Expert
Oracle RAC 12c¢

GAIN DEEP EXPERTISE
IN MANAGING ORACLE REAL
APPLICATION CLUSTERS

Syed Jaffar Hussain, Tarig Farooq, Riyaj Shamsudeen, and Kai Yu

ApPress®

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the AUtROrS........cccccemssemmisssnrs s ————————————_ xvii
About the Technical REVIEWErScccssvssmsssmssssmsssmssssssssmsssssssssmssssssssssssssssssssssnssssnsnsnsnnsas Xix
AcKNOWIEdgMENTScuuiiiimmmimisssnnnmmssssnsnmmssssssnmsssssnnnesssssnsnesssssnsnssssssnnsessssnnnnessssnnnnessssnnnnss XXi
Chapter 1: Overview of Oracle RAGccouummmmmemmmmmmmmmssssssssssssmssssssssssssssssssssssssssnssnnsssnns 1
Chapter 2: Clusterware Stack Management and Troubleshootingccccccunsuenrsssnnsnanns 29
Chapter 3: RAC Operational PractiCesccccuusseemmmmssssnnmmssssssnssssssssnsssssssssssssssssssssssssnnssssss 69
Chapter 4: New Features in RAC 12C......ccccuuusssmsnmmssssssnssssssssnssssssssnssssssssnssssssnsnssssssnnnnsssns 97
Chapter 5: Storage and ASM PractiCescuccurmmsssnmmmmssnnssssns 123
Chapter 6: Application DeSign ISSUES.....cccuussemmmmmssssnsmmsssssnsmssssssnssssssssssssssssnnssessssnnnsnssns 165
Chapter 7: Managing and Optimizing a Complex RAC Environment...........cccciunssennnsnans 181
Chapter 8: Backup and Recovery in RAC........ccccuussemmmmmsssssnsssssssssssssssssssssssssssssssssssnnsssns 217
Chapter 9: Network PractiCescccuussemmmmmsssnsnmmssssssnmmssssssnsnssssssnsnsssssssssssssnnssnssssnnnnnssss 243
Chapter 10: RAC Database Optimizationccccueemmmmnseenmmmsesnmmmsssssmsssssnmsssssnmms 285
Chapter 11: Locks and DeadlOCKScuuumssmsssssmmmmssssssssnssssssmmsssssssssssssssssssssssssnnnsssssnnsss 321
Chapter 12: Parallel Query in RACcoccccuummissemnmmmmssessmmmssssssmmsssssssnmsssssssssssssssssssssssnnnnss 353
Chapter 13: Clusterware and Database Upgrades......c..cccusmmmmssmnmsssssssssassssssnsssssnsessannas 381
Chapter 14: RAC 0ne NOUEcuuinmmmmmmsmmmmmmmmsssnnssssssmmssssssssnsssssssnssssssssnnsnnsssssssssssnnnnnnnnns 411
111 . 431
ii

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Overview of Oracle RAC

by Kai Yu

In today’s business world, with the growing importance of the Internet, more and more applications need to be
available online all the time. One obvious example is the online store application. Many companies want to keep their
online stores open 24x7 on 365 days so that customers from everywhere, in different time zones, can come at any time
to browse products and place orders.

High Availability (HA) may also be critical for non-customer-facing applications. It is very common for IT
departments to have complex distributed applications that connect to multiple data sources, such as those that extract
and summarize sales data from online store applications to reporting systems. A common characteristic of these
applications is that any unexpected downtime could mean a huge loss of business revenue and customers. The total
loss is sometimes very hard to quantify with a dollar amount. As the key components of these applications, Oracle
databases are often key components of a whole storefront ecosystem, so their availability can impact the availability of
the entire ecosystem.

The second area is the scalability of applications. As the business grows, transaction volumes can double or
triple as compared to what was scoped for the initial capacity. Moreover, for short times, business volumes can be
very dynamic; for example, sales volumes for the holiday season can be significantly higher. An Oracle Database
should be scalable and flexible enough to easily adapt to business dynamics and able to expand for high workloads
and shrink when demand is reduced. Historically, the old Big Iron Unix servers that used to dominate the database
server market lacked the flexibility to adapt to these changes. In the last ten years, the industry standard has shifted to
x86-64 architecture running on Linux to meet the scalability and flexibility needs of growing applications. Oracle Real
Application Clusters (RAC) running on Linux on commodity X86-64 servers is a widely adapted industry-standard
solution to achieve high availability and scalability.

This chapter introduces the Oracle RAC technology and discusses how to achieve the high availability and
scalability of the Oracle database with Oracle RAC. The following topics will be covered in this chapter:

e Database High Availability and Scalability

Oracle Real Application Clusters (RAC)
e Achieving the Benefits of Oracle RAC

Considerations for Deploying Oracle RAC

High Availability and Scalability

This section discusses the database availability and scalability requirements and their various related factors.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC

What Is High Availability?

As shown in the previous example of the online store application, business urges IT departments to provide solutions
to meet the availability requirements of business applications. As the centerpiece of most business applications,
database availability is the key to keeping all the applications available.

In most IT organizations, Service Level Agreements (SLAs) are used to define the application availability
agreement between business and IT organization. They can be defined as the percentage availability, or the maximum
downtime allowed per month or per year. For example, an SLA that specifies 99.999% availability means less than
5.26 minutes downtime allowed annually. Sometimes an SLA also specifies the particular time window allowed for
downtime; for example, a back-end office application database can be down between midnight and 4 a.m. the first
Saturday of each quarter for scheduled maintenance such as hardware and software upgrades.

Since most high availability solutions require additional hardware and/or software, the cost of these solutions
can be high. Companies should determine their HA requirements based on the nature of the applications and the
cost structure. For example some back-end office applications such as a human resource application may not need to
be online 24x7. For those mission-critical business applications that need to be highly available, an evaluation of the
cost of downtime may be calculated too; for example, how much money can be lost due to 1 hour of downtime. Then
we can compare the downtime costs with the capital costs and operational expenses associated with the design and
implementation of various levels of availability solution. This kind of comparison will help business managers and IT
departments come up with realistic SLAs that meet their real business and affordability needs and that their IT team
can deliver.

Many business applications consist of multi-tier applications that run on multiple computers in a distributed
network. The availability of the business applications depends not only on the infrastructure that supports these
multi-tier applications, including the server hardware, storage, network, and OS, but also on each tier of the
applications, such as web servers, application servers, and database servers. In this chapter, I will focus mainly on the
availability of the database server, which is the database administrator’s responsibility.

Database availability also plays a critical role in application availability. We use downtime to refer to the periods
when a database is unavailable. The downtime can be either unplanned downtime or planned downtime. Unplanned
downtime can occur without being prepared by system admin or DBAs—it may be caused by an unexpected event
such as hardware or software failure, human error, or even a natural disaster (losing a data center). Most unplanned
downtime can be anticipated; for example, when designing a cluster it is best to make the assumption that everything
will fail, considering that most of these clusters are commodity clusters and hence have parts which break. The key
when designing the availability of the system is to ensure that it has sufficient redundancy built into it, assuming
that every component (including the entire site) may fail. Planned downtime is usually associated with scheduled
maintenance activities such as system upgrade or migration.

Unplanned downtime of the Oracle database service can be due to data loss or server failure. The data loss may
be caused by storage medium failure, data corruption, deletion of data by human error, or even data center failure.
Data loss can be a very serious failure as it may turn out to be permanent, or could take a long time to recover from.
The solutions to data loss consist of prevention methods and recovery methods. Prevention methods include disk
mirroring by RAID (Redundant Array of Independent Disks) configurations such as RAID 1 (mirroring only) and
RAID 10 (mirroring and striping) in the storage array or with ASM (Automatic Storage Management) diskgroup
redundancy setting. Chapter 5 will discuss the details of the RAID configurations and ASM configurations for Oracle
Databases. Recovery methods focus on getting the data back through database recovery from the previous database
backup or flashback recovery or switching to the standby database through Data Guard failover.

Server failure is usually caused by hardware or software failure. Hardware failure can be physical machine
component failure, network or storage connection failure; and software failure can be caused by an OS crash, or
Oracle database instance or ASM instance failure. Usually during server failure, data in the database remains intact.
After the software or hardware issue is fixed, the database service on the failed server can be resumed after completing
database instance recovery and startup. Database service downtime due to server failure can be prevented by
providing redundant database servers so that the database service can fail over in case of primary server failure.
Network and storage connection failure can be prevented by providing redundant network and storage connections.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * OVERVIEW OF ORACLE RAC

Planned downtime for an Oracle database may be scheduled for a system upgrade or migration. The database
system upgrade can be a hardware upgrade to servers, network, or storage; or a software upgrade to the OS, or
Oracle Database patching and upgrade. The downtime for the upgrade will vary depending on the nature of the
upgrade. One way to avoid database downtime for system upgrades is to have a redundant system which can take
over the database workloads during the system upgrade without causing a database outage. Migration maintenance
is sometimes necessary to relocate the database to a new server, a new storage, or a new OS. Although this kind of
migration is less frequent, the potential downtime can be much longer and has a much bigger impact on the business
application. Some tools and methods are designed to reduce database migration downtime: for example, Oracle
transportable tablespace, Data Guard, Oracle GoldenGate, Quest SharePlex, etc.

In this chapter, I focus on a specific area of Oracle Database HA: server availability. I will discuss how to reduce
database service downtime due to server failure and system upgrade with Oracle RAC. For all other solutions to
reduce or minimize both unplanned and planned downtime of Oracle Database, we can use the Oracle Maximum
Availability Architecture (MAA) as the guideline. Refer to the Oracle MAA architecture page, www.oracle.com/
technetwork/database/features/availability/maa-090890.html, for the latest developments.

Database Scalability

In the database world, it is said that one should always start with application database design, SQL query tuning, and
database instance tuning, instead of just adding new hardware. This is always true, as with a bad application database
design and bad SQL queries, adding additional hardware will not solve the performance problem. On the other hand,
however, even some well-tuned databases can run out of system capacity as workloads increase.

In this case, the database performance issue is no longer just a tuning issue. It also becomes a scalability issue.
Database scalability is about how to increase the database throughput and reduce database response time, under
increasing workloads, by adding more computing, networking, and storage resources.

The three critical system resources for database systems are CPU, memory, and storage. Different types of
database workloads may use these resources differently: some may be CPU bound or memory bound, while others
may be I/0 bound. To scale the database, DBAs first need to identify the major performance bottlenecks or resource
contentions with a performance monitoring tool such as Oracle Enterprise Manager or AWR (Automatic Workload
Repository) report. If the database is found to be I/0 bound, storage needs to be scaled up. In Chapter 5, we discuss
how to scale up storage by increasing storage I/0 capacity such as IOPs (I/O operations per second) and decrease
storage response time with ASM striping and I/0 load balancing on disk drives.

If the database is found to be CPU bound or memory bound, server capacity needs to be scaled up. Server
scalability can be achieved by one of the following two methods:

e Scale-up or vertical scaling: adding additional CPUs and memory to the existing server.
e Scale-out or horizontal scaling: adding additional server(s) to the database system.

The scale-up method is relatively simple. We just need to add more CPUs and memory to the server. Additional
CPUs can be recognized by the OS and the database instance. To use the additional memory, some memory settings
may need to be modified in OS kernel, as well as the database instance initialization parameters. This option is more
useful with x86 servers as these servers are getting more CPUs cores and memory (up to 80 cores and 4TB memory per
server of the newer servers at the time of writing). The HP DL580 and DL980 and Dell R820 and R910 are examples of
these powerful X86 servers. For some servers, such as those which are based on Intel’s Sandybridge and Northbridge
architectures, adding more memory with the older CPUs might not always achieve the same memory performance.
One of the biggest issues with this scale-up method is that it can hit its limit when the server has already reached the
maximal CPU and memory capacity. In this case, you may have to either replace it with a more powerful server or try
the scale-out option.

The scale-out option is to add more server(s) to the database by clustering these servers so that workloads can be
distributed between them. In this way, the database can double or triple its CPU and memory resources. Compared to
the scale-up method, scale-out is more scalable as you can continue adding more servers for continuously increasing
workloads.

www.it-ebooks.info

http://www.oracle.com/technetwork/database/features/availability/maa-090890.html
http://www.oracle.com/technetwork/database/features/availability/maa-090890.html
http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC

One of the factors that will help to determine whether the scale-up or the scale-out option is more appropriate for
your environment is the transaction performance requirements. If a lower transaction latency is the goal, the scale-up
method may be the option to choose, as reading data from local memory is much faster than reading data from a
remote server across the network due to the fact that memory speed is much faster than networking speed, even for the
high-speed InfiniBand network. If increasing database transaction throughput is the goal, scale-out is the option to be
considered, as it can distribute transaction loads to multiple servers to achieve much higher transaction throughput.

Other factors to be considered include the costs of hardware and software licenses. While the scale-up method
may need a high-cost, high-end server to allow vertical scalability, the scale-out method will allow you to use low-cost
commodity servers clustered together. Another advantage of the scale-out method is that this solution also confers high
availability, which allows database transactions to be failed over to other low-cost servers in the cluster, while the scale-up
solution will need another high-cost server to provide a redundant configuration. However, the scale-out method usually
needs special licensed software such as Oracle RAC to cluster the applications on multiple nodes. While you may be able
to save some hardware costs with the scale-out model, you need to pay for the licencing cost of the cluster software.

The scale-out method takes much more complex technologies to implement. Some of the challenges are how to
keep multiple servers working together on a single database while maintaining data consistency among these nodes,
and how to synchronize operations on multiple nodes to achieve the best performance. Oracle RAC is designed to
tackle these technical challenges and make database servers work together as one single server to achieve maximum
scalability of the combined resources of the multiple servers. Oracle RAC'’s cache fusion technology manages cache
coherency across all nodes and provides a single consistent database system image for applications, no matter which
nodes of the RAC database the applications are connected to.

Oracle RAC

This section discusses Oracle RAC: its architecture, infrastructure requirements, and main components.

Database Clustering Architecture

To achieve horizontal scalability or scale-out of a database, multiple database servers are grouped together to form

a cluster infrastructure. These servers are linked by a private interconnect network and work together as a single
virtual server that is capable of handling large application workloads. This cluster can be easily expanded or shrunk by
adding or removing servers from the cluster to adapt to the dynamics of the workload. This architecture is not limited
by the maximum capacity of a single server, as the vertical scalability (scale-up) method is. There are two types of
clustering architecture:

e Shared Nothing Architecture
e Shared Everything Architecture

The shared nothing architecture is built on a group of independent servers with storage attached to each server.
Each server carries a portion of the database. The workloads are also divided by this group of servers so that each
server carries a predefined workload. Although this architecture can distribute the workloads among multiple servers,
the distribution of the workloads and data among the servers is predefined. Adding or removing a single server would
require a complete redesign and redeployment of the cluster.

For those applications where each node only needs to access a part of the database, with very careful partitioning
of the database and workloads, this shared nothing architecture may work. If the data partition is not completely in
sync with the application workload distribution on the server nodes, some nodes may need to access data stored in
other nodes. In this case, database performance will suffer. Shared nothing architecture also doesn’t work well with
a large set of database applications such as OLTP (Online transaction processing), which need to access the entire
database; this architecture will require frequent data redistribution across the nodes and will not work well. Shared
nothing also doesn’t provide high availability. Since each partition is dedicated to a piece of the data and workload
which is not duplicated by any other server, each server can be a single point of failure. In case of the failure of any
server, the data and workload cannot be failed over to other servers in the cluster.

4

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * OVERVIEW OF ORACLE RAC

In the shared everything architecture, each server in the cluster is connected to a shared storage where the database
files are stored. It can be either active-passive or active-active. In the active-passive cluster architecture, at any given
time, only one server is actively accessing the database files and handling workloads; the second one is passive and in
standby. In the case of active server failure, the second server picks up the access to the database files and becomes the
active server, and user connections to the database also get failed over to the second server. This active-passive cluster
provides only availability, not scalability, as at any given time only one server is handling the workloads.

Examples of this type of cluster database include Microsoft SQL Server Cluster, Oracle Fail Safe, and Oracle
RAC One Node. Oracle RAC One Node, introduced in Oracle Database 11.2, allows the single-instance database to
be able to fail over to the other node in case of node failure. Since Oracle RAC One Node is based on the same Grid
Infrastructure as Oracle RAC Database, it can be converted from one node to the active-active Oracle RAC Database
with a couple of srvctl commands. Chapter 14 will discuss the details of Oracle RAC One Node.

In the active-active cluster architecture, all the servers in the cluster can actively access the database files and
handle workloads simultaneously. All database workloads are evenly distributed to all the servers. In case of one or
more server failures, the database connections and workloads on the failed servers get failed over to the rest of the
surviving servers. This active-active architecture implements database server virtualization by providing users with
avirtual database service. How many actual physical database servers are behind the virtual database service, and
how the workloads get distributed to these physical servers, is transparent to users. To make this architecture scalable,
adding or removing physical servers from the cluster is also transparent to users. Oracle RAC is the classic example of
the active-active shared everything database architecture.

RAC Architecture

Oracle Real Application Cluster (RAC) is an Oracle Database option, based on a share everything architecture. Oracle
RAC clusters multiple servers that then operate as a single system. In this cluster, each server actively accesses the
shared database and forms an active-active cluster configuration. Oracle first introduced this active-active cluster
database solution, called Oracle Parallel Server (OPS), in Oracle 6.2 on VAX/VMS. This name was used until 2001,
when Oracle released Oracle Real Application Clusters (RAC) in Oracle Database 9i. Oracle RAC supersedes OPS with
many significant enhancements including Oracle Clusterware and cache fusion technology.

In the Oracle RAC configuration, the database files are stored in shared storage, which every server in the cluster
shares access to. As shown in Figure 1-1, the database runs across these servers by having one RAC database instance
on a server. A database instance consists of a collection of Oracle-related memory plus a set of database background
processes that run on the server. Unlike a single-node database, which is limited to one database instance per database,
a RAC database has one or more database instances per database and is also built to add additional database instances
easily. You can start with a single node or a small number of nodes as an initial configuration and scale out to more
nodes with no interruption to the application. All instances of a database share concurrent access to the database files.

User connections

as as 8=
/§§_i §_?)\\ l l
' ~Sh

Node1 Node2 Node3
RAC ‘ RAC ‘ ‘ RAC ‘
Instance1 Instance2 Instance3
A~ 1 ﬁ\i
Cluster
Interconnect

RAC
Database

Figure 1-1. Oracle RAC Database architecture

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC

Oracle RAC is designed to provide scalability by allowing all the RAC instances to share database workloads.
In this way, Oracle RAC Database presents users with a logical database server that groups computing resources
such as CPUs and memory from multiple RAC nodes. Most times, with proper configuration using RAC features
such as services, Single Client Access Name (SCAN), and database client failover features, changes on the cluster
configuration such as adding or removing nodes can be done as transparently to the users as possible. Figure 1-1
illustrates an Oracle RAC configuration where users are connected to the database and can perform database
operations through three database instances.

This architecture also provides HA during a failure in the cluster. It can tolerate N-1 node failures, where N is
the total number of the nodes. In case of one or more nodes failing, the users connecting to the failed nodes are
failed over automatically to the surviving RAC nodes. For example, as shown in Figure 1-1, if node 2 fails, the user
connections on instance 2 fail over to instance 1 and instance 3. When user connections fail over to the surviving
nodes, RAC ensures load balancing among the nodes of the cluster.

Oracle RAC 12cR1 introduced a new architecture option called Flex Clusters. In this new option, there are two
types of cluster nodes: Hub nodes and Leaf nodes. The Hub Nodes are same as the traditional cluster nodes in Oracle
RAC 11gR2. All of the Hub Nodes are interconnected with the high-speed interconnect network and have direct access
to shared storage. The Leaf Nodes are a new type of node with a lighter-weight stack. They are connected only with the
corresponding attached Hub Nodes and they are not connected with each other. These Leaf Nodes are not required
to have direct access to shared storage. Instead, they will perform storage I/0 through the Hub Nodes that they
attach to. The Flex Cluster architecture was introduced to improve RAC scalability. Chapter 4 will discuss the detailed
configuration of this new feature in 12c.

Hardware Requirements for RAC

A typical Oracle RAC database requires two or more servers, networking across the servers, and the storage shared
by the servers. Although the servers can be SMP Unix servers as well as low-cost commodity x86 servers, it has been
an industry trend to move the database server from large SMP Unix machines to low-cost x86-64 servers running on
Linux OS, such as Red Hat Enterprise Linux and Oracle Linux.

It is recommended that all the servers in any Oracle RAC cluster should have similar hardware architecture.

It is mandatory to have the same OS, with possibly different patches among the servers on the same Oracle RAC.

In order to ensure load balancing among the RAC cluster nodes, in 11gR2, server pool management is based on

the importance of the server pool and the number of servers associated with the server pool, and there is no way to
differentiate between the capacities of the servers. All the servers on the RAC cluster are assumed to have similar
(homogeneous) capacity configuration such as CPU counts and total memory, as well as physical networks. If the
servers are different in capacity, this will affect resource distribution and session load balancing on the RAC. In Oracle
RAC 12c¢, the policy-based cluster management can manage clusters that consist of heterogeneous servers with
different capabilities such as CPU power and memory sizes. With the introduction of server categorization, server
pool management has been enhanced to understand the differences between servers in the cluster.

Each server should also have proper local storage for the OS, Oracle Grid Infrastructure software home, and
possibly for Oracle RAC software home if you decide to use the local disk to store the RAC Oracle Database binary.
Potentially, in the event of a RAC node failure, the workloads on the failed node will be failed over to the working
nodes; so each RAC node should reserve some headroom for the computing resources to handle additional database
workloads that are failed over from other nodes.

The storage where the RAC database files reside needs to be accessible from all the RAC nodes. Oracle
Clusterware also stores two important pieces of Clusterware components—Oracle Cluster Registry (OCR) and
voting disk files—in the shared storage. The accessibility of the shared storage by each of the RAC nodes is critical
to Clusterware as well as to RAC Database. To ensure the fault tolerance of the storage connections, it is highly
recommended to establish redundant network connections between the servers and shared storage. For example,
to connect to a Fibre Channel (FC) storage, we need to ensure that each sever on the cluster has dual HBA(Host Bus
Adapter) cards with redundant fiber links connecting to two fiber channel switches, each of which connects to two

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * OVERVIEW OF ORACLE RAC

FC storage controllers. On the software side, we need to configure multipathing software to group the multiple I/O paths
together so that one I/0 path can fail over I/0 traffic to another surviving path in case one of the paths should fail.
This ensures that at least one I/0 path is always available to the disks in the storage.

Figure 1-2 shows a example of configurating two redundant storage network connections to a SAN storage.
Depending on the storage network protocols, the storage can be linked with servers using either the FC or iSCSI
network. To achieve high I/0 bandwidth of the storage connections, some high-speed storage network solutions,
such as 16GbE FC and 10gBe iSCSI, have been adapted for the storage network. The detailed configuration of shared
storage is discussed in Chapter 5.

Private Network Switch1

-
-

Server 4 (leaf node) Seer 3

(hub node)
Storage Network Two Storage
Private Interconnect ------- Switches
Public Network s —————
" Two Storage
Controllers

Shared SAN Storage

Figure 1-2. Oracle RAC hardware architecture

The network configuration for an Oracle RAC configuration includes the public network for users or
applications to connect to the database, and the private interconnect network for connecting the RAC nodes in the
cluster. Figure 1-2 illustrates these two networks in a two-node RAC database. The private interconnect network is
accessible only to the nodes in the cluster. This private interconnect network carries the most important heartbeat
communication among the RAC nodes in the cluster. The network is also used by the data block transfer between the
RAC instances.

A redundant private interconnect configuration is highly recommended for a production cluster database
environment: it should comprise at least two network interface cards (NICs) that are connected to two dedicated
physical switches for the private interconnect network. These two switches should not be connected to any other
network, including the public network. The physical network cards can be bound into a single logical network using
OS network bonding utilities such as Linux Bonding or Microsoft NIC Teaming for HA and load balancing.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC

Oracle 11.2.0.2 introduced a new option for bonding multiple interconnect networks with an Oracle Redundant
Interconnect feature called Cluster High Availability IP (HAIP), which provides HA and bonds the interfaces for
aggregation at no extra cost to the Oracle environment. Oracle HAIP can take up to four NICs for the private network.
Chapter 9 details some best practices for private network configuration. To increase the scalability of the Oracle
RAC database, some advanced network solutions have been introduced. For example, as alternatives, 10g GbE
network and InfiniBand network are widely used for the private interconnect, to alleviate the potential performance
bottleneck.

In Oracle Clusterware 12cR1, Flex Clusters are introduced as a new option. If you use this option, Leaf Nodes are
not required to have direct access to the shared storage, while Hub Nodes are required to have direct access to the
shared storage, like the cluster nodes in an 11gR2 cluster. Figure 1-2 also illustrates the Flex Cluster structure where
servers 1 to 3 are Hub Nodes that have direct access to storage, while server 4 is a Leaf Node that does not connect to
shared storage and relies on a Hub Node to perform I/O operations. In release 12.1, all Leaf Nodes are in the same
public and private network as the Hub Nodes.

It is recommended to verify that the hardware and software configuration and settings comply with Oracle RAC
and Clusterware requirements, with one of these three verification and audit tools depending on the system:

e For aregular RAC system, use RACCheck RAC Configuration Audit Tool (My Oracle Support
[MOS] note ID 1268927.1)

e For an Oracle Exadata system, run Exachk Oracle Exadata Database Machine exachk or
HealthCheck (MOS note ID 1070954.1)

e For an Oracle Database Appliance, use ODAchk Oracle Database Appliance (ODA)
configuration Audit Tool (MOS note ID: 1485630).

RAC Components
In order to establish an Oracle RAC infrastructure, you need to install the following two Oracle licensed products:

e Oracle Grid Infrastructure: This combines Oracle Clusterware and Oracle ASM. Oracle
Clusterware clusters multiple interconnected servers (nodes). Oracle ASM provides the
volume manager and database file system that is shared by all cluster nodes.

e Oracle RAC: This coordinates and synchronizes multiple database instances to access the
same set of database files and process transactions on the same database.

Figure 1-3 shows the architecture and main components of a two-node Oracle RAC database. The RAC nodes
are connected by the private interconnect network that carries the Clusterware heartbeat as well as the data transfer
among the RAC nodes. All the RAC nodes are connected to shared storage to allow them to access it. Each RAC node
runs Grid Infrastructure, which includes Oracle Clusterware and Oracle ASM. Oracle Clusterware performs cluster
management, and Oracle ASM handles shared storage management. Oracle RAC runs above the Grid Infrastructure
on each RAC node to enable the coordination of communication and storage I/0 among the RAC database instances.
In the next two sections, we will discuss the functionality and components of these two Oracle products.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * OVERVIEW OF ORACLE RAC

| Application | | Application | | Application |

Service Service

Listener Listener

Private
Interconnect

Grid Infra structure

Clusterware

e~ A OCR/ \
RAC Voting disk

Database

Q /

Figure 1-3. Oracle RAC architecture and components

Grid Infrastructure: Oracle Clusterware and ASM

Clusterware is a layer of software that is tightly integrated with the OS to provide clustering features to the RAC
databases on a set of servers. Before Oracle 9i, Oracle depended on OS vendors or third-party vendors to provide

the Clusterware solution. In Oracle 9i, Oracle released its own clusterware on Linux and Windows, and in Oracle

10g Oracle extended its clusterware to other OS. Oracle Clusterware was significantly enhanced in 11g. In 11gR2,
Oracle combined Clusterware and Oracle ASM into a single product called Grid Infrastructure. Oracle Clusterware is
required software to run the Oracle RAC option, and it must be installed in its own, nonshared Oracle home. Usually
we have a dedicated OS user “grid” to own Grid Infrastructure as well as Oracle ASM instance, which is different from
the Oracle RAC database owner “oracle.”

Oracle Clusterware serves as a foundation for Oracle RAC Database. It provides a set of additional processes
running on each cluster server (node) that allow the cluster nodes to communicate with each other so that these
cluster nodes can work together as if they were one server serving the database users. This infrastructure is necessary
to run Oracle RAC.

During Grid Infrastructure installation, ASM instances, database services, and virtual IP (VIP) services, the
Single Client Access Name (SCAN), SCAN listener, Oracle Notification Service (ONS), and the Oracle Net listener
are configured and also registered as Clusterware resources and managed with Oracle Clusterware. Then, after you
create a RAC database, the database is also registered and managed with Oracle Clusterware. Oracle Clusterware is
responsible for starting the database when the clusterware starts and restarting it once if fails.

Oracle Clusterware also tracks the configuration and status of resources it manages, such as RAC databases, ASM
instances, database services, listeners, VIP addresses, ASM diskgroups, and application processes. These are known
as Cluster Ready Service (CRS) resources. Oracle Clusterware checks the status of these resources at periodic intervals
and restarts them a fixed number of times (depending on the type of resource) if they fail. Oracle Clusterware stores

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

OVERVIEW OF ORACLE RAC

the configuration and status of these CRS resources in OCR in the shared storage so that the Clusterware on each RAC
node can access it. The configuration and the status information are used by Oracle Clusterware to manage these
resources. You can use the following crsctl command to check the status of these resources:

[gridek2r720on1 ~]$ crsctl stat res -t -

ora.

OIa

ora.

Oora.

OIa

Oora

Oora

OIa.

Oora

ACFSHOME . dg

.DATA.dg

LISTENER.1lsnr

PCIE_DATA.dg

.VOCR.dg
.asm

.gsd

net1.network

.ons

ONLINE

ONLINE

ONLINE

ONLINE

ONLINE

ONLINE

OFFLINE

ONLINE

ONLINE

ONLINE

ONLINE

ONLINE

OFFLINE

ONLINE

ONLINE

OFFLINE

ONLINE

ONLINE

k2r720n1
k2r720n1
k2r720n1
k2r720n1
k2r720n1
k2r720n1
k2r720n1
k2r720n1

k2r720n1

Started

ora.LISTENER SCAN1.

1
ora.cvu

1
ora.k2r720n1.vip

1
ora.k2r720n2.vip

1
ora.khdb.db

1

2
ora.oc4j

1
ora.scanl.vip

1
10

lsnr
ONLINE

ONLINE

ONLINE

ONLINE

ONLINE
ONLINE

ONLINE

ONLINE

ONLINE

ONLINE

ONLINE

INTERMEDIATE

ONLINE
ONLINE

ONLINE

ONLINE

k2r720n1
k2r720n1
k2r720n1
k2r720n2

k2r720n1
k2r720n2

k2r720n1

k2r720n1

www.it-ebooks.info

Open
Open

http://www.it-ebooks.info/

CHAPTER 1 * OVERVIEW OF ORACLE RAC

You also can use the SRVCTL command to manage each individual resource. For example, to check the RAC
database status:

gridek2r72on1 ~]$ srvctl status database -d khdb
Instance khdb1l is running on node k2r720n1
Instance khdb2 is running on node k2r720n2

Oracle Clusterware requires shared storage to store its two components: voting disk for node membership
and Oracle Clusterware Registry (OCR) for cluster configuration information. The private interconnect network is
required between the cluster nodes to carry the network heartbeat; among them, Oracle Clusterware consists of
several process components which provide event monitoring, high availability features, process monitoring, and
group membership of the cluster. In Chapter 2, we discuss more details of these components, including the process
structure of the Clusterware and OCR and voting disks, best practices for managing Clusterware, and related
troubleshooting methods.

Another component of the Oracle Grid Infrastructure is Oracle ASM, which is installed at the same time into
the same Oracle home directory as Oracle Clusterware. Oracle ASM provides the cluster-aware shared storage and
volume manager for RAC database files. It also provides shared storage for OCR and voting disks. Chapter 5 discusses
the Oracle ASM architecture and management practices.

Oracle RAC: Cache Fusion

Oracle RAC is an option that you can select during Oracle database software installation. Oracle RAC and Oracle Grid
Infrastructure together make it possible to run a multiple-node RAC database. Like the single-node database, each
RAC database instance has memory structure such as buffer cache, shared pool, and so on. It uses the buffer cache in
a way that is a little different from a single instance. For a single instance, the server process first tries to read the data
block from the buffer cache. If the data block is not in the buffer cache, the server process will do the physical I/0 to
get the database block from the disks.

For a multi-node RAC database instance, the server process reads the data block from an instance’s buffer cache,
which has the latest copy of the block. This buffer cache can be on the local instance or a remote instance. If itis on a
remote instance, the data block needs to be transferred from the remote instance through the high-speed interconnect.
If the data block is not in any instance’s buffer cache, the server process needs to do the physical read from the disks to
the local cache. The instance updates the data block in the buffer cache and then the DBwriter writes the updated dirty
blocks to the disk in a batch during the checkpoint or when the instance needs to get free buffer cache slots.

However, in Oracle RAC, multiple database instances are actively performing read and write operations on the
same database, and these instances can access the same piece of data at the same time. To provide cache coherency
among all the cluster nodes, the writer operation is serialized across all the cluster nodes so that at any moment,
for any piece of data, there is only one writer. This is because if each instance acted on its own for the read and
update operations on its own buffer cache, and the dirty block wrote to the disk without coordination and proper
management among the RAC instances, these instances might access and modify the same data blocks independently
and end up by overwriting each others’ updates, which would cause data corruption.

In Oracle RAGC, this coordination relies on communication among RAC instances using the high-speed
interconnect. This interconnect is based on a redundant private network which is dedicated to communication
between the RAC nodes. Oracle Clusterware manages and monitors this private interconnect using the cluster
heartbeat between the RAC nodes to detect possible communication problems.

If any RAC node fails to get the heartbeat response from another RAC node within a predefined time threshold
(by default 30 seconds), Oracle Clusterware determines that there is a problem on the interconnect between these
two RAC nodes, and therefore the coordination between the RAC instances on these two RAC nodes may fail and
a possible split-brain condition may occur in the cluster. As a result, Clusterware will trigger a node eviction event
to reboot one of the RAC nodes, thus preventing the RAC instance from doing any independent disk I/O without
coordinating with another RAC instance on another RAC node. This methodology is called I/O fencing.

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC

Oracle uses an algorithm called STONITH (Shoot The Other Node In The Head), which allows the healthy
nodes to kill the sick node by letting the sick node reboot itself. Since 11.2.0.2 with the introduction of reboot-less
node eviction, in some cases the node reboot may be avoided by just shutting down and restarting the Clusterware.
While Oracle Clusterware guarantees interconnect communication among the RAC nodes, Oracle RAC provides
coordination and synchronization and data exchanging between the RAC instances using the interconnect.

In the Oracle RAC environment, all the instances of a RAC database appear to access a common global buffer
cache where the query on each instance can get the up-to-date copy of a data block, also called the “master copy,’
even though the block has been recently updated by another RAC instance. This is called global cache coherency.
In this global cache, since resources such as data blocks are shared by the database process within a RAC instance
and across all RAC instances, coordination of access to the resources is needed across all instances. Coordination
of access to these resources within a RAC instance is done with latches and locks, which are the same as those in a
single-instance database. Oracle cache fusion technology is responsible for coordination and synchronization of
access to these shared resources between RAC instances to achieve global cache coherency:

1. Access to shared resources between instances is coordinated and protected by the global
locks between the instances.

2. Although the actual buffer cache of each instance still remains separate, each RAC
instance can get the master copy of the data block from another instance’s cache by
transferring the data block from the other cache through the private interconnect.

Oracle Cache Fusion has gone through several major enhancements in various versions of Oracle Database.
Before the Cache Fusion technology was introduced in Oracle 8.1.5, the shared disk was used to synchronize the
updates—one instance needs to write the updated data block to the storage immediately after the block is updated in
the buffer cache so that the other instance can read the latest version of the data block from the shared disk.

In Oracle 8.1.5, Cache Fusion I was introduced to allow the Consistent Read version of the data block to be
transferred across the interconnect. Oracle 9i introduced Cache Fusion II to dramatically reduce latency for the
write-write operations. With Cache Fusion IJ, if instance A needs to update a data block which happens to be owned
by instance B, instance A requests the block through the Global Cache Service (GCS), instance B gets notification
from the GCS and releases the ownership of the block and sends the block to instance A through the interconnect.
This process avoids the disk write operation of instance B and disk read operation of instance A, which were
required prior to Oracle 9i. This was called a disk ping and was highly inefficient for this multiple instance’s
write operation.

Since the introduction of Cache Fusion II, in Oracle RAC Database, coordination and synchronization between
the RAC database instances have been achieved by two RAC services: the Global Cache Service (GCS) and Global
Enqueue Service (GES) along with a central repository called the Global Resource Directory (GRD). These two
services are the integrated part of Oracle RAC, and they also rely on the clusterware and private interconnects for
communications between RAC instances. Both GES and GCS coordinate access to shared resources by RAC instances.
GES manages enqueue resources such as the global locks between the RAC instances, and the GCS controls global
access to data block resources to implement global cache coherency.

