTING STARTED

Oftentimes, if you care about the Enterprise Edition features enough, but don’t need Enterprise
Edition for the database engine, you might decide to license an SSIS server with just the minimum
number of client access licenses (CALs) instead of doing a per-core license. This approach reduces
your SQL Server licensing cost sizably, but you now have new hardware cost to add.

When you’re installing SQL Server, you need to ensure that the SQL Server Data Tools, Integration
Services, and Management Tools - Complete check boxes are selected in the Feature Selection screen
(shown in Figure 2-1). The Integration Services option installs the run time and service necessary

to run the packages, and is likely all you would need on a production server. The SQL Server Data
Tools option installs the designer components, and the Management Tools option installs the DBA
tools necessary to manage the packages later.

b1 SQL Server 2012 Setup = I:'-

Feature Selection

Select the Developer features to install.

Setup Support Rules Features: Feature description:

Setup Role [] Reporting Services - Mative # || The configuration and operation of each A
Feature Selection Shared Features instance feature of a SOL Server instance is
Installation Rules ["] Reparting Services - SharePoint isolated from other SQL Server instances.

SQL Server instances can operate side-by-

[] Reporting Services Add-in for SharePoint Produ side on the same computer.

[[] Data Quality Client
SOL Server Data Tocls

Disk Space Requirements

Server Configuration

Error Reporting ["] Client Tools Connectivity -
Installation Configuration Rules Integration Services = || Prerequisites for selected features:
Ready to Install [[] Client Tools Backwards Compatibility
M — [[] Client Tools SDK Already installed: ~
nstallation Progress -
5 [] Documentation Components Microsoft NET Framework 4.0
Complete Management Tools - Basic Windows PowerShell 2.0 =
Management Tools - Complete + Microsoft .NET Framework 3.5
[] Distributed Replay Controller T_D be installed from media:
[] Distributed Replay Client ~ i Microsoft Visual Studio 2010 Shell ~
< 1] > < n >
Select All Unselect All
Shared feature directory: C:\Program Files\Microsoft SQL Servery

Shared feature directory (x86): |C:\Program Files (xB6)\Microsoft SOL Server\

FIGURE 2-1

After you complete the Feature Selection screen, SQL Server installs all the necessary components
without any wizard configuration required for SSIS. Once the installation is complete, open the con-
figuration file located at C:\Program Files\Microsoft SQL Server\110\DTS\Binn\MsDtsSrvr.ini.xml.

@ »

This file configures the SSIS service. Change the <serverName> node where it currently says “.” to

LESSON 2 INSTALLING SQL SERVER INTEGRATION SERVICES | 19

your SQL Server’s instance name where you want to store your packages. You can also change the
directory from . .\Packages to the directory of your choice.

<?xml version="1.0" encoding="utf-8"?>

<DtsServiceConfiguration xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<StopExecutingPackagesOnShutdown>true</StopExecutingPackagesOnShutdown>

<TopLevelFolders>
<Folder xsi:type="SglServerFolder">
<Name>MSDB< /Name>
<ServerName>.</ServerName>
</Folder>

<Folder xsi:type="FileSystemFolder">
<Name>File System</Name>
<StorePath>..\Packages</StorePath>
</Folder>

</TopLevelFolders>
</DtsServiceConfiguration>

Once you modify this file, you need to restart the SSIS service from the SQL Server Configuration
Manager under the SQL Server 2012 node in the Start menu or the Services applet.

Please select Lesson 2 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.w3.org/2001/XMLSchema%E2%80%9D
http://www.w3.org/2001/XMLSchema-instance%E2%80%9D
http://www.wrox.com/go/ssis2012video

Installing the Sample Databases

You will need two sample databases for the future tutorials in this book and for many tutori-
als on the webj; both are provided by Microsoft. The AdventureWorks2012 database is an
example database that simulates a bike retailer. It contains HR, accounting, and sales data for
online transactions and store sales. The AdventureWorksDW2012 database is an example data
warehouse for the same bike reseller.

The two sample databases are not installed by default with SQL Server 2012. You can down-
load the sample databases used for this book at the Wrox website at www.wrox.com/go/
SQLSever20l2DataSets.

To use the AdventureWorks2012 database, you must enable the Full Text Search feature and
enable the FileStream feature in SQL Server 2012. In addition, the SQL Server Full Text ser-
vice must be running. You can still install the AdventureWorksDW2012 database without
these, but not the AdventureWorks2012 database.

To install the Full Text Search feature, you must go back to the SQL Server Installation
Center under SQL Server 2012 = Configuration Tools = SQL Server Installation Center.
Walk through the installation wizard again as if you were doing a new installation, but when
you get to the Feature Selection screen, ensure Full Text Search and Semantic Extractions for
Search are selected.

The FileStream feature enables you to store files quickly and easily on the filesystem of the
server, but they are treated like columns in a table. When you back up the database, it also
backs up all files to which the table may refer. The feature is initially enabled in the installa-
tion wizard, but you can also enable it after the installation in the SQL Server Configuration
Manager under SQL Server 2012 => Configuration Tools. Once the Configuration Manager is
open, double-click the SQL Server database instance on which you want to enable the feature.
This opens up the properties of the service, where you can go to the FILESTREAM tab to
enable the feature, as shown in Figure 3-1.

http://www.wrox.com/go/

22 | SECTION1 INSTALLATION AND GETTING STARTED

SQL Server (MSSQLSERVER) Properties ===
‘ AlwaysOn High Availability I Startup Parameters | Advanced |
\ LogOn I Service | FILESTREAM

Enable FILESTREAM for Transact-S0L access

Enable FILESTREAM for file /O access

Windows share name: MSSQLSERVER

[Allow remote dients access to FILESTREAM data

[OK J[Cancel H Apply ” Help

FIGURE 3-1

Enabling FileStream requires that you restart the SQL Server instance.

To install the sample databases, download the AdventureWorks2012 and AdventureWorksDW2012
(data warehouse) MDF data files from the Wrox website and attach them to your server using the
CREATE DATABASE command, as shown in the following code:

CREATE DATABASE AdventureWorksDW2012 ON (FILENAME =
'C:\Data\AdventureWorksDW2012_Data.mdf') FOR ATTACH_REBUILD_LOG

TRYIT

In this Try It, you download and install the necessary example databases to work through the rest of
the lessons in this book.

Lesson Requirements
To do the examples in the book, you’ll need at least 300 MB of hard drive space and the SQL Server
2012 database engine installed.

Hints

> Navigate to www.wrox.com/go/SQLSever2012DataSets to download the sample databases
and make sure the Full Text service is installed and running prior to the installation.

http://www.wrox.com/go/SQLSever2012DataSets

LESSON 3 INSTALLING THE SAMPLE DATABASES | 23

Step-by-Step

1. Browse to www.wrox.com/go/SQLSever2012DataSets in the browser of your choice.
2. Download the two MDF files for AdventureWorks2012 and AdventureWorksDW2012.
3. Run the following script in Management Studio to install the two databases, substituting
your own path:
CREATE DATABASE AdventureWorks2012 ON (FILENAME = '{drive}:\{file
path}\AdventureWorks2012_Data.mdf') FOR ATTACH_REBUILD_LOG;

CREATE DATABASE AdventureWorksDW2012 ON (FILENAME = '<drive>:\<file
path>\AdventureWorksDW2012_Data.mdf') FOR ATTACH_REBUILD_LOG

WARNING Prior to installation, open the SQL Server Configuration Manager to
start the SQL Full-text Filter Daemon Launcher for your instance. Failure to do
this will cause the installation to fail.

4. The sample databases are now installed and ready to use in Management Studio and for the
rest of the examples.

Please select Lesson 3 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/SQLSever2012DataSets
http://www.wrox.com/go/ssis2012video

Creating a Solution and Project

You cannot create an SSIS package in SQL Server Data Tools (SSDT) without first having a
solution and project. Additionally, for execution of the package in debug mode, which you use
when troubleshooting, your package must be in a project and solution. Projects and solutions
are containers for your packages that help you keep every component together and make you a
more efficient SSIS developer.

SSDT is the program in which you’re going to develop your SSIS packages. In SQL Server
2012, SSDT is a Visual Studio 2010 shell. You can either open SSDT by itself under the SQL
Server 2012 program group or open it by opening the full Visual Studio 2012 program.

An SSIS project is a container of one or more packages and other SSIS components. All the
Visual Studio suite of products use the project construct to hold their files. For example,
Reporting Services uses projects to hold its reports, and VB.NET uses projects to hold its
VB.NET class files. In general, you want to align an SSIS project with a business project
you’re working on. For example, you may have an SSIS project called “Data warehouse ETL.”

Projects mean much more in SQL Server 2012 than they did in SQL Server 2005 and 2008.
This is because you now deploy projects, not packages, to production if your project is using
the project deployment model. If you want to use the legacy deployment model where you
deploy a package at a time, you will use the package deployment model. The new project
deployment model is where many of the new SQL Server 2012 features that are discussed later
in this book are used.

A solution is a container of one or more projects. Solutions enable many disparate types of
projects to live under one container. For example, you may have a solution called “Enterprise
Data Warehouse” with a SQL Server Reporting Services (SSRS) project called “Data ware-
house reports,” another project for SSIS called “Data warehouse ETL,” and a final one for C#
called “SharePoint code.” All of those projects could live under one roof, so if a report devel-
oper makes a change in his SSRS project, the SSIS developer is aware of that change.

26 | SECTION1 INSTALLATION AND GETTING STARTED

When you create a project in SSDT, a solution is automatically created at the same time. To create a
project, you can open SSDT and select File &> New > Project. As you can see in Figure 4-1, the solu-
tion name is “Enterprise Data Warehouse” and its project is called “Datawarehouse Load.”

MNew Project @
[.NET Framework 4 - | sort by: | Default (][search Instalted Templat 0|
Installed Templates

. . Analysis Services Multi... Business Intelligence
4 Business Intelligence
Analysis Services

Integration Services Integration Services Pro...Business Intelligence

Reporting Services

Type: BusinessIntelligence

This project may be used for building high
performance data integration and
workflow selutions, including extraction,
transformation, and loading (ETL)
operations for data warehousing.

Visual C# Report Server Project W...Business Intelligence
Other Languages
Other Project Types Report Server Project Business Intelligence

Database
Modeling Projects
Test Projects

Online Templates

Analysis Services Tabul... Business Intelligence

Name: Datawarehouse Load

Location: c\projectsich04'

- Browse...

Create directory for solution
["] Add to source contral

Solution name: Enterprise Data Warehouse

FIGURE 4-1

At first, the solution will not appear in your Solution Explorer because you have only a single proj-
ect. Once you add a second project, it will appear. You can add subsequent projects into the same
solution by going back to File &> New > Project and selecting Add to Solution from the Solution
drop-down box (which is shown in Figure 4-3 in the “Step-by-Step” later in this chapter). When
you create your first project, you’ll notice in the Solution Explorer, which shows you all the projects
and files, that there appears to be no solution. This is because solutions are hidden from you when
you have only a single project in the solution. You can choose to always see the solution file in the
Solution Explorer by going to Tools & Options and checking the Always show solution option in the
Projects and Solutions page (shown in Figure 4-2).

TRY IT

In this Try It, you learn how to create your first solution and project, which you’ll be using through-
out the rest of the book.

You can download examples of completed package, project, and solution files for this lesson from
the book’s website at www.wrox. com.

http://www.wrox.com

LESSON 4 CREATING A SOLUTION AND PROJECT | 27

Options @

AutoRecover o~ Projects location:

Documents ChAUsers\Administrator\Documents\Visual Studio 2010\Projects E]
Extension Manager
Find and Replace
Fonts and Colors
lmporiced Export Settings User item templates location:

[ndemationalsething Ch\Users\Administrator\Documents\Visual Studic 2010\ Templates\ftemTemj E]

User project templates location:
ChUsers\Administrator\Documents\Visual Studio 2010\ Templates\ProjectTe E]

n

Keyboard
Startup Always show Error List if build finishes with errors
Task List B [Track Active Item in Solution Explorer

= _Web Br:v;selr - Show advanced build configurations

ct: it
< (riees andaotions Always show solution

General
Build and Run Save new projects when created
VE Defaults Warn user when the project location is not trusted
VC++ Directories [£] Show Output window when build starts
VC++ Project Settings Prompt for symbolic renaming when renaming files

Web Projects
> Source Control

[0K J l Cancel

FIGURE 4-2

Lesson Requirements

To successfully complete this lesson, you need to create a solution called Personal Trainer Solution
and a project called Personal Trainer SSIS Project that will be used throughout this book.

Hints

> To create the project, open SQL Server Data Tools and select File &> New = Project.

Step-by-Step

1. Open SSDT from the SQL Server 2012 program group.
Click File &> New > Project.

w N

Select Business Intelligence Projects for the project type.

P

Select Integration Services Project for the template.

o

Type Personal Trainer SSIS Project for the Name property, as shown in Figure 4-3.

o

Type C:\projects\ for the Location property.

N

Type Personal Trainer Solution for the Solution Name property.

28 | SECTION1 INSTALLATION AND GETTING STARTED

Mew Project

[.NET Framework 4 ~ | Sort by: | Defautt \ Search Installed Templat 2 |

Installed Templates
Type: Business Intelligence

Analysis Services Multi... Business Intelligence
4 Business Intelligence This project may be used for building high
perfermance data integration and
waorkflow solutions, including extraction,
transformation, and loading (ETL)

operations for data warehousing.

Analysis Services

Integration Services Integration Services Pro...Business Intelligence

Reperting Services

Visual C# Report Server Project W...Business Intelligence
Other Languages

Other Project Types Report Server Project Business Intelligence
Database

Modeling Projects E?:F’" Analysis Services Tabul... Business Intelligence
Test Projects h

npla

MName: Personal Trainer 5515 Project
Location: c\projectsy| = Brows:
Solution: [Create new solution -]
Solution name: Personal Trainer Solution Create directory for solution
"] Add to source control
FIGURE 4-3

Please select Lesson 4 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Exploring SQL Server Data Tools

SQL Server Data Tools (SSDT) is a Visual Studio 2010 tool that helps you create, debug, and
execute SSIS packages. When you’re a business intelligence developer, it can also help you cre-
ate reports in SQL Server Reporting Services (SSRS) or design cubes in SQL Server Analysis
Services (SSAS). You’ll be using SSDT extensively throughout this book, so it’s important that
in this lesson, you learn everything you need to know to make your life easier in this critical
environment.

NOTE Because this is a more exploratory, introductory lesson, it doesn’t have
a task-based tutorial as the other lessons have.

You can open SSDT through the SQL Server 2012 program group. Depending on your PC,
SSDT may take some time to open.

NOTE Omne hint that you can use to reduce your load time is to eliminate the
splash screen. To eliminate the SSDT splash screen and reduce your load time
by a few seconds each time, right-click the SSDT shortcut and select Properties.
Next, add the -NOSPLASH switch at the end of the shortcut as shown here:

"C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\
devenv.exe" -NOSPLASH

THE SOLUTION EXPLORER

Once you create your project from Lesson 4, you’re ready to begin exploration of the environ-
ment. The most important pane, the Solution Explorer, is on the right. The Solution Explorer is
where you can find all of your created SQL Server Integration Services (SSIS) packages, shared
connection managers, and parameters. As discussed in Lesson 4, a solution is a container that

30 | SECTION1 INSTALLATION AND GETTING STARTED

holds a series of projects. Each project holds a myriad of objects for whatever type of project you’re
working in. For SSIS, it holds your packages, shared parameters, and shared connections (the latter
two are available only in the project deployment model, which is discussed in this lesson shortly in

the “Deployment Models” section). Once you create a solution, you can store many projects inside of
it. For example, you might have a solution that has your VB.NET application and all the SSIS pack-
ages that support that application. In this case, you would probably have two projects: one for VB and
another for SSIS.

After creating a new project, your Solution Explorer window contains Sti“E‘p""E’ 2
a series of empty folders anq a single package in the Packages fplder.) soltion Enterprise ata Warchouse {
Figure 5-1 shows you a partially filled Solution Explorer. In this screen- 4 % Datawarehouse Load
. . . Project.

shot, you see a solution named Enterprise Data Warehouse with one R
project, an Integration Services project called Datawarehouse Load. ¢ [556 Packages

. . Py . 6 ac ﬂgE. 5X
Inside the project, you’ll find the single default package, Package.dtsx. [Miscellancous
If you don’t see the solution name in your Solution Explorer, it’s FIGURE 5-1

because solutions are hidden when you have only a single project. In

this scenario, the solution won’t appear by default. To always show the solution, you can select
Tools = Options to open the Visual Studio options pane. Under Projects and Solutions, check
Always show solution, as shown in Figure 5-2.

Opions L2 |=d
Add-in/Macros Security - Projects location:
AutoRecover || CvUsers\Administrator\Documents\Visual Studio 2010NProjects B
Documents

User project templates location:

Extension Manager
C:hUsers\Administrator\ Documents\Visual Studio 20100\ Templates\ProjectTe E]

Find and Replace
Fonts and Colors

m

User item templates location:

Impart and Export Settings C\Users\Administrator\Documents\Visual Studie 20104 Templates\ltemTem; B
International Settings

Keyboard Always show Error List if build finishes with errors

Startup | [Track Active Item in Solution Explorer

Task List Show advanced build configurations

\Web Browser Always show solution

4 | Projects and Solutions

General Save new projects when created

Build and Run Warn user when the project location is not trusted
VB Defaults [T Show Output window when build starts
VC++ Directories Prompt for symbalic renaming when renaming files
VC++ Project Settings
Web Proiects i
oK] [Cancel
FIGURE 5-2

If you look into the directory that contains your solution and project files, you can see all the files
that are represented in the Solution Explorer window. Some of the base files you might see will have
the following extensions:

> .dtsx—An SSIS package

» . ds—A shared data source file

LESSON 5 EXPLORING SQL SERVER DATATOOLS | 31

.s1n—A solution file that contains one or more projects
.dtproj—An SSIS project file

.params—A shared parameter file

Y Y VY Y

.conmgr—A shared connection manager

If you copy any file that does not match the .params, .conmgr, or .dtsx extension, it is placed in
the Miscellaneous folder. This folder is used to hold any files such as Word documents that describe
the installation of the package or requirements documents. Anything you’d like can go into that
folder, and it can all potentially be checked into a source control system like SourceSafe with the
code.

DEPLOYMENT MODELS

In SQL Server 2012, you have two models for developing and deploying packages: package and
project deployment models.

> The package deployment model used to be the only deployment model that existed in SQL
Server 2005 and 2008 and was where you could deploy only a package at a time to the
server. It also had ways of configuring the packages to change properties like connections
with XML files or tables.

> With the new project deployment model, you can only deploy the entire project of packages,
and packages can be configured by the database administrator (DBA) through parameters.

You can switch back and forth between these models, but the new project deployment model is
much more robust with features. You can switch back and forth between the models by right-click-
ing the project in the Solution Explorer and selecting Convert to Project (or Package) Deployment
Model. You learn much more about this functionality in Lessons 52 and 53.

THE PROPERTIES WINDOW =
Execute SQL Task Task -

The Properties window (shown in Figure 5-3) is where you can =2l
customize almost any item that you have selected. For example, if tz;;':‘zwde E’:’;L‘:':ﬂ;‘:i: i
you select a task in the design pane, you receive a list of properties MaximumErrore 1
to configure, such as the task’s name and what query it’s going to ::::gepath Sith:":;’;; -
use. The view varies widely based on what item you have selected. ParameterBind
Figure 5-3 shows the properties of the Execute SQL Task. You can E::ij:‘;!” estsetType o
also click the white background of the Control Flow tab to see the SqiStatementSo T
package properties in the Properties window. Sometimes, you can SaSetementS Drectnput
see some more advanced properties in the Properties pane than TransactionOpt Supported 3
what the task’s editor user interface provides you. :er:cc:”“"‘”’ O“”WE" |

Name

etting Startec il =57 Properties

FIGURE 5-3

| SECTION1 INSTALLATION AND GETTING STARTED

THE TOOLBOX

The Toolbox contains all the items that you can use in the particular
tab’s design pane at any given point in time. For example, the Control
Flow tab has a list of tasks and containers (a partial list is shown

in Figure 5-4). This list may grow based on what custom tasks are
installed. The list is completely different when you’re in a different
tab, such as the Data Flow tab. Many of the core tasks you see in
Figure 5-4 are covered in Section 2 of this book in much more detail.

The Toolbox is organized into sections such as Common,
Containers, and Other Tasks. These tabs can be collapsed and
expanded for usability. As you use the Toolbox, you may want to
customize your view by moving items to your favorites by right-
clicking a given task or container and selecting Add to Favorites.
Also, after you install a custom component, it automatically shows
up in your Toolbox. When you select a component like a task from
the Toolbox, notice that below the Toolbox pane, an interactive help
section appears that enables you to see samples and a short descrip-
tion of the component.

5515 Toolbox

4 Favorites _
(= Data Flow Task
2] Data Profiling Task
4 Common
@) Analysis Services Processing Task
|0 Bulk Insert Task
L?_, Execute Package Task
[Execute Process Task
fe Expression Task
,_]] File System Task
@ FTP Task
T Script Task
[=7 Send Mail Task
@ Web Service Task
[XML Task

m

4 Containers
lﬂ Far Loop Cantainer =
H7 Foreach Loop Container
m Sequence Container

—

v | Execute SQL Task L]

Executes SQL statements or stored
procedures in a relational database. For
le_truncate 3 table hefore stadting a

FIGURE 5-4

NOTE At¢ some point, you may accidentally close a window like the Properties
window. If this happens to you, you can bring that window back through the
View menu. You can also click the pushpin on any particular window to hide the
window because real estate is at a premium when you begin development of SSIS.

THE SSDT DESIGN ENVIRONMENT

The SSDT environment contains two key tabs for designing packages: the Control Flow and Data
Flow tabs. Each of these handles different parts of your packages. The Control Flow tab controls
the execution of the package and the Data Flow tab handles the movement of data.

The Control Flow tab orchestrates the execution of your package, dictating that one task, such as an
FTP Task, should execute ahead of another; for example, an Execute SQL Task. Inside the tab are
tasks and containers you can drag over from the Toolbox onto the design pane. Each of those tasks
has its own user interface that you can use to configure the task, and you can access it by double-

clicking the component.

Each package has only a single Control Flow, but can have many Data Flows. The user interface for
the Data Flow task is quite different. Its user interface is the Data Flow tab. In the Data Flow tab,
you can configure one or more Data Flow tasks by dragging over sources, transforms, and destina-
tions onto the design pane. Each Control Flow can have any number of Data Flow tasks, each of
which results in a new item in the Data Flow tab’s drop-down list of tasks. The Data Flow is essen-
tially where you’re going to configure the movement of your data from nearly any source to nearly

any destination.

LESSON 5 EXPLORING SQL SERVER DATATOOLS | 33

When you execute a package by right-clicking it in the Solution Explorer and selecting Execute
Package, you enter debug mode. Notice a new tab called Progress immediately opens. The Progress
tab is where you go to debug when a package has a problem. You can also go to the Output win-
dow below to see a textual view of the same Progress tab. Once you stop debug mode by clicking
the Stop button or by going to Debug = Stop Debugging, the Progress tab changes to an Execution
Results tab, which shows you the last run of a package. Each of those tabs shows you more than the
Output window at the bottom, which shows you only critical issues.

One other handy thing you can do from within SSDT is open Server Explorer. Server Explorer
enables you to create a connection to a SQL Server database that you can manage just as you would
in Management Studio. You can do this by selecting Tools = Connect to Database. Type in the cre-
dentials for the database, and then you’re ready to run queries against the database, create stored
procedures, or redesign tables, to name just a few things you can do.

Now that you’ve taken a look at the SSDT environment, Lesson 6 covers using the environment to
create your first package.

Please select Lesson S on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Creating Your First Package

Creating packages in SQL Server Integration Services (SSIS) is a bit like LEGO-block pro-
gramming. You drag various tasks over, configure the tasks, chain them together, and then
voila, execute. Well, it’s not quite that easy, but you’ll find it much easier than writing any
program. In this lesson, you learn how to create your first SSIS package. Granted, the package
does very little here, but it shows you many of the concepts that will be critical throughout
the rest of the book. Many of the concepts may not make complete sense yet when it comes to
configuring various components, but no worries—the concepts are deeply covered throughout
the rest of the book.

To create your first package, you need an SSIS project. Creating a project is covered extensively
in Lesson 4. After you create your first project, a package called Package.dtsx is automati-
cally created. If you want to rename this package, simply right-click the package in Solution
Explorer and select Rename, leaving the .dtsx extension.

To create a new package, you can also right-click SSIS Packages in the Solution Explorer and
select New Package. This action creates a new package that you will want to rename as soon
as it’s created because it, too, will be called Package.dtsx or some variation of it. The final
result will resemble Figure 6-1, which shows a partially complete SSIS project.

SECTION 1

INSTALLATION AND GETTING STARTED

©0 Personal Trainer SSIS Selution - Microsoft Visual Studio (Administrator) Felfe=s
File Edit View Project Build Debug Team BlxPress SQL Data SSIS Tools Architecture Test Analyze Window Help

il (G @ 6 a9 - - Z -5 b [Development ~J| 5 | JRFHEHEBERD-

SSIS Toolbox

4 Common
i) Analysis Services Processing Task
| Bulk Insert Task
=¥, Execute Package Task
[Execute Process Task
Je Expression Task
30 File System Task
@ FTP Task
5 Seript Task
(=9 Send Mail Task
@ Web Service Task
B XML Task

n

4 Containers

ot

Packagel.dtsx [Design] X n7.dtsx [Design]

%,, Con... |64 Dat... | @ Par... | F Eve.. |fg Pac.. [q [;l w | B

- 4%

-4 Selution 'Perscnal Trainer SSIS Sol ~
4 2 Personal Trainer SSIS Project
& Project.params
[Connection Managers
4 [SSIS Packages
4 Lessonb.dtsx
1 Lesson7.dtsx

~ | Foreach Loop Container L]
Repeats tasks in a package. For example,
load each file in a directory or send an e=mail
to each address in a recordset. Looping is
controlled by set iterators, similar to a..

Find Samples
2 5315 Toolbox

An error has occurred while loading
Getting Started information. The remate
name could not be resolved:

‘go.microsoft.com’
Connection Managers

Right-click here to add a new connection manager to the SSIS package.

0 Getting Storted (5515) [T

FIGURE 6-1

CREATING AND USING CONNECTION MANAGERS

TYPE OF CONNECTION

Database

File

Excel

Internet Connection

To design a package, you want to first create connections, which are called connection managers
in SSIS. A connection manager is a connection that can be leveraged and consumed once or many
times in a package. To create a connection manager, right-click in the Connection Manager pane
at the bottom of the screen in SSDT and select New <type of connection>. Any connection that
you would use in SSIS, whether to a file or a database, will be stored as a connection manager here.
Some of those common items would include the connections in the following table.

CONNECTION MANAGER

OLE DB Connection Manager for Oracle, SQL Server, DB2.ADO.NET and
ODBC Connection Manager for ODBC types of connections and in some
cases OLE DB Data Sources.

Flat File Connection Manager when you want to load the file using a Data
Flow Task. There is also an additional connection manager called the File
Connection Manager that you can use if all you want to do is rename,
delete, or perform some other type of file operation.

Excel Connection Manager.

SMTP Connection Manager for mail servers.
FTP Connection Manager for FTP servers.

HTTP Connection Manager for websites or web services.

LESSON 6 CREATING YOUR FIRST PACKAGE | 37

You can access some of the connections by right-clicking in the Connection Manager pane and selecting
New Connection. This brings up a list of all the available connection managers (shown in Figure 6-2),
including third-party ones that you have installed. The handy thing about connection managers is that
they’re externally available to a DBA at run time. In other words, when a DBA goes to schedule this
package, he or she can point the connection to a new database or file on-the-fly for that one job.

3 Add SSIS Connection Manager o (@][=]
Select the type of cannection manager to add ta the package.
Connection manager type:
Type Description File Na... FileV *
ADO Connection manager for ADO connections C\Pro... 2011.
ADOQ.NET Cennection manager for ADQ.NET connections C:\Pro.., 2011,
CACHE Connection manager for cache C\Pro... 2011,
DQs Connecticn manager for DQS server Micros... 11.0.(
EXCEL Connecticn manager for Excel files C\Pro... 2011, _
FILE Connection manager for files C\Pro... 2011,
FLATFILE Connection manager for flat files CM\Pro... 2011,
FTP Cennection manager for FTP connections C\Pro... 2011,
HTTP Connection manager for HTTP connections C\Pro... 2011,
MSMQ Connecticn manager for the Message Queuet.. Micros.. 11.04
MSOLAPL00 Connection manager for Analysis Services con... C\Pro... 2011,
MULTIFILE Connecticn manager for multiple files CM\Pro... 2011,
MULTIFLATFILE ~ Connection manager for multiple flat files CM\Pro... 2011,
QDBC Cennection manager for ODBC connections C\Pro.., 2011,
OLEDB Connection manager for OLE DB connections C\Pro... 2011. 7
4 I,] k
Add... | [Cancel
FIGURE 6-2

Once you create an OLE DB connection, it is available to you anywhere in the package from any
component that can use the connection. If you’d like, you can create a connection that can be lev-
eraged from multiple packages by creating a project connection manager. To do this, right-click
Connection Managers in the Solution Explorer and select New Connection Manager. These data
sources can be leveraged from multiple packages in the project and can be changed by the DBA later.
By creating a connection here, you type the password one time for your connection, and if you ever
change any type of connection information, it changes across any package using that connection.
No negative consequences result from doing this, so generally speaking, it’s a great design-time prac-
tice to use project connection managers if you see yourself using the connection a few times.

NOTE Atf any time, you can convert a regular connection manager to a proj-
ect connection manager by right-clicking the connection in the Connection
Manager pane.

USING AND CONFIGURING TASKS

Your package would be nothing without tasks. Tasks in the Control Flow tab orchestrate the work
that you want to do in the package. For example, one task may copy a file over from a different
server while another task may load the file into a database. To use a task, simply drag it onto the

V413HAV
Typewritten Text

V413HAV
Typewritten Text

V413HAV
Typewritten Text
V413HAV

38 | SECTION1 INSTALLATION AND GETTING STARTED

design pane in the Control Flow tab from the Toolbox. A common task that you’ll use in this book
is the Script Task because it requires no configuration, which makes it a great training tool.

Until most tasks are configured by double-clicking the task, you may see a yel-

low warning or red error indicator on the task. After you configure the task, you et
can link it to other tasks by using precedence constraints. Once you click the —

task, you’ll notice a green arrow (the precedence constraint) pointing down from !
the task, as shown in Figure 6-3. This precedence constraint controls the execu- FIGURE 6-3

tion order of the various tasks in your package, and you can use it by dragging
the green arrow to the next task that you want to chain together. You read more
about most of the core tasks and the topic of precedence constraints in Section 2 of this book.

You should never keep the default name of your tasks. Instead, you should rename them to some-
thing that you can recognize in the log later. We prefer to name all of our tasks with some two- or
three-digit qualifier, such as SCR for a Script Task, and then the purpose of the task such as SCR

- Encrypt File. This name then shows up in your logs when a problem occurs and can also help you
self-document your package.

EXPLORING PACKAGE ENCRYPTION

A package is essentially an XML file behind the scenes. To prove this, you can right-click any pack-
age and select View Code to see the package’s XML. As you can imagine, though, storing secure
information inside an XML file could create some security problems. Luckily, Microsoft already
thought of that problem and has a solution—encrypting your packages.

Microsoft encrypts your package by default with your Windows user key, which is a key that pro-
tects your Windows user credentials on your PC. You can look at the property that encrypts your
package by going to the Properties pane and looking at the ProtectionLevel package-level property.
This property is set to EncryptSensitiveWithUserKey by default, which means that all the user-
names, passwords, or any other sensitive data are locked down with your credentials. If you were
to pass the package to another user, the package’s encrypted data would not be visible, and the user
would have to retype the secure information, such as the login information.

Another option is to change the property to EncryptSensitiveWithPassword, which locks down the
package with a password instead. You can also use EncryptAllWithPassword (or UserKey). This prop-
erty value locks down the entire package to where no one can open it without a proper password.

WARNING This property is usually one of the top reasons why packages fail in
production. For example, if your package has sensitive information inside of it
to connect to a database, the package would potentially fail when you ran the
job because it was running under the SQL Server Agent’s (SOL Server’s sched-
uler) service account. You can also avoid this problem by setting the property
to EncryptAllWithPassword and simply pass in the password when running the
package or scheduling it.

LESSON 6 CREATING YOUR FIRST PACKAGE | 39

EXECUTING PACKAGES

Once your package is ready to execute, you can run it in debug mode by right-clicking it in Solution
Explorer and selecting Execute Package. By running the package in debug mode, you have enhanced
logging views and breakpoints available to you to determine why your package is not working.
While in debug mode, however, you will not be able to sizably change the package. To stop debug
mode, click the Stop button or click Debug = Stop Debugging.

TRY IT

In this Try It, you learn how to create your first basic package that will do very little other than
demonstrate some of the SSIS functionality.

You can find the complete package (Lesson6.dtsx) as part of the download for this lesson on the
companion website for this book at www.wrox. com.

Lesson Requirements

To create your first package, you can reuse the project from Lesson 4 or create a brand new project.
Once created, you’ll notice that one such package in your project is Package.dtsx. Rename or create
a new package called Lesson6.dtsx that has two Script Tasks in it that are connected. One Script
Task should be named Step 1 and the other Step 2. These two tasks will do nothing at all. Create a
connection manager that points to AdventureWorks2012 and create a password on the package of
your choosing that will always pop up when you open the package and execute it.

Hints
> Create a new package by right-clicking the word Packages in Solution Explorer in SSDT.

> Drag over the two Script Tasks and connect them together using the green precedence con-
straint coming out of the task.

Step-by-Step

1. Create a new package in a new solution or the existing solution you created in Lesson 4 by
right-clicking Packages in Solution Explorer and selecting New Package. Rename the pack-
age to Lesson6.dtsx.

2. Drag over two Script Tasks from the Toolbox into the Control Flow design pane.

3. Right-click in each Script Task and select Rename. Rename one task Step 1 and the
other Step 2.

4. Select Step 1 and drag the green line (called a precedence constraint) onto Step 2.

5. Right-click in the Connection Manager pane at the bottom of the screen in SSDT and select
New OLE DB Connection. In the Configure OLE DB Connection Manager dialog box,
you may have to click New to create a new connection, or it may already be cached from a

http://www.wrox.com

40 | SECTION1 INSTALLATION AND GETTING STARTED

previous package. If you had to click New, type the credentials to the AdventureWorks2012
database and click OK twice.

6. Rename the newly created connection manager AdventureWorks2012 (removing the instance
name from the connection manager name).

7. Select the blank white area of the design pane in the Control Flow tab and then go to the
Properties pane. Change the ProtectionLevel property to EncryptAllWithPassword and type
the password of whatever you want above it by selecting the ellipsis button in the Password
property right above ProtectionLevel.

8. Execute the package by right-clicking it in Solution Explorer and selecting Execute Package.
The final package should look like Figure 6-4.

&6 Personal Trainer S515 Solution (Running) - Microsoft Visual Studio (Administrator) =3 Ecnr==
File Edit View Project Build Debug Team BlxPress SQL Data S5SIS Tools Architecture Test
Analyze Window Help

J'J'ﬁa\g‘& @3|~‘?er-;;3':$| P | Development |E§; | | _J|~;>;

Lessoné.dtsx [Design] X_So\ution Explorer - X
B Coo @D, |@Pa |7 Evi % Pa |2 P @

; Solution 'Personal Trainer 5515 Selution
a B Personal Trainer S5IS Project
i Project.params

an [Connection Managers
v 4 [S5IS Packages
2=) Step 1 | Lesson6.dtsx
|5 Miscellaneous
H &7
. A 4
. Step2

Connection Managers

| AdventureWorks2012

¥ Package execution completed with success. Click here to switch to desian ...

< m 2

Call Stack & Immediate Window

FIGURE 6-4

Please select Lesson 6 on the DVD, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Upgrading Packages to
SQL Server 2012

With every new version of Integration Services, there is a path you must follow to upgrade
your existing solution to the latest version of the tool. In SQL Server 2012, you can upgrade
your 2005 or 2008 SSIS package using the SSIS Package Upgrade Wizard.

The SSIS Package Upgrade Wizard fully upgrades your packages, but you should note a few
things upon the completion of the upgrade. The wizard automatically updates connection
strings that use an outdated data provider to the latest drivers that come natively with SQL
Server. This is a nice feature, but if the packages you are upgrading use configurations to
overwrite data source information, as described in Section 7 of this book, you must manu-
ally upgrade the providers in the configurations; this wizard, by default, does not upgrade
configuration values.

The wizard also does not upgrade packages to utilize many of the new features available in
SSIS 2012. For example, it does not upgrade Execute Package Tasks to use the new internal
project reference. Also, after converting, the wizard leaves your packages set to the old pack-
age deployment model. New packages that are developed in SSIS use the project deployment
model, which is detailed in Lesson 8.

You can invoke the SSIS Package Upgrade Wizard by simply opening your packages in
SQL Server Data Tools (SSDT) or you can upgrade your packages manually by running
SSISUpgrade.exe, the SSIS Package Upgrade Wizard executable (Figure 7-1). If you’ve
installed SQL Server in the default paths, you will find the upgrade wizard in the folder
location C:\Program Files\Microsoft SQL Server\110\DTS\Binn\SSISUpgrade.exe.

42 | SECTION1 INSTALLATION AND GETTING STARTED

| $81S Package Upgrade Wizard [l &

Welcome to SSIS Package Upgrade
Wizard

The 5515 Package Upgrade Wizard upgiades packages created using
previous versions of S0L Server tools and object models to SOL Server
2012, The wizard guides wou through the steps to upgrade packages
stared in SGL Server, the file system, or the 5515 package stare.

If you want to analyze your existing packages to obtain a detaled report

of patential issues prior to upgrading the packages, install and run the
Upgrade &dvisor from the SOL Server 2012 distibution media

[] Do not show this starting page again

[Mext » Cancel]

FIGURE 7-1

The SSIS Package Upgrade Wizard walks you through selecting the packages targeted for upgrade
and then enables you to apply a set of rules that the wizard should adhere to during the conversion.

Figure 7-2 shows the Select Package Management Options screen where you can configure the con-
version rules.

f 5515 Package Upgrade Wizard ===

Select Package Management Options
Select the options that the wizard will apply when upgrading the packages.

Update connection strings ta use new provider names
[[] walidate upgraded packages

[] Create new package [0

Continue upgrade process when a package upgrade failz
lgnore configurations

Backup original packages

< Back][Ment > Cancsl

FIGURE 7-2

LESSON 7 UPGRADING PACKAGES TO SQL SERVER 2012 | 43

TRY IT

In this Try It, you convert an existing ETL solution that loads a datamart from SSIS 2008R2 to an
SSIS 2012 solution. The solution includes several packages for loading dimension tables, a fact table,
and a master package that runs all of these in the correct order. After this lesson, you will know
how to use the SSIS Package Upgrade Wizard to upgrade packages to SSIS 2012.

You can download the complete project both prior to conversion (Lesson 7.zip) and following the
conversion (Lesson 7_Completed.zip) from www.wrox. com.

Lesson Requirements

Make the following changes to convert the SSIS project to SSIS 2012. You can also find the fully
converted Lesson 7 project at www.wrox . com:

>

Hints

>

Download the completed SSIS 2008R2 project that will be converted from www.wrox. com,
and then unzip and save it to C:\Projects\SSISPersonalTrainer\.

Use SSDT to convert the packages.

Do not execute the packages after completing the conversion.

Open the solution in SSDT and use the SSIS Package Upgrade Wizard to convert the packages.

Step-by-Step

1.

2.

Open the Datamart Load.sln file in SQL Server Data Tools. This file is in the folder
C:\Projects\SSISPersonalTrainer\Lesson 7, which you downloaded from www . wrox. com.

Open the solution file to bring up the Visual Studio Conversion Wizard. Click Next when
the welcome screen appears.

The Visual Studio wizard creates a backup of your original files by default. On the Choose
Whether To Create a Backup screen, accept the default location for storing a backup of the
original files and then click Next.

Click Finish to complete the Visual Studio upgrade and begin the SSIS Package Upgrade
Wizard.

When the SSIS Package Upgrade Wizard welcome screen appears, click Next.

Select the packages targeted for the upgrade. Figure 7-3 shows all packages selected, but you
can uncheck packages you do not want to upgrade. Also, if any package had been encrypted
with a password, you would enter that password here. These packages do not have a pass-
word, so click Next.

http://www.wrox.com
http://www.wrox.com:
http://www.wrox.com
http://www.wrox.com

44 | SECTION1 INSTALLATION AND GETTING STARTED

2] $5I5 Package Upgrade Wizard - SSI5 = (=]

Select Packages
Select the packages to be upgraded and optionally apply & password.

Existing package name Upgrade package name Password
[W]: DimCaurse
DimCustorner, dtsy DirmCugtomer
Dimlnstructor. dess Dimlrestructor
DimS alesPerson. disy D alesPerson
FactSales. dtsx FactSales
taster disx Master

Paseword: Apply to selection

FIGURE 7-3

7. On the Select Package Management Options screen, use the default conversion rules as
shown in Figure 7-4 and click Next.

] SIS Package Upgrade Wizard - SSIS o (==

Select Package Management Options
Select the options that the wizard will apply when upgrading the packages.

Update connection strings to use new pravider names
[] Walidate upgraded packages

[] Create new package D

Continue upgrade process: when a package upgrade fails

lgnore configurations

FIGURE 7-4

LESSON 7 UPGRADING PACKAGES TO SQL SERVER 2012 | 45

Before the conversion starts, a confirmation screen appears that shows the work the wizard is
about to begin. Click Finish to begin the upgrade.

A successful conversion should match Figure 7-5. Click Close to end the SSIS Package
Upgrade Wizard. You may have to click Close a second time to end the Visual Studio
Conversion Wizard as well. You can now explore the converted packages in the Solution
Explorer, but do not execute them because they reference nonexistent tables.

é’i‘ 5515 Package Upgrade Wizard - S5IS

The Upgrade is Successful
Click. the Back button to select additional packages to be upgraded.

@
o
5}
]
5}
o

‘ @ Success

Details:

Aition

Upagrading package DimCouwrse. dtex
Upgrading package DimCustomer.disx
Uparading package Dimlnstructar.diss
Upgrading package DimS alesPerson. diex
Uparading package FactSales. dtex
Upgrading package Master disx

= (B ==
v
i Y

E Total 0 Eror

B Success 0 ‘waming
Statuz heszage
Success
Success
Success
Success
Success
Success

FIGURE 7-5

Please select Lesson 7 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Upgrading to the Project
Deployment Model

In SSIS 2012, the project deployment model has become the new standard for how packages
are created, configured, and deployed. Any new packages that are developed are automatically
set up to use the project deployment model.

Having this new deployment model means several things for you, especially if you developed
SSIS packages in previous versions of SQL Server. For example, these features, which you may
have used previously, are no longer available in the project deployment model:

> Data sources
> Configurations
> Package deployment
Although the features have been removed in the project deployment model, they are easily

replaced with new tools. Following are some of the major features that are either new or have
been changed in the project deployment model:

> Project connection managers (discussed in Lesson 6)

> Project deployment (discussed in Lesson 53)

> Project parameters (discussed in Lesson 33)

> Environments and environment variables (discussed in Lesson 54)
As you can see, much of what you can do when developing is focused more on the project than
the package, as it was in the past. This may change how you organize your packages because, as
“project deployment” implies, you will now be deploying entire projects and not just individual

packages. So if you put all your packages into a single project, regardless of what part of the
business they affect, they will all have to go into the same deployment path with the new model.

48

SECTION 1 INSTALLATION AND GETTING STARTED

So, if all new packages developed use the project deployment model by default, what about packages
that have been upgraded from SSIS 2005 or 2008? Remember in Lesson 7 you learned that when
you upgrade packages to SSIS 2012, they are converted to use the package deployment model by
default, which is the legacy way of developing packages. If you want to fully upgrade your packages
to use the new deployment model, you must run the Integration Services Project Conversion Wizard.

To launch the Integration Services Project Conversion Wizard, right-click a project in the Solution
Explorer and select Convert to Project Deployment Model, as shown in Figure 8-1. This wizard
walks you through the steps of applying project encryption, updating Execute Package Tasks to use
internal project references, and converting configurations to parameters. The Try It section of this
lesson walks you through the detailed steps of using this wizard.

Solution Explorer X

2]

I ; Solution ‘Datamart Load' [1 project)
ﬁ SSIS (package deploy ment model)
@ [Data Sources

Rebuild Lr QLEDB_SQL_Destination.ds
* OLEDE_3QL Source.ds

la [35IS Packages

Add 3 4 DimCourse.dtsx

| DimCustamer.dtsx

J DimInstructor.dtsx

Debug 3 r;‘ DimSalesPerson, dtsx

[, Factsales.disx

| Master.dtsx

‘ackage Explorer

%] Build

Calculate Code Metrics

Set as StartUp Project

Convert to Project Deploy ment Model

,__‘,E Add Solution to Source Control... [Miscellaneous
% cut Chil+X
1y Paste Chrl+¥
X Remove Del
Rename
Unload Project
L_2| Properties Alt+Enter
FIGURE 8-1

You can also choose to leave your packages in the package deployment model if you prefer the old
method of administrating packages. However, if you decide to stay in the package deployment
model, you will miss the features like executing packages with T-SQL and monitoring package exe-
cution reports. These features are detailed later in this book.

TRY IT

In this Try It, you use the solution you upgraded in the previous lesson and convert it to use the proj-
ect deployment model.

If you did not complete the previous lesson, you can download the files you need from www.wrox
.com. The Lesson 8.zip file contains the completed Try It files from Lesson 7 and the Lesson 8_
Completed.zip file contains the completed files from this lesson.

http://www.wrox�.com
http://www.wrox�.com
http://www.wrox�.com

LESSON 8 UPGRADING TO THE PROJECT DEPLOYMENT MODEL | 49

Lesson Requirements

Make the following changes to convert the solution to a project deployment model. You can also
find the fully converted Lesson 8 project at www.wrox. com:

>

Hints

Use the Integration Services Project Conversion Wizard to convert to the project deployment
model.

Apply project-level encryption.
Update Execute Package Tasks to use internal project references.

Replace configurations with project parameters.

Right-click the SSIS project in the Solution Explorer to launch the Integration Services Project
Conversion Wizard.

Step-by-Step

1.

Open the Datamart Load.sIn file in SQL Server Data Tools. This file is in the folder C:\
Projects\SSISPersonalTrainer\Lesson 8, which you downloaded from www.wrox. com. If you
completed the Try It section of Lesson 7, then you can also use that.

After opening the solution file, open the Solution Explorer and right-click the project named
SSIS. Click Convert to Project Deployment Model to launch the Integration Services Project
Conversion Wizard.

As soon as you select to convert the packages, a prompt appears (Figure 8-2) warning you
that data sources you have in the Solution Explorer will be removed with the project deploy-
ment model. Click OK to continue past the warning.

Microsoft Visual Studio ==
This project contains one or more data sources, The data sources will be removed when the project
l'\ is converted to the project deployment model, After the project conversion, share a single
~ connection across packages to a source of data by using a shared connection manager,
Click ©k to continue the conversion,
.
ﬁ
FIGURE 8-2

The Introduction screen briefs you on the steps the wizard will take to convert your package.
Click Next.

Select the packages you want to convert and apply any password you may have on the pack-
ages, as shown in Figure 8-3. Click Next after reviewing the selection.

http://www.wrox.com:
http://www.wrox.com

50

SECTION 1 INSTALLATION AND GETTING STARTED

' ntegration Services Project Comversion Wizard (== ===
Select Packages

Intraduction Q‘J Help

Select the packages that you want to convert.

Specity Project Properties Select the packages to convert by checking the bowes in the first column. Packages that are not
selected won't be corverted.
Update Execute Package Tazk

Select Configurations Packages:
Create Parameters Package Mame Status Message Password
Canfigure Parameters DimCourse. dtsx Mot lnaded
Review DimCustomer. dtsx Not loaded
Dimlrstructor, dtsx Mot loaded

Perform Conversion
DiimS alesPerson. disy Mot loaded

FactSales.desy Mot loaded

Pagsward: Apply to selection

FIGURE 8-3

You are prompted to add a package protection level. If you’ve developed in SSIS in prior ver-
sions, this may be familiar to you because you could do this on individual packages. Now this
capability has been extended to projects. Change the protection level to DontSaveSensitive,
then click Next. DontSaveSensitive means that any “sensitive” information, usually referring
to connection string passwords, will not be saved for others to open and use.

On the Update Execute Package Task screen, use the default assign reference as shown in
Figure 8-4 and click Next. This updates the Execute Package Task in Master.dtsx to no lon-
ger use a file connection, but instead use an internal project reference.

The next step identifies all configurations that are being used to convert them to parameters.
With the project deployment model, configurations are no longer used and are replaced with
either package or project parameters. Figure 8-5 shows each of my packages has two con-
figuration files being used. These will be replaced with parameters on the next screen. Use the
default selection here and click Next.

LESSON 8 UPGRADING TO THE PROJECT DEPLOYMENT MODEL |

51

,é'.’ Integration Services Project Conversion Wizard
Update Execute Package Task

Intoduction @ Heb
Select Packages N
Select the packages that contain Execute Package tasks to be updated.

Specity Project Propertiss The packages shown below contain Execute Package tasks. It's recommended that vou et the wizard
changs sach of these Executs Packags tasks o access its packags using & projectbased reference
as this simplifies deplopment.

Select Configurations

Tasks:
Create Parameters

Parent Package Task name Original reference Assign reference

. : WFactsdesdss ||

Fiewiew . -
Master disx Load DimensionsiEF... M:\Presentationtdda.. |DimCourse diss

Pt Conversion Master, disx Load Dimensions\EF... M:\Presentationtdda.. [DimCustomer.disk
Master disx Load Dimensions\EF... M:\Fresentationtdda... |Dimlnstuctor dis
Master disx Load Dimensions\EP... M:\Presentationidda.. [Dim§alesPerson... |+

Configur Parameters

FIGURE 8-4

e,_%'l“ Integration Services Project Conversion Wizard
Select Configurations

Introduction @ Help

Select Pack -

leot Pacranss Select the configurations that you want ta convert.
Specify Project Properties Select a st of configurations which modify the properties of packages that can be set extemaly
Parameters wil be generated for these propenties in the nest two steps. IVs recommended that pou let
the nizard 1emove configurations fiom the converted packages st this simplifies development and
administration,

Update Execute Package Task

Create Parameters Configurations:

Configure Parameters Package Type Corfiguration String Status

Review
DimCourse. dsx ConfigFile C:\Projects\$515PersonalT. .
DimCustomer.diss ConfigFile C:\Projects\3S15PersonalT...
DimCustomer.diss ConfigFile C:\Projects\3S15PersonalT...
Diminstiuctordiss ConfigFile C:\Projects\3 S15PersonalT...
Diminstiuctordiss ConfigFile C:\Projects\3 S15PersonalT...
DimSalesPerson.dtss ConfigFile C:\Projects\3S15PersonalT...
DimSalesPerson.dtss ConfigFile C:\Projects\3S15PersonalT...

Prerform Conversion

EERREREERERE DI
FEEREREERERE

FactSales.dtss ConfigFile C:\Projects\$515PersonalT. .
FactSales.dtss ConfigFile C:\Projects\$515PersonalT. .
Master.disx ConfigFile C:\Projects\$515PersonalT. .
Master.disx ConfigFile C:\Projects\$515PersonalT. .

Add Contiguratiorrs

[Riemave configuations from all packages sfter conwersion

FIGURE 8-5

52

SECTION 1 INSTALLATION AND GETTING STARTED

10.

1".

12.

The wizard suggests that two project parameters be created to replace the configuration files.
A project parameter is used because it can be shared across the entire project. A package
parameter would only be available in a single package. In Figure 8-6, it appears as though
several parameters will be created, but keep in mind that these are project parameters and
they can be shared in multiple packages, so only two will be created on the next screen.
Click Next.

,é'i" Integration Services Project Conversion YWizard [F=0[Ecl| 5]

Create Parameters

Intraduction @ Help

Select Packages Select the ties to be ted and the ters that will replace them.

Specify Project Properties

Update Execute Package Task Configuration Properties:

Select Configuralions Package Parameter Name Scope
H OLEDE_SOL_Destination [F’miecl -
DimCorse. diax OLEDE_SOL_Source [Frmecl -
Canfigure Patameters DimCustomer. desx OLEDB_SOL_Destination IPm|Ecl -
Fierview DimCustomer.dtsx OLEDE_SOL_Source IP[UiECI A
Perform Conversion Diimlnstructor, deew OLEDE_SOL_Destination [F’miecl -
Dimlnstructor desx OLEDE_S0L Source [F’miacl -
DimSalesPerson.dtss OLEDE_SOL_Destination [F’miecl -
DimSalesPerzon.dtsx OLEDB_SOL_Source [Prmecl hd
FactSales disx OLEDB_S0L_Destination IPmiEcl -
FactSales.dtsx OLEDE_S0L_Souce [F’ruiacl -
Type: String e

Path: \Package.Connections]OLEDE_SGL_Destination). Properties[ConnectionString]

FIGURE 8-6

Next, the wizard creates the two parameters identified in the previous screen, but you can
make changes to them prior to completing the wizard. Go with the default configuration
(Figure 8-7) and click Next.

The final review screen enables you to evaluate your settings. Click Convert to begin the con-
version process.

Once the conversion completes, your screen should look like Figure 8-8. You will see an
information pop-up telling you that the changes will not be saved until you save your Visual
Studio session. Click OK on the information pop-up and click Close on the Integration
Services Project Conversion Wizard.

LESSON 8 UPGRADING TO THE PROJECT DEPLOYMENT MODEL | 53

[Integration Services Project Conversion Wizard

h Configure Parameters

Intraduction @ Help

Select Pack, - - :
e Fechages Specily the configuration details for these parameters.
Speily Project Properties

Update Execute Package Task Parameters:

Name Scope Walue

Select Configurations

ED L

Create Paramet .
1este PaEmetes OLEDB_SOL Souce Project Data Source=Localhast Iniisl Catalog=Source:Provid... [|

Fieview

Perfoamn Corversion

<Previous | [_Mew>][Conver | [Cancel

FIGURE 8-7

|é'|’ Integration Services Project Conversion Wizard

Results

Intraduction @ Help

Select Pack .
e Taskage Conversion progress and results

Specily Project Propstties

Update Execute Package Task Frogress:
Select Confiouations Action Flesult
T (B Converting peck age DimCourse disx Passed
S () Converting package DimCustomer diss Passed
() Converting package Diminstructor dis Passed
Review (@) Converting pack age DimSalesPerson diss Passed
Perform Conversion (@) Converting pack age FactSales disx Passed
(@) Converting peck age Master disx Passed
(D) Mapping package parameters Passed
B Cresting project Passed

[SaL Server Integration Services =

The project has been to converted to the project deployment model, but the changes wil not be sawed
unti the project is saved in Visual Studio.

o

<Previous | [Mew> | [uBlosen] [concel |

FIGURE 8-8

54 | SECTION1 INSTALLATION AND GETTING STARTED

13.

14.

If you would like to review the changes the wizard made, open the Master.dtsx package and
take a look at the configuration for one of the Execute Package Tasks. Figure 8-9 shows the
ReferenceType property changed to Project Reference.

1+, Execute Package Task Editor o |[E]=S
- The Execute Package task executes another SSIS package, Use this editor to configure how the
- child package runs,
-
General 4 Package
Ref pe Project Reference E
Parameter bindings PackageMameFramPrajectRefen DimCourse.dtsy
Expressions Password PRV
Execute QutOfProcess False
ReferenceType
Select Project Reference for child packages within this project. Select
External Reference for child packages located outside of the project (in t.
[oK] [Cancel I l Help]
FIGURE 8-9

The wizard also created two project parameters called OLEDB_SQL_Destination and
OLEDB_SQL_Source, which replace the previously-used configurations. These param-
eters fully replace the configurations by applying expressions on the connection managers
that reference the project parameter values. Figure 8-10 shows the expression the wizard
applied to the one of the connection managers. Read Lesson 54 to see how these param-
eters can easily be changed from outside the package using environments in the Integration
Services Catalog.

LESSON 8 UPGRADING TO THE PROJECT DEPLOYMENT MODEL | 55

Expression Builder o ===

Specify the expression far the property: ComnectionSting.

[£5 Waniables and Parameters [Mathematical Functions
(23 Sting Functions

£ Date/Time Functions
[NULL Functions

[Type Casts

[Operators

Description:
Expression:
@[$Project:OLEDE_50L_Destination] -
Evaluated value:
Drata Source=localhostInitial Catalog=DestinationProvider=SGLMCLIT0.1 I ntegrated S ecurity=55P1; =

FIGURE 8-10

Please select Lesson 8 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

SECTION 2
Control Flow

» LESSON 9: Using Precedence Constraints

» LESSON 10: Manipulating Files with the File System Task
» LESSON 11: Coding Custom Script Tasks

» LESSON 12: Using the Execute SQL Task

» LESSON 13: Using the Execute Process Task

» LESSON 14: Using the Expression Task

» LESSON 15: Using the Send Mail Task

» LESSON 16: Using the FTP Task

» LESSON 17: Creating a Data Flow

Using Precedence Constraints

When using tasks in SQL Server Integration Services (SSIS), you need a way to connect these

tasks in most cases. Precedence constraints are the connections between the tasks that control
the execution order of each task. After you drag in more than one task in the Control Flow in
SSIS, you can link them together by using these precedence constraints. Click once on a task,
and you see a green arrow pointing down from the task; this is the precedence constraint line

for this task. For example, in Figure 9-1, you can see a Script Task with a
green arrow below the task. This is the precedence constraint arrow to con-
nect to the next task you need to run after this task completes successfully.
These arrows control the order of tasks in a package, and they also control
whether tasks will run at all.

To create an On Success Precedence Constraint, click the green arrow com-
ing out of the task and drag it to the task you want to link to the first task.
In Figure 9-2, you can see the On Success Precedence Constraint between
the two Script Tasks. Only if the first Script Task completes successfully
will the second Script Task run. To delete the constraint, click once on the
constraint line and press Delete on the keyboard, or right-click the con-
straint line and left-click Delete.

The precedence constraint arrows can be different colors to represent differ-
ent commands. They can also have an FX logo to represent an expression, as
shown in Figure 9-3. Placing expressions on precedence constraints gives you
more advanced ways to control the execution of each package. For example,
you could state that you want Script Task 1 to execute only if you’re process-
ing a month-end cycle. Each color represents a status of when a task will
execute:

» Green = On Success
Red = On Failure

>
> Blue = On Completion
>

Script Task

!

FIGURE 9-1

Script Task

|

Script Task
== 1

FIGURE 9-2

Script Task

éld
Script Task
=) 1

FIGURE 9-3

Any color with FX Logo = Expression, or Expression with a Constraint

60

SECTION 2 CONTROL FLOW

The arrows that connect tasks in a Data Flow tab look similar to the precedence constraints in the
Control Flow. These Data Flow connections do not have the same properties as the Control Flow.
Click a source or a transformation in the Data Flow tab, and you see a blue

and red arrow pointing down, as in Figure 9-4 (though in this figure you won’t | i rte oure
be able to see the colors). The blue arrow is the flow of good data, and the red =

arrow is the flow of data with errors. This allows data with errors to be sent to 1 I
another destination separate from the good data. FIGURE 9-4

In the Control Flow, you need to use a different approach. If you’d like the next task to execute only
if the first task has failed, create a precedence constraint as explained previously for the On Success
Constraint. After the constraint is created, double-click the constraint arrow and the Precedence
Constraint Editor opens, as shown in Figure 9-5. This is where you set the conditions that decide if
the next task will execute at run time. The first option you want to change is Value to Failure, which
changes the precedence constraint to an On Failure event.

Precedence Constraint Editor ==

A precedence constraint defines the workflow between two executables, The
precedence constraint can be based on a combination of the execution results and the
evaluation of expressions.

Constraint options

Evaluation operation: [Constramt ']

Value: [Suc:ess V]

Multiple constraints

If the constrained task has multiple constraints, you can choose how the constraints
interoperate to control the execution of the constrained task.

@ Logical AND. All constraints must evaluate to True

(7} Logical OR. One constraint must evaluate to True

FIGURE 9-5

In the Precedence Constraint Editor, you can also set the (T sormt Task (§ SomTk
logical AND/OR for the preceding task. SSIS gives you the

option of adding a logical AND or a logical OR when a | |
task has multiple constraints. In the Precedence Constraint Vo
Editor, you can configure the task to execute only if the G
group of predecessor tasks has completed (AND), or if any
one of the predecessor tasks has completed (OR). A prede-
cessor task is any task with a precedence constraint that is
connected to another task. If a precedence constraint is a i
logical AND, the connecting lines are solid (Figure 9-6). If

a precedence constraint is a logical OR, the lines are dotted | Pooi
(Figure 9-7), which allows the task to perform even if one SawtTask

. —J
or more predecessor tasks have failed.

FIGURE 9-6

Script Task e =

=1

FIGURE 9-7

LESSON 9 USING PRECEDENCE CONSTRAINTS | 61

In the Evaluation Operation drop-down box of the Precedence Constraint Editor, you can edit how
the task will be evaluated. The drop-down menu has four options:

> Constraint—Evaluates the success, failure, or completion of the predecessor task or tasks

> Expression—Evaluates the success of a customized condition that is programmed using an
expression

> Expression and Constraint—Evaluates both the expression and the constraint before moving
to the next task

> Expression or Constraint—Determines if either the expression or the constraint has been suc-
cessfully met before moving to the next task

If you select any constraint with an expression, the expression box requires a valid expression. An SSIS
expression is most often used to evaluate a variable before proceeding to the next task. New in SQL
Server 2012 is the ellipse button next to the expression. This button opens the Expression Builder,
making it easier to write your expressions. Expressions are covered in detail in Lesson 14. One exam-
ple of an SSIS expression is comparing two variables. This is done using the following syntax:

@Variablel == @Variable2

TRY IT

In this Try It, you create four Script Tasks in a package and control when they execute with prece-
dence constraints. After this lesson, you will understand how to use precedence constraints to decide
which tasks will execute in a package.

You can download the completed Lesson9.dtsx from www.wrox. com.

Lesson Requirements

Drag four Script Tasks into a blank package. The names of the Script Tasks will automatically be
Script Task, Script Task 1, Script Task 2, and Script Task 3. Connect the Script Task so that Script
Task 1 runs if Script Task is successful. Connect Script Task 1 to Script Task 2 with a success con-
straint. Connect Script Task 3 before Script Task 2 with a success constraint and run the package
once with the logical constraints on Script Task 2 set to AND. Then change the logical constraint on
Script Task 2 to OR and change the properties of Script Task 3 to Force Failure and run the package
again. You should see a green check above Script Task 2 each time, indicating success.

Hints

> Script Task 2 should have two incoming precedence constraint lines.

> Look in the Properties window in the bottom right of Visual Studio to find the
ForceExecutionResult property for the Script Task.

http://www.wrox.com

62 | SECTION2 CONTROL FLOW

Step-by-Step

1.
2.
3.
4.

5.

Drag four Script Tasks into the Control Flow.
Drag the precedence constraint from Script Task to Script Task 1.
Drag the precedence constraint from Script Task 1 to Script Task 2.

Drag the precedence constraint from Script Task 3 to Script Task 2. The result should
match Figure 9-8.

Run the package; a green check mark indicating success should appear in the top right of
each task, as shown in Figure 9-9.

o

.\ script Task
=)

g 7 L,

Seript Task g 3Scriy:ut Task
Script Task T seript Task = 1 —
=) 1 o) l I
l .; © Script Task O
. =) 2
Script Task
=) 2
FIGURE 9-8 FIGURE 9-9

Stop the debugging using the square Stop button on the

toolbar. Froperties -
Double-click one of the constraint arrows going into Script Task Tesk
. S 2 | =
Script Task 2. |3
Description Script Task
. . . . Disabl False
Change the logical constraint to OR; the two lines in AT T
Script Task 2 change to dotted lines. EntryPoint Main
ExecvalueVariable “nonex
. . [» Expressions
Clle Scrlpt TaSk 3' ailPackageOnFailure False
. . ntOnFailure False
In the Properties window, change the ionvalue 0

ForceExecutionResult to Failure (Figure 9-10).

ForceExecutionValue

Run the package. Script Task 3 should have a red “X” in Hosbrnrestions
the top right indicating failure, and all other tasks should o

have a green check mark in the top right. Notice that o
Script Task 2 ran even though Script Task 3 failed. FIGURE 9-10

Please select Lesson 9 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

10

Manipulating Files with the
File System Task

When you need to move, delete, or rename a file, or make just about any other changes to it,
the File System Task is the task to use. The File System Task enables you to make changes to
files or directories and move them around without having to write custom scripts. The File
System Task is a commonly used and powerful task in SSIS. A File System Task can:

> Copy a directory

> Copy a file

> Create a directory

> Delete a directory

> Delete the contents of a directory

> Delete a file

> Move a directory

> Move a file

> Rename a file

> Change the attributes of a file
You can bring up the File System Task Editor by = Operation
double-clicking the File System Task or by right- y f:::;:mw
clicking and selecting Edit. In the editor, you see IsSourcePathVariable p e
several fields that you can set to perform the needed soureecannecion Dt droctony
operation. The Operation property is the action e o content
the task performs when executing. In Figure 10-1 HMove directory
you can see the drop-down menu for the Operation o
property. What you select in this menu determines Set Atlributes

which properties will be available to you. For Ty

64 | SECTION2 CONTROL FLOW

example, when you select Delete file, you do not need a destination, just a source file to delete, so a
destination will not be available.

The property IsSourcePathVariable enables you to use a variable for the source. This variable will be
a string variable that holds the location of the file, for example, C:\SSIS\FlatFile.csv. Instead of plac-
ing this path directly in the task, you have the location entered into a variable. The same holds true
for the IsDestinationPathVariable property. The destination will not be a filename, but a folder loca-
tion. Figure 10-2 shows the File System Task with both the source and destination set to a variable.

1 File System Task Editor [[E]==s]

Configure the properties required to perform file system operations, such as creating, moving,
or deleting files or directories.

General 4 Destination Connection
Expressions Truel El
DestinationVariable UserustrBackupFolder
OverwriteDestination False
4 General
Mame File System Task
Description File System Task
4 Operation
Operation Copy file
4 Source Connection
IsSourcePathVariable True
SourceVariable UserzstriileName
IsDestinationPathVariable
Indicates whether a variable or a file connection manager specifies the
destination path.

o J[ome | []

FIGURE 10-2

If you prefer to enter a connection instead of a variable, the connection must exist in the connection
manager. You can also click <New Connection>

in the Source Connection or the Destination

. I File Connection Manager Editor =0 =R
Connection drop-down menu to create the con-

Configure the file connection properties to reference a file or a folder that exists oris

nection in the connection manager. When you created at run time,
click <New Connection>, you see the screen in
Figure 10-3. Here, you can browse to the file

or folder location and save it as the source or e
destination; after it is saved, it appears in the Co) o
connection manager of the package. (If you are
unfamiliar with the concept of connections and I_ﬁ File name must be specified.
connection managers in SSIS, please refer to

Usage type: Existing file VI

Lesson 6 for more explanation.) FIGURE 10-3

LESSON 10 MANIPULATING FILES WITH THE FILE SYSTEM TASK |

65

To copy a directory’s contents with the File System
Task, you need to set up a source and destination

either in the connection manager or in variables.

The DestinationConnection is the location the direc-
tory is copied into for this operation. If you set
IsDestinationPathVariable to True, the option is
DestinationVariable. Clicking the field shows a drop-
down box with a list of variables. If the variable is not
listed, you can click New Variable to create a variable to
hold the destination name in the variable creation screen
shown in Figure 10-4.

OverwriteDestination is the next option in the File System
Task Editor. When you are setting this field, consider the

package failures that can occur due to this setting. With this

field set to True, the File System Task overwrites a directory

. Add Variable

Container:

Name:

Specify the properties of the new variable.

T - |

Variable
Namespace: User
Value type: String -
Value:
[7] Read only
FIGURE 10-4

if it already exists. This prevents errors, but may overwrite a needed file. With OverwriteDestination set

to False, you do not risk overwriting a file inadvertently, but if a destination file already exists, the task

will fail with an error stating that the file already exists.

SourceConnection is the directory that is going to be copied. In the drop-down menu, you see
the sources that are in the connection manager. If you do not see the directory, click <New

Connection>. This enables you to create the source connection in the connection manager just as in

the DestinationConnection.

With a source folder and a destination folder set, the File System Task transfers all of the contents

of the source folder and the contents of all subfolders to the destination folder. Figure 10-5 shows a
completed File System Task set to back up a drive. Notice the name and description make it easy to

see what the task is supposed to perform.

File System Task Editor [o e
ystel

Configure the properties required to perform file system operations, such as creating, moving,
or deleting files or directories.

General 4 Destination Connection
Expressions IsDestinationPathVariable False
DestinationConnection D\
OverwriteDestination False
4 General
Name Copy Cto D
Copy the C drive to the D drive
4 Operation
Operation Copy directory
4 Source Connection
IsSourcePathvariable False
SourceConnection o\
Description
Specifies the description for this task,

o] Do] [

FIGURE 10-5

66 | SECTION2 CONTROL FLOW

The next two properties are Name and Description. The name shows in the 1
Control Flow on the task, as in Figure 10-6, and should describe what the task is) omrceo
designed to do. The description should be a longer explanation. |

Several of the other options in File System Task, such as Copy file, Move file, FIGURE 10-6
Move directory, and Rename file, have the same options as Copy directory. You

set up these tasks using the same fields. Copy file copies a file from the source to

the destination. Move file moves a file from the source to the destination.

The Rename file option is a little different. It actually performs two actions at once. It not only
renames a file, but also moves a file if the destination is different from the source. If you need to
move a file and rename it, there is no need to create a Rename Task and a separate Move File Task.
Both steps can be done in one File System Task. Set the source to the location of the file and set the
destination to the new location the file should be moved to with this task. If you do not want to
move the file and just need to rename it, set the source and destination to the same directory.

When you select Create directory, the first property in the File System Task is UseDirectorylfExists,
shown in Figure 10-7. If this is set to True, the task checks for the existence of the directory. If the
directory exists, the File System Task takes no action. If the directory does not exist, it creates it. If
UseDirectorylfExists is set to False and the directory already exists, the task fails with an error stat-
ing that the directory already exists.

1l File System Task Editor (o[]E==s]

Configure the properties required to perform file system operations, such as creating, moving,
or deleting files or directaries.

4 Destination Directory Options
Expressions UseDirectorylfExists True
4 General
Mame Create Backup
Description Create Backup Folder location
4 Operation
Operation Create directory
4 Source Connection
IsSourcePathVariable False
SourceConnection CABackup
Name
Specifies the name of the task.

o o] e

FIGURE 10-7

LESSON 10 MANIPULATING FILES WITH THE FILE SYSTEM TASK | 67

When you are setting up a File System Task to delete a directory or a file, only a source is needed.
You can set the source to an existing connection manager source or to a variable. This task will
delete a directory and all of its contents, including all subfolders and files in the subfolders. The
Delete directory content operation needs only a source as well. This task leaves the directory and
just deletes the contents of the directory.

When you are using a File System Task to set attributes of a file or folder, you can set four attributes
for a source file. These attributes are:

> Hidden
> ReadOnly
> Archive
> System
You can set each file attribute to either True or False. The source is changed to match the settings

in the File System Task. If the source file properties match the settings in the File System Task, no
changes are made to the source file.

TRY IT

In this Try It, you create a package with a File System Task that moves a file and renames it at the
same time. After this lesson, you will understand how to use the File System Task to manipulate files.

You can download Lesson10.dtsx from www.wrox. com.

Lesson Requirements

Create a file on the C: drive named CreatedFile.txt. The file will have nothing in it and you can cre-
ate it by using Notepad or any other tool. Create a directory named Backup on the C: drive. Then
use SSIS to move and rename the CreatedFile.txt to MovedFile.txt and move it into the Backup
folder on the C: drive.

Hints

> You need only one File System Task.

> The rename operation can also move the file.

Step-by-Step

1. Create a new SSIS package called Lesson10.dtsx (or download Lesson10.dtsx from

WWW . Wrox. com).

2. Navigate to the C: drive on the local machine and create a file named CreatedFile.txt
(right-click in Windows Explorer and select New = Text Document).

http://www.wrox.com
http://www.wrox.com

68 | SECTION2 CONTROL FLOW

3. Create a folder in the C: drive named Backup (right-click in Windows Explorer and select
New Folder).

4. Create a new file connection in the SSIS package for C:\CreatedFile.txt (Figure 10-8) by right-
clicking in the connection manager and selecting New File Connection.

] File Connection Manager Editor [|[E =]

Configure the file connection properties to reference a file or a folder that exists or is
created at run time.

Usage type: Existing file v]
File: C\CreatedFile tet
[QK J [Cancel I

FIGURE 10-8

5. Create a new file connection in the SSIS package to C:\Backup\MovedFile.txt (Figure 10-9)
by right-clicking in the connection manager and selecting New File Connection.

1 File Connection Manager Editor = [

Configure the file connection properties to reference a file or a folder that exists or is
created at run time.

Usage type: Create file ']
File: Ch\Backup'MovedFile.txt
[oK J ’ Cancel]

FIGURE 10-9

6. Drag over a File System Task into the Control Flow.
7. Change the Name to Backup Created File.

8. Enter a description that describes this operation.

9. Select Rename in the operation menu.

10. Select CreatedFile.txt as the source.
11. Select MovedFile.txt as the destination.

12. Set OverwriteDestination to True. The screen should now look like Figure 10-10.

LESSON 10 MANIPULATING FILES WITH THE FILE SYSTEM TASK |

69

13.

_1l File System Task Editor == ==

Configure the properties required to perform file system operations, such as creating, moving,
or deleting files or directories.

4 Destination Connection
Expressions IsDestinationPathVariable False
DestinationConnedion MovedFile.txt
CwerwriteDestination True
4 General
Name Backup Created File
Description File System Task
4 Operation
Operation Rename file
4 Source Connection
IsSourcePathVariable False
SourceConnection CreatedFile.bct
Name
Specifies the name of the task.

o] Loma] (e]

FIGURE 10-10

Click OK and run the package; a green check should appear next to the task, indicating suc-
cess, as shown in Figure 10-11.

Backup Created Fila

FIGURE 10-11

Please select Lesson 10 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

11

Coding Custom Script Tasks

When you create a new SQL Server Integration Services (SSIS) package, you may find yourself
wanting some functionality that the built-in tasks cannot accomplish. This situation is where
the Script Task comes into play. This task can accomplish anything that can be done with any
.NET programming. Interestingly, the Script Task is not a scripting language at all. In SSIS,
you can use VB.NET or C# to write complete coding solutions to perform just about any task
your imagination can come up with.

When you drag over a Script Task and double-click it to open the Script Task Editor, you first
see three nodes listed on the left: Script, General, and Expressions, as shown in Figure 11-1.
Expressions are discussed later in this book (see Lesson 14). This lesson focuses on the General
and Script nodes.

T Script Task Editor ===

= Access Microsoft Visual Studio Taols for Applications (VSTA] to write scripts using the Visual
.y Basic2010 or Visual C# 2010, and configure the task's praperties.

4 Script
::”E’a' Seriptlanguage Microsoft Visual Basic 2010
pressions EntryPaint Main
ReadOnlyVariables
ReadWiriteVariables
ScriptLanguage
Specifies the programming language used by the script,
I Edit Script.. l

Coe) Come] oo

FIGURE 11-1

72 | SECTION2 CONTROL FLOW

Under the General node, you see the name and description of the Script Task. This does not affect
the code in the script; it is used for ease of reference when viewing the tasks in the Control Flow.
The name shows on the tasks in the Control Flow. The description is usually a longer line of text
describing the purpose of the Script Task. It is a best practice to always change the values of these
fields to values that will make it easy for anyone to see and understand the function of the task.

In the Script node you have four properties to set:
> The first is the ScriptLanguage. VB.NET is used for all of the examples in this lesson.

> EntryPoint is the next property. This is the location in the code where the task looks to exe-
cute the code first. Generally, this is left at Main because Main is automatically set up in the
built-in starting script.

The next two properties enable you to list the variables from the package that you can use in the
Script Task code:

> ReadOnlyVariables are variables that you want to use in the Script Task code, but you do
not want the values of the variables edited.

> The ReadWriteVariables are variables used in the Script Task that can have their values
changed, meaning you can change the values of the variables to be used in the package after
the Script Task completes.

At the bottom of this node, you can see a button labeled Edit Script. The default script language is C#.

NOTE To change the default script language in SSDT, click Tools = Options at
the top of SSDT in the text toolbar. Click the arrow next to Business Intelligence
Designers and then click Integrated Services Designers. Change the default lan-
guage on the right to VB in the Language drop-down menu.

When you click the Edit Script button, it opens the Visual Studio Script Editor. If this is your first

time opening the script editor, you see the first-time configuration window. After the environment
is configured, you see a screen similar to the one shown in Figure 11-2, which is very similar to the
Visual Studio coding environment. Developers should feel right at home with this interface.

On the right hand side you will see the ScriptMain.Vb window. This window contains the beginning
code needed to start writing your script. This Main section is where you will write most of your code.

Most Script Tasks use ReadOnlyVariables, ReadWriteVariables, or a combination of both. As
mentioned earlier in the lesson, to get a variable to be available in the Script Task, you need to add
it to the ReadWriteVariables or ReadOnlyVariables in the Script node on the Properties screen of
the task. One of the most common tasks is changing a filename based on the conditions in a Script
Task. You can accomplish this by passing in a ReadWriteVariable with the filename and using the
VB.NET code to change the variable.

First, you have to add the variable name to the ReadWriteVariables variable property. When you
click the ReadWriteVariables line, an ellipsis appears on the right. Click this ellipsis button to see the

LESSON 11 CODING CUSTOM SCRIPT TASKS | 73

list of all variables in the package, as shown in Figure 11-3. Place a check next to the variable name
and click OK. Now the variable shows in the variable property as User::Variable name. You can
now use this variable in the Script Task code.

5¢ tudio (Administrator)
View Project Build Debug Team SQL Data Tools Architecture Test Analyze Window Help

il (S P % a9 - - LI | b [Debug -J 2 SR FGE R RO
0 < R a0 [iE 20806 383>
ScriptMainvb X

teoraion [Genera) -] Dedtarations)

ment. : Introduction to the script task

53IN0S 180 1

'ScriptMain is the entry point class of the script. Do not change the name, attributes,
"or parent of this class.
=l<Microsoft.SqlServer.Dts.Tasks.ScriptTask.SSISScriptTaskEntryPointAttribute()> _
<System.CLSCompliantaAttr
Partial Public Class Scr

1210103 UOIINIOS e $A1L2A0I]

®ltelp: Using Integration Services v

#Help: Firing Integration Services event

Using Integration Services cenne

'This method is called when this script task executes in the control flow.
"Before returning from this method, set the value of Dts.TaskResult to indicate success or failure.
‘To open Help, press F1.

Public Sub Main()

' Add your code here

Dts.TaskResult = ScriptResults.Success
End Sub

End Class
[CRTRTNT 2 ssisTool, J100% - <

B Error List
Ready

FIGURE 11-2

Select Variables

Select one or more variables

MName Type -
([} System::OffineMode Boolean
([} System::Package|D String
([} System::PackageName String
([} System::Product Version String
([} System::ServerExecution|D Int64
([} System::Start Time
User:strfileName
(] System::UserName String L
=) System::VersionBuild Int32 1
([} System::VersionComments String
=} System::VersionGUID String i
T| S—— — | »

FIGURE 11-3

74 |

SECTION 2 CONTROL FLOW

Now you can click the Edit Script button and write some code to change the value of the variable.
Change the variable to "newvalue" and then make a popup box appear showing the value of the
variable. Write this code below the public sub main starting code. Remember the entry point was
left at Main in the properties of the Script Task. The following code shows how to accomplish this
function:

Dts.Variables ("strFileName") .Value = "newvalue"
MsgBox (Dts.Variables ("strFileName") .Value)

Notice that the variable is called using the string literal name of ST_057275836216bb900a726b54a3e81d s
the file and it is case-sensitive. Use the value property of the vari-
able to set it to a "newvalue". The next line is the typical message
box in VB.NET. This causes a popup box to appear showing the
value of the variable. If the value is set correctly, you see a popup
box as shown in Figure 11-4.

newvalue

FIGURE 11-4
You can use two types of variables in Script Tasks. The one just

shown is the variable from the package. However, you can also create variables in the Script Task
just as you would in a regular .NET application. This variable is different than the package variable
and is not used outside of the Script Task. You create this variable with a Dim statement. The value
of the variable is changed directly and does not require the use of the DTS.variables () method.
The following code shows how to create a variable, give it a value, and then pop up a message box
with the value of the variable:

Dim strInternal As String
strInternal = "test"
MsgBox (strInternal)

This code causes a popup box to appear, as shown in Figure 11-5. ST_057e7583e6ef465b900a726b54a3e81d (e
Notice the value of test was saved in the variable value and then
shown in the popup box. Again, you did this directly without using
the Dts.variables () method. The variable cannot be called by

the package directly.

Keep in mind that you can have variables in your package with the FIGURE 11-5

same name as the variables in your Script Task. These variables do

not pass values between the Script Task and the package. To pass values from the script variables to
the package variables you need to set the package variable value to the value of the script variable.
The following code shows how to do this:

test

Dts.Variables("strFileName") .Value = strInternal

Another common function of Script Tasks is the creation of “if then” statements. You can use these
statements to make decisions based on certain values. A common use for this functionality is to have
an Execute SQL Task to count values from a table and pass that value into a variable. For example,
say you want to see if a filename exists in an auditing table to determine if the file should be used.
The Execute SQL Task saves the count value to a variable called intauditcount. This value is

LESSON 11 CODING CUSTOM SCRIPT TASKS | 75

compared with the “if then” statement and then used in further code. The following code shows an
example of the “if then” statement:

If Dts.Variables("intAuditCount") .Value > 0 Then
'code for the file found in the audit table
Else
'code for the file not found in the audit table
End If

Altering connections is another common task that Script Tasks can perform. First, the connec-

tion must exist in the connection manager of the package. Connection managers are explained in
Lesson 6. Assume the connection is named AdventureWorks2012. To alter this connection, use

the Dts.Connections () method. The following code shows an example of changing a connec-

tion string. Notice the literal name is in parentheses and double quotes, and is case-sensitive. The
ConnectionString property of the connection follows. You can then set the connection string to be
equal to the needed string. This enables you to change the connection during the package run time.

Dts.Connections ("AdventureWorks2012") .ConnectionString = _
"Data Source=localhost;Initial Catalog=AdventureWorks2012;" + _

"Provider=SQLNCLI10.1;Integrated Security=SSPI;"

Checking for the existence of a file is a common need in SSIS packages. To perform this function,
you must import the System.IO into the Script Task. Simply add the line Imports System.IO after
the last Import line at the top of the Script Task code. You must create two variables on the package:
a string variable to hold the filename and a boolean variable to set to true if the file exists and false
if it does not exist. Name them strFileName and bolFileExist. The code would then be:

If File.Exists(Dts.Variables("strFileName") .Value) Then
Dts.Variables ("bolFileExist") .Value = True

Else
Dts.Variables ("bolFileExist") .Value = False

End If

Checking to see if a file is in use is another common task that can be performed with a Script Task
in SSIS. Use the variables strFileName as the filename and bolFileInUse as the boolean variable
and set this to true if the file is in use. The code would be:

Try

File.SetLastAccessTime (Dts.Variables ("strFileName") .Value, Today)
Catch e As Exception

Dts.Variables ("bolFileInUse") .Value = True
End Try

Notice that the code is catching an exception. The Script Task attempts to set the last access date of
the file to today’s date. If this process fails, the exception will set the boolean variable to true to indi-
cate that the file is in use. Before running this code, you may want to use the previous code that checks
if a file exists to determine whether the file does exist. That ensures that you don’t catch an exception
because the file does not exist when you really want to catch it because the file is being used.

76 | SECTION2 CONTROL FLOW

After these boolean variables are set with the Script Task, you can use the expression on the pre-
cedence constraints coming from the Script Task to determine which direction the Control Flow
should go. You may have two precedence constraints leaving the Script Task, both with expressions
on them. One precedence constraint expression checks for a value of true and the other checks for
false. The value of the boolean variable will be evaluated, and the Control Flow will continue down
the proper precedence constraint line.

Now you can use the Script Task to perform complicated decision making based on the values of the
variables in the package and the values of the variables in the script. You can write these values into
the ReadWriteVariables and use them later in the package. The Script Task is a very powerful com-
ponent that enables developers to write complex code components to perform functions that might
not exist in the built-in tasks in SSIS.

TRY IT

In this Try It, you create a Script Task that changes the value of a variable based on the value of
another variable. After completing this lesson you will understand how to use the Script Task to
make changes to a package.

You can download Lesson11.dtsx and the sample code from www.wrox. com.

Lesson Requirements

You need to create two variables called intvar and strvar. You want to check the value of the
intvar, and if it is above 10, you want to display the word “Big”. If the value is 10 or less, you want
to display “Small”. The message box should display the value of the variable strvar and not the lit-
eral string of the words.

Hints

> You need only one message box code line in the Script Task.

> Set the value of the strvar to “Big” or “Small”.

Step-by-Step
1. Right-click the Control Flow area in a blank package and left-click Variables.
Create a variable named strVar and set the type to string.
Create a variable named intVar and set the type to int.
Set the value of intvar to 5.

Drag over a Script Task and double-click it to open the Script Task Editor.

o v R wWwN

Ensure that the script language is set to Microsoft Visual Basic 2010.

http://www.wrox.com

LESSON 11 CODING CUSTOM SCRIPT TASKS | 77

7. Click the ReadWriteVariables property and click the ellipsis button.

8. Place a check next to User::intVar and User:strVar and click OK; the variables should show
in the property window, as shown in Figure 11-6.

L5 Script Task Editor ===

Access Microsoft Visual Studio Tools for Applications (V5TA) to write scripts using the Visual
LY Basic 2010 or Visual C# 2010, and configure the task's properties.

Script 4 Script
S:"Eral Scriptlanguage Microsoft Visual Basic 2010
pressions EntryPaint Main
ReadOnlyVariables
ReadWriteVariables UserzintVar, User:striar E]
ReadWriteVariables
Specifies a comma-separated list of read/write variables,
l Edit Script... l
[oK] I Cancel] [Help l

FIGURE 11-6

9. Click the Edit Script button in the task window.

10. Below the public sub main() section, type in the following code:

If Dts.Variables("intVar") .Value > 10 Then

Dts.Variables("strVar") .vValue = "Big"
Else

Dts.Variables("strVar").Value = "Small"
End If

MsgBox (Dts.Variables ("strVar") .Value)

11. Close the script editor.

12. Click OK in the Script Task Editor window.

13. Right-click the Script Task and left-click Execute Task.

14. You should see a popup message showing the word “Small”, as shown in Figure 11-7.

15. Click OK in the message box and click the Stop Debug button on the toolbar.

78 | SECTION2 CONTROL FLOW

16. Change the value of the intvar variable to 11.

17. Execute the Script Task again; you should see a message box appear showing the word
“Big”, as shown in Figure 11-8.

18. Click the OK button and stop debugging.

5T_4121e91740c149a88c219b1654b56ade S5T_4121e91740c149a88c219b1654b56ade

Small Big

FIGURE 11-7 FIGURE 11-8

Please select Lesson 11 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video
V413HAV
Typewritten Text
V413HAV

12

Using the Execute SQL Task

When you are creating a SQL Server Integration Services (SSIS) package, you will find that one
of the most commonly used tasks is the Execute SQL Task. This task is used to insert, update,
select, and truncate data from SQL tables. Any normal SQL commands you would use can be
used in this task. You can use parameters just like a stored procedure and can even call stored
procedures from the task. A connection to the database must exist in the connection manager
for the Execute SQL Task to reference.

Double-click an Execute SQL Task in the Control Flow to open the Execute SQL Task Editor.
The first screen on the editor lists four nodes in the left pane:

> General

» Parameter Mapping
> Result Set
>

Expressions

In the General node, shown in Figure 12-1, you see the main properties that you need to set
for the Execute SQL Task. The first two properties are Name and Description. These proper-
ties do not affect the task. They are used for ease of reference when viewing the task in the
Control Flow. The name shows on the task in the Control Flow. The description is usually

a longer line of text describing the purpose of the Execute SQL Task. It is a best practice

to always change the values of these fields to values that make it easy for anyone to see and
understand the function of the task.

