

San Francisco

◆

 London

Foundations
Oracle Database

Bob Bryla

4372cFM.fm Page i Monday, August 16, 2004 6:52 PM

Associate Publisher: Neil Edde
Acquisitions and Developmental Editor: Maureen Adams
Production Editor: Susan Berge
Copyeditor: Linda S. Recktenwald
Compositor: Craig Woods, Happenstance Type-O-Rama
Graphic Illustrator: Jeff Wilson, Happenstance Type-O-Rama
Proofreaders: Amy J. Rasmussen, Nancy Riddiough
Indexer: Ted Laux
Book Designer: Judy Fung
Cover Designer: Ingalls + Associates
Cover Photo: Jerry Driendl, Taxi

Copyright © 2004 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photo-
copy, photograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

An earlier version of this book was published under the title Oracle9i DBA JumpStart © 2003 SYBEX Inc.

Library of Congress Card Number: 2004109313

ISBN: 0-7821-4372-5

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other countries.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991-1999 Inbit Incorporated. All rights reserved.

FullShot is a trademark of Inbit Incorporated.

Internet screen shot(s) using Microsoft Internet Explorer 6 reprinted by permission from Microsoft Corporation.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by fol-
lowing the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release software
whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufacturer(s). The
author and the publisher make no representation or warranties of any kind with regard to the completeness or accuracy of the con-
tents herein and accept no liability of any kind including but not limited to performance, merchantability, fitness for any particular
purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

4372cFM.fm Page ii Monday, August 16, 2004 6:52 PM

For MCL and the kids.

4372cFM.fm Page iii Monday, August 16, 2004 6:52 PM

Acknowledgments

I couldn’t have written this book without the help of many talented and creative people.

I would like to thank Neil Edde, associate publisher, and Maureen Adams, acquisitions editor, for recognizing
the need for an introductory Oracle DBA text. Many thanks to production editor Susan Berge and copyeditor
Linda Recktenwald for their valuable advice. Thanks also to technical editor Betty MacEwen for her attention
to detail and helpful suggestions throughout the book.

The nature of this book required a great deal of artwork. Jeff Wilson and the rest of Happenstance Type-O-Rama
did an excellent job of creating artwork that was appropriate for the book. They say a picture is worth a thousand
words, and their art is an essential part of this book. Somehow they were able to decipher my Microsoft Word
cave drawings and turn them into real graphics.

Many of my professional colleagues at both Lands’ End and Greenbrier & Russel were a source of both inspi-
ration and guidance. Also, regards to my long-lost friend from fourth grade, Janice, who I’m sure is a DBA out
there somewhere.

Finally, I want to thank my family for all of their support and patience. I was still able to give the kids a bath,
play some cards, and read books at bedtime, even with the short deadlines. The journey wouldn’t have been
half the fun without them.

4372cFM.fm Page iv Monday, August 16, 2004 6:52 PM

Contents

Introduction xiii

Chapter 1 Relational Database Concepts 1

Are Spreadsheets Like Databases? 2
Relational Databases . 3

Tables, Rows, and Columns . 4
Primary Keys, Datatypes, and Foreign Keys 4
Data Modeling . 6

Object-Relational Databases . 8
Abstraction . 9
Methods and Encapsulation . 9
Inheritance . 9
Object-Relational Support . 10

Terms to Know . 10
Review Questions . 11

Chapter 2 SQL*Plus and iSQL*Plus Basics 13

Some SQL Formalities . 14
Tools for Running SQL . 14

SQL*Plus . 14
iSQL*Plus . 17
SQL*Plus Worksheet . 20
Third-Party Tools . 21
ODBC/JDBC . 21
OCI . 23

The Ubiquitous

SELECT

 Statement 23
Column Specification . 24
Column Renaming . 26
Duplicate Removal . 27
Expressions . 28

DML for Making Changes . 29
The

UPDATE

Statement . 29
The

INSERT

 Statement . 31
The

DELETE

 Statement . 32
The

MERGE

 Statement . 33
DDL for Handling Database Objects 34

The

CREATE

Statement . 34
The

ALTER

Statement . 36
The

DROP

 Statement . 37

4372cFM.fm Page v Monday, August 16, 2004 6:52 PM

vi

Contents

The

RENAME

 Statement . 37
The

TRUNCATE

 Statement . 38
DCL for Handling Privileges . 39

The

GRANT

Statement . 39
The

REVOKE

 Statement . 40
Terms to Know . 40
Review Questions . 41

Chapter 3 Oracle Database Functions 43

Query Basics . 44
The

DUAL

 Table . 44

NULL

s: What, When, Why, and How

 46
String Literals and Concatenating Strings 47
Numeric Literals . 48
Operators and Operator Precedence 48

Built-In Single-Row Functions . 49
String Functions . 50
Numeric Functions . 53
Date Functions . 56
Conversion Functions . 58
General Functions . 61

User-Defined Functions . 63
Terms to Know . 66
Review Questions . 67

Chapter 4 Restricting, Sorting, and Grouping Data 69

The

WHERE

 Clause . 70
Comparison Conditions . 71

AND

,

OR

, and

NOT . 72
BETWEEN

,

IN

, and

LIKE . 75
IS NULL

 and

IS NOT NULL 79

The

ORDER BY

 Clause . 81
Group Functions and the

GROUP BY

 Clause 83
Group Functions . 84
The

GROUP BY

 Clause . 85
Using

NVL

 with Group Functions 87
The

HAVING

 Clause . 88
Terms to Know . 90
Review Questions . 91

Chapter 5 Using Multiple Tables 93

Join Syntax: Out with the Old and In with
the New (SQL:1999) . 94

4372cFM.fm Page vi Monday, August 16, 2004 6:52 PM

Contents

vii

Equijoins . 94
Pre-Oracle9

i

 Equijoin Syntax 94
Oracle9

i

 Equijoin Syntax . 97
Non-equijoins . 101
Pre-Oracle9

i

 Non-equijoin Syntax 101
Oracle9

i

 Non-equijoin Syntax 102
Outer Joins . 103

Pre-Oracle9

i

 Outer Join Syntax 103
Oracle9

i

 Outer Join Syntax . 107
Self-Joins . 110

Pre-Oracle9

i

 Self-Join Syntax 110
Oracle9

i

 Self-Join Syntax . 111
Cartesian Products: The Black Sheep of the Family 112

Pre-Oracle9

i

 Cartesian Product Syntax 112
Oracle9

i

 Cartesian Product Syntax 113
Terms to Know . 114
Review Questions . 115

Chapter 6 Advanced SQL Queries 117

Subqueries . 118
Single-Row Subqueries . 118
Multiple-Row Subqueries . 119
Correlated Subqueries . 121
Multiple-Column Subqueries 123

Set Operators . 124

UNION

and

 UNION ALL

. 124

INTERSECT

. 129

MINUS

. 130

ROLLUP

 and

CUBE

. 133

ROLLUP

 . 134

CUBE

 . 135
Terms to Know . 137
Review Questions . 138

Chapter 7 Logical Consistency 139

Constraints . 140

NOT NULL

 . 140

CHECK

 . 142

UNIQUE

 . 144

PRIMARY KEY

 . 145

FOREIGN KEY

 . 147
Transaction Processing . 150

The

COMMIT

 Statement . 151
The

ROLLBACK

 Statement 152
The

SAVEPOINT

 Statement 152

4372cFM.fm Page vii Monday, August 16, 2004 6:52 PM

viii

Contents

Terms to Know . 153
Review Questions . 154

Chapter 8 Installing Oracle and Creating a Database 155

Oracle Components Overview . 156
Logical Storage Structures . 156
Physical Storage Structures . 158
Oracle Memory Structures . 160
Background Processes . 162

Installing Oracle Software . 163
Using the Oracle Universal Installer 163
Using the Oracle Enterprise Manager Tools 167

Creating an Oracle Database . 169
Disk and Memory Requirements 169
Using the Database Configuration Assistant 169

Terms to Know . 179
Review Questions . 180

Chapter 9 Reporting Techniques 181

iSQL*Plus Configuration . 182
Interface Configuration . 184
Script Formatting and System Variables 184
Change Password . 189

Report Formatting . 190
Headers and Footers . 191
Column Formatting . 194

BREAK

Processing

 . 195
Summary Operations (Totals) 196

Substitution Variables . 198
Saving and Running Scripts . 201
Terms to Know . 204
Review Questions . 205

Chapter 10 Creating and Maintaining Database Objects 207

Creating Tables . 208
Relational Tables . 208
Create Table As Select (CTAS) 209
External Tables . 211
Temporary Tables . 214

Creating Indexes . 215
Creating and Using Views . 216

User-Defined Views . 216
Data Dictionary Views . 218
Dynamic Performance Views 222

4372cFM.fm Page viii Monday, August 16, 2004 6:52 PM

Contents

ix

Creating Sequences and Synonyms 223
Sequences . 223
Synonyms . 225

Terms to Know . 226
Review Questions . 227

Chapter 11 Users and Security 229

Creating User Accounts . 230
Assigning Passwords . 230
Creating and Assigning Profiles 231
Assigning Default Tablespaces and Quotas 232

Granting and Revoking Privileges 234
System Privileges . 234
Object Privileges . 236
Creating and Assigning Roles 238

Auditing . 240
Statement Auditing . 240
Object Auditing . 242

Terms to Know . 243
Review Questions . 244

Chapter 12 Making Things Run Fast (Enough) 245

Oracle’s Tuning Methodology . 246
Indexes . 247

When to Create Indexes . 247
Index Types . 247
Creating, Dropping, and Maintaining Indexes 250
Monitoring Indexes . 252
Data Dictionary Index Information 254

Data Design Tuning . 255
Partitioned Tables . 255
Materialized Views . 258

SQL Application Tuning . 259
Top SQL Tool . 260
Explain Plan Graphical Tool 262
The Oracle Optimizer . 264

Memory Tuning . 267
Terms to Know . 270
Review Questions . 271

Chapter 13 Saving Your Stuff (Backups) 273

Database Failures . 274
User Backup and Recovery Methods 274

Export and Import for Users 275
Flashback Query . 280

4372cFM.fm Page ix Monday, August 16, 2004 6:52 PM

x

Contents

DBA Backup and Recovery Methods 282
Export and Import for DBAs 282
Cold Backups . 287
Hot Backups . 287
Log Miner . 289
Recovery Manager . 290

Terms to Know . 292
Review Questions . 293

Chapter 14 Troubleshooting 295

The Alert Log File . 296
Locating the Alert Log File . 296
Viewing the Alert Log File . 296
Maintaining the Alert Log File 297

Event Notification . 298
Oracle9

i

 OEM Event Manager 299
Oracle 10

g

 Advisory Framework 302
System Trace Files . 303
User Trace Files . 305

Enabling Tracing . 305
Locating the User Trace Files 306
Converting the Trace File . 309

Terms to Know . 310
Review Questions . 311

Appendix A Answers to Review Questions 313

Chapter 1 . 313
Chapter 2 . 314
Chapter 3 . 315
Chapter 4 . 316
Chapter 5 . 317
Chapter 6 . 318
Chapter 7 . 319
Chapter 8 . 320
Chapter 9 . 321
Chapter 10 . 322
Chapter 11 . 323
Chapter 12 . 324
Chapter 13 . 325
Chapter 14 . 326

Appendix B Common Database Platforms 327

Enterprise Databases . 327
Oracle . 327
IBM DB2/UDB . 327

4372cFM.fm Page x Monday, August 16, 2004 6:52 PM

Contents

xi

Sybase . 328
Microsoft SQL Server . 328

Personal and Freeware Databases 328
Microsoft Access . 328
MySQL . 329

Glossary 331

Index 339

4372cFM.fm Page xi Monday, August 16, 2004 6:52 PM

4372cFM.fm Page xii Monday, August 16, 2004 6:52 PM

Introduction

When you’re learning any new topic or technology, it’s important to have all of
the basics at your disposal. The Sybex Foundations series provides the building
blocks of specific technologies that help you establish yourself in IT.

So, you want to be an Oracle database administrator (DBA), but you’re not
sure what the job might be like? Well, this is a good place to start! This book is
intended to bridge the gap for people who are technically oriented and need
something to bridge the gap to Oracle database administration. If you don’t have
a lot of direct experience with databases, this book can get you up to speed on
enough of the basics to feel comfortable going into more advanced topics and
other introductory coursework.

What You Need

Oracle Database Foundations

 assumes some minimal level of expertise in using an
operating system such as Windows or Unix in a graphical user interface (GUI)
environment. Any experience with a personal database, such as Microsoft Access,
is helpful but not required.

To follow along with the examples in the book, you will need an installation of
the Oracle database software version 9.2 or preferably 10

g

, Standard or Enterprise
Edition, including the sample schemas provided by Oracle in the installation pack-
age, preferably on a Microsoft Windows platform. However, if you’re adept with
Linux, then RedHat, SuSE, or other distributions of Linux will work fine, too, as
the operating system platform.

What This Book Covers

This book provides all the information you need to understand the job of an
Oracle DBA. It is organized as follows:

Chapter 1, “Relational Database Concepts”

Covers the basics of rela-
tional database technology. It defines terms such as tables, rows, and col-
umns, and it provides an introduction to database design.

Chapter 2, “SQL*Plus and iSQL*Plus Basics”

Introduces the various
ways to send SQL commands to the database. It explains the tools avail-
able for issuing SQL commands and how to interact with the database.

Chapter 3, “Oracle Database Functions”

Focuses on Oracle functions,
both built-in and user-defined, and how they can make an application
developer’s or DBA’s job easier.

Chapter 4, “Restricting, Sorting, and Grouping Data”

Describes how
to manage queries by restricting and sorting their results.

4372cINTRO.fm Page xiii Monday, August 16, 2004 6:56 PM

xiv

Introduction

Chapter 5, “Using Multiple Tables”

Moves from accessing single tables
to joining multiple tables in a multitude of ways, with both the old and new
join syntax.

Chapter 6, “Advanced SQL Queries”

Covers some of the more advanced
functions and explains how to nest a query within another query to retrieve
the results you want.

Chapter 7, “Logical Consistency”

Describes how to make sure that the
rows entered into the database tables are accurate and consistent with data
in other tables in the database. This chapter discusses how you can validate
the data before it is inserted into a row of a table.

Chapter 8, “Installing Oracle and Creating a Database”

Shows you
how to install the database software on the server and create a database
using Oracle’s GUI-based tools.

Chapter 9, “Reporting Techniques”

Investigates techniques for making
reports easier to understand and manage.

Chapter 10, “Creating and Maintaining Database Objects”

Explores
the different ways to create tables, indexes, views, sequences, and syn-
onyms. It also describes how to use data dictionary views and dynamic per-
formance views.

Chapter 11, “Users and Security”

Focuses on how to prevent unauthorized
or unintentional actions in the database. It covers how to create user accounts,
grant and revoke privileges, and keep tabs on who is accessing what kind of
object and when.

Chapter 12, “Making Things Run Fast (Enough)”

Explores techniques
for tuning the database so it will respond to queries as quickly as possible.
This chapter covers how the Oracle optimizer works and how you can use
indexes judiciously to make queries run in a reasonable amount of time.

Chapter 13, “Saving Your Stuff (Backups)”

Describes how, by using the
right combination of backup and recovery techniques, the DBA can minimize
or even eliminate the possibility of losing any committed data in the database.

Chapter 14, “Troubleshooting”

Reviews some of the places to look for
error messages, along with some general troubleshooting techniques.

Making the Most of This Book

At the beginning of each chapter of

Oracle Database Foundations

,

you’ll find a
list of topics that you can expect to learn about within that chapter.

4372cINTRO.fm Page xiv Monday, August 16, 2004 6:56 PM

Introduction

xv

To help you absorb new material easily, I’ve highlighted

important terms

 and
defined them in the margins of the pages. You’ll also find three kinds of notes
with supplementary material:

Notes provide extra information and references to related information.

Tips are insights that help you perform tasks more easily and effectively.

Warnings let you know about things you should do—or shouldn’t do—as you learn
more about what an Oracle DBA’s job is like.

At the end of each chapter, you can test your knowledge of the topics covered
by answering the chapter’s review questions. At the end of the book is a glossary
of all the terms that have been introduced throughout the book. You’ll find the
answers to the review questions in Appendix A. Appendix B contains a brief
overview of other database platforms and how they might fit into an enterprise’s
database infrastructure.

About the Author

Bob Bryla is an Oracle8

i

, Oracle9

i

, and Oracle 10

g

 certified professional (OCP)
with more than 15 years of database design, database application development,
and database administration experience in a variety of fields. He is currently an
Internet database analyst and DBA at Lands’ End, Inc., in Dodgeville, Wisconsin.
You can contact Bob by e-mail at

rjbryla@centurytel.net

.

4372cINTRO.fm Page xv Monday, August 16, 2004 6:56 PM

4372cINTRO.fm Page xvi Monday, August 16, 2004 6:56 PM

In This Chapter

Chapter

1

Relational Database
Concepts

Every organization has data that needs to be collected, managed, and
analyzed. A relational database fulfills these needs. Along with the pow-
erful features of a relational database come requirements for developing
and maintaining the database. Data analysts, database designers, and
database administrators (DBAs) need to be able to translate the data in
a database into useful information for both day-to-day operations and
long-term planning.

Relational databases can be a bit intimidating at first, even if you’re a
specialist in some other informational technology area, such as network-
ing, web development, or programming. This chapter will give you a good
overview of current relational and object-relational database concepts. It
begins by comparing a database with another tool that most everyone has
used—a spreadsheet (also known as the “poor man’s” database). Then
you’ll learn about the basic components of a relational database, the data
modeling process, and object-relational database features.

◆

How spreadsheets compare with
databases

◆

Relational database concepts

◆

Data modeling concepts

◆

Object-relational database concepts

4372.book Page 1 Wednesday, August 4, 2004 3:01 PM

2

Chapter 1

Are Spreadsheets Like Databases?

Most people are familiar with some kind of spreadsheet, such as Microsoft
Excel. Spreadsheets are easy and convenient to use, and they may be employed
by an individual much like a database is used in the enterprise. Let’s look at the
features of spreadsheets to see how good of a database tool they actually are.

Similar to databases, spreadsheets are commonly used to store information in
a tabular format. A spreadsheet can store data in rows and columns, it can link
cells on one sheet to those on another sheet, and it can force data to be entered in
a specific cell in a specific format. It’s easy to calculate formulas from groups of
cells on the spreadsheet, create charts, and work with data in other ways. But there
are many ways in which a spreadsheet is not like a traditional database table:

Spreadsheet Database

More than one datatype can be stored
in a spreadsheet column.

Usually, only one datatype can be
stored in a database table column.

Cells in a spreadsheet can be defined as
a formula, making the contents variable
depending on other cells.

Columns in a database table have a
fixed value.

A spreadsheet has only the physical
row number to make it unique and no
built-in way to enforce uniqueness of a
given spreadsheet row.

Single rows of a database table are
uniquely identified by a unique value
(typically a primary key, as described
later in this chapter).

Usually, only one user can have write
access to the spreadsheet at any given
time; anyone else is locked out, even if
the second user is on a different part
of the spreadsheet.

Multiple users can access a database
table at the same time, with various
combinations of read and write
capabilities in different parts of the
database.

A spreadsheet does not have any built-
in transaction-control capabilities, such
as ensuring that a group of changes to
the sheet is completely applied or not
applied at all. The Save button is about
the best a spreadsheet can do to
simulate transaction control.

A database usually has transaction-
control capabilities, making it possible
to “roll back” a change if something
happened to prevent it from completing
successfully (such as a power failure).

A corrupt spreadsheet cannot usually
be repaired; the entire spreadsheet
must be restored from a backup,
which may have occurred yesterday,
last week, or never!

There are many tools for repairing and
recovering databases.

4372.book Page 2 Wednesday, August 4, 2004 3:01 PM

Relational Database Concepts

3

This is not to say that a spreadsheet isn’t a valuable tool in the enterprise for
ad hoc and “what-if” analyses. Furthermore, most spreadsheet products have
some way to connect to an external database as the data source for analysis.

Relational Databases

The relational model is the basis for any relational database management system
(RDBMS). A relational model has three core components: a collection of objects
or relations, operators that act on the objects or relations, and data integrity
methods. In other words, it has a place to store the data, a way to create and
retrieve the data, and a way to make sure that the data is logically consistent.

relational database

A collection of tables that stores data
without any assumptions as to how the
data is related within the tables or
between the tables.

A

relational database

 uses relations, or two-dimensional tables, to store the
information needed to support a business. Let’s go over the basic components of
a traditional relational database system and look at how a relational database is
designed. Once you have a solid understanding of what rows, columns, tables,
and relationships are, you’ll be well on your way to leveraging the power of a
relational database.

While this book focuses on the Oracle RDBMS for all of its examples and techniques,
it’s good to know how Oracle fits in with other database vendors and platforms.
Appendix B, “Common Database Platforms,” has an overview of the major RDBMS
vendors and their products.

Hierarchical and Network Databases

Dr. E. F. Codd first proposed the relational model in 1970. At that time, databases
were primarily either of the hierarchical or network type.

A hierarchical database is similar in nature to a filesystem, with a root or parent
node and one or more children referencing the parent. This makes for a very fast
data-access path, but it has the disadvantages of low flexibility, lack of an ad hoc
query capability, and high application maintenance.

A network database has some advantages over the hierarchical model, including a
data definition language, a data manipulation language, association records to sup-
port multiple parents per node, and data integrity. However, like hierarchical data-
bases, network databases suffer from rigidity in database structure and high
application maintenance costs.

Hierarchical and network-based databases are still used for extremely high-volume
transaction-processing systems. IBM claims that 95 percent of the Fortune 1000
companies in the world still use IMS, a hierarchical database management system
that is also web-enabled.

4372.book Page 3 Wednesday, August 4, 2004 3:01 PM

4

Chapter 1

Tables, Rows, and Columns

A

table

in a relational database, alternatively known as a

relation

, is a two-
dimensional structure used to hold related information. A database consists of
one or more related tables.

Don’t confuse a relation with relationships. A relation is essentially a table, and a rela-
tionship is a way to correlate, join, or associate two tables.

table

The basic construct of a relational data-
base that contains rows and columns of
related data.

A

row

 in a table is a collection or instance of one thing, such as one
employee or one line item on an invoice. A

column

 contains all the informa-
tion of a single type, and the piece of data at the intersection of a row and a
column, a

field

, is the smallest piece of information that can be retrieved with
the database’s query language. (Oracle’s query language, SQL, is the topic of
Chapter 2, “SQL*Plus and iSQL*Plus Basics.”) For example, a table with
information about employees might have a column called

LAST_NAME

 that
contains all of the employees’ last names. Data is retrieved from a table by
filtering on both the row and the column.

SQL, which stands for Structured Query Language, supports the database compo-
nents in virtually every modern relational database system. SQL has been refined and
improved by the American National Standards Institute (ANSI) for more than 20
years. As of Oracle9i, Oracle’s SQL engine conforms to the ANSI SQL:1999 (also
known as SQL3) standard, as well as its own proprietary SQL syntax that existed in
previous versions of Oracle. Until Oracle9i, only SQL:1992 (SQL2) syntax was fully
supported. As of Oracle 10g, the Core SQL:2003 features are fully supported with a
couple minor exceptions.

Primary Keys, Datatypes, and Foreign Keys

relation

A two-dimensional structure used to
hold related information, also known
as a table.

The examples throughout this book will focus on the hypothetical work of Scott
Smith, database developer and entrepreneur. He just started a new widget com-
pany and wants to implement a few of the basic business functions using the Ora-
cle relational database to manage his Human Resources (HR) department.

Most of Scott’s employees were hired away from one of his previous employers,
some of whom have over 20 years of experience in the field. As a hiring incentive,
Scott has agreed to keep the new employees’ original hire date in the new database.

row

A group of one or more data elements in
a database table that describes a per-
son, place, or thing.

You’ll learn about database design in the following sections, but let’s assume
for the moment that the majority of the database design is completed and some
tables need to be implemented. Scott creates the

EMP

 table to hold the basic
employee information, and it looks something like this:

4372.book Page 4 Wednesday, August 4, 2004 3:01 PM

Relational Database Concepts

5

column

The component of a database table that
contains all of the data of the same
name and type across all rows.

Notice that some fields in the Commission (

COMM

) and Manager (

MGR

) col-
umns do not contain a value; they are blank. A relational database can enforce
the rule that fields in a column may or may not be empty. (Chapter 3, “Oracle
Database Functions,” covers the concept of empty, or

NULL

, values.) In this case,
it makes sense for an employee who is not in the Sales department to have a blank
Commission field. It also makes sense for the president of the company to have
a blank Manager field, since that employee doesn’t report to anyone.

field

The smallest piece of information that can
be retrieved by the database query lan-
guage. A field is found at the intersection
of a row and a column in a database table.

On the other hand, none of the fields in the Employee Number (

EMPNO

) col-
umn are blank. The company always wants to assign an employee number to an
employee, and that number must be different for each employee. One of the fea-
tures of a relational database is that it can ensure that a value is entered into this
column and that it is unique. The

EMPNO

 column, in this case, is the

primary key

of the table.

primary key

A column (or columns) in a table that
makes the row in the table distinguishable
from every other row in the same table.

Notice the different datatypes that are stored in the

EMP

 table: numeric values,
character or alphabetic values, and date values. The Oracle database also sup-
ports other variants of these types, plus new types created from these base types.
Datatypes are discussed in more detail throughout the book.

foreign key

A column (or columns) in a table that
draws its values from a primary or unique
key column in another table. A foreign key
assists in ensuring the data integrity of
a table.

As you might suspect, the

DEPTNO

 column contains the department number
for the employee. But how do you know what department name is associated
with what number? Scott created the

DEPT

 table to hold the descriptions for the
department codes in the

EMP

 table.

4372.book Page 5 Wednesday, August 4, 2004 3:01 PM

6

Chapter 1

referential integrity

A method employed by a relational data-
base system that enforces one-to-many
relationships between tables.

The

DEPTNO

 column in the

EMP

 table contains the same values as the

DEPTNO

column in the

DEPT

 table. In this case, the

DEPTNO

 column in the

EMP

 table is con-
sidered a

foreign key

 to the same column in the

DEPT

 table. With this association,
Oracle can enforce the restriction that a

DEPTNO

 value cannot be entered in the

EMP

 table unless it already exists in the

DEPT

 table. A foreign key enforces the
concept of

referential integrity

 in a relational database. The concept of referential
integrity not only prevents an invalid department number from being inserted
into the

EMP

 table, but it also prevents a row in the

DEPT

 table from being deleted
if there are employees still assigned to that department.

Data Modeling

data modeling

A process of defining the entities,
attributes, and relationships between
the entities in preparation for creating the
physical database.

Before Scott created the actual tables in the database, he went through a design
process known as

data modeling

. In this process, the developer conceptualizes
and documents all the tables for the database. One of the common methods for
modeling a database is called ERA, which stands for entities, relationships, and
attributes. The database designer uses an application that can maintain entities,
their attributes, and their relationships. In general, an entity corresponds to a
table in the database, and the attributes of the entity correspond to columns of
the table.

Various data-modeling tools are available for database design. Examples include
Microsoft Visio (

www.microsoft.com/office/visio

) and more robust tools such
as Computer Associates’ AllFusion ERwin Data Modeler (

www3.ca.com/Solutions/
Product.asp?ID=260

) and Embarcadero’s ER/Studio (

www.embarcadero.com/
products/erstudio/index.html

).

The data-modeling process involves defining the entities, defining the rela-
tionships between those entities, and then defining the attributes for each of the
entities. Once a cycle is complete, it is repeated as many times as necessary to
ensure that the designer is capturing what is important enough to go into the
database. Let’s take a closer look at each step in the data-modeling process.

Defining the Entities

associative table

A database table that stores the valid
combinations of rows from two other
tables and usually enforces a business
rule. An associative table resolves a
many-to-many relationship.

First, the designer identifies all of the entities within the scope of the database
application. The entities are the persons, places, or things that are important to
the organization and need to be tracked in the database. Entities will most likely
translate neatly to database tables. For example, for the first version of Scott’s
widget company database, he identifies four entities: employees, departments,
salary grades, and bonuses. These will become the

EMP

,

DEPT

,

SALGRADE

, and

BONUS

 tables.

4372.book Page 6 Wednesday, August 4, 2004 3:01 PM

Relational Database Concepts

7

Defining the Relationships between Entities

Once the entities are defined, the designer can proceed with defining how each
of the entities is related. Often, the designer will pair each entity with every other
entity and ask, “Is there a relationship between these two entities?” Some rela-
tionships are obvious; some are not.

intersection table

See

associative table.

In the widget company database, there is most likely a relationship between

EMP

 and

DEPT

, but depending on the business rules, it is unlikely that the

DEPT

and

SALGRADE

 entities are related. If the business rules were to restrict certain sal-
ary grades to certain departments, there would most likely be a new entity that
defines the relationship between salary grades and departments. This entity
would be known as an

associative

 or

intersection table

 and would contain the
valid combinations of salary grades and departments.

one-to-many relationship

A relationship type between tables where
one row in a given table is related to
many other rows in a child table. The
reverse condition, however, is not true. A
given row in a child table is related to
only one row in the parent table.

In general, there are three types of relationships in a relational database:

One-to-many

The most common type of relationship is

one-to-many

.
This means that for each occurrence in a given entity, the parent entity,
there may be one or more occurrences in a second entity, the child entity,
to which it is related. For example, in the widget company database, the

DEPT entity is a parent entity, and for each department, there could be one
or more employees associated with that department. The relationship
between DEPT and EMP is one-to-many.

one-to-one relationship
A relationship type between tables where
one row in a given table is related to only
one or zero rows in a second table. This rela-
tionship type is often used for subtyping.

One-to-one In a one-to-one relationship, a row in a table is related to
only one or none of the rows in a second table. This relationship type is
often used for subtyping. For example, an EMPLOYEE table may hold the
information common to all employees, while the FULLTIME, PARTTIME,
and CONTRACTOR tables hold information unique to full-time employees,
part-time employees, and contractors, respectively. These entities would be
considered subtypes of an EMPLOYEE and maintain a one-to-one relation-
ship with the EMPLOYEE table. These relationships are not as common as
one-to-many relationships, because if one entity has an occurrence for a
corresponding row in another entity, in most cases, the attributes from
both entities should be in a single entity.

many-to-many relationship
A relationship type between tables in a
relational database where one row of a
given table may be related to many rows
of another table, and vice versa. Many-
to-many relationships are often resolved
with an intermediate associative table.

Many-to-many In a many-to-many relationship, one row of a table may
be related to many rows of another table, and vice versa. Usually, when
this relationship is implemented in the database, a third entity is defined as
an intersection table to contain the associations between the two entities in
the relationship. For example, in a database used for school class enroll-
ment, the STUDENT table has a many-to-many relationship with the CLASS
table—one student may take one or more classes, and a given class may
have one or more students. The intersection table STUDENT_CLASS would
contain the combinations of STUDENT and CLASS to track which students
are in which classes.

4372.book Page 7 Wednesday, August 4, 2004 3:01 PM

8 Chapter 1

Assigning Attributes to Entities
Once the designer has defined the entity relationships, the next step is to assign
the attributes to each entity. This is physically implemented using columns, as
shown here for the SALGRADE table as derived from the salary grade entity.

Iterate the Process: Are We There Yet?
After the entities, relationships, and attributes have been defined, the designer
may iterate the data modeling many more times. When reviewing relationships,
new entities may be discovered. For example, when discussing the widget inven-
tory table and its relationship to a customer order, the need for a shipping restric-
tions table may arise.

Once the design process is complete, the physical database tables may be
created. This is where the DBA usually steps in, although the DBA probably has
attended some of the design meetings already! It’s important for the DBA to be
involved at some level in the design process to make sure that any concerns about
processor speed, disk space, network traffic, and administration effort can be
addressed promptly when it comes time to create the database.

Logical database design sessions should not involve physical implementation
issues, but once the design has gone through an iteration or two, it’s the DBA’s
job to bring the designers “down to earth.” As a result, the design may need to
be revisited to balance the ideal database implementation versus the realities of
budgets and schedules.

Object-Relational Databases
object-relational database
A relational database that includes addi-
tional operations and components to
support object-oriented data structures
and methods.

An object-relational database system supports everything a relational database
system supports, as well as constructs for object-oriented development and
design techniques. Object-oriented constructs are found in modern program-
ming languages such as Java and C++. Both Oracle9i and Oracle 10g fully sup-
port all of the traditional object-oriented constructs and methods.

While the full range of object-oriented techniques is beyond the scope of this
book, you will get a good idea of some of the object-oriented capabilities of Ora-
cle, including abstraction, methods, encapsulation, and inheritance. Let’s define
those terms now.

4372.book Page 8 Wednesday, August 4, 2004 3:01 PM

Relational Database Concepts 9

Abstraction
abstract datatypes
New datatypes, usually user-created,
that are based on one or more built-in
datatypes and can be treated as a unit.

One of the ways in which Oracle supports the object-relational model is by using
abstraction. As noted earlier, Oracle has many built-in datatypes, such as numeric,
string, date, and others. In addition, you can define user-defined objects as an
aggregate of several other datatypes. These new user-defined types are called
abstract datatypes.

For example, when Scott’s widget company grows, there may be other systems
where he needs to represent an employee or a customer, or in more general terms,
a person. Scott can define a datatype called PERSON that stores a first name, last
name, middle initial, and gender. When the new customer tables are being built,
Scott just needs to use the new PERSON type in the table definition. This brings to
the table two immediate benefits: reusability and standards. Creating the new table
is faster, since the datatype has already been defined, and it’s less error prone than
creating four individual fields. In addition, any developer who moves from an
employee-oriented project to a customer-oriented project at Scott’s company will
find familiarity in common objects and naming conventions.

Methods and Encapsulation
methods
Operations on an object that are
exposed for use by other objects or
applications.

Another way in which object-oriented techniques are reflected in the Oracle
object-relational database is through the use of methods and encapsulation.
Methods define which operations can be performed on an object. Encapsulation
restricts access to the object other than via the defined methods.

encapsulation
An object-oriented technique that may
hide, or abstract, the inner workings of
an object and expose only the relevant
characteristics and operations on the
object to other objects.

Take a simple example of an employee object: It contains characteristics such
as the employee name, address, and salary. A method against an employee object
might be to get the name or change the name. Another method might be to increase
the salary but never to decrease the salary. The encapsulation of the employee
object prevents the direct manipulation of the characteristics of an employee object
other than what the methods, driven by business rules, dictate.

Inheritance
inheritance
Acquiring the properties of the parent, or
base object, in a new object.

Inheritance allows objects that are derived from other objects to use the methods
available in the parent object. If a new object is created with an existing object
as a base, all of the methods available with the existing object will also be avail-
able with the new object.

For example, if Scott were to implement a new EMPLOYEE type and a new
CUSTOMER type using the PERSON type as the base, then any methods that already
exist for PERSON would be available when using one of the two new types. The
method ChangeLastName, defined with the PERSON type only once, can be used
with objects defined with the CUSTOMER or EMPLOYEE type.

4372.book Page 9 Wednesday, August 4, 2004 3:01 PM

10 Chapter 1

Object-Relational Support
object view
A database construct that overlays an
object-oriented structure over an existing
relational database table. As a result,
the table can be accessed as a relational
table or as an object table and make the
transition to a fully object-oriented envi-
ronment easier.

Oracle Database 10g provides additional features to ease the transition to an
object-oriented database application. Object views allow the developer to define
an object-oriented structure over an existing relational database table. In this
way, existing applications do not need to change immediately, and any new
development can use the object-oriented definitions of the table. This makes the
transition from a relational to an object-relational database relatively painless,
because object definitions can reference existing relational components.

Terms to Know
abstract datatypes object view

associative table object-relational database

column one-to-many relationship

data modeling one-to-one relationship

encapsulation primary key

field referential integrity

foreign key relation

inheritance relational database

intersection table row

many-to-many relationship table

methods

4372.book Page 10 Wednesday, August 4, 2004 3:01 PM

Relational Database Concepts 11

Review Questions
1. Name the most important element of a relational database and its components.

2. Which type of table relationship associates more than one record in a given
table with more than one record in another table?

3. What type of key can be used to enforce referential integrity between two
tables in a database?

4. What are some reasons why using a spreadsheet is not a good alternative to
using a large-scale database?

5. What are some of the benefits of abstraction in an object-relational database
management system?

6. What object-relational feature of Oracle eases the transition between rela-
tional and object-relational applications?

7. What are the three steps in the ERA process for database design?

8. Name the three Oracle-compliant ANSI SQL standards.

9. What is the difference between a relation and a relationship?

10. Which type of relationship associates one row in a given table with one or no
rows in another table?

4372.book Page 11 Wednesday, August 4, 2004 3:01 PM

4372.book Page 12 Wednesday, August 4, 2004 3:01 PM

In This Chapter

Chapter

2

SQL*Plus and
iSQL*Plus Basics

This chapter begins with a few formalities and definitions and then dives
right into a discussion of the different ways to run SQL commands. Then
it introduces the basics of

SELECT

 statements and how we can retrieve
and display either all columns or only certain columns of a table.

You will also find out about how to make changes to the rows in a table
by using

INSERT

,

UPDATE

,

MERGE

, and

DELETE

 statements. In the remainder
of the chapter, you will explore various ways to change the structure of
tables in the database as well as control the permissions on tables.

◆

Various tools used to send and
receive SQL

◆

Basic SQL

SELECT

 statements

◆

Data Manipulation Language (DML)
commands

◆

Data Definition Language (DDL)
commands

◆

Data Control Language (DCL)
commands

4372.book Page 13 Wednesday, August 4, 2004 3:01 PM

14

Chapter 2

Some SQL Formalities

SQL (Structured Query Language)

The industry-standard database lan-
guage used to query and manipulate the
data, structures, and permissions in a
relational database.

A database engine is the part of an RDBMS that actually stores and retrieves data
to and from the data files. The database engine is not very useful unless you can
send

SQL (Structured Query Language)

 commands to it and receive the results
from those SQL commands (if any).

“SQL” is usually pronounced “sequel,” but if you refer to “S-Q-L” in a conversation with
other database developers and DBAs, they will certainly know what you’re talking about!

It is also important to separate the SQL commands from the command pro-
cessor itself. For example, Oracle’s SQL*Plus client tool (available on virtually
any platform that the Oracle server itself runs on) has a number of other “built-
in” commands that look like SQL commands but operate only within the
SQL*Plus environment; these are called SQL*Plus commands. A SQL*Plus com-
mand may actually send many SQL commands to the Oracle server.

Tools for Running SQL

tiers

Locations where different components of
an enterprise application system reside.
In a typical three-tier environment, the
client tier runs a thin application such as
a web browser, which connects to a mid-
dleware server that is running a web
server. The web server and its related
components typically manage the busi-
ness rules of the application. The third-
tier database platform controls access to
the data and manages the data itself.
This approach partitions the application
so that it is easier to maintain and seg-
regates the tasks into tiers that are best
equipped to handle a particular function.

Most Oracle database environments consist of two, three, or more

tiers

. In the
simplest two-tier scenario, a database developer might be using SQL*Plus on a
Windows PC connecting to an Oracle database on a Linux server. More complex
environments may include a web server, application server, or authentication
server on a number of other servers in between the client and the database server.

Here, we will explore the various client-based tools that can be used to run
SQL, including SQL*Plus, iSQL*Plus, SQL*Plus Worksheet, third-party tools,
Open Database Connectivity (ODBC), Java Database Connectivity (JDBC), and
Oracle Call Interface (OCI).

SQL*Plus

SQL*Plus has been around as long as the Oracle RDBMS itself. It is the most
basic tool available for connecting to the database and executing queries against
the tables in a database. On Unix systems, it can be run in character-based mode,
even on a dumb terminal connected to the Unix system via a serial port.

The “Plus” part of SQL*Plus defines some of the extra functionality available
above and beyond executing SQL statements and returning the results. Some of
this functionality is proprietary to SQL*Plus and may not be available in non-
Oracle database environments. Here are some of the things you can do using
SQL*Plus:

◆

Define headers and footers for reports.

◆

Rename columns in the report output.

4372.book Page 14 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics

15

◆

Prompt users for values to be substituted into the query.

◆

Retrieve the structure of a table.

◆

Save the results of the query to a file.

◆

Copy entire tables between databases using only one command.

While many other tools surpass SQL*Plus in functionality as well as in look
and feel, those other tools don’t help much when the database is down and all
you have is a character-based terminal emulator connection to your Unix server!
No matter which environment you’re in—Unix, Windows, minicomputer, or
mainframe—SQL*Plus will always be there and have the same look and feel
across all of those environments.

Under the various versions of Microsoft Windows, SQL*Plus runs as a Win-
dows application and as a command-line application. The Windows functional-
ity available in the Windows SQL*Plus session includes those features normally
available in a Windows text-based editor: cutting and pasting text strings,
searching for text in the session window, and saving or loading the last command
executed. The Windows version also allows you to change the SQL*Plus envi-
ronment settings using a GUI dialog box or through the command line. The GUI
dialog box is accessible from SQL*Plus by selecting Options �

 Environment.

host string

A text string that represents a shortcut
or reference to a set of parameters that
provide the information needed to con-
nect to a database host from the client
application.

You’ll need to log on with a valid username and password to initiate a
SQL*Plus session, as shown below. You’ll also need to enter a host string value.
The

host string

 is an alias to a set of parameters, such as the name, address, pro-
tocol type, and port number of the Oracle database to which you want to con-
nect. The database may be on the same machine that is running the SQL*Plus
client tool, or it may be on a different host machine on the network. For the pur-
poses of this book, all database connections will use the rac0 host string.

4372.book Page 15 Wednesday, August 4, 2004 3:01 PM

16

Chapter 2

Your default Oracle installation may not have the user

SCOTT

 enabled, or the pass-
word may have been changed from the default

TIGER

. Check with your local DBA to
see if this is the case.

The user

SCOTT

 owns a number of database tables, including the

DEPT

 table,
which contains a list of all the department numbers, department names, and
department locations. As you’ll learn a little later in this chapter, the SQL

SELECT

 statement allows you to extract information from a database. The exam-
ple below shows a

SELECT

 statement that retrieves all of the rows in the

DEPT

table (

select * from dept;

) and its results.

Notice that the case of the keywords and column names is important only for
readability. In practice, you can enter them in any case. To enhance this sample
query, let’s do the following:

◆

Add a report title of “Department Report” using the

TTITLE

 SQL*Plus
command.

◆

Change the headers for each of the columns to make them more readable
using the

COLUMN

 SQL*Plus command.

◆

Save the output from the query to a file using the SQL*Plus

SPOOL

 command.

4372.book Page 16 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics

17

The sequence of SQL*Plus commands, the SQL statement, and the results
from the command are as follows:

SQL> ttitle “Department Report”

SQL> column deptno heading “Department|Number”

SQL> column dname heading “Department|Name”

SQL> column loc heading “City|Location”

SQL> spool c:\temp\deptrept.txt

SQL> /

Tue Aug 13 page 1

 Department Report

Department Department City

 Number Name Location

---------- -------------- -------------

 10 ACCOUNTING NEW YORK

 20 RESEARCH DALLAS

 30 SALES CHICAGO

 40 OPERATIONS BOSTON

SQL> spool off

SQL>

Notice that we didn’t type in the entire

SELECT

 statement again. Instead, we used
the / SQL*Plus command, which reruns the last complete SQL statement executed.

SQL*Plus commands differ from SQL statements in that they don’t need a
semicolon at the end (although SQL*Plus commands can be terminated with
a semicolon without SQL*Plus complaining about it). SQL statements can be
written across many lines without any type of continuation character; they are
complete whenever you type a semicolon or use the SQL*Plus / command.
SQL*Plus commands must be contained entirely on one line, unless the - contin-
uation character is used at the end of each line. The example below shows how
the SQL*Plus continuation character is used:

SQL> column deptno heading -

> “Department|Number”

SQL>

iSQL*Plus

With iSQL*Plus, you connect to the database indirectly via a very “lightweight”
middle tier. The iSQL*Plus tool is essentially the web-enabled version of

4372.book Page 17 Wednesday, August 4, 2004 3:01 PM

18

Chapter 2

SQL*Plus, with a few restrictions, which we will cover shortly. It is implemented
as part of a three-tier Oracle environment, although iSQL*Plus could very well
run on the same machine as either the client or the Oracle server itself.

thin client

A workstation or CPU with relatively low-
powered components that can use a web
interface (or other application with a
small footprint) to connect to a middle-
ware or a back-end database server
where most of the processing occurs.
iSQL*Plus is an example of a web appli-
cation that runs on a thin client.

iSQL*Plus offers a 100 percent web-enabled,

thin client

 solution. From a
DBA’s or network administrator’s point of view, the more clients that need only
a web browser to get their work done, the better. No Oracle client software
installation is required for iSQL*Plus!

To start iSQL*Plus, use your favorite web browser (preferably any version of
Mozilla, Microsoft Internet Explorer 5.0 or later, or Netscape Navigator 4.7 or
later) and navigate to the URL

http://

<

your_server_name

>

/isqlplus

. The
string <

your_server_name

> is the name of the middleware server that is run-
ning the iSQL*Plus web application.

Depending on the configuration of the server, you may need to add a port number to
the server name, for example,

http://www.internal.esweb.com:7779/isqlplus

.
Check with your local system administrator for the URL that supports iSQL*Plus.

connection identifier

See

host string

.

SQL*Plus and iSQL*Plus are similar. In fact, iSQL*Plus requires that the
SQL*Plus executable be accessible on the middleware server that is running
the iSQL*Plus service. The iSQL*Plus login screen below shows the user

SCOTT

logging into the same server as he did with SQL*Plus earlier in this chapter. In this
case, rac0 is specified as the

connection identifier

, rather than the host string as it
is with SQL*Plus; they have different names but mean the same thing.

4372.book Page 18 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics

19

Here is an example of running the same query in iSQL*Plus that you saw earlier
under SQL*Plus.

Notice that with iSQL*Plus, if only one SQL statement is being run at a time,
no semicolon is required. This would be the equivalent of typing / in a SQL*Plus
session after entering a SQL statement without a terminating semicolon. Also
notice that the area where commands are entered is a fixed size, regardless of how
many commands you are entering. Rest assured, as in SQL*Plus, this is easily con-
figurable. Just click the Preferences link in the upper-right corner of the browser to
change the command area size and other iSQL*Plus environment settings.

The Apache HTTP web server is used to host iSQL*Plus, as well as any other Oracle
web-enabled services on Microsoft Windows Oracle installations. Apache isn’t just for
Unix anymore!

All of the examples later in this chapter and throughout the book will use
iSQL*Plus as the tool for executing SQL commands and reports.

4372.book Page 19 Wednesday, August 4, 2004 3:01 PM

20

Chapter 2

SQL*Plus Worksheet

Oracle Enterprise Manager (OEM)

A GUI tool that allows access, mainte-
nance, and monitoring of multiple data-
bases or services within a single
application.

If

Oracle Enterprise Manager (OEM)

 is installed, another variation of
SQL*Plus, called SQL*Plus Worksheet, is available to the DBA. Here’s the
OEM Login dialog box:

SQL*Plus Worksheet supports all the commands that standard SQL*Plus
supports, in a two-pane query/result format, as shown below. It’s a slightly more
graphical application; in other words, it needs an operating system such as
Microsoft Windows or a similar GUI client to run. Beyond that, it’s really just
SQL*Plus with a slightly better front end!

4372.book Page 20 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics

21

Third-Party Tools

Basic network client connectivity is provided during an Oracle client installation.
Starting with release 9, Oracle’s network connectivity package is known as Oracle
Net Services. Third-party developers can leverage this functionality in their own
applications to provide tools customized for a more specific audience and to provide
an additional layer of functionality that may not be available in Oracle’s offerings.

An example of a third-party tool is TOAD, which stands for Tool for Oracle
Application Developers. TOAD is not just for developers; it has a lot of func-
tionality that DBAs can use also. There are both a freeware version (that can even
be used as freeware in a corporate environment) and a licensed version. The
licensed version has many more DBA-friendly features and SQL debugging tools
available. (Visit

www.toadsoft.com

 or

www.quest.com/toad

 for more infor-
mation.) Shown below is the

DEPT

 table query executed using the freeware ver-
sion of the TOAD browser. Notice the other database navigational capabilities
in this pane.

ODBC/JDBC

ODBC (Open Database Connectivity)

A set of standards that allow applications
that are not dependent on any one spe-
cific database to process SQL state-
ments against any database that
supports SQL.

Many tools in the Windows (and Unix) environment can take advantage of a
common framework known as

ODBC

, which stands for Open Database Connec-
tivity. In a nutshell, ODBC allows applications that are ODBC-compliant to connect
to virtually any database without knowing the details of how to connect directly to
the database. All of the details are hidden in the

ODBC driver

 itself. The driver may

4372.book Page 21 Wednesday, August 4, 2004 3:01 PM

22

Chapter 2

be written by the database vendor or by a third-party developer that specializes in
ODBC connectivity. Here is an example of the Oracle ODBC Driver Configuration
dialog box for setting up an ODBC connection to a database.

ODBC driver

An interface, usually at the operating-
system level, that supports the connec-
tion of an ODBC-compliant application to
a specific database platform.

After the ODBC connection is made, you can run queries. Shown below are
the results of the DEPT table query from a Microsoft Access session.

Applications that use ODBC are not limited to tools such as Microsoft
Access, which also has its own client-based database engine in addition to the
capability to connect to other databases. Spreadsheets, financial applications,
and statistical analysis packages are among the many types of applications that
need to connect to a database for their source data. ODBC gives the end user
the freedom to choose which external database to use and frees the application
vendor from needing to develop a special connection routine for every possible
database source.

JDBC (Java Database Connectivity)

A set of library routines specific to the
Java language that allows a Java applica-
tion to easily connect to and process SQL
statements against an Oracle database.

JDBC

, which stands for Java Database Connectivity, is very similar to ODBC
in that JDBC provides a common set of routines to allow a Java developer to con-
nect to any SQL-compliant database without knowing the specifics of the target
database. The key difference between ODBC and JDBC is that JDBC is specifi-
cally for Java applications and ODBC is application-neutral.

4372.book Page 22 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics

23

OCI
OCI (Oracle Call Interface)
A set of library routines that allows a C
application on virtually any development
platform to easily connect to and process
SQL statements against an Oracle data-
base. The OCI routines are called as
native C library functions; therefore, no
preprocessor is necessary when compil-
ing a C application using OCI.

Finally, we have OCI, which stands for Oracle Call Interface. OCI is a set of
library routines for C developers (on any operating system platform) that can
provide all the functionality available from a SQL command-line session and
more. Below are some code fragments in the C language that include OCI calls:

text *username = (text *) “SCOTT”;

text *password = (text *) “TIGER”;

...

text *insert = (text *) “INSERT INTO emp(empno, \

 ename, job, sal, deptno)\

 VALUES (:empno, :ename, :job, :sal, :deptno)”;

...

/*

 * Connect to ORACLE and open two cursors.

 * Exit on any error.

 */

 if (olog(&lda, (ub1 *)hda, username, -1, password, -1,

 (text *) 0, -1, (ub4)OCI_LM_DEF))

 {

 err_report(&lda);

 exit(EXIT_FAILURE);

 }

 printf(“Connected to ORACLE as %s\n”, username);

...

/* Parse the INSERT statement. */

 if (oparse(&cda1, insert, (sb4) -1, FALSE, (ub4) VERSION_
7))

 {

 err_report(&cda1);

 do_exit(EXIT_FAILURE);

 }

...

For more OCI code samples, check the ORACLE_BASE\ORACLE_HOME\oci
directory under Microsoft Windows Oracle installations.

The Ubiquitous SELECT Statement
In the examples of tools for running SQL, you’ve seen the following simple
SELECT statement:

select * from dept;

4372.book Page 23 Wednesday, August 4, 2004 3:01 PM

24 Chapter 2

In its most basic form, the SELECT statement has a list of columns to select
from a table, using the SELECT ... FROM syntax. The * means “all columns.”
To successfully retrieve rows from a table, the user running the query must either
own the table or have the permissions granted to the user by the owner or a DBA.
The most basic SELECT syntax can be described as follows:

SELECT {* | [DISTINCT] column | expression [alias], ...}

 FROM tablename;

This type of statement representation is typical of what you’ll see in Oracle
documentation, and it can be very complex. Here is a summary of what the ele-
ments in the syntax representation mean:

We will explore many more advanced features of the SELECT statement
throughout this book. However, to begin with, let’s look at some examples of the
column, alias, DISTINCT, and expression parts of a SELECT statement.

Column Specification
As you’ve seen, you can use the * character to view all columns in a table. But
if the table contains too many columns to view at once, or your query needs
only a small number of the total columns, you can pick the columns you need.
For example, suppose that you want to view some information in the EMP
table. How could you find out which columns are in this table without doing
a SELECT * statement? You could use the DESCRIBE command in iSQL*Plus,
as shown below.

Element Meaning

| Pick one or the other

{ } One within this list is required

Element Meaning

[] Item is optional

… May repeat

Uppercase Keyword or command

italics Variable

4372.book Page 24 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics 25

Now that you know which columns exist in the EMP table, you realize that you
really need to see only the employee number, name, and salary. Therefore, your
SELECT statement should be something like this:

select empno, ename, sal from emp;

It produces results similar to the following:

EMPNO ENAME SAL

---------- ---------- ----------

 7369 SMITH 800

 7499 ALLEN 1600

 7521 WARD 1250

 7566 JONES 2975

 7654 MARTIN 1250

 7698 BLAKE 2850

 7782 CLARK 2450

4372.book Page 25 Wednesday, August 4, 2004 3:01 PM

26 Chapter 2

 7788 SCOTT 3000

 7839 KING 5000

 7844 TURNER 1500

 7876 ADAMS 1100

 7900 JAMES 950

 7902 FORD 3000

 7934 MILLER 1300

14 rows selected.

Column Renaming
alias
An alternate name for a column, speci-
fied right after the column name in a
SELECT statement, seen in the results
of the query.

In one of our earlier SQL*Plus examples, we wanted the column headers to be
more readable, and we used some of the built-in features of SQL*Plus to do this.
However, if your requirements for readability are fairly simple, you can use
SQL’s built-in capability of column renaming, noted by the [alias] element of
the SELECT syntax. Here is an example of providing aliases for the EMPNO, ENAME,
and SAL columns in the EMP table. The alias is the renamed column seen in the
results of the query.

select empno “Employee Number”, ename “Name”, sal “Salary”
from emp;

Employee Number Name Salary

--------------- ---------- ----------

 7369 SMITH 800

 7499 ALLEN 1600

 7521 WARD 1250

 7566 JONES 2975

 7654 MARTIN 1250

 7698 BLAKE 2850

 7782 CLARK 2450

 7788 SCOTT 3000

 7839 KING 5000

 7844 TURNER 1500

 7876 ADAMS 1100

 7900 JAMES 950

 7902 FORD 3000

 7934 MILLER 1300

14 rows selected.

4372.book Page 26 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics 27

Duplicate Removal
The DISTINCT keyword removes all duplicate rows from the results of a query.
For example, what if you wanted to see the department numbers for the employ-
ees in the EMP table? Your query might be something like this:

select deptno from emp;

DEPTNO

 20

 30

 30

 20

 30

 30

 10

 20

 10

 30

 20

 30

 20

 10

14 rows selected.

But what you probably want is one row for each of the departments found in
the EMP table. In this case, use the DISTINCT keyword:

select distinct deptno from emp;

DEPTNO

 10

 20

 30

3 rows selected.

That’s much easier to read. You now know that all of the employees belong
to one of three departments. However, there may be many other departments,
which would be listed in the department (DEPT) table. Some departments may
not have any employees right now. In Chapter 5, “Using Multiple Tables,” you’ll
learn how to execute queries on joined tables to get this kind of information.

4372.book Page 27 Wednesday, August 4, 2004 3:01 PM

28 Chapter 2

Expressions
To finish off our analysis of the SELECT syntax, let’s look at the expression part
of the SELECT statement. Let’s say we would like to see how salaries would look
if everyone got a 15 percent pay increase. All of the information we need to see
is still in one table, the EMP table, but we need to perform some kind of calcula-
tion on one of the existing fields. To calculate a 15 percent pay increase, we need
to not only see the existing salary but also multiply the SAL column by 1.15:

select empno, ename, sal, sal*1.15 from emp;

EMPNO ENAME SAL SAL*1.15

---------- ---------- ---------- ----------

 7369 SMITH 800 920

 7499 ALLEN 1600 1840

 7521 WARD 1250 1437.5

 7566 JONES 2975 3421.25

 7654 MARTIN 1250 1437.5

 7698 BLAKE 2850 3277.5

 7782 CLARK 2450 2817.5

 7788 SCOTT 3000 3450

 7839 KING 5000 5750

 7844 TURNER 1500 1725

 7876 ADAMS 1100 1265

 7900 JAMES 950 1092.5

 7902 FORD 3000 3450

 7934 MILLER 1300 1495

14 rows selected.

To make the proposed salary column more readable, we could use either
a column alias or iSQL*Plus column-formatting commands. We might also
want to show a total for the SAL and SAL*1.15 columns or show each salary
increase to exactly two decimal places. Some of these more advanced format-
ting techniques will be covered in Chapter 9, “Reporting Techniques.”

4372.book Page 28 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics 29

DML for Making Changes
DML stands for Data Manipulation Language. DML commands are the SQL
statements that can change the values in database tables, as opposed to merely
reading them, as SELECT statements do.

It could be argued that SELECT statements do technically manipulate data when a
query is performed, but in this book, we will differentiate between reading database
tables and changing database tables. DBAs may configure and tune a mostly read-
only database differently than they configure a frequent read-write database. An
online transaction processing (OLTP) database would be considered a mostly read-
write database. A decision support system (DSS) or data warehouse database would
be considered a mostly read-only database.

The following sections provide an introduction to the DML statements
UPDATE, INSERT, DELETE, and MERGE.

The UPDATE Statement
DML (Data Manipulation Language)
Includes INSERT, UPDATE, DELETE,
and MERGE statements that operate
specifically on database tables. Occa-
sionally, SELECT statements are
included in the SQL DML category.

An UPDATE statement will change one or more rows in a database table. The
basic form of an UPDATE statement must specify which table to update, which
column(s) to change, and, optionally, whether to change all the rows in the table
or just a few. The syntax is as follows:

UPDATE tablename SET column = value [, column = value, ...]

 [WHERE condition];

As with any SQL statements that access a table, the table to be updated must
be owned by the user running the query or have the permissions granted to the
user by the owner or a DBA. Chapter 11, “Users and Security,” will cover priv-
ileges and permissions in more detail.

Since a table may have a large number of columns, you don’t necessarily want
to update every column. To follow up on an earlier example, let’s say that the
boss has decided to give a 15 percent salary increase across the board. We can use
an UPDATE statement that looks very similar to the SELECT statement we wrote
earlier. Here are what the UPDATE statement and the result of executing that
statement in iSQL*Plus look like:

4372.book Page 29 Wednesday, August 4, 2004 3:01 PM

30 Chapter 2

But wait, you ask, did something actually happen here? The only clue is at the
bottom of the screen, where it indicates that 14 rows were updated. DML state-
ments such as UPDATE will perform the action requested (or produce an error
message on occasion), but only SELECT statements will return rows to the user.
To see if the rows were updated correctly, the user SCOTT will need to rerun the
SELECT query on the EMP table.

Now that all the employees have been granted their raise, the boss decides
that there are still some employees who need an even bigger raise. For example,
employee FORD had a lot more bright ideas last year than the average employee,
so he deserves another 10 percent raise above and beyond the 15 percent raise
that he already received. Also, the boss notices that the employee file has not yet
been updated with her employee information after the previous boss left late last
month. Both of these changes require UPDATE statements that contain a WHERE
clause to narrow down the number of changed records based on the employee
name. Using iSQL*Plus, we can perform these two updates at once. Here are the
results of the two UPDATE operations.

4372.book Page 30 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics 31

Notice that the results of both UPDATE statements appear at the bottom of the
iSQL*Plus browser window.

The INSERT Statement
Whenever new employees are hired in Scott’s widget company, new rows must
be added to the EMP table. The INSERT statement does just that. Here’s the basic
INSERT syntax:

INSERT INTO tablename [(column1 [, column2 ...])]

 VALUES (value1 [, value2 ...]);

This format of the INSERT statement inserts only one row at a time. In Scott’s
company, the boss realizes that she should probably leave the old boss’s employee
information intact and just add herself as a new row in the table. To handle this for
her, we need to perform both an UPDATE and an INSERT on the EMP table. The two
statements and their results are as follows:

update EMP set ENAME = ‘KING’ where ENAME = ‘QUEEN’;

insert into EMP (EMPNO, ENAME, JOB, MGR, HIREDATE,

4372.book Page 31 Wednesday, August 4, 2004 3:01 PM

32 Chapter 2

 SAL, COMM, DEPTNO)

values (7878, ‘QUEEN’, ‘PRESIDENT’, NULL, ‘15-AUG-2004’,

 7500, NULL, 10);

 1 row updated.

 1 row created.

Notice that while the case of the keywords and column names is important
only for readability, the text within the single quotation marks is case sensitive
and must represent the exact text to be searched or the exact text to be inserted
into the table’s column.

It is technically possible to create a column name with mixed case, but this technique
is not recommended. This is because the column name must be specified with the
same exact case in double quotation marks whenever it is referenced in any SQL
command.

What does the NULL value mean? NULL is a special keyword that means liter-
ally nothing. It is not the same as a blank or an empty string. It means that the
value inserted for this column in this row is unknown or not applicable. When
this value is displayed as the result of a SELECT statement, it displays with blanks.
In the case of the MGR column, the PRESIDENT employee has no boss, so this col-
umn is NULL for the former employee KING and the current employee QUEEN. The
format for date columns—in this case, for the column HIREDATE—will be
explained in Chapter 3, “Oracle Database Functions.”

The DELETE Statement
As the name implies, the DELETE statement will remove rows from a database
table. You can delete all rows or use a WHERE clause to specify rows, similar to
the UPDATE statement. Here’s the syntax:

DELETE [FROM] tablename

 [WHERE condition];

The FROM keyword is optional, but it makes the DELETE statement more read-
able (otherwise, it looks like you’re deleting the table itself!). In the case of Scott’s
company, all of the employees hired in the last recruitment drive on March 25,
2004 and added to the EMP table will be working for the company’s subsidiary
instead, so they must be deleted from the EMP table. Here’s the DELETE statement
to accomplish this:

4372.book Page 32 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics 33

The MERGE Statement
The MERGE statement was introduced in Oracle9i, and it performs an operation
that could be called an “upsert.” It combines two operations that would nor-
mally need to be performed separately—an INSERT or an UPDATE—depending
on whether the row already exists in the table.

Combining these two operations not only makes the application developer’s
coding more straightforward (by not needing to perform an explicit compare
operation with multiple UPDATE and INSERT statements), but it also reduces the
number of operations performed on the table. These operations are also per-
formed internally to the database, which makes the operation even more efficient
because the additional statement parsing does not need to occur. The syntax is
as follows:

MERGE INTO tablename alias

 USING (tablename2 | view | subquery) alias2

 ON (join_condition)

 WHEN MATCHED THEN

 UPDATE SET

4372.book Page 33 Wednesday, August 4, 2004 3:01 PM

34 Chapter 2

 col1 = col1_value [, col2 = col2_value ...]

 WHEN NOT MATCHED THEN

 INSERT (column_list) VALUES (column_values);

The basic syntax is fairly straightforward and easy to use. When the
source table and the target table match on one or more columns (in the join_
condition), the row is updated with an UPDATE statement; otherwise, the row
is inserted with an INSERT statement. Many of the components of the MERGE
statement, such as view and subquery, will be covered in later chapters.

DDL for Handling Database Objects
DDL (Data Definition Language)
Includes statements such as CREATE,
ALTER, and DROP to work with
objects such as tables. DDL modifies the
structure of the objects in a database
instead of the contents of the objects.

DDL stands for Data Definition Language. This class of statements allows the
user or DBA to add, change, or drop database objects, such as tables, indexes,
views, and so forth. While most ordinary users and developers can create their
own tables in a development environment, the DBA must still provide a solid
infrastructure for these tables by providing the appropriate location and disk
space allocation parameters. This will ensure that database tables are created
efficiently, regardless of who is creating them.

The following sections introduce the key DDL statements: CREATE, ALTER,
DROP, RENAME, and TRUNCATE. For the ALTER, DROP, RENAME, and TRUNCATE
DDL operations, the table to be modified must either be owned by the user
executing the DDL statement or the user must have the privilege to perform that
operation in any schema.

The CREATE Statement
Tables are probably the most frequently created objects in the database, second
only to indexes (depending on the type of database, as discussed in Chapter 12,
“Making Things Run Fast (Enough)”). The basic CREATE TABLE statement has
the following syntax:

CREATE TABLE [schema.]tablename

 (column1 datatype1 [DEFAULT expression]

 [, ...]);

schema
A group of related database objects
assigned to a database user. A schema
contains tables, views, indexes, sequences,
and SQL code. The schema name can be
used to qualify objects that are not owned
by the user referencing the objects.

A schema is a group of related tables and other objects that is owned by a single
user, whose username is the same as the schema name. In the context of the CREATE
TABLE statement, if the table itself will not be created in the schema of the user exe-
cuting the CREATE TABLE statement, the schema name must be specified. In addi-
tion, the user creating the table must have the correct privileges to create the table
in a different schema. (Permissions and privileges are covered in Chapter 11.)

At the simplest level, a table must have one or more columns, and each of
these columns must be of a specified type: a character string, a numeric type, a
date type, a long binary value, and so forth. These columns can all have NULL val-
ues, or they can be specified as being required for every row. If the user does not

4372.book Page 34 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics 35

specify a value for a column in an INSERT statement, a DEFAULT value can be
specified for this column when the table is created.

It turns out that Scott’s company is going to segregate the part-time employees
into a new table. The new table will be very similar to the existing EMP table,
except that the new table will have an hourly wage rate instead of a salary and
a commission. Starting with the existing structure of the EMP table, we can con-
struct a new CREATE TABLE statement as follows:

CREATE TABLE EMP_HOURLY (

 EMPNO NUMBER (4) NOT NULL,

 ENAME VARCHAR2 (10),

 JOB VARCHAR2 (9),

 MGR NUMBER (4),

 HIREDATE DATE,

 HOURRATE NUMBER (5,2) NOT NULL DEFAULT 6.50,

 DEPTNO NUMBER (2),

 CONSTRAINT PK_EMP

 PRIMARY KEY (EMPNO));

Notice that only the employee number and the hourly rate are required fields.
In addition, the hourly rate defaults to $6.50 an hour if it is not specified in the
INSERT statement. Below are the results of the CREATE TABLE statement in
iSQL*Plus, along with a confirmation of the table structure using the iSQL*Plus
DESCRIBE command.