Let’s look at how these three components work together to implement global cache coherency and coordination
of access to resources in the RAC across all the RAC instances.

In Oracle RAC, multiple database instances share access to resources such as data blocks in the buffer cache
and the enqueue. Access to these shared resources between RAC instances needs to be coordinated to avoid conflict.
In order to coordinate and manage shared access to these resources, information such as data block ID, which RAC
instance holds the current version of this data block, and the lock mode in which this data block is held by each
instance is recorded in a special place called the Global Resource Directory (GRD). This information is used and
maintained by GCS and GES for global cache coherency and coordination of access to resources such as data blocks
and locks.

The GRD tracks the mastership of the resources, and the contents of the GRD are distributed across all the RAC
instances, with the amount being equally divided across the RAC instances using a mod function when all the nodes
of the cluster are homogeneous. The RAC instance that holds the GRD entry for a resource is the master instance of

12

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * OVERVIEW OF ORACLE RAC

the resource. Initially, each resource is assigned to its master instance using a hashing algorithm. The master instance
can be changed when the cluster is reconfigured when adding or removing an instance from the cluster. This process
is referred as the “reconfiguration.”

In addition to reconfiguration, the resource can be remastered through Dynamic Resource Mastering (DRM).
DRM can be triggered by resource affinity or an instance crash. Resource affinity links the instance and resources
based on the usage pattern of the resource on the instance. If a resource is accessed more frequently from another
instance, the resource can be remastered on another instance. The master instance is a critical component of
global cache coherency. In the event of failure of one or more instances, the remaining instances will reconstruct
the GRD. This ensures that the global GRD is kept as long as one instance of the RAC database is still available.

The GCS is one of the services of RAC that implement Oracle RAC cache fusion. In the Oracle RAC environment,
a data block in an instance may be requested and shared by another instance. The GCS is responsible for the
management of this data block sharing between RAC instances. It coordinates access to the database block by RAC
instances, using the status information of the data blocks recorded in the entry of the GRD. The GCS is responsible for
data block transfers between RAC instances.

The GES manages the global enqueue resources much as the GCS manages the data block resource. The
enqueue resources managed by GES include library cache locks, dictionary cache locks, transaction locks, table
locks, etc.

Figure 1-4 shows a case in which an instance requests a data block transfer from another instance.

1. Request a
Instance 1 data block > Instance 2
Requesting Resource
Instance ’ Master
4. Update GRD

2. Request a shared

3. Transfer the block transfer

data block

Instance 3
Holding
Instance

Figure 1-4. Obtaining a data block from another instance

Instance 1 needs access to a data block. It first identifies the resource master instance of the block, which is
instance 2, and sends a request to instance 2 through GCS.

From the entry of the GRD for the block in resource master instance 2, the GCS gets the lock status of the data
block and identifies that the holding instance is instance 3, which holds the latest copy of the data block; then GCS
requests instance 3, the shared resource of the data block, and the block transfer to instance 1.

Instance 3 transfers the copy of the block to instance 1 via the private interconnects.

After receiving the copy of the block, instance 1 sends a message to the GCS about receiving the block, and the
GCS records the block transfer information in GRD.

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC

RAC Background Processes

Each RAC database instance is a superset of a single-node instance. It has the same set of background processes
and the same memory structure, such as the System Global Area (SGA) and the Program Global Area (PGA). As
well as these, RAC instances also have the additional processes and memory structure that are dedicated to the GCS
processes, GES, and the global cache directory. These processes are as follows:

e LMS: Lock Manager Server process

e LMON: Lock Monitor processes

e LMD: Lock Monitor daemon process
e LCK: Lock process

e DIAG: Diagnostic daemon

1. LMS process: The Lock Manager Server is the Global Cache Service (GCS) process. This
process is responsible for transferring the data blocks between the RAC instances for
cache fusion requests. For a Consistent Read request, the LMS process will roll back the
block and create the Consistent Read image of the block and then transfer the block to
the requesting instance through the high-speed interconnect. It is recommended that
the number of the LMS processes is less than or equal to the number of physical CPUs.
Here the physical CPUs are the “CPU cores”; for example, for a server with two sockets
that has four cores, the number of the physical CPU is 8. By default, the number of LMS
processes is based on the number of the CPUs on the server. This number may be too high
as one LMS process may be sufficient for up to four CPUs. There are a few ways to control
the number of the LMS processes. You can modify the values for the init.ora parameter
CPU_COUNT, which will also indirectly control the number of LMS processes that will be
started during the Oracle RAC Database instance startup. The number of LMS processes
is directly controlled by the init.ora parameter GCS_SERVER_PROCESSES. For a single
CPU server, only one LMS is started. If you are consolidating multiple small databases on a
cluster environment, you may want to reduce the number of LMS processes per instance,
as there may be multiple instances of RAC databases on a single RAC node. Refer to the
Oracle support note [ID 1439551.1] “Oracle (RAC) Database Consolidation Guidelines
for Environments Using Mixed Database Versions” for detailed guidelines for setting LMS
processes for multiple databases of RAC.

2. LMON process: The Lock Monitor process is responsible for managing the Global
Enqueue Service (GES). It is also responsible for reconfiguration of lock resources when an
instance joins or leaves the cluster and responsible for dynamic lock remastering.

3. LMD process: The Lock Monitor daemon process is the Global Enqueue Service (GES).
The LMD process manages the incoming remote lock requests from other instances in
the cluster.

4. LCK process: The Lock process manages non-cache fusion resource requests, such as row
cache and library cache requests. Only one LCK process (Ick0) per instance.

5. DIAG process: The Diagnostic daemon process is responsible for all the diagnostic work in
a RAC instance.

14

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

OVERVIEW OF ORACLE RAC

In addition, Oracle 11gR2 introduced a few new processes for RAC. These processes are as follows:

ACMS: Atomic Controlfile to Memory Server

GTXn: Global Transaction process

LMHB: LM heartbeat monitor (monitors LMON, LMD, LMSn processes)

PING: Interconnect latency measurement process

RMS0: RAC management server
RSMN: Remote Slave Monitor

The following command shows these five background processes on a RAC node. This example shows that both
the khdb1 instance and the ASM1 instance have a set of background processes. The Grid user owns the background
processes for the ASM instance and the Oracle user owns the background processes for the RAC database instance
‘khdb1! If you have run multiple RAC databases on the RAC node, you will see multiple sets of the background
processes. The process-naming convention is ‘ora_<process>_<instance_name>, for example ‘ora_lms2_khdb1’ and

‘asm_lms0_+ASM1.

$ ps -ef | grep -v grep

grid
grid
grid
grid
grid
grid
grid
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle
oracle

6448
6450
6455
6457
6459
6463
6483
21797
21801
21803
21807
21809
21811
21815
21819
21823
21825
21865
21867
21903

1

PR R R RRRPRRPRRRPRRRRRRRPRRRR

O OO0 OO0 00000000000 O0OOoOOoOOo

| grep 'lmon\|1ms\|lck\|1md\|diag\|acms\|gtx\|1mhb\|ping\|xms\|zsm’

Nov08
Nov08
Nov08
Nov08
Nov08
Nov08
Nov08
Nov19
Nov19
Nov19
Nov19
Nov19
Nov19
Nov19
Nov19
Nov19
Nov19
Nov19
Nov19
Nov19

B N Y B N B Y B A Y Y N A N Y A Y

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
01:
01:
01:
00:
00:
00:
00:
00:

13:
01:
34:
26:
58:
01:
02:
07:
00:
00:
48:
16:
22:
22:
22:
00:
00:
04:
00:
00:

48
43
52
20
00
17
03
53
57
42
39
50
25
11
49
41
55
36
48
45

asm_diag +ASM1
asm_ping +ASM1
asm_lmon_+ASM1
asm_lmdo_+ASM1
asm_lms0_+ASM1
asm_lmhb_+ASM1
asm_lcko_+ASM1
ora_diag_khdb1
ora_ping khdb1
ora_acms_khdb1
ora_lmon_khdb1
ora_lmdo_khdb1
ora_lmso _khdb1
ora_lms1 khdb1
ora_lms2_khdb1
ora_rmsO_khdb1
ora_lmhb_khdb1
ora_lcko_khdb1
ora_rsmn_khdb1
ora_gtxo_khdb1

Besides these processes dedicated to Oracle RAC, a RAC instance also has other background processes which it
has in common with a single node database instance. On Linux or Unix, you can see all the background processes of a

RAC instance by using a simple OS command, for example: $ ps -ef | grep 'khdb1'
Or run the following query in SQL*Plus:

sqlplus> select NAME, DESCRIPTION from v$bgprocess where PADDR != '00'

www.it-ebooks.info

15

http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC

Achieving the Benefits of Oracle RAC

In the last few sections we have examined the architecture of Oracle RAC and its two major components: Oracle
Clusterware and Oracle RAC Database. In this section, we discuss how Oracle RAC technology achieves HA and
scalability of Oracle Database.

High AvailabilityAgainst Unplanned Downtime

The Oracle RAC solution prevents unplanned downtime of the database service due to server hardware failure or
software failure. In the Oracle RAC environment, Oracle Clusterware and Oracle RAC work together to allow the
Oracle Database to run across multiple clustered servers. In the event of a database instance failure, no matter
whether the failure is caused by server hardware failure or an OS or Oracle Database software crash, this clusterware
provides the high availabilityand redundancy to protect the database service by failing over the user connections on
the failed instance to other database instances.

Both Oracle Clusterware and Oracle RAC contribute to this high availability database configuration. Oracle
Clusterware includes the High Availability (HA) service stack which provides the infrastructure to manage the Oracle
Database as a resource in the cluster environment. With this service, Oracle Clusterware is responsible for restarting
the database resource every time a database instance fails or after a RAC node restarts. In the Oracle RAC Database
environment, the Oracle Database along with other resources such as the virtual IP (VIP) are managed and protected
by Oracle Clusterware. In case of a node failure, Oracle Clusterware fails over these resources such as VIP to the
surviving nodes so that applications can detect the node failure quickly without waiting for a TCP/IP timeout. Then,
the application sessions can be failed over to the surviving nodes with connection pool and Transparent Application
Failover (TAF).

If a database instance fails while a session on the instance is in the middle of a DML operation such as inserting,
updating, or deleting, the DML transaction will be rolled back and the session will be reconnected to a surviving node.
The DML of the transaction would then need to be started over. Another great feature of the clusterware is the Oracle
Notification Services (ONS). ONS is responsible for publishing the Up and Down events on which the Oracle Fast
Application Notification (FAN) and Fast Connect Failover (FCF) rely to provide users with fast connection failover to
the surviving instance during a database instance failure.

Oracle RAC database software is cluster-aware. It allows Oracle RAC instances to detect an instance failure.

Once an instance failure is detected, the RAC instances communicate with each other and reconfigure the cluster
accordingly. The instance failure event triggers the reconfiguration of instance resources. During the instances’
startup, these instance resources were distributed across all the instances using a hashing algorithm. When an
instance is lost, the reconfiguration reassigns the new master instance for those resources that used the failed instance
as the master instance. This reconfiguration ensures that the RAC cache fusion survives the instance failure. The
reconfiguration is also needed when an instance rejoins the cluster once the failed server is back online, as this allows
further redistribution of the mastership with the newly joined instance. But this reconfiguration process that occurs
when adding a new instance takes less work than the one that occurs with a leaving instance, as when an instance is
leaving the cluster, those suspected resources need to be replayed and the masterships need to be re-established.

DRM is different from reconfiguration. DRM is a feature of Global Cluster Service that changes the master
instance of a resource based on resource affinity. When the instance is running on an affinity-based configuration,
DRM remasters the resource to another instance if the resource is accessed more often from another node. Therefore,
DRM occurs when the instance has a higher affinity to some resources than to others, whereas reconfiguration occurs
when an instance leaves or joins the cluster.

In the Oracle 12c Flex Cluster configuration, a Leaf node connects to the cluster through a Hub node. The failure
of the Hub Node or the failure of network between the Hub node and the Leaf nodes results in the node eviction of the
associated Leaf nodes. In Oracle RAC 12cR1, since there is no user database session connecting to any Leaf Nodes,
the failure of a Leaf Node will not directly cause user connection failure. The failure of the Hub Node is handled in
essentially the same way as the failover mechanism of a cluster node in 11gR2.

16

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * OVERVIEW OF ORACLE RAC

RAC resource mastering is performed only on the Hub node instances, not on a Leaf node. This ensures that
the failure of a Leaf node does not require remastering and also ensures that masters have affinity to the Hub node
instances.

Oracle RAC and Oracle Clusterware also work together to allow application connections to perform seamless
failover from the failed instance to the surviving instance. The applications can use these technologies to implement
smooth failover for their database operations such as query or transactions. These technologies include:

1. Transparent Application Failover (TAF)
2. Fast Connect Failover (FCF)

3. Better Business continuity & HA using Oracle 12¢ Application Continuity (AC)

Transparent Application Failover (TAF)

Transparent Application Failover (TAF) is a feature that helps database connection sessions fail over to a surviving
database instance during an instance failure. This is a client-side failover. With this feature, you can specify how to
fail over the session and re-establish the session on another instance, and how the query of the original database
connection continues after the connection gets relocated to the new database instance. It should be mentioned that
only a query operation such as a select statement gets replayed after the connection is relocated to the new database
instance. However, active transaction operations such as DML statements will not be failed over and replayed, as TAF
can'’t preserve these active transactions. During an instance failure, these transactions will be failed and rolled back,
and the application will receive an error message about the transaction failure.

The configuration of TAF is done through the tnsname.ora file on the client side without a need for any
application code change.

KHDB_Sales =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = kr720n-scan)(PORT = 1521))
(CONNECT _DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = khdb_sales.dblab.com)
(FAILOVER_MODE =
(TYPE=session)
(METHOD=basic)
(RETRIES=10)
(DELAY=10)
))

The failover mode is specified by the TYPE parameter, with three possible values: “session” for the session
mode; “select” for the select mode; “none” for deactivating the failover. The session mode is a basic configuration.

In this mode, TAF just reconnects the session to another instance and the new session has to start over again. In the
select mode, TAF reconnects the session to another instance and allows the query to reuse the open cursor from the
previous session. You can deactivate the failover if you put “none” or just skip the FAILOVER_MODE clause.

The options for the failover method are “basic” or “preconnect.” Using the basic failover method, TAF
re-establishes the connection to another instance only after the instance failure. In the preconnect method, the
application preconnects a session to a backup instance. This will speed up failover and thus avoid the huge sudden
reconnection storm that may happen to the surviving instance in the basic failover method. This is especially serious
in a two-node RAC, where all the connections on the failed instance will need to be reconnected to the only surviving
instance during an instance failure.

17

www.it-ebooks.info

http://khdb_sales.dblab.com/
http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC

TAF is relatively easy to configure; however, this feature requires the OCI (Oracle Call Interface) library and
doesn’t work with a JDBC thin driver, which is widely used in many Java applications. Another disadvantage is
that TAF mainly works with the session that runs the SELECT query statement. If the session fails in the middle of
executing a DML or DDL or a PL/SQL program such as a stored procedure, a function, or a package, it will receive the
ORA-25408 error, and the database will roll back the transaction. The application needs to reissue the statement after
failover. These disadvantages lead us on to a discussion of another alternative called the Fast Connect Failover (FCF).

Fast Connect Failover (FCF)

Fast Connect Failover (FCF) provides a better way to fail over and recover the database connection transparently
during an instance failure. The database clients are registered with Fast Application Notification (FAN), a RAC HA
framework that publishes Up and Down events for the cluster reconfiguration. The database clients are notified of
these Up and Down events published by FAN and react to the events accordingly. When an instance fails, FCF allows
all database clients that connect to the failed instance to be quickly notified about the failed instance by receiving
the Down event. Then, these database clients will stop and clean up the connections and immediately establish
new connections to the surviving instance. FCF is supported by JDBC and OCI clients, Oracle Universal Connection
Pool(UCP), and Oracle Data Providers for .Net. Oracle FCF is more flexible than TAF.

Connect to the RAC Database with VIPs

In the configuration of a database connection using tnsnames.ora and Java thin client driver, a VIP (instead of the
database hostname (IP)) must be used for the hostname to avoid the TCP timeout issue, as shown in the following
example.

KHDB =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = kr720n1-vip)(PORT = 1521))
(ADDRESS = (PROTOCOL = TCP)(HOST = kr720n2-vip)(PORT = 1521))

(CONNECT DATA =
(SERVICE_NAME = khdb.dblab.com)

)

This is because if the host is not accessible, then the user that connects this host with the hostname has to wait
for the TCP/IP timeout to determine the host connection failure. Moreover, this timeout can range from a few seconds
to a few minutes. In the worst case, therefore, the client may have to wait for a few minutes to determine if the host
is actually down. During these few minutes, the database instance may have already been down and the database
connection may be frozen, but the client does not know about the down event and will not fail over until the TCP/IP
timeout is completed.

The solution to this problem is to connect the database using the VIP in the connection configuration to
eliminate this timeout issue. The VIP is a CRS resource managed by Oracle Clusterware. When the host fails, the CRS
automatically relocates the VIP to a surviving node, which avoids waiting for the TCP/IP timeout. However, after the
relocation, since the listener on the new node listens only to the native VIP on the node, not the VIP relocated from
the other node, this relocated VIP will not have a listener to listen to any database request on this VIP. Any connection
on this VIP will receive the ORA-12541 no listener error. After receiving the error, the client will try the next address
to connect to the database. In the preceding example of KHDB connection string, when node 1 k2r720n1 fails, the
kr720n1-vip fails over to node 2 k2r720n2. Any connection using kr720n1-vip will receive the ORA-12541 no listener
error and TAF will switch the connection to the next entry on the address list to connect to node 2’s VIP: kr720n2-vip.
This switch is immediate without waiting for the TCP/IP timeout.

18

www.it-ebooks.info

http://khdb.dblab.com/
http://www.it-ebooks.info/

CHAPTER 1 * OVERVIEW OF ORACLE RAC

Application Continuity (AC) of Oracle 12¢

In pre-Oracle 12c Database, depending on the applications, application errors may occur during a database instance
outage despite the successful commit of the transaction at the moment of failure. Such errors may leave applications
in doubt, and users may receive errors or need to log in again or resubmit requests, etc. These problems are due to the
lack of a way for applications to know the outcome of a failed transaction, the inability to migrate the workload that is
affected by the planned or unplanned outage, and also the need to repair the workload.

To ensure that applications are minimally impacted in the event of node failure or instance failure, Oracle 12c
introduces a new solution called Application Continuity (AC). This new feature masks recoverable outages from
end-users and applications by replaying the database request at another Oracle RAC instance (for RAC) or another
database for the standby database. This feature is designed to preserve the commit outcome and ensure application
continuity for both unplanned and planned downtime.

High Availability Against Planned Downtime

Oracle RAC helps achieve database HA by reducing database service downtime due to the scheduled maintenance

of the database infrastructure. Scheduled maintenance work may include server hardware upgrades or maintenance,
server OS upgrade, and Oracle software upgrades. Depending on the task, these maintenance jobs may require bringing
down the database instance or OS, or the server hardware itself. With Oracle RAC, maintenance work can be done in
rolling fashion without the need to bring down the entire database service. Let’s see how to perform rolling-fashion
maintenance for different types of maintenance tasks.

Hardware maintenance of the database server may be needed during the lifetime of the server, for example
upgrading or replacing hardware components such as CPUs, memory, and network cards. Although server downtime
is required for this kind of maintenance, with Oracle RAC the database connections on the database instance of the
impacted server can be relocated to other instances on the cluster. The maintenance can be done in rolling fashion by
the following steps:

1. Relocate the database connections to the other instance;
2. Shut down the entire software stack in this order:
a) Database instance
b) ASM and Clusterware
c) Operating system
d) Server hardware
3. Perform the server hardware upgrade;
4. Restart the software stack in the reverse order
5. Repeat steps 1 to 4 for all other servers in the cluster.

Since the database connections are relocated to the other instance during hardware maintenance, the database
service outage is eliminated. This rolling-fashion system maintenance enables system upgrades without database
service downtime.

A similar rolling-upgrade method applies to OS upgrades, as well as other utility upgrades such as firmware,
BIOS, network driver, and storage utility upgrades. Follow steps 1 to 5 except for the server hardware shutdown at
step 2, and perform the OS or utility upgrade instead of the hardware upgrade at step 3.

You can also perform a rolling upgrade of Oracle Clusterware and ASM to avoid Clusterware and ASM downtime.
In Oracle RAC 12.1, you can use Oracle Universal Installer (OUI) and Oracle Clusterware to perform a rolling upgrade
to apply a patchset release of Oracle Clusterware. This allows you to shut down and patch RAC instances one or
more at a time while keeping other RAC instances available online. You can also upgrade and patch clustered Oracle
ASM instances in rolling fashion. This feature allows the clustered ASM environment to continue to function while

19

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC

one or more ASM instances run different software releases and you are doing the rolling upgrade of the Oracle ASM
environment. Many of these rolling-upgrade features were available in releases prior to RAC 12c, but they are easier to
do with the GUI in Oracle 12cR1.

In order to apply the rolling upgrade for Oracle RAC software, the Oracle RAC home must be on a local file
system on each RAC node in the cluster, not in a shared file system. There are several types of patch for an Oracle RAC
database: interim patch, bundle patch, patch set upgrades (PSU), critical patch update (CPU), and diagnostic patch.
Before you apply a RAC database patch, check the readme to determine whether or not that patch is certified for the
rolling upgrade. You can also use the Opatch utility to check if the patch is a rolling patch:

$ opatch query -all <Patch location> | grep rolling

If the patch is not a rolling patch, it will show the result “Patch is a rolling patch: false”; otherwise, it will show
“Patch is a rolling patch: true.”

You can use the OPatch utility to apply individual patches, not the patchset release to the RAC software. If the
upgrade can be performed using the rolling fashion, follow these steps to perform the rolling upgrade:

1. Shut down the instance on one RAC node

Shut down the CRS stack on this RAC node

Apply the patch to the RAC home on that RAC node
Start the CRS stack on the RAC node

Start the RAC instance on the RAC node

o o > W b

Repeat steps 1 to 4 on each of the other RAC nodes in the cluster

There is a special type of interim patch or diagnostic patch. These patches contain a single shared library, and do
not require shutting down the instance or relinking the Oracle binary. These patches are called online patches or hot
patches. To determine whether a patch is an online patch, check if there is an online directory under the patch and if
the README file has specified this patch to be online patchable. You can use the Opatch tool to apply an online patch
without shutting down the Oracle instance that you are patching. For example, Patch 10188727 is an online patch, as
shown in the patch directory:

$ cd <PATCH_TOP>/10188727
$ 1s
etc/ files/ online/ README.txt

You also can query if the patch is an online patch by going to the patch direcory and running the following
command:

$ opatch query -all online

If the patch is an online patch, you should see something like this in the result for this command: “Patch is an
online patch: true” You should not confuse this result with the query result of a rolling patch result, "Patch is a
rolling patch: true."”

You should be aware that very few patches are online patches. Usually, online patches are used when a patch
needs to be applied urgently before the database can be shut down. It is highly recommended that at the next
database downtime the all-online patches should be rolled back and replaced with offline version of the patches.
Refer to MOS note ID 761111.1 for all the best practices when using online patches.

For those patches that are not certified for the rolling upgrade, if you have a physical standby configuration for
the database, you can use the Oracle Data Guard SQL apply feature and Oracle 11g Transient Logical standby feature

20

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * OVERVIEW OF ORACLE RAC

to implement the rolling database upgrade between the primary database and standby database and thus reduce
database upgrade downtime. In this case, the database can be either a RAC or a non-RAC single-node database. Refer
to MOS note ID 949322.1 for a detailed configuration of this method.

Oracle RAC One Node to Achieve HA

Oracle RAC One Node is a single-node RAC database. It provides an alternative way to protect the database against
both unplanned and planned downtime. Unlike Oracle RAC Database with multiple database instances to provide an
active-active cluster database solution, Oracle RAC One Node database is an active-passive cluster database. At any
given time, only one database instance is running on one node of the cluster for the database. The database instance
will be failed over to another node in the cluster in case of failure of the RAC node. This database instance can also be
relocated to another node. This relocation is called online migration, as there is no database service downtime during
the relocation. This online migration eliminates the planned downtime of maintenance.

Oracle RAC One Node is based on the same Grid Infrastructure as Oracle RAC Database. Oracle Clusterware in
the Grid Infrastructure provides failover protection for Oracle RAC One Node. Since Oracle RAC One Node runs only
one database instance, you can scale up the database server only by adding more CPU and memory resources to the
server instead of scaling out by running multiple database instances. If the workloads expand beyond the capacity
of a single server, you can easily upgrade the RAC One Node database to a fully functional multi-node Oracle RAC.
Compared with Oracle RAC, Oracle RAC One Node has a significant advantage in its software license cost. Chapter 14
discusses Oracle RAC One Node technology in detail.

RAC Scalability

Oracle RAC offers an architecture that can potentially increase database capacity by scaling out the database across
multiple server nodes. In this architecture, the multi-node cluster combines the CPU and memory computing

resources of multiple RAC nodes to handle the workloads. Oracle cache fusion makes this scale-out solution possible

by coordinating shared access to the database from multiple database instances. This coordination is managed through
communication over the high-speed interconnect. One of the key components of the coordination is GCS data block
transfer between database instances. Heavy access to the same data block by multiple database instances leads to

high traffic of the data transfer over the interconnect. This can potentially cause interconnect congestion, which easily
becomes a database performance bottleneck. The following considerations may help maintain RAC database scalability:

1. Segregate workloads to different RAC nodes to reduce the demand for sharing the same
data block or data object by multiple RAC nodes. This segregation can also be done
through application affinity or instance affinity. For example, for the Oracle E-Business
application, we can assign each application module to a specific RAC instance so that all
applications that access the same set of tables are from the same instance.

2. Reduce potential block transfers between instances. One way is to use a big cache value
and NOORDER option for the sequence creation in a RAC database. This will ensure that
each instance caches a separate range of sequence numbers and the sequence numbers
are assigned out of order by the different instances. When these sequence numbers are
used as the index key values, different key values of the index are inserted depending
on the RAC instance in which the sequence number is generated. This creates instance
affinity to the index Leaf blocks, and helps reduce pinging of the index Leaf blocks
between instances.

3. Reduce the interconnect network latency by using a high bandwidth, high-speed network
such as InfiniBand or 10GB Ethernet.

21

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC

4. Constantly monitor the interconnect traffic and RAC cluster wait events. You can either
monitor these cluster wait events on the Clusterware cache coherence page of Oracle
Enterprise Manager, or check if there are any of the GCS-related wait events shown on the
Top 5 Timed Events of AWR report.

Load Balancing Among RAC Instances

Another important feature related to RAC scalability is designed to distribute the workloads among all RAC instances
for optimizing performance. This workload distribution occurs when a client connects to the RAC database for the
first time or when the client connection is failed over from a failed instance to a surviving instance, in which case the
load balancing works together with the failover feature. Oracle provides two kinds of load balancing: client-side load
balancing and server-side load balancing.

Client-side load balancing is enabled by setting LOAD_BALANCE=yes in the client tnsnames.ora file:

KHDB =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = kr720n1-vip)(PORT = 1521))
(ADDRESS = (PROTOCOL = TCP)(HOST = kr720n2-vip)(PORT = 1521))

(LOAD_BALANCE = yes)

(CONNECT DATA =
(SERVICE_NAME = khdb.dblab.com)
)

)

)

With LOAD_BALANCE enabled, Oracle Net chooses an address to connect based on load balancing
characteristics from pmon rather than on sequential order. This order ensures the even distribution of the number of
user sessions connecting to each database instance. In Oracle 11gR2, the list of addresses has been replaced with one
SCAN entry. If you define SCAN with three IP address in the corporate DNS (Domain Name Service), client-side load
balancing is moved to the DNS level among the three IPs for the SCAN. Chapter 9 gives more details about the 11gR2
SCAN configuration. Some old-version Oracle clients such as pre-11gR2 clients (11gR1, 10gR2, or older) may not be
able to get the benefits of SCAN, as these clients will not be able to handle the three IPs of SCAN; instead, they may
just connect to the first one. If the one that the client connects to fails, the client connection fails. Therefore, it may be
better to use the old way by listing three VIP addresses of the SCAN IPs on the tnames.ora files.

Unlike the selection of the RAC node for the incoming user connection by client-side load balancing, in
server-side load balancing the least-loaded RAC node is selected. Then, by using information from the Load Balancing
Advisory, the best RAC instance that is currently provided to the service is selected for the user to connect. There is no
need for any code change in the application side for server-side load balancing. However, the initialization parameter
remote_listener needs to be set to enable listener connection load balancing. In 11gR2, the remote_listener is set to
SCAN:PORT, as shown in the following example:

SOL> show parameter _listener

NAME TYPE VALUE

local listener string (DESCRIPTION=(ADDRESS LIST=(ADDRESS=(
(PROTOCOL=TCP) (HOST=172.16.9.171)
(PORT=1521))))

remote_listener string kr720n-scan:1521

The remote_listener parameter is set by defult if you use DBCA to create the RAC database.

22

www.it-ebooks.info

http://khdb.dblab.com/
http://www.it-ebooks.info/

CHAPTER 1 * OVERVIEW OF ORACLE RAC

Flex Cluster to Increase Scalability

Oracle RAC 12c introduces Oracle Flex Cluster to improve cluster scalability. Before Oracle 12c, all the nodes of an
Oracle RAC cluster were tightly coupled. This architecture is difficult to scale and manage as the number of nodes

in the cluster increases beyond a certain level. One of the issues with this architecture is the number of interconnect
links between the cluster nodes. In this architecture, each node is connected to every other node in the cluster. For an
N-node cluster, the number of interconnect links is N *(N-1)/2; for a 100-node cluster, this number reaches 4,950. The
Oracle 12c Flex Cluster reduces the number of network links between nodes by allowing loosely coupled Leaf Nodes
and requiring a tightly coupled cluster only among a smaller number of Hub Nodes. In this Flex Cluster architecture,
the Leaf Nodes connect only to the Hub Nodes that they are attached to, and there is no interconnect among the Leaf
Nodes. This architecture significantly reduces the number of connections among the cluster nodes and makes the
cluster more scalable and manageable.

Consolidating Database Services with Oracle RAC

In the traditional corporate computing model, one infrastructure is usually built for one application, with little or
no resource sharing among applications. Not only does this model result in low efficiency and poor utilization of
resources, it also makes it very difficult to reassign resources to adapt to the rapid pace of business change. Many
systems have to preallocate large amounts of system resources in their capacity planning to cover peak demand and
future growth. Today’s IT departments, under increasing pressure to provide low-cost, flexible computing services,
have to adapt to the idea that multiple applications services can be consolidated to share a pool of the computing
resources: servers, networks, and storage. Grid computing originated from the concept of the electricity utility grid,
and the recent Private Cloud is also based on this idea. These models have the following characteristics:

1. Consolidation: Many applications with different workloads are consolidated in the same
infrastructure.

2. Dynamic resource sharing: All resources in the infrastructure are shared and can be
dynamically reassigned or redistributed to applications services as needed.

3. High Availability: Applications within the shared infrastructure can be failed over or
migrated across physical resources. This provides a virtualized infrastructure service that
is independent of the physical hardware and also protects applications against unplanned
system outages and planned system maintenance.

4. Scalability: Allows adding more physical resources to scale the infrastructure.

Consolidation and resource sharing dramatically increase resource utilization, and reduce hardware and system
costs. There are cost savings both in capital expenses and operating expenses, as you not only need to purchase
less hardware and software, but you can spend less on management and ongoing support costs. Consolidation and
resource sharing also confer the benefits of high availability, flexibility, and scalability on application services.

Oracle RAC, along with Oracle Clusterware and ASM, provides the key technologies to implement this shared
resource infrastructure for database consolidation.

e Oracle Clusterware and ASM provide infrastructure which consists of a pool of servers, along
with storage and a network for database consolidation.

e Oracle Clusterware and RAC provide high availability and scalability for all databases that
share this infrastructure.

e Oracle RAC features such as Instance Caging, Database Resource Manager, and Quality of
Service enable the efficient use of shared resources by databases.

e The enhancement introduced by Oracle 12c¢ Clusterware, like the policy-based approach
for Clusterware management, allows for dynamic resource reallocation and prioritization of
various applications’ workloads consolidated in the shared cluster infrastructure.

23

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC
Figure 1-5 shows an example of such a shared resources Grid Infrastructure based on a 16-node Oracle 11gR2

RAC that consolidates more than 100 Oracle E-Business suite databases running on various versions of Oracle
Database from 10gR2 to 11gR2.

Oracle EBS Database Grid Architecture Design

. Oracle EBS
EBS1|(EBS2((EBS3|| EBSi EBS n APPs tlor
-] [I'_l - 16 Nodes
DB1 database e
DB2 database
DB3 databas DBi database DBn database Ed"’a‘::b':gg

g 6-: oz 3 g" g supports an
& 3 3 &| EBS instance

e ey
Disk Group Disk Group Disk Group Disk Group
“+DATA_1" “+DATA_2" “+FRA_1"

Oracle ASM
diskgroups

Data
volumes

Figure 1-5. The shared infrastructure for database consolidation

e Each database may run on one to three RAC nodes with the capability to expand to more nodes.
e Each database instance can be failed over or relocate to other nodes.

e Each RAC node may run multiple RAC database instances from different databases using
different versions of Oracle RAC Database binaries.

e Multiple versions (10g2-11gR2) of Oracle RAC Database are based on a single Oracle 11gR2
Grid Infrastructure.

e Itisrequired to ping CRS on each of 16 nodes for pre-11gR2 databases

MOS note ID 1439551.1 “Oracle (RAC) Database Consolidation Guidelines for Environments Using Mixed
Database Versions” discusses some principles and guidelines for how to consolidate multiple versions of Oracle
Database on the same Oracle RAC and Oracle Grid Infrastructure 11g release 2 or higher. The discussions include
considerations for including pre-11g Release 2 databases and how to set up the number of the LMS processes and

24

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * OVERVIEW OF ORACLE RAC

how to set the CPU count to manage CPU resources for those pre-11g R2 Database instances. The related whitepaper
on the Database consolidation topic is Oracle whitepaper “Best Practices for Database Consolidation in Private
Clouds,” which can be found at the following URL: www.oracle.com/technetwork/database/focus-areas/database-
cloud/database-cons-best-practices-1561461.pdf.

As one of the most important new features introduced in Oracle 12c, the pluggable database provides a better
solution to consolidate multiple database services. In Chapter 4, we explain in detail how the pluggable database
feature works in the Oracle RAC 12c environment and how to implement the multitenancy of database services by
consolidating multiple pluggable databases into a single container database running on Oracle RAC 12c.

Considerations for Deploying RAC

As we have shown in this chapter, RAC embodies a great technology solution for achieving HA and scalability of Oracle
database services. However, this solution itself has a complex hardware and software technology stack. Before an IT
organization decides to adapt Oracle RAC technology for its database architecture, it should be aware of the advantages
and potential disadvantages of the Oracle RAC technology, and its implications for the organization’s business

goals. This will help to justify the adoption of Oracle RAC for the business. The next section highlights some related
considerations that will help you decide whether or not Oracle RAC should be used as the database architecture.

Cost of Ownership

One of the possible reasons that IT departments are looking at Oracle RAC is to reduce the cost of ownership of the
database infrastructure. This cost saving is relative, depending on what you are comparing. The cost of Oracle RAC
implementation includes three parts: hardware infrastructure cost, Oracle software cost, and management cost.

The hardware stack consists of multiple servers, redundant networks, and shared storage. The software cost mainly
includes Oracle RAC license and the Oracle Database license. For Oracle Database Enterprise Edtion, the Oracle RAC
license is separate from Oracle Database license, while for Oracle Database standard edition, the Oracle Database
license already includes the Oracle RAC license which you don’t have to pay for separately.

One of the limitations of Oracle Standard Edition is that the total number of CPU sockets of all the servers in the
cluster can not go beyond 4. A CPU socket is a connection that allows a computer processor to be connected to a
motherboard. A CPU socket can have multilple CPU cores. For example, a Dell R820 server has four CPU sockets while
a Dell R720 server has two sockets. Since each socket can have 8 cores, an R820 server can have up to 4 * 8 = 32
CPU cores, and a Dell R720 server can have up to 16 CPU cores. Using Oracle Standard Edition with a maximum
capacity of 4 CPU sockets, you can make a two-node Oracle RAC cluster with Dell R720 servers, but only a one-node
cluster with a Dell R820 server. For Oracle Enterprise Edition, the RAC license can be based on the total number
of processors. This is based on the total cores of the servers in the cluster. For example, for a two-node Oracle RAC
configuration using Dell R720s with 8 core CPU sockets, the total number of the CPU cores can be 2 *2*8 = 32.