80 | SECTION2 CONTROL FLOW

|5 Execute SQL Task Editor o [EEE
J_ Configure the properties required to run SQL statements and stored procedures using the
| | selected connection.
2=l
4 General
Parameter Mapping Name Execute SQL Task
Result Set Description Execute SQL Task
Expressions 4 Options
TimeOut 0
CodePage 1252
TypeConversionMode Allowed
4 Result Set
ResultSet None
4 5QL Statement
ConnectionType OLEDB
Connection
sQLSourceType Direct input
sQLStatement
IsQueryStoredProcedure False
BypassPrepare True
Name
Specifies the name of the task.
e [e [e—

The next two options are the TimeOut and CodePage. The timeout is the number of seconds you
want the Execute SQL Task to run before the task stops and reports a timeout failure. A setting of
zero is infinite.

Code pages are set based on the code page that is used on the SQL server. In the United States, the
common code page is Western European (1252). If you are using a different code page, such as
Korean (949), you would need to change the code page to match the code page of the server. The
code page option is available only for the following connection types:

> Excel

> OLE DB

> ADO.NET
> SQL Mobile

The TypeConversionMode option is new in SQL Server 2012. This option allows the Execute SQL
Task to convert data types when saving to a variable. The data types for SSIS variables do not match
exactly to the data types in SQL Server. This mismatch can cause headaches due to needed data con-
versions. In SQL Server 2012, that headache is relieved with the new TypeConversionMode option.
Set this mode to Allowed and the Execute SQL Task will convert some items to match the variable
types when necessary.

To see this in action, run the following query in an Execute SQL Task and map the results to an
int32 variable in SSIS (mapping is covered later in this chapter):

Select Cast(l as decimal) as Coll

LESSON 12 USING THE EXECUTE SQL TASK | 81

If you have the TypeConversionMode set to Allowed, the task succeeds. If you have the
TypeConversionMode set to None, the Execute SQL Task fails with the following error:

[Execute SQL Task] Error: An error occurred while assigning a value to variable
"intVar": "The type of the value (String) being assigned to variable
"User::intVar" differs from the current variable type (Int32). Variables may not
change type during execution. Variable types are strict, except for variables
of type Object.

The ResultSet property is the type of returned data from the SQL command. This can be None when
the SQL command is not returning data, as with an insert command. The result set can be a single

row. This single row can be stored in a string or integer variable. It can also be a full result set or XML,
which can be stored in an object variable. These variables are set in the Result Set node.

When you click the Result Set node in the left pane of the Execute SQL Task Editor, you see the
Result Set pane, as shown in Figure 12-2, where you can create new result set variables by clicking
the Add button. The Add button is not available here if the ResultSet property on the General node
is set to None. The result set name is the name of the returning data. This can be an alias you gave
to a selected set of data. If you did not give the data an alias, you would enter the number 0 to indi-
cate the first result set returned.

| =5 Execute SQL Task Editor o |[E =]

1 Configure the properties required to run SQL statements and stored procedures using the
L. selected connection.

General Result Name Variable Mame
Parameter Mapping

Expressions

o o] (e

FIGURE 12-2

The Parameter Mapping node (also in the left pane of the Execute SQL Task Editor) is where you
set up the parameters that you want to pass into the SQL query. The SQL query can handle multiple
parameters. In this screen, as shown in Figure 12-3, you can create the parameter mappings to con-
nect the parameter in the SQL command to a package variable. You see an example of parameters
later in this lesson.

82 | SECTION2 CONTROL FLOW

| 53 Execute SQL Task Editor = [=EEs

1 Configure the properties required to run SQL statements and stored procedures using the
Y selected connection.

General Variable N.. Direction Data Type Parameter.. Parameter..,

Parameter Mapping

Result Set
Expressions

FIGURE 12-3

You can use the Execute SQL Task to count data in a table and return a number for the result set. If

the count is returned as an alias, you can name the result set. For example, if the SQL query looks
like this:

Select Count(*) as Counter From Production.Product

the result set will be counter, and you can assign it to an integer variable that you create in the
package using the Result Set node. If the SQL query is returning more than one row, you need to
store that in an object variable. Once you have the data stored in a package variable, you can use
this data throughout the rest of the package and in other tasks or expressions.

Returning to properties in the General node, you can see the next property you need to address is
the ConnectionType. The Connection Type drop-down box contains six options:

> Excel

> OLE DB
> ODBC

> ADO

> ADO.NET
>

SQL Mobile

LESSON 12 USING THE EXECUTE SQL TASK | 83

These connections can be used to retrieve data from the connection types using the SQL language.
This lesson covers the OLE DB connection and selecting data from a SQL Server table because this
IS very common.

Once you have selected the connection type, you can click the Connection drop-down menu. If the
connection you want to use already exists in the connection manager, you can select the connection
from the drop-down menu. However, at the top you see the <New Connection> option. Clicking
<New Connection> opens a corresponding connection creation window depending on the con-
nection type you select. If you select the OLE DB connection type, you see the window shown in
Figure 12-4, where you can create a new OLE DB connection.

| Configure OLE DB Connection Manager o G =)

To create a connection manager based on previously defined connection information,
select a data connection, and then click OK. To create a new connection manager, click
Mew,

Data connections: Data connection properties:

Property Value

Cancel

FIGURE 12-4

The next property to set is the SQLSourceType. It has three options:

> Direct Input—SQL command typed into the Execute SQL Task

> File Connection—SQL command saved in an external file

> Variable—SQL command stored in a package variable
Direct Input is the easiest to use. This method enables you to type the SQL command directly into
the Execute SQL Task. The advantage of this method is that the SQL command is easy to enter. The
disadvantage is that the SQL command cannot be altered outside of the package. So, maintenance is

more difficult and requires the package to be altered and redeployed. This can be cumbersome and
time consuming.

84 | SECTION2 CONTROL FLOW

The File Connection option makes it easy to alter the SQL command from outside of the package.
So, as business needs change and you need to select different data for your package, you can accom-
plish those changes very easily. The disadvantage here concerns maintaining and securing your files.
Imagine if someone inadvertently deletes all of the SQL command files that your company’s pack-
ages use daily. Any packages using these files would then fail at run time.

The Variable option as the SQL source is similar to Direct Input because the variable is stored in the
package. However, because configuration files make it easy to alter variables outside of the package,
you can alter the package without altering and redeploying it, giving you the best of both worlds in
this situation.

Once you have selected the SQL source type, you are given an option to enter a SQL statement,
select a file connection, or select a variable. The option shown changes depending on the SQL source
type selected.

If you have selected Direct Input, you see a SQL statement % Enter SQL Query o ==
option, and clicking the property makes an ellipsis appear. |
Clicking this ellipsis opens a small editor window in which to
enter the SQL command, as shown in Figure 12-5. The editor
is not much more than a small notepad with fewer options.
It’s not an optimal place to enter SQL, and there is no color
coding to help developers entering SQL code. You might find
it a better option to go to SQL Server Management Studio
and type the SQL command there so you receive the benefits
of color coding and IntelliSense. This will make the SQL cod-
ing much easier. Then, copy and paste the SQL command
into the Direct Input window. ok J[coma

-

Parameters enable you to select different data with the FIGURE 12-5
same SQL command. The parameters are entered into the
direct SQL command using question marks, as shown in the following code:

Select Count(*) as Counter from Production.Product where ProductID = ?

This SQL command selects the number of products in a table that have the product ID in the param-
eter you pass into the tasks. You set this up with variables in the Parameter Mapping node. You can
click the Parameter Mapping node and click the Add button to create a parameter mapping for the
task. The names of the parameters start at 0 and count up. So, if you have three question marks in
your SQL query, representing three parameters, your parameter mappings will be 0, 1, and 2.

Once again returning to properties in the General node, you can see the next property is
IsQueryStoredProcedure. This property is available on the ADO and ADO.NET options only. This
is set to True when the SQL command is calling a stored procedure from the ADO connection. This
stored procedure name can be stored in direct input, a file connection, or a variable.

The BypassPrepare property indicates whether the task should prepare the query before the execu-
tion of the query. Preparing a query is similar to compiling. A prepared SQL statement does not
need to be analyzed every time it is used. This property must be set to False before the Parse Query
button will actually parse the SQL query.

LESSON 12 USING THE EXECUTE SQL TASK | 85

The three buttons at the bottom of the Execute SQL Task on the General node are:

> Browse—Searches for .SQL files in the filesystem

> Build Query—Query builder, similar to the query builder in SQL Management Studio

> Parse Query—Parses the SQL query checking for syntax errors
These can be used to help build the SQL query for the task. The browse features allow users to find
SQL queries stored in files in the structured filesystem. The query builder helps build an error-free SQL

query with a visual representation of the tables and their joins. And as already mentioned, the Parse
Query button will not parse the query unless the BypassPrepare property is set to False.

TRY IT

In this Try It, you build an Execute SQL Task to return data from a table in the
AdventureWorks2012 database. After this lesson, you will have a grasp of how to use the Execute
SQL Task to query data from a data source and store the results in a variable.

You can download the completed Lesson12.dtsx and sample code from www . wrox. com.

Lesson Requirements

First, you want to count the number of products with a certain product ID. Then, you are going to
have a Script Task pop up the value of the variable.

Hints
> You need a Script Task and an Execute SQL Task.
> Create a variable to hold the return value.
> Create a variable to hold the product ID.
>

Create a Script Task with a popup message showing the variable value.

Step-by-Step
1. Dragin an Execute SQL Task and double-click the task to open the editor.
Click the connection and select New Connection.
Create a connection to the AdventureWorks2012 database.
Select Single Row as the result set.

Select Direct Input as the SQL type.

oo s wN

Click the SQL command and enter the following query:

Select Count(*) as Counter from Production.Product Where ProductID = ?

7. In the Parameter Mapping node, click Add and create a parameter with the name of 0.

http://www.wrox.com

86 | SECTION2 CONTROL FLOW

10.
1".
12.
13.
14.
15.

16.
17.

18.
19.
20.

21.

While in the Parameter Mapping node, click the Variable Name drop-down menu and select
New Variable.

Create an integer (int32) variable named intProductID and set the value to 316.

Click the Result Set node and click Add to create a result set with the name of 0.

In the Result Set node, click the Variable Name drop-down and select New Variable.

Create another Int32 variable named intProductCount.

Drag a Script Task into the Control Flow of the package.

Connect the Execute SQL Task to the Script Task with an On Success Precedence Constraint.

Double-click the Script Task and select intProductCount in the ReadOnlyVariables of the
Script Task.

Click the Edit Script button.

Type the following VB code in the script editor (refer to Lesson 11 for a Script Task
explanation):

Msgbox (DTS.Variables ("intProductCount") .Value)

Close the script editor.
Click OK in the Script Task.
The package should look like Figure 12-6. Click Debug on the toolbar to run the package.

| "* Execute 5QL Task
=

|

. Seript Task
—

FIGURE 12-6

A popup message should appear showing the intProductCount variable, which should have a
value of 1, as shown in Figure 12-7.

ST_c975ee01b81846c88388bel280a90756

1

FIGURE 12-7

Please select Lesson 12 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

13

Using the Execute Process Task

When creating SSIS packages, you will sometimes find that you need to run a process or
executable outside of your SSIS package. A good example of this is the need to compress or
decompress files for a package before loading the data from those files into a database. There
is no built-in compression task in the SSIS Toolbox. The Execute Process Task enables you to
call these windows or console applications.

Errors that occur in the outside programs can be captured in the SSIS package in a variable.
This variable value can be written to a log file or a table for auditing.

The Execute Process Task is shown in Figure 13-1, where the Process node is selected on the left.
In this screen, you select the executable the task will call and enter any arguments you need to
pass to the executable. Arguments can be thought of as parameters and are not always required
by the executable. The figure has an executable set and an argument for example purposes.

You can see several other properties in the Process node of the Execute Process Task. The fol-
lowing list explains each of these properties.

> RequireFullFileName—Tells the task whether it needs the full path to execute the com-
mand. If the file is not found at the full path or in the PATH environment variables of
the machine, the task will fail. Typically, a full path is used only if you want to explic-
itly identify the executable you want to run. However, if the file exists in the System32
directory, you wouldn’t normally have to type the full path to the file because this path
is automatically known to a typical Windows system.

> Executable—Identifies the path and filename for the executable you want to run. Be
careful not to provide any parameters or optional switches in this property that would
be passed to the executable. Use the Arguments property to set these types of options
separately. For example, Figure 13-1 shows that the task will execute PingParameter.
bat and pass in the site to ping, which in this case is www.bing. com.

> WorkingDirectory—Contains the path from which the executable or command file
will work.

http://www.bing.com

| SECTION 2 CONTROL FLOW

|| Execute Process Task Editor o= |[EEs]

ww Configure the properties used to run a Win32 executable or a batch file as part of the package.

General 4 { Process ;

Process RequireFullFileMame True

Expressions Executable ‘C:\Project\SSISPersonalTrainer\Ch13\PingParameter.bat
Arguments www.bing.com

‘WorkingDirectory

StandardInputVariable
StandardOutputVariable
StandardErrorVariable
FailTaskIfReturnCodelsNotSuccessValue True

SuccessValue o

TimeCQut o

TerminateProcessAfterTimeOut True

‘WindowStyle Normal
Process

o] o] [

FIGURE 13-1

StandardInputVariable—Variable used to pass into the process as an argument. Use this
property if you want to dynamically provide a parameter to the executable based on a
variable.

StandardOutputVariable—Captures the result of the execution by setting the
StandardOutputVariable property to a variable.

StandardErrorVariable—Any errors that occurred from the execution are captured in the
variable you provide in this property.

The variables mentioned in the preceding list can be sent to an Execute SQL Task to log or can be
used in a precedence constraint later in the package that checks the length of the variables to deter-
mine whether you should go to the next task. This enables you to loop back to the process task
again if need be.

Other options in the Process tab include:

>

FailTaskIfReturnCodelsNotSuccessValue property—Another option for validating if the
executable completed successfully.

SuccessValue option—The Execute Process Task will fail if the exit code passed from the pro-
gram is different from the value provided in the SuccessValue option. The default value of 0
indicates that the task was successful in executing the process.

LESSON 13 USING THE EXECUTE PROCESS TASK | 89

> Timeout/TerminateProcessAfterTimeOut properties—The Timeout property determines
the number of seconds that must elapse before the program is considered a runaway process.
A value of 0, which is the default, means the process can run for an infinite amount of time.
This property is used in conjunction with the TerminateProcessAfterTimeOut property,
which if set to true terminates the process after the timeout has been exceeded.

> WindowStyle option—You can set the executable to be run minimized, maximized, hid-
den, or normal. If this is set to any option other than hidden, users will be able to see any
windows that potentially pop up and may interact with them during run time. Typically,
these are set to hidden once a package is fully tested and deployed to a server to be run on
a schedule unattended.

With the Execute Process Task, you can use command-line or out-of-process executables to perform
work for ETL tasks. This extends SSIS beyond just what can be accomplished in the Toolbox.

The code supplied with this lesson on the book’s website at www.wrox.com contains two batch
files that are set up to ping a URL. The one named PingBing.bat is hard-coded to ping the URL
www.bing.com. The following is the code used in this batch file:

ECHO Start Ping of Bing

PING www.Bing.com
ECHO Finished Ping of Bing

In the second batch file named PingParameter.bat the code is set to ping the argument passed to the
executable. It is almost identical except that it uses a parameter instead of the hard-coded site name.
The following is the code found in this batch file:

ECHO Start Ping of %1
PING %1
ECHO Finished Ping %1

There is also an SSIS package in the code with this book that contains two Execute Process Tasks,
each one calling one of the batch files just described. In the following section, you build a package to
call the PingParameter.bat file. You will need Internet connectivity for the batch file to ping the URLs.

TRY IT

In this Try It, you create an Execute Process Task to ping a website. This will show success when the
task is able to ping the website. After this lesson you should have an understanding of how you can
use the Execute Process Task to extend the capability of SSIS.

You can download the completed Lesson13.dtsx and the two batch files mentioned earlier in this
lesson from www.wrox. com.

Lesson Requirements

You need to create an Execute Process Task. The executable information needs to be the name of the
bat file. The argument can be changed to any website.

http://www.wrox.com
http://www.bing.com
http://www.Bing.com
http://www.wrox.com

90 | SECTION2 CONTROL FLOW

Hints

> You need one Execute Process Task.

> You need the bat file that is included in the code with this book.

Step-by-Step

1. Drag an Execute Process Task to a blank package.

2. Open the Execute Process Task and set the Executable to C:\Project\SSISPersonalTrainer\
Lesson13\PingParameter.bat.

3. Set the Argument to www.bing.com.
4. Click OK to save the Execute Process Task.

5. Execute the package. You should see a window appear that shows the pinging of the URL,
as shown in Figure 13-2.

g C:\Windowslsystem32icmd.exe (o= =

C:“Frogram Files (x86)\Microsoft Uisual Studio 18.8“Conmon?“\IDEXECHO Start Ping
of www.bing.com
Start Ping of www.bing.com

m| »

C:“\Program Files (xB6>“Microsoft Visuwal Studio 18.8~Common?~IDE>PING www.hing.co|
m

Pinging al34.dsw3.akamai.net [23.49.56.1521 with 32 hytes of data:
Reply from 23.49.56.152: bytes=32 time=24ms TTL=56

FIGURE 13-2

6. Now you will set the argument to an SSIS variable on the package. Right-click the Control
Flow background in the package and select Variables.

7. Create a String Variable named strURL and set the value to www.MikeDavisSQL.com.
8. Close the variables window.
9. Double-click the Execute Process Task you created in step 1.

10. Click the Expressions node on the left.

11. Click the ellipses on the right, as shown in Figure 13-3.

http://www.bing.com
http://www.MikeDavisSQL.com

LESSON 13 USING THE EXECUTE PROCESS TASK | 91

12.
13.
14.
15.

16.
17.

] Execute Process Task Editor (o []

I: Configure the properties used to run a Win32 executable or a batch file as part of the package.

General 4 Misc \
> =
Expressions

FIGURE 13-3

Set the Property on the right column to Arguments.
Click the ellipses under Expression.
Drag the strURL variable in the expression box below.

Click the Evaluate Expression button and you should see the URL appear as in Figure 13-4.

Expression Builder o =] =)
Specify the expression for the property: Arguments.
[[£5 Vanables and Parameters [Mathematical Functions
[System Variables [String Functions
O User:strURL [Date/Time Functions
[NULL Functions
[Type Casts
[Operators
Description:
Expression
@[User:strlJRL] -
Evaluated value
www . MikeDavisSQL.com -
Garca
FIGURE 13-4

Click OK in all of the open windows.

Execute the package, and you will see it ping the new URL.

Feel free to change the value of the variable and execute the package again and you should see it
ping the sites you enter.

Please select Lesson 13 on the DVD, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Using the Expression Task

A new task introduced in this release of SQL Server is the Expression Task. Expression build-
ing is covered more in depth in Lesson 35 of this book, so this lesson focuses on using the
Expression Task in the Control Flow.

In previous versions of SSIS, if you wanted to manipulate SSIS variables in a Control Flow,
you would need to use a Script Task. This required some .NET programming knowledge
and the package had to compile a script. Now you can skip the Script Task and use the new
Expression Task.

The editor for the Expression Task

o R . R Expression Builder [= [
is identical to the Expression Builder
. . Edit the expression that is evaluated when the task runs.
found in the Expression property Y Varisble: and Parametery] (YT e—rp—
of the Control Flow tasks and vari- (3 Sting Functions
. |l Date/Time Functions
able expressions. The common SSIS =2 NULL Functions

[l Type Casts

expression syntax is used in this o

task also. Figure 14-1 shows the
Expression Task Editor. Notice that
the title at the top is Expression
Builder. One more difference in this
version of SSIS is that the folder in
the top left is titled Variables and Descrption
Parameters. Parameters are a new
addition in SQL Server 2012 and are
covered in Lesson 33 of this book.

Expression:

One of the common scenarios in

which the Expression Task would
come in handy is incrementing vari- Bualusted value:
ables in a loop. Loops are covered
in Lessons 42 and 43 of this book.

Looping through a set of files to load [emesoresn]

into a database is a common use of

FIGURE 14-1

94 | SECTION2 CONTROL FLOW

SSIS. Auditing the number of files that run through the loop is also commonly done. The Expression
Task makes this easy now.

In Figure 14-2, you can see a package set up with a Foreach Loop, and in the container you have a
Data Flow Task to load the file into a database and an Expression Task to increment a variable.

If you open the Expression Task Editor, you will see the screen in Figure 14-3. Notice that the
expression is simply incrementing the variable by adding 1.

o I Foreach Loop Container ~
o

=% | Data Fiow Task Expression:
|55 @[User:intFileCount] = @[User:intFileCount] =1 5

l

‘f‘: Expression Task =

Evaluated value:

FIGURE 14-2 FIGURE 14-3

You can also use the Expression Task in conjunction with the precedence constraints in the Control
Flow. With this combination, you can control which task will execute. Figure 14-4 shows an exam-
ple Control Flow where two Execute SQL Tasks retrieve row counts from two different tables on
two different servers. The variables are then added together in the Expression Task. You can see the
expression after the Expression Task on the precedence constraint line. This is checking the value of
the combined variables against a certain amount. If the precedence constraint expression is True, the
Data Flow executes.

L, Get Row Count L !, GetRow Count
1 2

—c=)

‘fr Expression Task
\ |
!
] Data Flow
o Task

FIGURE 14-4

In the top right of the Expression Builder are the function folders. These contain all of the SSIS
functions that are available to you. If you are unsure how to create an expression, you can open
these folders and find examples of code; they will aid you in building the expression you need.

LESSON 14 USING THE EXPRESSION TASK | 95

If you need to perform a date operation, like finding the difference between two dates, open the
Date/Time Function folder as shown in Figure 14-5. Here, you see the DATEDIFF function. If you
are unsure what a function does, you can read the description below the function window. This
categorized layout makes it easy to find the functions you need.

L3 Mathematical Functions
[String Functions
= [_3 Date/Time Functions
DATEADD| «dateparts. snumbers, sdates)
DATEPARTY(«dateparts, dates)
DAY adates)
GETDATE(
GETUTCDATE(
MONTH(adates)
YEAR(«dates)
3 NULL Functions
(L3 Type Casts
[Operators

Description

Returns the number of date and time boundaries crossed between
two specified dates, The datepart parameter identifies which date
and time boundaries to compare,

FIGURE 14-5

The Expression Task is a great addition to the Control Flow and will help developers avoid unneces-
sary Script Tasks in the future. In the next section, you build a package using an Expression Task.

TRY IT

In this Try It, you create an Expression Task to increment a variable in a loop. This task will add
an integer variable to itself in each completed loop. When the package is successful, you will see the
variable value increase as the loop runs. This exercise should give you an understanding of how the
Expression Task can be used in a package.

You can download the completed Lesson14.dtsx from www.wrox. com.

Lesson Requirements

You will start with a blank package. You need to create an Expression Task and a For Loop.

Hints
> You need one Expression Task.
> You will need a For Loop Task.

> You need to create two integer variables.

http://www.wrox.com

96 | SECTION2 CONTROL FLOW

Step-by-Step

1.

2.
3.
4.

o o

1".
12.
13.
14.

Create a blank SSIS package and name it Lesson14.dtsx.
Right-click in the background of the package and select Variables.
Click the Create Variable button and create an integer variable named intLoop.

Click the Create Variable button again and create an integer variable named intValue. Set its
value to 10.

Close the Variable window.
Drag a For Loop into the package.

Set the For Loop Properties to match Figure 14-6.

4 For Loop Properties
InitExpression
EvalExpression
AssignExpression

@intLoop = 0
@intLoop <5
@intLoop = @intLoop =1
4 General
MName For Loop Container
Description For Loop Container

FIGURE 14-6

Click OK in the For Loop.
Drag an Expression Task into the For Loop.

Set the expression in the Expression Task to match Figure 14-7.

Expression:
@[UserzintValue] = @[User:intValue] + @[User::thoop]\

FIGURE 14-7

If you run the package at this point, it will execute successfully. But to see the value of the
variable change, you will need to place a breakpoint on the For Loop and open the Locals
window.

Right-click the For Loop and select Edit Breakpoints.
Select the last breakpoint option that will break on the iterations of the loop.
Click OK in the Breakpoints window.

Execute the package.

LESSON 14 USING THE EXPRESSION TASK | 97

15.

16.
17.
18.

While in debug mode, press Ctrl+D, L. This opens the Locals window. You can also open in
Debug menu at the top under the Windows section, as shown in Figure 14-8.

Debug \ Team SQL Data SSIS Tools Architecture Test Analyze Window Help
Windows ' | @ Breakpoints Ctrl+D, B
P Continue F5 =] Output
Il Break All Ctrl=Alt=Break 2} Parallel Tasks Ctrl+D, K
@ stop Debugging Shift=F5 L&y Parallel Stacks Ctrl+D, §
= start Performance Analysis Watch R
<k Detach Al & Autos Ctri+D, A
feminatcil El Locals Ctri=D, L
il Restart Ctrl=Shift+F5 =1 Immediate Ctrl+D, 1
=l bl i
FIGURE 14-8

Click the plus sign (+) next to Variables in the Locals window.
Scroll down and find the two variables you created.

Press F5 to continue the package to the next breakpoint. You should see variables change
value each time you continue, as shown in Figure 14-9.

Locals >~ 0 x
| Mame Value Type -
% System:InteractiveMode {True} Boolean
% User:intLoop 2} Int32
% UserintValue 11} Int32

¢ System:LastModifiedProducty {11.0.2100.60} String |__

¢ System:zLocalelD {1033} Int32 d

%4 System:MachineName {KIWT} String

0;3 System:: OfflineMode {False} Boolean

“ System:Packagell {125295CFB-1BF5-47F6-8E9C-2B747B44BD0E }} String

0;3 Systermn:PackageMame {Chl4Lesson} String
FIGURE 14-9

Please select Lesson 14 on the DV D, or online at www .wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

15

Using the Send Mail Task

The Send Mail Task sends e-mail via Simple Mail Transfer Protocol (SMTP) from a SQL
Server Integration Services (SSIS) package. This task enables you to receive information about
the package that can be passed into the mail task through variables—system variables or
user-defined variables. The Send Mail Task is most commonly used as a notification tool. The
system variables in an SSIS package hold information such as package start time, errors, and
warnings.

You can place the Send Mail Task at the end of a Control Flow to send e-mail on the suc-
cessful completion of a package. The event handler of a package is also a great place to

place the Send Mail Task (event handlers are covered in Lesson 48). You can place the task

in the OnPreExecute Event Handler to notify you via e-mail that a package has begun. The
OnPostExecute Event Handler can send mail at the end of a package showing the start and
end for a package, therefore enabling you to track the run time of a package. When you place
a Send Mail Task in the OnError or the OnWarning Event, you can be notified when an error
or warning occurs anytime during the running of a package.

You can also use the Send Mail Task to send files, because it can send attachments. A Data
Flow can exist in a package that creates a file, and a Send Mail Task can then send that file via
e-mail. The file can be created in a Data Flow or by a File System Task. It can also be any file
not created or altered by the package.

When you first open the Send Mail Task Editor by double-clicking a Send Mail Task, you see
the General node, as shown in Figure 15-1. This contains the name and description of the
task. These properties are used for ease of reference when viewing the task in the Control
Flow; the name shows on the tasks in the Control Flow and the description is usually a longer
line of text describing the purpose of the Send Mail Task. It is a best practice to always change
the values of these fields to values that make it easy for anyone to see and understand the func-
tion of the task.

100 | SECTION 2 CONTROL FLOW

| Send Mail Task Editor [= (=)
= Configure the properties for the e-mail message sent by the 5515 package.
4 General
Mail Mame Send Mail Task
Expressions Description Send Mail Task
Name
Specifies the name for this task.
=

FIGURE 15-1

Clicking the Mail node in the left-hand pane opens the Mail properties. Here, you see the main
properties of the Send Mail Task, as shown in Figure 15-2. The first property is the SMTP connec-
tion. This connection must exist in the connection manager.

|- Send Mail Task Editor (= = s

= Configure the properties for the e-mail message sent by the S5IS package.

General 4 Mail

SmtpConnection

Expressions From

To

Cec

BCc

Subject

MessageSourceType Direct Input
MessageSource

Priority Normal
Attachments

SmtpConnection
Specifies the name of the SMTP connection manager.

o] Lo [

FIGURE 15-2

LESSON 15 USING THE SEND MAIL TASK | 101

If the SMTP connection does not exist, you can create it by clicking <New Connection...> in the
SmtpConnection drop-down menu, which opens the SMTP Connection Manager Editor, as shown
in Figure 15-3. This enables you to create an SMTP connection in the connection manager. Once
an SMTP connection exists in the connection manager, you can use this connection in all Send
Mail Tasks.

SMTP Connection Manager Editor (=
Connection manager information
Mame: CompanySMTPServer
Description: The SMTP Server for my Company
SMTP server: SMTP.YourServer.com|

|:| Use Windows Authentication
|:| Enable Secure Sockets Layer [35L)

Timeout (milliseconds):

FIGURE 15-3

Just as in the Send Mail Task, the SMTP connection (which is created in the connection manager)
has a name and description. The name shows in the connection manager area below the Control
Flow. The description is usually a longer line of text describing the purpose of SMTP connection.
The SMTP server is the name of your server that will handle e-mail sent via SMTP. Below the
server name, you see two check boxes: Use Windows Authentication and Enable Secure Sockets
Layer (SSL). When you check Use Windows Authentication, the package passes the user credentials
of the person running the package through to the SMTP server for verification to send the e-mail.
Checking Enable Secure Sockets Layer (SSL) sends the e-mail via Secure Sockets Layer. The security
type you select will vary based on your environment. One new feature of the SMTP Connection is
the Timeout option. Set this to the number of seconds you want the SMTP Connection to attempt to
connect before timing out if it has trouble connecting.

Returning to the Send Mail Task Editor, you see that the next properties of the Send Mail Task are
the basic fields of an e-mail:

» From—The e-mail address that will show as the sender
To—The receiver of the e-mail

>

> Cc—Sends a carbon copy e-mail

> Bce—Sends a blind carbon copy e-mail
>

Subject—Shows in the subject line of the e-mail

The From, To, and Subject properties should be very familiar to anyone who has sent an e-mail. The
carbon copy sends a copy of the e-mail to another e-mail address along with the To e-mail address.
The recipients can see both of the e-mail addresses receiving the e-mail. Blind carbon copy sends the

102

| SECTION 2 CONTROL FLOW

e-mail to another recipient along with the user in the To field, but the To recipient cannot see the
Bcc e-mail address.

The next property to set is the MessageSourceType. It has three options:
> Direct Input—Message is typed into the Send Mail Task
> File Connection—Message is saved in an external file

> Variable—Message is stored in a package variable

Direct Input is the easiest to use. This method enables you to type the message command directly into
the Execute SQL Task. The advantage of this method is that the message is easy to enter. The disad-
vantage is that the message cannot be altered outside of the package. So, maintenance is more difficult
and requires you to alter and redeploy the package, which can be cumbersome and time consuming.

The File Connection option makes it easy to alter the message from outside of the package. So, as
your business needs change and you need to select different data for your package, you can do this
very easily. The disadvantage here concerns maintaining and securing your files. Imagine if someone
inadvertently deletes all of the message files that your company’s packages use daily. Any packages
using these files would then fail at run time.

The Variable option as the message source is similar to Direct Input because the variable is stored
in the package. However, configuration files make it easy to alter variables outside of the package.
Thus, you can alter the package without altering and redeploying it, giving you the best of both
worlds in this situation.

Once you have selected the MessageSourceType, you have an option to enter a message state-
ment, select a file connection, or select a variable. The option shown changes based on the
MessageSourceType you selected.

If you selected Direct Input, you see a message source 1 Message source =

option, and clicking the property makes an ellipsis : i
appear. Clicking this ellipsis opens a small editor window
in which to enter the message, as shown in Figure 15-4.
The editor is not much more than a small notepad with
fewer options. This is not an optimal place to enter a
message. When you select Variable or File Connection
for the MessageSourceType, the message source changes
to a drop-down menu that enables you to select the file or
variable. Files and variables are easier to edit than direct
input and are, therefore, a better practice.

. .. FIGURE 15-4
The Priority property enables you to set the priority

mail flag on an e-mail. These are the small symbols you see in Outlook. High priority shows a red
exclamation point, normal priority shows no icon, and low priority shows a blue arrow pointing
down. However, remember that although this is true in Outlook, other e-mail programs may not
show icons.

The last option is Attachments. Here, you can select a file that you would like to send to the recipi-
ents. This attaches the file to the e-mail just the same as if you attached it to a standard e-mail. This

LESSON 15 USING THE SEND MAIL TASK | 103

can be a file that was created in the package by a File System Task, or a completely separate file not
used anywhere else in the package.

TRY IT

In this Try It, you create a Send Mail Task to send an e-mail. This e-mail will be in a Control Flow.
When the package is successful, the e-mail will be sent and tell you the package has finished run-
ning, giving you an understanding of how the task can be used as a notification tool.

You can download the completed Lesson15.dtsx from www.wrox . com.

Lesson Requirements

You need to create a Send Mail Task. The SMTP information needs to be your own SMTP connec-
tion information so that the e-mail can be sent via your SMTP connection.

Hints
>

>

You need one Send Mail Task.

You need to set up an SMTP connection.

Step-by-Step

1.
2.
3.

Drag a Send Mail Task into a blank package.

Right-click in the connection manager and select New Connection.

Select the SMTP connection from the list and click Add, as shown in Figure 15-5.

Select the type of connection manager to add to the package.

Connection manager type:

J Add SSIS Connection Manager o |[E =

Type Description

EXCEL Connection manager for Excel files

FILE Connection manager for files

FLATFILE Connection manager for flat files

FTP Connection manager for FTP connections

HTTP Connection manager for HTTP connections
MSMQ Connection manager for the Message Queue tas
MSOLAP100 Connection manager for Analysis Services conne,
MULTIFILE Connection manager for multiple files
MULTIFLATFILE Connection manager for multiple flat files

ODEBC Connection manager for ODBC connections
OLEDE Connection manager for OLE DB connections
SMOServer Connection manager for SQL Server transfer task
SMTP Connection manager for the Send Mail task
SQLMOBILE Connection manager for SQL Server Compact co.
WMI Connection manager for the WMI tasks

4| m

| 3

FIGURE 15-5

http://www.wrox.com

104 | SECTION 2 CONTROL FLOW

10.
1".
12.
13.

14.
15.
16.
17.

Change the SMTP connection name to your company name and SMTP, for example, Your
Server Name.

Set the SMTP connection description to My companys SMTP Server.
Set the SMTP connection server to the actual SMTP Server connection.

Place a check in Windows Authentication if your company uses Windows Authentication to
send SMTP e-mail.

Place a check in Enable Secure Sockets Layer (SSL) if your SMTP server requires a secure
connection.

Once you have completed the previous steps, the SMTP connection should look like
Figure 15-6.

SMTP Connection Manager Editor =)

Connection manager information

Name: Your Server Name SMTP

Description: My companys SMTP Server

SMTP server: SMTP.YourServerHerelcom

|:| Use Windows Authentication
|:| Enable Secure Sockets Layer (S5L)

Timeout [milliseconds):

Cancel

FIGURE 15-6

Click OK in both open windows to return to the Control Flow.
Double-click the Send Mail Task to open the editor.
Name the Send Mail Task Send Package Info.

Set the Send Mail Task description to Send email to users containing the package
information.

Click the Mail node on the left-hand side of the Send Mail Task Editor window.
Set the SMTPConnection to the SMTP connection you created in Steps 2-9.
Set the From address to your e-mail address.

Set the To address to your e-mail address. (If you have two e-mail addresses, you can set
From and To to the two different e-mail addresses. This is true as long as the SMTP server
allows you to send and receive e-mail from these e-mail addresses.)

LESSON 15 USING THE SEND MAIL TASK | 105

18.
19.

Set the Subject line to Email From Package.

Set the MessageSourceType to Direct Input.

Set the MessageSource to The Send Mail Package Finished. The Send Mail Task should look
similar to Figure 15-7.

=] Send Mail Task Editor = &=

w1 Configure the properties for the e-mail message sent by the 55IS package.

General 4 Mail
Mail SmtpConnedion Your Server Name SMTP
Expressions From YourEmail@YourCompany.com
To YourEmail@YourCompany.com
4
BCc
Subject Email From Package
MessageSourceType Direct Input
The Send Mai Package Fished ()
Priority Normal
Attachments
MessageSource
Specifies the contents of the message.

o] Loma] (e

FIGURE 15-7

Click OK.

Run the package by clicking the green debug arrow on the toolbar; you should receive an
e-mail from yourself.

NOTE If you do not receive an e-mail, but the package completes, check your
SMTP server logs to see why the e-mail was stopped.

Please select Lesson 15 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Using the FTP Task

The FTP Task works very similarly to any FTP utility. It enables you to send and receive files
from an FTP location along with other FTP commands. The FTP Task comes in handy when
you need to move files from an FTP server to your environment for processing or when you
need to send a file to an FTP server. A common example is sending an extract file created in a
Data Flow or receiving a flat file to be processed by a Data Flow and inserted into a table in
your server.

Double-click the FTP Task to open the task editor. The first screen of the FTP Task Editor
shows the General node with some basic properties of the task. Under the General node, you
see the name and description of the FTP Task. These
do not affect the FTP Task; they are used for ease of
reference when viewing the tasks in the Control Flow.
The name shows on the tasks in the Control Flow, and
the description is usually a longer line of text describ- Server port B
ing the purpose of the FTP Task. It is a best practice
to always change the values of these fields to values
that make it easy for anyone to see and understand the
function of the task.

9| FTP Connection Manager Editor =]

Server settings

Server name:

Credentials

User name: ananymous

Password:
The General node also has two other properties: FTP otion:
Connection and Stop on Failure. The FTP Connection
is the connection to the FTP server that must exist

in the connection manager. You can create this FTP
connection either by clicking the drop-down menu Chunk size fin KB} 1
next to the FTP Connection field and selecting <New
Connection...> or by right-clicking in the connection [
manager and selecting New Connection. Then select
FTP in the menu of connection types. Either way [ok [cancel [mew |
opens the FTP Connection Manager Editor, as shown
in Figure 16-1. FIGURE 16-1

Time-out {in seconds): B0
D Use passive mode

Retries: 5

Test Connection l

108 | SECTION 2 CONTROL FLOW

The first property of the FTP Connection Manager is the FTP Server location. The examples in this
chapter use FTP.Microsoft.com. It is an FTP server that allows anonymous connections, so you
should be able to connect to it with no issues. So in the Server name box, you would type in FTP.
Microsoft.Com. The port is usually 21, but if your company uses a different port for FTP, which
can be due to security concerns, type the appropriate port in the Server port property.

Under the Credentials section are two properties, the User name and Password. These are the cre-
dentials used to log in to the FTP server. The Microsoft FTP Server allows Anonymous connections,
so a password is not required. If you are connecting to another server, you would type in the proper
username and passwords in this section.

In the Options section are four other options. The first is Time-out. The Time-out is the number of
seconds the FTP connection tries to connect before failing. The default is 60 seconds. Keep in mind
that when an FTP Task is trying to connect, the package is stopped at that point in the Control
Flow. So if the Time-out is set to a large number and has trouble connecting, the package may run
for an extended period of time without actually performing any task. This is especially true if the
package is contingent on the success of the FTP Task. So keeping this at a shorter time allows the
package to fail faster due to the FTP connection issues. However, if you have an FTP server that
takes a long time to validate the connection, the time may need to be higher.

The next option is Use passive mode. If checked, this option connects the FTP server using the pas-
sive mode instead of active mode. The Retries option is the number of times the FTP Task tries to
connect to the FTP server before failing out. The last property of the FTP Connection Manager
Editor is the Chunk size. This is the size of the data that is sent out in succession until the entire file
is sent or received. Some networks have restrictions that may require this to be adjusted, so check
with your network admin for your restrictions. Generally, the 1 KB default is acceptable.

Once you have the connection information set up to connect to the FTP location, you can click Test
Connection at the bottom of the FTP Connection Manager Editor window, and a test message is
sent to the FTP server to ensure the connection exists and that the username and password meet the
FTP server credentials. If it is a successful connection, you receive the message “Test connection suc-
ceeded,” as shown in Figure 16-2.

Microsoft Visual Studio ==

R Test connection succeeded.

FIGURE 16-2

If the FTP server does not exist or the user credentials fail to pass the login process, you receive
the message “Connection cannot be established. Server name, port number, or credentials may be
invalid,” as shown in Figure 16-3.

LESSON 16 USING THE FTP TASK | 109

Microsoft Visual Studio

‘) Connection can not be established. Server name, port number, or credentials may be invalid.

2

FIGURE 16-3

After you have created the FTP server connection in the connection manager, you can then rename
the connection by clicking it in the connection manager one time, and the name will highlight blue.
Then you can type a more meaningful name for the FTP connection. This capability is particularly
helpful when you have multiple FTP connections in the connection manager.

Once you have the FTP connection set up in the connection manager, you can select it in the FTP
Connection drop-down menu in the FTP Task. The next property is Stop on Failure. This property
stops the FTP from performing a transfer if there is a failure during the transfer process. Keep in
mind that the task will still send a failure message to the package or parent container if it has a fail-
ure regardless of this property’s setting. The Stop on Failure property is available simply to allow
the transfer to continue if part of the transfer fails.

When you click the File Transfer node in the FTP Task Editor, you see the operations that are avail-
able for the FTP Task to perform and the parameters for these operations. Of course, the parameters
change based on the operation you select. The Operation drop-down menu has several options, as
shown in Figure 16-4:

@& FTP Task Editor [=[=][==]

Configure the properties used to send and receive files from an FTP server and to manage
.| directories and files on local and remote servers.

General 4 Local Parameters
File Transfer IsLocalPathVariable False
Expressions LocalPath
OwerwriteFileAtDest False
4 Operation
T receve s =
IsTransferAscii Send files
4 Remote Parameters R
IsRemotePathVariable Create local directory
RemotePath Create remote directory
Remove local directory
Remove remote directory
Delete local files
Delete remote files
‘Operation
Specifies the FTP operation that the task performs.

o] o] (e

FIGURE 16-4

110 | SECTION 2 CONTROL FLOW

Send files—Send files to the FTP server from a local source

Receive files—Retrieve files from the FTP server to a local destination
Create local directory—Create a folder on a local drive

Create remote directory—Create a folder on the remote directory
Remove local directory—Delete a local folder and all of the contents
Remove remote directory—Delete a remote folder and all of its contents

Delete local files—Delete files on the local directory

Y YV Y VY Y Y Y Y

Delete remote files—Delete files on the remote FTP server

If you select Receive files, you see the most common options used in an FTP Task.
IsLocalPathVariable is a boolean property that tells the FTP Task whether the location on the local
destination is saved in a variable. When this is set to true, the drop-down menu of the LocalPath
changes to a drop-down menu of variables. When the IsLocalPathVariable option is set to false, the
LocalPath drop-down shows the available folder location in the connection manager.

If the IsRemotePathVariable is true, the RemotePath shows a drop-down of variables to choose
from. If the IsRemotePathVariable is false, the RemotePath shows an ellipsis that will connect to
the FTP server and show a browse window enabling you to select the file to be retrieved with the
FTP Task.

The last property to set is OverwriteFileAtDest. If set to true, this property allows the FTP Task to
overwrite an existing file if the FTP Task attempts to move the file into a directory that already con-
tains the file being moved. If it is set to false, the FTP Task fails if the file already exists.

TRY IT

In this Try It, you retrieve a file from the FTP server from Microsoft. After this lesson, you will
understand how you can use the FTP Task to download a file to a local destination.

You can download the completed Lesson16.dtsx from www.wrox.com.

Lesson Requirements

You need to create an FTP Task with the proper credentials and server settings to connect to FTP.
Microsoft.Com. You then look in a folder on the FTP server and retrieve a single file.

Hints
> You need a single FTP Task.

> Microsoft’s FTP server enables you to connect anonymously.

http://www.wrox.com

LESSON 16 USING THE FTP TASK | 111

Step-by-Step

1. Dragan FTP Task into a blank package and double-click the task to open the FTP Task

Editor.

2. Click the FTP Connection drop-down menu and select the only option, <New
Connection...>. This opens the FTP Connection Manager Editor.

3. In the FTP Connection Manager Editor, set the Server name to FTP.Microsoft.Com and
leave the other options at the defaults. The window should match Figure 16-5.

Server settings

Server name:
Server port:
Credentials
User name:
Password:

Options

Time-out (in seconds):
D Use passive mode

Retries:

Chunk size (in KB):

@ FTP Connection Manager Editor

==

l oK

Help

FIGURE 16-5

P

Click Test Connection to ensure you have a connection to the FTP server. If your connection

fails, check with your network admin to determine your FTP abilities in your environment.

© 0N v

Click OK in the FTP Connection Manager Editor; the FTP Task Editor should still be open.
Change the name of the FTP Task to Get MS File.

Change the description to Retrieve File from Microsoft.

Click the File Transfer node in the left pane of the FTP Task Editor.

Select Receive Files in the Operation drop-down menu.

10. From the drop-down menu for LocalPath, select <New Connection...>. This selection opens
the File Connection Manager Editor.

11. Set the usage type to Existing Folder.

112 | SECTION2 CONTROL FLOW

12. Click Browse and select the C:\Projects\SSISPersonalTrainer.

13. Click the ellipsis next to RemotePath and browse to the SoftLib directory in the Microsoft
FTP Server.

14. Select the index.txt file. Click OK.
15. Click OK in the FTP Task.

16. Click the green debug arrow on the toolbar. The FTP Task should turn green to indicate
success.

17. Ensure you have the index.txt file in the SSISPersonalTrainer folder on your local drive.

Please select Lesson 16 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Creating a Data Flow

This lesson covers the basics of the Data Flow Task. Section 3 comprises lessons covering the
sources, destinations, and transformations in detail. However, this lesson gives you the tools
to get started creating a Data Flow and understanding its purpose.

The Data Flow Task is used to transfer data from a source to a destination and can transform
the data as needed. The Data Flow Task is capable of handling large amounts of data. The
source and destination can be any of several different types, such as a flat file or database, and
can contain millions of rows of data. The destination can also be of several types.

You can use the Data Flow Task to extract data from a database and write to a flat file loca-
tion or to move the data from a flat file to a database. This capability enables you to receive
files from outside sources and write this data to your database. You can also use the Data
Flow Task to move data from one database to another.

The transforms that exist in the Data Flow enable you to make changes to the data as you
move it from a source to a destination. For example, if you are receiving flat files from a ven-
dor and the data is not formatted correctly (say, the Social Security numbers need to have
dashes) you can fix that before writing it to a database. Fixing things like that prior to writing
to your database prevents you from having to run updates on your database later.

Additionally, these transforms are faster in SSIS. SSIS performs the transforms in memory,
which is why it is much faster than reading and writing the data to a drive. This speed is espe-
cially evident in the case of running updates to a table. SQL update commands read data from
a database and write data back to the same database. This reading and writing to the same
location makes the process very slow compared to SSIS.

The Data Flow enables you to save data to multiple locations simultaneously, which also
improves performance when you are saving data. You can receive a flat file from a vendor,
open it with an SSIS package, parse through the data, make decisions on where data needs to
be written, and write the data to multiple locations, all in one Data Flow.

You have two ways to create a Data Flow in a package. You can drag out the Data Flow Task
from the Toolbox, or you can click the Data Flow tab at the top and click the blue link in

114 | SECTION2 CONTROL FLOW

the middle of the screen. This link states, as shown in Figure 17-1, “No Data Flow tasks have been
added to this package. Click here to add a new Data Flow task.”

If there is already a Data Flow in the pack- =

=

age, clicking the Data Flow tab shows that B Contlfow [141 DataFlow | Parameters | & Eventianders | Ty Paage ... =
Data Flow. If multiple Data Flows are in a
package, you see a drop-down menu at the
top of the Data Flow screen showing the list
of all the Data Flows in the package. It is a
best practice to give the Data Flows a name
that is descriptive. With descriptive names,
you can then easily select the correct Data
Flow you are trying to alter. Descriptive nam- 1 it otk e e e this padeage, Cickheret a3 e ot otk
ing is a major help when your package con-
tains a large number of Data Flows.

After you enter the Data Flow tab by either
method previously mentioned, the Toolbox
will contain a new set of tools. The top
section contains the Favorites, the middle
contains the common transforms, and the
bottom contains the source and destinations.
These tasks can be used only in the Data
Flow Task and cannot be used in the Control Flow screen. You can move any item in the Toolbox to
the Favorites section by right-clicking on it and clicking Move to Favorites.

FIGURE 17-1

Several sources have the same type as a destination. For example, there is an Excel Source and an
Excel Destination. These tasks are not interchangeable. A source can only read data and a destina-
tion can only write data. Keep in mind that any connections you add to the Connection Managers in
a package can be reused in other Data Flows or even in the Control Flow of the package (connection
managers are explained in Lesson 6). So, a source in a Data Flow can connect to an Excel file, and
an Excel Destination can connect to the same Excel file. The connection exists just once in the con-
nection manager but can be used multiple times in a package.

Once you drag a source into a Data Flow, two lines appear from the bottom of the task. The blue line
is the good data. The red line is the bad data. Sources and destinations, including how to use these
blue and red lines, are explained in detail in the lessons following this one. Double-clicking the source
opens the source editor for that source type. In the editor, you can select the location of the source.

After your source is established, you can connect it to a transform from the transformation section
of the Toolbox. This transform can manipulate the data to be in the form you want for your destina-
tion. The transform can also make complex decisions to send data to different destinations.

Once the sources and transforms are created, you can drag out a destination and connect the last
step of the transforms to the destination. If the Data Flow does not contain any transforms, the
source can be connected directly to the destination, which simply moves data from one location to
another without changing the data. This arrangement is the simplest form of a Data Flow.

LESSON 17 CREATING A DATAFLOW | 115

TRY IT

In this Try It, you create a package with a Data Flow Task. The Data Flow is going to move data
from a SQL database table to a flat file. After this lesson, you will have an understanding of how to
create a Data Flow Task in the Control Flow of a package.

Lesson Requirements

You need to create a Data Flow in a package and create a source and a destination. The source is
going to be an OLE DB connection to the AdventureWorks2012 database to the Products table.
The destination is going to be a flat file you create.

You can download the completed Lesson17.dtsx from www.wrox . com.

Hints
>
>

>

You need only one Data Flow Task for this example.

The Data Flow needs a source and a destination.

The package needs two connections in the connection manager.

Step-by-Step

1.
2.
3.
4.

5.

Drag a Data Flow Task into a blank package.

Double-click the Data Flow Task to enter the Data Flow tab.

Drag in an OLE DB Source.

Double-click the OLE DB Source to
open the Source Editor.

Click the New button. The
Configure OLE DB Connection
Manager dialog box opens (see
Figure 17-2). Select the source con-
nection to AdventureWorks2012
and click OK. Note: If the connec-
tion exists in this window, you can
skip steps 6-8.

If the AdventureWorks2012
connection is not shown in the
Configure OLE DB Connection
Manager dialog box, click the New
button, which takes you to the
Connection Manager dialog box
(see Figure 17-3).

1/ Configure OLE DB C tion Manag o EE=d
To create a connection manager based on previously defined connection information,
select a data connection, and then click OK. To create a new connection manager, click
Mew.

Data connections: Data connection properties:
localhost. AdventureWorks2012
P Val
LocalHost AdventureWarksDW2012 paoety aue
Data Source localhost
Initial Catalog AdventureWorks2012
Integrated Se... SSPI
Provider SQLNCIH1 1
[New...] ’ Delete]

FIGURE 17-2

http://www.wrox.com

116 | SECTION 2 CONTROL FLOW

10.
1".
12.
13.
14.
15.

16.

17.
18.
19.
20.

J Connection Manager ==
Provider: I Mative OLE DB\SQL Server Mative Client 11.0 j
L_A Server name:
= mdavis-vm| - Refresh
C ct
annection Log on to the server
=% @ Use Windows Authentication
- (7) Use SQL Server Authentication
All
User name:
Fassword:
Save my password
Connect to a database
(@) Select or enter a database name:
AdventureWorks2012 -
() Attach a database file:
Browse...
Logical hame:
Test Connection [oK J [Cancel] [Help
FIGURE 17-3

Set the Server Name to the location of the server with the AdventureWorks2012 database.
Usually this name is LocalHost if the server is on your machine.

Select AdventureWorks2012 in the Select or enter a database name drop-down and click OK
twice.

In the OLE DB Source Editor, click the drop-down menu of tables and select the Production.
Product table.

Click the Columns node in the left-hand pane. You should see columns in the Products table.
Click OK to close the Source Editor.

Right-click the OLE DB Source and select Rename.

Change the Name to AW Products.

Drag a Flat File Destination into the Data Flow.

Connect the blue line from the bottom of the AW Products Source to the Flat File
Destination.

Double-click the Flat File Destination to open the Flat File Destination Editor.

Click the New button.

Select Delimited in the Flat File format window and click OK.

In the Flat File Connection Manager Editor, change the name to AW Products Extract.

Change the Description to All AW product data.

LESSON 17 CREATING A DATAFLOW | 117

21.
22.
23.

Type C:\AWProducts.txt in the File Name text box.

Click OK to close the Connection Manager.

Click the Mappings node in the left-hand pane; the mappings should look like Figure 17-4.

. Flat File Destination Editor [= =] =)
Configure the properties used to connect to and insert data into a text file,
Connection Managy|
Available Input Colu Ayailable Destination
Name -~ Name -~
! ProductlD L { ProductiD
Name | “ Name H
ProductNumber b ProductMumber .
MakeFlag MakeFlag
FinishedGoodsHag FinishedGoodsFlag
Calor Color
SafetyStockLevel afetyStock Level
ReorderFoint ReorderPoint
StandzrdCoet StandzrdCast
Input Column Destination Column ;
ProductD { ProduciD
Mame I Name =
ProductNumber ProductMumber
MakeFlag MakeFlag
FinishedGoodsFlag FinishedGoodsFlag
Calar Color
SafetyStockLevel SafetyStockLevel
ReorderPoint RearderPaint
StandardCost standardCost
PR T ListPrice ListPrice I8
[0 J[one | [new |

FIGURE 17-4

24. Click OK to close the Flat File Destination Editor.

25. Right-click the Flat File Destination and click Rename. Change the name to AW Products
Extract File. The Data Flow should match Figure 17-5.

§,. Control Flow |[25 DataFlow O Parameters

Data Flow Task: [Data Flow Task

& EventHandlers ""5 Package Explorer

I\,.]’ AW Products

-| AW Products Extract File

Sa

FIGURE 17-5

118 | SECTION 2 CONTROL FLOW

26.

27.

28.

Click the blue debug arrow on the toolbar. A new file will be created in your C: drive con-
taining all the data from the product table. (If you do not see a file, you may not have rights
to create a file and may need to start SQL Server Data Tools MD in administrative mode.)

Click the Stop Debug button on the toolbar and look at the contents of the file on your
C: drive.

You can delete the text file when you are done viewing it.

Please select Lesson 17 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

SECTION 3
Data Flow

» LESSON 18: Extracting Data from Sources
» LESSON 19: Loading Data to a Destination
» LESSON 20: Changing Data Types with the Data Conversion Transform

» LESSON 21: Creating and Replacing Columns with the Derived
Column Transform

» LESSON 22: Rolling Up Data with the Aggregate Transform

» LESSON 23: Ordering Data with the Sort Transform

» LESSON 24: Joining Data with the Lookup Transform

» LESSON 25: Auditing Data with the Row Count Transform

» LESSON 26: Combining Multiple Inputs with the Union All Transform
» LESSON 27: Cleansing Data with the Script Component

» LESSON 28: Separating Data with the Conditional Split Transform

» LESSON 29: Altering Rows with the OLE DB Command Transform

» LESSON 30: Handling Bad Data with the Fuzzy Lookup Transform

» LESSON 31: Removing Duplicates with the Fuzzy Grouping Transform

Extracting Data from Sources

Generally, when you create SQL Server Integration Services (SSIS) packages, it is for the pur-
pose of moving data from one point to another. A source is where you specify the location of
the data you want to move or transform.

Most sources point to a connection manager in SSIS. By pointing to a connection manager,
you can reuse connections throughout your package because you need only change the connec-
tion in one place. In this lesson, the most frequently used sources (OLE DB, Excel, and flat file)
are described thoroughly.

NOTE [n August 2011, Microsoft announced that SQL Server 2012
would be the last release to support the Microsoft SOL Server OLE DB
provider, and recommended that new development using SOL Server 2012
be done using ODBC connections. Although this announcement stunned
many because of Microsoft’s investment in OLE DB over the past years, it
shouldn’t be surprising with the emphasis on cloud computing, which fre-
quently uses ODBC. This is a significant change, but it should not change
your design style at this point in time. When it comes to SSIS development,
using ODBC connections is still missing some functionality. This could
cause your development to stall at points, so you should stick with the
OLE DB provider.

SOURCE ASSISTANT

The Source Assistant is a new feature of SSIS that helps guide you through the process of
defining a connection manager and source. From inside the Data Flow tab, select the Source
Assistant from the SSIS Toolbox. Figure 18-1 shows the Source Assistant displaying the
available source types you can choose from, and it even creates a connection manager to
the selected source type if one does not already exist. If you believe you have a source type
installed on your machine, but it does not appear, uncheck the Show only installed source
types option and all source types will appear.

122 | SECTION 3 DATA FLOW

Select source type: Select connection managers
SOL Server MNew...

Flat File

Oracle

Show only installed source types

FIGURE 18-1

After selecting the appropriate source and connection manager for your design, click OK and a
source appears in your Data Flow Task with the features you selected. The next sections dive deeper
into the most frequently used connection types.

OLE DB SOURCE

The most common type of source used is the OLE DB Source, which can point to any Object
Linking and Embedding Database (OLE DB)-compatible data source, such as SQL Server, Oracle,
or DB2. To configure the OLE DB Source, add the source to the design pane in the Data Flow tab
and double-click on it. In the Connection Manager page of the OLE DB Source Editor, shown in
Figure 18-2, select the connection manager of your OLE DB Source from the OLE DB connection
manager drop-down box. You can also add a new connection manager in the editor by clicking the
New button.

The Data access mode option sets how you can retrieve the source data. The OLE DB Source has
four different data access modes available:

> A table or view

> A table or view indicated in a variable
> The results of a SQL statement
>

The results of a SQL statement initiated in a variable

LESSON 18 EXTRACTING DATA FROM SOURCES | 123

_ | OLE DB Source Editor [=]

Configure the properties used by a data flow to obtain data from any OLE DB provider.

Connection Manag Specify an OLE DB cnnl'!ection manager, a data source, ora datar source view, and 5e|e§t the
data access mode, If using the SQL command access mode, specify the SQL command either by

Columns typing the query or by using Query Builder.
Errar Qutput

OLE DB connection manager:

| AdventureWorks2012 hd

Data access mode:

[Table or vigws v]

Mame of the table or the view:

2 [dbo).[Errorlog] -

T — Preview...

[OK l [Cancel I I Help I

FIGURE 18-2

SSIS does not easily allow a stored procedure to be accessed when using the SQL command mode.
Additionally, you can pass a variable into the query by substituting a question mark (?) for where the
parameter should be and then clicking the Parameters button.

After these configurations have been completed, you can go to the Columns page to check each col-
umn you need from the table. Figure 18-3 shows that once the needed columns are checked, you can
assign a new name by typing the new name in the Output Column.

NOTE Here’s a best practice: when you are selecting columns, check only what
you will need to use. With a smaller data set, you gain better performance. For
the same reason, it is always better to type a query with only the needed col-
ummns instead of selecting a table. Using the select table option essentially does
a Select * on the table, bringing all that data across the network when you
might need only 5 out of 25 columns.

124 | SECTION 3 DATA FLOW

=

Configure the properties used by a data flow to obtain data from any OLE DE provider,

_ |, OLE DB Source Editor

F=3EOR 55|

Connection Manag
Error Output

External Column

Available External Colu...

ODO0EEO0EO0E W

Name =
ErrorLoglD

ErnorTime
UserName

ErrorMumber
EmorSeverity

nrorProcedure
ErmorLine
EnorMessage <

Output Column

ErrarLoglD

ErrorLogID

Userhame
ErrarSeverity
ErrorState

ErrarProcedure

UserMame
ErrorSeverity
ErrarState

ErrorProcedure

) [omer) (e]

FIGURE 18-3

Sometimes incompatible data types can cause conversion issues, and you may want to send these
errors to a different path in the Data Flow. You can do this within the Error Output page shown in
Figure 18-4, where you specify how to handle these issues when they occur. On each column, you
can specify that if an error occurs, you want the row to be ignored, be redirected, or fail. If you
choose to ignore failures, the column for that row is set to NULL. If you redirect the row, the row is
sent down the red path in the Data Flow coming out of the OLE DB Source.

LESSON 18 EXTRACTING DATA FROM SOURCES | 125

_ 5 OLE DB Source Editor o |[E =]
Caonfigure the properties used by a data flow to obtain data from any OLE DB provider,
Connection Manag Input or Output Column Error Truncation Description
Columns OLE DE Sou...
Error Output| r ; . A
3 ErrorlogID Fail compon... Fail compon... Conversion
[UserName Fail compon... Fail compon.. Conversion
3 ErrorSewerity Fail compon... Fail compon... Conwversion
[& ErrorState Fail compon... Fail compon... Conversion
= ErorProced.. Fail compon.. Fail compon.. Conwersion
< 1 | »
Set this value to selected cells: Fail component “/] Apply
< (] 3
I QK l { Cancel I [Help J
FIGURE 18-4

Try It

In this Try It, you set up an OLE DB Source to bring in transaction history data from the
AdventureWorks2012 database. You can download the AdventureWorks2012 database used for this
book at the Wrox website at www.wrox.com/go/SQLSever2012DataSets. (Please see Lesson 3 if you
haven’t yet installed the AdventureWorks2012 database.) After this lesson, you will know how to
use an OLE DB Source to extract data from a SQL Server table.

You can download the completed Lesson18.dtsx from www . wrox. com.

Lesson Requirements

Create a new package named Lesson18 and make the following change:

> Use the following query to return needed rows from AdventureWorks2012:

SELECT TransactionID
, ProductID
,TransactionDate
,Quantity

http://www.wrox.com/go/SQLSever2012DataSets
http://www.wrox.com

126 | SECTION 3 DATA FLOW

,ActualCost
,ModifiedDate
FROM Production.TransactionHistory
WHERE Quantity > 2

Hints
> You need only one OLE DB Source and one OLE DB Connection Manager.

Step-by-Step

1. Create an SSIS package and name it Lesson18 or download Lesson18.dtsx from
www . wrox.com. Add a Data Flow Task to the Control Flow design surface and name it
OLE DB Extract.

2. Dragan OLE DB Source in the Data Flow design surface and double-click to open the OLE
DB Source Editor.

3. Click the New button for the OLE DB Connection Manager to create a new connection to a
SQL Server Source, which is shown in Figure 18-5. Click OK to create the connection.

.} Connection Manager ES

Provider: | Native OLE DB\SQL Server Mative Client 11.0 ﬂ

Server name:

localhosY - Refresh

Log on to the server

@ Use windows Authentication
() Use SQL Server Authentication

Save my password
Connect to a database

@ Select or enter a database name:
AdventureWorks2012 -

() Attach a database file:

Browse...

o) (e) (o)

FIGURE 18-5

http://www.wrox.com

LESSON 18 EXTRACTING DATA FROM SOURCES | 127

4. Back in the OLE DB Source Editor, once the connection manager is created select SQL
Command as the data access mode and type the following query:

SELECT TransactionID
, ProductID
,TransactionDate
,Quantity
,ActualCost
,ModifiedDate
FROM Production.TransactionHistory
WHERE Quantity > 2

Once your screen looks like Figure 18-6, click OK to continue.

_ | OLE DB Source Editor

Configure the properties used by a data flow to obtain data from any OLE DE provider,

Connection Manag Specify an OLE DB -:om?ection manager, a data source, or 3 data_ source view, and selec_t the
data access mode, If using the SQL command access mode, specify the SQL command either by

Columns typing the query or by using Query Builder.
Error Qutput

OLE DB connection manager:

[AdventureWorksZﬂi? LJ | Mewy...

Data access mode:

[sQL command

SQL command text:

SELECT TransactionID - Paramaters:.
ProductID
TransactionDate
Quanti i
,E ctualgg « Build Query..
ModifiedDate

FROM Production.TransactionHistory

WHERE Quantity > 2 Browse...

L[N

Parse Query

4 1 3 | Preview,,,

’ OK] [Cancel l ’ Help

FIGURE 18-6

128 | SECTION 3 DATA FLOW

5. Draga Union All onto the Data Flow design surface. The o0 Lessont8 (Running) - Micro...[| = [
Union All serves as a placeholder until you learn about des- Teun Slapies as Fomet S5
tinations in the next lesson. Connect the OLE DB Source P e
to the Union All and execute just this Data Flow by right- PR-dd@ s ano oo,

Lesson18.dtsx [Design] > -
b @10 117 {781+ GIE

Data Flow Task: [4) OLEDBExtra

clicking in the design surface and selecting Execute Task.
Figure 18-7 shows the results.

A
¢
g
g
g
g
a

‘OLE DB

W S

EXCEL SOURCE

The Excel Source is used to extract data from an Excel spreadsheet. sa,szlmws

To use an Excel Source, you must first create an Excel Connection 2
Manager that points to the location of the spreadsheet. Figure 18-8
shows that once you point to an Excel Connection Manager, you can

Union All

Connection Managers

select the sheet from the Name of the Excel sheet drop-down box. 11 dventretiorsanz

The Excel Source works much the same as the OLE DB Source, which

means you can even run a query by changing the data access mode to D Packans execion competec Cick her...
SQL Command. This source treats Excel just like a database, where an B8 tmmedtiote Window [, Error Lt

Ready

Excel sheet is the table and the workbook is the database.

FIGURE 18-7

|=L Excel Source Editor (==

Configure the properties that enable the Data Flow task to obtain data from Excel provider.

Connection Manag; Specify a connection manager, data source, or data source view for the Excel source. Then,
select the mode used to access data within the source. After selecting the data access mode,

Columns select from among the additional data access optians that appear.
Error Output

Excel connection manager:
| Inventory - New:

Data access mode:

[Tabte or view -

Name of the Excel sheet:

2 nwentory_Worksheet v

F I [— > Preview..,

o) L] e

FIGURE 18-8

LESSON 18 EXTRACTING DATA FROM SOURCES | 129

SSIS supports Excel data types, but unfortunately Excel does not translate well to how most databases
are constructed. If you right-click a column in Excel and select Format Cells, you will find that most of
the columns in your Excel spreadsheet have probably been set to General. SSIS interprets the General
format as a Unicode data type. In SQL Server, the Unicode translates into nvarchar, which is not typi-
cally what you find in databases. If you have a Unicode data type in SSIS and you try to insert it into a
varchar column, it can fail. Lesson 20 shows you this exact problem and how to correct it.

If you are connecting to a spreadsheet from Excel 2007 or later, ensure that you select the proper
Excel version when creating the Excel Connection Manager. You will not be able to connect to
an Excel 2007 spreadsheet otherwise.

Additionally, the native Excel driver is a 32-bit driver only, and your packages will have to run

in 32-bit mode if the workstation you develop on is 64-bit. To enable 32-bit mode, right-click and
select Properties on the project file in the Solution Explorer window. Select the Debugging tab and
change Run64BitRuntime to False, shown in Figure 18-9.

Lesson18 Property Pages =g
Configuration: |Active(Development) N 1 |N/A Configuration Manager...
4 Common Properties 4 Data Flow Optimizations
Project RunInOptimizedMode False
4 Configuration Properties 4 Debug Options
gu"? " InteractiveMode True
EF Qymen Run64BitRuntime False =l
Debugging
4 Start Action
StartAction ExecutePackage
StartApplication
StartObjectiD <Active Package>
4 Start Options
CmdLineArguments
Run64BitRuntime
Specifies whether the project should start 64 bit SSIS runtime. If 64 bit SSIS
runtime is not installed, this setting is ignored
FIGURE 18-9

This is only necessary from within SQL Server Data Tools because it is a 32-bit application.
When scheduling SSIS packages to run on a server, you can download the Microsoft Access
Database Engine 2010 Redistributable, which includes a 64-bit driver for Excel, from http://
www.microsoft.com/en-us/download/details.aspx?1d=13255.

Try It

In this Try It, you set up an Excel Source to bring in inventory data. You use an Excel spreadsheet as
your source, which you can download from www.wrox.com. After this lesson, you will know how to
use an Excel Source to extract data from an Excel spreadsheet.

You can also download the completed Lesson18.dtsx from www.wrox.com.

http://�www.�microsoft.com/en-us/download/details.aspx?id=13255
http://�www.�microsoft.com/en-us/download/details.aspx?id=13255
http://�www.�microsoft.com/en-us/download/details.aspx?id=13255
http://www.wrox.com
http://www.wrox.com

130 | SECTION 3 DATA FLOW

Lesson Requirements
Make the following changes to your Lesson18 package:

> Download the file Inventory_Worksheet.xls as your source from www.wrox.com and save it
to C:\Projects\SSISPersonalTrainer\

Hints

> You need only one Excel Source and one Excel Connection Manager.

Step-by-Step

1. Open the SSIS package named Lesson18 or download Lesson18.dtsx from www.wrox . com.
Add a Data Flow Task to the Control Flow design surface and name it Excel Extract.

2. Drag an Excel Source in the Data Flow design surface and double-click to open the Excel
Source Editor.

3. Click the New button for the connection manager. This opens the Excel Connection
Manager dialog box.

4. Tor the Excel file path, click Browse to select the location C:\Projects\SSISPersonalTrainer\,
where you downloaded the spreadsheet file. Once you have selected the correct spreadsheet,
make sure the Microsoft Excel version is Excel 97-2003 and that the First row has column
names option is checked. Figure 18-10 shows what your screen should look like.

9 Excel Connection Manager =

Specify an Excel file to connect to by selecting an existing file or by providing a file path to
create a new file,

Excel connection settings

Excel file path:

Ch\Projects\SSISPersonalTrainerInventory Work sheetxls Browse..,
Excel version:
(Microsoft Excel 97-2003 -

[¥] First row has column names

FIGURE 18-10

http://www.wrox.com
http://www.wrox.com

LESSON 18 EXTRACTING DATA FROM SOURCES | 131

5. Back in the Excel Source Editor after the connection manager is created, select Inventory._
Worksheet in the Name of the Excel sheet drop-down menu and click OK, as shown in
Figure 18-11.

6. Drag a Union All onto the Data Flow design surface. The Union All serves as a placeholder
until you read about destinations in the next lesson. Connect the Excel Source to the Union
All and execute just this Data Flow by right-clicking in the design surface and selecting
Execute Task. Figure 18-12 shows the results.

=, Excel Source Editor

Connection Manag

Columns
Error Output

o e

Configure the properties that enable the Data Flow task to obtain data from Excel provider.

Specify a connection manager, data source, or data source wiew for the Excel source. Then,
select the mode used to access data within the source, After selecting the data access mode,
select from among the additional data access options that appear.

Excel connection manager:
[rventory - New..

Data access mode:

(Table or view -

Name of the Excel sheet:

3 mventory_wWorksheet -

o] o) []

FIGURE 18-11

FLAT FILE SOURCE

The Flat File Source provides a data source for text files. Those files are typically comma- or tab-
delimited files, or they could be fixed-width or ragged-right. A fixed-width file is typically received
from the mainframe, and it has fixed start and stop points for each column. This method makes for
a fast load, but takes longer at design time for the developer to map each column.

oo Lesson12 (Running) - Micro... | = | =1 |5
File Edit View Project Build Debug
Team BlxPress Data Format SSIS
Architecture Test Tools Analyze Window
Help

- H@| % aB|a- -1,
Lesson18.dtsx [Design] %

INEIPIERCEE

Dats Flow Task: [&] Excel Extract

sansadoid 5 11013 UONIOS 8y

€| Excel Source
EN

2,139 rows
&
v

Union All

Connection Managers

|| Adventureworks2012 [nventory

(3 Package execution completed. Click here ...

B Immediate Window B Error List

Ready

FIGURE 18-12

132

| SECTION 3 DATA FLOW

You specify a Flat File Source the same way you specify an OLE DB Source. Once you add it to your
Data Flow pane, point it to a connection manager connection that is a flat file. After that, go to the
Columns tab of the Flat File Source Editor to specify what columns you want to be presented to the
Data Flow. Figure 18-13 shows columns being selected from a Flat File Source. All the specifications
for the flat file, such as delimiter type, were previously set in the Flat File Connection Manager.

-

., Flat File Source Editor o
Configure the properties used to connect to and obtain data from a text file,
Connection Manag:
Errar Qutput
Available External Col...
SickDays
WacationDays
External Column Qutput Column
¢ EmpID | EmpID
Mame Name
SickDays SickDays
acationDays WacationDays
4 1 L3
I OK } [Cancel] | Help I

FIGURE 18-13

Similar to the Excel Source, the data types of a Flat File Source are set up by default, and SSIS may not
assign them correctly. All columns are brought in as a string data type regardless of their true content.
To correct this, go to the Advanced tab in the Flat File Connection Manager and select the column and

then the correct data type.

LESSON 18 EXTRACTING DATA FROM SOURCES | 133

Try It

In this Try It, you set up a Flat File Source to bring in employee benefits data from a flat file.
The comma-delimited file to use for this example is called EmployeeList.txt, and you can find it
at www.wrox.com. After this lesson, you will know how to use a Flat File Source to extract data
from a text file.

You can also download the completed Lesson18.dtsx from www.wrox.com.

Lesson Requirements

Make the following changes to your Lesson18 package:

> Download the EmployeeList.txt file as your source from www.wrox.com and save it to C:\
Projects\SSISPersonalTrainer.

> Set the Flat File Connection Manager as comma-delimited.
Note that the first row in the file comprises column names.
Data types should be as follows:
> EmpID—int
> Name—string
> SickDays—int
>

VacationDays—int

Hints

> You need only one Flat File Source and one Flat File Connection Manager.

Step-by-Step

1. Open the SSIS package named Lesson18 or download Lesson18.dtsx from www.wrox. com.
Add a Data Flow Task to the Control Flow design surface and name it Flat File Extract.

2. Drag a Flat File Source in the Data Flow design surface and double-click to open the Flat File
Source Editor.

3. Click the New button for the connection manager. This opens the Flat File Connection
Manager Editor.

4. In the General tab, name the connection manager Flat File Extract and select the file named
EmployeeList.txt for the source file. You can download this file from www.wrox. com. Last,
check the Column names in the first data row check box. Once these changes have been
made, your screen should look like Figure 18-14.

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

134 | SECTION 3 DATA FLOW

) Flat File Connection Manager Editor o [=]==

Connection manager name: Flat File Extract

Description:

&m Select a file and specify the file properties and the file format,

igL:’::;d File name: ChProjects\SsISPersonalTrainenEmpl [oo
B Prevew Locale: [English (United States) VI [7] unicode
Code page: 1252 (ANSI- Latin] -
Format: (Delimited ~|
Text qualifier: <hohes
Header row delimiter: [Tz -
Header rows to skip: 0 =

Column names in the first data row

[oK H Cancel H Help]

FIGURE 18-14

Select the Columns tab and ensure the Column delimiter drop-box has Comma {,} selected, as
shown in Figure 18-15.

By default, all columns are assigned a string data type, but you can correct this in the
Advanced tab of the Flat File Connection Manager Editor. In the Advanced tab, you can
manually change the data type or have SSIS suggest the data type (click the Suggest Types
button). SSIS suggestions are fairly accurate, but don’t always give the desired results. For
example, on the columns EmpID, SickDays, and VacationDays, change the DataType to
four-byte signed integer (int). Had you done a Suggest Types for these columns, SSIS would
have assigned these columns single-byte signed integer (tinyint), which is not what you want

LESSON 18 EXTRACTING DATA FROM SOURCES

| 135

this time. Once these changes have been made, your screen should look like Figure 18-16.

Click OK to complete creating the Flat File Connection Manager.

) Flat File Connection Manager Editor o ll@2)EE
Connection manager hame: Flat File Extract
Description:
‘!’l_". General Specify the characters that delimit the source file:
Advanced Rows delimiter: {CRHLF} A4
3 Preview
Column delimiter: Comma {} A
Preview rows 2-4:
EmplID MName SickDays VacationDays
1 Devin Knight 4 10
2 Brian Knight 5 14
3 Mike Davis a 9
[Reset Columns l
[OK] [Cancel] [Help]
FIGURE 18-15

Click OK in the Flat File Source Editor and drag a Union All onto the Data Flow design
surface. The Union All serves as a placeholder until you read about destinations in the next
lesson. Connect the Flat File Source to the Union All and execute just this Data Flow by right-
clicking in the design surface and selecting Execute Task. Figure 18-17 shows the results.

136 | SECTION 3 DATA FLOW

. Flat File Connection Manager Editor =
Connection manager name: Flat File Extract
Description:
oo Lesson18 (Running) - Micro...[— |[=1 |[Z&]
File Edit View Project Build Debug
A General | Configure the properties of each column. feam "'""1‘;‘ ":’_':‘s"'"“‘ S5
Calumns Help
i) Acvanced] - s [.
- i HiEn g NN TR [
B Preview IEE— 4 Misc ™ I NRTREENEY |
SickDays Name EmpID Lesson1dtsx [Design] X - A&
VacationDays ColumnDelimite Comma {.} g, (2] ‘| 5 E| % '| » §
o it g
Data Flow Task: [FlatFile Extrz E'
%
]
Da [
DataType Tour-byte signed integq 3
- v o
tputColum . o]
TextQualitied True __|’ Fiat File Source &
OutputColumnWidth Union All
The width of this column in the data flow,
given in single characters, Composite ch... Connection Managers
| Adventureworks2012 [5] tnventory
Flat File Extract
I Neww] I Delete] l Suggest Types...] -
&} Packace execution completed. Click here ...
I QK I [Cancel I [Help] B Immediate Window ﬂ Error List
Ready
FIGURE 18-16 FIGURE 18-17

NOTE Here’s another best practice: using Fast Parse can drastically improve per-
formance of your package when you are using a Flat File Source. By default, SSIS
validates any numeric or date columns, but with Fast Parse set to True, this step
will be bypassed. To enable Fast Parse, follow these steps:

1. Right-click the Flat File Source or Data Conversion Transformation, and
click Show Advanced Editor.

2. In the Advanced Editor dialog box, click the Input and Output Properties tab.

3. In the Inputs and Outputs pane, click the column for which you want to
enable Fast Parse (shown in Figure 18-18).

4. In the Properties window, expand the Custom Properties node, and set the
FastParse property to True.

5. Click OK.

LESSON 18 EXTRACTING DATA FROM SOURCES | 137

. Advanced Editor for Flat File Source [=E=rEe]

The advanced editor provides access to the low-level properties of data flow components. Additionally, the
advanced editor can be used ta configure components that do not have a custom user interface,

| Connection Managers | Component Properties | Column Mappings | Input and Output Properties

Specify properties for the inputs and outputs of the data flow component,

Inputs and outputs:

=[5 FlatFile Source Output 4 Common Properties [~
@[3 External Columns ComparisonFlags
=4 Output Columns Description
& EmplD | ErrorOrTruncationC| Conversion
& Name ErrorRowDispositio RD_FailComponent
& SickD ExternalMetadataCe 21
[EYvacat vs 10 2 =
@ Flat File Source Error Qutput ‘ Ide ationstring| Flat File Source.Qutputs)
‘ LineagelD 22
‘ MappedColumniD 0
 Name VacationDays
' SortKeyPosition 0
‘f_‘»:.:';\fl';g_. 0 L4

~ TruncationRowDisp RD_FailComponent
@ Custom Properties

FastParse

UseBinaryFormat [0S
4 Naks Tuna D

FastPaise

Indicates whether the column uses the faster,
locale-neutral parsing routines.

[Add Output l [Add Column

Remove Quiput Remave Column

o] (o] [Lmen]

FIGURE 18-18

Please select Lesson 18 on the DV D, or online at www.wrox .com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Loading Data to a Destination

After you have set up a source to bring the needed data to the Data Flow, you need somewhere
to put it. A destination accepts data from data sources or transformations and sends them to
the location specified in the destination’s connection manager.

The difference between configuration of sources and destinations is the Mappings page shown in
Figure 19-1. The Mappings page points each column from your Data Flow’s pipeline to each col-
umn that is available in your destination. By default, SSIS matches columns with the same name,
but you can easily match columns by dragging one of Available Input Columns to the appropriate
Available Destination Columns if your column names do not correspond. As you can see in the fig-
ure, it is not mandatory that these columns be in the same order from the source to the destination.

.. Flat File Destination Editor o= [
Configure the properties used to connect to and insert data into a text file,
Connection Managy
Available Input C... Available Destina...
Mame MName
i ProductiDr i PhysicalCount
LocationlD ProductD
Shelf LocationlD
Bin Bin
PhysicalCount Shelf
Input Column Destination Column
E PhysicalCount § PhysicalCount
ProdudiD Productl
LocationID LocationID
Bin Bin
Shelf Shelf
< (1]] »
[QK] [Cancel I l Help I

FIGURE 19-1

140 | SECTION 3 DATA FLOW

Until the destination is connected to the rest of pipeline, you cannot configure it. To make the
connection, select the source or a transformation and drag the blue arrow to the destination. If
you want to output a transformation’s bad data to a destination, drag the red arrow to that des-
tination. In this lesson, the most frequently used destinations (OLE DB, Flat File, and Excel) are
demonstrated.

DESTINATION ASSISTANT

The Destination Assistant is a new feature of SSIS that helps guide you through defining a connection
manager and destination. From inside the Data Flow tab, select the Destination Assistant from the
SSIS Toolbox. Figure 19-2 shows the Destination Assistant and the default destination types that are
available. In addition to selecting the type of Data Flow destination the Destination Assistant will also
create a connection manager if one does not already exist. If you believe you should have a destination
type installed on your machine but it does not appear, uncheck the “Show only installed destination
types” option and all will appear.

& Destination Assistant - Add New Destinati

Select destination tepe: Select connection managers

Mew...
Adventuretforks2012

Show orly installed destingtion types

o | o]

FIGURE 19-2

After selecting the appropriate destination and connection manager for your design, click OK and
a destination appears in your Data Flow Task with the features you selected. The next sections dive
deeper into the most commonly used destinations.

OLE DB DESTINATION

The most common type of destination is the OLE DB Destination. It can write data from the source
or transformation to any Object Linking and Embedding Database (OLE DB)-compatible data
source such as SQL Server, Oracle, or DB2. You configure it like any other source or destination, by
using an OLE DB Connection Manager. The Connection Manager page of the OLE DB Destination
Editor is shown in Figure 19-3.

LESSON 19 LOADING DATA TO A DESTINATION | 141

| . OLE DB Destination Editor =3 BR[|
Configure the praperties used ko insert data into 3 relstional database using an OLE DB provider,
G Specify an OLE DB connection manager, a data source, or a data source view, and select the
= data access made, IFusing the SOL command access made, spedfy the SOL command either by
Mappings typing the query or by using Query Builder, Far fast-load data access, set the table update
Errar Qutput aptions,
OLE DE onnection manager:
|AdventureWurk52012 - Mews,.
Data access mode:
[Table orview- fastload -
Name of the table or the view:
& [shelfinventong - e,
[[] Keep identity Table lock
[Keep nulls Check constraints
Rows per batch:
Maximunm insert cammit size: 2147483647
L T — S Wiews Existing Data.,
o] Cemm] e]

Selecting Table or view - fast load under Data access mode specifies that SSIS loads data in bulk into
the OLE DB Destination’s target table. The Fast Load option is available only for SQL Server data-
base instances. When Fast Load is selected, you have options like Table Lock, Rows Per Batch, and
Maximum Insert Commit Size available to configure.

> 1If you decide to employ Table Lock, it prevents others from accessing the table while your
package is inserting to it, but speeds up the load.

> Setting Rows Per Batch allows you to specify how many rows are in each batch sent to the
destination.

> The Maximum Insert Commit Size sets how large the batch size is going to be prior to send-
ing a commit statement. Usually setting the Max Insert Commit Size to a number like 10,000
increases performance, but it really depends on how wide the columns are in the table.

Try It

In this Try It, you set up an OLE DB Destination to load a new EmployeeList table you create in the
AdventureWorks2012 database. You can download the AdventureWorks2012 database used for this
book at the Wrox website at www.wrox.com/go/SQLSever2012DataSets. (Please see Lesson 3 if you
haven’t yet installed the AdventureWorks2012 database.) After this lesson, you will know how to
use an OLE DB Destination to load a SQL Server table.

You can download the Lesson19.dtsx from www.wrox. com.

http://www.wrox.com/go/SQLSever2012DataSets
http://www.wrox.com

142 | SECTION 3 DATA FLOW

Lesson Requirements

Open the package created from the previous lesson or download the completed package called
Lesson19.dtsx from www.wrox.com and make the following changes:

> Using the following code, create a table in the AdventureWorks2012 database named
EmployeeList to load the contents of the flat file to:
CREATE TABLE [EmployeeList] (
[EmpID] int,
[Name] varchar (50),
[SickDays] int,
[VacationDays] int

Hints

> You already created the source for this package in Lesson 18 so all you need is an OLE DB
Destination this time.

Step-by-Step
1. Open the package created from the previous lesson or download the completed package

called Lesson19.dtsx from www.wrox.com.

2. Open the Data Flow Task named Flat File Extract and drag an OLE DB Destination to
the designer surface. If you have a Union All that was serving as a placeholder, delete it.
Rename the destination EmployeeList.

3. Connect the blue arrow from the Flat File Source to the new destination and double-click to
open the destination’s editor.

4. By default, the destination assumes you are
using the only OLE DB Connection Manager

already created in the package. Click the New sl Create Table = @
button next to the Name of the table or the I ——— =
. . [EmpID] int,
view option to create a new SQL Server table (A
SickD i
to load. [Nlaccatiany:\][;;}s] int

I

5. The Create Table dialog box appears with a
query to create the table already prepared, just
like Figure 19-4. Ensure the query is the fol-
lowing and click OK:

CREATE TABLE [EmployeeList] (
[EmpID] int,
[Name] wvarchar (50),
[SickDays] int,
[VacationDays] int

>

FIGURE 19-4

http://www.wrox.com
http://www.wrox.com

LESSON 19 LOADING DATA TO A DESTINATION | 143

Notice now that in the bottom of the OLE DB Destination Editor a warning flag has been
raised. This warning flag is shown in Figure 19-5. This warning means you’re not quite done
yet. Select Mappings to go to the Mappings page.

| .. OLE DB Destination Editor = N

Configure the properties used to insert data into a relational database using an OLE DB provider.

Specify an OLE DB connection manager, a data source, or a data source view, and select the
data access mode, If using the SQL command access mode, specify the SQL command either by
Mappings typing the query ar by using Query Builder. Far fast-load data access, set the table update
Error Output options,

OLE DB connection manager:

‘AuventureWorkszulE hd e,

Data access mode:

[Tabla ar wiews - fast load v]

hame of the table or the wiew:

2 [dbo].[EmployeeList] - Mews,,
[[] Keep identity Tahle lock
D Keep nulls Check constraints

Rowes per batch:

Maximum insert commit size: 2147453647

4 T | » “iews Existing Data...

‘ A Map the columns on the Mappings page.

o] Lo [ren]

FIGURE 19-5

The Mappings page automatically matches columns with the same name; therefore, all your
columns are now input columns and are now mapped to destination columns, as shown in
Figure 19-6. Now, click OK to complete the configuration of this destination.

Execute just this Data Flow by right-clicking in the designer and selecting Execute Task.
Figure 19-7 shows the results.

144 | SECTION 3 DATA FLOW

L - OLE DB Destination Editor

Configure the properties used to insert data into a relational database using an OLE DB provider,

Connection Manag)|

Error Qutput

Available Input C... Available Destina...
Mame Mame

""Emp\D
Name i Name
SickDays SickDaps
WacationDays WVacationD ays
Input Column Destination Column
EmplD EmpID
Mame Mame
SickDays SickDays
“WacationDays WacationDays

4 .] »

o] o] o]

FIGURE 19-6

oo Lesson19 (Running) - Micro.. | — || 5 |5
File Edit View Project Build Debug
Team BlxPress Data Format SSIS
Architecture Test Tools Analyze Window

Help
G- H @& 2B -]
Lesson 19.dtsx [Design] .|
I AERN R g
g

DataFlow Task: [2 Flat File Extra E‘
=

~ g

a7 i

|, Fat File source [}

* z

=)

e 2

P/ &

L_L Employeelist

Connection Managers

L) AdventureWorks2012

=k Flat File Connection Manager
=) Flat File Extract Inventory

@Packa e execution completed. Click here t...