4372.book Page 35 Wednesday, August 4, 2004 3:01 PM

36 Chapter 2

The CONSTRAINT and PRIMARY KEY clauses ensure that every table should
have one column, or a combination of columns, that makes the table’s row
unique within the table. This makes the identification of a row much easier and
less ambiguous when you’re doing an UPDATE, a DELETE, or a SELECT operation.
You’ll learn more about ensuring unique values in Chapter 10, “Creating and
Maintaining Database Objects.”

You can also use the CREATE TABLE AS SELECT (CTAS) version of CREATE TABLE
to quickly create a new version of an existing table, with some or all of the rows from
the source table. CTAS is covered in Chapter 10.

The ALTER Statement
The ALTER statement allows the user to make some kind of change to some object
in the database. The ALTER statement’s full syntax is very complex. For the pur-
poses of this book, the ALTER statement will be used to add, delete, or change a
column in a table. The ALTER statement’s syntax can then be simplified to one of
three statements:

ALTER TABLE tablename

 ADD (column1 datatype1 [DEFAULT expression] [, ...]);

ALTER TABLE tablename

 MODIFY (column1 datatype1 [DEFAULT expression] [,...]);

ALTER TABLE tablename DROP COLUMN column1;

A new company policy has been implemented at Scott’s company that man-
dates a new default hourly rate of $7.25. The EMP_HOURLY table must be modi-
fied to reflect this new policy. We can use the second form of the ALTER TABLE
statement shown above to accomplish this task. It also turns out that there is one
manager for all hourly employees; therefore, we do not need a MGR column in the
EMP_HOURLY table. We can use the third form of the ALTER TABLE statement
shown above to accomplish this additional task.

ALTER TABLE EMP_HOURLY

 MODIFY (HOURRATE NUMBER(5,2) DEFAULT 7.25);

ALTER TABLE EMP_HOURLY

 DROP COLUMN MGR;

DESCRIBE EMP_HOURLY;

Table altered.

Table altered.

4372.book Page 36 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics 37

 Name Null? Type

 ---------------------------- -------- ----------------

 EMPNO NOT NULL NUMBER(4)

 ENAME VARCHAR2(10)

 JOB VARCHAR2(9)

 HIREDATE DATE

 HOURRATE NOT NULL NUMBER(5,2)

 DEPTNO NUMBER(2)

If columns are dropped or modified in a table, the values of the other columns
in the table, as well as the total number of rows in the table, remain the same. If
a new column is added to a table with existing rows, the value for this column
in the existing rows is NULL, unless the column is required. If the column is
required, a DEFAULT value must be specified when the column is added.

The DROP Statement
When a table is no longer needed, it can be dropped. Both the table definition
and the rows in the table are dropped, and the space allocated for the table is
made available for other database objects. The syntax for the DROP statement
is about as simple as it gets:

DROP TABLE tablename;

The HR department at Scott’s company was maintaining the list of retirees in
an EMP_RETIRED table. Once the new management came in a couple of months
ago, the retiree-tracking function was outsourced, so the EMP_RETIRED table is
no longer needed. Here is how it is dropped:

DROP TABLE EMP_RETIRED;

Table dropped.

As with most other DDL operations, either the table to be dropped must be
owned by the user executing the DROP statement or the user must have the priv-
ilege to drop a table in any schema.

The RENAME Statement
The RENAME statement is also very straightforward. A table name can be changed
to another name; references by other database objects, such as indexes that refer to
the renamed table, are automatically adjusted. The syntax is as follows:

RENAME old_tablename TO new_tablename;

4372.book Page 37 Wednesday, August 4, 2004 3:01 PM

38 Chapter 2

Scott’s company is changing the employee categorization method to differen-
tiate between temporary part-time workers and permanent part-time workers.
Therefore, a new table, EMP_HOURLY_TEMP, must be created, and the existing
EMP_HOURLY table must be renamed to EMP_HOURLY_PERM:

RENAME EMP_HOURLY TO EMP_HOURLY_PERM;

Table renamed.

Any references to the old table in program code (such as C code using OCI) or in
stored SQL scripts must be changed manually to reflect the new table name.

The TRUNCATE Statement
From the perspective of the user, the TRUNCATE statement is similar to the DELETE
statement. Both of the statements will delete rows from a table. The main differ-
ence is that the DELETE can be more selective (in other words, using a WHERE
clause). The TRUNCATE statement simply removes all rows from a table. The
TRUNCATE statement will also appear to run faster than a DELETE in most cases.

From a DBA’s point of view, however, the TRUNCATE and DELETE statements
are very different. The TRUNCATE statement will immediately free any space from
the deleted rows. The space from any rows deleted with DELETE will remain allo-
cated to the table, and it may possibly be reused by future INSERT operations into
the table. Also, the TRUNCATE statement is not recoverable; rows removed with
DELETE can be recovered with a ROLLBACK statement. (Rolling back transactions
is discussed in Chapter 7, “Logical Consistency.”)

The syntax for TRUNCATE is very straightforward:

TRUNCATE TABLE tablename;

In Scott’s corporate database, one of the developers inadvertently loaded the
EMP_HOURLY table with 50,000 rows from the wrong table. The developer realizes
that the DELETE statement would fix this, but that the DBAs would be concerned
about the space that would not be reclaimed. The table didn’t have any rows to
begin with, so the developer determines that TRUNCATE would be the best option.
Here is the command to remove all the rows, so that the table is now empty:

TRUNCATE TABLE EMP_HOURLY;

Table truncated.

The table to be truncated must be in the user’s schema or the user must have
the privilege to drop a table in another user’s schema (the same privilege that
allows the user to completely drop the table).

4372.book Page 38 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics 39

DCL for Handling Privileges
DCL (Data Control Language)
Includes statements such as GRANT
and REVOKE to provide or deny users
or roles system or object privileges.

DCL stands for Data Control Language. DCL statements can give or take away
privileges to database objects or privileges to perform certain actions. At a min-
imum, most users are granted the right to connect to the database. Many users
may not need to create tables, so they are not granted that privilege.

Privileges can also be granted to a role. A role is a way to bundle together
multiple privileges into a single entity. This makes it easier to grant a group
of privileges to one or more users in one easy step, rather than needing to enu-
merate each of those privileges every time you want to grant them to a new
user (or to another role). The converse is also true: It’s easier to revoke a role
from a user than to remove the individual privileges that make up the role.
System privileges, object privileges, and roles are discussed in more detail in
Chapter 11. The following sections provide an overview of the GRANT and
REVOKE statements.

The GRANT Statement
role
A group of related privileges that is refer-
enced by a single name. Privileges can be
assigned to a role, and a role can be
assigned to a database user or to
another role. Roles ease the mainte-
nance issues with managing privileges
for a large number of users who can be
grouped into a relatively small number of
categories based on job function.

The GRANT statement is almost self-explanatory. GRANT will give a privilege
(either object or system) to a user, a role, or to all users. The basic syntax for
granting both system and object privileges is as follows:

GRANT sys_privilege [, sys_privilege ...]

 TO user | role | PUBLIC [, user | role | PUBLIC ...];

GRANT obj_privilege [(column_list)] ON object

 TO user | role | PUBLIC

[WITH GRANT OPTION];

Granting object privileges with the WITH GRANT OPTION clause allows the
user or users granted that role the ability to pass those rights onto yet another
user or role.

Suppose that Scott has acquired additional responsibilities and now must help
to maintain the tables in the order-entry system, specifically the ORDER_ITEMS
table owned by the user OE. The DBA grants the rights on this table to user SCOTT
using the following command:

GRANT INSERT, UPDATE, DELETE, SELECT ON

 OE.ORDER_ITEMS TO SCOTT;

Grant succeeded.

Scott can now add, delete, update, and view rows in the OE.ORDER_ITEMS
table. He cannot, however, grant these privileges to other users or roles, since the
WITH GRANT OPTION clause was not used by the DBA.

4372.book Page 39 Wednesday, August 4, 2004 3:01 PM

40 Chapter 2

The REVOKE Statement
As you would expect, the REVOKE statement is the opposite of the GRANT state-
ment. Either system privileges or object privileges can be revoked with the fol-
lowing basic syntax:

REVOKE obj_privilege | ALL [, obj_privilege] ON object

 FROM user | role | PUBLIC [, user | role | PUBLIC ...];

REVOKE sys_privilege | ALL [, sys_privilege ...]

 FROM user | role | PUBLIC [, user | role | PUBLIC ...];

When the DBA granted the rights to SCOTT to work with the ORDER_ITEMS
table, he noticed that the user OE had the DBA role assigned! This was obviously
an oversight, so he corrected the situation immediately by using the REVOKE
statement to remove the DBA role from OE:

REVOKE DBA FROM OE;

Revoke succeeded.

The user OE retains all other object and system privileges granted by the DBA
and other users.

Terms to Know
alias ODBC (Open Database

Connectivity)

connection identifier ODBC driver

DCL (Data Control Language) OEM (Oracle Enterprise Manager)

DDL (Data Definition Language) role

DML (Data Manipulation
Language)

schema

host string SQL (Structured Query Language)

JDBC (Java Database Connectivity) thin client

OCI (Oracle Call Interface) tiers

4372.book Page 40 Wednesday, August 4, 2004 3:01 PM

SQL*Plus and iSQL*Plus Basics 41

Review Questions
1. What are the three types of DML (Data Manipulation Language) statements?

2. If the user SCOTT is granted the privilege to insert records on the OE.WAREHOUSES
table using the command GRANT INSERT ON OE.WAREHOUSES WITH GRANT
OPTION, what does the WITH GRANT OPTION clause allow SCOTT to do?

3. Under which tiers of a three-tier Oracle environment does iSQL*Plus run?

4. What two methods are used to rename a column in the report output of a
SQL SELECT statement?

5. ODBC provides what capability to client applications?

6. Which SELECT statement keyword removes duplicate rows from the result of
the query?

7. What is the name of the set of library routines that allows a developer to send
SQL statements from a C program?

8. What are some of the differences between a DELETE and a TRUNCATE statement?

9. The new MERGE statement combines the functionality of which two other
DML statements?

10. What function does the DESCRIBE command perform in SQL*Plus or
iSQL*Plus?

4372.book Page 41 Wednesday, August 4, 2004 3:01 PM

4372.book Page 42 Wednesday, August 4, 2004 3:01 PM

In This Chapter

Chapter

3

Oracle Database Functions

Every DBA needs to know about built-in functions. Many of the day-to-
day tasks of a DBA involve queries, and these queries often need to trans-
form or summarize information in database tables and views. Many
DBAs will also create and maintain a library of customized functions
(also known as user-defined functions) for business areas in the company
and help to deploy these user-defined functions.

This chapter covers the built-in functions and provides an introduc-
tion to user-defined functions. However, before we dig into the functions
themselves, we’ll talk about some of the general rules for building que-
ries, including how the

DUAL

 table is used, how

NULL

 values work, and
how numbers and strings are constructed.

◆

Miscellaneous query operators and
rules

◆

Built-in, single-row functions

◆

Customized (user-defined) functions

4372.book Page 43 Wednesday, August 4, 2004 3:01 PM

44

Chapter 3

Query Basics

In order to use functions, you need to know how to call them and how to con-
struct their arguments. This section begins by explaining how the

DUAL

 table
allows you to use queries that don’t involve a real table. Next, you’ll learn about
the ubiquitous

NULL

 value and how it acts as a double-edged sword at times.
Then we’ll cover string literals and how to construct larger strings from one or
more other strings and columns. Finally, you’ll learn about numeric literals and
operator precedence.

Once you know how to use the

SELECT

 statement with the

DUAL

 table, along
with how string and numeric literals work, you’ll be ready to explore the built-in
functions. You’ll see that they are potent tools to put into your DBA bag of tricks.

The

DUAL

 Table

Because Oracle SQL is table-centric, most operations performed with SQL must
reference some kind of table or view. For example, consider the following SQL
statement:

SELECT NAME;

SELECT NAME

 *

ERROR at line 1:

ORA-00923: FROM keyword not found where expected

This returns an error, because the basic syntax of a

SELECT

 statement requires
that you select

FROM

 something—in this case, a table.

DUAL

A special table, owned by the Oracle

SYS

 user, that has one row and one col-
umn. It is useful for ad hoc queries that
don’t require rows from a specific table.

But what if you want to use the

SELECT

 statement to perform some calcula-
tions or do some other operation that doesn’t involve a particular table, such as
check the system date and time? The

DUAL

table makes this possible. You ref-
erence the

DUAL

 table when you need a table for syntactical reasons, not neces-
sarily for the data in the table.

The

DUAL

 table is a real table. It’s owned by the user

SYS

 and has one row. The
table has only one column, which is named

DUMMY

 and has a string with a length
of 1. The value of

DUMMY

 in the one and only row is

X

. You can see the

DUAL

table’s structure in the iSQL*Plus output shown below.

It’s true that anyone could create a table like this, with one row, and accom-
plish the same thing. But it’s good practice to have one place where you always
have one row and you always know the table name.

Since

DUAL

 is a real table, you could certainly do something like this:

select sysdate, dummy from dual;

4372.book Page 44 Wednesday, August 4, 2004 3:01 PM

Oracle Database Functions

45

SYSDATE D

--------- -

31-AUG-04 X

1 row selected.

But you already know what the value of

DUMMY

 is in

DUAL

, so you really don’t
need to include this field on a query with

DUAL

.
And to make it clear that

DUAL

 is a table just like any other, you could also do
something like this:

select sysdate from dept;

SYSDATE

31-AUG-04

4372.book Page 45 Wednesday, August 4, 2004 3:01 PM

46

Chapter 3

31-AUG-04

31-AUG-04

31-AUG-04

4 rows selected.

Since the

DEPT

 table has four rows, you get the

SYSDATE

 four times.
Since you really need only one row, the

DUAL

 table will fill the bill nicely:

select sysdate from dual;

SYSDATE

31-AUG-04

1 row selected.

The

DUAL

 table originally had two rows in early versions of Oracle, thus the
origin of the table name.

NULL

s: What, When, Why, and How

NULL

A possible value for any Oracle column
that indicates the absence of any known
value for that column. A

NULL

 is usually
used to represent a value that is unknown,
not applicable, or not available.

Simply put, a

NULL

value in an Oracle table is nothing. A

NULL

 is not zero, a
blank character, or an empty string. It is no value whatsoever.

NULL

s can be the
source of much consternation when a query is not returning the expected results.

Using a

NULL

 in an arithmetic expression returns a

NULL

, regardless of what
other operands and operations are in the expression. As an example, consider the
following query:

select 5+8, 5+0, 5+null, null+null from dual;

5+8 5+0 5+NULL NULL+NULL

---------- ---------- ---------- ----------

 13 5

1 row selected.

NULL

 values are useful, however, to indicate when a value is unavailable,
unknown, or not applicable. For example, the commission for an employee who
is not in the Sales department would be

NULL

, or the department assigned to a
new employee could be

NULL

.

In certain functions—for example

NVL

,

NVL2

, and

COALESCE

—a

NULL

 value as an
argument to the function will return a non-

NULL

 result. This result is the exception, not
the rule.

4372.book Page 46 Wednesday, August 4, 2004 3:01 PM

Oracle Database Functions

47

String Literals and Concatenating Strings

string literal

A constant that can consist of any string
of letters, digits, and special characters
enclosed in single quotation marks.

A

string literal

 in a SQL query is a sequence of zero, one, or more characters
enclosed in single quotation marks (called

quotes

 for short). Here are some valid
string literals:

◆

'JOHN SMITH'

◆

''

◆

'123 Main St.'

String literals may be combined with other string literals or table columns,
and they may also be arguments to a function. Note that a zero-length string is
not the same as a

NULL

 string. You may use a

NULL

 string to indicate that a value
is missing or not yet known, and a zero-length string to indicate that the value is
blank but known. For example, a new employee may not have a middle initial,
and therefore their middle initial would be set to a zero-length string. But until
we find out that they don’t have a middle initial, it will temporarily be set to a

NULL

 string.

concatenation

The process of combining two or more
data elements into a single element. In
Oracle SQL, concatenation can be
accomplished by using the concatena-
tion operator (a pair of vertical bars,

||

)
or the

CONCAT function.

Concatenation is the process of combining two or more string literals or col-
umns into a single result. The concatenation operator || (two vertical bars) is
used between the strings or columns to be combined. Alternatively, you can use
the built-in string function CONCAT.

The following query demonstrates how string literals and database columns
may be concatenated and act as arguments of a function:

select

 'Employee: ' || initcap(ename),

 concat('Dept: ',deptno)

 from emp;

'EMPLOYEE:'||INITCAP CONCAT('DEPT:',DEPTNO)

-------------------- --------------------------

Employee: Smith Dept: 20

Employee: Allen Dept: 30

Employee: Ward Dept: 30

Employee: Jones Dept: 20

Employee: Martin Dept: 30

Employee: Blake Dept: 30

Employee: Clark Dept: 10

Employee: Scott Dept: 20

Employee: King Dept: 10

Employee: Turner Dept: 30

Employee: Adams Dept: 20

Employee: James Dept: 30

4372.book Page 47 Wednesday, August 4, 2004 3:01 PM

48 Chapter 3

Employee: Ford Dept: 20

Employee: Miller Dept: 10

14 rows selected.

In the above query, there are two columns in the output: the string literal
'Employee: ' concatenated with the result of a string function on the employee
name and the string literal 'Dept: ' concatenated with the department number
of the employee. Notice how the case of a string is preserved within the single
quotes. This example demonstrates both the concatenation operator || and the
CONCAT function. Which you use depends on how many strings are to be concat-
enated, as well as your programming style. If you have more than two or three
strings to concatenate, using vertical bars is more readable than using the CONCAT
function over and over. However, if you are dealing with translating your queries
from one character set to another on a different platform, vertical bars may not
translate correctly; in this case, using the CONCAT function would be the best
option for concatenating any number of strings.

Numeric Literals
numeric literal
A constant that can consist of numeric
digits, plus the characters +, -, ., and E.

Numeric literals in Oracle are very straightforward and are similar to what is
allowed in many programming languages: the digits 0–9, an optional decimal
point, an optional sign, and an optional exponent using the letter E with its own
optional sign. Here are some valid numeric literals:

◆ 1.456

◆ –.01

◆ 00000052

◆ +12.10

◆ –3.774E–16

Numbers are stored internally in scientific notation, with up to 20 bytes for
the mantissa and 1 byte for the exponent. This results in a maximum precision
of up to 38 digits.

Operators and Operator Precedence
Operator precedence specifies the order in which the operators are applied to the
arguments of a mathematical expression when there is more than one operator
in the expression. Think back to your middle school algebra class when you had
to answer questions such as “A man bought 20 chickens and ducks, with a $2
discount per chicken and 50 cent discount per duck…” and you’ll probably
remember a few things about the order in which you had to evaluate an expres-
sion, once you figured out why a man was buying the chickens and ducks.

4372.book Page 48 Wednesday, August 4, 2004 3:01 PM

Oracle Database Functions 49

For example, the expression 5 * 6 + 10 is typically evaluated in most pro-
gramming languages by multiplying 5 by 6, then adding 10 to the result. The
expression 10 + 5 * 6 is typically evaluated in a similar manner. Because mul-
tiplication has a higher precedence than addition, 5 is multiplied by 6 first, then
10 is added to the result. If you want to add 10 to 5 first and then multiply that
result by 6, write the expression with parentheses to override the assumed pre-
cedence: (10 + 5) * 6.

For operators that have an equal precedence, such as addition and subtraction
or multiplication and division, the expression is evaluated from left to right. The
expression 10 / 6 * 5 is evaluated by dividing 10 by 6 first and then multiplying
the result by 5. When two operators have the same precedence, it’s a good idea
to use parentheses to eliminate any possible ambiguity: (10 / 6) * 5.

The rules for operator and conditional operator precedence in Oracle SQL are
very similar to the rules in other programming languages such as C++ and Visual
Basic. All standard operators have precedence over conditional operators.

Oracle’s standard and conditional operators are presented in Table 3.1, listed
in order of precedence (from highest to lowest).

The use of the standard and conditional operators will be explained through-
out the rest of this book.

Built-In Single-Row Functions
The previous sections covered all the basics of a SELECT statement using DUAL
and how strings and numbers are constructed, compared, and combined. Now

Tab le 3 .1 Standard and Conditional Operators and Precedence

Operator/Conditional Description

+, - (unary), PRIOR Positive, negative, tree traversal

*, / Multiplication, division

+, - (binary), || Addition, subtraction, concatenation

=, !=, <, >, <=, >= Comparison operators

IS [NOT] NULL, LIKE, [NOT]
BETWEEN, [NOT] IN, EXISTS, IS OF

SQL-specific comparison operators

**, NOT Exponentiation, logical negation

AND True if both operands are true

OR True if either operand is true

UNION, UNION ALL, INTERSECT,
MINUS

Set operators

4372.book Page 49 Wednesday, August 4, 2004 3:01 PM

50 Chapter 3

we can start looking at some of Oracle’s built-in single-row functions that oper-
ate on strings and numbers in database table columns.

function
A named set of predefined programming
language commands that performs a
specific task given zero, one, or more
arguments and returns a value.

In both Oracle SQL and most programming languages, a function is a pre-
defined set of steps that can be accessed using a common name. A function may
include zero, one, or more arguments that are passed to the function, and it may
return a result. For example, the SQRT function calculates the square root of a
number and returns a value of 1.414214 when called with an argument of 2:
SQRT(2) = 1.414214.

single-row function
A function that may have zero, one, or
more arguments and will return one
result for each row returned in a query.

Single-row functions are functions that may have zero, one, or more argu-
ments and will return one result for each row returned in the query. Functions
can be called in the SELECT, WHERE, and ORDER BY clauses of a SELECT statement.
(The WHERE and ORDER BY clauses are used to restrict and organize query output,
as explained in the next chapter.)

All of these functions are available for use in both SQL and PL/SQL (Oracle’s SQL-
based programming language). As of Oracle9i, SQL and PL/SQL share the same core
SQL engine.

In this section, we’ll cover the highlights of Oracle’s string functions, numeric
functions, date functions, conversion functions, and general functions that don’t
fall neatly into any of the other categories.

String Functions
String functions are functions that perform some kind of transformation on a
string literal, a column containing a string, or an expression consisting of string
literals and table columns. String functions will return a string as the result of the
transformation. Table 3.2 briefly describes the built-in string functions.

Tab le 3 .2 Built-In String Functions

Function Description

ASCII Returns the decimal equivalent of the first character of
a string

CHR Given a decimal number, returns the ASCII equivalent character

CONCAT Concatenates two strings

INITCAP Converts the first letter of each word in a string to uppercase

INSTR Searches a string for an occurrence of another string

LENGTH Returns the length of a string

LOWER Converts all characters in a string to lowercase

LPAD Left-fills a character string with a given character for a spec-
ified total length

4372.book Page 50 Wednesday, August 4, 2004 3:01 PM

Oracle Database Functions 51

Let’s consider some practical uses for string functions. Now that Scott’s wid-
get company is off the ground, Scott regrets some of the shortcuts he took when
creating the initial version of the database. The users don’t find the reports very
readable, and it would look a lot better if the names were in uppercase and low-
ercase letters.

string function
A function that operates on string literals,
columns containing strings, or an expres-
sion containing string literals and table
columns, returning a string as the result.

The INITCAP function offers a quick way to clean up names and addresses
that may be in all uppercase, all lowercase, or mixed case. It will work for a first
pass over the data to at least make the names and addresses somewhat readable.
Until Scott can overhaul the database, he can use the INITCAP function and col-
umn aliases to make things look a bit better:

select empno "Empl#", initcap(ename) "EmplName" from emp;

 Empl# EmplName

---------- ----------

 7369 Smith

 7499 Allen

LTRIM Trims a specific character from the front of a string

REGEXP_INSTR Searches a string for an occurrence of a regular expression

REGEXP_REPLACE Replaces occurrences of a specified regular expression with
another string

REGEXP_SUBSTR Returns a substring of another string matching a regular
expression

REPLACE Replaces occurrences of a specified string within another
string

RPAD Right-fills a string with a given character for a specified total
length

RTRIM Trims a specific character from the end of a string

SOUNDEX Returns a phonetic equivalent of a string

SUBSTR Returns a specified portion of a string

TRANSLATE Converts single characters to alternate single characters in
a string

TREAT Changes the declared type of an expression

TRIM Removes leading, trailing, or both leading and trailing char-
acters from a string

UPPER Converts all characters in a string to uppercase

Tab le 3 .2 Built-In String Functions (continued)

Function Description

4372.book Page 51 Wednesday, August 4, 2004 3:01 PM

52 Chapter 3

 7521 Ward

 7566 Jones

 7654 Martin

 7698 Blake

 7782 Clark

 7788 Scott

 7839 King

 7844 Turner

 7876 Adams

 7900 James

 7902 Ford

 7934 Miller

14 rows selected.

The INITCAP function cannot capitalize mixed-case names correctly. For example, if
one of the employee names were McDonald, the INITCAP function would not capi-
talize that name correctly (unless there was a space between MC and DONALD, which
wouldn’t be right either).

The next day, the Publications department wants to put the employee num-
bers and names on an intranet web page. The web page designers would like the
employee number left justified and the employee name right justified, for a total
width of 40 characters. Between the employee number and name must be a series
of dots (or periods). To provide the complete 40-character field, Scott must use
the LENGTH and LPAD functions in addition to what he already had from the
example above:

select empno || lpad(initcap(ename),40-length(empno),'.')

"Employee Directory" from emp;

Employee Directory

7369...............................Smith

7499...............................Allen

7521................................Ward

7566...............................Jones

7654..............................Martin

7698...............................Blake

7782...............................Clark

7788...............................Scott

7839................................King

7844..............................Turner

4372.book Page 52 Wednesday, August 4, 2004 3:01 PM

Oracle Database Functions 53

7876...............................Adams

7900...............................James

7902................................Ford

7934..............................Miller

14 rows selected.

This query uses three string functions: two of them are nested within another
function, plus a concatenation operation. Let’s break down the query to clarify
how it works.

implicit conversion
Conversion of one datatype to another
that occurs automatically when columns
or constants with dissimilar datatypes
appear in an expression.

As you’ve seen, the function call INITCAP(ename) changes the first letter of each
word to uppercase. The function call LENGTH(empno) returns the length of a char-
acter string. In this case, there is an implicit conversion of a numeric type to a string
type. An implicit conversion occurs automatically when Oracle evaluates an expres-
sion; conversely, an explicit conversion occurs when the SQL statement makes no
assumptions about how Oracle will convert one datatype to another and uses one or
more of the built-in functions to perform the conversion. The column is converted to
a character string, and the length of the converted character string is returned.

explicit conversion
Conversion of one datatype to another
in an expression using function calls
such as TO_CHAR instead of relying
on automatic conversion rules (implicit
conversion).

The LPAD function will left-pad a character string to a specified number of
characters with the character you specify. Scott wants to end up with a total
of 40 characters, so he subtracts the number of characters that the employee
number would take up. Here, he will left-pad the employee name with periods,
less the amount of space taken up by the employee number. Once the LPAD func-
tion is evaluated, he will concatenate the employee number at the front, and once
again, he will allow the implicit conversion of the employee number from
numeric to string.

Finally, Scott wants the title for the report to look readable, so he assigns a
column alias to the result of the concatenated function calls. The column alias
can act as a report title.

Numeric Functions
numeric function
A function that operates on numeric
literals, columns containing numbers,
or an expression containing numeric
literals and table columns, returning a
number as the result.

Numeric functions are functions that perform some kind of transformation
on a numeric literal, a column containing a number, or an expression consist-
ing of numeric literals and table columns. Numeric functions will return a
number as the result of the transformation. Table 3.3 briefly describes the
built-in numeric functions.

Tab le 3 .3 Built-In Numeric Functions

Function Description

ABS Returns the absolute value of the argument

ACOS Returns the arc cosine

4372.book Page 53 Wednesday, August 4, 2004 3:01 PM

54 Chapter 3

Scott’s company has survived its first month and has even turned a small
profit. Scott wants to find a way to distribute the first month’s profit in a fair
manner, so he turns to the company mathematician and statistician, Julie. She
suggests that the employees get a one-time bonus that is based on the square root
of their current salary. Scott can run the following query to see what the potential
bonuses might be using the SQRT function:

select ename, sal, sqrt(sal) from emp;

ASIN Returns the arc sine

ATAN Returns the arc tangent

ATAN2 Returns the arc tangent of two values

BITAND Performs a bitwise AND on two arguments

CEIL Returns the next highest integer

COS Returns the cosine

COSH Returns the hyperbolic cosine

EXP Raises e (2.718281828…) to the specified power

FLOOR Returns the next lowest integer

LN Returns the natural logarithm (base e)

LOG Returns the base 10 logarithm

MOD Returns the remainder of the first argument divided by the sec-
ond, using FLOOR in the calculation

NANVL Returns an alternate value if the first argument is non-numeric

POWER Raises a number to an arbitrary power

REMAINDER Returns the remainder of the first argument divided by the sec-
ond, similar to MOD except that REMAINDER uses ROUND

ROUND Returns a rounded value to an arbitrary precision

SIGN Returns -1 if the argument is negative, 0 if 0, or 1 if positive

SIN Returns the sine

SQRT Returns the square root of the argument

TAN Returns the tangent

TRUNC Truncates a number to an arbitrary precision

Tab le 3 .3 Built-In Numeric Functions (continued)

Function Description

4372.book Page 54 Wednesday, August 4, 2004 3:01 PM

Oracle Database Functions 55

ENAME SAL SQRT(SAL)

---------- ---------- ----------

SMITH 700 26.4575131

ALLEN 1600 40

WARD 1250 35.3553391

JONES 2975 54.5435606

MARTIN 1250 35.3553391

BLAKE 2850 53.3853913

CLARK 2450 49.4974747

SCOTT 3000 54.7722558

KING 5000 70.7106781

TURNER 1300 36.0555128

ADAMS 1100 33.1662479

JAMES 950 30.82207

FORD 3000 54.7722558

MILLER 1600 40

14 rows selected.

Scott seems to like this idea, since the bonuses for the highest paid workers are not
as big of a percentage of their base wage as they are for the lowest paid workers.

The report is a bit unreadable; Scott wants the bonus rounded to two digits
with a better heading for the bonus. The new query looks something like this,
using the ROUND function:

select ename, sal, round(sqrt(sal),2) "Bonus" from emp;

ENAME SAL Bonus

---------- ---------- ----------

SMITH 700 26.46

ALLEN 1600 40

WARD 1250 35.36

JONES 2975 54.54

MARTIN 1250 35.36

BLAKE 2850 53.39

CLARK 2450 49.5

SCOTT 3000 54.77

KING 5000 70.71

TURNER 1300 36.06

ADAMS 1100 33.17

JAMES 950 30.82

FORD 3000 54.77

4372.book Page 55 Wednesday, August 4, 2004 3:01 PM

56 Chapter 3

MILLER 1600 40

14 rows selected.

The report is looking better, but the Bonus column is still not formatted quite
right. We’ll look at ways to fix this in the section on conversion functions later
in this chapter.

Since a lot of employees are on commission, Scott may want to base the bonus
on both the salary and commission. We’ll look at how to do this in the section
on general functions.

Date Functions
Date functions are functions that perform some kind of transformation on a date
literal, a column containing a date, or an expression consisting of date literals
and table columns. Date functions will return a date or a string containing a por-
tion of the date as the result of the transformation. Table 3.4 describes the date-
related functions.

Tab le 3 .4 Built-In Date Functions

Function Description

ADD_MONTHS Increments a date value by a number of months

CURRENT_DATE Returns the current date for the session’s time zone

CURRENT_
TIMESTAMP

Returns the current date and time in the session’s time
zone to a particular precision

DBTIMEZONE Returns the database time zone as an offset in hours and
minutes from UTC

EXTRACT Returns a portion of the date and time (e.g., hour, month)
from a timestamp value

FROM_TZ Returns a timestamp with the time zone for a given combi-
nation of an individual timestamp and time zone

LAST_DAY Returns the last day of the month for a given date

LOCALTIMESTAMP Returns the current date and time in the session’s time
zone to a given precision

MONTHS_BETWEEN Returns the numeric number of months between two date
arguments

NEW_TIME Returns a date in a second time zone given a date in the
first time zone

NEXT_DAY Finds the next occurrence of a specific day of the week
given a date

4372.book Page 56 Wednesday, August 4, 2004 3:01 PM

Oracle Database Functions 57

Date and time handling has been greatly enhanced since Oracle9i. Not only can the
precision of Oracle’s timestamp datatypes support fractions of a second to nine dec-
imal places, other functions and system parameters smooth the process of handling
Oracle servers and sessions across multiple time zones. This is handy for companies
with national and international business.

date function
A function that performs some kind of
transformation on a date literal, a col-
umn containing a date, or an expression
consisting of date literals and table col-
umns. Date functions return a date or a
string containing a portion of the date as
the result of the transformation.

When Scott started his widget company, he hired most of the people away
from a competitor. As part of the employment agreement, he kept the new
employees’ original hire date for the new company. He wants to see how many
employees have been working for the company (or competitor) more than 250
months. He can run this query to get the answer:

select ename, hiredate, months_between(sysdate,hiredate)

 "Months" from emp;

ENAME HIREDATE Months

---------- --------- ----------

SMITH 17-DEC-80 260.608914

ALLEN 20-FEB-81 258.51214

WARD 22-FEB-81 258.447624

JONES 02-APR-81 257.092785

MARTIN 28-SEP-81 251.254076

BLAKE 01-MAY-81 256.125043

CLARK 09-JUN-81 254.866979

SCOTT 19-APR-87 184.544398

KING 17-NOV-81 249.608914

TURNER 08-SEP-81 251.899237

ADAMS 23-MAY-87 183.415366

ROUND Rounds a date value to a specific unit of time

SESSIONTIMEZONE Returns the database time zone (DBTIMEZONE) unless
altered during the session

SYS_EXTRACT_UTC Returns the UTC for a timestamp with time zone value

SYSDATE Returns the current date and time

SYSTIMESTAMP Returns a timestamp with the time zone for the database
date and time

TRUNC Truncates a date value to a specified unit of time

TZ_OFFSET Converts a text time zone to a numeric offset

Tab le 3 .4 Built-In Date Functions (continued)

Function Description

4372.book Page 57 Wednesday, August 4, 2004 3:01 PM

58 Chapter 3

JAMES 03-DEC-81 249.060527

FORD 03-DEC-81 249.060527

MILLER 23-JAN-82 247.415366

14 rows selected.

Note that there are two functions being called: SYSDATE and MONTHS_
BETWEEN. SYSDATE has no arguments; it merely returns the current date and
time, so the parentheses must be omitted. The MONTHS_BETWEEN function
returns the difference between dates in months. If you wanted to know the
number of days instead, you would not need the MONTHS_BETWEEN function
and could use the expression SYSDATE-HIREDATE instead. Date arithmetic
returns values in units of days.

Conversion Functions
As the name implies, conversion functions convert between numbers, strings,
and date values. The common conversion functions are described in Table 3.5.

Scott knows he can improve on the query he used to see which employees have
been with the company more than 250 months. Rather than see the number of
months since the original hire date, he wants to see the dates when the employee

Tab le 3 .5 Built-In Conversion Functions

Function Description

ASCIISTR Converts non-ASCII characters to ASCII

CAST Converts one datatype to another

NUMTODSINTERVAL Converts a number and a character string representing a
unit of time to an INTERVAL DAY TO SECOND type

NUMTOYMINTERVAL Converts a number and a character string representing a
unit of time to an INTERVAL YEAR TO MONTH type

TO_CHAR Converts a date or a number to character format

TO_DATE Converts a character format date to a DATE datatype

TO_DSINTERVAL Converts a character string to an INTERVAL DAY TO
SECOND datatype

TO_NUMBER Converts a character string to an internal numeric format

TO_YMINTERVAL Converts a character string to an INTERVAL YEAR TO
MONTH datatype

4372.book Page 58 Wednesday, August 4, 2004 3:01 PM

Oracle Database Functions 59

will reach or has reached the 250-month mark. For this result, he will use the
NUMTOYMINTERVAL function to add 250 months to the hire date:

select ename, hiredate, hiredate +

 numtoyminterval(250,'month') "250 Months" from emp;

ENAME HIREDATE 250 Month

---------- --------- ---------

SMITH 17-DEC-80 17-OCT-01

ALLEN 20-FEB-81 20-DEC-01

WARD 22-FEB-81 22-DEC-01

JONES 02-APR-81 02-FEB-02

MARTIN 28-SEP-81 28-JUL-02

BLAKE 01-MAY-81 01-MAR-02

CLARK 09-JUN-81 09-APR-02

SCOTT 19-APR-87 19-FEB-08

KING 17-NOV-81 17-SEP-02

TURNER 08-SEP-81 08-JUL-02

ADAMS 23-MAY-87 23-MAR-08

JAMES 03-DEC-81 03-OCT-02

FORD 03-DEC-81 03-OCT-02

MILLER 23-JAN-82 23-NOV-02

14 rows selected.

Scott could have used the function TO_YMINTERVAL('20-10') to add 20
years and 10 months (250 months total) to the hire date. Whether to use one
method or another depends on how you want to specify the format—as a dis-
crete number of months or years or as a combination of months and years.

Now that Scott knows more about the conversion functions, he wants to
revisit one of the queries he wrote previously:

select ename, sal, round(sqrt(sal),2) "Bonus" from emp;

The problem with this query was that the default numeric formatting didn’t
look good, even after applying the ROUND function. Scott can apply another func-
tion here, TO_CHAR, to force the bonus to have two decimal places, even if the
bonus does not have any significance beyond the first decimal point. The TO_
CHAR function specifies the value to be formatted and the desired format, and it
can be used to format both numbers and date values. Here, Scott wants to fix
that rounded number:

select ename, sal, to_char(round(sqrt(sal),2),'9999.99')

 "Bonus" from emp;

4372.book Page 59 Wednesday, August 4, 2004 3:01 PM

60 Chapter 3

ENAME SAL Bonus

---------- ---------- --------

SMITH 700 26.46

ALLEN 1600 40.00

WARD 1250 35.36

JONES 2975 54.54

MARTIN 1250 35.36

BLAKE 2850 53.39

CLARK 2450 49.50

SCOTT 3000 54.77

KING 5000 70.71

TURNER 1300 36.06

ADAMS 1100 33.17

JAMES 950 30.82

FORD 3000 54.77

MILLER 1600 40.00

14 rows selected.

In addition to the ‘9’ digit in the format, you can use ‘0’ to force leading zeros,
a ‘$’ to show dollar amounts, a ‘-’ for leading or trailing signs, commas to make
large numbers more readable, or even roman numerals. Table 3.6 shows a few
sample numeric formats and how the value 7322.8 would look in that format.

Notice that when a number will not fit into the format provided, it is dis-
played as all #s. Notice also that rounding will automatically occur if there
are not enough positions to the right of the decimal to accommodate the
entire number.

Tab le 3 .6 Numeric Format Examples Using TO_CHAR

Format Result

99999.99 7322.80

$999.999 #########

00999.90 07322.80

99,999.99 7,322.80

S9999 +7323

9.9999EEEE 7.3228E+03

4372.book Page 60 Wednesday, August 4, 2004 3:01 PM

Oracle Database Functions 61

General Functions
The category of general functions covers all of the functions that don’t fit neatly
into a single category. Many of them are shortcuts that allow the DBA or devel-
oper to avoid needing to use PL/SQL for certain types of processing, such as a
conditional operation that would normally require more than one statement.
Table 3.7 briefly describes the general functions.

Scott is continuing to analyze the profitability versus expenses in his widget
company by looking at the total compensation for each employee. Most employ-
ees are salaried, but a few are salaried with a commission. Scott’s first attempt at
a total compensation calculation is something like this:

select ename, sal+comm from emp;

ENAME SAL+COMM

---------- ----------

SMITH

ALLEN 1900

WARD 1750

JONES

MARTIN 2650

BLAKE

CLARK

Tab le 3 .7 Built-In General Functions

Function Description

CASE Allows embedded IF-THEN-ELSE logic in a SQL statement

COALESCE Returns the first non-NULL value from a list of values

DECODE Compares an expression to a list of possible values and returns
a specified corresponding return value

DUMP Displays the internal value of an Oracle datatype

GREATEST Returns the highest value in a list of values given the sort order

LEAST Returns the lowest value in a list of values given the sort order

NULLIF Given two expressions, returns NULL if they are equal

NVL Given two expressions, returns the second if the first one is NULL

NVL2 Given three expressions, returns the third if the first one is NULL,
and returns the second if the first one is not NULL

VSIZE Returns the number of bytes for the internal representation of the
expression

4372.book Page 61 Wednesday, August 4, 2004 3:01 PM

62 Chapter 3

SCOTT

KING

TURNER 1300

ADAMS

JAMES

FORD

MILLER

14 rows selected.

Wait a minute, what happened to the salaries for the other employees? As
noted earlier in the chapter, NULL values provide a great benefit in that they can
indicate that a value is unknown, unavailable, or not applicable. However, when
combined in some kind of calculation with non-NULL values, the result will
always be NULL. For example, adding 15 to an unknown value will result in a
new value that is also unknown.

In the case of the employee salaries and commissions, however, Scott wants to
treat the commissions as zero if they are NULL for the purpose of calculating total
compensation. For this, he will use the NVL function. NVL takes two arguments.
The first argument is compared to NULL, and if it is NULL, it returns the second
argument; otherwise, it returns the first argument. Scott’s query can be modified
with the NVL function to produce the correct results:

select ename, sal+nvl(comm,0) from emp;

ENAME SAL+NVL(COMM,0)

---------- ---------------

SMITH 700

ALLEN 1900

WARD 1750

JONES 2975

MARTIN 2650

BLAKE 2850

CLARK 2450

SCOTT 3000

KING 5000

TURNER 1300

ADAMS 1100

JAMES 950

FORD 3000

MILLER 1600

14 rows selected.

4372.book Page 62 Wednesday, August 4, 2004 3:01 PM

Oracle Database Functions 63

That looks a lot better. Other, more esoteric functions such as VSIZE are more
often used by DBAs to determine how much space a particular column for a par-
ticular row is using, in bytes:

select ename, vsize(ename), sal, vsize(sal) from emp;

ENAME VSIZE(ENAME) SAL VSIZE(SAL)

---------- ------------ ---------- ----------

SMITH 5 700 2

ALLEN 5 1600 2

WARD 4 1250 3

JONES 5 2975 3

MARTIN 6 1250 3

BLAKE 5 2850 3

CLARK 5 2450 3

SCOTT 5 3000 2

KING 4 5000 2

TURNER 6 1300 2

ADAMS 5 1100 2

JAMES 5 950 3

FORD 4 3000 2

MILLER 6 1600 2

14 rows selected.

The lengths for the employee names make sense, but why would a salary of
3000 take up less space than a salary of 2450? This is because all numbers are
stored internally in scientific notation. Only the 3 from the 3000 salary needs to
be stored with an exponent of 3, whereas the salary 2450 is stored as 2.45 with
an exponent of 3. More digits of precision require more storage space in Oracle’s
variable internal numeric format.

User-Defined Functions
Even though many functions come prewritten and packaged with the default
installation of the Oracle software, sometimes you need some functionality that
cannot be provided by those built-in functions. Oracle’s programming language,
PL/SQL, which stands for Programming Language SQL, can come to the rescue.

user-defined function
A function that is written by an analyst,
user, or database administrator and
does not come as part of the default
installation of the Oracle server software.

The advanced techniques on how functions, procedures, and packages are
constructed and used are beyond the scope of this book. Here, you’ll get an intro-
duction to user-defined functions, including a look at how you could write a cus-
tom function that’s available to all database users.

4372.book Page 63 Wednesday, August 4, 2004 3:01 PM

64 Chapter 3

stored function
A sequence of PL/SQL variable declara-
tions and statements that can be called
as a unit, passing zero or more argu-
ments and returning a single value of a
specified datatype. Built-in stored func-
tions are created when the database
software is installed. Customized or user-
defined functions are defined by applica-
tion developers or DBAs.

Using PL/SQL, a database analyst, database user, or database administrator
can construct a user-defined function. A user-defined function has the same char-
acteristics as a built-in function. It will take zero, one, or more values and return
a single value as its result. Functions in Oracle, whether they are built-in or writ-
ten by a developer or DBA, are often known as stored functions, since the source
code and the compiled code are both stored in the database.

As an example, let’s once again consider Scott’s burgeoning widget company.
Since the company is still small, Scott must perform the duties of both an appli-
cation developer and a DBA. The HR department appears to frequently run que-
ries that combine the employee name, job, and department into a formatted
string for display on both web pages and corporate documents. To standardize
the format of this string throughout the organization, Scott wrote a function
called FORMAT_EMP that can be used by any department to display the employee
name, job, and department, as follows:

Department: 10 Employee: Smith Title: Shipping

Scott creates his stored function like this:

create or replace function

 FORMAT_EMP (DeptNo IN number,

 EmpName IN varchar2,

 Title IN varchar2) return varchar2

is

 concat_rslt varchar2(100);

begin

 concat_rslt :=

 'Department: ' || to_char(DeptNo) ||

 ' Employee: ' || initcap(EmpName) ||

 ' Title: ' || initcap(Title);

 return (concat_rslt);

end;

The first line of this command will create the function if it doesn’t exist or
replace it if it already exists. The next three lines define what kinds of values are
going to be provided as input to the function, as well as what kind of value will
be returned. In this example, Scott will provide the FORMAT_EMP function with a
number and two strings, and he expects a string to be returned. He needs to cre-
ate the function only once. By default, only the user who created the function can
use it.

Line 6 declares a local variable called concat_rslt, which will temporarily
hold the formatted string result. In a stored procedure or function, all of the
actual processing occurs between the begin and the end keywords. In lines 8 to
11, the variable concat_rslt is assigned the formatted value using some of the

4372.book Page 64 Wednesday, August 4, 2004 3:01 PM

Oracle Database Functions 65

Oracle built-in functions. Finally, in line 12, the function returns the result to the
calling program, which, in this case, is a SQL statement similar to the following:

select format_emp(deptno,ename,job) from emp;

Department: 20 Employee: Smith Title: Clerk

Department: 30 Employee: Allen Title: Salesman

Department: 30 Employee: Ward Title: Salesman

Department: 20 Employee: Jones Title: Manager

Department: 30 Employee: Martin Title: Salesman

Department: 30 Employee: Blake Title: Manager

Department: 10 Employee: Clark Title: Manager

Department: 20 Employee: Scott Title: Analyst

Department: 10 Employee: King Title: President

Department: 30 Employee: Turner Title: Salesman

Department: 20 Employee: Adams Title: Clerk

Department: 30 Employee: James Title: Clerk

Department: 20 Employee: Ford Title: Analyst

Department: 10 Employee: Miller Title: Clerk

14 rows selected.

Note that the names you give for the parameters in the function need not be
the same as the names of the columns in the table you’re using. In fact, you could
use this function just as well with some values that aren’t even in a table:

select format_emp(180,'JOHNSEN','OP MGR') from dual;

Department: 180 Employee: Johnsen Title: Op Mgr

1 row selected.

Notice how you can use objects such as stored functions for standardization
within an organization. An Accounting department employee does not need to
remember how to format the employee information, because the formatting is
kept in a common location via the stored function.

shared pool
An area of memory within the total amount
of memory allocated for the Oracle data-
base that can hold recently executed SQL
statements, PL/SQL procedures and
packages, as well as cached information
from the system tables.

Scott can grant rights for other departments to use this function also. As an
added bonus for the DBA, only a single copy of this function is stored in the
shared pool for use by an unlimited number of users. This reduces the overall
memory requirements for the database and can improve the response time for
a query.

4372.book Page 65 Wednesday, August 4, 2004 3:01 PM

66 Chapter 3

It’s important for the DBA to keep track of how many stored procedures and functions
are running during the course of a business day, because there are memory and per-
formance implications for the objects that share space in the database’s shared pool.
If there are too many other SQL statements and frequent accesses to database con-
trol structures, then the stored functions and procedures may be temporarily
removed from the shared pool, thus affecting the response time the next time the
user calls the stored function or procedure because it must be reread from disk.

Terms to Know
concatenation numeric literal

date function shared pool

DUAL single-row function

explicit conversion stored function

function string function

implicit conversion string literal

NULL user-defined function

numeric function

4372.book Page 66 Wednesday, August 4, 2004 3:01 PM

Oracle Database Functions 67

Review Questions
1. What is another way to write the following SQL statement by using another

function?

select empno || lpad(initcap(ename),

40-length(empno),'.')

"Employee Directory" from emp;

2. Which function would you use to perform an explicit conversion from a num-
ber to a string?

3. How can you rewrite the function call NUMTOYMINTERVAL(17, 'year')
using the function TO_YMINTERVAL?

4. What is the result of a number added to a NULL value?

5. What is the result of formatting the number –232.6 using the format mask
‘9999.99S’?

6. Rank the following operators or conditionals based on priority, from highest
to lowest: *, OR, ||, >=

7. The DUAL table has how many rows and how many columns?

8. True or false: Strings and numbers can be concatenated.

9. Write a SELECT statement with a built-in function or functions that will format
the string ‘Queen’ with the ‘!’ character padded for a total of 20 characters on the
left side and with the ‘?’ character padded for a total of 30 characters on the right.
(Hint: Use nested functions.)

10. What functionality does the Oracle TIMESTAMP datatype have over the DATE
datatype?

4372.book Page 67 Wednesday, August 4, 2004 3:01 PM

4372.book Page 68 Wednesday, August 4, 2004 3:01 PM

In This Chapter

Chapter

4

Restricting, Sorting, and
Grouping Data

Unless your database tables are very small, or your data reporting needs
are very limited, you will want to restrict the rows returned from your
queries. In cases where you want to see the results of the queries in a par-
ticular order, you will want to sort the results. Grouping the data—for
example, grouping sales figures by month, salary totals by department,
and so forth—can be done in conjunction with restricting and sorting the
data in a SQL statement.

Scott’s widget company has been growing by leaps and bounds over
the past few months, and it has expanded to international locations.
While Scott has enjoyed being the data analyst and DBA, he has turned
over these roles to Janice. The employee-related database tables have
been redesigned and turned over to the HR department. All of our exam-
ples from this point on will use the HR schema, which contains the fol-
lowing tables:

COUNTRIES

,

DEPARTMENTS

,

EMPLOYEES

,

JOBS

,

JOB_
HISTORY

,

LOCATIONS

, and

REGIONS

. The names of these tables should be
self-explanatory.

◆

Using the

WHERE

 clause to
restrict results

◆

Using the

ORDER BY

 clause to
sort data

◆

Using the

GROUP BY

 clause

◆

Using group functions to aggregate data

◆

Using the

HAVING

 clause to restrict
the groups returned

4372.book Page 69 Wednesday, August 4, 2004 3:01 PM

70

Chapter 4

The

WHERE

 Clause

A lot happens in the

WHERE

 clause. This is the place where the rows (with col-
umns both actual and derived) from the list specified in the

SELECT

 clause are
trimmed down to only the results you need to see. Starting with the syntax
described in Chapter 2, “SQL*Plus and iSQL*Plus Basics,” we can expand the

SELECT

 statement syntax as follows:

SELECT * | {[DISTINCT]

column

|

expression

 [alias], ...}

 FROM

tablename

[WHERE

condition

...

];

The

WHERE

 clause may have one or more conditions, separated by

AND

 and

OR

and optionally grouped in parentheses to override the default precedence.

From the perspective of the table, the

SELECT

 clause slices a table vertically,
and the

WHERE

 clause slices it horizontally.

SELECT

WHERE

4372.book Page 70 Wednesday, August 4, 2004 3:01 PM

Restricting, Sorting, and Grouping Data

71

Comparison Conditions

A

WHERE

 clause will often compare one column’s value to a constant or compare
two of the columns to each other in some way. Table 4.1 lists the comparison
operators that are valid within a

WHERE

 clause.

In Chapter 3, “Oracle Database Functions,” you learned about operator pre-
cedence. The comparison operators are lower in precedence only to the arith-
metic operators

*

,

/

,

+

, and

–

 and the concatenation operator

||

. This makes a
lot of sense when you consider how expressions are typically used in

WHERE

clauses: Some kind of arithmetic operation is performed on one or more columns
or constants, and that result is compared to another constant, column, or arith-
metic operation on one or more columns or constants. For instance, consider this

WHERE

 clause:

where salary * 1.10 > 24000

This example will evaluate

SALARY * 1.10

 first and then do the comparison
to 24000.

In Scott’s widget company, another corporate shakeup has occurred, and
King is once again the president of the company. Janice, in her analyst role, is
running some reports against the

EMPLOYEES

 table for King, whose first task is
to do a thorough salary review for all employees who have salaries that are
within $10,000 of his salary. Janice knows that King’s salary is $24,000, so she
will specify this numeric literal in the query, along with the $10,000 for the dif-
ference in salary:

select employee_id "Emp ID", last_name "Last Name",

 salary "Salary" from employees

 where salary + 10000 > 24000;

T ab le 4 .1

Comparison Operators

Comparison Operator Definition

=

Equal to

>

Greater than

>=

Greater than or equal to

<

Less than

<=

Less than or equal to

<>, !=, ^=

Not equal to

4372.book Page 71 Wednesday, August 4, 2004 3:01 PM

72

Chapter 4

 Emp ID Last Name Salary

---------- ------------------------- ----------

 100 King 24000

 101 Kochhar 17000

 102 De Haan 17000

3 rows selected.

A few things come to mind right away. First, King himself is in the list. You
will learn how to remove his name in the next section. Janice could have also
written the

WHERE

 clause the other way around:

where 24000 < salary + 10000;

and the results of the query would be the same. Janice could have also saved a bit of
processing time by calculating the salary cutoff number before writing the query:

where salary > 14000;

How you write your

WHERE

 clause may be about style, readability, and docu-
mentation more than it is about processing speed, which is why the first version
of the

WHERE

 clause might be the best choice.

Column aliases are not allowed in the

WHERE

 clause. The actual column names must
be used.

AND

,

OR

, and

NOT

The

WHERE

 clause using comparison operators is really powerful, but in reality,
you usually have more than one condition for selecting rows. Sometimes you
need all of the conditions to be true, sometimes you need only one of the condi-
tions to be true, and sometimes you want to specify what you don’t need. You
can accomplish this by using

AND

,

OR

, and

NOT

 in your

WHERE

 clauses.
Using an

AND

 between two comparison conditions will give you rows
from the table that satisfy both conditions. In one of the queries above, Janice
noticed that King’s name was returned in the query that was looking for other
employees who had salaries close to King’s. There is no need to include King
in this query. Since Janice knows King’s employee ID, she can remove him from
the results of those queries by adding an

AND condition, as follows:

select employee_id "Emp ID", last_name "Last Name",

 salary "Salary" from employees

 where salary + 10000 > 24000

 and employee_id != 100;

4372.book Page 72 Wednesday, August 4, 2004 3:01 PM

Restricting, Sorting, and Grouping Data 73

 Emp ID Last Name Salary

---------- ------------------------- ----------

 101 Kochhar 17000

 102 De Haan 17000

2 rows selected.

The rules of precedence tell us that AND is very low on the list, and therefore
the AND operation is performed last in the WHERE clause. However, for clarity, it
doesn’t hurt to add parentheses to make the conditional expressions more obvious:

where (salary + 10000 > 24000)

 and (employee_id != 100);

There are other ways to remove King from the query. We’ll discuss some of
these methods in Chapter 6, “Advanced SQL Queries.”

Now King decides that he wants to include anyone who works in the IT
department, in addition to those whose salaries are close to his. Janice recognizes
that this is a job for the OR operator. She modifies the query to include those
employees who are in the IT department, using the JOB_ID column:

select employee_id "Emp ID", last_name "Last Name",

 salary "Salary" from employees

 where (salary + 10000 > 24000)

 and (employee_id != 100)

 or job_id = 'IT_PROG';

 Emp ID Last Name Salary

---------- ------------------------- ----------

 101 Kochhar 17000

 102 De Haan 17000

 103 Hunold 9000

 104 Ernst 6000

 105 Austin 4800

 106 Pataballa 4800

 107 Lorentz 4200

7 rows selected.

Since the AND has a higher priority than the OR, the salary and employee ID
comparisons are evaluated to see if they are both true; if so, the row is returned.
If either one or the other is not true, the row might still be returned if the

4372.book Page 73 Wednesday, August 4, 2004 3:01 PM

74 Chapter 4

employee is in the IT department. Janice can make this WHERE clause more read-
able by putting in the parentheses, even if they’re not needed:

where ((salary + 10000 > 24000)

and (employee_id != 100))

or (job_id = 'IT_PROG');

When in doubt about operator precedence, use parentheses. Extra parentheses add a
negligible amount of processing time and provide additional documentation benefits.

Janice expects that the other shoe will drop in a month or two, when King will
ask for a report that has everyone else in it. This is a good place to use NOT. Janice
can use this operator to negate the entire set of conditions that gave the first set
of rows, thus returning the rest of the rows:

select employee_id "Emp ID", last_name "Last Name",

 salary "Salary" from employees

 where not

 (

 (salary + 10000 > 24000)

 and (employee_id != 100)

 or job_id = 'IT_PROG'

)

;

 Emp ID Last Name Salary

---------- ------------------------- ----------

 100 King 24000

 108 Greenberg 12000

 109 Faviet 9000

 110 Chen 8200

...

 203 Mavris 6500

 204 Baer 10000

 205 Higgins 12000

 206 Gietz 8300

100 rows selected.

Note how Janice merely put the entire previous WHERE clause into parentheses
and added a NOT in the front. One query returns a given set of rows, and a second
query returns everything but the given set of rows. So, between the two queries,
she has covered the entire table. Janice will have this report ready for King when
he asks for it.

4372.book Page 74 Wednesday, August 4, 2004 3:01 PM

Restricting, Sorting, and Grouping Data 75

BETWEEN, IN, and LIKE
The BETWEEN, IN, and LIKE operators provide more ways to trim down the num-
ber of rows returned from a query. BETWEEN gives you an easy way to check for
a value that falls within a certain range. The IN operator can help you find values
in a list. LIKE can help you find character strings that match a certain pattern.
Adding NOT to these will give you just the opposite set of rows.

BETWEEN a Rock and a Hard Place
The BETWEEN operator in a WHERE clause will limit the rows to a range that is spec-
ified by a beginning value and an ending value; the range is inclusive. The values
can be dates, numbers, or character strings. The column values to be compared will
be converted to the datatypes of the values in the BETWEEN operator as needed.

Each quarter at Scott’s widget company, employees are recognized for years
of service to the company. Janice is in charge of generating the report that lists
the employees who have their anniversary within the next three months. Her
query will use one of the functions mentioned in the previous chapter, EXTRACT,
which returns one of the individual components of a DATE datatype.

select employee_id "Emp ID", department_id "Dept ID",

 hire_date "Hire Date",

 last_name || ', ' || first_name "Name" from employees

 /* Oct to Dec */

 where extract(month from hire_date) between 10 and 12;

 Emp ID Dept ID Hire Date Name

---------- ---------- --------- ----------------------

 113 100 07-DEC-99 Popp, Luis

 114 30 07-DEC-94 Raphaely, Den

 116 30 24-DEC-97 Baida, Shelli

 118 30 15-NOV-98 Himuro, Guy

 123 50 10-OCT-97 Jasper, Susan Abigail

 124 50 16-NOV-99 Mourgos, Kevin

 130 50 30-OCT-97 Atkinson, Mozhe

 135 50 12-DEC-99 Gee, Ki

 138 50 26-OCT-97 Stiles, Stephen

 141 50 17-OCT-95 Rajs, Trenna

 145 80 01-OCT-96 Russell, John

 148 80 15-OCT-99 Cambrault, Gerald

 154 80 09-DEC-98 Cambrault, Nanette

 155 80 23-NOV-99 Tuvault, Oliver

 160 80 15-DEC-97 Doran, Louise

4372.book Page 75 Wednesday, August 4, 2004 3:01 PM

76 Chapter 4

 161 80 03-NOV-98 Sewall, Sarath

 162 80 11-NOV-97 Vishney, Clara

 191 50 19-DEC-99 Perkins, Randall

18 rows selected.

There is a lot going on in this query. First, notice that the columns are all
aliased to make the output much more readable.

Janice also used the concatenation operator || to make the output more read-
able. She could have used the CONCAT function here, although she would need to
use it twice to get the same results.

comment
Documentation for SQL statements.
Comments are specified by using the pair
/* and */ or by using --.

There is also something else new in this example: the /* and */. These charac-
ters denote a comment in Oracle SQL. A comment is used to help document the
SQL code that you’re writing. Documenting your SQL code is good not only for
other developers who may need to modify your code in the future, but also for you
when, months from now, you can’t quite remember why you used a particular
table or function!

Alternatively, you can use -- to specify a comment, like this:

select * from employees -- All columns needed for finance

The main difference between using /* */ and -- is that the latter form treats
everything to the end of the line as a comment, whereas the former treats every-
thing as a comment until the closing */ is reached, which may be on the same line
or several lines later.

Although both /* */ and -- can be used almost interchangeably, the /* */ form must
be used after the SELECT keyword when specifying optimizer hints. See Chapter 12,
“Making Things Run Fast (Enough),” for details on how to specify hints to the optimizer.

Finally, the query has the BETWEEN operator. The EXTRACT function will
return a value from 1 to 12 because the function is called with MONTH, and if this
value falls in the range of 10 to 12, then the row is returned from the query.

What happens if you change the BETWEEN operator slightly and reverse the
order of the months?

where extract(MONTH from HIRE_DATE) between 12 and 10;

Your intuition might tell you that this form of the WHERE clause would work,
since 11 would still be between 12 and 10, just as 11 is between 10 and 12. But
it doesn’t work. This is because of how Oracle’s SQL engine translates the argu-
ments of the BETWEEN operator. When processing the query, Oracle changes
BETWEEN to a pair of comparisons joined with an AND, as follows:

where extract(MONTH from HIRE_DATE) >= 12 and

 extract(MONTH from HIRE_DATE) <= 10;

4372.book Page 76 Wednesday, August 4, 2004 3:01 PM

Restricting, Sorting, and Grouping Data 77

Since no number can be at the same time greater than or equal to 12 and
less than or equal to 10, no rows will be returned from a query with this
WHERE clause.

IN the Thick of Things
The IN operator makes it easy to specify a list of values to search for in a WHERE
clause. The IN clause contains a list of one or more values, separated by commas
and enclosed in parentheses:

IN (value1, value2, ...)

It is ideal for situations where the values to be selected aren’t in a range that
the BETWEEN operator (or a pair of comparisons with an AND) can easily handle.

At Scott’s widget company, one of the vice presidents, one of the store man-
agers, and one of the purchasing managers will be temporarily moving to Chi-
cago to open a new branch office. The employees who report to them will also
move. The manager IDs for these positions are 102, 114, and 121. Janice writes
a query to identify the people who are moving along with their managers:

select employee_id "Emp ID", manager_id "Mgr ID",

 last_name || ', ' || first_name "Name" from employees

 where manager_id in (102, 114, 121);

 Emp ID Mgr ID Name

---------- ---------- ----------------------------

 103 102 Hunold, Alexander

 115 114 Khoo, Alexander

 116 114 Baida, Shelli

 117 114 Tobias, Sigal

 118 114 Himuro, Guy

 119 114 Colmenares, Karen

 129 121 Bissot, Laura

 130 121 Atkinson, Mozhe

 131 121 Marlow, James

 132 121 Olson, TJ

 184 121 Sarchand, Nandita

 185 121 Bull, Alexis

 186 121 Dellinger, Julia

 187 121 Cabrio, Anthony

14 rows selected.

4372.book Page 77 Wednesday, August 4, 2004 3:01 PM

78 Chapter 4

The IN operator could be rewritten with a series of OR conditions, but once
you need to use more than two or three values, the advantages of using IN
become apparent.

The Oracle SQL engine converts the IN operator to a series of OR conditions at runtime.

As you might expect, NOT IN is also valid. If the query you want to write
sounds something like, “I want all the values except for these two or three…”,
then NOT IN is probably a good choice.

What’s Not to Like about LIKE?
pattern matching
Comparing a string in a database column
to a string containing wildcard charac-
ters. These wildcard characters can rep-
resent zero, one, or more characters in
the database column string.

The LIKE operator lets you do pattern matching in a query. You know how to
search for exact strings and numbers, but in some cases, you know only a few
digits of the number or a portion of the string you need to find.

The LIKE operator can be used interchangeably with an equal sign, except
that the string specified with LIKE can contain wildcard characters. The wildcard
characters allowed in LIKE are %, which represents zero or more characters, and
_, which represents exactly one character.

For example, the pattern 'Sm_th%' will match 'Smith' and 'Smythe' but not
'Smooth'. The pattern '%o%o%' will match any string that contains at least two
lowercase o characters.

Janice is writing an ad-hoc query for Employee Services that will retrieve the
job titles that have the word “Manager” somewhere in the title. She uses the
LIKE operator:

select job_id, job_title from jobs

 where job_title like '%Manager%';

JOB_ID JOB_TITLE

---------- -----------------------------------

FI_MGR Finance Manager

AC_MGR Accounting Manager

SA_MAN Sales Manager

PU_MAN Purchasing Manager

ST_MAN Stock Manager

MK_MAN Marketing Manager

6 rows selected.

When numbers or dates are used with the LIKE operator, they are converted to char-
acter strings using the default conversion rules before comparing to the LIKE string.

4372.book Page 78 Wednesday, August 4, 2004 3:01 PM

Restricting, Sorting, and Grouping Data 79

What happens when you want to search for the _ or % characters themselves?
The job IDs in Scott’s corporate database use underscores, so Janice would get
erroneous results if she specified 'ST_' in the LIKE string to find store-related
jobs. This would also return jobs that had 'ASSISTANT' or 'COSTMGR' in the job
ID. To solve this problem, she uses the ESCAPE option of the LIKE clause. The
ESCAPE option lets you define a special character—one that you don’t expect to
find in your strings—to use before _ or % to indicate that you’re actually looking
for a _ or % character. To find all the job descriptions for jobs that are store-
related, and therefore begin with 'ST_', Janice uses the following query:

select job_id, job_title from jobs

where job_id like 'ST_%' escape '\';

JOB_ID JOB_TITLE

---------- -----------------------------------

ST_MAN Stock Manager

ST_CLERK Stock Clerk

2 rows selected.

The ESCAPE option is used only with LIKE, and it tells the SQL engine
to treat the character that follows literally instead of as a wildcard character.
Notice in the above example that the underscore is “escaped,” but the % acts as
it normally does and specifies that zero or more characters follow.