Management staff cost is related to the cost of training and attracting individuals with the skills needed (system
admins, network admins, and DBAs) to manage it. The hardware and software costs include the initial purchase cost
as well as the ongoing support cost. Although this cost is higher than a simple database solution like a single-node MS
SQL server, the RAC solution is cheaper than typical complex mission-critical databases running on big SMP servers,
as Oracle RAC is mainly implemented on Linux and industry-standard low-cost commodity hardware. In the last
decade, these industry-standard servers running Linux have become much cheaper, and offer a powerful and reliable
solution widely accepted for enterprise systems.

Another cost-saving factor is that Oracle RAC can be implemented as a shared resource pool to consolidate many
databases. This can significantly reduce the costs of hardware, software, and management by reducing the number of
systems. In the Oracle E-Business database consolidation example mentioned in the last section, 100 databases were
consolidated onto a 16-node RAC. The number of database servers was reduced from 100 or more to 16. The reduction led
to huge savings in hardware, software, and management. As already mentioned, long-term operating costs are also cut by
reducing the need for support, maintenance, and even powering and cooling 100 systems in a data center for the entire life
cycle of the environment. For full details of this example, refer to my technical presentation at Oracle OpenWorld:
http://kyuoracleblog.files.wordpress.com/2012/09/ebs_dbs_on_11gr2_grid_oow2011_session8945.pdf.

25

www.it-ebooks.info

http://www.oracle.com/technetwork/database/focus-areas/database-cloud/database-cons-best-practices-1561461.pdf
http://www.oracle.com/technetwork/database/focus-areas/database-cloud/database-cons-best-practices-1561461.pdf
http://kyuoracleblog.files.wordpress.com/2012/09/ebs_dbs_on_11gr2_grid_oow2011_session8945.pdf
http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC

High Availability Considerations

Oracle RAC provides HA of the database service by reducing unplanned and planned downtime caused by server
failure. But RAC itself doesn’t protect the database against other failures, such as storage failure, data corruption,
network failure, human operation error, or even data center failure. To provide complete protection against these
failures, additional measures need to be taken. Oracle MAA (Maximal Availability Architecture) lists the guidelines
and related Oracle technologies needed to protect databases against those failures.

During the deployment of RAC, it is critical to follow HA practices to ensure the stability of the RAC. The most
important hardware components that Oracle RAC relies on are the private network and shared storage. The private
network should be based on a redundant network with two dedicated switches. Chapter 9 discusses the RAC network
in detail. The shared storage access should be based on multiple I/O paths, and the storage disk drives should be set
up with a RAID configuration and Oracle ASM disk mirroring to ensure redundancy. Chapter 5 discusses storage best
practices in detail.

In theory, Oracle RAC protects the database service against failure of up to N-1 servers (where N is the total
number of servers). In reality, if all of the N-1 servers fail, the workloads of the entire clusterware will be on the
only surviving node, and the performance will definitely suffer unless each server leaves N-1/N headroom. For
example, for a four-node RAC, leaving 3/4 (75%) headroom would not be realistic. A realistic approach is to
ensure that each server in the cluster can handle the failed-over workload in case of single server failure. This
requires each server to leave only 1/N headroom. And the bigger N is, the less headroom is needed. The worst
case is a two-node RAC, where each server needs to reserve 1/2 (50%) headroom. For a four-node RAC,
only 1/4 = 25% headroom is needed.

Note CPU headroom is the CPU resource that we have to leave unused in case of server failure. The less headroom,
the better resource utilization on each node.

Scalability Considerations

Oracle RAC provides database scalability. With the addition of each extra RAC node, the cluster is expected to
increase database performance capability: handling larger workloads or more concurrent users, performing more TPS
(transactions per second) for OLTP, or reducing the average transaction/query response time. However, many RAC
databases may not show linear scalability when adding more RAC nodes. This is because there are many other factors
that are related to database scalability:

1. Poor database design and poorly tuned SQL queries can lead to very costly query plans
that may kill database throughput and significantly increase query response time. Poorly
tuned queries will run just as badly (or even worse) in RAC compared to a single-node
database.

2. There may be quite costly performance overhead caused by Oracle cache fusion, and
excessive wait time on data blocks transferring on interconnects between RAC nodes
during query executions and database transactions. These wait events are called cluster
wait events. Cache fusion overhead and cluster wait events may increase when multiple
RAC instances access the same data blocks more frequently. A higher number of RAC
nodes also contributes to cluster waits and slows down the interconnect. The number
of RAC nodes is limited by the bandwidth of the interconnect network, which is less of
an issue with the introduction of high-speed networks such as InfiniBand and 10-40GB
Ethernet.

26

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 * OVERVIEW OF ORACLE RAC

3. Insome database environments with I/O-intensive workloads, most performance
bottlenecks are on storage I/O with lower CPU utilization. Such environments will not scale
well just by adding more RAC nodes. Therefore, it is important to understand the workload
characteristics and potential performance bottlenecks before we opt for the scalable
solution. Storage performance capacity is measured in IOPS (I/O operations per second)
for OLTP workloads and throughput MB/second for DSS workloads. Since the speed of hard
disks is limited by physics (drive seek time and latency), they tend to impose an upper limit
on IOPS and throughput. One way to scale storage performance is to add more disk drives
and stripe the data files with either RAID or Oracle ASM striping. Another option is to move
frequently accessed data (hot data) to solid disk drives (SSDs). SSDs provide much higher
IOPS, especially for the random small I/O operations which dominate OLTP workloads, as
SSDs have no moving parts and hence no mechanical delays. Using SSDs is a very viable
option to scale storage IOPS performance for OLTP workloads. For DSS workloads, one
option is based on the building block concept. Each building block is composed of a RAC
node plus additional storage and network based on the balance between CPU processing
power and storage throughput for a DSS/Data warehouse-type workload. Scalability is
based on the building block instead of just a server.

RAC or Not

When IT organizations need to decide whether to deploy an Oracle RAC as their database architecture, IT architects
and DBAs need to make decisions based on many factors.

1. The High availability SLA: How much database downtime is acceptable for both
unplanned and planned downtime? Without RAC, planned downtime for hardware
and software maintenance may vary from a few minutes to as much as a few hours. And
the unplanned time for hardware and software problems can also vary from minutes
to hours. If a database server is completely lost, it will take a longer time to rebuild it,
although some downtimes, like the complete loss of the server, may occur only rarely,
Are these potential downtimes acceptable to the business according to the SLA? If not,
can downtime prevention justify the cost of the RAC deployment? And furthermore, a
loss of the entire database system including the storage may take hours or days to recover
from the backup. Does this justify a Disaster Recovery (DR) solution which consists of a
completely duplicated system in another data center? Some mission-critical databases
may be equipped with the combination of RAC and Data Guard DR solution to protect
the database from server failure as well as storage and site failure. However, the cost and
technical complexity need to be justified by business needs.

2. Scalability Requirement: What kind of workloads are there and where is the performance
bottleneck: CPU intensive and/or storage I/0 intensive? If there is no need to scale out
CPU/memory resources or if we can scale up by adding additional CPUs or memory,
Oracle RAC One Node (instead of multiple RAC RAC) may be a good way of providing HA
without the need to pay for an RAC license. RAC One Node also has the flexibility to be
easily upgraded to a full RAC solution any time there is a need to scale out to multi-node
RAC in the future.

3. Database Consolidation Requirements: If the organization has a business requirement
to consolidate many database services together, a multi-node RAC can offer significant
advantages in terms of cost of ownership wjile providing HA and scalability to all the
databases.

27

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © OVERVIEW OF ORACLE RAC

4. Ifthe organization decides to deploy the RAC solution, it should fulfil the hardware
requirements and follow configuration and management best practices to ensure that the
RAC provides all the potential advantages.

5. Many companies have carried out successful migration of their mission-critical databases
from big SMP Unix machines to multi-node Oracle RAC clusters based on lower-cost
industry-standard commodity X86-64 servers running Linux. In the last decade, these
servers have advanced significantly in terms of reliability as well as processing power.
Practical experience has shown that the new architecture can provide a highly available
and scalable infrastructure for enterprise-level applications.

Summary

In this chaper, you received an overview of the architecture and components of Oracle RAC. I explained how Oracle
RAC provides high availability and scalability database solutions. I also demonstrated how to use Oracle RAC to build
a Grid computing infrasturecture to consolidate many database services. In conclusion, I reviewed what factors IT
departments should consider to justify an Oracle RAC deployment.

In this introductory chapter, it is worthwhile listing some invaluable MOS notes that introduce some very useful
tools and utilties for Oracle RAC. The tools and best practices mentioned in these MOS notes can be very beneficial
for the study of Oracle RAC technology.

RACcheck—A RAC Configuration Audit Tool (MOS doc ID 1268927.1) is about a RACcheck tool that can be
used to audit various important configuration settings for Oracle RAC, Clusterware, ASM, and the Grid Infrastructure
environment.

RAC and Oracle Clusterware Best Practices and Starter Kit (Platform Independent) (MOS doc ID 810394.1).
This document provides generic and platform-independent best practices for implementing, upgrading, and
maintaining an Oracle RAC system. It also lists links to platform-specific documents.

ODAchk—- Oracle Database ApplianceODA Configuration Audit Tool (MOS doc ID 1485630.1). This
document introduces the ODAchk tool, which automates the assessment of ODA systems for known configuration
problems and best practices.

TFA Collector—The Preferred Tool for Automatic or ADHOC Diagnostic Gathering Across All Cluster Nodes
(MOS doc ID 1513912.1). This document introduces a new tool called TFA Collector (aka TFA) a diagnostic collection
utility for Oracle Clusterware/Grid Infrastructure and RAC systems.

28

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Clusterware Stack Management
and Troubleshooting

by Syed Jaffar Hussain, Kai Yu

In Chapter 1, we mentioned that the Oracle RAC cluster database environment requires cluster manager software
(“Clusterware”) that is tightly integrated with the operating system (OS) to provide the cluster management functions
that enable the Oracle database in the cluster environment.

Oracle Clusterware was originally introduced in Oracle 9i on Linux with the original name Oracle Clusterware
Management Service. Cluster Ready Service (CRS) as a generic cluster manager was introduced in Oracle 10.1 for all
platforms and was renamed to today’s name, Oracle Clusterware, in Oracle 10.2. Since Oracle 10g, Oracle Clusterware
has been the required component for Oracle RAC. On Linux and Windows systems, Oracle Clusterware is the only
clusterware we need to run Oracle RAC, while on Unix, Oracle Clusterware can be combined with third-party
clusterware such as Sun Cluster and Veritas Cluster Manager.

Oracle Clusterware combines a group of servers into a cluster environment by enabling communication between
the servers so that they work together as a single logical server. Oracle Clusterware serves as the foundation of the
Oracle RAC database by managing its resources. These resources include Oracle ASM instances, database instances,
Oracle databases, virtual IPs (VIPs), the Single Client Access Name (SCAN), SCAN listeners, Oracle Notification
Service (ONS), and the Oracle Net listener. Oracle Clusterware is responsible for startup and failover for the resources.
Because Oracle Clusterware plays such a key role in the high availability and scalability of the RAC database,
the system administrator and the database administrator should pay careful attention to its configuration and
management.

This chapter describes the architecture and complex technical stack of Oracle Clusterware and explains how
those components work. The chapter also describes configuration best practices and explains how to manage and
troubleshoot the clusterware stack. The chapter assumes the latest version of Oracle Clusterware 12cR1.

The following topics will be covered in this chapter:

e Oracle Clusterware 12cR1 and its components
e Clusterware startup sequence

e Clusterware management

e Troubleshooting cluster stack startup failure

¢ CRSlogs and directory structure

e RACcheck, diagcollection.sh, and oratop

e Debugging and tracing CRS components

e RAC database hang analysis

29

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

Clusterware 12cR1 and Its Components

Before Oracle 11gR2, Oracle Clusterware was a distinct product installed in a home directory separate from Oracle
ASM and Oracle RAC database. Like Oracle 11gR2, in a standard 12cR1 cluster, Oracle Clusterware and Oracle ASM
are combined into a product called Grid Infrastructure and installed together as parts of the Grid Infrastructure to a
single home directory. In Unix or Linux environments, some part of the Grid Infrastructure installation is owned by
the root user and the rest is owned by special user grid other than the owner of the Oracle database software oracle.
The grid user also owns the Oracle ASM instance.

Only one version of Oracle Clusterware can be active at a time in the cluster, no matter how many different
versions of Oracle Clusterware are installed on the cluster. The clusterware version has to be the same as the Oracle
Database version or higher. Oracle 12cR1 Clusterware supports all the RAC Database versions ranging from 10gR1 to
12cR1. ASM is always the same version as Oracle Clusterware and can support Oracle Database versions ranging from
10gR1 to 12cR1.

Oracle 12cR1 introduced Oracle Flex Cluster and Flex ASM. The architecture of Oracle Clusterware and Oracle
ASM is different from the standard 12cR1 cluster. We will discuss Oracle Flex Cluster and Flex ASM in Chapter 5. This
chapter will focus on the standard 12cR1 cluster.

Storage Components of Oracle Clusterware

Oracle Clusterware consists of a storage structure and a set of processes running on each cluster node. The storage
structure consists of two pieces of shared storage: the Oracle Cluster Registry (OCR) and voting disk (VD) plus two local
files, the Oracle Local Registry (OLR) and the Grid Plug and Play (GPnP) profile.

OCR is used to store the cluster configuration details. It stores the information about the resources that Oracle
Clusterware controls. The resources include the Oracle RAC database and instances, listeners, and virtual IPs (VIPs)
such as SCAN VIPs and local VIPs.

The voting disk (VD) stores the cluster membership information. Oracle Clusterware uses the VD to determine
which nodes are members of a cluster. Oracle Cluster Synchronization Service daemon (0CSSD) on each cluster node
updates the VD with the current status of the node every second. The VD is used to determine which RAC nodes are
still in the cluster should the interconnect heartbeat between the RAC nodes fail.

Both OCR and VD have to be stored in a shared storage that is accessible to all the servers in the cluster. They can
be stored in raw devices for 10g Clusterware or in block devices in 11gR1 Clusterware. With 11g R2 and 12cR1 they
should be stored in an ASM disk group or a cluster file system for a freshly installed configuration. They are allowed
to be kept in raw devices and block devices if the Clusterware was just being upgraded from 10g or 11gR1 to 11gR2;
however, it is recommended that they should be migrated to an ASM disk group or a cluster file system soon after
the upgrade. If you want to upgrade your Clusterware and Database stored in raw devices or block devices to Oracle
Clusterware 12c¢ and Oracle Database 12¢, you must move the database and OCR/VDs to ASM first before you do the
upgrade, as Oracle 12c no longer supports the use of raw device or block storage. To avoid single-point-of failure, Oracle
recommends that you should have multiple OCRs, and you can have up to five OCRs. Also, you should have at least three
VDs, always keeping an odd number of the VDs. On Linux, the /etc/oracle/ocr. loc file records the OCR location:

$ cat /etc/oracle/ocr.loc
ocrconfig loc=+VOCR
local_only=FALSE
In addition, you can use the following command to find the VD location:
$./crsctl query css votedisk
The Oracle ASM disk group is the recommended primary storage option for OCR and VD. Chapter 5 includes a

detailed discussion of storing OCR and VDs in an ASM disk group.

30

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

Two files of Oracle Clusterware (OLR) and GPnP profile are stored in the grid home of the local file system of
each RAC node. OLR is the OCR’s local version, and it stores the metadata for the local node and is managed by the
Oracle High Availability Services daemon (OHASD). OLR stores less information than OCR, but OLR can provide this
metadata directly from the local storage without the need to access the OCR stored in an ASM disk group. One OLR is
configured for each node, and the default location is in $GIHOME/cdata/<hostname>.olr. The location is also recorded
in /etc/oracle/olr.loc, or you can check it through the ocrcheck command:

$ cat /etc/oracle/olr.loc
olrconfig loc=/u01/app/12.1.0/grid/cdata/knewracni.olr
crs_home=/u01/app/12.1.0/grid

$ ocrcheck -local -config
Oracle Local Registry configuration is
Device/File Name : /u01/app/12.1.0/grid/cdata/knewracni.olr

The GPnP profile records a lot of important information about the cluster, such as the network profile and the VD.
The information stored in the GPnP profile is used when adding a node to a cluster. Figure 2-1 shows an example of the
GPnP profile. This file default is stored in $GRID_HOME/gpnp/<hostname>/profiles/peer/profile.xml.

<?xml version="1.0" encoding="UTF-8" ?>
- <gpnp:GPnP-Profile Version="1.0" xmins="http:/ /www.grid-pnp.org/2005/11/gpnp-profile" xmins:gpnp="http: / / www.grid-
pnp.org/2005/11/gpnp-profile” xmins:orcl="http:/ /www.orade.com/gpnp/2005/11/gpnp-profile”
xmins:xsi="http:/ /www.w3.0rg /2001 /XMLSchema-instance" xsi:schemalocation="http:/ /www.grid-pnp.org/2005/11/gpnp-profile
gpnp-profile.xsd" ProfileSequence="7" ClusterUId="0a73b0dbe0fcff2bffsh7aed352821b4" ClusterName="knewrac" PAlocation="">
<gpnp:Network-Profile>
- <gpnp:HostNetwork id="gen" HostName="%">
<gpnp:Network id="netl" IP="172.16.0.0" Adapter="eth0" Use="public" />
<gpnp:Network id="net2" 1P="192.168.9.0" Adapter="eth1" Use="asm,duster_interconnect" />
</gpnp:HostNetwork >
</gpnp:Network-Profile>
<orcl:C55-Profile id="css" DiscoveryString="+asm" LeaseDuration="400" />
<orcl: ASM-Profile id="asm" DiscoveryString="" SPFile="+DATA1 /knewrac/ASMPARAMETERFILE /registry.253.807834851"
Mode="remote" />
<orcl:BC-BigCluster id="bc" DiscoveryVIP="172.16.150.9" />
- <ds:Signature xmins:ds="http://www.w3.org/2000/09/xmldsig#">
- «ds:Signedinfo>
<ds:CanonicalizationMethod Algorithm="http://www.w3.0rg/2001/10/xml-exc-c14n#" />
«<ds:SignatureMethod Algorithm="http://www.w3.org/2000/09 /xmldsig#rsa-shal" />
- <ds:Reference URI="">
- <ds:Transforms>
<ds:Transform Algorithm="http:/ /www.w3.0rg/2000/09/xmldsig#enveloped-signature" />
<ds:Transform Algorithm="http:/ /www.w3.0rg/2001/10/xml-exc-cl4n#">
<InclusiveNamespaces xmins="http:/ /www.w3.0rg/2001/10/xml-exc-c14n#" PrefixList="gpnp ord xsi" />
</ds:Transform>
</ds:Transforms >
<ds:DigestMethod Algorithm="http:/ /www.w3.0rg/2000/09/xmldsig#shal" />
<ds:DigestValue>GtFWI6t3M9kHIYEr4G6SiuXMAv4=</ds:DigestValue >
</ds:Reference>
</ds:SignedInfo>

Figure 2-1. GPnP profile

Clusterware Software Stack

Beginning with Oracle 11gR2, Oracle redesigned Oracle Clusterware into two software stacks: the High Availability
Service stack and CRS stack. Each of these stacks consists of several background processes. The processes of these two
stacks facilitate the Clusterware. Figure 2-2 shows the processes of the two stacks of Oracle 12cR1 Clusterware.

31

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

-~ B

Oracle Clusterware 12¢ Technology Stack

Cluster Ready Service High Availability Service
Technology Stack Technology Stack

C_6s D (_appagent > (__ologgerd D
cssdagent C_am > C e) (@)

CTSS C mDNS) (___oraagent)
(_scriptagent > (___osymond)
S /

Figure 2-2. Oracle Clusterware 12cR1 stack

High Availability Cluster Service Stack

The High Availability Cluster Service stack is the lower stack of the Oracle Clusterware. It is based on the Oracle High
Availability Service (OHAS) daemon. The OAHS is responsible for starting all other clusterware processes. In the next
section, we will discuss the details of the clusterware sequences.

OHAS uses and maintains the information in OLR. The High Availability Cluster Service stack consists of the
following daemons and services:

GPnP daemon (GPnPD): This daemon accesses and maintains the GPnP profile and ensures that all the nodes
have the current profile. When OCR is stored in an ASM diskgroup, during the initial startup of the clusterware, OCR is
not available as the ASM is not available; the GPnP profile contains enough information to start the Clusterware.

Oracle Grid Naming Service (GNS): This process provides the name resolutions with the cluster. With 12cR1, GNS
can be used for multiple clusters in contrast to the single-cluster version.

Grid Interprocess Communication (GIPC): This daemon supports Grid Infrastructure communication by
enabling Redundant Interconnect Usage.

Multicast Domain Name Service (mDNS): This daemon works with GNS to perform name resolution.

This stack also includes the System Monitor Service daemon (osysmond) and Cluster Logger Service daemon
(ologgerd).

The CRS Stack

The CRS stack is an upper-level stack of the Oracle Clusterware which requires the support of the services of the lower
High Availability Cluster Service stack. The CRS stack includes the following daemons and services:

CRS: This service is primarily responsible for managing high availability operations. The CRS daemon (CRSD)
manages the cluster resource’s start, stop monitor, and failover operations. CRS maintains the configuration
information in OCR. If the cluster has an Oracle RAC database, the resources managed by CRS include the Oracle
database and its instances, listener, ASM instance, VIPs, and so on. This service runs as the crs.bin process on
Linux/Unix and OracleOHService on Windows.

CSS: This service manages and monitors the node membership in the cluster and updates the node status information
in VD. This service runs as the ocssd. bin process on Linux/Unix and OracleOHService (ocssd.exe) on Windows.

CSS Agent: This process monitors, starts, and stops the CSS. This service runs as the cssdagent process on
Linux/Unix and cssdagent . exe on Windows.

CSS Monitor: This process works with the cssdagent process to provide the I/0 fencing to ensure data integrity
by rebooting the RAC node in case there is an issue with the ocssd.bin process, a CPU starvation, or an OS locked up.
This service runs as cssdmonitor on Linux/Unix or cssdmonitor.exe on Windows. Both cssdagent and cssdmonitor
are the new features started in 11gR2 that replace the previous Oracle Process Monitor daemon (oprocd) in 11gR1.

32

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

Cluster Time Synchronization Service (CTSS): A new daemon process introduced with 11gR2, which handles the
time synchronization among all the nodes in the cluster. You can use the OS’s Network Time Protocol (NTP) service to
synchronize the time. Or, if you disable NTP service, CTSS will provide the time synchronization service. This service
runs as the octssd.bin process on Linux/Unix or octssd. exe on Windows.

Event Management (EVM): This background process publishes events to all the members of the cluster. On
Linux/Unix, the process name is evmd.bin, and on Windows, it is evmd. exe.

ONS: This is the publish and subscribe service that communicates Fast Application Notification (FAN) events.
This service is the ons process on Linux/Unix and ons.exe on Windows.

Oracle ASM: Provides the volume manager and shared storage management for Oracle Clusterware and Oracle
Database.

Clusterware agent processes: Oracle Agent (oraagent) and Oracle Root Agent (orarootagent). The oraagent
agent is responsible for managing all Oracle-owned ohasd resources. The orarootagent is the agent responsible for
managing all root-owned ohasd resources.

Clusterware Startup Sequence

Oracle Clusterware is started up automatically when the RAC node starts. This startup process runs through several
levels. Figure 2-3 shows the multiple-level startup sequences to start the entire Grid Infrastructure stack plus the
resources that Clusterware manages.

cssdagent

!
e

Level 0 : Level 1 : Level 2 : Level 3 : Level 4
| | | | - Network
| O | | sources
: I—) ASM : : > SCANIP
| | | |
| | | CRSD | dil
| | | orarootagent /|
| ; | |
| G | | | L—>| ansup
| | | |
ASM
_ | | | | e
=
= | | | | || Diskgroup
| | |
| | | 5
| | | | g
I OHASD ' | 5| SCAN
: oraclerootagent | : : ”| Listener
: : : oraagent)
| | | —>{_sonies |
| |
| |
| |
| |
|

I
Process on the High Availability Stack

Process on the Cluster Ready Service Stack

Resource managed by Cluster Ready Service

i

Figure 2-3. Startup sequence of 12cR1 Clusterware processes

33

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

Level 0: The OS automatically starts Clusterware through the OS’s init process. The init process spawns only
one init.ohasd, which in turn starts the OHASD process. This is configured in the /etc/inittab file:

$cat /etc/inittab|grep init.d | grep -v grep

h1:35:respawn:/etc/init.d/init.ohasd run >/dev/null 2>&1 </dev/null

Oracle Linux 6.x and Red Hat Linux 6.x have deprecated inittab. init.ohasd is configured in startup
in /etc/init/oracle-ohasd.cont:

$ cat /etc/init/oracle-ohasd.conf

start on runlevel [35]

stop on runlevel [!35]

respawn

exec /etc/init.d/init.ohasd run >/dev/null 2>&1 </dev/null

This starts up "init.ohasd run", which in turn starts up the ohasd.bin background process:
$ ps -ef | grep ohasd | grep -v grep

root 4056 1 1 Feb19 ? 01:54:34 /u01/app/12.1.0/grid/bin/ohasd.bin reboot
root 22715 1 0 Feb19 ? 00:00:00 /bin/sh /etc/init.d/init.ohasd run

Once OHASD is started on Level 0, OHASD is responsible for starting the rest of the Clusterware and the resources
that Clusterware manages directly or indirectly through Levels 1-4. The following discussion shows the four levels of
cluster startup sequence shown in the preceding Figure 2-3.

Level 1: OHASD directly spawns four agent processes:
e cssdmonitor: CSS Monitor
e OHASD orarootagent: High Availability Service stack Oracle root agent
e OHASD oraagent: High Availability Service stack Oracle agent
e cssdagent: CSS Agent

Level 2: On this level, OHASD oraagent spawns five processes:
e mDNSD: mDNS daemon process
e GIPCD: Grid Interprocess Communication
e GPnPD: GPnP profile daemon
e EVMD: Event Monitor daemon
e ASM: Resource for monitoring ASM instances
Then, OHASD oraclerootagent spawns the following processes:
e (CRSD: CRS daemon
e CTSSD: CTSS daemon
e Diskmon: Disk Monitor daemon (Exadata Storage Server storage)
e ACFS: (ASM Cluster File System) Drivers

Next, the cssdagent starts the CSSD (CSS daemon) process.

34

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

Level 3: The CRSD spawns two CRSD agents: CRSD orarootagent and CRSD oracleagent.
Level 4: On this level, the CRSD orarootagent is responsible for starting the following resources:

e Network resource: for the public network

e SCAN VIPs

e Node VIPs: VIPs for each node

e ACFS Registry

e GNSVIP: VIP for GNS if you use the GNS option
Then, the CRSD orarootagent is responsible for starting the rest of the resources as follows:

e ASM Resource: ASM Instance(s) resource

e Diskgroup: Used for managing/monitoring ASM diskgroups.

e DB Resource: Used for monitoring and managing the DB and instances

e SCAN listener: Listener for SCAN listening on SCAN VIP

e SCAN VIP: Single Client Access Name VIP

e Listener: Node listener listening on the Node VIP

e Services: Database services

e ONS

e eONS: Enhanced ONS

e GSD: For 9i backward compatibility

e GNS (optional): performs name resolution

ASM and Clusterware: Which One is Started First?

If you have used Oracle RAC 10g and 11gR1, you might remember that the Oracle Clusterware stack has to be up
before the ASM instance starts on the node. Because 11gR2, OCR, and VD also can be stored in ASM, the million-
dollar question in everyone’s mind is, “Which one is started first?” This section will answer that interesting question.
The Clusterware startup sequence that we just discussed gives the solution: ASM is a part of the CRS of the
Clusterware and it is started at Level 3 after the high availability stack is started and before CRSD is started. Then,
the question is, “How does the Clusterware get the stored cluster configuration and the clusterware membership
information, which are normally stored in OCR and VD, respectively, without starting an ASM instance?” The answer
is that during the startup of the high availability stack, the Oracle Clusterware gets the clusterware configuration from
OLR and the GPnP profile instead of from OCR. Because these two components are stored in the $§GRID_HOME in the
local disk, the ASM instance and ASM diskgroup are not needed for the startup of the high availability stack. Oracle
Clusterware also doesn’t rely on an ASM instance to access the VD. The location of the VD file is in the ASM disk
header. We can see the location information with the following command:

$ kfed read /dev/dm-8 | grep -E 'vfstart|vfend'
kfdhdb.vfstart: 352 ; Ox0ec: 0x00000160
kfdhdb.vfend: 384 ; 0x0f0: 0x00000180

The kfdhdb.vfstart is the begin AU offset of the VD file, and the kfdhdb.vfend indicates the end AU offset of the
VD file. Oracle Clusterware uses the values of kfdhdb.vfstart and kfdhdb.vfend to locate the VD file.

35

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

In this example, /dev/dm-8 is the disk for the ASM disk group VOCR which stores the VD file, as shown with
running the following command:

$ crsctl query css votedisk
STATE File Universal Id File Name Disk group
1. ONLINE 7141f13f99734febbf94c73148c35a85 (/dev/dm-8) [VOCR]
Located 1 VD(s).

Clusterware Management

The Grid Infrastructure Universal Installer takes care of the installation and configuration of the Oracle Clusterware
and the ASM instance. After this installation, the Clusterware and ASM get restarted automatically every time

when the server starts. Most times, this entire stack works well without need for a lot of manual intervention.
However, as the most important infrastructure for Oracle RAC, this stack does need some proper management and
ongoing maintenance work. Oracle Clusterware provides several tools, utilities, and log files for a Clusterware admin
to perform management, troubleshooting, and diagnostic work. This section will discuss tools and Clusterware
management, and the next few sections will discuss Clusterware troubleshooting and diagnosis.

Clusterware Management Tools and Utilities

Oracle provides a set of tools and utilities that can be used for Oracle Grid Infrastructure management. The most
commonly used tool is the Clusterware control utility crsctl, which is a command-line tool for managing Oracle
Clusterware. Oracle Clusterware 11gR2 has added to crsctl the cluster-aware commands that allow you to perform
CRS check, start, and stop operations of the clusterware from any node. Use crsctl -help to print all the command
Help with crsctl.

$ crsctl -help

Usage: crsctl add - add a resource, type, or other entity
crsctl backup - back up voting disk for CSS

crsctl check - check a service, resource, or other entity
crsctlconfig - output autostart configuration

crsctl debug - obtain or modify debug state

crsctl delete - delete a resource, type, or other entity
crsctl disable - disable autostart

crsctl discover - discover DHCP server

crsctl enable - enable autostart

crsctleval - evaluate operations on resource or other entity without performing them
crsctl get - get an entity value

crsctlgetperm - get entity permissions

crsctllsmodules - list debug modules

crsctl modify - modify a resource, type, or other entity
crsctl query - query service state

crsctl pin - pin the nodes in the nodelist

crsctl relocate - relocate a resource, server, or other entity
crsctl replace - replace the location of voting files

crsctl release - release a DHCP lease

crsctl request - request a DHCP lease or an action entrypoint
crsctlsetperm - set entity permissions

crsctl set - set an entity value

36

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

crsctl start - start a resource, server, or other entity
crsctl status - get status of a resource or other entity
crsctl stop - stop a resource, server, or other entity
crsctl unpin - unpin the nodes in the nodelist

crsctl unset - unset a entity value, restoring its default

You can get the detailed syntax of a specific command, such as crsctl status -help. Starting with 11gR2,
crsctl commands are used to replace a few deprecated crs_* commands, such as crs_start, crs stat, and
crs_stop. In the following sections, we discuss the management tasks in correlation with the corresponding crsctl
commands.

Another set of command-line tools are based on the srvct] utility. These commands are used to manage the
Oracle resources managed by the Clusterware.

A srvctl command consists of four parts:

$ srvctl <command> <object> [<options>]

The command part specifies the operation of this command. The object part specifies the resource where this
operation will be executed. You can get Help with the detailed syntax of the srvctl by running the srvctl Help
command. For detailed Help on each command and object and its options for use, run the following commands:

$ srvctl <command> -h or
$ srvctl <command> <object> -h

There are also other utilities:
e oifcfgisacommand-line tool that can be used to configure network interfaces.
e ocrconfigisacommand-line tool that can be used to administer the OCR and OLR.
e ocrcheckis the OCR Check tool to check the state of the OCR.

e ocrdump is the Oracle Clusterware Registry Dump tool that can be used to dump the contents
of OCR.

e Oracle Enterprise Manager Database Control 11g and Enterprise Manager Grid control 11g
and 12c can be used to manage the Oracle Clusterware environment.

Start Up and Stop Clusterware

As we discussed in the previous section, through the OS init process, Oracle Clusterware is automatically started up
when the OS starts. The clusterware can also be manually started and stopped by using the crsct] utility.

The crsctl utility provides the commands to start up the Oracle Clusterware manually:

Start the Clusterware stack on all servers in the cluster or on one or more named server in the cluster:
$ crsctl start cluster [-all | - n serveri[,..]]

For example:

$crsctl start cluster -all
$ crsctl start cluster -n k2r720n1

37

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

Start the Oracle High Availability Services daemon (OHASD) and the Clusterware service stack together on the
local server only:

$crsctl start crs

Both of these two crsctl startup commands require the root privilege on Linux/Unix to run. The 'crsctl start
crs' command will fail if OHASD is already started.

The crsctl utility also provides similar commands to stop the Oracle Clusterware manually. It also requires root
privilege on Linux/Unix to stop the clusterware manually.

The following command stops the clusterware stack on the local node, or all nodes, or specified local or
remote nodes. Without the [-] option, this command stops the resources gracefully, and with the [-f] option, the
command forces the Oracle Clusterware stack to stop, along with the resources that Oracle Clusteware manages.

$ crsctl stop cluster [-all | -n server name [...]] [-f]

The following command stops the Oracle High Availability service on the local server. Use the [-f] option to
force any resources to stop, as well as to stop the Oracle High Availability service:

$ crsctl stop crs [-f]

Managing Oracle Clusterware
You can use the following command to check the cluster status:
$ crsctl check cluster {-all}
CRS-4537: Cluster Ready Services is online
CRS-4529: Cluster Synchronization Services is online
CRS-4533: Event Manager is online

Check the CRS status with the following command:
$ crsctl check crs
CRS-4638: Oracle High Availability Services is online
CRS-4537: Cluster Ready Services is online
CRS-4529: Cluster Synchronization Services is online
CRS-4533: Event Manager is online

Check the OHASD status:
$GRID_HOME/bin/crsctl check has
CRS-4638: Oracle High Availability Services is online

Check the current status of all the resources using the following command. It replaces the crs_stat -t
command on 11gR1 and earlier.

38

www.it-ebooks.info

http://www.it-ebooks.info/

[grid@knewracn1l ~]$ crsctl status

CHAPTER 2

resource -t

CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

ora.ASMNET1LSNR_ASM.1snr
ONLINE ONLINE
ONLINE ONLINE
ONLINE ONLINE
ora.DATAl.dg
ONLINE ONLINE
ONLINE ONLINE
ONLINE ONLINE
ora.LISTENER.1snr
ONLINE ONLINE
ONLINE ONLINE
ONLINE ONLINE
ora.LISTENER LEAF.lsnr
OFFLINE OFFLINE
OFFLINE OFFLINE
OFFLINE OFFLINE
OFFLINE OFFLINE
ora.net1.network
ONLINE ONLINE
ONLINE ONLINE
ONLINE ONLINE
ora.ons
ONLINE ONLINE
ONLINE ONLINE
ONLINE ONLINE
ora.proxy_advm
ONLINE ONLINE
ONLINE ONLINE
ONLINE ONLINE

knewracni
knewracn2
knewracn4

knewracni
knewracn2
knewracn4

knewracni
knewracn2
knewracn4

knewracn5s
knewracn6
knewracn7
knewracn8

knewracni
knewracn2
knewracn4

knewracni
knewracn2
knewracn4

knewracni
knewracn2
knewracn4

STABLE
STABLE
STABLE

STABLE
STABLE
STABLE

STABLE
STABLE
STABLE

STABLE
STABLE
STABLE
STABLE

STABLE
STABLE
STABLE

STABLE
STABLE
STABLE

STABLE
STABLE
STABLE

ora.LISTENER_SCAN1.lsnr

1 ONLINE ONLINE
ora.LISTENER_SCAN2.lsnr

1 ONLINE ONLINE
ora.LISTENER_SCAN3.lsnr

1 ONLINE ONLINE
ora.MGMTLSNR

1 ONLINE ONLINE

8.9.41,STABLE

ora.asm
1 ONLINE ONLINE
2 ONLINE ONLINE

knewracn2

knewracn4

knewracni

knewracni

knewracni
knewracn2

www.it-ebooks.info

STABLE

STABLE

STABLE

169.254.199.3 192.16.