B Immediate Window B Error List

Ready

FIGURE 19-7

LESSON 19 LOADING DATA TO A DESTINATION | 145

9. If you open the EmployeeList table now, you find the results shown in Figure 19-8.

EmplD Mame SickDay: YacationDays
101 | DevinKright 4 10
2 2 Brian knight 5 14
3 3 Mike D avis a 9
FIGURE 19-8

FLAT FILE DESTINATION

The Flat File Destination is used to load data into a flat file. The flat file can be either a fixed-width
or delimited file. A file that is fixed-width uses width measurements to define columns and rows,
whereas a delimited file uses special characters to define columns and rows. When you are configur-
ing a Flat File Destination, you can choose to overwrite data in the file and add a custom header to
the file by typing it into the Header window.

Try It

In this Try It, you set up a Flat File Destination to bring in inventory data from an Excel Source
to a flat file. After this lesson, you will know how to use a Flat File Destination to load data into a
text file.

You can download the Lesson19.dtsx and Excel file from www.wrox.com.

Lesson Requirements

Open the package you created from the previous lesson or download the completed package named
Lesson19.dtsx from www.wrox.com and make the following changes:

> Create a new Flat File Connection Manager that is comma-delimited and save the file any-
where on your computer.

Hints

> This example requires one Flat File Destination and one Flat File Connection Manager, mak-
ing a total of two Flat File Connection Managers for this package.

Step-by-Step

1. Open the package created from the previous lesson or download the completed package
named Lesson19.dtsx from www.wrox.com.

2. Open the Data Flow Task named Excel Extract and drag a Flat File Destination to the
designer surface. If you have a Union All that was serving as a placeholder, delete it.

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

146 | SECTION 3 DATA FLOW

7.

Connect the blue arrow from the Excel Source to the new destination and double-click the
destination to open the destination’s editor.

By default, the destination assumes you are using the only Flat File Connection Manager
already created in the package. However, in this case, you need to make a new connection
manager, so click the New button next to the Flat File Connection Manager.

Make the file comma-delimited, find a location to save the file on your computer, and
click OK.

Back in the Flat File Destination Editor, go to the Mappings page to ensure all columns are
mapped appropriately, as shown in Figure 19-9. Then click OK.

.. Flat File Destination Editor o (==
Configure the properties used to connect to and insert data into a text file,
Connection Manag
Available Input C... Available Destina...
Shelf Shelf
Bin Bin
PhysicalCount PhysicalCount
Input Column Destination Column
{ ProductlD | ProductD
LocationIDr LocationID
Shelf Shelf
Bin Bin
PhysicalCount PhysicalCount
< I | »
[Ok J ’ Cancel] [Help]

FIGURE 19-9

Execute just this Data Flow by right-clicking in the designer and selecting Execute Task.
Figure 19-10 shows the results.

LESSON 19 LOADING DATA TO A DESTINATION | 147

o0 Lesson19 (Running) - Micro... [= |[E|[E5]
File Edit View Project Build Debug
Team BlxPress Data Format SSIS
Architecture Test Tools Analyze Window
Help

e - Y R R

Lesson 19.dtsx [Design]
fofea @7 |ig e ;

Data Flow Task: [Excel Extract

an

6| Excel Source
EN

2,139 rows
an

v

sapiedoig 5 1210/dxg UoNioS ey

| Flat File Destination

Connection Managers
| AdventureWorks2012
= Flat File Connection Manager

= Flat File Extract Inventory

(&) Package exeaution completed. Click hers t...

H Immediate Window I Error List

Ready

FIGURE 19-10

EXCEL DESTINATION

The Excel Destination basically works the same way the Excel Source does, except the destination
takes in data instead of sending data out. As in all sources and destinations, a connection manager
must be specified, in this case an Excel Connection Manager. The Excel Connection Manager must
point to a worksheet you want to load data into. Unlike with the Flat File Destination, however, a
spreadsheet must already exist to load; otherwise, you will receive an error.

Try It

In this Try It, you set up an Excel Destination to load a worksheet named TransactionHistory with
data from an AdventureWorks2012 database source. After this lesson, you will know how to use an
Excel Destination to load data into an Excel spreadsheet.

You can download the Lesson19.dtsx from www.wrox.com.

Lesson Requirements

Open the package created from the previous lesson or download the completed package named
Lesson19.dtsx from www.wrox.com and make the following changes:

> Use the Inventory_Worksheet Excel file that you can download from www.wrox . com as the
destination.

> Point the destination to the Excel sheet named TransactionHistory.

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

148 | SECTION 3 DATA FLOW

Hints

> You need only one Excel Destination for this example.

Step-by-Step

1. Open the package created from the previous lesson or download Lesson19.dtsx from

WWW . Wrox.com.

2. Open the Data Flow Task named OLE DB Extract and drag an Excel Destination to the
designer surface. If you have a Union All that was serving as a placeholder, delete it. Rename
the destination Transaction History.

3. Connect the blue arrow from the OLE DB Source to the new destination and double-click to
open the destination’s editor.

4. By default, the destination assumes you are using the only Excel Connection Manager
already created in the package. Click the New button next to the Name of the Excel sheet
option and click OK to create the sheet using the query SSIS has generated, as shown in
Figure 19-11.

- Create Tahle = =]

CREATE TAELE ‘Transaction History' [-
“TransactionID’ Long,
“ProductD’ Long,
“TransactionDate’ DateTime,
“Guantity’ Long,
ActualCost Currendy,
“ModifiedDate’ DateTime

FIGURE 19-11

5. Back in the Excel Destination Editor, select the Mappings page and ensure all columns are
mapped appropriately, as in Figure 19-12. Then click OK.

6. Execute just this Data Flow by right-clicking in the designer and selecting Execute Task.
Figure 19-13 shows the results.

http://www.wrox.com

LESSON 19 LOADING DATA TO A DESTINATION

| 149

[, Excel Destination Editor

Configure the properties that enable the insertion of data via an Excel provider.

Connection Manag:

Error Output

Mamne

FroductiD
TransactionD ate
Quantity
ActualCost
ModifiedD ate:

Available Input Colu...

Mame

! TransactionlD

FroductD

TransactionD ate

Quiantiy
ActualCost

Input Column

{ TransactionlD:

ProdudiD
TransactionDate
Quantity
ActualCost
ModifiedDate

ModifiedD ate

Available Destinatio...

Destination Calumn

| TransactionlD

PradudID
TransactionDate
Quantity
ActualCost
MadifiedDate

oo Lesson19 (Running) - Micro... [— |[= |[ES]
File Edit View Project Build Debug
Team BIxPress Data Format SSIS
Architecture Test Tools Analyze Window
Help

e ™ - NIRECR N I R T

Lesson 19.dtsx [Design] > -
b (510 15 1% 1+ (G)F

Data Flow Task: [2 OLE DB Extrac

1a10]dx3 uonnjos ﬂ_'.

L|‘ OLE DB Source

38.52} rows
E Transaction History

Connection Managers

| AdventureWorks2012

=l Flat File Connection Manager
=] Flat File Extract E Inventory

@Pa\:ka e execution completed. Click here t...

] 1. L3
[-][p—][== B Immediate Window B Error List
Ready
FIGURE 19-12 FIGURE 19-13

Please select Lesson 19 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video
V413HAV
Typewritten Text
V413HAV

Changing Data Types
with the Data Conversion
Transform

When working with data, you often have various reasons why you may need to make
changes to a column’s data type. For example, SQL Server Integration Services (SSIS)
supports Excel data as a source, but it may not support the data the way you intend by
default. By default, the general data type from Excel is set, which is brought in SSIS as a
Unicode data type. In SQL Server, Unicode translates to an nvarchar, which is most likely
not what you want because it requires twice the space and may be slower. If you have a
Unicode data type in SSIS and you try to insert it into a varchar column, the execution
may potentially fail.

The Data Conversion Transform performs the T-SQL equivalent of the CONVERT or
casT functions on a selected column. To configure this transform, first connect it to a
source, then drag it onto the Data Flow designer and double-click it to open the Data
Conversion Transformation Editor (shown in Figure 20-1). Here you check the columns
you need to convert and use the Data Type drop-down menu to select the data type you
want to convert to.

152

SECTION 3 DATA FLOW

".» Data Conversion Transformation Editor

Configure the properties used ko convert the data type of an input colu
data type to which the calumn is converted, set the length, precision, sc

= [=]Es

mn to a different data type. Depending on the
ale, and code page of the column,

Available Input Columns:
Mame
TransactionlD
ProductlD
ReferenceOrderD

TransactionDate
TransactionType
Quantity

N0 E0EEEE

ReferenceCrderlineld | |

I

Output Alizs
i Copy of Transactio..

Dats Tupe
date [DT_DATE]

Tnput Column

Transaction

ActualCast Copy of ActualCost four-byte signed inte...

length Precision Scale Code Page

l Configure Error Gutput.

) Come] (o]

FIGURE 20-1

Something that can be frustrating with SSIS is how it deals with SQL Server data types. For exam-
string datatyped column. It was made this way to translate well
1d. The following table shows how the data types translate from a

ple, a varchar maps in SSIS to a
into the .NET development wor

SQL Server data type to an SSIS data type.

SQL SERVER DATA TYPE
Bigint

Binary

Bit

Datetime

Decimal

Float

Int

Image

nvarchar or nchar

SSIS DATA TYPE
Eight-byte signed integer [DT_I8]
Byte stream [DT_BYTES]

Boolean [DT_BOOL]

Database timestamp [DT_DBTIMESTAMP]

Numeric [DT_NUMERIC]
Float [DT_R4]

Four-byte signed integer [DT_l4]
Image [DT_IMAGE]

Unicode string [DT_WSTR]

LESSON 20 CHANGING DATA TYPES WITH THE DATA CONVERSION TRANSFORM | 153

SQL SERVER DATA TYPE SSIS DATA TYPE

Ntext Unicode text stream [DT_NTEXT]
Numeric Numeric [DT_NUMERIC]

Smallint Two-byte signed integer [DT_I2]
Text Text stream [DT_TEXT]
Timestamp Byte stream [DT_BYTES]

Tinytint Single-byte unsigned integer [DT_UI1]
uniqueidentifier Unique identifier [DT_GUID]
Varbinary Byte stream [DT_BYTES]

varchar or char String [DT_STR]

Xml Unicode string [DT_WSTR]

The Output Alias is the column name you want to assign to the new column that is generated after
it is converted. If you don’t assign it a new name, it defaults to “Copy of ColumnName.” It’s always
a good idea to give the Output Alias a new name so it can be identified as the converted column.

The Data Conversion Transform Editor dialog box also has length, precision, and scale columns.

> Length for a numeric data type is the total bytes required to store the number, and length for
a string data type is the total characters the column can store.

> Precision is the total number of digits in a number (including the values to the right of the
decimal). For example, the integer 9876543.21 has a precision of 9.

> Scale is the number of digits to the right of the decimal point. For instance, the integer
9876543.21 has a scale of 2.

The Data Conversion Transform is a synchronous transform, meaning rows flow into memory buffers
in the transform and the same buffers come out. Essentially this means no rows are held or blocked,
and typically these transforms perform very quickly with minimal impact to your Data Flow.

NOTE Here’s a best practice: The Data Conversion Transform and the Flat File
Source, discussed in Lesson 18, are the only two tools that can use the perfor-
mance enhancement called Fast Parse. You can enable Fast Parse only in the
tools’ Advanced Editor. When you enable a column with Fast Parse, verification
of that column is turned off. Use this feature only when you are certain your data
is reliable.

154 | SECTION 3 DATA FLOW

TRYIT

In this Try It, your company has an Excel file called Inventory Worksheet that needs to be imported
into your AdventureWorks2012 database. Your requirements are to create a package that uses

a Data Conversion Transform to convert all column data types. Your manager tells you that the
results after the conversion should be populated into a new table. After this lesson, you’ll know how
to convert a column’s data type using the Data Conversion Transform and load tables of different
data types.

You can download the Inventory Worksheet.xls Excel file and the Lesson20.dtsx from www.wrox. com.

Lesson Requirements

Download the Inventory Worksheet.xls Excel file from www.wrox.com. This file will be your source
for populating a new table you create called ShelfInventory in the AdventureWorks2012 database.
Save the Excel file to a location on your computer called C:\Projects\SSISPersonalTrainer. You can
also download the creation script for this lesson from www.wrox.com. Your goal in this lesson is to
select all columns and convert them to the specified data types with a new destination table:

COLUMNS CONVERT TO
Shelf varchar(255)
Product int
LocationID int
Bin int
PhysicalCount int

Hints

> You need only one Excel Source and Excel Connection Manager.
> You need a Data Conversion Transform to convert the columns to the required data type.

> You need only one OLE DB Destination and OLE DB Connection Manager.

Step-by-Step
1. Create a new SSIS package called Lesson20.dtsx (or download Lesson20.dtsx from

WWW . WrOX . Com).

2. Create a new Excel Connection Manager using the Inventory Worksheet.xls file you down-
loaded from www.wrox.com and make sure the First row has column names option is
checked. (You can find more information on using an Excel Source in Lesson 18.)

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

LESSON 20 CHANGING DATA TYPES WITH THE DATA CONVERSION TRANSFORM | 155

Drag a Data Flow Task onto the design pane and name the new task DFT — Data
Conversion.

In the Data Flow tab, drag a new Excel Source onto the Data Flow design pane and name it
Excel SRC - Inventory Worksheet.

Double-click the Excel Source and change the OLE DB Connection Manager option to your
only connection manager. Then change the Name of the Excel sheet option to Inventory_
Worksheet and click OK.

Drag a Data Conversion Transform onto the design pane and connect it to the Excel Source.

Open the Data Conversion Transformation Editor by double-clicking the new transform and
check each column from the Available Input Columns table. Change the Output Alias of all
columns to ConvertedColumnName, as shown in Figure 20-2.

1. Data Conversion Transformation Editor o |[=] =
Configure the properties used to convert the data type of an input column to 3 different data type, Depending on the
data type to which the column is converted, set the length, precision, scale, and code page of the column,

Available Input Colu...
Mame
ProdudID
LocationID
Shelf
Bin
PhysicalC..,
Input Calumn Output Alias Data Type Length Precision Scale Code Page
Shelf | ConvertedShelf string [DT_STR] 255 1252 [ANS
ProdudiD ConwertedProdudID four-byte signed inte...
LocationID Convertedlocation.., four-byte signed inte...
Ein ConvertedBin four-byte signed inte...
PhysicalCount ConvertedPhysical.., four-byte signed inte..,
4 (] +
Configure Error Qutput.., [O] ’ Cancel] [Help]

FIGURE 20-2

For the Data Type, select string [DT_STR] for the Input Column Shelf and four-byte signed
integer [DT_I4] for all other columns and click OK.

Back in the designer, drag an OLE DB Destination onto the design pane and connect it to the
Data Conversion Transform.

156 | SECTION 3 DATA FLOW

10. Open the OLE DB Destination and click New next to the connection manager selection to
create a new OLE DB Connection Manager, where you will select AdventureWorks2012.

11. Still in the OLE DB Destination Editor, click New next to the table selection to create a new
table and ensure the following statement is used:

CREATE TABLE [ShelfInventory] (
[Shelf] wvarchar (255),
[ProductID] int,
[LocationID] int,

[Bin] int,
[PhysicalCount] int

12. Go to the Mappings page and delete all connections between the Input Columns and
Destination Columns. Now connect all Input Columns with the Converted prefix to the
associated Destination Columns (Figure 20-3) and click OK.

| OLE DB Destination Editor = ===
Configure the properties used to insert data into a relationzl database wsing an OLE DB provider,
Connection Manag
Mappings Available Input Columns
Error Qutput Mame o
Laocation| D Al Available Destina...
Shelf Name
PhysicalCount / " PraductlD
ConvertedShelf = / LocationlD
CorwertedProduct! D / Bin
ConvertedLocatio.. / PhyszicalCount
wertedBin /
| ConventedPhysical .~ ~
Input Colurmn Destination Calumn
| Conwertedshelf Shelf
ConvertedProducID ProduciD
CorvertedlocationID LacationID
ConvertedBin Bin
ConvertedPhysicalCount PhysicalCount
4]] ¢+
[(]9 l i Cancel] ’ Help I

FIGURE 20-3

LESSON 20 CHANGING DATA TYPES WITH THE DATA CONVERSION TRANSFORM | 157

13.

Execute the package. A successful run should look like Figure 20-4. Don’t forget that you
learned in Lesson 18 that when using an Excel source, you may need to set the designer to
run in 32-bit mode if you’re running on a 64-bit machine.

oo Lesson20 (Running) - Microsoft Visual ... [= |[= |[E&]
File Edit View Project Build Debug Team
BlxPress Data Format SSIS Architecture Test Tools
Analyze Window Help

= - N Y B R I B =

Lesson 20.dtsx [Design] ~ A
g
Data Flow Task: [DFT - Data Conwversion - E'
2
o R
el SRC- 1 to 5
Exct - Inventory
EL Worksheet "‘
]
2,13in>ws / %
1 9
\p(Data Convarsion &
Z,Bimws ’
s o
OLE DB Destination
Le
Connection Managers

| AdventureWorks2012 E Excel Connection Manager

@Padﬁa e execution completed. Click here to switch to d...

B Immediate Window Eﬂ- Error List

Ready

FIGURE 20-4

Please select Lesson 20 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

21

Creating and Replacing Columns
with the Derived Column
Transform

The Derived Column Transform enables you to either create or replace a column in the data
stream. You can use this component for many problems you may run into and, therefore, it is
one of the most useful tools you have in the Data Flow. As you see in this lesson’s Try It exam-
ple, you can use the transform for things like auditing rows and editing incoming data using
the available SQL Server Integration Services (SSIS) expressions.

You open the Derived Column Transformation Editor you open other transform editors, by
dragging it into the Data Flow and then double-clicking. To configure this transform, drag the
column or variable into the Expression column, as shown in Figure 21-1. Then you can add
functions to it. You can find a list of functions to use as a reference in the top-right corner of
the Derived Column Transformation Editor; you can drag the functions into the Expression
property. You must then specify, in the Derived Column drop-down box, whether you want
the output of the expression to replace an existing column or to create a new column. If you
create a new column, give it a name in the Derived Column Name column.

In Figure 21-1, the expression states that if the column PhysicalCount is NULL, convert it
to 0; otherwise, keep the existing data.

To get the most bang for your buck with this transform, explore the different functions avail-
able. The functions and the availability of variables makes the Derived Column Transform one
of the top five transforms that you’ll find yourself using to satisfy the need for T-SQL scripting
in your package.

160 | SECTION 3 DATA FLOW

- Derived Column Transformation Editor = =]

Specify the expressions used to create new column walues, and indicate whether the values update existing calumns or
populate news columng,

[Variables and Parameters [Mathematical Functions
[Columng [String Functions

4 Date/Time Functions
[MULL Functions

4 Type Casts

4 Operators

Description,

Derived Column Ma., Cerived Column Expression Data Tvpe
PhysicalCount Replace 'PhysicalCount’ ISMULL[PhysicalCount] == TRUE 70 : PhysicalCount double-precisio
< [+

Configure Error Output.., [Ok l [Cancel] [Help l

FIGURE 21-1

The expression language is marketed as being a heavily C#-based syntax. However, you can’t just
start writing C# because some quirks are mixed into the scripting language. Still, the following
common operators are irrefutably from a C# ancestry:

EXPRESSION OPERATOR DESCRIPTION
|l Logical OR operation

&& Logical AND operation

Comparison of two expressions to determine if they are equivalent

Comparison of two expressions to determine inequality

?: Conditional operator

Now look at an example of how to write an expression using one of these operators. The following
statement uses the conditional operator (? :) to check the column PhysicalCount to see if it contains
any NULLs and, if it does, to change them to 0. Otherwise, it keeps the column the same. The shell
of such a script uses code like this:

<<boolean_expression>> ? <<when_true>> : <<when_false>>

LESSON 21 CREATING AND REPLACING COLUMNS WITH THE DERIVED COLUMN TRANSFORM | 161

This shell translates the previously mentioned example into this code:

ISNULL ([PhysicalCount]) ? 0 : [PhysicalCount]

Using the conditional operator has historically been a common way to handle NULL values, but

in SSIS 2012, a new function has been added to make it even simpler to perform this same NULL-

handling transform. The REPLACENULL works similarly to the T1sNULL function in T-SQL. It accepts
the value to check first, and the second value specifies what to replace it with when the first value is
NULL. The shell of such a script uses code like this:

REPLACENULL («expression», «expression»)

This shell translates the previously mentioned example into this code:

REPLACENULL ([PhysicalCount] ,0)

Sometimes you run into functions that look like they would function like T-SQL. For example, the
GETDATE () function is typically what you would use to return the current date in T-SQL. In this cir-
cumstance, GETDATE () performs exactly the same in the SSIS expression language. However, some
functions look like T-SQL functions, but work in ways that are not the same:

EXPRESSION FUNCTION DESCRIPTION DIFFERENCE
DATEPART() Parses the date part from a date Requires quotes on the date part
ISNULL() Tests an expression for NULL Doesn’t allow for default value

The statement that follows uses the DATEPART () function to return an integer representing the
desired part of a date. In this example, the expression is returning the year from today’s date. The
shell of this script uses code that looks like this:

DATEPART (<<datepart>>, <<date>>)

This shell translates the previously mentioned code example into this code:

DATEPART ("yy",GetDate ())

Many times, it is useful to build string data within an expression. You can use string data to popu-
late the body of an e-mail message or to build file paths for processing. Here are some of the most
commonly used string functions:

EXPRESSION OPERATOR DESCRIPTION

REPLACE() Replaces a character string

UPPER() Converts lowercase characters to uppercase

SUBSTRING() Returns a character value that starts at a specified position with a speci-

fied length

162

SECTION 3 DATA FLOW

Using the REPLACE () function enables you to search through a string for a specific value and replace
that value with another. In the example that follows, the expression searches the column named
[Shelf] for the word "Development" and replaces it with "Production". The shell of this script uses
code that looks like this:

REPLACE (<<character_expression>>, <<search_expression>>,
<<replace_expression>>)
This would translate the example into this code:

REPLACE([Shelf] , "Development", "Production")

Another common string function is UPPER (), which changes all lowercase characters to uppercase.
The shell of this function is written like this.

UPPER (<<character_expression>>)

This example uses the system variable PackageName to return the name of the package in all upper-
case. The result looks like this: LESSON 21.

UPPER (@ [System: : PackageName])

The final example of a string function is SUBSTRING (). This function enables you to retrieve a pre-
determined number of characters from a string field.

SUBSTRING (<<character_expression>>, <<start>>, <<length>>)
The following expression is bringing back just the first letter of the FirstName column with a

period (.), followed by the entire contents of the LastName column. The results would look like this:
D. Knight.

SUBSTRING([FirstName] , 1, 1)+". " +[LastName]

Many other string functions are available, so be sure to explore all the functions available in the ref-
erence guide in the top-right section of the Derived Column Transformation Editor.

It is very likely that you’ll find it necessary to convert or cast certain values within an expression so
they are compatible with the column’s data type. Here are some of the most common cast functions
available:

CAST OPERATOR ADDITIONAL PARAMETERS

DT_STR(<<length>>, <<code_page>>) length—Final string length

code_page—Unicode character set

DT_WSTR(<<length>>) length—Final string length

LESSON 21 CREATING AND REPLACING COLUMNS WITH THE DERIVED COLUMN TRANSFORM | 163

CAST OPERATOR ADDITIONAL PARAMETERS

DT_NUMERIC(<<precision>>, <<scale>>) precision—Max number of digits

scale—Number of digits after decimal

DT_DECIMAL(<<scale>>) scale—Number of digits after decimal

A common opportunity to use a cast operator involves converting dates to fit in inputs that accept
only strings. The following example uses the DT_wSTR cast function to convert the date to a string.
The code shell for this function looks like this:

(DT_WSTR, <<length>>)

This shell translates the previously mentioned code example into this code:

(DT_WSTR, 30) GETDATE ()

For more on the SSIS expression language, read Lessons 34 and 35.

TRY IT

In this Try It, your company decides that it would be best to include the date on which each row is

populated in your SSIS package from Lesson 20. Your manager tells you that this date is necessary
for auditing purposes. Once you have made these changes to the package, delete the content of the

table before you run the package again. After this lesson, you’ll know how to add a derived column
built by assigning an expression to the pipeline of an SSIS package.

You can download the completed Lesson21.dtsx from www.wrox. com.

Lesson Requirements

Make the following changes to the package you created in Lesson 20 or open the completed
Lesson 21 package from www.wrox. com:

> Add a column to the pipeline that uses the system variable @[System::StartTime] to populate
the RowStartDate column that is already in the ShelfInventory table.

> Delete the content of Shelflnventory table and repopulate it with the new column included.

Hints

» Use the Derived Column Transform to add the new date column to the file stream.

http://www.wrox.com
http://www.wrox.com:

164 | SECTION 3 DATA FLOW

Step-by-Step
1. Open a query window in Management Studio and run this query to empty the table’s data:

TRUNCATE TABLE ShelfInventory

2. Now run the following query to add a column to the ShelfInventory table:

ALTER TABLE ShelfInventory
ADD RowStartDate datetime

3. Open the SSIS package Lesson20.dtsx that you created in the previous lesson, or download
the completed Lesson21.dtsx from www . wrox. com.

4. Click the Data Flow tab and delete the precedence constraint between the Data Conversion
Transform and the OLE DB Destination.

5. Draga Derived Column Transform into the Data Flow and connect it between the Data
Conversion Transform and the OLE DB Destination.

6. Open the Derived Column Transformation Editor and add a new column by typing
RowStartDate in the Derived Column Name property. Then, in the Expression property, add
the system variable @[System::StartTime| by dragging it down from the variables list in the
top-left section of the editor, as shown in Figure 21-2. Then click OK. This adds the current
date and time to the column when the package is run.

- Derived Column Transformation Editor o[]S

Spedify the expressions used to create new column walues, and indicate whether the values update existing columns or
populate new calumns,

3 Wariables and Parameters 4 Mathematical Functions
4 Columns [Shing Functions

4 Date/Time Functions
4 MULL Functions

4 Type Casts

4 Operators

Descrplion:
Detived Column Ma.. Derived Column Expression Data Type Le
owiStartDate <add as new colum... @[System:StartTime] date [DT_DATE]
< .] r
I Configure Error Output.., [(o] 4 l [Cancel] [Help]

FIGURE 21-2

http://www.wrox.com

LESSON 21 CREATING AND REPLACING COLUMNS WITH THE DERIVED COLUMN TRANSFORM

| 165

7. Now that this column has been added, you need to make sure the destination knows to use
it. Open the OLE DB Destination Editor and add the column RowStartDate to the mapping,

as shown in Figure 21-3.

8. Now execute the package. A successful run should look like Figure 21-4. The ShelfInventory
table has now been repopulated with the new column that holds the date and time the pack-
age was run. Don’t forget that you learned in Lesson 18 that when using an Excel source, you
may need to set the designer to run in 32-bit mode if you’re running on a 64-bit machine.

| .. OLE DE Destination Editor

Configure the properties used to insert data into a relational database using an OLE DB provider.

= |[=]fe=a]

Connection Manags
Mappings
Error Output

Available Input Colu...
Hame o
Shelf

m———
CoreeertedShelf
CorveredProduc.

CorertedLocatio... |
CorrvertedBin

<]] »

Input Column

| Convertedshelf

ConvertedProdudID
ConvertedlocationIl
ConvertedBin
ConvertedPhysicalCount
RowsStartDate

Hame
i
" FrotuctD

LacationlD

Bin

PhysicalCount

RowStanDate

Available Destina...

Deestination Column

| Shelf

FrodudID
LocationID
Bin
PhysicalCount
RowStartDate

| [

| (o

oo Lesson21 (Running) - Microsoft Visual ... [= |[& |E=]
File Edit View Project Build Debug Team
BlxPress Data Format SSIS Architecture Test Tools
Analyze Window Help

Pl-EH @b am|9-o-|p [0

LessonZ1.dtsx [Design] |
- = I

b @510 215 £]% n]» RGP
E

3

Data Flow Task: [DFT - Data Conversion - T
-

A 4 s

INI Excel SRC - Inventory b
-mp Worksheet i
2,13iww5 o 3

3

&

&

- Derived Column
F=

2,139 rows
O

Data Conversion

2,13 rows
an

L | OLE DB Destination
—

Connection Managers

o AdventureWorks2012 E Excel Connection Manager

1
>0

@Packa e execution completed. Click here to switchto d...

B Immediate Window ﬂ Error List
Ready

FIGURE 21-3

FIGURE 21-4

Please select Lesson 21 on the DV D, or online at www.wrox.com/go/ssis2012video,

to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Rolling Up Data with the
Aggregate Transform

Do you have a large amount of data that you want to roll up to a different granularity? The
Aggregate Transform enables you to essentially apply a GROUP BY statement on data that
are entering it. Aggregate Transforms are one of the more expensive operations you can
perform against data, much like a GROUP BY statement is in T-SQL, and they can be very
memory intensive.

NOTE The Aggregate Transform is an asynchronous transform and
is fully blocking. This means that every row must enter the transform
prior to sending the first row out. Because of this, your transform will
need as much RAM as the source retrieves. For example, if your Data
Flow is reading a 1 GB file, your Aggregate Transform will require at
least 1 GB of memory.

Once you drag the transform over, simply check the columns in the Aggregations tab that
you want to aggregate or sum. The Operation drop-down box enables you to select what
type of aggregation function you want to apply to the data. The most important operation
is a Group By operation, which enables you to roll the data up to that grain. For example,
if you have a dozen sales of three products, and you grouped them by the ProductID, you’d
have only three rows come out of the transform. You can see a list of all the operations
allowed in the following table.

DATA TYPE OPERATIONS ALLOWED
String Group by, Count, Count distinct
Numeric Group by, Count, Count distinct, Minimum, Maximum

Date Group by, Count, Count distinct, Minimum, Maximum, Average, Sum

168 | SECTION 3 DATA FLOW

Like any GROUP BY statement, only the columns that are being grouped by or aggregated are
returned. Other columns are dropped and will not be available to you in the next Data Flow trans-
form or destination.

You can tune the Aggregate Transform by estimating how many distinct groups you will retrieve
from the operation. In the Advanced tab of the Aggregate Transformation Editor (see Figure 22-1),
you can type the estimated number of groups in the Number of keys text box. This optimizes the
transform for that level of distinct values.

2. Augregate Transformation Editor (o[]=)

Keys scale: Number of keys:

[Unipedfied V]

Count distinct scale: Count distinct keys:

[Unipedfied V]

Auto extend factor:
25 2] %

oK | [Cancel] [Help]

FIGURE 22-1

The Aggregate Transform is one of the most powerful and simple transforms to configure. However,
you should use it sparingly due to its speed. If you pull data out of a flat file, it’s a good application
for the Aggregate Transform, but when you’re pulling data out of a database, consider writing a
SQL statement that pulls the data out already aggregated.

LESSON 22 ROLLING UP DATA WITH THE AGGREGATE TRANSFORM | 169

TRY IT

In this Try It, you create an extract file that contains a rolled-up version of the Production.
TransactionHistory table. The Production.TransactionHistory table has hundreds of thousands of
records in it containing very granular data of every transaction for your company’s history. Your
partner only needs to know how many of each product you’ve sold, and other data such as the last
sale of that product. After this lesson, you’ll know how to apply grouping to your data to see your
data at a higher grain.

You can download the completed Lesson22.dtsx package from the book’s website at www.wrox.com.

Lesson Requirements

In this lesson, you need to read the Production.TransactionHistory table from the
AdventureWorks2012 database and create a new file with the following columns without using
T-SQL’s GROUP BY statement:

>
>
>
>

Hints

ProductID—One row for each product
LastTransactionDate—The date of the last purchase
TotalQuantity—The total quantity for all transactions for a given product

TotalCost—The total cost for all transactions for a given product

To perform a GROUP BY clause against data in a Data Flow, you use the Aggregate
Transform after pulling data out of the Production.TransactionHistory table with the
OLE DB Source.

Write the data to a flat file with the Flat File Destination.

Step-by-Step

1.
2.

Create a new SSIS package called Lesson22.dtsx.

Create a new OLE DB Connection Manager that connects to your AdventureWorks2012
database.

Drag a Data Flow Task onto the design pane and call the new task DFT - Aggregate Data.

In the Data Flow tab, drag a new OLE DB Source onto the Data Flow design pane and name
it OLE SRC - TransactionHistory.

http://www.wrox.com

170 | SECTION 3 DATAFLOW

Double-click the OLE DB Source and change the OLE DB Connection Manager option to
your only connection manager. Change the Data access mode to SQL Command and type the
following query into the SQL Command text box:

SELECT

TransactionID, ProductID, TransactionDate,

TransactionType, Quantity, ActualCost, ModifiedDate
FROM Production.TransactionHistory

Drag an Aggregate Transform onto the design pane and connect it to the OLE DB Source.
Rename the transform AG - Roll up data.

Open the Aggregate Transformation Editor by double-clicking the new transform and check
the ProductID, TransactionDate, Quantity, and ActualCost columns.

Change the Output Alias column for each of the checked columns. Change the alias to
LastTransactionDate for the TransactionDate column. Change the Quantity column to
TotalQuantity, and ActualCost to TotalCost.

In the Operation column, change ProductID to Group by, LastTransactionDate to
Maximum, TotalQuantity to Sum, and TotalCost to Sum, as shown in Figure 22-2.

2. Aggregate Transformation Editor [= [T
Aggregations

Configure the properties used to perform group by operations and to calculate aggregate values,
Optionally, apply comparison options to the operation, To configure multiple group by operations, click
Advanced.

Avallable Input Columns
@ Name &
V] ProduciD

TransactionDate
TransactionType

‘ Quantity =
ActualCost

MadifiedDate

Input Column Output Alias Operation Com

ProductD ProdudtID Group by

TransactionDate LastiiransactionDate Maximum

ActualCost TotalCost Sum

Quantity TotalQuantity sum

4 n 13
OK I [Cancel] [Help]

FIGURE 22-2

LESSON 22 ROLLING UP DATA WITH THE AGGREGATE TRANSFORM | 171

10.

1.

12.

13.
14.

Back in the designer, drag a Flat File Destination onto the design pane and connect it to the
Aggregate Transform. Rename the connection FF DST — Create Extract.

Open the Flat File Destination and click New to create a new Flat File Connection Manager.
When prompted, select Delimited (separated by a given symbol).

Name the connection manager Extract. Place the file wherever you’d like and check the
Column names in first data row option.

Go to the Mappings page and click OK.

Execute the package. A successful run should look like Figure 22-3.

E_u Conttrol Flow | (2] Data Flow o Parameters |

Diata Flow Task: [DFT - Agaregate Data
L | OLESRC-

‘ TransactionHistary

1

Z AG - Roll up data

Mlluws

=] FF DST — Create
=4 Btract
Zonnection Managers

| AdventureWorks2012 = Extract

FIGURE 22-3

Please select Lesson 22 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

23

Ordering Data with the
Sort Transform

The Sort Transform enables you to sort data based on any column in the Data Flow path. To
configure the Sort Transformation Editor after it’s been connected, open the transform and
check the columns you need to sort by (Figure 23-1). Uncheck any columns you don’t want
passed through the path from the Pass Through column. By default, every column passes
through the Data Flow pipeline.

Sort Transformation Editor o 2]
Specify the columns to sort, and set their sort type and their sort order. &1l nonselected columns are
copied unchanged.

Available Input Columns
@ Name Pass Through *
[BusinessEntitylD 7
[7] PersonType &= 3
[[] NameStyle i) —
] Title]
[] Firstame]
[[] MiddieName =
.
i [v] | LastName | N
Output Alias Sort Type Sort Order Con
ascending 1

«] »

(] Remove rows with duplicate sort values [oK I e] [Help

FIGURE 23-1

174 | SECTION 3 DATA FLOW

You can optionally check the Remove rows with duplicate sort values option. When this is checked, if
a second value comes in that matches your same sort key, it is disregarded, and the row is dropped.

NOTE The Sort Transform is a fully blocking asynchronous transform and will
slow down your Data Flow performance. Use these only when you have to, such
as for sorting a Flat File Source, and sparingly.

Sorting data in SSIS is one of the most frequently required operations. This is because many other
transforms that can be used require that data be presorted with either a Sort Transform or an
ORDER BY statement in the OLE DB Source. You should avoid using the Sort Transform when you
can because of speed constraints.

If you place an ORDER BY statement in the OLE DB Source, SSIS is not aware of the ORDER BY
statement because it can just as easily have been in a stored procedure, so you must notify SSIS that
the data is presorted. To do this, right-click the source and select Advanced Editor; then go to the
Input and Output Properties and select the OLE DB Source Output. In the Properties pane, change
the IsSorted property to True (shown in Figure 23-2).

_ 4 Advanced Editor for OLE SRC — TransactionHistory = [EEE]

The advanced editor provides access to the low-level properties of data flow components. Additionally, the
advanced editor can be used to configure components that do not have a custom user interface.

Connection Managers | Component Properties | Column Mappings | Input and Output Properties

Specify properties for the inputs and outputs of the data flow component.

Inputs and outputs:

I=RE-Y OLE DB Source Output 4 Common Properties
[+ -[3 External Columns
[# (23 Output Columns Description

@ 5 OLE DB Source Error Output

IsSorted

Indicates whether the data in the output from
the component is sorted.

Add Output

Remove Output

o) (o) ()

FIGURE 23-2

LESSON 23 ORDERING DATA WITH THE SORT TRANSFORM | 175

Then, under Output Columns, select the column you are ordering on in your SQL statement and
change the SortKeyPosition to 1, if you’re sorting only by a single column ascending, as shown
in Figure 23-3. If you have multiple columns, you could change this SortKeyPosition value to the
column position in the ORDER BY statement starting at 1. A value of -1 would sort the data in
descending order.

. 4 Advanced Editor for OLE DB Source [=S

The advanced editor provides access to the low-level properties of data flow components. Additionally, the
advanced editor can be used to configure compaonents that do not have a custom user interface,

| Connection Managers | Component Properties | Column Mappings | Input and Qutput Properties

Specify properties for the inputs and outputs of the data flow component.

Inputs and outputs:

= 5 OLE DB Source Qutput 4 | Common Properties | -
(# |4 External Columns ComparisonFlags
(= 4 Output Columns Description
& ModifiedDate r rver
[TransactionID ErrorRowDispositio RD_FailComponent
=Y Productn] ExternalMetadataC(120

5 ReferenceOrderlD
5 ReferenceOrderlinelD
% TransactionDate

[TransactionType MappedColumniD 0
3 qQuantity Name Productis
[® actualCost SortKeyPosition | 1

5 OLE DB Source Error Output 5
TruncationRowDisp RD_FailComponent
< Data Type Properties

DataType four-byte signed inteqer ™
] Common Properties

Add Output l [Add Column

Remove Column
o) [orer) []

FIGURE 23-3

TRY IT

In this Try It, your company has decided it really needs the extract file you created in Lesson 22
to show the products in order by total sold. Your manager tells you to make sure that, once you’ve
made these changes to your package, you delete the content of the extract file before you run the
package again. After this lesson, you’ll know how to sort data using SSIS.

You can download the completed Lesson23.dtsx package from the book’s website at www.wrox.com.

http://www.wrox.com

176 | SECTION 3 DATAFLOW

Lesson Requirements

You can either make the following changes to the package you created in Lesson 22 or download
the Lesson 22 package from www.wrox.com and make these changes:

>

>

Hints

>

Set TotalQuantity to sort in descending order

Delete the contents of the flat file and repopulate it with newly ordered records

NOTE Be sure you are using the Lesson 22 package as a starting place. The
Lesson 23 package that you can download at www.wrox . com is the version of the
package after this Step-by-Step example has already been completed.

You need to add only one Sort Transform to the package.

Step-by-Step

1.

Open the SSIS package Lesson22.dtsx that you created in the previous lesson or download it

from www.wrox . com.

Click the Data Flow tab and delete the precedence constraint between the Aggregate
Transform and the Flat File Destination.

Drag a Sort Transform into the Data Flow and connect it between the Aggregate Transform
and the Flat File Destination.

Open the Sort Transformation Editor, select TotalQuantity to sort by, and change the Sort
Type to descending, as shown in Figure 23-4. Then click OK.

Now execute the package. A successful run should look like Figure 23-5. The flat file has
now been repopulated sorted by TotalQuantity in descending order.

Upon completion, your package will look like the completed Lesson23.dtsx available from

WwWw . Wrox.com.

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

LESSON 23 ORDERING DATA WITH THE SORT TRANSFORM | 177

Sort Transformation Editor

F=aecn)

Specify the columns to sort, and set their sort type and their sort order, All nonselected columns are

capied unchanged,

Input Column

Available Input Columns
@ Name

(] ProductlD
[[] LastTransactionDate
[[] TotalCost

TotalQuantity

Pass Through

EEEE

Output Alias

TotalQuantity

i TotalQuantity

Sort Type

Sort Order Con

descending 1

4

D Remove rows with duplicate sort values

‘oo Lesson23 (Running) - Microsoft Visual ... = |[& 5]
Hie it View Project Build Debug Team
BlxPress Data Format Architecture Test
Took Analyze Window Help
Pl ka9 -kt

Lesson23 dtsx [Design] -

DataFlowTask: [DFT-AggregateDats =

sonsodosd B 50K uonnics ja. [

ml,... /
Y FFDST - Create 9
& baed

Connection Managers
1) adventurewerks2012 S Exract

Qe w .

8 immediate window I Error List
Ready

FIGURE 23-4

FIGURE 23-5

Please select Lesson 23 on the DV D, or online at www.wrox .com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Joining Data with the
Lookup Transform

Are you looking for a way to join data from a new source into your Data Flow pipeline? The
Lookup Transform in SQL Server Integration Services (SSIS) enables you to perform the equiv-
alent of an inner and outer hash join. The only difference is that the operations occur outside
the realm of the database engine.

This transform is used in many different situations, but would typically be found in an ETL
process that populates a data warehouse. For example, you may want to populate a table by
joining data from two separate source systems on different database platforms. The compo-
nent can join only two data sets at a time, so to join three or more data sets you would need
to string multiple Lookup Transforms together.

The Lookup Transform is a synchronous transform; therefore, it does not block the pipe-
line’s flow of data. As new data enters the transform, rows that have been joined leave
through one of the possible outputs. The caveat to this is that in certain caching modes, the
component will initially block the package’s execution for a period of time while it charges
its internal caches.

Sometimes rows will not join successfully. For example, you may have a product that has no
purchase history and its identifier in the product table would have no matches in the sales
table. SSIS supports this by having multiple outputs on the Lookup Transform; in the simplest
(default/legacy) configuration, you would have one output for matched rows and a separate
output for non-matched and error rows.

CACHE MODES

The transform provides several modes of operation that allow you to trade off performance
and resource usage. There is often a logical rationale for choosing a particular cache mode,
which is discussed later in this lesson. To configure the Lookup Transform, drag one from the

180 | SECTION 3 DATAFLOW

toolbox to the Data Flow design surface and double-click it to open the editor. Figure 24-1 shows
the Lookup Transformation Editor where you select the cache mode and data source.

.~ Lookup Transformation Editor (o e

This transform enables the performance of simple equi-joins between the input and a reference data set,

General
Connection

Cache mode

Columns @ Full cache
Advanced)
Error Output @ Partial cache
© No cache
Connection type

() Cache connection manager

@ OLE DB connection manager

Specify how to handle rows with no matching entries

[Fail womponent i

o) Comn] o)

FIGURE 24-1

In full-cache mode, one of the tables you are joining is loaded entirely into memory, then the rows
from the other table are flowed through the pipeline one buffer at a time, and the selected join oper-
ation is performed.

However, sometimes the reference table used in a lookup is too large to cache all at once in the sys-
tem’s memory. In these circumstances, you have two options: either you can cache some of the data
or cache nothing.

For no-cache mode, no up-front caching is done, and each incoming row in the pipeline is compared
one at a time to a specified relational table. Depending on the size of the reference data, this mode is
usually the slowest, though it scales to the largest number of reference rows.

WARNING Use no-cache mode carefully because this can cause a high perfor-
mance overhead on the system.

LESSON 24 JOINING DATA WITH THE LOOKUP TRANSFORM | 181

The partial-cache mode gives you a middle ground between the no-cache and full-cache options.
In this mode, the transform caches only the most recently used data within the memory boundaries
specified. As soon as the cache grows too big, the least-used cache data is thrown away.

Try It

In this Try It, your company needs you to alter a package to show the product names with the sales
of each product. Your manager tells you to create a new flat file to store the results. After this lesson,
you’ll know how to join data into the Data Flow pipeline using SSIS.

You can download the Lesson24a.dtsx package from the book’s website at www.wrox.com.

Lesson Requirements
Make the following changes to the Lesson24a.dtsx package, which you can find at www.wrox. com:

> Join the data from the Production.Product table to bring in the product names with
this query:

SELECT ProductID, Name
FROM Production.Product

> Create a new flat file and populate it with new results.

Hints

> Use the Lookup Transform to join Product data to your package data stream.

Step-by-Step

1. You can either continue the work you did from Lesson 23 or open the completed
Lesson24a.dtsx SSIS package from www.wrox.com.

2. Click the Data Flow tab and delete the connecting lines between the Sort Transform and the
Flat File Destination.

3. Draga Lookup Component into the Data Flow and rename it LKP - Product Name; then
connect it between the Sort Transform and the Flat File Destination.

4. Once you connect to the Flat File Destination, the Input Output Selection dialog box opens,
and you should select Lookup Match Output from the Output drop-down box, as shown in
Figure 24-2.

5. Open the Lookup Transformation Editor, navigate to the Connection tab, and select the Use
results of an SQL query option.

6. In the query window, write the following select statement. Figure 24-3 shows how the editor
should look at this point.

SELECT ProductID, Name
FROM Production.Product

http://www.wrox.com
http://www.wrox.com:
http://www.wrox.com

182 | SECTION 3 DATA FLOW

W

The source or the destination component contains multiple inputs or
outputs, Select an input and an output to connect the components,

Qutput:

E* Lookup Match Qutput -

Input:

Flat File Destination Input -

FIGURE 24-2

Lookup Transformation Editor

This transform enables the performance of simple equi-joins between the input and a reference data set.

General

Specify a data source to use, You can select a table in a data source view, a table in a
database connection, or the results of an SQL query.
Columns
Advanced
Error Qutput OLE DB connection manager;

| adventurawonksa012 ~|

@) Use atable or a view:

@ Use results of an SQL queny:

SELECT ProductlD,Mame - N
FROM Production.Product] Build Query..,

Parse Query

[0K] [Cancel l I Help

FIGURE 24-3

LESSON 24 JOINING DATA WITH THE LOOKUP TRANSFORM | 183

Navigate to the Columns tab and map the join columns by dragging the ProductID column
from the input columns list (on the left) to the ProductID column from the lookup columns
list (on the right). Check the Name column from the Available Lookup Columns list to return
it in the data flow. When complete, your work should look like Figure 24-4. Then click OK.

. Lookup Transformation Editor o[BS

This transform enables the performance of simple equi-joins bebween the input and a reference data set.
General
Connection
Advanced
Error Output ol RTTARICORITINS: Avaitable Lookup Colum...

Narme

Ind..

LastTransactionD ate

TotalCost

TotalQuantity

Column Lookup Operation Qutput Alias
{ <add as new columns Mame
[OK } [Cancel] I Help]
FIGURE 24-4

Open the Flat File Destination and click Update, which is a new feature in SSIS 2012 that
enables you to easily update flat file metadata. Click OK when the Flat File Connection
Manager opens to confirm the update and return back to the destination. The Name column
has been added to the file connection, but still needs to be mapped to the Data Flow input.
You do this by drawing the mapping from the input columns to the destination columns on
the Mappings page.

184 | SECTION 3 DATA FLOW

9. Now execute the package. A successful run should look like Figure 24-5. The new flat file has
now been created with the new column included.

oo Lesson24 (Running) - Microsoft Visual .. © || & [Z3)
File it View FProject Bund Debug leam
BixPress Data SSIS Auchitecture Test Tools
e I T R R e

Lesson24a dtsx [Design] X = -*
—
i |G| § |7 E.‘l“: r.‘| 3 P..m G2 ;T
&
DataFlowTask: [4) OFT -AggregateData = T
OIF SRC- b P
(_sp Transoctiontiistory 1
v
- g
P 3
v 5
z 6 - oll up data
wl.m /
@
v =

Sort

o
|
Locluy
w7

Loskup u.m.ul.um(m o)
<

IT DST - Create
dmFrtract
Commeclion Managers
B AdventuraWorke2012 SRR

) package exeartion completed with success. Click here.

B Immediate Window B Error List

Ready

FIGURE 24-5

Please select Lesson 24 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

THE CACHE CONNECTION MANAGER AND TRANSFORM

The method in the previous section of this lesson showed how the Lookup Transform could use
source data for its cache only from specific OLE DB connections, and the cache could be populated
by using a SQL query or table selection. An alternate way of using the Lookup Transform enables
you to populate the cache using a separate pipeline in either the same or a different package. You
can use source data from just about anywhere, including non—-OLE DB connections.

The first method shown would reload the cache every time the transform was used. For example,

if you had two pipelines in the same package that each required the same reference data set, each
Lookup Transform would load its own copy of the cache separately. Using the Cache Transform,
you can persist the cache to virtual memory or to permanent file storage. This means that within

the same package, multiple Lookup Transforms can share the same cache, and the cache does not
need to be reloaded during each iteration of a looping operation. You can load the cache to a file and

http://www.wrox.com/go/ssis2012video

LESSON 24 JOINING DATA WITH THE LOOKUP TRANSFORM | 185

share it with other packages. The cache file format is optimized for speed and can be orders of mag-
nitude faster than reloading the reference data set from the original relational source.

The Cache Connection Manager (CCM) and Cache Transform enable you to load the Lookup cache
from any source. The Cache Connection Manager is the more critical of the two—it holds a refer-
ence to the internal memory cache and can both read and write the cache to a disk-based file. In
fact, the Lookup Transform uses the CCM internally as its caching mechanism.

Like other connection managers in SSIS, the CCM is instantiated in the Connection Managers pane
of the package design surface. You can also create new CCMs from the Cache Transform Editor and
Lookup Transform Editor. At design time, the CCM contains no data, so at run time, you need to
populate it. Figure 24-6 shows the Cache Connection Manager Editor.

r

J Cache Connection Manager Editor o=]|==

General | Columns

Connection manager name: Product Cache|

Description:

] Use file cache

Browse...

Refresh Metadata

[OK] [Cancel

FIGURE 24-6

When you configure a CCM, it enables you to specify which columns of the input data set will be
used as index fields and which columns will be used as reference fields. This is a necessary step—the
CCM needs to know up front which columns you will be joining on so that it can create internal
index structures to optimize the process. See Figure 24-7.

186 | SECTION 3 DATA FLOW

. Cache Connection Manager Editor = | B][]
General | Columns {

Configure the properties of each column in the cache connection manager,

Column Index Po... Type Length Precision Scale Code Page

ProductlD 1 four-byte signed inte.. 0 0 0

MName [Unicode string [DT_... S0 a 0

OK] [Cancel
FIGURE 24-7

Try It

In this Try It, your company needs you to alter the package you worked on earlier in this lesson to
show the product names using the Cache Connection Manager you just learned about. Your man-
ager tells you to use the same flat file to store the results. After this lesson, you’ll know how to use
both the Cache Connection Manager and the Cache Transform.

You can download the Lesson24b.dtsx package from the book’s website at www . wrox. com.

Lesson Requirements
Make the following changes to the package you created earlier in this lesson:
> Send the needed columns from Production.Product into a CCM.

> Change the source for the lookup to use the CCM.

Hints
» Use the Cache Transform to put the product data into the Cache Connection Manager.

> Use the CCM in the lookup instead of the OLE DB Connection Manager.

Step-by-Step

1. Either open the completed Lesson24b.dtsx SSIS package from www.wrox.com or alter the
package you used earlier in this lesson.

2. Add a new Data Flow to the Control Flow and name it Cache Product Table. Then connect
it to the existing Data Flow.

http://www.wrox.com
http://www.wrox.com

LESSON 24 JOINING DATA WITH THE LOOKUP TRANSFORM | 187

Open the new Data Flow and drag over an OLE DB Source. Then configure it as shown in
Figure 24-8. Click OK.

., OLE DB Source Editor o =)=

Configure the properties used by a data flow to obtain data from any OLE DB provider.

Connection Manag Specify an OLE DB connection manager, 3 data source, or 3 data source view, and select the
data access mode. If using the SQL command access mode, specify the SQL command either by

Columns typing the query or by using Query Builder,
Error Output

OLE DE connection manager:

IAdventur:Wnrks!ﬂﬂ ﬂ New...

Data access mode;

[SQL command 7]

SQL command text:

SELECT ProductlD, Name = Parameters...

FROM Production.Produc I]
Build Query...

< i] » Preview..

o e o)

FIGURE 24-8

Bring a Cache Transform into the Data Flow and open the Cache Transformation Editor.
Select New to create a Cache Connection Manager, which opens the Cache Connection
Manager Editor.

On the Columns tab of the editor, change the Index Position for ProductID to 1, as shown
in Figure 24-9. Then click OK.

4 Cache Connection Manager Editor =3 [oh =X

General | Columns

Configure the properties of each column in the cache connection manager.

Colurin Index Po.. Type Length Precision Scale Code Page
ProductlD 1 four-byte signed inte... 0] 0
Name 0 Unicode string [DT_... S0 o o

FIGURE 24-9

188 | SECTION 3 DATAFLOW

6. Ensure that all columns are mapped by clicking the Mappings tab in the Cache
Transformation Editor. Then click OK.

7. Now enter the DFT — Aggregate Data Data Flow to change the source of the lookup trans-
form by opening the LKP — Product Name and changing the Connection Type to Cache
Connection Manager. Then click OK. You will see the results in Figure 24-10.

- -
. Lookup Transformation Editor o
This transform enables the performance of simple equi-joins between the input and a reference data set.
CEneral Cache mode
Connection
Columns @ Full cache
Advanced ,
Errar Output () Partial cache
) Mo cache
Connection type
@ Cache connection manager
(©) OLE DB connection manager
Specify how to handle rows with no matching entries
[Fail component v]
[0K] [Cancel] I Help]
FIGURE 24-10

8. Empty the content of the flat file and then execute the package again. The results will be the

same as the original package, but now the cached data can be used several times throughout
the package.

Please select Lesson 24 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

25

Auditing Data with the Row
Count Transform

Often in an ETL process you may be required to create an auditing table that records
how many rows were loaded. SSIS has made this easy to accomplish with the Row Count
Transform.

This transform has the ability to count rows in a Data Flow and record that count for later use
in conjunction with an Execute SQL Task. The count must be placed into a variable, which
can then be used in the Control Flow for inserting into an audit table.

If you have used this transform in previous versions of SSIS, you will notice that it has been
simplified even more in SQL Server 2012. To configure the Row Count Transform, connect
it to any point in the Data Flow that you want to record the number of rows. Double-click
the transform to open the Row Count Editor. In the Variable property, specify what variable
(package and project parameters cannot be used here) will store the row count that the trans-
form records.

Another valuable way to use the Row Count Transform is as a destination to send your data
to. Because you don’t physically have to commit stream data to a table to retrieve the count,
it can act as a destination, terminating your data stream and enabling you to view the Data

Flow’s data with a data viewer.

TRY IT

In this Try It, your company needs you to create a package that runs only if the ErrorLog table
in the AdventureWorks2012 database contains any rows. After this lesson, you’ll know how to
insert a row count into a variable and use it dynamically in your package.

You can find the completed Lesson25.dtsx package at www.wrox.com.

http://www.wrox.com

190 | SECTION 3 DATAFLOW

Lesson Requirements

Create a new package named Lesson25 and make the following changes, or as just noted, you can
find the completed Lesson25.dtsx package at www.wrox. com:

> Count the rows in the ErrorLog table and place that number in a variable.

> Set the precedence constraint to run a Script Task if the table has at least one row.

Hints

> You need only one OLE DB Source in a Data Flow and one Row Count Transform that
counts how many rows are in the ErrorLog table.

> Use a Script Task that executes only if at least one row is found in the ErrorLog table.

Step-by-Step

1. Create an SSIS package named Lesson25 or download Lesson25.dtsx from www.wrox . com.
Add a Data Flow Task to the Control Flow design surface.

2. In the Control Flow tab, add a variable Variabies
named MyRowCount. Ensure that the dex|a
variable is package-scoped and of type Name Scope Datatype Value Expression
Int32 (Figure 25-1). If you don’t know @ Myowsount 2 ’ (d
how to add a variable, select Variable

from the SSIS menu and click the Add

. FIGURE 25-1
Variable button.

3. Create a connection manager that connects to the AdventureWorks2012 database. Add an
OLE DB Data Source to the Data Flow design surface. Configure the source to point to your
AdventureWorks2012 database’s connection manager and the ErrorLog table.

4. Adda Row Count Transform to the Data Flow and con-
nect it to the Data Source. Double-click the transform to
open the Row Count Editor and select the variable named
User::MyRowCount in the Variable property. Your editor [o [conee
should resemble Figure 25-2.

. Row Count [=lfE =]

Wariable:

5. Return to the Control Flow tab and add a Script Task. FIGURE 25-2

This task is not really going to perform any action. Instead, it will be used to show the condi-
tional ability to perform steps based on the value returned by the Row Count Transform.

6. Connect the Data Flow Task to the Script Task.

7. Right-click the arrow connecting the Data Flow Task and Script Task. Select the Edit menu.
In the Precedence Constraint Editor, change the Evaluation Operation to Expression. Set the
Expression to @MyRowCount>0 (Figure 25-3).

http://www.wrox.com:
http://www.wrox.com

LESSON 25 AUDITING DATA WITH THE ROW COUNT TRANSFORM

| 191

8.

Precedence Constraint Editor =

& precedence constraint defines the workflow between two executables. The
precedence constraint can be based on a combination of the execution results and the
ewaluation of expressions,

Constraint options

Evaluation operation: Expression 'l

Success

(=]

Multiple constraints

If the constrained task has multiple constraints, wou can choose how the constraints
interoperate to control the execution of the constrained task.

@ Logical AMD, &Il constraints must evaluate to True

(7 Lagical OR. One constraint must evaluate to True

FIGURE 25-3

Now execute the package. A successful run should look like Figure 25-4. The Script Task
should not change to green because no rows exist in the ErrorLog table.

©& Lesson25 (Running) - Micros... [— |[E |[E%)
File Edit View Project Build Debug
Team Data Format 35515 Architecture Test
Tools Analyze Window Help

N IR

Lesson25.dtsk [Design] -

LI e LER =

Y Data Flow
U Task

¢

0 scrptTask
)

.v.\
e
g
£
g
2
&
=
g
z
L]
=
=)

g
2
i

Connection Managers

| AdventureWorks2012

' Packane execution completed with success.,.

8 Immediate Window B Error List
Ready

FIGURE 25-4

Please select Lesson 25 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Combining Multiple Inputs with
the Union All Transform

The Union All Transform combines multiple inputs in the Data Flow into a single output row-
set. It is very similar to the Merge Transform, but does not require the input data to be sorted.
For example, in Figure 26-1, three different transforms are combined into a single output
using the Union All Transform. The transformation inputs are added to the output one after
the other; thus, no rows are reordered.

[T _mp SourE Tap I T
l v l
1 Data = Derived Column A Lookup
(0 Conversion e [2
l L Lookup Match Cutput
Union All
v

{ |' OLE DB Destination

FIGURE 26-1

To configure this transform, bring the blue precedence constraints from the sources or trans-
formations you want to combine to the Union All Transform. SSIS automatically maps the
columns if they have the same name, but if you want to verify that the columns are correctly
mapped, open the Union All Transformation Editor. The only time you must open the Union
All Transformation Editor is if the column names from the different inputs do not match.
During development, if upstream components get tweaked or something else changes to disrupt
the column mappings of the Union All Transform, those mappings must be fixed manually.

194 | SECTION 3 DATA FLOW

The transform fixes minor metadata issues. For example, if you have one input that is a 20-charac-
ter string and a different input that is a 50-character string, the output of this from the Union All
Transform will be the longer 50-character column. Occasionally though, when you make changes
above the transform, you might see red on the Union All Transform, indicating an error. In these
cases, it’s faster to delete the transform and re-add it than it is to spend time debugging the error.

NOTE The Union All Transform can be used as a temporary destination while
you are developing to test your package. This practice allows you to test the rest
of your package without landing data.

TRY IT

In this Try It, your company needs you to create a package that has three different sources, but
places the data into one flat file. After this lesson, you will know how to combine data from differ-
ent sources and place that data in one Flat File Destination.

You can download the completed Lesson26.dtsx from www.wrox. com.

Lesson Requirements

Create a new package named Lesson26 and make the following changes, or download the com-
pleted Lesson26.dtsx from www.wrox . com.

Use the following tables from the AdventureWorksDW2012 database:
> FactlnternetSales

» FactResellerSales

Combine these columns from each table:
> ProductKey

> SalesAmount
After the data is combined, export it to a flat file.

Hints

> You need two OLE DB Sources: one for FactInternetSales and one for FactResellerSales.
> Use a Union All Transform to combine the previously mentioned columns.

> Send the results of the package to a Flat File Destination.

http://www.wrox.com
http://www.wrox.com

LESSON 26 COMBINING MULTIPLE INPUTS WITH THE UNION ALL TRANSFORM | 195

Step-by-Step
1. Create an SSIS package named Lesson26 or download the completed Lesson26.dtsx from

WWW.Wrox.com.

2. In the Control Flow tab, add a new Data Flow Task to the design surface and name it
DFT - Union All Sales.

3. Create a new OLE DB Connection Manager using the AdventureWorksDW2012 database as
the source. Then drag two OLE DB Sources on the designer and rename them Reseller Sales
and Internet Sales.

4. In the Internet Sales Source, select SQL Command as the Data access mode and enter the
following query:

Select ProductKey, SalesAmount
From FactInternetSales

5. Inthe Reseller Sales Source, select SQL Command as the Data access mode and enter the
following query:

Select ProductKey, SalesAmount
From FactResellerSales

6. Draga Union All Transform and connect both blue arrows from the sources to it. Verify that
the columns mapped correctly by opening the Union All Transformation Editor (Figure 26-2).

~ Union All Transformation Editor o |[EEs

Configure the properties used to merge multiple inputs into ane output by creating mappings between columns,

Unian All Tnput 1 Union Al Tnput 2

Productey Productkey

SalesAmount SalesAmount SalesAmount

Co] Lo] []

FIGURE 26-2

http://www.wrox.com

196 | SECTION 3 DATA FLOW

10.

Now bring a Flat File Destination to the design surface and connect the Union All Transform
to it. Name the destination Sales Export.

Open the Flat File Destination and select New to create a delimited Flat File Connection
Manager.

Name the Flat File Connection Manager Flat File Sales Export. Then call the file SalesExport.
txt, and select C:\Projects\SSISPersonalTrainer as the location for it. Also, check the Column
names in the first data row option. Click OK on the connection manager. Ensure that you

select the Mappings page on the destination so each column is set correctly. Click OK on the
destination.

The package is now complete. When the package is executed, your results will look like
Figure 26-3.

@0 Lesson26 (Running) - Microsoft Yisual Studio (Administrator) =l =]
File Edit Yiew Project Build Debug Team BIxPress Data Format SSIS
Architecture Test Tools Analyze Window Help

Pl | K9 - | b |[peveopment || S Gy g L L

Lesson26.dtsx [Design] >

E.u Cont... |[%] Dats ... [{F Para..

F Even... |“5 Pack... |-9 Pragr...

E
El
Data Flow Task: [% DFT - Union All Sales - o
2
=)
=
4 [+
P — 2
§ VAN T
o
L |‘ Reseller Sales | | Intemet Sales K
| - =
I
60,855 rows
60,258 rows 1
A 4 F
Unicn All
| Sales Export
Connection Managers

| | AdventureWorksDW2012 Flat File Sales Export
= =

! Packane execution completed with success, Click hers ko switch to design mode, or select St

B Immediate Window B Error List
LLET:

FIGURE 26-3

Please select Lesson 26 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Cleansing Data with the
Script Component

Sometimes you can’t accomplish your data cleansing goal in a Derived Column Transform, and
you must get more advanced. Say, for example, you want to run a routine where any character
data is removed from the data, or, if the data coming in is an invalid date, perhaps you want to
replace it with today’s date. In these examples, you can use a Script Component in the Data Flow
Task. The Script Component can play one of three roles: transform, source, or destination:

> Transform—Generally, the focus of your Data Flow will be on using the script as a
transform. In this role, you can perform advanced cleansing with the out-of-the-box
components.

> Source—When the script is used as a source, you can apply advanced business rules to
your data as it’s being pulled out of the source system. (This happens sometimes with
COBOL files.)

> Destination—When the script is used as a destination, you can use the script to write
out to a non-OLE DB destination, like XML or SharePoint.

You can write your script in VB.NET or C#, but once you select a language, you can’t change
it. You can select the language by double-clicking the Script Component and going to the
Script page of the Script Transformation Editor (shown in Figure 27-1). You can also select
any variables you want to pass into the script in this page. Make sure to select the variable for
ReadWrite only if the variable needs to be written to. Otherwise, the variable will be locked
for the duration of the script’s execution.

On the Input Columns page (Figure 27-2), select each column that you want to be passed into
the script from the Data Flow and select whether you want to allow them to be accessed for
writing. If you don’t need the column for writing, make sure it’s set to ReadOnly, because
ReadWrite columns require more resources. All columns that are not checked are passed
through to the next transform or destination seamlessly.

198 | SECTION 3 DATA FLOW

. Script Transformation Editor =3

Access Microsoft isual Studio Tools For Applications [WSTA) to write scripts using Microsoft Wisual Basic 2010 ar
MicrosoftWisual C# 2010, and configure component properties,

Input Calumns
Inputs and Cutputs

i Praperties:
Connection Manag

4 Common Properties

Description Includes and runs custam script code. For examp
LocalelDr English (United States)

Mame Saipt Component

‘WalidateExternalMetadata True

S

Custom Properties

UseriPremiumlncome &

Readi#ritevariables
Scriptlanguage Microsoft visual Basic 2010

ReadOnlyYariables
Specifies a comma-separated list of read-only variables,

P T — I Edit Seript..]

FIGURE 27-1

. Script Transformation Editor =0

Access Microsoft Visual Studio Tools for Applications (WST&] o write scripts using Microsoft Wisual Basic 2010 or
Microsaft isual C# 2010, snd canfigure companent praperties,

Script Input name: [Inputo -
Inputs and Outputs B
Connection Manags Available Input Columns
@ Name B
[C] SpanishDceupation
[[] FrenchOccupation
[[] HouseOwnerFlag
[HumberCarsOwned L
[AddressLine? i
[T Addressline2 28
] | Phane L
[[] DateFirstPurchase r
[CommuteDistance = L
Input Column Output Alias Usage Twpe
BirthDate BirthDate Readwtite
Wearlylncome YearlyIncome Readnly
TotalChildren TotalChildren ReadCnly
Phone Phone ReadOnly
« o] ¢+

FIGURE 27-2

LESSON 27 CLEANSING DATA WITH THE SCRIPT COMPONENT | 199

You can also add more columns that are not part of the source or a previous transform using the
Inputs and Outputs page. This page enables you to add other buckets of data that you can use to
direct the data down multiple paths. To do this, you must first create an additional output by click-
ing New Output. Then you need to set the SynchronousInputID property to the same number for
each output. Set the ExclusionGroup to the same non-zero number. In the script, you can then use
the DirectRowTo<outputbuffername> method to send the data to each of the paths. Because this is
in the script, the data can be sent to multiple paths at the same time.

To edit the script, go to the Script page and click Edit Script. This opens the Visual Studio environ-
ment. Three subroutines are the most important to your design: PreExecute, PostExecute, and

ProcessInputRow:

> preExecute executes once per transform execution and is a great place to initialize objects or
connections that you hope to use later.

PostExecute is where you can close connections and objects or set variables.

ProcessInputRow is run for every row going through the transform; from this subroutine
you cannot set variables.

Accessing a row from the ProcessInputRow subroutine is simple. To do so, you must use the Row
object, which contains an individual row as it is looping. For example, to read a row coming into
the transform, like BRIAN KNIGHT, and translate that to a proper-cased value, like Brian Knight,
use the following code, where columnName holds the customer name. StrConv is a string conversion
function to convert a string to a new format.
Public Overrides Sub InputO_ProcessInputRow (ByVal Row As InputOBuffer)
'This is the line that performs the magic to Proper Case.

Row.ColumnName = StrConv (Row.ColumnName, VbStrConv.ProperCase)
End Sub

Variables can be read from any subroutine, but you will only be able to write to them in the
PostExecute subroutine. To read or write to a variable, you can use a Me.Variables statement, as
shown in the following:

Row.YearlyIncome = Row.YearlyIncome + Me.Variables.PremiumIncome

Though breakpoints were allowed in the Script Task, they are not allowed in the Data Flow. Because
of this, you have to use more arcane debugging techniques, like message boxes to notify you which
step the engine is at in the code.

TRY IT

In this Try It, you have recently begun to receive data from an entity that has occasional issues with
date data. The source application allows users to enter whatever they’d like for the birth date, so
occasionally you receive invalid characters in the date or invalid dates. After completing this lesson,
you’ll have a better idea of how to use the Script Component to perform more complex cleansing or
checking of your data.

200 | SECTION 3 DATA FLOW

You can download the completed Lesson27.dtsx and the Lesson27Data.txt source file from

WwWw . Wrox.com.

Lesson Requirements

In this lesson, you need to check dates of the BirthDate column from the Lesson27Data.txt source
file as each row is read into the script and send the data to one of two buckets: ValidatedData or
BadData. Additionally, if the DateFirstPurchase column is anything but a date, you need to change
the row to today’s date as a default.

NOTE Normally, you would send the data in the BadData bucket to another
business rule to cleanse it further or to an auditing table. However, the point of
this lesson is not to write the data to a destination table, so, if you'd like, you can
just send the data to two Union All Transforms to simulate two data streams.

Hints

> The 1sbate () function can determine if a column is in a date.
> You will want to create two buckets in the Inputs and Outputs page.

> Make sure the SynchronousInputID column is set to the same Script Component. Inputs and
the ExclusionGroup property are set to 1 for each of the outputs.

Step-by-Step

1. Create a new package called Lesson27.dtsx (or download the completed Lesson27.dtsx from

WWW . Wrox. com).

2. Create a connection to the file that you downloaded off the Wrox website called
Lesson27Data.txt.

3. Create a new Flat File Connection Manager called Extract (creating connection managers is
covered in Lesson 6) and point to the Lesson27Data.txt file. In the General page, check the
Column names in the first data row box and ensure that the EmailAddress column in the Flat
File Connection Manager is set to 100 characters in the Advanced page.

4. Create a Data Flow Task. In the Data Flow tab, create a Flat File Source that points to the
new connection manager that you just created in Step 3 called Extract.

5. Drag a Script Component onto the design pane. You are immediately prompted for what
type of script you want to use (source, transform, or destination). Select Transformation for
the type and connect the transform to the Flat File Source.

6. In the Script Transform Editor, select the Input Columns page and check BirthDate and
DateFirstPurchase. Ensure that DateFirstPurchase is set to ReadWrite.

http://www.wrox.com
http://www.wrox.com

LESSON 27 CLEANSING DATA WITH THE SCRIPT COMPONENT | 201

7. Go to the Inputs and Outputs page and highlight the Output 0 Buffer and click Remove
Output, found on the bottom of the window. Then click Add Output twice. Rename the first
output you just created BadData and the second to ValidatedData. For both of the outputs,
set the SynchronousInputID to the same input buffer and set the ExclusionGroup property to
1, as shown in Figure 27-3.

. Script Transformation Editor = @

Access Microsoft YWisual Studio Tools for Applications (w3TA) to write scripts using MicrosoftVisual Basic 2010 or
Microsoft Wisual C# 2010, and configure component properties,

Script Specify column properties of the script component,

Inp ks

S Inputs and outputs:
Connection Managy

4 Common Properties

Description

ExclusionGroup |1

BadData
B putsinput o]+

Synch sInpultiD
Add Output #nchionousinpu .
Specifies the input 1D of rows in this
autput,
F T —— Remove Output

o] Lo] []

FIGURE 27-3

8. Go to the Script page, select Microsoft Visual Basic 2010 for the ScriptLanguage, and click
Edit Script. Then add the following script in the ProcessInputRow subroutine (note that the
subroutine will already exist in your code block):

Public Overrides Sub InputO_ProcessInputRow (ByVal Row As
InputOBuffer)

If IsDate(Row.DateFirstPurchase) = False Then
Row.DateFirstPurchase = Now
End If

If IsDate(Row.BirthDate) = True Then
Row.DirectRowToValidatedData ()
Else
Row.DirectRowToBadData ()

End If
End Sub

202 | SECTION 3 DATAFLOW

9. Ensure there is nothing underlined blue (showing bad code), then close the script and return
to the designer.

10. Drag two Union All Transforms onto the design pane and connect the Script Transform to
each of the Union All Transforms.

11. Execute the package, and you should see five bad rows go down the BadData path, as shown
in Figure 27-4.

2,

Flat File Source

sl

.,:) Script Componant

T

l BadData (5 rows) ValidstedData (18,475 m;.t;
‘ Union All 1 ‘ Union All
FIGURE 27-4

Please select Lesson 27 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Separating Data with the
Conditional Split Transform

Sometimes you deal with source data that may require different treatments applied to it. For
example, you want to generate a mailing list for a direct mail campaign, but you want to tar-
get only customers with children. You want to make sure to separate the customers without
kids before preparing the list. You would also like anyone who has more than five kids to
receive a buy-two-get-one-free coupon with the mailer.

The best way to separate data within a package to apply different types of actions is with the
Conditional Split Transform. With this transform, you can send data from a single data path
to multiple outputs based on conditions set in the Conditional Split Transformation Editor,
shown in Figure 28-1. To open the editor, drag the transform in the design surface and double-
click it.

The Conditional Split Transform uses the SSIS expression language to determine how the data
pipeline should be split. For this example, all you need to know is that the Conditional Split
Transform is checking to see if customers have more than five kids so they can receive the
extra coupon.

NOTE If you need a reminder on how the SSIS expression language works, refer
back to Lesson 21 where it is covered in more detail.

204

| SECTION 3 DATA FLOW

« Conditional Split Transformation Editor

[= =]

Specify the conditions used to direct input rows to specific outputs, If an input row matches no
condition, the row is directed to a default output,

[3 Variables and Parameters
[Colurmng

[Mathematical Functions
[String Functions

4 DatedTime Functions
[MULL Functions

4 Type Casts

Qrder Qutput Name
1 Less than 5 Children
2 hare than 5 Children

Default output name:

Configure Error Qutput.,

Description;

Conditian
TotalChildren < 5 && TotalChildren = 0
TotalChildren == 5

Ma Children

[[s]34] [Cancel

FIGURE 28-1

This check produces three possible outputs:

> For customers with more than five children

> For customers with between one and four children

» For customers with no children

It may look like you have only two outputs, but if you look on the bottom of the Conditional Split
Transformation Editor, the Default Output Name provides an output for data that doesn’t apply to
the conditions declared. In the case of this package, you need only those customers with at least one
child; you will see only these outputs in the final package (shown in Figure 28-2). You do not need

to use the output for customers with no children.

LESSON 28 SEPARATING DATA WITH THE CONDITIONAL SPLIT TRANSFORM

| 205

=0 Lesson28 - Microsoft Visual Studio (Administrator)

Architecture Test Tools Analyze Window Help

Package.dtsx [Design]* >

%, Con.. | Dat.. | Par. ‘; Eve... |u5 Par...

tiea

=

2

Diata Flow Task: (26 Data Flow Task

roqoo) siss By

| Customer

l__’ Source

|

Conditional Split

Imne than 5 Children Less than 5 Childrenl

| Campaign 2

! Campaign 1

-

Zonnection Managers

| | AdventureWorksDW2012 Campaignl.bd CampaignZ.tet
= = =

B, Enror List @ Variables 23 Expressions
Ready

[S1EEE]

File Edit ¥Yiew Project Build Debug Team BIxPress Data Format SSIS

Pl @ 4 o]9 - ¢ | b |[peveiopment -|| S A (G S Bl L

13101dy3 uonnjog g. sanadold 5

FIGURE 28-2

TRY IT

In this Try It, your company needs a list of customers for a direct mail campaign that is only going

to be sent regionally. You need to create an SSIS package that generates two different mailing
lists because one region is going to receive a different promotion than the other. After complet-

ing this Try It, you will know how to split data within a package based on set conditions using the

Conditional Split Transform.

You can download the completed Lesson28.dtsx from www . wrox. com.

Lesson Requirements

Create a new package named Lesson28 and make the following changes. (Again, you can also find

the completed Lesson28.dtsx package at www.wrox.com.)

> Use the following tables from the AdventureWorksDW2012 database:

» DimCustomer

> DimGeography

http://www.wrox.com
http://www.wrox.com

206 | SECTION3 DATAFLOW

>

Hints

>

>
>
>

Bring back the following columns from DimCustomer:
> Title

FirstName

MiddleName

LastName

EmailAddress

AddressLinel

AddressLine2

Phone

Y Y Y Y VY VY

Using the GeographyKey, use any method to join the DimCustomer and DimGeography
tables together and bring back the following columns from DimGeography:

> StateProvinceCode
> PostalCode
Create a Conditional Split with these conditions:
> Campaign 1—StateProvinceCode == “FL” || StateProvinceCode == “GA”
> Campaign 2—StateProvinceCode == “CA” || StateProvinceCode == “WA”

Send these two outputs to two separate flat files to create the regional mailing lists.

In the Data Flow, you need only one OLE DB Source to bring in customer data.
You need a Lookup Transform to join geography data to each customer.
Use a Conditional Split Transform to separate the different state codes.

You need two separate Flat File Destinations for the results.

Step-by-Step

1.

Create an SSIS package named Lesson28 or download Lesson28.dtsx from www.wrox.com.
Add a Data Flow Task named DFT - Regional Mailing List to the Control Flow design
surface.

Create a new OLE DB Connection Manager using the AdventureWorksDW2012 database as
the source. Then drag an OLE DB Source on the designer and rename it Customer Source.

In Customer Source, select AdventureWorksDW2012 as the connection manager and SQL
Command as the Data access mode.

http://www.wrox.com

LESSON 28 SEPARATING DATA WITH THE CONDITIONAL SPLIT TRANSFORM | 207

4.

Enter the following query in the Data access mode window:

Select FirstName,
MiddleName,
LastName,
AddressLinel,
AddressLine2,
EmailAddress,
Phone,
GeographyKey
From DimCustomer

Drag a Lookup Transform on to the design pane and name it LKP - Geography. Open the
Lookup Transformation Editor and select AdventureWorksDW2012 as the connection
manager.

Next, select Use results of an SQL query and use the following query:

SELECT GeographyKey, StateProvinceCode
FROM DimGeography

Go to the Columns tab to add the StateProvinceCode to the data stream, shown in Figure 28-3.

. Lookup Transformation Editor o (=)=

This transform enables the performance of simple equi-joins between the input and a reference data set,

General

Connection
Availahle Input C...

Adwanced Na.me B

Error Qutput MiddieName Available Lookup Columhs
LastName @ Mame Ind.
AddressLingl [Geagraphwkey
AddressLine2 | | StateProvinceCode
Emailtddress ’
Phone

Lookup Column Lookup Operation Cutput Alias

<add as new column= StateProvinceCode

Lo Lo e]

FIGURE 28-3

208 | SECTION 3 DATA FLOW

8. Now bring a Conditional Split Transform to the design surface and connect it to the Lookup
Transform. When prompted, select Lookup Match Output for the Output of the Lookup

Transform.

9. Open the Conditional Split Transformation Editor. Add a new output in the Conditional
Split Transformation Editor called Campaign1, and then add the following condition:

StateProvinceCode == "FL" || StateProvinceCode == "GA"

10. Add a second output named Campaign2 with the following condition:

StateProvinceCode == "CA" || StateProvinceCode == "WA"

11. Make No Ad Campaign the Default Output Name and click OK. After making these
changes, the editor should look like Figure 28-4.

.. Conditional Split Transformation Editor = |2 [==]

Specify the conditions used to direct input rows to specific outputs, If an input row matches no
condition, the row is directed to a default output,

»

[Variables and Parameters [Mathematical Functions o
[Colurning [Sting Functions

[Date/Time Functions
[MULL Functions | 8
[Type Casts -

m

Description:

Qutput Mame Condition
ampaignl StateProvinceCode == "FL" || StateProvinceCode =..,

2 Campaign2 StateProvinceCode == "CA" || StateProvinceCode =,

Drefault output name: Mo Ad Campaign

Configure Error Output... [K] i Cancel] [Help]

FIGURE 28-4

12. Bring two Flat File Destinations into the Data Flow and name them Campaign1 Mailing List
and Campaign2 Mailing List. Create separate connection managers for them pointing to the

file location of your choice.

LESSON 28 SEPARATING DATA WITH THE CONDITIONAL SPLIT TRANSFORM

| 209

13.

14.
15.

The Conditional Split will have three blue output arrows. When you connect the first blue
arrow to one of the two destinations, a dialog box opens asking which output you want.
Connect each output to the destination that has the name associated with it. This action

leaves one output unused: No Ad Campaign.

Open each Flat File Destination to make sure the mapping is set correctly.

The package is now complete. When the package is executed, your results will look like

Figure 28-5.

oo Lesson28 (Running) - Microsoft Visual Studio (Administrator)
File Edit Yiew Project Build Debug Team BIxPress Data Format SSIS Architecture
Analyze Window Help

Jj'Hﬂ‘ é =3 :‘jl‘-‘? - "'| 4 | Development

Lesson28.dtsx [Design] <

E_u Conkrol Flow | [Data Flow | {f Parameters

b P C - o R T

& EwventHandl... |“: Package Ex... | % Progress

o= =d

Test Tools

Data Flow Task: (&3 DFT - Regional Mailing List

Customer

L_l‘ Source

1a,oe£ e
| we

[Geography

V]

Lookup Match Osi:ut (18,484 rowe)
an

Conditional Split
b |

l Cameaiant (6 rows) Campaign2 (6,707 mws)l

| Campaign 1 Mailing List |

Campaign 2 Mailing List

-

m

Connection Managers

i8] AdventureWorksDW2012 - Campaignl =] Campaign2

(' Packange execution completed with success, Click here bo switch to desion mode, or select Stop Debugging from the O,

B Immediate Window ﬂ Error List
Ready

FIGURE 28-5

Please select Lesson 28 on the DV D, or online at www.wrox.com/go/ssis2012video,

to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Altering Rows with the OLE DB
Command Transform

The OLE DB Command Transform is used to run a SQL statement for each row in the Data
Flow. It sounds innocent enough, doesn’t it? The reality is that the statement “for each row”
should immediately make alarms go off in your head. This involves kicking off an update,
insert, or delete statement for each row in an input stream.

To put this into perspective, imagine you are loading a product dimension table in your ETL
process. Your predecessor decided it would be best to update and delete these rows using an
OLE DB Command. The company you work for is a major department store, and the new
spring clothing line is coming in. So, all the winter clothes are being marked down. This
means you are going to get an update with a price reduction for all the winter clothes your
company has in inventory at one time. Using the OLE DB Command Transform would mean
that your package would be running several thousand update statements and your package
would run for hours. A situation like that one is why we recommend you avoid using the OLE
DB Command Transform.

NOTE So if we recommend not using the OLE DB Command Transform,
what are your options? The best practice would be to insert all rows marked as
updates into a staging table, and then in the Control Flow use an Execute SQL
Task to update the destination table. Why is this better than using the OLE
DB Command Transform? The Execute SQL Task performs this operation in
bulk versus the several thousand update statements required in the OLE DB
Command Transform. This method is explained in greater detail in Lesson 60,
which covers loading a dimension table.

This doesn’t mean you should never use this transform, but it is important to understand its
shortcomings when working with large amounts of data.

212 | SECTION 3 DATA FLOW

To use the OLE DB Command Transform, drag it from the Toolbox to the Data Flow design surface
and double-click it. The configuration looks more complicated than it really is. From the Connection
Managers tab, specify which OLE DB Connection you want to execute the SQL statement on.
Figure 29-1 shows the AdventureWorks2012 database as the connection manager.

. Advanced Editor for OLE DB Command o |G

The advanced editor provides access to the low-level properties of data flow components. Additionally, the
advanced editor can be used to configure components that do not have a custom user interface,

Connection Managers | Component Properties I Column Mappings | Input and Output Properties

Select the connection managers to be used for the data flow component.

Connection managers:

Mame Connection Manager Description

OleDbConnection AdventureWorks2012 The OLE DB runtime connect...

o o))

FIGURE 29-1

You set the SQL statement you plan to execute on the Component Properties tab. To enter your SQL
statement, click the ellipsis next to the SqlCommand property. Remember that to tell SSIS that you
are going to be using parameters in a SQL statement, you use a question mark (?).

You can also configure the amount of time before a timeout occurs in the CommandTimeout prop-
erty, shown in Figure 29-2. This uses an interval of seconds where 0 denotes no timeout.

LESSON 29 ALTERING ROWS WITH THE OLE DB COMMAND TRANSFORM |

213

' Advanced Editor for OLE DB Command = (===

The advanced editor provides access to the low-level properties of data flowe components, Additionally, the
adwvanced editor can be used to configure components that do not have a custom user interface,

Connection Managers | Companent Properties | Column Mappings I Input and Output Properties

Specify advanced properties for the data flow component,

Properties:
-
Description Runs an S0l statement for each row in a data flow, |
D
Localellr English [United States)
Mame OLE DB Command
WalidateBxternalMetadata True
4 Custom Properties
CommandTimeout 0
DefaultCodePage 1252
SqlCommand Update Production.TransactionHistorySet ModifiedD|

5]
Unigquely identifies this objedt

o] o))

FIGURE 29-2

The Column Mappings tab in the Advanced Editor for OLE DB Command window is similar to
the Mappings page in a destination editor. (Configuring destinations is discussed in more detail in
Lesson 19.) It displays the input stream and destination columns, which are really the parameters
indicated in the SqlCommand property. Any input column mapped to a parameter replaces the
parameter with the value of that field. When you are mapping, remember that the order in which
you place the parameters while writing the SQL statement is also the order in which they must be
mapped. In Figure 29-3 you see how to map the following Update statement:

Update Production.TransactionHistory
Set ModifiedDate = ?
Where ProductID = ?

214 | SECTION 3 DATA FLOW

_ Advanced Editor for OLE DB Command = |[EE=]

The advanced editor provides access to the low-level properties of data flow components, Additionally, the
adwanced editor can be used to configure components that do not have a custom user interface,

Connection Managers | Component Properties | Column Mappings | nput and Output Properties

Rvailable Input Columns
Name o
ProductiD
" ModiizdDate Available De...
TransactionlD | MName !
RsferencellrderD E £ Param_ 0
Fisferenceliderline|D Faram_1
TransactionDate
TransactionType
Quantity
ActualCost 2
Input Calumn Destination Column
ModifiedDate Param_i)
ProduciD Param_1

o] Lo) o]

FIGURE 29-3

The last tab is the Input and Output Properties tab, which you will likely not ever have to change; it
simply provides another place where you can add or remove columns that are used in the transform.

TRYIT

In this Try It, you work for a company that sells dartboard supplies. As new supplies are added to
your inventory, some of the older products are being discounted. Use the flat file extract provided
and update the price on all required products. After completing this lesson, you will know how to
use the OLE DB Command Transform to alter data with a SQL statement inside the Data Flow.

NOTE The small package created in this example is meant only to show the
capabilities of the OLE DB Command Transform. Our recommendations stated
earlier in the lesson for why you might want to avoid using the OLE DB Command
Transform for these sorts of situations still stand.

You can download the completed Lesson29.dtsx and sample files for this lesson from www.wrox.com.

Lesson Requirements

Create a table in the AdventureWorks2012 database named Product. OLEDBCommand. You can
find the code to create this table in the download for this lesson available at www.wrox. com.

http://www.wrox.com
http://www.wrox.com

LESSON 29 ALTERING ROWS WITH THE OLE DB COMMAND TRANSFORM | 215

Download the flat file named OLEDBCommandExample.txt from www.wrox.com to use as your
source. Save this file to the C:\Projects\SSISPersonalTrainer directory.

Update the current flag and row end date columns in the Product_OLEDBCommand table and then
create new rows in the table representing the new list price.

Hints

> Use the OLE DB Command Transform to update only two columns.

> After updating these fields, send the rest of the input stream to a regular OLE DB Destination
to insert new records with the new list price.