DBAs should keep an eye out for queries that use LIKE extensively. While this oper-
ator is very easy and intuitive for the user, queries with LIKE will scan the entire table,
rather than use an index, unless there are no wildcards at the beginning of the string
in the LIKE operator.

IS NULL and IS NOT NULL
As mentioned in previous chapters, NULLs can be very useful in the database for
saving disk space and for identifying values that are unknown, as opposed to
being blank or zero. The key to understanding NULLs is to know that they are not
equal to anything. Therefore, NULLs won’t work with the standard comparison
operators, such as +, /, >, =, and so forth. Janice learned this the hard way when
she wanted to identify employees who made a commission of less than 15 percent
or no commission at all. Here is the query she used:

select employee_id "Emp ID", last_name "Name", commission_pct
"Comm%"

from employees where commission_pct < 0.15;

4372.book Page 79 Wednesday, August 4, 2004 3:01 PM

80 Chapter 4

 Emp ID Name Comm%

---------- ------------------------- ----------

 164 Marvins .1

 165 Lee .1

 166 Ande .1

 167 Banda .1

 173 Kumar .1

 179 Johnson .1

6 rows selected.

This list appears to be way too short. That is because the rows in the
EMPLOYEES table with NULL values for the commission do not pass the criteria of
being less than 0.15; they don’t compare to any value because they are unknown.

This is where the IS NULL and IS NOT NULL operators come to the rescue.
These two operators are the only ones that can do a direct comparison to values
that are NULL in a database row. For Janice to fix her query, she needs to add an
IS NULL condition to her WHERE clause:

select employee_id "Emp ID",

 last_name "Name", commission_pct "Comm%"

from employees

 where commission_pct < 0.15

 or commission_pct is null;

 Emp ID Name Comm%

---------- ------------------------- ----------

 100 King

 101 Kochhar

 102 De Haan

...

 164 Marvins .1

 165 Lee .1

 166 Ande .1

 167 Banda .1

 173 Kumar .1

 179 Johnson .1

 180 Taylor

...

 205 Higgins

 206 Gietz

78 rows selected.

4372.book Page 80 Wednesday, August 4, 2004 3:01 PM

Restricting, Sorting, and Grouping Data 81

Be careful when constructing queries that operate on columns that can contain NULL
values. A NULL is not the same as FALSE; it is the absence of a known value. This is
a by-product of three-valued logic, where we have not just TRUE and FALSE, but TRUE,
FALSE, and UNKNOWN.

You’ll see in the section on GROUP BY how multirow functions handle NULL
values in a reasonable and expected way.

The ORDER BY Clause
You often need to see the results of a query in some kind of order, in other words,
sorted by the values in one or more columns, either in ascending order or
descending order. By default, columns are sorted in ascending order, but for
completeness, you can use the ASC keyword. You use the DESC keyword to spec-
ify that a column should be sorted in descending order.

The syntax diagram for SELECT is expanded for ORDER BY as follows:

SELECT * | {[DISTINCT] column | expression [alias], ...}

 FROM tablename

 [WHERE condition ...]

 [ORDER BY column [ASC | DESC], column [ASC | DESC], ...];

The Web Intranet group has requested that the list of employees from HR
arrive sorted in ascending order. Janice is able to produce this report quickly by
adding an ORDER BY to the existing query:

select employee_id || lpad(last_name,40-length(employee_
id),'.')

"Employee Directory" from employees

order by last_name;

Employee Directory

174.................................Abel

166.................................Ande

130.............................Atkinson

105...............................Austin

204.................................Baer

116................................Baida

167................................Banda

172................................Bates

...

155..............................Tuvault

4372.book Page 81 Wednesday, August 4, 2004 3:01 PM

82 Chapter 4

112................................Urman

144...............................Vargas

162..............................Vishney

196................................Walsh

120................................Weiss

200...............................Whalen

149..............................Zlotkey

107 rows selected.

The column or columns to be sorted don’t necessarily need to be in the
SELECT clause. If there are NULL values in a column to be sorted, they will
appear at the end if the sort is ascending, and they will appear first if the sort
is descending.

As you might expect, you can combine both ascending and descending sorts
in the same ORDER BY clause. The president, King, needs a monthly report that
shows the salaries for each department, in ascending order of department num-
ber but in descending order for the salary amount. Janice comes up with the fol-
lowing query for King:

select department_id "Dept",

 last_name || ', ' || first_name "Employee",

 salary "Salary" from employees

order by department_id asc, salary desc;

 Dept Employee Salary

----- ------------------------------ ----------

 10 Whalen, Jennifer 4400

 20 Hartstein, Michael 13000

 20 Fay, Pat 6000

 30 Raphaely, Den 11000

 30 Khoo, Alexander 3100

 30 Baida, Shelli 2900

 30 Tobias, Sigal 2800

 30 Himuro, Guy 2600

 30 Colmenares, Karen 2500

 40 Mavris, Susan 6500

...

 90 King, Steven 24000

 90 Kochhar, Neena 17000

4372.book Page 82 Wednesday, August 4, 2004 3:01 PM

Restricting, Sorting, and Grouping Data 83

 90 De Haan, Lex 17000

 100 Greenberg, Nancy 12000

 100 Faviet, Daniel 9000

 100 Chen, John 8200

 100 Urman, Jose Manuel 7800

 100 Sciarra, Ismael 7700

 100 Popp, Luis 6900

 110 Higgins, Shelley 12000

 110 Gietz, William 8300

 Grant, Kimberely 7000

107 rows selected.

Unlike a WHERE clause, an ORDER BY clause can contain a column alias.

The ASC keyword is not required, but it is specified here for clarity. Notice
also how an employee with a NULL department number will end up at the bottom
of the list in an ascending sort.

Group Functions and the GROUP BY Clause
aggregate
A type of function in Oracle SQL that per-
forms a calculation or transformation
across multiple rows in a table, rather
than just on a single row.

This section explains how you can group rows together and perform some kind
of aggregate operation on them. For example, you may want to count the rows
for a given condition, calculate the averages of numeric columns, or find the
highest or lowest value for a given column in a query result.

The GROUP BY clause fits into the SELECT statement as follows:

SELECT * | {[DISTINCT] column | expression [alias]

 | group_function(column), ...}

 FROM tablename

 [WHERE condition ...]

 [GROUP BY group_expression, group_expression ...]

 [ORDER BY column [ASC | DESC], column [ASC | DESC], ...];

All group functions ignore NULLs by default. If you wanted to calculate the aver-
age commission across employees, you would most likely not want to consider
employees who are not in the sales area (and therefore have a NULL commission
value). On the other hand, you might want to treat NULL values numerically in
other situations. You will see later in this chapter how you can convert NULL values
with the NVL function.

4372.book Page 83 Wednesday, August 4, 2004 3:01 PM

84 Chapter 4

Group Functions
Table 4.2 lists some of the most commonly used group functions in SQL state-
ments. The COUNT function is the only aggregate function that will count rows
with NULL values in any column when * is used as an argument.

All of the functions listed in Table 4.2 have a calling sequence as follows:

function([DISTINCT | ALL] expression)

As mentioned earlier, the COUNT function allows for * as its only argument, to
specify that rows are to be counted, whether or not they have NULL values. The
COUNT, MIN, and MAX functions apply to date and string expressions in addition
to numeric expressions; the rest must have numeric arguments only.

The DISTINCT keyword indicates that duplicates are to be removed before the
aggregate calculation is done. For example, calculating AVG(SALARY) versus
AVG(DISTINCT SALARY) would be quite different if most of the employees are
at one end of the pay scale. ALL is the default.

The boss, King, wants to get more information on salary distribution by
department, so he asks Janice to give him the count of employees and the average
salary and commission for his department, which has a department ID of 90.
Janice runs the following query:

select count(*), avg(salary),

 avg(commission_pct) from employees

 where department_id = 90;

 COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)

---------- ----------- -------------------

 3 19333.3333

1 row selected.

Tab le 4 .2 Common Group Functions

Function Description

COUNT Counts the number of rows, either all rows or for non-NULL
column values

AVG Calculates the average value of a column

SUM Returns the sum of values for a column

MIN Returns the minimum value for all column values

MAX Returns the maximum value for all column values

STDDEV Calculates the standard deviation for a specified column

4372.book Page 84 Wednesday, August 4, 2004 3:01 PM

Restricting, Sorting, and Grouping Data 85

Notice that the average commission in this case is not zero but NULL; there
were no employees in department 90 with a commission. The result would have
been non-NULL, if there were at least one employee who worked on a commission
for part of their salary.

The next morning, the boss asks the same question for department 80, which has
the bulk of the commissioned employees. Janice gets the answer with this query:

select count(*), avg(salary),

 avg(commission_pct) from employees

 where department_id = 80;

 COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)

---------- ----------- -------------------

 34 8955.88235 .225

1 row selected.

Janice hears rumors that King is going to ask for a breakdown of the number
of employees, how many are on commission, and how many distinct commission
percentages there are. She comes up with this query:

select count(*), count(commission_pct) "Comm Count",

 count(distinct commission_pct) "Distinct Comm"

 from employees;

 COUNT(*) Comm Count Distinct Comm

---------- ---------- -------------

 107 35 7

1 row selected.

What does this tell King? The total number of employees is 107, regardless of
whether there are any NULL values in any of the columns. Of those employees, 35
are on commission (have a non-NULL value for COMMISSION_PCT), and out of
those 35, there are seven different commission levels in force at the company.

Janice also suspects that King will be asking for some statistics for other
departments. Rather than run the same query for different department numbers,
she decides that it might be worthwhile to use the GROUP BY function to give King
all the information he needs in a single query.

The GROUP BY Clause
The GROUP BY clause is used to break down the results of a query based on a column
or columns. Once the rows are subdivided into groups, the aggregate functions

4372.book Page 85 Wednesday, August 4, 2004 3:01 PM

86 Chapter 4

described earlier in this chapter can be applied to these groups. Note the following
rules about using the GROUP BY clause:

◆ All columns in a SELECT statement that are not in the GROUP BY clause
must be part of an aggregate function.

◆ The WHERE clause can be used to filter rows from the result before the
grouping functions are applied.

◆ The GROUP BY clause also specifies the sort order; this can be overridden
with an ORDER BY clause.

◆ Column aliases cannot be used in the GROUP BY clause.

Janice has been busy preparing a report for King that will break down the sal-
ary and commission information by department. Her first query looks like this:

select department_id "Dept", count(*), avg(salary),

 avg(commission_pct) from employees

 group by department_id;

 Dept COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)

----- ---------- ----------- -------------------

 10 1 4400

 20 2 9500

 30 6 4150

 40 1 6500

 50 45 3475.55556

 60 5 5760

 70 1 10000

 80 34 8955.88235 .225

 90 3 19333.3333

 100 6 8600

 110 2 10150

 1 7000 .15

12 rows selected.

This gives King a breakdown, by department, of the employee count, the average
salary, and the average commission. NULLs are not included in the calculation for
commission or salary. King likes this report, but Janice suspects that he will be asking
for something different tomorrow.

One of the departments has a NULL value. There is one employee who has not
yet been assigned to a department, but this employee does have a salary and a
commission.

4372.book Page 86 Wednesday, August 4, 2004 3:01 PM

Restricting, Sorting, and Grouping Data 87

As expected, King calls the next day with another request. He wants to see
how the salaries and commissions break out within department by job function.
Janice realizes that all she needs to do is to add the job ID to the query in both
the SELECT clause and the GROUP BY clause:

select department_id "Dept", job_id "Job", count(*),

 avg(salary), avg(commission_pct) from employees

 group by department_id, job_id;

 Dept Job COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)

----- ---------- ---------- ----------- -------------------

 SA_REP 1 7000 .15

 10 AD_ASST 1 4400

 20 MK_MAN 1 13000

 20 MK_REP 1 6000

 30 PU_MAN 1 11000

 30 PU_CLERK 5 2780

 40 HR_REP 1 6500

 50 ST_MAN 5 7280

 50 SH_CLERK 20 3215

 50 ST_CLERK 20 2785

 60 IT_PROG 5 5760

 70 PR_REP 1 10000

 80 SA_MAN 5 12200 .3

 80 SA_REP 29 8396.55172 .212068966

 90 AD_VP 2 17000

 90 AD_PRES 1 24000

 100 FI_MGR 1 12000

 100 FI_ACCOUNT 5 7920

 110 AC_MGR 1 12000

 110 AC_ACCOUNT 1 8300

20 rows selected.

As a side benefit, this also gives King the breakdown of jobs within each
department.

Using NVL with Group Functions
As mentioned earlier in this chapter, group functions will ignore NULL values in
their calculations. In most cases, this makes a lot of sense. For example, if only
a small handful of employees worked on commission, and you calculated the

4372.book Page 87 Wednesday, August 4, 2004 3:01 PM

88 Chapter 4

average commission with the assumption that a NULL commission was essentially
a zero commission, then the average commission would be quite low!

How you should interpret NULL values in a column depends on the business
rules of the company and what NULL values represent. An average commission is
usually based on only those employees who work on commission, and, in this
case, the default behavior of Oracle’s grouping functions makes sense.

However, there may be times when it makes sense to convert NULL values to
something that can be aggregated. Let’s assume for the moment that there is a
column called COMMISSION_AMT in the EMPLOYEES table that records the latest
monthly commission received by that employee. Just as with the COMMISSION_
PCT column, the COMMISSION_AMT field is NULL for all employees except those in
the Sales department. If King wanted a report of the average salary and commis-
sion (if any) by department, the expression

avg(salary + commission_amt)

in the SELECT clause would give results for only those rows with non-NULL com-
missions. That would not be what King was looking for. Janice would need to
essentially convert any NULL values to zero. This is what NVL will do, and the
expression above can be rewritten as

avg(salary + nvl(commission_amt,0))

For each row, if the COMMISSION_AMT is NULL, it is converted to zero (or any
other amount you want) and added to SALARY, and the average is returned after
all rows have been read.

The HAVING Clause
The HAVING clause is analogous to the WHERE clause, except that the HAVING
clause applies to aggregate functions instead of individual columns or single-row
function results. A query with a HAVING clause still returns aggregate values, but
those aggregated summary rows are filtered from the query output based on the
conditions in the HAVING clause.

The HAVING clause fits into the SELECT syntax as follows:

SELECT * | {[DISTINCT] column | expression [alias]

 | group_function(column), ...}

 FROM tablename

 [WHERE condition ...]

 [GROUP BY group_expression, group_expression ...]

 [HAVING group_condition, ...]

 [ORDER BY column [ASC | DESC], column [ASC | DESC], ...];

4372.book Page 88 Wednesday, August 4, 2004 3:01 PM

Restricting, Sorting, and Grouping Data 89

The queries that Janice wrote for King have the information he needs, but his time
is limited and he wants to see only the breakdowns for the department and job com-
binations that have average salaries over $10,000. Janice takes the original query

select department_id "Dept", job_id "Job", count(*),

 avg(salary), avg(commission_pct) from employees

group by department_id, job_id;

and adds a HAVING clause that removes the lower average salaries:

select department_id "Dept", job_id "Job", count(*),

 avg(salary), avg(commission_pct) from employees

group by department_id, job_id

having avg(salary) > 10000;

 Dept Job COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)

----- ---------- ---------- ----------- -------------------

 20 MK_MAN 1 13000

 30 PU_MAN 1 11000

 80 SA_MAN 5 12200 .3

 90 AD_VP 2 17000

 90 AD_PRES 1 24000

 100 FI_MGR 1 12000

 110 AC_MGR 1 12000

7 rows selected.

Janice becomes proactive again, and she anticipates that King will want to see only
certain jobs in the report. She can easily add a WHERE clause to select only adminis-
trative and sales positions. She uses the LIKE clause to select these job functions:

select department_id "Dept", job_id "Job", count(*),

 avg(salary), avg(commission_pct) from employees

where job_id like 'AD%' or job_id like 'SA%'

group by department_id, job_id

having avg(salary) > 10000;

 Dept Job COUNT(*) AVG(SALARY) AVG(COMMISSION_PCT)

----- ---------- ---------- ----------- -------------------

 80 SA_MAN 5 12200 .3

 90 AD_VP 2 17000

 90 AD_PRES 1 24000

3 rows selected.

4372.book Page 89 Wednesday, August 4, 2004 3:01 PM

90 Chapter 4

The order of the WHERE, GROUP, and HAVING clauses does not change how the
query is run or the results; however, the ordering shown here is indicative of how
the SQL engine processes the command. If an ORDER BY clause was needed in the
above query, it could be placed anywhere after the SELECT clause but would
most logically belong at the end of the query.

Terms to Know
aggregate pattern matching

comment

4372.book Page 90 Wednesday, August 4, 2004 3:01 PM

Restricting, Sorting, and Grouping Data 91

Review Questions
1. Rewrite the following expression using the CONCAT function.

last_name || ', ' || first_name

2. What are two ways that you can indicate a comment in a SQL command?

3. The SQL engine converts the IN operator to a series of ________.

4. Rewrite the following WHERE clause to be case insensitive.

where job_title like '%Manager%';

5. What is the only group function that counts NULL values in its calculation
without using NVL or other special processing?

6. The query results from using aggregate functions with a GROUP BY clause can
be filtered or restricted by using what clause?

7. Identify the two special characters used with the LIKE operator and describe
what they do.

8. Name two aggregate functions that work only on numeric columns or
expressions and two other aggregate functions that work on numeric, char-
acter, and date columns.

9. Put the clauses of a SQL SELECT statement in the order in which they are
processed.

10. Which operator can do valid comparisons to columns with NULL values?

11. The SQL engine converts the BETWEEN operator to ___________.

12. Where do NULL values end up in a sort operation?

4372.book Page 91 Wednesday, August 4, 2004 3:01 PM

4372.book Page 92 Wednesday, August 4, 2004 3:01 PM

In This Chapter

Chapter

5

Using Multiple Tables

So far, we have been dealing with only one table at a time in our SQL
query examples. But typically the information needed to satisfy a user
query requires more than one table. For example, the

EMPLOYEES

 table
has a column with a department number but not a department name; the
department name must be retrieved from the

DEPARTMENTS

 table. You
can get this information by joining the two tables on a common column,
in this case, the

DEPARTMENT_ID

 column. Two or more tables can also be
joined in situations where the columns may not be equal.

The boss at Scott’s widget company has realized that data can be
pulled from more than one table at a time. Now the application devel-
oper and DBA, Janice, has been busy trying to keep up with his requests
for reports. Each of the join types will be discussed in this chapter, as we
follow Janice’s work.

◆

Join syntax: Pre-Oracle9

i

 versus
Oracle9

i

/Oracle 10

g

 SQL99 standard

◆

Equijoins (inner joins)

◆

Non-equijoins

◆

Outer joins

◆

Self-joins

◆

Cartesian products

4372.book Page 93 Wednesday, August 4, 2004 3:01 PM

94

Chapter 5

Join Syntax: Out with the Old and In with
the New (SQL:1999)

join

To combine two or more tables in a query
to produce rows as a result of a compar-
ison between columns in the tables.

Not only can you

join

 two or more tables in a number of different ways, but you can
also use two different syntax forms to perform these joins. As of Oracle9

i

, the full
ANSI SQL:1999 standard for join syntax is supported. Prior to Oracle9

i

, Oracle
used a proprietary syntax that wasn’t always compatible with the ANSI standard.

Oracle’s proprietary syntax, which is still supported in Oracle9

i

 and Oracle
10

g

 for backward compatibility with existing code, put all of the join conditions
in the

SELECT

 statement’s

WHERE

 clause. It also relied on relatively obscure meth-
ods to indicate certain types of join operations. The newer syntax relies more
heavily on concise yet descriptive keywords to clearly indicate what operation is
being performed. We’ll cover both the old and new syntax in this chapter; as a
DBA or developer, you’ll most likely see new applications using the new syntax
and plenty of existing applications that use the old syntax.

All new SQL code should use the SQL:1999 or SQL:2003 standard syntax for read-
ability and cross-platform compatibility.

There is no performance benefit to using one syntax over the other; the same
kind of join using either syntax will translate into the same internal SQL engine
operation. One of the biggest benefits is the ease with which the new syntax can
be written and understood. The join conditions are now separated from the

WHERE

 clause and placed in the

FROM

 clause. The

WHERE

 clause, if one even exists,
ends up being much cleaner because it’s used only for filtering the rows being
returned from the query, instead of being intertwined with table join conditions.

In each section of this chapter, you’ll see how the database analyst, Janice,
uses both formats for each new query she develops for the boss.

Equijoins

equijoin

A join between two tables where rows are
returned if one or more columns in com-
mon between the two tables are equal
and not

NULL

.

Equijoins

 are also commonly known as simple joins, or

inner joins

. Given two or
more tables, an equijoin will return the results of these tables where a common
column between any given pair of tables has the same value (an equal value).
Equijoins are typically joins between foreign keys in one table to a primary key
in another table.

Pre-Oracle9

i

 Equijoin Syntax

inner join

See

equijoin

.

The boss, King, gets his employee report with only the department ID on it,
because the query used for the report is based on only the

EMPLOYEES

 table.
When the company was smaller, he knew automatically that department 100
was the Finance department, and so on. But now, with almost 30 departments in

4372.book Page 94 Wednesday, August 4, 2004 3:01 PM

Using Multiple Tables

95

the company, he needs to see the department name in the report. That informa-
tion is in the

DEPARTMENTS

 table. Janice will join the two tables on the common
column,

DEPARTMENT_ID

, and produce a report that is much more readable:

select employee_id "Emp ID", last_name || ', ' ||

 first_name "Name", department_name "Dept"

from employees e, departments d

where e.department_id = d.department_id;

 Emp ID Name Dept

---------- ------------------------- --------------------

 100 King, Steven Executive

 101 Kochhar, Neena Executive

 102 De Haan, Lex Executive

 103 Hunold, Alexander IT

 104 Ernst, Janice IT

 105 Austin, David IT

...

 201 Hartstein, Michael Marketing

 202 Fay, Pat Marketing

 203 Mavris, Susan Human Resources

 204 Baer, Hermann Public Relations

 205 Higgins, Shelley Accounting

 206 Gietz, William Accounting

106 rows selected.

Notice that table aliases are used. You’ve already seen quite a few column
aliases in previous examples, and tables can be aliased also, either for clarity or
for performance reasons. In this case, the aliases are necessary to identify which
columns in which table are to be compared in this query. Typically, the column
names match, but that is not a requirement for columns that are matched in a

WHERE

 clause.
King tells Janice that the report looks good, but he also wants to see the full

job description for each employee. Janice adds another table to the query and
expands the

WHERE

 clause. She also adds an

ORDER BY

 clause to ensure that the
report stays in employee ID order:

select employee_id "Emp ID",

 last_name "Name", department_name "Dept",

 job_title "Job"

from employees e, departments d, jobs j

where e.department_id = d.department_id

4372.book Page 95 Wednesday, August 4, 2004 3:01 PM

96

Chapter 5

 and e.job_id = j.job_id

order by employee_id;

Emp ID Name Dept Job

------ ---------- ---------- -----------------------------

 100 King Executive President

 101 Kochhar Executive Administration Vice President

 102 De Haan Executive Administration Vice President

 103 Hunold IT Programmer

 104 Ernst IT Programmer

 105 Austin IT Programmer

 106 Pataballa IT Programmer

...

 205 Higgins Accounting Accounting Manager

 206 Gietz Accounting Public Accountant

106 rows selected.

To join together

n

 tables, you need at least

n-1

 join conditions to avoid undesired Car-
tesian products, resulting from combining every row of one table with every row of
one or more other tables. Cartesian products are discussed later in this chapter.

King is still not satisfied with the report because it’s too long. He wants to see
only information about the Finance and Purchasing department people on a reg-
ular basis. Janice updates the query one more time to add another

WHERE

 condi-
tion to the query:

select e.employee_id "Emp ID",

 e.last_name "Name", d.department_name "Dept",

 j.job_title "Job"

from employees e, departments d, jobs j

where e.department_id = d.department_id

 and e.job_id = j.job_id

 and e.department_id in (30, 100)

order by e.employee_id;

 Emp ID Name Dept Job

------- ------------ ------------ --------------------

 108 Greenberg Finance Finance Manager

 109 Faviet Finance Accountant

 110 Chen Finance Accountant

4372.book Page 96 Wednesday, August 4, 2004 3:01 PM

Using Multiple Tables

97

 111 Sciarra Finance Accountant

 112 Urman Finance Accountant

 113 Popp Finance Accountant

 114 Raphaely Purchasing Purchasing Manager

 115 Khoo Purchasing Purchasing Clerk

 116 Baida Purchasing Purchasing Clerk

 117 Tobias Purchasing Purchasing Clerk

 118 Himuro Purchasing Purchasing Clerk

 119 Colmenares Purchasing Purchasing Clerk

12 rows selected.

Janice already knew the department numbers to use with the

IN

 operator.

Oracle9

i

 Equijoin Syntax

The query that Janice wrote in the previous section works great. However, with
all of the conditions specified in the

WHERE

 clause, including both the table joins
and the result filter, it gets cluttered fast. Most of the new options available in the
Oracle9

i

 and later syntax for joins will help make the query look cleaner, so that
it is easier to read and understand. Equijoins can be constructed using the syntax

NATURAL JOIN

,

JOIN USING

, and

JOIN ON

.

Natural Join

Janice is quickly figuring out how to use the new Oracle9

i

 syntax. She rewrites
one of the first queries she wrote in this chapter, joining just the

EMPLOYEES

 and

DEPARTMENTS

 tables. She uses the

NATURAL JOIN

 clause, since this method will
implicitly join the two tables on columns with the same name:

select employee_id "Emp ID", last_name || ', ' ||

 first_name "Name", department_name "Dept"

from employees natural join departments;

 Emp ID Name Dept

---------- -------------------- --------------------

 101 Kochhar, Neena Executive

 102 De Haan, Lex Executive

 104 Ernst, Janice IT

 105 Austin, David IT

 106 Pataballa, Valli IT

 107 Lorentz, Diana IT

 109 Faviet, Daniel Finance

...

4372.book Page 97 Wednesday, August 4, 2004 3:01 PM

98

Chapter 5

 155 Tuvault, Oliver Sales

 184 Sarchand, Nandita Shipping

 185 Bull, Alexis Shipping

 186 Dellinger, Julia Shipping

 187 Cabrio, Anthony Shipping

 202 Fay, Pat Marketing

 206 Gietz, William Accounting

32 rows selected.

Janice is scratching her head, because her first query returned 106 rows,
while this one returns only 32. She realizes that the simplicity of the

NATURAL
JOIN

 method is a double-edged sword.

NATURAL JOIN

 matches on

all

 columns
that have the same name and datatype between the tables. On closer inspec-
tion, it turns out that the

EMPLOYEES

 and the

DEPARTMENTS

 tables have both
the

DEPARTMENT_ID

 and

MANAGER_ID

 columns in common. The query she
wrote is effectively the same as writing this query in Oracle8

i

:

select employee_id "Emp ID", last_name || ', ' ||

 first_name "Name", department_name "Dept"

from employees e, departments d

where e.manager_id = d.manager_id and

 e.department_id = d.department_id;

This is clearly not what she is looking for. It doesn’t make much sense to join
on the

MANAGER_ID

 column because the

MANAGER_ID

 column in the

EMPLOYEES

table is the

MANAGER_ID

 of the employee, whereas the

MANAGER_ID column in the
DEPARTMENTS table is the manager of the department itself. The query does
return the employees whose manager is a department manager, but this is not
what King requested (yet!).

Use NATURAL JOIN only for ad hoc queries where you are very familiar with the col-
umn names of both tables. Adding a new column to a table that happens to have the
same name as a column in another table will cause unexpected side effects with
existing queries that use both tables in a NATURAL JOIN.

Join Using
Janice decides to scale back a bit and use another form of the Oracle9i join syntax
that still saves some typing but is more explicit on which columns to join: JOIN
... USING. This form of an equijoin specifies the two tables to be joined and the
column that is common between the tables. Janice’s new query looks like this:

select employee_id "Emp ID", last_name || ', ' ||

 first_name "Name", department_name "Dept"

4372.book Page 98 Wednesday, August 4, 2004 3:01 PM

Using Multiple Tables 99

from employees join departments using (department_id);

 Emp ID Name Dept

---------- -------------------------- --------------------

 100 King, Steven Executive

 101 Kochhar, Neena Executive

 102 De Haan, Lex Executive

 103 Hunold, Alexander IT

 104 Ernst, Janice IT

 105 Austin, David IT

 106 Pataballa, Valli IT

...

 201 Hartstein, Michael Marketing

 202 Fay, Pat Marketing

 203 Mavris, Susan Human Resources

 204 Baer, Hermann Public Relations

 205 Higgins, Shelley Accounting

 206 Gietz, William Accounting

106 rows selected.

Join On
This particular form of an equijoin appears to be a good compromise between
simplicity and accuracy, but Janice knows that she’ll sooner or later use another
form of an equijoin, the JOIN ... ON syntax. She rewrites the query once more
as follows:

select employee_id "Emp ID", last_name || ', ' ||

 first_name "Name", department_name "Dept"

from employees e join departments d

 on e.department_id = d.department_id;

 Emp ID Name Dept

---------- -------------------------- --------------------

 100 King, Steven Executive

 101 Kochhar, Neena Executive

 102 De Haan, Lex Executive

 103 Hunold, Alexander IT

...

 203 Mavris, Susan Human Resources

 204 Baer, Hermann Public Relations

4372.book Page 99 Wednesday, August 4, 2004 3:01 PM

100 Chapter 5

 205 Higgins, Shelley Accounting

 206 Gietz, William Accounting

106 rows selected.

The JOIN ... ON clause is the only SQL:1999 equijoin clause that supports joining
columns with different names.

Join Using with Three Tables
Later in the afternoon, one more request comes in from King: He wants to see a list
of employees similar to the query Janice just ran, but instead of departments, he
wants to see the city where the employee is working, and only employees in depart-
ment 40, Human Resources. Looking at the EMPLOYEES table, the DEPARTMENTS
table, and the LOCATIONS table, you can see that there is no direct route from
EMPLOYEES to LOCATIONS. Janice must “go through” the DEPARTMENTS table to
fulfill King’s request. She must take the following route to get from EMPLOYEES
to LOCATIONS:

EMPLOYEES

DEPARTMENTS

LOCATIONS

4372.book Page 100 Wednesday, August 4, 2004 3:01 PM

Using Multiple Tables 101

Since the join will use common column names between each pair of tables,
Janice’s query uses the JOIN ... USING clause as follows:

select employee_id "Emp ID", last_name || ', ' ||

 first_name "Name", city "City"

from employees

 join departments using (department_id)

 join locations using (location_id)

where department_id = 40;

 Emp ID Name City

---------- -------------------------- --------------------

 203 Mavris, Susan London

1 row selected.

The EMPLOYEES table is joined to DEPARTMENTS on the DEPARTMENT_ID col-
umn, and then the result of that join is joined with the LOCATIONS table on the
LOCATION_ID column. The result is filtered so that only the employees in depart-
ment 40 are on the report.

Non-equijoins
When joining two or more tables, you usually are joining on columns that have
the same value, such as department number or job ID. On occasion, however,
you might join two tables where the common columns are not equal. More spe-
cifically, a column’s value in one table may fall within a range of values in
another table.

There is a table in the HR schema called JOBS, which lists each job in Scott’s
company, along with the salary ranges for a given job. Janice will query this table
using both the pre-Oracle9i syntax and the Oracle9i syntax. The JOBS table is
structured as follows:

Name Null? Type

-------------------------- -------- -------------

JOB_ID NOT NULL VARCHAR2(10)

JOB_TITLE NOT NULL VARCHAR2(35)

MIN_SALARY NUMBER(6)

MAX_SALARY NUMBER(6)

Pre-Oracle9i Non-equijoin Syntax
Janice knows that the EMPLOYEES table has a salary column and a job ID column.
She wants to make sure that the salary for a given employee falls within the range

4372.book Page 101 Wednesday, August 4, 2004 3:01 PM

102 Chapter 5

specified for the job assigned to that employee. The first employee she checks is
the boss’s daughter, Janette King, who has an employee ID of 156. The query
below does a non-equijoin on the EMPLOYEES and JOBS tables to accomplish the
salary range comparison:

select e.job_id "Empl Job", e.salary, j.job_id "Job",

 j.min_salary, j.max_salary

from employees e, jobs j

where e.salary between j.min_salary and j.max_salary

and e.employee_id = 156;

Empl Job SALARY Job MIN_SALARY MAX_SALARY

---------- ---------- ---------- ---------- ----------

SA_REP 10000 FI_MGR 8200 16000

SA_REP 10000 AC_MGR 8200 16000

SA_REP 10000 SA_MAN 10000 20000

SA_REP 10000 SA_REP 6000 12000

SA_REP 10000 PU_MAN 8000 15000

SA_REP 10000 IT_PROG 4000 10000

SA_REP 10000 MK_MAN 9000 15000

SA_REP 10000 PR_REP 4500 10500

8 rows selected.

What does this query output tell Janice? First of all, it appears that there is no
nepotism going on at the company, because Janette’s salary falls within the normal
range for a sales representative, albeit near the high end of the range. It also is
apparent that her salary is in the range for seven other positions at the company.

Oracle9i Non-equijoin Syntax
Janice wants to see if the non-equijoin query is any easier to perform using the
newer Oracle9i syntax. She realizes that since she is doing a non-equijoin, she is
not able to use the NATURAL JOIN or the JOIN ... USING syntax, since both of
those formats assume equality between the implicit or explicit columns. It seems
like the JOIN ... ON syntax will work, though, since she can specify a condition
between two columns in that syntax. The query looks very similar to the previ-
ous query, but as with all Oracle9i joins, the join conditions are moved from the
WHERE clause to the FROM clause:

select e.job_id "Empl Job", e.salary, j.job_id "Job",

 j.min_salary, j.max_salary

from employees e

4372.book Page 102 Wednesday, August 4, 2004 3:01 PM

Using Multiple Tables 103

join jobs j on

 e.salary between j.min_salary and j.max_salary

where employee_id = 156;

Empl Job SALARY Job MIN_SALARY MAX_SALARY

---------- ---------- ---------- ---------- ----------

SA_REP 10000 FI_MGR 8200 16000

SA_REP 10000 AC_MGR 8200 16000

SA_REP 10000 SA_MAN 10000 20000

SA_REP 10000 SA_REP 6000 12000

SA_REP 10000 PU_MAN 8000 15000

SA_REP 10000 IT_PROG 4000 10000

SA_REP 10000 MK_MAN 9000 15000

SA_REP 10000 PR_REP 4500 10500

8 rows selected.

Outer Joins
outer join
A join between two or more tables return-
ing all the rows in one table whether or
not the second table contains a match
on the join condition.

Sometimes you want to join two tables and return all the rows in one table whether
or not the second table contains a match on the join condition. This is known as per-
forming an outer join between two tables. To illustrate why you would want to join
two tables in this way, consider the EMPLOYEES and DEPARTMENTS tables for Scott’s
widget company. The EMPLOYEES table has a column called DEPARTMENT_ID, which
can contain NULL values. If you were to join the two tables on the DEPARTMENT_ID
column, the query would not return all employees. Conversely, if you had depart-
ments that did not have any employees, you would not see all of the departments rep-
resented in the query results either.

In some cases, you want to see all records in both tables, regardless of how
many match on the join condition. This is known as a full outer join.

Let’s look at how to perform these types of outer joins using the pre-Oracle9i
syntax and the Oracle9i syntax.

Pre-Oracle9i Outer Join Syntax
The key component of the outer join syntax for previous Oracle versions is a plus
sign enclosed in parentheses: (+). In an outer join, this outer join operator is
placed next to the table that may not have rows that satisfy the join condition
between two tables. We’ll look at some examples in the next few sections, as Jan-
ice prepares some new reports.

4372.book Page 103 Wednesday, August 4, 2004 3:01 PM

104 Chapter 5

Outer Join
King wants Janice to produce a report listing the sales representatives and the
departments in which they reside. Janice knows that at any given time, there
might be employees who aren’t assigned to a department. She constructs the
query assuming that there might be some missing or incorrect department num-
bers in the EMPLOYEES table:

select e.employee_id "Emp ID", e.last_name || ', ' ||

 e.first_name "Name", d.department_name "Dept"

from employees e,departments d

where e.department_id = d.department_id(+)

and e.job_id = 'SA_REP';

 Emp ID Name Dept

---------- -------------------------- --------------------

 179 Johnson, Charles Sales

 177 Livingston, Jack Sales

 176 Taylor, Jonathon Sales

 175 Hutton, Alyssa Sales

 174 Abel, Ellen Sales

...

 152 Hall, Peter Sales

 151 Bernstein, David Sales

 150 Tucker, Peter Sales

 178 Grant, Kimberely

30 rows selected.

It appears that all of the employees who have a sales position are assigned to
the Sales department, except for Kimberely Grant. She has a NULL value for her
department ID and therefore does not match any row in the DEPARTMENTS table.

Janice could also find out which departments don’t have any employees by
changing the outer join to specify the EMPLOYEES table as the table that might not
have any rows corresponding to a DEPARTMENTS table row, like this:

select e.employee_id "Emp ID", e.last_name || ', ' ||

 e.first_name "Name", d.department_name "Dept"

from employees e,departments d

where e.department_id(+) = d.department_id;

 Emp ID Name Dept

---------- -------------------------- --------------------

 100 King, Steven Executive

4372.book Page 104 Wednesday, August 4, 2004 3:01 PM

Using Multiple Tables 105

 101 Kochhar, Neena Executive

 102 De Haan, Lex Executive

 103 Hunold, Alexander IT

...

 202 Fay, Pat Marketing

 203 Mavris, Susan Human Resources

 204 Baer, Hermann Public Relations

 205 Higgins, Shelley Accounting

 206 Gietz, William Accounting

 , NOC

 , Manufacturing

 , Government Sales

 , IT Support

 , Benefits

 , Shareholder Services

 , Retail Sales

 , Control And Credit

 , Recruiting

 , Operations

 , Treasury

 , Payroll

 , Corporate Tax

 , Construction

 , Contracting

 , IT Helpdesk

122 rows selected.

The report includes all departments but leaves out any employees that have an
invalid department number or have no department number assigned to them.
Janice will be addressing this issue in the next section.

When you’re not sure where the outer join operator (+) goes, place it next to the
table that is missing rows. In other words, rows need to be “added” to this table for
the join to succeed in a regular equijoin.

Full Outer Join
King has asked Janice to somehow combine both of the reports she just created
into a single report that lists all employees and all departments, regardless of
whether an employee is assigned to a department or a department has any employ-
ees. To accomplish this using the pre-Oracle9i syntax, Janice must use the UNION
operator to combine two outer join queries. The UNION operator will combine the

4372.book Page 105 Wednesday, August 4, 2004 3:01 PM

106 Chapter 5

results of two outer join queries, removing duplicates found between the two que-
ries. Her query looks like this:

select e.employee_id "Emp ID", e.last_name || ', ' ||

 e.first_name "Name", d.department_name "Dept"

from employees e,departments d

where e.department_id(+) = d.department_id

union

select e.employee_id "Emp ID", e.last_name || ', ' ||

 e.first_name "Name", d.department_name "Dept"

from employees e,departments d

where e.department_id = d.department_id(+);

 Emp ID Name Dept

---------- -------------------------- --------------------

 100 King, Steven Executive

 101 Kochhar, Neena Executive

 102 De Haan, Lex Executive

 103 Hunold, Alexander IT

 104 Ernst, Janice IT

 105 Austin, David IT

 106 Pataballa, Valli IT

...

 176 Taylor, Jonathon Sales

 177 Livingston, Jack Sales

 178 Grant, Kimberely

 179 Johnson, Charles Sales

 180 Taylor, Winston Shipping

 181 Fleaur, Jean Shipping

...

 , Payroll

 , Recruiting

 , Retail Sales

 , Shareholder Services

 , Treasury

123 rows selected.

Notice that this query returns a total of 123 rows, one more than the previous
version of this query that performed an outer join with the DEPARTMENTS table
as the primary table. This version picked up the extra row containing Kimberely
Grant from the outer join between EMPLOYEES and DEPARTMENTS in the first half
of the query above.

4372.book Page 106 Wednesday, August 4, 2004 3:01 PM

Using Multiple Tables 107

While the query does provide the desired results, the maintenance costs are
higher on a query of this type, since any changes to the first SELECT statement
most likely must be reflected in the second SELECT statement. The new outer join
syntax in Oracle9i addresses this problem.

Oracle9i Outer Join Syntax
As with the equijoin syntax, the outer join syntax in Oracle9i moves the join
logic from the WHERE clause to the FROM clause. Rather than using the slightly
unintuitive (+) outer join operator to specify an outer join, Oracle9i uses LEFT
OUTER JOIN ... ON or RIGHT OUTER JOIN ... ON between the two tables to
be joined. The LEFT or RIGHT specifies which table has all rows retrieved, regard-
less of whether there is a match in the other table.

Left Outer Join
Janice is rewriting some of the queries she wrote back when their shop was run-
ning Oracle8i. Now that they’re using Oracle9i, she wants to make sure she is
leveraging the full power of Oracle9i’s new features, not to mention the added
benefits of more intuitive syntax. She starts with one of the queries for King that
retrieved employees and corresponding departments:

select e.employee_id "Emp ID", e.last_name || ', ' ||

 e.first_name "Name", d.department_name "Dept"

from employees e,departments d

where e.department_id = d.department_id(+)

and e.job_id = 'SA_REP';

She rewrites the query using a LEFT OUTER JOIN, since the EMPLOYEES table
is already on the “left” side of the FROM clause:

select e.employee_id "Emp ID", e.last_name || ', ' ||

 e.first_name "Name", d.department_name "Dept"

from employees e

 left outer join

 departments d

 on e.department_id = d.department_id

where e.job_id = 'SA_REP';

 Emp ID Name Dept

------- ------------------------- ----------------------

 179 Johnson, Charles Sales

 177 Livingston, Jack Sales

 176 Taylor, Jonathon Sales

4372.book Page 107 Wednesday, August 4, 2004 3:01 PM

108 Chapter 5

 175 Hutton, Alyssa Sales

 174 Abel, Ellen Sales

...

 152 Hall, Peter Sales

 151 Bernstein, David Sales

 150 Tucker, Peter Sales

 178 Grant, Kimberely

30 rows selected.

Not surprisingly, she gets the same results as she did when the query used the
pre-Oracle9i syntax. However, this form of the query is much cleaner because
the join syntax is separate from the filter criterion (employees who are sales rep-
resentatives). The query is also much easier to read.

Right Outer Join
Any left outer join can be turned into a right outer join by changing the order of the
tables and changing LEFT OUTER JOIN to RIGHT OUTER JOIN. The query in the pre-
vious section can be rewritten as RIGHT OUTER JOIN as follows:

select e.employee_id "Emp ID", e.last_name || ', ' ||

 e.first_name "Name", d.department_name "Dept"

from departments d

 right outer join

 employees e

 on e.department_id = d.department_id

where e.job_id = 'SA_REP';

Emp ID Name Dept

------- ------------------------- ----------------------

 179 Johnson, Charles Sales

 177 Livingston, Jack Sales

 176 Taylor, Jonathon Sales

 175 Hutton, Alyssa Sales

 174 Abel, Ellen Sales

...

 152 Hall, Peter Sales

 151 Bernstein, David Sales

 150 Tucker, Peter Sales

 178 Grant, Kimberely

30 rows selected.

4372.book Page 108 Wednesday, August 4, 2004 3:01 PM

Using Multiple Tables 109

Many times, whether to use LEFT OUTER JOIN or RIGHT OUTER JOIN is sim-
ply a matter of style. As you can see, the two previous queries read differently but
produce the same results.

Full Outer Join
Speaking of style and readability, the syntax for a full outer join in Oracle9i is greatly
simplified compared to how a full outer join is performed in previous versions of
Oracle. Rather than performing a UNION operation between two distinct queries, the
FULL OUTER JOIN clause is specified between the two tables to be joined.

Janice is cleaning up the rest of her queries to take advantage of the new syn-
tax, and she starts with the UNION query she wrote to display all employees and
all departments in a single query. Here is the original query:

select e.employee_id "Emp ID", e.last_name || ', ' ||

 e.first_name "Name", d.department_name "Dept"

from employees e,departments d

where e.department_id(+) = d.department_id

union

select e.employee_id "Emp ID", e.last_name || ', ' ||

 e.first_name "Name", d.department_name "Dept"

from employees e,departments d

where e.department_id = d.department_id(+);

In its new format, it ends up a lot shorter and a lot more readable:

select e.employee_id "Emp ID", e.last_name || ', ' ||

 e.first_name "Name", d.department_name "Dept"

from employees e

 full outer join

 departments d

 on e.department_id = d.department_id;

 Emp ID Name Dept

------- ------------------------- ----------------------

 200 Whalen, Jennifer Administration

 202 Fay, Pat Marketing

 201 Hartstein, Michael Marketing

 ...

 , Corporate Tax

 , Construction

 , Contracting

 , IT Helpdesk

123 rows selected.

4372.book Page 109 Wednesday, August 4, 2004 3:01 PM

110 Chapter 5

Self-Joins
self-join
A join of a table to itself where a non-
primary key column in the table is related
to the primary key column of another row
in the same table.

You now know that you can join tables to other tables, but can you join a table
to itself, producing a self-join? The answer is a resounding, but qualified, yes.
Typically, a table will join to itself when the table is designed in a hierarchical
manner, that is, when one particular row in a table is somehow related to
another row in the table in a parent-child relationship.

hierarchical
A table design where one of the foreign
keys in the table references the primary
key of the same table in a parent-child
relationship.

At Scott’s widget company, the EMPLOYEES table has a column that contains
the employee number of the employee (EMPLOYEE_ID) in addition to a column
that contains the employee number of the employee’s immediate supervisor
(MANAGER_ID). Janice will use this information to produce some new reports for
the boss that essentially join the EMPLOYEES table to itself.

Pre-Oracle9i Self-Join Syntax
Since the EMPLOYEES table contains the employee’s manager number, Janice decides
to become proactive and generate a report of all employees and their managers. Her
SELECT query references the EMPLOYEES table twice: once as an EMPLOYEES table and
once as a MANAGERS table, since all of the managers are employees themselves. The
EMPLOYEES table can be related to itself.

EMPLOYEES (Employee)

EMPLOYEES (Manager)

4372.book Page 110 Wednesday, August 4, 2004 3:01 PM

Using Multiple Tables 111

The query that Janice writes displays the employees who have managers:

select e.employee_id "Emp ID", e.last_name "Emp Name",

 m.employee_id "Mgr ID", m.last_name "Mgr Name"

from employees e, employees m

where e.manager_id = m.employee_id;

 Emp ID Emp Name Mgr ID Mgr Name

---------- --------------- ---------- ---------------

 201 Hartstein 100 King

 149 Zlotkey 100 King

 148 Cambrault 100 King

...

 177 Livingston 149 Zlotkey

 176 Taylor 149 Zlotkey

 175 Hutton 149 Zlotkey

 174 Abel 149 Zlotkey

 202 Fay 201 Hartstein

 206 Gietz 205 Higgins

106 rows selected.

Notice that King is not in the list. Since the row in the EMPLOYEES table for King
does not have an entry for a manager (he has no manager since he is the president
of the company), his row does not match any rows in the other copy of the
EMPLOYEES table and therefore does not show up as a row in the query output.

Oracle9i Self-Join Syntax
The Oracle9i syntax not only moves the join condition to the FROM clause, it also uses
the familiar syntax you saw earlier for joining two different tables—the JOIN ...
ON syntax. Janice rewrites the manager query using the Oracle9i syntax as follows:

select e.employee_id "Emp ID", e.last_name "Emp Name",

 m.employee_id "Mgr ID", m.last_name "Mgr Name"

from employees e

 join employees m

 on e.manager_id = m.employee_id;

 Emp ID Emp Name Mgr ID Mgr Name

---------- --------------- ---------- ---------------

 201 Hartstein 100 King

 149 Zlotkey 100 King

4372.book Page 111 Wednesday, August 4, 2004 3:01 PM

112 Chapter 5

 148 Cambrault 100 King

...

 177 Livingston 149 Zlotkey

 176 Taylor 149 Zlotkey

 175 Hutton 149 Zlotkey

 174 Abel 149 Zlotkey

 202 Fay 201 Hartstein

 206 Gietz 205 Higgins

106 rows selected.

Not unexpectedly, she gets the same results as she did with the pre-Oracle9i
version of the query.

Cartesian Products: The Black Sheep of the Family
Cartesian product
A join between two tables where no join
condition is specified, and as a result,
every row in the first table is joined with
every row in the second table.

What if you were joining two tables, or even three tables, and you left off the join
conditions? The result would be a Cartesian product. Every row of each table in
the FROM clause would be joined with every row of the other tables. If one table had
15 rows, and a second table had 21 rows, a Cartesian product of those two tables
would produce 315 rows in the result set of the query. Needless to say, it can be a
big problem when you have three or more tables with no join conditions specified.

Partial Cartesian products are produced when a query with n tables has less than
n-1 join conditions between tables.

Needless to say, Cartesian products are used quite infrequently in SELECT
statements, but they can be useful in very specific situations. For example, a Car-
tesian product of the EMPLOYEES table and the COUNTRIES table could give Janice
a way to produce a checklist in a spreadsheet to note when a particular employee
has visited one of the countries where Scott’s widget company has a field office
or distribution center. If employee visits to other offices were tallied in another
table, then the Cartesian product could be joined to the new table as a running
total of visits by employees to other offices.

Pre-Oracle9i Cartesian Product Syntax
Janice decides that the employee/country visit idea has some merit, and she
experiments with some queries to generate the combinations of employees and
countries using a Cartesian product query:

select e.employee_id "Emp ID", e.last_name "Emp Name",

 c.country_id "Cntry ID", c.country_name "Cntry Name"

from employees e, countries c;

4372.book Page 112 Wednesday, August 4, 2004 3:01 PM

Using Multiple Tables 113

 Emp ID Emp Name Cn Cntry Name

---------- --------------- -- --------------------

 100 King AR Argentina

 101 Kochhar AR Argentina

 102 De Haan AR Argentina

 103 Hunold AR Argentina

...

 201 Hartstein ZW Zimbabwe

 202 Fay ZW Zimbabwe

 203 Mavris ZW Zimbabwe

 204 Baer ZW Zimbabwe

 205 Higgins ZW Zimbabwe

 206 Gietz ZW Zimbabwe

2675 rows selected.

Oracle9i Cartesian Product Syntax
The same query using the Oracle9i syntax is similar, except that CROSS JOIN is
used to separate the two tables that are queried to produce a Cartesian product.
Janice changes the previous query to use the Oracle9i version:

select e.employee_id "Emp ID", e.last_name "Emp Name",

 c.country_id "Cntry ID", c.country_name "Cntry Name"

from employees e cross join countries c;

Emp ID Emp Name Cn Cntry Name

---------- --------------- -- --------------------

 100 King AR Argentina

 101 Kochhar AR Argentina

 102 De Haan AR Argentina

 103 Hunold AR Argentina

...

 201 Hartstein ZW Zimbabwe

 202 Fay ZW Zimbabwe

 203 Mavris ZW Zimbabwe

 204 Baer ZW Zimbabwe

 205 Higgins ZW Zimbabwe

 206 Gietz ZW Zimbabwe

2675 rows selected.

4372.book Page 113 Wednesday, August 4, 2004 3:01 PM

114 Chapter 5

Terms to Know
Cartesian product join

equijoin outer join

hierarchical self-join

inner join

4372.book Page 114 Wednesday, August 4, 2004 3:01 PM

Using Multiple Tables 115

Review Questions
1. Add a clause to the WHERE condition to make the following query return only

the department names without employees:

select employee_id "Emp ID", last_name || ', ' ||

 first_name "Name", department_name "Dept"

from employees e,departments d

where e.department_id(+) = d.department_id;

2. A type of query that has either too few or no join conditions is known as
a ___________ query.

3. Name three kinds of equijoins.

4. A natural join makes what assumption between the columns of two or more
tables to be joined?

5. The Oracle9i syntax moves the join conditions from the _________ clause to
the ________ clause in a SELECT statement.

6. To avoid a Cartesian product, a query with four tables must have at least how
many join conditions between tables?

7. To return all the rows in one table regardless of whether any rows in another
table match on the join condition, you would use what kind of a join?

8. What is the symbol used to signify an outer join in a pre-Oracle9i query?

9. A full outer join uses what SQL set operator in a pre-Oracle9i database query?

10. A primary key in one table would frequently be joined to what in a
second table?

4372.book Page 115 Wednesday, August 4, 2004 3:01 PM

4372.book Page 116 Wednesday, August 4, 2004 3:01 PM

In This Chapter

Chapter

6

Advanced SQL Queries

In the previous chapter, you saw how you can write queries that retrieve
information from multiple tables. This chapter looks at more advanced
types of queries. We will begin with relatively simple subqueries, which
allow you to put one query inside another, rather than running two indi-
vidual queries. Subqueries can be tied even more closely to the main
query using a correlated subquery, where columns in the

WHERE

 clause of
the subquery directly reference columns in the main query.

Sometimes, you need to get similar information from more than one
query, and there is some overlap between the results. You might not want
to see the duplicates, or you might want to see only the results that two
queries have in common. As you’ll learn here, you can use

UNION

 and

INTERSECT

 to accomplish these tasks. You’ll also learn how to use

ROLLUP

 and

CUBE

 to summarize table information.

◆

Subqueries

◆

Correlated subqueries

◆

Multiple-column subqueries

◆

Set operators:

UNION

,

INTERSECT

, and

MINUS

◆

Summarizing tables using

ROLLUP

and

CUBE

4372.book Page 117 Wednesday, August 4, 2004 3:01 PM

118

Chapter 6

Subqueries

subquery

A query that is embedded in a main, or
parent, query and used to assist in filter-
ing the result set from a query.

A

subquery

 places one query inside another one. The second query resides some-
where within the

WHERE

 clause of a

SELECT

 statement. One or more values returned
by the subquery are used by the main query to return the results to the user.

The types of operators allowed in the

WHERE

 clause depend on whether the
subquery returns one row or more than one row. If only a single row is returned
from a query, the comparison operators

=

,

!=

,

<

,

>

,

>=

,

<=

, and so forth are valid.
If more than one row is returned from a subquery, operators such as

IN

,

NOT

IN

,

ANY

, and

ALL

 are valid.

Single-Row Subqueries

The boss, King, wants to do his quarterly salary analysis. He would like to see
which employees in the IT department are earning more than the average salary
across all employees. Janice, the database analyst and DBA, realizes that this
could be written as two queries and decides to take that approach first before
using a subquery. The average salary for an employee in the company is retrieved
by a query you’ve seen in previous chapters:

select avg(salary) from employees;

AVG(SALARY)

 6461.68224

1 row selected.

Using this information as a starting point, Janice writes a second query to see
which employees in the IT department (department 60) have a higher salary than
the average. She must cut and paste the number returned from the previous query
into this new query:

select employee_id, last_name, first_name, salary

from employees

where salary > 6461.68224

and department_id = 60;

EMPLOYEE_ID LAST_NAME FIRST_NAME SALARY

----------- ------------- ----------------- ----------

 103 Hunold Alexander 9000

1 row selected.

4372.book Page 118 Wednesday, August 4, 2004 3:01 PM

Advanced SQL Queries

119

The only employee in the IT department making more than the company
average salary is Alexander Hunold, who happens to be the manager of that
department.

single-row subquery

A subquery that returns a single row and
is compared to a single value in the par-
ent query.

Janice wants to streamline this reporting function for King. She realizes that
this can easily be written as a

single-row subquery

. She will embed the query she
used to calculate the average into the second query, replacing the constant value
as follows:

select employee_id, last_name, first_name, salary

from employees

where salary > (select avg(salary) from employees)

and department_id = 60;

EMPLOYEE_ID LAST_NAME FIRST_NAME SALARY

----------- ------------- ---------------------- ----------

 103 Hunold Alexander 9000

1 row selected.

Not only is the query more readable and easier to maintain than the version
with two queries, but the Oracle server also will process it much more efficiently.

As a general rule, a query, enclosed in parentheses, can take the place of a table
name in the

FROM

 clause or a column name in the

SELECT

 or

WHERE

 clause of a query.

King is starting to realize that the IT department may need some pay increases
in the next fiscal year.

Multiple-Row Subqueries

multiple-row subquery

A subquery that can return more than one
row for comparison to the main, or parent,
query using operators such as

IN

.

Sometimes, you want to compare a column in a table to a list of results from
a subquery, not just a single result. This is where a

multiple-row subquery

comes in handy. For example, King is following up on his analysis of employee
salaries in the IT department, and he wants to see who else in the company is
making the same salary as anyone in the IT department.

Janice starts out with the subquery to make sure that she starts with the right
set of results to use for the main query. She wants to get the salaries for the
employees in the IT department (department 60):

select salary

from employees

where department_id = 60;

4372.book Page 119 Wednesday, August 4, 2004 3:01 PM

120

Chapter 6

SALARY

 9000

 6000

 4800

 4800

 4200

5 rows selected.

So far, so good. She takes this query and makes it a subquery in the query that
compares the salaries of all employees to this list by using the

IN

 clause:

select employee_id, last_name, first_name, salary

from employees

where salary in (select salary from employees

 where department_id = 60);

EMPLOYEE_ID LAST_NAME FIRST_NAME SALARY

----------- ------------- ------------------ ----------

 158 McEwen Allan 9000

 152 Hall Peter 9000

 109 Faviet Daniel 9000

 103 Hunold Alexander 9000

 202 Fay Pat 6000

 104 Ernst Janice 6000

 106 Pataballa Valli 4800

 105 Austin David 4800

 184 Sarchand Nandita 4200

 107 Lorentz Diana 4200

10 rows selected.

But wait, something is not quite right here. King did not want to see the IT
employees in this list; he wanted to include everyone

but

 the IT employees. So
Janice makes a slight change as follows, removing employees whose job title is
not an IT job title:

select employee_id, last_name, first_name, salary

from employees

where salary in (select salary from employees

 where department_id = 60)

 and job_id not like 'IT_%';

4372.book Page 120 Wednesday, August 4, 2004 3:01 PM

Advanced SQL Queries

121

EMPLOYEE_ID LAST_NAME FIRST_NAME SALARY

----------- ------------- ------------------ ----------

 158 McEwen Allan 9000

 152 Hall Peter 9000

 109 Faviet Daniel 9000

 202 Fay Pat 6000

 184 Sarchand Nandita 4200

5 rows selected.

Note that Janice also could have checked for a department ID other than 60,
as you have seen in previous queries.

Correlated Subqueries

correlated subquery

A subquery that contains a reference to a
column in the main, or parent, query.

A

correlated subquery

 looks very much like a garden-variety subquery, with one
important difference: The correlated subquery references a column in the main
query as part of the qualification process to see if a given row will be returned by
the query. For each row in the parent query, the subquery is evaluated to see if the
row will be returned. In Janice’s situation, the salary of each individual employee
is compared to the average salary for that employee’s department. The check-
marked rows in the parent query are returned.

Janice knows that King will be asking for more queries regarding salaries, so
she comes up with a fairly generic query that will identify employees who are

Parent (outer) Query Comparison Operator
>

Correlated (inner) Subquery

Correlation

4372.book Page 121 Wednesday, August 4, 2004 3:01 PM

122

Chapter 6

making more than the average salary for their department. As a first step, she
builds the subquery that retrieves the average salary for a department:

select avg(salary) from employees

 where department_id = 60;

AVG(SALARY)

 5760

1 row selected.

That query returns the average salary for department 60. In the correlated
subquery, she will need to generalize it so that it will correlate with any depart-
ment in the parent query. Next, she builds the parent query that compares a
given employee’s salary to the average she just calculated:

select employee_id, last_name, salary

 from employees

 where department_id = 60 and

 salary > 5760;

EMPLOYEE_ID LAST_NAME SALARY

----------- ------------------ ----------

 103 Hunold 9000

 104 Ernst 6000

2 rows selected.

Notice that there are two queries that can now be linked together into a cor-
related subquery to return all employees who earn more than the average for
their department across all departments. If you’re not sure how to link these two
queries, the hint is in the column names. Janice joins the two queries using the

DEPARTMENT_ID

 column:

select employee_id, last_name, department_id, salary

 from employees emp

 where

 salary > (select avg(salary) from employees

 where department_id = emp.department_id);

EMPLOYEE_ID LAST_NAME DEPARTMENT_ID SALARY

----------- ------------------ ------------- ----------

 100 King 90 24000

4372.book Page 122 Wednesday, August 4, 2004 3:01 PM

Advanced SQL Queries

123

 103 Hunold 60 9000

 104 Ernst 60 6000

 108 Greenberg 100 12000

 109 Faviet 100 9000

...

 193 Everett 50 3900

 201 Hartstein 20 13000

 205 Higgins 110 12000

38 rows selected.

As Janice expected, this query still shows that Hunold and Ernst make more
than the average salary for department 60.

Multiple-Column Subqueries

There are times when you need to use a subquery that compares more than
just one column between the parent query and the subquery. This is known as a

multiple-column subquery

. Typically, the

IN

 clause is used to compare the outer
query’s columns to the columns of the subquery.

Multiple-column subqueries can be rewritten as a compound

WHERE

 clause with mul-
tiple logical operators. However, this approach is not as readable or maintainable as
a multiple-column subquery.

multiple-column subquery

A subquery in which more than one col-
umn is selected for comparison to the
main query using the same number of
columns.

The boss, King, wants to be able to identify employees who make the same
salaries as other employees with the same job. He wants to specify an employee
number and have the query return the other employees who have the same job
title and make the same salary. Janice immediately realizes that this could be
written as a multiple-column subquery. She decides to try out the query on one
of the stock clerks, Hazel Philtanker, who has an employee number of 136:

select employee_id, last_name, job_id, salary

 from employees

 where (job_id, salary) in

 (select job_id, salary from employees

 where employee_id = 136);

EMPLOYEE_ID LAST_NAME JOB_ID SALARY

----------- --------------- ---------- ----------

 128 Markle ST_CLERK 2200

 136 Philtanker ST_CLERK 2200

2 rows selected.

4372.book Page 123 Wednesday, August 4, 2004 3:01 PM

124

Chapter 6

The query looks good, except that Hazel is included in the results. If King
decides he doesn’t want to see the selected employee in the results, Janice can mod-
ify the query slightly and change it into a correlated multiple-column subquery:

select employee_id, last_name, job_id, salary

 from employees emp

 where (job_id, salary) in

 (select job_id, salary from employees

 where employee_id = 136

 and employee_id != emp.employee_id);

EMPLOYEE_ID LAST_NAME JOB_ID SALARY

----------- --------------- ---------- ----------

 128 Markle ST_CLERK 2200

1 row selected.

Set Operators
Set operators combine the results of two or more queries into a single query result.
The set operators in Oracle are UNION, UNION ALL, INTERSECT, and MINUS.

All of the set operators have the same precedence. To override the default left-
to-right evaluation, use parentheses to group SELECT statements that you want
evaluated first.

UNION and UNION ALL
The UNION operator will combine two query result sets into a single result set,
sorted by the first column of the SELECT clause for both queries. The syntax for
using UNION is very straightforward: Two queries that can otherwise stand
alone are combined with the keyword UNION. The first query does not need a
semicolon; the entire SQL statement is terminated by a single semicolon, after
the second query.

There are a few rules in force when writing a compound query using UNION.
The number of columns in both queries must match, and the corresponding col-
umns must also have the same datatypes. The names of the columns need not
match, though; the query result will use the column names from the first query.

A compound query using UNION removes duplicates by using a sort operation
before returning the results of the query. The values of all columns must be equal
for one of the rows to be removed from the query result. This is one of the few
cases where a NULL value in one of the queries is considered to be equal to a cor-
responding NULL value in the other query.

4372.book Page 124 Wednesday, August 4, 2004 3:01 PM

Advanced SQL Queries 125

UNION ALL operates in much the same way as UNION, except that duplicates
are not removed. A row that exists in both queries will show up twice in the
results. Because a UNION ALL does not need to remove duplicates, a sort opera-
tion does not occur. Therefore, a UNION ALL will usually return results faster
than a UNION with the same queries. If you know ahead of time that the two que-
ries do not have duplicates, use UNION ALL.

At Scott’s widget company, the database not only keeps track of an employee’s
current information in the EMPLOYEES table, but it also keeps track of what jobs the
employees have held in the past in the JOB_HISTORY table. The boss, King, wants to
get a report that includes both the current and previous positions held by employees
in the company, along with the beginning and ending dates for when the employee
held that position. Janice realizes that she’ll need a UNION or UNION ALL operation,
plus a sort operation. She is not sure how she will retrieve the employee names from
the JOB_HISTORY table, since it has only the employee’s ID number.

Her first attempt at a query tries to combine the job history information with
the current employment information, as follows:

select employee_id, last_name, hire_date, job_id, department_id

from employees

union

select employee_id, start_date, end_date, job_id, department_id

from job_history;

select employee_id, last_name, hire_date, job_id, department_id

 *

ERROR at line 1:

ORA-01790: expression must have same datatype as

 corresponding expression

The two queries have the same number of columns, but the datatypes of the cor-
responding columns don’t match. This is because the employee data doesn’t have
an ending date, and the JOB_HISTORY table doesn’t have a column to store the
employee name. To fix this problem, Janice changes the first query to include a
NULL value for an ending date (since the EMPLOYEES file has only active employees):

select employee_id emp#, last_name, hire_date,

 NULL end_date, job_id, department_id dept#

from employees

She changes the second query to include a constant of an empty string to be
a placeholder to match the name in the other query:

select employee_id, '', start_date,

 end_date, job_id, department_id

from job_history;

4372.book Page 125 Wednesday, August 4, 2004 3:01 PM

126 Chapter 6

The resultant query using the UNION operator looks like this:

select employee_id emp#, last_name, hire_date,

 NULL end_date, job_id, department_id dept#

from employees

union

select employee_id, '', start_date,

 end_date, job_id, department_id

from job_history;

 EMP# LAST_NAME HIRE_DATE END_DATE JOB_ID DEPT#

----- ------------- --------- --------- ---------- ------

 100 King 17-JUN-87 AD_PRES 90

 101 Kochhar 21-SEP-89 AD_VP 90

 101 21-SEP-89 27-OCT-93 AC_ACCOUNT 110

 101 28-OCT-93 15-MAR-97 AC_MGR 110

 102 De Haan 13-JAN-93 AD_VP 90

 102 13-JAN-93 24-JUL-98 IT_PROG 60

 103 Hunold 03-JAN-90 IT_PROG 60

...