STABLE
STABLE

39

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

3 ONLINE ONLINE knewracn4 STABLE
ora.cvu

1 ONLINE ONLINE knewracn1 STABLE
ora.gns

1 ONLINE ONLINE knewracn1 STABLE
ora.gns.vip

1 ONLINE ONLINE knewracni STABLE
ora.knewdb.db

1 ONLINE ONLINE knewracn2 Open, STABLE

2 ONLINE ONLINE knewracn4 Open, STABLE

3 ONLINE ONLINE knewracn1 Open, STABLE
ora.knewracni.vip

1 ONLINE ONLINE knewracni STABLE
ora.knewracn2.vip

1 ONLINE ONLINE knewracn2 STABLE
ora.knewracn4.vip

1 ONLINE ONLINE knewracn4 STABLE
ora.mgmtdb

1 ONLINE ONLINE knewracn1 Open, STABLE
ora.oc4j

1 ONLINE ONLINE knewracni STABLE
ora.scanl.vip

1 ONLINE ONLINE knewracn2 STABLE
ora.scan2.vip

1 ONLINE ONLINE knewracn4 STABLE
ora.scan3.vip

1 ONLINE ONLINE knewracn1 STABLE

These commands can be executed by root user, grid (GI owner), and Oracle (RAC owner). You also can disable or
enable all the CRSDs

$GRID_HOME/bin/crsctl disable crs
$GRID_HOME/bin/crsctl enable crs

Managing OCR and the Voting Disk

Oracle provides three tools to manage OCR: ocrconfig, ocrdump, and ocrcheck. The ocrcheck command lists the
OCR and its mirrors.

The following example lists the OCR location in the +VOCR diskgroup and its mirror in the +DATAL1 diskgroup.
In 11gR2 and 12cR1, OCR can have up to five mirrored copies. Each mirrored copy can be an ASM diskgroup or
a cluster file system:

$ ocrcheck

Status of Oracle Cluster Registry is as follows:
Version : 3
Total space (kbytes) : 262120
Used space (kbytes) : 3192
Available space (kbytes) : 258928
ID : 1707636078
Device/File Name : +VOCR

40

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

Device/File integrity check succeeded
Device/File Name : +DATA1/

Device/File integrity check succeeded
Device/File not configured
Device/File not configured
Device/File not configured

Cluster registry integrity check succeeded

Logical corruption check bypassed due to non-privileged user
You also can use the ocrconfig command to add/delete/replace OCR files, and you can add another
mirror of OCR in +DATA2:
$GRID_HOME/bin/ocrconfig -add +DATA2

Or remove the OCR copy from +DATA1 :
$GRID_HOME/bin/ocrconfig -delete +DATA1

The ocrdump command can be used to dump the contents of the OCR to a .txt or .xml file. It can be executed only
by the root user, and the default file name is OCRDUMPFILE:

$./ocrdump
$ 1s -1 OCRDUMPFILE
-IW------- 1 root root 212551 Dec 28 20:21 OCRDUMPFILE

The OCR is backed up automatically every four hours on at least one of the nodes in the cluster. The backups are
stored in the $GRID_HOME/cdata/<cluster_name> directory. To show the backup information, use the

ocrconfig -showbackup command:

$GRID_HOME/bin/ocrconfig -showbackup

knewracn1 2013/03/02 07:01:37 /u01/app/12.1.0/grid/cdata/knewrac/backup00.ocr

knewracn1 2013/03/02 03:01:33 /u01/app/12.1.0/grid/cdata/knewrac/backup01.ocr

knewracn1 2013/03/01 23:01:32 /u01/app/12.1.0/grid/cdata/knewrac/backup02.ocr

knewracn1 2013/03/01 03:01:21 /u01/app/12.1.0/grid/cdata/knewrac/day.ocr

knewracnl 2013/02/20 02:58:55 /u01/app/12.1.0/grid/cdata/knewrac/week.ocr

knewracni 2013/02/19 23:15:34 /u01/app/12.1.0/grid/cdata/knewrac/backup 20130219 231534.o0cr
knewracn1 2013/02/19 23:05:26 /u01/app/12.1.0/grid/cdata/knewrac/backup_20130219_230526.0cr

.....

The steps to restore OCR from a backup file are as follows:
1. Identify the backup by using the ocrconfig -showbackup command.
2. Stop the clusterware on all the cluster nodes.

3. Perform the restore with the restore command:
ocrconfig -restore file name

4. Restart the crs and do an OCR integrity check by using cluvfy comp ocr.

41

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

You can use the following command to check the VD location:

$ crsctl query css votedisk
STATE File Universal Id File Name Disk group
1. ONLINE 7141f13f99734febbf94c73148c35a85 (/dev/dm-8) [VOCR]
Located 1 voting disk(s).
To move the VD to another location, you can use the following crsctl command:
$GRID_HOME/bin/crscrsctl replace votedisk +DATA3

Managing CRS Resources

The srvctl utility can be used to manage the resources that the Clusterware manages. The resources include
database, instance, service, nodeapps, vip, asm, diskgroup, listener, scan, scan listener, serer pool, server, oc4j, home,
file system, and gns. This managed resource is specified in the <object> part of the command. The command also
specifies the management operation on the resource specified in the <action> part of the command. The operations
include enable, disable, start, stop, relocate, status, add, remove, modify, getenv, setenv,
unsetenv, config, convert, and upgrade.

srvctl <action> <object> [<options>]

Here are a few examples of SRVCTL commands.
Check the SCAN configuration of the cluster:

$srvctl config scan

SCAN name: knewrac-scan.kcloud.dblab.com, Network: 1
Subnet IPv4: 172.16.0.0/255.255.0.0/etho

Subnet IPv6:

SCAN 0 IPv4 VIP: -/scanl-vip/172.16.150.40

SCAN name: knewrac-scan.kcloud.dblab.com, Network: 1
Subnet IPv4: 172.16.0.0/255.255.0.0/etho

Subnet IPvé6:

SCAN 1 IPv4 VIP: -/scan2-vip/172.16.150.83

SCAN name: knewrac-scan.kcloud.dblab.com, Network: 1
Subnet IPv4: 172.16.0.0/255.255.0.0/etho

Subnet IPvé6:

SCAN 2 IPv4 VIP: -/scan3-vip/172.16.150.28

Check the node VIP status on knewracni:

$ srvctl status vip -n knewracni
VIP 172.16.150.37 is enabled
VIP 172.16.150.37 is running on node: knewracni

Check the node apps on knewracn1:

$ srvctl status nodeapps -n knewracni

VIP 172.16.150.37 is enabled

VIP 172.16.150.37 is running on node: knewracni
Network is enabled

Network is running on node: knewracni

ONS is enabled

ONS daemon is running on node: knewracni

42

www.it-ebooks.info

http://knewrac-scan.kcloud.dblab.com/
http://knewrac-scan.kcloud.dblab.com/
http://knewrac-scan.kcloud.dblab.com/
http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

Adding and Removing Cluster Nodes

The flexibility of Oracle Clusterware is exhibited through its ability to scale up and scale down the existing cluster
online by adding and removing nodes in conformity with the demands of the business. This section will outline the
procedure to add and remove nodes from the existing cluster.

Adding a Node

Assume that you have a two-node cluster environment and want to bring in an additional node (named rac3) to scale
up the existing cluster environment, and that the node that is going to be part of the cluster meets all prerequisites
essential to begin the procedure to add a node.

Adding a new node to the existing cluster typically consists of the following stages:

¢ (Cloning Grid Infrastructure Home (cluster/ASM)
e Cluster configuration
e Cloning RDBMS home

When the new node is ready with all necessary prerequisites to become part of the existing cluster, such as
storage, network, OS, and patches, use the following step-by-step procedure to add the node:

From the first node of the cluster, execute the following command to initiate integrity verification checks for the
cluster and on the node that is going to be part of the cluster:

$ cluvfy stage -pre nodeadd -n rac3 -fixup -verbose

When no verification check failures are reported, use the following example to launch the procedure to add
the node, assuming that the Dynamic Host Configuration Protocol (DHCP) and Grid Naming Service (GNS) are not
configured in the current environment:

$ $GRID_HOME/oui/bin/addNode.sh -silent "CLUSTER_NEW_NODES={rac3}"
"CLUSTER_NEW_VIRTUAL_HOSTNAMES={rac3_vip}"

Use the following example when adding to the Flex Cluster setup:

$ $GRID_HOME/oui/bin/addNode.sh -silent "CLUSTER_NEW_NODES={rac3}"
"CLUSTER_NEW_VIRTUAL HOSTNAMES={rac3-vip}" "CLUSTER_NEW_NODE_ROLES={hub}"

Execute the root. sh script as the root user when prompted on the node that is joining the cluster. The script will
initialize cluster configuration and start up the cluster stack on the new node.

After successfully completing the procedure to add a new node, perform post node add verification checks from
any cluster node using the following example:

$ cluvfy stage -post nodeadd -n rac3
$ crsctl check cluster -all -- verify the cluster health from all nodes
$ olsnodes -n -- to list all existing nodes in a cluster

After a successful node addition, execute the following from $ORACLE_HOME to clone the Oracle RDBMS software
over the new node to complete the node addition procedure:

$ORACLE_HOME/oui/bin/addNode.sh "CLUSTER_NEW NODES={rac3}"

43

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

When prompted, execute the root. sh script as the root user on the new node.
Once a new node is successfully added to the cluster, run through the following post-addnode command:

$./cluvfy stage -post addnode -n rac3 -verbose

Removing a Node

Assume that you have a three-node cluster environment and want to delete the rac3 node from the existing cluster.
Ensure the node that is going to be dropped has no databases, instances, or other services running. If any do exist,
either drop them or just move them over to other nodes in the cluster. The following steps outline a procedure to
remove a node from the existing cluster:

The node that is going to be removed shouldn’t be pinned. If so, unpin the node prior to starting the procedure.
The following examples demonstrate how to identify if a node is pinned and how to unpin the node:

$ olsnodes -n -s -t

You will get the following typical output if the nodes are pinned in the cluster:

racl 1 Active Pinned
rac2 2 Active Pinned
rac3 3 Active Pinned

Ensure that the cluster stack is up and running on node rac3. If the cluster is inactive on the node, you first need
to bring the cluster up on the node and commence the procedure to delete the node.
Execute the following command as the root user from any node if the node that is going to be removed is pinned:

$ crsctl unpin css -n rac3

Run the following command as the root user on the node that is going to be removed:

$GRID_HOME/deinstall/deinstall -local

Note The -local argument must be specified to remove the local node; otherwise, the cluster will be deinstalled
from every node of the cluster.

Run the following command as the root user from an active node in a cluster:
$crsctl delete node -n rac3

From any active node, execute the following command to update the Oracle inventory for GI and RDBMS homes
across all nodes:

$GRID_HOME/oui/bin/runInstaller -updateNodelList ORACLE_HOME=$GRID HOME
cluster_nodes={raci,rac2} CRS=TRUE -silent

$GRID_HOME/oui/bin/runInstaller -updateNodelList ORACLE_HOME=$ORACLE_HOME
cluster nodes={raci,rac2} CRS=TRUE -silent

44

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

When you specify the -silent option, the installer runs in silent mode and therefore doesn’t display any
interactive screens. In other words, it will run in non-interactive mode.
From any active node, verify the post-node deletion:

$cluvfy stage -post nodedel -n rac3 -verbose
$olsnodes -n -s -t

Clean up the following directories manually on the node that was just dropped:

/etc/oralnst.loc, /etc/oratab, /etc/oracle/ /tmp/.oracle, /opt/ORCLmap

Also, the filesystem where cluster and RDBMS software was installed.

Troubleshooting common Clusterware Stack Start-Up Failures

Various factors could contribute to the inability of the cluster stack to come up automatically after a node eviction,
failure, reboot, or when cluster startup initiated manually. This section will focus and cover some of the key facts and
guidelines that will help with troubleshooting common causes for cluster stack startup failures. Though the symptoms
discussed here are not exhaustive or complete, the key points explained in this section indeed provide
a better perspective to diagnose various cluster daemon processes common start-up failures and other issues.

Just imagine: a node failure or cluster manual shutdown, and subsequent cluster startup doesn’t start the
Clusterware as expected. Upon verifying the cluster or CRS health status, one of the following error messages have
been encountered by the DBA:

$GRID_HOME/bin/crsctl check cluster
CRS-4639: Could not contact Oracle High Availability Services
CRS-4639: Could not contact Oracle High Availability Services
CRS-4000: Command Check failed, or completed with errors
OR
CRS-4535: Cannot communicate with Cluster Ready Services
CRS-4530: Communications failure contacting Cluster Synchronization Services daemon
CRS-4534: Cannot communicate with Event Manager
ohasd start up failures - This section will explain and provide most significant information to diagnose common
issues of Oracle High Availability Services (OHAS) daemon process startup failures and provide workarounds for the
following issues:
CRS-4639: Could not contact Oracle High Availability Services
OR

CRS-4124: Oracle High Availability Services startup failed
CRS-4000: Command Start failed, or completed with errors

First, review the Clusterware alert and ohasd.log files to identify the root cause for the daemon startup failures.
Verify the existence of the ohasd pointer, as follows, in the OS-specific file:

/etc/init, /etc/inittab hi:3:respawn:/sbin/init.d/init.ohasd run >/dev/null 2>&1 </dev/null

45

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

This pointer should have been added automatically upon cluster installation and upgrade. In case no pointer is
found, add the preceding entry toward the end of the file and as the root user start the cluster manually or initiate the
inittab to start up these things automatically.

If the ohasd pointer exists, the next thing to check is the cluster high availability daemon auto start configuration.
Use the following command as the root user to confirm the auto startup configuration:

$ GRID_HOME/bin/crsctl config has -- High Availability Service
$ GRID_HOME/bin/crsctl config crs -- Cluster Ready Service

Optionally, you can also verify the files under the /var/opt/oracle/scls scr/hostname/root or /etc/oracle/
scls_scr/hostname/root location to identify whether the auto config is enabled or disabled.

As the root user, enable the auto start and bring up the cluster manually on the local node when the auto startup
is not configured. Use the following examples to enable has/crs auto-start:

$ CRS-4621: Oracle High Availability Services autostart is disabled.

Example:
$ GRID_HOME/bin/crsctl enable has - turns on auto startup option of ohasd
$ GRID_HOME/bin/crsctl enable crs - turns on auto startup option of crs

$ GRID_HOME/bin/crsctl start has - initiate OHASD daemon startup
$ GRID_HOME/bin/crsctl start crs - initiate CRS daemon startup

Despite the preceding, if the ohasd daemon process doesn’t start and the problem persists, then you need to
examine the component-specific trace files to troubleshoot and identify the root cause. Follow these guidelines:
Verify the existence of the ohasd daemon process on the OS. From the command-line prompt, execute the following:

ps -ef |grep init.ohasd

Examine OS platform-specific log files to identify any errors (refer to the operating system logs section later in
this chapter for more details).

Refer the ohasd. log trace file under the $GRID_HOME/log/hostname/ohasd location, as this file contains useful
information about the symptoms.

Address any OLR issues that are being reported in the trace file. If OLR corruption or inaccessibility is reported,
repair or resolve the issue by taking appropriate action. In case of a restore, restore it from a previous valid backup
using the $ocrconfig -local -restore $backup_location/backup_filename.olr command.

Verify Grid Infrastructure directory ownership and permission using OS level commands.

Additionally, remove the cluster startup socket files from the /var/tmp/.oracle, /usr/tmp/.oracle, /tmp/.
oracle directory and start up the cluster manually. The existence of the directory is subject to operating system
dependency.

CSSD startup issues - In case the CSSD process fails to start up or is reported to be unhealthy, the following
guidelines help in identifying the root cause of the issue:

Error : CRS-4530: Communications failure contacting Cluster Synchronization Services daemon:

Review the Clusterware alert.log and ocssd.log file to identify the root cause of the issue.
Verify the CSSD process on the OS:

ps -ef |grep cssd.bin

Examine the alert_hostname.log and ocssd.log logs to identify the possible causes that are preventing the
CSSD process from starting.

46

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

Ensure that the node can access the VDs. Run the crsctl query css votedisk command to verify accessibility.
If the node doesn’t access the VD files for any reason, check for disk permission and ownership and for logical
corruptions. Also, take the appropriate action to resolve the issues by either resetting the ownership and permission
or by restoring the corrupted OCR file.

If any heartbeat (network|disk) problems are reported in the logs mentioned earlier, verify the private
interconnect connectivity and other network-related settings on the node.

If the VD files are placed on ASM, ensure that the ASM instance is up. In case the ASM instance is not up, refer to
the ASM instance alert.log to identify the instance’s startup issues.

Use the following command to verify asm, cluster connection, cssd, and other cluster resource status:

$ crsctl stat res -init -t

ora.asm

1 ONLINE ONLINE racl Started,STABLE
ora.cluster_interconnect.haip

1 ONLINE OFFLINE racl STABLE
ora.crsd

1 ONLINE OFFLINE raci STABLE
ora.cssd

1 ONLINE OFFLINE racl STABLE
ora.cssdmonitor

1 ONLINE UNKNOWN racl STABLE
ora.ctssd

1 ONLINE ONLINE raci ACTIVE:0,STABLE
ora.diskmon

1 OFFLINE OFFLINE STABLE
ora.drivers.acfs

1 ONLINE ONLINE racl STABLE
ora.evmd

1 ONLINE ONLINE racl STABLE
ora.gipcd

1 ONLINE ONLINE racl STABLE
ora.gpnpd

1 ONLINE ONLINE racl STABLE
ora.mdnsd

1 ONLINE ONLINE racl STABLE
ora.storage

1 ONLINE ONLINE racl STABLE

If you find the ora.cluster_interconnect.hiap resourceis OFFLINE, you might need to verify the interconnect
connectivity and check the network settings on the node. Also, you can try to startup the offline resource manually
using the following command:

$GRID_HOME/bin/crsctl start res ora.cluster interconnect.haip -init
Bring up the offline cssd daemon manually using the following command:

$GRID_HOME/bin/crsctl start res ora.cssd -init

47

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

The following output will be displayed on your screen:

CRS-2679: Attempting to clean 'ora.cssdmonitor' on 'raci'

CRS-2681: Clean of 'ora.cssdmonitor' on 'racl' succeeded

(RS-2672: Attempting to start 'ora.cssdmonitor' on 'raci’

CRS-2676: Start of 'ora.cssdmonitor' on 'racl' succeeded

CRS-2672: Attempting to start 'ora.cssd' on 'raci’

CRS-2676: Start of 'ora.cssd' on 'racl' succeeded

CRS-2672: Attempting to start 'ora.cluster_interconnect.haip' on 'raci’
CRS-2672: Attempting to start 'ora.crsd' on 'raci’

CRS-2676: Start of 'ora.cluster interconnect.haip' on 'racl' succeeded
CRS-2676: Start of 'ora.crsd' on 'racl' succeeded

CRSD startup issues - When the CRSD-related startup and other issues are being reported, the following
guidelines provide assistance to troubleshoot the root cause of the problem:

CRS-4535: Cannot communicate with CRS:
Verify the CRSD process on the OS:
ps -ef |grep crsd.bin

Examine the crsd. log to look for any possible causes that prevent the CRSD from starting.

Ensure that the node can access the OCR files; run the 'ocrcheck' command to verify. If the node can’t access
the OCR files, check the following:

Check the OCR disk permission and ownership.

If OCR is placed on the ASM diskgroup, ensure that the ASM instance is up and that the appropriate diskgroup is
mounted.

Repair any OCR-related issue encountered, if needed.

Use the following command to ensure that the CRSD daemon process is ONLINE:

$ crsctl stat res -init -t

ora.crsd
1 ONLINE OFFLINE racl

You can also start the individual daemon manually using the following command:
$GRID_HOME/bin/crsctl start res ora.cssd -init

In case the Grid Infrastructure malfunctions or its resources are reported as being unhealthy, you need to ensure
the following:

¢ Sufficient free space must be available under the $GRID_HOME and $ORACLE_HOME filesystem for
the cluster to write the events in the respective logs for each component.

e Ensure enough system resource availability, in terms of CPU and memory.
e Start up any individual resource that is OFFLINE.
48

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

Clusterware Exclusive Mode

Beginning with 11gR2 (11.2.0.2), the cluster stack can be invoked in an exclusive mode to carry out a few exclusive
cluster maintenance tasks, such as restoring OCR and VDs, troubleshooting root. sh issues, and so on. To start the
cluster in this mode on any particular node, the cluster stack must not be active on other nodes in the cluster.
When a cluster is started in exclusive mode, no VD and networks are required. Use the following command as the root
user to bring the cluster in exclusive mode:

$crsctl start crs -excl {-nocrs} {-nowait}

With the -nocrs argument, Oracle Clusterware will be started without the CRSD process, and with the -nowait
argument, Clusterware start doesn’t depend on Oracle High Availability Service (ohasd) daemon start.

Troubleshooting OCR Issues

In the event of any OCR issues, such as logical corruption, missing permissions and ownership, integrity, and loss of
mirror copy, the following troubleshooting and workaround methods are extremely helpful for identifying the root
cause as well as resolving the issues:

Verify the OCR file integrity using the following cluster utilities:

$ocrcheck - verifies OCR integrity & logical corruption
$ocrcheck -config - lists OCR disk location and names
$ocrcheck -local -config - lists LOR name and location

$cluvfy comp ocr -n all -verbose - verifies integrity from all nodes

$cluvfy comp ocr -n racl -verbose - verifies integrity on the local node

With the ocrdump utility, you can dump either the entire contents or just a section from the OCR file into a text
file. The following commands achieve that:

$ ocrdump <filename.txt>
-- to obtains a detailed output, run the command as the root user

With the preceding command issued, OCR contents will be dumped into a text file, and if the output filename is
not mentioned, a file named OCRDUMPFILE will be generated in the local directory.

$ ocrdump -stdout -keyname SYSTEM.css {-xml}

The preceding command lists css section-specific contents from the current OCR file, and the contents will be
displayed on the prompt if the output is not diverted into any file.

$ ocrdump -backupfile <filename and location>
-- will dump specific backup contents.

Diagnose, Debug, Trace Clusterware and RAC Issues

When the default debugging information generated by the Oracle Clusterware processes based on their default trace
level settings doesn’t provide enough clues to reach a conclusion to a problem, it is necessary to increase the default
trace levels of specific components and their subcomponents to get comprehensive information about the problem.
The default tracing levels of Clusterware components is set to value 2, which is sufficient in most cases.

49

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

In the following sections, we will demonstrate how to modify, enable, and disable the debugging tracing levels of
various cluster components and their subcomponents using the cluster commands.

To understand and list various cluster attributes and their default settings under a specific Clusterware
component, use the following example command:

$ crsctl stat res ora.crsd -init -t -f

The output from the preceding example helps you to find the default settings for all arguments of a specific
component, like stop/start dependencies, logging/trace level, auto-start, failure settings, time, and so on.

Debugging Clusterware Components and Resources

Oracle lets you dynamically modify and disable the default tracing levels of any of the cluster daemon (CRSD, CSSD,
EVMD) processes and their subcomponents. The crsctl set {log|trace} command allows modification of the
default debug setting dynamically. The trace levels range from 1 to 5, whereas the value 0 turns off the tracing option.
Higher trace levels generate additional diagnostic information about the component.

The following example lists the default log settings for all modules of a component; the command must be
executed as the root user to avoid an Insufficient User Privileges error:

$ crsctl get log {css|crs|evm} ALL

The following output fetches the default trace levels of various subcomponents of CSSD:

Get CSSD Module: BCCM Log Level: 2
Get CSSD Module: CLSF Log Level: 0
Get CSSD Module: CLSINET Log Level: 0
Get CSSD Module: CSSD Log Level: 2
Get CSSD Module: GIPCBCCM Log Level: 2
Get CSSD Module: GIPCCM Log Level: 2
Get CSSD Module: GIPCGM Log Level: 2
Get CSSD Module: GIPCNM Log Level: 2
Get CSSD Module: GPnP Log Level: 1
Get CSSD Module: OLR Log Level: 0

Get CSSD Module: SKGFD Log Level: 0

To list all components underneath of a module, use the following example as the root user:

$ crsctl lsmodules -- displays the list of modules
$ crsctl lsmodules {css|crs|evm} -- displays the sub-components of a module

To set a non-default tracing level, use the following syntax as the root user:

Syntax:

$ crsctl set log {module} "component name=debug level"
$ crsctl set log res "resourcename=debug level"

Example:

$ crsctl set log crs crsmain=3

$ crsctl set log crs crsmain=3,crsevt=4

--- let you set different log levels to multiple modules

$ crsctl set log crs all=5
$ crsctl set log res ora.rondb.db:5

50

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

If the node is evicting due to some mysterious network heartbeat (NHB) issues and the default information
is not sufficient to diagnose the cause, you can increase the CSSD tracing level to a higher number. To troubleshoot
NHB-related issues, you can set the log level to 3 as the root user, as shown in the following example:

$ crsctl set log css ocssd=4
The following examples disable the tracing:

$ crsctl set log crs crsmain=0
$ crsctl set log res ora.rondb.db:0
$ crsctl set log res ora.crs:0 -init

The -init flag must be specified while modifying the debug mode of a key cluster daemon process. To list the
current logging and tracing levels of a particular component and its subcomponents, use the following example:

$crsctl stat res ora.crsd -init -f |grep LEVEL

Tracing levels also can be set by specifying the following environmental variables on the local node (however,
you need to restart the cluster on the local node to enforce the logging/tracing changes):

$ export ORA_CRSDEBUG ALL=1 --sets debugging level 1 to all modules
$ export ORA_CRSDDEBUG CRS=2 --sets debugging level 2 to CRS module

0S Level Tracing

You should also be able to use the OS-specific tracing utility (gdb, pstack, truss, strace, and so on)to dump the
debug information of an OS process. The following exercise demonstrates the procedure:
Identify the process ID that you want to set the OS level tracing; for example:

$ps -ef |grep oraagent.bin
Attach the process with the OS-specific debug utility; for example, on the HP-UX platform:
$pstack /uoo/app/12.1.0/grid/bin/orarootagent.bin 4558

You can then provide the information to Oracle Support or consult your OS admin team to help you identify any
issues that were raised from the OS perspective.

Diagnose cluvfy Failures

The cluvfy:runCluvfy utility can be used to accomplish pre-component and post-component verification checks,
including OS, network, storage, overall system readiness, and clusterware best practices. When the utility fails

to execute for no apparent reason, and in addition the -verbose argument doesn’t yield sufficient diagnostic
information about the issue, enable the debugging mode for the utility and re-execute the command to acquire
adequate information about the problem. The following example demonstrates enabling debugging mode:

$ export SRVM_TRACE=true
Rerun the failed command after setting the preceding environmental variable. A detailed output file will be

generated under the $GRID_HOME/cv/log location, which can be used to diagnose the real cause. When debug settings
are modified, the details are recorded in the OCR file and the changes will be affected on that node only.

51

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

In addition, when Java-based Oracle tools (such as srvctl, dbca, dbua, cluvfy, and netca) fail for unknown
reasons, the preceding setting will also help to generate additional diagnostic information that can be used to
troubleshoot the issues.

Example:
$srvctl status database -d

Note When the basic information from the CRS logs doesn’t provide sufficient feedback to conclude the root cause of
any cluster or RAC database issue, setting different levels of trace mode might produce useful, additional information to
resolve the problem. However, the scale of the debug mode level will have an impact on the overall cluster performance
and also potentially generate a huge amount of information in the respective log files. On top of that, it is highly advised to
seek the advice of Oracle Support prior to tampering with the default settings of cluster components.

Grid Infrastructure Component Directory Structure

Each component in Grid Infrastructure maintains a separate log file and records sufficient information under normal
and critical circumstances. The information written in the log files will surely assist in diagnosing and troubleshooting
Clusterware components or cluster health-related problems. Exploring the appropriate information from these log
files, the DBA can diagnose the root cause to troubleshoot frequent node evictions or any fatal Clusterware problems,
in addition to Clusterware installation and upgrade difficulties. In this section, we explain some of the important CRS
logs that can be examined when various Clusterware issues occur.

alert<HOSTNAME>.log: Similar to a typical database alert log file, Oracle Clusterware manages an alert log file
under the $GRID_HOME/log/$hostname location and posts messages whenever important events take place, such
as when a cluster daemon process starts, when a process aborts or fails to start a cluster resource, or when node
eviction occurs. It also logs information about node eviction occurrences and logs when a voting, OCR disk becomes
inaccessible on the node.

Whenever Clusterware confronts any serious issue, this should be the very first file to be examined by the DBA
seeking additional information about the problem. The error message also points to a trace file location where more
detailed information will be available to troubleshoot the issue.

Following are a few sample messages extracted from the alert log file, which explain the nature of the event, like
node eviction, CSSD termination, and the inability to auto start the cluster:

[ohasd(10937)]CRS-1301:0racle High Availability Service started on node raci.
[/u00/app/12.1.0/grid/bin/oraagent.bin(11137)]CRS-5815:Agent
'/u00/app/12.1.0/grid/bin/oraagent _oracle' could not find any base type

entry points for type 'ora.daemon.type'. Details at (:CRSAGF00108:) {0:1:2} in
/u00/app/12.1.0/grid/log/rac1/agent/ohasd/oraagent_oracle/oraagent_oracle.log.
[cssd(11168)]CRS-1713:CSSD daemon is started in exclusive mode

[cssd(11168) JCRS-1605:CSSD voting file is online: /dev/rdsk/oracle/vote/lni/ora_vote 002; details in
/u00/app/12.1.0/grid/log/rac1/cssd/ocssd.log.

[cssd(11052)]CRS-1656:The CSS daemon is terminating due to a fatal error; Details at (:CSSSC00012:)
in /u00/app/12.1.0/grid/log/rac1/cssd/ocssd.log

[cssd(3586)]CRS-1608:This node was evicted by node 1, racl; details at (:CSSNM00005:) in
/u00/app/12.1.0/grid/log/rac2/cssd/ocssd.log.

52

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

ocssd.log: Cluster Synchronization Service daemon (CSSD) is undoubtedly one of the most critical components
of Clusterware, whose primary functionality includes node monitoring, group service management, lock services,
and cluster heartbeats. The process maintains a log file named ocssd. log under the $GIRD_HOME/log/<hostname>/cssd
location and writes all important event messages in the log file. This is one of the busiest CRS log files and is
continuously being written; when the debug level of the process is set too high, the file tends to get more detailed
information about the underlying issue. Before the node eviction happens on the node, it writes the warning message
in the log file. If a situation such as node eviction, VD access issues, or inability of the Clusterware to start up on the
local node is raised, it is strongly recommended that you examine the file to find out the reasons.

Following are a few sample entries of the log file:

2012-11-30 10:10:49.989: [CSSD][21]clssnmvDiskKillCheck: not evicted, file /dev/rdsk/c0t5d4 flags 0x00000000,
kill block unique 0, my unique 1351280164

ocssd.104:2012-10-26 22:17:26.750: [CSSD][6]clssnmvDiskVerify: discovered a potential voting file
ocssd.104:2012-10-26 22:36:12.436: [CSSD][1]clssnmvDiskAvailabilityChange: voting file
/dev/rdsk/cot5d4 now online

ocssd.104:2012-10-26 22:36:10.440: [CSSD][1]clssnmReadDiscoveryProfile: voting file discovery
string(/dev/rdsk/cot5ds, /dev/rdsk/cot5d4)

2012-12-01 09:54:10.091: [CSSD][30]clssnmSendingThread: sending status msg to all nodes
ocssd.101:2012-12-01 10:24:57.116: [CSSD][1]clssnmInitNodeDB: Initializing with OCR id 1484043234

e [cssd(7335)]CRS-1612:Network communication with node rac2 (02) missing for 50% of
timeout interval. Removal of this node from cluster in 14.397 seconds2013-03-15 17:02:44.964

e [cssd(7335)]CRS-1611:Network communication with node rac2 (02) missing for 75% of
timeout interval. Removal of this node from cluster in 7.317 seconds2013-03-15 17:02:50.024

e [cssd(7335)]CRS-1610:Network communication with node rac2 (02) missing for 90% of
timeout interval. Removal of this node from cluster in

Oracle certainly doesn’t recommend removing the log file manually for any reason, as it is governed by Oracle
automatically. Upon reaching a size of 50 MB, the file will be automatically archived as cssd.101 in the same location
as part of the predefined rotation policy, and a fresh log file (cssd. log) will be generated. There will be ten archived
copies kept for future reference in the same directory as part of the built-in log rotation policy and ten-times-ten file
retention formula.

When the log file is removed before it reaches 50 MB, unlike the database alter.log file, Clusterware will not
generate a new log file instantly until the removed file reaches 50 MB. This is because despite the removal of the file
from the OS, the CSS process will be still writing the messages to the file until the file becomes a candidate for the
rotation policy. When the removed file reaches a size of 50 MB, a new log file will appear or be generated and will be
available in this way. However, the previous messages won’t be able to recall in this context.

When the CSSD fails to start up, or it is reported to be unhealthy, this file can be referred to ascertain the root
cause of the problem.

crsd.log: CRSD is another critical component of Clusterware whose primary functionality includes resource
monitoring, resource failover, and managing OCR. The process maintains a log file named crsd.log under the
$GIRD_HOME/log/<hostname>/crsdlocation and writes all important event messages in the log file. Whenever a
cluster or non-cluster resource stops or starts, or a failover action is performed, or any resource-related warning
message or communication error occurs, the relevant information is written to the file. In case you face issues like
failure of starting resources, the DBA can examine the file to get relevant information that could assist in a resolution
of the issue.

Deleting the log file manually is not recommended, as it is governed by Oracle and archived automatically. The
file will be archived as crsd.101 under the same location on reaching a size of 10 MB, and a fresh log file (crsd. log)
will be generated. There will be ten archived copies kept for future reference in the same directory.

53

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

When the CRSD fails to start up, or is unhealthy, refer to this file to find out the root cause of the problem.

ohasd.log: The Oracle High Availability Service daemon (OHASD), a new cluster stack, was first introduced with
11gR2 to manage and control the other cluster stack. The primary responsibilities include managing OLR;
starting, stopping, and verifying cluster health status on the local and remote nodes; and also supporting
cluster-wide commands. The process maintains a log file named crsd. log under the $GIRD_HOME/log/<hostname>/
ohasd location and writes all important event messages in the log file. Examine the file when you face issues running
root.sh script, such as when the ohasd process fails to start up or in case of OLR corruption.

Oracle certainly doesn’t encourage deleting the log file for any reason, as it is governed by Oracle automatically.
The file will be archived as ohasd.101 under the same location on reaching a size of 10 MB, and a fresh log file
(ohasd.log) will be generated. Like crsd.log and crs.log, there will be ten archived copies kept for future reference
in the same directory.

2013-04-17 11:32:47.096: [default][1] OHASD Daemon Starting. Command string :reboot
2013-04-17 11:32:47.125: [default][1] Initializing OLR

2013-04-17 11:32:47.255: [OCRRAW][1]proprico: for disk 0

(/uoo/app/12.1.0/grid 1/cdata/rac2.olr), id match (1), total id sets,

need recover (0), my votes (0), total votes (0), commit_Isn (3118), Isn (3118)
2013-04-17 11:32:47.368: [default][1] Loading debug levels . . .

2013-04-17 11:32:47.803: [clsdmt][13]Creating PID [6401] file for home
/u00/app/12.1.0/grid_1 host usdbp10 bin ohasd to /u00/app/12.1.0/grid_1/ohasd/init/

Upon successful execution of ocrdump, ocrconfig, olsnodes, oifcfg, and ocrcheck commands, a log file will
be generated under the $GRID_HOME/log/<hostname>/client location. For EVM daemon (EVMD) process-relevant
details, look at the evmd. log file under the $GRID_HOME/log<hostname>/evmd location. Cluster Health Monitor
Services (CHM) and logger services are maintained under the $GRID_HOME/log/<hostname>/crfmond, crflogd
directories.

Figure 2-4 depicts the hierarchy of the Clusterware component directory structure.