Step-by-Step

1. Create a new package and name it Lesson29 or download the completed Lesson29.dtsx
package from www.wrox.com.

2. Draga Data Flow Task onto your designer and name it DFT - OLE DB Command.

3. Create a new Flat File Connection Manager, name it Product Price Change, and point it to
C:\Projects\SSISPersonal Trainer\OLEDBCommandExample.txt. Also, check the Column
names in the first data row option. The editor should look like Figure 29-4.

2l Flat File Connection Manager Editor o =S
Connedtion manager name: Product Price Change
Description:
Select a file and specify the file properties and the file format,
Cotumns | File name; CiProj ot SIsPersonalTrainerOLED
1 Preview Locale: [] Unicod
ocale: [English (United states) - nicode
Code page: [1252 [ans1- Lating |
Format: [Detimitea -
Text qualifier: <nones
Header row delimiter: -
Header raws to skipi |0 =
Column names in the first data row
o) o] e]

4. In the Data Flow, bring a new Flat File Source over and name it Discounted Products. Open
the editor and make the connection manager the newly created Product Price Change.

http://www.wrox.com
http://www.wrox.com

216 | SECTION 3 DATA FLOW

5. Open Management Studio, connect to the AdventureWorks2012 database, and run the fol-
lowing query to create a new table called Product. OLEDBCommand (you can download the
query from www.wrox.com):

CREATE TABLE [dbo].[Product_OLEDBCommand] (
[ProductID] [smallint] IDENTITY(1,1) NOT NULL,
[ProductBusinessKey] int,

[ProductName] [varchar] (50) NOT NULL,
[ListPrice] [money],
[CurrentFlag] [smallint],
[RowStartDate] [datetime],
[RowEndDate] [datetime]
CONSTRAINT [PK_Product_OLEDBCommand_ProductID] PRIMARY KEY CLUSTERED

(

[ProductID] ASC

) ON [PRIMARY]

) ON [PRIMARY]

GO

INSERT INTO [dbo].[Product_OLEDBCommand] Select 101,
'Professional Dartboard',b '49.99', '1', '1/1/2006',Null

INSERT INTO [dbo].[Product_OLEDBCommand] Select 102,
'Professional Darts',15.99,1, '1/1/2006',Null

INSERT INTO [dbo].[Product_OLEDBCommand] Select 103,
'Scoreboard',26.99,1, '1/1/2006',Null

INSERT INTO [dbo].[Product_OLEDBCommand] Select 104,
'Beginner Dartboard',45.99,1, '1/1/2006',Null

INSERT INTO [dbo].[Product_OLEDBCommand] Select 105,
'Dart Tips',1.99,1, '1/1/2006',Null

INSERT INTO [dbo].[Product_OLEDBCommand] Select 106,
'Dart Shafts',7.99,1, '1/1/2006',Null

6. Next, create another connection manager, this time an OLE DB Connection Manager, using
the AdventureWorks2012 database.

7. Bring an OLE DB Command Transform onto the design surface, connect it to the
source called Discounted Products, and after opening the transform’s editor, select
AdventureWorks2012 as the connection manager on the Connection Managers tab.

8. Enter the following SQL statement in the SqlCommand property on the Component
Properties tab, shown in Figure 29-5:
Update Product_OLEDBCommand
Set CurrentFlag = 0,
RowEndDate = GETDATE ()
Where ProductBusinessKey = ?
and RowEndDate is null

This statement means that for every ProductBusinessKey you have, the CurrentFlag will be
set to 0, and the RowEndDate will be given today’s date.

9. Next, on the Column Mappings tab you need to connect ProductBusinessKey from the
pping Y Y
Available Input Columns to Param_0 in the destination. Figure 29-6 shows there is only one
parameter in this statement, so there is only one destination column.

http://www.wrox.com):

LESSON 29 ALTERING ROWS WITH THE OLE DB COMMAND TRANSFORM

217

'} Advanced Editor for OLE DB Command

The advanced editor provides access to the lowelevel properties of data flow components. Sdditionally, the
advanced editor can be used to configure components that do not have 3 custom user interface,

Connection Managers | Component Properties | Column Mappings | Input and Output Properties

Specify advanced properties for the data flow component,

Froperties:
String Value Editor
String value i
Deseription Update Product_DLEDBCommand B i3 data flow. ||
Set CurentFlag = 0.
RowEndDate = GETDATE(]
where ProductBusinesskey = 7
and RowE ndD ate is null
Localeld
Name

m

“walidateExter|

[N

Custom Prop|

CommandTi
DefaultCode
sqlCommand Update Product_OLEDBECommandSet CurrentFlag = |

SqlCommand
The 0L command to be executed,

o] o] [

FIGURE 29-5

. Advanced Editor for OLE DB Command o (2]

The advanced editor provides access to the lowelevel properties of data flow components. Sdditionally, the
advanced editor can be used to configure components that do not have 3 custom user interface,

Connection Managers | Component Properties | Column Mappings | Input and Output Properties

Available Input Columns Available De...
Mame

FroductBusicsskey Faram_
Productiame:
ListPrice
Input Column Destination Column
ProductBusinesskey Param_0l

o o)]

FIGURE 29-6

218 | SECTION 3 DATA FLOW

10.

1".

12.

13.
14.

Now bring a Derived Column Transform to the Data Flow and connect the OLE DB
Command to it. Open the Derived Column Transform Editor and add two new columns
called RowStartDate and CurrentFlag. For the RowStartDate column, use the GETDATE()
function in the Expression field, and CurrentFlag just needs a 1 in the Expression box. The
Derived Column Transformation Editor should look like Figure 29-7. Click OK.

& Derived Column Transformation Editor o [=]

Specify the expressions used to create new column values, and indicate whether the values update existing columns or
populate new columns,

[Variables and Parameters [Mathematical Functions
[Columnsz [Sting Functions

4 Date/Time Functions
4 MULL Functions

[Type Casts

|4 Operators

Description:
Detived Column Ma., Derived Calumn Expression Data Type Lg
<add as new colum... GETDATE[) database timestam...
CurrentFlag <add as new colum.,., 1 four-byte signed in.,
4| I | »
Configure Error Output.. [OF } ’ Cancel l ’ Help]

FIGURE 29-7

To finish this package, you need to load the new rows’ results into the Product_
OLEDBCommand table. Bring an OLE DB Destination onto the design surface, and from
within the editor, select Product_ OLEDBCommand as the destination table.

Go to the Mappings page of the OLE DB Destination Editor; notice how all the columns
are automatically mapped except for RowEndDate, which is set in the OLE DB Command
Transform. Figure 29-8 shows how the final mapped columns should look.

A successful run of this package should look like Figure 29-9.

Take a look at the table in Figure 29-10 to see the results of a completed package. Notice
that the package created a new row for each product with the new price. It also closed the
old row by updating the row’s end date and the current flag. This is what’s known as a Type
2 change in a dimension table.

LESSON 29 ALTERING ROWS WITH THE OLE DB COMMAND TRANSFORM

| 219

| . OLE DB Destination Editor

Configure the properties used to insert data into a relational database using an OLE DB provider.

[= ==

File Edit View Project
BIxPress Data Format

Tools Analyze

©0 Lesson29 (Running) - Microsoft Vis... [= |[= |5
Build Debug Team

SSIS Architecture
Window Help

e - N N R R

Test

Connection Manag) Lesson29.dtsk [Design] < . |
@
a - a, = I
Error Output Availahle Destination C... Loc[@o]@r) 7 |t v|+ » [@)F H
Available Input Columns Marne = Data Flow Task: [DFT - OLE DB Commant = ;“
Mame L=
) = N :
¢ ProductBusinessKey ProductBusinessKey L 4]
5 | Discounted
Productt ame Producti ame = |=mp Products I‘i}
ListPrice ListPrice: E
RowStartDate >_< CurrentFlag 6 rgws K
CunentFlag RowStartDate @ i
FowEndDate Xz OLE DB Command
Input Column Destination Column
- @
<ignares ! ProductD =
T Derived Column
ProductBusinesskey ProductBusinesskey &=
Productiame Productiame siws
ListPrice ListPrice @
Currentflag CurrentFlag L | OLE B Destination
RowStartDate RowsStartDate = -
=ignorex RowEndDate Connection Managers
|J AdventursWorks2012 = Product Price Change
4 [}] *
) Package execution completed with success. Clickh...
[e]3] [Cancel l l Help l ‘B Immediate Window B Error List
Ready
FIGURE 29-8 FIGURE 29-9
ProductlD ProductBusinessKey ProductMamme ListPrice CurertFlag RowStartDate RowEndD ate
1 1 o Frofessional Dartboard 49,99 1} 2006-01-01 00:00:00.000 2012-07-05 21:24:00.830
2 2 102 Frofessional Darts 15.953 1} 2006-07-01 00:00:00.000 2012-07-05 21:24:00.973
3 3 103 Scoreboard 26,93 1} 2006-01-01 00:00:00.000 2012-07-05 21:24:00.973
4 4 104 Beginner D artboard 45,93 1} 2006-07-01 00:00:00.000 2012-07-05 21:24:00.977
5 5 105 Dt Tips 1.99 1} 2006-01-01 00:00:00.000 2012-07-05 21:24:00.980
E E 106 Dart Shafts 7.93 1} 2006-07-01 00:00:00.000 2012-07-05 21:24:00.980
7 7 1m Frofessional Dartboard 4493 1 2012-07-05 21:24:01.033 NULL
8 8 102 Frofessional Darts 11.45 1 20120705 21:24:01.033 NULL
9 9 103 Scoreboard 17.93 1 2012:07-05 21:24:01.033 NULL
10 104 Beginner D artboard 3895 1 20120705 21:24:01.033 NULL
1 m 105 Dart Tips 1.09 1 201207-05 21:24:01.033 NULL
12 12 106 Doart Shafts 4.93 1 20120705 21:24:01.033 NULL
FIGURE 29-10

NOTE To learn more about data warehousing best practices, read Lessons 60 and 61.

Please select Lesson 29 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Handling Bad Data with the
Fuzzy Lookup

More often than not, when you are working in the real world, data is not going to be perfect
like it is in the AdventureWorks2012 database. Real-world situations call for cleansing dirty
data or data that has abnormalities like misspellings or truncation.

Imagine you are attempting to retrieve a foreign key from a dimension table, but, strangely,
you find rows without a match. Upon investigation, you find bad data is being supplied to you.
One technique might be to divert these rows without matches to a table to be dealt with later;
another might be to just add the bad data regardless of misspellings and other mishaps that
occur during data entry.

The Fuzzy Lookup Transform, discussed in this lesson, and the Fuzzy Grouping Transform,
discussed in the next lesson, gives other alternatives to dealing with dirty data while reducing
your number of unmatched rows. The Fuzzy Lookup Transform matches input records with
data that has already been cleansed in a reference table. It returns the match and can also indi-
cate the quality of the match. This way you know the likelihood of the match being correct.

NOTE A best practice tip is to use the Fuzzy Lookup Transform only after try-
ing a regular lookup on the field first. The Fuzzy Lookup Transform is a very
expensive operation that builds specialized indexes of the input stream and the
reference data for comparison purposes. Therefore, it is recommended to first use
a regular Lookup Transform and then divert only those rows not matching to the
Fuzzy Lookup Transform.

222

| SECTION 3 DATA FLOW

During the configuration of the transform, you must specify a reference table to be used for
comparison. Figure 30-1 shows the reference table selection being made in the Fuzzy Lookup
Transformation Editor. The transform uses this reference data and builds a token-based index
(which, despite its name, is actually a table) before it begins the process of comparing entries.

. . Fuzzy Lookup Transformation Editor =1 |l |3

Configure the properties used to perform a lookup operation between an input dataset and a reference
dataset using a best-match algorithm.

Reference Table | Columns | Advanced

Specify the connection manager to the reference table and the options for the index that the
transformation uses.

Temporary objects will be created using the specified connection. The space required for the

temporary objects is proportional to the reference table, but may be greater. The table
maintenance feature requires the installation of a trigger on the reference table.

OLE DB connection manager:

AdventureWorks2012 b HNew...

@ Generate new index

Reference table name:
3 [Person].[Person] -

[C] store new index

") Use existing index

[ok H Cancel H Help

FIGURE 30-1

Using the Fuzzy Lookup Transform requires at least one field to be a string, either a DT_WSTR or
DT_STR data type. On the Columns tab in the editor, you need to map at least one text field from
the input to the reference table for comparison.

The Advanced tab contains the settings that control the fuzzy logic algorithms. You can set the
maximum number of matches to output per incoming row. The default is set to 1, which pulls only
the best record out of the reference table that meets the similarity threshold. Incrementing this set-
ting higher than the default might generate more results that yow’ll have to sift through, but it might
be required if you have too many closely matching strings in your data. A slider controls the similar-
ity threshold. When you are experimenting, a good strategy is to start this setting at 0.5 and move
up or down as you review the results. This setting is normally decided based on a businessperson’s
review of the data, not the developer’s review. If a row cannot be found that’s similar enough, the
columns that you checked in the Columns tab will be set to NULL. The token delimiters can also
be set if, for example, you don’t want the comparison process to break up incoming strings with

a period (.) or spaces. The default for this setting is all common delimiters. See Figure 30-2 for an
example of an Advanced tab.

LESSON 30 HANDLING BAD DATA WITH THE FUZZY LOOKUP | 223

- . Fuzzy Lookup Transformation Editor = ===
Configure the properties used to perform a lookup operation between an input dataset and a reference
dataset using a best-match algorithm,

Reference Table | Calumns | Advanced
Maximum number of matches to output per lookup: 1 =
Similarity threshold: 0.00 ’j
Token delimiters
Space Tab
Carriage return Line feed

Additional delimiters:
i BARI)< > [P A%

oK][Caneel H Help

FIGURE 30-2

The transform creates several output columns that you may or may not decide are useful to store in
a table. Either way, they are important to understand:

> Input and Pass-Through Field Names and Values—This column contains the name and value of
the text input provided to the Fuzzy Lookup Transform or passed through during the lookup.

» Reference Field Name and Value—This column contains the name and value(s) of the
matched results from the reference table.

> Similarity—This column contains a number between 0 and 1 representing similarity.
Similarity is a threshold calculated by comparing one word with another; you set this when
configuring the Fuzzy Lookup Transform. The closer this number is to 1, the closer the two
text fields match. A similarity of 1 would indicate an exact match.

> Confidence—This column contains a number between 0 and 1 representing confidence of the
match relative to the set of matched results. Confidence is different from similarity; it is not
calculated by comparing just one string against another, but rather by comparing the chosen
string match against all the other possible matches. Confidence gets better the more accu-
rately your reference data represents your subject domain, and it can change based on the
sample of the data coming into the ETL process.

You may not want to use each of these fields, but it is important to appreciate the value they could
provide.

224 | SECTION 3 DATAFLOW

TRYIT

In this Try It, you use the Fuzzy Lookup Transform to attempt to correct some bad data that you
receive in a flat file. After this lesson, you should have an idea of how useful the Fuzzy Lookup
Transform can be in cleansing your data.

You can download the completed Lesson30.dtsx and other sample files for this lesson from

Www . Wrox.com.

Lesson Requirements

Create a table in the AdventureWorks2012 database named Occupation, using the following code
(which you can find as part of this lesson’s download on the book’s website at www.wrox . com):

CREATE TABLE [dbo].[Occupation] (
[OccupationID] [smallint] IDENTITY(1,1) NOT NULL,
[OccupationLabel] [varchar] (50) NOT NULL,

CONSTRAINT [PK_Occupation_OccupationID] PRIMARY KEY CLUSTERED

(
[OccupationID] ASC

) ON [PRIMARY]

) ON [PRIMARY]

GO

INSERT INTO [dbo].[Occupation] Select 'CUSTOMER SERVICE REPRESENTATIVE'
INSERT INTO [dbo].[Occupation] Select 'SHIFT LEADER'

INSERT INTO [dbo].[Occupation] Select 'ASSISTANT MANAGER'

INSERT INTO [dbo].[Occupation] Select 'STORE MANAGER'

INSERT INTO [dbo].[Occupation] Select 'DISTRICT MANAGER'

INSERT INTO [dbo].[Occupation] Select 'REGIONAL MANAGER'

Download the flat file named FuzzyExample.txt from www.wrox.com to use as your source. Save
this file to the C:\Projects\SSISPersonalTrainer directory. Correct the bad data from this flat file and
insert it to a new table called EmployeeRoster.

Hints

> Remember the best practice tip mentioned earlier in this lesson. First, attempt to use a regular
Lookup and then use the Fuzzy Lookup to catch the bad data.

Step-by-Step
1. Create a new package and name it Lesson30, or download the completed Lesson30.dtsx
package from www.wrox.com.

2. Drag a Data Flow Task onto your designer and name it DFT - Fuzzy Lookup.

3. Create a new Flat File Connection Manager (creating connection managers is discussed
in Lesson 6), name it New Employee, and point it to C:\Projects\SSISPersonalTrainer\
FuzzyExample.txt. Check the Column names in the first data row option. The editor should
look like Figure 30-3:

http://www.wrox.com
http://www.wrox.com):
http://www.wrox.com
http://www.wrox.com

LESSON 30 HANDLING BAD DATA WITH THE FUZZY LOOKUP | 225

L] FlatFile Connection Manager Editor = =]
Connection manager name: MNew Employee
Description:
1!,'3‘ Select a file and specify the file properties and the file format.
Columns File name: C:\Pro, i
= 3 \Projects\SSISPersonalTrainer\Fuzzy
Advanced O
= Preview X .
Locale: [English united states) ~| [Unicade
Code page: (1252 (st - Latin -
Format: [Detimitea -
Text qualifier: <nones
Header row delimiter: -
Header rows to skip: 0 2
Column names in the first data row
[oK J ’ Cancel] [Help]
FIGURE 30-3

In the Data Flow, bring a new Flat File Source over and name it New Employee Load. Open
the editor and make the connection manager the newly created New Employee.

On the Columns tab, change the name of the output columns to LastName, FirstName, and
OccupationLabel.

Open Management Studio and run the following query to create a new table called
Occupation (you can download the query from www.wrox.com):

CREATE TABLE [dbo]. [Occupation] (
[OccupationID] [smallint] IDENTITY(1,1) NOT NULL,
[OccupationLabel] [varchar] (50) NOT NULL,
CONSTRAINT [PK_Occupation_OccupationID] PRIMARY KEY CLUSTERED
(
[OccupationID] ASC
) ON [PRIMARY]
) ON [PRIMARY]

GO

INSERT INTO [dbo].[Occupation] Select 'CUSTOMER SERVICE REPRESENTATIVE'
INSERT INTO [dbo].[Occupation] Select 'SHIFT LEADER'

INSERT INTO [dbo].[Occupation] Select 'ASSISTANT MANAGER'

INSERT INTO [dbo].[Occupation] Select 'STORE MANAGER'

INSERT INTO [dbo].[Occupation] Select 'DISTRICT MANAGER'

INSERT INTO [dbo].[Occupation] Select 'REGIONAL MANAGER'

http://www.wrox.com):

226

| SECTION 3 DATA FLOW

10.

1".

Next, create another connection manager, this time an OLE DB Connection Manager, using
the AdventureWorks2012 database.

Drag a Lookup Transform on the design surface and use the new [dbo].[Occupation] table to
select the OccupationID based on the OccupationLabel that exists in both the source and the
reference table. (Refer back to Lesson 24 if you need help with a regular Lookup.) Figure 30-4
shows what your mapping should look like. Lastly, before closing the editor, make sure to
specify in the General tab that non-matching entries should redirect rows to no match output.

... Lookup Transformation Editor o =)
This transform enables the performance of simple equi-joins between the input and a reference data set.
General
Connection
Advanced
Error Qutput Available Input Colu... Available Lookup Colum...
Name @ Name

LastMame

FistName /
OccupationLabel |

Lookup Column Lookup Operation QOutput Alias

OccupationlD <add as new column> OccupationlD

o) [oma) [ren |

FIGURE 30-4

You already know from the lesson description that the source data is dirty, so now you’re
going to use a Fuzzy Lookup Transform to catch all the bad data the regular Lookup doesn’t
recognize. Drag a new Fuzzy Lookup Transform in the Data Flow and connect the blue no
match output arrow from the Lookup Transform to it.

Open the Fuzzy Lookup and select [dbo].[Occupation] for the Reference table name prop-
erty. Figure 30-5 shows the Fuzzy Lookup Transformation Editor using the Occupation table
as the reference table.

The Columns tab should be joined by OccupationLabel as shown in Figure 30-6. It should
also return the OccupationID and OccupationLabel from the reference table, which you can
ensure by checking the boxes in the Available Lookup Columns box. The OccupationLabel
from the reference table should replace the same column from the input stream to correct bad
data. To do this, uncheck the OccupationLabel column from the Available Input Columns.

LESSON 30 HANDLING BAD DATA WITH THE FUZZY LOOKUP | 227

- ., Fuzzy Lookup Transformation Editor ...

Canfigure the properties used to perform a lookup aperation between an input dataset and a reference
dataset using 3 best-match algorithm.

Reference Table | Columns I Advanced

Specify the connection manager to the reference table and the options for the index that the
transformation uses.

Temporary objects will be created using the specified connection. The space required for the

temporary objects is proportional to the reference table, but may be greater. The table
maintenance feature requires the installation of a trigger on the reference table,

OLE DB connection manager:

AdventureWorks2012 b HNew..

) Generate new index

Reference table name:

3 [dba].[Occupation] -

Stare new index

[Maintair

index

) Use existing index

Name of an existing in

\ -

FIGURE 30-5

- ., Fuzzy Lookup Transformation Editor ...

Configure the properties used to perform a lookup operation between an input dataset and a reference
dataset using a best-match algorithm,

Reference Table | Columns | Advanced

Spexify the join columns and the use of reference calumns.

Available Input Columns Available Lookup Columns
Mame Pass Through

Name

LastName OccupationlD

FirstName OccupationLabel

Occupationlabel |

Lookup Column Qutput Alias
OccupationlD QccupationID
Occupationlabel OceupationLabel (1)
I QK I [Cancel] l Help

FIGURE 30-6

228 | SECTION 3 DATAFLOW

12. Next, in the Advanced tab, leave the Similarity threshold at the default setting and change
the token delimiters to use only a period in the Additional delimiters box, as reflected in
Figure 30-7. Also, modify the Similarity threshold to 0.50 and then click OK.

- . Fuzzy Lookup Transformation Editor o |5)E]

Configure the properties used to perform a lookup operation bebween an input dataset and a reference
dataset using a best-match algorithm,

Reference Table I Calumns | Advanced

Maximum number of matches to output per lookup: 1 =

Similarity threshold: 0.50 ' U

Token delimiters
Space Tab

Carriage returm Line feed

Additional delimiters:

[oK J[Cancel H Help

FIGURE 30-7

13. To bring together the data from both lookup transforms, drag a Union All over and con-
nect the two lookups to it. First, connect the blue arrow from the Fuzzy Lookup Transform
and then connect the blue arrow from the regular Lookup Transform. Then open the Union
All Transformation Editor and delete the unneeded columns by right-clicking and selecting
Delete on the columns that are not pictured in Figure 30-8. You may also need to rename the
output of OccupationLabel to not include (1) in the name.

LESSON 30 HANDLING BAD DATA WITH THE FUZZY LOOKUP | 229

14.

15.

_ Union All Transformation Editor = (]]
Configure the properties used to merge multiple inputs into one output by creating mappings between columns.
Output Column Name Union All Input 1 Union All Input 2
LastMame LastMame Lasthame
FirstName Firsthame Firsthlame
Occupationlabel Occupationlabel {1) Cececupationlabel
QceupationlD QccupationID OccupationID

[QK] [Cancel] [Help]
FIGURE 30-8

To finish off this package you need to load the results into a new table. Bring an OLE DB
Destination onto the design surface, and from within the editor, select New to create a new

table. Use the following code to create the EmployeeRoster table or download the code from
WWW . WrOX .Ccom:

CREATE TABLE [EmployeeRoster] (
[EmployeeID] [smallint] IDENTITY(1l,1) NOT NULL,
LastName] wvarchar (50),
FirstName] varchar (50),
OccupationID] smallint,
OccupationLabel] wvarchar (50)

[
[
[
[
Once the mapping has been set in the destination, click OK and your package is complete.
A successful run of this package should look like Figure 30-9. Compare the EmployeeRoster

table to the original flat file you started with, and you will see the Fuzzy Lookup using the
reference table corrected 10 rows of dirty data.

http://www.wrox.com:

230 | SECTION 3 DATA FLOW

oo Lesson30 (Running) - Microsoft ¥isual Studio (Administrator) =N E=h| |
File Edit VYiew Project Build Debug Team BIxPress Data Format SSIS Architecture Test Tools
Analyze Window Help

R A e N e i e o B o e

Lesson30.dtsx [Design] > - ﬁ'l'
)

E.u Control Flow |[2 Data Flow O Parameters | & EventHandl.., ‘“5 Package Ex... | % Progress @ 2—
=

5

Data Flow Task: [DFT - Fuzzy Lookup M g
=

F) - B

LY 4 z

Mew Employee Load

._lj ploy l‘;

=

d 2

) B

20 rows g

I

1=
Y Lookup | o o e abeh Gutpet (10 rows)
Lookup Match Output (10 %ws)
A 4
Union All
20 5
9

L | OLE DB Destination
-

Connection Managers

e AdventureWorks2012 o Mew Employes

\-’Packaue execution completed with success, Click here ko switch to design mode, or select Stop Debugging from the D

8 Immediate Window B Error List

Ready

FIGURE 30-9

Please select Lesson 30 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Removing Duplicates with the
Fuzzy Grouping Transform

In the previous lesson, you saw how to use the Fuzzy Lookup Transform to prevent bad data
from being loaded in your dimension tables, but what if the bad data is already in your table
or if you are just beginning to build your data warehouse?

In these circumstances, you can use the Fuzzy Grouping Transform to examine the contents of
suspect fields and provide groupings of similar words. You can use the matching information
provided by this transform to clean up the table and eliminate redundancy.

The Fuzzy Grouping Transform uses the same logic as the Fuzzy Lookup Transform,

and therefore requires many of the same things. It must have a connection to an OLE DB
Connection Manager to generate temporary tables that the transform uses in its algorithm. At
development time, the Connection Manager tab is where you make this setting.

Also, just as was the case with the Fuzzy Lookup Transform, this transform expects an input
stream with a string, either DT_WSTR or DT_STR data type. The Columns tab of the Fuzzy
Grouping Transformation Editor (which you open by double-clicking the transform), shown

in Figure 31-1, is where you select the string field that you want to be analyzed and grouped
into logical matches. Notice in the top part of the Columns tab that you can also check Pass
Through on each column, which means the data is not analyzed, but is accessible in the output
stream. If you move down to the bottom part of the Columns tab, you see a table of options
for each input column. You can choose the names of any of the output columns: Group
Output Alias, Output Alias, and Similarity Output Alias. Often the only column you want
from this group is the Group Output Alias. If you select more than one column to be analyzed,
the minimum similarity evaluation is configurable at the column level.

232

| SECTION 3 DATA FLOW

" Fuzzy Grouping Transformation Editor o |

Caonfigure the properties used o graup input rowes that are likely duplicates, and choose a canonical row
for each group,

Connection Manager | COIUMNS | Advanced

Specify which columns to join and the use of reference columns,

Available Input Columns
Mame Pass Thraugh =

[] BusinessEntitdD
[T PersonType 3
[T HWameStyle
] Titee 0l
. E Firstame
[Middiename
[LastMame -

Outpu.., Group Out., Match.. Min.. Similarity Output... BNumer.. Comparis

Title Title_clean Fuzzy i} _Similarity_Title Meither Ignore cz

o e [

FIGURE 31-1

The Numerals option enables you to configure the numbers in the input stream when grouping
text logically. This may be necessary when comparing an address field, because, more than likely,
it will have leading numerals; for example, the address “834 West Elm Street” has the leading
numerals “834.”

Comparison flags provide the options to ignore or pay attention to case, kana type (Japanese char-
acters), nonspacing characters, character width, symbols, and punctuation.

The Advanced tab is where you see some of the familiar configurations you saw in the Fuzzy
Lookup Transform that control the logic algorithm used for finding matches. A slider controls the
similarity threshold. It is recommended you start this at 0.5 to test and move the slider up or down
until you get the results you are looking for. This setting is normally decided based on a business-
person’s review of the data, not the developer’s review. The token delimiters can also be set if, for
example, you don’t want the comparison process to break up incoming strings with a period (.) or
spaces. Figure 31-2 shows the default settings for the Advanced tab.

V413HAV
Typewritten Text
V413HAV

LESSON 31 REMOVING DUPLICATES WITH THE FUZZY GROUPING TRANSFORM

| 233

" Fuzzy Grouping Transformation Editor

for each group.

Cannection Managerl Columns | Adwanced

E=HI=R [>T

Configure the properties used to group input rows that are likely duplicates, and choose a canonical rowe

Input key column name:
Cutput key column name:

Similarity score column name:

Similarity threshold: 0.&0

Token delimiters

Space Tab

Additional delimiters:
o= EAI = T2

[carriage return Line feed

_key_in

_key_out

_scare

oK]I Cancel H Help]

FIGURE 31-2

One feature that was not in the Fuzzy Lookup Transform is the ability to set the names of the three
additional fields that are added automatically to the output of this transform. By default, these fields
are named _key_in, _key_out, and _score. These new outputs that will be added to the data stream

are important to understand:

> _key_in—This column uniquely identifies each row in the stream.

> _key_out—This column identifies a group of duplicate rows. Any rows that have the same

_key_out value are rows that are in the same group.

> _score—This column indicates the similarity of the row with a value between 0 and 1. A

similarity of 1 would be an exact match.

234 | SECTION 3 DATAFLOW

TRYIT

In this Try It, you create a new dimension table and populate it with occupations for your company.
The import file contains several different versions of the same occupation, and you need to deter-
mine which will be the best fit. After this lesson, you will have an understanding of how to use the
Fuzzy Grouping Transform to remove duplicates.

You can download the completed Lesson31.dtsx and other sample files for this lesson from

Www . Wrox.com.

Lesson Requirements

Download the flat file named FuzzyExample.txt from www.wrox.com to use as your source. Save this
file to the C:\Projects\SSISPersonalTrainer directory.

After determining which version of the occupation field is best or most similar, create a table named
Occupation_FuzzyGrouping and load it.

Hints

> After using the Fuzzy Grouping Transform to determine the correctly spelled occupation, use
a Conditional Split to bring back only the rows where _key_in == _key_out.

> The only column you need to load into the table is the clean version of the OccupationLabel.

Step-by-Step
1. Create a new package and name it Lesson31 or download the completed Lesson31.dtsx
package from www.wrox.com.

2. Draga Data Flow Task onto your designer and name it DFT - Fuzzy Grouping.

3. Create a new Flat File Connection Manager (creating connection managers is discussed
in Lesson 6), name it Occupations, and point it to C:\Projects\SSISPersonalTrainer\
FuzzyExample.txt. Also, check the Column names in the first data row option. The editor
should look like Figure 31-3.

4. In the Data Flow, bring a new Flat File Source over and name it Occupation Load. Open the
editor and make the connection manager the newly created Occupations.

5. On the Columns tab, select only the TITLE column to return, change the name of the output
column to OccupationLabel, then click OK.

6. Next, create another connection manager, this time an OLE DB Connection Manager, using
the AdventureWorks2012 database.

7. Bring a Fuzzy Grouping Transform in the Data Flow, connect it to your Flat File Source, and
open the editor. Set the OLE DB Connection Manager to AdventureWorks2012.

8. On the Columns tab, there is only one column to bring back, so check the OccupationLabel.
Figure 31-4 shows what the Columns tab should look like now.

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

LESSON 31 REMOVING DUPLICATES WITH THE FUZZY GROUPING TRANSFORM

| 235

| RatFile Connection Manager Editor

Connection manager name:

Description:

Columns | File name:
Advanced

= Preview Locale:

Code page;

Farmati
Text qualifier
Header row delimiter:

Header rowws to skip:

Dooupations

Select a file and specify the file properties and the file format,

CAProjects\SSISPersonalTrainer\Fuzzy

lEngI\sh [United States) v] [unicade

[1252 (ams1- Latin

7]

[Detimitea -
<nones>

-
. =

Column names in the first data row

o] [ome] [Lree]

FIGURE 31-3

] Fuzzy Grouping Transformation Editor

fior each group,

| connection Manager | Columns | advanced

(o EEs

Configure the properties used to aroup input rowes that are likely duplicates, and choose a canonical row

Specify which columns to join and the use of reference columns.

Available Input Columns

Name Pass Through

Oooupationlabel

Input Column Qutput Alias Group Qutput ... Match Type Minimum Simila.. Similal

i Occupationlabel | Occupationlabel Occupationlab., Fuzzy i _Simil

< (] r
D T

FIGURE 31-4

236

SECTION 3 DATA FLOW

10.

Next, in the Advanced tab, change the Similarity threshold to 0.50 and change the Token
delimiters to reflect Figure 31-5. Then click OK.

' Fuzzy Grouping Transformation Editor o ==

Configure the properties used to garoup input rows that are likely duplicates, and choose a canonical row
faor each group,

Connection Manager I Columns | Advanced

Input key column name: _key_in
Dutput key column name: _key_out
Similarity score column name: _scare
Similarity threshaold: 0,50 G
Token delimiters
Space I:‘ Tab
[Carriage return [] Line feed

Additional delimiters:

o Lo [

FIGURE 31-5

If you ran this now and loaded a table, you would have 20 rows of the clean data, but you
would also have several duplicate records. Remember, you are trying to create a dimension
table, so to prevent duplicates in this package add a Conditional Split Transform with an
Output Name of Best Match and a Condition of _key_in == _key_out. If these two values
match, the grouped value is the best representative candidate for the natural key in a dimen-
sion table. All other rows are not needed, so you can name the Default Output Name Delete.
Figure 31-6 shows how your Conditional Split Transform should be configured.

LESSON 31 REMOVING DUPLICATES WITH THE FUZZY GROUPING TRANSFORM |

1.

12.

. Conditional Split Transformation Editor o (==
Specify the conditions used to direct input rowes to specific outputs, If an input rowe matches no
condition, the row is directed to a default output.

3 Variables and Parameters -3 Mathematical Functions B

3 Colurnns [String Functions
4 DatedTime Functions £
[MULL Functions L &
[Type Casts g
Description:

Order Dutput Mame Condition

1 Best Match _key_in == _key_out E|

Default output name: De\etE|
Configure Error Output... [OF } ’ Cancel l ’ Help]

FIGURE 31-6

To finish off this package, you need to load the results into a new table. Bring an OLE DB
Destination onto the design surface and from within the editor select New next to Name
of the table or name of the view to create a new table. Use the following code to create the
Occupation_FuzzyGrouping table or download the code from www.wrox. com:
CREATE TABLE [dbo].[Occupation_FuzzyGrouping] (
[OccupationID] [smallint] IDENTITY(1,1) NOT NULL,

[OccupationLabel] [varchar] (50) NOT NULL
)

Remember from the beginning of this lesson that the Fuzzy Grouping Transform provides
several output columns. These columns include a Group Output Alias column that you now
use in the Mappings tab. Set OccupationLabel_clean to map to the OccupationLabel column
in the destination. Once your Mappings tab looks like Figure 31-7, click OK.

http://www.wrox.com:

238 | SECTION 3 DATA FLOW

oo Lesson31 (Running) - Micros... [= |5][Z5]
File Edit Yiew Project Build Debug
Team BIxPress Data Format $SIS
Architecture Test Tools Analyze ‘Window
Help

R N Sy R R

Lesson3Ldtsx [Design] X

AETICLERFLEN

Data Flow Task: [0 DFT - Fuzzy Gr +

samdoid B o3 uonnios s, B8

Y
|
Oceupation Load
S 0P
20 gows
]
* Fuzzy Grouping

20 dows

iw &
v

Conditional Split

Bast Match (8 rows)
F
w

L | OLE DB Destination
—-

Connection Managers

¥] 12 [v]

' Package execution completed with success...

| . OLE DE Destination Editor = |[=] =S
Configure the properties used to insert data into a relational database wsing an OLE DB provider,
Connection Manag
Ma g
Error Qutput B
Available Input Columns
Jablans Available Destinatio...
L. S—— M arne:
_key_out OccupationlD
—score OccupationLabel
OcoupationLabel /
OccupationLabel_clean
_Similarity_OccupationLabel
Input Calumn Destination Column
<ignore:> QccupationD
Ocoupationlabel_clean Occupationlabel
q | 1.] »
[Ok J [Cancel l [Help l
FIGURE 31-7

13. A successful run of this package should look like Figure 31-8.

8 Immediate Window W Error List
Ready

FIGURE 31-8

14. Figure 31-9 shows the results in the Occupation_FuzzyGrouping table you just populated. If
you completed Lesson 30, you might notice that you just created essentially the same table
(aside from the order) that was used as a reference table in Lesson 30.

Mo W
L

QccupationlD OccupationLabel
: i CUSTOMER SERVICE REPRESENTATIVE

" ASSISTANT MANAGER
REGIONAL MANAGER
STORE MANAGER
SHIFT LEADER
DISTRICT MANAGER

FIGURE 31-9

Please select Lesson 31 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

SECTION 4
Making Packages Dynamic

» LESSON 32: Making a Package Dynamic with Variables
» LESSON 33: Making a Package Dynamic with Parameters
» LESSON 34: Making a Connection Dynamic with Expressions

» LESSON 35: Making a Task Dynamic with Expressions

32

Making a Package Dynamic
with Variables

Your packages will be more flexible and more useful if they are dynamic. Dynamic packages

in SQL Server Integration Services (SSIS) can reconfigure themselves at run time. Using vari-
ables is one of the ways you can make a package dynamic and reusable. You can use variables
to set properties of components, parameters for T-SQL statements and stored procedures, in
script components, in precedence constraints, and many other places. A variable is essentially
a placeholder that has a name, data type, scope, and value. You can read and change the
value of your variables within your package. Variables come in two forms: system variables
and user-defined variables. System variables are predefined and include things like the pack-
age name and package start time. You cannot create system variables, but you can read them.
User-defined variables are created solely by the developer.

To create a user-defined variable, simply right-click the design surface in SQL Server Data
Tools (SSDT) and click Variables. This action opens the Variables window where you can
create a new variable by clicking the icon in the top left. Once you create a new variable, you
need to populate the fields Name, Data Type, and Value or Expression. The value can be a lit-
eral value or the result of an expression.

Scope is the context where the variable can be used. Each variable has a scope. You can set
the scope to an individual component so it is available only to that object, or you can set it to
the package level so it can be used anywhere in the package. For example, in Figure 32-1 the
variable has a scope set to the package level. A new feature of SSIS enables you to change the
scope of a variable. You can do this by selecting the Move Variable icon in the top left of the
Variables dialog box and selecting a new scope.

242 | SECTION4 MAKING PACKAGES DYNAMIC

oo Knight's SSIS Book - Visual Studio (,) L) e
File Edit View Project Build Debug Team Data SSI5 Test Tooks Analyze Window Help

Pl el b B9 -0 | b | [Development ||) 5) S B G - -

- M variables = [Xl Package.dtsx [Design]

& x| m [Feo Cort. |43 Daten. | Paran., | F Even.., | % pack.. @z
2 Name Scope Data type Walug Expression
Ell [| variable Int32] I—]

Connection Managers |

Right-<lick: here to add a new connection manager to the SSIS package.

FIGURE 32-1

When you configure the data types for variables, you may notice that their names are different from
Data Flow data types. In fact, you are going to find that only a subset of the data types available in
the rest of the SSIS environment can be used for variables. You can use the following table to map
the variable data types to standard data types found in the Data Flow:

VARIABLE DATA TYPE SSIS DATA TYPE DESCRIPTION

Boolean DT_BOOL Value either True or False
Byte DT_un 1-byte unsigned integer

Char DT_UI2 Single character

DateTime DT_DBTIMESTAMP Standard datetime structure
DBNull N/A Declarative NULL value
Decimal DT_DECIMAL 12-byte unsigned integer with

separate sign

Double DT_R8 Double-precision, floating-
point value

LESSON 32 MAKING A PACKAGE DYNAMIC WITH VARIABLES | 243

VARIABLE DATA TYPE SSIS DATA TYPE DESCRIPTION

Int16 DT_I2 2-byte signed integer

Int32 DT_l4 4-byte signed integer

Int64 DT_I8 8-byte signed integer

Object N/A Object reference; used to
store data sets or large object
structures

SByte DT_I 1-byte signed integer

Single DT_R4 Single-precision, floating-point
value

String DT_WSTR Unicode string value

Uint32 DT_Ul4 4-byte unsigned integer

Ulnt64 DT_UI8 8-byte unsigned integer

The value of a variable can be a fixed value or the result of an expression. To create an expres-

sion for a variable, you can select a variable and press F4 to bring up the Properties window. From
the Properties window, you can set EvaluateAsExpression to True and enter an expression in the
Expression property. You can also type the expression directly into the Expression column of the
Variables window. When you type the expression using the Variables window, SSIS automatically
sets the value for the EvaluateAsExpression property. This property must be set to True for your
expression to be used to set the value. To learn more about expressions and the SSIS expression lan-
guage, read Lessons 34 and 35, which are dedicated to expressions.

Variable names are case-sensitive. When you use a variable in an expression, you must use the same
case as the variable name. If you name a variable Test, referring to the variable as test will not
work. When referring to a variable in a task or transform, as in the following tutorial, you place

a question mark (?) as a placeholder for the variable name. For example, in an Execute SQL Task
that is given the duty of deleting rows from the DimEmployee table in the AdventureWorksDW2012
database, the deleted rows should have an EmployeeNationalIDAlternateKey that is equal to a value
in a variable named EmployeelD. To accomplish this, you would write the following query in the
Execute SQL Task in the Control Flow window:

DELETE FROM DimEmployee
WHERE EmployeeNationalIDAlternateKey = ?

Next, click the Parameters button, and on the Parameter Mappings tab assign the User::EmployeelD
variable to the value for the question mark placeholder. Select User::EmployeelD in the Variable
Name field, and enter “0” in the Parameter Name field. The Parameter Name field will be different
for connection types other than OLE DB.

244 | SECTION4 MAKING PACKAGES DYNAMIC

TRYIT

In this Try It, you create a flat file export of employees based on their level in the organization. The
package you create should be easy to adjust based on what organization level you need. After this
lesson, you will have an understanding of how to make a package dynamic using variables.

You can download the completed Lesson32.dtsx from www.wrox. com.

Lesson Requirements

Create a variable named OrgLevel to narrow down the number of employees returned based on the
level in the organization. Create a flat file named OrganizationLevel.txt that contains all employees
with an organization level of 2.

Hints

> Create a new variable that passes a value for the organization level to the OLE DB Source to
return only employees with an organization level of 2.

> Create a flat file that has the following columns:
> NationalIDNumber

LoginID

OrganizationLevel

JobTitle

BirthDate

MaritalStatus

Gender

HireDate

Y Y Y Y Y Y Y

Step-by-Step
1. Create a new package and name it Lesson32, or download the completed Lesson32.dtsx
package from www.wrox. com.

2. Right-click the Control Flow design surface and click Variables to open the Variables window.

3. To create a new variable, click the Add Variable icon in the top left of the Variables window.
Name the variable OrgLevel and set the value to 2. Figure 32-2 shows the variable with a
Data Type of Int32 and a value of 2.

http://www.wrox.com
http://www.wrox.com

LESSON 32 MAKING A PACKAGE DYNAMIC WITH VARIABLES | 245

Variables
dex| =

Mame Scope Data type Walue Expression
iy | Orglevel Int32 2 ()

FIGURE 32-2

Drag a Data Flow Task onto your Control Flow tab and name it DFT - Employee Export.

Switch to the new Data Flow Task by clicking the Data Flow tab. Add an OLE DB

Connection Manager that uses the AdventureWorks2012 database and then drag an OLE DB
Source into your Data Flow.

Open the OLE DB Source Editor by double-clicking the OLE DB Source. In the OLE DB
Source Editor OLE DB Connection Manager field, choose the connection manager you cre-

ated in the previous step. Then change the data access mode to SQL. Command and enter the
following SQL statement:

SELECT NationalIDNumber
,LoginID
,OrganizationLevel
,JobTitle
,BirthDate
,MaritalStatus
, Gender
,HireDate

FROM HumanResources.Employee
WHERE OrganizationLevel=?

Next, click Parameters and set Parameter0 to use the variable created earlier: User::OrgLevel.

Figure 32-3 shows the changes you have just made. Click OK twice to exit the OLE DB
Source Editor.

Drag a new Flat File Destination from the SSIS Toolbox to the Data Flow window. Connect
the OLE DB Source to the Flat File Destination Task by dragging the blue line from the

source to the destination. Open the Flat File Destination Editor by double-clicking the Flat
File Destination.

246 | SECTION4 MAKING PACKAGES DYNAMIC

10.

f =)
|+ OLE DB Source Editor

Configute the properties used by a data flow to abtain data from any OLE DB prowvider,

Specify an OLE DE connection manager, a data source, or a data source view, and select the
data access mode, If using the QL command access mode, specify the SQL command either by
typing the query or by using Query Builder,

Co
Calumns
Error Qutput

OLE DB connection manager:

| LocalHost.Adventureltiorks2012

L«
4
:

Data access mode;

[SQL cammand

SQL command text:

SELECT MationallDMumber -
LoginID
.Organizationlevel
JobTitle
\BirthDate
MaritalStatus
JGender
HireDate Browse..
FROM HumanResaurces,Emplayes
WHERE Crganizationlevel=7

o Set Query Parameters (S|

Parameters..

Build Quena.,

Parse Query

Map variables to parameters in the SQL statement.

rameters Wariables Param direction

< ; Parameterl UseriCrglewvel Input
h .

FIGURE 32-3

Create a new Flat File Connection Manager by choosing the New button in the Flat File
Destination Editor. The Flat File Format dialog box appears. Delimited is the proper format
and is the default. Click OK. Name the connection manager Organization Level, and set the
filename to C:\Projects\SSISPersonalTrainer\OrganizationLevel.txt. You may either type the
filename or click the Browse button. If the path C:\Projects\SSISPersonalTrainer\ does not
already exist, you can create the folder in the File Open dialog, which appears after you click
on the Browse button. The path must exist prior to running the package or you will get a
failure on this step. Also, check the Column names in the first data row option.

Click OK to close the Flat File Connection Manager Editor. Select Mappings in the Flat File
Destination Editor. Then Click OK to close the editor.

The package is now complete. It uses a variable in the wHERE clause of the SQL statement to
determine which rows to load into the flat file. To export rows from a different level of the
organization, you simply change the value of the OrgLevel variable. Your package is now
reusable. When the package is executed, your results will look like Figure 32-4. Check your
output file to ensure it contains rows with OrganizationLevel = 2.

LESSON 32 MAKING A PACKAGE DYNAMIC WITH VARIABLES | 247

©a Knight's SIS Book (Running) - Microsoft Visual Studio (Admin,.. L= =) s

File Edit View Project Build Debug Team Data Format SSIS
Architecture Test Tools Analyze Window Help

Pl @ 4 B9 - -] b | [pevelopment -| |5 L L

Lesson32.dtsx [Design] > -
8, Cono. [Dat, | @ Par |§ Eve.. |u5 Pac.. |# Prou., @ 5

Data Flow Task: [&i DFT - Employee Export -

o

" OLE DB
L» Source

P
2
£
-
2
m
g
=
2
]
7
2
El
m
g
=
g
[
5]
o
=]
-
-]
g

Flat File Destination

Connection Managers

| | LocalHost.AdventureWorks2012 | =| Organization Level

o Package execution completed with success, Click here ko switch ko design mode, of ...

B Call Stack h Breakpoints B Command Window B Output Error List 5
Ready

FIGURE 32-4

Please select Lesson 32 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

33

Making a Package Dynamic
with Parameters

SQL 2012 introduced a new parameter paradigm. Parameters enable you to pass in new values
for a specific package execution. When your packages are deployed to the new SSIS catalog,
an interface is provided to enable you to change the values of parameters prior to running the
package. Parameters are very similar to variables, except parameters are easier to change and
configure using the new SQL Server Management Studio interface for SSIS.

A parameter, like a variable, is a placeholder that has a name, data type, scope, and value.
The value provided in SQL Server Data Tools is called the default or design value. You can
replace this value prior to execution. Parameters also have a sensitive property and a required
property. When you mark a parameter as sensitive, its value is encrypted in the database and
displayed as NULL or *****. When you mark a parameter as required, you must provide the
parameter value prior to execution, rather than using the design parameter.

Parameters also have a scope. Parameters can have a package scope or a project scope. A parame-
ter with a project scope can be used in all packages within the project. Package scoped parameters
can only be used within the package in which they are defined.

To create a package scoped parameter, choose the Parameters tab in the SSIS designer and create
a new parameter by clicking the icon in the top left. Then populate the fields Name, Data Type,
Value, Sensitive, Required, and Description. Figure 33-1 shows the completed parameter.

0 Knight's SSIS Book - Microsoft Visual Studio (Administrator) [= [&]
File Edit ¥iew Project Build Debug Team Data SSIS Architecture Test Tools Analyze MWindow Help

Pl @49 -0 | P [[oeveioonent | Gy 56 BIEL - -
Lesson33.disx [Design]® X
4o Control Flow \C;ﬁ Data Flow | Parameters | &7 Event Handlers |“: Package Explo...

Par -]

Harme Data type value Sensitive Requred Description

xoqieoy s1ss 8y

PackageParame... String PackageParamstring False False

e
g
£
=2
3
y
s
:
S
L
=
=)
=
2

B Enor List B output
Ready

FIGURE 33-1

250

| SECTION 4 MAKING PACKAGES DYNAMIC

To create a project scoped parameter, open the Solution e e —
Explorer window and double-click the Project.params item as in =&
: _ e Solution ‘Knight's $515 Book’ (1 project]

Flgure 33-2. 4 23 Knight's SSIS Book

. . . i Praject.params
The Project.params window opens, enabling you to create and [Connection Managers

. . > [Zp 5515 Packages

manage project scoped parameters. See Figure 33-3. B Miscellaneous

Using the same example as in the previous lesson, you have
an Execute SQL Task that is given the duty of deleting rows
from the DimEmployee table in the AdventureWorksDW2012
database. The deleted rows should have an
EmployeeNationalIDAlternateKey that is equal to a value in a parameter named EmployeelD.
Create a package scoped variable name EmployeelD with an integer data type and a value of 2.
Write the following query in an Execute SQL Task:

FIGURE 33-2

DELETE FROM DimEmployee
WHERE EmployeeNationalIDAlternateKey = ?

2 S
e Knight's SSIS Book - Microsoft Visual Studio (Administrator) ==

File Edit View Project Build Debug Team Data SSIS Architecture Test Tools Analyze Window Help
Pl @ 4 9 - - b | [Development -|| S S S B B] -

Lesson33.dtsx [Design] Project.params [Design]* >

X @

Marne [rata type Sensitive Required Description

ogjoo) 5155

i DOrglevel Int32 False False

P
g
g
£
=2
b
T
-
g
=
b
=)
=
%

W Error List B output
Ready

FIGURE 33-3

Next, click the Parameters button. On the Parameter Mappings tab, assign the $Package::EmployeelD
variable to the value for the question mark placeholder. Select $Package::EmployeelD in the Variable
Name field, and enter “0” in the Parameter Name field. The Parameter Name field value will be differ-
ent for connection types other than OLE DB.

You can use parameters wherever you can use a variable. Why use a parameter instead of a variable?
Parameters can be used to store and provide encrypted information for packages, like passwords.
Additionally, it is much easier to provide runtime values for parameters. The greatest value of
parameters is when you are running a package or using environments for configurations. You learn
more about running packages from Management Studio in Lesson 57, and using parameters with
environments in Lesson 54.

TRY IT

In this Try It, you recreate the extract from Lesson 32, except you use a parameter instead of a vari-
able. You then export data from several levels in the organization without opening and changing the
package. You do this by changing a project parameter.

LESSON 33 MAKING A PACKAGE DYNAMIC WITH PARAMETERS | 251

The flat file export of employees is based on their level in the organization. After this lesson, you
will have an understanding of how to make a package or all packages in a project dynamic using

parameters.

This technique will become the foundation you will use for configuration of environments to deploy
and move your packages safely from the development environment into the production environment.

You can download the completed Lesson33.dtsx from www.wrox.com.

Lesson Requirements

Create a project parameter named the OrgLevel. The export will contain the employees whose level
within the organization is the same value as stored in OrglLevel parameter. Create a flat file named
OrganizationLevel.txt that contains all employees with an organization level of 2.

Hints

> Create a new project parameter that passes a value for the organization level to the OLE DB
Source to return only employees with an organization level of 2.

> Create a flat file that has the following rows:

>

Y Y Y Y Y Y Y

NationalIDNumber
LoginID
OrganizationLevel
JobTitle

BirthDate
MaritalStatus
Gender

HireDate

Step-by-Step

1. Create a new package and name it Lesson33, or download the completed Lesson33.dtsx

package from www.wrox.com.

2. Open the Project.params window at the top of the Solution Explorer window.

3. To create a new parameter, click the Add Variable icon in the top left of the Project.Params
window. Name the parameter OrgLevel and set the value to 2. Figure 33-4 shows the param-
eter with a Data Type of Int32 and a value of 2.

4. Draga Data Flow Task onto your Control Flow canvas and name it DFT - Employee Export.

5. Switch to the new Data Flow Task by clicking the Data Flow tab. Add an OLE DB
Connection Manager that uses the AdventureWorks2012 database, and then drag an OLE
DB Source into your Data Flow.

http://www.wrox.com
http://www.wrox.com

252 | SECTION4 MAKING PACKAGES DYNAMIC

10.

1".

Project.params [Design]* *0x
v X @
Mame Data type Walue Sensitive Required D escription
o Omglevel Int32 i2 | False False
FIGURE 33-4

Open the OLE DB Source Editor by double-clicking the OLE DB Source. In the OLE DB
Source Editor OLE DB Connection Manager field, choose the connection manager you cre-
ated in the previous step. Then change the data access mode to SQL. Command and enter the
following SQL statement:

SELECT NationalIDNumber
,LoginID
,OrganizationLevel
,JobTitle
,BirthDate
,MaritalStatus
,Gender
,HireDate

FROM HumanResources.Employee
WHERE OrganizationLevel=?

Next, click Parameters item and set ParameterQ to use the project parameter you created ear-
lier: $Project::OrgLevel. Figure 33-5 shows the changes you have just made. Click OK twice
to exit the OLE DB Source Editor.

Drag a new Flat File Destination from the SSIS Toolbox to the Data Flow window. Connect
the OLE DB Source to the Flat File Destination task by dragging the blue line from the source
to the destination. Open the Flat File Destination Editor by double-clicking the Flat File
Destination

Create a new Flat File Connection Manager by choosing the New button in the Flat File
Destination Editor. The Flat File Format dialog appears. Delimited is preselected and cor-
rect. Click OK. The Flat File Connection Manager dialog will appear. Name the connec-
tion manager Organization Level, and set the filename to C:\Projects\SSISPersonalTrainer\
OrganizationLevel.txt. Also, check the Column names in the first data row option. The path
must already exist when you run the package. However, you can create the path within
Browse dialog by right-clicking in the parent folder and selecting New.

Click OK to close the Flat File Connection Manager Editor. Select Mappings in the Flat File
Destination Editor. Then Click OK to close the editor.

The package is now complete. It uses a variable in the wHERE clause of the SQL statement to
determine which rows to load into the flat file. Save and close the package. Your package is
now reusable.

Go to the Solution Explorer window, right-click Lesson33.dtsx, and execute the pack-

age. Switch back to design mode and close Lesson33.dtsx. Now open the file C:\Projects\
SSISPersonalTrainer.OrganizationLevel.txt. You should see OrganizationLevel value of 2 in
the third column. Your results will look like Figure 33-6. Close the text file.

LESSON 33 MAKING A PACKAGE DYNAMIC WITH PARAMETERS | 253

| OLE DB Source Editor o e
Configure the properties used by a data flow to obtain data from any OLE DE provider.
Specify an OLE DB connection manager, 3 data source, or a data source view, and select the
data access mode. If using the SQL command access mode, specify the SQL command either by
typing the query or by using Query Builder.
Error Output
OLE DB connection manager:
‘ LocalHost Adventurelorks2012 - Mew,
Data access mode:
[5aL commana -
QL command text:
SELECT NationallDNumber -
Lagind
“Organizationlevel
JobTitle
‘BirthDate EuldCuen
MaritalStatus
“Gender
“HireDate Browsse...
FROM HumanResources Employee
WHERE OrganizationLevel=?
- Set Query Parameters | CINEN
Map variables to parameters in the SQL statement.
Parameters variables Param direction
Farameterd $ProjectiOralevel Input
4 | .
| OrganizationLevel.txt - Notepad ==
File Edit Format View Help
nNationalIpbnumber,LoginID,organizationitevel,JobTitle,Birthpate,maritalstatus,Gender,Hirebate -
509647174, adventure-worksy\robertod,Hl,Engineering Manager,1968-12-13,M,M,2001-12-12

253022876, adventure-works\keving,z,marketing Assistant,1981-06-03,5,M,2001-02-26
222968461, adventure-worksyjohns, 2 ,marketing specialist,1972-04-06,5,M,2005-03-10
52541318, adventure-worksymary2,2 ,marketing assistant,1972-03-01,5,F,2005-03-17
323403273 ,adventure-worksiwanidao, 2 ,marketing Assistant,1969-04-17,mM,F,2005-02-07
243322160, adventure-worksi\terryd,2,marketing specialist,1980-03-07,M,M,2003-04-03
095958330, adventure-workshsariyad,2,Marketing specialist,1981-06-21,5,M,2003-01-13
767955365, adventure-worksymary0, 2 ,Marketing specialist,1956-10-14 ,M,F,2003-02-13
72636981, adventure-worksyji110,2 ,Marketing specialist,1973-07-19,M,F,2003-02-1%
277173473, adventure-works EeterO,Z,PdeuctiDn Contraol Manager,1976-12-04 ,M,M,2003-01-02
398223854 ,adventure-worksihazemd,2,quality Assurance Manager,1971-11-27,5,M,2003-04-01
685233686, adventure-workshascott0,? ,Master scheduler,1962-10-19,5,M,2003-01-13
141165819,adventure—warks\gar¥1,2,Faci1ities Manager,1965-03-21,M,M,2004-01-03
535145551, adventure-worksypaulal,?,Human Resources Manager,1970-03-14 ,M,F,2003-01-07
30845, acventure-workshdavidé, 2, Accounts Manager ,1977-08-08,M,M,2003-03-03

121451555, adventure-workshwendy0,2 ,Finance manager ,1%978-11-12,5,F,2003-01-26

231203233 ,adventure-workshdavids,2,assistant to the chief Financial officer,1958-07-23,5,M,2003-02-1
858323870, adventure-worksh\stephanieo,2,Network Manager ,19758-04-26,5,F,2003-03-08
58317344 ,adventure-workshkarenl,2,application specialist,1972-06-19,5,F,2003-03-20
314747499, adventura-worksyramesho, 2, Application specialist,1982-04-14,5,M,2003-03-07
571089628, adventure-worksidano,2,application specialist,1975-07-28,M,M,2003-02-12
543805155, adventure-worksi\francoiso,2,0atabase administrator,1969-06-17,5,M,2005-02-18
9206663091, adventure-workshdanl, 2 ,patabase administrator,1970-02-06,m,mM,2003-02-23
525932996, adventure-worksyjanainao,2,application specialist,1979-05-03,M,F,2003-01-24
502097814 , adventure-worksh\stepheno,2,North american Sales Manager,1945-11-17,M,M,2005-02-04
481044938, adventure-workshsyed0,2,Pacific Sales Mahager ,1969-02-11,M,M,2007-04-15
U82310417 , adventure-worksiamy0,2 ,European Sales Manager,1951-10-22,M,F,2006-05-18

FIGURE 33-6

254 | SECTION4 MAKING PACKAGES DYNAMIC

12.
13.

Go to the Project.Params window and change the value of the OrgLevel parameter to 1.

Go back to the Solution Explorer window, right-click Lesson33.dtsx, and execute the pack-

age. Switch back to design mode and close Lesson33.dtsx. Now open the file C:\Projects\

SSISPersonalTrainer.OrganizationLevel.txt. You should see an OrganizationLevel of 1 in the

third column. Your results will look like Figure 33-7.

—
_| OrganizationLevel.txt - Notepad

P

File Edit Format Wiew Help

nationalionumber,LoginiD,organizationLevel,JobTitle,Birthoate,Mmaritalstatus,Gendear, H"II"EDa‘Ee,DEpar‘tmE -
245797967 ,adventure—workshterrio,l,vice president of Engineering,1965-09-01,5,F,2002-03-03,
24756624, ddventure- workshdavido,1,marketing manager,1965-04-19,5,M,2002-01- 20

519899904 adventure works\%amesl 1 vice President D'F Productwn 1977 02— 07,5,M 2003-03-07,,
184188301, adventure-worksslaural,l,Cchief Financial officer,1970-02-06,M,F,2003-03-04,,

441044382, acdventure-workssjeano 1, Information services Manager 1970- 01—13 5,F,2003-01-12,,
11243211?,adventure—works\%rian},1,V'ice President of Sa'\es,1971—07—08,S,M,ZOOS—OE—lB,,

4]

-

FIGURE 33-7

Please select Lesson 33 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

34

Making a Connection Dynamic
with Expressions

To expand what you can accomplish with your packages, it is essential that you learn the SQL
Server Integration Services (SSIS) expression language. A common use for expressions in SSIS is
creating dynamic connections. For example, this enables you to change an output file name or
change the database connection while moving a package from test into production without hav-
ing to reopen and edit the package. You may change any available property using an expression.

NOTE [n Lesson 21 you learned about the Derived Column Transform and
many of the common functions used in expressions. This lesson focuses on using
expressions in connection managers, so if you want a recap on the expression lan-
guage itself, refer to Lesson 21.

To configure a connection to take advantage of expressions, select the connection manager
and press F4 to open the Properties window, as shown in Figure 34-1. Find the Expression
property and click the ellipsis (...). This action opens the Property Expressions Editor where
you can select the connection manager property you want to define with an expression.

Once you have selected the property from the drop-down box, click a second ellipsis in the
Expression property to open the Expression Builder. Here you can begin building your expres-
sion for the given property you have selected.

Remember that each property has a specific data type, so you often have to cast the expres-
sion’s value to the appropriate data type. Typically when dealing with connection properties,
you will find they require a string value. You can convert a number to a string using the cast
function DT_WSTR (<<length>>).

A common example of using expressions in connection managers is for importing a collec-
tion of flat files using the same package. You could use a Foreach Loop Container, (which is
discussed in Lesson 43) to loop through a collection of flat files. You can create an expression
on the connection manager to change the connection string during each iteration of the loop
to the appropriate filename. To configure the Flat File Connection Manager to use expressions,
you would follow the steps mentioned earlier in this lesson.

256 | SECTION4 MAKING PACKAGES DYNAMIC

7 N
eo Knight's SSIS Book - Microsoft Visual Studio (Administrator) oo =
File Edit View Project Build Debug Team Data SS5IS Architecture Test Tools Analyze Window Help

- #4259 - O b oemopmens || 0 e B -
Lesson34.dtsy [Design] < Properties

[mtbj Du|v P‘ F Em|uH P ;}-3 LocalHost.AdventureWorks2012 Connection
=

4

xoqioo] stss By
1a101d%3 uoyn|os g.

4

Connectionstring Data Source=_Initial Catalog=Adue|

| = | DFT - Connection Expression DataSourcelD
Delayalidation False
Description

InitialCatalog AdventurebWorksDi2012

hlame LocalHost. AdventureWorks2012
Password ik
Qualifier

RetainSameConnedion

Serverblame

UserMame

iZonnection Managers

=| [&] Employee Count | | LecalHest. AdventureWorks2012
— - Expressions

& collection of expressions, The evaluation result of each expression
is assigned to a property and replaces the value of the property,

ﬂ: Error List B Output

Ready
&

FIGURE 34-1

TRY IT

In this Try It, you create a flat file export that contains a count of employees in each department.
The flat file you create should have the current date as part of the file’s name. After completing this
lesson, you will understand how to use expressions in a connection manager.

You can download the completed Lesson34.dtsx from www.wrox . com.

Lesson Requirements

Create a package that uses the AdventureWorksDW2012 database and the DimEmployee table to
load all the departments and a count of how many employees are in each to a flat file. Name the
flat file EmployeeCount_(Current Date).txt, with the current date being populated by an expression
after the underscore.

The date should be in the following mmddyyyy format: 06022012

NOTE You must have leading zeros when month or day is only one digit.

http://www.wrox.com

LESSON 34 MAKING A CONNECTION DYNAMIC WITH EXPRESSIONS | 257

Hints

> With an OLE DB Source, show a count of all the employees grouped by their department
using the DimEmployee table.

> Place the results in a flat file that has an expression on the Flat File Connection Manager’s
ConnectionString property. The filename should have the current date as part of the name.

Step-by-Step

1. Create a new package and name it Lesson34 or download the completed Lesson34.dtsx
package from www.wrox.com.

2. Draga Data Flow Task onto your designer and name it DFT - Connection Expression.

3. Addan OLE DB Connection Manager that uses the AdventureWorksDW2012 database. Go
to the Data Flow window and add an OLE DB Source in your Data Flow.

4. Open the OLE DB Source Editor by double-clicking the OLE DB Source. In the OLE DB
Connection Manager field, select the connection manager you created in the previous step.
Change the data access mode to SQL Command and enter the following SQL statement:

SELECT
DepartmentName
,count (EmployeeNationalIDAlternateKey)EmployeeCount

FROM DimEmployee
GROUP BY DepartmentName

Click OK to exit the OLE DB Source Editor.

5. Draga new Flat File Destination into your Data Flow. Then select your OLE DB Data Source
to expose the blue and red arrows. Drag the green arrow from the OLE DB Source to the Flat
File Destination Task.

6. Double-click the Flat File Destination Task to open it. Click the New button to create a new
connection manager. Ensure Delimited is selected in the Flat File Format dialog box and click
OK. The Flat File Connection Manager dialog box opens. Name the new connection manager
Employee Count. The filename should be C:\Projects\SSISPersonalTrainer\EmployeeCount_.
txt. Set the Format to Delimited and check the

Column names in the first data row option. P — =]
Choose Columns on the left side of the dialog box. R

The Column Delimiter drop-down should have Prapery Evpression

Comma {,} chosen by default. Then click OK. ~ ; =

Ensure the mapping is correct in the destination
editor and then click OK again.

7. Click once on the connection manager named
Employee Count and press F4 to bring up the
Properties window. Click the Expression prop-
erty once to display the ellipsis. Click the ellip-
sis to open the Property Expressions Editor,
shown in Figure 34-2. FIGURE 34-2

http://www.wrox.com

258 | SECTION4 MAKING PACKAGES DYNAMIC

8. Click the Property drop-down box and select ConnectionString. Then click the ellipsis next
to the Expression property. This opens the Expression Builder.

9. Enter the following expression, shown in Figure 34-3, which gives the desired results for a
filename:

"C:\\Projects\\SSISPersonalTrainer\\EmployeeCount_"+
RIGHT("O0"+ (DT_WSTR, 2) Month(GETDATE()), 2) +
RIGHT("O0"+(DT_WSTR, 2) Day(GETDATE()), 2) +
(DT_WSTR, 4) Year (GETDATE())+".txt"

<
Expression Builder L@g

Specily the expression for the property. ConnectionString.

[£5 Wariahles and Parameters [Mathematical Functions
[String Functions

3 Date/Time Functions
3 NULL Functions

3 Type Casts

.4 Operators

Drescription:

Expression:

"CANProjectshhS 515 Personal Trainer\\EmployeeCount_"+ -
RIGHT| "0 +[DT_WSTR, 2] Morth[GETDATEN . 2] +

RIGHT["0"{DT_WSTR, 2] Day(GETDATE(), 21+

[DT_WSTR, 4] Vear(GETDATE] J+ bt

Evaluated value:

C:A\Projects\S515Personal Trainer\E mployeeCount_0724200 2.kt -
L .
FIGURE 34-3

NOTE If you are copying the expression from an electronic copy of this document,
you may have to redo the double quotes. Simply replace the special double quotes
with plain double quotes. This is because Word and some other electronic versions
of documents use special codes that the dialog editor does not understand.

Click the Evaluate Expression button to see the resulting string.

This expression is commonly used, so take a look at some important functions that are

used here:
> Month (GETDATE ())—Returns the current month number.
> (DT_wsTR, 2)—Converts the month number to a string.

> RIGHT("0"+(DT_WSTR, 2) Month(GETDATE()), 2)—Addsa 0 to every month,
but displays only the last two digits. This is so months that already have two digits

like December display only 12 instead of 012, and months with one digit like January

display as 01.

LESSON 34 MAKING A CONNECTION DYNAMIC WITH EXPRESSIONS | 259

10.

1.

Also notice that each file directory contains two backslashes, but only one is displayed when
the expression is evaluated. A backslash is a special character in the SSIS expression lan-
guage. To include a single backslash in your string (\), you must use a double backslash (\\).
To learn more about special SSIS characters, you can search for “Literals (SSIS)” on MSDN,
or go to http://msdn.microsoft.com/en-us/library/ms141001.aspx.

Click OK to exit the Expression Builder and then OK again to exit the Property Expressions
Editor.

The package is now complete and your destination filename is dynamic. Each day the pack-
age runs, it creates a new file with a different name that contains the current date. When the
package is executed, your results will look like Figure 34-4.

o0 Knight's SSIS Book (Running) - Microsoft Visual ... = | = ks3]

File Edit Yiew Project Build Debug Team Data Format
S$5IS Architecture Test Tools Analyze Window Help

"

™ [e O B I I I S T

Lesson34.dtsx [Design] < - ﬁ"
“

b [0 @ P |7 5 p |0 v [G)EJB
H

3

Data Flow Task: [&§ DFT - Connection Expression - o
-]

)

]

g

=l

iy

b=l

g

© :
| OLE DB I“‘
I_’ Source g

2

g

16 5
W
A\ 4

=\ Flat File Destination

Connection Managers

_=| [# Employee Count | | LocalHost.AdventureWorks2012

() Packane execution completed with success, Click here bo switch to ..,

B call stack BB Breakpoints B Command Window B output |
Ready

FIGURE 34-4

To confirm a good result, go to the C:\Projects\SSISPersonalTrainer folder. You should see
the file created with the current date.

Please select Lesson 34 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://msdn.microsoft.com/en-us/library/ms141001.aspx
http://www.wrox.com/go/ssis2012video

35

Making a Task Dynamic with
Expressions

When you consider the many places expressions can be applied, you begin to see how highly
adaptable SQL Server Integration Services (SSIS) truly is. The previous lesson discussed

how you can use expressions to make connections dynamic. This lesson turns to the use of
expressions in tasks. Using expressions in tasks enables an SSIS developer to alter individual
properties within a task at run time. A common example is using the Send Mail Task with an
expression to populate the subject line based on the results of your package.

NOTE [n Lesson 21, you learned about the Derived Column Transform and
many of the common functions used in expressions. This lesson focuses on using
expressions in tasks, so if you want a recap on the expression language itself, refer
to Lesson 21.

You set up a task to use expressions exactly the same way you configure connections to use
expressions. To configure a task to take advantage of expressions, select the desired task and
press F4 to open the Properties window. Find the Expression property and click the ellipsis (...)
next to it, shown in Figure 35-1. This action opens the Property Expressions Editor where you
can select to which property inside the task you would like to add an expression. Once you
have selected the property from the drop-down box, click the ellipsis in the Expression prop-
erty to open the Expression Builder. Here you can begin building your expression for the given
property you have selected.

Remember that the data type of the value for a property must match the data type of the
property. You may have to cast the expression’s value to the appropriate data type. Before
even writing an expression, take the time to determine the data type of the property you have
chosen. For example, if you have decided to make an Execute SQL Task using an expres-
sion on the SQLStatement property, then you know a string value must be returned from the
expression.

262 | SECTION4 MAKING PACKAGES DYNAMIC

a N
eo Knight's SSIS Book - Microsoft Visual Studio (Administrator) [E=REE
File Edit View Project Build Debug Team Data SSIS Architecture Test Tools Analyze Window

b [oereopmen - | 5 5 B 1+

Help

P-4 @90 -

Lesson35.dtsx [Design]* 3 -Pmpellies

#,. ControlFl... |[2 Data Flow |¢ par| Execute SQL Task Task
3= A
5z 2]

L Exscute SQL Task €

xoqjooy sT55 B

4

I BypassPrepare True

CodePage 1252

Connedtion {13491(UU—AF99—4U3A8215—BEEU?
Execvalueariable “none= |i
Expr 15 E]

ForceExecutionResult Mone

saadolg 5 1210]dx3 uonnjos E.l

Zonnection Managers

| LocalHest.AdventureWorks2012

LsStaredProcedure False
Expressions

A& collection of expressions, The evaluation result of each
expression is assigned to a property and replaces the value of th...

‘_llc_: Error List B Output
Ready

FIGURE 35-1

To gain a greater understanding of how useful expressions in tasks can be, go back to the first exam-
ple from the beginning of this lesson—the Send Mail Task. You can create the value for the subject
line dynamically using an expression. How do you accomplish this?

The Send Mail Task was discussed in more detail in Lesson 15. For this example, assume you have
everything set up as in Lesson 15 except for the desired subject. You want the e-mail you send to
contain a subject line that contains the name of the package and the package start time. Follow the
steps stated earlier to open the Property Expressions Editor and select Subject from the Property
drop-down box. Next, click the ellipsis in the Expression column and write the following expression
in the Expression Builder that will populate the subject line:

"SSIS Package: "+@[System::PackageName] +" ran at " +

(DT_WSTR, 30) @[System::StartTime]

Note that the quotes used in SQL should be single quotes, not the double quotes you see above. This
expression is broken down like this:

> "3SSIS Package: "—Simply prints the text between the quotation marks including blank
spaces

> @[System::PackageName]—System variable that displays the package name, in this case
Lesson 35

> v ran at "—Simply prints the text between the quotation marks including blank spaces
(DT_WSTR, 30)—Converts the contents of the @[System: : StartTime] to a string

@[System: : StartTime]—System variable that display the start time of the package

LESSON 35 MAKING A TASK DYNAMIC WITH EXPRESSIONS | 263

Click OK twice to return to the Control Flow. When you run this package now, the resulting e-mail
subject line (depending on the date on which you run your package) will look something like this:

SSIS Package: Lesson 35 ran at 4/5/2012 4:59:27 PM

TRY IT

In this Try It, you create a package that deletes records from the Employee table with a
NationalIDNumber = 14. No employees have this number, so no rows will actually be deleted.
Both the delete statement and the NationalIDNumber will come from variables used in an
expression. After completing this Try It, you will understand how to use expressions in a task.

You can download the completed Lesson35.dtsx from www.wrox . com.

Lesson Requirements
Create a package that uses the AdventureWorks2012 database for a connection manager. Then
create two variables that have a scope at the package level.
> The first variable should have a string data type and be named DeleteStatement with the
following as a value:
Delete FROM HumanResources.Employee

Where NationalIDNumber =

> The second variable should have an Int32 data type and be named ID with a value of 14.

Combine the two variables in an expression that evaluates the SQLStatementSource property in an
Execute SQL Task.

Hints
> The only task you need for this lesson is an Execute SQL Task.

> You need two variables to create an expression that will complete the SQL statement.

Step-by-Step
1. Create a new package and name it Lesson35 or download the completed Lesson35.dtsx
package from www.wrox . com.
2. Addan OLE DB Connection Manager that uses the AdventureWorks2012 database. Then
drag an Execute SQL Task into the Control Flow window.
3. Next, create a package level variable named DeleteStatement with a string data type and the
following for a value:

Delete FROM HumanResources.Employee
Where NationalIDNumber =

http://www.wrox.com
http://www.wrox.com

264 | SECTION4 MAKING PACKAGES DYNAMIC

4. Create a second package level variable named ID with an Int32 data type and a value of 14.
Figure 35-2 shows the variables you just created.

Variables = 4
¢ox|d
Mame Scope Data type “alue

O DeleteStatement String Delete FROM HumanResources Employee Where ..,
@ Int32 14

<] *

FIGURE 35-2

NOTE Creating variables is covered in more detail in Lesson 32.

5. Click once on the Execute SQL Task and press F4 to bring up the Properties window. Click
the ellipsis next to the Expressions property to open the Property Expressions Editor.

6. Click the Property drop-down box and select SQLStatementSource. Then click the ellipsis
next to the Expression property, shown in Figure 35-3.

1 BRI ===
o= Property Expressions Editor =
FProperty erpressions:
Property Expression
SglStatementSource : D
FIGURE 35-3

7. Enter the following expression and then click the Evaluate Expression button. Your results in
the Expression Builder should look like those shown in Figure 35-4.

@[User: :DeleteStatement]+ (DT _WSTR, 10) @[User::ID]

With this expression you produce the following:

> @[User::DeleteStatement]—Places the value from the DeleteStatement variable
you created in step 3 in the expression.

> (pT_wsTR, 10)—Converts the contents of the @ [User: : ID] variable to a string. This is
necessary because this variable is an integer and the expression you are working on must
be a string

>

@[User: : ID]—Places the integer variable you created in step 4 in the expression.

LESSON 35

MAKING A TASK DYNAMIC WITH EXPRESSIONS

265

Click OK in the Expression Builder and then OK again in the Property Expressions Editor.

Expression Builder

- Elé]‘

Specify the expression for the property: SqlStatementS ource

[£% Vanables and Parameters [M athematical Functio
[String Functions

[Date/Time Functions
[NULL Functions

[Type Casts

4 Operators

ns

Dezcription:

Expression;
@{User: DeleteStatement]+ [DT_WSTR, 10] @[User:ID]

Evaluated value:
Delete FROM HumanR esouices Employee Where Nationall DNumber =14

Ewaluate Expression

»

FIGURE 35-4

Double-click the Execute SQL Task to open it and set the Connection to your
AdventureWorks2012 Connection Manager. Then click OK.

The package is now complete, using an expression to make the task dynamic. When you exe-
cute the package, your results should look like Figure 35-5. Notice the small “fx” note in the
top-left corner of the task. This indicates that the task has an expression associated with it.

@0 Knight's SSIS Book (Running) - Mi... ==]

File Edit View Project Build Debug Team
Data Format SSIS Architecture Test Tools
Analyze ‘Window Help

A 1= A = R SR W

Lesson35.dtsx [Design] <

13101dx3 UONNIOS 8y

10jdx3 weay 4

Connection Managers

| LocalHost. Adventurewarks2012

¢ Package execution completed with success, Click ..

B Call Stack h Breakpoints B Command Windo
Ready

FIGURE 35-5

266 | SECTION4 MAKING PACKAGES DYNAMIC

If you open the task now, you find that the SQLStatementSource property now reflects the value of
the expression you created.

Please select Lesson 35 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

SECTION 5
Common ETL Scenarios

» LESSON 36: Loading Data Incrementally
» LESSON 37: Using the CDC Components in SSIS
» LESSON 38: Using Data Quality Services
» LESSON 39: Using the DQS Cleansing Transform

» LESSON 40: Creating a Master Package

Loading Data Incrementally

Importing an entire table each time you run a package is the simplest way to work, and creat-
ing a package to do this is easy. Replacing the whole table is sometimes called a wipe and load.
However, if the table is very large, your package may run for a long time. Instead of replacing
the entire table, you can find the changes in the table and make the same changes in the des-
tination table. This is called an incremental load. Generally, an incremental load runs much
more quickly than a complete load. This is especially true if your source table is very large
and few rows are changed each day. Incremental load packages generally handle inserts and
updates from the source table. Rows that have been added to the source table will be inserted
into the destination table. Rows that have been changed in the source table will be updated

in the destination table. What will you do in the destination when rows are deleted from the
source? You may choose to delete them in the destination, set a deleted flag to True but not
delete the row, or you may choose to ignore source deletes. In a data warehouse dimension
load, it is common to ignore deletes.

How will your package know which rows have been inserted, updated, or deleted in the
source? Sometimes the source is audited and you will have a history table that provides the
needed information. However, this is rare. Sometimes, source tables will have created and
updated date columns, which indicate when rows were inserted or updated.

Absent these datetime columns, you must either keep shadow copies of the source table data,
or use a Change Data Capture (CDC) technique.

NOTE Lesson 37 covers the CDC components in SSIS.

If you want to handle deletes, it is likely that you will have to look for rows in the destination
table that do not exist in the source. If a row exists in the destination, but not in the source, it
must have been deleted from the source, so you would then delete it from the destination. You
can do this by scanning the actual destination table, or by keeping a copy of the key values
that exist in the destination table in a staging area. Using a key table in staging reduces the
impact of lookups on the destination and allows the package to run more quickly.

270

| SECTIONS5 COMMON ETL SCENARIOS

When your package runs, it should find those rows in the source that have been inserted, updated,
or deleted within a time range. It is very common for these packages to run nightly, gathering all of
the changes from the prior day. As an example, the package may run every night at 2:00 a.m., look-
ing for changes from midnight to midnight the prior day. You might store the last completed time
range in a control table, and use that as the starting point for your next time range. You are going to
look in the destination table for the most recent change and find all rows in the source with a modi-
fied date after that time and before midnight of the current day.

How you handle the time range is very important and is worth some thought and planning. Your
package should always use a target range of time, bounded at both the beginning and the end.
The package execution should begin after the target range end time.

The following example uses two patterns: the insert/update pattern and the delete pattern. A pat-
tern is a generic example that you may use to solve other similar problems. You will work on a table
called Lesson36ProductCategorySource. This lesson’s Try It provides the detailed instructions. For
now, try to understand each pattern. The insert/update pattern is shown in Figure 36-1. This pattern
handles rows that have been inserted or updated in the source during the time range.

Lesson36.dtsx [Design]* %

£, Control Flow [Data Flow | () Paramsters | &' Event Handiers | Fg Package Exp...

Data Flow Task: [#5 Handle Insert Update -

| Read Inserted Updated Rows from ScurceDE

—

Fl Lookup ProductCategoryIDs in Destination
=

Lﬂfp No Match Qutput Lookup Match Duli:t

=
{ | Insert New Destination Rows Update Existing Destination Rows
4 =

i 1§

Connection Managers

L] DestinationDB _l SourceDB

FIGURE 36-1

Select a date range and store the values in variables called startpate and Endpate. Then read all of
the rows from the source table where the ModifiedDate is within the target range. The read query
looks like:

SELECT ProductCategoryID, Name, ModifiedDate
FROM [Production] . [Lesson36ProductCategorySource]
WHERE ModifiedDate > ? and ModifiedDate <=?

The two question marks will be mapped to your startbate and Endpate variables.

The Lookup Transform uses each row that comes from the source and attempts to look up a row
with the same ProductCategoryID in the destination. If the row exists in the destination, it must be
updated. If the row does not exist in the destination, it must be inserted.

LESSON 36 LOADING DATA INCREMENTALLY |

271

The output from the Lookup Transform results in two paths: one path for rows to be inserted and
another path for rows to be updated.

Now take a look at the delete pattern in Figure 36-2. The delete pattern handles the rows that have
been deleted from the source table. Instead of deleting the corresponding destination rows, set the
Deleted Flag column value to True (T).

%, Cortr.., [Data... | @ Para., | 7 Even.. |u5 Pack, ., i)

Data Flow Task: [Cata Flow Task hd

Read rows from Destination

l

I | Lookup ProductCategoryIDs in
4= Source

Lockup Mo }mﬁ utput

™1 Sat Deleted Flags in ProduchCategory
.y Destination

R

Connection Managers

1) DestinationDB | | SourceDB

FIGURE 36-2

The Data Flow reads the DestinationDB, selecting only the key of the
Lesson36ProductCategoryDestination table. For each row, look up the corresponding row in the
source table. If the row does not exist in the source table, it must have been deleted. Therefore, the
Lookup No Match Output will contain the rows that have been deleted from the source. These are
the rows you need to update in the destination. The OLE DB Command at the bottom of the flow
does this work for you.

NOTE You may find that the OLE DB Command task is slower than other des-
tination tasks. This is because the OLE DB Command task issues a SQL state-
ment for each row, rather than a more efficient batch operation.

TRY IT

In this Try It, you learn how to do an incremental load. A script will create the source and destina-
tion tables using Production.ProductCategory data. The script will create both source and destina-
tion tables, then synchronize them with the same data. In the example, the initial load has been
completed and you are writing the package that will handle future updates. A date range will be
chosen. For rows that were inserted or updated during that range, the package will insert or update

272 | SECTIONS5 COMMON ETL SCENARIOS

matching rows in the destination. It will also search for rows that exist in the destination, but not in
the source, and mark those rows as deleted in the destination. After this lesson, you will know how
to load data incrementally.

You can download the completed Lesson36.dtsx and all scripts for this lesson from www.wrox . com.

Lesson Requirements

You must have permissions within AdventureWorks2012 database to create tables. To load the
Lesson36ProductCategorySource and Lesson36ProductCateogoryDestination tables, run the
Lesson36Create.sql script in SQL Server Management Studio (SSMS). Run this script before you
begin the “Step-by-Step.”

Hints

>

Use the OLE DB Destination named DestinationDB to determine the beginning of your date
range. The end time of the range will be midnight of the current day.

Use the Lookup Transform to determine which rows have been inserted or updated during
the range.

Use the OLE DB Destination to insert new rows in the destination table.

Use the OLE DB Command to update rows in the destination table that were updated in
the source.

Use the OLE DB Destination named DestinationDB to read the keys from the destination table.
Use the Lookup Transform to determine which rows do not exist in the source.

Use the OLE DB Command to update rows in the destination that should be marked as deleted.

Step-by-Step

P

Create a new package called Lesson36.dtsx.

Create an OLE DB Connection Manager to the AdventureWorks2012 database called
SourceDB and another to AdventureWorks2012 called DestinationDB.

Create two variables called StartDate and EndDate. Their data type should be DateTime.
Drag an Execute SQL Task into the Control Flow and name it Get Date Range.

Double-click the task, set the Connection to DestinationDB, set the ResultSet property to
Single row, and enter the following SQL into the SQLStatement field. The dialog box should
look like Figure 36-3.

SELECT ISNULL(MAX (ModifiedDate), 'Jan 1, 1900') as StartDate

, CONVERT (DATETIME, CONVERT (DATE, GETDATE())) as EndDate
FROM [Production] . [Lesson36ProductCategoryDestination]

http://www.wrox.com

LESSON 36 LOADING DATA INCREMENTALLY | 273

10.

Click the Result Set tab on the left and map the result set. Map StartDate to User::StartDate
and EndDate to User::EndDate. Click OK to exit the dialog box.

Drag a Data Flow Task to the Control Flow window and connect the Get Date Range SQL
Task to it by dragging the green line. Name the Data Flow Task Handle Insert Update and
then double-click the Data Flow Task to open the Data Flow window.

| 3 Execute SQL Task Editor u@
1 Configure the properties required ko run SQL statements and stored procedures using the selected connection.
)
General 4 General =
Parameter Mapping Mame Get Date Range
Result Set Description Execute SQL Task
Expressions 4 options
TimeOut 1]
CodePage 1252
TypeConversionMode Allowed
4 Result Set 7
Resultset Single row
4 SQL Statement
ConnedtionType OLEDB
Connection DestinationDB
SQLSourceType Direct input
SQLStatement SELECTISNULL(MAX(ModifiedDate), Jan 1, 1900°) as StartDate , CONVERT(D: —
Name
Specifies the name of the task,
Erowise... I [Build Query...] l Parse Query]
o) [oma | [|

FIGURE 36-3

Drag an OLE DB Source into the Data Flow window and name it Read Inserted Updated
Rows from SourceDB. Double-click it to open the editor. Choose SourceDB for the OLE DB
Connection Manager and SQL Command for the Data access mode. Use the following for
the SQL command text:

SELECT ProductCategoryID, Name, ModifiedDate

FROM [Production].[Lesson36ProductCategorySource]
WHERE ModifiedDate > ? and ModifiedDate <=?

Click on the button named Parameters... on the right. You will create two parameters.

Type 0 in the Parameters column for the first parameter. Set the Variables column value to
User::StartDate and the Param direction to Input. Now create the second parameter. Type 1
in a new row in the Parameters column. Set the Variables column value to User:EndDate and
the Param direction to Input.

Now click the Columns item on the left. Check all of the columns in the Available External
Columns table and map each external column to the output column with the same name.
Click OK to exit the editor.

274 | SECTION5 COMMON ETL SCENARIOS

1".

12.

13.

14.

Drag a Lookup Task onto the Data Flow window and connect the OLE DB Source Task to
it. Name the task Lookup ProductCategoryIDs in Destination. Double-click the Lookup Task
to open the editor. On the General window, choose the OLE DB Connection Manager, and
choose Redirect rows to no match output in the Specify how to handle rows with no match-
ing entries drop-down.