 201 Hartstein 17-FEB-96 MK_MAN 20

 201 17-FEB-96 19-DEC-99 MK_REP 20

 202 Fay 17-AUG-97 MK_REP 20

 203 Mavris 07-JUN-94 HR_REP 40

 204 Baer 07-JUN-94 PR_REP 70

 205 Higgins 07-JUN-94 AC_MGR 110

 206 Gietz 07-JUN-94 AC_ACCOUNT 110

117 rows selected.

Since the UNION of the two queries will result in adjacent employee IDs due
to the default sort behavior of the UNION operator, the report makes sense to
King. From this report, he can see that Kochhar was employed as both an
account representative and account manager, before becoming a vice president
in her current position.

Also worth noting in this report is that the columns EMPLOYEE_ID and
DEPARTMENT_ID were assigned column aliases in the first query, and so those
aliases applied to the entire result.

But, of course, Janice is not satisfied with the results of the report. The HIRE_
DATE column should really be a starting date for the employee in that depart-
ment, but for the rows in the EMPLOYEE table, it is the employee’s starting date
at the company. To make the column more accurate, Janice changes the column

4372.book Page 126 Wednesday, August 4, 2004 3:01 PM

Advanced SQL Queries 127

alias for the first query to STRT_DATE and makes it a correlated subquery, so that
the date is actually the date the employees started in their current department:

select employee_id emp#, last_name,

 coalesce(

 (select max(end_date)+1

 from job_history

 where employee_id = emp.employee_id),

 hire_date) strt_date,

 NULL end_date, job_id, department_id dept#

from employees emp

union

select employee_id, '', start_date,

 end_date, job_id, department_id

from job_history

order by emp# asc, strt_date desc;

 EMP# LAST_NAME STRT_DATE END_DATE JOB_ID DEPT#

----- ------------- --------- --------- ---------- ------

 100 King 17-JUN-87 AD_PRES 90

 101 Kochhar 16-MAR-97 AD_VP 90

 101 28-OCT-93 15-MAR-97 AC_MGR 110

 101 21-SEP-89 27-OCT-93 AC_ACCOUNT 110

 102 De Haan 25-JUL-98 AD_VP 90

 102 13-JAN-93 24-JUL-98 IT_PROG 60

 103 Hunold 03-JAN-90 IT_PROG 60

...

 201 Hartstein 20-DEC-99 MK_MAN 20

 201 17-FEB-96 19-DEC-99 MK_REP 20

 202 Fay 17-AUG-97 MK_REP 20

 203 Mavris 07-JUN-94 HR_REP 40

 204 Baer 07-JUN-94 PR_REP 70

 205 Higgins 07-JUN-94 AC_MGR 110

 206 Gietz 07-JUN-94 AC_ACCOUNT 110

117 rows selected.

There are two differences between this query and the previous one. A minor
difference is that the query result is sorted by employee number in ascending
order and by the starting date in descending order. King wants to see the
employee’s most recent job first.

4372.book Page 127 Wednesday, August 4, 2004 3:01 PM

128 Chapter 6

The second difference is a bit more complex. Janice’s goal was to find out if
the employee had any previous jobs and, if so, return the ending date for the last
job that employee had. Remember that you can have the SQL text (in parenthe-
ses) of a correlated subquery in the SELECT, FROM, or WHERE clause of the parent
query. In this case, the correlated subquery is as follows:

(select max(end_date)+1

 from job_history

 where employee_id = emp.employee_id)

For each row in the EMPLOYEE table, this subquery will find the last date that
the employee worked in any department and adds one day, resulting in the first
date that the employee started in their current position. But if the employee has
never switched departments, there will be no rows in the JOB_HISTORY table,
and therefore the subquery will return a NULL result. The solution is to wrap the
COALESCE function around the query.

The COALESCE function will return the first non-NULL argument in the argument
list. The HIRE_DATE column is specified as the second argument to COALESCE, so
if the employee has never switched departments, the original hire date will be
returned from this function:

coalesce(

 (select max(end_date)+1

 from job_history

 where employee_id = emp.employee_id),

 hire_date) strt_date,

To reiterate, the above section of SQL evaluates to either the first day
employees started in their current department or their hiring date, if they have
never switched departments. The column alias STRT_DATE is assigned to this
derived column.

The next morning, Janice realizes that she could have used UNION ALL
instead of UNION in this query. There will never be any duplicate records
between the two queries in this compound query, mainly because the data-
base does not store the employee’s current job position and starting date in
the JOB_HISTORY table.

DBAs should be on the lookout for queries that use UNION when UNION ALL would
produce the same desired results. Because UNION does a sort while removing dupli-
cates, many UNION queries will have a much more noticeable performance impact on
the system than the same queries that use UNION ALL. Oracle 10g’s web-based
Enterprise Manager Database Control can easily identify SQL statements or sessions
with a high impact on the system using the Top SQL and Top Sessions functions.

4372.book Page 128 Wednesday, August 4, 2004 3:01 PM

Advanced SQL Queries 129

INTERSECT
There are times when you need to know which rows two tables or queries have in
common. The INTERSECT operator provides this functionality. As with the UNION
operator, the number and types of the columns in the two queries to be compared
must be the same, but the column names can be different. Rows are returned from
an INTERSECT operation only if all columns in the two queries match.

In Scott’s widget database, the current employment information is kept in the
EMPLOYEES table, and the previous employment information (when employees
have changed jobs) is kept in the JOB_HISTORY table. The boss wants to find out
which employees have changed departments multiple times and have come back
to work in the department they worked in previously, with the same job title.
Janice knows that she needs to use the EMPLOYEES and JOB_HISTORY tables, and
she decides to use the INTERSECT operator to see if there are current employees
in a particular department and job title that are also in the JOB_HISTORY table.
Janice realizes that a multicolumn join in a WHERE clause may produce similar
results, but she thinks that the INTERSECT method is more straightforward and
easier to use and maintain. Her first query looks like this:

select employee_id, job_id, department_id from employees

intersect

select employee_id, job_id, department_id from job_history;

EMPLOYEE_ID JOB_ID DEPARTMENT_ID

----------- ---------- -------------

 176 SA_REP 80

1 row selected.

King looks at this report and thinks that something is amiss. He is sure that
there was another employee besides employee number 176 who has changed job
titles and came back to work with her original job title. Janice realizes that she
is comparing too many columns, and she rewrites her query as follows:

select employee_id, job_id from employees

intersect

select employee_id, job_id from job_history;

EMPLOYEE_ID JOB_ID

----------- ----------

 176 SA_REP

 200 AD_ASST

2 rows selected.

4372.book Page 129 Wednesday, August 4, 2004 3:01 PM

130 Chapter 6

As King suspected, employee number 200 is back working with her old job
title, after previously switching departments. Because one of the three columns
was different in the previous query, employee number 200 did not show up in
the results.

Now that Janice has the result set that King was looking for, she decides
that it would be more readable if the employee’s last name and first name
were in the report also. The problem is, she can’t add it to the EMPLOYEES
query with the INTERSECT operator, since the JOB_HISTORY table does not
have the employee’s last name, and as a result the compound INTERSECT
query would not return any rows. Instead, she treats the last query as a
subquery and joins it back to the EMPLOYEES table:

select e.employee_id, e.last_name, e.first_name,

 e.job_id from employees e inner join

 (select employee_id, job_id from employees

 intersect

 select employee_id, job_id from job_history) i

on e.employee_id = i.employee_id;

EMPLOYEE_ID LAST_NAME FIRST_NAME JOB_ID

----------- ----------------- -------------- ----------

 176 Taylor Jonathon SA_REP

 200 Whalen Jennifer AD_ASST

2 rows selected.

Notice that Janice is using Oracle’s INNER JOIN syntax, available since
Oracle9i. The query in parentheses is treated just as if it were another table being
joined in the new query.

MINUS
The MINUS compound-query operator returns rows from the first query only
if they are not in a second query. In other words, the second query is sub-
tracted from the first query. Any rows in the second query that are not in the
first query are ignored and do not affect the results of the entire compound
query. As with the UNION operator, the number and types of the columns in
the two queries to be compared must be the same, but the column names can
be different.

The boss wants to make sure that the company’s expansion plans are going
well, and he wants to know which countries don’t yet have a department located
in that country. Janice realizes that a MINUS operator might do the trick here. She
can subtract the countries with departments from a query with the COUNTRIES

4372.book Page 130 Wednesday, August 4, 2004 3:01 PM

Advanced SQL Queries 131

table. The first part of her query is straightforward. It is a SELECT from the
COUNTRIES table:

select country_id, country_name from countries;

CO COUNTRY_NAME

-- --

AR Argentina

AU Australia

BE Belgium

BR Brazil

CA Canada

CH Switzerland

CN China

DE Germany

DK Denmark

EG Egypt

FR France

HK HongKong

IL Israel

IN India

IT Italy

JP Japan

KW Kuwait

MX Mexico

NG Nigeria

NL Netherlands

SG Singapore

UK United Kingdom

US United States of America

ZM Zambia

ZW Zimbabwe

25 rows selected.

The second part is a bit trickier. She needs to subtract the countries in which the
departments reside. The DEPARTMENTS table does not have a COUNTRY_ID column,
but it does have a LOCATION_ID column. The LOCATIONS table has a COUNTRY_ID
column, so Janice will need to join the DEPARTMENTS and LOCATIONS tables to get
the list of countries with departments:

select distinct country_id

from departments d, locations l

4372.book Page 131 Wednesday, August 4, 2004 3:01 PM

132 Chapter 6

where d.location_id = l.location_id;

CO

--

CA

DE

UK

US

4 rows selected.

Janice realizes that she will also need the country name in the query for the
INTERSECT operation to work, so this query needs to have the COUNTRIES table
as part of the join:

select distinct c.country_id, country_name

from departments d, locations l, countries c

where d.location_id = l.location_id

 and c.country_id = l.country_id;

CO COUNTRY_NAME

-- --

CA Canada

DE Germany

UK United Kingdom

US United States of America

4 rows selected.

Janice can now bring it all together by using the MINUS operator to subtract
this query from the first query against the COUNTRIES table:

select country_id, country_name from countries

minus

select distinct c.country_id, country_name

from departments d, locations l, countries c

where d.location_id = l.location_id

 and c.country_id = l.country_id;

CO COUNTRY_NAME

-- --

AR Argentina

AU Australia

4372.book Page 132 Wednesday, August 4, 2004 3:01 PM

Advanced SQL Queries 133

BE Belgium

BR Brazil

CH Switzerland

CN China

DK Denmark

EG Egypt

FR France

HK HongKong

IL Israel

IN India

IT Italy

JP Japan

KW Kuwait

MX Mexico

NG Nigeria

NL Netherlands

SG Singapore

ZM Zambia

ZW Zimbabwe

21 rows selected.

King now realizes that the company is a long way from having a significant
presence in all of the countries where there are company employees.

ROLLUP and CUBE
Sometimes, a simple GROUP BY clause just isn’t enough in a query. Once you gen-
erate a report of, let’s say, average salary by department or the standard devia-
tion of sick days by job title, you often must run a second query that calculates
the average salary or standard deviation across the entire set of employees. It gets
even more complex when you break down the average salary by more than one
factor, such as department and job title. In this case, you would need to run two
or more additional queries to produce the average salary just by department or
for the entire workforce.

The results from both CUBE and ROLLUP can be produced by multiple queries, but this
requires multiple passes over the rows in the table. CUBE and ROLLUP need only one pass.

The ROLLUP operator provides rollups of aggregate functions in one direction
across the fields that are aggregated. For each ROLLUP operation that uses n columns,
the result set has aggregates for each combination of columns and n+1 groupings.

4372.book Page 133 Wednesday, August 4, 2004 3:01 PM

134 Chapter 6

The CUBE operator takes the ROLLUP operator a step further and provides
rollups of aggregate functions in both directions across the fields that are to be
aggregated. For each CUBE operation that uses n columns, the result set has
aggregates for each combination of columns plus 2n groupings.

ROLLUP
The boss asks Janice to give him a report that breaks down the average salary by
both department and job function for departments 10 through 90. Janice wants
to save time writing the query, and she knows by now that King will want to see
some subtotals and grand totals. She will use ROLLUP to accomplish the task in
a single query, as follows:

select department_id "Dept", job_id "Job",

 avg(salary) "Avg Sal"

from employees

where department_id between 10 and 90

group by rollup(department_id, job_id);

 Dept Job Avg Sal

------ ---------- ----------

 10 AD_ASST 4400

 10 4400

 20 MK_MAN 13000

 20 MK_REP 6000

 20 9500

 30 PU_MAN 11000

 30 PU_CLERK 2780

 30 4150

 40 HR_REP 6500

 40 6500

 50 ST_MAN 7280

 50 SH_CLERK 3215

 50 ST_CLERK 2785

 50 3475.55556

 60 IT_PROG 5760

 60 5760

 70 PR_REP 10000

 70 10000

 80 SA_MAN 12200

 80 SA_REP 8396.55172

 80 8955.88235

4372.book Page 134 Wednesday, August 4, 2004 3:01 PM

Advanced SQL Queries 135

 90 AD_VP 17000

 90 AD_PRES 24000

 90 19333.3333

 6250

25 rows selected.

Notice that because Janice has two columns listed in her ROLLUP clause, she
will have three (two plus one) types of groupings in the query output:

◆ Combinations of departments and jobs (for example, 30 and PU_CLERK,
with an average salary of 2780)

◆ Summaries by departments (for example, 20 and a NULL job title, with an
average salary of 9500)

◆ A grand total (NULL department number and NULL job title, with an aver-
age salary for all employees in all departments of 6250)

CUBE
The report that Janice wrote for King using the ROLLUP operator was fine—until
he wanted to know summaries by job title also. Janice realizes that she should
have given him the version of the query using CUBE to begin with, so she changes
her previous query, substituting the keyword CUBE for ROLLUP:

select department_id "Dept", job_id "Job",

 avg(salary) "Avg Sal"

from employees

where department_id between 10 and 90

group by cube(department_id, job_id);

 Dept Job Avg Sal

------ ---------- ----------

 6250

 AD_VP 17000

 HR_REP 6500

 MK_MAN 13000

 MK_REP 6000

 PR_REP 10000

 PU_MAN 11000

 SA_MAN 12200

 SA_REP 8396.55172

 ST_MAN 7280

 AD_ASST 4400

4372.book Page 135 Wednesday, August 4, 2004 3:01 PM

136 Chapter 6

 AD_PRES 24000

 IT_PROG 5760

 PU_CLERK 2780

 SH_CLERK 3215

 ST_CLERK 2785

 10 4400

 10 AD_ASST 4400

 20 9500

 20 MK_MAN 13000

 20 MK_REP 6000

 30 4150

 30 PU_MAN 11000

 30 PU_CLERK 2780

 40 6500

 40 HR_REP 6500

 50 3475.55556

 50 ST_MAN 7280

 50 SH_CLERK 3215

 50 ST_CLERK 2785

 60 5760

 60 IT_PROG 5760

 70 10000

 70 PR_REP 10000

 80 8955.88235

 80 SA_MAN 12200

 80 SA_REP 8396.55172

 90 19333.3333

 90 AD_VP 17000

 90 AD_PRES 24000

40 rows selected.

Using CUBE, she has two columns listed in our ROLLUP clause and therefore
will have four (two squared) types of groupings in the query output:

◆ Combinations of departments and jobs (for example, 30 and PU_CLERK,
with an average salary of 2780)

◆ Summaries by jobs (for example, MK_REP having an average salary of 6000)

◆ Summaries by departments (for example, 20 and a NULL job title, with an
average salary of 9500)

◆ A grand total (NULL department number and NULL job title, with an
average salary for all employees in all departments of 6250)

4372.book Page 136 Wednesday, August 4, 2004 3:01 PM

Advanced SQL Queries 137

Terms to Know
correlated subquery single-row subquery

multiple-column subquery subquery

multiple-row subquery

4372.book Page 137 Wednesday, August 4, 2004 3:01 PM

138 Chapter 6

Review Questions
1. A subquery is allowed in which parts of a SQL SELECT statement?

2. True or false: A correlated subquery references a table in the SELECT clause.

3. Which set operator will not remove duplicate rows from the result of a
compound query?

4. What characteristics of the columns in a compound query using INTERSECT
must match?

5. How are NULL values handled using set operators in a compound UNION query?

6. Why are ROLLUP and CUBE the preferred methods for generating subtotals
and grand totals for an aggregate query?

7. Which operators can be used to compare a column to a single-row subquery?

8. A compound query that needs to find only the rows that are the same between
the two queries should use the __________ set operator.

9. True or false: The IN operator cannot be used with a single-row subquery.

10. Put the set operators UNION, UNION ALL, INTERSECT, and MINUS in order of
precedence.

11. What can be used to change the precedence of a pair of queries in a com-
pound query with more than two queries?

4372.book Page 138 Wednesday, August 4, 2004 3:01 PM

In This Chapter

Chapter

7

Logical Consistency

A key strength of any modern relational database is its ability to validate
the information stored in the database. One way the database itself can
perform validation is by the use of constraints on a column or columns
in a table. A constraint on a table column restricts the type of informa-
tion in the column. A constraint can ensure that data is not omitted from
a column, is within a certain range, is unique within the table, or exists
in another table.

A second way to maintain the logical consistency in a database is the
ability to “group” several SQL statements together in a transaction, where
either all of these SQL statements succeed or all of them fail. This group of
SQL statements is considered a logical unit of work. You can control
transaction processing by using the

COMMIT

 and

ROLLBACK

 statements.

◆

Constraints

◆

Transaction processing

4372.book Page 139 Wednesday, August 4, 2004 3:01 PM

140

Chapter 7

Constraints

constraint

A condition defined against a column or
columns on a table in the database to
enforce business rules or relationships
between tables in the database.

Constraints

 are a way to validate the data in a column or columns of a table.
The Oracle database has five distinct types of constraints that can be defined on
a column or columns in a table:

NOT

NULL

,

CHECK

,

UNIQUE

,

PRIMARY

KEY

, and

FOREIGN

KEY

. Only the

FOREIGN

KEY

 constraint, as its name implies, does its
validation in reference to another table within the database.

The end-user application frequently validates the data entered into the database,
even before an

INSERT

 or

UPDATE

 operation occurs, and this might be the best way
to implement complex business rules. The ways in which business rules are imple-
mented in applications can be varied and complex. For more information about data
validation through the use of business rules in applications, see the book

Business
Rules Applied: Building Better Systems Using the Business Rules Approach

 by Bar-
bara Von Halle. Oracle separates the business rules enforcement from both the client
and the server with its Business Components for Java (BC4J) product. More informa-
tion on BC4J can be found at

http://otn.oracle.com/products/jdev/htdocs/
bc4j9irc_datasheet.html

. Oracle’s Oracle Technology Network (OTN) is a free
website but requires you to register with a valid e-mail address.

Constraints, like many other database objects, can be defined when the table
is defined or added to the table later. You can also remove, disable, or enable
existing constraints.

Any constraint can have a name assigned to it when it is created. If you do not
explicitly assign a name, Oracle will give the constraint a system-assigned name.

The

NULL

 constraint can be defined only at the column level. All other con-
straints can be defined at the column level or at the table level. Some constraints,
such as a constraint that compares the values of two columns, must necessarily
be defined at the table level.

NOT NULL

NOT NULL constraint

A constraint that prevents

NULL

 values
from being entered into a column of a table.

The

NOT NULL constraint

 is the most straightforward of all the constraints. It
specifies that a column will not allow

NULL

 values, regardless of its datatype. The
syntax for a

NOT

NULL

 constraint is as follows:

[CONSTRAINT

<constraint name>

] [NOT] NULL

In Scott’s widget database, the HR table

JOBS

 contains the job identifier, the
job description, and the minimum and maximum salary for the job. The table
structure is shown here with a

DESCRIBE

 command:

desc jobs

Name Null? Type

4372.book Page 140 Wednesday, August 4, 2004 3:01 PM

Logical Consistency

141

---------------------------- -------- -----------------

JOB_ID NOT NULL VARCHAR2(10)

JOB_TITLE NOT NULL VARCHAR2(35)

MIN_SALARY NUMBER(6)

MAX_SALARY NUMBER(6)

When a new job is added or an existing job is modified, the columns for the job
identifier and the job title must contain a value. The salary range columns, how-
ever, can remain undefined—either explicitly by assigning

NULL

 values to them or
implicitly by not specifying those two column names in an

INSERT

 statement.
The boss, King, wants to make sure that when a new job is created, a mini-

mum salary is always entered for the job. Janice, the DBA, changes the structure
of the

JOBS

 table with the

ALTER

TABLE

 command, as follows:

alter table jobs modify (min_salary not null);

Table altered.

The next time someone from HR tries to add a new

JOBS

 table row without
a minimum salary, here is what will happen:

insert into jobs (job_id, job_title)

 values('IT_DBDES', 'Database Designer');

insert into jobs (job_id, job_title)

*

ERROR at line 1:

ORA-01400: cannot insert NULL into

 ("HR"."JOBS"."MIN_SALARY")

The

MIN_SALARY

 field must be entered with some value, even if it is zero:

insert into jobs (job_id, job_title, min_salary)

 values('IT_DBDES', 'Database Designer', 12500);

1 row created.

At some point, the HR department may want to update this row in the

JOBS

 table to indicate an upper range for the salary for this job position.
However, it would not be unreasonable to expect that some job positions
may not have any upper value, and therefore a

NULL

 value in the

MAX_SALARY

field could reflect the business rule that there is no maximum salary in force
for a particular position.

4372.book Page 141 Wednesday, August 4, 2004 3:01 PM

142

Chapter 7

CHECK

CHECK constraint

A constraint that evaluates the condi-
tion defined in the constraint and
permits the

INSERT

 or

UPDATE

 of
the row in the table if the condition is
satisfied.

A

CHECK constraint

 can apply directly to a specific column, or it can apply at
the table level if the constraint must reference more than one column.

CHECK

 con-
straints are useful if you need to keep values of a column within a certain range
or within a list of specific values, such as ensuring that a gender column contains
either

M

 or

F

.
The

CONSTRAINT

 clause can be specified at either the column level or at the
table level. The constraint can be specified at the column level if the constraint
refers only to that column. The format of the

CONSTRAINT

 clause is as follows:

[CONSTRAINT

<constraint name>

] CHECK (

<condition>

)

The HR department members are still having some problems with the

JOBS

table. They sometimes enter the lower and upper ranges for the salary amount
backwards. As usual, Janice is tasked with finding a way to fix this problem. She
considers changing the data-entry screens to check the salary amounts before they
are inserted, but this might not be the best solution, since some of the people in the
HR department use the

INSERT

 statement against the database, bypassing any
business logic that might be in the application that supports the data-entry screen.

Janice decides to add a

CHECK

 constraint to the

JOBS

 table to make sure the
salaries are entered in the correct order:

alter table jobs

 add constraint ck1_jobs

 check (max_salary > min_salary);

Table altered.

It’s good practice to name your constraints with a reference to both the type of con-
straint and the table it references. This helps both DBAs and developers when track-
ing down which table is causing a constraint violation in an application that might
have hundreds of tables.

Now if the order of the salaries were inadvertently reversed in the

INSERT

statement, the

INSERT

 would not be allowed, due to the new CHECK constraint:

insert into jobs

 (job_id, job_title, min_salary, max_salary)

 values

 ('IT_TECHLD', 'Technical Lead', 17500, 10000);

insert into jobs

(job_id, job_title, min_salary, max_salary)

4372.book Page 142 Wednesday, August 4, 2004 3:01 PM

Logical Consistency 143

*

ERROR at line 1:

ORA-02290: check constraint (HR.CK1_JOBS) violated

The HR department decides that the new technical lead position has an open-
ended upper salary, so the addition is made with the following INSERT command:

insert into jobs (job_id, job_title, min_salary)

 values('IT_TECHLD', 'Technical Lead', 10000);

1 row created.

Even though no maximum salary is specified, this INSERT operation still
works. A CHECK constraint condition will allow the record to be inserted if the
CHECK condition expression evaluates to either true or unknown. In this INSERT
statement, the MAX_SALARY column is NULL, and therefore the CHECK condition
expression (max_salary > min_salary) is (NULL > 10000), which evaluates
to NULL (unknown). Therefore, the CHECK condition will not prevent this row
from being inserted. However, explicit NULL checking can be performed in a
CHECK constraint by using the IS NULL or IS NOT NULL operator.

Later in the week, Janice learns that the business rule for minimum and max-
imum salary in the JOBS table has changed; if a minimum salary is specified, then
a maximum salary must also be specified. Therefore, either both salaries are
NULL or both salaries are NOT NULL. Janice decides that a new CHECK constraint
is needed to enforce this business rule, so her first step is to drop the existing con-
straint on the table:

alter table jobs drop constraint ck1_jobs;

Table altered.

The new check constraint will compare MIN_SALARY and MAX_SALARY only if
both values are NOT NULL, otherwise both values must be NULL to pass the CHECK
constraint:

alter table jobs add constraint ck1_jobs

 check ((max_salary is not null and

 min_salary is not null and

 max_salary > min_salary)

 or

 (max_salary is null and min_salary is null)

);

Table altered.

4372.book Page 143 Wednesday, August 4, 2004 3:01 PM

144 Chapter 7

In rare circumstances, there is an exception to this business rule. Occasionally,
the boss still wants to enter a minimum salary without a maximum salary. Janice
can temporarily disable the constraint:

alter table jobs disable constraint ck1_jobs;

Table altered.

insert into jobs (job_id, job_title, min_salary)

 values('IT_RSRCH', 'IT Research and Development',

 25000);

1 row created.

By default, if Janice reenables the constraint, this new row in the JOBS table
will fail the constraint check, so she must use the NOVALIDATE option when reen-
abling the constraint:

alter table jobs enable novalidate constraint ck1_jobs;

Table altered.

Using NOVALIDATE doesn’t check to see if any existing rows violate the
CHECK constraint; only new or updated rows are checked. As you’d expect, the
default is VALIDATE when reenabling a constraint. When a constraint is reen-
abled with VALIDATE, the data in every row is checked to make sure it passes
the CHECK constraint.

UNIQUE
UNIQUE constraint
A constraint that prevents duplicate val-
ues from being specified in a column or
combination of columns in a table. NULL
values may be specified for columns that
have a UNIQUE constraint defined, as
long as the column itself does not have a
NOT NULL constraint.

The UNIQUE constraint can be applied at the column level or at the table level.
It ensures that no two rows contain the same value for the column or columns
that have the UNIQUE constraint.

The syntax for a UNIQUE constraint clause is as follows:

[CONSTRAINT <constraint name>]

 UNIQUE [(<column>, <column>, ...)]

For ensuring that a combination of two or more columns is unique within the
table, the optional column specification portion of the above syntax is used at the
table level.

To more easily report salaries and bonuses to the IRS, King has asked Janice,
the DBA, to add a social security number column to the EMPLOYEES table. Since

4372.book Page 144 Wednesday, August 4, 2004 3:01 PM

Logical Consistency 145

no two employees can have the same social security number, Janice uses a
UNIQUE constraint when she adds this column to the EMPLOYEES table:

alter table employees

 add (ssn varchar2(11)

 constraint uk1_employees unique);

Table altered.

Janice is doing two things in one statement: adding the SSN column and add-
ing the named constraint. The column will still allow NULL values, but when it is
populated for an employee, it must not duplicate any other SSN value in the
EMPLOYEES table.

When the HR department tries to update two records with the same social
security number, the constraint prevents the second UPDATE command from
completing successfully:

update employees

 set ssn = '987-65-4321'

 where employee_id = 116;

1 row updated.

update employees

 set ssn = '987-65-4321'

 where employee_id = 117;

update employees

*

ERROR at line 1:

ORA-00001: unique constraint (HR.UK1_EMPLOYEES) violated

PRIMARY KEY
PRIMARY KEY constraint
A constraint that uniquely defines each
row of a table and prevents NULL values
from being specified in the column or
combination of columns. Only one
PRIMARY KEY constraint may be
defined on a table.

A PRIMARY KEY constraint is similar to a UNIQUE constraint, with two excep-
tions: a PRIMARY KEY constraint will not allow NULL values, and only one PRIMARY
KEY constraint is allowed on a table. A PRIMARY KEY constraint can be defined at
either the column level or the table level. A PRIMARY KEY constraint is important
when you want to find a way to uniquely reference a row in the table with the pri-
mary key in another table. The syntax for a PRIMARY KEY constraint is similar to
that of the UNIQUE constraint:

[CONSTRAINT <constraint name>]

 PRIMARY KEY [(<column>, <column>, ...)]

4372.book Page 145 Wednesday, August 4, 2004 3:01 PM

146 Chapter 7

If the PRIMARY KEY constraint is applied at the table level (usually due to the
primary key of the table consisting of more than one column), the optional col-
umn specification portion of the above syntax is used.

Because of tighter budgets and layoffs, many employees at Scott’s widget
company are performing duties in other departments, but the structure of the
EMPLOYEES table supports an employee assigned to only one department at a
time. Janice, the DBA, has been tasked with creating a new table that can reflect
the new business rule that an employee can be working in more than one depart-
ment at a time.

She decides to create a table that has three columns: an employee number,
a department number, and the starting date for the employee in that depart-
ment. What should the primary key be? She can’t use just the employee number
(EMPLOYEE_ID), since this column won’t be unique in this table; an employee
may be associated with more than one department. The same holds true for the
department number column (DEPARTMENT_ID); a department will most likely
have more than one employee assigned to it. Janice realizes that the combina-
tion of the two columns in this table will always be unique and not NULL, and
therefore this will be the primary key. The table definition for this new table is
as follows:

create table employees_departments

(employee_id number(6),

 department_id number(4),

 start_date date,

 constraint pk_empdept

 primary key (employee_id, department_id)

);

Table created.

The names for the employee number and department number columns do not
need to be identical to the names given in the EMPLOYEES and DEPARTMENTS
tables, but it is good design practice to make them the same if the columns will
hold the same type of information as the corresponding EMPLOYEES and
DEPARTMENTS table columns.

The HR department staff performs the following INSERT operations on the
new table:

insert into employees_departments

 (employee_id, department_id, start_date)

 values (103, 60, '15-sep-04');

1 row created.

4372.book Page 146 Wednesday, August 4, 2004 3:01 PM

Logical Consistency 147

insert into employees_departments

 (employee_id, department_id, start_date)

 values (104, 60, '12-sep-04');

1 row created.

insert into employees_departments

 (employee_id, department_id, start_date)

 values (104, 50, '15-sep-04');

1 row created.

insert into employees_departments

 (employee_id, department_id, start_date)

 values (103, 60, '19-sep-04');

insert into employees_departments

*

ERROR at line 1:

ORA-00001: unique constraint (HR.PK_EMPDEPT) violated

The fourth row is not allowed in the table, because the same combination of
employee number and department number is already in the table. The PRIMARY KEY
constraint of the table prevented the INSERT operation from completing successfully.

As a result of the three successful INSERT operations, employee number
103 (Hunold) is working only in department number 60 (IT), but employee
number 104 (Ernst) is working in department number 60 (IT) and depart-
ment number 50 (Shipping).

FOREIGN KEY
FOREIGN KEY constraint
A constraint that establishes a parent-
child relationship between two tables via
one or more common columns. The for-
eign key in the child table refers to a pri-
mary or unique key in the parent table.

A FOREIGN KEY constraint helps maintain the data integrity between a parent
table and a child table. It allows you to define a column in the child table that
exists as a primary key or a unique key in the parent table. When a value is
entered into a column with a FOREIGN KEY constraint, the value is checked
against the primary key or unique value in the parent table to make sure it exists
there; if not, the row cannot be inserted.

The syntax for specifying a FOREIGN KEY constraint is as follows:

[CONSTRAINT <constraint name>]

 REFERENCES [<schema>.]<table>

 [(<column>, <column>, ...)]

 [ON DELETE {CASCADE | SET NULL}]

4372.book Page 147 Wednesday, August 4, 2004 3:01 PM

148 Chapter 7

As the syntax indicates, a different user can own the parent table that contains
the primary or unique key referenced, and therefore the parent table name ref-
erenced must be qualified with the owner name. The column list can be omitted
if the referenced key is a primary key.

The last part of the syntax, [ON DELETE {CASCADE | SET NULL}], specifies
what happens when the row in the parent table is deleted. If this clause is omit-
ted, the row in the parent table cannot be removed until all the rows containing
foreign key references in all child tables are either removed or the foreign key col-
umn is set to NULL. If ON DELETE CASCADE is specified and the parent table’s row
is deleted, all rows in the child table that contain the primary key of the parent
table’s row are deleted. If ON DELETE SET NULL is specified, a much more benign
action occurs: If a parent table row is deleted, the foreign key column in all child
table rows that contain the parent row’s primary key value is set to NULL.

For about a month now, the HR department has been using the new SSN col-
umn in the EMPLOYEES table. Now the boss decides that this is not a good idea,
because of privacy concerns. Other departments use the EMPLOYEES table, and
the social security information should not be visible to the other departments.

Janice needs to create an entirely new table to hold the social security number
values for the employees and remove the SSN column from the EMPLOYEES table.
The new table must be linked to the EMPLOYEES table, so she wants to have a col-
umn with the employee number that is a foreign key to the EMPLOYEES table. She
also needs the SSN column itself. She’ll put in a date field to hold the date when
the social security number was entered into this table. No other columns are nec-
essary now (columns can always be added later).

What should be the primary key of this new table? The SSN column looks
like a suitable candidate for a primary key, since it is unique and not empty.
Rows will not be inserted into this table until the social security number is
known. Janice creates the new table, EMPLOYEES_SSN, as follows:

create table employees_ssn

(ssn varchar2(11),

 employee_id number(6)

 constraint fk_empl_ssn

 references employees (employee_id),

 add_date date,

 constraint pk_empl_ssn primary key (ssn)

);

Table created.

4372.book Page 148 Wednesday, August 4, 2004 3:01 PM

Logical Consistency 149

This new table has two constraints: a column constraint (the FOREIGN KEY
constraint on the EMPLOYEE_ID column) and a table constraint (the PRIMARY
KEY constraint on the SSN column, which could have also been defined as a col-
umn constraint since the primary key is only one column).

The HR department inserts the first few rows into this new table, as follows:

insert into employees_ssn (ssn, employee_id, add_date)

 values('987-65-4321', 101, '13-sep-04');

1 row created.

insert into employees_ssn (ssn, employee_id, add_date)

 values('123-45-6789', 102, '13-sep-04');

1 row created.

insert into employees_ssn (ssn, employee_id, add_date)

 values('222-44-6666', 303, '13-sep-04');

insert into employees_ssn (ssn, employee_id, add_date)

*

ERROR at line 1:

ORA-02291: integrity constraint (HR.FK_EMPL_SSN)

 violated - parent key not found

insert into employees_ssn (ssn, employee_id, add_date)

 values('999-99-9999', 104, '13-sep-04');

1 row created.

The third INSERT operation failed due to the FOREIGN KEY constraint on the
table. The employee number specified (303) does not exist in the EMPLOYEES
table; therefore, the row is not inserted into the EMPLOYEES_SSN table.

Once all of the social security numbers and employee numbers have
been entered into the EMPLOYEES_SSN table, the SSN column in EMPLOYEES
can be dropped.

4372.book Page 149 Wednesday, August 4, 2004 3:01 PM

150 Chapter 7

Transaction Processing
transaction
A logical unit of work consisting of one or
more SQL statements that must all suc-
ceed or all fail to keep the database in a
logically consistent state. A transfer of
funds from one bank account is a logical
transaction, in that both the withdrawal
from one account and the deposit to
another account must succeed for the
transaction to succeed.

As you’ve learned, constraints created on columns of a table help you to main-
tain integrity and consistency in the database at the statement level. Transactions
go beyond individual INSERT or UPDATE statements and allow you to ensure that
multiple DML statements against the database either all succeed or all fail.

From a DBA’s perspective, the transaction concept is important to understand
when allocating disk space. The more activity that occurs within a transaction,
the greater the need for disk space to maintain read consistency in the database.
If a user initiates a long-running SELECT statement, the table data seen by the
user will appear to be unchanged, even if other users are subsequently making
changes to the same rows while the SELECT statement is executing. As a result,
additional disk space (known as undo or rollback space) must be allocated to
hold both the old and new versions of the rows being read by one user and writ-
ten to by another user.

Transactions begin with a single DML statement and end (successfully or
unsuccessfully) when one of the following events occurs:

◆ Either a COMMIT or ROLLBACK statement is executed. A COMMIT statement
makes the changes to the table permanent, while the ROLLBACK undoes the
changes to the table.

◆ The user exits SQL*Plus or iSQL*Plus normally (automatic COMMIT).

◆ A DDL (Data Definition Language) or DCL (Data Control Language)
statement is executed (automatic COMMIT).

◆ The database crashes (automatic ROLLBACK).

◆ The SQL*Plus or iSQL*Plus session crashes (automatic ROLLBACK).

EMPLOYEES
(Parent) Table

Primary Key Column

Foreign Key Constraint

EMPLOYEES_SSN
(Child) Table

Foreign Key Column

4372.book Page 150 Wednesday, August 4, 2004 3:01 PM

Logical Consistency 151

In addition, you can use SAVEPOINT to further subdivide the DML statements
within a transaction before the final COMMIT of all DML statements within the
transaction. SAVEPOINT essentially allows partial rollbacks within a transaction.

The COMMIT Statement
read consistency
A feature of the Oracle database
that ensures a database reader (in a
SELECT statement) will see the same
data in a table regardless of changes
made to the table by database writers
that were initiated after the reader ini-
tiated the SELECT statement.

There are many situations when you want a given set of DML statements—a
transaction—to fail or succeed, ensuring data integrity.

Suppose that the boss decides that to keep the salary budget the same next
year, all employees who get raises must be offset by employees who get pay cuts.
When the updates are made to the database, it is important that the total salary
paid out every month remains constant; therefore, pay increases and cuts must
either all succeed or all fail.

In the iSQL*Plus example shown here, Janice performs two pay cuts and one
pay increase in a single transaction. If the second SELECT statement had not gen-
erated the total the boss wanted, she could have either executed additional
UPDATE statements before doing a COMMIT or performed a ROLLBACK to undo the
updates and start over again.

If the database had crashed after the second UPDATE statement, the results
from all statements in the transaction would be removed from the database. The
following statement in the example ensures that the total of the monthly salaries
is the same before and after the updates:

select sum(salary) from employees;

4372.book Page 151 Wednesday, August 4, 2004 3:01 PM

152 Chapter 7

The ROLLBACK Statement
The ROLLBACK statement allows you to change your mind about a transaction. It
brings back the state of the tables to the state as of the last COMMIT statement or
the beginning of the current transaction.

Janice is nearing the end of a busy day. She decides to perform one more task
for the boss before leaving. She wants to remove some order detail items from the
OE.ORDER_ITEMS table that are more than five years old, since the ORDERS table
was recently purged of all orders more than five years old. She runs the DELETE
statement as follows:

DELETE FROM OE.ORDER_ITEMS;

665 rows deleted.

Janice realizes that she forgot the WHERE clause in the DELETE, so she needs to
get back the rows she accidentally deleted:

ROLLBACK;

Rollback complete.

Another disaster averted. Now she won’t need to restore the OE.ORDER_
ITEMS table from a backup.

The SAVEPOINT Statement
The SAVEPOINT statement allows you to discard a subset of the DML statements
within a transaction since the SAVEPOINT was issued. The SAVEPOINT itself is
named, and it can be referenced in the ROLLBACK statement, as follows:

ROLLBACK TO SAVEPOINT savepoint_name;

Regardless of how many savepoints exist within a transaction, a ROLLBACK
statement without a savepoint reference will automatically roll back the entire
transaction. The following example shows Janice using a savepoint to condition-
ally undo the DML statements since the savepoint was issued:

insert into regions (region_id, region_name)

 values (5, 'Arctic');

1 row created.

savepoint region_5;

Savepoint created.

4372.book Page 152 Wednesday, August 4, 2004 3:01 PM

Logical Consistency 153

insert into regions (region_id, region_name)

 values (6, 'Antarctic');

1 row created.

savepoint region_6;

Savepoint created.

rollback to region_5;

Rollback complete.

commit;

Commit complete.

Only the REGIONS row with a REGION_ID of 5 is saved in the table after
the COMMIT.

Terms to Know
CHECK constraint PRIMARY KEY constraint

constraint read consistency

FOREIGN KEY constraint transaction

NOT NULL constraint UNIQUE constraint

4372.book Page 153 Wednesday, August 4, 2004 3:01 PM

154 Chapter 7

Review Questions
1. A COMMIT occurs under which three conditions within a transaction?

2. Under what circumstances can a foreign key column not match the defined
primary key value in the parent table?

3. True or false: A CHECK constraint cannot check for NULL values.

4. How are PRIMARY KEY constraints and UNIQUE constraints different? List
two ways.

5. What are the three conditions that may be specified, either implicitly or
explicitly, on a foreign key column when the primary key column in the par-
ent table is deleted?

6. Write a CHECK constraint that ensures MAX_SALARY is at least 10,000 more
than MIN_SALARY.

7. What statement will allow a partial rollback of certain DML statements
within a transaction?

8. True or false: A NOT NULL constraint can be defined at the table level or at the
column level.

9. What kind of constraint establishes a parent-child relationship between two
tables via one or more common columns?

10. If the database crashes while a user session is active, what type of transaction
processing is automatically performed when the database is restarted?

4372.book Page 154 Wednesday, August 4, 2004 3:01 PM

In This Chapter

Chapter

8

Installing Oracle and
Creating a Database

When you install Oracle and create a database, you are setting up all of
the facilities and components for running Oracle. These components
include logical, physical, and memory structures. Every DBA needs to be
intimately familiar with how Oracle’s memory structures are allocated
and managed. This chapter begins with a discussion of the basic compo-
nents that make up Oracle’s memory structures.

While the Oracle software itself is most likely already installed on one
of your servers, we’ll go over the basics of installing Oracle on the
Microsoft Windows platform to see how the Oracle Universal Installer
(OUI) does its magic and leads you through the installation process.

After you have the Oracle software in place, you can create the Oracle
database itself using Oracle’s Database Configuration Assistant (DBCA).
You will see how a single installation of the Oracle software can support
more than one copy of a database on a particular server.

◆

Oracle disk and memory structures

◆

Installing Oracle software using OUI

◆

Creating an Oracle database using DBCA

4372.book Page 155 Wednesday, August 11, 2004 10:56 PM

156

Chapter 8

Oracle Components Overview

database

The collection of all physical files on disk
that are associated with a single Oracle
instance.

An Oracle server consists of both a database and an instance. In Oracle termi-
nology,

database

 refers to only the physical files on disk. These are the files that
store the data itself, the database state information in the control file, and the
changes made to the data in the redo log files. The term

instance

 refers to the
Oracle processes and memory structures that reside in the server’s memory and
access an Oracle database on disk. One of the reasons for separating the concepts
of a database and an instance is that a database may be shared by two or more
different Oracle instances as part of an Oracle configuration that enhances the
scalability, performance, and reliability of the Oracle server.

instance

The collection of memory structures and
Oracle background processes that oper-
ates against an Oracle database.

It’s also important to differentiate between the logical and physical structures of
the database. The logical structures represent components such as tables—what
you normally see from a user’s point of view. The physical structures are the under-
lying storage methods on disk—the physical files that compose the database.

Logical Storage Structures

logical structures

Structures in an Oracle database that a
database user would see, such as a
table, as opposed to the underlying phys-
ical structures at the datafile level.

The Oracle database is divided into increasingly smaller logical units to manage,
store, and retrieve data efficiently and quickly. The illustration below shows the
relationships between the

logical structures

 of the database: tablespaces, seg-
ments, extents, and blocks.

Database

SYSTEM
tablespace

SYSAUX
tablespace

Tablespace
1

Tablespace
2

Tablespace

Segment 1

Segment 3

Segment 2

Segment

Extent 1

Extent 2

Blocks

4372.book Page 156 Wednesday, August 11, 2004 10:56 PM

Installing Oracle and Creating a Database

157

The logical storage management of the database’s data is independent of the
physical storage of the database’s physical files on disk. This makes it possible
for changes to the physical structures to be transparent to the database user at the
logical level.

Tablespaces

tablespace

A logical grouping of database objects,
usually to facilitate security, perfor-
mance, or the availability of database
objects such as tables and indexes. A
tablespace is composed of one or more
datafiles on disk.

A

tablespace

is the highest level of logical objects in the database. A database
consists of one or more tablespaces. A tablespace will frequently group together
similar objects, such as tables, for a specific business area or a specific function.
A particular tablespace can be reorganized, backed up, and so forth with mini-
mal impact to other users whose data may be in other tablespaces.

All Oracle databases must have at least two tablespaces: the

SYSTEM

tablespace and the

SYSAUX

 tablespace. Having more than just the

SYSTEM

 and

SYSAUX

 tablespaces is highly recommended when creating a database. In the
illustration of logical structures, you can see the

SYSTEM

 tablespace, the

SYSAUX

tablespace, and two others. Oracle’s Database Configuration Assistant, dis-
cussed later in this chapter, creates a total of six tablespaces for a default instal-
lation of Oracle 10

g

.

Segments

segment

A set of extents allocated for a single type
of object, such as a table.

A tablespace is further broken down into

segments

. A database segment is a type
of object that a user typically sees, such as a table. Tablespace 1 in the logical
structure illustration consists of three segments, which could be tables, indexes,
and so forth. It’s important to note that this is the logical representation of these
objects; the physical representation of these objects in the operating system files
will most likely not resemble the logical representation.

Extents

extent

A contiguous group of blocks allocated for
use as part of a table, index, and so forth.

The next-lowest logical grouping in a database is the

extent

. A segment
groups one or more extents allocated for a specific type of object in the data-
base. Segment 2 in the logical structure illustration consists of two extents.
Note that an extent cannot be shared between two segments. Also, a segment,
and subsequently an extent, cannot cross a tablespace boundary.

Database Blocks

database block

The smallest unit of allocation in an Oracle
database. One or more database blocks
compose a database extent.

At the other end of the spectrum of logical objects is the

database block

 (also
known as an

Oracle block

), the smallest unit of storage in an Oracle database.
Every database block in a tablespace has the same number of bytes. Starting with
Oracle9

i

, different tablespaces within a database can have database blocks with

4372.book Page 157 Wednesday, August 11, 2004 10:56 PM

158

Chapter 8

different sizes. Typically, one or more rows of a table will reside in a database
block, although very long rows may span several database blocks.

Oracle block

See

 database block.

Extents group together logically contiguous database blocks in a table-
space. All database blocks within a single extent will store the same kind of
information.

A database block can have a size of 2KB, 4KB, 8KB, 16KB, or 32KB. Once
any tablespace, including the

SYSTEM

 and

SYSAUX

 tablespaces, is created with a
given block size, it cannot be changed. If you want the tablespace to have a larger
or smaller block size, you need to create a new tablespace with the new block
size, move the objects from the old tablespace to the new tablespace, and then
drop the old tablespace.

Schemas

schema

A named group of objects associated
with a particular user account, such as
tables, indexes, functions, and so forth.

A

schema

 is another logical structure that can classify or group database
objects. A schema has a one-to-one correspondence with a user account in the
Oracle database, although some schemas may be designed to hold only objects
that may be referenced by other database users. For instance, in the logical
structure illustration, Segments 1 and 3 may be owned by the

HR

 schema, while
Segment 2 may be owned by the

SCOTT

 schema.
A schema is not directly related to a tablespace or any other logical storage

structure; the objects that belong to a schema may be in many different
tablespaces. Conversely, a tablespace may hold objects for many different sche-
mas. A schema is a good way to group objects in the database for purposes of
security and access control.

Physical Storage Structures

From the perspective of building queries and running reports, regular users
don’t need to know much about the underlying physical structure of the
database on disk. However, DBAs do need to understand these database
components.

physical structures

Structures of an Oracle database, such
as datafiles on disk, that are not directly
manipulated by users of the database.
Physical structures exist at the operating
system level.

The

physical structure

 of the Oracle database consists of datafiles, redo
log files, and control files. On a day-to-day basis, the DBA will deal most
often with the datafiles, since this is where all of the user and system objects,
such as tables and indexes, are stored. The illustration below shows the phys-
ical structure and its relationship to the Oracle memory structures and logical
storage structures.

4372.book Page 158 Wednesday, August 11, 2004 10:56 PM

Installing Oracle and Creating a Database

159

Datafiles

datafiles

Files that contain all of the database
data that the users of the database save
and retrieve using

SELECT

 and other
DML statements. A tablespace com-
prises one or more datafiles.

The

datafiles

 in a database contain all of the database data that the users of
the database save and retrieve. A single datafile is an operating system file on the
server’s disk. Each datafile belongs to only one tablespace; a tablespace can have
many datafiles associated with it.

There are five physical datafiles in the database in the physical structure
illustration: one is used for the

SYSTEM

 tablespace, one is used for the

SYSAUX

tablespace, two datafiles are assigned to Tablespace 1, and the fifth datafile is
assigned to Tablespace 2.

Redo Log Files

redo log files

Files that contain a record of all changes
made to the data in both tables and
indexes as well as changes to the data-
base structures themselves. These files
are used to recover changed data that
was in memory at the time of a crash.

The

redo log files

 facilitate the Oracle mechanism to recover from an instance
failure or a media failure. When any changes are made to the database, such as
updates to data or creating or dropping database objects, the changes are
recorded to the redo log files first. A database has at least two redo log files, and
it is recommended that multiple copies of the redo log files be stored on different
disks. (Oracle automatically keeps the multiple copies in synch.) If the instance

Database

SYSTEM
tablespace

SYSAUX
tablespace

Tablespace
1

Tablespace
2

Database

Datafiles Control file Redo log
files

Memory structures

Background processes

Instance

Physical
database
structure

Logical
database
structure

Datafile 1 Datafile 2 Datafile 3 Datafile 4 Datafile 5

4372.book Page 159 Wednesday, August 11, 2004 10:56 PM

160

Chapter 8

fails, any changed database blocks that were not yet written to the datafiles are
retrieved from the redo log files and written to the datafiles when the instance is
started again.

Control Files

control file

A file that records the physical structure
of a database, the database name, and
the names and locations of datafiles and
redo log files.

The

control file

 maintains information about the physical structure of the
entire database. It stores the name of the database, the names and locations of
the tablespaces in the database, the locations of the redo log files, information
about the last backup of each tablespace in the database, and much more.
Because of the importance of this file, it is recommended that a copy of the con-
trol file reside on at least three different physical disks. As with the redo log
files, Oracle keeps all copies of the control file in synch automatically.

The control file and redo log file contents do not map directly to any database
objects, but their contents and status are available to the DBA by accessing vir-
tual tables called data dictionary views, which are owned by the

SYS

 schema.

Oracle Memory Structures

The memory allocated to Oracle includes the following types of data:

◆

Data from user reading and writing activity

◆

Information about database objects

◆

SQL commands

◆

Stored procedures and functions

◆

Transaction information

◆

Oracle program executables

This information is stored in three major areas: the System Global Area
(SGA), the Program Global Area (PGA), and the Software Code Area.

SGA (System Global Area)

Database buffer cache

Redo Log buffer cache

Non-shared
memory

DBWn
Data dictionary cache

Shared SQL and
PL/SQL procedures

and packages

SMON

LGWR

Shared Pool

Software Code Area

PGA (Program Global Area)

Shared
memory

4372.book Page 160 Wednesday, August 11, 2004 10:56 PM

Installing Oracle and Creating a Database

161

The overall memory allocated to Oracle can be divided into two categories:
shared memory and nonshared memory. The SGA and the Software Code Area
are shared among all database users. The PGA is considered nonshared. There is
one dedicated PGA allocated for each user connected to the database.

System Global Area

System Global Area (SGA)

A group of shared memory structures for
a single Oracle instance.

The

System Global Area (SGA)

 is the memory area that is shared by all con-
nected users of the database. The SGA is broken down into many areas. We will
discuss the areas that hold cached data blocks from database tables, recently exe-
cuted SQL statements, and information on recent structural and data changes in
the database. These areas are known as the database buffer cache, the shared
pool, and the redo log buffer, respectively.

Database Buffer Cache

database buffer cache

The memory structure in the SGA that
holds the most recently used or written
blocks of data.

The

database buffer cache

 holds copies of database blocks that have been
recently read from or written to the database datafiles. The data cached here
primarily includes table and index data, along with data that supports

ROLLBACK

 statements.
Any database block can be in one of three states: dirty, free, or pinned.

Dirty buffers

A dirty buffer contains data from a database block that has
been changed or added because of an

INSERT

, an

UPDATE

, or a

DELETE

statement but has not yet been written to disk. This buffer cannot be reused
until it has been successfully written to disk.

LRU (least recently used) algorithm

An algorithm used to determine when to
reuse buffers in the database buffer
cache that are not dirty or pinned. The
less frequently a block is used, the more
likely it is to be replaced with a new data-
base block read from disk.

Free buffers

These buffers either never contained any data or have data
that matches their corresponding database block on disk. Free buffers are
available to be overwritten by another read operation from disk at any
time. Oracle employs an

LRU (least recently used) algorithm

 in the buffer
cache; the longer a buffer has not been used, the more likely it is that it will
be reused by a new database block read from disk.

Pinned buffers

These buffers are currently in use by DML statements or
are explicitly saved for future use, and therefore they cannot be reused.

Shared Pool

shared pool

An area in the SGA that contains cached
SQL and PL/SQL statements and cached
tables owned by

SYS

.

The

shared pool

 contains recently used SQL and PL/SQL statements (stored
procedures and functions). It also contains data from system tables (the data
dictionary tables), such as character set information and security information.
Because objects such as PL/SQL stored functions can be cached in the shared
pool, another user or process that needs the same stored functions can benefit
from the performance improvement because of the stored function already
being in memory.

4372.book Page 161 Wednesday, August 11, 2004 10:56 PM

162

Chapter 8

Redo Log Buffer

redo log buffer

A buffer in the SGA that contains informa-
tion pertaining to changes in the database.

The redo log buffer keeps the most recent information regarding changes to the
database resulting from SQL statements. The blocks in this buffer are eventually
written to the online redo log files, which are used to recover, or redo, all recent
changes to the database after a failure.

Program Global Area
The Program Global Area (PGA) belongs to one user process or connection to
the database and is therefore considered nonsharable. It contains information
specific to the session, and it can include sort space and information on the state
of any SQL or PL/SQL statements that are currently active by the connection.

Software Code Area
Software Code Area
A location in memory where the Oracle
application software resides. The Soft-
ware Code Area can be shared among
several Oracle instances.

The Software Code Area is a shared area containing the Oracle program code or
executables against the database. It can be shared by multiple database instances
running against the same or different databases, and as a result, it saves a signif-
icant amount of memory on the server.

Background Processes
process
An executing computer program in mem-
ory that performs a specific task.

A process on a server is a section of a computer program in memory that per-
forms a specific task. When the Oracle server starts, multiple processes are
started on the server to perform various functions as part of the Oracle instance.
While a detailed discussion of all Oracle background processes is beyond the
scope of this book, we will discuss a few of the key processes: Database Writer
(DBWn), Log Writer (LGWR), and System Monitor (SMON). These processes
communicate with various areas of the SGA, such as the database buffer cache
and the redo log buffer, as indicated in the earlier illustration.

Database Writer (DBWn)
Program Global Area (PGA)
A nonshared area of memory used for stor-
ing all connection information, including
SQL statement information, in a dedicated
server configuration for a user who is con-
nected to the database. In a shared server
configuration, a large portion of the mem-
ory for each connection is stored in the
SGA instead of the PGA.

There may be anywhere from one to 20 copies (DBW0 through DBW9 and
DBWa through DBWj) of the Database Writer process running in an Oracle
instance. As noted earlier in the section on the SGA, new and modified data is
stored in buffers in the database buffer cache, which are marked as dirty buffers.
At some point (for example, when the number of free buffers is low), these buff-
ers need to be written out to disk, which is what the DBWn process does, allow-
ing subsequent SELECT statements and other DML statements access to those
buffers in the buffer cache.

If there is enough memory and the demand on the system is high, having more
than one copy of this process may dramatically improve the performance and
reduce the response time when a query or DML statement is run.

4372.book Page 162 Wednesday, August 11, 2004 10:56 PM

Installing Oracle and Creating a Database 163

Log Writer (LGWR)
The Log Writer process writes the buffers in the SGA’s redo log buffer out to disk
to the redo log files. The Log Writer process must be able to write redo log buff-
ers fast enough to make sure that there is room in the redo log buffer for entries
from new transactions. By writing all changes to the database to the redo log
files, the changes made to the database can be recovered by reissuing the com-
mands in the logs if an instance failure occurs.

Log Writer writes under a variety of conditions: when a user issues a COMMIT,
when the redo log buffer is one-third full, when DBWn writes dirty buffers, or
every three seconds.

System Monitor (SMON)
SMON performs a number of different functions in the database. If there is a sys-
tem crash, the SMON process will apply the changes in the redo log files (saved
to disk previously by the LGWR process) to the datafiles the next time the
instance is started. This ensures that no committed transactions are lost because
of the system crash. (SMON also performs a number of other tasks that are
beyond the scope of this book.)

Installing Oracle Software
Oracle Universal Installer (OUI)
A GUI-based tool used to install or uninstall
Oracle software components and tools.

Now that you have an understanding of how the Oracle database components
are structured and interoperate, you can install the software that will create and
control the components.

Oracle Enterprise Manager (OEM)
A GUI-based tool used to manage one or
more Oracle database instances.

To install Oracle 10g, you can use the Oracle Universal Installer (OUI), a GUI-
based Java tool that has the same look and feel regardless of which software plat-
form you are using to install the software. As part of most Oracle installations, you
can also install the Oracle Enterprise Manager (OEM) toolset, which is a graphical
system management tool that allows a DBA to manage and administer more than
one Oracle instance from a single application. In addition, the browser-based
Oracle Enterprise Manager Database Control interface makes it easy to adminis-
ter an Oracle database from any platform that supports a web browser.

Here, we’ll go through a basic installation of the Oracle server and review
some of the key features of the OEM console.

Using the Oracle Universal Installer
Oracle Enterprise Manager
Database Control
An Internet browser-based tool used to
manage one or more Oracle database
instances.

One of the key concepts to understand when Oracle is installed on a server is the
Oracle Home. An Oracle Home is simply a single directory location in the file-
system that contains all of the installed Oracle products and options for a specific
version of the Oracle software. Each Oracle Home has a name assigned to it, and
the value of this name is stored in the Windows Registry.

4372.book Page 163 Wednesday, August 11, 2004 10:56 PM

164 Chapter 8

Oracle Home
A common directory location used to
store the associated program files for a
specific release of the Oracle database
software.

At Scott’s widget company, the DBA, Janice, needs to install a second Oracle
server on a Microsoft Windows platform. She runs the program setup.exe
from an Oracle installation CD image on disk. The first OUI screen past the Wel-
come screen appears, as shown below, prompting Janice for the file locations
where the Oracle software should be installed. The source for the install is
already specified as a directory location on drive D:.

If there are previous installations of Oracle on this server, the pathnames are
shown in the Destination section of this OUI screen. In this example, there is an exist-
ing installation of Oracle9i in the directory F:\Oracle\9i. Janice wants to install
the newer Oracle Database 10g software into the directory F:\Oracle\10g2, so she
changes the entry in the Path text box to F:\Oracle\10g2, changes the name in the
Oracle Home text box to OraHome10g2, and clicks the Next button.

On nearly all of the screens in an installation using OUI, there is a button
labeled Installed Products, which allows the DBA to view and uninstall other
products already installed on this server.

After the product list is retrieved from the CD in drive D:, OUI displays the
available products that can be installed from the CD. Janice chooses to install the
Oracle Database 10g Enterprise Edition and clicks the Next button.

4372.book Page 164 Wednesday, August 11, 2004 10:56 PM

Installing Oracle and Creating a Database 165

The next decision Janice must make is what kind of database she wants to
have installed or whether to have only the software installed. OUI comes with
several preconfigured databases, each optimized for different environments.
Since none of these preconfigured databases suits Janice’s needs exactly, she will
install only the software now and create a database manually using the Database
Configuration Assistant, discussed later in this chapter. Janice selects the Do Not
Create A Starter Database option.

4372.book Page 165 Wednesday, August 11, 2004 10:56 PM

166 Chapter 8

A summary screen gives Janice one more chance to change the installation
options or cancel the entire installation.

Janice clicks the Install button to begin the installation of the Oracle software.
The final OUI screen shows that the installation was successful.

4372.book Page 166 Wednesday, August 11, 2004 10:56 PM

Installing Oracle and Creating a Database 167

Using the Oracle Enterprise Manager Tools
One of the tools available with Oracle Enterprise Edition is OEM, which allows
you to manage Oracle components and to control and configure one or more
Oracle databases from one console.

The OEM console has two panes. The Navigator pane on the left provides a
hierarchical view of all of the databases and other Oracle-related services on the
network. Clicking one of the nodes in the Navigator pane brings up the status
and contents of that node in the pane on the right. Using OEM, you can easily
browse objects and characteristics of the database, such as tablespaces, user
accounts, datafiles, and configuration parameters of the instance.

Janice, the DBA, wants to get a quick overview of the tablespaces that exist in
the database that has a connect descriptor of or92. She starts OEM under
Microsoft Windows by selecting Start � All Programs � Oracle - OraHome
10g2 � Enterprise Manager Console. She enters her username, her password,
and the connect descriptor.

The next screen shows the different kinds of functionality available to Janice in
the Navigator pane of OEM. She expands the Storage branch by double-clicking
and then clicks Tablespaces. She notices that the EXAMPLE tablespace is at full
capacity, which is fine since it is used for training and will not have any new
objects. However, she does need to look into expanding the size of the SYSTEM
tablespace, since it is 99.39 percent full.

4372.book Page 167 Wednesday, August 11, 2004 10:56 PM

168 Chapter 8

Starting with Oracle 10g, access to a database instance is available using a
web browser, giving Janice functionality similar to that of the OEM console.
Shown below is the home page for the ord database.

4372.book Page 168 Wednesday, August 11, 2004 10:56 PM

Installing Oracle and Creating a Database 169

Creating an Oracle Database
Database Configuration
Assistant (DBCA)
A multiplatform GUI tool that allows a
DBA to easily create, modify, and delete
databases, as well as manage database
templates.

Once the Oracle software is installed on a server, you can create one or more
database instances using a single copy of the Oracle software. The Database
Configuration Assistant (DBCA) is Oracle’s GUI tool for creating, modifying,
and deleting databases.

Disk and Memory Requirements
While the software code is shared among instances, the instances themselves each
must have a minimum amount of system memory and disk space for adequate
performance.

For the Microsoft Windows platform, each Oracle instance requires at least
256MB of memory, plus 8GB of disk space for a fairly complete installation of
Oracle Enterprise Edition. Oracle strongly recommends at least 512MB of mem-
ory. The amount of disk space needed for the datafiles depends on the applica-
tion’s data needs, but one of Oracle’s starter databases uses approximately
1.5GB of disk space.

Using the Database Configuration Assistant
The DBA, Janice, has two big tasks ahead of her for the week. Now that the widget
company is over a year old, the boss, King, wants to offload some of the analysis
tasks to a second database to minimize the impact on the primary database. He
suggests that this new database be designed for data warehouse use. Janice will use
the Oracle DBCA to create a new instance to support the data warehousing effort.

To create a new database instance, Janice starts up DBCA by selecting Start � All
Programs � Oracle - OraHome10g2 � Configuration and Migration Tools � Data-
base Configuration Assistant. The Welcome screen is shown below.

4372.book Page 169 Wednesday, August 11, 2004 10:56 PM

170 Chapter 8

Janice clicks Next. DBCA asks for the type of operation to perform. Janice
selects the first option, Create A Database, and clicks Next.

Since the boss wants a database to be used as a data warehouse, she selects
Data Warehouse in the Database Templates screen, which appears below, and
clicks Next.

4372.book Page 170 Wednesday, August 11, 2004 10:56 PM

Installing Oracle and Creating a Database 171

SID
A system identifier, which is a unique
name assigned to an Oracle instance. A
user must supply a SID to connect to an
Oracle instance.

In the next step, Janice needs to label the instance. Janice gets the Global
Database Name’s suffix from the system administrator, but she specifies the SID
as wh10g. The SID, or system identifier, is a unique name for the Oracle instance.
This is the same as the connect descriptor that a database user uses when con-
necting to the database with SQL*Plus. When Janice types in the fully qualified
name of the database, wh10g.widgetsRus.com, the SID is automatically
extracted from the Global Database Name and placed in the SID text box.

On the next screen, Janice accepts the option to use Enterprise Manager Database
Control to manage her database. She also has the option to send all e-mail alerts to
her e-mail account, so she specifies the name of the company’s e-mail server and her
e-mail address.

4372.book Page 171 Wednesday, August 11, 2004 10:56 PM

172 Chapter 8

In Step 5 of the DBCA, Janice specifies the same initial password for all of the
privileged user accounts in the database and clicks Next.

In Step 6, Janice specifies how the database files will be stored. Since she does
not have many databases to manage and does not have any Unix experts in-
house to configure raw devices, she chooses the default, File System, to hold the
database files.

4372.book Page 172 Wednesday, August 11, 2004 10:56 PM

Installing Oracle and Creating a Database 173

The default database file locations from the Data Warehouse template are fine
for Janice’s needs, so she accepts the default in Step 7. If she wants to change the
template defaults, she can click the File Location Variables button. In this case,
the template specifies that the database files will be stored in the same directory
structure that contains the Oracle software, F:\Oracle\10g2.

Flash Recovery Area
A central location on disk used by Oracle
to contain files for backup and recovery
operations.

In Step 8, Janice decides that a Flash Recovery Area will help her manage
backups and accepts the default. A Flash Recovery Area is a central location on
disk used by Oracle for backup and recovery operations.

4372.book Page 173 Wednesday, August 11, 2004 10:56 PM

174 Chapter 8

In Step 9, Janice decides to install the sample schemas. They will help her test
out the new features of Oracle 10g. However, once the new database is put into
production, she will remove the sample schemas, because they could pose a secu-
rity risk in addition to putting a drain on system performance if users are training
with this database.

The next screen allows Janice to further refine the memory parameters that
Oracle suggests in a data warehouse environment given the server resources, but
she accepts the defaults for now. She will perform some advanced tuning once
the data warehouse queries have been designed and tested. She does decrease the
percentage of memory allocated for this instance from 40 percent down to 25
percent, however, since there is already another Oracle instance on this server.

4372.book Page 174 Wednesday, August 11, 2004 10:56 PM

Installing Oracle and Creating a Database 175

On the same screen, Janice selects the Connection Mode tab. Oracle can
accept connections in one of two modes: Dedicated or Shared. Dedicated mode
gives the best response time for users who run queries constantly, and Shared
mode works best for users who run infrequent queries on a server that may have
limited memory resources. Only a handful of users will be using this data ware-
house, so Janice selects Dedicated Server Mode.