SGRID_HOME/Slog/<hostname>/

Ij alert_= hostname=_log

.-o.|..‘.s‘| C??_’Ij ohasd.log EEEEEEEED ohasd.101, 102.. 110
.fnm m_ ___’_I__l:sl ciedisd EEEEEEEEB crsd.101, 102.. 110
cssd m [j cesd.log EEEEEEEEB cssd.101, 102.. 110

evind evind.log

—P
.cllonll ﬁ?*EEEEEEEED ocicheck.log. olsnodes. log. ccrdump.log etc
.c.-_;‘g.) cresdios EEEEEEEEB ctssd.101, 102.. 110
.c:;:.l C?:-P__’_ELEEEEE [Lj ora.DBNAME.log,
- ‘ﬁ B ctssd.log LEEEEEEB ctssd.101, 102.. 110
Jdis llIDIl{ :“-:P
——y("p

—=—
rgent
fo s ol G?
fersd E‘_P

Figure 2-4. Unified Clusterware log directory hierarchy

54

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

Operating system (0S) logs: Referring to the OS-specific log file will be hugely helpful in identifying
Clusterware startup and shutdown issues. Different platforms maintain logs at different locations, as shown in the
following example:

HPUX - /var/adm/syslog/syslog.log

AIX - /bin/errpt -a

Linux - /var/log/messages

Windows - Refer .TXT log files under Application/System log using Windows Event Viewer
Solaris - /var/adm/messages

Caution Oracle Clusterware generates and maintains 0-sized socket files in the hidden './oracle' directory
under the location /etc or /var/tmp (according to the platform). Removing these files as part of regular log cleanup or
unintentionally removing them might lead to a cluster hung situation.

Note It is mandatory to maintain sufficient free space under the file system on which grid and RDBSM software are
installed to prevent Clusterware issues; in addition, Oracle suggests not to remove the logs manually.

Oracle Clusterware Troubleshooting - Tools and Utilities

Managing and troubleshooting various issues related to Clusterware and its components are two of the key

responsibilities of any Oracle DBA. Oracle provides a variety of tools and utilities in this context that the DBA can

use to monitor Clusterware health and also diagnose and troubleshoot any serious Clusterware issues. Some of the

key tools and utilities that Oracle provides are as follows: CHM, diagcollection.sh,ProcWatcher, RACcheck, oratop,

OSWatcher Black Box Analyzer (O0SWbba), The Light on-board monitor (LTOM)Hang File Generator (HANGFG).
In the following sections, we will cover some of the uses of these very important tools and describe their

advantages.

Cluster Health Check with CVU

Starting with 11.2.0.3, the cluster verification utility (cluvfy) is capable of carrying out the post-Clusterware and
Database installation health checks. With the new -healthcheck argument, cluster and database components best
practices, mandatory requirements, deviation, and proper functionality can be verified.

The following example collects detailed information about best-practice recommendations for Clusterware in an
HTML file named cvucheckreport_<timestamp>.htm:

$./cluvfy comp healthcheck -collect cluster -bestpractice -html
When no further arguments are attached with the healthcheck parameter, the Clusterware and Database checks
are carried out. Use the following example to perform the health checks on the cluster and database because no -html

argument was specified; the output will be stored in a text file:

$./cluvfy comp healthcheck

55

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

The cluvfy utility supports the following arguments:

-collect cluster|database
-bestpractices|-mandatory|-deviations
-save -savedir --to save the output under a particular location
-html -- output will be written in an HTML file

Real-Time RAC Database Monitoring - oratop

The oratop utility, which is currently restricted to the Linux operating system, resembles an OS-specific top-1ike
utility, providing near-real-time resource monitoring capability for a RAC and single-instance database from 11.2.0.3
onward. It is a very lightweight monitoring utility that utilizes very minimal resources, 0.20% memory and <1% CPU,
on the server. With this utility, you can monitor a RAC database, a stand-alone database, and local as well as

remote databases.

Invoke the oratop Utility

Download the oratop.zip file from My Oracle Support (MOS) at https://support.oracle.com/epmos/faces/
MosIndex.jspx?_afrlLoop=463945118311568& afrWindowMode=0& adf.ctrl-state=19ctrmiozz_4. Unzip the file
and set the appropriate permission to the oratop file, which is chmod 755 oratop on the Linux platform. Ensure the
following database init parameters: timed_statistics setto TRUE and the statistics_level setto TYPICAL. Also,
the following environmental settings need to be set on the local node before invoking the utility:

$ ORACLE_UNQNAME=<dbname>

$ ORACLE_SID=<instance_namel>

$ ORACLE_HOME=<db_home>

$ export LD_LIBRARY_PATH=$ORACLE_HOME/lib
$ export PATH=$ORACLE_HOME/bin:$PATH

The following example runs the utility and sets the interval to every ten seconds to refresh the window (default is
every three seconds):

$ratop -i 10
$oratop -t <tns_name_for_remote db> -- to monitor remote database.

Input the database user name and password credentials when prompted. When no credentials are entered, it will
use the default user SYSTEM with MANAGER as the default password to connect to the database. If you are using a
non-system database user, ensure that the user has read permission on some of the dictionary dynamic views, such as

v_$SESSION, v_vSYSMETRIC, v_$INSTANCE, v_ $PROCESS, v_$SYSTEM_EVENT, and so on.
Figure 2-5 shows the output window of the oratop utility.

56

www.it-ebooks.info

https://support.oracle.com/epmos/faces/MosIndex.jspx?_afrLoop=463945118311568&_afrWindowMode=0&_adf.ctrl-state=19ctrm4ozz_4
https://support.oracle.com/epmos/faces/MosIndex.jspx?_afrLoop=463945118311568&_afrWindowMode=0&_adf.ctrl-state=19ctrm4ozz_4
http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

o * oracle@k2r720n1:~/oratop_home

oratop: 1289 khdbl 08:34:06 up 21.1d, 2 ins, 96G HT, S5 ses, 3 usr, 0%DB
ID %HC HLD IORL MBPS %FR PGAU ASC AST ASW AST A2 TPS SSRT DEC DEW
1 u] 0 0.0m 0 35 402N u]]) u] u] 0.0 12 u] 2m 80 20
2 1 0 0.1m 0 37 360N o u] u} a] n] 0.2 Z6 u] 3m 98 2

AVG: TOT WAITS TIME(s) AVG MS PCT WAIT CLASS

DE CPU 65397 62

Streams AQ: omn coordinator 2965 15495 5225.0 15 Other

log file sync 1964069 13648 6.9 13 Conmit

log file parallel write 2280346 6932 3.0 7 System I/0
SQL*Net more data from clien 34411367 3921 0.1 4 Network

ID SID SPID USR PROG PGA OPN SQLID/BLOCKER E/T STATUS STE WAIT EVENT W/

1 7146 21947 B/G CJQO 3N 21ld ACTIVE WAI os thread 21lu

Figure 2-5. oratop output screen shot

The granular statistics that appear in the window help to identify database performance contention and
bottlenecks. The live window guidelines are categorized into three major sections: 1) top five events (similar to
the AWR/ASH report), 2) top Oracle sessions on the server in terms of high I/0 and memory and 3) DB load
(also provides blocking session details, etc.). Press q or Q to quit from the utility and press Cont+C to abort.

Note The tool is available for downloading only through MOS, which requires additional support licensing.

RAC Configuration Audit Tool - RACcheck

RACcheck is a tool that performs audits on various important configuration settings and provides a comprehensive
HTML-based assessment report on the overall health check status of the RAC environment.

The tool is currently certified on the majority of operating systems that can be used in interactive and
non-interactive modes and also supports multiple databases at a single run. It can be run across all nodes, on a subset
of cluster nodes, or on a local node. When the tool is invoked, it carries out the health checks on various components,
such as cluster-wide, CRS, Grid, RDBMS, ASM, general database initialization parameters, OS kernel settings, and OS
packages. The most suitable time for performing health checks with this tool is immediately after deploying a new
RAC environment, before and after planned system maintenances, prior to major upgrades, and quarterly.

With its Upgrade Readiness Assessment Module ability, it will simplify and enhance system upgrade readiness
reliability. Apart from regular upgrade prerequisite verifications, the module lets you perform automatic prerequisite
verification checks for patches, best practices, and configuration. This will be of great assistance before planning any
major cluster upgrades.

Invoke the RACcheck Tool

Download the raccheck.zip file from MOS, unzip it, and set the appropriate permission to the raccheck file, which
is chmod 755 raccheck on Unix platforms. To invoke the tool in interactive mode, use the following example at the
command prompt as the Oracle software owner and provide the following input when prompted:

$./raccheck

57

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

To perform RAC upgrade readiness verification checks, use the following example and response with your inputs
when prompted with questions:

$./raccheck -u -o pre
Following are the supported arguments with the tool:
$./raccheck -h

Usage : ./raccheck [-abvhpfmsuSo:c:rt:]

-a All (Perform best practice check and recommended patch check)
-b Best Practice check only. No recommended patch check
-h Show usage
-v Show version
-p Patch check only
-m exclude checks for Maximum Availability Architecture -u Run raccheck to check

pre-upgrade or post-upgrade best
practices.-o pre or -o post is mandatory with -u option like ./raccheck -u -o pre
-f Run Offline.Checks will be performed on data already -0 Argument to an option.
if -o is followed by
v,V,Verbose,VERBOSE or Verbose, it will print checks which

passs on the screen

if -o option is not specified,it will print only failures on
screen. for eg: raccheck -a -o v

- To include High availability best practices also in regular
healthcheck eg ./racchekck -r(not applicable for exachk)

-C Pass specific module or component to check best practice
for.

The assessment report provides a better picture of the RAC environment and includes an overall system health
check rating (out of 100), Oracle Maximum Availability Architecture (MAA) best practices, bug fixes, and patch
recommendations.

Note The tool is available for download only through MOS, which requires additional support licensing. Executing the
tool when the systems are heavily loaded is not recommended. It is recommended to test the tool in a non-production
environment first, as it doesn’t come by default with Oracle software.

Cluster Diagnostic Collection Tool - diagcollection.sh

Every time you run you into a few serious Clusterware issues and confront node eviction, you typically look at various
CRS-level and OS-level logs to gather the required information to comprehend the root cause of the problem. Because
Clusterware manages a huge number of logs and trace files, it will sometimes be cumbersome to review many logs
from each cluster node. The diagcollection.sh tool, located under GRID_HOME/bin, is capable of gathering the
required diagnostic information referring to various important sources, such as CRS logs, trace and core files, OCR
data, and OS logs.

With the diagnostic collection tool, you have the flexibility to collect diagnostic information at different levels,
such as cluster, Oracle RDBMS home, Oracle base, and Core analysis. The gathered information from various
resources will then be embedded into a few zip files. You therefore need to upload these files to Oracle Support for
further analysis to resolve the problem.

58

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

The following example will collect the $GRID_HOME diagnostic information:

./diagcollection.sh --collect --crs $GRID_HOME

The following CRS diagnostic archives will be created in the local directory:

crsData_usdbt43 20121204 1103.tar.gz -> logs, traces, and cores from CRS home.

Note Core files will be packaged only with the - -core option.

ocrData_usdbt43 20121204 1103.tar.gz -> ocrdump, ocrcheck etc
coreData_usdbt43_ 20121204 _1103.tar.gz -> contents of CRS core files in text format
osData_usdbt43_20121204_1103.tar.gz -> logs from operating system

Collecting crs data

log/usdbt43/cssd/ocssd.log: file changed size

Collecting OCR data
Collecting information from core files
Collecting 0S logs

After data collection is complete, the following files will be created in the local directory:

crsData_$hostname 20121204 1103.tar.gz
ocrData_$hostname 20121204 1103.tar.gz
coreData_$hostname 20121204 1103.tar.gz
osData_$hostname _20121204 1103.tar.gz

The following example will assist you in getting the supported parameters list that can be used with the tool
(output is trimmed):

./diagcollection.sh -help

--collect

--clean

[--crs] For collecting crs diag information

[--adr] For collecting diag information for ADR; specify ADR location

[--chmos] For collecting Cluster Health Monitor (0S) data

[--all] Default.For collecting all diag information. <<<>>>

[--core] Unix only. Package core files with CRS data

[--afterdate] Unix only. Collects archives from the specified date.
[--aftertime] Supported with -adr option. Collects archives after the specified
[--beforetime] Supported with -adr option. Collects archives before the specified
[--crshome] Argument that specifies the CRS Home location

[--incidenttime] Collects Cluster Health Monitor (0S) data from the specified
[--incidentduration] Collects Cluster Health Monitor (0S) data for the duration

NOTE:
1. You can also do the following
./diagcollection.pl --collect --crs --crshome <CRS Home>

cleans up the diagnosability
information gathered by this script

59

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

--coreanalyze Unix only. Extracts information from core files
and stores it in a text file
Use the --clean argument with the script to clean up previously generated files.

Note Ensure that enough free space is available at the location where the files are being generated. Furthermore,
depending upon the level used to collect the information, the script might take a considerable amount of time to complete
the job. Hence, keep an eye on resource consumption on the node. The tool must be executed as root user.

CHM

The Oracle CHM tool is designed to detect and analyze OS-and cluster resource-related degradations and failures.
Formerly known as Instantaneous Problem Detector for Clusters or IPD/OS, this tool tracks the OS resource consumption
on each RAC node, process, and device level and also connects and analyzes the cluster-wide data. This tool stores real-time
operating metrics in the CHM repository and also reports an alert when certain metrics pass the resource utilization
thresholds. This tool can be used to replay the historical data to trace back what was happening at the time of failure. This
can be very useful for the root cause analysis of many issues that occur in the cluster such as node eviction.

For Oracle Clusterware 10.2 to 11.2.0.1, the CHM/OS tool is a standalone tool that you need to download and
install separately. Starting with Oracle Grid Infrastructure 11.2.02, the CHM/OS tool is fully integrated with the Oracle
Grid Infrastructure. In this section we focus on this integrated version of the CHM/OS.

The CHM tool is installed to the Oracle Grid Infrastructure home and is activated by default in Grid Infrastructure
11.2.0.2 and later for Linux and Solaris and 11.2.0.3 and later for AIX and Windows. CHM consists of two services:
osysmond and ologgerd. osysmond runs on every node of the cluster to monitor and collect the OS metrics and send
the data to the cluster logger services. ologgerd receives the information from all the nodes and stores the information
in the CHM Repository. ologgerd runs in one node as the master service and in another node as a standby if the
cluster has more than one node. If the master cluster logger service fails, the standby takes over as the master service
and selects a new node for standby. The following example shows the two processes, osysmond.bin and ologgerd:

$ ps -ef | grep -E 'osysmond|ologgerd' | grep -v grep

root 3595 1 0 Novig ? 01:40:51 /u01/app/11.2.0/grid/bin/ologgerd -m k2r720n1 -r -d
/u01/app/11.2.0/grid/cxf/db/k2r720n2
root 6192 1 3 Novo8 ? 1-20:17:45 /u01/app/11.2.0/grid/bin/osysmond.bin

The preceding ologgerd daemon uses '-d /u01/app/11.2.0/grid/cxrf/db/k2r720n2", which is the directory
where the CHM repository resides. The CHM repository is a Berkeley DB-based database stored as *.bdb files in the
directory. This directory requires 1GB of disk space per node in the cluster.

$ pwd

/u01/app/11.2.0/grid/crf/db/k2r720n2

$ 1s *.bdb

crfalert.bdb crfclust.bdb crfconn.bdb crfcpu.bdb crfhosts.bdb crfloclts.bdb crfts.bdb
repdhosts.bdb

Oracle Clusterware 12cR1 has enhanced the CHM by providing a highly available server monitor service and also
support for the Flex Cluster architecture. The CHM in Oracle Clusterware 12cR1 consists of three components:

e osysmond
e ologgerd

e Oracle Grid Infrastructure Management Repository

60

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

The System Monitor Service process (0sysmon) runs on every node of the cluster. The System Monitor Service
monitors the OS and cluster resource-related degradation and failure and collects the real-time OS metric data and
sends these data to the cluster logger service.

Instead of running on every cluster node as in Oracle Clusterware 11gR2, there is only one cluster logger service
per every 32 nodes in Oracle Clusterware 12cR1. For high availability, this service will be restarted in another node if
this service fails.

On the node that runs both osysmon and ologgerd:

grid@knewracni]$ ps -ef | grep -E 'osysmond|ologgerd' | grep -v grep

root 4408 1 3 Feb19 ? 08:40:32 /u01/app/12.1.0/grid/bin/osysmond.bin
root 4506 1 1 Feb19 ? 02:43:25 /u01/app/12.1.0/grid/bin/ologgerd -M -d
/uo1/app/12.1.0/grid/cxf/db/knewracnl

On other nodes that run only osysmon:

[grid@knewracn2 product]$ ps -ef | grep -E 'osysmond|ologgerd' | grep -v grep
root 7995 1 1 Feb19 ? 03:26:27 /u01/app/12.1.0/grid/bin/osysmond.bin

In Oracle Clusterware 12cR1, all the metrics data that the cluster logger service receives are stored in the central
Oracle Grid Infrastructure Management Repository (the CHM repository), which is a new feature in 12¢ Clusterware.
The repository is configured during the installation or upgrade to Oracle Clusterware by selecting the “Configure Grid
Infrastructure Management Repository” option in Oracle Universal Installer (OUI), as shown in Figure 2-6.

-Ellal:lc Grid Infrastructure - Setting up Grid Infrastructure - Step 8 of 17 [=1E3
. " . ORACLE
Grid Infrastructure Management Repository Option ¢
GRID INFRASTRUCTURE

Softaare Undates As part of setting up Crid Infrastructure software you can optionally configure Grid Infrastructure Management Repository which is

aspecial type of database that will assist In the management operatlons of Oracle Crid Infrastructure,
Instalistion Option

Configure Crid Infrastructure Management Repository
Cluster Type

i) Yes
Product Languages

Grid Plug and Play No

Cluster Node Information
Metwork Interface Usage
Grid Infrastructure Manageme

Creats ASM Disk Croup

{ —(—-:——(—c—(—q—;—‘j—}

Figure 2-6. Configure Grid Infrasturecture Management Repository in OUI

This repository is an Oracle database. Only one node runs this repository in a cluster. If the cluster is a Flex
Cluster, this node must be a hub node. Chapter 4 will discuss the architecture of Oracle Flex Clusters and different
types of cluster nodes in a Flex Cluster.

61

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

To reduce the private network traffic, the repository database (MGMTDB) and the cluster logger service process
(osysmon) can be located to run on the same node as shown here:

$ ps -ef | grep -v grep | grep pmon | grep MGMTDB
grid 31832 1 0 Feb20 ? 00:04:06 mdb_pmon_-MGMTDB

$ ps -ef | grep -v grep | grep 'osysmon'
root 2434 1 1 Feb 20 ? 00:04:49 /u01/app/12.1.0/grid/bin/osysmond.bin

This repository database runs under the owner of the Grid Infrastructure, which is the “grid” user in this example.
The database files of the CHM repository database are located in the same diskgroup as the OCR and VD. In order to
store the Grid Infrastructure repository, the size requirement of this diskgroup has been increased from the size for
the OCR and VD. The actual size and the retention policy can be managed with the oclumon tool. The oclumon tool
provides a command interface to query the CHM repository and perform various administrative tasks of the CHM
repository. The actual size and the retention policy can be managed with the oclumon tool.

For example, we can get the repository information such as size, repository path, the node for the cluster logger
service, and all the nodes that the statistics are collected from using a command like this:

$ oclumon manage -get repsize reppath alllogger -details

CHM Repository Path = +DATA1/_MGMTDB/DATAFILE/sysmgmtdata.260.807876429

CHM Repository Size = 38940

Logger = knewracni

Nodes = knewracni,knewracn2,knewracn4,knewracn7,knewracn5,knewracn8,knewracné

The CHM admin directory $GRID_HOME/cxf/admin has crf(hostname).ora, which records the information about
the CHM repository:

cat /u01/app/12.1.0/grid/crf/admincrfknewracni.ora
BDBLOC=default
PINNEDPROCS=osysmond.bin,ologgerd,ocssd.bin,cssdmonitor,cssdagent,mdb_pmon_-MGMTDB, kswapdo
MASTER=knewracnl

MYNAME=knewracnl

CLUSTERNAME=knewrac

USERNAME=grid
CRFHOME=/u01/app/12.1.0/grid
knewracnl 5=127.0.0.1 0

knewracnl 1=127.0.0.1 0

knewracnl 0=192.168.9.41 61020
MASTERPUB=172.16.9.41

DEAD=

knewracnl 2=192.168.9.41 61021
knewracn2 5=127.0.0.1 0

knewracn2 1=127.0.0.1 0

knewracn2 0=192.168.9.42 61020
ACTIVE=knewracni,knewracn2,knewracn4
HOSTS=knewracni, knewracn2, knewracn4
knewracn5 5=127.0.0.1 0

knewracn5 1=127.0.0.1 0

knewracn4 5=127.0.0.1 0

knewracn4 1=127.0.0.1 0

62

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

knewracn4 0=192.168.9.44 61020
knewracn8 5=127.0.0.1 0
knewracn8 1=127.0.0.1 0
knewracn7 5=127.0.0.1 0
knewracn7 1=127.0.0.1 0
knewracné 5=127.0.0.1 0
knewracn6é 1=127.0.0.1 0

You can collect CHM data on any node by running the diagcollection.pl utility on that node as a privileged
user root. The steps are as follows:
First, find the cluster node where the cluster logger service is running:

$/u01/app/12.1.0/grid /bin/oclumon manage -get master
Master = knewracnl

Log in to the cluster node that runs the cluster logger service node as a privileged user (in other words, the root
user) and run the diagcollection.pl utility. This utility collects all the available data stored in the CHM Repository.
You can also specify the specific time and duration to collect the data:

[root@knewracn1l ~]# /u01/app/12.1.0/grid/bin/diagcollection.pl -collect -crshome /u01/app/12.1.0/grid
Production Copyright 2004, 2010, Oracle. All rights reserved

(RS diagnostic collection tool

The following CRS diagnostic archives will be created in the local directory.
crsData_knewracni_20130302_0719.tar.gz -> logs,traces and cores from CRS home. Note: core files will
be packaged only with the --core option.

ocrData_knewracnl 20130302_0719.tar.gz -> ocrdump, ocrcheck etc

coreData_knewracnl 20130302_0719.tar.gz -> contents of CRS core files in text format

osData_knewracnl_20130302_0719.tar.gz -> logs from operating system
Collecting crs data
/bin/tar: log/knewracni/cssd/ocssd.log: file changed as we read it

Collecting OCR data

Collecting information from core files

No corefiles found

The following diagnostic archives will be created in the local directory.
acfsData_knewracnl 20130302_0719.tar.gz -> logs from acfs log.

Collecting acfs data

Collecting 0S logs

Collecting sysconfig data

This utility creates two .gz files, chmosData_<host>timestamp.tar.gz and osData_<host>timestamp.tar.gz, in
the current working directory:

[root@knewracn1 ~]# 1s -1 *.gz

-Iw-r--r--. 1 root root 1481 Mar 2 07:24 acfsData_knewracni_20130302_0719.tar.gz
-IwW-r--r--. 1 root root 58813132 Mar 2 07:23 crsData_knewracnli_20130302_0719.tar.gz
-IW-r--r--. 1 root root 54580 Mar 2 07:24 ocrData_knewracnl_20130302_0719.tar.gz
-IW-r--r--. 1 root root 18467 Mar 2 07:24 osData_knewracn1l_20130302_0719.tar.gz

These .gz files include various log files that can be used for the diagnosis of your cluster issues.

63

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

You also can use the OCLUMON command-line tool to query the CHM repository to display node-specific metrics
for a specified time period. You also can print the durations and the states for a resource on a node during a specified
time period. The states can be based on predefined thresholds for each resource metric and are denoted as red,
orange, yellow, and green, in decreasing order of criticality. OCLUMON command syntax is as follows:

$oclumon dumpnodeview [[-allnodes] | [-n nodel node2] [-last "duration"] |
[-s "time_stamp" -e "time_stamp"] [-v] [-warning]] [-h]
-s indicates the start timestamp and -e indicates the end timestamp

For example, we can run the command like this to write the report into a text file:

$GRID_HOME/bin/oclumon dumpnodeview -allnodes -v -s "2013-03-0206:20:00" -e "2013-03-0206:30:00">
/home/grid/chm.txt

A segment of /home/grid/chm.txt looks like this:

$less /home/grid/chm.txt

SYSTEM:

#pcpus: 1 #vcpus: 2 cpuht: Y chipname: Intel(R) cpu: 7.97 cpuq: 2 physmemfree: 441396 physmemtotal:
5019920 mcache: 2405048 swapfree: 11625764 swaptotal: 12583912 hugepagetotal: 0 hugepagefree: 0
hugepagesize: 2048 ior: 93 iow: 242 ios: 39 swpin: O swpout: O pgin: 90 pgout: 180 netr: 179.471
netw: 124.380 procs: 305 rtprocs: 16 #fds: 26144 #sysftdlimit: 6815744 #disks: 5 #nics: 4 nicErrors: o

TOP CONSUMERS:
topcpu: 'gipcd.bin(4205) 5.79"' topprivmem: 'ovmd(719) 214072' topshm: ‘ora ppa7_ knewdb(27372)
841520" topfd: 'ovmd(719) 1023' topthread: 'crsd.bin(4415) 48’

CPUS:
cpuO: sys-4.94 user-3.10 nice-0.0 usage-8.5 iowait-10.93
cpul: sys-5.14 user-2.74 nice-0.0 usage-7.88 iowait-4.68

PROCESSES:

name: 'ora_smco_knewdb' pid: 27360 #procfdlimit: 65536 cpuusage: 0.00 privmem: 2092 shm: 17836 #fd:
26 #threads: 1 priority: 20 nice: 0 state: S
name: 'ora_gtxo knewdb' pid: 27366 #procfdlimit: 65536 cpuusage: 0.00 privmem: 2028 shm: 17088 #fd:
26 #threads: 1 priority: 20 nice: 0 state: S

name: 'ora_rcbg knewdb' pid: 27368 #procfdlimit: 65536 cpuusage: 0.00 privmem:

RAC Database Hang Analysis

In this section, we will explore the conceptual basis for invoking and interpreting a hang analysis dump to diagnose
a potential RAC database hung/slow/blocking situation. When a database either is running unacceptably slow, is
hung due to an internal system developed interdependence deadlock or a latch causing database hung/slowness,

64

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

or else a prolonged deadlock/block hurts overall database performance, it is advisable to perform a hang analysis,
which helps greatly in identifying the root cause of the problem. The following set of examples explains how to invoke
and use the hang analysis:

SOL> sqlplus / as sysdba

SOL> oradebug setmypid

SQL> oradebug unlimit

SOL> oradebug setinst all -- enables cluster-wide hang analysis
SOQL> oradebug -g all hanganalyze 3 --is the most commonly used level
<< wait for couple of minutes >>

SQL> oradebug -g all hanganalyze 3

The hang analysis levels can be the currently set value between 1 to 5 and 10. When hanganlyze is invoked, the
diagnostic information will be written to a dump file under $ORACLE_BASE/diag/rdbms/dbname/instance_name/trace,
which can be used to troubleshoot the problem.

We have built the following test case to develop a blocking scenario in a RAC database to demonstrate the
procedure practically. We will then interpret the trace file to understand the contents to troubleshoot the issue. The
following steps were performed as part of the test scenario:

Create an EMP table:

SQL> create table emp (eno number(3),deptno number(2), sal number(9));

Load a few records in the table. From instance 1, execute an update statement:
SOL> update emp set sal=sal+100 where eno=101; -- not commit performed

From instance 2, execute an update statement for the same record to develop a blocking scenario:
SOL> update emp set sal=sal+200 where eno=101;

At this point, the session on instance 2 is hanging and the cursor doesn'’t return to the SQL prompt, as expected.
Now, from another session, run the hang analysis as follows:

SQL>oradebug setmypid

Statement processed.

SOL >oradebug setinst all

Statement processed.

SOL >oradebug -g all hanganalyze 3 <level 3 is most suitable in many circumstances>
Hang Analysis in /u00/app/oracle/diag/rdbms/rondb/RONDB1/trace/RONDB1_diag 6534.trc

Let’s have a walk-through and interpret the contents of the trace file to identify the blocker and holder details in
context. Here is the excerpt from the trace file:

Node id: 1
List of nodes: o, 1, << nodes (instance) count »>>

**¥ 2012-12-16 17:19:18.630

HANG ANALYSIS:
instances (db_name.oracle sid): rondb.rondb2, rondb.rondbi
oradebug node_dump level: 3 << hanganlysis level >>

65

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

analysis initiated by oradebug
os thread scheduling delay history: (sampling every 1.000000 secs)
0.000000 secs at [17:19:17]
NOTE: scheduling delay has not been sampled for 0.977894 secs 0.000000 secs from
[17:19:14 - 17:19:18], 5 sec avg
0.000323 secs from [17:18:18 - 17:19:18], 1 min avg
0.000496 secs from [17:14:19 - 17:19:18], 5 min avg

Chains most likely to have caused the hang:
[a] Chain 1 Signature: 'SQL*Net message from client'<='enq: TX - row lock contention'
Chain 1 Signature Hash: 0x38c48850

Chain 1:
Oracle session identified by: << waiter »>
{
instance: 2 (rondb.rondb2)
os id: 12250
process id: 40, oracle@hostname (TNS V1-V3)
session id: 103
session serial #: 1243
}
is waiting for 'enq: TX - row lock contention' with wait info:
{

p1l: 'name|mode'=0x54580006
p2: 'usn<<16 | slot'=0x20001b
p3: 'sequence'=0x101fc
time in wait: 21.489450 sec
timeout after: never
wait id: 33
blocking: 0 sessions
current sql: update emp set sal=sal+100 where eno=1

and is blocked by
=> Oracle session identified by: << holder »>>
{
instance: 1 (imcruat.imcruati)
os id: 8047
process id: 42, oracle@usdbt42 (TNS V1-V3)
session id: 14
session serial #: 125
}
which is waiting for 'SQL*Net message from client' with wait info:
{
pl: 'driver id'=0x62657100
p2: '#bytes'=0x1
time in wait: 27.311965 sec

66

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2 © CLUSTERWARE STACK MANAGEMENT AND TROUBLESHOOTING

timeout after: never
wait id: 131
blocking: 1 session

**¥ 2012-12-16 17:19:18.725

State of ALL nodes
([nodenum]/cnode/sid/sess_srno/session/ospid/state/[adjlist]):
[102]/2/103/1243/c0000000e4ae9518/12250/NLEAF/[262]
[262]/1/14/125/c0000000d4a03f90/8047/LEAF/

¥ 2012-12-16 17:19:47.303

HANG ANALYSIS DUMPS:
oradebug _node_dump_level: 3

State of LOCAL nodes
([nodenum]/cnode/sid/sess_srno/session/ospid/state/[adjlist]):
[102]/2/103/1243/c0000000e4ae9518/12250/NLEAF/[262]

In the preceding example, SID 102 on instance 2 is blocked by SID 261 on instance 1. Upon identifying the
holder, either complete the transaction or abort the session to release the lock from the database.

It is sometimes advisable to have the SYSTEMSTATE dump along with the HANGANALYSIS to generate more detailed
diagnostic information to identify the root cause of the issue. Depending upon the level that is used to dump the
SYSTEMSTATE, the cursor might take a very long time to return to the SQL prompt. The trace file details also can be
found in the database alter.log file.

You shouldn’t be generating the SYSTEMSTATE dump under normal circumstances; in other words, unless
you have some serious issues in the database or are advised by Oracle support to troubleshoot some serious
database issues. Besides, the SYSTEMSTATE tends to generate a vast trace file, or it can cause an instance crash under
unpredictable circumstances.

Above all, Oracle provides the HANGFG tool to automate the collection of systemstate and hang analysis for a
non-RAC and RAC database environment. You need to download the tool frommy_oracle_suport (previously known
as metalink). Once you invoke the tool, it will generate a couple of output files, named hangfiles.out and
hangfg.log, under the $ORACLE_BASE/diag/rdbms/database/instance_name/trace location.

Summary

This chapter discussed the architecture and components of the Oracle Clusterware stack, including the updates in
Oracle Clusterware 12cR1. We will talk about some other new Oracle Clusterware features introduced in Oracle 12cR1
in Chapter 4.

This chapter also discussed tools and tips for Clusterware management and troubleshooting. Applying the tools,
utilities, and guidelines described in this chapter, you can diagnose many serious cluster-related issues and address
Clusterware stack startup failures. In addition, you have learned how to modify the default tracing levels of various
Clusterware daemon processes and their subcomponents to obtain detailed debugging information to troubleshoot
various cluster-related issues. In a nutshell, the chapter has offered you all essential cluster management and
troubleshooting concepts and skills that will help you in managing a medium-scale or large-scale cluster environment.

67

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

RAC Operational Practices

by Riyaj Shamsudeen

When running a RAC cluster, some operational practices can reduce overall administration costs and improve
manageability. The design of a RAC cluster is critical for the effective implementation of these practices. While
this chapter discusses numerous RAC design patterns, implementation of these design practices will lead to better
operational results.

Workload Management

Workload management is an essential tool that simplifies the management of RAC clusters. Skillful use of workload
management techniques can make the administration of a production cluster much easier. It can also speed up the
detection of failures and accelerate the failover process. Services, VIP listeners, and SCAN listeners play important roles
in workload management.

Workload management is centered on two basic principles:

1. Application affinity: Optimal placement of application resource usage to improve the
performance of an application.

2. Workload distribution: Optimal distribution of resource usage among available nodes to
maximize the use of cluster nodes.

Application affinity is a technique to keep intensive access to database objects localized to improve application
performance. Latency to access a buffer in the local buffer cache is on the order of microseconds (if not nanoseconds
with recent faster CPUs), whereas latency to access a buffer resident in a remote SGA is on the order of milliseconds,
typically, 1-3ms.! Disk access latency is roughly 3 to 5ms for single block reads; that is nearly the same as that for
remote buffer cache access latency, whereas local buffer cache access is orders of magnitude faster. So, if an application
or application components (such as a group of batch programs) access some objects aggressively, connect those
application components to an instance so that object access is mostly localized, improving application performance.

A complementary (though not necessarily competing) technique to application affinity is workload distribution.
For example, if there are four nodes in a cluster, then you would want to distribute workload evenly among all four
nodes so that a node is not overloaded. Service is a key tool to achieving workload distribution evenly among all nodes
of a cluster.

'In Exadata platforms, the remote buffer cache access latency is about 0.5ms. Both faster CPUs and infiniband fabric hardware
provide lower latency.

69

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

In practice, application affinity and workload distribution coexist. Some application components use application
affinity to improve performance, and a few application components use workload distribution.

In addition to administrator-managed databases, you can also use policy-managed databases for workload
management. Oracle 11gR2 introduces policy-managed databases and Oracle version 12c enhances policy-managed
databases for dynamic policy management. Policy-managed databases are discussed later in this chapter.

Services

A service is a logical abstraction designed to group application components for optimal workload management.
By implementing a service-based connection design, the application workload can be affinitized, distributed, or
both. A database connection string specifies a service as a connection property, and the cluster processes distribute
new connections to an instance depending on the workload specification of the service. The performance metrics
of a service are also used by the listener processes to redirect the connection. Further, database processes calculate,
maintain, and propagate service metrics to facilitate workload distribution and failover techniques.

A typical database connection using a service is done according to the following steps:

1. Application process sends a connection request specifying a service_name to the SCAN
(Single Client Access Name) listener.

2. SCAN listener identifies the instance that can provide the best quality of service.

3. SCAN listener redirects the connection to the VIP (virtual IP address) listener listening
locally for that instance.

4. VIP listener creates a database connection process, and the application continues
processing the data by communicating to the connection process.

By default, every database has some default services created, as shown in the following query output. Default
services are marked as preferred in all instances; therefore, default services are not useful for workload management.
For example, a service SOLRAC matching the database name (db_name initialization parameter) is created, and that
service is preferred in all instances of the database. So, workload distribution among the instances of the database is
not effective using the SOLRAC service since connecting through that service can connect to any instance.

SOL> select name, goal from v$active services

NAME GOAL
SOLRAC NONE
SYS$BACKGROUND NONE
SYS$USERS NONE

You need to create a new service to implement workload management properly. Only a service created by you
can be used effectively for workload management. There are many ways to create a service, such as using the srvctl
command, the dbms_service package call, or Oracle Enterprise Manager (OEM). In a single-instance database, you
can use the dbms_service package to create and manipulate a service. In RAC, you should not use the dbms_service
package call. Instead, it is better to use the srvctl command to create a service. The srvctl command creates a cluster
resource in Clusterware, in addition to creating a service in the database. This cluster resource for a service is
monitored for availability, and the resource is failed over in cases of instance failure.

70

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

The following command adds a new service: po to solrac database. This command also specifies that this service
should be preferred in solracl and solrac3 instances, and the service should fail over to solrac2 and solrac4 instances
if a preferred instance fails. Flag -1 specifies preferred instances, and flag -a specifies available instances.