Click Connection on the left. Choose DestinationDB for the OLE DB Connection Manager, and
select the Use results of an SQL query: radio button. Enter the following SQL into the text box:
SELECT ProductCategoryID

FROM Production.Lesson36ProductCategoryDestination

Click Columns on the left. Drag ProductCategoryID from Available Input Columns to
Available Lookup Columns. The results are shown in Figure 36-4. Click OK to exit this editor.

__. Lookup Transformation Editor =
This transform enables the performance of simple equi-ioins behween the input and a reference data set,
General
Connection
Advanced
Errar Output Available Input Colum... Available Lookup Columns
Mame: [Mame [l

Bt g 1 ProductCategond
Hame
MuodifiedD ate

Lookup Calumn Lookup Operation Qutput Alias

Co) Com] [)

FIGURE 36-4

Drag an OLE DB Destination onto the Data Flow, name it Insert New Destination Rows, and
connect it to the Lookup No Match Output of the Lookup. You can do this by dragging the
blue line and selecting the no match option when the dialog box appears. Click OK to exit.

LESSON 36 LOADING DATA INCREMENTALLY | 275

15.

16.

17.

18.

Then double-click the Destination Task to open the editor. Choose DestinationDB in the
OLE DB Connection Manager, choose Table, or view - fast load in Data access mode item,
and choose [Production].[Lesson36ProductCategoryDestination] in Name of the table or
the view.

Choose Mappings and complete the mappings as shown in Figure 36-5. Click OK to close
the dialog box.

.= OLE DB Destination Editor u@

Configure the properties used to insert data into a relational database using an OLE DB provider.

Auailable Input Colum... Available Destination ...
Mame

M ame:

FroductCategorplD

Mame

MadifiedDate L ModiiedDate
Delsted Flag

Input Calumn Destination Calumn

ProductCategonID ProductCategonlD

Mame Mame
ModifiedDate ModifiedDate

<ignore> Deleted Flag

Cor] [omm) e

FIGURE 36-5

Drag an OLE DB command onto the Data Flow window and connect the Lookup Match
Output to it. Name the command task Update Existing Destination Rows.

Double-click the task to open the editor. In the Connection Managers tab, choose
DestinationDB for the Connection Manager.

In Component Properties tab, select the SqlCommand property and click the ellipsis that
appears on the right-hand side. Use the following command in the String Value Editor that
appears. Then click OK to exit the String Value Editor.

UPDATE [Production].[Lesson36ProductCategoryDestination] SET
Name = ?,

ModifiedDate = ?,

[Deleted Flag] = 'F'

WHERE ProductCategoryID = ?

276 | SECTION5 COMMON ETL SCENARIOS

19. In the Column Mappings tab, set up the mappings as shown in Figure 36-6. Then click OK.
Remember that Param_0 is the first question mark encountered in the SQL string, Param_1 is
the next question mark, and so on.

=
Advanced Editor for Update Existing Destination Rows L@é’

The adwanced editor provides access to the lowe-lewel properties of data flow components, additionally, the advanced editor can be used
to configure components that do not hawe a custom user interface,

Connection Managers | Component Properties | Column Mappings | Input and Qutput Properties

Rvailable Input Colum... Rvailable De...
Name Mame
ProductCategoniD | o ———4 ! Param_0

: H e : ;
MName — Bl — | Param_1

e
ModifiedD ate " Param_2

Input Column Destination Column
Mame Param_0
MuodifiedDate Param_1
ProductCategondD Param_2

o] Come []

FIGURE 36-6

20. Your Data Flow Task should look like Figure 36-1, the first figure in this lesson.

21. Now you handle the deletes. Drag another Data Flow Task onto the Control Flow window
and name it Handle Deletes. Connect the Handle Insert Update Task to the Handle Deletes
Task. Double-click the task to move to the Data Flow window.

22. Dragan OLE DB Source Task onto the Data Flow window and name it Read rows from
Destination. Double-click the task.

23. Choose Destination DB for the OLE DB Connection Manager, SQL Command for the Data
access mode, and use the following SQL in the SQL command text box:

SELECT ProductCategoryID
FROM [Production] . [Lesson36ProductCategoryDestination]
WHERE [Deleted Flag] != 'T

24. Click Columns on the left. Make sure the ProductCategoryID column is checked and
mapped.

LESSON 36 LOADING DATA INCREMENTALLY | 277

25.

26.

27.

28.

29.

30.

31.
32.

Drag a Lookup Task onto the Data Flow, name it Lookup ProductCategoryIDs in Source,
and connect the Read rows from Destination Task to it by dragging the blue line. Double-
click the task to open the editor. In the General window, choose Redirect rows to no match
output in the bottom drop-down list.

Choose the Connection item in the list on the left. Choose SourceDB as the source. Select
the radio button titled Use the results of an SQL query:. Enter the following SQL into the
text box:

SELECT ProductCategoryID
FROM Production.Lesson36ProductCategorySource

Choose the Columns item from the list on the left. Drag ProductCategoryID from Available
Input Columns to Available Lookup Columns. Click OK to exit the Lookup Transformation
Editor.

Drag an OLE DB Command Task onto the Data Flow window and name it Set Deleted Flags
in ProductCategory Destination. Drag the blue line from the Lookup Task to this task. A dia-
log box appears, asking whether the matching or not matching rows should be used. Select
Lookup No Match Output, as shown in Figure 36-7. Click OK to exit the dialog box.

Double-click the Command Task to open the editor. Choose Destination DB as the
Connection Manager. In the Component Properties tab, select the SqlCommand property
and then click the ellipsis on the right side to open a dialog box. Use the following SQL in the
dialog box. Then click OK to close the String Value Editor.

UPDATE [Production].[Lesson36ProductCategoryDestination] SET

[Deleted Flag] = 'T'
WHERE ProductCategoryID = ?

In Column Mappings tab, drag ProductCategoryID from the Available Input Columns to
Param_0 in the Available Destination Columns. Click OK to exit the editor.
Your Delete Data Flow should look like Figure 36-2 earlier in this lesson.

Go to the Control Flow window. It should look like Figure 36-8.

#,., Input Output Selection [

The source of the destination component cantains multiple inputs or
outputs, Select an input and an output to connect the components,

Outpuk:

atch Qutput -

Input:

4Z] OLE DB Cammand Input -

FIGURE 36-7

278 | SECTION5 COMMON ETL SCENARIOS

Lesson36.dtsx [Design]* >

T o 0. [@ P |7 B [T R]

| = | Randle Insert Update

|

| | Handie Deletes

Connection Managers

] DestinationDB | | SourceDB |

FIGURE 36-8

33. You should have already run Lesson36Create.sql while reading the lesson requirements ear-
lier in the lesson. If you have not run it already, you can run it now. It will not hurt anything
to run this script multiple times. This script creates the tables and populates them. It shows
all rows in the source and destination tables. The result of this query is shown in Figure 36-9.
Both tables have the same data, except that the destination has the deleted flag with all values
set to F. This places your tables in a state where the initial load has been done, and the tables
are in sync.

Results @ Messagesl

| FroductCategomlD tame ModifiedD ate

»

1 Bikes 2002-06-07 00:00:00.000

2 k 2 Componentz 20020601 00:00:00.000

3 3 Clathing 2002-06-07 00:00:00.000

4 4 Accezsones 2002-06-01 00:00:00.000

FroductCategomlD tame todifiedD ate Deleted Flag

1 1 ke 0020601 00000000 F

5 2 Comporerts 20020601 000000.000 F

3 3 Clothing 2002-06-01 00:00:00.000 F —
4 4 Accesgories 2002-06-01 00:00:00.000 F

FIGURE 36-9

LESSON 36 LOADING DATA INCREMENTALLY | 279

34.

35.

Now execute the script Lesson36MakeChanges.sql. This script simulates user actions by
changing the source table. The script updates the Bikes row, adds a new row called New
Category, and deletes the Accessories row. Notice that the ModifiedDate column has also
been updated. No changes are made to the destination table. Then the source and destination
tables will be reselected so you can see the changes, shown in Figure 36-10.

3 Pesuts |L1§ Messagesl
FroductCategoryl D Mame tdodifiedD ate
1 AT Bikes - Updated 2002-06-03 00:00:00.000
2 2 ' Components 2002050 000000 000
3 3 Clothing 2002-06-01 00:00:00.000
4 5 New Category 2012-07-04 00:00:00.000
ProductCategorl D Mame ModitiedD ate
1 Bikes 2002-06-01 000000000 F
2 2 Components 2002-06-01 00:00:00.000 F
3 3 Clothing 2002-06-01 000000000 F
4 4 Agcessories 2002-06-01 00:00:00000 F

m

Deleted Flag

FIGURE 36-10

Now save and run your package. Look at your Handle Insert Update Data Flow window.
You should see two modified rows that were read from the source. These were modified dur-
ing the time range you specified. One of them was a new row, and the other was an update.

These results are shown in Figure 36-11.

Data Flow Task: [Handle Insert Update

l ‘» Read Insarted Updated Rows from SourceDB

V5

| Lockup PreductCatagorylDs in Destination
g

Lockup Mo Match Gutput (1 rows)

{ | TInsert New Destination Rows
.

F Y
A 4

=

Lookup Match Output (1 rows)
o
_

Update Existing Destination Rows

FIGURE 36-11

280 | SECTION5 COMMON ETL SCENARIOS

36.

37.

Figure 36-12 shows that your Handle Deletes Data Flow read all rows from the destination.
Searching for these rows in the source shows that one row was missing from the source. The

Deleted Flag was set to True in the destination.

Diata Flow Task: (8 Handle Deletes

9

L‘* Read rows from Destination

5 rpws

: | Lookup ProductCategoryIDs in Source
=

Lookup No Match) Output (1 rows)

-
=+ Set Deleted Flags in ProductCategory Destination
=)

) o

FIGURE 36-12

If you run the Lesson36Select.sql script, you will see the results shown in Figure 36-13.
ProductCategorylID 1 has its name updated. ProductCategoryID 2 and 3 were unchanged.
ProductCategoryID 4, which was deleted from the source by users, has its deleted flag set in
the destination. And the new ProductCategoryID 5 was inserted into the destination. Perfect!

= Results “_1) Messagesl

ductCategoryl MName Modifiedlate

1 " Bikes - Updated 2002-06-03 DO:00:00.000
2 ‘ Components 2002-06-01 00:00:00.000
3 Clathing 2002-08-01 00:00:00.000
4 Mew Category 2012-06-04 00:00:00.000
Name M odifiedD ate
1 Bikes - Updated 2002-06-03 00:00:00.000
2 Camponents 2002-08-071 00:00:00.000
3 3 Clathing 2002-06-01 00:00:00.000
4 4 Accessories 2002-06-01 00:00:00.000
]] Mew Category 2012-06-04 00:00:00.000

Deleted Flag
F

m a4 oM

| »

n

FIGURE 36-13

Please select Lesson 36 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

37

Using the CDC Components
in SSIS

Lesson 36 covered loading data incrementally. That lesson covered two patterns: an insert/
update pattern and a delete pattern. Those patterns also apply when using the Change Data
Capture (CDC) components.

NOTE The setup of CDC within SOL Server requires sysadmin permissions.
Marking a table for Change Data Capture requires db_owner permissions.

In the prior lesson, you used a modified date to determine which rows were inserted or
updated, and you used a lookup from the destination to the source to find the deleted rows.
Change Data Capture components will identify which rows have been inserted, updated,
and deleted. Using the patterns from the previous lesson, the CDC components will replace
some of the manual reads and lookups that were used to identify the changed rows. With the
insert/update pattern, CDC components will replace the Read Inserted Updated Rows from
SourceDB and Lookup ProductdIDs in Destination tasks. These tasks from Lesson 36 are
shown enclosed in a square box in Figure 37-1.

CDC components will replace the Read rows from Destination and Lookup
ProductCategorylDs in Source task in the delete pattern from Lesson 36, as shown in
Figure 37-2.

Change Data Capture is a functionality that has been available in the SQL Server Engine since
the 2008 version. Change Data Capture must be set up by an administrator on the source sys-
tems prior to use of the CDC components. CDC keeps track of insert, update, and delete activ-
ity for tables that are marked for CDC tracking. This information is made available to other
applications via tables and functions. SSIS packages responsible for loading and maintaining
data in data marts and data warehouses can use CDC functions as well as SSIS tasks specifi-
cally designed to consume and operate on CDC data.

V413HAV
Typewritten Text
V413HAV

282

| SECTIONS5 COMMON ETL SCENARIOS

Lesson36.dtsx [Design]* <

Em Control Flow |[25 Data Flaw | Parameters | & EventHandlers |“g Package Exp... v _-Tp
Dats Flow Task: [Handle Insert Update -

{ ‘» Read Inserted Updated Rows from SourceDB

B

| Lockup ProductCatagoryIDs in Destination

(& 2
| |
mfp Mo Match Output Lookup Match aunim
| . = o
| Insart New Destination Rows Update Existing Destination Rows
- =t

i

Connection Managers

| DestinationDB _JSaurceDE

FIGURE 37-1

Em Contr... |[2] Data... [g) Para.. |§ Even... |u5 Pack...

Data Flow Task: [Data Flow Task A

Read rows from Destination

l

| Lookup ProductCategorylDs in
|4 Source

Ly

|
Lookup Mo iabch Output

9 et Deleted Flags in ProductCategory
—u), Destination

Connection Managers

| DestinationDB | | SourceD8

FIGURE 37-2

Three SSIS tasks are related to CDC:

> CDC Control Task—Responsible for initial loading of data and maintaining incremental
load status by keeping up with the Log Serial Number (LSN) associated with changes. This
task also does some error handling.

» CDC Source Task—Reads data that has been inserted, updated, or deleted within a range
and provides those rows to downstream consumers in your package.

> CDC Splitter Task—Accepts the Data Flow from the CDC Source Task and splits it into
three separate Data Flows: one for insertions, one for updates, and one for deletions.

LESSON 37 USING THE CDC COMPONENTSINSSIS | 283

Primary target consumers for CDC information are data marts and data warehouses; other possible
uses include replication, data auditing, and loading. Using CDC components provides a low-impact
way to determine which rows have changed. It does this by reading the SQL Server transaction log.
This is especially useful when the tables do not contain any meta data columns like ModifiedDate,
CreatedDate, or LastUpdatedDate. CDC tasks also simplify the use of Change Data Capture func-
tionality within SQL Server.

When planning Change Data Capture, you must plan for two pieces of work: the initial load and
the incremental load.

> The initial load is when the tables are loaded with data for the first time. During this one
time load, all rows are copied from the source to the destination.

> The incremental load is when you find the rows which have changed since the last load, and
update them in the destination. After the initial load, only new or changed rows are moved to
the destination.

You can do the initial load in three different ways:
1. From a snapshot
2. From a quiet database (no changes being made)

3. From an in-use database

In this lesson, we take you through load scenario 3. Although this type of loading is the most com-
plicated, it is not difficult, and load scenarios 1 and 2 are even easier.

The goal of the initial load is to add all of the rows from the source table into the destination.
Imagine you do an initial load on Sunday night. Both the source and destination tables match.
During the day on Monday, changes are made to the source table—rows are inserted, updated, and
deleted. Monday night, you must find the inserted, updated, and deleted rows in the source, and
make the appropriate changes in the destinations. This is called the incremental load. At the end of
the incremental load on Monday night, the source and destination tables match again.

In the Try It section, you will do the both initial load and the incremental load. First we will look at
the three SSIS tasks which you will use to do these loads. The tasks are the CDC Control Task, the
CDC Source Task, and the CDC Splitter Task.

CDC CONTROL TASK

When planning the use of these components, you will probably need to maintain more than one
table. Using these CDC tasks, groups of tables can be maintained together. You will create an initial
load package and an incremental load package for each group. The incremental load will contain a
CDC Source for each table in the group.

Which tables should be together in a group? A group of tables must load to the same destination.
Tables that have primary/foreign key relationships should be in the same group to avoid referential
problems in the destination. Tables with the same requirements for data recency should also be
together. In general, groups that need to be updated frequently should contain a smaller number of

284 | SECTION5 COMMON ETL SCENARIOS

tables than groups that are processed less frequently. For example, if a group of tables needs to be
loaded once a week, placing them in a separate group can reduce system load.

There must be a way to maintain information about what data is new and what data has already
been processed by prior package runs. The CDC Control Task does this by maintaining Log
Sequence Number (LSN) information. The task can also persist this state information in a database.
This allows for the state to be maintained across multiple packages and between multiple package
runs. As you begin to create your packages, you will set up your CDC Control Task to persist state
in a database and provide it to your packages in a variable.

CDC SOURCE TASK

The CDC Source Task reads the change data for a group of tables, and passes rows for a single table
of your choice. In your Incremental Load Data Flow, you will have a CDC Source for each table in
the group. Figure 37-3 shows a Data Flow Task with CDC Sources for Product, ProductCategory,
and ProductSubcategory. These tables would be in the same group because they have primary/for-
eign key relationships. You will define your insert, update, and delete code for each source indepen-
dently, and they will be processed in parallel.

Data Flow Task: [Data Flow Task v
=0, Product COC Saurce =4, Prod ctCategary CDC Source S, Prod ctsubcategory COC Source

The CDC Source Task is not used in the initial load. The Data Flow source and destination for the
initial load will not be the CDC Source Task—you will use the OLE DB Connections for these. If
you do try to use the CDC Source Task here, you will get an error.

For the CDC Source Task, you must provide the CDC Source with a capture instance. A specific
CDC-enabled table may have up to two capture instances. This allows you to continue change
capture during a table schema change, one instance stores the before schema change data, and the
second contains the after schema change data. Since we will not change the table schema during
the Try It, your table will have one capture instance. You also provide a user variable where the task
will store the CDC state information. This variable must be a string data type.

You must also choose a CDC processing mode. The processing modes shown in Figure 37-4 are:

> All—Returns a row containing the new values for each change in the current range. If a row
is changed several times, a row is returned for each change.

> All with old values—Returns rows for each change in the current range. Two rows are
returned for each update: one with the original (old values) and one with the updated values
(new values). If a row is changed multiple times, two rows are returned for each update.

LESSON 37

USING THE CDC COMPONENTS IN SSIS

| 285

> Net—Returns a single row for each change in the
current range. If a row is updated multiple times,

only the most recent version of the row is returned.

If a row is inserted and then updated in the range,
only the updated version is returned. A row that is

et

Al
Al with old values

Metwith update mask
Met with merge

FIGURE 37-4

updated and then deleted is returned as a single delete. A single source row appears only once
in the stream; the changes are split into three separate paths: insert, update, and delete.

NOTE Net is not a good choice for maintaining type 2 slowly changing dimen-
sions, because you would not see every changed row.

> Net with update mask—Similar to Net, but includes boolean columns that indicate which
column values have changed. The added columns are named _$<column-name>_Changed.

> Net with merge—This is also similar to Net, except that inserts and updates are merged into
a single Merge operation. This is for use with Merge or Upsert Tasks.

The CDC Source Task also includes a check box where you can request a reprocessing indicator

column. When checked, your returned rows include a column indicating if this row is being repro-
cessed. This allows you to handle errors differently. You may choose to ignore the deletion of a non-
existent row, or the insertion of a row that returns a duplicate key error—the types of errors you
might receive when reprocessing data. These values are set when your processing range overlaps the
initial load or when you reprocess a range that failed in a previous run of the package. This dialog

box is shown in Figure 37-5.

7L CDC Source L@

Microsoft CDC Source Component by Attunity

Select an ADO NET connection manager and select the CDC table and Capture instance
wihere the CDC s executed, After selecting 2 connection, select any of the relevant aptions
belowr,

3
Error Output

ADO HET connection manager:

CDCStates hd e
CDE enabled table:
[Production].[Lessan37ProductCategorySource] -
Capture instance:
[Production_Lesson37Producttategorysource -
£DC processing made:
(et -
Wariable containing the CDC state:
@ User:cDC_State -

[T] ndlude reprocessing indicator column

El [r Preview..,

Co] [om] [aw]

FIGURE 37-5

286 | SECTION5 COMMON ETL SCENARIOS

CDC SPLITTER TASK

The CDC Splitter Task is the other CDC-related Data Flow Task. The splitter takes the Data Flow
from a CDC Source component and splits it into different data streams for insert, update, and
delete. Splits are based on a column named _$operation. This column contains values from the CDC
change tables maintained by SQL Server. These values are:

> 1—Deleted row
2—Inserted row (not available using Net with merge)
3—Updated row before values (only available with All with old values)

4—Updated row after values

Y VY VY

5—Updated - merge row (only available with Net with merge)

Any other value is an error.

TRYIT

In this Try It, you do an initial and incremental load of a single table using the CDC components. A
script creates the source and destination tables using Production.ProductCategory data. It also loads
the source table. You create an initial load package and ensure the initial synchronization is com-
pleted successfully, then you create an incremental load package, make changes to the source data,
and do the incremental load. The tables, data, and changes for this Try It are the same as the ones
in Lesson 36, so you can easily compare the methods used in both lessons. After completing this Try
It, you will understand how to keep the data in your data warehouse or data mart tables up-to-date,

using the three CDC tasks in SSIS.

You can download the completed Lesson 37 examples and sample code from www.wrox. com.

Lesson Requirements

You must have sysadmin permissions on your database server to set up CDC and create tables.
Additionally, SQL Server Agent must be running. To do the CDC setup and create the Lesson 37
tables, run the Lesson37Create.sql script in SQL Server Management Studio (SSMS) before you
begin the Step-by-Step. Again, all scripts and the completed package for this lesson are available for
download on the book’s website at www.wrox.com.

Hints

> The CDC Control Task manages the date ranges and keeps up with the status of your CDC
group. This control provides the range to the CDC Source Transform.

> Use the CDC Source Transform to retrieve the rows that have been inserted, updated, or
deleted during the range.

http://www.wrox.com
http://www.wrox.com

LESSON 37 USING THE CDC COMPONENTSINSSIS | 287

Use the CDC Splitter Task to generate an insert, update, and delete data stream.
Use the OLE DB Destination to insert new rows in the destination table.

Use the OLE DB Command to update rows in the destination table that were updated in the
source.

> Use the OLE DB Command to update rows in the destination that should be marked as deleted.

Step-by-Step
You create the initial load package as follows:
1. Run the Lesson37Create.sql script if you have not already done so. This script inserts four

rows into the [Production].[Lesson37ProductCategorySource]| table. The [Production].
[Lession37ProductCategoryDestination]| table will be empty.

2. Create a new package called Lesson37InitialLoad.dtsx.

3. Create an OLE DB Connection Manager to AdventureWorks2012 called SourceDB and
another to AdventureWorks2012 called DestinationDB. Create an ADO.NET Connection
Manager to AdventureWorks2012 called CDCStates.

4. Draga CDC Control Task into the Control Flow window and name it CDC Control Start.

5. Double-click the CDC Control Start Task to open the editor. Choose CDCStates Connection
Manager from the SQL Server CDC database ADO.NET connection manager drop-down.
Notice that the connection manager must be ADO.NET.

6. The CDC control operation should be Mark initial load start.

7. Next to the Variable containing the CDC state box, click New. You get a prefilled dialog box
to create a package variable named CDC_State. Click OK to create the package variable.

8. Check the Automatically store state in a database table box.

9. Click New next to the Table to use for storing state: box. Select Run on the dialog box that
appears and a new table called CDC_States will be created. Instead of creating a new table,
you may select an existing table to store states. Your completed CDC Control Task should
look like Figure 37-6. Click OK.

10. Drag a Data Flow Task onto the Control Flow window and connect it to the CDC Control
Start Task by dragging the green line.

11. Double-click the Data Flow Task to open the Data Flow window.

12. Dragan OLE DB Data Source onto the Data Flow window and double-click it. Use the
SourceDB Connection and choose Table or view for Data access mode. Choose [Production].
[Lesson37ProductCategorySource]. Ensure that all of the columns are selected in the
Columns dialog box.

13. Drag an OLE DB Destination Task onto the Data Flow window. Connect the Source Task to
it by dragging the blue line.

288 | SECTION5 COMMON ETL SCENARIOS

— =
25 COC Control Task Editor =R)

SQL Server CDC database ADCUMET connection manager:

I e,
CDC contral operation:
[Mark initial load start ']
“ariable containing the CDC state:
O UsernCDC_State - e,

Automatically store state in a database table

Connecktion manager for the database where the state is stored:

[cocstates | Mew,.
hlews...

Table to use for storing state:

Jdbo].fedc_states) -

State name:
CDC_State -
oK] [Cancel] [Help
FIGURE 37-6

14. Double-click the Destination Task. Use the DestinationDB Connection and choose Table or
view for Data access mode. Choose [Production].[Lesson37ProductCategoryDestination] as
the table. Go to the Columns window and ensure that all the source columns are mapped cor-
rectly to the destination columns. Your completed Data Flow should look like Figure 37-7.

- <
oo Knight's SSIS Book - Microsoft Visual Studio (Administrator) [E=EEEl =

File Edit VYiew Project Build Debug Team Data Format SS5IS Architecture Test Tools
Analyze Window Help

e = - NTREERTY

9 - C b pevelopment || S s] 810 -

S515 Toolbox Lesson37InitialLoad.dtsx [Design]* <
& ADO e Source 5. C[@J—D]O P.|F BT8P
28, CDC Source
[Excel Source I Data Flow Task: (51 Data Flow Task
._T} Flat File Source
. ODBC Source
(& OLE DB Source OLE DB

&Q Raw File Source E| L_l* Source

5, XML Source

sanradolg 3 1310jdx3 uonnjog gl'

4 Other Destinations
[#a ADO NET Destination

|

v Favorites] L “ OLE DB Destination

Provides convenient access to your
favorite elements so that they are only

& click away. Connection Managers

1J cocstmtes [DestinationDs || SourceDs

W Eror List B output

Ready
&

FIGURE 37-7

LESSON 37 USING THE CDC COMPONENTSINSSIS | 289

15.

16.
17.

Go back to the Control Flow window and drag another CDC Control Task onto the Control
Flow; name it CDC Control End. Configure it the same as CDC Control Start except the
CDC Control operation should be Mark initial load end.

Connect the Data Flow Task to CDC Control End by dragging the green line.

Save and run your package. You should see that four rows were transferred. If you want, you
can run Lesson37Select.sql (available in the download), and you will see that the destination
table has been synchronized with the source, as in Figure 37-8.

[Resuls | 3

Meszages |
Mame todifiedD ate

1 ikes 2002-06-01 00:00:00.000
2 Components 2002-06-01 00;00:00.000
2 3 Clothing 2002-06-01 00:00:00.000
4 4 Accessories 2002-06-01 00:00:00.000

Mame todifiedD ate [ieleted Flag

1 1 i Bikes 2002-06-01 00:00:00.000 F

2 2 Components 2002-06-01 00:00:00.000 F

2 3 Clothing 20020601 00:00:00.000 F

4 4 Accessories 2002-06-071 00:00:00000 F
FIGURE 37-8

Now that the initial load is complete, you can create the incremental load package:

1.

Run the Lesson37MakeChanges.sql script. This script simulates user actions by changing the
source table. The script updates the Bikes row, adds a new row called New Category, and
deletes the Accessories row. Notice that the ModifiedDate column has also been updated. No
changes are made to the destination table. The script will show you the results of the updates
as in Figure 37-9. The source table is shown at the top and the destination at the bottom.

[Results | Ga Messagesl
Mame todifiedD ate
1 AT Bikes - Updated 2002-06-03 00:00:00.000
2 \ 2 Components 2002-06-01 00:00:00.000
] 3 Clathing 2002-06-01 00:00:00.000
4 5 New Category 2012-06-04 00:00:00.000
ProductCategoryl D Mame ModitiedD ate Deleted Flag
1 1 20020601 00:00:00.000 F
2 2 2002-06-071 00:00:00.000 F
] 3 Clathing 20020601 00:00:00.000 F
4 4 Agcessories 2002-06-01 00:00:00.000 F
FIGURE 37-9

Create a new package called Lesson37IncrementalLoad.dtsx.

Create an OLE DB Connection Manager to AdventureWorks2012 called DestinationDB. Create
an ADO.NET Connection Manager to AdventureWorks2012 called CDCStates. The CDCStates
connection is used for state information and to access the source data from the CDC tables.

290 | SECTION5 COMMON ETL SCENARIOS

10.

1".

Drag a CDC Control Task into the Control Flow window and name it CDC Get Processing
Range.

Double-click CDC Control Start Task to open the editor. Choose CDCStates from the SQL
Server CDC database ADO.NET connection manager drop-down. This is the database
where the CDC tables that contain the changes exist. Notice the connection manager must
be ADO.NET.

The CDC Control operation should be Get processing range.

Next to Variable containing the CDC state, click New. You will get a prefilled dialog box to
create a package variable named CDC_State. Click OK to create the package variable.

Check the Automatically store state in a database table box.

Choose [dbo].[cdc_states] in the Table to use for storing state: box. Your completed CDC
Control Task (CDC Get Processing Range) should look like Figure 37-10. Click OK.

The SQL Server CDC database ADO.NET connection manager and Connection manager
for the database where the state is stored fields should be the same connection locations that
were used for the initial load package. These should also be the same location and table you
used in the initial load package.

=
2= CDC Control Task Editor ===
SQL Server CDC database ADOMET connection manager:
[cocstates]| HMew,..
CDC contral operation:
[Get processing range v]
“ariable containing the CDC state:
@ User:iCDr_state - e,
Automatically store state in a database table
Connection manager for the database where the state is stored:
[cocstates | Mews..
Table to use for storing state:
b o] [ede_states] -
State name:
CDC_State -
ok) [cancel | [Hem
L
FIGURE 37-10

Drag a Data Flow Task onto the Control Flow window and connect the CDC Control Start
Task to it by dragging the green line.

Double-click the Data Flow Task to open the Data Flow window.

LESSON 37 USING THE CDC COMPONENTSINSSIS | 291

12.

13.

14.

15.

16.

17.

18.

19.

Drag a CDC Source Task onto the Data Flow window and name it CDC Source

for ProductCategory. Then double-click the task. In the CDC Source dialog that

opens, choose CDCStates in the ADO.NET connection manager box, [Production].
[Lesson37ProductCategorySource] in the CDC enabled table box, NET in the CDC pro-
cessing mode box, and User::CDC_State in the Variable containing the CDC state box.
Your window should look the same as the one contained in Figure 37-5.

Drag a CDC Splitter Task onto the Data Flow and connect the CDC Source for
ProductCategory Task to it by dragging the blue line.

Drag an OLE DB Destination Task onto 2. Input Output Selection ===
the Data Flow window and name it Insert

The source or the destination component contains multiple inputs or
New Destination R()WS. Connect the CDC outputs, Select an input and an OL’JJtpLIttO connect the cgmpoﬁents.
Splitter Task to it by dragging the blue
line. A dialog box appears that enables Output:
you to specify InsertOutput as the output, = InsertOutput -
which will be directed to the Insert New Tnout
Destination Rows Task. Figure 37-11 £ oLt DB Destmation Tnput .
shows this dialog box. Click OK to exit. Com]

-Cancel

Double-click the destination task. Use the !)

DestinationDB Connection. The Data access FIGURE 37-11

mode should be Table or view - fast load,

and choose [Production].[Lesson37ProductCategoryDestination]. Go to the Columns window
and ensure that all the source columns are mapped correctly to the destination columns.

Drag an OLE DB Command onto the Data Flow window and connect the Lookup Match
Output to it. To connect, select the CDC Splitter Task and drag its new blue line to the OLE
DB Command Task. You are presented with another window; choose to map UpdateOutput
to the OLE DB Command Input. Then click OK. Name the command task Update Existing
Destination Rows.

Double-click the task to open the editor. In the Connection Managers tab, choose
DestinationDB for the Connection Manager.

In Component Properties tab, select the SqlCommand property and click the ellipsis (...) that
appears on the right-hand side. Use the following command in the String Value Editor that
appears. Then click OK to exit the String Value Editor.

UPDATE [Production].[Lesson37ProductCategoryDestination] SET
Name = ?,

ModifiedDate = ?,

[Deleted Flag] = 'F!

WHERE ProductCategoryID = ?

In the Column Mappings tab, set up the mappings as shown in Figure 37-12. Then click OK.
Remember that Param_0 is the first question mark encountered in the SQL string, Param_1 is
the next question mark, and so on.

292 | SECTION5 COMMON ETL SCENARIOS

20.

21.

22.

23.

Advanced Editor for Update Existing Destination Rows u@

The advanced editor provides access to the low-level properties of data flow components. Additionally, the
advanced editor can be used to configure components that do not have 2 custom user interface,

Connection Managers | Component Properties | Column Mappings | Input and Output Properties

Available Input Colum...
plame fvailable De...
| _gstan i Name
__ $operation)
__$update_mask % Param 1
ProductCategorylD Faiam_2
Name
WModifiedD ate:
Input Calumn Destination Calumn
Name Faram_{
MadifiedDate Faram_1
FraductCategondD Faram_2

o) o] [

FIGURE 37-12

Drag an OLE DB Command Task onto the Data Flow window and name it Set Deleted Flags
in ProductCategory Destination. Select the CDC Splitter Task and drag the blue line from the
Splitter Task to this task. This is automatically mapped to the delete output, because it is the

only remaining output available.

Double-click the Command Task to open the editor. Choose Destination DB as the

Connection Manager. In the Component Properties tab, select the SqlCommand property

and click the ellipsis (...) on the right side to open a String Value Editor dialog box. Insert the

following SQL code in the dialog box. Then click OK to close the String Value Editor.
UPDATE [Production].[Lesson37ProductCategoryDestination] SET

[Deleted Flag] = 'T'
WHERE ProductCategoryID = ?

In the Column Mappings tab, drag ProductCategoryID from the Available Input Columns
to Param_0 in the Available Destination Columns. Your Data Flow should look like
Figure 37-13. Click OK to exit the editor.

Go to the Control Flow window. Drag another CDC Control Task onto the Control Flow
window and name it CDC Mark Processed Range. Connect it to the Data Flow Task by
dragging the green line. You should configure it exactly like CDC Get Processing Range
except the CDC Control operation should be Mark Processed Range. Your Control Flow
should look like Figure 37-14.

LESSON 37 USING THE CDC COMPONENTSINSSIS | 293

24.

84c Control Flow [Data Flow | Parameters | 7 Event Handlers | T3 Package Explorer | % Exeoution Resuls

Data Flow Task: [25 Data Flow Task hd

g

L,iii> €DC Source for ProductCategory

l

coc splitter

i

3

TnsertOutput
Un i

LI« Insert New Destination Rows

-
+=(8 Update Existing Destination Rows

-
= et Deleted Fags in ProductCategory Destination

Connection Managers

LJ cocstates |] Destinationne

FIGURE 37-13

=
gﬁ €DC Get Processing Rangs

l

1 Data Flow
Task

|

=
EL] CDC Mark Processed Rangs

A

FIGURE 37-14

Wait about 30 seconds, then save and run your package. Your Data Flow results should look
like Figure 37-15, with one row inserted, one row updated, and one row marked for deletion.
If you see no rows changed, wait another 30 seconds and retry. If you still see no rows, try
re-running the Lesson37MakeChanges.sql script, then run your package again.

NOTE The reason you must wait is that a SQL Agent job waits a few seconds
between log scans. You need to wait long enough for the scan to occur. The
default scan interval is 5 seconds.

294 | SECTIONS5 COMMON ETL SCENARIOS

©0 Knight's S51S Book ing) - Mis Visual Studio (Admini:) EIEE

File FEdit View Project Build Debug Team Data Format SSIS Architecture Test Tools Analyze Window

Help
P @ £ 2R 9 - - b | Development || D W R BE O b 0 @ @z
Lesson37IncrementalLoad.dtsx [Design] <

%,., Control Flow () Data Flow | Parameters | 7 Event Handlers |“5 Package Explorer ‘ % Progress @

Data Flow Task: [Data Flow Task A

Sl €ncC sourcs for PraductCategory

e
£
P
A 4

=
=& cooc Splitter

[

[WJ Delet=Output (1 rows)
wmm ut (1 rows)

L | Insert New Destination Rows
-

£
=
£
£
g
T
iy
=
g
Z
7
H
L
z
g
=
=
13
"
=
g
£
2
H

o

Update Existing Destination Rows

-
7 Set Deleted Flags in ProductCategory Destination
=\

Connection Managers

LJ cocstates |] Destinationne

() Package execution completed with success. Click here to switch to desian mode, ar select Stop Debugaing from the Debug menu,

S call stack W¥: Breakpoints B Command Window B output BB Error List

Ready

FIGURE 37-15

25. If you run Lesson37Select.sql, you will see the changes that resulted from the incremental
load, as shown in Figure 37-16.

Fesults “_1! Messagesl

»

Name M odifiedD ate

i Bikes - Updated 2002-08-03 00:00:00.000
" Components 2002-08-071 00:00:00.000
Clathing 2002-06-01 00:00:00.000
Mew Category 201 2-08-04 00:00:00.000

i

ProductCategomlD Mame M odifiedD ate Deleted Flag
1 1 Bikes - Updated 2002-06-03 00:00:00.000 F
2 2 " Components 2002-08-01 00:00:00.000 F
) 3 Clathing 2002-06-01 00:00:00.000 F
4 4 Arcessories 2002-08-01 00:00:00.000 T B
]] Mew Category 2012-06-04 00:00:00.000 F -
FIGURE 37-16

If you run your incremental package again, you should see a successful completion with no rows
changed.

Please select Lesson 37 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

38

Using Data Quality Services

Data Quality Services (DQS) provides some tools and services to help improve data within
your organization. DQS is a very large and complex topic. This lesson includes the most basic
ideas, enough to get you started with the concepts. If this is an area of interest to you, there is
much more to learn about this topic. The purpose of this lesson is to prepare you with basic
data quality skills, so that you will understand the data quality-related task in the next lesson.

DQS is intended to help to assist you in the following areas:

>

Completeness—Are data values missing? If you have 25,000 customers and only
15,000 valid e-mail addresses for them, your e-mail address field is 60 percent
complete.

Consistency—Are data values being used consistently? If Gen Mgr and GM are alter-
nate terms that refer to the General Manager position, are position field values used
consistently? (The answer is no.) Even though you know that the values refer to the
same position, you must make the values consistent. This is important because you will
use this data for comparison and aggregation. Use of inconsistent values provides inac-
curate results.

Conformity—If special formatting is required for certain fields, do the data values
match the correct formatting? You can import data from several sources that store
values with the same meaning in different ways. Consider the “gender” field. One
source provides values of M and F. Another system uses 1 and 2. A third system uses
Male and Female. Even if the values are consistent within each system, when brought
together, there is a problem. For the “gender” field to be conformed, you must choose
the correct representation, and convert the input values to the conformed, approved
values.

Validity—Do valid data values fall within acceptable ranges? For example, the defini-
tion of an “age” field should include values between 1 and 120. Negative values do not
make any sense, nor do values over 120.

Accuracy—Do the values represent the true, factual value for the object? As an exam-
ple, the “age” field value of 25 for me is valid, but not accurate. I am 59.

296 | SECTION5 COMMON ETL SCENARIOS

> Duplication—Are there multiple instances of the same object, for example, two rows in
the customer table that represent the same object (customer)? Perhaps the single customer
represented in two rows has two different names, like Bob Smith and Robert Smith. Maybe
the customer is a woman who has changed her name due to marriage or divorce. Another
common example that can yield duplicates is a customer who has moved, and you have a
customer record for the old address and the new address. It is very common to end up with
duplicate values for the same object when combining rows from multiple data sources, for
instance, when two companies merge.

NOTE The definitions in the preceding list are the ones used by Microsoft to
describe DQS. You will find some conflicting names and definitions to the ones
I have used here. When you use names like Accuracy and Validity with other
people, make sure you both agree on the use and definition of these terms.

As you improve your data, you will make decisions about each of the areas listed previously. You
can choose to replace “M” and “1” with the value “Male” in the gender field. You will define valid
values for fields, and make other decisions about data quality. These decisions are contained in a
store called the Data Quality Knowledge Base (DQKB). During cleansing of data, the information
in the DQKB is used to automate parts of the process. You can have multiple knowledge bases if
you want.

Data cleansing is a process, and not a destination. It is continual and iterative. As you progress, your
knowledge base will grow and improve and the manual work you have to do will decrease.

The DQS software must be installed prior to any other work. It contains two pieces: the Data
Quality Server and the Data Quality Client. These are not installed by default, so you must explic-
itly choose these items on the Feature Selection page of the SQL Server install. The Data Quality
Server must be installed on a server with the SQL engine. The Data Quality Client can be installed
separately on workstations without the engine. The Client tool will be used by those working within
DQS to improve the data. These are easy click-through installs.

After the SQL install, you must configure the server. You do this by running the Data Quality
Server Installer. It is a program item that appears under Microsoft SQL Server 2012 = Data Quality
Services.

When this runs, you must provide a database encryption key password. Save this password in a safe
place; you will need it to restore this database to a different instance of SQL Server. When DQS is
installed, you should see three new databases.

Use of DQS is comprised of three main steps:
> Knowledge Base Management
> Data Cleansing and Matching

> Administration and Monitoring

LESSON 38 USING DATA QUALITY SERVICES | 297

In the Knowledge Base Management phase, you create domains. An example of a domain is Gender.
The Gender domain contains information about gender as a class of information, and Gender
should be a string data type. You can provide a list of valid values that can be imported from a file
or from the database. Valid values can also come from reference data in the cloud. You can also cre-
ate rules that apply to domains. The early goal is to improve the quality of your knowledge base by
ensuring that the domain information is accurate and complete.

The first screen you get during data cleansing is the Profiler tab. This tab provides information
about completeness, accuracy, and other statistics regarding the incoming data. An example is
shown in Figure 38-1.

I profiler_~ |
Source Statistics Field Domain New Unigue Valid in Domain Comy
Records: T First Name First Name Do 0% T (100%) 7 (100%)
Total Values: 35
otal values Last Name US - Last Name yoo 0% 6 (36%) 7 (100%)
New Values: 4 (11 %)
. Gender Gender L o (0 %) 6 (86 %) T (100 %)
Unigue Values: 31 (89 %)
New Unique Values: 4 (1% Department Department Y 0 (0 %) 6 (86 %) T (100 %)
Valid in Domain Values: 35 (100 %) Department Group Department Group 4 (57 %) 6 (86 %) 7 (100 %)
(L Cancel | [ciose (= sack | TECNCNN
FIGURE 38-1

You can also create composite domains. You can have a First Name and Last Name domains. And
you can then create a composite domain called Full Name that is composed of the First Name and
Last Name domains. You can supply separate, additional rules to the composite domain.

DQS enables you to define synonyms in the knowledge base. For example, you can define “M” as

a synonym for “Male.” DQS is not case-sensitive, but it does preserve case. One of the values in a
single group of synonyms will be the surviving value, and all other values in the synonym group will
be corrected to the surviving value. The synonym that survives as the corrected value is called the
leading value. After you have defined synonyms, you can identify the leading value.

Term-based relations enable you to store abbreviations that can be used in a specific domain. The
abbreviations are expanded as part of cleansing.

Domain rules can be applied to a single domain and to composite domains. Composite domain
rules allow more complex conditions between the included domains to provide a corrected value. An
example of a complex domain rule is shown in Figure 38-2.

The knowledge base is very powerful. It even includes a spell checker that can catch and automati-
cally correct misspellings in the input data. Absent exact matches for valid values, it can provide
suggestions and confidence levels. The more complete your knowledge base, the more accurate the
cleansing will be.

298 | SECTION5 COMMON ETL SCENARIOS

Departmer| Value is equal to
-| Value is not equal to -
CD Properti Value - Value Relations

Value does not contain

@ @ e
Value begins with ¥ R aCl
Value ends with Li Created By
| Production Value is numeric 7/ MARINER\wsnyde!

Ai Name

Value is date\time 7/ MARINER\wsnyde:
Value is in

& Document|

Value is not in

Value matches pattern
Build a Rule value does not match pattern en [
Value contains pattern
© | Depar{ Value does not contain pattern % | Department .
Value matches regular expression

{Valueis equal to : Control Value is equal to ~ Production Cont

e |anvDj) -

Department Group v

Value is eoual to - Manufacturing

FIGURE 38-2

While cleansing data in the Data Cleansing and Matching phase, incoming data is processed using
the information stored in your knowledge base. Completeness and accuracy are displayed, along
with any corrections and suggestions made by the knowledge base. You can then approve or reject
the values, export the output from the process, and use the output as a data source for your ETL
loading of data.

In this way, data cleansing consists of both computer-assisted and interactive cleansing. The data is
cleansed via knowledge base information, but interactively, you review and approve or reject, yield-
ing the final output. In addition, you can provide a corrected value during the interactive cleansing.

The DQS cleansing processing will automatically place data in the tabs, which are described below.
As you work through interactive cleansing, changes and corrections you make may cause the data to
be moved into a different tab.

> Correct—An exact match was found in the knowledge base or you approved the value.

> Corrected—Values corrected by DQS with a high confidence level, or you provided a value in
the Correct to column and approved.

> Invalid—Values marked in the knowledge base as invalid or that failed a domain rule or ref-
erence data, or values that were rejected by you.

> New—Valid values for which there is not enough information (not marked as invalid in the
knowledge base), and values for which there is a suggestion with a low confidence.

> Suggested—DQS suggests these values. The confidence level is not high enough to be
Corrected, but the confidence level is above the minimum level to provide this as a sugges-
tion. You must review and approve/reject these values. The confidence levels for corrected
and suggested can be set by the DQS administrator.

LESSON 38 USING DATA QUALITY SERVICES | 299

Figure 38-3 shows these tabs. In this figure, the New value for the First Name domain is selected.
The value Bob is selected at the top. It is corrected to Robert and approved below. This changes the
value in the output, but does not make the change in the knowledge base.

First Name
Suggested (0) I New(D Y Invalid (0) Corrected (0) Correct (0)
Search Value: v B B
Value #Records Correctto Confidence Reason
Bob 1 0% New value
Gloria 1 0% | New value
John 1 0% | New value
Judy 1 0% | New value

Records containing the value:

Correct to Confidence Reason Approve Reject First Name
Robert - 100% Modified b O Bob
FIGURE 38-3

The Administration tab of the DQS client tool contains two buttons, Activity monitoring and
Configuration. While in the Administering and Monitoring phase of DQS, you will use this tab. The
configuration button leads to a location where you can set logging, confidence levels and reference
data connection, and password information.

Every time someone performs a Knowledge Management task, data cleansing, or data matching,
DQS logs information related to the session. Information such as session length, session type, user,
and the knowledge base used are captured. Additionally, the profiler information is kept. This is the
same profiler information you see when doing interactive cleansing. After you have completed this
lesson, you should visit the Activity monitoring tab.

TRY IT

In this Try It, you create a knowledge base and import some valid values. You then train the knowl-
edge base by doing some data exploration and data discovery. You then use the knowledge base in
a data quality project you create to cleanse some data. After completing this Try It, you will under-
stand how to create a knowledge base, load it with data, and use it to cleanse newly arriving data.

The spreadsheets and a completed DQS file for this lesson are available for download on the book’s

website at www.wrox. com.

WARNING If you are working in a version of Excel prior to Excel 2010, you will
need to covert the .xlsx spreadsheets in the download to .xls spreadsheets.

http://www.wrox.com

300 | SECTION5 COMMON ETL SCENARIOS

Lesson Requirements

You must have elevated permissions to complete this lesson. The minimum permission is member-
ship in the dgs-kb-editor role.

Hints

>

You do not need to create an SSIS project.

> Use the DQS Client tool.

Step-by-Step

First, you need to perform some domain management and data discovery as follows:

1.

Run the Data Quality Client. You can find it under All Programs = Microsoft SQL Server
2012 = Data Quality Services. You will see a Connect To Server dialog box. Type the name
of the server where DQS is installed and click Connect.

In the Knowledge Base Management tab, click New Knowledge Base. Use the following to
complete the dialog box and click Next.

> Name—Lesson38KB
> Create Knowledge Base From—Existing Knowledge Base
> Select Knowledge Base—DQS Data

The only domain you will use is US - Last Name. Delete the other domains by selecting the
domain and then clicking the Delete icon. See Figure 38-4.

i. Domain Management

e

i Country/Region
Domain
- | Delete the domain [——
» Country/Region Jomain Vi

\w Country/Region (three-letter

(@ Country/Region (two-letter leading)

Domain Name: Col

w US - Counties
Description: Thi
w US - Last Name L]
lon|
(@ US - Places de:
w US - State Data Type: Stril

w US - State (2-letter leading)
Use Leading Values

FIGURE 38-4

LESSON 38 USING DATA QUALITY SERVICES

| 301

Open Lesson38SampleData.xlsx and take a look at the data (Figure 38-5). This contains the
sample data you will use to improve the knowledge base. To create a new domain, click the top-
left icon in the Domain Management tab of the DQS Client (the one with the star). Create a new
domain for Gender, Department, and Department Group, using the following information:

> Data Type—String

> Use Leading Values—Checked

> Normalize String—Checked

> Format Output to —None

> Language—English

> Enable Speller—Checked

> Disable Syntax Error Algorithms—Unchecked
First Name Last Name Gender Department Department Group
Wayne Snyder] Resaerch and Development R and D
Devin Knight Male Shipping Inv Mgmt
Brian Knight 1 Design RD
Mike Davis Iale Q4 CQuality Assurance
Debbie Smyth F Hurman Resources Exec Gen Admin
Christina Raymer 2 Control Manufacturing
Lisa smith Female Control Cuality Assurance
FIGURE 38-5

Do not create a domain for First Name right now. You will do this later, so you can see
another place you can create domains.

Select the Gender domain on the left, and choose the Domain Values tab. You know that
Male and Female are the valid values for Gender at your company. Click the Add New
Domain Value icon to the right of the Show Only New check box. The icon has a green plus
sign. Type Male in the Value box and ensure that the green check is selected. This indicates
that Male is a valid value. Do not enter anything into the Correct to box. Now add the
Female Gender Value. Click Finish. When asked to publish, select No.

You need to get valid values for Department and Department

Group. The approved, valid values are already stored in a E:;

database. Under Recent Knowledge Base, choose Lesson38KB
and click Knowledge Discovery (Figure 38-6).

Use the information in the following list to import the data:

>

>
>
>
>

Data Source—SQL Server

Database—AdventureWorks2012

Table/View—Department

(TINTINT]

Recent Knowledge Base

Lesson38KE »

.’,:3;, Domain Management

|y Knowledge Discovery

@ Matching Policy

FIGURE 38-6

Mappings—Name (nvarchar) - Department

Mappings—GroupName (nvarchar) - Department Group

302 | SECTION5 COMMON ETL SCENARIOS

Note that the top of this window shows the three steps to knowledge discovery: Map, Discover,
and Manage Domain Values. Map is highlighted because you are in the mapping phase.

Select Next. You will see that you are now in the “discover” phase. Click Start at the top of
the page. Rows from your source will be imported. Domain rules and discovery will be run
on the imported rows.

When this is complete, the profiler tab will be populated with data, and the navigation but-
tons at the bottom of the page will be enabled. Click Next. Notice you are now in the third
step of Knowledge Management - Manage Domain Values. The two domains you imported
will be displayed in the tree on the left. You can see the new values that will be added to the
domain. Click Finish, but do not publish.

Choose Lesson38KB > Knowledge Discovery again. Now you will use some sample data to
improve the quality of your knowledge base:

> Data Source—Excel File

Excel File—Lesson38SampleData.xIsx (in your folder)
Worksheet—Sheet1$

Use first row as header—Checked
Mappings—Department (String) - Department

Mappings—Department Group (String) - Department Group

Y Y Y Y VY Y

Mappings—Gender (String) - Gender
» Mappings—Last Name (String) - US - Last Name

Notice there is a field in the spreadsheet, First Name, that is missing from your domains. You
can create a new domain right here. Click the New Domain button as shown in Figure 38-7,
and create the new domain with the same attributes that you used with the other domains.
After you have created the First Name domain, you can map the spreadsheet column to it.
Click Next, and then click Start on the next page.

Mappings: m OFg [T
Source Column Domain \
Department (String) - | Department
Department Group {String) - Department Group
Gender (String) - | Gender
Last Name (String) = | US - Last Name
First Name (String)

FIGURE 38-7

During the Knowledge Discovery process, your main focus is on new values. You must
decide if these new values are valid, or if they should be mapped to existing values. You can
see that the profiler shows new values in every domain except Last Name. Click Next.

LESSON 38 USING DATA QUALITY SERVICES | 303

10.

1.

12.

Choose the Department domain. You will see five new values. The spell checker suggests
that one value was misspelled and suggests it be mapped to Research and Development. This
is the correct action, and you will not have to bother with it. Now uncheck the Show Only
New check box, so you can see all of the domain values.

Scroll down the values until you see QA and Quality Assurance. QA is a new value. Because
Quality Assurance is the valid value for the Department domain, you should correct instances
of QA. To do this, select QA, then Shift-Select Quality Assurance. Right-click to get a con-
text-sensitive menu, and choose Set as synonyms. The list will now look like Figure 38-8.

Value Frequen: Type Correct to

Production 1| o -

Production Control 1 v -

Purchasing 1 & -~

=5 QA 1 & -

Quality Assurance 1 « -~ QA

] Research and Development 1 ¥ -
% Resaerch and Development 1 # - Research and Development

Sales 1 v

<% Shipping 1| o -~

Shipping and Receiving 1 v

Tool Design 1 o -

FIGURE 38-8

Although these are now synonyms, QA is the leading value, and Quality Assurance will be
changed to QA. This is backwards. Quality Assurance should be the leading value. Select
Quality Assurance only, right-click, and choose Set as Leading. The correction should look
like Figure 38-9.

Value Frequen: Type Correct to
Production 1 v -
Production Control 1 v
Purchasing 1 & -
-] Quality Assurance 1 v -
QA 1 . - Quality Assurance
-] Research and Development 1 v T
<% Resaerch and Development 1 # - Research and Development
Sales 1 v
<% Shipping 1| ¢ -
Shipping and Receiving 1 v
Tool Design 1 & -~

FIGURE 38-9

304 | SECTION5 COMMON ETL SCENARIOS

13.
14.
15.

16.

17.
18.

Make Shipping and Receiving the leading value, with Shipping as the synonym.
Make Tool Design the leading value, with Design as the synonym.

Scroll around and find the new value Control. This is the only new value you have not
accounted for. Control could mean either Production Control or Document Control. You
will fix this with a rule, but you have to go back to Domain Management, so you will come
back to this one later.

Now choose Department Group. You see four new values. You could make these synonyms
of existing valid departments. You could make Exec Gen Admin a synonym for Executive
General and Administration. But you can also try a different technique that would handle a
larger number of future issues. Gen is simply an abbreviation for General. If you expanded
all of the three terms Exec, Gen, and Admin, you would have a valid value. Additionally,

if General Manager were added as a valid value later, and someone entered Gen Manager,
term expansion would automatically fix that value as well. For all of the new values for
Department Group, you will use term expansion.

NOTE Now you have two items to fix when you go back: Control for Document
Control or Production Control in Department and these term expansions for
Department Group.

Choose First Name. You are accepting all of these values as valid, so there is nothing to do.

Choose Gender. You know that Male and Female are the valid values. It is easy to see the
use of M and F should be synonyms. Taking a look at the source spreadsheet, you find that
Gender 1 is used for Brian and 2 for Christina. So you will use those synonyms as well.

Fix these just as you did in the Department domain earlier. Your results should look like
Figure 38-10.

Gender Statistics (All Values 7) Correct: 7 Errors: 0 Invalid: 0
Find: Filter: AllValues - [ShowOnly New [&3
Value Frequent Type Correct to
DQS_NULL 0
= ¢ Female 1 v
] 1 v - Female
wF 1 - Female
= orMale 2 v
w1 1 - Male
M 1 & - Male

FIGURE 38-10

LESSON 38 USING DATA QUALITY SERVICES | 305

19.

20.
21.
22.

22.

23.

24.

25.

26.
27.

28.

Because you have no new or error values for Last Name, you do not have any work to do.

NOTE As your knowledge base improves, the amount of work you must do will
decrease.

Click Finish, but do not publish.
Click Lesson38KB > Domain Management.

Now create a rule to handle Control in Department. Choose the Department domain and
select Domain rules. You know that when someone puts Control as the Department, it
could mean either Production Control or Document Control. However, you also know that
Production Control is in the Manufacturing Department Group, and Document Control

is in the Quality Assurance Department Group. Create a rule that says, if the Department
is Control and the Department Group is Manufacturing, the Department is Production
Control. If the Department is Control and the Department Group is Quality Assurance, the
Department should be Document Control. To do this, Department and Department Group
must be in a composite domain.

Click the Create Composite Domain icon, as shown in

. & B e =, [
Figure 38-11. e =)
Name the composite domain Department Group CD. Move ~ Department "\
Department and Department Group from the Domains List « Department Group
to Domains in Composite Domain. Click OK. o First Name

Gandsr

Select the Department Group CD domain. In the CD
Rules tab, click the Add New Domain Rule icon, with the
green plus sign. Type Production Control as the name. In the Build a Rule section, choose
Department. There is a drop down below that says “Length is equal to”. Change “Length is
equal to” to “Value is equal to”. Then type Control in the text box to the right.

FIGURE 38-11

Right-click anywhere in the Build a Rule section and choose Add clause. Choose Department
Group, Value is equal to, and type Manufacturing.

In the Then area, choose Department, Value is equal to, and type Production Control.

Now create a new domain rule named Document Control, which sets the Department to
Document Control when the Department is Control and the Department Group is Quality
Assurance. Your results should look like Figure 38-12.

Choose the Department Group domain to add all of the abbreviations. Select the Term-Based
Relations tab and select the Add New Relation icon. Enter the following values in the Value
and Correct to fields:

» R—Research
> D—Development

> Inv—Inventory

306 | SECTION5 COMMON ETL SCENARIOS

Mgmt—Management
Exec—Executive

Admin—Administration

Y Y VY

Gen—General

Your results should look like Figure 38-13. Click Apply Changes.

Department Group CD

g g | g
A Name Description Last Updi Created By
& Production Control 7/8/2012 © MARINERMW

Build a Rule: Document Control BE Then i}

@ | Department - Department -

Value is equal to Control
o -
Department Group ~

Value is equal to Quality Assurance

[Value is equal to »~ Document Control

FIGURE 38-12
Department Group
Domain Properties \'-.. .-’/ Reference Data \"‘.. .-"‘ Domain Rules \'-..
Domain Values \"a. Term-Based Relations
Fina:|] L kS
Value N Correct to
Mgmt Management
Inv Inventory
Gen General
Exec Executive
D Development
Apply Changes

FIGURE 38-13

LESSON 38 USING DATA QUALITY SERVICES | 307

29.

30.

31.

32.

33.

Choose Domain Values for the Department Group domain. Delete the following values,
because they are not valid domain values. When these values are presented in incoming data,
they will be changed into one of the valid values. You can delete the values by selecting the
appropriate row and clicking the Delete icon with the red x on the top right. Delete the
following:

> Exec Gen Admin
> Inv Mgmt
» RandD

Click Finish and publish your knowledge base.

The next steps turn to the actual data cleansing. You are going to use the knowledge base
to cleanse some new data. You will import some new data, cleanse it, and then approve or
reject the output values.

In the Data Quality Projects section, click on New Data Quality Project. Use the following
information to complete the dialog, then click Next.

> Name—CleanSpreadsheet
> Use Knowledge Base—Lesson38KB

> Select Activity—Cleansing

Map the data using the following list:

> Data Source—Excel File
Excel File—Lesson38NewData.xlsx (in your folder)
Worksheet—Sheet1$
Use first row as header—Checked
Mappings—Department (String) - Department
Mappings—Department Group (String) - Department Group
Mappings—First Name (String) - First Name
Mappings—Gender (String) - Gender

Y Y Y VY VY Y Y Y

Mappings—Last Name (String) - US - Last Name

Click View/Select Composite Domains and check Department Group CD.

Click Next. On the next page, click Start. The DQS cleansing will run. When it finishes,

you will see the profile window populate with information and the navigation buttons will
become enabled. Click Next. Choose Department Group CD. Visit each tab and check the
original and corrected values. For each, choose either approve or reject. When you reject a

308 | SECTION5 COMMON ETL SCENARIOS

value for a field, that column and row will have a status of Invalid. You can use these sta-
tuses to determine whether the row or column value should be placed in your data store or
treated as an error. Check and approve all values for all domains. You may also type a cor-
rect value directly into the Correct to text boxes. Figure 38-14 shows this dialog. Click Next.

@ SQL Server Data Quality Services Lo | 6 |
Hello, MARINER\wsnyder (MRNR-D630.06) | Sign Out
Data Quahty PrOJect Knowledge Base: Lesson38KB Data Quality Project: CleanSpreads... Activity: Cleansing
0 Map 6 Cleanse e Manage and View results 0 Export
Perform interactive data cleansing

Domain No. of values.

= Department Group CD

. Department Group CD 7 P P

Suggested (0) New (0} Invalid Correct
« First Name 7 ugg () lew (0) invalid (0) omected (7) (0)
«© Gender s Search Value: 7 [
Correct to

w US - Last Name] ‘ Value # Records Department Department Grou| Confidenc
| Control Manufacturing | 1 Production Control Manufacturing - q00%
Control Quality Assurance 1 Control Quality - 100%
Design RD 1 Tool Design RD . 100%
‘ Human Resources Exec Gen Admin 1 |Human Resources Executive General ant - 6% -
Records containing the value:

Comectio Confid R A Reject
Department Department Group onfidence Reason pprove ji
Control L v 100% | Corrected .
Profiler =
Close ack Next » Finis|

NOTE Pay special attention to suggested and new values.

34. Export the data with Data and Cleansing info to an Excel file named Lesson38Output.xls.

35. The output file can now become the source for an ETL operation which loads the cleansed
data into your data warehouse.

Please select Lesson 38 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

39

Using the DQS
Cleansing Transform

In the previous lesson, you created a DQS knowledge base and cleansed some data, all inter-
actively. As you improve the quality, domain coverage, and capability of your knowledge base,
it will be able to correct a larger and larger percentage of values from new incoming data. As
this occurs, you will benefit from automating as much of the cleansing as possible. You may
want to have values that are correct or corrected with high confidence levels to move directly
into the destination. Then you can review and fix only the remaining values. This capability
exists with SSIS as the DQS Cleansing Transform. Additionally, you can correct and approve
or reject the remaining values using the DQS Client. There is a truly intelligent cooperation
between the Cleansing Task and the DQS Client.

The Cleansing Task accepts a Data Flow as input, cleanses the data using the knowledge base
of your choice, adds output meta data, and passes the Data Flow forward. A commonly used
Data Flow for the Cleansing Transform is shown in Figure 39-1.

|_|‘ Flat File Source
) oo
- Cleansing

Conditional Split
™ Spl

| Ready ko Use Ttems for Review

| Items For
| RU:dyto T] Review

FIGURE 39-1

310 | SECTION5 COMMON ETL SCENARIOS

NOTE The DQS Client is interactive, multithreaded, and is written to run as fast
as possible, because most of us are impatient. The fast run time corresponds to
high memory use for the client. Because we do not sit and wait for the Cleansing
Transform to run in SSIS, it was written to reduce the memory footprint (single
threaded) and therefore runs for a longer period of time.

When you double-click the DQS Cleansing Task, its editor pops up, and contains only three tabs:
Connection Manager, Mapping, and Advanced.

The Connection Manager tab is where you choose the connection manager that points to your DQS
server. After you choose the data quality connection manager, you can select which of the knowl-
edge bases on that server should be used by the task. At the bottom of the window is the Configure
error output check box. By default, the task will fail if there is an error, but you can choose to redi-
rect the error rows.

In the Mapping tab, you choose which columns from the input should be cleansed and associate
each of those input columns with its corresponding domain. The standard output columns for each
input are Source, Output, Status, Confidence, and Reason. The default column names are supplied,
but you can change these names if you want. Figure 39-2 shows the Mapping tab.

l Connection Manager | Mapping | Advanced

=

Ayvailable Input Columns

First Hame
| Last Mame
=1 Gender
) Department
= Department Group
Input Calumn Domain Source Alias Output Alias Status Alias Confidence Alias Reason Alias

First Mame

First Mame_Source First Name_Output First Mame_Status First Narme_Confidence First Name_Reason

Last Mame US - Last Mame Last Mame_Source Last Name_Output Last Name_Status Last Name_Confidence Last Name_Reason
Gender

Dep

Gender_Source Gender_Output Gender_Status Gender_Confidence Gender_Reason

Dep Source Department_Output Department_Status Department_Confidence Department_Reason
Department Group Department Group | v | Department Group_Source | Department Group_Output | Department Group_... | Department Group_Confi... | Department Group_Reas.

FIGURE 39-2

While each column has a status associated with it, there is also a status associated with the entire
row. This enables you to use either or both statuses. The row status tells you the worst column sta-
tus, which should indicate whether the data steward should trust the row or review the values in

the row. For instance, if all the column statuses are Correct, the row status should be Correct. If all
column statuses are Correct, except for one which is Corrected, the row status is Corrected. Though
you are free to do whatever you want with these row statuses, most examples indicate Correct and
Corrected as trusted values, which are sent forward without additional scrutiny. Any other row sta-
tus can require individual examination, correction and approval, or rejection.

The Advanced tab shown in Figure 39-3 contains a list of additional options that you can set.

LESSON 39 USING THE DQS CLEANSING TRANSFORM | 311

|Cannect|onMamager Mapping | Advanced

Standardize output

Enable field level columns:

Confidence
Reason

Enable recard level columns:

EAnnemded Data [additional data received from reference data prowider:

Lppended Data Schema

FIGURE 39-3

> Standardize output—When selected, your output will be formatted using the “Format
Output To” domain properties chosen for the domain. Formatting properties for domains
depend on the data type of the domain:

> String—Uppercase, lowercase, or capitalized
> Date—Format of the day, month, and year
> Integer—Apply a format mask

> Decimal—Precision and format mask

> Confidence—When chosen, this value is provided for each source column. The confi-
dence score between 0 and 100 indicates the level of trust that the DQS Server or relevant
Reference Data Source has in the accuracy of the suggested value. Higher values indicate a
higher level of confidence.

> Reason—When chosen, this value is provided for each source column. This column explains
the output column value. The reason “Domain Value” indicates a valid value found in the
domain. “New Value” indicates the value is not marked as error or invalid in the domain,
nor does it exist as a valid value. “New Value” also includes low confidence suggestions.
Other examples of reasons are “Unknown,” “Invalid,” and “Corrected to leading value.”

> Appended Data—If your domain uses a reference data source, the reference can return addi-
tional information about the domain. For instance, an address validation reference data
source can provide additional longitude/latitude information.

> Appended Data Schema—Automatically selected when Appended Data is selected, this adds
the schema definition you would use to interpret the information provided in the appended
data column.

With the Cleansing Transform configured, you need to route the output to complete the pack-

age. You will use a Conditional Split Task to route the rows into two Data Flows: one Data Flow
that will continue and be automatically added to the data warehouse, and another Data Flow that
requires manual review and decisions about the data quality. Using the row status as the source, val-
ues of Correct and Corrected are routed to a “ready to use” flow. Any other value in the row status
causes the rows to be routed to the “items for review” Data Flow.

312 | SECTIONS5 COMMON ETL SCENARIOS

Every time your package runs, a data cleansing project is created. This means the data steward can
use the Client tool to interactively review the data from the SSIS cleansing in the same way that was
done during knowledge discovery. You can use the DQS Client tool to open the data quality project
and review, correct, approve, or reject values.

After the DQS project review is complete, you can import the new information into the knowledge
base, continuously improving the knowledge base. To bring the project information into the knowl-
edge base, open the knowledge base in the Client tool and choose Domain Management. In the
Domain Values tab, choose the Import Values icon, as shown in Figure 39-4.

Department
Domain Properties Reference Data Domain Rules
1 Term-Based Relations
Statistics (All Values 22) Correct: 20 Errors: 0 Invalid: 2
Find: Filter: |AllValues ~ [ShowOnly New [l [[~
Value Type Correct to
Control FIAY
FIGURE 39-4

TRY IT

In this Try It, you create an SSIS package that uses the DQS Cleansing Transform. After the data

is cleansed, you split the output into two Data Flows, one with acceptable values and another that
requires further inspection. After you complete this lesson, you will be able to use SSIS to automati-
cally clean your data.

You can download the completed Lesson39.dtsx and sample files for this lesson from www.wrox . com.
You should copy these files to C:\Projects\SSISPersonalTrainer directory.

Lesson Requirements

You must have elevated permissions to complete this lesson. The minimum permission is member-
ship in the dgs_kb_editor security role in the DQS_Main database. To create the knowledge base
that will be used for cleansing, import the Lesson39KB.dqgs file.

Hints

> Import Lesson39KB.dgs, which you downloaded from the www.wrox. com site to create the
knowledge base.

> Use the DQS Cleansing Transform to cleanse the data.

> Use the Conditional Split Transform to partition the output and direct it to two Data Flows.

http://www.wrox.com
http://www.wrox.com

LESSON 39 USING THE DQS CLEANSING TRANSFORM | 313

Step-by-Step

1. Run the Data Quality Services Client. You can find it under All Programs => Microsoft SQL
Server 2012 = Data Quality Services. You will see a Connect To Server dialog box. Type the
name of the server where DQS is installed. Click Connect.

2. In the Knowledge Base Management tab, click New Knowledge Base. Use the following to
complete the dialog box and click Next.

> Name—Lesson39KB
> Create Knowledge Base From—Import from DQS file
> Select data file—Use Lesson39KB.dgs in your folder

3. Create a new SSIS package named Lesson39.dtsx. Drag a Data Flow Task onto the Control
Flow tab. Double-click it to open the Data Flow tab.

4. Draga Flat File Source onto the Data Flow tab, and double-click it to open the editor.
The Flat File Source Editor window opens. Click New to create a connection manager.
Name the connection manager Lesson39SampleData. Click Browse, navigate to your
Lesson39SampleData.txt file, and select it. Click Preview and take a look at the rows to
import. Notice the sample file contains some misspellings, abbreviations, and new data.
Click OK to exit the Preview, and click OK again to exit the editor.

5. Drag the DQS Cleansing Transform onto the Data Flow tab, and connect the Flat File Source
to it by dragging the blue line from the Flat File Source to the DQS Cleansing Transform.
Then double-click it to open the editor.

6. In the Connection Manager tab, click New to create a connection manager that points to the
DQS server that contains your knowledge base. Type in the name of your DQS server. Test
the connection and click OK. In the Data Quality Knowledge Base tab, select Lesson39KB.

7. Choose the Mapping tab. Select all of the columns and map them to their corresponding
domains. Refer back to Figure 39-2 to see what your tab should look.

8. Choose the Advanced tab. Make the following selections:
> Standardize output—Checked
> Confidence—Checked
> Reason—Checked
> Appended Data—Checked
Your tab should look like the one shown back in Figure 39-3. Click OK to exit the editor.

9. Right-click the DQS Connection Manager in the Connection Managers window and rename
it to DQS Cleansing Connection Manager.

314 | SECTION5 COMMON ETL SCENARIOS

10.

1".

Drag a Conditional Split Transform onto the Data Flow, and connect it to the Cleansing
Transform by dragging the blue line from the Cleansing Transform. Double-click the condi-
tional split to open the editor. Make the following selections to complete the configuration:

> Output Name—Ready to Use
» Condition—[Record Status] = = "Correct" |l [Record Status] = = "Corrected"
> Default Output Name—Items for Review

Your Conditional Split Transformation Editor window should look like Figure 39-5. Click
OK to complete the configuration. You will now have two good Data Flows from the condi-
tional split: Ready to Use and Items for Review.

7 = B
» Conditional Split Transformation Editor u_‘é]
Specify the conditions used to direct input rowes to specific outputs, If an inpuk rowe matches no condition, the rowis
directed to a default output,
4 Yariables and Parameters 4 Mathematical Functions: -~
4 Columns [String Functions
[Date/Time Functions =
[MULL Functions]
[Type Casts s
Drescription:
Order Output Mame Condition
1 Ready to Use [Record Status] == "Correct” || [Record Status] == "Corrected” B
Default output name: Items for Review
Configure Error Output... [oK] i Lancel] I Help]
& y
FIGURE 39-5

Now you will connect each of the two data flows you created in the Conditional Split Task
to an output. Drag a Flat File Destination onto the Data Flow tab, and name it Ready to Use.
Connect it to the Conditional Split by dragging the blue line from the Conditional Split to the
Flat File Destination Ready to Use. An Input Output Selection dialog box appears, enabling

you to choose which output from the conditional split to use. Choose Ready to Use Output.
Then click OK.

LESSON 39 USING THE DQS CLEANSING TRANSFORM | 315

12.

13.

14.

15.

Double-click the Ready to Use Destination to open the editor. Choose New for Flat File
Connection Manager. Then choose Delimited in the Flat File Format dialog box. Click OK to
exit the dialog box. The Flat File Connection Manager appears.

> Connection Manager Name—Ready to Use
> File Name—C:\Projects\SSISPersonalTrainer\Lesson39ReadytoUse.txt
> Column names in the first data row—Checked

Click OK to exit the Connection Manager Transformation Editor. You are returned to the Flat
File Destination Editor. Click the Mappings tab so the columns will be configured. Click OK.

Create a destination for the Items for Review Data Flow. Drag a Flat File Destination onto
the Data Flow tab, and name it Items for Review. Connect it to the Conditional Split by
dragging the blue line from Conditional Split to the Flat File Destination Ready to Use. The
last time you dragged a Conditional Split blue output, a dialog box allowed you to choose
which of the two outputs to map. Because there is only one remaining blue output—Items for
Review—no dialog box is presented. The only remaining output is used.

Double-click the Items for Review Destination to open the editor. Choose New for Flat File
Connection Manager. Then choose Delimited in the Flat File Format dialog box. Click OK to
exit the dialog box. The Flat File Connection Manager appears. Complete the configuration
using the following information:

> Connection Manager Name—Ready to Use
> File Name—C:\Projects\SSISPersonalTrainer\Lesson39ReadytoUse.txt
> Column names in the first data row—Checked

Click OK to exit the Connection Manager Editor. You are returned to the Flat File
Destination Editor. Click the Mappings tab so the columns will be configured. Click OK.
Your Data Flow should look like Figure 39-1 earlier in this lesson.

Save and run the package. The completed Data Flow should look like Figure 39-6. Nine rows
were read, and seven of them were correct or corrected, leaving two rows in the Items for
Review file.

u

|, Flat File Source
»

: iw
-_2} DQs Cleansing

o /

Conditional Split
o Spl

E FeT— L m%rs)
A\ 4

| Readyto |
=@ Us =

Items for Review

a

AV 4

FIGURE 39-6

316 | SECTION5 COMMON ETL SCENARIOS

NOTE You can open these files in Excel and review them if you want. If you do,
they are delimited files with a tab delimiter.

16. To review the work done by this run of the Cleansing Transform, run the DQS Client appli-
cation. Click Open Data Quality Project, then scroll through the Open Project list, select
your SSIS package run, and select Next.

17. Here you can change, approve, and reject values just as you did in the previous lesson.
Figure 39-7 shows that two new values in the First Name domain came from this cleansing
exercise. Once you have completed your changes, approvals, and rejections, you can export
this information to be used as input for the next cleansing activity.

[+ SL Server Data Quality Services =
Hello, MARINERwsnyder (MRNR-D630-06) | Sign Out

& Data Quality Project

Knowledge Base: Lesson39KB Data Quality Project: Lesson33.0Q... Activity: Cleansing

0 Map 6 Cleanse 6 Manage and View results 0 Export
Perform interactive data cleansing

Domain No. of values First Name
. Department Group CD 9
ested Invalid Corrected {0 Correct (7]

'« First Name 9 Sugg 0} (2) 0 © o
« Gender 8 Search Value: % B e
@ US - Last Name g Value # Records Correctto Confidence Reason

Boh 1 0% New value

NewName 1 0% | New value

FIGURE 39-7

Please select Lesson 39 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Creating a Master Package

The master package uses the Execute Package Task to run child packages. This process is
covered in Lesson 46. Using a master package offers several advantages.

You must execute child packages in the proper order because some packages can depend on
the success, failure, or completion of other packages. To do this, you can use the precedence
constraints, invoking functions if you want (precedence constraints are covered in Lesson 9).
You can use the master package to encapsulate multiple child packages for transactional
consistency. Parameters and variables from the master package can be controlled globally
and shared with the child packages. As you move the batch of packages from one environ-
ment to another, you can restrict your parameter and variable issues to the master package.
(Environments are covered in Lesson 54 and deployment is covered in Lesson 53.) Master
packages also enable you to control package parallelism, reducing processing time in the batch
window. You can do this by setting the MaxConcurrentExecutables property of the parent
package. The default value is -1, which means the number of logical or physical processors +2.

As you can see from the number of cross-references to other lessons you’ve already encoun-
tered in this lesson, when you are working on a master package, you will use many of the skills
you have learned in those other lessons. However, the concept of a master package is quite
simple. Think about a data warehouse example. You will have packages that load each dimen-
sion, a package to load each fact, and another package that processes each cube in Analysis
Services. Part of designing a master package is an exercise is parallelism and dependency.

In the example here and in the Try It that follows later, we have two cubes, each with a single
fact and two dimensions. The following bullets indicate which dimensions and facts are used
by each cube:

» Sales Cube
» Product Dim
» Customer Dim

» Sales Fact

318 | SECTION5 COMMON ETL SCENARIOS

> Customer Support Cube
> Employee Dim
> Customer Dim
> Employee Customer Calls Fact

Take a look at Figure 40-1. It contains three dimension loads, two fact loads, and two cube builds in
the master package. In this master package, each item is processed, one after the other.

58| Load Product Dim —— 25| Load Customer Dim —— =] Load Employes Dim
- L}]

|

-— H- Load Employes Customer Calls Fact
L

Process Sales Process Customer
Cube Support Cube

FIGURE 40-1

It does implement some required ordering, as described in the following list:
1. Load dimensions
2. Load facts

3. Process cubes

However, this design can fall short in a couple of ways.

> Even though the tasks contained with each child package can run in parallel, only one pack-
age will run at a time. There is no parallelism at the package level. This can mean that the
entire batch will run unnecessarily long, even when hardware resources like memory, disk
throughput, and processor are available.

> The second issue relates to unnecessary dependencies. If the Load Product Dim Task fails,
neither cube will be processed. The Customer Support Cube will not be processed, even
though it does not use the Product Dim.

However, a smarter design will take care of both issues.

Now take a look at Figure 40-2. It contains the same Execute Package Tasks. When the Product
and Customer Dim are loaded successfully, the Product Sales Fact can be loaded. When the Product
Sales Fact is loaded successfully, the Process Sales Cube can begin. Customer and Employee

Dim must load prior to loading the Customer Calls Fact. Once the Customer Calls Fact loads

LESSON 40 CREATING A MASTER PACKAGE | 319

successfully, the Process Customer Support Cube will begin. In this design, if the Product Dim
load fails, the Customer Support Cube path can continue and process successfully. Parallelism is
improved also, because all three dimensions can be processed in parallel.

:-‘ Load Product Dim 25| Load Customer Dim 5% Load Employee Dim
-] o
Load Sales
iy Rt :-‘ Load Employes Customer Calls Fact

| |

Process Zales
Cube Process Customer Support
Cube

FIGURE 40-2

The way you should think about this is to allow as much as possible to complete, even when things
are failing. Only put dependencies in the master package when actual data dependencies exist for
the objects contained within.

TRY IT

In this Try It, you create a master package like the one mentioned earlier in this lesson. You replace
the Process Cube Tasks with an Execute Package Task that does not require SQL Server Analysis
Services. Each one of the packages you call from your master package does nothing but display a
message box with the package name. The child packages will not complete until you OK the mes-
sage boxes they present. This enables you to control when packages complete and offers you the
opportunity to closely watch how this works. The purpose of this Try It is to walk you through cre-
ating a master package and to give you an easy view of parallelism and package failure results. After
you complete this, you will be able to create master packages and control ordering and parallelism
of the child packages.

You can download the source packages for this lesson from www.wrox.com.

Lesson Requirements

The only requirement for this lesson is that you download all of the source packages for this lesson,
which are available on the book’s website at www.wrox. com.

Hints
> Use only the Execute Package Task.

> Run and observe the package behavior.

http://www.wrox.com
http://www.wrox.com

320 | SECTION5 COMMON ETL SCENARIOS

> Limit parallelism by setting the MaxConcurrentExecutables property.
> Force a package failure and observe the effect of dependency constraints on the flow.

> As each package runs, it stops and displays a message box with the package name. You must
click OK in the message box for the package to continue.

Step-by-Step

1. Create a new SSIS package called Lesson40MasterParallel.dtsx in a new solution. Add the
following packages that you downloaded to your new solution. There is no need to re-create
these packages. Each package simply displays a message box.

> Lesson40LoadProductDim.dtsx
Lesson40LoadCustomerDim.dtsx
Lesson40LoadEmployeeDim.dtsx
Lesson40LoadProductSalesFact.dtsx
Lesson40LoadEmployeeCustomerCallsFact.dtsx

Lesson40ProcessSalesCube.dtsx

Y Y Y Y Y Y

Lesson40ProcessCustomerSupportCube.dtsx
2. Drag three Execute Package Tasks onto the Control Flow tab.

3. For the first Execute Package Task, on the General tab type Load Product Dim in the Name
text box. Choose Package from the tree on the left and select Lesson40LoadProductDim.dtsx
in the PackageNameFromProjectReference drop-down list.

4. Tor the second Execute Package Task, on the General tab, type Load Customer
Dim in the Name text box. Choose Package from the tree on the left and select
Lesson40LoadCustomerDim.dtsx in the PackageNameFromProjectReference drop-down list.

5. For the third Execute Package Task, on the General tab, type Load Employee
Dim in the Name text box. Choose Package from the tree on the left and select
Lesson40LoadEmployeeDim.dtsx in the PackageNameFromProjectReference drop-down list.

When complete, your Control Flow should look like Figure 40-3.

-

:“ Load Product Dim 25| Load Customer Dim == |oad Employes Dim
| -

FIGURE 40-3

6. Drag two more Execute Package Tasks onto the Control Flow tab to represent the fact loads.

7. For the first fact Execute Package Task, on the General tab, type Load Sales Fact in the Name
text box. Choose Package from the tree on the left and select Lesson40LoadSalesFact.dtsx in
the PackageNameFromProjectReference drop-down list.

LESSON 40 CREATING A MASTER PACKAGE | 321

10.

1.

12.

13.

For the second fact Execute Package Task, on the General tab, type Load Employee Customer
Calls Fact in the Name text box. Choose Package from the tree on the left and select
Lesson40LoadEmployeeCustomerCallsFact.dtsx in the PackageNameFromProjectReference
drop-down list.

Drag two more Execute Package Tasks onto the Control Flow tab to represent the cube
processing.

For the first cube Execute Package Task, on the General tab, type Process Sales Cube in the
Name text box. Choose Package from the tree on the left and select Lesson40ProcessSalesCube.
dtsx in the PackageNameFromProjectReference drop-down list.

For the second cube Execute Package Task, on the General tab, type Process Customer
Support Cube in the Name text box. Choose Package from the tree on the left and select
Lesson40ProcessCustomerSupportCube.dtsx in the PackageNameFromProjectReference
drop-down list.

Now set the precedence constraints:
> Connect Load Product Dim to Load Sales Fact
Connect Load Customer Dim to Load Sales Fact
Connect Load Customer Dim to Load Employee Customer Calls Fact
Connect Load Employee Dim to Load Employee Customer Calls Fact

Connect Load Sales Fact to Process Sales Cube

Y VYV VY Y Y

Connect Load Employee Customer Calls Fact to Process Customer Support Cube

Your completed work flow should look like Figure 40-4.

Load Product Dim = |gad Customer Dim 5% Load Employes Dim
i = =
uu| Load Sales 55| Load Employes Customer Calls Fact
5 g Fact a
u Process Sales mm| Process Customer Support
H g Cube 54 Cube
FIGURE 40-4

Save and run the package. You will see all of the Load Dim packages run. This is because
there is no prior dependency and MaxConcurrentExecutables is set to —1. Three message
boxes will also be up, each with the name of the task to which it belongs. When you click
OK in a message box, the associated task will complete and you can follow through the

322 | SECTION5 COMMON ETL SCENARIOS

14.

15.

16.

17.

18.

19.

20.

21.

execution of items in the master package. You may have to Alt+Tab to bring the message
boxes to the front. You may also have to move back to your master package to see it. Your
initial view should look like Figure 40-5.

5% Load Product Dim wH| | pad Customer Dim 49 Load Employes Dim
L LT] L]
wu| Load Sales =% Load Employes Customer Calls Fact
5 g Fact "a
wm| Process Sales wm| Process Customer Support
54 Cube 54 Cube
FIGURE 40-5

Click OK on the Load Product Dim and Load Employee Dim message boxes. Now go back
to your master package. Product and Employee Dim should show a green check for success-
ful completion, but neither of the fact loads have begun. This is because they both depend on
success of the Load Customer Dim.

Click OK on the Load Customer Dim message box, and review the status of the master pack-
age. All load dims will be green and both load facts will be in-process.

Click OK on the Load Sales Fact message box. The Process Sales Cube will begin because all
of its prior dependencies completed successfully. The Process Customer Support Cube is still
waiting for the Load Employee Customer Calls Fact to complete.

Click OK on the Load Employee Customer Calls Fact message box, and the Process
Customer Support Cube will begin. Now click each of the two Process Cube message boxes
and the master package will complete successfully. Click at the bottom of the master package
to return to design mode.

Next, you look at changing the parallelism of the master package. Click in a blank area of
the Control Flow tab, and go to the Properties page of the Lesson40MasterParallel package.
Set MaxConcurrentExecutables to 2.

Save and run the package. Now view the master package. Unlike the first run, you will see
only two child packages running, as in Figure 40-6.

Now click through the message boxes. No more than two child packages will run at a time.
It is very easy to change the parallelism of your entire batch in this manner. Then return to
design mode by clicking at the bottom of the master package.

Set the MaxConcurrentExecutables property of the master package back to 1. Save the
package.

LESSON 40 CREATING A MASTER PACKAGE | 323

=% Load Product Dim

5% Load Customer Dim
—a

I

I

H- Load Employes Dim
)

I

52" Load Sales Fact
=

I

Process Sales

uu
|55 Cube

5% Load Employes Customer Calls Fact
=

Process Customer Support

uu
|55 Cube

|
I

FIGURE 40-6

NOTE Because your production environment is likely to be more robust than
your development environment, you may want to change parallelism. The —1
value will fire off the number of logical\physical processors +2. However, you can
have multiple master packages running in parallel. If this is the case, it is a good
idea to parameterize the MaxConcurrentExecutions property of the master pack-
age. This will enable you to tune parallelism quickly and easily.

22.

Next, you take a look at failure issues. In the master package, select Load Product Dim and

go to the Properties window. Set the ForceExecutionResult property to Failure. This causes
the Load Product Dim Task to fail.

23.

Save and run the master package. All three dimension loads will begin to run. Click OK on

the message boxes for all three dimension loads. Load Product Dim will show failure and the
other two will show success. Your results should look like Figure 40-7.

o

5% Load Product Dim

I

/)

5% Load Customer Dim
—a

I

o

5% Load Employes Dim
—a

I

5% Load Sales Fact
=

I

um| Process Sales
=5 Cube

49| Load Employes Customer Calls Fact
—a

un | Process Customer Support

=5 Cube

|
I

FIGURE 40-7

24.

Click through all the message boxes and you’re done.

324 | SECTION5 COMMON ETL SCENARIOS

Keeping and using a master package ensures that other packages are run in the correct order. A
properly configured master package allows as many tasks as possible to complete, even when some
packages fail.

Please select Lesson 40 on the DVD, or online at www .wrox .com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

SECTION 6
Containers

» LESSON 41: Using Sequence Containers to Organize a Package
» LESSON 42: Using For Loop Containers to Repeat Control Flow Tasks

» LESSON 43: Using the Foreach Loop Container to Loop Through a
Collection of Objects

41

Using Sequence Containers to
Organize a Package

Sequence Containers provide a simple and easy method for organizing the flow of a pack-
age and can help you divide a package into more manageable pieces. When you first begin
exploring the Sequence Container, you may think organization is the only benefit it provides.
However, to the creative developer, this container’s uses go far beyond simple organization. If
you know how to use it, it can also grant you the following capabilities:

>

Grouping tasks so that you can disable a part of the package that’s temporarily not
needed

Narrowing the scope of a variable to just the container
Collapsing and expanding the container to hide the tasks within

Managing the properties of multiple tasks in one step by setting the properties of the
container

Using one method to ensure that multiple tasks execute successfully before the next
task executes

Creating a transaction across a series of data-related tasks, but not on the entire
package

Creating event handlers on a single container so that you can send an e-mail if anything
inside one container fails, and perhaps even page yourself if anything else fails (event
handlers are discussed in more detail in Lesson 48)

To add a Sequence Container to a package, drag and drop the Sequence Container in the
design pane just like you would any other task. To have a task as part of the container, just
drag the task within the outlined box.