After clicking Next, Janice has the option to tweak the datafile names and loca-
tions, but she once again accepts the defaults for all file locations and clicks Next.

4372.book Page 175 Wednesday, August 11, 2004 10:56 PM

176 Chapter 8

The next screen gives Janice two options. She can either create the database
immediately or save everything up to this point as a template. If Janice thought that
she might create many databases with identical or very similar characteristics to
this one, then she would save these settings as a template for future DBCA sessions.
In this case, she decides that there will not be any other databases like this one, so
she leaves the default Create Database option checked and clicks Finish to start the
process of creating the database.

A Confirmation screen is displayed before the actual database creation
begins. It allows a final review of the parameters, with the added option of saving
the entire set of database characteristics as an HTML file for documentation pur-
poses. Janice clicks OK to continue.

4372.book Page 176 Wednesday, August 11, 2004 10:56 PM

Installing Oracle and Creating a Database 177

The DBCA provides the status and percentage complete while the database is
being created.

4372.book Page 177 Wednesday, August 11, 2004 10:56 PM

178 Chapter 8

Janice clicks Exit after she reviews the summary screen. The database is ready
to use.

In the future, Janice can use OEM to manage both Oracle instances within the
same Navigation pane. As shown here, Janice’s new OEM session shows con-
nections to both the or92 and wh10g database instances.

4372.book Page 178 Wednesday, August 11, 2004 10:56 PM

Installing Oracle and Creating a Database 179

Terms to Know
control file Oracle Universal Installer (OUI)

database physical structures

database block process

database buffer cache Program Global Area (PGA)

Database Configuration Assistant
(DBCA)

redo log buffer

datafiles redo log files

extent schema

Flash Recovery Area instance

segment LRU (least recently used)
algorithm

shared pool logical structures

SID Oracle block

Software Code Area Oracle Enterprise Manager
(OEM)

System Global Area (SGA) Oracle Enterprise Manager
Database Control

Oracle Home tablespace

4372.book Page 179 Wednesday, August 11, 2004 10:56 PM

180 Chapter 8

Review Questions
1. What are the four functions of the Database Creation Assistant (DBCA)?

2. What is the Oracle background process that writes modified data blocks to disk?

3. What is the difference between a database and an instance?

4. An extent is composed of one or more ______________.

5. True or false: The control file contains important system tables.

6. What is the GUI-based Oracle tool that can manage and monitor one or more
Oracle instances?

7. DBCA can save the specified database parameters in what kind of file?

8. Which Oracle background process will apply the data in the redo log files to
the datafiles in the event of a system crash?

9. A database schema is closely associated with which other database object?

10. A segment consists of one or more _____________.

4372.book Page 180 Wednesday, August 11, 2004 10:56 PM

In This Chapter

Chapter

9

Reporting Techniques

It’s important that the data returned from a query be presented in a
manner that is easy to interpret. The reporting features of iSQL*Plus,
SQL*Plus, and SQL*Plus Worksheet make it easy to give columns more
meaningful names, as well as provide report headers and footers so that
the contents of the report are clear.

In fact, changing how reports are formatted and displayed is one way
that you can customize the iSQL*Plus environment to suit your needs.
You can also change how the interface appears and change an account’s
password.

Along with formatting, another way to improve a report is by using
substitution variables, which prompt the user to enter portions of the
query at runtime. For example, instead of including a department num-
ber in a

SELECT

 statement, a query can ask the user to enter a department
number. Finally, after you’ve come up with a set of commands that you’ll
want to reuse, you can save them in a file and run them later.

◆

Configuring the iSQL*Plus environment

◆

Formatting an iSQL*Plus report

◆

Using substitution variables

◆

Saving and running scripts

4372.book Page 181 Wednesday, August 11, 2004 10:56 PM

182

Chapter 9

iSQL*Plus Configuration

After you’ve logged in to an Oracle database using the iSQL*Plus login screen,
you can make changes to your environment using the Preferences link in the
upper-right area of the browser.

From the Preferences screen, you can do one of five things:

◆

Change how the iSQL*Plus environment appears with the Interface Con-
figuration screen (the default Preferences screen)

◆

Change how reports are formatted and displayed using the Script Format-
ting link

◆

Change how the scripts are executed with the Script Execution link

◆

Change DBA settings for database recovery with the Database Adminis-
tration link

◆

Change your account’s password with the Change Password link.

In this section, we’ll review the Interface Configuration, Script Formatting,
and Change Password screens.

4372.book Page 182 Wednesday, August 11, 2004 10:56 PM

Reporting Techniques

183

4372.book Page 183 Wednesday, August 11, 2004 10:56 PM

184

Chapter 9

Interface Configuration

script

A set of one or more SQL or iSQL*Plus
commands that is executed as a group.
Scripts may be retrieved from within an
iSQL*Plus session or saved to an operat-
ing system file and retrieved later in
another session.

The Interface Configuration page controls the History Size. The History Size
option specifies how many sets of previous commands, called scripts, are saved in
an internal buffer for possible reexecution later. A

script

 is a set of one or more
SQL or iSQL*Plus commands that is executed as a group. Scripts are saved in the
history buffer during an iSQL*Plus session or can be saved to an operating system
file to be retrieved later and executed during the same or a new iSQL*Plus or
SQL*Plus session. This page also allows you to adjust, in the Input Area Size sec-
tion, how big a window you need to enter your SQL statements. You can also spec-
ify in the Output Location section how the output from the SQL statements will be
displayed: below the input area or saved to an operating system file in HTML for-
mat. Finally, the Output Page Setup lets you control whether the output from the
script appears on a single page or on multiple pages. If the output appears on mul-
tiple pages, you can also specify how many lines to display per page.

After you’ve adjusted the settings as desired, click Apply to save your preferences.

Script Formatting and System Variables

Executing a script and formatting its output are controlled by system variables.
A

system variable

 in iSQL*Plus is similar to a variable in any programming lan-
guage. Like a column in a row of a table, a system variable can hold a string or
a number. The string or number in the system variable controls some aspect of
how iSQL*Plus will display the results of a query or a DML statement.

All of the system variables that can be set in the iSQL*Plus Script Formatting page
are also available for customization in the iSQL*Plus, SQL*Plus, and SQL*Plus Work-
sheet environments by using the command

SET

 <

system_variable

> <

value

>.

system variable

A variable maintained in the iSQL*Plus,
SQL*Plus, or SQL*Plus Worksheet envi-
ronment that holds a status or a setting
for a particular feature in that environ-
ment.

LINESIZE

 is an example of a
system variable in iSQL*Plus.

The iSQL*Plus environment contains more than 40 variables, most of which
are accessible on the Script Formatting page. The Script Formatting page con-
tains more readable versions of these variables and makes it easy to change them
using the iSQL*Plus graphical environment.

The following sections discuss a few of the key system variables and their cor-
responding names on the Script Formatting page in iSQL*Plus:

LINESIZE

,

HEADING

,

HEADSEP

, and

FEEDBACK

.

4372.book Page 184 Wednesday, August 11, 2004 10:56 PM

Reporting Techniques

185

4372.book Page 185 Wednesday, August 11, 2004 10:56 PM

186

Chapter 9

LINESIZE

The

LINESIZE

 system variable (Line Size on the Script Formatting page) specifies
how many characters will be displayed on each row of output. Any characters
beyond this limit will wrap to the next line.

HEADING

The value for

HEADING

 (Display Headings on the Script Formatting page) can
either be On or Off, and it specifies whether column headings should appear in
query output. Using SQL*Plus, the following command turns query headings off:

set heading off

4372.book Page 186 Wednesday, August 11, 2004 10:56 PM

Reporting Techniques

187

Turning the column headings off may be useful, for example, when sending
the output of a SQL query to a file for processing by another program that may
not need to have the column headings.

HEADSEP

The

HEADSEP

 variable (Headings on Multiple Lines on the Script Formatting
page) allows column headings to appear on multiple lines in the output. A single
character, which is the vertical bar (

|

) by default, divides the heading onto mul-
tiple lines. You can set the

HEADSEP

 variable to either specify the separator char-
acter or turn on or off the

HEADSEP

 feature. We’ll talk more about

HEADSEP

 later
in this chapter, in conjunction with the

COLUMN

 command.

4372.book Page 187 Wednesday, August 11, 2004 10:56 PM

188

Chapter 9

FEEDBACK

By default, if a query returns six or more rows, iSQL*Plus returns a summary of
the number of rows returned from a query, as in this example.

select * from countries;

CO COUNTRY_NAME REGION_ID

-- --------------------------------- ----------

AR Argentina 2

AU Australia 3

BE Belgium 1

BR Brazil 2

CA Canada 2

...

UK United Kingdom 1

US United States of America 2

ZM Zambia 4

4372.book Page 188 Wednesday, August 11, 2004 10:56 PM

Reporting Techniques

189

ZW Zimbabwe 4

25 rows selected.

You can set the

FEEDBACK

 variable (Display Record Count on the Script For-
matting page) to either change the number of rows that will trigger the row count
or turn off this feedback entirely.

Change Password

The Change Password page allows you to change your Oracle login password.
Changing your password on a regular basis reduces the risk of someone obtain-
ing your password and gaining unauthorized access to your account. You must
specify your username, old password, and your new password (twice). In
SQL*Plus, you can change your password by using the SQL*Plus

PASSWORD

command or by using the following SQL DCL command:

ALTER USER <

username

> IDENTIFIED BY <

new password

>;

4372.book Page 189 Wednesday, August 11, 2004 10:56 PM

190

Chapter 9

The

PASSWORD

 command will prompt you for the old and new passwords. The

ALTER

USER

 command does not prompt you for the old password.

Report Formatting

While a DBA or an application developer who is familiar with the data can inter-
pret terse column names such as

MGR_NO

 and

ST_ID

, these column names may
not be very intuitive for employees in the Accounting department. Similarly, con-
sider a query like this:

select last_name from employees

 where department_id = 80;

Its output does not make it clear that the query output is only for the Sales
department, unless you have all the department numbers memorized!

Reports generated from SQL queries are much more readable and under-
standable when you use descriptive column names and report headers and foot-
ers. The added features of the iSQL*Plus, SQL*Plus, and SQL*Plus Worksheet
environment provide this functionality.

In this section, you’ll learn how to add headers and footers. You’ll also find
another way to create descriptive column names. In previous chapters, the exam-
ples used column aliases to change column names in the SQL query output.

4372.book Page 190 Wednesday, August 11, 2004 10:56 PM

Reporting Techniques

191

Using the

COLUMN

 command, you can provide the column alias function along
with other formatting. Next, you’ll see how the

BREAK

 command can suppress
the output of duplicate column values, making a report much more readable.
Finally, you’ll learn how the

COMPUTE

 command gives totals in a report.
Defining column aliases, changing system variables, and computing totals are

settings that stay in effect only for the duration of the iSQL*Plus, SQL*Plus, or
SQL*Plus Worksheet session. You’ll see how to save and retrieve some of these
settings later in this chapter in the “Saving and Running Scripts” section.

Unless specified otherwise in this chapter, all command formats and options are
valid in all three environments: iSQL*Plus, SQL*Plus, and SQL*Plus Worksheet. How-
ever, the examples throughout this chapter focus on the iSQL*Plus environment.

Headers and Footers

The

TTITLE

 and

BTITLE

 commands provide a flexible way to generate report
headers and footers. In addition to specifying text to appear in the header and
footer, this text can be centered, left-justified, or right-justified. Header and footer
text can also extend to two or more lines.

Using

TTITLE

The syntax of the

TTITLE

 command is as follows:

TTI[TLE] [

option

 [

text

] ...] [ON|OFF]

The

option

 part of the

TTITLE

 command specifies what you’re doing with
the header, such as justifying the text. The

text part of the command is where
you specify the text to be placed in the header. You can specify ON or OFF to turn
the header on or off. Even if you temporarily turn off the header, the values you
specified with the TTITLE command will be retained and will be in effect the next
time you turn the header back on.

At Scott’s widget company, Janice, the application developer and DBA, has
been reviewing some of her old queries to see if she can use some of the reporting
capabilities to better advantage when she generates reports for King, the boss.
Janice digs up the query that produces the salary report by department, sorted by
descending salary within each department:

select department_id "Dept",

 last_name || ', ' || first_name "Employee",

 salary "Salary" from employees

order by department_id asc, salary desc;

4372.book Page 191 Wednesday, August 11, 2004 10:56 PM

192 Chapter 9

 Dept Employee Salary

----- ------------------------------ ----------

 10 Whalen, Jennifer 4400

 20 Hartstein, Michael 13000

 20 Fay, Pat 6000

 30 Raphaely, Den 11000

 30 Khoo, Alexander 3100

 30 Baida, Shelli 2900

 30 Tobias, Sigal 2800

 30 Himuro, Guy 2600

 30 Colmenares, Karen 2500

 40 Mavris, Susan 6500

...

 100 Chen, John 8200

 100 Urman, Jose Manuel 7800

 100 Sciarra, Ismael 7700

 100 Popp, Luis 6900

 110 Higgins, Shelley 12000

 110 Gietz, William 8300

 Grant, Kimberely 7000

107 rows selected.

Janice wants to make the report more readable by using some of the reporting
features of iSQL*Plus. She also knows that King usually wants to see only
departments 30 and 60 in the report. She adds an IN clause to the query plus a
left-justified report title:

ttitle left 'Department Salary Report'

select department_id "Dept",

 last_name || ', ' || first_name "Employee",

 salary "Salary" from employees

where department_id in (30,60)

order by department_id asc, salary desc;

4372.book Page 192 Wednesday, August 11, 2004 10:56 PM

Reporting Techniques 193

The LEFT option in the TTITLE command left-justified the header above the
report. Notice also that there is no semicolon after the TTITLE command; since
TTITLE is an iSQL*Plus command, it is terminated automatically at the end of
a line, unless the - continuation character is specified.

Using BTITLE
The BTITLE command has the same syntax as the TTITLE command. It specifies
the text to appear at the end of an iSQL*Plus report. Janice adds a report footer
to the report she has been so diligently revising for the boss, in addition to remov-
ing the feedback returned from the SELECT query:

set feedback off

ttitle left 'Department Salary Report'

btitle left 'End Salary Report' skip 1 -

 left 'Widgets-R-Us, Inc.'

select department_id "Dept",

 last_name || ', ' || first_name "Employee",

 salary "Salary" from employees

where department_id in (30,60)

order by department_id asc, salary desc;

4372.book Page 193 Wednesday, August 11, 2004 10:56 PM

194 Chapter 9

In the BTITLE command, notice how Janice not only splits the iSQL*Plus com-
mand to a second line but also specifies more than one line in the report footer by
using the SKIP n option to skip to the next line. In other words, the report output
will skip to the next line before displaying additional text in the report footer. The
BTITLE command would also work just fine if it were all on one line. Janice split
it up so that the report specification was more readable to whoever may modify
this report in the future.

Column Formatting
The COLUMN command in iSQL*Plus has the following syntax:

COL[UMN] [{column|expr} [option ...]]

You can specify aliases for column headings in a query when an alias specified
as part of a SELECT statement itself is not sufficient. For example, you might
want the column alias to appear on two lines above the column’s data instead of
on just one. The column values themselves can be formatted as left-justified,
right-justified, or centered. Numeric values that represent dollar amounts can be
formatted with the dollar sign character ($).

Janice makes some additional changes in the iSQL*Plus report she has been
working on all morning. She adds two COLUMN commands: one to specify a new
column alias for the department number column and the other to format the sal-
ary amounts with a dollar sign.

set feedback off

ttitle left 'Department Salary Report'

btitle left 'End Salary Report' skip 1 -

 left 'Widgets-R-Us, Inc.'

column Dept heading 'Dept|Number'

4372.book Page 194 Wednesday, August 11, 2004 10:56 PM

Reporting Techniques 195

column salary format $999,999.99

select department_id "Dept",

 last_name || ', ' || first_name "Employee",

 salary "Salary" from employees

where department_id in (30,60)

order by department_id asc, salary desc;

heading separator
A single character embedded in an
iSQL*Plus column alias that indicates
where the alias is split to appear on mul-
tiple lines in the output. The heading sep-
arator itself does not appear in the output.

In the first COLUMN command, Janice is using a heading separator. When
iSQL*Plus formats this column heading, the heading separator splits the heading so
it appears on multiple lines. The default heading separator is the vertical bar char-
acter (|), but you can change this on the System Variables page in iSQL*Plus or by
using the SET HEADSEP command in iSQL*Plus, SQL*Plus, or SQL*Plus Work-
sheet. Notice that the heading separator character does not appear in the output.

Note that the iSQL*Plus column alias operation is being applied to the alias
in the SELECT statement itself (“Dept”). The COLUMN command does not care if
the column heading coming from the SELECT statement is the actual column
name or an alias applied by the SELECT statement; it will substitute its own new
alias to matching column names from the SELECT statement.

The second COLUMN statement applies a numeric format to the “Salary” col-
umn, displaying it as a dollar amount.

BREAK Processing
The values in a particular column may repeat, for example, in a report containing
employees with their department numbers. To make the report more readable, it’s
often desirable to suppress duplicate values in columns like these until the value in
this column changes. The iSQL*Plus BREAK command facilitates the suppression
of duplicate values for a given column in a report. The syntax for the BREAK com-
mand is as follows:

BRE[AK] [ON report_element]

4372.book Page 195 Wednesday, August 11, 2004 10:56 PM

196 Chapter 9

BREAK commands are almost always applied to columns that are sorted.

Janice knows that there is always room for improvement. She also knows
that, at some point, the boss will be asking her to make it clearer when the
department number changes on her most recent iSQL*Plus report. To remove
the extra department numbers, she adds a BREAK command, as follows:

set feedback off

ttitle left 'Department Salary Report'

btitle left 'End Salary Report' skip 1 -

 left 'Widgets-R-Us, Inc.'

column Dept heading 'Dept|Number'

column salary format $999,999.99

break on Dept

select department_id "Dept",

 last_name || ', ' || first_name "Employee",

 salary "Salary" from employees

where department_id in (30,60)

order by department_id asc, salary desc;

The report is significantly more readable, and the boss can easily spot where
the rows for department 60 begin in the report.

Summary Operations (Totals)
iSQL*Plus provides the capability to provide running and final totals to any
report by using the COMPUTE command. The COMPUTE command has the follow-
ing format:

COMP[UTE] [function [LAB[EL] text] ...

 OF {expr|column|alias} ...

 ON {expr|column|alias|REPORT|ROW} ...]

4372.book Page 196 Wednesday, August 11, 2004 10:56 PM

Reporting Techniques 197

You can attach specific labels to each subtotal by using the LABEL subclause.
The function clause can be any of a number of aggregate functions, such as SUM,
AVG, MIN, MAX, and so forth. The summary operation can occur when a column
value changes or at the end of the report.

Janice is anticipating the next request from her boss and decides to modify her
report further to provide the sum of salaries by department and across all depart-
ments specified in the report. She will need two new COMPUTE statements and a
change to the BREAK statement:

set feedback off

ttitle left 'Department Salary Report'

btitle left 'End Salary Report' skip 1 -

 left 'Widgets-R-Us, Inc.'

column Dept heading 'Dept|Number'

column salary format $999,999.99

break on Dept on Report

compute sum label 'Dept Total' -

 of salary on Dept

compute sum label 'All Depts' -

 of salary on Report

select department_id "Dept",

 last_name || ', ' || first_name "Employee",

 salary "Salary" from employees

where department_id in (30,60)

order by department_id asc, salary desc;

4372.book Page 197 Wednesday, August 11, 2004 10:56 PM

198 Chapter 9

The on Report clause was added to the BREAK command so that totals would
be generated by the COMPUTE statement that follows it. Janice “breaks” on the
report only once, but she still needs to specify it, because the COMPUTE statement
performs the aggregate operation only at a BREAK in a report. The COMPUTE state-
ments in Janice’s revised report perform a sum of the salary amounts and provide
a custom label when the department salary sum is displayed on the report.

Substitution Variables
substitution variable
A string literal with no embedded spaces,
preceded by & or &&, that will prompt the
user for a value when an iSQL*Plus script
containing one of these variables is exe-
cuted. A substitution variable preceded
by & will not prompt the user for a value
if the same substitution variable, pre-
ceded by &&, exists earlier in the script.

Another way to make an iSQL*Plus report more flexible is by using substitution
variables. A substitution variable is a string preceded by either an ampersand (&)
or a double ampersand (&&) in an iSQL*Plus script that will prompt the user
for its value when the script is run.

A substitution variable preceded by a single ampersand will prompt for a
value every time it is encountered in a script. A substitution variable preceded by
a double ampersand will prompt for a value once and will save that value. Once
saved, if the same substitution variable preceded by a single ampersand is
encountered, it will use the value saved when the substitution variable with the
double ampersand was encountered.

Janice is reviewing the script she has been working on all day and realizes that
sooner or later, the boss will want to run that script for any list of departments,
not just departments 30 and 60. She realizes that substitution variables would be
useful in this situation, and she changes her script as follows to allow iSQL*Plus
to prompt for the department numbers before the query runs:

set feedback off

ttitle left 'Department Salary Report'

btitle left 'End Salary Report' skip 1 -

 left 'Widgets-R-Us, Inc.'

column Dept heading 'Dept|Number'

column salary format $999,999.99

break on Dept on Report

compute sum label 'Dept Total' -

 of salary on Dept

compute sum label 'All Depts' -

 of salary on Report

select department_id "Dept",

 last_name || ', ' || first_name "Employee",

 salary "Salary" from employees

where department_id in (&DeptList)

order by department_id asc, salary desc;

4372.book Page 198 Wednesday, August 11, 2004 10:56 PM

Reporting Techniques 199

The only change is the replacement of the specific department numbers in the
original script with the substitution variable DeptList. When Janice clicks the Exe-
cute button in iSQL*Plus, she is prompted for the value of DeptList.

The script runs as before, except this time a different group of departments is
returned from the query.

Notice that iSQL*Plus, by default, will show the substitutions that occurred
before presenting the results. This can be turned off with the SET VERIFY OFF
command.

4372.book Page 199 Wednesday, August 11, 2004 10:56 PM

200 Chapter 9

As you may have noticed, Janice is somewhat of a perfectionist, and she thinks
that the report would look even better if the report header contained the list of
departments in the report. This gives Janice a good opportunity to use the double
ampersand in her substitution variable, so that she will not need to enter the depart-
ment list twice when she runs the script. Her revised script now looks like this:

set feedback off

ttitle left -

 'Department Salary Report, Departments: &&DeptList'

btitle left 'End Salary Report' skip 1 -

 left 'Widgets-R-Us, Inc.'

column Dept heading 'Dept|Number'

column salary format $999,999.99

break on Dept on Report

compute sum label 'Dept Total' -

 of salary on Dept

compute sum label 'All Depts' -

 of salary on Report

select department_id "Dept",

 last_name || ', ' || first_name "Employee",

 salary "Salary" from employees

where department_id in (&DeptList)

order by department_id asc, salary desc;

She changed the TTITLE command to include the substitution variable
&&DeptList. When this script is run, the prompt for DeptList occurs only once.

4372.book Page 200 Wednesday, August 11, 2004 10:56 PM

Reporting Techniques 201

However, the substitution is performed twice. The first substitution variable
&&DeptList has a double ampersand, and therefore its value is retained when
&DeptList is encountered later in the script.

Saving and Running Scripts
If a set of SQL or iSQL*Plus commands will be used over and over again, it
makes sense to save it as a script in a central location and retrieve it when it needs
to be run. iSQL*Plus makes it easy to save and retrieve scripts.

Janice decides that the iSQL*Plus script she wrote for displaying salaries by
department will be used by every department manager, so she will save it on a
network disk drive that is accessible to all of the managers. She clicks the Save
Script button at the bottom of the Workspace area.

4372.book Page 201 Wednesday, August 11, 2004 10:56 PM

202 Chapter 9

This brings up the Save As dialog box. Janice saves the contents of the Work-
space area to the directory F:\Common\SQLScripts.

4372.book Page 202 Wednesday, August 11, 2004 10:56 PM

Reporting Techniques 203

To retrieve a script, Janice clicks the Load Script button underneath the
Workspace area, clicks Browse, navigates to the directory containing the script,
and selects the filename to be retrieved.

Finally, she clicks the Load button.

4372.book Page 203 Wednesday, August 11, 2004 10:56 PM

204 Chapter 9

The contents of the file are placed in the Workspace area, and Janice can run
the commands right away or make further modifications to the script before
running it.

Terms to Know
heading separator substitution variable

script system variable

4372.book Page 204 Wednesday, August 11, 2004 10:56 PM

Reporting Techniques 205

Review Questions
1. An iSQL*Plus substitution variable is preceded by what character(s) in a script?

2. Identify the two iSQL*Plus commands that define the header and footer for
a report.

3. On which iSQL*Plus web page can you adjust the size of the iSQL*Plus win-
dow where you enter your iSQL*Plus commands or SQL statements?

4. Write an iSQL*Plus footer command to display the text Page 22, right-justi-
fied on the line.

5. Sums and averages can be displayed on an iSQL*Plus report using which
iSQL*Plus command?

6. Write a single iSQL*Plus COLUMN command to format the Salary column with
a total of six digits, four to the left of the decimal point and two to the right.
In the same COLUMN command, define the header to be Monthly Salary, with
the words appearing on different lines in the column header.

7. Which iSQL*Plus command controls the row count display after a SELECT
statement is executed?

8. Which iSQL*Plus command controls how duplicate column values are dis-
played on a report?

9. The iSQL*Plus BREAK command is almost always specified in conjunction
with what SQL SELECT statement clause?

10. In both the TTITLE and BTITLE commands, what option must be used to
specify more than one line in the header or footer?

4372.book Page 205 Wednesday, August 11, 2004 10:56 PM

4372.book Page 206 Wednesday, August 11, 2004 10:56 PM

In This Chapter

Chapter

10

Creating and Maintaining
Database Objects

As both a DBA and a developer, you will be responsible for creating and
maintaining a variety of database objects. First and foremost, you will be
creating tables. You will also need to know how to create indexes and views.

To keep track of tables, indexes, and other database objects, you can
use data dictionary views, which allow you to retrieve various kinds of
statistics about tables and other database objects.

Two other useful database objects covered here are sequences and
synonyms. Sequences make it easy to generate a series of unique numbers
that are typically used for the primary key of a table. Synonyms facilitate
a consistent naming convention for database objects that may exist in the
user’s schema or in another schema of the same database.

◆

Creating relational and external tables

◆

Using Create Table As Select (CTAS)

◆

Creating indexes

◆

Creating views

◆

Using data dictionary and dynamic per-
formance views

◆

Creating sequences and synonyms

4372.book Page 207 Wednesday, August 11, 2004 10:56 PM

208

Chapter 10

Creating Tables

The table is the most basic and most important object you will create in a data-
base. Essentially, you could do without every other database object in a database
except for tables. Without tables, you cannot store anything in a database.

You can create tables with the

CREATE

TABLE

 statement or “on the fly” with
a method known as Create Table As Select, or CTAS.

Once you know that you need to create a table, you must decide what kind of
table you want. In this section, we’ll cover the most common types of tables:

◆

Relational tables

◆

Tables created directly from the result of a query

◆

Tables whose data resides outside the database

◆

Tables with a definition that is available to all sessions but whose data is
local to the session that created the data

Relational Tables

relational table

The most common form of a table in the
Oracle database; the default type cre-
ated with the

CREATE

TABLE

 state-
ment. A relational table is permanent
and can be partitioned.

A

relational table

 is the most common form of a table in the Oracle database. It
is created with the

CREATE

TABLE

 statement, its data is stored in the database,
and it can be partitioned. When you partition a table, the data for the table is
internally stored in two or more pieces to potentially improve performance and
to make the table easier for the DBA to manage if the table has many rows. Par-
titioning tables is covered in more detail in Chapter 12, “Making Things Run
Fast (Enough).”

The basic syntax for the

CREATE

TABLE

 statement is as follows:

CREATE TABLE [

schema.

]

tablename

(

column1 datatype1

[DEFAULT

expression

]

 [

, ...

]);

The table that Scott, the company founder, created back in Chapter 2,
“SQL*Plus and iSQL*Plus Basics,” was built with this statement:

create table emp_hourly (

 empno number(4) not null,

 ename varchar2(10),

 job varchar2(9),

 mgr number(4),

 hiredate date,

 hourrate number(5,2) not null default 6.50,

 deptno number(2),

 constraint pk_emp

primary key (empno)) ;

4372.book Page 208 Wednesday, August 11, 2004 10:56 PM

Creating and Maintaining Database Objects

209

Now, the

HR

 schema is used to manage employee information. Therefore, Jan-
ice, the DBA and senior developer, must re-create the table to match the
datatypes and name of the

EMPLOYEES

 table in the

HR

 schema, as follows:

create table employees_hourly (

 employee_id number(6) not null,

 first_name varchar2(20),

 last_name varchar2(25) not null,

 email varchar2(25) not null,

 phone_number varchar2(20),

 job_id varchar2(10) not null,

 manager_id number(6),

 hire_date date not null,

 hourly_rate number(5,2) default 6.50 not null,

 department_id number(4),

 ssn varchar2(11),

 constraint pk_employees_hourly

 primary key(employee_id)) ;

Because of the

PRIMARY

KEY

 constraint on the

EMPLOYEE_ID

 column, the val-
ues in the

EMPLOYEE_ID

 column must be unique within the table.

Create Table As Select (CTAS)

CTAS

Also known as Create Table As Select, a
method for creating a table in the data-
base by using the results from a subquery
to both populate the data and specify the
datatypes of the columns in the new table.

If you want to base the contents of a new table on the results of a query of one or
more other tables, you can use the statement

CREATE TABLE ... AS SELECT

,
otherwise known as

CTAS

. It’s shorthand for two or more individual statements: the
traditional

CREATE

TABLE

 statement and one or more

INSERT

 statements. Using
CTAS, you can create a table and populate it in one easy step.

The syntax for CTAS varies from the basic syntax of a

CREATE

TABLE

 state-
ment as follows:

CREATE TABLE [

schema.

]

tablename

AS SELECT <

select_clauses

>;

Notice that with CTAS you cannot specify the datatypes of the new columns; the
column datatypes of the original columns, along with any

NOT

NULL

 constraints, are
derived from the columns in the

SELECT

 query. Any other constraints or indexes may
be added to the table later. Column aliases in the

SELECT

 query are used as the col-
umn names in the new table.

At Scott’s widget company, the Order Entry department frequently sends
out mailings to non-administrative staff, but the mailing list is becoming outdated.
The manager in the Order Entry department asks Janice to grant the developers
in the group the rights to access the

EMPLOYEES

 table. However, the

EMPLOYEES

4372.book Page 209 Wednesday, August 11, 2004 10:56 PM

210

Chapter 10

table contains sensitive personal information about employees, such as their
salary. So, instead of granting access to the

EMPLOYEES

 table, Janice decides to give
the Order Entry department developers their own table with a limited number of
columns. Using CTAS, her

CREATE

TABLE

 statement extracts the name and e-mail
address for the Order Entry department as follows:

create table oe.non_admin_employees

 as select employee_id, last_name, first_name, email

 from hr.employees e where e.job_id not like 'AD_%';

Notice that Janice is copying some of the rows with only a few of the columns
from the

EMPLOYEES

 table in the

HR

 schema, and she is creating a new table
named

NON_ADMIN_EMPLOYEES

 in the

OE

 schema. To confirm her work, Janice
checks the new table:

describe oe.non_admin_employees

 Name Null? Type

 ---------------------------- -------- ---------------

 EMPLOYEE_ID NUMBER(6)

 LAST_NAME NOT NULL VARCHAR2(25)

 FIRST_NAME VARCHAR2(20)

 EMAIL NOT NULL VARCHAR2(25)

select * from oe.non_admin_employees;

EMPLOYEE_ID LAST_NAME FIRST_NAME EMAIL

----------- ------------------ ---------------- -----------

 103 Hunold Alexander AHUNOLD

 104 Ernst Janice JERNST

 105 Austin David DAUSTIN

 106 Pataballa Valli VPATABAL

 107 Lorentz Diana DLORENTZ

 108 Greenberg Nancy NGREENBE

...

 195 Jones Vance VJONES

 196 Walsh Alana AWALSH

 197 Feeney Kevin KFEENEY

 198 OConnell Donald DOCONNEL

 199 Grant Douglas DGRANT

 201 Hartstein Michael MHARTSTE

 202 Fay Pat PFAY

4372.book Page 210 Wednesday, August 11, 2004 10:56 PM

Creating and Maintaining Database Objects

211

 203 Mavris Susan SMAVRIS

 204 Baer Hermann HBAER

 205 Higgins Shelley SHIGGINS

 206 Gietz William WGIETZ

103 rows selected.

Everyone in the

EMPLOYEES

 table is in the new

NON_ADMIN_EMPLOYEES

 table,
except for the four administrative employees whose job ID begins with

AD_

.
Janice makes sure to re-create the table in the OE schema every time employ-

ees are added, deleted, or changed in HR’s EMPLOYEE table. If the Order Entry
department wants any other constraints or indexes other than the NOT NULL con-
straint on columns in the new table, Janice will need to create them manually.

External Tables
external table
A table whose definition is stored in the
database but whose data is stored exter-
nally to the database.

Sometimes you want to access data that resides outside the database, but you
want to use it as if it were another table within the database. An external table
is a read-only table whose definition is stored within the database but whose data
stays external to the database itself.

You may ask, “Why not use one of Oracle’s utilities to load the external data into
an internal table, and then use the internal table?” While this is an option, there are
many reasons why this may not be the best solution. One reason is that you can use
the functionality of Oracle SQL against the external table to more easily load the
data into other tables. Also, if the external data source is maintained by another

User Operating
System Files

External Table Data

CUSTOMER_COMMENTS External Table Definition

Database

4372.book Page 211 Wednesday, August 11, 2004 10:56 PM

212 Chapter 10

business area in a text format, the database’s copy of the data most likely will be out
of synch until the next time you import it. If you treat the external data as a table, it
will always be up to date every time you access it as an external table.

There are a few drawbacks to using external tables. External tables are read-
only; changes cannot be made to the external data source with UPDATE state-
ments. Also, external tables cannot be indexed. Therefore, if you need to access
only a small fraction of the rows in the external table, an internal table with an
index might be a better solution.

Janice, the DBA, has been assigned the task of making the customer feed-
back files maintained by the Customer Service group accessible from within the
database. Currently, the Customer Service group receives customer feedback,
which is entered on a daily basis into a text file on the shared network drive
I:\Common\CustomerComments with a filename of feedback.txt.

directory
A database object that stores a reference
to a directory on the host operating sys-
tem’s filesystem.

The first step Janice must perform is to define an Oracle object known as
a directory. An Oracle directory is an Oracle object that contains an alias to a
directory path on the operating system’s filesystem. Once defined in this manner,
the Oracle directory object can be used to refer to the location on the filesystem
in subsequent Oracle commands, such as the CREATE TABLE ... ORGANIZATION
EXTERNAL command. You need to run the CREATE DIRECTORY command only
once for each filesystem pathname you want to access. Janice’s command for
creating this directory object is as follows:

create directory comment_dir as

 'I:\Common\CustomerComments';

Directory created.

The file that contains the data for the external table, feedback.txt, looks
like this:

154,Helpful and Friendly.

150,Took the time to help me buy the widgets I really needed.

156,Didn't really seem too enthusiastic.

152,The Best experience I've had with Widgets-R-Us.

The external table will have two columns: The first field is the employee
number, and the second field is the text of the comments from the customer.
A comma separates the employee number from the comment. Janice uses the fol-
lowing CREATE TABLE statement to create the external table:

create table cust_comments (

 employee_id number,

 comments varchar2(100))

organization external

 (default directory comment_dir

4372.book Page 212 Wednesday, August 11, 2004 10:56 PM

Creating and Maintaining Database Objects 213

 access parameters

 (records delimited by newline

 fields terminated by ','

 (employee_id char, comments char))

 location('feedback.txt'));

Table created.

The first part of the CREATE TABLE statement looks familiar. It contains two
columns: EMPLOYEE_ID and COMMENTS. The ORGANIZATION EXTERNAL clause
specifies this table to be an external table. The operating system file is located in
the directory defined by the directory object comment_dir. Each line of data cor-
responds to one row in the table, and each column in the external file is separated
by a comma. Both of the fields are character strings in the external file, so we
define those fields as CHAR. Finally, we specify the name of the external file itself
with the LOCATION clause.

Janice, as well as anyone else who can access tables in the HR schema, can use
the CUST_COMMENTS table in a query as easily as using any of the internal tables:

select * from cust_comments;

EMPLOYEE_ID COMMENTS

----------- --

 154 Helpful and Friendly.

 150 Took the time to help me buy the widgets

 I really needed.

 156 Didn't really seem too enthusiastic.

 152 The Best experience I've had with

 Widgets-R-Us.

4 rows selected.

To produce a report that is more readable for the boss, Janice joins the exter-
nal table with the internal EMPLOYEES table:

select employee_id "EmpID",

 last_name || ', ' || first_name "Name", comments

from employees join cust_comments using (employee_id);

 EmpID Name COMMENTS

------ -------------------- -------------------------

 154 Cambrault, Nanette Helpful and Friendly.

 150 Tucker, Peter Took the time to help me

4372.book Page 213 Wednesday, August 11, 2004 10:56 PM

214 Chapter 10

 buy the widgets I really

 needed.

 156 King, Janette Didn't really seem too

 enthusiastic.

 152 Hall, Peter The Best experience I've

 had with Widgets-R-Us.

4 rows selected.

The CUST_COMMENTS table is indistinguishable in usage from any other table
in the database, as long as you don’t try to perform any INSERT, UPDATE, or
DELETE statements on the external table.

Temporary Tables
temporary table
A table whose definition is persistent and
shared by all database users but whose
data is local to the session that created
the data. When the transaction or ses-
sion is completed, the data is truncated
from the temporary table.

A temporary table is a table whose definition is available to all sessions in the
database but whose rows are available only to the session that added the rows to
the table. Once the transaction is committed or the session is terminated, the data
created during that session is removed from the temporary table. To create a tem-
porary table, you use the familiar CREATE TABLE syntax with the addition of the
GLOBAL TEMPORARY clause. An additional clause, ON COMMIT PRESERVE ROWS,
retains the rows added to the table until the end of the session; otherwise, the
rows are removed after each COMMIT.

A temporary table might be useful in an application that uses a table for its
session data and is used by hundreds of users; the table needs to be created only
once, with the proper permissions so that all application users can access it.

Janice, the DBA, is installing a travel itinerary application that employees use
to plan their business trips. The application needs a table that temporarily holds
the travel destinations and costs for the employee. Janice realizes a temporary
table is perfect for this purpose. Her CREATE TABLE statement looks like this:

create global temporary table travel_dest

 (employee_id number(6),

 destination_id number(4),

 airfare number(7,2),

 hotel number(6,2))

on commit preserve rows;

Table created.

Once the travel itinerary application is terminated and the user disconnects from
the database, any rows placed in this table by the user are automatically removed.

4372.book Page 214 Wednesday, August 11, 2004 10:56 PM

Creating and Maintaining Database Objects 215

Creating Indexes
index
A database object designed to reduce the
amount of time it takes to retrieve rows
from a table. An index is created based on
one or more columns in the table.

The purpose of indexes can be summarized in one word: performance. An index
is a database structure designed to reduce the amount of time necessary to
retrieve one or more rows from a table. Indexes can also enforce uniqueness on
one or more columns of a table.

Any number of indexes may be created on a table. An index may also be built
against a combination of columns in a table; this type of index is known as a
composite index.

composite index
An index that is created on two or more
columns in a table.

Indexes are maintained automatically. When new rows are added to the table,
new entries are recorded in the indexes. When rows are deleted from the table, the
corresponding index entries are also deleted.

Be cautious when creating indexes in an environment with frequent update, insert, and
delete operations. The overhead of keeping the indexes up-to-date can have a perfor-
mance impact on the database and potentially increase the response time for users.

Indexes can be either unique or nonunique. A unique index prevents duplicate
values from being inserted into a table column with a unique index. For example,
an employee table might have a column with a social security number. Since no
two employees will have the same social security number, a unique index can be
created on the column. If a primary key is defined for a table, a unique index is
automatically created to enforce the uniqueness of the primary key.

Nonunique indexes, by definition, will not enforce uniqueness but can still
speed processing by narrowing down the range of blocks where the desired rows
of a table can be found. For example, a nonunique index on a column with a last
name would likely have many entries for Smith. Each of the index entries for
Smith would point to a row in the table where the last name was Smith. Using
this nonunique index to find all the Smith entries will typically take much less
time than scanning the entire table for Smith directly.

An index on a database table column corresponds closely to the real-world
analogy of an index in a book. A topic in a book can be located much more
quickly if the topic’s title is located in the book’s index with the corresponding
page number. Without the index, you might need to search through each page of
the book to locate the topic you want.

The simplest form of the CREATE INDEX statement looks like this:

CREATE INDEX index_name

ON table_name (column1[, column2]...);

The columns column1, column2, and so forth are the columns to be indexed
on the table table_name. The index name index_name must be unique across all
objects within the same schema.

Janice has been receiving complaints that the queries against the COUNTRIES
table have been slow. She knows that there is already an index on the COUNTRY_ID

4372.book Page 215 Wednesday, August 11, 2004 10:56 PM

216 Chapter 10

column, so she is surprised that the response time would be poor when selecting
a row from the COUNTRIES table. After further investigation, she discovers that a
lot of users are trying to find the two-letter country code given the name of the
country—the users are searching the table using a WHERE clause on the COUNTRY_
NAME column. She decides that an index on the COUNTRY_NAME column might
improve the response time. To create the index, she uses the following command:

create index countries_ie1 on countries(country_name);

Index created.

The index did not necessarily need the name of the table in its name. How-
ever, Janice realizes that it’s good practice to include the table name so that she
can easily avoid duplicate index names in the database.

Creating and Using Views
In this section, we’ll talk about views that users can create themselves, and then
we’ll cover views owned by SYS that contain important information about the
objects in the database.

User-Defined Views
view
A database object that is based on a
SELECT statement against one or
more tables or other views in the data-
base. A regular view does not store any
data in the database; only the definition
is stored. Views are also known as
stored queries.

Views are database objects that look like tables but are instead derived from a
SELECT statement performed on one or more tables. In other words, a view is a
subset of data from one or more tables. A view does not contain its own data; the
contents of a view are dynamically retrieved from the tables on which it is based.
A view is sometimes referred to as a stored query.

Views can enhance the usability of the database by making complex queries
appear to be simple. For example, users may frequently join together two or
more tables in the same way. A view will make the users’ lives a bit easier, allow-
ing them to write a query against a single view instead of needing to rewrite a
complex query over and over.

Views can also be used to restrict access to certain rows or columns of a table.
For example, the DBA can create a view against the EMPLOYEES table that excludes
the SALARY column and can make this view available to those departments that
need to see employee information but should not see salary information.

The CREATE VIEW statement looks like this:

CREATE VIEW view_name (alias1[, alias2] ...)

 AS subquery;

The subquery clause is a SELECT statement that may join more than one table
and may also have a WHERE clause. Column aliases can be specified for the result-
ing columns from the subquery.

4372.book Page 216 Wednesday, August 11, 2004 10:56 PM

Creating and Maintaining Database Objects 217

After reviewing some of the SELECT statements that the users are writing,
Janice, the DBA and application developer, notices that there are frequent joins
between the EMPLOYEES table and the DEPARTMENTS table, similar to the following:

select employee_id, last_name, first_name,

 department_id, department_name

from employees join departments using(department_id);

Creating a view based on this query might help the users who typically don’t
use SQL to join tables but need to see the associated department information for
each employee. Janice creates the view using the sample query above as the sub-
query in a CREATE VIEW statement:

create view

 emp_dept(emp_id, lname, fname, dept_id, dname) as

select employee_id, last_name, first_name,

 department_id, department_name

from employees join departments using(department_id);

View created.

Notice that Janice has supplied column aliases so that the original column
names are not visible to the users of the view. For all intents and purposes, the
EMP_DEPT view looks and operates in the same way as a single table, as demon-
strated below with the DESCRIBE and SELECT statements:

describe emp_dept;

 Name Null? Type

 ---------------------------------- -------- ------------

 EMP_ID NOT NULL NUMBER(6)

 LNAME NOT NULL VARCHAR2(25)

 FNAME VARCHAR2(20)

 DEPT_ID NOT NULL NUMBER(4)

 DNAME NOT NULL VARCHAR2(30)

select * from emp_dept;

 EMP_ID LNAME FNAME DEPT_ID DNAME

------- ------------- ----------- ------- ----------------

 100 King Steven 90 Executive

 101 Kochhar Neena 90 Executive

 102 De Haan Lex 90 Executive

4372.book Page 217 Wednesday, August 11, 2004 10:56 PM

218 Chapter 10

 103 Hunold Alexander 60 IT

 104 Ernst Janice 60 IT

 105 Austin David 60 IT

 106 Pataballa Valli 60 IT

 107 Lorentz Diana 60 IT

 108 Greenberg Nancy 100 Finance

 109 Faviet Daniel 100 Finance

 110 Chen John 100 Finance

...

 203 Mavris Susan 40 Human Resources

 204 Baer Hermann 70 Public Relations

 205 Higgins Shelley 110 Accounting

 206 Gietz William 110 Accounting

106 rows selected.

The EMP_DEPT view can be used in the same way as any database table. The
users can add a WHERE clause to the SELECT statement above. Also, the EMP_DEPT
view can be joined with a table in another query if so desired.

Data Dictionary Views
data dictionary views
Read-only views owned by the user SYS
that are created when the database is
created and contain information about
users, security, and database structures,
as well as other persistent information
about the database.

Data dictionary views are predefined views that contain a variety of information
about tables, users, and various other objects in the database. Like other views,
data dictionary views are based on one or more tables. The main differences
between data dictionary views and user-created views are that data dictionary
views are owned by the user SYS and the views themselves may appear to have
different results depending on who is accessing them.

Data Dictionary View Types
Data dictionary views have one of three prefixes:

USER_ These views show information about the structures owned by the
user (in the user’s schema). They are accessible to all users and do not have
an OWNER column.

ALL_ These views show information about all objects that the user has
access to, including objects owned by the user and objects to which other
users have granted the user access. These views are accessible to all users.
Each view has an OWNER column, since some of the objects may reside in
other users’ schemas.

DBA_ These views have information about all structures in the database—they
show what is in all users’ schemas. Accessible to the DBA, they provide infor-
mation on all the objects in the database and have an OWNER column as well.

4372.book Page 218 Wednesday, August 11, 2004 10:56 PM

Creating and Maintaining Database Objects 219

Common Data Dictionary Views
Some data dictionary views are commonly used by both developers and DBAs
to retrieve information about tables, table columns, indexes, and other objects
in the database. The following descriptions refer to the ALL_ version of each of
the views.

ALL_TABLES
The ALL_TABLES view contains information about all database tables to which
the user has access. The following query, run by the user HR, identifies the table
and owner of all tables that HR can access:

select table_name, owner from all_tables;

TABLE_NAME OWNER

------------------------------ ------

DUAL SYS

SYSTEM_PRIVILEGE_MAP SYS

TABLE_PRIVILEGE_MAP SYS

STMT_AUDIT_OPTION_MAP SYS

AUDIT_ACTIONS SYS

...

REGIONS HR

COUNTRIES HR

LOCATIONS HR

DEPARTMENTS HR

JOBS HR

EMPLOYEES HR

JOB_HISTORY HR

EMP SCOTT

SALGRADE SCOTT

EMPLOYEES_DEPARTMENTS HR

EMPLOYEES_SSN HR

CUST_COMMENTS HR

EMPTY_CUST_COMMENTS HR

44 rows selected.

Many of the tables visible to HR are tables owned by SYS and SYSTEM, such as
the DUAL table. The user HR can also access the EMP and SALGRADE tables owned
by SCOTT.

4372.book Page 219 Wednesday, August 11, 2004 10:56 PM

220 Chapter 10

ALL_TAB_COLUMNS
The ALL_TAB_COLUMNS view contains information about the columns in all
tables accessible to the user. If the user HR wanted to find out the columns and
datatypes in the COUNTRIES table, the query would be written as follows:

select column_name, data_type from all_tab_columns

where table_name = 'COUNTRIES';

COLUMN_NAME DATA_TYPE

------------------------- ------------

COUNTRY_ID CHAR

COUNTRY_NAME VARCHAR2

REGION_ID NUMBER

3 rows selected.

ALL_INDEXES
The ALL_INDEXES view contains information about the indexes accessible
to the user. If the HR user wanted to find out the indexes that were created
against the COUNTRIES table and whether the indexes were unique, the query
would look like this:

select table_name, index_name, uniqueness from all_indexes

where table_name = 'COUNTRIES';

TABLE_NAME INDEX_NAME UNIQUENESS

------------------------ -------------------- ---------

COUNTRIES COUNTRY_C_ID_PK UNIQUE

COUNTRIES COUNTRIES_IE1 NONUNIQUE

2 rows selected.

The COUNTRIES table has two indexes, one of which is a unique index.

ALL_IND_COLUMNS
The ALL_IND_COLUMNS view contains information about the columns indexed
by an index on a table. Following the previous example, the HR user can use the
INDEX_NAME to help identify the indexed column or columns on the table:

select table_name, column_name from all_ind_columns

where index_name = 'COUNTRY_C_ID_PK';

4372.book Page 220 Wednesday, August 11, 2004 10:56 PM

Creating and Maintaining Database Objects 221

TABLE_NAME COLUMN_NAME

----------- -----------------

COUNTRIES COUNTRY_ID

1 row selected.

The index COUNTRY_C_ID_PK indexes the COUNTRY_ID column in the
COUNTRIES table.

ALL_OBJECTS
The ALL_OBJECTS view combines all types of Oracle structures into one view.
This view comes in handy when you want a summary of all database objects
using one query, or you have the name of the object and want to find out what
kind of object it is. The following query retrieves all the objects accessible to HR
and owned by either the HR or JANICE schema:

select owner, object_name, object_type, temporary

 from all_objects

 where owner in ('HR','JANICE');

OWNER OBJECT_NAME OBJECT_TYPE T

---------- -------------------------- ------------------ -

JANICE TRAVEL_DEST TABLE Y

HR ADD_JOB_HISTORY PROCEDURE N

HR COUNTRIES TABLE N

HR COUNTRIES_IE1 INDEX N

HR COUNTRY_C_ID_PK INDEX N

HR CUST_COMMENTS TABLE N

HR DEPARTMENTS TABLE N

HR DEPARTMENTS_SEQ SEQUENCE N

HR DEPT_ID_PK INDEX N

...

HR PK_EMPL_SSN INDEX N

HR REGIONS TABLE N

HR REG_ID_PK INDEX N

HR SECURE_DML PROCEDURE N

HR SECURE_EMPLOYEES TRIGGER N

HR UK1_EMPLOYEES INDEX N

HR UPDATE_JOB_HISTORY TRIGGER N

43 rows selected.

4372.book Page 221 Wednesday, August 11, 2004 10:56 PM

222 Chapter 10

The TEMPORARY (T) column in the ALL_OBJECTS view indicates whether the
object is temporary. The temporary table TRAVEL_DEST, created and owned by
JANICE but accessible to all users, is indicated correctly as being a temporary
table in the query results.

Dynamic Performance Views
dynamic performance views
Data dictionary views owned by the user
SYS that are continuously updated
while a database is open and in use and
whose contents relate primarily to perfor-
mance. These views have the prefix V$
and their contents are lost when the
database is shut down.

Dynamic performance views are similar in nature to data dictionary views, with
one important difference: Dynamic performance views are continuously updated
while the database is open and in use; they are re-created when the database is
shut down and restarted. In other words, the contents of these views are not
retained when the database is restarted. The contents of dynamic performance
views primarily relate to the performance of the database.

The names of the dynamic performance views begin with V$. Two common
dynamic performance views are V$SESSION and V$INSTANCE.

V$SESSION
The dynamic performance view V$SESSION contains information about each con-
nected user or process in the database. To find out what programs the user HR is
using to connect to the database, you can query the PROGRAM column of V$SESSION:

select sid, serial#, username, program from v$session

where username = 'HR';

 SID SERIAL# USERNAME PROGRAM

---------- ---------- ------------------ ----------------

 16 6921 HR Toad.exe

 19 18 HR jrew.exe

 20 39 HR sqlplusw.exe

 21 6932 HR Toad.exe

4 rows selected.

Data Dictionary View Shorthand

Because of how frequently some of the data dictionary views are used by a typical
database user, a number of short synonyms exist for these views. Here are some
examples of shortened view names:

◆ TABS is a synonym for USER_TABLES.

◆ IND is a synonym for USER_INDEXES.

◆ OBJ is a synonym for USER_OBJECTS.

4372.book Page 222 Wednesday, August 11, 2004 10:56 PM

Creating and Maintaining Database Objects 223

In this case, the user HR has four connections open in the database using three
different programs. The SID and SERIAL# columns together uniquely identify
a session. This information is needed by the DBA if, for some reason, one of the
sessions must be terminated.

V$INSTANCE
The V$INSTANCE view provides one row of statistics for each Oracle instance run-
ning against the database. Multiple instances running against a single database can
greatly enhance the scalability of the Oracle database by spreading out the CPU
resource usage over multiple servers. The following query finds out the version of
the Oracle software and how long the instance has been up since the last restart,
along with other instance information:

select instance_name, host_name, version,

 startup_time, round(sysdate-startup_time) "Days Up",

 status from v$instance;

INSTANCE_NAME HOST_NAME VERSION STARTUP_T Days Up STATUS

-------------- --------- ---------- --------- ---------- ------

rac0 dev 10.1.0.2.0 02-JUN-04 12 OPEN

1 row selected.

Creating Sequences and Synonyms
Various other database objects are needed to support the main objects in the
database (such as tables). Two such objects are sequences and synonyms.

Sequences
sequence
A database structure that generates a
series of numbers typically used to assign
primary key values to database tables.

An Oracle sequence is a named sequential number generator. A sequence is often
used to generate a unique key for the primary key of a table. A sequence object
is owned by a single schema, but it can be used by other database users if the
proper permissions are granted to the users.

Sequences can begin and end with any value, can be ascending or descending,
and can skip (increment) a specified number between each value in the sequence.
The basic syntax for CREATE SEQUENCE is as follows:

CREATE SEQUENCE sequence_name

 [START WITH starting_value]

 [INCREMENT BY increment_value];

4372.book Page 223 Wednesday, August 11, 2004 10:56 PM

224 Chapter 10

If all optional parameters are omitted, the sequence starts with one and
increases by increments of one, with no upper boundary.

Sequences are referenced in DML statements by using the syntax sequence_
name.currval or sequence_name.nextval. The qualifier nextval retrieves the
next value. The qualifier currval retrieves the most recent number generated
without incrementing the counter. For example, here are some sample SELECT
statements that access the sequence used for employee numbers, EMPLOYEES_SEQ:

select employees_seq.nextval from dual;

NEXTVAL

 211

1 row selected.

select employees_seq.nextval from dual;

NEXTVAL

 212

1 row selected.

select employees_seq.currval from dual;

CURRVAL

 212

1 row selected.

The HR department has asked the DBA, Janice, to re-create the sequence for
the EMPLOYEES table to start at 501 and increment by 10. Janice drops the old
sequence and re-creates it:

drop sequence hr.employees_seq;

Sequence dropped.

create sequence hr.employees_seq

 start with 501

4372.book Page 224 Wednesday, August 11, 2004 10:56 PM

Creating and Maintaining Database Objects 225

 increment by 10;

Sequence created.

After the sequence has been created, the user HR inserts a record into the
EMPLOYEES table as follows:

insert into employees

 (employee_id, last_name, first_name, email,

 hire_date, job_id)

values

 (employees_seq.nextval, 'JUDD', 'DAWN', 'DRJUDD',

 '25-may-04','QA_MAN');

1 row created.

select employee_id from employees

where last_name = 'JUDD';

EMPLOYEE_ID

 501

1 row selected.

The next time the employees_seq sequence is used, the value returned will
be 511.

Synonyms
synonym
An alias assigned to a table, view, or
other database structure. Synonyms
can be either available to all users
(public) or available only to one schema
owner (private).

A synonym is an alias for another database object, such as a table, sequence, or view.
Synonyms provide easier access to database objects outside the user’s schema.

There are two kinds of synonyms: public and private. Public synonyms are
available to all database users. A private synonym is available only in the session
of the schema owner who created it.

Synonyms are useful in providing a common name to a database object, regard-
less of which username is logged in to the database. The temporary table created by
Janice the DBA, called TRAVEL_DEST, must be qualified with the schema name if
anyone other than Janice wants to access it. For example, if the user HR is connected
to the database and no synonym has been specified, the table must be fully qualified:

insert into janice.travel_dest

 values(101, 1201, 320.50, 988.00);

4372.book Page 225 Wednesday, August 11, 2004 10:56 PM

226 Chapter 10

The syntax for creating a synonym is as follows:

CREATE [PUBLIC] SYNONYM synonym_name

 FOR [schema.]object_name;

To facilitate easy access to the table TRAVEL_DEST, Janice creates a public syn-
onym for the table:

create public synonym travel_dest for travel_dest;

Synonym created.

What happens if a user has a private synonym called TRAVEL_DEST, or worse
yet, his or her own table is called TRAVEL_DEST? Unqualified object references
(object references that aren’t prefixed with a schema name) are resolved in the
following order:

1. A real object with the specified name

2. A private synonym owned by the current user

3. A public synonym

Private synonyms can be useful in a development environment when you have
a copy of a table with a different name. A private synonym can be created to refer
to the copy of the production table with the same name as the production table.
During testing, the developer’s private synonym points to the copy and does not
impact the production table. When development is complete, the developer can
remove the private synonym and move the new SQL code into a production envi-
ronment, without changing any table names in the SQL code.

Terms to Know
composite index index

CTAS relational table

data dictionary views sequence

directory synonym

dynamic performance views temporary table

external table view

4372.book Page 226 Wednesday, August 11, 2004 10:56 PM

Creating and Maintaining Database Objects 227

Review Questions
1. The data dictionary view IND has the same definition as what other data

dictionary view?

2. The most common form of a table in the Oracle database is a(n)
___________ table.

3. What clause do you add to the CREATE TABLE statement to create a tem-
porary table?

4. What tables are displayed if a user accesses the ALL_TABLES data dictio-
nary view?

5. Name two ways in which external tables are different from relational tables.

6. True or false: Oracle resolves object references by checking for private syn-
onyms first.

7. What are two reasons for creating a view against one or more tables?

8. What database object type can be used to generate a series of sequential
numbers?

9. True or false: Data dictionary tables retain their contents even after the data-
base has been shut down and restarted.

10. An index created on more than one column is known as what kind of index?

4372.book Page 227 Wednesday, August 11, 2004 10:56 PM

4372.book Page 228 Wednesday, August 11, 2004 10:56 PM

In This Chapter

Chapter

11

Users and Security

If a company has more than one employee who needs access to the Oracle
database, then the security of the database is a prime concern for the DBA.
The data integrity of the database and the level of security in the database
are maintained, in part, by preventing unauthorized or unintentional
actions in the database.

Database security can be divided into roughly two areas: data security
and system security. Data security includes monitoring and assigning
users permissions to the various objects in the database. System security
covers the user login process, how much disk space is assigned to each
user, and what kinds of actions each user can perform.

◆

Creating user accounts

◆

Assigning user account characteristics

◆

Creating and assigning profiles

◆

Creating and assigning roles

◆

Granting and revoking system and
object privileges

◆

Statement and object auditing

4372.book Page 229 Wednesday, August 11, 2004 10:56 PM

230

Chapter 11

Creating User Accounts

username

An Oracle database account identifier
that, along with a password, allows a
user to connect to the database.

To connect to the Oracle database, a user must have an Oracle database account,
also known as a

username

. When you create the username, you can specify var-
ious other characteristics of the account, including a password, a profile, default
tablespaces, and disk space quotas.

The basic syntax to create a username is as follows:

CREATE USER

user

 <

other options

>;

At a minimum, you should assign a password to the account. Passwords and
the other user account options are discussed in the following sections.

Assigning Passwords

The password for the user account is typically assigned at the time the account
is created and then changed after the user logs in for the first time. Janice, the
DBA, creates an account for one of the new stocking managers with an initial
password of

DUCTTAPE6

:

create user scrawford identified by ducttape6;

User created.

Passwords are not case sensitive; for example,

DucTTape6

 or

ductTAPE6

would both be stored as

DUCTTAPE6

 in the database. To ensure that the password
won’t be easy to guess, it’s important to use a mixture of letters, numbers, and
punctuation characters in the password. The DBA can define additional rules for
allowable passwords by the use of a special stored function owned by the

SYS

schema. For example, the DBA may require that certain sensitive accounts such
as

HR

 have a password that is longer than the password for any other accounts.
The DBA or user can use the

ALTER

USER

 command to change the password:

alter user scrawford identified by circuitt40;

User altered.

To change a password from an iSQL*Plus session, the user can use the Pref-
erences link in the upper-right area of the browser. From within SQL*Plus, the
user can change the password using the SQL*Plus

PASSWORD

 command. The
advantage to these last two methods is that the old and new passwords are not
echoed to the screen:

SQL> password

Changing password for SCRAWFORD

4372.book Page 230 Wednesday, August 11, 2004 10:56 PM

Users and Security

231

Old password: *********

New password: ********

Retype new password: ********

Password changed

SQL>

Creating and Assigning Profiles

profile

A set of predefined resource parameters
that can be used to monitor and control
various database resources, such as CPU
time and number of disk reads against
the database.

Each username in the database has a profile associated with it. A

profile

 is a
set of predefined resource parameters that can be used to monitor and control
various database resources. The following are some examples of resources that
can be controlled in a profile:

◆

Concurrent connections to the database

◆

Maximum failed login attempts before the account is locked

◆

Elapsed time connected

◆

Continuous idle time connected

◆

CPU time used

◆

Disk reads performed

◆

How often a password needs to be changed

When an account is created, a profile can be specified; otherwise, Oracle
assigns a default profile. Not surprisingly, this profile is called

DEFAULT

. The ini-
tial values of the

DEFAULT

 profile allow for unlimited use of all resources.
At Scott’s widget company, the users in the stocking department are notorious

for leaving their sessions connected to the database and forgetting to log off
when they are finished. This consumes valuable memory resources, so Janice, the
DBA, decides to create a new profile in the database to make sure that users are
disconnected from the database after 15 minutes of idle time:

create profile st_user limit

 idle_time 15;

Profile created.

In the new

ST_USER

 profile just created, all resources are set to

UNLIMITED

except for the

IDLE_TIME

 resource, which has been set to 15 minutes. The DBA
modifies the recently created user to use the newly created profile:

alter user scrawford profile st_user;

User altered.

4372.book Page 231 Wednesday, August 11, 2004 10:56 PM

232

Chapter 11

For

SCRAWFORD

’s subsequent sessions, the session will be disconnected if the
session remains idle for 15 minutes.

Assigning Default Tablespaces and Quotas

When a user creates some type of object—a table, an index, a sequence, or
another object—that object uses space in one of the database’s tablespaces. In
addition, a user may need temporary space for sorting and other operations.
Each user has a default tablespace for permanent objects and a default tablespace
for temporary objects, although a user may explicitly create objects in a different
tablespace if the user has the proper permissions.

If a default permanent tablespace is not specified when the user account is cre-
ated, or a database-wide default permanent tablespace is not specified when the
database is created, the

SYSTEM

 tablespace is used. It is generally not a good idea
to leave

SYSTEM

 as the default tablespace. Since the

SYSTEM

 tablespace contains
all of the data dictionary objects, there is a high level of contention in the

SYSTEM

tablespace already, so any new user objects in the

SYSTEM

 tablespace might have
a negative impact on overall system performance.

Janice, the DBA, remedies this situation with the new user account and
changes the default tablespace:

alter user scrawford default tablespace users;

User altered.

Janice double-checks her work by querying the

DBA_USERS

 data dictionary view:

select username, default_tablespace,

 temporary_tablespace from dba_users

where username = 'SCRAWFORD';

USERNAME DEFAULT_TABLESPACE TEMPORARY_TABLESPACE

------------ -------------------- --------------------

SCRAWFORD USERS TEMP

1 row selected.

Janice makes a mental note to use the GUI-based Oracle Enterprise Manager
(OEM) tool or the web-based EM Database Control interface next time. The
OEM tool’s Create User facility, shown below, is not only easier to use, but it
also automatically specifies the

USERS

 tablespace as the default tablespace for
new users, among other defaults.

4372.book Page 232 Wednesday, August 11, 2004 10:56 PM

Users and Security

233

quota

A numeric limit on the amount of disk
space that a user can allocate within a
tablespace. The quota can also be spec-
ified as

UNLIMITED

.

The web-based EM Database Control interface provides similar functionality
when creating users.

4372.book Page 233 Wednesday, August 11, 2004 10:56 PM

234

Chapter 11

Although disk space gets cheaper every day, you may also want to limit how
much disk space each user can allocate in each tablespace. The limit on the
amount of disk space in a tablespace is called a

quota

. Even though each user-
name is assigned a default tablespace when the username is created, the quota
defaults to zero. Therefore, you must assign a quota to the user before that user
can create objects in the tablespace.

Since the new user,

SCRAWFORD

, is expected to create tables for other people
in the stocking department, Janice allocates 15MB of disk space in the

USERS

tablespace for

SCRAWFORD

:

alter user scrawford quota 15M on users;

User altered.

If Janice had specified

UNLIMITED

 instead of 15M,

SCRAWFORD

 would not
have any limits on how much space she can use in the

USERS

 tablespace for data-
base objects.

Granting and Revoking Privileges

privileges

The right to perform a specific action in
the database, granted by the DBA or
other database users.

Privileges

 are rights to execute specific SQL statements. The DBA grants privi-
leges to user accounts to control what users can do in the database. There are two
kinds of privileges: system privileges and object privileges. The

GRANT

 command
allocates system and object privileges to a user. The

REVOKE

 command removes
privileges from a user.

Roles provide an easy way to group privileges together and assign them to one
or more users in the database.

System Privileges

system privileges

Privileges that allow users to perform a
specific action on one or more database
objects or users in the database.

System privileges

 allow users to perform a specific action on one or more database
objects or users in the database. There are more than 160 system privileges avail-
able in the Oracle 10

g

 database. Typically, system privileges will fall into two gen-
eral categories: DBA privileges and user privileges. There is no distinction at the
database level between these two types of system privileges.