$ srvctl add service -d solrac -s po -r solraci,solrac3 \
-a solrac2,solrac4 -m BASIC -j short -B service_time

In Oracle Database version 12c, the syntax to add a service is different and the options are more verbal. While the
command options in 11.2 will also work in version 12c, the abbreviated command options are deprecated in version 12c.
Earlier version 11.2 commands to add a service can be rewritten as follows using version 12c syntax.

$ srvctl add service -db solrac -service po
-preferred solraci,solrac3 \
-available solrac2,solrac4 -failovermethod BASIC \
-clbgoal short -rlbgoal service time

Adding a service using the srvctl command adds a resource in Clusterware, too. Whereas in 11.2 versions,
the user has to start the service manually after adding a service, in version 12c, the service is automatically started.
This cluster resource is a dependent of database and VIP resources. So, as soon as the database and VIP resources
are online, the service resource will be altered online.

$ crsctl stat res ora.solrac.po.svc -p |more
NAME=ora.solrac.po.svc
TYPE=ora.service.type

SERVICE_NAME=PO
START DEPENDENCIES=hard(ora.solrac.db,type:ora.cluster vip neti.type)
weak (type:ora.listener.type) pullup(type:ora.cluster vip neti.type) pullup:always(ora.solrac.db)

Starting the database resource will recursively start dependent Clusterware resources. As the services are defined
as dependent resources, starting the Clusterware resource of a service enables the service in the database by implicitly
calling the dbms_service package.

You could explicitly start a service using the srvctl command, as well. Query the view v$active_services to see that
a new service has been created and started.

$ srvctl start service -d solrac -s po

SOL> select name, creation_date from v$active services
where name='P0’';

NAME CREATION DATE

PO 17-DEC-12

Service Metrics

The MMON (Memory Monitor) database background process calculates the service-level metrics using service
statistics, and these metrics are visible at v$activeservice dynamic performance view. Metrics are calculated at
intervals of 5 seconds and 1 minute. In the following output, the first line shows the metrics calculated at 1-minute
intervals, and the second line shows the metrics calculated at 5-second intervals.

SOL> select inst_id, begin_time, end_time from gv$servicemetric
where service name='PO' order by 1, 2;

71

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

INST BEGIN_TIME END_TIME
1 14-JAN-2013 16:05:57 14-JAN-2013 16:06:57
1 14-JAN-2013 16:07:06 14-JAN-2013 16:07:11

Two sets of metrics are calculated by the MMON background process, one indicating service_time and the
other indicating throughput. Depending on the service configuration, goodness of a service is calculated and PMON
(Process Monitor) or LREG (Listener Registration - 12¢) background processes communicate the service metrics to
the SCAN and VIP listeners.

Figure 3-1 shows the MMON propagation details. It gives an overview of service metrics calculation and
propagation.

MMON » AWR 1< ADDM
base tables
‘r \
PMON
LREG (12¢) ONS Queue
Y

To Other

listeners ONS
daemons Queue
consumers

Figure 3-1. Service metrics calculation and propagation

5. MMON process populates service metrics in AWR (Automatic Workload Repository)
base tables.?

6. Service metrics are propagated to the ONS (Oracle Notification Service) daemon, and ONS
daemons propagate the service metrics to the client-side driver and client-side ONS daemon.

7. Inaddition, service metrics are enqueued in the sys$service_metrics queue. A client
program can register as a subscriber to the queue, receive queue updates, and take
necessary action based on the queue alerts.

Also, MMON propagation is a key component of the FAN (Fast Application Notification) feature discussed later
in this chapter.

A set of columns, namely, elapsedpercall, cpupercall, and dbtimepercall, indicate the response time quality of
the service. The following data from v$servicemetric shows that response time metrics are better in instance 1 than in
instance 2, as dbtimepercall is lower in instance 1 than in instance 2. Using these statistics, the SCAN listener redirects
the connection to an instance that can provide better quality of service.

SOL> select inst_id,service name, intsize_csec, elapsedpercall,
cpupercall,dbtimepercall
from gv$servicemetric where service_name='PO’
order by inst_id, 2,3;

2 AWR report also prints the service-level metrics.

72

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

INST SERVICE INTSIZE_CSEC ELAPSEDPERCALL CPUPERCALL DBTIMEPERCALL

511 45824.8171 19861.5611 45824.8171
5979 32517.4693 13470.9456 32517.4693
512 89777.4994 41022.0318 89777.4994
5938 50052.119 23055.3317 50052.119

Columns callspersec and dbtimepersec indicate the throughput metrics of a service.

SQL> select inst_id,service_name, intsize csec, callspersec,
dbtimepersec
from gv$servicemetric where service name='PO’
order by inst id, 2,3;

INST SERVICE INTSIZE_CSEC CALLSPERSEC DBTIMEPERSEC

512 1489.64844 4099.97602
6003 1200.56638 4068.117

Note that these metrics are indicative of an average of performance statistics of all the workloads connecting to
that service in an instance. As averages can be misleading, it is important to understand that in a few cases listeners
can redirect the connections to instances that may not be optimal for that service.

Load Balancing Goals

Services can be designed with specific goals, to maximize either response time or throughput. Service metrics are
factored to identify best-instance matching with the service goals. Two attributes of a service definition specify the
service goal; namely, GOAL and CLB_GOAL.

Attribute GOAL can be set to a value of either LONG or SHORT. The value of LONG implies
that the connections are long-lived, such as connections originating from a connection pool.
When the attribute GOAL is set to LONG, connections are evenly distributed among available
instances, meaning that the listener tries to achieve an equal number of connections in all
instances where services are available. An attribute value of SHORT triggers runtime load
balancing based upon performance metrics.

If the attribute GOAL is set to SHORT, then only the CLB_GOAL attribute is applicable. If the
attribute CLB_GOAL is set to SERVICE_TIME, then connections are redirected to the instance
that can provide better response time for that service. If CLB_GOAL is set to THROUGHPUT,
then connections are redirected to the instance that can provide better throughput for that
service.

If the attribute CLB_GOAL is set to response_time, then service metrics with names ending with percall are
considered to measure goodness of an instance for a service. If the attribute CLB_GOAL is set to THROUGHPUT, then
metrics ending with persec are considered to measure goodness of an instance for a service. Table 4-1 summarizes
these service attributes and offers a short recommendation.

73

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

Table 4-1. Service Goals

GOAL CLB_GOAL Service metrics
LONG Ignored Suitable for long-lived connections such as connection pool connections.
SHORT Response_time Service is redirected to an instance that can provide better response_time.

Suitable for OLTP workload.

SHORT Throughput Service is redirected to an instance that can provide better throughput.
Suitable for DSS/Warehouse workload.

The MMON process calculates goodness and delta columns using service metrics. A lower value for the
goodness column indicates quality of service in that instance (in retrospect, it should have been called a badness
indicator). The delta column indicates how the value of the goodness column will change if a new connection is
added to that service. In this example output, PO service is defined with the GOAL attribute set to the LONG value,
and so the goodness column simply indicates the number of connections to that service in that instance. Since
instances 2 and 3 have lower values for the goodness column, a new connection to PO service will be redirected to
instance 2 or 3.

SQL> select inst_id, service_name, intsize csec,goodness,delta
from gv$servicemetric
where service name='PO' order by inst_id, 2,3;

INST SERVICE INTSIZE_CSEC GOODNESS DELTA
1 PO 514 1883 1
1 PO 5994 1883 1
2 PO 528 1820 1
2 PO 5972 1820 1

In versions 11.2 and earlier, the PMON process propagates the service metrics to the listeners registered in
local_listener and remote_listener initialization parameters. As the remote_listener specifies the address of SCAN
listeners and the local_listener parameter specifies the address of the VIP listener, the PMON process propagates the
service metrics to both SCAN and VIP listeners. You can trace listener registration using the following command.

alter system set events='immediate trace name listener registration level 15';

The PMON trace file shows how the quality of service is propagated to listener processes. Here is an example
(output of PMON process sending the service quality to the listener process).

kmmgdnu: po
goodness=100, delta=10,
flags=0x4:unblocked/not overloaded, update=0x6:G/D/-

In version 12c, listener registration is performed by a new mandatory background process named LREG.
At database start, the LREG process polls the listeners specified in the local_listener and remote_listener parameters
to identify whether the listeners are running. If the listeners are available, then the services are registered to the
listeners by the LREG process. The earlier command to trace listener registration in version 11.2 is applicable to
version 12c also, but the listener registration details are written to an LREG trace file instead of a PMON trace file.

74

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

Unix process pid: 3196, image: oracle@oelé6raci.example.com (LREG)
Services:

2 - po.example.com
flg=0x4, upd=0x6
goodnes=0, delta=1

Listen Endpoints:

0 - (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=0elbracl.example.com)(PORT=5500))
(Presentation=HTTP) (Session=RAW))
f1g=0x80000000, nse=0, lsnr=, 1flg=0x13
pre=HTTP, sta=0

If a service is not registered properly to the listeners or if the service quality decisions taken by the listeners are
incorrect, then you can trace the service registration to check if the listeners received correct service metrics.

Version 11.2 introduces the Valid Node Checking for Registration feature. SCAN listeners will accept registration
from any IP address in the same subnet as the SCAN IP address. The VIP listener will accept the registration only from
the local node. You can use invited_nodes to specify the permitted nodes for listener registration.

Runtime Failover

Atruntime, a connection can be configured to fail over quickly to an available instance by configuring the failover
type service attribute. A service supports failover types of NONE, SESSION, or SELECT. Failover type NONE does not
provide any failover. If the failover type is set to SESSION, then after a node failure, sessions will fail over to surviving
instances and the application must restart all work, including in-transit work. If the failover type is SELECT, then
cursor fetch details are remembered by the client-side JDBC/OCI driver, the SELECT statement is restarted, and
FETCH continues from the last row fetched before the failure.

In version 11.2, while the SELECT failover type supports a transparent restart of queries, it doesn’t restart any
DML operation. The application must restart DML statements, and failures in DML statements must be handled by
the application.

Version 12c introduces TRANSACTION, a new failover type, and this failovertype attribute value is specific to a
new feature called Application Continuity. Application Continuity also captures DML changes and replays the DML
activity using the Oracle client-side replay driver. The Application Continuity feature is discussed later in this chapter.

In version 12c, command options are specified more verbally. For example, in 11.2, option -e specifies the
failover type, and in version 12c, service attribute failovertype specifies failover type.

Service in Second Network

A service can be configured to operate in a subnet. For example, to specify a service to be available in only the second
network, you would specify option -k 2 while creating a service. In version 12c, clause -netnum 2 can be used to
specify that the service will operate only in the second network. Please refer to Chapter 9 to learn more about the
second network in a RAC cluster.

75

www.it-ebooks.info

http://oracle@oel6rac1.example.com/
http://po.example.com/
http://HOST=oel6rac1.example.com
http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

Guidelines for Services
The following guidelines are useful while creating services to improve cluster management.

e (Create a separate service for each major application component. Service is an excellent
method to implement application affinity. For example, if PO application accesses numerous
PO-related tables and if one instance is sufficient to service the PO application, then keep PO
service contained in one instance. You can keep the PO service connecting to an instance by
creating the service with just a preferred instance. Application affinity improves performance
by reducing global cache latency.

e Design the service in such a way that both preferred and available instances are configured.
While designing services, consider the scenario of each node shutting down and construct the
service placement based upon those scenarios.

e Use policy-managed databases instead of administrator-managed databases if there are
numerous nodes (12+) in your cluster.

e Use of SCAN listeners and services reduces administration overhead. Especially for sites
upgrading from versions 11.1 and earlier, it is important to alter the connection string to
use SCAN listeners and SCAN IP addresses. It is very hard to change the connection string
post-upgrade.

e Specity optimal clbgoal and rlbgoal parameters matching the application workload. Service
metrics are calculated as an average for all the workloads connecting to that service. So, if
your application has different workloads and if it is possible to segregate the application
components depending upon the workload characteristics, then use disjointed, unique
services for those application components. This segregation of application workload to
different services improves the accuracy of service metrics and improves the accuracy of
load balancing decisions. This segregation also improves the ability to identify application
components consuming resources quickly.

There are only a few minor pitfalls in creating a new service. Production clusters with 100+ services operate
without any major side effects. While we are not recommending that you create hundreds of unnecessary services,
you should create as many services as you need to split the applications into manageable, disjointed workloads.

In version 11.2, if there are numerous services (100+) and numerous listeners, then there is a possibility that the
PMON process might spend more time on service registration to listeners due to the sheer number of services and
listeners. But, in version 12c, this possibility is eliminated as the LREG parameter performs service registration and
PMON is freed from listener registration.

SCAN and SCAN Listeners

Introduced in version 11.2, SCAN (Single Client Access Name) is an effective tool to enhance workload management
in RAGC, to eliminate complexity in connection string management, and to provide faster connect time/runtime
failover. Further, the SCAN feature simplifies connection management by providing a logical abstraction layer of the
cluster topology. Cluster topology changes do not trigger changes to connect strings.

Consider an environment with numerous applications and users who are connecting to a RAC database with
three nodes in the cluster, using the following connect string:

PO =
(DESCRIPTION=
(ADDRESS_LIST=
(LOAD_BALANCE=YES)
(FAILOVER=YES)

76

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

(ADDRESS=(PROTOCOL=tcp) (HOST=rac1.example.com)(PORT=12000))
(ADDRESS=(PROTOCOL=tcp) (HOST=rac2.example.com) (PORT=12000))
(ADDRESS=(PROTOCOL=tcp) (HOST=rac3.example.com) (PORT=12000))

)

(CONNECT_DATA=

(SERVICE_NAME=PO)
)
)

The preceding connect string has some drawbacks:

1. Ifwe add another node to the cluster, say rac4.example.com, then connect strings must
be modified in numerous application configuration files. Worse, topology changes might
trigger changes to the tnsnames.ora file in thousands of user computers. This type of
configuration change requires seamless coordination.

2. Similarly, if a node is removed from the RAC cluster, then connect strings must be altered
to eliminate unnecessary waits for a TCP timeout while creating new connections. For
example, consider that the rac1.example.comnode is shut down for a prolonged period
of time. As connection strings can be configured to try to connect to all VIP listeners by
specifying load_balance=ON in the connection string, connection attempts will eventually
succeed, after a brief TCP timeout period. Nevertheless, there may be a delay induced
by TCP timeout duration. This connection delay is visible in applications that open new
connections aggressively.

3. Without SCAN listeners, the connect time load balancing decision is performed by VIP
listeners. The use of VIP listeners for workload management is not optimal, as the load
balancing decision is not centralized, and so VIP listeners can redirect connections
inaccurately. VIP listeners do not use all service attributes for load balancing either.

SCAN listeners resolve these connect time issues and improve load balancing accuracy. SCAN listeners act as
a forefront of connection management, applications connect to SCAN listeners, and SCAN listeners act as a conduit
mechanism to forward connections to an instance that can provide better quality of service. A SCAN listener identifies
an instance to forward using the service metrics received from the database processes.

SCAN listeners know about topology changes. Any change in the cluster topology, such as addition of a node,
deletion of a node, etc., is propagated to SCAN listeners immediately. Application connects only to the SCAN
listeners, and so cluster topology changes have no effect on application connect strings.

The following is an example of a connect string utilizing the SCAN listener feature; this connect string specifies
the DNS alias of the SCAN IP address (also known as SCAN name) and the port number of SCAN listeners. In this
example, rac-scan.example.com, is the SCAN name and the listener listens on port 25000.

PO =
(DESCRIPTION=
(ADDRESS_LIST=
(ADDRESS=(PROTOCOL=tcp) (HOST=rac-scan.example.com)(PORT=25000))

(CONNECT DATA=(SERVICE_NAME=P0))
)

A new connection request using the preceding connect string is made according to the following high-level steps.
Figure 3-2 shows an example of a new connection to the SCAN listener.

77

www.it-ebooks.info

http://HOST=rac1.example.com
http://HOST=rac2.example.com
http://HOST=rac3.example.com
http://say rac4.example.com
http://rac1.example.com/
http://rac-scan.example.com/
http://HOST=rac-scan.example.com
http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

SCAN
Listeners

New
connection

a | | | |d

Figure 3-2. SCAN listeners

1. Application connection or a process queries the DNS server to identify the IP addresses
associated with SCAN (rac-scan.example.com in this example). Note that as DNS name
to IP address mapping can already be cached in a local DNS cache, the DNS query might
result in a local DNS cache lookup instead of a query to the DNS server.

2. DNS server responds with an IP address associated with the DNS alias.

3. The process sends a connection request to the SCAN IP address and the PORT number
providing SERVICE_NAME for the connection request.

4. SCAN listeners identify instances that can provide better quality of service for that service
using service metrics. The connection is forwarded to a VIP listener local to the chosen
instance.

5. A VIP listener creates a connection process (dedicated server mode), and the connection
process attaches to the database, and the user process continues processing the data
communicating with that connection process.

In a RAC cluster, up to three SCAN IP addresses can be configured. Since a SCAN listener is a simple redirection
mechanism (and hence a lightweight process), SCAN listeners can manage spurious connection requests without
any delay.

SCAN IP addresses must be mapped to a SCAN DNS alias in the DNS server or GNS (Grid Naming Service).

It is recommended that the DNS server be configured to retrieve SCAN IP addresses in a round-robin fashion. IP
addresses retrieved in a round-robin fashion provide additional connection load balancing capability and prevent
overloading of a SCAN listener. Following nslookup shows that three IP addresses are associated with the SCAN
name.

$ /usr/sbin/nslookup rac-scan.example.com

Name: rac-scan.example.com
Address: 10.7.11.110
Name: rac-scan.example.com
Address: 10.7.11.111
Name: rac-scan.example.com
Address: 10.7.11.112

78

www.it-ebooks.info

http://rac-scan.example.com/
http://rac-scan.example.com/
http://rac-scan.example.com/
http://rac-scan.example.com/
http://rac-scan.example.com/
http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

While installing Grid Infrastructure software, you can provide the SCAN name and port number. Grid Infrastructure
queries the DNS server to identify IP addresses associated with SCAN names and creates as many SCAN listener
resources as there are SCAN IP addresses. For example, if DNS returns three SCAN IP addresses, then three SCAN IP
resources and three SCAN listener resources are created in the Clusterware.

After the Grid Infrastructure installation, you can modify SCAN IP address and SCAN listener attributes using the
srvctl command. The following configuration of SCAN IP address shows that Clusterware created three sets of SCAN
IP resources and SCAN listeners for the rac-scan.example.com DNS alias.

$ srvctl config scan

SCAN name: rac-scan, Network: 1/10.7.11.0/255.255.254.0/eth1
SCAN VIP name: scanl, IP: /rac-scan.example.com/10.7.11.110
SCAN VIP name: scan2, IP: /rac-scan.example.com/10.7.11.111
SCAN VIP name: scan3, IP: /rac-scan.example.com/10.7.11.112

Enabling client-level TNS trace, you can see that the SCAN IP address retrieved is different for each connection
attempt. This round-robin retrieval of SCAN IP addresses provides a load balancing mechanism among SCAN listeners.
The following lines are shown from SQL*Net trace files, and you can see that the first connection request went
to the SCAN listener with IP address 10.7.11.112 and the second connection request went to the scan listener with
IP address 10.7.11.110.

$ sqlplus apps@po
nttbnd2addr:using host IP address: 10.7.11.112

$ sqlplus apps@po
nttbnd2addr:using host IP address: 10.7.11.110

The initialization parameter remote_listener is set to the TNS alias of SCAN listener or EZConnect syntax using
the SCAN IP address and port number. The PMON or LREG process register services and propagates service-level
changes to the SCAN listener specified in the remote_listener parameter. EZConnect syntax is as follows.

* .REMOTE_LISTENER=rac-scan.example.com:25000

As a SCAN listener acts as a redirection mechanism for connection requests, reviewing services supported by a
SCAN listener shows that all services supported by a SCAN listener will have a remote server keyword, indicating
that the SCAN listener will redirect the connection to a VIP listener. In the following 1snrctl services command
output, notice the keyword REMOTE SERVER, indicating that the LISTENER_SCAN?2 listener will redirect the connection
requests to the rac2 node VIP listener, thereby forwarding the connection to the RAC2 instance.

$ lsnrctl services LISTENER SCAN2
LSNRCTL for Solaris: Version 11.2.0.2.0 - Production on 19-JAN-2013 16:43:26
Copyright (c) 1991, 2010, Oracle. All rights reserved.
Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=LISTENER SCAN2)))

Services Summary...

Service "PO" has 1 instance(s).
Instance "RAC2", status READY, has 1 handler(s) for this service...

Handler(s):

"DEDICATED" established:1 refused:0 state:ready

REMOTE SERVER

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=rac2.example.com)(PORT=12000))

(CONNECT_DATA=(SERVICE_NAME=PO) (INSTANCE_NAME=RAC2)))

79

www.it-ebooks.info

http://rac-scan.example.com/
http:///rac-scan.example.com
http:///rac-scan.example.com
http:///rac-scan.example.com
http://rac-scan.example.com/
http://HOST=rac2.example.com
http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

If a service is not visible in a SCAN listener services output, the service registration to SCAN listener(s) is
incorrect. Similarly, the Isnrctl services command output of a VIP listener will print services as LOCAL SERVER
keyword, indicating that the VIP listener will handle the connection for that service.

SCAN Listener in Second Network (12c¢)

From version 11.2 and later, it is possible to create a second network, and VIP listeners can be created in the second
network, too. However, SCAN listeners can listen only in the default first network in version 11.2. Version 12¢
eliminates that restriction, and it is possible to have SCAN listeners listening on a second network also. By specifying
the listener_networks parameter, SCAN listeners will redirect the connection to VIP listeners within the same
network subnet.

Let us walk through an example of SCAN listener in the second network in version 12c. The following set of
commands adds a network with netnumber 2 in a subnet of 192.168.8.0 (note that first network has 10.7.11.0 subnet).
The next three commands add VIP addresses with -netnumber 2, specifying that these VIP listeners are associated
with the second network. The fourth command adds a listener to listen in port 1521 in these node VIP addresses.

srvctl add network -netnum 2 -subnet 192.168.8.0/255.255.255.0

srvctl add vip -node racl.example.com -address raclvip.example2.com/255.255.255.0 -netnum 2
srvctl add vip -node rac2.example.com -address rac2vip.example2.com/255.255.255.0 -netnum 2
srvctl add vip -node rac3.example.com -address rac3vip.example2.com/255.255.255.0 -netnum 2
srvctl add listener -netnum 2 -endpoints TCP:1522

P A A A A

The following commands add a SCAN name in network 2 with a SCAN name of ebs .example2.com. The second
of the following two commands adds a SCAN listener?® listening in port 20000, and Grid Infrastructure identifies SCAN
IP addresses by querying DNS for SCAN name ebs .example2.com.

$ srvctl add scan -scanname ebs.example2.com -netnum 2
$ srvctl add scan_listener -listener LISTSCAN -endpoints TCP:20000

Database initialization parameter listener_networks must be modified so that the PMON or LREG process can
register the services to listeners in both networks. The LISTENER_NETWORKS parameter specifies the network
configuration in two parts, the first part specifying the configuration of the first network, named network1, and the
second part specifying the configuration of the second network, named network2. In this example, listener_netl and
listener_net2 are TNS aliases connecting to VIP listener in local nodes; the remote_listener parameter refers to the
SCAN listeners running in their respective networks specified using EZConnect syntax.

alter system set LISTENER NETWORKS='((NAME=network1)(LOCAL LISTENER=1listener net1)
(REMOTE_LISTENER=ebs.example.com:10000))", "' ((NAME=network2) (LOCAL LISTENER=listener net2)
(REMOTE_LISTENER=ebs.example2.com:20000))";

Consider the following connection string from a user connecting to the second network (possibly a connection
originating from example2.com domain): SCAN listeners will redirect the connection to a VIP listener in the second
network only. Essentially, connection from the second network subnet will remain in the second network subnet and
the network packets may not traverse from one subnet to another subnet. This network demarcation is important,
as a firewall might prevent network packets from crossing over to another domain.

3 Notice the syntax for adding scan_listener does not specify a netnum clause. This appears to be a documentation bug, so refer to
public documentation to verify the syntax.

80

www.it-ebooks.info

http://rac1.example.com/
http://rac1vip.example2.com/
http://rac2.example.com/
http://rac2vip.example2.com/
http://rac3.example.com/
http://rac3vip.example2.com/
http://ebs.example2.com/
http://ebs.example2.com/
http://ebs.example2.com/
http://ebs.example.com/
http://ebs.example2.com/
http://example2.com/
http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

PO =
(DESCRIPTION=
(ADDRESS_LIST=
(ADDRESS=(PROTOCOL=tcp) (HOST=ebs.example2.com) (PORT=20000)))
(CONNECT_DATA=(SERVICE_NAME=PO)
)
)

Support of SCAN listeners in the second network is an important feature in an enterprise database cluster with
multiple network segments and domains, especially after major business events such as a merger of two companies.

Guidelines for SCAN Listeners

Optimally configured SCAN IP addresses and SCAN listeners are essential production components from 11.2 and
later. The SCAN feature greatly reduces administration overheads, as you can publish the TNS connection string
once and that connection string is not affected by RAC cluster topology changes. As SCAN listeners are lightweight
forwarders, even if you have numerous nodes in a cluster, just three SCAN listeners are able to service an onslaught of
connection requests. In fact, in a busy, connection-intensive production cluster, VIP listeners are bottlenecks, while
SCAN listeners are able to withstand spurious connection requests easily.

Multiple DNS servers with failover and load balancing represent an extra layer of protection to avoid a single
point of failure. This load balancing between DNS servers is usually a responsibility of network administrators. If you
configure GNS servers, Clusterware manages GNS daemons and VIPs. If a server running GNS daemon or VIP fails,
then the Clusterware will automatically fail over the GNS daemon and VIP to a surviving instance.

In a single segment network cluster, the local_listener parameter should refer to the VIP listener running on the
local node, and the remote_listener parameter should refer to the SCAN listeners using EZConnect syntax specifying
the DNS alias of the SCAN IP address and port number. Do not specify remote VIP listeners from another node in the
remote_listener parameter, as that can cause cross-registration and accidental connection forwarding to the other node.

Global Database Services (12c)

Oracle Database version 12c introduces the concept of Global Database Services (GDS). Services discussed so far in
this chapter are those that distribute the workload between instances of a database. In a truly globalized environment,
however, databases are replicated using tools such as GoldenGate, Streams, etc. Global services provide a mechanism
to fail over the connections globally between the databases.

It is easier to explain the concept of GDS with a connection string example. Consider that there are two
databases kept in sync using a bidirectional replication technology. The database servicing the California region is
physically located near that region, and likewise the database servicing the New York region is physically located
there. Thus, clients in the California region will benefit by connecting to the California database during normal
operating conditions, and in the case of failure of the database in California, the connections should fail over to the
New York database, and vice versa. Until version 11.2, this was achieved using a connect time failover connect string.

As of version 12c, the connect string for the California region specifies two address_list sections. These two
address_lists have the FAILOVER attribute set to ON but load_balance set to OFE This connection string will try the
connection to the first address_list in the connect string; that is, the application will connect to the California database.
If that database does not respond before TCP timeout, then the connection will fail over to the New York database.

(DESCRIPTION=
(FAILOVER=0n)
(ADDRESS_LIST=
(LOAD_BALANCE=ON)
(ADDRESS=(host=ca1) (port=1522))

81

www.it-ebooks.info

http://HOST=ebs.example2.com
http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

(ADDRESS=(host=ca2) (port=1522))

(ADDRESS=(host=ca3) (port=1522)))
(ADDRESS_LIST=

(LOAD_BALANCE=ON)

(ADDRESS=(host=ny1) (port=1522))

(ADDRESS=(host=ny2) (port=1522))

(ADDRESS=(host=ny3) (port=1522)))
(CONNECT _DATA=

(SERVICE_NAME=PO)

(REGION=ca))

In addition to the failover specification among address_list sections, each address_list section also specifies
multiple addresses with LOAD_BALANCE set to ON. Essentially, a new connection from the California region will try
the first address_list as load_balance is set to OFF by default for description list. Then, an address from the chosen
address_list will be used to send packets to GDS listeners as load_balance is set to ON for that address_list.

Note that traditionally, a VIP listener or a SCAN listener is specified in the ADDRESS section. But, in the case
of GDS connect string, these are not traditional listeners, but GDS listeners. This feature was introduced in version 12c.
GDS listeners can be visualized as global SCAN listeners. Oracle recommends three GDS listeners per region, very
similar to the three SCAN listeners in a RAC cluster. Also, services are managed by srvctl command and global
services are managed by the gsdctl command interface.

GDS listeners connect to the database and register as subscribers of the servicemetric queue. Any topology
changes and Load Balancing Advisories (LBAs) are propagated to GDS listeners, and the GDS listeners use the LBAs
to forward connections to a database that can provide better quality of service.

GDS are useful with the Active Data Guard setup also. With the Active Data Guard feature, it is possible to use
a data guard instance for read-only activity. In many cases, the need arises for a global failover; that is, if the Active Data
Guard database is not available, then failover will be to the primary database and vice versa. The GDS feature will be
handy in implementing this requirement. Refer to the GDS Concept and Administration Guide for more details.

Failover in RAC

A RAC database offers many failover techniques. Failover methods can be classified into two categories: connection
time and runtime failover methods. Transparent Application Failover (TAF) is a reactive runtime failover method,
wherein database connection will automatically fail over to a surviving instance if the current instance fails.

Fast Connection Failover (FCF) is a proactive runtime failover technique. Changes in node availability, service
failures, etc., are propagated to the application, and the application will proactively recycle connections even before
the application encounters connection-related errors.

TAF

TAF fails over the connection to a surviving instance after encountering an instance failure. TAF can operate in either
SESSION or SELECT failover mode.

e In aSESSION failover mode, if a connection is severed then the connection will fail over
to a surviving instance. Essentially, the connection is reattempted automatically. Only the
connection is restarted, and the application must detect failures and restart failed workload.

e In a SELECT failover mode, the client-side driver remembers the cursor fetch details, and if
the current connection is severed, then the connection will fail over to surviving node. The
SELECT statement is re-executed, rows are fetched from the cursor and scrolled to the point of
failure in the cursor fetch operation, and rows are returned from the point of failure.

82

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

The following connect string is a simple example of TAF using a SCAN listener. With this connection string,
the application connects to a SCAN listener listening in port 12099. Notice that the failover_mode parameter
specifies the type as SESSION, indicating session failover mode. If the connection is severed, then the client will
retry the connection to the SCAN listener again. The SCAN listener will redirect the connection to the VIP listener of
a surviving node.

PO_TAF =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)
(HOST = rac-scan.example.com)(PORT = 12099))
(CONNECT _DATA =
(SERVICE_NAME = PO)
(FAILOVER MODE= (TYPE=SESSION) (METHOD=basic))
)
)

Dynamic-view v$session can be queried to verify if TAF is configured properly or not. The preceding connect
string shows that session level failover is enabled for the current connection. Killing the connection resulted in
respawning of a new connection, confirming that TAF is working as designed.

SOL> select sid, FAILOVER_TYPE, FAILOVER_METHOD, failed over
from v$session where
sid =(select sid from v$mystat where rownum =1);

SID FAILOVER_TYPE FAILOVER_M FAI

8227 SESSION BASIC YES

While it is possible to set up TAF with a client connection string, TAF can be implemented more elegantly using
service attributes. The advantage of implementing TAF using service attributes is that configuration changes can be
performed on the database server side without altering the client-side connect string. The following srvctl command
shows that SESSION failover type is added to po service. Option -z specifies failover retry attempts, and the -w option
specifies delay between failover attempts. In this example, connection will be attempted five times with 60-second
delays between successive attempts.

$ srvctl add service -d orcli2 -s po -r oelévml -a oelévm2 \
-m BASIC -e SESSION -z 5 -w 60

In version 12c, adding a service requires a different syntax, and options are specified more verbally. The earlier
command is written in version 12c as follows.

$ srvctl add service -db orcli2 -service po \
-preferred oel6évml -available oelévm2 \
-tafpolicy BASIC -failovermethod SESSION \
-failoverretry 5 -failoverdelay 60

It is a better practice to keep the connection string as simple as possible and modify configuration of services to

implement TAE This strategy simplifies connection string management in an enterprise database setup.
Further, it is best to implement TAF while creating services so that you can improve availability.

83

www.it-ebooks.info

http://rac-scan.example.com/
http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

Fast Connection Failover

Fast Connection Failover (FCF) is a proactive failover method to avoid downtime when there is an instance failure.
Proactive connection management improves application availability and user experience, as you can reduce runtime
errors. Here are a few examples where FCF can be used to avoid errors:

e After a database instance failure, all connections in a connection pool must be recycled by
the connection manager. Usually, stale connections are identified only when the connection
is reused by the application®, but the failure is detected only after an error is encountered by
the application. This late detection of error condition can lead to application errors and other
undesirable user experiences.

e Connection pool connections that were busy in the database executing queries might need to
wait for TCP timeouts. This delay can lead to slowness and errors in the application.

e After the recovery of failed instances, the application might not reconnect to the recovered
node. This issue can lead to unnecessary overload of the surviving nodes.

Instance failures can be propagated earlier to the application, and errors can be minimized by requesting the
application to recycle its connections after node or service failures. Essentially, service changes, node failures, node
up/down events, etc., are communicated immediately to the application, and this propagation is known as FAN. After
receiving a FAN event, the application proactively recycles connections or takes corrective actions depending upon
the nature of the failure.

FCF is a technique that captures FAN events and reacts to the received FAN events. FAN events can be captured
and connections recycled utilizing a few technologies:

1. Your application can implement connection pool technology that handles the FAN events,
such as Oracle WebLogic Active GridLink data source, Oracle JDBC Universal Connection
Pool, ODP.Net connection pool, OCI session pools, etc.

2. Your application can use programmatic interfaces to capture FAN events and react
accordingly.

3. Or, you can use database side callouts to handle FAN events.

WebLogic Active GridLink

WebLogic Active GridLink for RAC is a data source available in Oracle WebLogic version 11g. This data source is
integrated with RAC to handle FAN events and LBA without the help of any code changes. To make use of Active
GridLink for FCE you should configure an Active GridLink data source to connect to the SCAN listener and the ONS
daemon, in a WebLogic configuration screen.

The ONS daemon propagates RAC topology changes to the registered clients. Any topology change is propagated
to the clients listening to the SCAN IP address and 6200 ports. GridLink data source registers to the ONS daemon to
receive notifications. If there are any topology changes as broadcast by the ONS daemon, such as instance restart,
then GridLink data source captures the events and recycles the connections in the connection pool. Further, if there is
an Instance UP event due to instance restart, then that event is captured by GridLink data source, and the connections
are reapportioned among available nodes. This connection management avoids overloading of too few nodes after
node recovery. Also, Active GridLink receives LBAs from ONS daemons, and GridLink data source uses connections
from the least-loaded instances, implementing the runtime load balancing algorithm.

4 Applications typically borrow connections from a connection pool, perform database activity, and return the connections to the connection
pool. It is more likely that some connections may not have been reused for days, and so there may be application errors after few days.

84

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

Essentially, Active GridLink is an important tool to implement FCE runtime load balancing, and transaction
affinity. If your application uses WebLogic as a web server, you should implement Active GridLink-based data sources
to maximize the failover capabilities of RAC.

Transaction Guard (12c)

A key problem with failure detection and failure recovery is that the response from the database to the application is
transient. So, the response to a COMMIT statement can be lost in the case of instance failures. For example, consider
a scenario in which an application modified some rows and sent a commit to the database, but the database instance
failed and the application did not receive any response from the database. Hence, the application does not know
about the transaction status as the response from the database was lost. Two unique scenarios are possible:

1. Database committed the changes, but success response was not received by the
application.

2. Database failed even before the successful commit operation, and so the application must
replay the changes.

In either scenario, the application must know the transaction status to avoid data corruption. A new feature in
version 12c is the Transaction Guard, which provides a mechanism to keep track of the transaction state even after
database failures.

The Transaction Guard feature introduces the concept of logical transaction identifier. A logical transaction_id is
unique for a specific task from a connection, and the logical transaction_id is mapped to a database transaction_id.
The outcome of the logical transaction_id is tracked in the database. If there is a failure in the database, then
application connection can query the transaction status using logical transaction_id to identify if a transaction is
committed or not.

To implement this feature, you need to create a service with two attributes, namely, commit_outcome and
retention. The commit_outcome attribute determines whether the logical transaction outcome will be tracked
or not. Attribute retention specifies the number of seconds a transaction outcome will be stored in the database
(defaults to a value of 86,400 seconds = 1 day). The following command shows an example of po service creation with
commit_outcome set to TRUE, enabling Transaction Guard.