328 | SECTION6 CONTAINERS

Once tasks have been placed inside the Sequence Container, they can be connected by precedence
constraints only to other tasks within the same container. If you attempt to connect a task inside the
container to one outside, you receive an error.

TRY IT

In this Try It, you explore how Sequence Containers can be used inside a package. After this lesson,
you will have a better idea of the versatility that using Sequence Containers can give you when you
are developing your own packages.

You can download the completed Lesson41.dtsx at www.wrox . com.

Lesson Requirements

Create a package with Sequence Containers and test different uses of the container. Just use Script
Tasks to test inside the containers because Script Tasks do not require any configuration. You really
are just learning more about Sequence Containers in this lesson.

Hints

> To do this example, you need three Sequence Containers with three Script Tasks inside each.

Step-by-Step

1. Create a new package and name it Lesson41 or download the completed Lesson41.dtsx
package from www.wrox. com.

2. Drag three Sequence Containers onto your designer and then place three Script Tasks inside
each container. Connect the precedence constraints from each container to make your pack-
age look like Figure 41-1. Feel free to run this package as is because the Script Task requires
no further configuration. The package will complete successfully without changing any data.

m Sequence Container = iequence Container =~ ;equence Container ~

. Script Task 0 Script Task 0 Script Task
o) =) =\
® Script Task — © Script Task — * Script Task
=) 1 o 1 o 1
Script Task © Script Task * Script Task
< 2 o= 2 = 2

FIGURE 41-1

http://www.wrox.com
http://www.wrox.com

LESSON 41 USING SEQUENCE CONTAINERS TO ORGANIZE A PACKAGE | 329

The next several steps will help you better understand the benefits and limitations of this
container. First, attempt to connect the precedence constraint from any Script Task inside
Sequence Container 1 to any other object in the package. You will receive the error shown in
Figure 41-2 because objects inside a Sequence Container cannot be connected to any compo-
nent outside the container.

Microsoft Visual Studio ==
Cannot create a connector.
Cannot connect the executables from different containers.
FIGURE 41-2

With individual tasks, you can execute a single task while excluding the rest of the package.
You can also do this with entire containers. Right-click the first container and click Execute
Container to execute just the tasks that are inside the container. Notice that just the first con-
tainer executes while the rest of the package remains inactive. Once you’re ready to go to the
next step, click the stop debugging button to continue.

Containers also enable you to scope variables exclusive to the contents of the container.
Click once on Sequence Container 2 and open the Variables window. Create a variable
called Lesson41 that has a scope set to Sequence Container 2 (creating variables is discussed
in Lesson 32).

Next, right-click and disable Sequence Container 1 (the container in the middle) and then run
the package. The results in Figure 41-3 demonstrate how Sequence Containers enable you

to disable entire sections of a package with the container. Though you can’t see color in this
figure, the outer two containers should have green checkmarks and the middle container is
gray, indicating it is disabled. Stop debugging the package.

\Y 4
o - :
E Sequence Container ~ E EEQJE”EE Container ~ E gequence Container =

o
¢

AT Y Script Task A Y Script Task AT script Task
o o
" Script Task > \ Script Task > " Soript Task
<= 1 =) 1 = 1
an @
= Seript Task T Sipt Task = Script Task
o) 2 o= 2 o) 2

FIGURE 41-3

330

| SECTION 6 CONTAINERS

7. Finally, you can collapse a container simply by clicking the arrow pointing upward next to
the container name. Figure 41-4 shows all three containers collapsed. This action does not
change how the package runs, but just hides the content. To expand the containers again,
click the arrows that are now pointed down.

E Sequence Container <) _.E gequance Container v) [E iequence Container <)

FIGURE 41-4

This should give you a basic understanding of how Sequence Containers work. These same prin-
ciples can be applied to containers that are discussed in the next lessons.

Please select Lesson 41 on the DV D, or online at www .wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Using For Loop Containers to
Repeat Control Flow Tasks

Loops are a great tool that can be used in many programming languages. They provide a way
to iterate over selected code repeatedly until it is conditionally told to stop. For example, in
T-SQL a While loop is constructed so that a statement is repeated until a boolean expression
evaluates as false. The For Loop Container in SSIS works much the same way.

A common reason that you might use the For Loop Container is if you have a set of Control
Flow Tasks that need to be run until a condition has been met. For example, in the Try It sec-
tion of this lesson, you use a For Loop Container to check to see if a table has any rows of
data. If the table has no records, the loop continues to iterate until it finds that at least one
row is present.

When you use a For Loop Container, you first create a variable that the container can use to
store an expression value of how many times the container has completed a run. The container
runs three separate expressions at run time to formulate the loop. These three expressions
require only one variable because the expressions change the same variable value each time
they evaluate.

To configure the For Loop Container, drag it on the design surface and double-click the top
portion of the container to open the editor. Here you see the InitExpression, EvalExpression,
and AssignExpression properties:

> InitExpression—This expression sets the initial value of the variable, so if you want the
package to perform the loop a set number of times, you will likely start the variable at 1.

> EvalExpression—This expression tells the loop when to stop. This must be an expres-
sion that always evaluates to True or False. As soon as it evaluates to False, the loop
stops.

> AssignExpression—This expression changes a condition each time the loop repeats.
Here you tell the loop to increment or decrement the number of runs the loop has
completed.

332 | SECTION6 CONTAINERS

TRYIT

In this Try It, you explore how the For Loop Container uses expressions to determine how many
times to run Control Flow items. The package you create continuously loops until data has been
loaded in a table called ForLoop. After this lesson, you will understand how the For Loop Container
is used to iterate through Control Flow Tasks a set number of times.

You can download the completed Lesson42.dtsx and the queries used in this lesson from

Www . Wrox.com.

Lesson Requirements
Create the ForLoop table in the AdventureWorks2012 database with the following query:

CREATE TABLE ForLoop
(
ID int NOT NULL IDENTITY (1, 1),
Name varchar (50) NULL
) ON [PRIMARY]

Create a package that runs an Execute SQL Task that checks to see if data has been loaded into the
ForLoop table. Create a variable called Counter with an Int32 data type. Place the Execute SQL Task
inside a For Loop Container that checks to see if new data has been loaded to the ForLoop table.

Hints
> After you start the package, generate an INSERT statement to insert several rows into it.

> Once data has been loaded to the ForLoop table, the Execute SQL Task should change the
Counter variable and, therefore, complete the package.

Step-by-Step

1. Open SQL Server Management Studio and create the ForLoop table in the
AdventureWorks2012 database with the following statement:

CREATE TABLE ForLoop

(
ID int NOT NULL IDENTITY (1, 1),

Name varchar (50) NULL
) ON [PRIMARY]

2. After this table is created, open SQL Server Data Tools (SSDT) and create a new package
named Lesson42, or download the completed Lesson42.dtsx package from www.wrox. com.

Create a new OLE DB Connection Manager that uses the AdventureWorks2012 database.

w

4. Next, open the Variables window by right-clicking on the design surface and selecting
Variables. Click the Add Variable button to add a new variable named intCounter with an
Int32 data type, as shown in Figure 42-1.

http://www.wrox.com
http://www.wrox.com

LESSON 42 USING FOR LOOP CONTAINERS TO REPEAT CONTROL FLOW TASKS | 333

Variables ix
GexlE
Name Scope Data type Value

Int32 0

FIGURE 42-1

Drag an Execute SQL Task into the Control Flow and open its editor by double-clicking the
task.

On the General tab, select AdventureWorks2012 as your connection, change the ResultSet to
Single row, and type the following query into the SQLStatement property:

declare @RecordsInserted int

if exists(select Name

from ForLoop)
set @QRecordsInserted = 1
else

set @QRecordsInserted = 0
select @RecordsInserted as RecordsInserted

This query checks to see if the ForLoop table has any records, and if it does, it returns the
number 1. If no rows are in the table, it returns the number 0. Figure 42-2 shows the editor
after these changes have been made.

| i3 Execute SQL Task Editor =]

7 Configure the properties required to run SQL statements and stored procedures using the
S selected connection.

4 General
Parameter Mapping Name Execute SQL Task
Result Set Description Execute SQL Task
Expressions 4 Options
TimeQut o
CodePage 1252
TypeCanversionMade Allowed
4 Result Set
ResultSet Single row
4 5QL Statement
ConnectionType OLEDB
Connection AdventureWorks2012
SQLSourceType Direct input
aectre @Recormsenea i L]
BypassPrepare True
5QLStatement
Specifies the query to be run by the task.
Browse...] I Build Query...] I Parse Query l
l 0K l [Cancel] [Help l

FIGURE 42-2

334 | SECTION6 CONTAINERS

Select the Result Set tab and click Add. In the Result Name column, change the default
NewResultName to RecordsInserted and keep the Variable Name column the default of
User:intCounter. After you make these changes, the results of the Execute SQL Task will
be loaded into the variable. After setting up this page, you are done with this editor, so
click OK.

Now drag a For Loop Container in the Control Flow and place the Execute SQL Task inside
the new container.

Open the For Loop Editor and make the following changes:
> InitExpression—@intCounter = 0
> EvalExpression—@intCounter ==

> AssignExpression—Leave blank

NOTE Remember that variables are case-sensitive, so you must type the variable
name exactly how you did when you created it.

Once these properties have been filled, click OK. Your screen should look like Figure 42-3.

7" For Loop Editor E=H

ﬂ The For Loop executes a control flow repeatedly until the evaluation condition is false.

4 For Loop Properties
Expressions InitExpression @intCounter = 0
EvalExpression @intCounter ==
AssignExpression
4 General
MName For Loop Container
Description For Loop Container

Mame
Specifies the name of the For Loop.

) o] e

FIGURE 42-3

LESSON 42 USING FOR LOOP CONTAINERS TO REPEAT CONTROL FLOW TASKS | 335

10.

1.

The package is now complete and ready to run. After you execute this package, you will see
that because there is currently no data in the ForLoop table, the package will continue to run
until new data is inserted into the table.
While the package is running, open SQL Server Management Studio and run the following
statement to load some records in the ForLoop table:

INSERT INTO ForLoop

(Name)
Select Distinct

LastName
From Person.Person

This should cause the package to complete because the loop you created was waiting for
new records to be inserted before it could complete. Figure 42-4 shows what the completed
Lesson 42 package should look like after these rows have been inserted.

o0 Lesson42 (Running) - Micro... | = || B =]
File Edit View Project Build Debug
Team BlxPress Data Format SSIS
Architecture Test Tools Analyze Window

Help
= - R N B R

e
Lessond2.dtsx [Design] - 4
N =l £
e L LEEE LR g
g
- BE
¢ B
3
2
i I For Loop Container - 2
(/) L]
[1 Execute SOL 3
L, Task 2
)]
]
m],
Connection Managers
L AdventureWorks2012
\-’Package execution completed with succes...

& Immediate Window B Error List

Ready

FIGURE 42-4

Please select Lesson 42 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

V413HAV
Typewritten Text

V413HAV
Typewritten Text
V413HAV

43

Using the Foreach Loop
Container to Loop Through a
Collection of Objects

The Foreach Loop Container is a very powerful and very useful tool for repeating Control
Flow items. It is often used when you have a collection of files to which you want to apply the
same changes. If you provide the directory for a set of files, the Foreach Loop Container can
apply the same Control Flow tasks to each file. You might ask yourself, how is this different
from the For Loop Container? The easy answer is that the For Loop iterates through the con-
tent of the container a number of times you define or you define with an expression, whereas
the Foreach Loop Container iterates through its content as many times as it takes to effect the
full collection.

The configuration of the Foreach Loop Container can differ depending on which enumera-
tor you decide to use. An enumerator specifies the collection of objects that the container will
loop through. All tasks inside the container will be repeated for each member of a specified
enumerator. The Foreach Loop Editor can significantly change depending on what you set for
this option:

> Foreach File Enumerator—Performs an action for each file in a directory with a given
file extension

> Foreach Item Enumerator—Loops through a list of items that are set manually in the
container

> Foreach ADO Enumerator—Loops through a list of tables or rows in a table from an
ADO recordset

> Foreach ADO.NET Schema Rowset Enumerator—Loops through an ADO.NET
schema

338

| SECTION 6 CONTAINERS

> Foreach From Variable Enumerator—Loops through a SQL Server Integration Services (SSIS)
variable

> Foreach Nodelist Enumerator—Loops through a node list in an XML document

> Foreach SMO Enumerator—Enumerates a list of SQL. Management Objects (SMO)

To configure the Foreach Loop Container, drag it on the design surface and double-click the top
portion of the container to open the editor. Click the Collection tab to choose which type of enu-
merator you want to use, as shown in Figure 43-1. For example, say you want to loop through a
directory to load a group of flat files to a table, so you choose the Foreach File Enumerator. Then
you must specify what folder directory the files are in and what kind of file extension they have.
Assume the flat files are .txt files, so in the Files box *.txt is used to bring back only the text files
in the directory. Last, because the flat files each have a different name, you can use the Variable
Mappings tab to dynamically change a variable value for each iteration of the loop. That variable
then can pass the correct file name to the Flat File Connection with an expression. Don’t worry if
this explanation sounds complicated because the following “Try It” section gives you a step-by-step
example of how to do this exact scenario.

7] Foreach Loop Editor =R|Eon(Fxs]
:j The Foreach Loop container allows execution iteration over an enumeration,
L
General 4 Foreach Loop Editor
Enumerator Foreach File Enumerator
Variable Mappings I Expressions
Expressions
Enumerator
Specifies the enumerator type.
Enumerator configuration
Folder:
(a4} Browse...
Files:
*x
Retrieve file name
(&) Name and extension @ Fully qualified) Mame only
D Traverse subfolders
[oK] ’ Cancel] ’ Help I
FIGURE 43-1

Another commonly used enumerator is the Foreach ADO Enumerator. This enumerator is handy for
looping through a set of records and executing every task inside the container for each record in that

LESSON 43 USING THE FOREACH LOOP CONTAINER | 339

set. For example, you want to run each task in your package for every database on a server. With the
Foreach ADO Enumerator, you could loop through a table that lists all the database names on your
server and dynamically change a connection manager’s database name for each iteration of the loop.

TRY IT

In this Try It, you create a package that uses the most common type of enumerator, the Foreach File
Enumerator, to loop through a collection of flat files and load them to a table. After this lesson, you
will understand how to use the Foreach Loop Container to loop through a collection of files and
load each to a table.

You can download the completed Lesson43.dtsx and the sample files used in this lesson from

WWW.Wrox.com.

Lesson Requirements

Download the four flat files named File 1.txt, File 2.txt, File 3.txt, and File 4.txt from www.wrox.com
to use as your source. Save these files to the C:\Projects\SSISPersonalTrainer\Lesson 43 directory.

Create a table named ForEachLoop in the AdventureWorks2012 database to load each flat file into.

Use a Foreach Loop Container to loop through and load each file in the C:\Projects\
SSISPersonalTrainer\Lesson 43 directory.

Hints

> Create a variable to store the location of the file that currently needs to be loaded. The loop
will change the variable location after each run.

> Use this variable as an expression for the connection manager that points to the flat file.

Step-by-Step

1. Create a new package and name it Lesson43 or download the completed Lesson43.dtsx
package from www.wrox. com.

2. Draga Data Flow Task onto your designer and name it DFT - Load Flat Files.

3. Create a new Flat File Connection Manager, name it File Extract, and point it to File 1.txt in
the following directory: C:\Projects\SSISPersonalTrainer\Lesson 43\File 1.txt. Also, check the
Column names in the first data row option and go to the Columns page to ensure all the col-
umns are defined properly; then click OK.

4. In the Data Flow, bring a new Flat File Source over and name it File Extract. Open the Flat
File Source Editor by double-clicking the Flat File Source and make the connection manager
the newly created File Extract. Then click OK.

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

340 | SECTION6 CONTAINERS

10.

Next, create another connection manager, this time an OLE DB Connection Manager, using
the AdventureWorks2012 database.

Bring an OLE DB Destination in the Data Flow and connect the Data Flow path
from the source to it. Open the editor and set the OLE DB Connection Manager to
AdventureWorks2012. Create a new table with the following SQL statement by clicking New
next to the table selection drop-down box:
CREATE TABLE [ForEachLoop] (
[Name] wvarchar (50),
[State] wvarchar (50)
)

Ensure the columns are mapped correctly; then click OK. Your Data Flow should now look
like Figure 43-2.

Data Flow Task: [2 DFT - Load Flat Files

| File
,_’ Extract

l

| oEDB
L_‘ Destination

Connection Managers

L) AdventureWorks2012 T &l File Extract

FIGURE 43-2

Your package is now set up to run just one file, but because you have four, you now go back
to the Control Flow and drag over a Foreach Loop Container.

Place the Data Flow Task inside the Foreach Loop Container; then open the Foreach Loop
Editor by double-clicking the top banner portion of the container. On the Collections tab,
select Foreach File Enumerator from the Enumerator property drop-down box. The Foreach
File Enumerator is the default when you open the editor.

Now, set the Folder property to the C:\Projects\SSISPersonal Trainer\Lesson 43 directory
and the Files property to *.txt because you want to bring back all the text files in the direc-
tory. Everything else you can leave as the default. After you make these changes, your editor
should look like Figure 43-3.

On the Variable Mappings tab create a new variable called strFlatFileLocation by selecting
<New Variable...> from the Variable drop-down box. Figure 43-4 shows the Add Variable
dialog box.

LESSON 43 USING THE FOREACH LOOP CONTAINER | 341

=I'uma|:hLmEﬁlm ...

a‘] The Foreach Loop container allows execution iteration over an enumeration,
General 4 Foreach Loop Editor
Enumerator Foreach File Enumerator
Variable Mappings Expressions
Expressions
Enumerator
Specifies the enumerator type.
Enumerator configuration
Folder:
C\Projects\S5ISPersonalTrainerilesson 43 Browse...
Files:
o]
Retrieve file name
MName and extension Fully qualified Name only
Traverse subfolders
I OK I l Cancel] ’ Help l
FIGURE 43-3

m

Specify the properties of the new variable.

Container: I Lessond3 -

Name: strFlatFileLocation

Mamespace: User

Value type: string hd
Value:

Read anly

FIGURE 43-4

342 | SECTION6 CONTAINERS

1".

12.

13.

14.

This variable’s value will change to the current file it is loading each time the container runs.
In this specific case, after File 1.txt is completed, the container will automatically change the
variable’s value to the next filename. After the variable is created, click OK. The Variable
Mappings tab should look like Figure 43-5. Click OK again to return to the Data Flow.

] Foreach Loop Editor =1 [0 |F)

ﬁj The Foreach Loop container allows execution iteration over an enumeration,
l

General Select variables t to th llecti |

Collection elect variables to map to e collection value.

Variable Mappings Variable Index

Expressions B :

¢ UserustrFiatFileLocation i 0
[QK] [Cancel I i Help]
FIGURE 43-5

The last step is to put an expression on the File Extract Connection Manager that uses

the variable you just created inside the Foreach Loop Container. Select the File Extract
Connection Manager called File Extract from your list of connection managers and press F4
to bring up the Properties window. Click the ellipsis next to the Expressions property to open
the Property Expressions Editor. Select ConnectionString from the Property drop-down and
then click the ellipsis in the Expression box.

In the top left of the Expression Builder, expand the Variables and Parameters folder and
drag @[User::strFlatFileLocation] down into the Expression box. If you try to click Evaluate
Expression now, there will be no result. Remember that this expression will be populated at
run time, so you will see nothing here yet. Your screen should look like Figure 43-6. Click
OK twice to return to the Data Flow.

The package is now complete. A successful run will loop through and load all the files in
the C:\Projects\SSISPersonalTrainer\Lesson 43 directory to the ForEachLoop table in the
AdventureWorks2012 database. Figure 43-7 shows what a successful run should look like.

LESSON 43 USING THE FOREACH LOOP CONTAINER | 343

Expression Builder (===

Specify the expression for the property: ConnectionString.

|F] Varizbles and Parameters ([Mathematical Functions
(L3 String Functions
L3 Date/Time Functions
[C3 MULL Fungtions
3 Type Casts
(L3 Operators
Description:
Expression:
@][User: strFlatFileLocation] 2

Evaluated value

FIGURE 43-6

o0 Lesson43 (Running) - Microsoft Visual ... [= |[& |[E=]
File Edit View Project Build Debug Team
BIxPress Data Format SSIS Architecture Test

Tools Analyze Window Help

e = - R T I

Lesson43.dtsx [Design]* X -

foClen|@r|F Effgr|d P.‘
V]

: I Foreach Loop Container ~

12101dx3 UORNIOS (8

a

| =% | DFT-Load Flat Files

-]
]
K
ES
G

Connection Managers

5| &l File Bxtract | | AdventureWorks2012

K Padkage execution completed with success. Click here ...

H Immediate Window . Error List

Ready

FIGURE 43-7

Please select Lesson 43 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

SECTION 7
Configuring Packages

» LESSON 44: Easing Deployment with Configuration Tables
» LESSON 45: Easing Deployment with Configuration Files

» LESSON 46: Configuring Child Packages

Easing Deployment with
Configuration Tables

Once you have completed a set of packages, the challenge is to deploy those packages to a pro-
duction environment without having to manually reconfigure them for that environment. For
example, you may have to get source files from a different directory or the source databases
may be on a different server than your production environment.

NOTE New project deployment options in SSIS 2012 use parameters and
environments. These are covered in Lessons 33, 53, 54, and 57. This chapter
and the next cover configuration tables and configuration files, which are
still supported in the current release. You must decide if the packages in your
project will use the new project deployment model or the package deploy-
ment model.

Configuration tables help automate migration and reduce the risk of deployment-related
errors. You can use a configuration table that contains the ConnectionString property value
for each connection. Each package that uses the connection can obtain the ConnectionString
from the configuration table. As part of the initial deployment to production, you create
another configuration table, like the one used in development. You then copy the rows from
the development configuration table to the production configuration table, changing the values
for the ConnectionStrings to point to production sources and destinations. When the packages
are moved to production, you can change the configuration table’s server name from the devel-
opment server to the production server.

This capability is not limited to connection strings. The SSIS Package Configuration option
enables you to store any SSIS property for the package, connection, container, variable, or
any task into a table. You will have a configuration table in the development environment that
contains values for all of the properties that need to be changed for production. A similar con-
figuration table will exist in production, but you will set values of the properties appropriately
for production.

348 | SECTION7 CONFIGURING PACKAGES

For example, say your source database server name in the development environment is TestSQL
and in production it is Prod. Your configuration table in both environments would contain a row
that defines the connection property of the source database connection manager. However, the
values contained in the row in the development environment refer to TestSQL, and the produc-
tion row refers to Prod. While the package is in development, the development configuration table
is used. When the package is moved to the production server, it is configured to use the produc-
tion configuration table. Once set up, this process makes deployment easier, repeatable, and less
error-prone.

Here is an example where you use a configuration table to set the connection string for your source
database.

First, create a project and an empty package. Add a connection manager to the package. For this
example, you can use any database on any server. After you have created the connection manager,
change its name to SourceDatabase.

To use tables for configuration, your project must use the package deployment model. Because this
is not the default, you must convert your project. Right-click your project and choose Convert to
Package Deployment Model. You can see how to do this in Figure 44-1.

.
o0 Knight's SSIS Book - Microsoft Visual Studio (Administrator) =

File Edit View Project Build Debug Team Data S$S5IS Architecture Test Tools Analyze Window
Help

Pl | 4 B9 - | b [[pereopmen || 3 5 B -
Lessondd.disx [Design] > Solution Explorer

Em Control F... |[Z Data Flow |\/ Parameters | & Evert ‘ El

o Solution ‘Knight's 5315 Book' (2 projects)
b ;9 Knight's 5515 Book
- LE— “SIS Book Package Deploy mer
[Z2] Buid ources

Rebuild ackages
sonddConnectionstring. disx}
Calculate Code Metrics sandds criptTask.dtsx
son4sConnectionString.dtsy
sondascriptTask. oisxe
(e I E i son4sChildwyariable.dtsx
Add sondGParent. dtsx
sondd dtss
Set as StartUp Project laneaus

xoqooy 5155 B

Project Dependencies...

saniadolg _’ 1310]dx3 uonnjos El

Debug

Convert to Package Deploy ment Model

Add Solution to Source Control...

Cut Clil+X
Paste Clrl+¥
Remove Del
Rename

Unload Project

Connection Mar|
Properties Alt+Enter

Right-click here to add a new connection m

ﬂ Error List B Output
Ready

FIGURE 44-1

LESSON 44 EASING DEPLOYMENT WITH CONFIGURATION TABLES | 349

SSIS performs a check to ensure the packages in your project are compatible with package deploy-
ment and provides a report, as in Figure 44-2. Click OK. All of the packages within this project will
be converted.

%1 Convert to Package Deployment Model =)

Checking for compatibility with the package deployment model.

Results:

Item Result
@ Enights 5515 Book Package Dieplopment Paseed
@ Lessondd.dis Paszed

This praject iz compatible with the package deployment model. Click OF to complete the
CORVEISION

Ok][Canicel][Help]

FIGURE 44-2

Create another connection manager that points to the development server where you will place the
configuration table. Name this configuration manager ConfigurationDatabase.

NOTE It is a best practice to use a separate connection manager for the configu-
ration database and to use this connection manager only for configuration. This
is true even if the configuration table exists in a database that is also used as a
source database.

First you create the configuration table and then set the connection property for the SourceDatabase
Connection Manager.

To create the configuration table for a package, right-click in the blank area of the package in the
Control Flow window and choose Package Configurations, as shown in Figure 44-3.

350 | SECTION7 CONFIGURING PACKAGES

Logging... l
Package Configurations...
Digital Signing...
Yariables
Connections
Waork Offline
Log Events
v Debug Progress Reporting
Mew Connection...
S5I5 Toolbox
Getting Started
Add Annotation

Edit Breakpoints...

Zoom 3
% cut Ctil+X
=3 Copy Ctrl+C
4 Paste Chrl+y
¥ Delete Del

Select All Ctil+A
Properties Alt+Enter

FIGURE 44-3

This action opens the Package Configurations Organizer. This window enables you to create, edit,
and delete package configurations. Check the Enable package configurations check box, as shown
in Figure 44-4.

s
5! Package Configurations Organizer | B

Package configurations enahle the properties of package ohjects to be dynamically updated at run
time. The canfigurations are listed in the order in which they will be loaded when the package
runs,

Enable package configurations

Configurations:

Configuration Name Configuration Tvpe Configuration String Targ

o o

FIGURE 44-4

LESSON 44 EASING DEPLOYMENT WITH CONFIGURATION TABLES | 351

To create the connection to the configuration table, click the Add button at the bottom of the
Package Configurations Organizer. This starts the Package Configuration Wizard. The first time
you add a configuration table, you see a welcome screen; you can check the option to not show this
page again if you prefer. Click Next to move on.

On the next screen, select SQL Server from the Configuration Type drop-down menu. With SQL
Server as the type, you can create your connection table in any SQL Server database. You can click
the New button to the right of the Connection drop-down to create an OLE DB connection to a
SQL Server instance. Choose the ConfigurationDatabase Connection Manager you created earlier.
This connection is strictly for the package’s connection to the configuration table. Data in this table
contains connection strings and other configuration property values. You will store the connection
string for the SourceDatabase in this table.

After you have selected the SQL connection, select the table to use. There is a default table named
SSIS_Configurations. You can choose a preexisting configuration table in the database, if one
exists. You can also create a new table. To create a new table, click the New button next to the
Configuration Table drop-down menu. This opens the SQL query that creates the table.

Many packages may use the same configuration table. You can group collections of properties
together and give them a name called a filter name. A package may request a particular set of con-
figuration rows by using the filter name. You can choose a previously defined collection by choosing
the filter from the drop-down, or you can type in a new filter name. You need to make this name
broad yet descriptive. You will see this filter listed when you set up configuration rows in this table
for other packages. In this example, this group of configurations contains only the connection string
for your source database, which is your Enterprise Resource Planning (ERP) system. Therefore, you
will create a filter called “ERPSource.” Once you select the SQL Server and the table, the window
should look like Figure 44-5.

Package Configuration Wizard o | 0 |

Select Configuration Type
You can select the twpe of configuration to create.

5515 supports a vanety of sources to use far setting the properties of objects

Configuration tpe: [SQL . .]
@ Specify configuration settings directly
Connechon: | ConfigurationD atabase j Meww.
Configuration table: [dbal [SSIS Configurations] - Mew...
Configuration filter: ERPFSource -

) Canfiguration location is stored in an environment wariable

FIGURE 44-5

352

| SECTION7 CONFIGURING PACKAGES

After you click Next, you see the list of objects in the package and the attributes for those objects.
You can place a check next to each attribute you want to include for this filter in the objects list in
the left pane. In the right pane, type the value that will be stored in the configuration table for the
selected property. Check the ConnectionString property for the SourceDatabase connection. Then
you can set the value for this property in the right pane, as in Figure 44-6.

Package Configuration Wizard Lo 20]

Select Properties to Export
“ou can select the propeties which will be exparted to the configuration table.

o’

Check the property to export to the configuration table. Checking a container. such as a package or task, will select all configurable properties in the scope of the container.

Objects Property allibutes:
| Lessondd4ConnectionSting + || & General
[[Conneclion Managers
@ [1 ConfigurationD atabase i Ing
(=] ri SourceDatabase e Data Source=loca Initial Catalog=A tureworks2012:F er=SQLMCLIT1.|
[3 Variables
= [[Properties
[ty CorrectionSting|
[~ % Description
[T 2 InitialCatalog

lig
=
3

Paseword
Protectionlevel
o

) 5 E s s sniiam
(]

117171

bliplip

<

FIGURE 44-6

Now you can click Next and go to the final configuration window, where you can name the con-
figuration. This name is used for reference in this package only. You also see the configuration type,
connection name, table, filter, and the target property (Figure 44-7).

= ¥
Package Configuration Wizard LI_IQ
v

Completing the Wizard
Specify the configuration name and review seftings.

u""\

Canfiguration narne:

Preview:

Mame: -
SourceERPD atabase

Type:
SOL Server

Connection name:
ConfigurationDatabase

Any existing configuration information for selected configuration filker will be ovenaritten with
news configuration settings.

Configuration table name:
[dba).[S515 Configurations]

Conliguration filter:
ERPSource

T arget Property:
Package.Connections[SourceD atabase] Properties[ConnectionString]

L) [

A %

FIGURE 44-7

LESSON 44 EASING DEPLOYMENT WITH CONFIGURATION TABLES | 353

Click Finish to return to the Package Configurations Organizer. You can now see the new configu-
ration listed in this window, as shown in Figure 44-8. Your configuration contains the connection
string that is used to connect to the source database for your extract process. The Add, Edit, and
Remove buttons at the bottom of this window enable you to alter or remove the existing configura-
tion tables and add new ones.

[[

o Package Configurations Organizer

Package canfigurations enable the properties of package objects to be dynamically updated at run time. The configurations are listed in the arder in which theywill
be loaded when the package runs,

[¥] Enable package configurations

Configurations:

Configuration Mame Configuration Type Configuration String Target Object Target Property
SQL Senver “ConfigurationDatabase " [dbo].[S5IS Configurations]”:"ERPS ource™

[Add...] [Edit...] [Remove]

i

FIGURE 44-8

Once you have a configuration defined for a package, the package will use the property values from
the configuration table instead of the design-time values stored in the package.

NOTE A common issue in troubleshooting occurs when you have a problem

with a connection. It seems as if the data is coming from or going to the wrong
place. You change the connection string in the package, but the behavior remains
unchanged. You may have forgotten that the connection information in the con-
figuration table is overriding the settings in the package. If you find yourself trou-
bleshooting a connection, it is a good idea to disable package configurations first.

If some properties included in the filter group do not exist in the package, they are simply

ignored. For instance, if your filtered collection contains some properties for a connection named
DestinationDB and that connection does not exist in your package, there is no error, and those con-
figuration rows are not used for this package.

354 | SECTION7 CONFIGURING PACKAGES

TRYIT

In this Try It, you learn how to create a configuration table and use the data from the configuration
table. After this lesson, you should understand how configuration tables are used to pass informa-
tion into a package.

The completed packages for this lesson are available for download on the book’s website at

Www . Wrox.com.

Lesson Requirements

In this lesson, you create a simple package with a Script Task that pops up a message with the con-
figuration value instead of the value saved in the package. Then you create a configuration table and
run the package to see the value in the configuration table.

Hints
>

>

You need only a Script Task.

The value of the string is the value used in the configuration table.

Step-by-Step

1.

ook wN

® N

10.
1".

Create a package named Lesson44ScriptTask. Create a String variable named strConfigTest
in a new package. The package must be contained in a project that has been converted to the
package deployment model, described earlier in the lesson.

Choose String as the data type and set the value of the variable to HardCoded.

Drag a Script Task into the Control Flow and double-click it.

Select Microsoft Visual Basic 2010 as the script language for the task.

Select the variable you just created as a read-write variable in the ReadWriteVariable field.

Click the Edit Script button and type the following code in the Script Task where it states
“Add your Code here”:

MsgBox (Dts.Variables ("strConfigTest") .Value)

Close the Script Task Editor and click OK in the Script Task.
Right-click in the Control Flow and select Package Configurations.

Check Enable Package Configurations. Click Add. Click Next in the wizard welcome screen
(if it appears).

Set the Configuration Type as SQL Server.

Set the SQL Connection to AdventureWorks2012. You may have to create a new connection.

http://www.wrox.com

LESSON 44 EASING DEPLOYMENT WITH CONFIGURATION TABLES | 355

12.
13.
14.

15.

16.
17.
18.

19.
20.

21.
22.

Select the SSIS_Configurations table (click New and create it if does not exist).
Set the Configuration Filter to strConfigTestVariable. Click Next.

Place a check in the Value attribute of the strConfigTest variable, as in Figure 44-9. (Do not
provide an actual value.)

Click Next.

=
Package Configuration Wizard LIEIQ

Select Properties to Export
‘Yau can select the properties which will be exparted to the configuration table:

»
Check the property to export to the configuration table. Checking a container, such as a package or

tazk, will zelect all configurable properties in the scope of the container.

Objects: Property Attributes:
4 General

»

" | LessonddScriptT ask
[Connection Managers
= [£ Executables
= [L5 Seript Task
[Properties
B [[Variables
= [¢ stiConfigT est
B [[Propertties
[Description
[T1% EvaluatedsEs
[1% Expression
1 IncludelnDeb
[Mame
[T1# Namespace
[T1#" RaiseChange
[ReadOrly
ey ol
= [[Properties
[~ 5 CheckpointFileN ame
[~ CheckpoirtUsage .

(] [m | 3

m

FIGURE 44-9

Name the configuration Config Variable. Click Finish.
Click Close in the Package Configurations Organizer.

Run the package and a popup appears with the text “HardCoded.” Click OK to close the
popup. Switch back to design mode.

Open SQL Server Management Studio.

Navigate to the SSIS_Configurations table in the AdventureWorks2012 database. Right-click
the table and select Edit Top 200 Rows.

Change the Configured Value from HardCoded to Config Data. Press Enter.

Run the package again, and you should see a popup box with the text “Config Data.”

356 | SECTION7 CONFIGURING PACKAGES

FINAL DEPLOYMENT

In most cases, the connections you need will be different in each environment. For example, in
development, you may have a SQL server named Dev. However, in production the server is named
Prod. As you move your package from development to production, the connections will have to
change. To reduce the possibility of newly introduced errors, you should be able to change the con-
figuration from development to production without having to open, edit, and re-save your package.
This is how you handle the final deployment to production.

After you have created the configuration tables in both development and production and set the val-
ues appropriately, you have one more thing to do. The connection string that points to the configu-
ration table will need to be different in production. You can set this in several ways:

> Provide the connection string in SQL Agent.
> Provide the connection string on the command line when using DTExec or DTExecUI.

» Create an environment variable with the same name on both the development and produc-
tion servers. The value of this variable is the connection string that points to the configura-
tion table. Then you can create another package configuration that sets the configuration
table connection string from the value obtained from the environment variable.

You can learn more about deployment and scheduling of packages in Lessons 53 and 59.

Please select Lesson 44 on the DV D, or online at www .wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

45

Easing Deployment with
Configuration Files

In the previous lesson, you used tables to configure package properties. In this lesson, you
learn that you can also use files to store configuration information for your packages. The goal
of safe deployment with minimal changes is the same, but in this lesson, you reach your goal
using files instead of tables. The SSIS Package Configuration option enables you to store values
for any SSIS property for a package, connection, container, variable, or task. You can store
these values in tables, as discussed in the previous lesson, or in an XML file.

Functionally, the process works the same whether the configuration uses a table or XML files.
The value in the configuration file is used instead of the design value used during development
of the package.

One of the advantages of an XML configuration is that deployment becomes easier. Copying the
production version XML files is simpler than adding rows to a configuration table. Versioning is
better also, because this method is more compatible with most source control systems.

In practice, you create a version of the configuration file for each environment. Each version con-
tains the property settings appropriate for one environment. Then each file is copied to the same
directory name on each of the servers. Once you set this up one time, all future deployments will
not require any changes to the packages or the configuration files. Future deployments will be
less error prone because they will not require any manual configuration-related changes.

To start, create a new package and add a connection manager. The connection manager can
point to anything; here you use it to set the connection string. Name the connection manager
AdventureWorksSource.

To use files for configuration, the project where your package resides must use the package
deployment model. To convert your project to the package deployment model, right-click your
project and choose Convert to Package Deployment Model. To create a configuration file for a
package, right-click in the blank area of the package in the Control Flow and choose Package
Configurations, as shown in Figure 45-1. This action opens the Package Configurations
Organizer. In this window, you can create, edit, and delete package configuration files. First,
check the Enable package configurations check box, as shown in Figure 45-2.

358 | SECTION7 CONFIGURING PACKAGES

Logging... s Package Configurations Organizer o [)]

Package Configurations... Package canfigurations enable the properties of package abjects to be dynamically updated at run

Digital Signing... | :Lln:‘i The configurations are listed in the orderinwhich they will be loaded when the package
Yariables
Connections Enable package configurations
Work Offline Canfigurations:

Log Events Configuration Mame Configuration Type Configuration String Targ

v Debug Progress Reporting
Mew Connection...

S5I5 Toolbox

Getting Started

Add Annotation

Edit Breakpoints...

Zoom 3
fi Cut Chrl+X

=3 Copy Ctrl+C

_4 Paste Chrl+¥
X Delete Del

Select All Ctrl+A

Properties Alt+Enter i

h v

FIGURE 45-1 FIGURE 45-2

To create the configuration file, click the Add button at the bottom of the Package Configurations
Organizer. This button starts the Package Configuration Wizard. The first time you add a configu-
ration file you see a welcome screen. You can check the option to prevent the display of this page
again if you prefer. Click Next.

Select XML Configuration File as the configuration type, and the location can be anywhere on the
filesystem. You can click Browse to find a location or choose and reuse an existing configuration file.
We use C:\Projects\SSISPersonalTrainer\Config\AdventureWorks2012.dtsConfig in the example. Be
sure to name the configuration file something logical and descriptive about what the file contains.
Once you select the type and configuration file location, the window should look like Figure 45-3.

Package Configuration Wizarel [

Select Configuration Type
‘You can select the type of configuration to create.

5515 supports a variety of sources to use for setting the properties of objects.

Configuration type: #ML configuration file 'l

@ Specify configuration settings directly

Configuration file name:

C:\Projectsh5 515 PersonalT rainers ConfighAdventure'works201 2.dtsConfig

() Corliguration lacation is stored in an ersdronment variable

A

FIGURE 45-3

LESSON 45 EASING DEPLOYMENT WITH CONFIGURATION FILES | 359

After you click Next, you see the list of objects in the package and the properties for those objects.
Place a check next to each property you want to include in the configuration file. For example, when
using the configuration file for a connection, you can select the ConnectionString attribute for the
AdventureWorksSource, as in Figure 45-4. You do not have to change the connection string prop-
erty at this time. You set it later using a configuration file.

Package Configuration Wizard o 20 |

Select Properties to Export
You can select the properties which will be exported to the configuration file.

»
Check the property to export bo the configuration file. Checking a container, such as a package or task, wil select all configurable properties in the
scope of the container.

Objects: Froperty Attributes
/. LessondBConnectionSting » | a General
[[Connection Managers

(|

= [AdventurewiorksSource
[Waniablss
= [[Properties
Bl C b
[Description
[IniialCatalog
[~ 5 Name
[Password
[ProtectionLevel
[RetsinS ameCorection .

A Commen
4 [11 | 3
& /
FIGURE 45-4

Click Next, and you see the final configuration window. Give the configuration a name. This name
is used for reference in the package only. You also see the configuration type, filename, and proper-
ties along with the statement that a new configuration file will be created, as shown in Figure 45-5.

Package Configuration Wizard L@lﬂ
Completing the Wizard v
Specify the configuration name and review settings.
g
Configuration name:
AdventureiworksS ourcel
[MENE
Mame: »
Adventureb/orksS ouce
Tope:
Configuration File
Mew configuration file will be created.
File: hame:
CAProjectshS 515 PersonalTrainersConfighadventurebw arks 201 2, dtsConfig
Properties:
4Package.Connectionsf&dventurework sSource). Properties[ConnectionString]
A

FIGURE 45-5

360 | SECTION7 CONFIGURING PACKAGES

Click Finish to return to the Package Configurations Organizer. You now see the new configuration
file listed in this window, as in Figure 45-6. Add, Edit, and Remove buttons at the bottom of this
window enable you to alter or remove the existing configuration files and add new ones. You can add
multiple configurations for a package. They are evaluated from the top configuration to the bottom.

=)

7
a5 Package Configurations Organizer

Package configurations enable the properties of package objects to be dynamically updated at run time, The configurations are listed
inthe arder in which they will be loaded when the package runs,

Enable package configurations
Configurations:

Configuration Name Configuration Type Configuration String
AdventurelWorkss.,., HML configuration file ChProjectsy55ISPersonalTraineConfighAdventureyWorks 2012 dtsConfig

4 1] 3

adi | [et [Remoe |

FIGURE 45-6

Once you have associated a configuration file with a package, property values from the file override
any settings stored with the package.

NOTE Remember, as in the prior lesson, it is easy to forget that some properties
are set from a configuration file. If you find yourself wondering why a property
you just set directly in the package does not seem to work, it may have been over-
ridden in the configuration file.

Unlike how things worked in table configurations, any properties defined in an XML configuration
file that do not exist in the package return an error.

TRY IT

In this Try It, you learn how to create a configuration file and show the data from the configuration
file. After this lesson, you should understand how configuration files are used to pass information
into a package.

The completed packages for this lesson are available for download on the book’s website at

Www . Wrox.com.

http://www.wrox.com

LESSON 45 EASING DEPLOYMENT WITH CONFIGURATION FILES | 361

Lesson Requirements

In this example, you first create a simple package with a Script Task that pops up a message with the
configuration value instead of the value saved in the package. Then you create a configuration file
and run the package to see the value in the configuration file.

Hints

> You need only a Script Task.

> The value of the string is the value used in the configuration file.

Step-by-Step

1. Create a new package named Lesson45ScriptTask. Create a String variable named
strConfigTest in the new package. The package must be contained in a project that has
been converted to the package deployment model, described earlier in the lesson.

Choose String as the data type and set the value of the variable to HardCoded.
Drag a Script Task into the Control Flow and double-click it.
Select Microsoft Visual Basic 2010 as the script language for the task.

Select the variable you just created as a read-write variable in the ReadWriteVariable field.

o vk WwN

Click the Edit Script button and type the following code in the Script Task where it states
“Add your Code here”:

MsgBox (Dts.Variables ("strConfigTest") .Value)

7. Close the Script Task Editor and click OK in the Script Task.

o

Right-click in the Control Flow and select Package Configurations.

9. Check the Enable package configurations check box. Click Add. Click Next in the wizard
welcome screen (if it appears).

10. Leave the configuration type as XML Configuration File.

11. Set the Configuration File Name to C:\Projects\SSISPersonalTrainer\Config\ConfigTest
.dtsConfig. Click Next.

12. Place a check in the Value attribute of the strConfigTest variable, as in Figure 45-7.
(Do not change the actual value.)

13. Click Next.
14. Name the configuration Config Variable. Click Finish.
15. Click Close in the Package Configurations Organizer.

362 | SECTION7 CONFIGURING PACKAGES

16.

17.
18.
19.

=
Package Configuration Wizard l_lﬂlg

Select Properties to Export
“fou can select the properties which will be exported ta the configuration file.

»

Check the property to export to the configuration file. Checking a container, such az 3 package

or task, will select all configurable properties in the scope of the container.

Objects: Froperty Attributes:

I ., Lessond35enptT ask 4 General
= [[Executables
2 [L Script Task
[Properties
= [[Varisbles
£ [¢ stConfigTest
= [[Propetties
[Description
rf E valuatessExpressio
[~ 2 Expression
[~ 2 IncludelnDebugD um
[~ % Name
[2 Namespace
[~ RaiseChangedEvert
e

[Properties
[T Varisbles

< [[] *

[Help] [< Back H Mext »

& o

FIGURE 45-7

Run the package and a popup appears with the text “HardCoded.” Click OK to close the
popup. Switch back to design mode.

Navigate to the configuration file and open with a text editor.
Change the value from HardCoded to ConfigData. Save the file.

Run the package again, and you should see a popup box with the text “ConfigData.”

FINAL DEPLOYMENT

It is easy to introduce bugs into your packages whenever you reopen and save them. That is why it
is important and worthwhile to use deployment practices designed to allow configuration without
touching the package itself. This lesson and the previous one have given you the information you
need to deploy your packages safely.

Now that you have created the configuration files in both development and production and set the
values appropriately, you have one more thing to do. Your configuration file has the information
needed to configure the package. The XML configuration is a file that might live in a different folder
on the production server than where the file existed during development. So how will the package

LESSON 45 EASING DEPLOYMENT WITH CONFIGURATION FILES | 363

find the configuration file after you moved it to this different location on the production server?
Remember that the configuration file also has a connection string that contains the filename and
directory. A package can locate the configuration file in several ways:

>

>
>
>

Create a directory path that is the same on every server and place the file in that directory.
Provide the connection string in SQL Agent.
Provide the connection string on the command line when using DTExec or DTExecUL.

Create an environment variable with the same name on both the development and produc-
tion servers. The value of this variable is the connection string that points to the configura-
tion file. Then you can create another package configuration that sets the configuration file
connection string from the value obtained from the environment variable.

You can learn more about deployment and scheduling of packages in Lessons 53 and 59.

Please select Lesson 45 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Configuring Child Packages

After creating many packages in your environment, you can see that some common pieces of
work are done in multiple packages. You can extract these common functions and place them
in separate packages that can be shared more easily. In a data warehouse environment, dimen-
sions are processed before fact loads. In this case, you want packages to be executed in a par-
ticular order. The use of child packages can simplify both cases. A child package is a package
executed from another package. The package that executes another package is called a parent
package. The parent package calls the child package by using the Execute Package Task in the
Control Flow.

The Execute Package Task can be placed anywhere in the Control Flow of a parent package
just like any of the tasks in the Toolbox. You can use expressions and precedence constraints
to decide if the Execute Package Task runs in the parent package, enabling you to control
when and if the child package executes. The child package does not have to be the last task in
the parent package.

When the child package completes, it reports its success or failure status to the Execute
Package Task in the parent package. Other tasks can follow the Execute Package Task, linked
by precedence constraints. The setting of the precedence constraint, compared to the child
package status, determines whether or not the following tasks will run. This operates like
any other task using a precedence constraint. When a child package fails to run, the parent
package does not report the error from the child package. The message from the parent pack-
age only states “Task (Name of the Execute Package Task) Failed.” This message is not very
descriptive and does not tell you what step failed in the child package. In prior versions of
SQL Server, it was common to run the child package separately from BIDS and do trouble-
shooting from there. New logging capabilities in SSIS 2012 allow better logging options that
can be useful here. Troubleshooting a package is covered in more detail in Lesson 49.

NOTE Business Intelligence Development Studio (BIDS) was replaced by
SOL Server Development Tools (SSDT) in SQL Server 2012.

366 | SECTION7 CONFIGURING PACKAGES

Once you begin to use the Execute Package Task, you need to think about how you will pass con-
figuration information to the child tasks. You can choose to have each child package share the same
configuration files or tables as the parent. Another way to do this is to have the parent package pass
the information to the children.

CONFIGURING AN EXECUTE PACKAGE TASK

Drag in an Execute Package Task to the Control Flow and double-click it to open its editor. The first
screen of the Execute Package Task Editor shows the General node with some basic properties of the
task. Under the General node, you see the name and description of the Execute Package Task.

> The name is displayed on the tasks in the Control Flow.

> The description describes the purpose of the Execute Package Task.

As a best practice, always provide values for these properties.

The next node on the left pane is the Package node. The properties on this page indicate where the
child package can be located and how it should run.

The first property, new to SQL 2012, is the Reference Type property. This property contains the
deployment model used for the child package. You can choose between the new project deployment
model (Project Reference) or the legacy package deployment model (External Reference). If you
choose Project Reference, your child package can be chosen from the list of packages in the same
project as the parent.

If you choose the External Reference, the Location property will be added to the window. The Location
property can be either SQL Server or File System. Select SQL Server if the child package you want to
execute is stored on SQL Server. If the child package is stored on the filesystem, select File System.

NOTE When referring to a folder, remember that the folder path must be valid on
the server where the package will execute. As you move this package from devel-
opment to production, you may need to set the location of the child packages via
a configuration.

If you select SQL Server as the Location, your next two options are Connection and Package Name.
The connection will be an OLE DB Connection to the SQL Server where the package is stored. Once
you have the connection set in the connection manager, you can see it in the Connection drop-down
in this menu. You can also click the <New connection...> option in the drop-down menu and open
the OLE DB Connection Manager Editor. This editor creates the OLE DB connection to the SQL
Server in the connection manager of the package.

After you select the connection in the Execute Package Task, the package name shows all of the
packages on that SQL Server. Clicking the ellipsis next to the Package Name property opens the
Select Package window showing the Packages folder of the SQL Server. The Data Collector and

Maintenance Plans folders on the server are listed in this window, as shown in Figure 46-1. We

are only interested in the Packages folder.

LESSON 46 CONFIGURING CHILD PACKAGES | 367

As mentioned earlier in the lesson, when the child pack- B Seloct Fackage =
age is stored on the filesystem, you need to select File
. . . CK3gEs
System from the Location drop-down menu. When this File L InomalionSchera_ ADY
System option is selected, the Package property changes to i romanchena A0 Farearkess

3 Data Collector
4 Maintenance Plans

PackageNameReadOnly and that property becomes grayed
out. The PackageNameReadOnly property is not needed in this
situation because the name of the package will be in the file
location selected in the Connection property.

The Connection drop-down now lets you select a file on the
filesystem. If you do not have the connection created in the
connection manager, you can select the <New connection...>
option and create the file connection. Once the file connec-
tion exists in the connection manager, you can select it in the > <
Connection drop-down menu. FIGURE 46-1

The next property of the Execute Package Task is Password. If the child package is saved with pass-
word protection, you must provide the valid password. If the child package does not have a pass-
word, you can leave this field unchanged. Although the password property shows asterisks in the
field as a default, as shown in Figure 46-2, this does not mean a password is entered into the task.
Clicking the ellipsis next to the Password property opens the Password Property Editor.

-
12, Execute Package Task Editor e

The Execute Package task executes another 3313 package, Use this editor to configure how the
:“ child package runs.

8

General

Package

Parameter bindings Location File system

Expressions Cohnedion Lessond6ChildwVariable.dtsy
Passwiard FRAEEREL
Execute OutOfPracess False

ReferenceType

Select Praject Reference for child packages within this project, Select
External Reference for child packages located outside of the project (in t.

o] [oma []

\

FIGURE 46-2

368 | SECTION7 CONFIGURING PACKAGES

If the package you want to execute has a password, you need to enter the password twice and click
OK to save the password (Figure 46-3). Saving the password does not make any changes to the
asterisks in the Password property. If you are unsure if a password is set and want to remove a pass-
word, leave both password fields blank in the Password Property Editor and click OK.

Property Editor |

Mew password |

Confirm new passward:

FIGURE 46-3

The next property is ExecuteOutofProcess. When this property is set to True, the child package runs
in a separate process from the parent package. Running a child package in a separate process uses
more memory, but it provides more flexibility. Running the child package in a separate process allows
the parent package to continue when the child package fails, which is useful when you have other
tasks in the parent package that you want to complete regardless of the success of the child package.

When you need the parent and child packages to fail together as one unit, you need to leave the
ExecuteOutofProcess property set to False. Leave this property set to False also when you do not
want to incur the additional overhead of another process.

CONFIGURING A CHILD PACKAGE

In most situations involving a parent package and child package, you are going to need to pass
information from the parent package to the child package. It is very easy to pass parent parameters
and parent variable values to parameters defined in the child package. (The use of parameters is dis-
cussed in Lesson 33.) Though the specific steps for configuring a child package are part of the Try It
later in this lesson, the general approach is as follows.

First, you create a package to be used as a child, and include a parameter in the child package.

Now create another task that will serve as the parent task. Create a variable or parameter in the
parent package. Drag an Execute Package Task onto the Control Flow window, and double-click it
to open the editor. Be sure to enter a descriptive value for the Name and Description fields. Choose
the Package tree item on the left. Then choose Project Reference as the ReferenceType. Set the
PackageNameFromProjectReference to the name of the child package you just created.

Choose Parameter bindings from the left tree. This is where you map parent or project parameters
and variables into the child parameter. Click the Add button. On the left you will see a list of all
the child package parameters. On the right you will see a list of all the project and package param-
eters and variables in the parent. Choose the child parameter and then choose the parent value that
should be passed into the child parameter. Figure 46-4 shows a parent package parameter named
ParentPackageParm whose value will be passed to the child parameter named ChildPackageParm.

LESSON 46 CONFIGURING CHILD PACKAGES | 369

(=]
127, Execute Package Task Editor [E ==

a The Execute Package task executes another 3313 package, Use this editor to configure how the
LI child package runs.

General Configure parameter bindings for the child package, Mote: Parameters from
externally referenced child packages are ignored,

Package

Parameter bindings Child package parameter Einding parameter or variable
Expressions
i ChildPackageFarm B sracageparentPackagersm [

[Ok li Cancel] ’ Help]

-

FIGURE 46-4

When using this approach, you would create a parameter in the child package for each property you
want to configure. The parent would have corresponding parameters that are passed to the children.

TRY IT

In this Try It, you create a parent package and a child package. You pass a parameter from the par-
ent to the child. After you complete this lesson, you should understand the relationship between a
parent and child package and how to pass information between them.

You can download the completed parent and child packages for this lesson from www.wrox. com.
The parent package is Lesson46Parent.dtsx, and the child package is Lesson46Child.dtsx.

Lesson Requirements

Your packages must live in a project that uses the project deployment model, which is the default
model for SSIS 2012.

Create a child package with a parameter named ChildPackageParm. The child package will use a
Script Task to display the value of the parameter. Create a parent package with a parameter named
ParentPackageParm. Using an Execute Package Task, execute the child package and pass the parent
parameter value to the child.

http://www.wrox.com

370 | SECTION7 CONFIGURING PACKAGES

Hints

You need two packages.

The value of the variable should be different in each package. This will allow you to see
which package provides the value you see in the message box.

The Script Task code is msgbox (DTS .Variables ("ChildPackageParm") .Value).

Step-by-Step

1.
2.

10.

1".

12.
13.

Create a package to be used as the child. Name the package Lesson46Child.dtsx.

Create a package parameter in the child package named ChildPackageParm. Set its data
type to string and its value to ChildPackageParm.

Drag a Script Task onto the Control Flow window and double-click it. Set the
Script Language to Microsoft Visual Basic 2010. Set ReadOnlyVariables to
$Package::ChildPackageParm.

Click the Edit Script button and enter the following script:

MsgBox (DTS.Variables ("ChildPackageParm") .Value)

Chose the File menu option and select Save All to save and close the Script Editor. Then click
OK to close the Script Task Editor.

Save and run the child package. You should see a message box display “ChildPackageParm”.
Your child package is now working correctly.

Now create a package named Lesson46Parent.dtsx.

Create a package parameter in the parent package named ParentPackageParm. Set its data
type to string and its value to ParentPackageParm.

Drag an Execute Package Task onto the Control Flow window, name it Execute Child with
Parameter, and double-click it.

Select the Package tree item on the left. In the right pane, choose Reference Type = Project
Reference, and PackageNameFromProjectReference = Lesson46Child.dtsx. Your window
should look like Figure 46-5.

Choose Parameter bindings from the list at the left. Choose ChildPackageParm in the Child
package parameter list and choose $Package::ParentPackageParm in the Binding parameters
or variable list. Your window should look like Figure 46-4, shown earlier in the lesson. Click
OK to close the Execute Package Task Editor.

Save and run the parent package.

The child package should run and the message box should now display ParentPackageValue
instead of the original value.

LESSON 46 CONFIGURING CHILD PACKAGES | 371

~
127, Execute Package Task Editor [=)

The Execute Package task executes another 3313 package, Use this editor to configure how the
L‘ child package runs,

General 4 Package
Pa e

£ ReferenceType Project Reference
Parameter bindings PackageMameFramPrajectRefer Lessond6Child.dtsx
Expressions Password AEAEERRR
Execute OutOfProcess False

PackageMameFromProjectReference
Mame of the package to be run, the child package,

o] Lo [

-

FIGURE 46-5

Please select Lesson 46 on the DVD, or online at www.wrox .com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

SECTION 8
Troubleshooting SSIS

» LESSON 47: Logging Package Data
» LESSON 48: Using Event Handlers

» LESSON 49: Troubleshooting Errors
» LESSON 50: Using Data Viewers

» LESSON 51: Using Breakpoints

Logging Package Data

Most businesses want to keep track of the packages running on their servers. The logging
options in SSIS enable you to record package information at run time. This lesson shows you
how to use those built-in logging options. There is a whole new logging ability built into the
SSIS catalog covered in Lesson 52.

NOTE Although the logging options built into SSIS are limited, you have
other ways to log information. One example is creating Execute SQL Tasks
in the event handlers and passing in the system variables. However, creating
and maintaining this type of logging can be time-consuming. Software is
also available that creates a robust auditing framework on your packages,
such as BI xPress from Pragmatic Works, Inc.

To set up logging with the built-in SSIS logging option, right-click in the Control Flow of a
package and select Logging. This action opens the Configure SSIS Logs window, as shown in
Figure 47-1. To log information from the package you need to place a check next to the pack-
age name in the left pane.

376 | SECTION8 TROUBLESHOOTING SSIS

Configure 5515 Logs: Lessond? (===

Create and configure a new log to capture log-enabled events that occur at run time.

Containers:

I_J Lessond7 Providers and Logs ‘ Details |

Add a new log

Provider type: [SS[SIog provider for Text files '] Add...

Select the logs to use for the container:

Name Description Configuration

JS To configure unique logging optians for this container, enable logging for it in the tree view,

o] Comer) []

FIGURE 47-1

The drop-down menu of provider types has the available logging locations where you can save the
information from the package. The options are as follows:

> Windows Event Log—The Windows Event Log option logs the data to the Windows Event
Log.

> Text File—The Text File option saves the information into a plaintext file with the data
comma separated.

> XML File—The XML File option saves the data in an XML File parsed into XML nodes.

SQL Server—The SQL Server option logs the data to a table in your SQL Server. The table
logged to on the server is named sysssislog. If it does not exist, this table is created automati-
cally by SSIS when the package runs.

> SQL Server Profiler—The SQL Server Profiler option logs the data to a file as SQL that can
be captured in SQL Server Profiler.

Regardless of the provider type you select, options are available as to what data you want to log and
when this data is logged. You can see these options under the Details tab of the Configure SSIS Logs
window, as shown in Figure 47-2.

LESSON 47 LOGGING PACKAGE DATA | 377

Configure S51S Logs: Lessond7 = ===
Create and configure a new log to capture log-enabled events that occur at run time,
Containers:
= [# 4 Lessona7 [Providers and Logs | Details |
[+ .0 Script Task

Select the events to be logged for the container:

|:| Events Description

]j onError Handles error events, Use to define actions to pe...
Ij OnExecStatusChanged Handles changes of execution status. Use to defi...
|:| Oninformation Handles information events. The meanings of inf...
D OnPostExecute Handles post-execution events. Use to define po...
D OnPostValidate Handles post-validation events. Use to define po...
|:| OnPreExecute Handles pre-execution events, Use to define pre-...
|:| OnPreValidate Handles pre-validation events, Use to define pre-...
|:| OnProgress Handles progress notifications. Use to define act...
|:| OnQueryCancel Handles cancel events, Called periodically to det...
[7] ©OnTaskFailed Handles task failures. Use to define actions to pe...
[T] ©OnvariableValueChanged Handles value changes in variables whose Raise...
|:| onwWarning Handles warning events, Use to define actions w...
|:| Diagnostic Logs package diagnostics information, e.g. maxi..
|:| DiagnosticEx Logs more information on package execution wit...

Advanced > >] ’ Load...] [Save... l
[OK } ’ Cancel] ’ Help]

FIGURE 47-2

Under the Details tab, you select the event you want to be logged. If the event occurs during the run
of the package, it logs data to the selected provider. The most commonly used events are onError,
onWarning, onPreExecute, and onPostExecute.

If you select onError, if an error occurs during the execution of the package, data is stored in the
selected log provider. If an error never occurs during the package execution, then no data is logged
for this event. The same holds true with onWarning for warnings occurring during the package
execution.

The onPreExecute event logs all the data before the package begins execution. This gives you a
chance to see what the data values were before the packages performed any tasks. The onPostEx-
ecute event option logs all of the data after the package has completed execution.

The data that is saved by the SSIS logging options is shown in the Advanced window, as shown in
Figure 47-3, which you bring up in the Details tab by clicking the Advanced button at the bottom of
the screen. In the Advanced screen, you can select what data you want to log and on what event. You
can select or unselect each item on each event. So if you want to log the computer name, but only
on the onPreExecute, you can place a check under the Computer column next to the onPreExecute
event only and make sure it is unchecked for the other events. This is the limit of the customization
allowed by the built-in SSIS logging.

378

| SECTION 8 TROUBLESHOOTING SSIS

Configure SSIS Logs: Lessond? o[BS
Create and configure a new log to capture log-enabled events that occur at run time,
Containers:

£ [Wd LessonaT Providers and Logs | Details

[V % Script Task

Select the events to be logged for the container:

Events [® comp.. [E Opera.. @ SourceNa.. Source... [H
OnError
OnExecStatusChanged
OnInformation
OnPostExecute
OnPostValidate

OEROOEE

OnPreExecute
QOnPrevalidate
OnProgress
OnQueryCancel
OnTaskFailed
OnVariableValueChanged
OnWarning

Diagnostic

OOoOoooCCocOoEOEOOE
OOODO0O0000ROEOOE
OO0ODO0DO0OCCOEOEOON
OO0O0OO0OCOCOEOREOONE

)
&
E
&
o
B
&
&
o

DiagnosticEx

-

m | 2

<+ Basic] ’ Load...] ’ Save.. I

FIGURE 47-3

To create a log provider, select a provider type from the Provider Type drop-down menu on the
Providers and Logs tab in the Configure SSIS Logs window, and then click the Add button. The

log provider then appears in the Select the logs to use for the container pane below the drop-down
menu. Place a check under the Name column to turn on the log provider. If you want to disable a
log, but not remove it from this log menu, you need only remove the check in the Name column next
to that log provider.

After you have created the log provider and checked the Name column to activate it, click the
Configuration drop-down menu. If a connection type exists in the connection manager that is used
by the selected provider, it shows in this window. If the connection does not exist, you can create it
by clicking the <New connection...> option.

Next, click the Details tab to choose the events you want to log. If you want to log all events, click
the check box next to the Events title at the top of the events list to select all. If you want to select
just individual events, place a check next to the event you want to be logged.

After you have selected the events, click the Advanced button and uncheck any data you do not
want to log so you don’t have that data saved. You can also save the configuration you have selected
to an XML file with the Save button that appears at the bottom of the Details tab. Later you can use
this XML file in another package to select the same check boxes in this logging configuration screen
automatically by clicking the Load button that also appears at the bottom of the Details tab.

LESSON 47 LOGGING PACKAGE DATA | 379

TRY IT

In this Try It, you create a package with a Script Task that causes an error and logs the package
information on the error, before it runs and after it completes. After this lesson, you will have an
understanding of how to use SSIS logging to audit the running of your packages.

You can download the completed Lesson47.dtsx from www.wrox. com.

Lesson Requirements

Create a package with a Script Task. Edit the Script Task to open a message box pop-up with a vari-
able that does not exist. Log the package onError, onPreExecute, and onPostExecute events.

Hints
>

>

You need to turn on three event logs.

Do not alter the advanced logging options.

Step-by-Step

B W N

» NOou

10.
1.

Create a new package and name it ErrorDemo.
Drag a Script Task into the Control Flow.
Open the Script Task and set the language to Visual Basic.

Click Edit Script and enter the following:

msgbox (DTS.Variables ("Test") .Value)

WARNING Do not create the “Test” variable. This will cause an error you will
capture in the log.

Close the Script Editor and click OK in the Script Task.
Right-click the Control Flow and select Logging.
Place a check next to the package named Error Demo in the left pane.

Select the SSIS log provider for text files in the Provider Type drop-down menu and click
Add.

Place a check in the Name column of the log provider.
Click the Configuration drop-down menu and select <New connection...>.

Create a connection to a text file named LogTest.txt on your local drive and select create file
as the usage type. Then click OK.

http://www.wrox.com

380 | SECTION8 TROUBLESHOOTING SSIS

12.
13.
14.
15.
16.

17.

18.

Click the Details tab.

Place a check next to onError, onPreExecute, and onPostExecute.
Click OK.

Run the package by clicking the green debug arrow on the toolbar.

After the Script Task has a red X appear on the task, open the LogTest.txt file on your
desktop.

You should see the error “Exception has been thrown by the target of an invocation.” This
is the error indicating the variable name in the Script Task is invalid.

You should also see the pre- and post-execute lines in the text file.

Please select Lesson 47 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

48

Using Event Handlers

Although the main tasks of SSIS packages exist in either the Control Flow or the Data

Flow, the Event Handlers tab, the subject of this lesson, is another tab that is very useful
when you are creating a package. Event handlers enable you to call tasks when events like
errors or warnings occur during the execution of a package, which can be helpful in log-
ging errors or sending notifications. The Event Handlers tab is used to call a task when an
event has occurred in the package. The tasks in the event handler run only if the proper event
is called in the package. Therefore, it is possible to have tasks in the event handlers of a pack-
age that don’t run during the execution of the package because the proper event is not called.

Several events can occur in a package to cause an event to fire and call an event handler:
> OnkError
OnExecStatusChanged
OnlInformation
OnPostExecute
OnPostValidate
OnPreExecute
OnPreValidate
OnProgress
OnQueryCancel
OnTaskFailed
OnVariableValueChanged

Y Y Y VY Y Y VY VY VY VYYy

OnWarning

382 | SECTION8 TROUBLESHOOTING SSIS

The most commonly used events are OnError, OnWarning, OnPreExecute, and OnPostExecute.

>

>

The OnError event fires when an error occurs during the execution of the selected executable.

The OnWarning event fires when a warning occurs during the execution of the selected
executable.

The OnPreExecute event fires just before the selected executable starts executing.

The OnPostExecute event fires just after the selected executable finishes executing.

CREATING EVENT HANDLERS

When you open the Event Handlers tab for the first time, it looks similar to Figure 48-1. Notice
there is a blue link in the middle. When clicked, this link creates an event handler on the package.
At the top of the Event Handlers tab are two drop-down menus. The left drop-down menu contains
a list of all the executables in the package. This is a list of all the tasks in the package. If no tasks
have been created in the package, the only executable listed is the package.

Ch4g.dtsx [Design] >
%4e Control Flow ||;a.| Data Flow |\/ Parameters | & EventHanders | 75 Padkage Explorer 5

Executable:

Event handler:

[chas

z‘ QnError -

Click here to ereate an ‘OnError’ event handler for executable 'Chag’

FIGURE 48-1

When you are creating an event handler, it is important to select the proper executable from the
drop-down menu to ensure the tasks in the event handler execute when intended.

The second drop-down menu, on the top right of the Event Handlers tab, contains a list of all the
events that can be chosen for the selected executable.

LESSON 48 USING EVENT HANDLERS | 383

In Figure 48-2, there is a Script Task in the Control Executable:

Flow of the package and a Data Flow with a source | serpt Task -
and destination. Notice the source and destination T

do not show in the drop-down menu of executables. o Beartes

Rather, the entire Data Flow is the executable. [3 EventHandlers

Placing an OnPostExecute Event Handler on the N ngliiTeanstkHandlers

Data Flow means the task in the event handler will (3 Bvent Handlers

fire after the entire Data Flow finishes executing.
Placing an OnError Event Handler on the Script
Task means the tasks in the event handler will fire
only if an error occurs on the Script Task. So, for

example, if no error occurs or if an error occurs in
the Data Flow (as opposed to in the Script Task), the OnError event on the Script Task will not fire.

FIGURE 48-2

When you first open the Event Handlers tab and click the blue link in the middle of the tab, it cre-
ates an OnError event for the package. This causes the tasks in the event handler to execute if

any errors occur during any tasks in the package. Sometimes you may want the tasks in the event
handlers to fire only for a certain task in the package. To do this, first select the task in the left
drop-down menu and then click the blue link in the event handler tab. This action creates an event
handler for the specific tasks and executes only when the proper event occurs on the selected tasks.

COMMON USES FOR EVENT HANDLERS

Two of the most common uses for the event handlers are notification and logging. When you want
to be notified via e-mail that an error has occurred, the event handlers are the right place to execute
this task. Simply place a Send Mail Task in the OnError Event Handler for the package. When you
want to be notified via e-mail that a package has completed, again the event handlers are the right
place to execute this task. Just place a Send Mail Task in the OnPostExecute Event Handler for the
package.

These Send Mail Tasks can contain information about the package. You can include any system
variables in the message to tell you what occurred in the package and when.

Another useful purpose of the event handlers is logging. You can create your own custom logging
framework if you are not satisfied with the built-in logging of SSIS. By creating Execute SQL Tasks
in the event handlers, you can write information from the package to a database. These Execute SQL
Tasks execute only when the proper event occurs, enabling you to log errors when they occur with
the OnError Event Handler and log warnings when they occur with the OnWarning Event Handler.

After several event handlers have been created and these event handlers are on different executables,
you might find it hard to keep track of which executable has an event handler and which does not.
The Executable drop-down menu shows all of the event handlers on the package and each execut-
able. There is also an Event Handler folder under the package and each executable. Clicking the plus
sign next to this folder opens the folder and shows the event handlers in each of them.

384 | SECTION8 TROUBLESHOOTING SSIS

Under the event handler is an Executables folder showing each task
in the event handler. In Figure 48-3, you can see the package has
three event handlers, each with an Execute SQL Task. The Data
Flow and Script Task have OnError Event Handlers with Send Mail
Tasks in them. You can also see this information in the Package
Explorer tab.

When you click the plus sign next to any task in an event handler,
you see there is another Event Handler folder. The task in the event
handler can have an event handler of its own. So, you can have a
Send Mail Task in the OnPostExecute Event Handler of a package
and then have an Execute SQL Task in the OnError Event Handler
of the Send Mail Task. If the Send Mail Task has an error, the error
can then be logged with the Execute SQL Task.

=

. Chas
Bl [Executables
[= [Data Flow Task
El [Event Handlers
= @ onError
Bl [Executables
[=7] Send Mail Task
5 O
El [Event Handlers
= %A OnError
Bl [Executables
[=7 Send Mail Task
&l [Event Handlers
= @ onError
Bl [Executables
| i3 Execute SQL Task
E @ OnPostExecute
=) [Executables
| &5 Execute SQL Task
= @ OnPreExecute
El [Executables
|43 Execute SQL Task

FIGURE 48-3

TRY IT

In this Try It, you create a package with an Execute SQL Task with an OnError Event Handler. The
event handler is going to cause a pop-up message from a Script Task to show the error. After this

lesson, you will understand how to create and use event handlers on a package.

The completed package for this lesson is available for download on the book’s website at

WwWw . Wrox.com.

Lesson Requirements

Create a package with an Execute SQL Task. Run it with no error, and run it with an error. The

OnError Event Handler should fire when an error occurs.

Hints
» Create an Execute SQL Task in the Control Flow.
> Create an OnError Event Handler.

> Create a Script Task in the event handler.

Step-by-Step

1. Create a new package.

2. Dragin an Execute SQL Task.

3. Set the Connection to AdventureWorks2012.
4

. Set the SQL statement to Select 1. When you are ready to cause an error, change the

SQL to Select a.
5. Click the Event Handlers tab.

http://www.wrox.com

LESSON 48 USING EVENT HANDLERS | 385

N O

©

10.
1.
12.
13.
14.
15.

16.
17.
18.
19.
20.

21.
22.
23.
24.
25.

Select the package in the Executables menu.

Select the OnError Event Handler in the Event Handler menu.
Click the blue link to create the OnError Event Handler.

Drag a Script Task into the event handler.

Double-click the Script Task.

Set the Script Language to VB.

Click the ReadOnlyVariables ellipsis.

Place a check next to System::ErrorDescription, and then click OK.
Click the Edit Script button.

In the Main class under the words, Enter Code Here, type in:

MsgBox (Dts.Variables ("ErrorDescription") .Value)

Close the Script Editor.

Click OK in the Script Task Editor.

Click the Control Flow tab.

Click the green debug arrow on the toolbar to run the package.

The Execute SQL Task should have a green check appear in the top right, and no error
should occur.

Click the stop debugging button on the toolbar.

Change the query in the Execute SQL Task to Select a.

Click the green debug arrow on the toolbar to run the package.
A pop-up message appears matching Figure 48-4.

Click OK in the message box and stop the debugging.

ST_898e2134b24e47959chd6e858706799c ==

Executing the query "Select a" failed with the following error: "Invalid
column name ‘a".". Possible failure reasons: Problems with the query,
"ResultSet" property not set correctly, parameters not set correctly, or
connection not established correctly.

FIGURE 48-4

Please select Lesson 48 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Troubleshooting Errors

After creating a package with all of the tasks needed, you almost always face some necessary
amount of troubleshooting. For example, a package running in your production database
might suddenly stop working due to some change to the environment. You need the ability
to analyze the errors from the package to determine what is going wrong and how to fix it.
That’s the focus of this lesson.

For example, validation errors are easy to spot in a package because the task with the error
has a small red circle with a red x on it. This icon indicates that the task is not passing the
validation phase of the package. In this case, the package pops up a message showing the vali-
dation error. These errors look like Figure 49-1. The error seems long, but the key message is
in the third section. It states that the connection manager does not exist. This is a connection
being referred to by the package that does not exist and is therefore causing this error.

Package Validation Error ==

Package Validation Error

Additional information:

Lo Error at Ch49: The connection {4 DE0956A-6FB4 40CC-BFB5-115FT4426DF0} is not found. This
error is thrown by Connections collection when the specific connection element is not found.

Error at Ch49: The connection {4 DE0956A-6F84 40CC-BFES-115FT4426DF0}" is not found. This
error is thrown by Connections collection when the specific connection element is not found.

Error at Execute SQL Task [Execute SQL Task]: Connection manager
“{4DE0956A-6F84-40CC-BFB5-115F74426DF0} does not exist.

Error at Execute SQL Task: There were errors during task validation,

[Microsoft.DataTransformationServices.VsIntegration)

FIGURE 49-1

In cases like the one just mentioned, the error may not be caused by a problem with the pack-
age, but rather the environment. The object that is not found might need to be created, or the
connection manager might be set up incorrectly. In this case, a connection is missing.

388

| SECTION 8 TROUBLESHOOTING SSIS

WORKING IN THE PROGRESS TAB

When you are debugging a package, errors show in the Progress tab. During troubleshooting, you
spend a lot of time in the Progress tab, so it is important to get familiar with the messages and icons
located there. Figure 49-2 shows a typical Progress tab with an error.

Ch49.dtsx [Design] >

Em Control Flow |[‘¢J Data Flow |\/ Parameters ‘ & EventHandlers |"'5 Package Explorer | % Progress

e r
52 validation has started
= b TaskExecute SQL Task

.Q Yalidation has started (2)
J2 Validation is completed (2)
% Start, 12:50:55 PM
11 [Execute SQL Task] Error: Executing the query "Select a” failed with the following error: "Invalid column name 'a'.". Possi
@ Task Execute SQL Task failed
4 Finished, 12:50:56 PM, Elapsed time: 00:00:00.234

F validation is completed

% Start, 12:50:56 PM

JS Warning: 5515 Warning Code DTS_W _MAXIMUMERRORCOUNTREACHED. The Execution method succeeded, but the numbey

4 Finished, 12:50:56 PM, Elapsed time: 00:00:00.250

FIGURE 49-2

You need to become familiar with several icons in the Progress > Start of Task or Package

tab for troubleshooting purposes. They inoicate key} placeﬁs in the £ Validation
flow of the package. Figure 49-3 shows a list of the icons in the Start of a Task
Progress tab and their abbreviated meanings. « Finish of a Task

©» Error Message
® Failure of a Task
4 Warning Message

The first item listed in the Progress tab is the name of the package.
There is a small blue triangle next to the package name. These

blue arrows appear next to the package and the tasks in the pack-

age. This makes it easier to distinguish where the messages about FIGURE 49-3
a task start and stop.

There is also a minus sign next to the package name and task names. Clicking this minus sign col-
lapses the executable next to it. If you are troubleshooting a package and you know the errors
appear only in a certain task, you can collapse the other tasks to make it easier to read through the
errors on the task in question.

A small magnifying glass appears next to lines to indicate validation has started and finished.
Validation is the process of checking for the sources and destinations in the particular task.

A green arrow pointing to the right indicates the start of the task listed above the arrow. The start
time of the task is listed next to the green arrow. A red arrow pointing to the left indicates the stop-
ping point of a task. The total time the task ran is listed next to the red arrow.

Three icons indicate an error or warning has occurred in the package:

> The red exclamation point in a circle indicates an error has occurred, and the full error mes-
sage is usually listed next to this icon. The icon can show several times in the Progress tab and
have several different messages. The first error is usually the one that contains the meaningful
information. In some cases you may even see a message referring you to the preceding error.

LESSON 49 TROUBLESHOOTING ERRORS | 389

If the error message next to the red exclamation point is too long to read or if you need a
copy of the error, you can right-click the error, click the Copy Message Text option that
appears, and then paste it in an e-mail or in a text editor.

> The next icon after the red exclamation point is the red circle with an x in the center. The
message next to this icon is usually not very useful. It does not give details of what caused the
failure; it just states that the task failed. This icon is easy to spot and makes it easy to find the
error messages in the Progress tab. This is especially true when the package has a lot of tasks
and the Progress tab has many screens to look through.

> The last icon you should be familiar with is the yellow triangle with the black exclamation
point in the center. This icon indicates a warning has occurred on the package. Warnings can
occur on a package without stopping the package. It is normal to run a package and to have
warnings occur during run time, but to still have all of the tasks in the package complete
successfully.

Warnings may not cause a package to fail, but it is important to read them and decide if
changes should be made to the package to prevent possible package failures in the future. One
of the more common warning messages seen in Data Flows is “Truncation may occur”
This message does not stop a package from executing. This message indicates that a source
column is set to a length that is greater than the destination column. Unless the data in the
source column is actually longer than the destination, truncation will not occur, and the pack-
age will execute successfully. But that might not always be the case, and the warning is point-
ing out that the potential exists for a problem to occur later.

TROUBLESHOOTING STEPS

Thousands of errors can occur in a package, and the methods to correct these errors are almost
always specific to the package. Too many possibilities exist to list every error message and how to
fix them. However, the steps to correcting errors are the same:

1. Check the Progress tab and read all error messages.

2. Determine which tasks needs adjusting, if any; keep in mind the error could be caused by
something outside of the package.

Stop debugging.

Adjust the task that caused the error.

Debug.

o U AW

Repeat if more errors occur.

One of the pitfalls of troubleshooting a package is assuming the error has not changed. Once you
have gone through the steps of troubleshooting and the package still fails, it is always important to
return to the Progress tab and check the error message again. The error message can change; you
may have fixed the first error and are now getting a new error. As you can imagine, it is even more
difficult to fix a package when you are troubleshooting the wrong error.

390 | SECTION8 TROUBLESHOOTING SSIS

TRYIT

In this Try It, you open the package named Lesson49.dtsx (which you can download at www.wrox . com)
and troubleshoot the errors to get it working. After completing this lesson, you will have a better under-
standing of how to troubleshoot errors in SSIS.

Lesson Requirements

Open the package named Lesson49.dtsx. Run the package in debug mode. Look at the errors and
make the necessary corrections to the package for it to run with no errors. The package should
cause a pop-up box to appear with the words Adjustable Race.

Hints

> The Execute SQL Task has Syntax errors.

> The Execute SQL Task has Result Set errors.
> The Script Task is missing variable parameters.
>

The Script Task has a typo in the code.

Step-by-Step

NOTE You can troubleshoot the package correctly and fix the errors in a different
order than what is listed in this step-by-step walkthrough.

1. Click the green debug arrow on the toolbar.

2. Anerror occurs stating the variable may have been changed.

3. Rename the variable to strName.

4. Debug the package again.

5. Check the Progress tab to see the invalid column name reference.

6. Change the column names in the Execute SQL Task to Name instead of Names.

7. Debug the package again.

8. Click the Progress tab and read the error “Exception has been thrown by the target of an

invocation.”

NOTE This error is not very descriptive and can have several meanings. In this
case, it indicates the task is referring to an object that does not exist, the variable.

http://www.wrox.com

LESSON 49 TROUBLESHOOTING ERRORS | 391

10.
1.
12.

13.
14.

Open the Script Task Editor and select the strName variable in the ReadOnlyVariables
property.
Debug the package again.

Notice the same error in the Progress tab.

Open the Script Task and change the message box code to
MsgBox(Dts.Variables(“strName”).Value).

Debug the package again.
A message box should appear matching Figure 49-4.

ST_eB9efeBi27cAc18b59bc5853797c3da.vbproj

Adjustable Race

FIGURE 49-4

Please select Lesson 49 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Using Data Viewers

The Data Flow Task moves data from sources to destinations with some transforms in
between. When you are running a Data Flow in development, it might seem difficult to deter-
mine if the data is being transformed correctly. The columns might not be passed through the
Data Flow at all.

You could open the destination to check on the status of the data, but this approach might not
always be the best solution. Imagine a Data Flow with dozens of transforms moving thousands
of rows to a destination. Opening the destination reveals that the columns are not showing the
data you expected. Which transform is causing the problem? It may be hard to determine by
just examining the data in the destination. This situation is where Data Viewers make tracking
data changes much easier. Data Viewers are a development tool used to glance at the data dur-
ing the Data Flow execution phase of a package. They cause a small pop-up window to show
the data at certain points in a Data Flow.

Data Viewers should be removed before moving a package to production to be scheduled to
run. If the Data Viewer remains on a package, the package will not stop at the point the Data
Viewer is called, and the Data Viewer will load in memory and use unnecessary buffers.

NOTE It is a best practice to remove any troubleshooting items before a
move to production.

To create a Data Viewer on a Data Flow, double-click the blue or red line that connects the
tasks in the Data Flow. This opens the Data Flow Path Editor, as shown in Figure 50-1. In the
General node, you find the common properties of the Data Flow Path. The Metadata node
shows the metadata for each column in the Data Flow at that point.

394 | SECTION8 TROUBLESHOOTING SSIS

(1 Data Flow Path Editor [=]]
View and edit path properties, view column metadata, and add or remove data viewers from the
path,
] General] Path properties:
[l Metadata 3 Commean pranert
(2] Data Viewer ST e
HName ‘OLE DB Source Output
10 130
Description
IdentificationString Paths[OLE DB Source.OLE DB Source O
4 Design
PathAnnotation AsMeeded
4 Misc
SourceName OLE DB Source Output
DestinationName Derived Column Input
Name
Specifies the name of the path,
[Cox) [omea | [e |

The last node is the Data Viewer node. Under the Data Viewer node, you can create a Data Viewer
by checking the Enable data viewer check box. Below the check box, you see a list of all the columns
in your Data Flow, as shown in Figure 50-2. Using the left and right arrows between the boxes
enables you to add and remove columns from the Data Viewer. The double arrows remove or add all
the columns. Selecting just the columns you need to see makes it much easier to find data issues.

Data Flow Path Editor F=n|EcE(Ex=]

View and edit path properties, view column metadata, and add or remove data viewers from the
path.

General Enable data viewer

Calumns to display

Unused columns: Displayed columns:

Column Name Column Name
ProductKey
ProductAlternatekey
ProductSubcategonyKey |=
WeightUnitMeasureCode
SizeUnitMeasureCode
EnglishProductName
SpanishProductName
FrenchProductName
StandardCost
FinishedGoodsFlag
Color
SafetyStockLevel
ReorderPoint
ListPrice
Size
SizeRanae

1

FIGURE 50-2

LESSON 50 USING DATA VIEWERS | 395

Once you have the desired columns selected, click OK at the bottom of

the Data Flow Path Editor window. You now see a small magnifying glass L4, ot=ossouce
symbol next to your Data Flow line, as shown in Figure 50-3. You can also |
take a shortcut and enable a Data Viewer on any Data Flow line by right- 3
clicking the Data Flow line and selecting Enable Data Viewer. This selects T

all columns by default.

Data Viewers stop the Data Flow at about 10,000 rows unless the default

£ Derived Column

buffer size property of the Data Flow has been changed. You click the small figuURE 50-3

green arrow in the top left of each Data Viewer to pass in approximately the

next 10,000 rows. This presentation enables you to view chunks of data and is an efficient way to
view lots of data as it passes through the Data Flow.

The table that appears in the Data Viewer window shows the values in each column, as shown in
Figure 50-4. It shows the data in a table structure similar to Excel. You can change the size of the
columns and highlight one row or multiple rows. A Copy Data button enables you to copy all of
the data from the Grid View to the clipboard to be used in a text editor. A Detach button at the top
of the Grid View detaches the Data Viewer from the debugging process. It allows the package to
continue running without populating the rest of the data in the Data Viewer. When you click the
Detach button, the last set of rows remains in the Data Viewer.

OLE DB Source Qutput Data Viewer at Data Flow Task *OXx
E] [Detach] [Copy Data
Pro... ProductAltemate Key Pro... WeightUnitMeasure... SizeUnitMeasure.... EnglishProduct Name 5..%.. Stand.. Finishec »
1 AR-5381 MNULL MULL MNULL Adjustable Race NULL False |:‘
2 BA-B327 MULL MULL MULL Bearing Ball MNULL False
3 BE-2345 MULL MULL MULL BB Ball Bearing MNULL False
4 BE-2908 MULL MULL MULL Headset Ball Bearings MNULL False
5 BL-2036 MULL MULL MULL Blade MNULL False
[CA-5965 MULL MULL MULL LL Crankarm MNULL False
7 CA-5738 MULL MULL MULL ML Crankarm MNULL False
8 CA-7457 MNULL MULL MNULL HL Crankarm NULL False
9 CB-2903 MULL MULL MULL Chainring Balts MNULL False
10 CN-6137 MULL MULL MULL Chainring MNut MNULL False
11 CR-7833 MULL MULL MULL Chainring MULL False
12 CR-9981 MULL MULL MULL Crown Race MNULL False
13 Cs-2812 MULL MULL MULL Chain Stays MNULL False
14 DC-8732 MULL MULL MULL Decal 1 MULL False
15 DC-9824 MULL MULL MULL Decal 2 MULL False
16 DT-2377 MULL MULL MULL Down Tube MNULL False
17 EC-MD92 MULL MULL MULL Mountsin End Caps MNULL False
18 EC-R0S98 MNULL MULL MNULL Road End Caps NULL False ~
4| . | *
Attached Total rows: 0, buffers: 0 Rows displayed = 606
FIGURE 50-4

When you are done using the Data Viewers in the Data Flow of a package, double-click the Data
Flow connectors that contain Data Viewers. These are indicated by the magnifying glass shown
next to the Data Flow lines. In the Data Flow Path Editor, click the Data Viewer node and uncheck
the Enable data viewer check box at the top. You can also right-click the Data Flow line and click
Disable Data Viewer.

396 | SECTION8 TROUBLESHOOTING SSIS

TRYIT

In this Try It, you create a package with a Data Flow and create a Data Viewer on the Data Flow.
After this lesson, you will understand how to use Data Viewers to assist you in developing Data
Flows in SSIS. You will know how to view data between each task in a Data Flow.

You can download the completed lesson at www . wrox. com.