In general, system privileges that can affect the database as a whole are consid-
ered to be DBA privileges. The following are typical DBA privileges:

Privilege Description

CREATE USER Create a new database user

DROP USER Remove a database user

CREATE ANY TABLE Create a new table in any schema

4372.book Page 234 Wednesday, August 11, 2004 10:56 PM

Users and Security 235

System privileges that allow users to perform specific tasks within a single
schema are considered to be user privileges. The typical user privileges are gener-
ally a bit more innocuous than the DBA privileges, as you can see by the following
examples:

System privileges are granted with the GRANT command, which has the follow-
ing syntax:

GRANT sys_privilege [, sys_privilege ...]

 TO user [, user, role, PUBLIC ...];

Notice that the syntax makes it easy to grant a group of privileges all at once to
one user or to many users. Also, a privilege may be granted to a special class of
users called PUBLIC. When a privilege is granted to PUBLIC, all current and future
users will have that privilege.

The CREATE SESSION privilege is important because a user cannot log in to
the database without this privilege. Janice, the DBA, realizes that the new user
account she created did not have this privilege. In addition, the new user will be
creating new tables, so she needs the CREATE TABLE privilege. Janice applies both
of these privileges to SCRAWFORD using the GRANT command.

grant create session,

 create table to scrawford;

Grant succeeded.

The user SCRAWFORD can now log in and create tables in the database within the
SCRAWFORD schema.

The questions you may be asking are, “Why isn’t the CREATE SESSION privilege
automatic? Don’t we want everyone to be able to log in? Why would we create a
user who couldn’t log in?”

Privilege Description

CREATE TABLESPACE Create a new tablespace

AUDIT ANY Turn on or off database auditing

DROP ANY INDEX Drop an index in any schema

Privilege Description

CREATE SESSION Establish a connection to the database

CREATE TABLE Create a table in the user’s schema

CREATE PROCEDURE Create a stored function or procedure

4372.book Page 235 Wednesday, August 11, 2004 10:56 PM

236 Chapter 11

In some database application environments, it is beneficial to keep all of the
tables within a single schema for ease of maintenance, quota, and backups. You
might not, however, allow the schema owner to log in. In this way, the application
users can be tracked to know who used what table in the application’s schema. If
only the application’s username were used, you would not know which user per-
formed what action against the database. The DBA can set up the proper permis-
sions and synonyms for other users to access this new schema, without the need for
the application schema’s owner to ever log in to the database.

Object Privileges
object privileges
Privileges that allow users to manipu-
late the contents of database objects in
other schemas.

Object privileges allow users to manipulate the contents of database objects in
other schemas. Object privileges are granted on schema objects such as tables,
directories, and stored procedures. They are granted to a username in a different
schema. In other words, the owner of an object in a schema has all privileges on
the object and can grant privileges on the object to another user.

Typical object privileges include the following:

In addition to the ability of the user to grant privileges on objects to other
users, a user can grant the privilege for the grantee to subsequently grant the
same privilege to yet another user.

Object privileges are granted with a GRANT statement similar to that for grant-
ing system privileges:

GRANT obj_privilege [(column_list)]

 [, obj_privilege ...] ON object

 TO user [, user, role, PUBLIC ...]

 [WITH GRANT OPTION];

The column_list parameter is used if the object is a table and only certain
columns of the table are made available for updating by other users. The
WITH GRANT OPTION clause allows the grantee to pass the privilege on to yet
another user.

Privilege Description

SELECT Read (query) access on a table

UPDATE Update (change) rows in a table or view

DELETE Delete rows from a table or view

INSERT Add rows to a table or view

EXECUTE Run (execute) a stored procedure or function

INDEX Create an index on a table

4372.book Page 236 Wednesday, August 11, 2004 10:56 PM

Users and Security 237

The HR department at Scott’s widget company frequently receives requests to
update the EMPLOYEES table. The department asks Janice, the DBA, to make some of
the columns of the table available to all employees, so that they can make changes to
their phone numbers and e-mail addresses. The GRANT statement is as follows:

grant update (email, phone_number) on employees to public;

Now employees can update their records if they know their employee IDs. One of
the new employees uses the following SQL command to change her e-mail address:

update hr.employees set email='KSIMMONS'

where employee_id = 502;

1 row updated.

However, trying to update a different column in the table is not permitted:

update hr.employees set salary=25000

where employee_id = 502;

update hr.employees set salary=25000

 *

ERROR at line 1:

ORA-01031: insufficient privileges

In fact, even selecting rows from the table is disallowed:

select * from hr.employees

where employee_id = 502;

select * from hr.employees

 *

ERROR at line 1:

ORA-01031: insufficient privileges

Any user other than HR has only the object privilege on EMPLOYEES to update
the EMAIL and PHONE_NUMBER columns.

After a month or so, the HR department has decided that granting the privileges
on the two columns in the EMPLOYEES table was not a very good idea. Employees
were using the wrong employee number to update the EMPLOYEES table, and they
inadvertently updated the wrong e-mail and phone number information. To solve
the problem, Janice revokes the privileges on the EMPLOYEES table, as follows:

revoke update on employees from public;

Revoke succeeded.

4372.book Page 237 Wednesday, August 11, 2004 10:56 PM

238 Chapter 11

Notice that the REVOKE statement did not specify any columns in the
EMPLOYEES table. When revoking UPDATE privileges on a table, columns can-
not be specified. If the HR department wanted to continue to allow access to
one of the columns, a new GRANT statement specifying the desired column
would be issued after the REVOKE statement.

Creating and Assigning Roles
role
A named group of privileges created to
ease the administration of system and
object privileges.

A role is a named group of privileges. Using roles makes it easy for the DBA to
grant groups of privileges to users. Granting a role takes a lot fewer steps than
granting individual privileges. For example, if several users all require the same
15 privileges, it’s a lot easier to assign those 15 privileges to a role first and then
assign the role to each user who needs it.

The privileges granted to the role can be a combination of system and object
privileges. A user may be granted more than one role in addition to any system
or object privileges granted directly. Roles are created with the CREATE ROLE
statement. The basic syntax for CREATE ROLE is as follows:

CREATE ROLE <rolename> [IDENTIFIED BY <role_password>];

As the syntax indicates, a role may have a password. If a role requires a pass-
word, a user granted this role must use the SET ROLE command to use the priv-
ileges granted to the role.

The Order Entry department at Scott’s widget company wants to give
employees in certain departments an additional discount on orders placed. To
identify a customer as an employee, the Order Entry department will need access
to the EMPLOYEES and DEPARTMENTS tables in the HR schema. Janice, the DBA,
decides that using a role might be the best way to provide this access, since other
departments may be asking for this same functionality in the future.

CREATE
SESSION

SELECT
CREATE
TABLE

INSERT

Scott Betty John Joe

CREATE
SESSION

SELECT
CREATE
TABLE

INSERT

Scott Betty John Joe

Assigning Privileges Without Roles

Users

Privileges

GENUSER

Assigning Privileges With Roles

Users

GRANT

GRANT

GRANT

Privileges

Role

4372.book Page 238 Wednesday, August 11, 2004 10:56 PM

Users and Security 239

The first step is to create a role to hold the privileges. Janice creates the role
as follows:

create role hr_emp_dept;

Role created.

Next, the privileges on the tables must be added to the roles:

grant select on hr.employees to hr_emp_dept;

Grant succeeded.

grant select on hr.departments to hr_emp_dept;

Grant succeeded.

Finally, the role itself is granted to the user OE:

grant hr_emp_dept to oe;

Grant succeeded.

Now the user OE can read the contents of the EMPLOYEES and DEPARTMENTS
tables in the HR schema. In the future, to provide the same access to the HR tables
to other departments, only the last GRANT statement needs to be executed.

To check the roles granted to the OE user, Janice runs the following query
against the DBA_ROLE_PRIVS data dictionary view:

select grantee, granted_role from dba_role_privs

where grantee = 'OE';

GRANTEE GRANTED_ROLE

------------------------- ------------

OE CONNECT

OE RESOURCE

OE HR_EMP_DEPT

3 rows selected.

To find out which privileges are assigned to the role HR_EMP_DEPT, Janice
runs another query against the ROLE_TAB_PRIVS data dictionary view:

select role, owner, table_name, privilege from

 role_tab_privs where role='HR_EMP_DEPT';

4372.book Page 239 Wednesday, August 11, 2004 10:56 PM

240 Chapter 11

ROLE OWNER TABLE_NAME PRIVILEGE

----------------- -------- -------------------- ---------

HR_EMP_DEPT HR EMPLOYEES SELECT

HR_EMP_DEPT HR DEPARTMENTS SELECT

2 rows selected.

The role HR_EMP_DEPT has SELECT privileges against two tables in the HR
schema: EMPLOYEES and DEPARTMENTS.

Auditing
auditing
Storing information about activities in
the database in the SYS.AUD$ table.
Auditing is controlled by the DBA.

Auditing in the Oracle database stores information about database activities.
The activities to be audited are specified by the DBA. Once enabled, auditing
records the activity in the AUD$ table, owned by SYS.

Auditing can be fine-tuned in a number of ways. It can be restricted to par-
ticular objects or to specific users or based on whether the action is successful or
unsuccessful. In other words, you might not care if users who are granted rights
to a table access the table, but you might want to know when users without
rights to a table try to access that table.

The types of auditing can be divided into two broad categories: statement
auditing and object auditing. The general syntax for AUDIT is as follows:

AUDIT {statement_clause | object_clause}

 [BY SESSION | BY ACCESS]

 [WHENEVER [NOT] SUCCESSFUL];

The statement_clause allows you to specify not only the SQL statement to
audit but also, optionally, the username that will be running the SQL statement.
The object_clause allows you to specify a particular object to audit.

The BY SESSION clause means that an audit record is written to SYS.AUD$ only
once in the session that triggered the audit, regardless of how many times the action
was performed. BY ACCESS will record all occurrences of the specified action.

The NOAUDIT command turns off auditing and has the same syntax as AUDIT,
except that BY SESSION or BY ACCESS is not specified when using NOAUDIT.

Statement Auditing
Statement auditing allows the DBA to trigger audit records in SYS.AUD$ when a
given SQL statement is executed, either for all users or a particular group of users.

Recently, Janice, the DBA, created a new user SCRAWFORD and granted the
CREATE TABLE privilege to SCRAWFORD. Janice is concerned that the new user is

4372.book Page 240 Wednesday, August 11, 2004 10:56 PM

Users and Security 241

having trouble creating tables, so she decides to turn on auditing to see how often
the new user’s CREATE TABLE statements are failing:

audit create table by scrawford

 whenever not successful;

Audit succeeded.

In the next few days, the user SCRAWFORD runs a variety of CREATE TABLE
statements, such as the following:

create table temp_emp

 (employee_id number(6),

 email varchar2(25));

Table created.

create table temp_emp

 (employee_id number(6),

 email varchar2(25));

ERROR at line 1:

ORA-00955: name is already used by an existing object

The user’s second attempt failed because the table already exists.
Janice could review the SYS.AUD$ table, but she knows that the data dictio-

nary view called DBA_AUDIT_TRAIL formats the records from SYS.AUD$ into a
more readable format. She checks that view:

select username, obj_name, timestamp, action_name from

dba_audit_trail;

USERNAME OBJ_NAME TIMESTAMP ACTION_NAME

------------- ------------ --------- ------------

SCRAWFORD TEMP_EMP 26-OCT-02 CREATE TABLE

1 row selected.

The OBJ_NAME column contains the name of the object affected by the state-
ment, and the ACTION_NAME column contains the type of statement executed.
Because Janice is auditing only unsuccessful uses of the CREATE TABLE statement,
there is only one row inserted into SYS.AUD$, even though two CREATE TABLE
statements were executed.

4372.book Page 241 Wednesday, August 11, 2004 10:56 PM

242 Chapter 11

The following week, Janice turns off the CREATE TABLE auditing with the fol-
lowing command:

noaudit create table by scrawford;

Noaudit succeeded.

Rows in the SYS.AUD$ table (and as a result, the DBA_AUDIT_TRAIL view)
remain there until they are removed by the DBA.

Object Auditing
Object auditing allows the DBA to monitor access to specific objects in the data-
base, along with the operations performed on those objects. For example, the DBA
may want to see how often SELECT statements occur on a particular table in a cer-
tain period of time versus how many UPDATE statements occur against that same
table. As with statement auditing, object auditing can also be further refined to
audit only successful or only unsuccessful statements against the object.

Janice, the DBA, wants to find out how often the EMPLOYEES table in the HR
schema is being accessed by SELECT, INSERT, UPDATE, and DELETE statements and
by whom. She decides that auditing the table for a few hours one day would give
her the information that she needs. The AUDIT statement she runs looks like this:

audit select, insert, update, delete

 on hr.employees;

Audit succeeded.

After a few hours, she reviews the data dictionary view DBA_AUDIT_TRAIL to
see what kind of activity has been performed against the EMPLOYEES table:

select username, obj_name,

to_char(timestamp,'dd-mon-yy hh:miPM') "Date/Time" from

dba_audit_trail where obj_name = 'EMPLOYEES';

USERNAME OBJ_NAME Date/Time

--------------- --------------- ------------------

HR EMPLOYEES 27-oct-02 08:53AM

HR EMPLOYEES 27-oct-02 08:59AM

HR EMPLOYEES 27-oct-02 10:23AM

HR EMPLOYEES 27-oct-02 10:56AM

OE EMPLOYEES 27-oct-02 11:59AM

5 rows selected.

4372.book Page 242 Wednesday, August 11, 2004 10:56 PM

Users and Security 243

From this query, she sees that the activity so far has been very light, with four
accesses by HR and one by OE, all in the morning. Janice turns off the EMPLOYEE
table auditing using the NOAUDIT command:

noaudit select, insert, update, delete

 on hr.employees;

Noaudit succeeded.

As with statement auditing, the records in SYS.AUD$ remain there until they
are removed by the DBA.

Terms to Know
auditing quota

object privileges role

privileges system privileges

profile username

4372.book Page 243 Wednesday, August 11, 2004 10:56 PM

244 Chapter 11

Review Questions
1. Privileges can be grouped and assigned as a unit by using what database object?

2. When granting privileges with the GRANT statement, what does the clause
WITH GRANT OPTION do?

3. DROP USER and CREATE SESSION are examples of what kind of privileges?

4. What is the name of the table, owned by the user SYS, that contains all
audit records?

5. Write a SQL statement that will create audit records when UPDATE statements
fail against the HR.EMPLOYEES table.

6. Which system privilege allows a user to make a connection to the database?

7. In addition to assigning a default tablespace to a user, what else must be
assigned to a user before that user can create objects in the tablespace?

8. Which tablespace is assigned to a user for the user’s permanent objects if one
is not explicitly assigned in the CREATE USER statement?

9. DELETE, INSERT, and EXECUTE are examples of what kind of privileges?

10. A profile controls which kinds of database resources?

11. Which keyword can be used in a GRANT command to assign one or more priv-
ileges to every user in the database?

4372.book Page 244 Wednesday, August 11, 2004 10:56 PM

In This Chapter

Chapter

12

Making Things Run
Fast (Enough)

Tuning a database is an ongoing job for the busy DBA. Users never seem
to stop complaining about queries running slowly. And once you think
that everything is at peak performance, a new application is added to the
mix, a new server is added to the server pool, the volume of orders for
widgets doubles mysteriously, or a data warehouse is using up more and
more of the server’s resources.

In this chapter, we’ll talk about several ways to optimize the perfor-
mance of the database, beginning with Oracle’s Tuning Methodology.
Then we’ll cover indexes, data design tuning, application tuning, and
memory tuning.

◆

Oracle’s Tuning Methodology

◆

Oracle index types and index
management

◆

Partitioned tables

◆

Materialized views

◆

Oracle application tuning techniques

◆

Oracle optimizer modes

◆

Oracle memory tuning

4372.book Page 245 Wednesday, August 11, 2004 10:56 PM

246

Chapter 12

Oracle’s Tuning Methodology

When tuning a newly developed database system or a system that has experi-
enced major changes, you can follow

Oracle’s Tuning Methodology

. This meth-
odology prioritizes the steps to take when optimizing a database system:

Oracle’s Tuning Methodology

A tuning method recommended by Oracle
Corporation that prioritizes areas in tuning
database performance. The six areas, in
order of priority, are data design, applica-
tion design, memory allocation, I/O and
physical structures, resource contention,
and underlying platform.

The tuning focus areas are as follows:

Data design

This step focuses on what kinds of indexes to create and on
which tables, using views and other variations on the basic table to achieve
better performance, and similar considerations.

Application design

This area is somewhat intertwined with data design,
especially when analyzing the SQL statements that run against the tables
and indexes. Application design focuses on how to use Oracle tools to
write effective and efficient SQL

SELECT

 and other DDL statements
against the database tables.

Memory allocation

This step is concerned with making sure that you not
only have enough system memory overall but also are dividing that memory
judiciously among the main Oracle memory structures. It is possible to allo-
cate too much memory for one Oracle memory structure and potentially
have an adverse performance impact on another Oracle memory structure.

I/O and physical structures

This step tunes the communication between
the memory structures and disk structures to reduce the amount of time it
takes to retrieve data blocks from disk or to avoid disk I/O completely.

Resource contention

This area analyzes the Oracle structures that con-
trol concurrent access to the various Oracle structures directly and indi-
rectly accessible by the user. At the table level, this means locking rows
versus locking the entire table, for example. At the block level, this means
allowing more than one user to insert or update row data concurrently.

Underlying platform

This step deals primarily with placing Oracle file
objects on the appropriate physical disk devices, as well as taking advan-
tage of multiple CPUs on a server for improving the overall throughput of
queries and data loads.

Priority Tuning Focus

1 Data design

2 Application design

3 Memory allocation

4 I/O and physical structures

5 Resource contention

6 Underlying platform

4372.book Page 246 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough)

247

Ninety percent or more of all tuning issues fall within the first three areas—
data design, application design, and memory allocation—and they are the focus
of this chapter.

Indexes

Indexes are used to significantly boost the performance of queries by reducing
the amount of time needed to retrieve rows from a table. However, too many
indexes on a table can be just as bad as not enough indexes.

Once you decide to create an index, you need to choose which type of index
will work best. After you’ve created an index, you may need to change or drop
it. Before dropping an index, you may want to monitor it to see how often it is
used over a given time span. Finally, you can use data dictionary views to see the
structure of the indexes in the database.

When to Create Indexes

In an environment where there are frequent insert, update, and delete operations
on a table, it’s wise to minimize the number of indexes on that table. For each
row that is inserted, updated, or deleted, all indexes on that table must be
updated also, which can increase the response time for the user and raise the load
on the Oracle server.

An index on a table column makes sense when the column is frequently ref-
erenced in a

WHERE

 clause of a

SELECT

 statement or in a join condition. If the
table is large and the query is expected to return a small percentage of the rows,
an index makes sense there, too. Although there is some overhead when travers-
ing an index looking for a column value, the overhead is far less than the time it
would take to search the table itself for the value in question. Oracle’s general
guideline is that an index on a column makes sense if most queries on the table
are expected to retrieve less than about 4 percent of the rows.

NULL

 values are not included in an index, so an index is recommended if the
table is large and a column contains a lot of

NULL

 values. Any queries on non-

NULL

 column values will likely use the index, while queries on

NULL

 values in the
column will not.

Index Types

b-tree index

A type of index structure that resembles
an inverted tree. The branches of a b-tree
index are balanced. Traversing the tree
for any index value reads the same num-
ber of blocks.

Indexes can be divided into two general categories: b-tree and bitmap. They both
serve the same purpose: to reduce the amount of time a query takes to retrieve
rows from a table. However, they are constructed completely differently and are
chosen based on the expected type and distribution of the data in the column to
be indexed.

4372.book Page 247 Wednesday, August 11, 2004 10:56 PM

248

Chapter 12

B-tree Indexes

branch blocks

Index blocks in the traversal path of a b-tree
index that either point to branch blocks at
the next level or point to leaf blocks.

A

b-tree index

 looks like an inverted tree with

branch blocks

 and

leaf blocks

.
B-tree stands for balanced-tree, because the search of the tree for a given table
column’s key value always traverses the same number of levels in the tree to find
the leaf block containing the address of the desired row. B-tree indexes are the
most common type of index and are created by default. The following illustrates
how a b-tree index works.

leaf blocks

Index blocks at the bottom of a b-tree
index that contain

ROWID

s to the rows
in the table containing the desired
index value.

In this example, the

EMPLOYEE_ID

 column of the

EMPLOYEES

 table is indexed.
The b-tree has a depth of three, and each block has up to three entries. Each of
the branch blocks at levels one and two contains entries that further subdivide the
search and point to successive branch blocks, until the search reaches a leaf block.
If the value is in a leaf block, the entry in that leaf block contains the address of the
row in the table; this is called a

ROWID

 and is unique across the entire database.

Branch Block: keys

Branch Blocks: keys

Leaf Blocks: keys + ROWIDS

Index Block
Pointers

Index Block
Pointers

Index Block
Pointers

109

112

103
105

105
107
108

109
110
111

112
115
118

103
104

100
101
102

The Pseudo-column

ROWID

The pseudo-column

ROWID

 exists for every row of every table in the database and is
unique across the entire database. It is represented externally by an 18-character
string of uppercase and lowercase letters and numbers.

select dummy, rowid from dual;

D ROWID

- ------------------

X AAAADeAABAAAAZSAAA

1 row selected.

4372.book Page 248 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough)

249

cardinality

The number of distinct values in a col-
umn of a table.

Notice that the leaf blocks are also linked horizontally. Sometimes, examining
only the leaf blocks for a match, rather than starting at the root of the tree, is a
more efficient way to conduct the index search.

ROWID

A unique identifier for a row in a table,
maintained automatically in the table by
the Oracle server.

ROWID

s are unique
throughout the database.

B-tree indexes are good for columns with high

cardinality

, which are columns
that have many distinct values. For example, a column containing last names and
a column containing zip codes have high cardinality; a column containing a gen-
der code has low cardinality.

A b-tree index can be created with a few different options:

unique index

A b-tree index whose keys are not
duplicated.

Unique or nonunique

In a

unique index

, there are no duplicate values.
An error is returned if you try to insert two rows into a table with the same
index column values. By default, an index is nonunique.

reverse key index

A b-tree index whose keys have their byte
order reversed to improve the perfor-
mance of an application by spreading
out the key values for adjacent index val-
ues to different leaf blocks.

Keys stored in reverse order

A

reverse key index

 stores the key values in
reverse order. For example, if an indexed column contains the value 40589,
the value would be stored as 98504 in a reverse key index. In applications
that insert rows in the ascending order of the indexed column, a reverse key
index may improve the performance of applications by reducing the conten-
tion (concurrent access by several users) on a particular leaf block.

function-based index

A b-tree index that is created based on
an expression involving the columns of a
table, instead of on a single column or
columns in the table.

Function-based

An index created on some kind of transformation of one
or more columns in the table is known as a

function-based index

. This type
of index is created on an expression, instead of on a column of the data-
base. For example, if the database users frequently search on the fourth
and successive characters of the

JOB_ID

 column, an index based solely on
the

JOB_ID

 column would not be useful to locate a row in the table. How-
ever, a function-based index on the expression

SUBSTR(JOB_ID,4)

 would
help speed queries searching on the fourth and successive characters of the

JOB_ID

 column.

index-organized table (IOT)

A b-tree index that stores both the data
and the index in the same segment.

Index-organized table

An

index-organized table (IOT)

 is a specialized
form of a b-tree index that stores both the data and the index in the same
database segment. An IOT has advantages for tables that are primarily
lookup tables. For example, a state code table, where the access of the table
is primarily via the primary key, would be a good IOT candidate. When a
state code lookup occurs (for example, WI), the state name (Wisconsin)
resides in the index block itself, saving an extra disk I/O of a block in a
standard table.

Bitmap Indexes

bitmap index

An index that maintains a binary string of
ones and zeros for each distinct value of
a column within the index.

Bitmap indexes are the other major type of index. As the name implies, a

bitmap
index

 uses a string of binary ones and zeros to represent the existence or nonexist-
ence of a particular column value. For each distinct value of a column, a string of
binary digits with a length equal to the number of rows in the table is stored. There-
fore, bitmap indexes are recommended for indexing low-cardinality columns. Using
bitmap indexes makes multiple

AND

 and

OR

 operations against several table columns
very efficient in a query. The following illustrates how a bitmap index works.

4372.book Page 249 Wednesday, August 11, 2004 10:56 PM

250

Chapter 12

In the example, the

GENDER

 column has a cardinality of two, and therefore it
is a good candidate for a bitmap index. Two bitmaps are maintained in the bit-
map index, each with a length equal to the number of rows in the table.

Creating bitmap indexes on high-cardinality columns makes the index signif-
icantly more expensive to maintain during row insertions and deletions. Bitmap
indexes for high-cardinality columns are not recommended.

There are exceptions to every rule. If you suspect a bitmap index might work better
than a b-tree index, even on a high-cardinality column, create both types of indexes
on the column in question (but not at the same time!). Using the tools discussed later
in this chapter, measure the resource consumption for a typical query using the
indexed column in the

WHERE

 clause, and see which type of index provides the lowest
resource usage and response time.

Bitmap indexes are common in data warehouse environments, where many
low-cardinality columns exist, DML is done in bulk, and query conditions
against combinations of these columns are used frequently.

Creating, Dropping, and Maintaining Indexes

The

CREATE

INDEX

 command is used to create a b-tree or bitmap index. The
basic syntax for

CREATE

INDEX

 is as follows:

CREATE [BITMAP | UNIQUE] INDEX

indexname

 ON

tablename

 (

column1

,

column2

, ...) [REVERSE];

If

BITMAP

 is not specified, a b-tree index is assumed. The

UNIQUE keyword
ensures that the indexed column or columns are unique within the table; the
REVERSE keyword creates a reverse key index. The name of the index must be

AAAHM7AAFAAAABWAAA King Steven M
AAAHM7AAFAAAABWAAB Kochhar Neena F
AAAHM7AAFAAAABWAAC De Haan Lex M
AAAHM7AAFAAAABWAAD Hunold Alexander M
AAAHM7AAFAAAABWAAE Ernst Janice F
AAAHM7AAFAAAABWAAF Austin David M
AAAHM7AAFAAAABWAAG Pataballa Valli M
AAAHM7AAFAAAABWAAH Lorentz Diana F
AAAHM7AAFAAAABWAAI Greenberg Nancy F
AAAHM7AAFAAAABWAAJ Faviet Daniel M

1
0
1
1
0
1
1
0
0
1

0
1
0
0
1
0
0
1
1
0

EMPLOYEES table:
ROWID and name, gender columns

Bitmap Index
on Gender

M F

4372.book Page 250 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough) 251

unique within the schema that owns the index. Indexes can be dropped with the
DROP INDEX command:

DROP INDEX indexname;

At Scott’s widget company, Janice, the DBA and senior developer, has been
asked to add a GENDER column to the EMPLOYEES table. She modifies the table
and adds the new column using the following ALTER TABLE statement:

alter table employees

add (gender char(1));

Table altered.

Over the next week or two, the HR department populates the new GENDER
column with either an M or an F. As other departments start running queries
against the EMPLOYEES table using the new GENDER column, they start complain-
ing that the queries are running slower than when they run queries against an
indexed column, such as EMPLOYEE_ID or DEPARTMENT_ID. Janice also knows
that a copy of the EMPLOYEES table will be used in a data warehouse environ-
ment, so she decides that a bitmap index might be appropriate in this situation.
She uses the BITMAP option of the CREATE INDEX statement, as follows:

create bitmap index

bm_employees_gender on employees(gender);

Index created.

The users also tell Janice that they don’t use the index on the employee’s
name, so she drops the index on the last and first name columns:

drop index emp_name_ix;

Index dropped.

Two days later, she gets a call from the HR department, requesting that the
employee name index be re-created:

create index emp_name_ix on

 employees(last_name, first_name);

Index created.

In the next section, you’ll learn how to monitor the usage of an index to get
an indication of how often an index is actually being used.

4372.book Page 251 Wednesday, August 11, 2004 10:56 PM

252 Chapter 12

As her last task for the day, Janice thinks that the primary key of the
EMPLOYEES table might work better as a reverse key index, so she rebuilds the
index to re-create it:

alter index emp_emp_id_pk rebuild reverse;

Index altered.

In addition to converting the index type, the ALTER INDEX statement can also allow
the table to remain available during the rebuild operation by using the ONLINE
option. Note that more space is required in the database’s temporary tablespace
for this operation.

Monitoring Indexes
As Janice just discovered, she can’t always rely on the user community to portray
an accurate picture of what indexes are actually being used. Starting with
Oracle9i, Oracle has a feature that can monitor an index and set a flag in the
dynamic performance view V$OBJECT_USAGE. To turn on the monitoring pro-
cess, you use the MONITORING USAGE clause of the ALTER INDEX statement.

Janice wants to see if the EMP_NAME_IX index is going to be used in the next
eight hours. At 9 a.m., she turns on the monitoring process with this statement:

alter index hr.emp_name_ix monitoring usage;

Index altered.

She immediately checks V$OBJECT_USAGE to make sure the index is being
monitored:

select index_name, table_name, monitoring, used, start_
monitoring

from v$object_usage where index_name = 'EMP_NAME_IX';

INDEX_NAME TABLE_NAME MON USE START_MONITORING

------------- ---------------- --- --- -------------------

EMP_NAME_IX EMPLOYEES YES NO 06/02/2004 08:57:44

1 row selected.

During the day, one of the HR employees runs this query:

select employee_id from employees

where last_name = 'King';

4372.book Page 252 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough) 253

EMPLOYEE_ID

 100

 156

2 rows selected.

At around 5 p.m., Janice checks V$OBJECT_USAGE again to see if the index
was used:

select index_name, table_name, monitoring, used, start_
monitoring

from v$object_usage where index_name = 'EMP_NAME_IX';

INDEX_NAME TABLE_NAME MON USE START_MONITORING

------------- ---------------- --- --- -------------------

EMP_NAME_IX EMPLOYEES YES YES 06/02/2004 08:57:44

1 row selected.

Janice has decided that the index should stay, since it was used at least once
during the day. She turns off monitoring with the NOMONITORING USAGE clause
and checks the V$OBJECT_USAGE view one more time to verify this:

alter index hr.emp_name_ix nomonitoring usage;

Index altered.

select index_name, table_name, monitoring, used, end_
monitoring

from v$object_usage where index_name = 'EMP_NAME_IX';

INDEX_NAME TABLE_NAME MON USE END_MONITORING

------------ ----------------- --- --- -------------------

EMP_NAME_IX EMPLOYEES NO YES 06/02/2004 17:00:40

1 row selected.

Because V$OBJECT_USAGE is a dynamic performance view, the contents will not be
retained in the view once the database is shut down and restarted.

4372.book Page 253 Wednesday, August 11, 2004 10:56 PM

254 Chapter 12

Data Dictionary Index Information
As you’ve learned, data dictionary views can provide you with information
about all database objects. The two key data dictionary views relating to indexes
that every DBA should know about are DBA_INDEXES and DBA_ IND_COLUMNS,
which contain the names of the indexes and the names of the indexed columns,
respectively.

DBA_INDEXES
To find out the owners, tablespace names, and index type for all indexes on the
EMPLOYEES table, Janice constructs a query against the DBA_INDEXES data dic-
tionary view, as follows:

select owner, index_name, index_type, tablespace_name from

dba_indexes where table_name = 'EMPLOYEES';

OWNER INDEX_NAME INDEX_TYPE TABLESPACE_NAME

------- -------------------- ------------- ---------------

HR EMP_EMAIL_UK NORMAL EXAMPLE

HR EMP_EMP_ID_PK NORMAL/REV EXAMPLE

HR EMP_DEPARTMENT_IX NORMAL EXAMPLE

HR EMP_JOB_IX NORMAL EXAMPLE

HR EMP_MANAGER_IX NORMAL EXAMPLE

HR UK1_EMPLOYEES NORMAL EXAMPLE

HR BM_EMPLOYEES_GENDER BITMAP EXAMPLE

HR EMP_NAME_IX NORMAL EXAMPLE

8 rows selected.

All of the indexes on the EMPLOYEES table are normal b-tree indexes, except
that the primary key index EMP_EMP_ID_PK is a reverse key b-tree index and the
new BM_EMPLOYEES_GENDER index is a bitmap index.

DBA_IND_COLUMNS
To further drill down into the details of the indexes on the EMPLOYEES table,
Janice queries the DBA_IND_COLUMNS table to find out which columns are in the
EMP_NAME_IX index:

select index_name, table_name,

 column_name, column_position from

dba_ind_columns where index_name = 'EMP_NAME_IX';

4372.book Page 254 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough) 255

INDEX_NAME TABLE_NAME COLUMN_NAME COLUMN_POSITION

------------- ------------ ------------- ---------------

EMP_NAME_IX EMPLOYEES LAST_NAME 1

EMP_NAME_IX EMPLOYEES FIRST_NAME 2

2 rows selected.

From this output, Janice can determine that EMP_NAME_IX is a composite
index consisting of two columns: LAST_NAME and FIRST_NAME.

Data Design Tuning
Oracle has a number of solutions to improve performance from a data design
perspective. We will cover two techniques in this section: partitioned tables and
materialized views.

Partitioned Tables
partitioned table
A table that stores its rows in smaller
and more manageable pieces based
on the values of one or more columns
of the table.

When tables grow very large, it becomes advantageous to use partitioned tables
to divide the rows of a table into more manageable pieces based on the values of
one or more columns. Because the data is subdivided into smaller pieces, it makes
the DBA’s job easier when doing backups; each partition of a partitioned table
may be backed up or restored separately. One partition of a table can be in the
process of being repaired, while the rest of the partitions are available to the
database users, increasing the overall availability of the table.

Partitioned tables can have a performance benefit for database users. In many
cases, a query may need to retrieve rows from only a subset of the partitions of
a partitioned table. As a result, either index accesses or direct table accesses are
reduced because the partition key automatically limits the partitions that need to
be searched for the rows requested by the query.

There are four different ways to partition a table:

Range partitioning With this type, the partition keys are in a range. For
example, each partition can hold sales data by quarter or for a given month
date range.

Hash partitioning When the sizes of each partition may vary widely or
you do not know how much data will end up in a partition, hash partition-
ing is useful. This type of partitioning uses an algorithm on the partition
key column to automatically balance the number of rows that end up in
each partition.

List partitioning If you know the values that will divide the data into par-
titions, but they are not necessarily sequential either numerically or alpha-
betically, list partitioning is useful. For example, it may be desirable to store

4372.book Page 255 Wednesday, August 11, 2004 10:56 PM

256 Chapter 12

all rows with state codes by region into separate partitions. Rows with state
codes of WI, IL, IA, IN, and MN would reside in the MIDWEST partition.

Composite partitioning This is a hybrid method that uses the range par-
tition method for partitions and the hash method for subpartitions.

Creating a partitioned table is very similar to creating a nonpartitioned table,
with the addition of the PARTITION BY clause:

CREATE TABLE ...

PARTITION BY {RANGE | LIST | HASH} (column1, column2, ...)

 [SUBPARTITION BY {HASH | LIST} (column1, column2, ...)

 SUBPARTITIONS n]

Note that the SUBPARTITION BY HASH or LIST clause is valid only if the primary
partitioning is BY RANGE. Also, specifying multiple columns in the PARTITION BY
clause is valid only for HASH and RANGE partitioning, since LIST partitioning assigns
rows to a partition based on the value of a single column.

The Order Entry department has asked Janice, the DBA, to look into improv-
ing the performance of the OE.ORDERS table. Response time against this table has
been increasing, and the customer service representatives have reported that the
web customers are waiting too long for their orders to be confirmed after clicking
the Place My Order button on the checkout page.

Janice decides that since the ORDERS table now has hundreds of thousands of
rows, she will partition the table by month. Partitioning by a date range makes
sense, since rows from the ORDERS table are rarely accessed across more than one
month. Janice retrieves the DDL for the original CREATE TABLE statement:

create table orders (

 order_id number (12) not null,

 order_date date

 constraint order_date_nn not null,

 order_mode varchar2 (8),

 customer_id number (6)

 constraint order_customer_id_nn not null,

 order_status number (2),

 order_total number (8,2),

 sales_rep_id number (6),

 promotion_id number (6),

 constraint order_mode_lov

 check (order_mode in ('direct','online')) ,

 constraint order_total_min

 check (order_total >= 0),

 constraint order_pk primary key (order_id)) ;

4372.book Page 256 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough) 257

Janice creates a new version of the table for testing on the development server
by adding partition-related options to the CREATE TABLE statement:

create table new_orders (

 order_id number (12) not null,

 order_date date

 constraint new_order_date_nn not null,

 order_mode varchar2 (8),

 customer_id number (6)

 constraint new_order_customer_id_nn not null,

 order_status number (2),

 order_total number (8,2),

 sales_rep_id number (6),

 promotion_id number (6),

 constraint new_order_mode_lov

 check (order_mode in ('direct','online')) ,

 constraint new_order_total_min

 check (order_total >= 0),

 constraint new_order_pk primary key (order_id))

 partition by range (order_date)

 (partition FY2004_07 values less than

 (to_date('08012004','MMDDYYYY')),

 partition FY2004_08 values less than

 (to_date('09012004','MMDDYYYY')),

 partition FY2004_09 values less than

 (to_date('10012004','MMDDYYYY')),

 partition FY2004_10 values less than

 (to_date('11012004','MMDDYYYY')),

 partition FY2004_11 values less than

 (to_date('12012004','MMDDYYYY')),

 partition FY2004_12 values less than

 (to_date('01012005','MMDDYYYY')),

 partition FY9999 values less than (maxvalue)

);

In the new table NEW_ORDERS, all orders before August 1, 2004, will end up
in the first partition, FY2004_07. At the other end are partitions defined for the
rest of 2004. It is assumed that for 2005, the DBA will create additional parti-
tions on this table to accommodate orders placed in 2005. In the meantime, any
orders with a date mistakenly keyed in as 2005 or later will be stored in the par-
tition FY9999. If this partition were not created, any INSERT statement contain-
ing a date value outside the range of any partition would return an error.

4372.book Page 257 Wednesday, August 11, 2004 10:56 PM

258 Chapter 12

Materialized Views
materialized view
A view that stores the results of the
query the view is based on, in addition
to the SQL join statement of the view
itself. Materialized views may be
refreshed manually (on demand), on a
regular basis, or when there is a change
in the underlying tables on which that
view is based.

A materialized view can help speed queries by storing data in a previously joined
or summarized format. Unlike a traditional view, which stores only the query
and runs that query every time the view is accessed, a materialized view stores the
results of the query in addition to the SQL statements of the view itself. Because
the materialized view already contains the results of the view’s underlying query,
using a materialized view can be as fast as accessing a single table.

But what if the underlying tables of the materialized view change? A materi-
alized view can be refreshed either manually or automatically. If the refresh is
automatic, it can occur as a scheduled event, such as every day at 2 a.m., or the
materialized view can be refreshed automatically whenever the underlying tables
of the view change. Materialized views can be refreshed manually by using the
REFRESH procedure in the system package DBMS_MVIEW.

To further enhance the performance of a materialized view, it can be indexed
and partitioned in the same way as any standard table.

Another key performance enhancement related to materialized views is the
QUERY REWRITE feature. If a materialized view is created with the QUERY REWRITE
option, any user SQL statements that use tables and columns similar to those
found in the materialized view’s query are automatically rewritten to use the mate-
rialized view directly. In other words, the database user does not need to know
about the existence of the materialized view to take advantage of the pre-joined
result of the materialized view.

The syntax for creating a materialized view is similar to that of the CREATE VIEW
command from Chapter 10, “Creating and Maintaining Database Objects”:

CREATE MATERIALIZED VIEW materialized_view_name

 [ENABLE QUERY REWRITE] AS subquery;

At Scott’s widget company, Janice has been helping some of the users in the
HR department with their queries. She notices that they often use the view she
created for them earlier with this statement:

create view

 emp_dept(emp_id, lname, fname, dept_id, dname) as

select employee_id, last_name, first_name,

 department_id, department_name

from employees join departments using(department_id);

In its present form, this view must perform the join every time it is
accessed. Janice thinks that rewriting this view as a materialized view will
not only improve the performance of the view but may also improve the per-
formance of other queries that join the EMPLOYEES and DEPARTMENTS table

4372.book Page 258 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough) 259

using Oracle’s QUERY REWRITE feature. Janice creates the materialized view
as follows:

create materialized view emp_dept

 enable query rewrite

as select employee_id, last_name, first_name,

 department_id, department_name

from employees join departments using(department_id);

Materialized view created.

The new materialized view looks like any table or regular view:

describe emp_dept

 Name Null? Type

 ---------------------------- -------- --------------

 EMP_ID NOT NULL NUMBER(6)

 LNAME NOT NULL VARCHAR2(25)

 FNAME VARCHAR2(20)

 DEPT_ID NOT NULL NUMBER(4)

 DNAME NOT NULL VARCHAR2(30)

The ENABLE QUERY REWRITE clause directs Oracle to use the materialized view
instead of the EMPLOYEES and DEPARTMENTS table when a user writes a query
similar to the one used to create the materialized view.

To manually refresh the view, Janice uses the DBMS_MVIEW package:

exec dbms_mview.refresh('emp_dept');

PL/SQL procedure successfully completed.

SQL Application Tuning
After you’ve created the optimal tables, indexes, and other database objects, the
next step in your quest to improve the performance of the database is to review
the users’ SQL commands. You can use some of Oracle’s GUI-based and web-
based tools, such as Top SQL and Explain Plan, to identify and analyze the SQL
commands that are not only frequently executed but also use the most resources.
Also, you can help the Oracle optimizer do its job of deciding the best way to run
a specific query.

4372.book Page 259 Wednesday, August 11, 2004 10:56 PM

260 Chapter 12

Top SQL Tool
Top SQL tool
A GUI-based Oracle tool that can identify
SQL statements that may be consuming
too many system resources and therefore
may be good candidates for tuning.

The Top SQL tool can identify SQL statements that may be causing performance
problems in the database, such as by using too much CPU or reading blocks from
disk instead of from the cache. Even if the SQL command itself does not use
many resources, it may still be a candidate for tuning if it is executed hundreds
of times an hour!

The Top SQL tool is available in Oracle9i through the Oracle Enterprise
Manager (OEM) console, via the Diagnostics Pack pull-out, as shown below.

The Top SQL tool shows a number of statistics for each SQL command exe-
cuted, such as disk reads, buffer reads (data is already available in the buffer
cache and does not need a read from disk), CPU time used, and the number of
executions. The following illustration shows an example of a Top SQL window.

4372.book Page 260 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough) 261

In this example, the SQL statement that joins the EMPLOYEES and DEPARTMENTS
table has a high number of executions relative to the other user and system SQL state-
ments. It may be a good candidate for analysis, even though all of the data the query
needed was already in memory, as indicated by the Disk Reads Per Execution statistic.

As of Oracle 10g, you can use the web-based EM Database Control to identify
SQL statements that may be using an excessive amount of system resources. The
Top SQL link is available from multiple places within the EM Database Control
environment.

Clicking the Top SQL link displays the top SQL statements in terms of CPU
usage within the selected time period.

4372.book Page 261 Wednesday, August 11, 2004 10:56 PM

262 Chapter 12

Clicking one of the top SQL statements in the list displays the SQL statement
itself along with various statistics and a greater wealth of other information
about the SQL statement, including execution history and whether this SQL
statement has been tuned.

More information about the Oracle optimizer and how you can tune these
SQL statements is presented later in this chapter.

Explain Plan Graphical Tool
Explain Plan tool
A GUI-based Oracle tool that details the
steps in which a SQL statement is exe-
cuted, as well as what method Oracle
used to access the tables in the query.

Oracle9i’s Explain Plan tool can be launched directly or from the Top SQL tool.
It shows in a step-by-step fashion how a SQL statement is processed and how each
of the tables in the query is accessed—for example, by an index or by reading the
entire table. With the statement in question highlighted in the Top SQL window,
select Drilldown � Explain Plan to bring up the Explain Plan analysis window, as
shown below.

4372.book Page 262 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough) 263

The Explain Plan window is divided into three horizontal sections. The SQL
statement itself is displayed in the top section of the window. The steps that Ora-
cle uses to execute the statement are in the middle section of the window. As each
step is selected, a brief explanation of what occurs in that step is detailed in the
bottom section of the window.

In the case of the join between the EMPLOYEES and DEPARTMENTS tables in this
example, both tables are accessed with a full table scan instead of an index. This
makes sense because the query retrieves most, if not all, of the rows in both
tables. If there were a limiting condition in a WHERE clause, and the tables were
still accessed by a full table scan, then it might indicate that you are missing an
index on one or both of the tables.

You may see the terms Explain Plan and Execution Plan used interchangeably; they
mean the same thing. The SQL command EXPLAIN PLAN generates an execution plan.

4372.book Page 263 Wednesday, August 11, 2004 10:56 PM

264 Chapter 12

Oracle 10g’s EM Database Control provides similar Explain Plan functional-
ity, as you can see on the Execution Plan tab on the following web page.

The Oracle Optimizer
As the old saying goes, “All roads lead to Rome.” In the case of a SQL query,
there are many different ways that a query—even a query on a single table—can
be processed. It’s the job of the Oracle optimizer to choose the best way to run
a query.

Oracle has two optimizer modes: rule-based and cost-based. While the rule-
based optimizer is essentially obsolete in Oracle 10g, you can expect to find
many database shops that still use Oracle9i, and therefore you will be expected
to understand how the rule-based optimizer works. We’ll talk about the differ-
ences between those two modes, as well as two different ways to assist the opti-
mizer in finding the best way to run a query.

4372.book Page 264 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough) 265

Rule-Based Optimization
rule-based optimizer
An Oracle optimizer methodology,
obsolete as of Oracle 10g, that relies
on a fixed set of rules to determine the
method used to run a query, ignoring
the cardinality and distribution of data
in the column being queried.

The older rule-based optimizer mode uses a fairly simple set of guidelines to
decide how a query is run. It will use an index, regardless of the size of the table.
Also, it ignores the cardinality of the columns being accessed, even if the cardi-
nality would otherwise indicate that most of the table will be scanned for the
results anyway.

Why would you use the rule-based optimizer? Some older Oracle applications
might run better since they were written to specifically exploit some of the behav-
iors of the rule-based optimizer. Otherwise, Oracle strongly recommends that
cost-based optimization be used in all new development environments.

For Oracle9i, you can set the optimizer mode to rule-based for the session
with the ALTER SESSION command:

alter session set optimizer_mode=rule;

Session altered.

Cost-Based Optimization
cost-based optimizer
An Oracle optimizer methodology that
relies on the characteristics of the tables
being queried to determine the method
used to run the query. A cost is calcu-
lated for estimated CPU, I/O, and sorting
for the possible execution paths. The
path with the lowest overall cost is used
to perform the query.

The cost-based optimizer is much more sophisticated than the rule-based opti-
mizer. It takes into consideration the cardinality of the columns being searched,
the potential I/O cost, estimated CPU cost, and sorting cost. The cost-based opti-
mizer will ultimately use the method that has the lowest overall cost, even if it
means not using an index on one or more of the columns being searched.

For Oracle9i, you can tell Oracle to pick which optimizer mode to use for the
session with the ALTER SESSION command:

alter session set optimizer_mode=choose;

Session altered.

statistics
Information about tables and indexes
stored in the data dictionary used to
assist the cost-based optimizer when
deciding how to run a given query.

The CHOOSE keyword means that Oracle will decide whether to use the rule-
based optimizer or the cost-based optimizer. When analyzing a SQL statement,
the optimizer may use a rule-based approach for calculating the CPU cost but
may use the cost-based approach for all other calculations. Notice that you can-
not specify OPTIMIZER_MODE=COST: The optimizer will always use cost-based
optimization if at least one of the tables in the query has statistics and the opti-
mizer mode is set to choose. The optimizer will estimate statistics on the fly for
any tables in the query that don’t already have them. A table’s statistics are a set
of predetermined characteristics stored in the data dictionary, such as those men-
tioned above: the cardinality of the indexed columns in the table, the number of
rows in the table, the distribution of values in an indexed column, and so forth.
Calculating statistics for some or all of the tables in the query will have the same
effect as forcing cost-based optimization.

4372.book Page 265 Wednesday, August 11, 2004 10:56 PM

266 Chapter 12

For Oracle 10g, CHOOSE and RULE are no longer valid values for the
OPTIMIZER_MODE parameter. The two most common values for OPTIMIZER_
MODE in Oracle 10g are FIRST_ROWS and ALL_ROWS. FIRST_ROWS optimizes SQL
statements to bring back the first few rows of the query more quickly, whereas
ALL_ROWS optimizes the SQL statements to reduce the overall CPU and I/O time
to retrieve all of the rows of the query.

Therefore, whether you’re using Oracle9i or Oracle 10g, if you want to effec-
tively use the cost-based optimizer it is important to have statistics calculated
on the tables present in the SQL statement. We will talk about statistics gathering
in the next section.

Gathering Statistics
The cost-based optimizer relies on the cardinality of columns in the table, the size
of the table, the number of rows in the table, the length of each row in the table,
and other statistics. By default, these statistics are not stored anywhere in the
database. You can use the ANALYZE command to store these statistics in the data
dictionary for use by the cost-based optimizer.

In general, it is recommended that you analyze all rows of a table and its
indexes, but if the table is very large, you might analyze the indexes separately.
Alternatively, you can calculate statistics on a subset of the rows in the table by
using the ESTIMATE STATISTICS option of the ANALYZE command. ESTIMATE
STATISTICS will use about 1,000 rows to calculate its statistics, and in many
cases, it is nearly as accurate as scanning the entire table.

The Oracle 10g infrastructure includes a number of tools to automate statistics
collection.

To gather the statistics for the EMPLOYEES table and all of its indexes using a
sample of all rows, use the following command:

analyze table employees estimate statistics;

Table analyzed.

Statistics are not automatically refreshed when rows are inserted or updated;
however, unless the table dramatically changes in size or in the cardinality of the
indexed columns, the statistics are still useful to the cost-based optimizer. How-
ever, statistics gathering should be scheduled to run on a regular basis in order
to provide the cost-based optimizer with the best information available.

4372.book Page 266 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough) 267

Optimizer Hints
hint
A directive placed between /*+ and */
in a query that overrides an execution
method that the Oracle optimizer would
normally choose.

As good as the Oracle optimizer is, it is not perfect. For example, even with the best
statistics, the optimizer may not choose an index; however, your experience tells you
that the types of queries users have been running recently may use a very narrow
range in the index, so using the index has an advantage over a full table scan. In this
case, it is prudent to override the optimizer and provide a hint as part of the query.

Insert the hint after the SELECT keyword, between the character strings /*+
and */. There are more than 40 hints available in Oracle. Common hints include
the INDEX hint to specify that a particular index is used in a query and the
REWRITE hint to force a materialized view to be used to resolve the join condition
in the query instead of using the base tables.

If the hint is misspelled or otherwise incorrect, it is ignored. Therefore, it is important
to double-check the syntax of any hint you provide in a SQL statement.

To force the optimizer to use the index EMP_NAME_IX on the EMPLOYEES table,
use the INDEX hint, as follows:

select /*+ index(employees emp_name_ix) */ employee_id from
employees

where last_name = 'King';

Memory Tuning
Some of the memory structures used by Oracle include the database buffer cache,
the shared pool, and the redo log buffer cache, as shown below. (These memory
structures were discussed in Chapter 8, “Installing Oracle and Creating a Data-
base.”) While increasing the memory allocated for any of these structures will
usually help, how much is enough? How much is too much?

SGA (System Global Area)

Database buffer cache

Redo log buffer cache

Nonshared
memory

DBWn
Data dictionary cache

Shared SQL and
PL/SQL procedures

and packages

SMON

LGWR

Shared pool

Software code area

PGA (Program Global Area)

Shared
memory

4372.book Page 267 Wednesday, August 11, 2004 10:56 PM

268 Chapter 12

PFILE
A text file containing the parameters and
their values for configuring the database
and instance at startup.

You can adjust the amount of memory allocated to each of these areas by
changing the value of a parameter in the parameter file used by Oracle, called a
PFILE. A PFILE is a text file containing the parameters and their values for con-
figuring the database and instance.

SPFILE
A parameter file stored in a binary format
that gives the DBA more flexibility when
changing parameters. Parameters can
be changed for the current instance only,
can take effect only after the next restart
of the instance, or both.

Oracle9i and Oracle 10g support a more flexible version of a PFILE called an
SPFILE. An SPFILE is stored in a binary format. A change to a parameter in an
SPFILE can be for the current running instance only, can take effect only after the
next restart of the instance, or both.

The sizing of the database buffer cache is usually the most problematic, since
blocks from all tables read from and written to reside in this cache. A buffer
cache that is too small will hurt performance by obtaining blocks from disk
instead of from the buffer cache. A buffer cache that is too big will waste memory
that can otherwise be used for other memory areas.

buffer cache advisory
A feature of the Oracle9i and Oracle 10g
database that can assist the DBA in
determining how large to make the buffer
cache. This feature collects statistics on
how often a requested database block is
found in the buffer cache. The system ini-
tialization parameter DB_CACHE_
ADVICE controls whether these statis-
tics are collected, and the data dictio-
nary view V$DB_CACHE_ ADVICE
contains the estimated number of physi-
cal reads that would occur given a num-
ber of different cache sizes.

Both Oracle9i and Oracle 10g have a feature called the buffer cache advisory,
which can help the DBA decide how big to make the buffer cache. The first step
in monitoring the size of the buffer cache is to turn on the buffer cache advisory
feature by setting the DB_CACHE_ADVICE parameter. You can do this either by
editing the PFILE and restarting the database or by using an SPFILE and chang-
ing the value using the ALTER SYSTEM command.

Janice, the DBA at Scott’s widget company, is determined to put off asking for
a memory upgrade on the server until she makes the best use of what’s already
there. First, she will find out if the buffer cache needs to be larger. She changes
the value of DB_CACHE_ADVICE, as follows:

alter system set db_cache_advice=ON;

System altered.

To verify that the parameter is set correctly, she checks the value of that
parameter in the V$PARAMETER dynamic performance view, along with the cur-
rent value for the buffer cache size:

select name, value, isdefault, ismodified from v$parameter

where name ='db_cache_advice' or name ='db_cache_size';

NAME VALUE ISDEFAULT ISMODIFIED

------------------------- ---------- --------- ----------

db_cache_size 25165824 FALSE FALSE

db_cache_advice ON TRUE SYSTEM_MOD

2 rows selected.

The value is set correctly, but Janice notices that ON is the default value for this
parameter. After this tuning exercise is completed, Janice will remember to change
this value back to OFF to eliminate any overhead generated by the monitoring pro-
cess. It also looks like the value for DB_CACHE_SIZE is currently about 25MB.

4372.book Page 268 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough) 269

After the system has been running for a day or two with the DB_CACHE_
ADVICE parameter turned on, Janice reviews the dynamic performance view
V$DB_CACHE_ADVICE:

select size_for_estimate, estd_physical_reads

from v$db_cache_advice;

SIZE_FOR_ESTIMATE ESTD_PHYSICAL_READS

----------------- -------------------

 4 1158418

 8 213691

 12 100625

 16 44844

 20 37598

 24 35000

 28 34727

 32 34590

 36 34590

 40 34590

 44 34590

 48 34590

 52 34590

 56 34590

 60 34590

 64 34590

 68 34590

 72 34590

 76 34590

 80 34590

20 rows selected.

The first column, SIZE_FOR_ESTIMATE, is the proposed size for the buffer
pool in megabytes. The second column, ESTD_PHYSICAL_READS, is the number
of reads from disk that would occur with the corresponding buffer cache size,
given the recent activity level. From this report, Janice sees that her buffer cache
of 25MB is sized optimally. Increasing the buffer cache size to 28MB, for exam-
ple, would reduce the physical I/O only slightly, and it probably would not jus-
tify a memory upgrade at this time. At 32MB and higher, the additional memory
allocated to the buffer cache would not reduce the reads from disk at all. It
appears that Janice will not need a memory upgrade on the server for the fore-
seeable future.

4372.book Page 269 Wednesday, August 11, 2004 10:56 PM

270 Chapter 12

Terms to Know
bitmap index materialized view

branch blocks Oracle’s Tuning Methodology

b-tree index partitioned table

buffer cache advisory PFILE

cardinality reverse key index

cost-based optimizer ROWID

Explain Plan tool rule-based optimizer

function-based index SPFILE

hint statistics

index-organized table (IOT) Top SQL tool

leaf blocks unique index

4372.book Page 270 Wednesday, August 11, 2004 10:56 PM

Making Things Run Fast (Enough) 271

Review Questions
1. What GUI tool analyzes a SQL statement and identifies the steps used to

process the query?

2. The two general categories of indexes are ________ indexes and _________
indexes.

3. Which type of index is best for columns with a low cardinality?

4. Which dynamic performance view can assist the DBA in sizing the buffer
cache appropriately?

5. Which type of table divides the contents of a very large table into more man-
ageable chunks, both improving the manageability of the table for the DBA
and potentially increasing the performance of queries on the table?

6. Which data dictionary views contain information about table indexes and the
table columns indexed?

7. Name the six steps in Oracle’s Tuning Methodology in order of priority.

8. Which feature associated with materialized views rewrites a query to use the
materialized view instead of using the tables that are the source for the mate-
rialized view?

9. What is the name of the pseudo-column that exists for every row of every
table in the database and is unique across the entire database?

10. Name the two different optimizer modes in Oracle9i and identify which one
uses statistics from tables and indexes to derive an execution plan; identify
two of the most common modes in Oracle 10g.

4372.book Page 271 Wednesday, August 11, 2004 10:56 PM

4372.book Page 272 Wednesday, August 11, 2004 10:56 PM

In This Chapter

Chapter

13

Saving Your Stuff (Backups)

Sooner or later, you’ll lose some data in the database. As a user, you may
delete some rows in a table that you really didn’t want to delete. As a
DBA, you may have a server crash or one of the server’s hard disks may
fail, resulting in loss of data.

Oracle provides a number of tools for both users and DBAs to mini-
mize data loss in these situations. Some of the tools are primarily for use
by the DBA; other tools are primarily used by the database user.

This chapter begins with descriptions of the types of failures possible
in the database and then discusses the different ways that you can back
up and restore data.

◆

Database failure types

◆

The Export and Import utilities

◆

Flashback queries

◆

Cold backups

◆

Hot backups

◆

Log Miner

◆

Recovery Manager (RMAN)

4372.book Page 273 Wednesday, August 11, 2004 10:56 PM

274

Chapter 13

Database Failures

Database failures can be divided into two general categories: media failures and
nonmedia failures.

media failure

A type of database failure where a server
hardware component fails and the con-
tents of one or more disk files are either
unreadable or corrupted.

Media failures

, the more serious type, occur when a server hardware compo-
nent fails and the contents of one or more disk files are either unreadable or cor-
rupted. The DBA is solely responsible for recovering from this type of failure by
restoring the unreadable or corrupted file from a tape or disk backup. The DBA
can perform the recovery process using one of the tools described in this chapter.

nonmedia failure

A type of database failure that is not
related to a server disk-related hardware
component and is one of several types:
statement failure, process failure,
instance failure, or user error.

Nonmedia failures

 are all other types of failures, including the following:

Statement failure

The SQL statement being executed has a syntax error
or the user executing the statement has the wrong permissions. Recovery
from a statement failure is generally simple: Rerun the SQL statement with
the right syntax or obtain the proper permissions on the objects in the
query, and then rerun the query.

Process failure

The user may be disconnected from the database due to
a network problem or because a resource limit was exceeded. One of the
Oracle background processes automatically cleans up the terminated pro-
cess by freeing the memory used by the process.

Instance failure

The entire database instance fails due to a power outage,
a server memory problem, or a bug in the Oracle software. When the data-
base instance is restarted, Oracle uses the redo log files to make sure that
all committed transactions are recorded properly in the database datafiles.

User error

A user may drop a table or delete rows from a table
unintentionally.

In the following sections, we’ll cover the processes used by DBAs and users to
recover from the two types of errors that Oracle cannot handle automatically:
media failures and user errors.

User Backup and Recovery Methods

There are a number of methods that database users and developers can use to
back up and restore the data in their tables. While a good DBA has a compre-
hensive database backup and restore plan in place, there are a couple of reasons
why database users might make their own backups:

◆

The DBA is typically very busy and may not be able to respond to a user’s
request to restore data in a timely manner.

◆

The type of backup a DBA typically performs is at an enterprise level—
entire tablespaces rather than individual user objects—making it difficult
to accommodate requests to restore individual objects.

4372.book Page 274 Wednesday, August 11, 2004 10:56 PM

Saving Your Stuff (Backups)

275

In this section, we’ll talk about two ways that database users can back up and
restore the objects they own or objects that are accessible to them in the data-
base: by using the Export and Import utilities and by running flashback queries.

Export and Import for Users

The Export and Import utilities save and retrieve objects stored in an operating
system file external to the database. They work with database table objects,
along with their associated indexes, constraints, and permissions. These com-
mands are similar in their syntax and are executed outside the database at an
operating system prompt.

The Export (EXP) Utility

Export utility (EXP)

An Oracle utility that copies the contents
of one or more tables to a binary dump
file, along with the DDL needed to create
the table and its associated indexes, per-
missions, and constraints.

The

Export utility (EXP)

 connects to the database and performs a

SELECT

 state-
ment on the table or tables specified in the

EXP

 command. It places the results of
the

SELECT

 statement, along with the DDL statements required to create the
tables and their associated indexes, into a single binary dump file. Subsequently,
this dump file can be used to restore the tables in case of data loss. In addition,
the dump file can be used to copy the table to another database. The format
of the

EXP

 command is as follows:

EXP

username/password

 KEYWORD=(

value1

,

value2

, ...)

If the

EXP

 command is executed without specifying any parameters, Export
prompts the user for the parameters in an interactive mode. The username and
password belong to the user who owns the objects to be exported. The

TABLES

keyword specifies the tables that are to be exported to the dump file, which
defaults to the filename

EXPDAT.DMP

. Running

EXP -HELP

 displays all of the
Export options. The most common keywords are listed below.

Keyword Description

FILE

Destination for the dump file; defaults to

EXPDAT.DMP

TABLES

List of table names

ROWS

Export rows of the table; defaults to

Y

INDEXES

Export indexes; defaults to

Y

CONSTRAINTS

Export table constraints; defaults to

Y

GRANTS

Export privileges granted on tables; defaults to

Y

COMPRESS

Create a single extent for each table in the

CREATE

TABLE

statement generated by

EXP

; defaults to

Y

4372.book Page 275 Wednesday, August 11, 2004 10:56 PM

276

Chapter 13

While the default for the

COMPRESS

 parameter of Export is

Y

, it should almost always
be set to

N

 to avoid wasting disk space when new extents are allocated for the
imported version of the table.

At Scott’s widget company, one of the developers, Gary, is working on a
project to provide customers with customized widgets, made to order. He is
working on the order entry part of the system, and he has a copy of the Order
Entry department’s

ORDER

 and

ORDER_ITEM

 tables in his own schema:

select table_name from all_tables

where owner='GARY';

TABLE_NAME

ORDERS

ORDER_ITEMS

2 rows selected.

Gary decides to use Export to save a copy of these tables to a binary dump file
on a local PC’s hard drive, just in case one of the tables is inadvertently dropped:

E:\TEMP>exp gary/castiron@ord

 tables=(orders, order_items) file=exp_oe.dmp

Export: Release 10.1.0.2.0 -

 Production on Mon Jun 21 22:57:53 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to: Oracle Database 10g Enterprise Edition

 Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

Export done in WE8MSWIN1252 character set

 and AL16UTF16 NCHAR character set

server uses WE8ISO8859P1 character set

 (possible charset conversion)

About to export specified tables via Conventional Path ...

. . exporting table ORDERS 105 rows exported

. . exporting table ORDER_ITEMS 665 rows exported

4372.book Page 276 Wednesday, August 11, 2004 10:56 PM

Saving Your Stuff (Backups)

277

Export terminated successfully without warnings.

E:\TEMP>

The operating system file

E:\temp\exp_oe.dmp

 contains the definitions of
the two tables and their contents, along with any indexes, constraints, and per-
missions defined on the tables.

As of Oracle 10

g

, the new utilities

EXPDB

 and

IMPDB

, the command-line utility inter-
face to Oracle Data Pump, replace most of the functionality of

EXP

 and

IMP

 in
Oracle9

i

 and earlier and provide features such as import and export directly between
instances. The original Export and Import utilities, however, should still be used in an
Oracle 10

g

 database when importing backups from a previous release of Oracle, or
you will need to export data to import into a previous release of Oracle.

The Import (IMP) Utility

Import utility (IMP)

An Oracle utility that takes as input a
binary dump file created by the Export
utility and restores one or more database
tables, along with any associated
indexes, permissions, and constraints.

The

Import utility (IMP)

 reads a binary dump file produced by the Export utility
and restores the tables and any associated indexes, constraints, and permissions
saved in the dump file. The format of the

IMP

 command is as follows:

IMP

username/password

 KEYWORD=(

value1

,

value2

, ...)

If the

IMP

 command is executed without specifying any parameters, Import
can prompt the user for the parameters in an interactive mode. The username
and password belong to the user who owns the objects to be imported. The

TABLES

 keyword lists the tables that are to be imported from the dump file,
which defaults to a name of

EXPDAT.DMP

. Running

IMP -HELP

 lists all of the
Import options. The most common keywords are listed below.

Later in the week, Gary, the database developer, inadvertently drops the

ORDER_ ITEMS

 table that he was using to test his custom widgets application. He

Keyword Description

FILE Dump file to restore from; defaults to EXPDAT.DMP

TABLES List of table names to restore

ROWS Import rows of the table; defaults to Y

INDEXES Import indexes; defaults to Y

CONSTRAINTS Import table constraints; defaults to Y

GRANTS Import privileges granted on tables; defaults to Y

SHOW Show just the file contents and do not perform the restore;
defaults to N

4372.book Page 277 Wednesday, August 11, 2004 10:56 PM

278 Chapter 13

remembers using Export earlier in the week to create a backup to the file exp_
oe.dmp, but is not sure of its contents. He uses the SHOW option of the IMP com-
mand to query the contents of the dump file:

E:\TEMP>imp file=exp_oe.dmp show=y

Import: Release 10.1.0.2.0 - Production on Mon Jun 21
23:13:21 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Username: gary@ord

Password:

Connected to: Oracle Database 10g Enterprise Edition Release

 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

Export file created by EXPORT:V10.01.00

 via conventional path

import done in WE8MSWIN1252 character set

 and AL16UTF16 NCHAR character set

import server uses WE8ISO8859P1 character set

 (possible charset conversion)

. importing GARY's objects into GARY

 "CREATE TABLE "ORDERS"

 ("ORDER_ID" NUMBER(12, 0) NOT NULL ENABLE,"ORDER_DAT"

 "E" TIMESTAMP (6) WITH LOCAL TIME ZONE

 CONSTRAINT "ORDER_DATE_NN" NOT NULL E"

...