$ srvctl add service -db orcli2 -service po -preferred oelbvmi -available oelbvm2 \
-commit_outcome TRUE -retention 86400

The Transaction Guard feature requires code changes, and your application code must be changed to react at the
onset of failure. Application code must perform the following actions at the time of failure:
1. Receive FAN events from ONS daemon for failures.

2. Getthelastlogical transaction_id by calling getLTXID from a failed session.

3. Retrieve the status of the logical transaction_id by calling GET_LXID_OUTCOME, passing
the logical transaction_id retrieved in step 2.

4. Handle the transaction depending upon the transaction state.

Application Continuity (12c)

Application Continuity is a new feature implemented using the Transaction Guard feature. Oracle introduces a
new client-side JDBC driver class to implement Application Continuity. Universal Connection Pool and WebLogic
Active GridLink support Application Continuity by default. If your application uses a third-party connection pool
mechanism, then you need to modify code to handle Application Continuity.

85

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

The application issues database calls through the JDBC driver. The JDBC replay driver remembers each call in
arequest and submits the calls to the database. In the case of failures, JDBC replay driver uses the Transaction
Guard feature to identify the global transaction state. If the transaction is not committed, then the JDBC replay
driver replays the captured calls. After executing all database calls, replay driver issues a commit and terminates
replay mode.

To support Application Continuity, service must be created by setting a few service attributes, namely, failovertype,
failoverretry, failoverdelay, replay_init_time, etc. The following command shows an example of service creation.
Notice that failovertype is set to TRANSACTION; this is an additional failovertype value introduced by version 12c.

$ srvctl add service -db orcli2 -service po -preferred oel6vml -available oel6vm2 \
-commit_outcome TRUE -retention 86400 -failovertype TRANSACTION \
-failoverretry 10 -failoverdelay 5 -replay int time 1200

Not all application workloads can be safely replayed. For example, if the application uses autonomous
transactions, then replaying the calls can lead to duplicate execution of autonomous transactions. Applications must
be carefully designed to support Application Continuity.

Policy-Managed Databases

Traditionally, Clusterware resources (databases, services, listeners, etc.) are managed by database administrators, and
this type of management is known as administrator-managed databases. Version 11.2 introduced policy-managed
databases. This feature is useful in a cluster with numerous nodes (12+) supporting many different databases and
applications.

With a policy-managed database, you create server pools, assign servers to the server pool, and define policies of
server pools. Depending upon the policies defined, servers are moved into and out of server pools. For example, you
can define a policy such that the online server pool has higher priority during the daytime and the batch server pool
has higher priority in the nighttime. Clusterware will manage the servers in the server pool such that more resources
can be allocated, matching workload definitions.

By default, two server pools, that is, free and generic server pools, are created. Server pool free is a placeholder for
all new servers, and as the new server pools are created, servers are automatically reassigned from free server pool to
new server pools. Generic server pool hosts pre-11.2 databases and administrator-managed databases.

You can associate applications to server pools, and a database is also an application from the Clusterware perspective.
An application can be defined as singleton or uniform state. If an application is defined as singleton, then that application
can exist only in a server, and if defined as uniform, then that application will exist on all servers in a server pool.

Temporary Tablespaces

Temporary tablespaces in RAC require special attention, as they are shared between the instances. Temporary
tablespaces are divided into extents and instances cache subset of extents in their SGA. When a process tries to
allocate space in the temporary tablespace, it will allocate space from cached extents of the current instance.

Dynamic performance view gv$temp_extent_pool shows how temporary tablespace extents are cached.
Instances try to cache extents equally from all files of a temporary tablespace. For example, approximately 4,000
extents from files 6, 7, 8, and 9° were cached by every instance. So, you should create temporary tablespaces with as
many temp files as there are instances. In a nutshell, extents are cached from all temporary files, thereby spreading the
workload among the temporary files of a temporary tablespace.

3 Only partial output is shown. Files 1 through 5 also exhibit similar caching behavior, but extents in use were 0 for those files when
the view was queried. Thus, the output of those files is not shown.

86

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

RS@SOL> select inst_id, file id, extents_cached , extents_used
from gv$temp_extent pool
order by inst_id, file id;

INST_ID FILE_ID EXTENTS_CACHED EXTENTS_USED

4026
4021
3984
4033

[Y
© o~ O
N BN O

3984
3988
3985
3967

w w w w
O 00N O
P O kKL, O

The size of the cached extent is governed by the attributes of the temporary tablespace. For example, in RAC1
database, the extent size is 128KB.

RS@SQL>select tablespace name, INITIAL_EXTENT, NEXT_EXTENT
from dba_tablespaces
where tablespace_name='TEMP';

TABLESPACE_NAME INITIAL _EXTENT NEXT_EXTENT

TEMP 131072 131072

Extent caching is a soft reservation technique. Consider that a RAC1 instance used all of its cached extents
(because of a session connected to RAC1 performing a massive sort or join operation); then, that instance will ask
other instances to release the soft reservation for a group of extents in the temporary tablespace. After the extents are
uncached from other instances, the RAC1 instance can cache the uncached extents.

Extent caching and uncaching operations are performed under the protection of SS Enqueue. Further, the DFS
lock handle mechanism (discussed in Chapter 11) with CI Enqueue is used to trigger uncaching of extents in other
instances. So, excessive caching/uncaching can lead to waits for SS Enqueue and waits for DFS lock handle. Since
version 11g, uncaching of extents is performed in batches of 100 extents each per operation, and so SS Enqueue
contention is greatly reduced.

The following guidelines can be used while creating temporary tablespaces:

e Create as many temp files as the number of instances in every temp tablespace. For example,
in an eight-instance database, there should be at least eight temp files associated with every
temporary tablespace. This strategy reduces the file header level locking issues dramatically.

e While adding an instance to a database, increase the size of temporary tablespace. Also,
increase the number of temp files in temporary tablespaces.

e Ifanapplication component uses an excessive amount of temporary tablespace, then create
a new user for that application component, create additional temporary tablespace, and use
application affinity to keep that component to a node. This strategy reduces the ill effects
associated with excessive extent caching and uncaching activities.

87

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

Massive Data Changes

It is inevitable that every DBA must perform massive data changes in a production environment, for reasons such as
upgrade, purge, etc. In a RAC database, performing massive changes requires careful strategy.

For massive updates, if you are planning to use parallelism, consider setting the parallel_force_local parameter to
true. This initialization parameter will allocate all PX servers in local node and reduce overheads due to global cache
latency. However, this strategy assumes that one server has enough resource capabilities to complete the tasks. On the
other hand, if the activity is spread across many nodes, then CPU, I/0, and memory resource usage is spread between
all nodes. So, the choice to use one or more instances depends upon (a) whether a node can handle the workload
without incurring any additional latency, and (b) whether the global cache latency is big enough that keeping
workload in a node will vastly improve the performance.

If you choose to use multiple instances, then the use of table partitioning or data partitioning through effective
SQL tuning to reduce global cache transfers is another effective strategy to improve application performance. Further,
index blocks deserve close attention, as these can increase global cache transfers. For massive updates on indexed
columns or inserts, it is preferable to drop indexes before updating columns, and recreate the indexes after the updates.

Another typical production issue is encountered during massive index creation. Index creation is usually
performed with many PX servers. As PX servers read blocks into PGA directly, bypassing the buffer cache, global
cache latency is minimal. Still, PX servers can distribute blocks among themselves, flooding interconnect with PX
messages. So, allocating all PX servers within the same node is preferable if a single node has sufficient resources to
complete index creation. Refer to Chapter 12 for further discussion of parallel query execution.

Further, if an index creation fails due to an issue, always restart that index creation connecting to the same
instance. Temporary space allocated for indexes (in permanent tablespace) is soft reserved. If you restart index
creation connecting to another instance, then subsequent index creation would trigger uncaching of free space in
other nodes, leading to a possibility of SS Enqueue contention and DFS lock handle contention.

Performance Metrics Collection

It is critical to collect performance metrics on a regular basis in RAC cluster. In most cases, RAC node problems are
side effects of some other OS issue. For example, network, CPU starvation, and memory starvation issues can lead
to node failures and reboots. Root cause analysis of a node reboot requires deep review of OS metrics. It is almost
impossible to identify the root cause of a node reboot without sufficient OS performance metrics.

At the minimum, OSWatcher or another tool should collect performance data in all nodes and keep those
statistics for at least a few days. These OS statistics will enable root cause analysis for node failures.

Further, AWR reports or statspack data are essential to understand pattern changes in database performance.
So, at least a few weeks of history must be kept in the database for future analysis.

Parameter File Management

The initialization parameter file is common to all instances. It is a good idea to keep parameter files in ASM storage,
as ASM storage is available to all RAC database instances.

Initialization parameters can be specified in the scope of an instance or database. For example, the following
command modifies the parameter pga_aggregate_target in a RAC1 instance only.
alter system set pga aggregate target=10240M scope=both sid="RAC1';

The following command modifies the parameter globally. If a parameter is specified both at the database level
and at the instance level, then the instance-level parameter specification overrides the global-level parameter.

alter system set pga_aggregate target=5120M scope=both sid="*";

88

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

SPFILE will contain the following entries for the pga_aggregate_target parameter after executing the preceding
two commands.

*.pga_aggregate target=5120M
RAC1.pga_aggregate target=10240M

The command to reset or remove a parameter from spfile should match with the scope of the parameter if the
parameter exists in spfile already. For example, to remove *.pga_aggregate_target from spfile completely, you must
specify the sid clause matching the spfile scope.

alter system reset pga_aggregate target scope=both sid="*';

Not all parameters can be modified at the instance level. Column ISINSTANCE_MODIFIABLE in v$parameter
shows whether a parameter can be modified at the instance level or not. The following output of SQL querying
v$parameter shows that pga_aggregate_target parameter can be modified at the instance level.

SOL> select name, ISINSTANCE_MODIFIABLE from v$parameter
where name='pga_aggregate_target'
NAME ISINS

pga_aggregate target TRUE

Password File Management

Password files allow non-sys users to log in to the database with elevated privileges such as sysdba, sysoper, sysbackup
(12¢), sysdg (12c¢), etc. In 11gR2, each database instance is considered to have a non-shared password file, and so
grants in an instance are not propagated to other database instances. You must copy password files to each node and
rerun grants connecting to local instance in version 11.2.

In version 11.2 and earlier, it is a better approach to store the password files in a shared file system such as NFS or
cluster file system. With this shared password file approach, you can maintain the password files with ease, but grants
still need to be executed in every node.

$ orapwd file='orapworcli2' entries=10

In version 12c, password files can be stored in ASM, and this greatly simplifies password file management.
By default, password files are stored in the ASM disk group.

+DATA/ORCL12/PASSWORD/pwdorcl12.268.804626815

The following command shows how a password file can be created in Oracle ASM disk group. As the password
file is stored in ASM, all instances can access the password file.

$ orapwd file='+DATA/orcli2/orapworcli2’' entries=8 dbuniquename='orcli2' format=12

Prior to version 11.2, you must grant privileges in every instance explicitly, as the sysdba grants operate at the
instance level. This behavior is due to an inherent assumption that the password file is not shared between the
instances. For example, in the following output, granting sysdba to rs user connecting to RAC2 instance populated the
password file only for instance 2.
SOL> grant sysdba to rs;
Grant succeeded.

89

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

SQL>select * from gv$pwfile users where username='RS';

INST_ID USERNAME SYSDB SYSOP SYSAS

2 RS TRUE FALSE FALSE

In version 12c, sysdba grants are considered to operate at the database level, and so sysdba grants are populated
for all instances immediately. This behavior change in version 12c is logical, since the password files are stored in
ASM and shared between instances. The following output shows that grants to a user are propagated to all instances,
as is visible in the password file.

SQL> grant sysdba to rs;
Grant succeeded.

SOL> select * from gv$pwfile users where username='RS';
INST_ID USER SYSDB SYSOP SYSAS SYSBA SYSDG SYSKM CON_ID
1 RS TRUE FALSE FALSE FALSE FALSE FALSE o
2 RS TRUE FALSE FALSE FALSE FALSE FALSE o0

The Clusterware resource for the database also has a new attribute referring to the password file; in this example,
the password file is stored in ASM.

$ crsctl stat res ora.orcli2.db -p |more

PWFILE=+DATA/orcl12/orapworcli2

Version 12c introduces new administrative privileges, namely, sysdg, sysbackup, and syskm, in addition to
sysdba and sysoper privileges available in earlier versions. These new privileges can be secured with passwords too,
but the password file should be created or migrated to version 12¢ format using the format=12 option in the orapwd
command while creating password files.

It is important to maintain the password files consistently in all instances. Storing password files in a shared file
system is a good practice in earlier versions, and storing the password files in ASM is a good practice in version 12c.

Managing Databases and Instances

To manage a database, it is advisable to use the srvctl command. While it is possible to manage databases as
Clusterware objects using crsctl commands, you should try to use the srvctl command whenever possible. The srvctl
command provides an additional layer of security and avoids unnecessary activity in the Clusterware owner account.

The general syntax of the srvctl command is given in the following. To start or stop a database, you would use the
following command:

$ srvctl stop database -d ORCL
srvctl <operation> <object> [<options>]

By default, the database will be stopped in immediate shutdown mode. You could also specify other shutdown
modes using the -o option as follows. Other options, such as transactional, immediate, etc., can be specified too.

$ srvctl stop database -d ORCL -o abort

90

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

The database can also be started using the srvctl command. The following commands start the database in OPEN
startup mode. Startup mode can be explicitly specified too.

$ srvctl start database -d ORCL
$ srvctl start database -d ORCL -o open

The parameter file can be explicitly specified using the pfile option.
$ srvctl start database -d ORCL -o open,pfile=initORCL1.o0ra

Instances can be managed individually, too. For example, an ORCL1 instance alone can be stopped using
the following command. It is also possible to specify a node name, as the mapping between instance_name and
node_number is already stored in OCR. You could also stop multiple instances in a single command specifying a list
of instances.

$ srvctl stop instance -d ORCL -i ORCL1
$ srvctl stop instance -d ORCL -n RAC1
$ srvctl stop instance -d ORCL -i ORCL1,0RCL2

Configuration of a database can be queried using the config database command and shows the spfile location,
oracle_home location, default start options, default stop options, and instances of a database, etc.

$ srvctl config database -d ORCL
Database unique name: ORCL
Database name: ORCL

Oracle home: /u01/app/oracle/product/11.2.0/dbhome_1
Oracle user: oracle

Spfile: +DATA/orcl/spfileorcli.ora
Domain: rac.example.com

Start options: open

Stop options: immediate

Database role: PRIMARY

Management policy: AUTOMATIC
Server pools: ORCL

Database instances: ORCL1,0RCL2
Disk Groups: DATA

Services:

Database is administrator managed

Mapping between the node and instance names is stored in OCR, and array variable USR_ORA_INST_NAME
maintains this mapping. For example, in the following configuration, instance ORCL1 will be started in RAC1 node
and ORCL2 instance will be started in RAC2 node. It is possible to modify the USR_ORA_INST_NAME array variable
and change the mapping if needed.

$ crsctl stat res ora.racdbi.db -p|grep ORA_INST NAME

GEN_USR_ORA_INST NAME@SERVERNAME (RAC1)=0RCL1
GEN_USR_ORA_INST NAME@SERVERNAME (RAC2)=0RCL2

USR_ORA_INST NAME@SERVERNAME(RAC1)=ORCL1
USR_ORA_INST NAME@SERVERNAME (RAC2)=O0RCL2

91

www.it-ebooks.info

http://rac.example.com/
http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

However, ASM instance mapping cannot be changed that easily, since the ASM instance name is dynamically
derived from the node number. Updating the node number would require Clusterware reconfiguration, as the node
number to node name mapping is stored in the voting disk.

$ crsctl stat res ora.asm -p |grep INST NAME

GEN_USR_ORA_INST NAME@SERVERNAME (RAC1)=+ASM1
GEN_USR_ORA_INST NAME@SERVERNAME (RAC2)=+ASM2
USR_ORA_INST_NAME=+ASM%CRS_CSS_NODENUMBER%

In a cluster with a large number of nodes, it is typical to keep the node name with an incrementing suffix, such
as RAC1, RAC2, RAC3, etc. It is also a matter of convenience to keep suffixes of both database and ASM instances
matching with node name suffixes; for example, ORCL1 and ASM1 instance in RAC1 node, ORCL2 and ASM2 instance
in RAC2 node, etc. As the node number is assigned at the time of cluster configuration, execute root.sh in the order
desired; for example, execute root.sh in RAC1 node, wait for completion, execute root.sh in RAC2 node, wait for
completion, etc. This execution order will maintain correct suffix mapping.

Managing VIPs, Listeners

To manage VIPs and listeners, use of the srvctl command is recommended. Configuration of VIP can be queried using
the config vip parameter.

$ srvctl config vip -n RAC1
VIP exists.:RAC1
VIP exists.: /RAC1_vip/1.2.1.101/255.255.255.0/eth1

$ srvctl config vip -n RAC2
VIP exists.:RAC2
VIP exists.: /RAC2 vip/1.2.1.102/255.255.255.0/eth1

VIPs can be started and stopped using the srvctl command, but Clusterware daemons usually monitor these
resources, and so these commands are seldom used.

$ srvctl stop vip -n RAC2
$ srvctl start vip -n RAC2

Similarly, listeners can be managed using the srvctl command. For example, configuration of a listener can be
queried using the following config command.

$ srvctl config listener -1 LISTENER
Name: LISTENER

Network: 1, Owner: oracle

Home: <CRS home>

End points: TCP:1521

Listeners can be stopped and started using the srvctl command with the following syntax. Executing the Isnrctl
command is not a recommended practice.

$ srvctl stop listener -1 LISTENER
$ srvctl start listener -1 LISTENER

92

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

The srvctl command is an option-rich tool, and if you are not sure about the syntax, type srvctl -h to
understand the options in the srvctl tool.

Miscellaneous Topics

There are some important topics that require special attention in RAC. For example, in a single-instance database,
memory starvation can lead to performance issues, but in RAC, memory starvation can lead to a node reboot.

Process Priority

In RAC, a few background processes must have higher CPU scheduling priority. For example, an LMS background
process should run with higher CPU priority, as the LMS process is the workhorse of global cache transfer, and

CPU starvation of an LMS process can increase global cache latency. Further, if an LMS process suffers from CPU
starvation, network packets can be dropped, leading to gc blocks lost waits in other nodes. Underscore initialization
parameter _high_priority_processes controls the processes that will execute at an elevated priority. By default, this
parameter is set to elevate the priority of VKTM (Virtual Keeper of Time) and LMS background processes. Generally,
you do not need to modify this parameter.

_high priority processes= 'LMS*|VKTM'

For example, in the Solaris platform, the LMS process will execute with RT priority. Of course, elevating a process
priority requires higher-level permissions, and this is achieved using oradism binary in Unix platforms and oradism
service in Windows platform. Notice in the following that oradism executable is owned by root userid with setuid flag
enabled. OS group prod has execute permission on this oradism binary. Essentially, with setuid permission of the root
user, the oradism executable is utilized to elevate the priority of background processes.

$ 1s -1t oradism
-Iwsr-x--- 1 root prod 1320256 Sep 11 2010 oradism

Setuid permissions on oradism executable are needed to alter the priority of background processes. When
you execute root.sh during GI software installation, this setuid permission is set on oradism executable, but during
software cloning, DBAs typically do not run root.sh, and so the oradism executable does not have correct permissions.
Hence, the priority of LMS process is not elevated, leading to global cache latency issues during CPU starvation.
Executing root.sh script and verifying that the oradism executable has correct permission after the completion of
software cloning is recommended.

Also, GRID processes, such as cssd.bin, cssdagent, and cssdmonitor, etc., should run with elevated priority.
Again, oradism binary in Grid Infrastructure software must have proper permissions. Permissions on an ordism file in
GIwere not a big problem until version 11.2, as cloning of GI was not widely used. However, in version 12c, cloning of
GI software is allowed and binary permissions require careful attention if GI software is cloned.

While elevated priority for background processes protects the background processes from CPU starvation, it does
not mean that CPU starvation will not cause node stability issues. For example, the LMS process must wait for the
LGWR background process to do a log flush sync before sending the blocks (for certain types of global cache transfer).
If there is CPU starvation in the server, then LGWR might not get enough CPU; LGWR will suffer from CPU starvation,
and that can lead to longer waits by the LMS process. Remote instances will suffer from prolonged global cache
transfers. So, CPU starvation in one node can increase the global cache latency in other nodes, inducing slowness in
the application; in a few scenarios, this CPU starvation can also lead to node reboots. It is a recommended practice to
keep CPU usage below 75% to avoid CPU starvation and reduce node stability issues.

93

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

Memory Starvation

Memory starvation in a cluster node can cause stability issues in a RAC cluster. Elevated process priority protects
the background process from CPU starvation but does not prevent memory starvation issues. Memory starvation of
an LMS process can lead to higher latency for global cache wait events in other nodes. Further, memory starvation
of Grid Infrastructure daemons can lead to node reboots. It is a recommended practice to design cluster nodes with
sufficient memory and avoid memory starvation.

Virtual memory swappiness is an important attribute to consider in a Linux kernel. This kernel parameter affects
swapping behavior. As Linux kernel version 2.6.18 improves swapping daemons throughput, you should upgrade the
kernel to at least version 2.6.18. If you cannot upgrade the kernel to at least 2.6.18, then the vm.swappiness kernel
parameter is an important parameter to consider. If the parameter is set to a lower value, then pages will be kept in
memory as long as possible. If the vm.swappiness parameter is set to a higher value, then the pages will be swapped
more aggressively. If you are using a version prior to 2.6.18 kernels, you should reduce the vim.swappiness kernel
parameter to a lower value such as 30 (default is 60).

We also recommend that you implement HugePages in the Linux platform. At the time of this writing, Oracle
has made HugePages as one of the important ways to improve the stability of a RAC cluster. With HugePages, two
important benefits can be achieved:

¢ SGAislocked in memory. Linux kernel daemons have fewer pages to scan during memory
starvation. Locking SGA also protects from paging.

e Further, default page size of memory mapping is 4KB in the Linux platform. Pointers to these
pages must be maintained in page table entries, and so page table entries can easily grow to a
few gigabytes of memory. With the HugePages feature, page size is increased to 2MB and the
page table size is reduced to a smaller size.

HugePages and Automatic memory management (AMM) do not work together. We recommend you use
HugePages instead of AMM to improve RAC stability.

SGA size

If the data blocks are already residing in local SGA, then access to those buffers is in the range of microseconds.
Thus, it is important to keep SGA size bigger in a database with OLTP workload. It is a best practice to increase the
SGA size when you convert the database to RAC.

If the application workload is mostly Decision Support System (DSS) or Data Warehouse type, then keep PGA
bigger and buffer cache smaller, as PX server processes read blocks directly into the PGA (Program Global Area).
The parameter pga_aggregate_target is not a hard limit and the sum of PGA allocated by the database processes
can far exceed the pga_aggregate_target parameter. This unintended excessive memory usage can induce memory
starvation in the server and lead to performance issues. Release 12c introduces pga_aggregate_limit parameter and
the total PGA used by the database cannot exceed the pga_aggregate_limit value. If the database have allocated
pga_aggregate_limit amount of PGA, then the process with largest PGA allocation is stopped until the PGA size falls
below the pga_aggregate_limit value. Therefore, in 12¢, you can avoid excessive memory swapping issues by setting
pga_aggregate_limit to an optimal value.

It is advisable to keep the SGA size as big as possible without inducing memory starvation, as discussed earlier.
Database nodes with ample physical memory are essential while converting a database to a RAC database. More
memory can also reduce unnecessary CPU usage, which can be beneficial from a licensing point of view.

Filesystem Caching

For Oracle database software and Grid Infrastructure software, the file system must have caching enabled. Without
file system caching, every access to binary file pages (software binary pages are accessed frequently from an executing
UNIX process) will lead to a disk access. This excessive disk reads induces latency in the executable, leading to
instance reboot or even node reboot.

94

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 © RAC OPERATIONAL PRACTICES

Summary

In summary, the following guidelines are offered for the operational aspects of a RAC cluster.

Use services effectively to partition the application workload. Load balancing and failover can
be achieved elegantly with the use of services.

Use SCAN listeners and SCAN IP addresses. Publish only SCAN name to the application.
Do not allow an application to connect to VIP listeners directly.

Use three SCAN IP addresses mapping to a SCAN name.
Set up TAF attributes of a service to implement TAE.

Use tools such as universal connection pool or Active GridLink data source to implement
faster failover and load balancing capabilities.

Use as many temp files as the number of instances for temporary tablespaces. Allocate more
space if you are planning to add more instances to the database.

Manage application connection and users so as to reduce locking due to soft reservation in
temporary tablespaces.

Verify that oradism binary has correct permissions so that background processes can execute
at an elevated priority.

In Linux, implement HugePages to avoid unnecessary reboots.

95

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

New Features in RAC 12c¢

by Syed Jaffar Hussain, Kai Yu, and Tariq Farooq

The goal of this chapter is to explain some of the key new features and enhancements in Oracle 12cR1 pertaining to
Clusterware and RAC Database technologies. Cloud computing is a key focus of the Oracle 12c database, and “cloud”
is what the letter “c” in Oracle 12c stands for. In the first part of this chapter, we will explain two core new features

of Oracle Clusterware: Oracle Flex Cluster and Oracle Flex Automatic Storage Management (ASM). One reason
why we put these features in this chapter is that they are very closely related. It would be very difficult to discuss one
without mentioning the other; in particular, it is not possible to have Flex Clusters without Flex ASM. The use cases
of these two new features are very similar and it is likely that they will be implemented together in real database
environments.

The new Flex Clusters and Flex ASM features are designed to provide scalable and high-availability cluster
infrastructure for database cloud and application cloud. The chapter will discuss the architecture of Oracle 12c Flex
Clusters and Flex ASM, and how this Flex architecture helps to improve the scalability and availability of the cluster
infrastructure. We will also discuss the configuration and management of the Flex Clusters and Flex ASM, and how to
configure and run Oracle databases on the new Flex Cluster environment.

Pluggable databases (PDBs) are one of the key new features introduced in Oracle Database 12c. They allow multi-
tenancy in a database by having multiple PDBs within a big container database (CDB). And these PDBs can be easily
plugged into or unplugged from a CDB. This solution simplifies consolidation of multiple-application databases in a
single CDB database. This also allows moving the application database from one CDB to another CDB. After a brief
discussion of the PDB architecture, this chapter will focus on the RAC-based PDB and CDB. It will discuss how to
create CDB and PDBs, how to connect to PDBs, and how to manage them with their associated database services.

The latter part of this chapter will give you a brief overview of other miscellaneous new features of 12cR1, such as:

IPv6 Support for Public Networks

e Global Data Services

e Oracle ASM Cluster File System (ACFS) and Oracle ADVM: Enhancements
e Online Resource Attribute Modification

e Policy-Based Management and Administration

e ASM Disk Group: Shared ASM Password File

e Valid Node Checking: Restricting Service Registration

e Shared Grid Naming Service (GNS)

e Restricting Service Registration

e NFS High Availability

97

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

e Cluster Health Monitor (CHM) Enhancements
e Windows: Support for Oracle Home User
e Introducing Application Continuity

e Transaction Idempotence and Java Transaction Guard

Oracle Flex Clusters
Oracle Flex Cluster Architecture

As stated in Chapter 1, previous releases of Oracle Clusterware such as 11gR2 and earlier supported only the tightly
connected cluster architecture:

1. Eachnode in the cluster is connected to other nodes through the private interconnect.
2. Eachnode in the cluster is directly connected to the shared storage.

This architecture will present significant technical challenges and performance overhead to cluster scalability if
the cluster needs to be scaled out to many more nodes that most clusters today.

One issue is a dramatic increase of the interconnect traffic between cluster nodes. In a tightly connected
cluster which we can call the standard cluster, since the interconnect connects each pair of nodes and every node
is connected to the shared storage, an N-node cluster will have N *(N-1)/2 possible interconnect paths for cluster
heartbeats and data exchanges between two nodes and N connection paths to the shared storage.

In a small or modestly sized cluster such as a 16-node cluster, 120 different interconnect paths and 16 storage
connections may still be manageable. However, if we want to scale a cluster to a much bigger scope, for example 500
nodes, it will have 124,750 interconnect paths and 500 storage connections. Not only the complexity of the number of
interconnect paths and storage connections makes the cluster very difficult to manage, the network traffic overhead
due to this extremely high number of interconnect paths will practically impact the cluster performance hugely. It is
obvious that this tightly connected cluster architecture prevents the cluster from being scaled further.

Oracle 12c Flex Clusters are designed to tackle this limitation by introducing a new two-layered hub-and-spoke
topology to the cluster architecture. This new cluster consists of two types of nodes: Hub nodes and Leaf nodes. The
group of Hub nodes is tightly connected as the nodes in the standard cluster in Oracle RAC 11gR2: all the Hub nodes
are connected each other through the private interconnects and they also are directly connected to the shared storage
through the physical storage network connections.

On the other hand, Leaf nodes run a lighter-weight stack and they are not connected to each other like Hub
nodes. Leaf nodes also do not require direct access to the storage. There is no direct communication between Leaf
nodes. Instead, each Leaf node communicates with its attached Hub node exclusively and is connected to the cluster
through its Hub node. Leaf nodes get data through the attached Hub node. The cluster heartbeats for Leaf nodes only
occur between Leaf nodes and their attached Hub nodes.

Now let’s use a 16-node cluster as an example to show the two-layered hub-and-spoke topology of an Oracle Flex
Cluster in Figure 4-1.

98

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Leaf nodes

I

- -
—= Hub nodes —
- ——
-
N -iﬁ
o [e :

\ Leaf nodes —>

Figure 4-1. Hub-and-spoke topology of Oracle Flex Clusters

In this example, four Hub nodes in the Hub center form the hub of the cluster, which is similar to a standard
cluster supported in Oracle 11gR2 Clusterware. These four Hub nodes are tightly connected with the private
interconnect, which is the same as the one in the standard Oracle 11g R2 cluster. The cluster heartbeat and the data
block transfer for RAC cache fusion among the Hub nodes are based on this interconnect network. All of these Hub
nodes are also required to have direct access to the shared storage, which stores the database files as well as the Oracle
Cluster Registry (OCR) and the voting disks for the Oracle Clusterware. The database instances running on their Hub
nodes will function in the same way as in a standard cluster.

Outside of the Hub center, 12 Leaf nodes form four groups. Each group of Leaf nodes is connected to one Hub
node, which is the attached node for all the Leaf nodes in the group. None of the Leaf nodes are connected to any
other Leaf nodes in the cluster. Oracle RAC database instance can also run on Leaf nodes. Since these Leaf nodes
do not have direct access to the shared storage, the RAC database instances on the Leaf nodes will need to get the
database through the Hub nodes. The technology to implement this remote storage access is another new Oracle 12c
feature known as Oracle Flex ASM. From here, we can see that Flex Clusters require Flex ASM to enable storage access
for Oracle database instances on Leaf nodes. For this reason, when you configure a Flex Cluster, Oracle Flex ASM is
automatically enabled.

One benefit of running the loosely coupled architecture of the Flex Cluster is to provide the high availability of
the Oracle Clusterware of the applications tier. We can run application tiers on the Flex Cluster, which provides high
availability, such as failover capability, against server hardware failover and planned maintenance.

Scalability and Availability of Flex Clusters

Oracle Flex Clusters increase cluster scalability. The hub-and-spoke topology in the Oracle Flex Clusters significantly
reduces the number of network connections among the cluster nodes. In the 16-node cluster example shown in
Figure 4-1, where we set up 4 Hub nodes and 12 Leaf nodes with 3 Leaf nodes per Hub node, the number of private
interconnects among 4 Hub nodes is 6 and the total number of connections between the Leaf nodes and their Hub
nodes is 12. This makes the total number of interconnects 18, compared to 120 in a 16-node standard cluster. The
number of storage network connections is also reduced from 16 to 4. If we extend this cluster to a 500-node cluster
on which we set up 25 Hub nodes and 475 Leaf nodes with 19 Leaf nodes per Hub node, the interconnect network
connections consists of 300 interconnects between Hub nodes plus 475 connections between Leaf nodes and their
attached Hub nodes. The total number of the connections is 300+475 = 775, while the total number of interconnects

99

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

for a 500-node standard cluster is 124,750, as we discussed in the beginning this chapter. The number of storage
network connections is also reduced from 500 to 25.

This significant reduction of network connections allows us to further scale out the cluster. With this hub-and-
spoke topology, the Flex Cluster in Oracle 12cR1 is designed to scale up 64 Hub nodes and many more Leaf nodes.

The Flex Cluster architecture helps to maintain the availability and reliability of the cluster even when the cluster
is scaled out to a very large number of nodes. This is achieved by having the OCR and voting disk accessible only to
Hub nodes and not Leaf nodes. For example, we will get the following error messages if we query the voting disks or
OCR access from a Leaf node:

$ crsctl query css votedisk
CRS-1668: operation is not allowed on a Leaf node

$ ocrcheck
PROT-605: The 'ocrcheck' command is not supported from a Leaf node.

As shown in the previous 500-node example, in Flex Clusters there are only a small number of Hub nodes and
the majority of the cluster nodes are Leaf nodes. By allowing only the Hub nodes to access the OCR and voting disks,
scaling out a Flex Cluster will not significantly increase resource contention for OCR and voting disks. As a result, the
chance of node eviction caused by contention for OCR and voting disk will not increase as the cluster is scaled out.
Like a standard cluster, an Oracle Flex Cluster is built with high-availability design. If a Hub node fails, this node
will be evicted from the cluster in the same way as a node in a standard cluster. The services on the failed node will
be failed over to other surviving Hub node in the cluster. The Leaf nodes that were connected to the failed Hub node
can be reconnected to another surviving Hub node within a grace period. The private interconnect heartbeat between
two Hub nodes are the same as the private interconnect heartbeat in the standard cluster. You can check the heartbeat
misscount setting between Hub nodes using the following crsctl command:

$crsctl get css misscount
CRS-4678: Successful get misscount 30 for Cluster Synchronization Services.

If a Leaf node fails, this node will be evicted from the cluster. The services running on the failed Leaf node are
failed over to other Leaf nodes that are connected the same Hub node. This failover mechanism keeps the failover
within the group of Leaf nodes that are connected to the same Hub node. In this way, the other part of the cluster
nodes will be not impacted by this Leaf node’s failure.

The network heartbeat is used to maintain network connectivity between a Leaf node and the Hub node to which
the Leaf node connects. Similar to the private interconnect heartbeat between the Hub nodes, the maximal threshold
time that this heartbeat is tolerable is defined by the leafmisscount setting, which by default is 30 seconds. If the
heartbeat failure passes this leafimisscount setting, then the Leaf node either will be reconnected to the other Hub
node or will be evicted from the cluster. You can query this setting by running this command:

$ crsctl get css leafmisscount
CRS-4678: Successful get leafmisscount 30 for Cluster Synchronization Services

You can also manually reset this setting by running this command on a Hub node.

$ crsctl set css leafmisscount 40
CRS-4684: Successful set of parameter leafmisscount to 40 for Cluster Synchronization Services.

You cannot reset this setting from a Leaf node:
$ crsctl set css leafmisscount 40

CRS-1668: operation is not allowed on a Leaf node

100

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Configuring Flex Clusters

With the new Oracle Flex Clusters feature, Oracle Clusterware 12cR1 has a new cluster-mode setting that allows us to
enable the Flex Clusters functionality. By default, this setting is on standard cluster mode on which the Flex Clusters
functionality is disabled. If you don’t need to use the Flex Clusters functionality, you can just keep this mode setting
as default. Then, your cluster will be on the standard cluster mode, which is similar to Oracle Clusterware 11gR2.
Otherwise, users must explicitly enable the Flex Cluster in one of two ways:

Enable the Flex Clusters option during the new cluster configuration; or
Change the existing the cluster mode from Standard Cluster to Flex Cluster.

In either case, some preparation work should be done in advance. The first task is to determine how many nodes
and which nodes will be the Hub nodes or the Leaf nodes. The second task is to configure the GNS as the prerequisite
of Flex Cluster implementation. The Flex Cluster configuration requires a fixed GNS virtual IP (VIP) on one of the
Hub nodes. In Oracle Clusterware 12cR1, there are two configuration options to meet this requirement: standard
and static. With the standard option, a static GNS VIP and a subdomain delegation are configured in DNS so that the
Single Client Access Name (SCAN) VIPs and all other cluster names and VIP addresses of the subdomain within the
cluster are forwarded to the GNS service. With the static option, no subdomain is configured. Instead, the GNS VIP
along with all the cluster names, VIP names, and their addresses are static and registered in DNS. All these names
are resolved with DNS. Although both of these GNS configuration options work for Flex Clusters, you should at least
implement the static option, as the standard option with subdomain delegation is not required in Flex Clusters.
Chapter 9 will discuss the details of the GNS configuration.