Lesson Requirements

Create a package with a Data Flow and create a Data Viewer after the source to see the data in the
Data Viewer window.

Hints
» Connect to an OLE DB Source.

> The source can connect to a Conditional Split.

Step-by-Step

1. Create a new package.

2. Dragina Data Flow Task.

3. Double-click the Data Flow.

4. Dragan OLE DB Source to the Data Flow.

5. Connect the OLE DB Source to the AdventureWorks2012 database.

6. Select the SalesOrderDetail table in the OLE DB Source.

7. Dragin a Conditional Split.

8. Connect the OLE DB Source to the Conditional Split Transform with the blue Data Flow line

from the bottom of the OLE DB Source.
9. Double-click the blue Data Flow.
10. Click the Data Viewer node.
11. Place a check in the Enable data viewer check box.
12. Leave all of the columns selected.
13. Click OK.
14. Click the green debug button on the toolbar.

http://www.wrox.com

LESSON 50 USING DATA VIEWERS | 397

15.
16.
17.
18.

You should see a Data Viewer appear showing data.

Click the green continue arrow in the Data Viewer until all rows have passed through.
Close the Data Viewer.

Stop debugging the package.

Please select Lesson 50 on the DVD, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

51

Using Breakpoints

When you are developing a package, many times you will need to troubleshoot issues in the
package. It is helpful to know the status of data, variables, and tasks at certain points in the
execution of the package. Breakpoints enable you to stop a package during execution and view
the status of these items. Breakpoints, along with the Watch windows or the Locals window,
also enable you to see the value of variables immediately before and after a task.

To create a breakpoint on a task, right-click the task and select Edit Breakpoints. This action
opens the Set Breakpoints window, as shown in Figure 51-1. The left-hand column of this
window is a set of check boxes that enable the breakpoint listed. Figure 51-1 shows the Set
Breakpoints window for a For Loop Container. Notice the last breakpoint option is “Break at
the beginning of every iteration of the loop.” This option is available only on the For Loop and
Foreach Loop Containers.

Set Breakpoints - For Loop Contai (7=

Select the breakpoints in the task, For Loop, Foreach Loop, or Sequence to enable. Optionally,
select the number of times a breakpoint is ignored before execution is suspended on the
breakpoint.

Enabl.. Break Condition Hit Count Type

Ereak when the container receives the OnPreExecute event
Break when the container receives the OnPostExecute event
Break when the container receives the OnError event

Break when the container receives the OnWarning event
Break when the container receives the OnInformation event
Break when the container receives the OnTaskFailed event
Break when the container receives the OnProgress event
Break when the container receives the OnQueryCancel event

Break when the container receives the OnVariableValueChanged ...

Break when the container receives the OnCustomEvent event

OOENOSEOoEOOn
0000000000

Break at the beginning of every iteration of the loop

o] [oma] [nen]

FIGURE 51-1

400 | SECTION8 TROUBLESHOOTING SSIS

Each option in the Set Breakpoints window will stop the package execution at a different point dur-
ing in the task:

> OnPreExecute—Just before the task executes
OnPostExecute—Directly after the task completes
OnError—When an error occurs in the task
OnWarning—When a warning occurs in the task
OnlInformation—When the task provides information
OnTaskFailed—When the task fails

OnProgress—To update progress on task execution

OnQueryCancel—When the task can cancel execution

Y Y Y VY Y Y Y Y

OnVariableValueChanged—When the value of a variable changes (the RaiseChangedEvent
property of the variable must be set to true)

\

OnCustomEvent—When the custom task-defined events occur

> Loop Iteration—At the beginning of each loop cycle

The most commonly used events in breakpoints are OnPreExecute, OnPostExecute, OnError,
OnWarning, and Loop Iteration. By using OnPreExecute and OnPostExecute on a task, you can see
the value of a variable before and after a task, which enables you to determine if the task changed the
value of the variable to the expected value. The OnError and OnWarning events enable you to stop a
package with a breakpoint if something goes wrong. Imagine having a package that contains two Data
Flows: the first loads the data into a flat file and the second loads the data into a table. If the first Data
Flow encounters a warning, you do not want the second Data Flow to load the data. An OnWarning
Breakpoint on the first Data Flow can stop the package from executing the second Data Flow.

The Loop Iteration Breakpoint stops the package at the beginning of either a Foreach Loop or a For
Loop. If a loop is executed ten times, the breakpoint will fire ten times. If a loop never occurs in a
package, the breakpoint will never fire. If you have a Foreach Loop set to loop through each file in a
folder and the breakpoint never fires, check the folder to ensure the files exist. For more information
on containers like the loop tasks, see Section 6 of the book.

While a package is stopped at the breakpoint, you can click the green arrow on the toolbar to con-
tinue to the next breakpoint or through the rest of the package if no other breakpoints exist. You
can also click the square blue stop button on the toolbar to stop the execution of the package at the
breakpoint. Keep in mind that the package is stopped at that point and the tasks before the break-
point have executed. This may require some manual resetting before you can test the package again.

The other properties in the Set Breakpoints window are Hit Count and Hit Count Type. These prop-
erties set the maximum number of times that a Breakpoint condition occurs before the Breakpoint
stops the package. Four Hit Count Types exist:

> Always—The breakpoint stops the package every time the breakpoint fires.

LESSON 51 USING BREAKPOINTS | 401

> Hit Count Equals—The breakpoint stops the package when the breakpoint fires the number
of times listed in Hit Count.

> Hit Count Greater than or Equal to—The breakpoint stops the package when the breakpoint
reaches the number listed in Hit Count and every time afterwards.

> Hit Count Multiple—The breakpoint stops the package when the breakpoint reaches the
number listed in Hit Count and every multiple of the Hit Count number; a Hit Count of
2 stops the package on every other breakpoint event.

Once you have decided which breakpoint to set, and close the Set Breakpoints
window by clicking OK, you see a red dot on the task, as in Figure 51-2 e @
(though note that the figure in the book doesn’t show color). The red dot indi-
cates a breakpoint exists on a task. In truth, there may be several breakpoints
on a task with the red dot. You can also tell when a package is stopped at a
breakpoint during debugging here. A small yellow arrow appears in the mid-
dle of the red dot on the task.

FIGURE 51-2

When a breakpoint has stopped a package from running, you can use the Watch window during
debugging to see the values of the variables in the package at that time. To open a Watch window,
click Debug on the toolbar and then under Windows, click Watch and Watch 1. This opens a Watch
window at the bottom of Visual Studio by default. Type in the name of the variables you need to
monitor to see the values of the variables. In Figure 51-3, you can see the value of some variables in
the Watch window during a breakpoint and the variable types.

'Watch 1 *AX
J Name Value Type -
% User:Flying I String

¥ Type String
¥ Value

£ “t% User:Spaghetti i String
¥ Type String
¥ Value

£ “t% User:Monster i String
¥ Type String
¥ Value

[

B Locals PRRUGTGEY

FIGURE 51-3

Using breakpoints and the Watch window to debug a package makes it very easy to determine what
the tasks in your package are doing. You can quickly determine where the error is occurring and not
occurring. In some cases, a package might be running with no error messages, but might still not

be performing correctly. These types of errors would be hard to track down without breakpoints.
Errors or no errors, breakpoints enable you to stop a package and examine the results up to that
point. You should use breakpoints often during the development of any package.

402 | SECTION8 TROUBLESHOOTING SSIS

TRYIT

In this Try It, you create a package with a For Loop to count from 1 to 10. Then you verify the value
of the variable in the loop. After this lesson, you will understand how to use breakpoints to aid in
the development and debugging of an SSIS package.

You can download the completed lesson at www . wrox. com.

Lesson Requirements

Create a package with a For Loop to count from 1 to 10. Use breakpoints and a Watch window to
see if the loop is actually incrementing the variable value.

Hints
> Use an integer variable.
> Use a For Loop.

> Increment the integer variable by one for each loop.

Step-by-Step
1. Create a blank package.
Create an Integer variable named intCounter.

Set the Value of intCounter to 1.

B w N

.

Drag a For Loop to the Control Flow, and double-click to open the editor.
Set the InitExpression of the For Loop to @intCounter = 1.

Set the EvalExpression to @intCounter <= 10.

N O U

Set the AssignExpression to @intCounter = @intCounter + 1. Now the For Loop should
match Figure 51-4.

4 For Loop Properties
InitExpression @intCounter =1
EvalExpression @intCounter <=10
AssignExpression @intCounter = @intCounter +1
4 General
Mame For Loop Container
Description For Loop Container

FIGURE 51-4

©

Close the For Loop Editor by clicking OK.
9. Right-click the For Loop and select Edit Breakpoints.

http://www.wrox.com

LESSON 51 USING BREAKPOINTS | 403

10.
1.
12.

13.
14.
15.

16.
17.
18.

19.

Place a check next to “Break at the beginning of every iteration of the loop” and click OK.
Click the green debug arrow on the toolbar.

When the package stops at the breakpoint, open a Watch window by clicking Debug on the
toolbar. Then under Windows, click Watch and Watch 1.

Type in the name of the variable intCounter (it is case-sensitive).
The value of intCounter should be 1.

The red dot on the For Loop should have a yellow arrow on it, as shown in Figure 51-35,
though, again, you can’t see the colors in the book.

i I For Loop Container ° ~

FIGURE 51-5

Click the green debug arrow on the toolbar to continue the package.
The value of intCounter in the Watch window should change to 2.

Continue clicking the debug arrow until the value reaches 10 and the package completes. The
For Loop should have a green check appear in the top-right corner.

Click the blue square stop debugging button on the toolbar.

Please select Lesson 51 on the DVD, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

SECTION 9
Administering SSIS

» LESSON 52:

» LESSON 53:

» LESSON 54:

» LESSON 55:

» LESSON 56:

» LESSON 57:

» LESSON 58:

» LESSON 59:

Creating and Configuring the SSIS Catalog

Deploying Packages to the Package Catalog
Configuring the Packages

Configuring the Service

Securing SSIS Packages

Running SSIS Packages

Running Packages in T-SQL and Debugging Packages

Scheduling Packages

52

Creating and Configuring
the SSIS Catalog

One of the most significant differences between previous versions of SSIS and SQL Server
2012 is the introduction of the SSIS catalog. The catalog only applies for those who are in the
project deployment model and gives you many new features for administering and configuring
packages. It also enables you to run packages in T-SQL or through PowerShell.

CREATING THE CATALOG

Behind the scenes, a catalog is simply a database where your packages are stored and con-
figured. As packages run, it stores operational information about the packages’ run and any
errors. Because the packages are in a database called SSISDB, much of their management
can be done through T-SQL or PowerShell, that’s in addition to the normal way of managing
them, which is through Management Studio.

The easiest way to create the SSIS catalog (you have only one catalog per database instance)
and its accompanying database is with Management Studio. In Management Studio, connect
to your database engine and navigate to the Integration Services node in Object Explorer.
Right-click the Integration Services Catalogs node and select Create Catalog. This opens the
Create Catalog dialog box (shown in Figure 52-1) where you must type a password that will
encrypt all packages. To fully utilize the package catalog, you must also have the Common
Language Runtime (CLR) integration turned on by checking the Enable CLR box. Click OK
to create the database and catalog.

408 | SECTION9 ADMINISTERING SSIS

45 Create Catalog EI @
'@ Ready
Select a page Script ~ | [Help

1 General

Enable automatic execution of Integration Services stored procedure at SQL Server
startup.

Mame of the catalog database:
SSISDB

R - The catalog protects data using encryption. A key is needed for this encryption. Enter a
EEChon password to protect the encryption key, and save the password in a secure location.

KIW Password:
[CONTOSO\Administrator]

s

Retype Password:

P —

View connection properties

Progress You can manage the encryption key by creating a backup. If you migrate or move the
Ready Integration Services catalog to another SQL Server instance, you can restore the key to regain
access to encrypted content.
OK l { Cancel l I Help
FIGURE 52-1

CONFIGURING THE CATALOG

After the catalog is created, you’re then able to configure the catalog by right-clicking the SSISDB
catalog and selecting Properties, which opens the Catalog Properties screen. One of the catalog’s
jobs is to store operational log data about your packages’ execution like errors, warnings, and dura-
tion. In the Catalog Properties dialog box (Figure 52-2), you can configure how many days of that
history are kept. By default, the catalog will store 365 days of history, which may be far too much
for most environments.

By default, the catalog stores only basic logging. If you want to store more detailed logging for
debugging, you can choose Verbose for the Server-wide Default Logging Level option, but note that
this will slow down your packages and take much more space in your catalog to store the logs.

Lastly, as you deploy packages, there is a rudimentary version control system in the catalog. By
default, 10 versions of your project are kept in case of a problem, but you can change that in the
Catalog Properties screen with the Maximum Number of Versions per Project option.

LESSON 52 CREATING AND CONFIGURING THE SSIS CATALOG | 409

L2 Catalog Properties EI
@ Ready
Select a page SScript - h’jHe\p
1 General
A=
Schema Version 2 o
Schema Build 11.0.2100.60
Encryption Algorithm Name AES_256 =
4 Operations Log
Clean Logs Periodically True
Current Mumber of Records 0
Current Size of Operation Leg (KEB) 0
Retention Period (days) 365 -
Connection Server-wide Default Logging Level Basic 1
2 awt 4 Project Versions
[CONTOSOVAdministrator] Current Size of Versions Log (KB) 0
Maximum Mumber of Versions per Proje: 10
Periedically Remowve Old Versions True
View connection properties Total Number of Versions Retained 0 iT
Progress Name
Ready The name of the catalog.
[0K } I Cancel l { Help
FIGURE 52-2

CREATING AND USING FOLDERS

In the catalog, folders are containers for multiple projects, much like a solution is in Visual Studio.
Imagine a data warehousing project with many subject areas like HR, finance, and inventory. You
could create a folder called Data Warehouse and deploy all the projects for each subject area into
that central folder.

To create a new folder, right-click the catalog and select Create Folder. Name the folder and click
OK. You cannot deploy an SSIS project in the project deployment model without a folder first being
created. Security permissions can also be shared among any projects in a folder.

TRY IT

In this Try It, you create and configure the SSIS catalog. After this lesson, you will understand how
to use the SSIS catalog and folder structure.

This lesson has no samples to download.

410 | SECTION9 ADMINISTERING SSIS

Lesson Requirements

Create an SSIS catalog database on your database instance. Configure the catalog to retain only 45 days
of history. Also, create a folder called Data Warehouse for your projects to be deployed into.

Hints

> You can perform all steps within Management Studio while connected to the database engine.

Step-by-Step

1. Open SQL Server Management Studio and connect to your database engine.

2. Right-click the Integration Services Catalogs node and select New Catalog.

3. Type a password into the Password area, ensure that CLR is enabled, and click OK.

4. Right-click the newly created catalog and select Properties. This opens the Catalog Properties
dialog box. Change Retention Period (days) to 30 days and click OK.

5. Right-click the catalog and select New Folder. Name the folder Data Warehouse and

click OK.

Please select Lesson 52 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Deploying Packages to the
Package Catalog

In SQL Server 2005, 2008, and still in the package deployment model, you would deploy
packages into SQL Server’s msdb database or to the filesystem. Now, in SQL Server 2012’
project deployment model, you deploy to the SSIS catalog (ssisdb database). Deploying to
this model enables you to activate some of the newer features in SSIS, like environments and
parameterization of packages (to name just a few). Deploying packages is simple using the
Integration Services Deployment Wizard.

NOTE Because the older package deployment model is legacy, deploying
packages to this model is not covered in this lesson in length.

USING THE DEPLOYMENT WIZARD

The Deployment Wizard is the easiest way to deploy packages to the catalog. You can access
the wizard through SSDT by right-clicking a project and selecting Deploy. You can also access
it through Management Studio or by double-clicking an .ISPAC file. The wizard installs your
packages by asking the administrator a few questions. It also creates the .ISPAC file, which is a
single file that can be handed to a customer or to the DBA to install your project.

Once the wizard is open and you bypass the opening screen, you’re asked which server

and folder you want to deploy your project to (see Figure 53-1). (A folder is a container for
a number of projects.) Click Next and Deploy to push your packages to the server. You’ll
also be warned if the packages are already on the server. Remember that if the packages are
already there, you can overwrite them by proceeding and a version of your old project is
retained on the server.

V413HAV
Typewritten Text
V413HAV

412 | SECTION9 ADMINISTERING SSIS

" Integration Services Deployment Wizard E @
Select Destination
Introduction @ Help
TEEE LT Enter the destination server name and where the project will be located in the
Select Destination Integration Services catalog.
Revil Server name:
eview
Path
/5515DB/Data Warehouse/ExpediionDenali Browse
ot

FIGURE 53-1

Another way to launch the wizard is from the .ISPAC file. You can locate your file in your project’s
folder under the bin\development subdirectories. An .ISPAC file is essentially a compressed file with
all of your project’s package and parameter files. In fact, if you were to rename the .ISPAC file to

a .zip extension, you would be able to see all the files that it contains. When you double-click the
ISPAC file, the same Deployment Wizard (Figure 53-2) that was covered earlier in this lesson opens.
Follow the same steps from the previous paragraph and the packages will install on your server.

You can also access this wizard in Management Studio. From Management Studio, right-click the
Project folder under your folder and select Deploy Packages. One of the nice things you can do in
the wizard is point to a different server and deploy your packages from QA to Production. Do this
by selecting the catalog you want to import from rather than the .ISPAC file.

DEPLOYING PACKAGES IN THE PACKAGE DEPLOYMENT MODEL

In the project deployment model, you always deploy every package in the project. With the legacy
package deployment model, you deploy packages individually. You can do this in Management
Studio by connecting to the Integration Services service and selecting Import or you can do it in
SSDT by opening the package and selecting File = Save Copy As.

The final way to deploy packages in the package deployment model is with the Package Installation
Wizard. You can do this by double-clicking an .SSISDeploymentManifest file from your \bin\deploy-
ment folder in your project directory. If you don’t see this file, set the CreateDeploymentUtility

LESSON 53 DEPLOYING PACKAGES TO THE PACKAGE CATALOG | 413

property to True. Access this property by right-clicking the project in SSDT and select-

ing Properties. Then go to the Deployment tab as shown in Figure 53-3. If you don’t see the
CreateDeploymentUtility property, it might mean that your project is in the project deployment
model. Lesson 8 shows you more about how to convert your deployment models back and forth.

]t Integration Services Deployment Wizard EI
Select Source
Intraduction @ Help
Select the Integration Services project that you want to deploy.
Select Destination ~
@ Project deployment file
Review
() Integration Services catalog
Results
Path
C:\Presentations\SS15\Expedition Denali\bin\ Development' ExpedtionC EBrowse
Next > Deplo Cancel
FIGURE 53-2
Personal Trainer 5515 Project Property Pages
Configuration: | Active(Development) x| Platform: | N/A Configuration Manager...
a Configuration Properties 4 Deployment Model (Package)
Build AllowCoenfigurationChange True
Deployment CreateDeploymentUtility TS E
Debugging DeploymentOutputPath bin\Deployment
CreateDeploymentUtility
Indicates whether the build process creates a deployment utility.
[oK 1 [Cancel] [Apply

FIGURE 53-3

414 | SECTION 9 ADMINISTERING SSIS

After the property is set, you need to build the project. You can do this under the Build menu by
selecting Build <Project Name>. After this, the bin\deployment folder will be created, as well as the
manifest file.

TRY IT

In this Try It, you deploy a set of packages and their files to your development server using the
Integration Services Deployment Wizard.

You can download the ExpeditionDenali.zip you need for this lesson from www.wrox.com.

Lesson Requirements

Once you download and uncompress ExpeditionDenali.zip, deploy the packages and parameter files
to your own server using the Deployment Wizard. If you have a named instance, you may have to
point the project connection to your own instance name.

Hints

> You can either double-click the .ISPAC file in the \bin\development folder or you can right-
click the project from within SSDT and click Deploy.

Step-by-Step

1. Open SSDT by double-clicking the ExpeditionDenali.sIn file.
2. Right-click the project and select Deploy. The Deployment Wizard opens.

3. After skipping the wizard’s introduction text screen, type in your database instance name for
the server name (shown back in Figure 53-1) and select the folder to deploy into by clicking
Browse. If one does not exist, you can also create one by clicking New.

4. Click Next and then Deploy in the Summary screen.

Congratulations; your packages are now deployed. You can confirm that the packages are deployed
in Management Studio in the Integration Services node.

Please select Lesson 53 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com
http://www.wrox.com/go/ssis2012video

Configuring the Packages

When Microsoft was at the whiteboard trying to figure out how to make the SSIS develop-
ers and administrators’ lives easier, at the top of its list was the process of how to configure
a package. Before, configuring packages was clunky and, in many cases, unsecure (storing
passwords of packages would have been in clear text). Microsoft spent much of the SQL
Server 2012 development effort focusing on that exact thing. You can now configure pack-
ages much more easily, as long as they’re in the project deployment model.

NOTE I[mportant: This lesson is written for those who are using the
project deployment model. If you are in the package deployment model,
please skip this lesson.

You can only configure packages that are deployed to the catalog. With the packages now
deployed (as you learned in the previous lesson), you can find your packages in Management
Studio under the Integration Services Catalogs node and SSISDB = Projects. When you expand
the project, you're ready to configure the packages to run in your environment. An example of
when you can use this is when you have just finished development of a project and now want it
to run in production by changing all the connections to point to production versus development.

CREATING ENVIRONMENTS

One really nice feature in SSIS is the ability to create environments. Environments are col-
lections of properties for a customer, store, or workgroup. Imagine that your server hosts
multiple customers: Customer A and Customer B. You could create an environment for each
customer and then, when you go to run or schedule the package, run it under a given custom-
er’s settings with a single click.

You can create an environment under the SSIS folder in the package catalog. Start by right-
clicking the Environments folder and selecting Create Environment. This opens the Create
Environment dialog box. Type in the name of your first environment: Customer A (shown

in Figure 54-1).

416 | SECTION9 ADMINISTERING SSIS

'+ Create Environment E=1 EER =
© Ready

Select a page Hscript - | B Help
General
Environment name:
Customer A

Environment description:

Connection

KIWI
[CONTOSO\Administrator]

View connection properties
Progress

Ready

oK ” Cancel H Help l

FIGURE 54-1

After the environment is created, double-click it to configure it. In the Environment Properties pane,
you can secure the environment to restrict use of your properties in the Permissions tab and, more
importantly, you can add additional properties in the Variables tab.

In the Variables tab, you can create a number of variables that will be grouped together for a given
customer or environment (as shown in Figure 54-2). As you create each variable, you can secure it
by checking the Sensitive box. These variables will eventually map to parameters in your project or

packages when you go to configure the package. Notice that you can also click the Script button to
create a T-SQL script to create the same variables.

"4z Environment Properties =8 EEE
0 Ready
Select a page Bscript ~ | [HHelp
4 General
L Varisbles Variables:
L' Permissions Mame Type Description Value Sensitive
AuditingDataba... | String ~ | Database name... | =
AuditingServer |String. - | Server name for... | localhost] |
-]
Connection

KIWI
[CONTOSOM\Administrator]

View connection properties
Progress

Ready

Remove

oK H Cancel H Help]

FIGURE 54-2

LESSON 54 CONFIGURING THE PACKAGES | 417

CONFIGURING THE PACKAGE

Before you can run the packages, you’ll likely need to reconfigure them to redirect the connections
to point to production instead of development. If the development of the package was done properly,
there should be configuration points in your packages using parameters on each connection. This
enables you, as an administrator or user of the package, to reconfigure it from Management Studio.
See Section 4 of the book for a refresher on this topic if needed.

Once a project is deployed, you can reconfigure it by right-clicking the project in Management
Studio (under Integration Services Catalogs = SSISDB = Folder Name) and selecting Configure.
Once the Project Configuration screen opens, first allow the project to reference any environments
if they exist. To do this, select the References tab and add each environment you want to have access
to by clicking the Add button (shown in Figure 54-3).

4z Configure - ExpeditionDenali =0 =R
@' Ready
Select a page ;SScr\pt - L’jHElp
2 Parameters
[References References:
Environment Environment Folder

Customer A c

Connection

KIWI
[CONTOSO\Administrater]

View connection properties
Progress
Ready

[open. [add.][Remove |

FIGURE 54-3

Back in the Parameters tab, you can see all the parameters that you can tweak across all of your
packages in one screen. If you only want to see a single package’s parameters, you can select the
individual package in the Scope drop-down box or right-click the package and select Configure.
When you find a parameter you want to change, you can click the ellipsis button next to the
parameter. This opens the Set Parameter Value dialog box (shown in Figure 54-4). You can change
the value to a manual value by selecting Edit value, use the default value from the package, or
select Use environment variable to use the variable you created earlier. If you do this, you will now
always need to specify the environment that you want to run the package under each time you
schedule or run the package.

418 | SECTION9 ADMINISTERING SSIS

Parameter:

[ExpediticnDenali].[sAuditDB]

Type:

String

Description:

Value

) Edit value:

() Use default value from package AdventureWorks

@ Use environment variable: [AudilingDahbase v]

s

FIGURE 54-4

The final outcome looks like Figure 54-5. Values that are underlined are set to an environment. If
you were to redeploy over this project, don’t worry. Your configuration changes will not be lost.

?ﬂd-wﬁ B scipt + [Help
2 Parameters
% References

Scope: lEntryfpoint packages and project hd

Parameters | Cennection Managers

Container MName Value
ExpeditionDe... |sAuditDB AuditingDatabase

2-OtherFeatu... |Param2

v i 2-OtherFeatu... | ServerName localhost

KIWI
[COMTOSO\Administrator]

View connection properties
Progress -
Ready

oK ” Cancel ” Help l

FIGURE 54-5

LESSON 54 CONFIGURING THE PACKAGES | 419

If there were no parameters in the project, you can also change the connection managers in the
Connection Manager tab (shown in Figure 54-6). This enables you to change any connection prop-
erty easily, but parameters are a better approach because it encourages reusability.

L‘&? Configure - ExpeditionDenali EI
@ Ready
Select a page Hscript - |3 Help
7 Parameters
%A References = =
Scope: lEntry-pomt packages and project v
Parameters | Connection Managers |
Container Name Properties
ExpeditionDenali AdventureW... Property name Value
1-PackageDepe... |localhost.Ad... | ESERLELESTT] Data Source=localhost:... :
= InitialCataleg AdventureWorksDW2012 '—
Connection =
Wl Password s
[CONTOSOVAdministrator] RetainSameConnec... | False =
Serverlame localhost :
UserMame NULL =
View connection properties
Progress
Ready
oK] I Cancel] I Help l
FIGURE 54-6

TRY IT

In this Try It, you learn how to configure an SSIS project and how to use environments as a con-
tainer of variables. After this lesson, you should be able to configure your SSIS projects and pack-
ages to run in production.

You can download the ExpeditionDenali.zip you need for this lesson from www.wrox.com in the
Lesson 53 download.

Lesson Requirements

Configure the project that you deployed in Lesson 53. If you have not deployed the project yet,
download ExpeditionDenali.zip (available at www.wrox.com in the Lesson 53 download) and deploy
the project. Next, create two customer environments, Customer 1 and Customer 2, then reconfigure
the sAuditDB project parameter to use an environment variable for a given customer.

http://www.wrox.com
http://www.wrox.com

420 | SECTION9 ADMINISTERING SSIS

Hints

Create two environments called Customer 1 and Customer 2 in Management Studio under
the folder created in the previous lesson.

Create a variable in each environment called varAuditingDB.

Right-click the project to reconfigure it and set the references.

Step-by-Step

1.

2.

o

7.

Open Management Studio and connect to the database instance that you deployed the
project to in Lesson 53.

After drilling into SQL Server Integration Services catalog and your folder, right-click
Environments and select New Environment. Name the environment Customer 1 and click
OK. Do the same to create an environment for Customer 2.

Double-click each environment and add a new variable in the Variables tab called varAudit-
ingDB. The new variable should be a string with a default value of Customer1AuditDB and
Customer2AuditDB (respectively).

Right-click the ExpeditionDenali project and select Configure.
Go to the References tab and add references for Customer 1 and Customer 2 by clicking Add.

Go back to the Parameters tab and click the ellipsis button next to the sAuditDB parameter.
When the Set Parameter Value dialog box opens, select the Use Environment Variable radio
box and choose the variable you created, varAuditingDB.

Click OK twice to exit the configuration screens.

Congratulations, your package is configured! That beats the heck out of editing an XML file,
doesn’t it? In a later lesson, you’ll run the package with the new configuration.

Please select Lesson 54 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

AN

Configuring the Service

In SQL Server 2005, 2008, and in the SQL Server 2012 package deployment model, you
deploy packages into what is called the SSIS Package Store. The Package Store in some cases
actually physically stores the package, such as the msdb database option. If you’re using file
system storage, the Package Store just keeps a pointer to the top-level directory and enumer-
ates through the packages stored underneath that directory. To connect to the Package Store,
the SSIS service must be running. This service is called SQL Server Integration Services, or
MSDTSServer110. There is only one instance of the service per machine or per set of clustered
machines.

NOTE Important: This lesson is written for those who are in the package
deployment model. If you are in the project deployment model, please
skip this lesson.

Though you can run and stop packages programmatically without the SSIS service, the ser-
vice makes running packages more manageable. For example, if you have the service run

the package, it tracks that the package is executing and people with the proper permission
can interrogate the service and find out which packages are running. Those people in the
Windows Administrators group can stop all running packages. Otherwise, you can stop only
packages that you have started.

The service can also aid in importing and exporting packages into the Package Store. This les-
son covers other uses for the service, but one last great use for the service worth mentioning at
the start is how it can enable you to create a centralized ETL server to handle the execution of
your packages throughout your enterprise.

The MSDTSServer110 service is configured through an XML file that is, by default,
located in the following path: C:\Program Files\Microsoft SQL Server\110\DTS\Binn\
MsDtsSrvr.ini.xml. This path will vary if you’re in a cluster. If you cannot find the path,

422 | SECTION9 ADMINISTERING SSIS

go to the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Microsoft SQL Server\110\SSIS\
ServiceConfigFile registry key in the Registry. The XML file should look like the following:

<?xml version="1.0" encoding="utf-8" ?>
<DtsServiceConfiguration xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<StopExecutingPackagesOnShutdown>true</StopExecutingPackagesOnShutdown>
<TopLevelFolders>
<Folder xsi:type="SglServerFolder">
<Name>MSDB< /Name>
<ServerName>.</ServerName>
</Folder>
<Folder xsi:type="FileSystemFolder">
<Name>File System</Name>
<StorePath>..\Packages</StorePath>
</Folder>
</TopLevelFolders>
</DtsServiceConfiguration>

There isn’t really a lot to configure in this file.

This file has some interesting features. The first configuration line tells the packages how to react if
the service is stopped. By default, packages that the service is running will stop if the service stops or
fails over. You can reconfigure the packages to continue to run until they complete after the service
is stopped by changing the StopExecutingPackagesOnShutDown property to false, as shown here:

<StopExecutingPackagesOnShutdown>false</StopExecutingPackagesOnShutdown>

The most important configuration sections, as shown in the following code, specify which paths
and servers the MSDTSServer110 service reads from. Whenever the service starts, it reads this file to
determine where the packages are stored. In the default file, there is a single entry for a SQL Server
that looks like the following sqlServerFolder example:

<Folder xsi:type="SglServerFolder">
<Name>MSDB< /Name>
<ServerName>.</ServerName>
</Folder>

The <Name> line represents how the name will appear in Management Studio for this set of pack-
ages. The <serverName> line represents where the connection points to. There is a problem,
however: If your SQL Server is on a named instance, this file still points to the default non-named
instance (.). So, if you do have a named instance, simply replace the period with your instance name.

The next section, seen in the following code, shows you where your file system packages are stored.
The <storerPath> property shows the folder where all packages are enumerated from. The default
path is C:\program files\microsoft sql server\110\dts\Packages, which is represented as . . \Packages
in the default code that follows. This part of the statement goes one directory below the SSIS service
file and then into the Packages folder.

<Folder xsi:type="FileSystemFolder">
<Name>File System</Name>
<StorePath>..\Packages</StorePath>
</Folder>

http://www.w3.org/2001/XMLSchema%E2%80%9D
http://www.w3.org/2001/XMLSchema-instance%E2%80%9D

LESSON 55 CONFIGURING THE SERVICE | 423

Everything in the Packages folder and subfolders is enumerated. You can create subdirectories under
this folder, and they immediately show up in Management Studio without your having to modify
the service’s configuration file.

NOTE Each time you make a change to the MsDtsSrvr.ini.xml file, you must stop
and start the MSDTSServer110 service.

TRY IT

In this Try It, you learn how to configure the SSIS service to create a new grouping of packages in
a new folder that is going to be monitored. After this lesson, you’ll know how to configure the SSIS
service if your environment is running packages in the legacy package deployment model.

This section does not require any code to be downloaded.

Lesson Requirements

Configure the SSIS service so that the Package Store contains three folders: File System, MSDB,
and File System New, which points to a directory with a few packages in it or your project, like
C:\Projects\Personal Trainer (if the directory exists).

Hints

> To achieve the goal of this lesson, modify the C:\Program Files\Microsoft SQL Server\110\
DTS\Binn\MsDtsSrvr.ini.xml file.

Step-by-Step

1. Prepare for this lesson by creating a new directory (if it doesn’t already exist) called
C:\Projects\Personal Trainer. Open the C:\Program Files\Microsoft SQL Server\110\DTS\Binn\
MsDtsSrvr.ini.xml file that you will be able to edit in Notepad or your favorite XML editor.

2. Copy and paste the FileSystemFolder node and replace it with the cloned version as follows:

<Folder xsi:type="FileSystemFolder">

<Name>File System New</Name>
<StorePath>C:\projects\Personal Trainer</StorePath>
</Folder>

3. Save the file and then stop and start the SSIS service (SQL Server Integration Services or
MSDTSServer110) in the Services applet. You must have access to perform these actions.

4. Open Management Studio and connect to Integration Services to confirm the results. If you
see the new File System New folder, you have successfully completed this lesson.

Please select Lesson 55 on the DV D, or online at www.wrox .com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Securing SSIS Packages

Once you deploy your packages, you want to prevent those who aren’t authorized from
executing the packages. That’s the focus of this lesson. The way you lock down your pack-
ages depends on the deployment model. In the package deployment model, the easiest security
model is when you deploy to the msdb database. When you deploy your packages with the
project deployment model, security is easy and more robust.

SECURING PACKAGES IN THE PACKAGE DEPLOYMENT MODEL

Before you can dive into the topic of securing the package execution, you must first under-
stand a few things about connecting to the SSIS service, which is available to you if you choose
to use the package deployment model. The only login option for connecting to the SSIS service
is to use your Active Directory account. Once you connect, you see only packages that you

are allowed to see. This protection is accomplished based on package roles. Package roles are
available only on packages stored in the msdb database. Packages stored on the filesystem
must be protected with a password and with Windows security.

You can access package roles in Management Studio by right-clicking a package that you want
to protect and selecting Package Roles. The

. 5 . Package Roles @
Package Roles dialog box shown in Figure 56-1
g Roles can be assigned to the package to control which users
enables you to Choose the deb rOle to be mn the should have read or write access to the package.
writer role and reader role:
Package Name:
> The writer role can perform administra- \MSDB\Data Collector\ QueryActivity Collect
tion-type functions, such as overwrite a Reader Role:
package Wlth a new Version, delete a pack- <Default: db_ssisadmin, db_ssisoperator, creator of the package «
age, manage security, and stop the package Writer Role:
1 <Default: db_ssisadmin, creator of the package> -
rom running.
> The reader role can execute and view the
[ok | [Camcel | | Hep
package. The reader role can also export

the package from Management Studio.
FIGURE 56-1

426 | SECTION9 ADMINISTERING SSIS

Package roles use database roles from the msdb database. By default, people who are in the
db_dtsadmin and db_dtsoperator database roles or are the creator of the package can be a
reader. The writer role is held by members of the db_dtsadmin database role or the creator of
the package by default. When you select the drop-down box in the Package Roles dialog box,
you can change the package role from the default one to another customized role from the msdb
database.

As a quick example, you may want to customize a group of people as the only ones who can execute
the accounting set of packages. Consider then how to secure a package to a role called Accounting
for the writer and reader package roles. First, open Management Studio and connect to your devel-
opment or local database engine instance. Then, expand System Databases & msdb = Security,
right-click Roles, and select New Database Role. This opens the Database Role - New dialog box.
Of course, you need the appropriate security to create a new database role.

Name the role Accounting and make your own login a member of the role by clicking the Add but-
ton. You can also click Browse to view a list of logins after clicking Add. Additionally, make your
own user or dbo an owner of the role in the Owner property. You may have to add your login as a
user to the msdb database prior to adding the role if it’s not there already.

You’re now ready to tie this role to a package. In Management Studio, connect to Integration
Services. Right-click any package stored in the msdb database and select Package Role to secure the
package. For the writer and reader roles, select the newly created Accounting role and click OK.
Now, members of the Accounting role will be able to perform actions on the package, such as exe-
cute the package. If you’re a member of the sysadmin role for the server, you will be able to perform
all functions in SSIS, such as execute and update any package and bypass the package role.

If your packages are stored on the filesystem, you must set a package password on the package

to truly secure it. You can also enforce security by protecting the directory with Windows Active
Directory security on the file or folder where your packages are stored. To set a package password in
SSDT, you can set the ProtectionLevel property to EncryptSensitiveWithPassword and type a pass-
word for the PackagePassword property.

To connect to a package store, the SSIS service must be started on the given server. Additionally, you
must have TCP/IP port 135 open between your machine and the server. This is a common port used
for DCOM, and many network administrators will not have this open by default. You also need to
have the SQL Server database engine port open (generally TCP/IP port 1433) to connect to the pack-
age store in the msdb database.

SECURING PACKAGES IN THE PROJECT DEPLOYMENT MODEL

With the project deployment model, security is very similar to the packages that are in the msdb data-
base with a few tweaks. Packages stored in the SSIS catalog use users and roles that are in the ssisdb
database and are secured at the project or folder level. To secure the packages, right-click the project
folder or project and select Properties. Then go to the Permissions tab (shown in Figure 56-2).

Click Browse to select the role or user for which you want to give permission to the project or folder
and then select their rights. Read gives permission to see the existence of the package, Modify gives
permission to update the package, and Execute gives permission to run the package.

LESSON 56 SECURING SSIS PACKAGES | 427

U2 Project Properties = ff= =]
@ Ready
Select a page gﬁcnpt - mHelp
A General
(! Permissions Logins or roles:
Name Type
L |dbo SQL User
Connection
[CONTOSO\Administrator] Permissions for dbo:
Explicit
R e e T T e Permission Grantor Grant Deny ‘o
Progress dbo = 15
Reas Medify dbe =
ea
4 |Executa ‘dbo [l -
l oK] I Cancel] I Help I
FIGURE 56-2

TRY IT

In this Try It, you make sure that only members of the HR group can execute a package of your
choosing. You have just deployed a set of packages, and you now want to lock them down so that no
one but the HR group can execute them. After this lesson, you’ll have an understanding of how to
secure your packages to allow only a given user rights to execute a package.

For this lesson, you will need the ExpeditionDenali.zip project, which is available as part of the
Lesson 53 download files from the Wrox website for this book at www.wrox.com.

Lesson Requirements

To successfully complete this lesson, you want to protect your earlier deployed project
(ExpeditionDenali) from executing by anyone but employees in the HR group. First, you need to

create an HR role and make yourself a member of the role. Then create a package role to prevent
anyone but the HR group from running the package.

Hints
» Connect to the database instance and create an HR database role in the ssisdb database.

> Connect to the database instance and set the HR role in the ExpeditionDenali project to the

Execute role.

http://www.wrox.com

428 | SECTION9 ADMINISTERING SSIS

Step-by-Step

1.

Open Management Studio and connect to the SQL Server database engine that has your
packages installed.

Drill to Databases = SSISDB > Security &> Roles.

Right-click Roles and select New Database Role to open the Database Role — New
dialog box.

Type HR for the role name and make yourself a member of the role by clicking Add or by
typing dbo as the owner. The final screen should resemble Figure 56-3. Click OK to save
the role.

| | Database Role - New =N =R ==

Selecta page ;SSGHP‘ vadp

= Role name: HR

Owner: dbo D
Schemas owned by this role:
. Dwned Schemas =
i) | intemal |E‘
[dbe £
[7] db_sccessadmin
[[] cataleg
[7] db_backupoperator
[db ddladmin T
Members of this role:
Fole Members

‘Connection

Server:

KIwi

Connection:

CONTOSO Administrator

4 View connection properties

Progress
Ready
FIGURE 56-3

In the Object Browser in Management Studio, select Integration Services Catalogs = SSISDB,
choose the folder you deployed to earlier and select the ExpeditionDenali project.

Right-click the ExpeditionDenali project and select Properties.

For the reader role for this package (remember from earlier in the lesson that the reader
role can execute and view the package), select HR from the drop-down box, as shown in
Figure 56-4. Your package can now be run only by the HR group.

LESSON 56 SECURING SSIS PACKAGES | 429

| @ Ready
Select a page gScript & ||E Help
% General
% Permissions 3
Logins or roles: Browse...
Mame Type
|8 dbo SQL User

Connection

KIWL
[CONTOSOVAdministrator]

Permissions for HR:

Explicit
View connection properties Permission Grantor Grant Deny ™
[T =
Progress Eead _‘
e Madify
£3!
Execute =
[0K] l Cancel] I Help]
FIGURE 56-4

Please select Lesson 56 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

Running SSIS Packages

When your packages are deployed, you’re ready to run them. In this lesson, you see how to
execute a package from a variety of places like Management Studio and from the command
line. You also see some of the key differences between 32- and 64-bit machines and some of
the items that may not work on a 64-bit machine.

Before you begin, there is one important caveat for packages in the package deployment model
deployed to the SQL Server. Even though your package is deployed onto a server, the package
uses the resources and runs from whichever machine executes it. For example, say you deploy
a package to your production server and then you connect through Management Studio and
execute the package from your work laptop. In this case, the package will use your laptop’s
resources, not the production server’s resources, to run the package and will likely overwhelm
your laptop. For packages in the project deployment model, this will not be the case. They
would run on the server, using its resources.

One way to run a package is through Management Studio. Simply open Management Studio
and connect to the Integration Services service for packages in the package deployment model
or to the database instance for those stored in the project deployment model.

NOTE [case you're skipping around, Lesson 55 discusses how to connect
and configure the SSIS service.

Once connected, you can right-click any package and click Run Package (or Execute catalog
packages) to execute the package.

EXECUTING PACKAGES IN THE PACKAGE
DEPLOYMENT MODEL

After you click Run Package, the Execute Package Utility opens. You can also access this util-
ity by double-clicking any package in Windows Explorer or by just running DTExecUI. The
tool wraps a command-line package executor called DTExec.exe.

432

| SECTION9 ADMINISTERING SSIS

NOTE The Execute Package Utility tool executes packages only in 32-bit mode,
so if your package requires 64-bit support, you'll need to run the package from a
command line with the instructions mentioned later in this lesson.

When you first open the Execute Package Utility (shown in Figure 57-1), you see that the package is
automatically selected for you in the General page. If you enter the tool by just typing the command
DTExecUI, it does not have the package name already filled out. (This lesson covers the important
pages in the tool and just touches on the pages that you’ll rarely use.)

.. Execute Package Utility

g‘ General

| %7 Configurations

| # Command Files

| ## Connection Managers
| % Execution Options
ﬁ Reporting

|4 Logging

|57 Set Values

|57 Verfication

| % Command Line

Use this utility to run SQL Server Integration Services (S515) packages on the local computer.

Select the package to run from a storage location

= e

Package source: 3515 Package Stor

Server: Jocalhost

L Ll

Log on to the server
@ Use Windows Authentication

Package

“\MSDB"\Data CollectorSql Trace Upload

Execute | Close

FIGURE 57-1

The next page in the Execute Package Utility is the Configurations page. In this page, you can select
additional configuration files that you want to use for this execution of the package. If you do not
select an additional configuration file, any configuration files that are already on the server will be
used. Even though you may have configuration files already defined in the package, the existing ones
will not show in the list here. This is a place where you can only add additional configuration files.

The Command Files page passes additional custom command-line switches into the DTExec.exe

application.

The Connection Managers page shows the power of connection managers. This page enables you to
change the connection manager settings at run time to a different setting than what the developer
had originally intended by simply checking the connection you would like to change and making

LESSON 57 RUNNING SSIS PACKAGES | 433

your changes. For example, perhaps you’d like to move the AdventureWorks2012 connection for a
package to a production server instead of a QA server. Another typical example is when you don’t
have the same drive structure in production as they had in development and you need to move the
connection manager to a different directory.

The Execution Options page is where you configure the package’s execution runtime environment,
such as the number of tasks that will run in parallel.

The Reporting page controls what type of detail will be shown in the console. You may decide that
you’d rather show only Errors and Warnings, which would perform slightly better than the Verbose
message. You can also control which columns will show in the console.

The Logging page is where you can specify additional logging providers.

Another powerful page is the Set Values page. This page enables you to override nearly any prop-
erty you want by typing the property path for the property. The most common use for this is to

set the value of a variable. To do this, you would use a property path that looked like \Package.
Variables[VariableName].Value and then type the value for the variable in the next column. This
page is also a way to work around some properties that can’t be set through expressions. With those
properties, you generally can access them through the property path.

In the Verification page, you can ensure that the package will run only if it’s the correct build of
the package.

The Command Line page is one of the most important pages in the interface. This page shows you
the exact DTExec.exe command that will be executing. You can also edit the command here as well.
After the command is edited how you like it, you can copy and paste it in a command prompt after
the DTExec.exe command.

Keep in mind that on a 64-bit machine, you have two Program Files directories: C:\Program Files
(x86) for 32-bit applications and C:\Program Files for 64-bit applications. A copy of DTExec.exe
resides in each of these folders under Microsoft SQL Server\110\Dts\Binn. If you must execute a

package in 32-bit mode, you can copy and paste
. | Package Execution P 2=
the command from the Command Line page to seeamReaon e =
. Information: The package is attempting to configure from the parent varial »
a Commaﬂd prompt and append thlS Con'.lmand JSWaming Corffiguration from a parent variable "User::Days Until Expiration”
after the word DTExec.exe (once you’re in the _ 53 Vo s siated
. B . or Loap Container
appropriate directory). For example, if you’re on 52 sldstion hs stated (l
. . [B FEF - For esch trace file - regular trace upload i
a 64-bit machine, packages that use Excel at the 52 Valdation ha started H
: : el : B El b FAT - Precheck f trace file is accessible b
time of this writing will not work. You’ll need to P,
run those packages in 32-bit mode. g e
o £ Validation is completed
You can also execute the package by clicking the Bl » SL-logs uplosded fie nams
. 5 Validation has started
Execute button at any time from any page. After B Vaidation s completed
you click the Execute button, you see the Package et
Execution Progress window, which shows you) Werming: The pah & ety
. . . allaation 1S Complete:
any warnings, errors, and informational mes- £ Valdation hs started
. . 5 1\ Waming: The path is empty. I
sages, as shown in Figure 57-2. You’ll only see S Y —— '
a fraction of the message in some cases, but you
.. Close
can hover over the message to see it in full. "

FIGURE 57-2

434 | SECTION9 ADMINISTERING SSIS

RUNNING PACKAGES IN THE PROJECT DEPLOYMENT MODEL

Running a package in the project deployment model involves connecting to the package catalog in
the database instance. Once you are connected, right-click the package under the folder and project
and select Execute, which opens the Execute Package dialog box (shown in Figure 57-3). In this
General tab, you can change any parameter before you run the package. If the package is using an
environment, you can also select the environment you want from the Environment drop-down box.

L&} Execute Package - 2-OtherFeature.dtsx(ExpeditionDenali) E@
@ Ready
Select a page 5 seript - | I Help
2 General
Parameters |Connaction Managers | Advanced
Parameter Value
3 sAuditDB AdventureWorks :
DatabaseMame AdventureWorksDW2012 :
Param2 :
Serverbame CustomerServer =
Connection
2 kawr
[CONTOSOVAdministrator]
View connection properties k
Progress il
Ready
Environment: | \Customer A vl
[0K] [Cancel] I Help]
FIGURE 57-3

In the Connection Managers tab (shown in Figure 57-4), you can change connection managers for
this execution. Any changes will not be kept permanently and will be rolled back after the execu-
tion. In the Advanced tab, you can also select to run the package only in 32-bit mode. Click OK
once you’re ready to run the package.

Once you run the package, a message similar to what is shown in Figure 57-5 appears. This is telling
you that the package has run, but not telling you if it was successful. In the next lesson, you’ll see
more information about how to debug the packages that have run, but until then, click Yes in this
dialog box to show if the package was successful.

LESSON 57 RUNNING SSIS PACKAGES | 435

7 Execute Package - 2-OtherFeature.dtsx(ExpeditionDenali) o= =
@ Ready
Select a page 8 Seript - | [Help
A General
Name Properties
WL | AdventureWorksDW2012 Property name Value
localhost. AdventureWorks2... Data Source=localhost:Initial ... :
InitialCatalog AdventureWorksDW2012
Password

RetainsameConnec... False

ServerMame localhost

UserMame NULL

Connection
27 kw1
[CONTOSOVAdministrator]

View connection properties

Progress

Ready

Environment: | \Customer A ']

oK ” Cancel H Help]

FIGURE 57-4

Microsoft SQL Server Management Studic

#% The operation, ID 17, has started. For information about package executions and validations, open the
y' Integration Services Dashboard report from the SSISDE node. For information about other Integration
Services operations, open the All Operations report from the SSISDB node.

Would you like to open Overview Report now?

%

FIGURE 57-5

TRY IT

In this Try It, you learn how to execute a previously created package and change some basic proper-
ties prior to execution. You have realized that the original developer of the package left old server
information in the package, and you now need to point the connection manager to a different direc-
tory to see the file without modifying the package. After this lesson, you will understand how to run
a package in Management Studio and change the properties to point to a new directory.

For this lesson you will need the ExpeditionDenali.zip project, which is available as part of the
Lesson 53 download files from the Wrox website for this book at www.wrox. com.

http://www.wrox.com

436 | SECTION9 ADMINISTERING SSIS

Lesson Requirements

To simulate this problem, you are going to execute the package that was deployed and configured
earlier in this lesson, 2-OtherFeature.dtsx, which is in the ExpeditionDenali project. Instead of con-
necting to the AdventureWorks2012 database, try to change the DatabaseName parameter to point
to the AdventureWorksDW2012 database.

Hints

> Run the package in Management Studio by right-clicking the package and selecting Execute.
Go to the General page to change the parameter.

Step-by-Step
1. Open Management Studio, connect to your database instance, and drill into
SSIS Catalogs & Your Folder = ExpeditionDenali &> 2-OtherFeature.dtsx.
2. Right-click the package and select Execute.

3. Go to the Parameters page and change the Database parameter to AdventureWorksDW2012
by clicking the ellipsis button next to the parameter. You may also have to click Environment
and select a customer’s environment if you fully completed the Lesson 56 configuration.

4. Run the package by clicking OK.

Please select Lesson 57 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

58

Running Packages in T-SQL
and Debugging Packages

In the project deployment model, you can run packages in T-SQL and in Windows PowerShell.
Doing this is contingent on your having turned on CLR when you created the SSIS catalog.
One challenge to running packages in T-SQL is that you don’t receive output on whether or
not execution of the package was successful. This challenge is addressed in this lesson by dis-
cussing how you can use the runtime dashboard to diagnose package failures and to see execu-
tion statistics about your packages.

RUNNING THE PACKAGE

The ability to run packages in T-SQL is a game changer for those using SSIS. In the past, when
you opened Management Studio from your desktop and executed the package, the package
would run on your desktop, not the server. This meant that all the files had to be placed on
whatever machine was running the package, not the actual server. When you run packages in
SSIS 2012, the server does the actual execution because you can use T-SQL to run the package.

Executing a package in T-SQL enables you to integrate SSIS into your stored procedure or pro-
gram in a much easier way than you could before. When you run the set of stored procedures
that executes the package, it runs the packages as an asynchronous process and does not wait
for a success or failure response. Executing the package involves creating an execution thread
using the catalog.create_execution stored procedure. Then, you set any parameters using
the catalog.set_execution_parameter_value stored procedure. Finally, you execute the
package with the catalog.start_execution stored procedure. All of these stored procedures
are in the ssisdb database.

The catalog.create_execution stored procedure’s job is to load the package and prepare it
for execution. When you run the stored procedure, it returns a variable called @execution_id,

438 | SECTION9 ADMINISTERING SSIS

which you will need later in the other stored procedures you use. The template for the stored proce-
dure looks like this:

create_execution [@folder_name = folder_name

, [@project_name =] project_name
, [@package_name =] package_name

[, [@reference_id =] reference_id]

[, [@Quse32bitruntime =] use32bitruntime]
, [@execution_id =] execution_id OUTPUT

Most of the input variables are self-explanatory based on their names, but the one that may need

a little explaining is the @reference_id, which refers to the folder’s environment ID number and
is used only if the environment is required. You can find the @reference_id environment param-
eter by querying the catalog.environment references view in the ssisdb database. A completed
example is shown here:

Declare @execution_id bigint

EXEC [SSISDB].[catalog].[create_execution]
@package_name=N'2-OtherFeature.dtsx"',
@execution_id=@execution_id OUTPUT,
@folder_name=N'EDW',
@project_name=N'ExpeditionDenali',
@Quse32bitruntime=False,
@reference_id=1

It’s critical that you capture the @execution_id for use in the upcoming stored procedures. The
ﬁrﬁqﬂaceyouqluseﬁisinthecatalog.set_execution_parameter_valuesKHed;mocedure.ThB
stored procedure enables you to set optional parameters into your SSIS package:

EXEC [SSISDB].[catalog].[set_execution_parameter_value]
@execution_id,
@object_type=50,
@parameter_name=N'LOGGING_LEVEL',
@parameter_value=1

The last stored procedure to run in the batch is catalog.start_execution, which simply executes
the package based on the @execution_id variable, as shown in the following code:

EXEC [SSISDB].[catalog].[start_execution] @execution_id
GO

The complete example is shown here in one batch:

Declare @execution_id bigint

EXEC [SSISDB]. [catalog].[create_execution]
@package_name=N'2-OtherFeature.dtsx',
@execution_id=@execution_id OUTPUT,
@folder_name=N'EDW',
@project_name=N'ExpeditionDenali',
@Quse32bitruntime=False,

@reference_id=1

Select @execution_id
DECLARE @var0O smallint = 1

LESSON 58 RUNNING PACKAGES IN T-SQL AND DEBUGGING PACKAGES | 439

EXEC [SSISDB].[catalog].[set_execution_parameter_value]
@execution_id,

@Qobject_type=50,

@parameter_name=N'LOGGING_LEVEL',
@parameter_value=@var0

EXEC [SSISDB].[catalog].[start_execution] @execution_id
GO

What’s returned from this batch is simply a number that represents the execution ID. You may want
this later when you want to debug if anything has gone wrong in the package. What is not returned,
though, is whether or not the package was successful.

DEBUGGING WHEN SOMETHING GOES WRONG

When something goes wrong with a package execution in Management Studio or T-SQL, you
won’t know unless you have logging turned on or you go into the execution reports. You can access
the execution reports by right-clicking the SSIS catalog folder and selecting Reports &> Standard
Reports = Integration Services Dashboard. This dashboard (shown in Figure 58-1) gives you high-
level details of the package’s success.

? §5T_ Server

Integration Services Dashboard
on KIWI 31 8/6/2012 10:35:30 PM

This report provides information about operations that have run in the past 24 hours. including executions that are cumently running.

Execution Information (Past 24 Hours)

Other Integration Services Reports

0 0 5 0 All Executions
yJ v) View all package executions
Failed Running Succeeded Others All Validations
View all package validations.
Package Information (Past 24 Hours) All Operations
’ View all operations.
1 out of 3 packages have executed. All Connections
View information for connections used in failled executions.
B Connection Information (Past 24 Hours)

This table displays information about connections that have been used in failed executions.
Connection String a Execution - Last Failed Time - Last Failed Package &
Occurrences.

FIGURE 58-1

If you had any failures in the past 24 hours, they’d appear at a high-level in the Connection
Information area at the bottom of the report. You can also click one of the numbers (such as the
number 5 in Figure 58-1, which shows the successfully run packages) to see an update on the pack-
ages that have successfully run in the past 24 hours. After looking at the latest run report, you

can view an overview of a given execution by clicking the Overview link in the Execution report
(see Figure 58-2). The Overview report gives you the details of what happened in the package’s
execution (Figure 58-3).

440 | SECTION9 ADMINISTERING SSIS

? WSeNer

All Executions
on KIWI at 8/28/2012 9:05:21 AM
This report provides irformation about the Integration Services package executions that have been performed on the connected SOL Server instance.

T Fiter. Start time range: 8/27/2012 - 8/28/2012; Status: Succeeded; (4 mone)

Execution Information

0 0 1 0
Failed Running Succeeded Others.
D : Shatus 3 Report Folder Name : Project Name : Package Name 3 Start Time
I 3% Succeeded Quensew Al Meszages Pé{?mn_ EDW ExpedtionDenali 20therFeature disx 8/28/2012 5:05:10
FIGURE 58-2

You can see the complete details of the execution by clicking All Messages (see Figure 58-2). Lastly,
you can see the performance of the package under Execution Performance (again, see Figure 58-2),
which shows you the last 10 runs of the package and the duration of the runs.

Overview
on KIWI at 8/6/2012 10:43:56 PM

This report provides an ovenview of the package tasks and parameters. including execution or validation information.

View Messages

View Pedfomance

Execution Information

Operation ID 20028 Duration (sec) 1547

Package EDW\ExpediionDenal’2-OtherFeature dtex Start Time 8/6/2012 8:54:00 PM
Environment ACustomer A End Time: 8/6/2012 854:02 PM
Status Sucoceeded Caller CONTOSOAdministrator

Execution Overview Parameters Used

T Fiter: Result: Al (3 more) MName s Value Dat
CALLER_INFO Stng
Result 2 Duration 2 Package Name 3 Task Name a Execution Path >
(sec) DatabaseName AdventureWorksDW2012 Sting
I&moaedad 0.328 2-OtherFeature dtax 20therFeature \2-OtherFeature DUMP_EVENT_CODE 0 Sung
ISumeeded 0.281 2-0therfesture dsx DF - Sample Task 3 E: DUMP_ON_ERROR False Boolean
DUMP_ON_EVENT False Boolean
LOGGING LEVEL 1 Int32
—
FIGURE 58-3

TRYIT

In this Try It, you learn how to execute a package of your choice through T-SQL. After this lesson,
you should be able to integrate package execution into a stored procedure.

You can download the sample code for this lesson from http: //www.wrox.com.

http://www.wrox.com

LESSON 58 RUNNING PACKAGES IN T-SQL AND DEBUGGING PACKAGES | 441

Lesson Requirements

Find a package that you’ve already deployed to your database in the project deployment model and
try to execute it in T-SQL. The sample package used in this example is the 2-OtherFeature.dtsx
package found in the ExpeditionDenali project you deployed in earlier lessons. You can also down-
load and deploy it (as part of the Lesson 53 download) from this book’s companion website at

WWW.Wrox.com.

Hints

>

Use the create_execution and start_execution stored procedures in the catalog schema of the
SSISDB database.

Step-by-Step

1.
2.
3.

Open Management Studio and connect to your SQL Server instance.
Click New Query to open the query window and connect to the SSISDB database.

The complete query for our sample database is shown here, but yours may vary if you
choose a different package to run. In that case, you’d just change the epackage_name
parameter. Also, if you’ve created environments for other folders prior to this exercise,
your @reference_id may vary:

USE SSISDB

GO

Declare @execution_id bigint

EXEC [SSISDB].[catalog].[create_execution]
@package_name=N'2-OtherFeature.dtsx"',
@execution_id=@execution_id OUTPUT,
@folder_name=N'EDW',
@project_name=N'ExpeditionDenali', @use32bitruntime=False,
@reference_id=1

Select @execution_id

EXEC [SSISDB].[catalog].[start_execution] @execution_id
GO

Please select Lesson 58 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com
http://www.wrox.com/go/ssis2012video

59

Scheduling Packages

Now that you’ve learned how to run packages manually, running packages through a
schedule is easy. You can schedule them as a job to run automatically through SQL Server
Agent or, alternatively, through a third-party scheduler. SQL Server Agent runs jobs

under its own Windows account, which can pose some security issues when it comes to
accessing components in your package. For example, you may have a package that uses
Windows Authentication to access a database. When the package is run through SQL Server
Agent, Agent will pass its credentials to the database, which may not be adequate to access the
connection. To fix those issues, you can also run packages under a separate Windows account
called a proxy account.

To schedule a package through SQL Server Agent, open Management Studio and expand SQL
Server Agent & Jobs. Right-click Jobs and select New Job. Name the job something that you’ll
recognize at a later time and then go to the Steps page on the left bar and click New at the bot-
tom. This opens the New Job Step dialog box shown in Figure 59-1. A step is the smallest unit
of work in a job, and it can have a number of different types. For SSIS, the type of job is SQL
Server Integration Services Package, so that is the type you select for your step. Next, point

to the package you’d like the step to execute, as shown in Figure 59-1. Notice that you can
execute packages from the SSIS catalog (for those in the project deployment model) and the
msdb and filesystem (for packages in the package deployment model). The other tabs that you
see look identical to what was discussed in Lesson 57 in the Package Execution Utility.

After configuration of the step, click OK and then go to the Schedule page on the left. Click
New to create a new schedule, set the schedule of how often you want the package to execute,
and click OK. You can also execute the job manually by right-clicking on the job under SQL
Server agent and selecting Start Job at Step. To look at the job history, right-click the job and
select View History.

444 | SECTION9 ADMINISTERING SSIS

New Job Step EI@
S;;‘:ﬂa p‘age S Script m Help
2 Generdl
2 Advanced
Step name:

Package Execution

Type:
[SQL Server Integration Services Package ']
Run as:
[SQLSewer Agent Service Account ']
Package | Corfiguration
Package source: [55|5 Catalog =]
Server: localhost -

Log on to the server
@ Use Windows Authertication

Connection

Server:
Kiwi

Connection
CONTOSO"\Administrator
Package

1# View connection properties
\55|SDE\EDW \Expedition Denali\2-OtherFeature disx E]

Progress
Ready

Nezt

FIGURE 59-1

USING PROXY ACCOUNTS

A classic problem in SSIS is that a package may work in the design environment, but not work once
scheduled. Typically, this is because you have connections that use Windows Authentication. At
design time, the package uses your credentials, and when you schedule the package, it uses the SQL
Server Agent service account by default. This account may not have access to a file share or database
server that is necessary to successfully run the package. Proxy accounts in SQL Server enable you to
circumvent this problem.

With a proxy account, you can assign a job to use an account other than the SQL Server Agent
account with the Run as drop-down box, as shown in Figure 59-1. Creating a proxy account is a
two-step process:

1. First, you must create a credential that will allow a user to use an Active Directory account
that is not his own.
2. Second, you specify how that account can be used.

To first create a credential, open Management Studio, right-click Credentials under the Security tree,
and select New Credential. This action opens the New Credential window (shown in Figure 59-2).

LESSON 59 SCHEDULING PACKAGES | 445

) New Credential = li= ==
Selecta page c
S - Hel

7 General ‘;S a1 m P

Credential name: Credential Name|

Identity: Domain‘UserMName E

Password:

Confirm password —

[7] Use Encryption Provider

‘Connection

Server:

KIW1

Connection:
CONTOSO Administrator

i&f Vigw connection properties

Progress
Ready
FIGURE 59-2

For this example, you create a credential called CredentialName. The credential allows users to
temporarily gain administrator access. For the Identity property, type the name of an administra-
tor account or an account with higher rights. Lastly, type the password for the Windows account
and click OK.

NOTE As you can imagine, because you’re typing a password here, be careful of
your company’s password expiry policies. Credential accounts should be treated
as service accounts.

The next step is to specify how the credential can be used. Under the SQL Server Agent tree, right-
click Proxies and select New Proxy, which opens the New Proxy Account dialog box. Type a name
for the Proxy name property, and the credential name you created earlier as the Credential name.
Check SQL Server Integration Services Package in the “Active to the following subsystems” area to
allow SSIS to use this proxy.

Optionally, you can go to the Principals page in the New Proxy Account dialog box to state which
roles or accounts can use your proxy from SSIS. You can explicitly grant server roles, specific logins,
or members of given msdb roles rights to your proxy. Click Add to grant rights to the proxy one

at a time.

446 | SECTION9 ADMINISTERING SSIS

You can now click OK to save the proxy. Now if you create a new SSIS job step as was shown
earlier, you can use the new proxy by selecting the proxy name from the Run as drop-down box.
Any connections that use Windows Authentication then use the proxy account instead of the stan-
dard account. This enables you to connect with the account of your choosing for packages using
Windows Authentication and prevent failure.

TRY IT

In this Try It, you are in the position of having already created a package and are now ready to
schedule it to run nightly. To do this, you schedule a SQL Server Agent job to run nightly to execute
your package. After you have completed this lesson, you will know how to schedule your packages.

For this lesson, you will need the ExpeditionDenali project, which is available as part of the Lesson
53 download files from the Wrox website for this book at www.wrox. com.

Lesson Requirements

Find a package from the ExpeditionDenali project that you’ve already deployed to your database
and schedule the package to run nightly. Schedule a package that’s in that project to run nightly
at midnight.

Hints

> Create a new job in Management Studio under SQL Server Agent. The type of the job is SQL
Server Integration Services.

Step-by-Step

1. Open Management Studio and connect to your SQL Server instance.

2. Right-click SQL Server Agent (after making sure it is started) and select New = Job.

3. In the General page, name the job Test Job.

4. In the Steps page, click New and name the step Package Execution.

5. Select SQL Server Integration Services from the Type drop-down box.

6. Change the properties in the General page in the New Job Step dialog box to point to a
package from the ExpeditionDenali project you deployed earlier, as shown in Figure 59-1.

7. Click OK to return to the Steps page and go to the Schedules page.

8. Select New to create a new schedule. Name the schedule and schedule the package to run

daily by changing the Frequency drop-down box to Daily, as shown in Figure 59-3.

http://www.wrox.com

LESSON 59 SCHEDULING PACKAGES | 447

Name: My Schedule Jobs in Schedule
Schedule type: [F{eq.rmg '] Enabled
One-ime occumence
Date: 8/ 172012 ~ Time: 11:12:27 AM |
Frequency
e
Recurs every: 1 | dayie)
Daily frequency
@ Occurs once at: 120000 AM |24
() Occurs every: hour(s) - Starting at: 12.00:00 AM £
Ending at: 11:59:59 PM 5
Duration
Start date: 8/ 172012 @~) End date: 8/ 1/2012
@ Mo end date:
Summary
Description Occurs every day at 12:00:00 AM. Schedule will be used starting on 8/1/2012. -
[ok][cancel |[Hep |
FIGURE 59-3

Click OK twice to save the job. Right-click the job and select Start Job at Step to begin the
job execution. If a failure occurs, you can right-click the job and select View History to see

the failure.

Please select Lesson 59 on the DV D, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

SECTION 10
Loading a Warehouse

» LESSON 60: Dimension Load

» LESSON 61: Fact Table Load

Dimension Load

If you have a data warehouse, you’ve probably been thumbing through this book looking for a
way to load your dimension tables. Luckily, what used to take thousands of lines of code is now
done with a simple wizard in SSIS. This Slowly Changing Dimension (SCD) Wizard is a Data
Flow object that takes all the complexity out of creating a load process for your dimension table.

NOTE This lesson does not cover a Step-by-Step example on how to build
a data warehouse from a design perspective because that is a book in itself.

Before we discuss the Slowly Changing Dimension Wizard, you must understand a bit of ter-
minology. The wizard can handle three types of dimensions: Type 0, Type 1, and Type 2. Each
of these types is defined on a column-by-column basis.

> A Type 0 (Fixed Attribute) dimension column does not allow you to make updates to
it, such as a Social Security number. Even if the source value changes, the change is not
propagated to a fixed attribute.

> A Type 1 (Changing Attribute) dimension handles updates, but does not track the his-
tory of such changes.

> A Type 2 (Historical Dimension) dimension tracks changes of a column. For example,
if the price of a product changes and it’s a Type 2 column, the original row is expired,
and a new row with the updated data is created.

The last term you need to be familiar with is inferred members (also called late arriving
dimension members). These happen when you load a fact table and the dimension data doesn’t
exist yet, such as if you are loading a sale record into the fact table when the product does

not exist. Perhaps you get the product data from one server and the sales information from
another. The server with the product data was unavailable, but the sales server was available.
You, therefore, imported sales information, but were unable to update the product table. There
may have been a sale for a product that you were unable to load. In that case, your fact load

452

| SECTION 10 LOADING A WAREHOUSE

should create a dimension stub record in the dimension table. When the dimension record finally
comes from the source, the transform updates the dimension as if it were a Type 1 dimension, even
if it’s classified as a Type 2.

To use the Slowly Changing Dimension Wizard, you should first create a Source and Destination
Connection Manager, and then create a source component in your Data Flow. Then drag the SCD
Transform onto the Data Flow window and connect it to the source. After connecting it to a source
or another transform, double-click the transform to open the Slowly Changing Dimension Wizard.
The first screen (Figure 60-1) specifies which destination you want to load. First, select the destina-
tion connection manager, then the destination table, and then map the source input columns to the
target dimension columns. Lastly, select one key to be your business key (the primary key from the
source system is sometimes called the alternate key or the business key).

5Ll Siowly Changing Dimension Wizard B>

Select a Dimension Table and Keys
Select a dimension table to load and map columng in the transformation input to columns in
the: dimension table.

Connection manager.

| DestinationD B j Mew...
Table ar view
= [dbo] [LessonBODimPraduct] -
Input Columng Dimenzion Columng Key Type
PraductiD Business Key ProductD Business key
Calor Colaor Mot a key column

Effective End Date
Effective Start Date

ListPrice List Price Mot a key column

I akeFlag Make Flag Mat a key column

ModitiedD ate Modified D ate Mot a key column

Mame Product Mame Mat a key column

ProductMumber Product Number Mot a key column
FIGURE 60-1

In the next screen (shown in Figure 60-2), assign a type to each column. These are the slowly chang-
ing dimension types discussed earlier. The SCD Wizard calls dimension Type 0 a Fixed Attribute,
Type 1 a Changing Attribute, and Type 2 a Historical Attribute. This example uses List Price as
Historical. All others will be Changing.

If any of those columns are set to a Historical Attribute, then in a few screens (shown in

Figure 60-3) you are asked how you want to expire the row and create a new row. The top section
enables you to define a column where you can set a value to Expired, Active, or whatever value you
want. The bottom section sets a start date and an end date column to a date system or user variable.
Don’t worry—all of this can be customized later. The end date column you choose must allow nulls.
Current columns will contain null and expired columns will have a non-null end date. All of this is
managed by the SCD Task(s).

LESSON 60 DIMENSIONLOAD | 453

Select thiz tepe when the value in a
caolumnn should not change. Changes
are treated as emors

Historical Attribute

Select thiz tepe when changes in
columh values are saved in new
records. Previous values are saved in
records marked & outdated. Thisis a
Type 2 change.

= N
u_! Slowly Changing Dimension Wizard L_‘EIQ
Slowly Changing Dimension Columns
Manage the changes to column data in wour slowly changing dimensions by setting the
change type for dimension columns.
Fixed Attribute Select a change type for slowlp changing dimension columns:

Diimenzion Columng Chatge Type

Color

List Price
Changing Attribute Make Flag Changing attribute
Select this type when changed values Modified Date Changing attribute
should ovenarite existing values. This is .
aType 1 change. Product Name Changing attribute

Remove

L

FIGURE 60-2

—
8] Slowly Changing Dimension Wizard

Historical Attribute Options
You can record historical attributes using a single column or start and end date
calumns,

) Use a single colurmn to show current and expired records

@) Use start and end dates to identify current and expired records

Start date column [Elfective Start Date ']
End date colurn: [Elfective EndDate ']
Wariable to set dats values: System:: ContainerStart Time

L

Cancel

FIGURE 60-3

After you complete the wizard, the template code is created, and your dimension is ready to load. As
the Data Flow Task runs, every row is checked to see if the row is a duplicate, new row, or a Type

1 or Type 2 update. Inferred members are also supported. All the code that you see can be custom-
ized, but keep in mind that if you change any code and rerun the wizard, the customization will be
dropped and the template code will be recreated.

454 | SECTION10 LOADING A WAREHOUSE

TRYIT

In this Try It, you learn how to use the Slowly Changing Dimension Wizard to load a new prod-
uct dimension. You then make some changes to the source data and see the changes flow into the
dimension table. After this lesson, you will understand how to load a dimension table using the
Slowly Changing Dimension Wizard.

You can download the completed package and SQL scripts for this lesson from www . wrox. com.

Lesson Requirements

To complete this lesson, you must have permissions to create and drop tables from the
AdventureWorks2012 and AdventureWorksDW2012 databases. To create and load the
Lesson60ProductSource table and to create the Lesson60DimProduct table, run the Lesson60Create.
sql script in Management Studio. (The Lesson60Create.sql creation script is available at www.wrox
.com.) This script will load only four product rows, so it will be easy for you to see what is hap-
pening. You will use the Slowly Changing Dimension Wizard in your package. Your source table is
Production.Lesson60ProductSource in the AdventureWorks2012 database. The destination table is
Production.Lesson60DimProduct and is in AdventureWorksDW2012. The ListPrice column will be
a Type 2 (Historical) dimension column. As a business requirement, you must replace null values in
the Color column with the value Unknown. The Color column will be treated as a Type 1 (Changing)
attribute. After you run the package, run Lesson60Update.sql to make changes to the source table.
Then run the package again to propagate those changes to the destination dimension table.

Hints
> Use the OLE DB Source to pull data out of the Production.Lesson60ProductSource table.

> You can use the Derived Column Transform to change the Color column to Unknown if it
is null.

> Use the Slowly Changing Dimension Wizard to load the dimension.

Step-by-Step

1. Create a new package called Lesson60.dtsx. You may also download this package and all the
scripts for this lesson, which are available at www.wrox. com.

2. Create a connection manager to the AdventureWorks2012 database called SourceDB and
another connection manager to AdventureWorksDW2012 database called DestinationDB.

3. Create a Data Flow Task, and in the Data Flow tab, drag an OLE DB Source over. Point the
OLE DB Source to the Production.Lesson60ProductSource table in the AdventureWorks2012
database.

4. Connect a Derived Column Transform and configure it to replace the Color column with the
following expression:

ISNULL (Color) ? "Unknown" : Color

http://www.wrox.com
http://www.wrox�.com
http://www.wrox�.com
http://www.wrox�.com
http://www.wrox.com

LESSON 60 DIMENSIONLOAD | 455

Drag the Slowly Changing Dimension Transform from the Toolbox and connect the trans-
form to the Derived Column Transform. Open the wizard and go to the Mappings page
(shown in Figure 60-1). The Connection Manager property should be set to DestinationDB,
and the table should be dbo.Lesson60DimProduct (this table is created by Lesson60Create.
sql). Map all the columns by name, but the Name column from the source left side should
map to Product Name in the dimension. The ProductID in the input column will map to the
Business Key ProductID in the dimension column. Additionally, the Business Key ProductID
should be set to the Business key. As you map columns, you may notice that spaces are added
in the dimension to make them more user-friendly.

The next screen is the Slowly Changing Dimension screen where you assign a dimension type
to each column. Set each column to a Changing Attribute except for the List Price, which
should be a Historical Attribute, as shown back in Figure 60-2.

Click Next to go to the Fixed and Changing Attribute Options screen. You will not need to
change any options on this screen, but you can take a look at what is available. On this screen,
the Fail the transformation if changes are detected in a fixed attribute option tells the transform
how to handle Type 0 changes. When checked, the task will fail if it detects that a fixed attribute
has changed. There are no fixed attributes in the example. The second option on this screen
applies to changing attributes. The option is Change all matching records, including outdated
records, when changes are detected in a changing attribute. A single table may contain both
Changing and Historical Attributes. Each time a Historical Attribute changes, a new version of
the row is created. What should happen when a fixed attribute changes, especially when that
fixed attribute is contained in all historical versions of the record? When checked, the fixed attri-
bute change will automatically be propagated to all versions of the record.

Click Next to go to the Historical Attribute screen (shown back in Figure 60-3). Select the
Use start and end dates to identify current and expired records option. Set the Start date col-
umn box to Effective Start Date and set the End date column box to Effective End Date. Set
the Variable to set date values box to System::ContainerStartTime.

5] Slowly Changing Dimension Wizard B>

Historical Attribute Options
You can record higtorical attributes using a single column or start and end date
colurmng.

0 Use asingle colurn to show current and expired records

@ Use start and end dates to identify current snd expired records

Start date columr [Elfectlve Start Date ']
End date column: [Elfective End Date ']
Vaniable to set date values: System:ContainerStanTime -

FIGURE 60-3

456

| SECTION 10 LOADING A WAREHOUSE

9. For the remainder of the screens, you can keep the default options. Click Next, and then click
Finish to finish the wizard. Run the package, and the results should look like Figure 60-4.
‘ OLEDB b
s source
-
ﬁf- Derived Column
4V£‘u 0
I" Skouy Changing Dimenson
Hlmfl Atribute Inserts DLl':le h‘mm"’g Aliribute Upgates Quiput l
. Derived Column 1 .
j” . 7 OLE DS Command 1 OLE D8 Command 2
,..._ Neve Dutput (4frowes)
_ 7 OLE DB Command
Urion Al
4&;« y
= ©
A Derived Column 2
S 4
| ri i V
L Inzert Destination
FIGURE 60-4
10. Run Lesson60Select.sql and see that the rows were copied from the source to the destina-
tion. Null colors were changed to Unknown and effective Start and End Dates were set.
Figure 60-5 shows these results.
[Resuls ||y Messages |
MName ProduciMumber MakeFlag Color ListPrice ModifiedDate
1 Adustable Race AR-5381 0 NULL 000 2008-03-11 10:01:36.827
2 Beaing Bl Ba-8327 0 NULL - 000 2008-0311 10:01:36.827
3 BE Ball Beaing BE-2343 1 NULL D00 20080311 10:01:36.827
4 4 Headset Ball Beaings BE-2308 0 NULL 000 2008-0311 10:01:36.827
Product Name Product Mumbes ~ Make Flag Color List Pri.. Modified Date Effective Start Date Effective End Date
1 Adustable Race AR-5381 o Unknown 0.00 2008-031110:01:36.827 2012-08-18 10:06:05.000 MULL
2 Beaing Bal BA8327 a Unknown 0.00 2008-031110001:36.827 20120818 10:06:05.000 MULL
3 EE Ball Bearing BE-2343 1 Unknown 0.00 20030311 10:1:36. 827 2012.0818 10:06:05.000 MULL
4 Headset Ball Beaiing: BE-2305 o Urknown 0.00 2005-03-11 1001:36.827 200120818 10:06:05.000 MULL
FIGURE 60-5

Run Lesson60Update.sql to make changes to the underlying data. This made a change

to a Type 1 column, color was changed to Blue on ProductID = 1. A change was made to
a Type 2 column, ListPrice was changed to $2.00 on ProductID = 2. ProductID = 3 was
deleted and ProductID = 600 was inserted. All these changes were made to the source. The

LESSON 60 DIMENSION LOAD | 457

script will show you the new source rows and the current destination dimension rows, as in
Figure 60-6. The top table is the source with changes, and the bottom table is the current

destination.
[E Resuts | [y Messages
ProductiD Name Productlumber MakeFlsg Color ListPrice ModifiedDate
1 o Adjustable Race ARG3E1 o Blee 0.00 Z008-0311 100138 827
2 2 Bearing Bal EBAB32T a MNULL 2.00 20080311 1001:35 827
3 4 Headset Ball Bearings BE-2308 o NULL 0.00 2008-0311 1010136 827
4 600 Mew Product NPO0T o Black 1.00 2012-01-05 00:00:00.000
OwProducllD Business Key Product Name: Product Mumber Make Flsg Color List Price Modified Date Eifective Stait Date Efiective End Date
1 1” i Adjustable Race AR-5391 0 Urknown 0,00 20080311 10:01:36.627 20120818 10:06:05.000 NULL
2 2 Bearing Ball BA-B327 o Urknown 0,00 20080311 10:01:36.827 20120818 10:06:05.000 NULL
El 2 3 BE Ball Beaiing BE-2249 1 Urknown 000 20020211 10:01:36.827 20120818 10:06:05.000 WULL
4 4 4 Headeet Bal Bearings BE-2308 0 Uriknown 000 2002-0311 10:01:36.827 20120818 10:06:05.000 NULL
FIGURE 60-6

12. Run your package again. The results should look like Figure 60-7. Only two rows were
inserted and one row was updated.
‘ OLE DB v
|_ap Source
-
fx_. Derived Column
‘ o
I/' Skouly Changing Dimension
Histarical nfmﬂnm = mlrm'ﬁ"ﬂ?k“ Aftibute Uptates Dutgut (1 raws) l
. Derived Column 1 - - U
jx OLE DB Command 1 OLE DB Command 2
1 ummwa wz)
7 OLEDB Command
Urion Al
2 :
TE g
7 Dierived Column 2
T
; &
4 InsertDestination
FIGURE 60-7
13.

Now run Lesson60Select.sql one more time and see the results of your new package. Be sure

to save your package before you exit. Figure 60-8 shows the results. You should see the
Changing Attribute color has been changed to blue in place. The Historical Attribute List
Price was changed for the Ball Bearing product. It changed from $0.00 to $2.00. You will

458 | SECTION10 LOADING A WAREHOUSE

see the original row with $0.00 as well as the new row. Remember the purpose of Historical
Attributes is to retain the history of changes. The new product was added to the dimension.
BB Ball Bearings was deleted from the source, but remains in the dimension. We chose to

ignore deletions. Dimension members are rarely deleted, because there could be old historical
facts that refer to them.

2 Resuds |) Messages

ProductiD Name Producthumber MakeFlag Cobos ListPrice ModfiedDate
1 Adjustable Race ARS3IT o Blue 00O 2008-03-11 10:01:36.827
2 Bearng Ball BA-B327 [i} HULL 200 20080311 10:01:36.827
3 4 Headset Ball Beaiings BE-2308 o NULL 000 2008-03-11 10:01:36.827
4 BO0 New Product HPOOT 0 Black 1.00 2012:01-05 00:00:00.000

Business Ke.. Product Name Product Number Make Flag Color List Price Modfied Date Effective Stait Date Effective End Date

1 1 Adjustable Race AR-5381 0 Blue 0.00 2008-031110:01:36827 20120818 10.06:05000 NULL

2 2 Beaiing Bal BA-8327 0 Unknown 0.00 2008-031110:01:36.827 2012-0818 10:06:05000 2012-08-18 10:21:55.00C
33 3 BB Ball Beaiirg BE-2343 1 Unknewn 0.00 20080311 10:01:36827 20120818 10.08:05.000 NULL

4 4 4 Headset Ball Beasings BE-2308 0 Unknown 0,00 2008-031110:01:36. 827 2012:081210:06:05.000 NULL

5 5 B00 Mew Product NFO0T 0 Black 1.00 2M2-01-0500:00:00000 2012-08-1810:21:55.000 NULL

E & 2 Besiing Bal BA832T 0 Urknown 2,00 20080311 10:01:36827 20120212 10:21:55000 NULL

< il 0

FIGURE 60-8

Please select Lesson 60 on the DVD, or online at www.wrox .com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

61

Fact Table Load

A fact table is generally much easier to load than a dimension table. Typically, you only insert
into the table and don’t delete or update rows. Additionally, the components you use for a fact
table load are much simpler than the Slowly Changing Dimension Transform you used in the
previous lesson.

In a fact table load, the source data coming in contains the natural keys (also known as alter-
nate or business keys) for each of the dimension attributes associated with the fact. You want
to replace the business key with the key used in the dimension table. You look up the business
key in the dimension table and retrieve the surrogate key (the dimension table’s primary key).
Then the fact is stored with its dimension keys.

You may want to add additional, derived columns to the fact table. For example, you may
want to provide consumers with a Profit column in the fact table, but your source data only
has Cost and SellPrice columns, which you will bring into the fact table. These two col-
umns, Cost and SellPrice are enough to determine profit. In the Data Flow Task you would
create a Derived Column Transform that applies a formula in the expression, creating the
new Profit column.

Another common task is summarizing fact data. Perhaps you have a requirement for a fact
that contains ProductID, Date, and SaleAmount. Your source data for this fact contains an
additional column—CustomerID. You will need to add up all of the SaleAmounts for each
product, for each date, and for all customers. You can do this using an Aggregate Transform.
You would do a Group By ProductID and set the operation on Date to Max and SaleAmount
to Sum. You could also satisfy this requirement by doing the grouping in your SQL Select
statement that reads the source.

460 | SECTION10 LOADING A WAREHOUSE

TRYIT

Now that you know the components that are involved in a fact table load, in this Try It you load
one. After you complete this lesson, you’ll have a better understanding of how SSIS can help you
load a fact table in your own data warehouse.

To load this warehouse fact table, you’ll need to retrieve the surrogate keys from the business key.
You can download the completed Lesson61.dtsx and sample files for the lesson from www.wrox . com.

Lesson Requirements

Load a fact table called Lesson61FactFinance (Lesson61CreateTable.sql creates the table) in the
AdventureWorksDW2012 database. The source data is a flat file called Lesson61Data.txt. As previ-
ously noted, you can download both Lesson61CreateTable.sql and Lesson61Data.txt, as well as a
completed package of this lesson (Lesson61.dtsx) from the book’s website at www.wrox . com.

Hints

> The source file is a tab-separated file with business keys and money values.

> Keep in mind that a fact table package is a series of surrogate key lookups. You will have a
series of five Lookup Transforms, where you look up the business key in the dimension and
return the surrogate key value.

> Use a Lookup Transform against the DimOrganization, DimScenario, DimDate,
DimAccount, and DimDepartmentGroup dimension tables.

Step-by-Step

1. Run the Lesson61CreateTable.sql script to create the necessary table.
2. Create a new package in SSDT called Lesson61.dtsx.

3. Create a connection manager to AdventureWorksDW2012. Name it
AdventureWorksDW2012.

NOTE Creating connection managers is first discussed in Lesson 6.

4. Create a Flat File Connection to the Lesson61Data.txt file that you downloaded from
www . wrox . com. In the General page, set the name to Finance Extract and select the Column
names in the first data row option. In the Advanced page, set the FullDateAlternateKey col-
umn’s data type to a database date. Set the OrganizationName, DepartmentGroupName,
and ScenarioName columns to Unicode string. Set AccountCodeAlternateKey and
ParentAccountCodeAlternateKey to four-byte signed integer. Set the Amount column
to currency. Click OK to exit.

5. Create a Data Flow Task. In the task, drag a Flat File Source onto the design pane, and link it
to the Flat File Connection Manager you just created.

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com

LESSON 61 FACT TABLE LOAD

| 461

NOTE Working with Data Flow Tasks and using sources are covered in
Lessons 17 and 18, respectively.

Drag a new Lookup Transform onto the Data Flow design pane and link it to the

Flat File Source. Name the Lookup Transform Organization. In the transform, select
DimOrganization as your reference table in the AdventureWorksDW2012 database in the
Connection page. In the Columns page, connect OrganizationName from the source to
OrganizationName on the DimOrganization table. Check OrganizationKey, as shown in
Figure 61-1.

=
|+ Lookup Transformation Editor | B
This transtorm enables the performance of simple equi-joins between the input and 2 reference data set,
General
Connedtion
13 Available Input Columns
Advanced Mame - Available Lookup Columns
Error Output Fulll atedtemnatek ey = Name Ind..
Organizationt ame (Organizationk ey
DepartmentGroupM ame H [T ParentOrganizationt ey
SeenarioM ame [0 Percentageliunarshin
AccouniCadedlernatekey IR oznizstontl M
ParenticcountCodedlternatekey] Cunencykey
Anount -
Lookup Column Lookup Operation Output Alias
Organizationkey i =add as new column> Organizationkey
[[o]8] ’ Cancel I i Help]
L

FIGURE 61-1

NOTE Lookup Transforms are covered in detail in Lesson 24.

Now, repeat the same steps for the DimScenario, DimDate, DimAccount, and
DimDepartmentGroup tables. For the DimScenario table, match ScenarioName columns
and retrieve the ScenarioKey. For the DimDate table, match FullDateAlternateKey and

462 | SECTION10 LOADING A WAREHOUSE

retrieve DateKey. For DimDepartmentGroup, match DepartmentGroupName and retrieve
DepartmentGroupKey. Finally, for DimAccount, you will look up based on two columns.
Map AccountCodeAlternateKey from input to lookup and ParentAccountCodeAlternateKey
from input to lookup and return AccountKey. Connect the lookup match output from each
of the Lookup Transforms together in any order.