"CREATE TABLE "ORDER_ITEMS"

 ("ORDER_ID" NUMBER(12, 0) NOT NULL ENABLE, "LINE"

...

Import terminated successfully without warnings.

E:\TEMP>

Since the SHOW=Y option was specified, the tables were not actually restored to
the database, even though the output from IMP seems to indicate that the restore

4372.book Page 278 Wednesday, August 11, 2004 10:56 PM

Saving Your Stuff (Backups) 279

took place. Since this file has the table that Gary wants, he performs the import
and specifies the file he dropped:

E:\TEMP>imp file=exp_oe.dmp tables=order_items

Import: Release 10.1.0.2.0 - Production on Mon Jun 21
23:24:47 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Username: gary@ord

Password:

Connected to: Oracle Database 10g Enterprise Edition

 Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

Export file created by EXPORT:V10.01.00

 via conventional path

import done in WE8MSWIN1252 character set

 and AL16UTF16 NCHAR character set

import server uses WE8ISO8859P1 character set

 (possible charset conversion)

. importing GARY's objects into GARY

. . importing table "ORDER_ITEMS" 665 rows imported

Import terminated successfully without warnings.

E:\TEMP>

Gary’s ORDER_ITEMS table is now restored. Any changes made to the table
since the export was performed are lost. Those changes will need to be manually
restored by rerunning the INSERT, DELETE, and UPDATE statements that ran since
the last export. To minimize data loss, you should export the table after any
major changes are made to the table.

As an alternative to importing a dropped table from an export dump file, Oracle 10g
supports a recycle bin concept, keeping the contents of the dropped table hidden in
a special area on disk and accessible as long as the disk space occupied by the
dropped table is not needed for new objects in the tablespace.

4372.book Page 279 Wednesday, August 11, 2004 10:56 PM

280 Chapter 13

Flashback Query
flashback query
A feature of the Oracle database that
allows a user to view the contents of a
table as of a user-specified point in time in
the past. How far in the past a flashback
query can retrieve rows depends on the
size of the undo tablespace and on
the setting of the UNDO_RETENTION
system parameter.

One of the features introduced in Oracle9i is called flashback query. It allows a
user to “go back in time” and view the contents of a table as it existed at some
point in the recent past. A flashback query looks a lot like a standard SQL
SELECT statement, with the addition of the AS OF TIMESTAMP clause.

Before users can take advantage of the flashback query feature, the DBA must
perform two tasks:

◆ The DBA must make sure that there is an undo tablespace in the database
that is large enough to retain changes made by all users for a specified period
of time. This is the same tablespace that is used to support COMMIT and
ROLLBACK functionality (discussed in Chapter 7, “Logical Consistency”).

◆ The DBA must specify how long the undo information will be retained
for use by flashback queries by using the initialization parameter UNDO_
RETENTION. This parameter is specified in seconds; therefore, if the DBA
specifies UNDO_RETENTION=172800, the undo information for flashback
queries will be available for two days.

At Scott’s widget company, an error in the Accounting department added
$2,000 to two orders placed yesterday:

update orders

set order_total = order_total+2000

where order_id in (2367,2361);

2 rows updated.

select order_id, customer_id, order_total

from orders where order_id in (2367,2361);

 ORDER_ID CUSTOMER_ID ORDER_TOTAL

---------- ----------- -----------

 2361 108 122131.3

 2367 148 146054.8

2 rows selected.

Today, the customer with customer ID 108 called to complain that his bill
from his last order (order number 2361) is $2,000 higher than expected. Sharon,
one of the order-entry clerks, retrieves the row from the ORDERS table with the
information for order number 2361:

select order_id, customer_id, order_total

from orders where order_id = 2361;

4372.book Page 280 Wednesday, August 11, 2004 10:56 PM

Saving Your Stuff (Backups) 281

 ORDER_ID CUSTOMER_ID ORDER_TOTAL

---------- ----------- -----------

 2361 108 122131.3

1 row selected.

Before calling back the customer, Sharon finds out from the Accounting
department that a day ago, two of the orders were incorrectly modified with an
additional surcharge. To confirm whether this particular order was affected by
the accounting error, she uses a flashback query to see if this order had a different
order total two days ago:

select order_id, customer_id, order_total from orders

as of timestamp (sysdate - 2)

where order_id = 2361;

 ORDER_ID CUSTOMER_ID ORDER_TOTAL

---------- ----------- -----------

 2361 108 120131.3

1 row selected.

This flashback query confirms that the order total for this order was $2,000 less
two days ago. The AS OF TIMESTAMP clause specifies how far back in the past you
want to view the contents of this table. In this case, (sysdate - 2) evaluates to
today’s date minus two days—in other words, two days ago. Sharon concludes
that at some point in the past two days, this was one of the orders that were incor-
rectly modified. To find all of the orders that have the incorrect surcharge, she uses
another flashback query as a nested query to compare the order totals:

select o.order_id, o.customer_id,

 o.order_total "CURR_TOTAL", oo.order_total "ORIG_TOTAL"

from orders o,

 (select order_id, order_total from orders

 as of timestamp (sysdate - 2)) oo

where o.order_id = oo.order_id and

 o.order_total != oo.order_total;

 ORDER_ID CUSTOMER_ID ORDER_TOTAL ORIG_TOTAL

---------- ----------- ----------- ----------

 2361 108 122131.3 120131.3

 2367 148 146054.8 144054.8

2 rows selected.

4372.book Page 281 Wednesday, August 11, 2004 10:56 PM

282 Chapter 13

In this query, Sharon is comparing the entire contents of the current ORDERS
table to the entire contents of the ORDERS table as it was two days ago and select-
ing records where the order totals don’t match. She now knows which records
must be updated with the correct order total amount.

DBA Backup and Recovery Methods
The DBA has a number of additional tools for performing backup and recovery,
with capabilities for working at a much larger scale than the methods previously
discussed. Instead of a couple of tables being dropped by a user, the DBA may
need to handle a disk drive failure, resulting in the loss of an entire tablespace.

In addition to using Export and Import to back up database objects, the DBA
can perform cold backups or hot backups for an entire tablespace or an entire
database. Other tools available to the DBA include Log Miner and RMAN.

Export and Import for DBAs
transportable tablespace
A feature of Oracle’s Import and Export
utilities that allows a tablespace to be
copied to another database. All objects
within the tablespace to be copied must
be self-contained; in other words, a table
in a tablespace to be copied must have
its associated indexes in the same
tablespace.

Earlier in this chapter, you learned about the Export (EXP) and Import (IMP) util-
ities that a user can use to save and restore database objects. The DBA can use
additional features of these utilities for backing up all user objects in the database
or to copy a tablespace to another database. The tablespace copy feature, intro-
duced in Oracle9i, is known as transportable tablespaces. It is a very convenient
way to copy all objects in a tablespace to another database, without needing to
specify individual objects in the tablespace.

At Scott’s widget company, there are two primary databases:

◆ The OLTP database (ORD), which contains the online widget order system
and the HR tables. It has the EMPLOYEES, DEPARTMENTS, and other tables.

◆ The data warehouse database (WH), which contains summaries of orders
processed on the online system. Analysts use this summarized information
to do “what-if” analyses to predict sales for the upcoming fiscal year.

On a weekly basis, Janice, the DBA, needs to copy the transactions from the
online database to the data warehouse database. She decides that using trans-
portable tablespaces is the most convenient and efficient way to move this data,
as there are hundreds of tables in several different schemas that need to be
merged into the data warehouse.

4372.book Page 282 Wednesday, August 11, 2004 10:56 PM

Saving Your Stuff (Backups) 283

In the online database, Janice reviews the available tablespaces:

connect janice/janice@ord;

Connected.

select tablespace_name, status, contents from dba_
tablespaces;

TABLESPACE_NAME STATUS CONTENTS

------------------------------ --------- ---------

SYSTEM ONLINE PERMANENT

UNDOTBS1 ONLINE UNDO

TEMP ONLINE TEMPORARY

CWMLITE ONLINE PERMANENT

DRSYS ONLINE PERMANENT

EXAMPLE ONLINE PERMANENT

INDX ONLINE PERMANENT

ODM ONLINE PERMANENT

TOOLS ONLINE PERMANENT

USERS ONLINE PERMANENT

XDB ONLINE PERMANENT

TO_DATAMART ONLINE PERMANENT

12 rows selected.

Tablespaces

Transport
Tablespace

Online Database (ORD)

TOOLS

USERS

SYSTEM

TO_DATAMART

Data Warehouse Database (WH)

USERS

ANALYSIS

TO_DATAMART

SYSTEM

4372.book Page 283 Wednesday, August 11, 2004 10:56 PM

284 Chapter 13

The TO_DATAMART tablespace contains the tables that need to go to the data
warehouse database. The first step in copying a tablespace to another database
is to make it read-only:

alter tablespace to_datamart read only;

Tablespace altered.

Next, Janice uses Export (EXP) to save the characteristics of the tablespace to
a dump file. Note that the contents of the tablespace are not saved to the dump
file; only the information about the objects in the tablespace is saved. She will use
the datafiles that make up the tablespace to copy the data. In the following EXP
command, Janice creates the dump file for the TO_DATAMART tablespace:

E:\TEMP>exp transport_tablespace=y

 tablespaces=to_datamart file=exp_mart.dmp

Export: Release 10.1.0.2.0 - Production on

 Mon Jun 21 22:57:53 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to: Oracle Database 10g Enterprise Edition

 Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

Export done in WE8MSWIN1252 character set

 and AL16UTF16 NCHAR character set

server uses WE8ISO8859P1 character set

 (possible charset conversion)

Note: table data (rows) will not be exported

About to export transportable tablespace metadata...

For tablespace TO_DATAMART ...

. exporting cluster definitions

. exporting table definitions

. . exporting table INVENTORIES

. . exporting table SALES001

. . exporting table SALES002

...

. . exporting table SALES226

. . exporting table CUSTOMERS

. exporting referential integrity constraints

4372.book Page 284 Wednesday, August 11, 2004 10:56 PM

Saving Your Stuff (Backups) 285

. exporting triggers

. end transportable tablespace metadata export

Export terminated successfully without warnings.

E:\TEMP>

In the next step, Janice copies the datafiles that compose the TO_DATAMART
tablespace to the directory location where the rest of the data warehouse datafiles
reside. Janice uses the data dictionary views V$TABLESPACE and V$DATAFILE to
determine the operating system files that compose the TO_DATAMART tablespace:

select d.name "Filenames"

from v$tablespace t, v$datafile d

where t.ts# = d.ts#

and t.name = 'TO_DATAMART';

Filenames

D:\ORACLE\ORADATA\ORD\TO_DATAMART.ORA

1 row selected.

Janice uses a standard operating system copy command to make a copy of the
tablespace in the new database:

D:\> copy d:\oracle\oradata\ord\to_datamart.ora

 d:\oracle\oradata\wh

 1 file(s) copied.

D:\>

Back in the online database, Janice changes the source tablespace back to
read-write:

connect janice/janice@ord;

Connected.

alter tablespace to_datamart read write;

Tablespace altered.

4372.book Page 285 Wednesday, August 11, 2004 10:56 PM

286 Chapter 13

At this point, the source database is back to its original state, the information about
the TO_DATAMART tablespace has been saved to a dump file, and a copy of the TO_
DATAMART tablespace datafile is ready to attach to the data warehouse database. Janice
will run Import (IMP) to attach the tablespace to the data warehouse database, using
many of the same options she used with Export to create the tablespace dump file:

E:\TEMP>imp transport_tablespace=y file=exp_mart.dmp

 datafiles=('d:\oracle\oradata\wh\to_datamart.ora')

 tablespaces=to_datamart

Import: Release 10.1.0.2.0 - Production

 on Mon Jun 21 23:16:21 2004

Copyright (c) 1982, 2004, Oracle.

 All rights reserved.

Username: janice as sysdba

Password:

Connected to: Oracle Database 10g Enterprise Edition

 Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data

 Mining options

Export file created by EXPORT:V10.01.00

 via conventional path

About to import transportable tablespace(s) metadata...

import done in WE8MSWIN1252 character set

 and AL16UTF16 NCHAR character set

. importing SYS's objects into SYS

. importing RJB's objects into RJB

. . importing table "INVENTORIES"

. . importing table "SALES001"

. . importing table "SALES002"

...

. . importing table "SALES226"

. . importing table "CUSTOMERS"

Import terminated successfully without warnings.

E:\TEMP>

4372.book Page 286 Wednesday, August 11, 2004 10:56 PM

Saving Your Stuff (Backups) 287

A copy of the TO_DATAMART tablespace is now attached to the data warehouse
database and ready for use by the marketing analysts:

connect janice/janice@wh;

Connected.

select tablespace_name, status, contents

 from dba_tablespaces

 where tablespace_name = 'TO_DATAMART';

TABLESPACE_NAME STATUS CONTENTS

------------------------------ --------- ---------

TO_DATAMART READ ONLY PERMANENT

1 row selected.

Before the tablespace can be imported again into the data warehouse data-
base, it must be taken offline and dropped. It is assumed that any objects in the
TO_ DATAMART tablespace are copied to other tablespaces shortly after the TO_
DATAMART tablespace is imported.

Cold Backups
cold backup
A database backup performed while the
database is shut down. Also known as a
closed backup.

A database cold backup is most likely the simplest way to make a backup of a
database. A cold backup consists of making copies of the datafiles, the control
files, and the initialization parameter files, or SPFILEs, while the database is shut
down. A cold backup is also known as a closed backup.

closed backup
See cold backup.

Cold backups are easy to do, but they have several disadvantages. The data-
base is unavailable to users during a cold backup, so any database that must be
available 24 hours a day is not a good candidate for a cold backup. In addition,
a database media failure will result in some loss of data—any transactions that
are recorded to the database since the last cold backup are lost.

Hot Backups
open backup
See hot backup.

A hot backup is similar to a cold backup, except that the backup is performed
while the database is open and available to users. A hot backup is also known as
an open backup.

hot backup
A database backup performed while the
database is open and available to users.
Also known as an open backup.

Hot backups are performed on one tablespace at a time. They are better than
cold backups in that the database is always available to users, even while the
backup is in progress.

4372.book Page 287 Wednesday, August 11, 2004 10:56 PM

288 Chapter 13

To perform a hot backup, you must know the names of the datafiles that
belong to the tablespace you are backing up. Janice, the DBA, needs to back up
the USERS tablespace while the database is open, so she uses the V$TABLESPACE
and V$DATAFILE views to find out the datafile names for the USERS tablespace:

select d.name "Filenames"

from v$tablespace t, v$datafile d

where t.ts# = d.ts#

and t.name = 'USERS';

Filenames

D:\ORACLE\ORADATA\ORD\USERS01.DBF

1 row selected.

Before Janice initiates the backup, she marks the tablespace as being in a
backup state:

alter tablespace users begin backup;

Tablespace altered.

Now any transactions occurring against the tablespace while the backup is in
progress will be correctly applied to the objects in the tablespace when the
backup is complete.

In the next step, Janice performs a copy operation at the operating system
command prompt, similar to the copy she performed when transporting a
tablespace:

D:\> copy d:\oracle\oradata\ord\users01.dbf d:\backup

 1 file(s) copied.

D:\>

To finish the hot backup, Janice takes the tablespace out of backup mode:

alter tablespace users end backup;

Tablespace altered.

During the time the tablespace was in backup mode, all objects in the
tablespace were still available to users.

4372.book Page 288 Wednesday, August 11, 2004 10:56 PM

Saving Your Stuff (Backups) 289

Log Miner
Oracle Log Miner is another tool the DBA can use to view past activity in the data-
base. The Log Miner tool can help the DBA find changed records in redo log files
by using a set of PL/SQL procedures and functions. Log Miner extracts all DDL
and DML activity from the redo log files for viewing by a DBA via the dynamic
performance view V$LOGMNR_CONTENTS. In addition to extracting the DDL and
DML statements used to change the database, the V$LOGMNR_CONTENTS view also
contains the DML or DDL statements needed to reverse the change made to the
database. This is a good tool for not only pinpointing when changes were made to
a table but also for automatically generating the SQL statements needed to reverse
those changes.

Log Miner works differently from Oracle’s flashback query feature. The flash-
back query feature allows a user to see the contents of a table at a specified time
in the past; Log Miner can search a time period for all DDL against the table. A
flashback query uses the undo information stored in the undo tablespace; Log
Miner uses redo logs. Both of these tools can be useful for tracking down how and
when changes to database objects took place.

Log Miner may be configured and used either from a SQL command line or
via a GUI-based interface within Oracle Enterprise Manager (OEM), as shown
here, by selecting Tools � Database Applications � Logminer Viewer.

4372.book Page 289 Wednesday, August 11, 2004 10:56 PM

290 Chapter 13

This Log Miner session initiated through OEM shows a sequence of DML
statements executed by GARY against the ORDER_ITEMS table. The SQL Redo col-
umn shows the DML statement used to change the ORDER_ITEMS table, and the
SQL Undo column shows how to reverse the change made by the DML statement
in the SQL Redo column. Double-clicking a row in the report brings up a second
window that shows the complete text of both the SQL Undo and SQL Redo col-
umns, as shown here.

Recovery Manager
Recovery Manager (RMAN)
A comprehensive set of backup and
recovery tools that can streamline the
backup and recovery of a database.

The Recovery Manager (RMAN) tool is an extensive and comprehensive set
of tools that can streamline the backup and recovery of a database. It can be
accessed via either a command line or a GUI interface through OEM by selecting
Tools � Database Tools � Backup Management � Backup. Using RMAN can
reduce errors by automating many of the tasks that a DBA would otherwise need
to perform manually, such as checking a backup set for completeness or logging
the results of a backup operation.

RMAN can perform the following tasks:

Back up all database objects RMAN can back up every individual type
of database or filesystem object, or the entire database. It can back up
tablespaces, datafiles, control files, and log files.

4372.book Page 290 Wednesday, August 11, 2004 10:56 PM

Saving Your Stuff (Backups) 291

Log all backup operations RMAN automatically logs the status of the
backup as it occurs and when it completes.

Catalog backup information Information about what database objects
were backed up on what days is kept in an Oracle database.

Perform incremental backups Only the changes to database objects are
backed up in an RMAN incremental backup. This saves time and space. A
full backup can occur weekly, with incremental backups performed during
the week.

Create a duplicate of a database A copy of an entire database can be
made for testing a new release of a software application or testing an
upgrade to a new release of the Oracle database software.

Test the recovery process RMAN can review the contents of backups to
validate that the database can be restored successfully in case of a cata-
strophic failure of the database.

The GUI version of RMAN includes a wizard, as shown below. This interface
can help the DBA choose which objects are included in a backup, choose a
backup strategy, and automate the backup process through OEM.

4372.book Page 291 Wednesday, August 11, 2004 10:56 PM

292 Chapter 13

Most of the database features available via the command line or through the
OEM application, including RMAN functionality, are available in Oracle 10g
using a web browser and the Enterprise Manager Database Control application.

Terms to Know
closed backup media failure

cold backup nonmedia failure

Export utility (EXP) open backup

flashback query Recovery Manager (RMAN)

hot backup transportable tablespace

Import utility (IMP)

4372.book Page 292 Wednesday, August 11, 2004 10:56 PM

Saving Your Stuff (Backups) 293

Review Questions
1. A cold database backup occurs when a database is ________, and a hot data-

base backup occurs when a database is _______.

2. The failure of a disk drive containing database datafiles would be considered
what kind of a failure?

3. What clause in a SELECT statement specifies the time and date for an Oracle
flashback query?

4. The flashback query tool uses which Oracle structure to retrieve information
on how a table appeared at some specified point in the past?

5. True or false: A flashback query can retrieve the DDL statement needed to
undo a change made to a table in the past.

6. An abnormal termination of the Oracle server software would be considered
what type of database failure?

7. Which Oracle utilities can be used by a database user to back up and restore
a table and by a DBA to move a tablespace from one database to another?

8. Which Oracle structure allows the automatic recovery of the Oracle database
after an instance failure?

9. What option of the Import (IMP) command allows the DBA to view the DDL
contained in a dump file without executing those DDL commands?

10. What is the name of the feature of Oracle’s Export and Import utilities
that allows a DBA to move or copy an entire tablespace from one database
to another?

4372.book Page 293 Wednesday, August 11, 2004 10:56 PM

4372.book Page 294 Wednesday, August 11, 2004 10:56 PM

In This Chapter

Chapter

14

Troubleshooting

When trouble strikes in your Oracle database, there are many places to
turn for clues about what is causing the problem. The approach you take
to troubleshooting the database will depend, in part, on whether a few
users complain or you get hundreds of phone calls and e-mail messages
from irate users.

The alert log file can give you clues about global database errors, and
the system trace files can tell you about problems with the background
processes. When individual users are having problems with their ses-
sions, and the error messages they are receiving in their SQL*Plus session
aren’t very descriptive, the user trace files may provide additional clues to
the problem.

For Oracle9

i

, you can also use the Event Manager in Oracle Enterprise
Manager (OEM) to automatically notify you of problems or potential
problems, such as when disk space is close to running out. In Oracle 10

g

,
the Advisory infrastructure in conjunction with the web-based Enterprise
Manager Database Control provides similar functionality.

◆

Reviewing the Oracle alert log file

◆

Monitoring events with OEM

◆

Using system trace files for
troubleshooting

◆

Using user trace files for performance
tuning

4372c14.fm Page 295 Thursday, August 12, 2004 9:41 PM

296

Chapter 14

The Alert Log File

alert log file

A text file that contains entries about sig-
nificant database events, such as data-
base startup and shutdown, nondefault
initialization parameters, and various
errors. The alert log file is stored in the
directory specified by the system param-
eter

BACKGROUND_DUMP_DEST

.

The

alert log file

 is a grab bag of messages about the state of the database instance.
It contains entries about significant database events, such as database startup and
shutdown, nondefault initialization parameters,

ALTER

SYSTEM

 commands, and var-
ious errors.

Locating the Alert Log File

At Scott’s widget company, Janice, the DBA, doesn’t remember when she made
the changes to the redo log files. She wanted to increase the redundancy of the
redo log files, so she added a second set of redo logs on a different disk. She can
find information about the redo logs in the alert log file.

Janice’s first step is to locate the alert log file itself; since she recently con-
verted one of the Oracle databases from a Windows server to a Linux server, she
hasn’t yet memorized the locations of the Oracle-related directories, so she needs
to check one of the initialization parameters. This log file is a text file in the direc-
tory specified by the initialization parameter

BACKGROUND_DUMP_DEST

:

show parameter background_dump_dest

NAME TYPE VALUE

---------------- -------- -------------------------------

background_dump string /u01/app/oracle/admin/ord/bdump

_dest

From a Linux operating system command-line session, Janice locates the alert
log file:

[oracle@oltp oracle]$ cd /u01/app/oracle/admin/ord/bdump

[oracle@oltp bdump]$ ls -l alert_*.log

-rw-r--r-- 1 oracle oinstall 4006 Jun 22 22:23
alert_ord.log

[oracle@oltp bdump]$ vi alert_ord.log

The alert log file’s name on Linux is

alert_

, followed by the instance’s con-
nection identifier and an extension of

.log

.

Viewing the Alert Log File

Now that Janice knows where to find the alert log file, she opens it using the
Linux

vi

 text editor.

4372c14.fm Page 296 Thursday, August 12, 2004 9:41 PM

Troubleshooting

297

It appears that the new redo logs were created on June 22, 2004, at about
10:23

PM

 You can also see that the control file was automatically backed up by
EM Database Control when the new redo log files were created.

Maintaining the Alert Log File

The alert log file grows in size slowly but without limit. After a few weeks, it can
become cumbersome to review the file, so it’s a good idea to archive or delete the
file on a periodic basis.

The alert log file can be safely renamed or deleted, even when the database is
up and running. The next time an entry needs to be written to the alert log file
and the alert log file is not there, a new one is created.

Janice, the DBA, reviews the alert log file every Friday and renames it with a
name containing the date it was renamed:

[oracle@oltp oracle]$ cd /u01/app/oracle/admin/ord/bdump

[oracle@oltp bdump]$ ls -l alert_*.log

-rw-r--r-- 1 oracle oinstall 4006 Jun 22 22:23 alert_ord.log

4372c14.fm Page 297 Thursday, August 12, 2004 9:41 PM

298

Chapter 14

[oracle@oltp bdump]$ mv alert_ord.log

alert_ord_2004-06-21.log

[oracle@oltp bdump]$ ls -l alert_*.log

-rw-r--r-- 1 oracle oinstall 4006 Jun 22 22:23

alert_ord_2004-06-21.log

[oracle@oltp bdump]$ sqlplus / as sysdba

SQL*Plus: Release 10.1.0.2.0 - Production on Tue Jun 22
23:13:49 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to:

Oracle Database 10g Enterprise Edition Release 10.1.0.2.0 -
Production

With the Partitioning, OLAP and Data Mining options

SQL> alter system switch logfile;

System altered.

SQL> quit

Disconnected from Oracle Database 10g Enterprise Edition
Release 10.1.0.2.0 - Production

With the Partitioning, OLAP and Data Mining options

[oracle@oltp bdump]$ ls -l alert_*.log

-rw-r--r-- 1 oracle oinstall 4006 Jun 22 22:23

alert_ord_2004-06-21.log

-rw-r--r-- 1 oracle oinstall 1163 Jun 22 23:14

alert_ord.log

[oracle@oltp bdump]$

Notice in the example that as soon as a system event occurred, in this case a
forced log switch, the new alert log file was created automatically.

Event Notification

Whether your shop is using Oracle9

i

 or Oracle 10

g

, it’s easy to set up automatic
notifications for various types of error or warning conditions. Oracle9

i

 uses the

4372c14.fm Page 298 Thursday, August 12, 2004 9:41 PM

Troubleshooting

299

OEM Event Manager, and Oracle 10

g

 uses the web-based EM Database Control
to set up and proactively monitor database health. In the following sections we’ll
take a look at both of these.

Oracle9

i

 OEM Event Manager

OEM can automatically alert the DBA, through an e-mail message or page, to
error conditions or conditions that may signal an impending error. Using OEM’s
Event Manager, accessible as one of the nodes in the OEM Navigator pane, the
DBA can monitor a variety of error conditions, such as an abnormal termination
of the Oracle instance or a tablespace running low on space. Even events that
would not technically be considered an error condition can be monitored. For
example, you could tell Event Manager to notify you when users are performing
too many table scans within a certain period of time, as shown here.

Creating a new event is straightforward. From OEM’s toolbar at the top, select
Event �

 Create Event. On the Tests tab in the Create Event window, you can
select from a long list of available tests. In this example, the DBA will be notified
when any tablespace’s used space exceeds a specified threshold percentage or the
number of full table scans performed each second exceeds a specified threshold
amount. The Parameters tab in the Create Event window is used to specify these
thresholds. For the Tablespace Full test, an alert will be sent to the DBA via pager or
e-mail whenever any tablespace is 80 percent full or higher, as shown below.

4372c14.fm Page 299 Thursday, August 12, 2004 9:41 PM

300

Chapter 14

For the Table Scans Per Second test, the DBA will be notified with a warning
message if the number of full table scans exceeds 10 per second at least three
times, or with a critical error if the number of full table scans exceeds 25 per
second at least three times, as shown below.

4372c14.fm Page 300 Thursday, August 12, 2004 9:41 PM

Troubleshooting

301

These tests can be performed on the database automatically on a regular
schedule, specified on the Schedule tab of the Create Event window:

In this example, when the event is saved, the tests in the event will run imme-
diately and then every 15 minutes thereafter.

The DBA can also specify a script to run automatically when event conditions
are detected. This is helpful when the DBA is on vacation or not able to receive
e-mail or pager messages for some other reason. You can select a script through
the Fixit Jobs tab of the Create Event window.

4372c14.fm Page 301 Thursday, August 12, 2004 9:41 PM

302

Chapter 14

In many cases, a fixit job can repair the problem without any intervention by
the DBA at all. The fixit job can, for example, temporarily allocate more disk
space on a spare disk volume for the tablespace that is about to run out of space.
A fixit job can be a series of predefined actions to be performed when the event
occurs, such as shutting down and restarting the database, or a fixit job may call
a customized SQL script written by the DBA or any combination of predefined
actions and customized scripts.

Oracle 10

g

 Advisory Framework

Using Oracle 10

g

’s EM Database Control, you can configure diagnostics for a
number of different potential trouble spots using Advisor Central.

For example, SQL Tuning Advisor can automatically identify and tune SQL
statements that have a high CPU and I/O impact on the database; Segment Advi-
sor can identify objects within a schema or tablespace that have a high percent-
age of unused space.

For each tablespace in a database or across the entire database, you can spec-
ify two thresholds at which a notification message is sent if the space threshold
is exceeded.

4372c14.fm Page 302 Thursday, August 12, 2004 9:41 PM

Troubleshooting

303

For the

USERS

 tablespace, a warning message is generated if the tablespace
exceeds 60 percent full, and a critical message is generated if the tablespace exceeds
85 percent full. For any other tablespace that does not have specific thresholds set,
the warning threshold is 85 percent and the critical threshold is 97 percent.

System Trace Files

system trace file

A text file that pertains to a single back-
ground process and contains status,
debugging, or error information about
that background process. System trace files
are stored in the directory specified by the
system parameter

BACKGROUND_
DUMP_DEST

.

An Oracle instance’s

system trace files

 are stored in the same directory as the
alert log file, in the directory specified by the system parameter

BACKGROUND_
DUMP_DEST

. The system trace files contain debugging, status, and error messages
for each of the background processes, such as SMON, PMON, DBWx, LGWR,
and so forth.

Janice, the DBA, notices that there are quite a few system trace files in the

BACKGROUND_DUMP_DEST

 directory:

[oracle@oltp bdump]$ ls -l

total 44888

-rw-r--r-- 1 oracle oinstall 4006 Jun 22 22:23

alert_ord_2004-06-21.log

-rw-r--r-- 1 oracle oinstall 26010 Jun 23 19:40

alert_ord.log

4372c14.fm Page 303 Thursday, August 12, 2004 9:41 PM

304

Chapter 14

-rw-r----- 1 oracle oinstall 691 May 18 07:00

ord_arc0_10663.trc

-rw-r----- 1 oracle oinstall 693 Mar 14 12:53

ord_arc0_11830.trc

. . .

-rw-r----- 1 oracle oinstall 688 May 30 11:23

ord_arc1_3306.trc

-rw-r----- 1 oracle oinstall 772 Mar 28 13:02

ord_arc1_3369.trc

-rw-r----- 1 oracle oinstall 690 Mar 19 07:51

ord_arc1_3505.trc

. . .

-rw-r----- 1 oracle oinstall 685 Mar 20 09:54

ord_dbw0_6181.trc

-rw-r----- 1 oracle oinstall 3820 Mar 14 12:17

ord_dbw0_6399.trc

-rw-r----- 1 oracle oinstall 1352 Mar 14 12:29

ord_dbw0_9796.trc

-rw-r----- 1 oracle oinstall 850 Mar 14 12:55

ord_j000_11844.trc

-rw-r----- 1 oracle oinstall 852 Mar 14 13:15

ord_j000_14335.trc

-rw-r----- 1 oracle oinstall 859 Mar 14 13:15

ord_lgwr_12043.trc

[oracle@oltp bdump]$

She sees quite a few files for the DBW0 (database writer) background process,
so she is concerned that there might be a problem with DBW0. She opens one of
the DBW0 trace files,

ord_dbw0_6181.trc

, to see what the problem might be.

4372c14.fm Page 304 Thursday, August 12, 2004 9:41 PM

Troubleshooting

305

She looks at the contents of the file and realizes that most processes, including
DBW0, generate a trace file at database startup. As a result, the trace file is merely
informational in this case, and there appears to be nothing wrong with DBW0.

User Trace Files

user trace file

A text file that contains information per-
taining to any error conditions triggered
by a command in an individual user’s
session or SQL statement information for
the purposes of tuning and optimization.
User trace files are stored in the directory
specified by the system parameter

USER_DUMP_ DEST

.

User trace files

, as the name implies, contain information pertaining to any error
conditions triggered by a command in an individual user’s session. User trace
files can also help the DBA to optimize the performance of SQL statements by
producing statistics for each SQL statement in a user session. The location for
user trace files is specified by the system parameter

USER_DUMP_DEST

.

Enabling Tracing

The users in the HR department want to optimize some of their queries, so they
decide to use user trace files to save the statistics in the

USER_DUMP_DEST

 direc-
tory. The first step is to turn on tracing:

alter session set sql_trace = true;

Session altered.

4372c14.fm Page 305 Thursday, August 12, 2004 9:41 PM

306

Chapter 14

One of the users in the HR department runs a typical query joining the

EMPLOYEES

 and the

DEPARTMENTS

 table and then immediately turns off the tracing:

select employee_id emp_id, last_name, first_name,

 department_id dept_id, department_name

from hr.employees join hr.departments

 using(department_id);

 EMP_ID LAST_NAME FIRST_NAME DEPT_ID DEPARTMENT_NAME

-------- ----------- ----------- ------- ---------------

 100 King Steven 90 Executive

 101 Kochhar Neena 90 Executive

 102 De Haan Lex 90 Executive

...

 205 Higgins Shelley 110 Accounting

 206 Gietz William 110 Accounting

106 rows selected.

alter session set sql_trace = false;

Session altered.

Locating the User Trace Files

Janice, the DBA, has agreed to help out the HR department by analyzing the user
trace file. First, she needs to find out where the user trace file is stored:

show parameter user_dump_dest

NAME TYPE VALUE

---------------- ---------- ---------------------------------

user_dump_dest string /u01/app/oracle/admin/ord/udump

From a Linux operating system command-line session, Janice attempts to
locate the trace file:

[oracle@oltp udump]$ ls -l ord_ora*.trc

-rw-r----- 1 oracle oinstall 748 May 30 10:43

ord_ora_11141.trc

4372c14.fm Page 306 Thursday, August 12, 2004 9:41 PM

Troubleshooting

307

-rw-r----- 1 oracle oinstall 748 May 18 20:37

ord_ora_11325.trc

-rw-r----- 1 oracle oinstall 751 May 12 12:08

ord_ora_12283.trc

-rw-r----- 1 oracle oinstall 97787 Jun 22 00:23

ord_ora_12299.trc

-rw-r----- 1 oracle oinstall 7611 Jun 20 22:57

ord_ora_13863.trc

-rw-r----- 1 oracle oinstall 1609855 Jun 22 00:58

ord_ora_13991.trc

-rw-r----- 1 oracle oinstall 1426 Mar 14 13:15

ord_ora_14115.trc

-rw-r----- 1 oracle oinstall 798 Jun 22 01:25

ord_ora_15082.trc

-rw-r----- 1 oracle oinstall 1666 Jun 20 17:50

ord_ora_1531.trc

-rw-r----- 1 oracle oinstall 1382 Mar 14 13:33

ord_ora_15338.trc

-rw-r----- 1 oracle oinstall 630 Jun 22 01:25

ord_ora_15763.trc

-rw-r----- 1 oracle oinstall 1031 Jun 22 01:26

ord_ora_15814.trc

-rw-r----- 1 oracle oinstall 1665 Jun 22 01:30

ord_ora_16099.trc

-rw-r----- 1 oracle oinstall 632 Mar 21 15:47

ord_ora_22552.trc

-rw-r----- 1 oracle oinstall 750 Mar 13 20:54

ord_ora_23172.trc

-rw-r----- 1 oracle oinstall 63729 Jun 23 20:21

ord_ora_23342.trc

-rw-r----- 1 oracle oinstall 1668 Mar 10 21:34

ord_ora_31113.trc

-rw-r----- 1 oracle oinstall 628 Jun 16 20:40

ord_ora_3113.trc

-rw-r----- 1 oracle oinstall 1177 Mar 29 00:36

ord_ora_3325.trc

-rw-r----- 1 oracle oinstall 628 Jun 19 19:33

ord_ora_3345.trc

4372c14.fm Page 307 Thursday, August 12, 2004 9:41 PM

308

Chapter 14

-rw-r----- 1 oracle oinstall 976 Mar 21 21:36

ord_ora_4463.trc

-rw-r----- 1 oracle oinstall 958 Jun 21 22:08

ord_ora_4474.trc

-rw-r----- 1 oracle oinstall 1665 Mar 22 20:08

ord_ora_4529.trc

-rw-r----- 1 oracle oinstall 1048 Mar 14 12:29

ord_ora_9813.trc

-rw-r----- 1 oracle oinstall 39563 Jun 22 23:34

ord_ora_982.trc

-rw-r----- 1 oracle oinstall 1407 Mar 14 12:51

ord_ora_9843.trc

[oracle@oltp udump]$

Which trace file is the right one? The datestamp of each file helps to narrow
down the search, but there could be multiple users creating trace files at the same
time. Janice must join the

V$PROCESS

 and

V$SESSION

 dynamic performance
views to retrieve the operating system process number, which Oracle uses in the
trace filename:

select spid from v$process v, v$session s

 where v.addr = s.paddr and s.username = 'HR';

SPID

23342

1 row selected.

Given the operating system process number of 23342, Janice knows that she
needs to analyze the user trace file

ord_ora_ 23342.trc. However, when she
opens this trace file in Notepad, it is not very readable:

4372c14.fm Page 308 Thursday, August 12, 2004 9:41 PM

Troubleshooting 309

Converting the Trace File
TKPROF
An Oracle utility that reformats a user
trace file containing SQL statement
statistics into a readable format.

To convert the trace file into something more readable, Janice uses the Oracle
utility TKPROF:

[oracle@oltp udump]$ tkprof ord_ora_23342.trc

ord_ora_23342.txt

TKPROF: Release 10.1.0.2.0 - Production on Wed Jun 23
21:04:24 2004

Copyright (c) 1982, 2004, Oracle. All rights reserved.

[oracle@oltp udump]$

too?

PE: OK to
rebreak here
too?

4372c14.fm Page 309 Thursday, August 12, 2004 9:41 PM

310 Chapter 14

Janice reviews the file ord_ora_23342.txt and finds that the output is much
easier to interpret. A sample of the output is shown below.

Using statistics from the trace file such as CPU time and elapsed time can help
Janice focus on which of the HR department’s SQL statements need tuning.

Oracle provides two websites that can assist the DBA when trouble strikes. MetaLink,
Oracle’s trouble reporting site at http://metalink.oracle.com, is a subscription
service that allows DBAs to submit problem reports (either online or by phone) and
search the knowledge base of all other problems submitted to Oracle support staff.
Oracle’s technology network, http://technet.oracle.com, is a free service,
although user registration is required to access the site. Technet contains searchable
product documentation, trial versions of most of Oracle’s software, discussion
forums, sample code, white papers, and more.

Terms to Know
alert log file TKPROF

system trace file user trace file

4372c14.fm Page 310 Thursday, August 12, 2004 9:41 PM

Troubleshooting 311

Review Questions
1. System trace files can be found in the directory identified by which initializa-

tion parameter?

2. What Oracle tool can the DBA use to monitor the size of a tablespace and
notify the DBA when the tablespace is running out of space?

3. True or false: The alert log file records both successful and unsuccessful
logins to the database.

4. The alert log file can be found in the directory identified by which initializa-
tion parameter?

5. What does the Oracle utility TKPROF do?

6. User trace files can be found in the directory identified by which initialization
parameter?

7. User trace files provide which two benefits for the DBA and database users?

8. True or false: The alert log file is cleared every time the database is started.

9. Which two dynamic performance views contain information about sessions
in the database?

10. Oracle Database 10g’s EM Database Control can trigger an alert for out of
space conditions at how many different threshold levels?

4372c14.fm Page 311 Thursday, August 12, 2004 9:41 PM

4372c14.fm Page 312 Thursday, August 12, 2004 9:41 PM

Appendix

A

Answers to Review Questions

Chapter 1

1.

Name the most important element of a relational database and its components.

Answer:

The table is the most important element of a relational database and it consists of rows and col-
umns. A field exists at the intersection of a row and a column.

2.

Which type of table relationship associates more than one record in a given table with more than one record
in another table?

Answer:

A many-to-many relationship associates more than one record in a table with more than one record
in another table.

3.

What type of key can be used to enforce referential integrity between two tables in a database?

Answer:

A foreign key can be used to enforce referential integrity between two tables.

4.

What are some reasons why using a spreadsheet is not a good alternative to using a large-scale database?

Answer:

Some reasons why a spreadsheet is not a good alternative to a large-scale database are that it’s dif-
ficult to use for multiple users, it does not offer transaction control, the cells in a spreadsheet can contain any
type of data, and referential integrity controls between spreadsheets are difficult to implement efficiently.

5.

What are some of the benefits of abstraction in an object-relational database management system?

Answer:

In an object-relational database management system, new datatypes can be created as aggregates
of existing datatypes and other new datatypes, enhancing adherence to standards and reusability.

6.

What object-relational feature of Oracle eases the transition between relational and object-relational applications?

Answer:

Object views allow the developer to define an object-oriented structure over an existing relational
database table, thus easing the transition between relational and object-relational applications.

7.

What are the three steps in the ERA process for database design?

Answer:

The three steps in the ERA (entities, relationships, attributes) design process are to define the enti-
ties, then define the relationships between the entities, and then define the attributes of the entities. After one
pass through all three steps, one or more iterations may be necessary.

8.

Name the three Oracle-compliant ANSI SQL standards.

Answer:

Oracle9

i

 is compliant with SQL:1992 and SQL:1999, whereas Oracle 10

g

 is compliant with SQL:2003.

4372.book Page 313 Thursday, August 12, 2004 11:41 AM

314

Appendix A

9.

What is the difference between a relation and a relationship?

Answer:

The difference between a relation and a relationship is that a relation is another name for a table,
whereas a relationship is a way to correlate, or join, two or more tables.

10.

Which type of relationship associates one row in a given table with one or no rows in another table?

Answer:

A one-to-one relationship associates one row in a given table with one or no rows in another table.

Chapter 2

1.

What are the three types of DML (Data Manipulation Language) statements?

Answer:

The three types of DML statements are

INSERT

,

UPDATE

, and

DELETE

.

2.

If the user

SCOTT

 is granted the privilege to insert records on the

OE.WAREHOUSES

 table using the command

GRANT INSERT ON OE.WAREHOUSES WITH GRANT OPTION

, what does the

WITH GRANT OPTION

 clause allow

SCOTT

 to do?

Answer:

It allows

SCOTT

 to grant another user, such as

HR

, the same

INSERT

 privilege on the

OE.WAREHOUSES

 table.

3.

Under which tiers of a three-tier Oracle environment does iSQL*Plus run?

Answer:

iSQL*Plus runs on only the middleware tier where the Apache web server is running. However,
Apache can run on the client with the user who is executing the SQL statements, on its own dedicated server,
or on the same server as the Oracle database.

4.

What two methods are used to rename a column in the report output of a SQL

SELECT

 statement?

Answer:

You can rename a column in the report output by using the SQL*Plus or iSQL*Plus

COLUMN

 com-
mand or by specifying the alias name next to the column name in the SQL

SELECT

 statement.

5.

ODBC provides what capability to client applications?

Answer:

ODBC (Open Database Connectivity) provides a client application that supports SQL commands
and the capability to connect to a variety of different database servers without knowing the specific details
as to how to connect and interact directly with the database.

6.

Which

SELECT

 statement keyword removes duplicate rows from the result of the query?

Answer:

The

DISTINCT

 keyword removes duplicate rows. If there is only one column in the result of a SQL
query, there will be no duplicates of that column returned in the query result. If there are two columns in the
result of the query, there will be one row returned for each unique combination of values in the first and
the second column.

7.

What is the name of the set of library routines that allows a developer to send SQL statements from a C program?

Answer:

The library routines for sending SQL statements from a C program are called the OCI (Oracle
Call Interface).

8.

What are some of the differences between a

DELETE

 and a

TRUNCATE

 statement?

Answer:

A

DELETE

 statement may be rolled back, whereas a

TRUNCATE

 statement is implicitly committed. A

DELETE

 statement can conditionally specify which rows to delete, but a

TRUNCATE

 statement removes the contents

4372.book Page 314 Thursday, August 12, 2004 11:41 AM

Answers to Review Questions

315

of the entire table. A

DELETE

 statement retains the disk space in the table for future inserts or updates, but a

TRUNCATE

 statement frees the disk space for other tables or database objects.

9.

The new

MERGE

 statement combines the functionality of which two other DML statements?

Answer:

MERGE

 combines the functionality of

INSERT

 and

UPDATE

.

10.

What function does the

DESCRIBE

 command perform in SQL*Plus or iSQL*Plus?

Answer:

The

DESCRIBE

 command displays the structure of a table, including the column name, datatype,
and whether the column is a required field.

Chapter 3

1.

What is another way to write the following SQL statement by using another function?

select empno || lpad(initcap(ename),

40-length(empno),'.')

"Employee Directory" from emp;

Answer:

You can rewrite the statement using the

CONCAT

 function:

select concat(empno, lpad(initcap(ename),

40-length(empno),'.') "Employee Directory" from emp;

2.

Which function would you use to perform an explicit conversion from a number to a string?

Answer:

You can use the

TO_CHAR

 function to convert a number to a string.

3.

How can you rewrite the function call

NUMTOYMINTERVAL(17,

'year')

 using the function

TO_YMINTERVAL

?

Answer:

You can rewrite the function call as

TO_YMINTERVAL('17-00')

.

4.

What is the result of a number added to a

NULL

 value?

Answer: The result of a number added to a NULL is NULL.

5. What is the result of formatting the number -232.6 using the format mask ‘9999.99S’?

Answer: The resulting format is 232.60-.

6. Rank the following operators or conditionals based on priority, from highest to lowest: *, OR, ||, >=

Answer: *, ||, >=, OR

7. The DUAL table has how many rows and how many columns?

Answer: The DUAL table has one row and one column. The column is named DUMMY and has a value of ‘X’.

8. True or false: Strings and numbers can be concatenated.

Answer: True, before the number is concatenated with the string, it is implicitly converted to a string.

4372.book Page 315 Thursday, August 12, 2004 11:41 AM

316 Appendix A

9. Write a SELECT statement with a built-in function or functions that will format the string ‘Queen’ with the
‘!’ character padded for a total of 20 characters on the left side and with the ‘?’ character padded for a total
of 30 characters on the right. (Hint: Use nested functions.)

Answer: SELECT statement:

select rpad(lpad('Queen',20,'!'),30,'?') from dual;

RPAD(LPAD('QUEEN',20,'!'),30,'

!!!!!!!!!!!!!!!Queen??????????

10. What functionality does the Oracle TIMESTAMP datatype have over the DATE datatype?

Answer: The TIMESTAMP datatype stores the time in seconds to up to nine digits of precision.

Chapter 4
1. Rewrite the following expression using the CONCAT function.

last_name || ', ' || first_name

Answer: The expression is rewritten as:

concat(concat(last_name, ', '),first_name)

2. What are two ways that you can indicate a comment in a SQL command?

Answer: You can indicate a comment in a SQL command by using /* and */ or by using --.

3. The SQL engine converts the IN operator to a series of ________.

Answer: The SQL engine converts the IN operator to a series of OR operations.

4. Rewrite the following WHERE clause to be case insensitive.

where job_title like '%Manager%';

Answer: Use the UPPER function to convert the job title to uppercase:

where UPPER(job_title) like '%MANAGER%';

5. What is the only group function that counts NULL values in its calculation without using NVL or other
special processing?

Answer: The COUNT group function using the syntax COUNT(*) counts NULL values without using NVL.

6. The query results from using aggregate functions with a GROUP BY clause can be filtered or restricted by using
what clause?

Answer: The HAVING clause filters or restricts the query results of the GROUP BY clause.

7. Identify the two special characters used with the LIKE operator and describe what they do.

Answer: The % character matches zero or more characters, and the _ character matches exactly one character.

4372.book Page 316 Thursday, August 12, 2004 11:41 AM

Answers to Review Questions 317

8. Name two aggregate functions that work only on numeric columns or expressions and two other aggregate
functions that work on numeric, character, and date columns.

Answer: AVG and SUM work only on numeric columns; MIN and MAX work on all datatypes.

9. Put the clauses of a SQL SELECT statement in the order in which they are processed.

Answer: The proper order is SELECT, WHERE, GROUP BY, HAVING, ORDER BY.

10. Which operator can do valid comparisons to columns with NULL values?

Answer: The operator is IS NULL.

11. The SQL engine converts the BETWEEN operator to ___________.

Answer: The SQL engine converts the BETWEEN operator to two logical comparisons using >= and <=, con-
nected by an AND operation.

12. Where do NULL values end up in a sort operation?

Answer: For ascending sorts, the NULL values are at the end; for descending sorts, the NULL values are at
the beginning.

Chapter 5
1. Add a clause to the WHERE condition to make the following query return only the department names

without employees:

select employee_id "Emp ID", last_name || ', ' ||

 first_name "Name", department_name "Dept"

from employees e,departments d

where e.department_id(+) = d.department_id;

Answer: The following clause added to the WHERE condition makes the query return only department names
without employees:

and employee_id is null

2. A type of query that has either too few or no join conditions is known as a ___________ query.

Answer: Cartesian product

3. Name three kinds of equijoins.

Answer: Inner joins, self-joins, left outer joins, right outer joins, and full outer joins are all examples of equijoins.

4. A natural join makes what assumption between the columns of two or more tables to be joined?

Answer: A natural join assumes that the tables are to be joined on the columns that have the same names
and datatypes.

5. The Oracle9i syntax moves the join conditions from the _________ clause to the ________ clause in a
SELECT statement.

Answer: WHERE, FROM

4372.book Page 317 Thursday, August 12, 2004 11:41 AM

318 Appendix A

6. To avoid a Cartesian product, a query with four tables must have at least how many join conditions
between tables?

Answer: A query with four tables must have at least three join conditions to avoid a Cartesian product.

7. To return all the rows in one table regardless of whether any rows in another table match on the join
condition, you would use what kind of a join?

Answer: An outer join returns all rows in one table regardless of whether any rows in another table match
on the join condition.

8. What is the symbol used to signify an outer join in a pre-Oracle9i query?

Answer: A (+) is used to signify an outer join in a pre-Oracle9i query.

9. A full outer join uses what SQL set operator in a pre-Oracle9i database query?

Answer: A full outer join uses the UNION set operator in a pre-Oracle9i query.

10. A primary key in one table would frequently be joined to what in a second table?

Answer: A primary key in one table would frequently be joined to a foreign key in a second table.

Chapter 6
1. A subquery is allowed in which parts of a SQL SELECT statement?

Answer: A subquery is allowed in the SELECT clause, the FROM clause, and the WHERE clause.

2. True or false: A correlated subquery references a table in the SELECT clause.

Answer: False, the correlated subquery references a column in the main query.

3. Which set operator will not remove duplicate rows from the result of a compound query?

Answer: UNION ALL will not remove duplicate rows from the result of a compound query.

4. What characteristics of the columns in a compound query using INTERSECT must match?

Answer: The number of columns and their datatypes must match in a compound query using INTERSECT.
The lengths of the columns and the names do not need to match.

5. How are NULL values handled using set operators in a compound UNION query?

Answer: NULL values in one query are considered equal to NULL values in the other query, for the purposes
of eliminating duplicates in a UNION.

6. Why are ROLLUP and CUBE the preferred methods for generating subtotals and grand totals for an
aggregate query?

Answer: ROLLUP and CUBE need to make only one pass over the source table(s). Other methods, such as using
a UNION between two similar queries, will make more than one pass.

7. Which operators can be used to compare a column to a single-row subquery?

Answer: The following operators can be used to compare a column to a single-row subquery: =, !=, >, <,
>=, and <=.

4372.book Page 318 Thursday, August 12, 2004 11:41 AM

Answers to Review Questions 319

8. A compound query that needs to find only the rows that are the same between the two queries should use
the __________ set operator.

Answer: INTERSECT

9. True or false: The IN operator cannot be used with a single-row subquery.

Answer: False, using IN with a single-row subquery would be equivalent to using =.

10. Put the set operators UNION, UNION ALL, INTERSECT, and MINUS in order of precedence.

Answer: All of those operators have equal precedence and are evaluated left to right in a compound query.

11. What can be used to change the precedence of a pair of queries in a compound query with more than two queries?

Answer: As with any other part of a SQL query, parentheses may be used to change the evaluation order of
the set operators.

Chapter 7
1. A COMMIT occurs under which three conditions within a transaction?

Answer: A COMMIT occurs from an explicit COMMIT command, after a DDL or DCL command is executed,
or when a SQL*Plus or iSQL*Plus session is exited normally.

2. Under what circumstances can a foreign key column not match the defined primary key value in the parent table?

Answer: A foreign key column may not match the defined primary key value in the parent table when the
foreign key column allows NULL values and is NULL.

3. True or false: A CHECK constraint cannot check for NULL values.

Answer: False, a CHECK constraint can use IS NULL and IS NOT NULL to check for the existence of NULL values
in one or more columns of the table.

4. How are PRIMARY KEY constraints and UNIQUE constraints different? List two ways.

Answer: PRIMARY KEY constraints do not allow NULL values, and there can be only one primary key per table.

5. What are the three conditions that may be specified, either implicitly or explicitly, on a foreign key column
when the primary key column in the parent table is deleted?

Answer: By default, the row in the parent table will not be deleted if rows exist in the child table that have
a foreign key referencing the parent table’s primary or unique key. Alternatively, the child table’s foreign
key may be set to NULL (SET NULL), or the entire row in the child table may be deleted if a parent row is
deleted (CASCADE).

6. Write a CHECK constraint that ensures MAX_SALARY is at least 10,000 more than MIN_SALARY.

Answer: This constraint ensures MAX_SALARY is at least 10,000 more than MIN_SALARY: check (max_salary
- 10000 > min_salary)

7. What statement will allow a partial rollback of certain DML statements within a transaction?

Answer: The ROLLBACK TO SAVEPOINT <savepoint>; statement will allow a partial rollback of certain
DML statements.

4372.book Page 319 Thursday, August 12, 2004 11:41 AM

320 Appendix A

8. True or false: A NOT NULL constraint can be defined at the table level or at the column level.

Answer: False, a NOT NULL constraint can be defined only at the column level.

9. What kind of constraint establishes a parent-child relationship between two tables via one or more
common columns?

Answer: A foreign key constraint establishes a parent-child relationship between two tables via one or more
common columns.

10. If the database crashes while a user session is active, what type of transaction processing is automatically per-
formed when the database is restarted?

Answer: If the database crashes, an automatic ROLLBACK of any pending transactions is performed when the
database is restarted.

Chapter 8
1. What are the four functions of the Database Creation Assistant (DBCA)?

Answer: DBCA can create, delete, and modify databases. It can also create a template that can be used to
create a database.

2. What is the Oracle background process that writes modified data blocks to disk?

Answer: The DBWn process writes modified data blocks to disk.

3. What is the difference between a database and an instance?

Answer: A database is a set of files on disk that is managed by an instance, which is a collection of processes
and memory structures that operate against the datafiles on disk.

4. An extent is composed of one or more ______________.

Answer: Database blocks

5. True or false: The control file contains important system tables.

Answer: False, the control file contains information about the physical structure of the entire database.

6. What is the GUI-based Oracle tool that can manage and monitor one or more Oracle instances?

Answer: The Oracle Enterprise Manager (OEM) can manage and monitor one or more Oracle instances.

7. DBCA can save the specified database parameters in what kind of file?

Answer: DBCA can save the database parameters as an HTML file.

8. Which Oracle background process will apply the data in the redo log files to the datafiles in the event of a
system crash?

Answer: The SMON process will apply the data in the redo log files to the datafiles in the event of a
system crash.

9. A database schema is closely associated with which other database object?

Answer: A schema is associated 1:1 with a user account in the database.

4372.book Page 320 Thursday, August 12, 2004 11:41 AM

Answers to Review Questions 321

10. A segment consists of one or more _____________.

Answer: Extents

Chapter 9

1. An iSQL*Plus substitution variable is preceded by what character(s) in a script?

Answer: An iSQL*Plus substitution variable is preceded by either one or two ampersands (& or &&).

2. Identify the two iSQL*Plus commands that define the header and footer for a report.

Answer: The TTITLE and BTITLE commands define the header and footer for an iSQL*Plus report.

3. On which iSQL*Plus web page can you adjust the size of the iSQL*Plus window where you enter your
iSQL*Plus commands or SQL statements?

Answer: The size of the iSQL*Plus Workspace window can be adjusted on the Interface Configuration page.

4. Write an iSQL*Plus footer command to display the text Page 22, right-justified on the line.

Answer: This iSQL*Plus command will display the text Page 22, right-justified on the footer line of the report:

btitle right 'Page 22'

5. Sums and averages can be displayed on an iSQL*Plus report using which iSQL*Plus command?

Answer: Sums and averages can be displayed on an iSQL*Plus report by using the COMPUTE iSQL*Plus
command.

6. Write a single iSQL*Plus COLUMN command to format the Salary column with a total of six digits, four to the
left of the decimal point and two to the right. In the same COLUMN command, define the header to be Monthly
Salary, with the words appearing on different lines in the column header.

Answer: The following iSQL*Plus command will format the Salary column with six digits, four to the left
of the decimal point and two to the right. In addition, the header will be defined as Monthly Salary, with the
words appearing on different lines in the column header:

column Salary format 9999.99 heading 'Monthly|Salary'

7. Which iSQL*Plus command controls the row count display after a SELECT statement is executed?

Answer: The FEEDBACK command controls the row count display after a SELECT statement is executed. By
default, the row count from a query is displayed if there are six or more rows in the query output.

8. Which iSQL*Plus command controls how duplicate column values are displayed on a report?

Answer: The BREAK command will suppress duplicate values in a report for a specified column.

9. The iSQL*Plus BREAK command is almost always specified in conjunction with what SQL SELECT state-
ment clause?

Answer: The BREAK command is almost always specified on a column that is in the ORDER BY clause of a SQL
SELECT statement.

4372.book Page 321 Thursday, August 12, 2004 11:41 AM

322 Appendix A

10. In both the TTITLE and BTITLE commands, what option must be used to specify more than one line in the
header or footer?

Answer: The SKIP option must be used in a BTITLE or TTITLE command to specify more than one line in
the header or footer.

Chapter 10
1. The data dictionary view IND has the same definition as what other data dictionary view?

Answer: The data dictionary view IND is equivalent to the data dictionary view USER_INDEXES.

2. The most common form of a table in the Oracle database is a(n) ___________ table.

Answer: Relational

3. What clause do you add to the CREATE TABLE statement to create a temporary table?

Answer: You add the clause GLOBAL TEMPORARY to the CREATE TABLE statement to create a temporary table.

4. What tables are displayed if a user accesses the ALL_TABLES data dictionary view?

Answer: The ALL_TABLES data dictionary view contains a row for each table in the user’s schema plus a row
for each table that the user has access to in other schemas of the database.

5. Name two ways in which external tables are different from relational tables.

Answer: External tables cannot be updated, and external tables cannot have indexes created on them.

6. True or false: Oracle resolves object references by checking for private synonyms first.

Answer: False, Oracle resolves object references by checking for a real object owned by the user, then checks
for a private synonym, and then checks for a public synonym.

7. What are two reasons for creating a view against one or more tables?

Answer: A view can be created to hide the complexity of a table join from the user. A view can also be cre-
ated to restrict the rows or columns seen by users of the view.

8. What database object type can be used to generate a series of sequential numbers?

Answer: A sequence can be used to generate a series of sequential numbers.

9. True or false: Data dictionary tables retain their contents even after the database has been shut down
and restarted.

Answer: True, data dictionary tables retain their contents even after the database has been restarted.
Dynamic performance views, however, lose their contents when the database is shut down and restarted.

10. An index created on more than one column is known as what kind of index?

Answer: An index based on more than one column is known as a composite index.

4372.book Page 322 Thursday, August 12, 2004 11:41 AM

Answers to Review Questions 323

Chapter 11
1. Privileges can be grouped and assigned as a unit by using what database object?

Answer: A role can be used to group system and object privileges and assign them as a unit to database users.

2. When granting privileges with the GRANT statement, what does the clause WITH GRANT OPTION do?

Answer: The WITH GRANT OPTION clause allows the grantee to pass on the privilege to another database user.

3. DROP USER and CREATE SESSION are examples of what kind of privileges?

Answer: DROP USER and CREATE SESSION are examples of system privileges.

4. What is the name of the table, owned by the user SYS, that contains all audit records?

Answer: The table SYS.AUD$ contains all audit records.

5. Write a SQL statement that will create audit records when UPDATE statements fail against the
HR.EMPLOYEES table.

Answer: The following SQL statement will create audit records when UPDATE statements fail against the
HR.EMPLOYEES table:

audit update on hr.employees whenever not successful;

6. Which system privilege allows a user to make a connection to the database?

Answer: The CREATE SESSION system privilege allows a user to make a connection to the database.

7. In addition to assigning a default tablespace to a user, what else must be assigned to a user before that user
can create objects in the tablespace?

Answer: A quota must be assigned to a user before that user can create objects in the tablespace.

8. Which tablespace is assigned to a user for the user’s permanent objects if one is not explicitly assigned in the
CREATE USER statement?

Answer: The SYSTEM tablespace is assigned to a user for permanent objects if no tablespace is explicitly
assigned in the CREATE USER statement.

9. DELETE, INSERT, and EXECUTE are examples of what kind of privileges?

Answer: DELETE, INSERT, and EXECUTE are examples of object privileges.

10. A profile controls which kinds of database resources?

Answer: A profile controls things such as concurrent connections to the database, CPU time used, continu-
ous idle time, disk reads performed, failed login attempts, how often a password needs to be changed, and
elapsed time connected.

11. Which keyword can be used in a GRANT command to assign one or more privileges to every user in
the database?

Answer: The PUBLIC keyword can be used instead of an individual username or role in a GRANT command
to assign one or more privileges to every user in the database.

4372.book Page 323 Thursday, August 12, 2004 11:41 AM

324 Appendix A

Chapter 12
1. What GUI tool analyzes a SQL statement and identifies the steps used to process the query?

Answer: The Explain Plan GUI tool analyzes a SQL statement and identifies the steps used to process
the query.

2. The two general categories of indexes are ________ indexes and _________ indexes.

Answer: B-tree, bitmap

3. Which type of index is best for columns with a low cardinality?

Answer: A bitmap index is best for columns with a low cardinality.

4. Which dynamic performance view can assist the DBA in sizing the buffer cache appropriately?

Answer: The dynamic performance view V$DB_CACHE_ADVICE can assist the DBA in sizing the buffer cache
appropriately.

5. Which type of table divides the contents of a very large table into more manageable chunks, both improv-
ing the manageability of the table for the DBA and potentially increasing the performance of queries on
the table?

Answer: A partitioned table divides the contents of a very large table into more manageable chunks.

6. Which data dictionary views contain information about table indexes and the table columns indexed?

Answer: The data dictionary views DBA_INDEXES and DBA_IND_COLUMNS contain information about table
indexes and the table columns indexed.

7. Name the six steps in Oracle’s Tuning Methodology in order of priority.

Answer: The six steps in Oracle’s Tuning Methodology are data design, application design, memory allo-
cation, I/O and physical structures, resource contention, and underlying platform.

8. Which feature associated with materialized views rewrites a query to use the materialized view instead of
using the tables that are the source for the materialized view?

Answer: The QUERY REWRITE feature rewrites a query to use the materialized view instead of using the tables
that are the source for the materialized view.

9. What is the name of the pseudo-column that exists for every row of every table in the database and is unique
across the entire database?

Answer: The pseudo-column ROWID exists for every row of every table in the database and is unique across
the entire database.

10. Name the two different optimizer modes in Oracle9i and identify which one uses statistics from tables and
indexes to derive an execution plan; identify two of the most common modes in Oracle 10g.

Answer: The two different optimizer modes for Oracle9i are rule-based and cost-based. The cost-based
method uses statistics from tables and indexes to derive an execution plan. For Oracle 10g, the two most
common optimizer modes are ALL_ROWS and FIRST_ROWS.

4372.book Page 324 Thursday, August 12, 2004 11:41 AM

Answers to Review Questions 325

Chapter 13
1. A cold database backup occurs when a database is ________, and a hot database backup occurs when a

database is _______.

Answer: Closed and unavailable to users, open and available to users

2. The failure of a disk drive containing database datafiles would be considered what kind of a failure?

Answer: The failure of a disk drive containing database datafiles would be considered a media failure.

3. What clause in a SELECT statement specifies the time and date for an Oracle flashback query?

Answer: The AS OF TIMESTAMP clause in a SELECT statement specifies the time and date for an Oracle flash-
back query.

4. The flashback query tool uses which Oracle structure to retrieve information on how a table appeared at
some specified point in the past?

Answer: The undo tablespace contains information that is used to reconstruct how a table appeared at some
specified point in the past.

5. True or false: A flashback query can retrieve the DDL statement needed to undo a change made to a table
in the past.

Answer: False, the flashback query feature does not provide the DDL for undoing changes. Log Miner is the
tool that can retrieve the DDL statement needed to undo a change made to a table in the past.

6. An abnormal termination of the Oracle server software would be considered what type of database failure?

Answer: An abnormal termination of the Oracle server software would be considered an instance failure and
therefore a nonmedia failure.

7. Which Oracle utilities can be used by a database user to back up and restore a table and by a DBA to move
a tablespace from one database to another?

Answer: The Import (IMP) and Export (EXP) utilities can be used by a database user to back up and restore
a table and by a DBA to move a tablespace from one database to another.

8. Which Oracle structure allows the automatic recovery of the Oracle database after an instance failure?

Answer: The redo log files ensure that all committed transactions are applied to the database in the event of
an instance failure.

9. What option of the Import (IMP) command allows the DBA to view the DDL contained in a dump file with-
out executing those DDL commands?

Answer: The SHOW=Y option of the Import (IMP) command allows the DBA to view the DDL contained in
a dump file without executing those DDL commands.

10. What is the name of the feature of Oracle’s Export and Import utilities that allows a DBA to move or copy
an entire tablespace from one database to another?

Answer: The transportable tablespace feature of Oracle’s Export and Import utilities allows a DBA to move
or copy an entire tablespace from one database to another.

4372.book Page 325 Thursday, August 12, 2004 11:41 AM

326 Appendix A

Chapter 14
1. System trace files can be found in the directory identified by which initialization parameter?

Answer: System trace files can be found in the directory identified by the BACKGROUND_DUMP_DEST parameter.

2. What Oracle tool can the DBA use to monitor the size of a tablespace and notify the DBA when the
tablespace is running out of space?

Answer: Oracle9i’s OEM’s Event Manager tool or Oracle 10g’s EM Database Control can be used to mon-
itor space conditions in database tablespaces.