8. Connect the final Lookup Transform into a newly created OLE DB Destination. Configure
the destination to load the Lesson61FactFinance table.

NOTE Loading information into destinations is discussed in Lesson 19.

9. Save and Run the package. The final result should look like Figure 61-2.

= =
o Knight's SSIS Book (Running) - Microsoft Visual Studio (Administrator) [E=E 5
File Edit VYiew Project Build Debug Team Data Format SSIS Architecture Test Tools Analyze Window Help

fal-E | % am|9 - -] b |[peveiopment || SR e BIB I~ b wo@ @ [(Z|G%]|3- -

Package2.dtsx [Design] Lessonbl.dtsx [Design] <

%, Control Flow [Data Flow | Parameters

Z Event Handlers |"'5 Package Explorer | % Progress

Data Flow Task: [& Load Fack Table v
| Finance
=ap Extract
: J 4 /
v (£ p.209 rows & @)
L1 organization | (WSS IIIIIITE " P, — 5 b Department
(.2 Lookup Match Output (35,409 raws) Lookup Match Output (33,409 rows ™ Group
£ - Lackup Match Cutput (33,408 rof)
. | ‘
£d e A pae
o= fecont Lockup Match Output (39,409 -w}s)—-»
Lookup Match Oufput (39,403 rows)
F Y
" &
| OLEDB
I,_‘ Destinstion
Connection Managers

L) AdventureworksDW2012 < Finance Extract

) Package execution completed with success. Click here bo switch to design mode, or select Stop Debugaing from the Debug menu.

-\ Call Stack B Breakpoints M Command Window B Output ﬂ Error List

Ready
& /

FIGURE 61-2

Please select Lesson 61 on the DVD, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

SECTION 11
Wrap Up and Review

» LESSON 62: Bringing It All Together
» APPENDIX A: SSIS Component Crib Notes

» APPENDIX B: Problem and Solution Crib Notes

Bringing It All Together

In the past 61 lessons, you’ve see most of the common SQL Server Integration Services (SSIS)
components, but now it’s time to think a little out of the box, or maybe just make the box big-
ger, and try a complete solution. In this solution, you create a package that performs a load of
a few dozen files into a table and audits the fact that you did this. You also build steps in the
package to prevent you from loading the same file twice.

NOTE This lesson assumes that you've gone through the rest of the book
to learn the components in a more detailed fashion than will be covered in
this lesson. Some of the low-level details in this lesson have intentionally
been left out for that reason, but you can see those steps in this lesson’s
companion video.

To work the solution in this lesson, you need to download a few files from the book’s website
at www.wrox.com. The files that accompany this lesson are as follows:

> Lesson62Create.sql—This is the file that creates the schema you’ll be using throughout
this lesson.

> Lesson62Data.zip—This contains the data that you’ll be using to load.
Lesson62DataNextDay.zip—This contains the data to simulate the next day’s data.

> Lesson62.dtsx—This is a completed version of the package for this lesson.

LESSON REQUIREMENTS

The AdventureWorks, Inc., sales department wants to communicate with voters who signed a
certain petition. They also want to ensure that you never load the same file twice, wasting the
salesperson’s time. Filenames are unique. Your requirements are as follows:

> Unzip Lesson62Data.zip into a new folder called C:\Projects\SSISPersonalTrainer\
Lesson62\InputFiles.

http://www.wrox.com
V413HAV
Typewritten Text
V413HAV

466 | SECTION11 WRAP UP AND REVIEW

HINTS

Load all the files from the C:\Projects\SSISPersonalTrainer\Lesson62\InputFiles directory into
the PetitionData table in the AdventureWorks2012 database.

Log each time you load a file (filename), the number of rows loaded from the file, and when
it was loaded (today’s date in your case) into the AdventureWorks2012 database in the
[Lesson62VoterLoadAudit] table.

As you load the data, ensure the ZIP codes are the standard 5-digit length—ZIP +4 must be
truncated.

Archive the file to a new directory called C:\Projects\SSISPersonalTrainer\Lesson62\
InputFiles\Archive.

You should be able to rerun the package multiple times and never load the same files twice
even if the duplicate file is in the same directory.

Whether or not you’ve already loaded the file, you want to archive the file to an archive
folder after loading it or detecting it as a duplicate file.

NOTE The files have text qualifiers (double quotes) around the columns. You
need to handle this in the connection manager.

After your package successfully runs the first time, unzip Lesson62DataNextDay.zip into
the C:\Projects\SSISPersonalTrainer\Lesson62\InputFiles directory to test the duplicate file
requirement and rerun your package.

To accomplish these goals:

>

You need a Foreach Loop Container to loop over the files in the input directory, setting the
FileName user variable value in each loop.

Set an expression on your Flat File Connection Manager to set the connection string property
to be equal to the variable that holds the filename.

Load the flat file into the table by using a Data Flow Task and audit the row count with a
Row Count Transform.

Once loaded, audit the fact that the load occurred by using an Execute SQL Task.

Lastly, place an Execute SQL Task as the first task to ensure that the same file can’t be
loaded twice. The query in the Execute SQL Task should look something like the following:
SELECT COUNT (*) from Lesson62VoterLoadAudit where FileName = 2. Set the neces-
sary property to capture the single row returned from the query into a variable. Then connect
the Execute SQL Task to the Data Flow Task and set the precedence constraint to evaluate
the expression to prevent the double-loading of a file. If the audit record exists, then the file
has been loaded before.

LESSON 62 BRINGING IT ALL TOGETHER | 467

STEP-BY-STEP

At this point, the step-by-step instructions aren’t going to be quite as detailed as before because

it’s assumed that you know some of the simpler steps. If you still need more granular information,
watch the video for this lesson on the accompanying DVD for very incremental steps or take a peek
at the completed package. If you have any questions regarding specific tasks or transforms, please
review the lessons focusing on them earlier in the book.

1.
2.

Run Lesson62Create.sql, which creates the necessary tables for this lesson.

Unzip Lesson62Data.zip into the C:\Projects\SSISPersonalTrainer\Lesson62\InputFiles direc-
tory. Also create a C:\Projects/SSISPersonalTrainer\Lesson62\InputFiles\Archive directory.

Create a new package called Lesson62.dtsx.

In the Control Flow tab, create two new variables as follows:
> Name—TFileCount
> Data type—int32
> Default Value—0

> Name—RowCount
> Data type—int32
> Default Value—0
Make sure they are scoped to the package name.
Create an OLE DB Connection Manager to point to the AdventureWorks2012 database.

Create another connection manager, this time a Flat File Connection Manager, which points
to any file in the C:\Projects\SSISPersonalTrainer\Lesson62\InputFiles directory. The file is
comma delimited and has a text qualifier of a double-quote.

Create a new Data Flow Task in the Control Flow window and name it DF - Load Petition
Data. In the Data Flow tab, drag over a Flat File Source. Configure the Flat File Source to
point to the Flat File Connection Manager you just created.

Add a Derived Column Transform and connect the Flat File Source to it. In the transform,
add the following code to use only the first five characters for the Zip column:

SUBSTRING ([ZIP],1,5)
Set the Derived Column drop-down box to Replace Zip column. This means that the new
derived value will replace the value in the existing Zip column.

Drag a Row Count Transform over and connect the Derived Column Transform to it. Set the
VariableName property to User::RowCount.

468 | SECTION11 WRAP UP AND REVIEW

10. Drag an OLE DB Destination onto the design pane and connect the Row Count Transform
to it. Point the destination to the Lesson62PetitionData table and set the mappings based on
column names.

11. Run the package once to make sure the Data Flow works. You should have 4417 rows in
the Lesson62PetitionData table. Delete the rows using the following command:

Delete
FROM [AdventureWorks2012]. [dbo]. [Lesson62PetitionData]

12. Drag a Foreach Loop Container into the Control Flow tab. Drag the Data Flow Task into
the container.

13. Double-click the Foreach Loop Container to open the Foreach Loop Editor. Go to the
Collection page and complete it using the following information:

> Enumerator: Foreach File Enumerator
> Folder: C:\Projects\SSISPersonalTrainer\Lesson62\InputFiles
> Files: *.*

This is shown in Figure 62-1.

In the Variable Mappings page, select <New variable> from the Variable drop-down box
and type the new string variable of FileName.

7] Foreach Loop Editor L@

ﬂ The Foreach Loop container allows execution iteration ower an enumeration,
=

General 4 Foreach Loop Editor

Collection Enumerator Foreach File Enumerator
Yariable Mappings [Expressions
Expressions

Enumerator
Specifies the enumerator type,

Enumerator configuration
Folder:

CiProjiects\SSI5 PersanalTrainenLessoné AnputFiles

Files:

Retrieve file name

) Mame and extension @ Fully gualified) Mame anly

D Traverse subfolders

o] Cone] [|

FIGURE 62-1

LESSON 62 BRINGING IT ALL TOGETHER | 469

14.

15.

Drag an Execute SQL Task into the Foreach Loop Container. Position it under the Data
Flow Task and connect the Data Flow Task to it. Name the new task SQL - Audit Load.

Set the Connection property to AdventureWorks2012 and set the SQLStatement to the fol-
lowing statement:

INSERT INTO Lessonb62VoterLoadAudit
(LoadFile, LoadFileDate, NumberRowsLoaded)
VALUES (?, GETDATE(), ?)

In the Parameter Mapping page, add two parameters, as shown in Figure 62-2.

NOTE Remember that the Parameter Name is actually the parameter number for
the OLE DB Connection Manager. Filename is the first “2” in the SOL statement
and has a parameter number (Name) of 0. The second “2” in the SQL statement
is a placeholder for the RowCount variable and has a parameter number of 1.

» Name—FileName
> Data type—Varchar

» Parameter Name—O0

> Name—RowCount
> Data type—Long

» Parameter Name—1

1 =
| 3 Execute SQL Task Editor B =)

LW _ Configure the properties required to run 301U statements and stored procedures using the selected connection,
=)

General ‘ariable Mame Direction Data Type Paramefer Mame Parameter Size
Param ping
Result Set UseriFileMame Input WARCHAR o -1

Expressions UseriRowCount Input LONG 1 i1

FIGURE 62-2

470 | SECTION11 WRAP UP AND REVIEW

16.

17.

18.

19.

20.

Drag an Expression Task into the For Each Loop Container. Place it at the very top of the
container. Set the properties as follows:

» Name—Initialize RowCount to 0
> Expression—@|User::RowCount]=0

Drag another Execute SQL Task into the Foreach Loop Container, positioned between

the Expression Task and the Data Flow Task. Connect the Expression Task to this
Execute SQL Task. Connect this Execute SQL Task to the Data Flow Task. Name the task
Has File been Previously Loaded. Inside the task configuration, set the connection to the
AdventureWorks2012 Connection Manager and the ResultSet property to Single Row.
Finally, set the SQLStatement to the following:

SELECT COUNT(*) From Lesson62VoterLoadAudit
WHERE LoadFile = ?

In the Parameter Mapping page, add a new parameter as follows:
> Variable Name—User::FileName
> Data type—Varchar
» Parameter Name—0
In the Result Set page, add a new result set:
> ResultName—0
> Variable Name—User::FileCount

Drag a File System Task into the For Each Loop Container in the Control Flow tab. Connect
the last Execute SQL Task (SQL - Audit Load) to the new File System Task. Now configure
the File System Task. To set the DestinationConnection property, click it and choose <New
Connection> to create a connection manager. Set its Usage Type to Existing Folder, and use
the folder C:\Projects\SSISPersonalTrainer\Lesson62\InputFiles\Archive. Set the properties as
follows:

> OverwriteDestination—True
> Operation—Move file
> SourceConnection—Flat File Connection Manager

Drag a precedence constraint from the Has File been Previously Loaded Task to the SQL -
Audit Load Task. Notice that the Has File been Previously Loaded Task now has two prece-
dence constraints from it, as in Figure 62-3.

LESSON 62 BRINGING IT ALL TOGETHER | 471

21.

22.

23.

"] I Foreach Loop Container -
-

Initizlize RowCount to
Jr 8

1

| Has File been Previously
L Loaded

& v
| =%] OF-Load Petition Data 8\
5|
. e

| SQL - Audit Load

| Execute SQL Task

File System Task

FIGURE 62-3

Now you will direct the flow between the two precedence constraints. For each file, the
Has File been Previously Loaded SQL Task counts the number of rows in the audit table

for that file. If no rows are in the audit for this file (@FileCount=0), you should go to DF -
Load Petition Data. If the file has already been loaded (@FileCount>0), skip the load and go
directly to the SQL - Audit Load Task.

Double-click the precedence constraint between the first Execute SQL Task and the

Data Flow Task. To make sure the Data Flow Task will execute only if the file hasn’t
loaded yet, set the Evaluation Operator to Expression and Constraint and the expres-
sion to @[User::FileCount] == 0. Repeat the same step for the other precedence constraint
coming out of the first Execute SQL Task, but this time set the Expression property to

@[User::FileCount] > 0.

Next, make the Flat File Connection Manager filename dynamic by right-clicking the con-
nection manager and choosing Properties. In the Properties window, click the ellipsis button
next to the Expression property. Select the ConnectionString property from the Property
drop-down box and type @[User::FileName] for the Expression property.

Finally, double-click the precedence constraint coming out of the Data Flow Task and change
the Multiple Constraints property to a Logical Or. When you click OK, it will make both
precedence constraints connecting into the second Execute SQL Task dotted.

472 | SECTION11 WRAP UP AND REVIEW

24.

25.

Run the package and the final results should look like Figure 62-4. You should see the peti-
tion rows in the database in Lesson62PetitionData. You should see an audit row for each
file in the Lesson62VoterLoadAudit table. If you check the InputFiles folder (C:\Projects\
SSISPersonalTrainer\Lesson62\InputFiles), it should be empty, and all of the files should be
copied to the archive subdirectory (C:\Projects\SSISPersonalTrainer\Lesson62\InputFiles\
Archive).

%, Control Flow | (31 Data Flow |0 Parameters | & Event Handiers |“: Package Explorer | 5 Progress

\;]
- I Foreach Loop Container ~
L -
Initialize RowCount to O
Je d
L | Has File been Previously G
_iy Loaded

E

| = | DF-Losd Peition Data 1),

File System Task

=

Connection Managers

o Packae execution completed with success, Click here to switch ko design mode, o select Stop Debugging from the Debug menu,

FIGURE 62-4

Unzip the Lesson62DataNextDay.zip file into the C:\Projects\SSI2SPersonalTrainer\Lesson62\
InputFiles folder and run it again. This time, some of the files will process and others will
skip the processing. Each file is logged into the audit, even if it was previously loaded. You
can confirm that some files were previously loaded by looking at the audit table. Look at all
the rows for 14395con.dat. You should see two rows, the initial load of 4417 rows, and the
second attempt, which loaded 0 rows.

Please select Lesson 62 on the DVD, or online at www.wrox.com/go/ssis2012video,
to view the video that accompanies this lesson.

http://www.wrox.com/go/ssis2012video

SSIS Component Crib Notes

In this appendix, you find a list of the most commonly used tasks and transforms in SSIS with
a description of when to use them. Reference these tables when you have a package to build in
SSIS and you are not sure which SSIS component to use to perform the needed actions.

WHEN TO USE CONTROL FLOW TASKS

TASKS WHEN TO USE

CDC Control Task Use this when SQL Server’s Change Data Capture provides the
input data. This task manages the date and Log Serial Number
(LSN) range used to identify incoming rows. LSNs are just row num-
bers used to identify rows in the transaction log.

Data Flow Task Use this task when you need to pass data from a source to a des-
tination. The source and destination can be a flat file, an OLE DB
Connection, or any other connections supported in the connection
manager.

Execute Package Task Use this task when you need to call another package from within a
package. The package performing the call is the parent package.
The called package is the child package. You can pass information
from the parent package to the child package with configurations
and parameters.

Execute Process Task Use this task to call an executable. The executable can be a batch
file or an application. This task can call applications to perform
functions on the files in SSIS, such as compressing a file. This task
is commonly used to call third-party programs like compression or
FTP tools.

474 | APPENDIXA SSIS COMPONENT CRIBNOTES

TASKS

Execute SQL Task

File System Task

FTP Task

Message Queue Task

Script Task

Send Mail Task

Web Service Task

XML Task

WHEN TO USE

Use this task to perform any T-SQL operation. The SQL can be
saved directly in the task, in a file, or in a variable. This task is com-
monly used to call stored procedures.

Use this task to manipulate files. This task can move, rename, copy,
and delete files and directories. You can also change the attributes
of a file. A common use is archiving files after loading them.

Use this task to send or receive a file via the FTP protocol. You
must have a valid FTP connection to perform this task. This task is
commonly used to receive files from an FTP host for loading in a
database.

Use this task to send or receive messages to a message queue.
You must have a valid MSMQ connection to perform this task.

Use this task to perform complex tasks that are not available in
SSIS. This task enables you to leverage the .NET Framework to per-
form just about any task. Checking for the existence of a file is com-
mon use of this task. Script Tasks can be coded in VB or C#.

Use this task to send e-mail via SMTP. You must have a valid SMTP
server connection to use this task. You can use this task to send
notification of the package information to recipients. You can also
send files via the attachments on the e-mail.

Use this task to call a web service. You need a valid web service
URL to perform this task.

Use this task to perform XML functions. This task can perform com-
mon XML tasks such as Diff, used to compare two XML files and
find the differences.

WHEN TO USE DATA FLOW TRANSFORMS

TRANSFORMS

Aggregate

Audit

WHEN TO USE

Use this transform to perform grouping and summing of data. This is
similar to the “Group By” function in T-SQL.

Use this transform to add a column to a Data Flow with package
information. You can add items like the package name and user-
name as a new column in the Data Flow.

APPENDIX A SSIS COMPONENT CRIB NOTES

| 475

TRANSFORMS

CDC Source

CDC Splitter

Conditional Split

Copy Column

Data Conversion

Derived Column

DQS Cleansing

Export Column

Fuzzy Grouping

Fuzzy Lookup

Import Column

Lookup

Merge

Merge Join

WHEN TO USE

Use this transform when using Change Data Capture to load data.
It reads rows from a CDC change table. Rows read are identified by
the CDC Control Task.

Use this transform to divide a data stream from the CDC Source
Task into streams for insert, update, and delete. This is similar to a
conditional split, but works specifically with the CDC Source.

Use this transform to divide data into different paths based on a
boolean expression. You can use all the paths from the split or
ignore some outputs.

Use this transform to create a new column in the Data Flow that is
an exact copy of another column.

Use this transform to convert data from one data type to another.
For example, you can change Unicode to non-Unicode or change a
string to an integer.

Use this transform to create or replace a column in the Data Flow
with a column created by an expression. You can combine columns
or use functions like getdate() to create new data.

Use this transform to run DQS cleansing projects in batch.

Use this transform to send a column in a Data Flow to a file. The
data types can be DT_TEXT, DT_NTEXT, and DT_IMAGE.

Use this transform to group data together based on a percentage
match. In this transform, the data does not have to be an exact
match to be grouped together. You can control the percentage of
matching needed to group the data.

Use this transform to find matching data in a table. The data does
not have to match exactly. You can control the percentage of
matching needed to group the data.

Use this transform to import data from files into rows in a data set.

Use this transform to compare data in a Data Flow to a table. This
will find exact matches in the date and give you a match and no-
match output from the transform.

Use this transform to combine two sets of data similar to a Union All.

This transform requires both inputs to be sorted.

Use this transform to combine two sets of data similar to a left outer
join. This transform requires both inputs to be sorted.

476 | APPENDIXA SSIS COMPONENT CRIB NOTES

TRANSFORMS

Multicast

OLE DB Command

Percentage Sampling

Pivot

Row Count

Row Sampling

Script Component

Slowly Changing
Dimension

Sort

Term Extraction

Term Lookup

Union All

Unpivot

WHEN TO USE

Use this transform to clone the data set and send it to different loca-
tions. This transform does not alter the data.

Use this transform to send T-SQL commands to a database. You can
use this to insert data into a table using the T-SQL Insert command.

Use this transform to select a percentage of the rows in a Data
Flow. The rows are randomly selected. You can set a seed to select
the same rows on every execution of the transform. The unselected
rows will follow a different path in the Data Flow.

Use this transform to convert normalized data to denormalized data.
This transform changes the rows into columns.

Use this transform to write the row count in a Data Flow to a
variable.

Use this transform to select a number of rows in the Data Flow. The
number of rows is set in the transform. The unselected rows will fol-
low a different path in the Data Flow.

Use this transform to perform complex transforms that are not
available in SSIS. This transform enables you to leverage the .NET
Framework to perform just about any transform.

Use this transform to create a dimension load for a data warehouse.
This is a wizard that will walk you through the decision-making pro-
cess while setting up a dimensional load.

Use this transform to order the data by a column or more than one
column. This is similar to an “order by” command in T-SQL.

Use this transform to find words in a Data Flow and create an output
with the words listed and a score.

Use this transform to compare to data in a Data Flow and determine
if a word exists in the data.

Use this transform to combine two sets of data on top of each other.
This is similar to the “Union” command in T-SQL.

Use this transform to convert denormalized data to normalized data.
This transform changes the columns into rows.

Problem and Solution Crib Notes

This appendix is a result of the culmination of many student questions over years of teaching
SSIS classes. After a week of training, students would typically say, “Great, but can you boil
it down to a few pages of crib notes for me?” The following table shows you common prob-
lems you’re going to want to solve in SSIS and a quick solution on how to solve them. These
solutions are just crib notes, and you can find most of the details throughout this book or in
Professional Microsoft SOL Server 2012 Integration Services (Wrox, 2012).

PROBLEM

Loop over a list of files and
load each one.

Conditionally executing
tasks.

QUICK SOLUTION

Tasks Required: Foreach Loop, Data Flow

Task Solution: Configure the Foreach Loop to loop over any
particular directory of files. You should configure the loop to
output to a given variable. Map the given variable to a connec-
tion manager by using expressions. You can find more on this
in Lesson 43.

Solution: Double-click the precedence constraint and set the
Evaluation property to Expression and Constraint. Type the
condition that you want to evaluate in the Expression box.
When you are using the Expression and Constraint option,
both the specified execution result and the expression condi-
tion must be satisfied for the next task to execute.

478 | APPENDIXB PROBLEM AND SOLUTION CRIB NOTES

PROBLEM

Pass in variables when
scheduling or running a
package.

Move and rename the file at
the same time.

Loop over an array of data
in a table and perform a set
of tasks for each row.

Perform an incremental load
of data.

Perform a conditional
update and insert.

QUICK SOLUTION

Solution: Use the /SET command in the DTExec com-

mand line or change the Property tab in the Package
Execution Utility to have the property path like \Package.
Variables[User::VariableName].Properties[Value]. You can find
more on this in Lesson 57.

Tasks Required: File System Task

Solution: Set the File System Task to rename the file and
point to the directory you’d like to move it to. This enables you
to rename and move the file in the same step. You can find
more on this in Lesson 10.

Tasks Required: Execute SQL Task, Foreach Loop

Solution: Use an Execute SQL Task to load the array and
send the data into an object variable. Loop over the variable
in a Foreach Loop by using an ADO Enumerator. You can find
more on this in Lesson 43.

Tasks Required: Two Execute SQL Tasks, Data Flow Task

Solution: Have the first Execute SQL Task retrieve a date
from a control table of when the target table was last loaded
and place that into a variable. In the Data Flow Task, create

a date range on your query using the variable. Then, update
the control table using a second Execute SQL Task to specify
when the table was last updated. You can find more on this in
Lesson 36.

Components Required: Data Flow Task, Conditional Split,
Lookup Transform or Merge Join, OLE DB Command
Transform

Solution: Use the Lookup Transform or Merge Join to deter-
mine if the row exists on the destination and ignore a failed
match. If the row yields blank on the key, you know the

row should be inserted into target (by a Conditional Split).
Otherwise, the row is a duplicate or an update. Determine if
the row is an update by comparing the source value to the tar-
get value in the Conditional Split. You can perform the update
using an OLE DB Command Transform or by loading the data
into a staging table.

APPENDIX B PROBLEM AND SOLUTION CRIB NOTES

| 479

PROBLEM

Create a filename with
today’s date.

Use a two-digit date. For
example, retrieve a month in
two-digit form (03 for March
instead of 3).

Multiple condition if state-
ment. In this example, the
statement determines that if
the ColumnName column is
blank or null, it will be set to
unknown. To make a Logical
AND condition, use &&
instead of the Il operator.

Return the first five charac-
ters from a ZIP code.

Remove a given charac-
ter from a string (example
shows how to remove
dashes from a Social
Security number).

Uppercase data.

Replace NULL with another
value.

Replace blanks with NULL
values.

QUICK SOLUTION
Expression on the ConnectionString property on the Flat
File or File Connection Manager:

"C:\\Projects\\MyExtract" + (DT_WSTR, 30)
(DT_DBDATE) GETDATE () + ".csv"

Results in:

C:\Projects\MyExtract2009-03-20.csv

RIGHT ("0"+ (DT_WSTR, 4) MONTH (Getdate()),2)
Results in:
03 (if the month is March)

ISNULL (ColumnName) || TRIM(ColumnName)== "" ?
"Unknown" : ColumnName

Derived Column Transform in the Data Flow:

SUBSTRING (ZipCodePlus4,1,5)

Derived Column Transform in the Data Flow:

REPLACE (SocialSecurityNumber, "-","")

Derived Column Transform in the Data Flow:

UPPER (ColumnName)

Derived Column Transform in the Data Flow:

ISNULL (ColumnName) ? "New Value": ColumnName

Derived Column Transform in the Data Flow:

TRIM (ColumnName) == "" ?
(DT_STR,4,1252)NULL (DT_STR, 4,1252)
ColumnName

480 | APPENDIXB PROBLEM AND SOLUTION CRIB NOTES

PROBLEM

Remove any non-numeric
data from a column.

Convert text to proper case
(first letter in each word
uppercase).

QUICK SOLUTION

Script Transform in the Data Flow Task with the code as
follows:

Imports System.Text.RegularExpressions
Public Overrides Sub
Input0_ProcessInputRow (ByVal Row As

InputOBuffer)
If Row.ColumnName_TIsNull = False Or Row.
ColumnName = "" Then

Dim pattern As String =
String.Empty
Dim r As Regex = Nothing
pattern = "["0-9]"
r = New Regex(pattern,
RegexOptions.Compiled)
Row.ColumnName =
Regex.Replace (Row.ColumnName, pattern, "")
End If
End Sub

Script Transform with the line of partial code as follows
(note that this code should go on one line):

Row.OutputName = StrConv (Row.InputName,
VbStrConv.ProperCase)

What’s on the DVD?

This appendix provides you with information on the contents of the DVD that accompanies
this book. For the latest and greatest information, please refer to the ReadMe file located at
the root of the DVD. Here is what you will find in this appendix:

>

>
>
>

System Requirements
Using the DVD
What’s on the DVD

Troubleshooting

SYSTEM REQUIREMENTS

Make sure that your computer meets the minimum system requirements listed in this section.
If your computer doesn’t match up to most of these requirements, you may have a problem
using the contents of the DVD.

>

>
>
>

PC running Windows Vista, Windows 7, or later
An Internet connection

At least 512MB of RAM

A DVD-ROM drive

USING THE DVD

To access the content from the DVD, follow these steps.

1.

Insert the DVD into your computer’s DVD-ROM drive. The license agreement appears

482 | APPENDIXC WHAT'S ON THE DVD?

NOTE The interface won't launch if you have autorun disabled. In that case,
start the DVD manually.

2. Read through the license agreement, and then click the Accept button if you want to use the DVD.

The DVD interface appears. Simply select the lesson number for the video you want to view.

WHAT’S ON THE DVD

This DVD is the most exciting part of this book. With this DVD, you can listen to four geeks who
love SSIS work through the lessons you’ve worked with throughout the book. Because we believe
strongly in the value of video training, this DVD contains hours of instructional video. At the end of
each lesson in the book, you will find a reference to an instructional video on the DVD that accompa-
nies that lesson. In that video, one of us will walk you through the content and examples contained in
that lesson. All you need to do is play the DVD and select the lesson you want to watch. You can also
find the instructional videos available for viewing online at www.wrox.com/go/ssis2012video.

TROUBLESHOOTING

If you have difficulty installing or using any of the materials on the companion DVD, try the follow-
ing solutions:

> Reboot if necessary. As with many troubleshooting situations, it may make sense to reboot
your machine to reset any faults in your environment.

> Turn off any anti-virus software that you may have running. Installers sometimes mimic
virus activity and can make your computer incorrectly believe that it is being infected by a
virus. (Be sure to turn the anti-virus software back on later.)

> Close all running programs. The more programs you’re running, the less memory you have
available to other programs. Installers also typically update files and programs; if you keep
other programs running, installation may not work properly.

> Reference the ReadMe. Please refer to the ReadMe file located at the root of the DVD-ROM
for the latest product information at the time of publication.

CUSTOMER CARE

If you have trouble with the DVD-ROM, please call the Wiley Product Technical Support phone
number at (800) 762-2974. Outside the United States, call 1(317) 572-3994. You can also contact
Wiley Product Technical Support at http: //support.wiley.com. John Wiley & Sons will provide
technical support only for installation and other general quality control items. For technical support
on the applications themselves, consult the program’s vendor or author.

To place additional orders or to request information about other Wiley products, please call
(877) 762-2974.

http://www.wrox.com/go/ssis2012video
http://support.wiley.com

INDEX

Access, 12
accuracy, 295
Active Directory, 425
Administration and Monitoring,
296,299
administrative mode, 118
ADO, 82, 84, 337-339
ADO.NET, 13, 36, 82, 84, 289, 337
ADO.NET Connection Manager,
287,291
Aggregate Transform, 6, 167-171,
474
ALTER TABLE, 164
alternate keys, 459
Analysis Services Processing Task,
4,317
appended data, 311
appended data schema, 311
AssignExpression, 331
asynchronous transforms, 167, 174
attachments, 102-103
audit rows, 472
audit tables, 74-75, 189, 200
error logging to, 87
file loading, 466, 471-472
Audit Transform, 474
auditing
CDC information, 283
Derived Column Transform,
159
file loading, 465-466,
469-472
frameworks, 375
history table, 269
number of files in loop, 94
project parameters, 419-420
Row Column Transform,
189-191

backslashes, 259
bad data
Data Flow handling, 114
destinations, 114
Fuzzy Lookup Transform
handling, 221-230
Script Component handling,
200-202
batch size, 141
BI. See business intelligence
BI xPress, 375
BIDS. See Business Intelligence
Development Studio
Bigint, 152
Binary, 152
Bit, 152
blind carbon copy, 101-102
blocking transforms, 167, 174
Boolean, 242
breakpoints, 199
Data Flows, 400
errors, 401
events, 400
looping, 399-400, 402-403
packages, 400
buffer size, 395
building projects, 414
Bulk Insert Task, 4
business intelligence (BI), 1, 17
Business Intelligence Designers, 72
Business Intelligence Development
Studio (BIDS), 365
business keys, 459-460
BypassPrepare property, 84
Byte, 242
byte streams, 152-153

C#, 4-5
expression language
similarity, 160
Script Components, 197
Script Tasks, 71-72
Cache Connection Manager
(CCM), 184-188
cache modes, 179-181
Cache Transform, 184-188
CAL. See client access licenses
carbon copy, 101
case sensitivity, 243
CAST, 151
cast functions, 163-164
cast operators, 162-163, 255
Catalog Properties, 408
catalog.create_execution,
437
catalog.environment_
references, 438
catalog.set_execution_
parameter_value, 437-438
catalog.start_execution,
437-438
CCM. See Cache Connection
Manager
CDC. See Change Data Capture
CDC Components, 281-294
CDC Control Task, 282-284,
286-290, 473
CDC Source Task, 282, 284-285,
290, 291
CDC Source Transform, 286, 475
CDC Splitter Task, 282, 286-287,
291
CDC Splitter Transform, 475
CDCStates, 291
Change Data Capture (CDC), 17,
269, 281
incremental load, 286, 294

483

Changing Attributes — Control Flow

initial load, 283
mappings, 288, 291-292
planning, 283
processing modes, 284-285
schema changes, 284
SSIS tasks, 282
target consumers, 283
Changing Attributes, 451-452, 455,
457
Char, 242
char, 153
child packages
configuring, 365-371
execution, 317, 321
location, 366-367
parallel execution, 318
parameters, 368, 370
password protection, 367-368
precedence constraints, 317, 321
separate process execution, 368
Cleansing Task
Connection Managers, 310
Data Flow inputs, 309
Cleansing Transform
Conditional Split Task, 311,
312
Conditional Split Transform,
313
Connection Managers, 315
Data Flows, 309, 311-316
Flat File Destination, 313-315
mappings, 310
options, 311
client access licenses (CAL), 18
CLR. See Common Language
Runtime
COBOL files, 197
code pages, 80
Column Mappings dialog box, 13,
16, 216-217
column selection, 123
column verification, 153
ColumnName, 199
comma-delimited files, 131, 133
command-line package execution,
431
Common Language Runtime (CLR),
407, 410, 437
comparison flags, 232
completeness, 295
Component Properties tab, 212,
216, 291
composite domains, 297, 305
conditional execution, 477

484

conditional operator, 160-161
Conditional Split Task, 478
Cleansing Transform, 311-312
data flows, 312
Conditional Split Transform, 6,
203-209, 236, 475
Cleansing Transform, 313
Data Viewer, 396
conditional update and insert, 478
confidence, 223, 311
Config Data, 355
configuration. See also Package
Configurations Organizer
conversion to parameters, 48,
50-52, 54
Execute Package Task, 366
Execute Package Utility, 432
logging, 379

Package Configuration Wizard,

351-352, 358, 361-362
Package Configurations
Organizer, 350-351, 353,
355, 358, 360-361
packages, 249, 347, 349-355,
361, 415-420
project deployment model, 50
service, 421-423
SSIS Catalog, 408-409
configuration files, 357-363
Configuration Filter, 355
Configuration Manager, 21
configuration tables, 347-356
Configuration Tools, 21
Configure SSIS Logs window,
375-378
conformity, 295
Connection Information area, 439
Connection Manager pane, 36-37,
115,231
Connection Managers, 36-37, 64,
110. See also Excel Connection
Manager; Flat File Connection
Manager; OLE DB Connection
Manager; specific connection
managers
ADO.NET, 287, 291
CCM, 184-188
Cleansing Task, 310
Cleansing Transform, 315
configuration files, 357
configuration tables, 348-349
Data Flows, 114
data quality, 310
DQS, 313

Excel, 36, 128-130, 147-48,
154
Execute Package Utility, 432
File, 36, 64
File Extract, 339, 342
FTP, 36, 107-109, 111
HTTP, 36
ODBC, 36
OLE DB Destination, 140-142
OLE DB Source, 122, 126
package execution, 434
parameters, 54
project, 37
Slowly Changing Dimension
Wizard, 452
SMTP, 36, 100-101, 103-104
sources pointing to, 121
connection strings, 347-348, 353,
356,359, 363, 466
connections
altering, 75
availability, 114
configuration tables overriding,
353
Control Flows using, 114
Data Flows using, 114
dynamic, 255, 258-259
Execute SQL Task, 82-83
File Connection, 83-84, 102
File Connection Manager, 36, 64
FTP timeout, 108
Script Task altering, 75
SMTP timeout, 101
task, 59
troubleshooting, 353
ConnectionString, 258, 342, 359, 479
configuration tables, 347
consistency, 295
containers, 4. See also For Loop
Containers; Foreach Loop
Container
event handlers, 327
precedence constraints, 328
properties, 327
sequence, 327-330
task grouping, 327, 329
transactions, 327
variable scope, 327, 329
Control Flow
CDC Control Task, 287, 289,
290
configuration files, 361
connections, 114

Control Flow tab — data types

Execute Package Tasks, 320,
365-366, 369
Execute SQL Task, 32, 79, 211
Expression Task, 93-94
File System Task appearance, 66
Foreach Loop Container, 337
FTP Task, 107
incremental load, 273, 277-278
For Loop Container, 332
Package Configurations, 354
parent packages, 365, 369
Row Count Transform, 189
Script Tasks, 61-62, 72, 76,
354,379
Send Mail Task, 99
task connection, 59-60
Variables, 190, 244
Control Flow tab, 5, 32, 40
Control Flow Tasks, 473-474
CONVERT, 151
Convert to Package Deployment
Model, 348
Copy Column Transform, 475
Create Table dialog box, 142
CreateDeploymentUtility property,
412-413
credentials, 444-445
cube builds, 318
cubes, 317-318
processing, 318-319, 321-322

data access modes, 122, 207, 245,
252,257,288
data cleansing, 307. See also DQS
Cleansing Transform
interactive, 298
knowledge base for, 297-298
Profiler tab, 297
projects, 312
Data Cleansing and Matching, 296,
298-299
Data Collector folder, 366
data compression, 17
Data Conversion Task, 155
Data Conversion Transform, 6, 151,
154-157, 475
Fast Parse, 153
Data Conversion Transformation
Editor, 151-152
columns, 153
data discovery, 300-303

data editing, Derived Column
Transform, 159
Data Flow, 477-480
bad data handling, 114
breakpoints, 400
Cache Transform, 187-188
CDC tasks, 282, 287
Cleansing Task inputs, 309
Cleansing Transform, 309,
311-316
column defaults, 173
combining inputs, 193-196
Conditional Split Task, 311-312
creating, 113-118
data types, 242-243
destinations, 142
error paths, 124
event handlers, 383
Flat Files Source, 134
Foreach Loop Container,
339-340
joining data, 179
Mappings, 139
placeholders, 128, 131, 135, 142
Sort Transform, 173-174, 176
transform editor opening, 159
data flow elements, §
Data Flow Path Editor, 395
Data Flow tab, 5, 32
Destination Assistant, 140
Source Assistant, 121
task connection, 60
Data Flow Tasks, 4, 5, 36, 200, 473
bad data handling, 114
breakpoints, 400
CDC Source Task, 284,
290-291
CDC Splitter Task, 286
Cleansing Task inputs, 309
Cleansing Transform, 309,
311-316
Conditional Split Task, 312
Connection Managers, 314
creating and editing, 114
Data Conversion, 155
Excel Extract, 130, 145
expressions, 257
fact table loads, 460-461
file loading, 469
Flat File Extract, 133, 142
Foreach Loop Container, 339
Fuzzy Grouping Transform, 234
Fuzzy Lookup, 224
incremental load, 273, 276

moving data, 115-118
OLE DB Command Transform,
215
OLE DB Extract, 126, 148
packages, 114
precedence constraints, 471
Row Count Transform, 190
Script Component, 197
Slowly Changing Dimensions,
453-454
Union All, 195
variables, 245
Data Flow Transforms, 474-476
Data Mapping Warnings, 16
data marts, 283
Data Mining components, 17
Data Quality Client, 296, 309, 310,
312,313
data quality connection manager, 310
Data Quality Knowledge Base
(DQKB), 296, 313
Data Quality Projects, 307-308
Data Quality Server, 296
Data Quality Services (DQS),
295-308
composite domains, 297, 305
confidence values, 311
data discovery, 300-303
Domain Management,
300-302, 304-305
domain rules, 305-306
installing, 296
logging, 299
main steps, 296-299
mappings, 307, 313
profiler, 297, 299
project review, 312, 316
synonyms, 297, 303-304
Data Quality Services Installer, 296
data sources
extracting data from, 121-137
upgrading, 41
data types
Aggregate Transform
operations allowed, 167
cast functions, 163-164
conversion, 80-81, 163-164
in Data Conversion Transform,
155
Data Flows, 242-243
errors, 124
in Excel files, 129, 151
expressions, 261
in flat files, 132, 134

485

Data Viewers — EncryptSensitiveWithPassword property

properties, 261
SQL Server, 152-153
SSIS, 151-153
Unicode, 129, 151, 475
variables, 242-243
Data Viewers, 393-397
data warehouses
best practices, 219
building, 231
CDC information targets, 283
dimension loads, 269
master package, 317
package execution order, 365
populating, 179
database roles, 426-427
Date, Aggregate Transform
operations allowed, 167
date operations, 95
DATEDIFF function, 95
DATEPART (), 161
dates, in filename, 479
DateTime, 242
Datetime, 152
Date/Time Functions, 95
DB2, 11, 13, 36, 122, 140
DBA tools, 18
db_dtsadmin, 426
db_dtsoperator, 426
DBNull, 242
DCOM, 426
debug mode, 33, 39, 389-391, 396
breakpoints, 401
debugging, 199
logging, 439
Management Studio, 439-440
message boxes, 199
packages, 390-391, 437-441
T-SQL, 439-440
Decimal, 152, 242
default buffer size, 395
delete pattern, 270-271
Deleted Flag column, 271, 280
deletes, 269, 458
DeleteStatement, 263-264
delimited files, 131, 133, 145, 196,
314, 460
delimiters
token, 222-232
types, 132
dependencies, 317
design issues, 318
deployment
configuration files, 357, 362-363

486

final, 356, 362-363
packages, 411-414
server names, 356
SSIS Package Store, 421
deployment models, 31, 47. See also
package deployment model;
project deployment model
configuration tables, 347-356
Execute Package Task
configuration, 366
Deployment Wizard, 411-412
Derived Column Transform, 5, 6,
159-165, 261, 475, 479
altering rows, 218
data cleansing, 197
fact table loads, 459
file loading, 467
replacing columns, 454
Destination Assistant, 140
Destination Columns, 156
DestinationDB Connection, 288
destinations, 6. See also
Excel Destination; Flat
File Destination; OLE DB
Destination; Partition Processing
Destination; SQL Server
Destination
bad data, 114
dimension, 17
loading data to, 139-149
Row Count Transform, 189
development environment, 323, 356,
363,417
Dim statement, 74
Dimension Destination, 17
dimension loads, 269, 318-323,
451-458
dimension tables, 211, 218, 231, 459
dimensions, 317-318, 365. See also
Slowly Changing Dimension
attributes, 459
deletions, 458
types, 451
Direct Input
Execute SQL Task, 83-84
Send Mail Task, 102
DirectRowTo<outputbuffername>
method, 199
Domain Management, 300-302,
304-305, 312
domain rules, 297, 305
DontSaveSensitive, 50
Double, 242

DQS. See Data Quality Services
DQS Cleansing Transform, 309-316,
475
DQS Connection Managers, 313
DT_BOOL, 152, 242
DT_BYTES, 152
DT _DBTIMESTAMP, 152, 242
DT_DECIMAL, 242
DT_DECIMAL(), 163
DTExec, 363, 431-433, 478
DTExecUI, 363, 431-432
DT_I2, 243
DT_I4, 152,243
DT_I8, 152,243
DT_IMAGE, 152, 475
DT_NTEXT, 475
DT_NUMERIC, 152
DT_NUMERIC (), 163
DT_R4, 152
DT_RS, 242
Dts.Connections (), 75
DT_STR, 222,231
DT_STR (), 162
Dts.Variables (), 74-75
DT _TEXT, 475
DT_UI1, 242
DT _UI2, 242
DT _Ul4, 243
DT_UIS, 243
DT_WSTR, 222,231, 243, 264
DT_WSTR (), 162-163, 255
(DT_WSTR, 2),258
duplicate key errors, 285
duplicate sort values option, 174
duplicates, removing, 231-238
duplication, 296
D_WSTR, 152
dynamic packages
expressions, 255-259
parameters, 249-254
variables, 241-247
dynamic tasks, 261-266

e-mail messages
attachments, 102-103
fields, 101
string data, 161
EncryptAllWithPassword property,
38,40
EncryptSensitiveWithPassword
property, 38, 426

EncryptSensitiveWithUserKey property — extraction

EncryptSensitiveWithUserKey
property, 38
Enterprise Edition, extra components
and features, 17-18
Enterprise Resource Planning
(ERP), 351
enumerators, 337-338
Environment Properties pane, 416
environments, 317
creating, 415-417, 419
Data Viewers, 393
deployment, 356
development, 323, 356, 363,
417
production, 323, 356, 363, 393,
417
variables, 87, 363, 416, 420
ERP. See Enterprise Resource
Planning
Error Output page, 124
ErrorLog table, 190
errors
breakpoints, 401
correcting, 389
data type, 124
duplicate key, 285
logging, 87
OLE DB Source output, 124
package, 377, 388-389
Result Set, 390
Syntax, 390
troubleshooting, 387-391
validation, 387
variables capturing, 87
ETL. See extraction, transformation,
and loading
ETL tasks, 89
EvalExpression, 331
EvaluateAsExpression, 243
event handlers, 4
common uses, 383-384
containers, 327
creating, 382-383
Data Flow, 383
Execute SQL Task, 375,
384-385
logging, 383
Script Task, 383-385
Send Mail Task, 383
using, 381-385
event logs, 379
events, 381. See also specific events
breakpoints, 400

logging, 377, 379
Excel, 11, 12, 82, 121, 299, 433
data types, 129, 151
drivers, 129
versions, 129, 130
Excel Connection Manager, 36,
128-130, 147-48, 154
Excel Destination, 6, 114, 147-149
Excel Extract task, 130, 145
Excel Source, 5, 114, 128-131,
145-146, 154
exceptions, 380, 390
ExclusionGroup, 199, 201
Execute Package dialog box, 434
Execute Package Task, 4, 41, 473
configuring, 366-368
Control Flow, 320, 365-366,
369
master package, 317-321
parent package, 365-366, 369
password, 367-368
project deployment model
upgrade, 48-50, 54
Execute Package Utility, 431-433
Execute Process Task, 87-90, 473
ping website with, 89-91
properties, 87-89
variables, 88
Execute Process Task Editor, 87-89
Execute SQL Task, 4, 79-84, 474
array loading, 478
bulk operations, 211
connection types, 82-83
Control Flow, 32, 79, 211
Direct Input, 83-84
event handlers, 375, 384-385
in Expression Task, 94
expressions, 261-265
File Connection, 83-84
file loading, 466, 469-471
incremental loads, 478
logging, 88, 375, 384
For Loop Container, 332-334
OLE DB Command Transform,
211
properties, 31
Row Count Transform, 189
in Script Tasks, 74-75
timeout, 80
troubleshooting, 390
Variable option, 83-84
variables, 243
Execute SQL Task Editor, 79-85

ExecuteOutofProcess property, 368
Execution Options page, 433
Execution Results tab, 33
Qexecution_id, 438-439
Export Column Transform, 475
Expression Builder, 55, 61, 93,
342, 343
dynamic connections, 2535,
258-259
dynamic tasks, 261-262,
264-265
expression building, 93
Expression Task, 93-97
in Control Flow, 93-94
Execute SQL Task in, 94
file loading, 470
looping, 93-94, 96
Expression Task Editor, 94-95
expressions, 159, 203
C# language similarity, 160
cast operators, 162-163
conditional execution, 477
connection string property, 466
copying, 258
Data Flow Tasks, 257
data types, 261
dynamic packages, 255-259
dynamic tasks, 261-266
Execute SQL Task using,
261-265
fact table loads, 459
Flat File Connection Manager,
255,257,466
Flat File Destination, 257
Foreach Loop Container, 342,
343
functions, 258
language, 160
OLE DB Source, 257
operators, 160
PhysicalCount checking,
160-161
precedence constraints, 59, 190
Send Mail Task population,
261-262
string data, 161-162, 261-263
string functions, 161-162,
261-263
T-SQL differences, 161
variables, 243
External Reference, 366
extraction, transformation, and
loading (ETL), 2, 179, 211, 298

487

fact data — incremental load

fact data
historical, 458
summarizing, 459
fact loads, 318, 322, 365, 451-452
fact table loads, 459-462
fact table packages, 460
facts, 317-318
Fast Load, 141
Fast Parse, 136-137, 153
Feature Selection screen, 18
file attributes, 67
File Connection
Execute SQL Task, 83-84
Send Mail Task, 102
File Connection Manager, 36, 64
file creation rights, 118
File Extract Connection Manager,
339, 342
file paths, string data, 161
file renaming, 478
File System Task, 63-69, 470,
474, 478
destination variables, 64
directories, 65
e-mail attachments, 103
file manipulation, 67-69
file or folder attributes, 67
properties, 64-66
File System Task Editor, 63-66
FileStream, 21-22
FileSystemFolder node, 423
final deployment, 356, 362-363
Fixed Attributes, 451-452, 455
fixed-width files, 131, 145
Flat File Connection Manager, 36
Aggregate Transform, 171
data cleansing, 200
data extraction, 132, 135-136
date in filename, 479
dynamic filename, 471
expressions, 255,257, 466
fact table loads, 460
File Extract, 339, 342
file loading, 467
Foreach Loop Container,
338-339, 342
Fuzzy Grouping Transform,
234-235
Fuzzy Lookup, 224
loading data to destinations,
145-146

488

Lookup Transform, 183
parameters, 252
Union All Transform, 196
variables, 246
Flat File Destination, 35, 6, 116-117,
145-147, 181, 183
Aggregate Transform output,
171
Conditional Split Transform,
208-209
DQS Cleansing Transform,
313-315
expressions, 257
Mappings, 146
parameters, 252
Union All Transform, 194, 196
variables, 245
Flat File Extract task, 133, 142
Flat File Source, 5, 14, 131-137, 215,
225,467
DQS Cleansing Transform, 313
Fast Parse, 136-137
Foreach Loop Container, 339
Fuzzy Grouping Transform, 234
flat files, 113, 115, 121
Aggregate Transform, 168
Cache Transform, 187-188
data types, 132, 134
delimited, 145, 196, 314
looping, 337-338
Sort Transform, 176
types, 131, 133
Float, 152
folder attributes, 67
For Loop Containers, 331-335, 337
breakpoints, 399-400, 402-403
For Loop Editor, 333
ForceExecutionResult property, 61
Foreach ADO Enumerator,
337-339
Foreach ADO.NET Schema Rowset
Enumerator, 337
Foreach File Enumerator, 337-338,
340
Foreach From Variable Enumerator,
338
Foreach Item Enumerator, 337
Foreach Loop Container, 255,
337-343,478
breakpoints, 399-400
file loading, 466, 468-470, 477
Foreach Loop Editor, 337, 341, 468
Foreach Nodelist Enumerator, 338

Foreach SMO Enumerator, 338
FTP Connection Manager, 36,
107-109, 111
Test Connection, 108, 111
FTP servers, 108
FTP Task, 4, 32, 107-112, 474
operations, 109-110
FTP Task Editor, 107-111
Full Text service, 21
full-cache mode, 180
Fuzzy Grouping Transform, 6, 221,
231-238, 475
fuzzy logic algorithms, 222,232
Fuzzy Lookup Transform, 6, 17,
221-231, 233, 475
bad data handling, 221-230

GETDATE (), 161, 163
GETDATE() function, 218
Group by ProductID, 459
GROUP BY statement, 167-169
Group Output Alias, 231, 237
Group Transform, 17

Handle Deletes Data Flow, 280

Handle Insert Update Data Flow
window, 279

Has File been Previously Loaded
SQL Task, 470-471

Historical Attributes, 451-452,
455,457

historical facts, 458

history table, 269

Hit Count, 400

Hit Count Type, 400-401

HTTP Connection Manager, 36

if statements, 479

Image, 152

Import and Export Wizard, 1-2, 11,
14-15

Import Column Transform, 475

importing tables, 269

incremental load, 269-280, 478

CDC, 286, 294

incremental load package — Mappings

Control Flow, 273, 277-278
Data Flow Tasks, 273, 276
Lookup Transform, 270-272,
274,277
mappings, 275-277
OLE DB Command Transform,
272,275,277
OLE DB Connection Manager,
273-274
OLE DB Destination, 272,
274-275
OLE DB Source, 273, 276
read query, 270
source database, 269
SQL command mode, 273, 276
SQL queries, 272-274, 277
incremental load package, 283
indexes
Fuzzy Lookup Transform,
221-222
token-based, 222
InitExpression, 331
initial load package, 283
in-memory data manipulations, 6
in-memory data transformations, 113
Input Columns, 156
INSERT statement, 332
insert/update pattern, 270, 281
Int, 152
Intl6, 243
Int32, 243, 264, 332
Int64, 243
integers, 475
Integrated Services Designers, 72
Integration Services. See SQL Server
Integration Services
Integration Services Catalog, 54,
410, 415, 420
roles, 427
users and roles, 425
Integration Services Dashboard, 439
Integration Services Deployment
Wizard, 414
Integration Services Project
Conversion Wizard, 48-54
IntelliSense, 84
interactive cleansing, 298
internal project references, 48, 50
IsDate(), 200
IsDestinationPathVariable property,
64-65
IsLocalPathVariable property, 110
ISNULL, 161

ISPAC file, 411-412

IsQueryStoredProcedure, 84

IsRemotePathVariable property, 110

IsSorted property, 174

IsSourcePathVariable property,
64-65

jobs, 443
joins, 179, 180

key tables, 269
_key_in, 233,236
_key_out, 233,236
keys
alternate, 459
business, 459-460
duplicate key errors, 285
natural, 459
primary/foreign key
relationships, 283
surrogate key lookups, 460
Knowledge Base Management, 296,
297,299, 307
Knowledge Discovery, 301-302

leading value, 297, 303-304
LocalPath, 110
Locals window, 399
log files, 87
log providers, 378-379
log scans, 293
Log Sequence Number (LSN), 282,
284
logging, 88
catalog, 408
debugging, 439
DQS, 299
errors, 87
event handlers, 383
events, 377, 379
Execute Package Utility, 432,
433
Execute SQL Task, 88, 375, 384
package data, 375-380
package execution, 408

SSIS 2012 capabilities, 365
variables, 87, 375
warning, 383
Lookup Match Output, 291
Lookup Transform, 7, 17, 179-184,
475,478
cache modes, 179-181
CCM, 184-185
fact table loads, 460, 461
before Fuzzy Lookup
Transform, 221, 226,228
incremental load, 270-272,
274,277
Mappings, 183
shared caches, 184-185
Term, 476
Loop Iteration event, 400
looping, 477. See also For Loop
Containers; Foreach Loop
Container
auditing number of files, 94
breakpoints, 399-400, 402-403
data array, 478
Expression Task, 93-94, 96
Loop Iteration event, 400
variables, 338
While loops, 331
XML, 338
LSN. See Log Sequence Number

Maintenance Plans folder, 366
Management Studio, 11, 14, 23, 33.
See also SQL Server Management
Studio
database roles, 426
debugging, 439-440
Deployment Wizard, 411-413
Object Browser, 427
package configuration, 249,
415, 417,420

package deployment, 411-414
package execution, 435, 441
package roles, 425-427
package scheduling, 443, 446
running packages, 431
running queries, 216, 225, 264
SSIS Catalog, 407, 410
subfolders, 423

Management Tools, 18

Mappings, 117, 139

489

master package — OnQueryCancel event

Aggregate Transform output,
171

CDC tasks, 288, 291-292

Cleansing Transform, 310

Column Mappings dialog box,
13, 16, 216-217

Conditional Split Transform,

209
Data Flows, 139
DQS, 307, 313

file loading, 468
Flat File Destination, 146
Fuzzy Grouping Transform,
237-238
Fuzzy Lookup Transform, 229
incremental load, 275-277
Lookup Transform, 183
OLE DB Command Transform,
213, 218, 219
OLE DB Destination, 143-144
Parameter, 81-82, 84,
469-470
parameters, 250, 252
Slowly Changing Dimension
Wizard, 455
Union All Transform, 193,
195-196
Variable, 468
master package, 317-324
MaxConcurrentExecutables
property, 317, 320-322
Maximum Insert Commit Size
setting, 141
Merge Join Transform, 475, 478
Merge Transform, 193, 475
message boxes, debugging, 199
Message Queue Task, 474
MessageSourceType, 102
metadata, 393
Union All Transform fixing,
194
Me.Variables statement, 199
Microsoft Access Database Engine
2010 Redistributable, 129
Microsoft Visual Basic 2010, 76,
201, 361, 370
migration, automating, 347
Month (GETDATE ()), 258
msdb database, 4, 425-426
MSDTSServer110, 421
Multicast Transform, 7, 476
multiple condition if statements,
479

490

natural keys, 459
nchar, 152
NET Framework, 476
New Database Role, 426-427
no-cache mode, 180
non-numeric data removal, 480
Ntext, 153
null colors, 456
null replacement, 479
number, string conversion, 255, 258
Numeric, 152-153
Aggregate Transform

operations allowed, 167

nvarchar, 151-152

Object, 243
Object Browser, 427
Object Linking and Embedding
Database (OLE DB), 82-83,
115-116, 121-122, 140
ODBC, 82, 121
ODBC Connection Manager, 36
ODBC providers, 13, 17
ODBC Source, 6
OLE DB. See Object Linking and
Embedding Database
OLE DB Command Transform, 7,
211-219, 291, 476, 478
CDC components, 287
incremental load, 272, 275,277
Lookup Transform delete
pattern, 271
OLE DB Connection Manager, 36,
126
Aggregate Transform, 169-170
CDC components, 289
Data Conversion Transform,
155
dynamic packages, 263
Execute Package Task, 366
Foreach Loop Container, 340
Fuzzy Grouping Transform,
231
Fuzzy Lookup Transform, 226
incremental load, 273-274
loading data to destination, 142
loop containers, 332
OLE DB Command Transform,
216

parameter number, 469
variables, 245
OLE DB Destination, 6, 140-145,
156, 164-165, 218
CDC components, 287, 291
Connection Manager page,
140-142
fact table loads, 462
Fast Load option, 141
file loading, 468
Foreach Loop Container, 340
Fuzzy Grouping Transform,
237
Fuzzy Lookup Transform, 229
incremental load, 272, 274-275
Mappings, 143-144
OLE DB Extract, 126, 148
OLE DB providers, 13
OLE DB Source, 5, 122-128,
169-170, 190
Advanced Editor, 174-175
column selection, 123-124
data access modes, 122, 127
Data Viewer, 396
error output, 124
expressions, 257
incremental load, 273, 276
ORDER BY statements,
174-175
parameters, 251-253
Slowly Changing Dimension
Wizard, 454
variables, 245-246
On Failure event, 60
On Success Precedence Constraint,
59-60
OnCustomEvent, 400
OnError event, 99, 381-382, 400
onError event, 377, 379-380
OnError Event Handler, 383-385
OnExecStatusChanged event, 381
OnlInformation event, 381, 400
OnPostExecute event, 381-382, 400
onPostExecute event, 377, 380
OnPostExecute Event Handler, 99,
383
OnPostValidate event, 381
OnPreExecute event, 381-382, 400
onPreExecute event, 377, 380
OnPreExecute Event Handler, 99
OnPreValidate event, 381
OnProgress event, 381, 400
OnQueryCancel event, 381, 400

OnTaskFailed event — precedence constraints

OnTaskFailed event, 381, 400
OnVariableValueChanged event,
381,400
OnWarning event, 99, 381-382, 400
onWarning event, 377
OnWarning Event Handler, 383-384
Oracle, 11, 12, 17, 36, 122, 140
ORDER BY statement, 174
out-of-process executables, 89
Output Alias, 153, 155, 170, 231
OverwriteDestination property, 65
OverwriteFileAtDest property, 110

package catalog, 3—-4
deploying packages to, 411-414
Package Configuration option, 347,
349, 354, 361
Package Configuration Wizard,
351-352, 358, 361-362
Package Configurations Organizer,
350-351, 353, 355, 358, 360-361
package deployment model, 31, 48,
347-349, 366, 412-415
package execution, 431-433
running packagers, 431
securing packages, 425-426
service configuration, 421-423
Package Execution Progress
Window, 433
Package Execution Utility, 478
package failure, 319, 323
package roles, 426-427
Package Roles dialog box, 425
package scoped parameters, 249
Package Store, 421, 423
Package Upgrade Wizard, 41-45
PackageNameFromProjectReference
drop-down, 320-321, 368
PackageNameReadOnly property,
367
PackagePassword property, 426
packages, 3—4, 25, 400
breakpoints, 400
child, 317, 321, 365-371,
368-369
configuration files, 357-363
configuration tables, 347, 351
configuring, 31, 415-420
connection availability, 114
connection managers and
scheduling, 37

creating, 35
Data Flow Tasks, 114
debugging, 390-391, 437-441
deploying, 411-414
directory selection, 19
dynamic, 241-247, 249-259
encryption, 38
errors, 377, 388-389
executing, 39-40, 270, 317,
431-433, 437-441
execution reports, 48
fact table, 460
incremental load, 283
initial load, 283
logging data, 375-380
logging execution, 408
master, 317-324
organization, 47
parallelism, 317
parameter configuration,
417-420
parameter scopes, 249
parent, 365, 368
PowerShell management, 407
project deployment model and
organization, 47
properties, 357
roles, 425, 427
running, 431-436
scheduling, 443-447, 478
scoping, 190
securing, 425-429
SQL command storage, 83-84
SSIS Catalog, 407-409
stopping, 421
troubleshooting, 365
T-SQL execution, 437-441
T-SQL management, 407
upgrading, 41, 48
variables, 83-84, 190, 287
warning, 377, 388-389
XML, 38
parallelism, 317, 319
changing, 322
design issues, 318-319
environments, 323
limiting, 320
tuning, 323
Parameter(), 252
Parameter Mapping, 8§1-82, 84,
469-470
Parameter Name, 469
parameters, 249-254

child packages, 368, 370
configuration conversion to, 48,
50-52, 54
Connection Managers, 54
dynamic packages, 249-254
mapping, 250, 252
master package, 317
missing, 390
OLE DB Connection Manager,
469
OLE DB Source, 251-253
package configuration,
417-420
package execution, 434-435
package scoped, 249
parent packages, 368, 370
passing variables, 123
in project deployment model,
50
project scoped, 249-250, 252,
419-420
required property, 249
scope, 249-250, 417, 419-420
sensitive, 249
variables, 243
parent packages, 365, 368, 370
Parse Query, 84-85
partial-cache mode, 181
Partition Processing Destination, 17
Pass Through option, 173
passive mode FTP, 108
Password Property Editor, 367-368
PATH environment variables, 87
patterns, 270
Percentage Sampling Transform, 476
PhysicalCount, 159
expression checking, 160-161
Pivot Transform, 476
PostExecute, 199
PowerShell, 437
package management, 407
Pragmatic Works, Inc., 375
Precedence Constraint Editor, 60-61
precedence constraints, 4, 59-62,
76,190
child package execution, 317,
321
conditional execution, 477
containers, 328
Data Flow Tasks, 471
Execute Process Task variables,
88
expressions, 59, 190

491

PreExecute — sensitive property

file loading, 470-471
On Success, 59-60
Union All Transform, 193
PreExecute, 199
Process Cube Tasks, 318-319,
321-322
ProcessInputRow, 199
production environment, 323, 356,
363, 393, 417
Professional Microsoft SOL Server
2012 Integration Services, 477
profiler, 297,299, 376
Program Files directories, 433
Progress tab, 33, 388-391
Project Configuration screen, 417
project connection managers, 37
Project Conversion Wizard, 48-54
project deployment model, 31,
47-55, 347, 366, 421
configurations, 50
feature changes, 47
package catalog, 411-412
package configuration, 415-420
package organization, 47
parameters, 50
running packages, 434-435
securing packages, 426-427
T-SQL package execution, 439
Project Reference, 366
project scoped parameters, 249-250,
252,419-420
projects, 25-26, 30
building, 414
data cleansing, 312
Data Quality, 307-308
internal references, 48, 50
parameter scopes, 249-250,
252,419-420
review, 312, 316
securing packages, 426-427
properties. See also specific
properties
configuration files, 360
configuration table, 353
container, 327
data types, 261
Execute Process Task, 87-89
Execute SQL Task, 31
expression connection string,
466
File System Task, 64-66
package, 357
parameters requiring, 249

492

Script Task, 72
sensitive, 249
tables, 357
Properties pane, 38
Properties window, 31
Property Expressions Editor, 255,
261-262,264-26S5, 342
ProtectionLevel property, 38, 40,
50,426
Providers and Logs tab, 378
proxy accounts, 444-446

Query builder, 85

ragged-right files, 131

read query, incremental load, 270

reader role, 425, 427

ReadOnly columns, 197

ReadOnlyVariables, 72, 391

ReadWrite columns, 197

ReadWriteVariables, 72, 76-77, 354

Reference Data Source, 311

reference tables, 222,226

Reference Type property, 366

@reference_id, 438

ReferenceType property, 54

RemotePath, 110

Rename file option, 66

REPLACE (), 161-162

REPLACENULL, 161

Reporting page, 433

Reporting Services, 4, 25

reprocessing data, 285

reprocessing indicator column, 285

required property, 249

Result Set errors, 390

ResultSet property, 81-82,
272,333

RIGHT (), 258

roles, 425-427

Row Count Transform, 7, 189-191,
467,476

Row object, 199

Row Sampling Transform, 476

Rows Per Batch setting, 141

running packages, 431-436

SAP, 17
SByte, 243
SCD. See Slowly Changing
Dimension
scheduling packages, 443-447, 478
scope
containers, 327, 329
package, 249
parameters, 249-250, 417,
419-420
project, 249-250, 252, 419-420
variables, 241, 327, 329
_score, 233
Script Component
bad data handling, 200-202
roles, 197
Script Component Transform, 7, 476
Script Task, 4, 38-39, 474
altering connections, 75
checking file existence, 75
checking file in use, 75
configuration files, 361
configuration tables, 354
Control Flow, 61-62, 72, 76,
354,379
custom, 71
EntryPoint, 72, 74
event handlers, 383-385
Execute SQL Task, 74-75
"if then" statements, 74-75
logging, 379-380
precedence constraints, 59
properties, 72
Row Count Transform, 190-191
ScriptLanguage, 72, 201
Sequence Container, 328-329
troubleshooting, 390
variables, 72-74, 76-78
Script Task Editor, 71, 361
Script Transform, 480
Script Transformation Editor,
197-198, 200
ScriptLanguage, 72, 201
Secure Sockets Layer (SSL), 101, 104
Send Mail Task, 4, 99-105, 474
attachments, 102-103
event handlers, 383
expressions populating, 261-262
Send Mail Task Editor, 99-102,
104-105
sensitive property, 249

Sequence Containers — SQL statements

Sequence Containers, 327-330
Server Explorer, 33
<ServerName> property, 422
service configuration, 421-423
Set Breakpoints window, 399-400
/SET command, 478
Set Parameter Value dialog box,
417, 420
Set Values page, 433
shadow copies, 269
SharePoint, 197
signed integers, 152-153
Similarity Output Alias, 231
similarity threshold, 222-223,232,
236
Simple Mail Transfer Protocol
(SMTP), 99
Single, 243
Slowly Changing Dimension (SCD),
451
Slowly Changing Dimension Tasks,
452
Slowly Changing Dimension
Transform, 7, 455, 459, 476
Slowly Changing Dimension Wizard,
451-456
Smallint, 153
SMO. See SQL Management Objects
SMTP. See Simple Mail Transfer
Protocol
SMTP Connection Manager, 36,
100-101, 103-104
Solution Explorer, 26, 29-31, 252,
254
Convert to Project Deployment
Model, 48-49
deployment model selection, 31
package creation, 35
package execution, 33, 39-40
package upgrading, 41
project connection managers,
37
solutions, 25, 30, 320
Sort Transform, 7, 173-177, 181,
476
SortKeyPosition, 175
Source Assistant, 121-122
source databases
configuration tables, 348, 352
incremental loading, 269
SourceConnection property, 65
sources, 5—6, 121. See also data
sources; OLE DB Source

Excel, 5, 114, 128-131,
145-146, 154
extracting data from, 121-137
Flat File, 5, 14, 131-137, 215,
225,234, 313, 339, 467
SQL Server, 126
XML, 6
special characters, 259
SQL command mode, 123, 128, 245,
252,257
incremental load, 273, 276
SQL commands, 83-84, 195
SQL Express, 17
SQL Management Objects (SMO),
338
SQL Mobile, 82
SQL Native Client, 12
SQL queries, 181, 207
incremental load, 272-274, 277
For Loop Container, 333
SQL Select statements, 459
SQL Server, 1, 11-12, 36, 122, 140,
290
CDC setup, 281
Configuration Manager, 21
data types, 152-153
Fast Load, 141
Feature Selection screen, 18,
296
Full Text service, 21
installing data tools, 18
installing SSIS, 17-19
logging to, 376
package store, 421
ports, 426
proxy accounts, 444-446
SQL Server 2012, 2-3
deployment models, 31
editions of, 7, 17
Enterprise Edition features,
17-18
Feature Pack, 13
TypeConversionMode, 80-81
SQL Server Agent, 38, 286,293, 363
package scheduling, 443, 446
SQL Server Analysis Services (SSAS),
4,29
SQL Server Data Tools (SSDT), 2,
11, 14, 17, 25, 29, 49, 332
administrative mode, 118
default script language, 72
Deployment Wizard, 411, 414
design environment, 32-33

installing, 18
package deployment model, 412
package passwords, 426
package upgrading from, 41
parameters, 249
variables, 241
SQL Server Destination, 6
SQL Server Engine, 281
SQL Server Installation Center, 21
SQL Server Integration Services
(SSIS), 1, 8, 25,29, 30
architecture, 2-7
capabilities in SQL Server 2012
editions, 7
components, 3
Control Flow, 59
custom script tasks, 71
data types, 151-153
defaults mappings, 139
Import and Export Wizard, 1,
2,11, 14-15
in-memory transforms, 113
installing, 17-19
logging, 3635, 375
object model, §
Package Configuration option,
347,357
package creation, 35
package deployment to,
411-414
Package Upgrade Wizard,
41-45
package upgrading, 48
Project Conversion Wizard,
48-54
service configuration, 421-423
sorting data, 174
special characters, 259
system variables, 99
task connection, 59
upgrading, 41
SQL Server Management Studio
(SSMS), 84, 85, 286, 332, 335,
355
SQL Server Profiler, logging to, 376
SQL Server Reporting Services
(SSRS), 25,29
SQL Server Source, 126
SQL statements
Foreach Loop Container, 340
in OLE DB Command
Transform, 212, 214, 216

493

SqlCommand property — TypeConversionMode

SqlCommand property, 212-213,
216, 275,277, 291
SglServerFolder, 422
SQLSourceType property, 83
SQLStatement property, 261, 272,
333
SQLStatementSource property,
263-264,266
SSAS. See SQL Server Analysis
Services
SSDT. See SQL Server Data Tools
SSIDB, 415
SSIS. See SQL Server Integration
Services
SSIS Catalog, 420. See also
Integration Services Catalog;
package catalog
CLR, 437
configuring, 408-409
creating, 407-408, 410
folders, 409-410
Management Studio, 407, 410
passwords, 410
users and roles, 425
version control, 408
SSIS Package Store, 421, 423
SSIS_Configurations table, 351, 355
SSISDB, 407
ssisdb database, 425, 427
.SSISDeploymentManifest file, 412
SSL. See Secure Sockets Layer
SSMS. See SQL Server Management
Studio
SSRS. See SQL Server Reporting
Services
staging tables, 211
standardized output, 311
StopExecutingPackages
OnShutDown property, 422
stored procedures, 79, 84, 123, 174
running packages, 437-438
templates, 438
<StorePath> property, 422
StrConv, 199
String, 243
String Value Editor, 275, 277, 291
strings, 153
Aggregate Transform
operations allowed, 167
connection, 347-348, 353-354,
356, 359, 363, 466
expression data, 161-162,
261-263

494

in Fuzzy Lookup Transform,
222
number conversion, 255, 258
removing characters, 479
Unicode, 152-153
strings functions, 161-162, 261-263
SUBSTRING (), 161-162
summarizing fact data, 459
surrogate key lookups, 460
Sybase, 13
synchronous transforms, 179
SynchronousInputID property, 199
synonyms, 297, 303
Syntax errors, 390
system variables, 99, 163
logging, 375
@[System::StartTime], 163-164

tab-delimited files, 131, 460
table creation, 216, 225, 229, 237
Table Lock, 141
tables
audit, 74-75, 87, 189, 200, 466,
471-472
CDC Control Task, 283
configuration, 347-356
Data Viewer, 395
dimension, 211, 218, 231, 459
ErrorLog, 190
fact, 459-462
grouping, 283
history, 269
importing, 269
key, 269
package properties, 357
primary/foreign key
relationships, 283
reference, 222,226
schema changes, 284
staging, 211
tasks, 4-5. See also specific tasks
CDC related, 282-286, 288,
291-292
connecting, 59
custom script, 71
dynamic, 261-266
executing, 329
grouping, 327
naming, 38
using and configuring, 37-38

TCP/IP ports, 426
term expansions, 304
Term Extraction Transform, 17, 476
Term Lookup Transform, 476
Term-Based Relations, 305-306
term-based relations, 297
Text, 153
Text File logs, 376
text files, 11-12
text qualifiers, 466
timeout
Execute SQL Task, 80
FTP connections, 108
SMTP connection, 101
Timestamp, 153
Tinytint, 153
token delimiters, 222-232
token-based index, 222
Toolbox, 32, 113-114
transactions, containers, 327
transform editors, opening, 159
transformations, 6-7, 114. See also
specific transforms
asynchronous, 167, 174
blocking, 167, 174
in-memory, 113
synchronous, 179
troubleshooting
breakpoints, 199, 399-403
connections, 353
errors, 387-391
Execute SQL Task, 390
packages, 365
Progress tab, 388-391
Script Task, 390
steps, 389
TRUNCATE TABLE, 164
T-SQL, 3, 48, 151, 331
debugging, 439-440
environment variable creation,
416
expression language differences,
161
GROUP BY statement, 167, 169
order by command, 476
package execution, 437-441
package management, 407
Union command, 476
two-digit dates, 479
Type 2 change, 218
TypeConversionMode, 80-81

UInt32 - ZIP codes

Ulnt32, 243
Ulnt64, 243
Unicode data type, 129, 151, 475
Unicode strings, 152-153
Unicode text streams, 153
Union All Transform, 7, 193-196,
476
data extraction, 128, 131, 135
data stream simulation, 200,
202
loading data to destination, 142
Union All Transformation Editor, 228
uniqueidentifier, 153
Unpivot Transform, 7, 476
Update statement, 213
UPPER (), 161-162
uppercase data, 479
UseDirectorylfExists property, 66
user rights, 427

validation
bypassing, 136
errors, 387
Fast Parse, 136
Progress tab, 388
validity, 295, 301
Varbinary, 153
varchar, 151-153
Variable Mappings, 468
Variable option
Execute SQL Task, 83-84
Send Mail Task, 102
variables
case-sensitive names, 243
CDC state, 287
Control Flow, 190, 244
Data Flow Tasks, 245
data types, 242-243
DeleteStatement, 263-264
dynamic packages, 241-247
environment, 87, 363, 416, 420

error capture, 87
Execute Process Task, 88
Execute SQL Task, 83-84, 243
expressions, 243
File System Task destination, 64
Flat File Connection Manager,
246
Flat File Destination, 245
Foreach Loop Container, 338,
340, 342
incremental load queries, 270
incrementing in loop, 93
logging, 87, 375
For Loop Container, 332
looping, 338
Mappings, 468
master package, 317
missing parameters, 390
OLE DB Connection Manager,
245
OLE DB Source, 245-246
package configuration, 419, 420
packages, 83-84, 190, 287
package-scoped, 190, 287
parameters, 243
passing parameters, 123
ReadOnlyVariables, 72, 391
ReadWriteVariables, 72, 76-77,
354
scope, 241, 327, 329
Script Task, 72-74, 76-78
SSDT, 241
system, 99, 163, 375
Variables window, 241
VB.NET, 4-5, 25
message boxes, 74
Script Components, 197
Script Tasks, 71-72
verification, Fast Parse bypassing,
153
version control, 408
Visual Basic, 379, 385
Visual Studio 2010, 2, 4, 25, 61, 199
options pane, 30
Visual Studio Conversion Wizard, 41
Visual Studio Script Editor, 72

warnings, 388-389

Watch windows, 399, 401-403

Web Service Task, 5, 474

web services, 36

websites, 36

While loops, 331

Windows Administrators group, 421

Windows Authentication, 12, 101,
104, 443-444

Windows Event Log, 376

Windows Explorer, 431

Windows Management
Instrumentation (WMI), §

wipe and load, 269

WMI. See Windows Management
Instrumentation

WMI Data Reader Task, 5

WMI Event Watcher Task, 5

writer role, 425

XML
configuration files, 357-363
logging to, 376, 378
looping, 338
MSDTSServer110 service
configuration, 421-423
node list, 338
packages, 38
Script Component destinations,
197
Xml, 153
XML Source, 6
XML Task, 5, 474

ZIP codes, 479

495

Try Safari Books Online FREE
for 15 days and take 15% off
for up to 6 Months*

Gain unlimited subscription access to thousands of books and videos.

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly or
annual unlimited access subscription, you get:

® Anytime, anywhere mobile access with Safari To
Go apps for iPad, iPhone and Android

® Hundreds of expert-led instructional videos on
today's hottest topics

e Sample code to help accelerate a wide variety of
software projects

® Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

® Rough Cuts pre-published manuscripts

START YOUR FREE TRIAL TODAY!

Visit: www.safaribooksonline.com/wrox

*Discount applies to new Safari Library subscribers only and
is valid for the first 6 consecutive monthly billing cycles.
Safari Library is not available in all countries.

Sa fa rlv An Imprint of $WILEY

Books Online Now you know.

John Wiley & Sons, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions
before opening the software packet(s) included with this book “Book™.
This is a license agreement “Agreement” between you and John Wiley
& Sons, Inc. “WILEY”. By opening the accompanying software
packet(s), you acknowledge that you have read and accept the follow-
ing terms and conditions. If you do not agree and do not want to be
bound by such terms and conditions, promptly return the Book and the
unopened software packet(s) to the place you obtained them for a full
refund.

1. License Grant. WILEY grants to you (either an individual or entity) a
nonexclusive license to use one copy of the enclosed software program(s)
(collectively, the “Software”) solely for your own personal or business
purposes on a single computer (whether a standard computer or a work-
station component of a multi-user network). The Software is in use on a
computer when it is loaded into temporary memory (RAM) or installed
into permanent memory (hard disk, CD-ROM, or other storage device).
WILEY reserves all rights not expressly granted herein.

2. Ownership. WILEY is the owner of all right, title, and interest,
including copyright, in and to the compilation of the Software recorded
on the physical packet included with this Book “Software Media”.
Copyright to the individual programs recorded on the Software Media
is owned by the author or other authorized copyright owner of each
program. Ownership of the Software and all proprietary rights relating
thereto remain with WILEY and its licensers.

3. Restrictions on Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archi-
val purposes, or (ii) transfer the Software to a single hard disk, provided
that you keep the original for backup or archival purposes. You may
not (i) rent or lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any computer sub-
scriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the
Software. You may transfer the Software and user documentation on

a permanent basis, provided that the transferee agrees to accept the
terms and conditions of this Agreement and you retain no copies. If the
Software is an update or has been updated, any transfer must include
the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the
individual requirements and restrictions detailed for each individual
program in the “About the CD” appendix of this Book or on the
Software Media. These limitations are also contained in the individual
license agreements recorded on the Software Media. These limitations
may include a requirement that after using the program for a specified
period of time, the user must pay a registration fee or discontinue use.
By opening the Software packet(s), you agree to abide by the licenses
and restrictions for these individual programs that are detailed in the
“About the CD” appendix and/or on the Software Media. None of
the material on this Software Media or listed in this Book may ever be
redistributed, in original or modified form, for commercial purposes.

5. Limited Warranty.

(a) WILEY warrants that the Software and Software Media are free
from defects in materials and workmanship under normal use for a
period of sixty (60) days from the date of purchase of this Book. If

WILEY receives notification within the warranty period of defects in
materials or workmanship, WILEY will replace the defective Software
Media.

(b) WILEY AND THE AUTHOR(S) OF THE BOOK DISCLAIM ALL
OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, WITH RESPECT TO THE SOFTWARE, THE
PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/
OR THE TECHNIQUES DESCRIBED IN THIS BOOK. WILEY
DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT
THE OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may
have other rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) WILEY’s entire liability and your exclusive remedy for defects in
materials and workmanship shall be limited to replacement of the
Software Media, which may be returned to WILEY with a copy of

your receipt at the following address: Software Media Fulfillment
Department, Attn.: <Knight’s Microsoft SOL Server 2012 Integration
Services 24-Hour Trainer>, John Wiley & Sons, Inc., 10475 Crosspoint
Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow
four to six weeks for delivery. This Limited Warranty is void if failure
of the Software Media has resulted from accident, abuse, or misap-
plication. Any replacement Software Media will be warranted for the
remainder of the original warranty period or thirty (30) days, whichever
is longer.

(b) In no event shall WILEY or the author be liable for any damages
whatsoever (including without limitation damages for loss of business
profits, business interruption, loss of business information, or any other
pecuniary loss) arising from the use of or inability to use the Book or
the Software, even if WILEY has been advised of the possibility of such
damages.

(c) Because some jurisdictions do not allow the exclusion or limitation
of liability for consequential or incidental damages, the above limitation
or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of
the Software for or on behalf of the United States of America, its agen-
cies and/or instrumentalities “U.S. Government” is subject to restric-
tions as stated in paragraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause of DFARS 252.227-7013, or subparagraphs
(c) (1) and (2) of the Commercial Computer Software - Restricted Rights
clause at FAR 52.227-19, and in similar clauses in the NASA FAR
supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the
parties and revokes and supersedes all prior agreements, oral or written,
between them and may not be modified or amended except in a writing
signed by both parties hereto that specifically refers to this Agreement.
This Agreement shall take precedence over any other documents that
may be in conflict herewith. If any one or more provisions contained in
this Agreement are held by any court or tribunal to be invalid, illegal, or
otherwise unenforceable, each and every other provision shall remain in
full force and effect.

Programmer to Programmer”

onnect with Wrox.

Participate
Take an active role online by participating
in our P2P forums @ p2p.wrox.com

Wrox Blox

Download short informational pieces and code
to keep you up to date and out of trouble

Join the Community

Sign up for our free monthly newsletter
at newsletter.wrox.com

Wrox.com

Browse the vast selection of Wrox titles, e-books,
and blogs and find exactly what you need

User Group Program

Become a member and take advantage of all
the benefits

Wrox on Ewiktte

Follow @wrox on Twitter and be in the know
on the latest news in the world of Wrox

Wrox on

Join the Wrox Facebook page at
facebook.com/wroxpress and get updates
on new books and publications as well

as upcoming programmer conferences
and user group events

Contact Us.

We love feedback! Have a book idea? Need community support?
Let us know by e-mailing wrox-partnerwithus@wrox.com

Professional

SQL Server: 2012
Integration Services

Brian Knight, Erik Veerman, Jessica M. Moss, Mike Davis, Chris Roc

Professional

Microsoft

SQL Server 2012

Analysis Services with MDX

Professional

Microsoft

SQL Server 2012

Administration

Microsoft’

L Server

Reporting Services Recipes

Jfor Designing Expert Reports

Paul Turley, Robert M. Bruckner

Related Wrox Books

Professional Microsoft SQL Server 2012 Integration Services

ISBN: 978-1-118-10112-4

The 2012 release of Microsoft SQL Server Integration Services (SSIS) offers significant new
and enhanced features that greatly expand the capabilities of this product—but only if you
know how to exploit them effectively. This book shows you how. It not only covers the latest
features of the 2012 product release, it teaches you best practices for using them effectively.
Each chapter includes helpful case studies, and tutorial examples—all based on years of the
expert authors' real-world experience—to better illustrate concepts and techniques.

Professional Microsoft SQL Server 2012 Analysis Services

with MDX and DAX

ISBN: 978-1-118-10110-0

SQL Server 2012 is packed with powerful new Analysis Services features that will dramatically
enhance business intelligence. Written by key members of Microsoft's product team, this book
shows you how to apply these new capabilities to create sophisticated Bl solutions. In order
to accomplish this, you'll learn how to design, build, and work with the multidimensional and
tabular Business Intelligence Semantic Model (BISM) using SQL Server Analysis Services. You'll
then use MDX and DAX to query those databases so you can provide advanced analysis of
business problems and build end-to-end solutions to meet your needs.

Professional Microsoft SQL Server 2012 Administration

ISBN: 978-1-118-10688-4

With this comprehensive guide, you'll gain the skills needed to configure and administer SQL
Server 2012. From cloud computing and client connectivity enhancements to data replication
and business intelligence, it walks you through all the significant changes to the latest release
that you must know. This detailed instruction by leading experts will then help you improve
your efficiency, the scale of your server, and the performance of your environment so you can
do more in much less time.

Microsoft SQL Server Reporting Services Recipes:

for Designing Expert Reports

ISBN: 978-0-470-56311-3

Have you mastered the "how-tos" of Reporting Services? Can you confidently design simple
reports—but now you need help with meeting the demands of more complex and advanced
types of reports? If so, this is the ideal resource for you. Packed with proven design practices,
this book serves as a collection of recipes for solving design problems so that you don't have
to reinvent the wheel with each challenge you face. Organized by specific types of reports,
the book covers grouped reports, charts, composite reports, dashboards, forms and labels,
interactive reports, and more.

V413HAV
Typewritten Text
V413HAV

	Knight's Microsoft SQL Server 2012 Integration Services 24-Hour Trainer
	Contents
	Preface
	Welcome to SSIS
	Section I: Installation and Getting Started
	Chapter 1: Moving Data with the Import and Export Wizard
	Chapter 2: Installing SQL Server Integration Services
	Chapter 3: Installing the Sample Databases
	Chapter 4: Creating a Solution and Project
	Chapter 5: Exploring SQL Server Data Tools
	Chapter 6: Creating Your First Package
	Chapter 7: Upgrading Packages to SQL Server 2012
	Chapter 8: Upgrading to the Project Deployment Model

	Section 2: Control Flow
	Chapter 9: Using Precedence Constraints
	Chapter 10: Manipulating Files with the
	Chapter 11: Coding Custom Script Tasks
	Chapter 12: Using the Execute SQL Task
	Chapter 13: Using the Execute Process Task
	Chapter 14: Using the Expression Task
	Chapter 15: Using the Send Mail Task
	Chapter 16: Using the FTP Task
	Chapter 17: Creating a Data Flow

	Section 3: Data Flow
	Chapter 18: Extracting Data from Sources
	Chapter 19: Loading Data to a Destination
	Chapter 20: Changing Data Types
	Chapter 21: Creating and Replacing Columns with the Derived Column Transform
	Chapter 22: Rolling Up Data with the Aggregate Transform
	Chapter 23: Ordering Data with the Sort Transform
	Chapter 24: Joining Data with the Lookup Transform
	Chapter 25: Auditing Data with the Row Count Transform
	Chapter 26: Combining Multiple Inputs with the Union All Transform
	Chapter 27: Cleansing Data with the
	Chapter 28: Separating Data with the Conditional Split Transform
	Chapter 29: Altering Rows with the OLE DB Command Transform
	Chapter 30: Handling Bad Data with the Fuzzy Lookup
	Chapter 31: Removing Duplicates with the Fuzzy Grouping Transform

	Section 4: Making Packages Dynamic
	Chapter 32: Making a Package Dynamic with Variables
	Chapter 33: Making a Package Dynamic
	Chapter 34: Making a Connection Dynamic with Expressions
	Chapter 35: Making a Task Dynamic with Expressions

	Section 5: Common ETL Scenarios
	Chapter 36: Loading Data Incrementally
	Chapter 37: Using the CDC Components
	Chapter 38: Using Data Quality Services
	Chapter 39: Using the DQS Cleansing Transform
	Chapter 40: Creating a Master Package

	Section 6: Containers
	Chapter 41: Using Sequence Containers to Organize a Package
	Chapter 42: Using For Loop Containers to Repeat Control Flow Tasks
	Chapter 43: Using the Foreach Loop Container to Loop Through a Collection of Objects

	Section 7: Configuring Packages
	Chapter 44: Easing Deployment with Configuration Tables
	Chapter 45: Easing Deployment with Configuration Files
	Chapter 46: Configuring Child Packages

	Section 8: Troubleshooting SSIS
	Chapter 47: Logging Package Data
	Chapter 48: Using Event Handlers
	Chapter 49: Troubleshooting Errors
	Chapter 50: Using Data Viewers
	Chapter 51: Using Breakpoints

	Section 9: Administering SSIS
	Chapter 52: Creating and Configuring the SSIS Catalog
	Chapter 53: Deploying Packages to the Package Catalog
	Chapter 54: Configuring the Packages
	Chapter 55: Configuring the Service
	Chapter 56: Securing SSIS Packages
	Chapter 57: Running SSIS Packages
	Chapter 58: Running Packages in T-SQL and Debugging Packages
	Chapter 59: Scheduling Packages

	Section 10: Loading a Warehouse
	Chapter 60: Dimension Load
	Chapter 61: Fact Table Load

	Section 11: Wrap Up and Review
	Chapter 62: Bringing It All Together
	Appendix A: SSIS Component Crib Notes
	Appendix B: Problem and Solution Crib Notes

	Appendix C: What’s on the DVD?
	Index
	Advertisement