3. True or false: The alert log file records both successful and unsuccessful logins to the database.

Answer: False, the alert log file records database startup and shutdown but not user logins.

4. The alert log file can be found in the directory identified by which initialization parameter?

Answer: The alert log file can be found in the directory identified by the BACKGROUND_DUMP_DEST parameter.

5. What does the Oracle utility TKPROF do?

Answer: The Oracle utility TKPROF formats a user trace file containing SQL statement statistics into a read-
able format.

6. User trace files can be found in the directory identified by which initialization parameter?

Answer: User trace files can be found in the directory identified by the USER_DUMP_DEST parameter.

7. User trace files provide which two benefits for the DBA and database users?

Answer: User trace files provide information about error conditions encountered in a user’s session in addi-
tion to SQL statement execution statistics.

8. True or false: The alert log file is cleared every time the database is started.

Answer: False, the alert log file grows in size indefinitely until it is renamed or deleted by the DBA.

9. Which two dynamic performance views contain information about sessions in the database?

Answer: The dynamic performance views V$SESSION and V$PROCESS contain information about user sessions.

10. Oracle Database 10g’s EM Database Control can trigger an alert for out of space conditions at how many
different threshold levels?

Answer: Oracle Database 10g triggers alerts for all database error conditions, including out of space con-
ditions, at two threshold levels: warning and critical.

4372.book Page 326 Thursday, August 12, 2004 11:41 AM

Appendix

B

Common Database Platforms

This appendix offers an overview of some common database platforms for enterprise and “personal”
use. Most popular databases today can be considered relational or object-relational in nature, and they
support SQL. When choosing a database platform, price, market sector, interoperability, and scalabil-
ity are sometimes the deciding factors over features.

Enterprise Databases

There are a few heavy-hitters in the database world, including the key players in the enterprise relational database
management system (RDBMS) market listed here. The following list of vendors is not intended to be comprehensive
but to give an overview of the various approaches to solving the problems of a large, distributed enterprise.

Oracle

Historically, Oracle is the granddaddy of them all. In 1979, Oracle Corporation released the first commercially
viable RDBMS, based on the work of Dr. E. F. Codd. In 1983, however, the true power and cross-platform
capabilities of Oracle were evident when the source code for Oracle was rewritten in the C language, making
Oracle extremely portable across any hardware and software platform that has a C compiler.

As a database, Oracle 10

g

 has become “unbreakable.” All market hype aside, so much redundancy and
failover capability has been built into the product that Oracle has a written guarantee that your database won’t
go down!

What really distinguishes Oracle from many of its competitors is its availability on so many operating systems
and hardware platforms. Products such as Microsoft SQL Server run strictly on Windows operating systems with
Intel hardware, and many of the other potential contenders run on only Windows or Linux or a combination of
the two.

Many independent benchmark tests of Oracle versus its competitors, such as the March 26, 2002,

PC Magazine

review of SQL databases, show Oracle to be one of the key market leaders.

More information about Oracle 10

g

 can be found at

http://www.oracle.com/database/

.

IBM DB2/UDB

IBM DB2/UDB had its humble beginnings as a mainframe database but has now grown to be implemented on
almost as many hardware and software platforms as Oracle. The strengths of DB2 lie in its strong text-search

4372.book Page 327 Thursday, August 12, 2004 11:41 AM

328

Appendix B

capabilities, on par with the Oracle interMedia product. The integration with its WebSphere middleware prod-
uct also makes it a good all-in-one enterprise solution, although the WebSphere product can be used with an
Oracle database as the back end.

More information about DB2/UDB can be found at

http://www-306.ibm.com/software/data/db2/udb/

.

Sybase

Sybase’s Adaptive Server Enterprise finds its strengths in its financial application suites, but it is also on par,
feature for feature, with similar products from IBM and Oracle. The SQLAnywhere product suite is crafted for
small workgroups as well as embedded and mobile applications.

More information on Sybase products can be found at

http://www.sybase.com/products/
databaseservers

.

Microsoft SQL Server

Microsoft SQL Server picked up where Sybase left off at version 6, when Microsoft and Sybase broke their
development ties, although SQL Server has diverged quite a bit from Sybase’s products. SQL Server’s depen-
dence on the Windows operating system and Intel hardware as a host rule it out as a choice for enterprises that
rely on Unix and non-Intel hardware for their base infrastructure.

More information about Microsoft SQL Server can be found at

http://www.microsoft.com/sql/

.

Personal and Freeware Databases

The term

personal

 may be interpreted two ways: by cost and by the size of the target end-user audience. What
further muddies the water are vendors from the “big list” in the previous section who have designed their prod-
ucts to run on anything from a cell phone up to large network clusters. When you get down to the cell phone
level, however, it’s a sure bet that there is some powerful middleware in the mix and a very thin client on the
cell phone!

Two examples of personal database platforms are presented here. This list is not intended to be compre-
hensive but to give an overview of various approaches to solving the problems of an individual or a small work-
group that needs more than a spreadsheet to manage corporate data.

Microsoft Access

Microsoft Access is not an easy product to categorize. It is part of the Microsoft Office suite for data manage-
ment. This self-contained database has powerful query facilities yet lacks the recovery and robust multiple-user
support that Oracle and SQL Server have. It can link to any external database that has an ODBC-compliant
driver under Windows, which makes it a good cross-platform choice for the individual analyst or small work-
groups that don’t need 24

×

 7 availability or highly flexible recovery options.
More information on Microsoft Access can be found at

http://office.microsoft.com/home/
office.aspx?assetid=FX01085791

.

4372.book Page 328 Thursday, August 12, 2004 11:41 AM

Common Database Platforms

329

MySQL

MySQL is billed as “the world’s most popular open source database.” This product is free under the GNU
General Public License (GPL), with technical support being an added cost option. It runs under almost any
operating system, including all flavors of Unix and Windows. It is somewhat lacking in some of the features
common to commercial databases; however, it is highly extensible and customizable. Its lack of features is off-
set by its high performance and reliability.

More information about MySQL can be found at

http://www.mysql.com/products/mysql/

.

4372.book Page 329 Thursday, August 12, 2004 11:41 AM

4372.book Page 330 Thursday, August 12, 2004 11:41 AM

Glossary

331

Glossary

abstract datatypes

New datatypes, usually user-
created, that are based on one or more built-in
datatypes and can be treated as a unit.

aggregate

A type of function in Oracle SQL that
performs a calculation or transformation across mul-
tiple rows in a table, rather than just on a single row.

alert log file

A text file that contains entries
about significant database events, such as database
startup and shutdown, nondefault initialization
parameters, and various errors. The alert log file
is stored in the directory specified by the system
parameter

BACKGROUND_DUMP_DEST

.

alias

An alternate name for a column, specified
right after the column name in a

SELECT

 statement,
seen in the results of the query.

associative table

A database table that stores the
valid combinations of rows from two other tables
and usually enforces a business rule. An associative
table resolves a

many-to-many relationship

.

auditing

Storing information about activities in
the database in the

SYS.AUD$

 table. Auditing is con-
trolled by the DBA.

bitmap index

An index that maintains a binary
string of ones and zeros for each distinct value of a
column within the index.

branch blocks

Index blocks in the traversal path of
a b-tree index that either point to branch blocks at
the next level or point to leaf blocks.

b-tree index

A type of index structure that resem-
bles an inverted tree. The branches of a b-tree index
are balanced. Traversing the tree for any index value
reads the same number of blocks.

buffer cache advisory

A feature of the Oracle9

i

database that can assist the DBA in determining
how large to make the buffer cache. This feature

collects statistics on how often a requested database
block is found in the buffer cache. The system ini-
tialization parameter

DB_CACHE_ADVICE

 controls
whether these statistics are collected, and the data
dictionary view

V$DB_CACHE_ ADVICE

 contains the
estimated number of physical reads that would
occur given a number of different cache sizes.

cardinality

The number of distinct values in a
column of a table.

Cartesian product

A join between two tables
where no join condition is specified, and as a result,
every row in the first table is joined with every row in
the second table.

CHECK constraint

A constraint that evaluates
the condition defined in the constraint and permits the

INSERT

 or

UPDATE

 of the row in the table if the condi-
tion is satisfied.

closed backup

See

cold backup

.

cold backup

A database backup performed while
the database is shut down. Also known as a closed
backup.

column

The component of a database table that
contains all of the data of the same name and type
across all rows.

comment

Documentation for SQL statements.
Comments are specified by using the pair

/*

 and

*/

or by using

--

.

composite index

An index that is created on two
or more columns in a table.

concatenation

The process of combining two or
more data elements into a single element. In Oracle
SQL, concatenation can be accomplished by using
the concatenation operator (a pair of vertical bars,

||

) or the

CONCAT

 function.

4372cGLOSS.fm Page 331 Monday, August 16, 2004 7:03 PM

332

Glossary

connection identifier

See

host string

.

constraint

A condition defined against a column or
columns on a table in the database to enforce business
rules or relationships between tables in the database.

control file

A file that records the physical struc-
ture of a database, the database name, and the names
and locations of datafiles and redo log files.

correlated subquery

A subquery that contains a
reference to a column in the main, or parent, query.

cost-based optimizer

An Oracle optimizer method-
ology that relies on the characteristics of the tables
being queried to determine the method used to run the
query. A cost is calculated for estimated CPU, I/O, and
sorting for the possible execution paths. The path with
the lowest overall cost is used to perform the query.

CTAS

Also known as Create Table As Select, a
method for creating a table in the database by using
the results from a subquery to both populate the
data and specify the datatypes of the columns in
the new table.

data dictionary views

Read-only views owned by
the user

SYS

 that are created when the database is
created and contain information about users, secu-
rity, and database structures, as well as other persis-
tent information about the database.

data modeling

A process of defining the entities,
attributes, and relationships between the entities in
preparation for creating the physical database.

database

The collection of all physical files on disk
that are associated with a single Oracle instance.

database block

The smallest unit of allocation in
an Oracle database. One or more database blocks
compose a database extent.

database buffer cache

The memory structure in
the SGA that holds the most recently used or written
blocks of data.

Database Configuration Assistant (DBCA)

A
multiplatform GUI tool that allows a DBA to easily

create, modify, and delete databases, as well as
manage database templates.

datafiles

Files that contain all of the database data
that the users of the database save and retrieve using

SELECT

 and other DML statements. A tablespace
comprises one or more datafiles.

date function

A function that performs some kind
of transformation on a date literal, a column con-
taining a date, or an expression consisting of date lit-
erals and table columns. Date functions return a date
or a string containing a portion of the date as the
result of the transformation.

DCL (Data Control Language)

Includes state-
ments such as

GRANT

 and

REVOKE

 to provide or deny
users or roles system or object privileges.

DDL (Data Definition Language)

Includes state-
ments such as

CREATE

,

ALTER

, and

DROP

 to work
with objects such as tables. DDL modifies the struc-
ture of the objects in a database instead of the con-
tents of the objects.

directory

A database object that stores a reference to
a directory on the host operating system’s filesystem.

DML (Data Manipulation Language)

Includes

INSERT

,

UPDATE

,

DELETE

, and

MERGE

 statements
that operate specifically on database tables. Occa-
sionally,

SELECT

 statements are included in the SQL
DML category.

DUAL

A special table, owned by the Oracle

SYS

user, that has one row and one column. It is useful
for ad hoc queries that don’t require rows from a spe-
cific table.

dynamic performance views

Data dictionary
views owned by the user

SYS

 that are continuously
updated while a database is open and in use and
whose contents relate primarily to performance.
These views have the prefix

V$

 and their contents are
lost when the database is shut down.

encapsulation

An object-oriented technique that
may hide, or abstract, the inner workings of an

4372cGLOSS.fm Page 332 Monday, August 16, 2004 7:03 PM

Glossary

333

object and expose only the relevant characteristics
and operations on the object to other objects.

equijoin

A join between two tables where rows are
returned if one or more columns in common between
the two tables are equal and not

NULL

.

Explain Plan tool

A GUI-based Oracle tool that
details the steps in which a SQL statement is exe-
cuted, as well as what method Oracle used to access
the tables in the query.

explicit conversion

Conversion of one datatype to
another in an expression using function calls such as

TO_CHAR

 instead of relying on automatic conversion
rules (See

implicit conversion

).

Export utility (EXP)

An Oracle utility that copies
the contents of one or more tables to a binary dump
file, along with the DDL needed to create the table and
its associated indexes, permissions, and constraints.

extent

A contiguous group of blocks allocated for
use as part of a table, index, and so forth.

external table

A table whose definition is stored
in the database but whose data is stored externally
to the database.

field

The smallest piece of information that can be
retrieved by the database query language. A field is
found at the intersection of a row and a column in a
database table.

flashback query

A feature of the Oracle database
that allows a user to view the contents of a table as of
a user-specified point in time in the past. How far in
the past a flashback query can retrieve rows depends
on the size of the undo tablespace and on the setting
of the

UNDO_RETENTION

 system parameter.

foreign key

A column (or columns) in a table
that draws its values from a primary or unique key
column in another table. A foreign key assists in
ensuring the data integrity of a table.

FOREIGN KEY constraint

A constraint that estab-
lishes a parent-child relationship between two tables

via one or more common columns. The foreign key
in the child table refers to a primary or unique key in
the parent table.

function A named set of predefined programming
language commands that performs a specific task given
zero, one, or more arguments and returns a value.

function-based index A b-tree index that is cre-
ated based on an expression involving the columns
of a table, instead of on a single column or col-
umns in the table.

heading separator A single character embedded
in an iSQL*Plus column alias that indicates where
the alias is split to appear on multiple lines in the
output. The heading separator itself does not
appear in the output.

hierarchical A table design where one of the for-
eign keys in the table references the primary key of
the same table in a parent-child relationship.

hint A directive placed between /*+ and */ in a
query that overrides an execution method that the
Oracle optimizer would normally choose.

host string A text string that represents a shortcut
or reference to a set of parameters that provide the
information needed to connect to a database host
from the client application.

hot backup A database backup performed while
the database is open and available to users. Also
known as an open backup.

implicit conversion Conversion of one datatype to
another that occurs automatically when columns or
constants with dissimilar datatypes appear in an
expression.

Import utility (IMP) An Oracle utility that takes as
input a binary dump file created by the Export utility
and restores one or more database tables, along with
any associated indexes, permissions, and constraints.

index A database object designed to reduce the
amount of time it takes to retrieve rows from a table.

4372cGLOSS.fm Page 333 Monday, August 16, 2004 7:03 PM

334 Glossary

An index is created based on one or more columns in
the table.

index-organized table (IOT) A b-tree index that
stores both the data and the index in the same segment.

inheritance Acquiring the properties of the parent,
or base object, in a new object.

inner join See equijoin.

instance The collection of memory structures and
Oracle background processes that operates against
an Oracle database.

intersection table See associative table.

JDBC (Java Database Connectivity) A set of
library routines specific to the Java language that
allows a Java application to easily connect to and
process SQL statements against an Oracle database.

join To combine two or more tables in a query to
produce rows as a result of a comparison between
columns in the tables.

leaf blocks Index blocks at the bottom of a b-tree
index that contain ROWIDs to the rows in the table
containing the desired index value.

logical structures Structures in an Oracle data-
base that a database user would see, such as a table,
as opposed to the underlying physical structures at
the datafile level.

LRU (least recently used) algorithm An algorithm
used to determine when to reuse buffers in the data-
base buffer cache that are not dirty or pinned. The less
frequently a block is used, the more likely it is to be
replaced with a new database block read from disk.

many-to-many relationship A relationship type
between tables in a relational database where one
row of a given table may be related to many rows of
another table, and vice versa. Many-to-many rela-
tionships are often resolved with an intermediate
associative table.

materialized view A view that stores the results of
the query the view is based on, in addition to the SQL

join statement of the view itself. Materialized views
may be refreshed manually (on demand), on a reg-
ular basis, or when there is a change in the under-
lying tables on which that view is based.

media failure A type of database failure where a
server hardware component fails and the contents
of one or more disk files are either unreadable or
corrupted.

methods Operations on an object that are exposed
for use by other objects or applications.

multiple-column subquery A subquery in which
more than one column is selected for comparison to
the main query using the same number of columns.

multiple-row subquery A subquery that can return
more than one row for comparison to the main, or
parent, query using operators such as IN.

nonmedia failure A type of database failure that is
not related to a server disk-related hardware compo-
nent and is one of several types: statement failure,
process failure, instance failure, or user error.

NOT NULL constraint A constraint that prevents
NULL values from being entered into a column of
a table.

NULL A possible value for any Oracle column
that indicates the absence of any known value for that
column. A NULL is usually used to represent a value
that is unknown, not applicable, or not available.

numeric function A function that operates on
numeric literals, columns containing numbers, or an
expression containing numeric literals and table col-
umns, returning a number as the result.

numeric literal A constant that can consist of
numeric digits, plus the characters +, -, ., and E.

object privileges Privileges that allow users to
manipulate the contents of database objects in other
schemas.

object view A database construct that overlays an
object-oriented structure over an existing relational

4372cGLOSS.fm Page 334 Monday, August 16, 2004 7:03 PM

Glossary 335

database table. As a result, the table can be accessed as
a relational table or as an object table and make the
transition to a fully object-oriented environment easier.

object-relational database A relational database
that includes additional operations and components to
support object-oriented data structures and methods.

OCI (Oracle Call Interface) A set of library rou-
tines that allows a C application on virtually any
development platform to easily connect to and pro-
cess SQL statements against an Oracle database. The
OCI routines are called as native C library functions;
therefore, no preprocessor is necessary when com-
piling a C application using OCI.

ODBC (Open Database Connectivity) A set of stan-
dards that allow applications that are not dependent
on any one specific database to process SQL state-
ments against any database that supports SQL.

ODBC driver An interface, usually at the operating-
system level, that supports the connection of an ODBC-
compliant application to a specific database platform.

one-to-many relationship A relationship type
between tables where one row in a given table is
related to many other rows in a child table. The
reverse condition, however, is not true. A given row
in a child table is related to only one row in the
parent table.

one-to-one relationship A relationship type
between tables where one row in a given table is
related to only one or zero rows in a second table.
This relationship type is often used for subtyping.
For example, an EMPLOYEE table may hold the infor-
mation common to all employees, while the
FULLTIME, PARTTIME, and CONTRACTOR tables hold
information unique to full-time employees, part-time
employees, and contractors, respectively. These enti-
ties would be considered subtypes of an EMPLOYEE
and maintain a one-to-one relationship with the
EMPLOYEE table.

open backup See hot backup.

Oracle block See database block.

Oracle Enterprise Manager (OEM) A GUI tool that
allows access, maintenance, and monitoring of mul-
tiple databases or services within a single application.

Oracle Home A common directory location used to
store the associated program files for a specific
release of the Oracle database software.

Oracle Universal Installer (OUI) A GUI-based tool
used to install or uninstall Oracle software compo-
nents and tools.

Oracle’s Tuning Methodology A tuning method
recommended by Oracle Corporation that prioritizes
areas in tuning database performance. The six areas,
in order of priority, are data design, application
design, memory allocation, I/O and physical struc-
tures, resource contention, and underlying platform.

outer join A join between two or more tables
returning all the rows in one table whether or not the
second table contains a match on the join condition.

partitioned table A table that stores its rows into
smaller and more manageable pieces based on the
values of one or more columns of the table.

pattern matching Comparing a string in a database
column to a string containing wildcard characters.
These wildcard characters can represent zero, one, or
more characters in the database column string.

PFILE A text file containing the parameters and
their values for configuring the database and
instance at startup.

physical structures Structures of an Oracle data-
base, such as datafiles on disk, that are not directly
manipulated by users of the database. Physical struc-
tures exist at the operating system level.

primary key A column (or columns) in a table that
makes the row in the table distinguishable from every
other row in the same table.

PRIMARY KEY constraint A constraint that
uniquely defines each row of a table and prevents

4372cGLOSS.fm Page 335 Monday, August 16, 2004 7:03 PM

336 Glossary

NULL values from being specified in the column or
combination of columns. Only one PRIMARY KEY
constraint may be defined on a table.

privileges The right to perform a specific action in the
database, granted by the DBA or other database users.

process An executing computer program in memory
that performs a specific task.

profile A set of predefined resource parameters that
can be used to monitor and control various database
resources, such as CPU time and number of disk
reads against the database.

Program Global Area (PGA) A nonshared area of
memory used for storing all connection information,
including SQL statement information, in a dedicated
server configuration for a user who is connected to
the database. In a shared server configuration, a
large portion of the memory for each connection is
stored in the SGA instead of the PGA.

quota A numeric limit on the amount of disk space
that a user can allocate within a tablespace. The
quota can also be specified as UNLIMITED.

read consistency A feature of the Oracle database
that ensures a database reader (in a SELECT statement)
will see the same data in a table regardless of changes
made to the table by database writers that were initi-
ated after the reader initiated the SELECT statement.

Recovery Manager (RMAN) A comprehensive set
of backup and recovery tools that can streamline the
backup and recovery of a database.

redo log buffer A buffer in the SGA that contains
information pertaining to changes in the database.

redo log files Files that contain a record of all
changes made to both the data in tables and indexes,
as well as changes to the database structures them-
selves. These files are used to recover changed data
that was in memory at the time of a crash.

referential integrity A method employed by a rela-
tional database system that enforces one-to-many
relationships between tables.

relation A two-dimensional structure used to hold
related information, also known as a table.

relational database A collection of tables that
stores data without any assumptions as to how the
data is related within the tables or between the tables.

relational table The most common form of a table
in the Oracle database; the default type created with
the CREATE TABLE statement. A relational table is
permanent and can be partitioned.

reverse key index A b-tree index whose keys have
their byte-order reversed to improve the performance
of an application by spreading out the key values for
adjacent index values to different leaf blocks.

role A group of related privileges that is referenced
by a single name. Privileges can be assigned to a role,
and a role can be assigned to a database user or to
another role. Roles ease the maintenance issues with
managing privileges for a large number of users who
can be grouped into a relatively small number of cat-
egories based on job function.

row A group of one or more data elements in a data-
base table that describes a person, place, or thing.

ROWID A unique identifier for a row in a table,
maintained automatically in the table by the Oracle
server. ROWIDs are unique throughout the database.

rule-based optimizer An Oracle optimizer meth-
odology that relies on a fixed set of rules to deter-
mine the method used to run a query, ignoring the
cardinality and distribution of data in the column
being queried.

schema A group of related database objects
assigned to a database user. A schema contains
tables, views, indexes, sequences, and SQL code. The
schema name can be used to qualify objects that are
not owned by the user referencing the objects.

script A set of one or more SQL or iSQL*Plus com-
mands that is executed as a group. Scripts may be
retrieved from within an iSQL*Plus session or saved
to an operating system file and retrieved later in
another session.

4372cGLOSS.fm Page 336 Monday, August 16, 2004 7:03 PM

Glossary 337

segment A set of extents allocated for a single type
of object, such as a table.

self-join A join of a table to itself where a non-
primary key column in the table is related to the pri-
mary key column of another row in the same table.

sequence A database structure that generates a
series of numbers typically used to assign primary
key values to database tables.

shared pool An area of memory within the total
amount of memory allocated for the Oracle database
that can hold recently executed SQL statements,
PL/SQL procedures and packages, as well as cached
information from the system tables.

SID A system identifier, which is a unique name
assigned to an Oracle instance. A user must supply a
SID to connect to an Oracle instance.

single-row function Functions that may have zero,
one, or more arguments and will return one result for
each row returned in a query.

single-row subquery A subquery that returns a
single row and is compared to a single value in the
parent query.

Software Code Area A location in memory
where the Oracle application software resides. The
Software Code Area can be shared among several
Oracle instances.

SPFILE A parameter file stored in a binary format
that gives the DBA more flexibility when changing
parameters. Parameters can be changed for the cur-
rent instance only, can take effect only after the next
restart of the instance, or both.

SQL (Structured Query Language) The industry-
standard database language used to query and
manipulate the data, structures, and permissions in a
relational database.

statistics Information about tables and indexes
stored in the data dictionary used to assist the
cost-based optimizer when deciding how to run a
given query.

stored function A sequence of PL/SQL variable
declarations and statements that can be called as a
unit, passing zero or more arguments and returning
a single value of a specified datatype. Built-in stored
functions are created when the database software is
installed. Customized or user-defined functions are
defined by application developers or DBAs.

string function A function that operates on string
literals, columns containing strings, or an expression
containing string literals and table columns, returning
a string as the result.

string literal A constant that can consist of any
string of letters, digits, and special characters enclosed
in single quotation marks.

subquery A query that is embedded in a main, or
parent, query and used to assist in filtering the result
set from a query.

substitution variable A string literal with no
embedded spaces, preceded by & or &&, that will
prompt the user for a value when an iSQL*Plus
script containing one of these variables is executed. A
substitution variable preceded by & will not prompt
the user for a value if the same substitution variable,
preceded by &&, exists earlier in the script.

synonym An alias assigned to a table, view, or
other database structure. Synonyms can be either
available to all users (public) or available only to one
schema owner (private).

System Global Area (SGA) A group of shared
memory structures for a single Oracle instance.

system privileges Privileges that allow users to
perform a specific action on one or more database
objects or users in the database.

system trace file A text file that pertains to a
single background process and contains status,
debugging, or error information about that back-
ground process. System trace files are stored in the
directory specified by the system parameter
BACKGROUND_DUMP_DEST.

4372cGLOSS.fm Page 337 Monday, August 16, 2004 7:03 PM

338 Glossary

system variable A variable maintained in the
iSQL*Plus, SQL*Plus, or SQL*Plus Worksheet
environment that holds a status or a setting for a
particular feature in that environment. PAGESIZE is
an example of a system variable in iSQL*Plus.

table The basic construct of a relational database
that contains rows and columns of related data.

tablespace A logical grouping of database objects,
usually to facilitate security, performance, or the
availability of database objects such as tables and
indexes. A tablespace is composed of one or more
datafiles on disk.

temporary table A table whose definition is persis-
tent and shared by all database users but whose data
is local to the session that created the data. When the
transaction or session is completed, the data is trun-
cated from the temporary table.

thin client A workstation or CPU with relatively low-
powered components that can use a web interface (or
other application with a small footprint) to connect to
a middleware or back-end database server where most
of the processing occurs. iSQL*Plus is an example of a
web application that runs on a thin client.

tiers Locations where different components of an
enterprise application system reside. In a typical three-
tier environment, the client tier runs a thin application
such as a web browser, which connects to a middleware
server that is running a web server. The web server and
its related components typically manage the business
rules of the application. The third-tier database plat-
form controls access to the data and manages the data
itself. This approach partitions the application so that it
is easier to maintain and segregates the tasks into tiers
that are best equipped to handle a particular function.

TKPROF An Oracle utility that reformats a user
trace file containing SQL statement statistics into a
readable format.

Top SQL tool A GUI-based Oracle tool that can
identify SQL statements that may be consuming too
many system resources and therefore may be good
candidates for tuning.

transaction A logical unit of work consisting of
one or more SQL statements that must all succeed or
all fail to keep the database in a logically consistent
state. A transfer of funds from a bank account is a
logical transaction, in that both the withdrawal from
one account and the deposit to another account must
succeed for the transaction to succeed.

transportable tablespace A feature of Oracle’s
Import and Export utilities that allows a tablespace
to be copied to another database. All objects within
the tablespace to be copied must be self-contained; in
other words, a table in a tablespace to be copied must
have its associated indexes in the same tablespace.

UNIQUE constraint A constraint that prevents
duplicate values from being specified in a column or
combination of columns in a table. NULL values may
be specified for columns that have a UNIQUE con-
straint defined, as long as the column itself does not
have a NOT NULL constraint.

unique index A b-tree index whose keys are not
duplicated.

user trace file A text file that contains informa-
tion pertaining to any error conditions triggered
by a command in an individual user’s session or
SQL statement information for the purposes of
tuning and optimization. User trace files are stored
in the directory specified by the system parameter
USER_DUMP_DEST.

user-defined function A function that is written by
an analyst, user, or database administrator and does
not come as part of the default installation of the
Oracle server software.

username An Oracle database account identifier
that, along with a password, allows a user to connect
to the database.

view A database object that is based on a SELECT
statement against one or more tables or other views
in the database. A regular view does not store any
data in the database; only the definition is stored.
Views are also known as stored queries.

4372cGLOSS.fm Page 338 Monday, August 16, 2004 7:03 PM

Index

Note to the Reader:

 Throughout this index

boldfaced

 page numbers indicate primary discussions of a topic.

Italicized

page numbers indicate illustrations.

A

ABS function, 53
abstraction,

9

Access databases,

328

accounts.

See

 user accounts
ACOS function, 53
Adaptive Server Enterprise, 328
ADD_MONTHS function, 56
addition in functions, 49
advanced queries

CUBE operator,

135–136

review questions for,

138

,

318–319

ROLLUP operator,

133–135

set operators,

124

INTERSECT,

129–130

MINUS,

130–133

UNION and UNION ALL,

124–128

subqueries,

118

correlated,

121–123

,

121

multiple-column,

123–124

multiple-row,

119–121

single-row,

118–119

terms for,

137

Advisor Central,

302–303

,

302–303

aggregate operations, 83
in COMPUTE, 197–198
in group functions, 84–86
in HAVING, 88
in report formatting, 197
in ROLLUP, 133

alert log files,

296–298

,

297

aliases
for columns, 26
with equijoins, 95
synonyms,

225–226

ALL_ views, 218
ALL_IND_COLUMNS view,

220–221

ALL_INDEXES view,

220

ALL_OBJECTS view,

221–222

ALL_TAB_COLUMNS view,

220

ALL_TABLES view,

219

ALTER INDEX statement, 252
ALTER SESSION statement, 265
ALTER SYSTEM statement, 268
ALTER TABLE statement,

36–37

ALTER USER statement, 190, 230
ampersands (&) for substitution variables, 198
ANALYZE statement, 266
AND operator,

72–74

Apache HTTP web server, 19
application design, 246
AS OF TIMESTAMP clause, 280–281
ASC keyword, 81, 83
ASCII function, 50
ASCIISTR function, 58
ASIN function, 54
associative tables, 6–7
asterisks (*)

for comments, 76
in functions, 49
for SELECT columns, 24

ATAN function, 54
ATAN2 function, 54
attributes,

8

,

8

AUD$ table, 240
AUDIT ANY privilege, 235
AUDIT statement, 240
auditing,

240

objects,

242–243

statements,

240–242

AVG function, 84, 197

B

b-tree indexes,

248

,

248

, 250
BACKGROUND_DUMP_DEST system parameter, 296, 303
background processes,

162–163

backups,

273

cold,

287

for DBAs,

282–287

,

283

exporting for,

275–277

,

282–287

,

283

for failures,

274

flashback queries,

280–282

hot,

287–288

importing for,

277–279

,

282–287

,

283

logging, 291
review questions for,

293

,

325

terms for,

292

BETWEEN operator,

75–77

BITAND function, 54

4372cIDX.fm Page 339 Tuesday, August 17, 2004 11:35 AM

340

bitmap indexes – CREATE TABLESPACE privilege

bitmap indexes, 247,

249–251

,

250

BITMAP option, 251
blocks,

157–158

branch blocks, 248,

248

BREAK statement,

195–196

BTITLE statement,

193–194

buffer cache advisory feature, 268
buffer caches

contents of,

161

sizing, 268
BY ACCESS clause, 240
BY RANGE clause, 256
BY SESSION clause, 240

C

caches
contents of,

161

sizing, 268
calculations in SELECT, 28
capitalizing names,

50–53

cardinality, 249–250
Cartesian products, 96,

112–113

CASE function, 61
case sensitivity

of passwords, 230
in searches, 32

CAST function, 58
catalogs, backing up, 291
CEIL function, 54
change operations

ALTER TABLE,

36–37

DELETE,

32

,

33

DROP TABLE,

37

INSERT,

31–32

MERGE,

33–34

RENAME,

37–38

TRUNCATE TABLE,

38

UPDATE,

29–31

,

30–31

Change Password page, 182,

189–190

,

190

changed records, looking for, 289
CHAR datatype, 213
CHECK constraint,

142–144

CHOOSE keyword, 265
CHR function, 50
closed backups,

287

COALESCE function, 46, 61, 128
cold backups,

287

COLUMN statement,

194–195

columns,

4–5

renaming,

26

in report formatting,

194–195

specifications,

24–26

,

25

commas (,) in functions, 60

comments, 76
COMMIT statement,

150–151

,

151

comparison operators,

71–72

components,

156

background processes,

162–163

logical structures,

156–158

,

156

,

159

memory structures,

160–162

,

160

physical structures,

158–160

,

159

composite indexes, 215
composite partitioning, 256
COMPRESS keyword, 275–276
COMPUTE statement,

196–198

CONCAT function,

47–48

, 50
concatenation of strings,

47–50

Confirmation screen, 176,

176

connection identifiers, 18
Connection Mode tab, 175,

175

connection modes, 175,

175

CONSTRAINT clause, 36
constraints,

140

CHECK,

142–144

in exporting, 275
FOREIGN KEY,

147–149

,

150

in importing, 275
NOT NULL,

140–141

PRIMARY KEY,

145–147

UNIQUE,

144–145

CONSTRAINTS keyword
in EXP, 275
in IMP, 277

contention, 246
control files,

160

conversions
functions for, 50–53,

58–60

trace files, 309,

310

correlated subqueries,

121–123

,

121

COS function, 54
COSH function, 54
cost-based optimizer mode,

264–266

COUNT function, 84
Create a Database option, 170,

170

CREATE ANY TABLE privilege, 234
Create Event window, 299–301,

299–301

CREATE INDEX statement, 215–216, 250–251
CREATE MATERIALIZED VIEW statement, 258–259
CREATE PROCEDURE privilege, 235
CREATE PROFILE statement, 231
CREATE ROLE statement, 238–239
CREATE SEQUENCE statement, 223–224
CREATE SESSION privilege, 235
CREATE SYNONYM statement, 226
CREATE TABLE privilege, 235
CREATE TABLE statement,

34–36

,

35

,

208–209, 241–242
CREATE TABLE AS SELECT (CTAS) statement, 36, 209–211
CREATE TABLESPACE privilege, 235

4372cIDX.fm Page 340 Tuesday, August 17, 2004 11:35 AM

Create User facility – dropping 341

Create User facility, 232
CREATE USER privilege, 234
CREATE USER statement, 230
CREATE VIEW statement, 216–217
CTAS (CREATE TABLE AS SELECT) statement, 36, 209–211
CUBE operator, 135–136
CURRENT_DATE function, 56
CURRENT_TIMESTAMP function, 56

D
Data Control Language (DCL), 39
Data Definition Language (DDL), 34
data design tuning, 246, 255

materialized views, 258–259
partitioned tables, 255–257

data dictionary views, 218
common, 219–222
for indexes, 254–255
types, 218

Data Manipulation Language (DML), 29
data modeling, 6

entities in, 6
iteration in, 8
relationships in, 7

data security. See security
Data Warehouse template, 173, 173
Database Administration link, 182
database blocks, 157–158
database buffer caches

contents of, 161
sizing, 268

Database Configuration Assistant (DBCA), 169–178,
169–178

Database Connect Information dialog box, 167, 167
database objects, 207

auditing, 242–243
indexes, 215–216
review questions for, 227, 322
sequences, 223–225
synonyms, 225–226
tables, 208

CTAS, 209–211
external, 211–214, 211
relational, 208–209
temporary, 214

terms for, 226
views, 216–223

Database Templates screen, 170, 170
Database Writer (DBWn) process, 162
databases, 156

backups for, 274
memory and disk space requirements for, 169
performance. See tuning databases
platforms for, 327–329

relational. See relational databases
vs. spreadsheets, 2

datafiles, 159
datatypes, 4–6

abstract, 9
converting, 53, 58–60

dates
functions for, 56–58
with LIKE, 78

DB2/UDB databases, 327–328
DBA_ views, 218
DBA_IND_COLUMNS view, 254–255
DBA_INDEXES view, 254
DBCA (Database Configuration Assistant), 169–178,

169–178
DBTIMEZONE function, 56
DBWn (Database Writer) process, 162
DCL (Data Control Language), 39
DDL (Data Definition Language), 34
decision support systems (DSSs), 29
DECODE function, 61
dedicated connection mode, 175
DEFAULT profile, 231
DELETE privilege, 236
DELETE statement, 32, 33
deleting

indexes, 251
tables, 37

DESC keyword, 81
DESCRIBE statement, 24–25, 140
design in database tuning, 246, 255
dictionary views, 218

common, 219–222
for indexes, 254–255
types, 218

directories, 212
dirty buffers, 161
disk space requirements, 169
DISTINCT keyword

in group functions, 84
in SELECT, 27

division in functions, 49
DML (Data Manipulation Language), 29
documentation, 310
dollar amounts in functions, 60
dollar signs ($)

in footers, 194
in functions, 60

drivers, ODBC, 21–23
DROP ANY INDEX privilege, 235
DROP INDEX statement, 251
DROP TABLE statement, 37
DROP USER privilege, 234
dropping

indexes, 251
tables, 37

4372cIDX.fm Page 341 Tuesday, August 17, 2004 11:35 AM

342 DSSs – HEADSEP system variable

DSSs (decision support systems), 29
DUAL table, 44–46, 45
DUMP function, 61
duplicate removal in SELECT, 27
duplicating databases, 291
dynamic performance views, 222–223

E
ENABLE QUERY REWRITE clause, 259
enabling tracing, 305–306
encapsulation, 9
enterprise databases, 327–328
entities

attributes in, 8, 8
defining, 6

equal to operator (=), 71
equijoins, 94–97
ESCAPE option with LIKE, 79
ESTIMATE STATISTICS option, 266
event notification, 298–303, 299–303
exclamation points (!) in not equal to operator, 71
EXECUTE privilege, 236
EXP (Export utility), 275–277
EXP function, 54
EXPDB utility, 277
Explain Plan tool, 262–263, 263–264
explicit conversions, 53
Export utility (EXP), 275–277
exporting for backups, 275–277, 282–287, 283
expressions

in functions, 49
in SELECT, 28

extents, 157
external tables, 211–214, 211
EXTRACT function, 56, 76

F
FEEDBACK system variable, 188–189, 189
fields, 4–5
FILE keyword

in EXP, 275
in IMP, 277

Fixit Jobs tab, 301–302, 301
Flash Recovery Area, 173, 173
flashback queries, 280–282, 289
FLOOR function, 54
footers in reports, 191–194
FOREIGN KEY constraints, 147–149, 150
foreign keys, 5–6
FORMAT_EMP function, 64–65
formatting

in functions, 59–60

in reports, 190–191
BREAK processing in, 195–196
columns in, 194–195
headers and footers in, 191–194
summary operations in, 196–198

free buffers, 161
freeware databases, 328–329
FROM clause

in DELETE, 32
in SELECT, 24

FROM_TZ function, 56
full outer joins, 105–107, 109
function-based indexes, 249
functions, 43

conversion, 58–60
date, 56–58
general, 61–63
group, 83–85
NULL values in, 46
numeric, 53–56
numeric literals in, 48
operators in, 48–49
review questions for, 67, 315–316
string, 50–53
string literals in, 47–48
terms for, 66
user-defined, 63–66

G
general functions, 61–63
GLOBAL TEMPORARY clause, 214
GNU General Public License, 329
GRANT statement, 39, 234–237
GRANTS keyword

in EXP, 275
in IMP, 277

greater than operator, 71
GREATEST function, 61
GROUP BY clause, 85–87
group functions, 83–85

GROUP BY clause, 85–87
HAVING clause, 88–90
NVL function, 87–88

GUI dialog box, 15, 15

H
hash partitioning, 255–256
HAVING clause, 88–90
headers in reports, 191–194
heading separators, 195
HEADING system variable, 186–187, 187
HEADSEP system variable, 187, 188

4372cIDX.fm Page 342 Tuesday, August 17, 2004 11:35 AM

hierarchical databases – locating user trace files 343

hierarchical databases, 3
hierarchical tables for joins, 110
hints in Oracle optimizer, 267
history, Log Miner for, 289–290, 289–290
History Screen option, 184
host strings, 15
hot backups, 287–288

I
I/O structures in database tuning, 246
IBM DB2/UDB databases, 327–328
IMP (Import utility), 277–279
IMPDB utility, 277
implicit conversions, 53
Import utility (IMP), 277–279
importing for backups, 277–279, 282–287, 283
IN operator, 77–78
incremental backups, 291
IND view, 222
INDEX hint, 267
index-organized tables (IOTs), 249
INDEX privilege, 236
indexes, 215–216, 247

b-tree, 248, 248, 250
bitmap, 249–250, 250
creating, 247, 250–251
data dictionary, 254–255
dropping, 251
for external tables, 212
monitoring, 252–253

INDEXES keyword
in EXP, 275
in IMP, 277

inheritance, 9
INITCAP function, 50–53
inner joins, 94–97
Input Area Size section, 184
INSERT privilege, 236
INSERT statement, 31–32
installation, 155

Database Configuration Assistant for, 169–178, 169–178
Enterprise Manager tools for, 167, 167–168
Oracle Universal Installer for, 163–166, 164–166
review questions for, 180, 320–321
terms for, 179

instance failures, 274
instances, 156
INSTR function, 50
Interface Configuration screen, 182–184, 183
INTERSECT operator, 129–130
intersection tables, 7
IOTs (index-organized tables), 249
IS NOT NULL operator, 79–81
IS NULL operator, 79–81

iSQL*Plus, 13–14, 17–19, 18–19
configuring, 182, 182–183

Interface Configuration screen, 182–184
script formatting and system variables for, 184–189,

185–189
iteration in data modeling, 8

J
Java Database Connectivity (JDBC), 22
JOIN...ON clause, 99–100
JOIN...USING clause, 98–101, 100
joins, 94

Cartesian products, 112–113
equijoins, 94–97
JOIN...ON clause, 99–100
JOIN...USING clause, 98–101, 100
NATURAL JOIN clause, 97–98
non-equijoins, 101–103
outer, 103–109
review questions for, 115, 317–318
self-joins, 110–112, 110
terms for, 114
with three tables, 100–101, 100

K
keys, 4–6
knowledge base, 310

L
LABEL clause, 197
LAST_DAY function, 56
leading zeros, 60
leaf blocks, 248, 248
LEAST function, 61
least recently used (LRU) algorithm, 161
left outer joins, 107–108
LENGTH function, 50, 52–53
less than operator, 71
LGWR (Log Writer) process, 163
LIKE operator, 78–79
LINESIZE system variable, 186, 186
LIST clause, 256
list partitioning, 255–256
literals

numeric, 48
string, 47–48

LN function, 54
Load Script option, 203
LOCALTIMESTAMP function, 56
locating user trace files, 306–308, 309

4372cIDX.fm Page 343 Tuesday, August 17, 2004 11:35 AM

344 LOCATION clause – NVL2 function

LOCATION clause, 213
log files

alert, 296–298, 297
redo, 159–160

LOG function, 54
Log Miner tool, 289–290, 289–290
log ons

in iSQL*Plus, 18, 18
in SQL*Plus, 15, 16

Log Writer (LGWR) process, 163
logical consistency, 139

constraints. See constraints
review questions for, 154, 319–320
terms for, 153
transactions, 150–151

COMMIT statement, 151, 151
ROLLBACK statement, 152
SAVEPOINT statement, 152–153

logical structures, 156–158, 156, 159
login passwords, 189–190, 190
LOWER function, 50
LPAD function, 50, 52–53
LRU (least recently used) algorithm, 161
LTRIM function, 51

M
many-to-many relationships, 7
materialized views, 258–259
MAX function, 84, 197
media failures, 274
memory

for databases, 169
in installation, 174, 174
shared pool, 65, 161
tuning, 246, 267–269, 267

memory structures, 160–161, 160
Program Global Area, 162
Software Code Area, 162
System Global Area, 161–162

MERGE statement, 33–34
MetaLink site, 310
methods, 9
Microsoft Access databases, 328
Microsoft SQL Server, 328
MIN function, 84, 197
MINUS operator, 130–133
minus signs (-)

for comments, 76
in functions, 49

MOD function, 54
modeling, data, 6

entities in, 6
iteration in, 8
relationships in, 7

monitoring indexes, 252–253
MONITORING USAGE clause, 252
MONTHS_BETWEEN function, 56, 58
multiple-column subqueries, 123–124
multiple-row subqueries, 119–121
multiple tables, 93

Cartesian products, 112–113
joins. See joins
review questions for, 115, 317–318
terms for, 114

multiplication in functions, 49
MySQL databases, 329

N
names

capitalizing, 50–53
for columns, 26
for constraints, 142
for tables, 37–38

NANVL function, 54
NATURAL JOIN clause, 97–98
Navigator pane, 167
network databases, 3
NEW_TIME function, 56
NEXT_DAY function, 56
NOAUDIT statement, 240
NOMONITORING USAGE clause, 253
non-equijoins, 101–103
nonmedia failures, 274
nonunique indexes, 215, 249
not equal to operator, 71
NOT NULL constraint, 140–141, 209
NOT operator, 72–74
notifications, event, 298–303, 299–303
NOVALIDATE option, 144
NULL strings, 47
NULL values

in functions, 46, 62
in GROUP BY, 86–88
in INSERT, 32
in ORDER BY, 82
in UNION, 124–125
in WHERE, 79–81

NULLIF function, 61
number generators, 223
numbers with LIKE, 78
numeric functions, 53–56
numeric literals, 48
NUMTODSINTERVAL function, 58–59
NUMTOYMINTERVAL function, 58
NVL function, 46, 61–62, 87–88
NVL2 function, 46, 61

4372cIDX.fm Page 344 Tuesday, August 17, 2004 11:35 AM

OBJ view – public synonyms 345

O
OBJ view, 222
object privileges, 236–238
object-relational databases, 8

abstraction in, 9
inheritance in, 9
methods and encapsulation in, 9
support for, 10

object views, 10
objects. See database objects
OCI (Oracle Call Interface), 23
ODBC (Open Database Connectivity), 21–22, 22
ODBC drivers, 21–23
OEM (Oracle Enterprise Manager), 20, 20,

167–168, 168
OLTP (online transaction processing), 29
ON COMMIT PRESERVE ROWS clause, 214
ON DELETE CASCADE clause, 148
ON DELETE SET NULL clause, 148
one-to-many relationships, 7
one-to-one relationships, 7
online transaction processing (OLTP), 29
open backups, 287–288
Open Database Connectivity (ODBC), 21–22, 22
operators

comparison, 71–72
standard and conditional, 48–49

optimizer. See Oracle optimizer; performance
OR operator, 72–74
Oracle Call Interface (OCI), 23
Oracle databases, 327
Oracle Enterprise Manager (OEM), 20, 20,

167–168, 168
Oracle Enterprise Manager Database Control, 163
Oracle Home, 163–164
Oracle ODBC Driver Configuration dialog box, 22, 22
Oracle optimizer, 264. See also tuning databases

cost-based optimization, 265–266
hints in, 267
rule-based optimization, 265
statistics in, 266

Oracle Universal Installer (OUI), 163–166, 163–166
ORDER BY clause, 81–83
ORGANIZATION EXTERNAL clause, 213
OUI (Oracle Universal Installer), 163–166, 163–166
outer joins, 103–105

full, 105–107, 109
left, 107–108
right, 108–109

Output Location section, 184

P
Parameters tab, 299, 300
parentheses()

for outer joins, 103, 105
for precedence, 49, 73–74

PARTITION BY clause, 256
partitioned tables, 255–257
PASSWORD statement, 190
passwords

in installation, 172, 172
in iSQL*Plus, 18
login, 189–190, 190
in SQL*Plus, 15
for user accounts, 230–231

past activities, Log Miner for, 289–290, 289–290
pattern matching, 78–79
percent signs (%) with LIKE, 78
performance

dynamic, 222–223
indexes for, 215
tuning. See tuning databases

personal databases, 328–329
PFILE file, 268
PGA (Program Global Area), 160, 162
physical structures, 158, 159

control files, 160
in database tuning, 246
datafiles, 159
redo log files, 159–160

pinned buffers, 161
platforms

in database tuning, 246
summary, 327–329

plus signs (+)
in functions, 49
for outer joins, 103, 105

POWER function, 54
precedence, operator, 48–49, 73–74
Preferences screen, 182
PRIMARY KEY clause, 36
PRIMARY KEY constraints, 145–147
primary keys, 5
private synonyms, 225–226
privileges, 238

granting, 39
object, 236–238
revoking, 40
roles for, 39, 238–240, 238
system, 234–236

process failures, 274
processes, background, 162–163
profiles, 231–232
Program Global Area (PGA), 160, 162
public synonyms, 225

4372cIDX.fm Page 345 Tuesday, August 17, 2004 11:35 AM

346 queries – RTRIM function

Q
queries

advanced. See advanced queries
flashback, 280–282, 289
functions for. See functions
with SELECT. See SELECT statement
stored, 216

QUERY REWRITE feature, 258–259
quotas, 232–234, 233
quotation marks (' ")

for literals, 47
in searches, 32

R
ranges

CHECK constraint for, 142–144
partitioning, 255–256

RDBMSs (relational database management systems), 3,
327–328

read consistency, 150–151
recovery. See backups
Recovery Manager (RMAN) tool, 290–292, 291–292
recycle bins, 279
redo log buffer, 162
redo log files

purpose of, 159–160
searching for, 289

referential integrity, 6
REFRESH statement, 258
REGEXP_INSTR function, 51
REGEXP_REPLACE function, 51
REGEXP_SUBSTR function, 51
relational database management systems (RDBMSs), 3,

327–328
relational databases, 1

data modeling in, 6–8
keys and datatypes in, 4–6, 5
object-relational databases in, 8–10
review questions for, 11, 313–314
vs. spreadsheets, 2
tables, rows, and columns in, 4
terms in, 10

relational tables, 208–209
relationships in data modeling, 7
REMAINDER function, 54
removing

duplicates, 27
rows, 32, 33

RENAME statement, 37–38
renaming

columns, 26
tables, 37–38

REPLACE function, 51
reports, 181

formatting, 190–191
BREAK processing in, 195–196
columns in, 194–195
headers and footers in, 191–194
summary operations in, 196–198

iSQL*Plus configuration, 182–190, 182–183
review questions for, 205, 321–322
scripts for, 201–204, 202–204
substitution variables in, 198–201, 199
terms for, 204

resource contention, 246
restricting data, 69

group functions, 83–85
GROUP BY clause, 85–87
HAVING clause, 88–90
NVL function, 87–88

ORDER BY clause, 81–83
review questions for, 91, 316–317
terms for, 90
WHERE clause. See WHERE clause

reverse key indexes, 249–250
REVERSE keyword, 250
review questions

for advanced queries, 138, 318–319
for backups, 293, 325
for database objects, 227, 322
for functions, 67, 315–316
for installation, 180, 320–321
for logical consistency, 154, 319–320
for multiple tables, 115, 317–318
for relational databases, 11, 313–314
for reports, 205, 321–322
for restricting data, 91, 316–317
for security, 244, 323
for SQL, 41, 314–315
for troubleshooting, 311, 326
for tuning databases, 271, 324

REVOKE statement, 40, 234, 238
right outer joins, 108–109
RMAN (Recovery Manager) tool, 290–292, 291–292
roles for privileges, 39, 238–240, 238
ROLLBACK statement, 150, 152
ROLLUP operator, 133–135
roman numerals, 60
ROUND function, 54–57, 59
rounding in functions, 60
ROWID pseudo-column, 248–249
rows, 4, 32, 33
ROWS keyword

in EXP, 275
in IMP, 277

RPAD function, 51
RTRIM function, 51

4372cIDX.fm Page 346 Tuesday, August 17, 2004 11:35 AM

rule-based optimizer mode – SQL 347

rule-based optimizer mode, 264–265
running scripts, 201–204, 202–204

S
Save As dialog box, 202, 202
SAVEPOINT statement, 151–153
saving

backups for. See backups
scripts, 201–204, 202–204

Schedule tab for events, 301, 301
schemas, 34

in installation, 174, 174
objects in, 158

Script Execution link, 182
Script Formatting page, 182, 184, 185
scripts, 184

for iSQL*Plus configuration, 184–189, 185–189
for reports, 201–204, 202–204

searches, case sensitivity in, 32
security, 229

auditing in, 240–243
review questions for, 244, 323
terms for, 243
user accounts for. See user accounts

Segment Advisor, 302
segments, 157
Select Database Configuration screen, 165, 165
Select Installation Type screen, 164, 165
SELECT privilege, 236
SELECT statement, 23–24

column renaming in, 26
column specifications in, 24–26, 25
with DUAL table, 44–46, 45
duplicates removal in, 27
expressions in, 28
restricting data in. See restricting data
WHERE clause. See WHERE clause

self-join, 110–112, 110
semicolons (;)

in iSQL*Plus, 19
in SQL*Plus, 17

sequences, 223–225
sequential number generators, 223
SESSIONTIMEZONE function, 57
SET HEADSEP statement, 195
set operators, 124

INTERSECT, 129–130
MINUS, 130–133
UNION and UNION ALL, 124–128

SET ROLE statement, 238
SET VERIFY OFF statement, 199
SGA (System Global Area), 160–162, 160
shared connection mode, 175

shared pools, 65, 161
SHOW keyword in IMP, 277–278
SIDs (system identifiers), 171
SIGN function, 54
SIN function, 54
single quotation marks (') for literals, 47
single-row functions, 49–50

conversion, 58–60
date, 56–58
general, 61–63
NULL values in, 46
numeric, 53–56
numeric literals in, 48
operators in, 48–49
string, 50–53
string literals in, 47–48

single-row subqueries, 118–119
sizing database buffer cache, 268
SKIP n option, 194
slashes (/)

for comments, 76
in functions, 49

SMON (System Monitor) process, 163
Software Code Area, 160, 162
sorting, 81–83
SOUNDEX function, 51
Specify File Locations screen, 164, 164
SPFILE file, 268
spreadsheets, 2
SQL (Structured Query Language), 4

ALTER TABLE statement, 36–37
CREATE TABLE statement, 34–36, 35
DELETE statement, 32, 33
DROP TABLE statement, 37
GRANT statement, 39
INSERT statement, 31–32
iSQL*Plus for, 17–19, 18–19
MERGE statement, 33–34
OCI for, 23
ODBC and JDBC for, 21–22, 22
RENAME statement, 37–38
review questions for, 41, 314–315
REVOKE statement, 40
SELECT statement, 23–28
SQL*Plus for, 14–17, 15–16
SQL*Plus Worksheet, 20, 20
terms for, 40
third-party tools, 21, 21
TRUNCATE TABLE statement, 38
tuning, 259

Explain Plan tool, 262–263, 263–264
Oracle optimizer, 264–267
Top SQL tool, 260–262, 260–262

UPDATE statement, 29–31, 30–31

4372cIDX.fm Page 347 Tuesday, August 17, 2004 11:35 AM

348 SQL Server – transactions

SQL Server, 328
SQL Tuning Advisor, 302
SQLAnywhere product, 328
SQL*Plus, 13–18, 15–16
SQL*Plus Worksheet, 20, 20
SQRT function, 54–55
statement failures, 274
statements, auditing, 240–242
statistics in Oracle optimizer, 266
STDDEV function, 84
stored functions, 64–65
stored queries, 216
strings

functions for, 50–53
literals, 47–48

Structured Query Language. See SQL (Structured Query
Language)

SUBPARTITION BY HASH clause, 256
subqueries, 118

correlated, 121–123, 121
multiple-column, 123–124
multiple-row, 119–121
single-row, 118–119

substitution variables, 198–201, 199
SUBSTR function, 51
subtraction in functions, 49
SUM function, 84, 197
summary operations in reports, 196–198
Summary screen, 166, 166
Sybase databases, 328
synonyms, 225–226
syntax representation, 24
SYS.AUD$ table, 240
SYS_EXTRACT_UTC function, 57
SYSAUX tablespace, 157
SYSDATE function, 57–58
System Global Area (SGA), 160–162, 160
system identifiers (SIDs), 171
System Monitor (SMON) process, 163
system privileges, 234–236
system security. See security
SYSTEM tablespace, 157, 232
system trace files, 303–305, 305
system variables, 184–189, 185–189
SYSTIMESTAMP function, 57

T
tables, 3–4

associative, 6–7
creating, 34–36, 35, 208–211
dropping, 37
external, 211–214, 211
multiple, 93

Cartesian products, 112–113
joins. See joins
review questions for, 115, 317–318
terms for, 114

partitioned, 255–257
relational, 208–209
renaming, 37–38
temporary, 214
truncating, 38

TABLES keyword
in EXP, 275
in IMP, 277

tablespaces, 157
transportable, 282
for user accounts, 232–234, 233

TABS view, 222
TAN function, 54
templates, 176, 176
temporary tables, 214
terms

for advanced queries, 137
for backups, 292
for database objects, 226
for functions, 66
for installation, 179
for joins, 114
for logical consistency, 153
for relational databases, 10
for reports, 204
for restricting data, 90
for security, 243
for SQL, 40
for troubleshooting, 310
for tuning databases, 270

testing recovery process, 291
Tests tab for events, 299, 299
thin clients, 18
third-party tools, 21, 21
tiers, 14
TKPROF utility, 309–310, 310
TO_CHAR function, 58–60
TO_DATE function, 58
TO_DSINTERVAL function, 58
TO_NUMBER function, 58
TO_YMINTERVAL function, 58–59
TOAD tool, 21, 21
Top SQL tool, 260–262, 260–262
totals in report formatting, 196–198
trace files

system, 303–305, 305
user, 305–310, 309–310

transactions, 150–151
COMMIT statement, 151, 151
ROLLBACK statement, 152
SAVEPOINT statement, 152–153

4372cIDX.fm Page 348 Tuesday, August 17, 2004 11:35 AM

TRANSLATE function – zeros 349

TRANSLATE function, 51
transportable tablespaces, 282
TREAT function, 51
TRIM function, 51
troubleshooting, 295

alert log files for, 296–298, 297
event notification for, 298–303, 299–303
review questions for, 311, 326
system trace files for, 303–305, 305
terms for, 310
user trace files for, 305–310, 309–310

TRUNC function, 54, 57
TRUNCATE TABLE statement, 38
TTITLE statement, 191–193
tuning databases, 245

data design tuning, 255–259
indexes for. See indexes
memory tuning, 267–269, 267
methodology for, 246–247
review questions for, 271, 324
SQL application tuning, 259

Explain Plan tool, 262–263, 263–264
Oracle optimizer, 264–267
Top SQL tool, 260–262, 260–262

terms for, 270
TZ_OFFSET function, 57

U
unary operators, 49
underscores (_) with LIKE, 78–79
UNDO_RETENTION parameter, 280
UNION operator, 124–128
UNION ALL operator, 124–128
UNIQUE constraint, 144–145
unique indexes, 215, 249–250
UNIQUE keyword, 250
UPDATE privilege, 236
UPDATE statement, 29–31, 30–31
UPPER function, 51
upsert operations, 33–34
user accounts, 230

passwords for, 230–231
privileges for, 234

object, 236–238
roles for, 238–240, 238
system, 234–236

profiles for, 231–232
tablespaces and quotas for, 232–234, 233

USER_ data dictionary views, 218
user-defined functions, 63–66

user-defined views, 216–218
USER_DUMP_DEST system parameter, 305
user error, recovery from, 274
user trace files, 305

converting, 309–310, 310
enabling, 305, 306
locating, 306–308, 309

usernames, 230
in iSQL*Plus, 18
in SQL*Plus, 15

USERS tablespace, 232

V
variables

substitution, 198–201, 199
system, 184–189, 185–189

vertical bars (|) for concatenation, 47–48
vi editor, 296–297, 297
views

data dictionary, 218
common, 219–222
for indexes, 254–255
types, 218

dynamic performance, 222–223
materialized, 258–259
user-defined, 216–218

V$INSTANCE view, 223
V$LOGMNR_CONTENTS view, 289
V$SESSION view, 222–223
VSIZE function, 61, 63

W
WebSphere product, 328
WHERE clause, 70, 70

AND, OR, and NOT operators in, 72–74
BETWEEN operator in, 75–77
comparison operators in, 71–72
with GROUP BY, 86
IN operator in, 77–78
IS NULL operator in, 79–81
LIKE operator, 78–79

WITH GRANT OPTION clause, 39, 236

Z
zero-length strings, 47
zeros, leading, 60

4372cIDX.fm Page 349 Tuesday, August 17, 2004 11:35 AM

	Oracle Database Foundations
	Cover

	Contents
	Introduction
	Chapter 1 Relational Database Concepts
	Are Spreadsheets Like Databases?
	Relational Databases
	Tables, Rows, and Columns
	Primary Keys, Datatypes, and Foreign Keys
	Data Modeling

	Object Relational Databases
	Abstraction
	Methods and Encapsulation
	Inheritance
	Object Relational Support

	Terms to Know
	Review Questions

	Chapter 2 SQL*Plus and iSQL*Plus Basics
	Some SQL Formalities
	Tools for Running SQL
	SQL*Plus
	iSQL*Plus
	SQL*Plus Worksheet
	Third Party Tools
	ODBC/JDBC
	OCI

	The Ubiquitous SELECT Statement
	Column Specification
	Column Renaming
	Duplicate Removal
	Expressions

	DML for Making Changes
	The UPDATE Statement
	The INSERT Statement
	The DELETE Statement
	The MERGE Statement

	DDL for Handling Database Objects
	The CREATE Statement
	The ALTER Statement
	The DROP Statement
	The RENAME Statement
	The TRUNCATE Statement

	DCL for Handling Privileges
	The GRANT Statement
	The REVOKE Statement

	Terms to Know
	Review Questions

	Chapter 3 Oracle Database Functions
	Query Basics
	The DUAL Table
	NULL s: What, When, Why, and How
	String Literals and Concatenating Strings
	Numeric Literals
	Operators and Operator Precedence

	Built In Single Row Functions
	String Functions
	Numeric Functions
	Date Functions
	Conversion Functions
	General Functions

	User Defined Functions
	Terms to Know
	Review Questions

	Chapter 4 Restricting, Sorting, and Grouping Data
	The WHERE Clause
	Comparison Conditions
	AND , OR , and NOT
	BETWEEN , IN , and LIKE
	IS NULL and IS NOT NULL

	The ORDER BY Clause
	Group Functions and the GROUP BY Clause
	Group Functions
	The GROUP BY Clause
	Using NVL with Group Functions
	The HAVING Clause

	Terms to Know
	Review Questions

	Chapter 5 Using Multiple Tables
	Join Syntax: Out with the Old and In with the New (SQL:1999)
	Equijoins
	Pre Oracle9i Equijoin Syntax
	Oracle9i Equijoin Syntax
	Non equijoins
	Pre Oracle9i Non equijoin Syntax
	Oracle9i Non equijoin Syntax

	Outer Joins
	Pre Oracle9i Outer Join Syntax
	Oracle9i Outer Join Syntax

	Self Joins
	Pre Oracle9i Self Join Syntax
	Oracle9i Self Join Syntax

	Cartesian Products: The Black Sheep of the Family
	Pre Oracle9i Cartesian Product Syntax
	Oracle9i Cartesian Product Syntax

	Terms to Know
	Review Questions

	Chapter 6 Advanced SQL Queries
	Subqueries
	Single Row Subqueries
	Multiple Row Subqueries
	Correlated Subqueries
	Multiple Column Subqueries

	Set Operators
	UNION and UNION ALL
	INTERSECT
	MINUS

	ROLLUP and CUBE
	ROLLUP
	CUBE

	Terms to Know
	Review Questions

	Chapter 7 Logical Consistency
	Constraints
	NOT NULL
	CHECK
	UNIQUE
	PRIMARY KEY
	FOREIGN KEY

	Transaction Processing
	The COMMIT Statement
	The ROLLBACK Statement
	The SAVEPOINT Statement

	Terms to Know
	Review Questions

	Chapter 8 Installing Oracle and Creating a Database
	Oracle Components Overview
	Logical Storage Structures
	Physical Storage Structures
	Oracle Memory Structures
	Background Processes

	Installing Oracle Software
	Using the Oracle Universal Installer
	Using the Oracle Enterprise Manager Tools

	Creating an Oracle Database
	Disk and Memory Requirements
	Using the Database Configuration Assistant

	Terms to Know
	Review Questions

	Chapter 9 Reporting Techniques
	iSQL*Plus Configuration
	Interface Configuration
	Script Formatting and System Variables
	Change Password

	Report Formatting
	Headers and Footers
	Column Formatting
	BREAK Processing
	Summary Operations (Totals)

	Substitution Variables
	Saving and Running Scripts
	Terms to Know
	Review Questions

	Chapter 10 Creating and Maintaining Database Objects
	Creating Tables
	Relational Tables
	Create Table As Select (CTAS)
	External Tables
	Temporary Tables

	Creating Indexes
	Creating and Using Views
	User Defined Views
	Data Dictionary Views
	Dynamic Performance Views

	Creating Sequences and Synonyms
	Sequences
	Synonyms

	Terms to Know
	Review Questions

	Chapter 11 Users and Security
	Creating User Accounts
	Assigning Passwords
	Creating and Assigning Profiles
	Assigning Default Tablespaces and Quotas

	Granting and Revoking Privileges
	System Privileges
	Object Privileges
	Creating and Assigning Roles

	Auditing
	Statement Auditing
	Object Auditing

	Terms to Know
	Review Questions

	Chapter 12 Making Things Run Fast (Enough)
	Oracle's Tuning Methodology
	Indexes
	When to Create Indexes
	Index Types
	Creating, Dropping, and Maintaining Indexes
	Monitoring Indexes
	Data Dictionary Index Information

	Data Design Tuning
	Partitioned Tables
	Materialized Views

	SQL Application Tuning
	Top SQL Tool
	Explain Plan Graphical Tool
	The Oracle Optimizer

	Memory Tuning
	Terms to Know
	Review Questions

	Chapter 13 Saving Your Stuff (Backups)
	Database Failures
	User Backup and Recovery Methods
	Export and Import for Users
	Flashback Query

	DBA Backup and Recovery Methods
	Export and Import for DBAs
	Cold Backups
	Hot Backups
	Log Miner
	Recovery Manager

	Terms to Know
	Review Questions

	Chapter 14 Troubleshooting
	The Alert Log File
	Locating the Alert Log File
	Viewing the Alert Log File
	Maintaining the Alert Log File

	Event Notification
	Oracle9i OEM Event Manager
	Oracle 10g Advisory Framework

	System Trace Files
	User Trace Files
	Enabling Tracing
	Locating the User Trace Files
	Converting the Trace File

	Terms to Know
	Review Questions

	Appendix A Answers to Review Questions
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14

	Appendix B Common Database Platforms
	Enterprise Databases
	Oracle
	IBM DB2/UDB
	Sybase
	Microsoft SQL Server

	Personal and Freeware Databases
	Microsoft Access
	MySQL

	Glossary
	Index
	Team DDU