Configuring a Flex Cluster with OUI

If you plan to enable the Flex Clusters feature in the new cluster configuration, you can enable it during Grid
Infrastructure (GI) installation of Oracle Universal Installer (OUI) by selecting “Configure a Flex Cluster” option as
shown in Figure 4-2.

-Dracle Grid Infrastructure - Setting up Grid Infrastructure - Step 3 of 10 M= '
_ ORACLE"
Select Cluster Type c
GRID INFRASTRUCTURE
- Choose the type of cluster required.

A~ Software Updates od3) q

A Installation Option Configure a Standard cluster

P Cluster Type Choose this option 10 configure a group of servers Into a single cluster.

=

I Installation Type #) Configure a Flex cluster

e Instaliation 1Ype

Flex clusters are highly scalable clusters in which servers can be assigned specific roles to satisfy database or application
functions.

Figure 4-2. Select Flex Cluster in Grid Infrastructure installation

After you select this Flex Cluster configuration option, as the prerequisite for Flex Cluster installation, you need
to specify the GNS configuration in the installation as shown in Figure 4-3: selecting the “Configure GNS” option and
specifying the new fixed GNS VIP address, which will be used in the rest the installation steps.

101

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

-nrarrp Grid Infrastructure - Setting up Grid Infrastructure - Step Sof 17

" : oORACLE
Grid Plug and Play Information N c
GRID INFRASTRUCTURE
foamr: (Single Client Access Name (SCAN) allows clients to use one name in connection strings 1o connect to the cluster as awhole. Client
’T\ connect requests to the SCAN name can be handled by any cluster node,
. Installation Ootion
,? e Cluster Name: |knewrac
T Pr tLan SCAN Name: [knewrac-scan.kcloud.dblab.com
w Grid Plug and Play SCAN Port: 1521
\lr, Cluster Mode Information

[¥] Canfigure CNS
[¢] Configure nodes Virtual IPs as assigned by the Dynamic Networks
) Create angw GhS

CNS VIP Address: (172.16.150.9

GMS Sub Domain: |kcloud. dblab,com

Figure 4-3. Specify GNS in Grid Infrastructure installation

As a part of the configuration, you need to specify the Hub nodes and Leaf nodes. For example, Figure 4-4 shows
a seven-node Flex Cluster with three Hub nodes and four Leaf nodes.

B orade Grid Infrastructure - Setting up Grid Infrastructure - Step 6 of 17

Cluster Node Information ORACLE 120
GRID INFRASTRUCTURE

/T\ Software Updates Prowide the list of nodes to be managed by Oracle Grid Infrastructure with their Public Hostname and Virtual Hostname.

Installation Option Public Hostname Role Wirtual Hostname I
,T\ e knewracnl kcloud.dblab.com |HUE - |AUTO

Liuster 1Ype = v ~
) m— cloud.dblab.com poe— " Jwro |
T Product Languages knewracnd.keloud.dblab.com [HuB ~IAUTO

b el 3 .

& Crid Plug and Pla newracnS. kcloud dblab.com | LEAF b
‘!‘ Lnd fua and Hay. knewracné kcloud.dblab.com | LEAF b
- Cluster Node Information knewracn? kcloud. dblab.com | LEAF b |
1
e knewracnd kcloud.dblab.com | LEAF b

Figure 4-4. Specify the role of the Cluster nodes

As a part of Flex Cluster configuration, Oracle Flex ASM is implicitly enabled.
After the successful installation of the GI, you should be able to verify the cluster is in Flex Cluster.

crsctl get node role {config|status} [-node <nodename> | -all]
For example, to check the role of the current cluster node:

$ crsctl get cluster mode status
Cluster is running in "flex" mode

List all roles of all the nodes in a cluster by running this on any node:
$ crsctl get node role status -all

Node 'knewracni' active role is 'hub'
Node 'knewracn2' active role is 'hub'

102

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Node 'knewracn4' active role is 'hub'
Node 'knewracn6' active role is 'leaf'
Node 'knewracn5' active role is 'leaf'
Node 'knewracn8' active role is 'leaf'
Node 'knewracn7' active role is 'leaf'

Changing the Existing Cluster Mode to Flex Cluster

If your Clusterware was originally installed as a standard cluster, you can change its cluster mode from the standard
cluster to a Flex Cluster. However, before you make this change, you need to first make sure that as a prerequisite the
GNS is configured with a fixed VIP. The GNS may already be configured during the Clusterware installation. You need
to ensure that the GNS is configured with a fixed VIP with the srvctl command, for example:
$ srvctl status gns
GNS is running on node knewracn2
GNS is enabled on node knewracn2

If the GNS is not enabled, you will see a result like this:

$ srvctl status gns
PRCS-1065 : GNS is not configured.

Then, as the prerequisite, you need to convert this cluster from non-GNS cluster to GNS cluster by running the
following command as the root user with a valid VIP address and a domain name:

#srvctl add gns -vip <VIP_address> -domain <doman_name>

And you need to enable Oracle Flex ASM option with ASMCA. Refer to the next section, Then, run this command
as root to change the cluster mode from the standard mode to Flex Cluster mode:

#icrsctl set cluster mode flex
You need to stop and restart Oracle Clusterware as root on each node:
#icrsctl stop crs

#crsctl start crs -wait

Managing Oracle Flex Clusters

You can use various Oracle Clusterware Control (CRSCTL) utility commands to manage the Oracle Flex Clusters.
In a Flex Cluster, you can change the role of a node between Hub node and Leaf node by running this crsctl command
on the local node as the root user:

crsctl set node role {hub | leaf}

Then, as the root user, you need to stop and restart Oracle High Availability Services on the node where you
changed the role:

crsctl stop crs
crsctl start crs -wait

103

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

You also can check the current role of the node with this command:

$crsctl get node role config
Node 'knewracn2' configured role is ‘hub'

If you need to change a node from a Leaf node to a Hub node, you may need to first check if the VIP exists on the
node with this command:

$ srvctl config vip -n knewracn5
PRKO-2310 : VIP does not exist on node knewracn5

If there is no VIP for the node as in the example above, you need to add a VIP to this node by running the srvctl
add vip command. The syntax of this command is as follows:

srvctl add vip -n node_name -A {name|ip}/netmask[/if1[if2]...]] [-k network number] [-v]
srvctl add vip -n knewracn5 -A 172.16.150.201/255.255.255.0/etho -k 1

You also can manage some of the settings of the Flex Cluster. To check the role of a particular node, run this
command:

$crsctl get node role status -node knewracn5
Node 'knewracn5' active role is 'leaf’

To check the hubsize of the Flex Cluster, run this command:

$ crsctl get cluster hubsize
CRS-4950: Current hubsize parameter value is 32

To check the css misscount and leafmisscount setting, run the following commands:

$ crsctl get css misscount
CRS-4678: Successful get misscount 30 for Cluster Synchronization Services.

$ crsctl get css leafmisscount
CRS-4678: Successful get leafmisscount 30 for Cluster Synchronization Services

You also can get the details about a cluster node with this command:

$ crsctl status server knewracn7 -f
NAME=knewracn7

MEMORY SIZE=4902
CPU_COUNT=2
CPU_CLOCK_RATE=4687
CPU_HYPERTHREADING=1
CPU_EQUIVALENCY=1000
DEPLOYMENT=other
CONFIGURED_CSS ROLE=leaf
RESOURCE_USE_ENABLED=1
SERVER_LABEL=
PHYSICAL_HOSTNAME=
STATE=ONLINE
ACTIVE_POOLS=Free
STATE_DETAILS=
ACTIVE CSS ROLE=leaf

104

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Flex ASM Architecture
Oracle Flex ASM Architecture

In 11gR2 or earlier ASM architecture or the standard 12c ASM, the ASM instance runs on every RAC node and the
RAC databases have to rely on the ASM instance on the local node to do the storage I/O. This requirement has several
limitations:

Requiring ASM instance running on every RAC instance consumes CPU and memory resources on each RAC
node.

All Database instances on each node depend on the local ASM instance. The ASM instance failure will cause all
local database instances to fail.

Oracle Flex ASM introduced in Oracle 12cR1 removes these two limitations. In Oracle Flex ASM architecture, only
a small number of cluster nodes run Oracle ASM instances. These ASM instances are connected by all the database
instances on the cluster to provide storage access to these database instances. When an ASM instance fails, the
database instances that connected to the failed ASM instance reconnect to other ASM instances.

Oracle Flex ASM is an option in Oracle 12c ASM which you can enable or disable. If you choose to disable the Flex
ASM feature, your cluster is a standard ASM cluster which is same as the ASM in 11gR2 or before, in which there is an
ASM instance running on each RAC node and all the database instances have to access a local Oracle ASM instance.

If you choose to enable the Flex ASM feature in your cluster, the ASM configuration on your cluster becomes a
Flex ASM. In this case, your cluster will have two kinds of nodes: those that have an ASM instance and those that don’t
have an ASM instance. Figure 4-5 shows a four-node Flex ASM configuration where three RAC nodes run Oracle ASM
instances, which is set by default and can be reset with a cardinality setting. Node 4 doesn’t have an ASM instance,
and the database instance on node 4 connects to the ASM instance on node 1 for ASM service.

Node1 Node2 Node3

Database Database Database
Instance 1 Instance 2 Instance 3
Grid Infrasturecture Grid Infrasturecture Grid Infrasturecture
Node4

Database
Instance 4

Grid Infrasturecture

—> ASM Disk

Groups

Shared Storage

Figure 4-5. An Oracle Flex ASM configuration example

105

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

As shown in Figure 4-5, a Flex ASM consists of three kinds of Oracle ASM configurations:

1. Local Oracle ASM Clients: Oracle database instances such as those on nodes 1, 2, and
3 access the local ASM instances on the same node. In this case, these Oracle database
instances have direct I/O access to the ASM disks in the shared storage and also access the
Oracle ASM metadata in the local ASM instance. This configuration is same as for the ASM
in 11gR2 or before.

2. Flex ASM Clients: Oracle database instances such as the one on node 4 have to connect to
aremote ASM instance running in another node. This remote ASM instance is the ASM
instance on node 1 in Figure 4-5.

3. Oracle ACFS and ADVM through Oracle ASM proxy instance: In Flex ASM configuration,
Oracle ASM proxy is introduced to provide support for Oracle ACFS and Oracle ASM
Dynamic Volume Manager (Oracle ADVM). Figure 4-6 shows the architecture of such
a configuration. On the left node, the ACFS and ADVM talk to the ASM proxy instance,
which connects to the local ASM instance. On the right node, the ACFS and ADVM
connect to the ASM proxy instance, which connects to the remote ASM instance that is
located in the left node, as the right node doesn’t run local ASM instance.

ADVM/ Database ADVV/
ACFS Instance ACFS
L ASM Proxy ASM Proxy J

Grid Infrasturecture

Y

Grid Infrasturecture

ASM Disk
Groups

Figure 4-6. ASM proxy for Oracle ACFS and Oracle ADVM

In order for Flex ASM clients to connect to remote ASM instances, Flex ASM introduces a new type of network
called the ASM network between Flex ASM clients and ASM instances. With this new type of network, inside of Oracle
Clusterware 12c, there are four types of networks:

1. Public network, which usually connects the cluster nodes to the Corporate network;
2. Private network for the interconnect communication between the cluster nodes;
3. ASM network for ASM clients to connect to ASM instances;

4. Storage network for the cluster nodes to access the shared storage.

ASM network is needed only for a Flex ASM configuration.

106

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Flex ASM and Flex Clusters

In Flex Clusters, Leaf nodes are not required to have direct storage access. In order for applications’ Leaf nodes to
access ASM disks on the shared storage through the Hub nodes, Oracle Flex ASM is required in Oracle Flex Clusters.
If you configure an Oracle Flex Cluster during the Oracle GI installation OUI, the Oracle Flex ASM is enabled by
default and the Flex ASM will be configured as a part of the GI installation. If you convert a standard cluster to a Flex
Cluster after the OUI installation, you need to enable the Flex ASM on the cluster before changing the cluster mode to
the Flex Cluster.

In a Flex Cluster configuration, ASM instances have to run the Hub nodes because Hub nodes are required
to have direct access the shared storage. However, not all Hub nodes may run Oracle ASM instances. As shown in
Figure 4-5, by default only three Hub nodes run Oracle ASM instances and other Hub nodes, such as node 4, run Flex
ASM client without ASM instances on it. Therefore, in a Flex Cluster only a subset of the Hub nodes hosts the Flex
ASM /0 service.

Oracle Flex ASM also can run on a standard cluster mode. In this case, all the cluster nodes are Hub nodes and
only a subset of the standard cluster nodes run ASM instances.

Configuring Flex ASM

Oracle Flex ASM can be configured during the GI installation with OUI or can be converted from a standard ASM after
the installation.

During the Gl installation, as we mentioned previously, if you select the Flex Cluster option, the Flex ASM
is automatically selected by default. If you select the standard Cluster option, you will have options to select the
standard ASM or the Flex ASM. As long as the Flex ASM option is selected either by default or manually, as part of the
Gl installation, you will need to configure the ASM network by providing at least one physical network interface for the
ASM network. In Oracle 12cR1, you can either have a separate network for the ASM network or have the ASM network
and Private interconnects sharing the same physical network interfaces. Figure 4-7 shows a configuration where the
ASM network and the Private interconnect share both eth1 and eth2 network interfaces.

Bl oracle Grid Infrastructure - Setting up Grid Infrastructure - Step 7 of 17

ORACLE 2
Specify Network Interface Usage 1 c
GRID INFRASTRUCTURE

¢, coftware Updates Private interfaces are used by Oracle Grid Infrastructure for internode traffic.
« Installation Option
., Cluster Type

—5—3

Interface Mame Subnet Use for]
ethD 172.16.0.0 [Public =
Eroduct Lanquages ethl 192.168.9.0 |ASM & Private hd|
| |ASM & Private |

Crid Plug and Play
Cluster Mode Information

Network Interface Usage

—f = — —(—}

w Crid Infrastructure Manageme

Mote: If you intend to store Oracle Cluster Registry (OCR) and woting disk files using Oracle Flex Automatic Storage Management
(Oracle Flex ASM), then you must designate at least one of the private interface subnets either as "ASM" or as "ASM & Private"

Figure 4-7. ASM network and private interconnects share the same physical NICs

The Flex ASM configuration is completed as a part of the GI installation process. By default, three-node Hub
nodes will be chosen to run the ASM instances and the rest of the cluster nodes will be Flex ASM clients. The Flex ASM
listener will also be created.

You also can enable the Flex ASM on a standard ASM cluster by converting the standard ASM to the Flex ASM.
However, as the prerequisite, prior to the conversion, you need to have at least one network interface for the ASM
network.

107

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

ASMCMD Command-line interface: asmcmd provides an option to convert a standard ASM to a Flex ASM.
The syntax of this conversion command is as follows:

$asmca -silent -convertToFlexASM
-asmNetworks interface name/subnet, interface_name/subnet...
-asmListenerPort ASM listener port numbe

For example, we can convert a standard ASM cluster to a Flex ASM with the following command:

$asmca -silent -convertToFlexASM
-asmNetworks eth1/192.168.9.0, eth2/192.168.9.0
-asmListenerPort 1521

Then you also need to execute the converttoFlexASM.sh script as the root user on all the nodes, one node
at a time. This command completes the conversion by restarting the ASM cluster to enable the Flex ASM. This
converttoFlexASM.sh script is located in the directory of SORACLE_BASE/cfgtoollogs/asmca/scripts.

Managing Flex ASM

Once you initially configure a Flex ASM instance through OUI or through the conversion method, there is not much
specific work you need to do for this Flex ASM feature. You can do all the administrative work on a Flex ASM instance
in the same way that you do for a standard ASM instance. There is not any specific instance parameter designed
for the Flex ASM instance, and all the instance parameters for a Flex ASM instance are same as for a standard ASM
instance.

You can check whether or not Oracle ASM is enabled in your cluster environment using the asmcmd command:

$asmemd showclustermode
ASM cluster : Flex mode enabled

The SRVCTL status command shows the cluster nodes where ASM instances run:

$ srvctl status asm -detail
ASM 1is running on knewracn2,knewracni,knewracn4
ASM is enabled.

And the SRVCTL config command shows more details about the Flex ASM configurations:

$ srvctl config asm
ASM home: /u01/app/12.1.0/grid
Password file: +DATA1/orapwASM
ASM listener: LISTENER
ASM instance count: 3
Cluster ASM listener: ASMNET1LSNR_ASM

Notice that the ASM password is stored in ASM diskgroup, which is also an Oracle 12c ASM new feature.

108

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

ASM Clients and Relocating

With Flex ASM being enabled, an ASM instance may be connected with various ASM clients from either the local

node or other remote nodes. After logging into the ASM instance, run the following query to see which ASM clients are

connected to this ASM instance:
SOL> select instance name, db_name, status from v$asm client;

INSTANCE_N DB_NAME STATUS

knewdb_2 knewdb CONNECTED
+ASM2 +ASM CONNECTED
+APX2 +APX CONNECTED
-MGMTDB _mgmtdb CONNECTED

Using this query, we can see how these ASM clients will be failed over to another ASM instance. For example,
we can see how the ASM clients that are connected to +ASM2 are failed over to +ASM1 after +ASM2 fails.
Before ASM2 fails, ASM1 instance has three clients: knewdb_1, +ASM1, and +APXI1.

SOL> select instance_name, db_name, status from v$asm _client;

INSTANCE_N DB_NAME STATUS

knewdb 1 knewdb CONNECTED
+ASM1 +ASM CONNECTED
+APX1 +APX CONNECTED

And ASM2 is connected with three clients: knewdb_2, +APX2, and -MGMTDB. After ASM2 fails, three clients
from ASM2 instance are relocated to ASM1:

SOL> select instance_name, db_name, status from v$asm client;

INSTANCE_N DB_NAME STATUS

knewdb_1 knewdb CONNECTED
knewdb 2 knewdb CONNECTED

+ASM1 +ASM CONNECTED
+APX1 +APX CONNECTED
+APX2 +APX CONNECTED

-MGMTDB _mgmtdb CONNECTED

New ASM Storage Limits

There is a significant increase in the ASM storage limit pertaining to the number of ASM disk groups. ASM instance

in 12c supports 511 disk groups in contrast to 63 in the previous release.

www.it-ebooks.info

109

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Replacing ASM Disk in Disk Group

Pre-12c, to replace an existing ASM disk in an ASM disk group for whatever reason, you had to add a new disk first and
then drop the existing disk. With the new REPLACE CLAUSE in 12c, you can easily replace an ASM disk in an ASM
disk group with just a single operation, in contrast to the previous add-and-remove disk procedure. The following
example demonstrates how to replace an ASM disk (ensure you connected to an ASM instance as sysasm):

SQL> ALTER DISKGROUP dg_data REPLACE DISK dg_data 004 WITH '<new asm _disk>' POWER 4;

Scrubbing ASM Disk Groups and Files

The new ASM SCRUB feature in 12c got the potential to verify any logical data corruption on any ASM disks, disk
groups, or files and optionally repair them using ASM mirror disks when an ASM disk group is configured in either
a high or normal redundancy level. The disk-scrubbing operation can be performed with the combination of HIGH,
MAX, LOW, and/or AUTO option to control the I/O on the system, and this sort of operation typically will have very
little I/0 impact on the server.

The following examples demonstrate how to execute the command to verify logical corruptions as well as repair
them automatically:

SQL> ALTER DISKGROUP dg_data SCRUB POWER AUTO:LOW:MAX:HIGH;
-- Default POWER option is set to AUTO

The following example runs through logical data corruption on the data file and repairs any corruption using
the mirror copy:

SOL> ALTER DISKGROUP dg data SCRUB FILE '+DG _DATA/MYDB/DATAFILE/users.374.817049597'
REPAIR POWER HIGH;

If no REPAIR clause is specified, then only logical data corruption verification is performed. You can monitor
the progress of the procedure in the VSASM_OPERATION dynamic view.

Reading Data Evenly in ASM Disk Group

A new feature in 11g, Preferred Read Failure Groups, provides the functionality to read the data from an extent which
is close to the node to improve the read efficiency for a disk group configured with a normal or high redundancy level.
A new default feature in 12c, Even Read for Disk Groups, provides the ability to distribute the data read operation call
evenly across all disks in a disk group. When a disk group is configured with a normal or high redundancy level,

each read request can possibly be sent to the least-loaded source ASM disk to improve the read efficiency.

Measure and Tune Rebalance Operation

To measure any ASM disk group rebalance operation in order to tune or control the overall duration required for the
rebalance operation, you can use the new EXPLAIN WORK FOR statement on AMS instance. The new SQL statement
calculates the estimated work required for the rebalancing operation and puts the result in the VSASM_ESTIMATE

110

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

dynamic view. This result will help you adjust the AMS POWER LIMIT values to rebalancing operation. The following
demonstration explains how to do that:

EXPLAIN WORK FOR ALTER DISKGROUP dg_data REPLACE disk dg_data 004 WITH '<new_asm_disk>' POWER 3;
SQL> SELECT est work FROM V$ASM ESTIMATE;

Based on the result you get, you can increase or decrease the power limit of the disk rebalancing operation.

What-If Command Evaluation

Clusterware administrators often need to perform certain cluster management operations on the cluster
environment. It has been a challenge to evaluate potential impact of these operations on the production of the cluster
and RAC environment prior to these operations. Oracle Clusterware 12c provides a new feature called the What-if
command Evaluation for this kind of purpose. This feature allows us to determine the impact of certain operations
without actually executing these commands to the cluster. And of course, since the command has not actually been
executed, the actual impact doesn’t actually occur.

The What-if command Evaluation consists of a set of evaluation commands and what-if API to preview a cluster
management operation. We can use these commands to analyze and determine the impact of a certain operation
before actually executing the operation. As a result, this feature allows you to simulate the command and review
potential results without actually making the changes on the system.

You can perform What-if command Evaluation application resources with CRSCTL using the eval option:

$crsctl eval {start | stop | relocate | modify | add | fail| resource
You can perform What-if command Evaluation on Oracle Clusterware resource:

$ crsctl eval {add | delete | modify | serverpool
$ crsctl eval {add | delete | relocate| delete server
$ crsctl eval active policy

Here is an example that shows the potential impact of deleting server knewrac4 from the cluster:
$ crsctl eval delete server knewracn4

Stage Group 1:

Stage Number Required Action

1 Y Server 'knewracn4' will be removed from pools
[ora.knewspool]
Y Resource 'ora.ASMNET1LSNR ASM.lsnr' (knewracn4)
will be in state [OFFLINE]
Y Resource 'ora.DATAl.dg' (knewracn4) will be in
state [OFFLINE]
Y Resource 'ora.LISTENER.lsnr' (knewracn4) will be

in state [OFFLINE]

111

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Y Resource 'ora.LISTENER_SCAN2.lsnr' (1/1) will be
in state [OFFLINE]
Y Resource 'ora.asm' (3/1) will be in state
[OFFLINE]
Y Resource 'ora.knewdb.db' (2/1) will be in state
[OFFLINE]
Y Resource 'ora.knewracn4.vip' (1/1) will be in
state [OFFLINE]
Y Resource 'ora.netl.network' (knewracn4) will be
in state [OFFLINE]
Y Resource 'ora.ons' (knewracn4) will be in state
[OFFLINE]
Y Resource 'ora.proxy advm' (knewracn4) will be in
state [OFFLINE]
Y Resource 'ora.scan2.vip' (1/1) will be in state
[OFFLINE]
2 Y Resource 'ora.knewracn4.vip' (1/1) will be in
state [ONLINE|INTERMEDIATE] on server
[knewracni]
Y Resource 'ora.scan2.vip' (1/1) will be in state

[ONLINE] on server [knewracni]

3 Y Resource 'ora.LISTENER SCAN2.1snr' (1/1) will be
in state [ONLINE|INTERMEDIATE] on server
[knewracni]

To evaluate the impact of these operations on resources with the .ora prefix, you must use the SRVCTL command
with eval option. For example, to evaluate the failure consequence of DAT1 diskgroup by using SRVCTL command,
use the following:

$srvctl predict diskgroup -g DATA1
Resource ora.DATA1.dg will be started on nodes knewracni,knewracn2,knewracn4

PDBs on Oracle RAC

In 11gR2 and previous versions of the database, if we want to implement a multi-tenancy database by consolidating
multiple sets of data for different business applications on a single database, we could put them into different
database schemas of one database. However, it can be very challenging to manage security and access auditing on
this type of configuration, as these different data sets share the same database. On the other hand, some applications
such as Oracle E-Business Suite (EBS) Applications have fixed schema names such as APPS, AR, GL, etc. In this case,
it is simply not allowed to consolidate more than one applications data set on the same database, as these data
sets have identical schema names, which is not allowed in the same Oracle database. One alternative option is to
run multiple database instances on the same database server, in which case you have multiple sets of database
background processes and SGAs, etc. This will definitely increase overhead on performance and capacity
requirements as well as administrative tasks.

Oracle 12c introduced a better solution to this multi-tenancy issue with the new architecture called PDBs.
This feature essentially allows having multiple PDBs within a big CDB that is run with a database instance of the
Oracle database software. This architecture can consolidate several data sets into separate PDBs within the CDB. And
these PDBs are a self-contained and can be easily plugged or unplugged to a CDB.

112

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

This section will give brief coverage of PDB components. Then we will focus on how to run this PDB architecture
in the Oracle RAC environment, such as configuring PDBs, managing PDBs, and accessing PDBs through services.

PDB Architecture Overview

In this PDB architecture, a PDB is a self-contained collection of schemas, schema objects, and non-schema objects
that are similar to those in the traditional database. For example, if you want to consolidate multiple Oracle EBS
databases, you can store each of these Oracle EBS applications’ databases in a PDB. Another component of this
architecture is the CDB, which is a subset of the PDBs that can contain zero, one, or more PDBs. A CDB has the
following containers of the database objects.

The root named CDB$ROOT is a collection of schemas and objects to which all the PDBs of this CDB belong.
The data dictionary of CDB stores the metadata about each PDB.

The seed named PDB$SEED is a template that is used to create a new PDB. You cannot make any change on the
seed. The seed is named PDB$SEEd.

A PDB is a set of application schemas, which appears to be a traditional database.

Figure 4-8 shows the structure of a CDB that consists of five containers: root, seed and three PDBs, namely, pdb1,
pdb2, and pdb3. As shown in Figure 4-8, each of these PDBs can be an Oracle EBS applications database which stores
application schemas such as APPs, GL, AP, HR, etc. The identical schema name issue with multiple data sets is no
longer a problem.

\
CDB Root (CDB$ROOT)
’—w ‘,—W‘\ ‘,—W‘\
~—Seed APPS GL APPS GL APPS GL
lPDB$SEED) l AP HR AP HR AP HR
o /

Figure 4-8. Architecture of CDB with PDBs

For example, the following SQL query lists these containers of a CDB:

SQL> SELECT NAME, CON_ID, DBID, CON_UID FROM V$CONTAINERS ORDER BY CON_ID;

NAME CON_ID DBID CON_UID
CDB$ROOT 1 1776735948 1
PDB$SEED 2 4057735188 4057735188
PDB1 3 3322827582 3322827582
PDB2 4 3881372142 3881372142
PDB3 5 3931156879 3931156879

113

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Creating CDB and PDBs

A CDB can be created using Database Configuration Assistant (DBCA) in the same way a non-CDB database is
created. Figure 4-9 shows the specification of CDB creation with three PDBs in DBCA. With these specifications, the
DBCA will create the database with global database name cpdb.kcloud.dblab.com with the three PDBs: pdbl, pdb2,
and pdb3. With the creation of the CDB and the PDBs, the default corresponding database services are created for the
CDB and each of the PDBs. These database services have the same names as the CDB and PDBs.

!Database Configuration Assistant - Create Database - Step 4 of 14
e ORACLE"
Database ldentification ¢

I:IﬁTﬁ BASE

Database |dentification

Clobal Database Name: [cpdb.keloud.dblab.com i

Database Template - 3
SID Prefix: lcpdb |

Database Identification

(el =

Database Placement

[v] Create As Container Database

Creates a database container for consolidating multiple databases into a single database and enables
database virtualization. A container database (CDB) can have zero or more pluggable databases (PDB).

") Create an Empty Container Database
(@) Create a Container Database with one or more PDBs
Number of PDBs: | El =

PDB Name Prefix®) [pdb

Figure 4-9. Creation of CDB with PDBs with DBCA

Service cpdb.kcloud.dblab.com for the CDB root.

Service pdb1.kcloud.dblab.com for the pdbl PDB.
Service pdb2.kcloud.dblab. com for the pdb2 PDB.
Service pdb3.kcloud.dblab.com for the pdb3 PDB.

You also can create additional PDBs in the container CDB with SQL*Plus commands. There are several ways to
add a PDB to a CDB:

e Creating PDB using the seed

¢ Cloning an existing PDB

e Plugging an unplugged PDB to the CDB
e Creating PDB from a non-CDB

Refer to the “Creating and Removing PDBs with SQL*Plus” section of the Oracle Database Administrator’s
Guide 12c Release 1 (12.1) for detailed steps.

114

www.it-ebooks.info

http://cpdb.kcloud.dblab.com
http://cpdb.kcloud.dblab.com
http://pdb1.kcloud.dblab.com
http://pdb2.kcloud.dblab.com
http://pdb3.kcloud.dblab.com
http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Connect to CDB Root and PDBs

Once the CDB and PDBs are created, the listener listens to the default services for CDB root and PDBs:
$1snrctl status

Service "cpdb.kcloud.dblab.com " has 1 instance(s).

Instance "cpdb1", status READY, has 1 handler(s) for this
Service "pdbi.kcloud.dblab.com" has 1 instance(s).

Instance "cpdb1", status READY, has 1 handler(s) for this service...
Service "pdb2.kcloud.dblab.com" has 1 instance(s).

Instance "cpdb1", status READY, has 1 handler(s) for this service...
Service "pdb3.kcloud.dblab.com" has 1 instance(s).

Instance "cpdb1", status READY, has 1 handler(s) for this service...

The corresponding net service names for these database services are defined in the tnsnames.ora, which will
allow us to connect to the CDB root and PDBs. For example, we have the net service name ‘cpdb’ for the CDB root and
the pdb1 net service for the pdb1 PDB:

cpdb =
(DESCRIPTION
(ADDRESS = knewrac-scan.kcloud.dblab.com

1521))

(PROTOCOL = TCP)(HOST
PORT

(CONNECT _DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = cpdb.kcloud.dblab.com)))

pdbl =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = knewrac-scan.kcloud.dblab.com)

(PORT = 1521))

(CONNECT _DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = pdbi.kcloud.dblab.com)))

To connect to the root (CDB$ROOT), you can use the operating system authentication that has the SYSDBA
administrative privilege:

$sqlplus / as sysdba or
SQLPLUS> connect / as sysdba

Or connect with the net service name for the root in the CDB:
SOQLPLUS> connect system@cpdb

To connect to the PDB, you need to connect to a net service name with the PDB property. For example, to
connect the pdbl PDB on SQLPLUS through the new service name pdb1:

SOLPLUS> connect system@pdbl

115

www.it-ebooks.info

http://www.apress.com/source-code
http://pdb1.kcloud.dblab.com
http://pdb2.kcloud.dblab.com
http://pdb3.kcloud.dblab.com
http://www.apress.com/source-code
http://cpdb.kcloud.dblab.com
http://knewrac-scan.kcloud.dblab.com
http://pdb1.kcloud.dblab.com
http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Once you connect to the pdbl PDB, you can do administrative tasks such as creating schema or other database
objects in the PDB. These default database services should be used only for administrative tasks. Additional database
services should be created for the applications to connect to the PDBs. The next section will discuss how to create
additional services for PDBs in the Oracle RAC environment.

PDBs on Oracle RAC

The CDB with PDBs can be created and configured on a single-node or a multiple-node RAC environment. Similarly
to a non-CDB database, a RAC-based containter database can be shared and accessed through multiple database
instances on the RAC nodes. However, the CDB has introduced several layers of containers in the database: the entire
CDB, the root, the seed, and PDBs. Similar to the non-CDB, a PDB can be on different open modes:

e Mounted
e Readonly
e Read and write

You can check the open modes of all the PDBs on a RAC instance when you connect to the CDB root:
SELECT NAME, OPEN_MODE, RESTRICTED FROM V$PDBS;

NAME OPEN_MODE RESTRICTED
PDB$SEED READ ONLY NO
PDB1 READ WRITE NO
PDB2 READ WRITE NO
PDB3 Mounted NO

To start a PDB, connect to the PDB with SQL*Plus and run the startup or the shutdown command with different
startup open options:

STARTUP OPEN

STARTUP OPEN READ ONLY

STARTUP RESTRICT OPEN READ ONLY
SHUTDOWN IMMEDIATE

You also can change the open mode of a PDB using the ALTER PLUGGABLE DATABASE statement, for example,
‘ALTER PLUGGABLE DATABASE CLOSE IMMEDIATE’ to close the PDB, ‘ALTER PLUGGABLE DATABASE OPEN
READ ONLY’ to open the PDB for read only.

Figure 4-10 shows such a RAC-based CDB database architecture. Each PDB may be in the open mode in different
RAC instances: the pdb1 PDB is open on instance 1; pdb2 is open on instance 2; pdb3 is open on instances 1, 2, and 3;
and pdb4 is open on instance 3.

116

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Services

CcDB
Instance
with SGA

on RAC

Node

Root (CDB$SROOT) ‘

CDB With PDBs

.3eed l . pdb1 l . pdb2 l . pdb3 '. pdb4'

Figure 4-10. Oracle RAC-based CDB

Creating Services Associated with PDBs

PDBs in a RAC-based CDB should be managed through the database services. The default database service with

the same name as the PDB is created automatically during PDB creation. You should only use this default service

to connect to the PDB for administrative tasks. For applications to access the PDB, you need to create user-defined
services for the PDB. In Oracle 12c, the database service has an optional PDB property which allows you to create a
database service that is associated with a PDB. For example, we can create two database services, hrl and sales], to be
associated with the pdb1 PDB with this command:

$srvctl add service -db cpdb -service hrl -pdb pdbl -preferred cpdbi
-available cpdb2

$srvctl add service -db cpdb -service salesi -pdb pdbl -preferred cpdb2
-available cpdb3

Notice that these services have two different preferred RAC instances: cpdbl on nodel and cpdb2 on node2.
Figure 4-10 shows the different database services associated with four PDBs: pdb1, pdb2, pdb3, and pdb4.
The Data Dictionary view all_services lists all the services associated with the CDB and the PDBs:

List the services with the CDB root:

SOL> connect sys@CPDB as sysdba
SQL> select NAME, PDB from all services;

NAME PDB

SYS$BACKGROUND CDB$ROOT
SYS$USERS CDB$ROOT
cpdbXDB CDB$ROOT
cpdb.kcloud.dblab.com CDB$ROOT

117

www.it-ebooks.info

http://www.apress.com/source-code
http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

List the services with the pdb1 PDB:

SOL> connect sys@pdbl as sysdba
SQL> select NAME, PDB from all services;

NAME PDB

pdb1.kcloud.dblab.com PDB1
hri PDB1
sales1 PDB1

In the Oracle RAC-based environment, these database services are managed through the Oracle 12c Clusterware.
You can check the service configuration of the cpdb CDB with the following srvctl command:

$ srvctl config service -db cpdb
Service name: hri

Service is enabled

Server pool: cpdb_hri
Cardinality: 1

......

Preferred instances: cpdbi
Available instances: cpdb2
Service name: salesl
Service is enabled

Server pool: cpdb_salesi
Cardinality: 1

......

Preferred instances: cpdb2
Available instances: cpdb3

In the previous section, we mentioned that PDBs can be opened or shut down with the startup and shutdown
command as well as the ALTER PLUGGABLE DATABASE OPEN or the ALTER PLUGGABLE DATABASE CLOSE
command. Starting the service that is associated with the PDB can also open the PDB. If the PDB is currently closed
and you use the SRVCTL command to start the service that is associated the PDB, the PDB will be opened in read/
write on the nodes where the service is started. The following is the test:

Close the pdb1 PDB:

SOL> connect sys@pdbl as sysdba
SOL> alter pluggable database close immediate;
SOL> select NAME, OPEN_MODE from V$PDBS

NAME OPEN_MODE

PDB1 MOUNTED

118

www.it-ebooks.info

http://pdb1.kcloud.dblab.com
http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Start the hrl service:

$srvctl status service -db cpdb -service hri
Service hr1l is not running
$ srvctl start service -db cpdb -service hri

Check the status of the pdb1 PDB:

SOL> connect sys@pdbl as sysdba
SOL> select NAME, OPEN_MODE from V$PDBS

NAME OPEN_MODE

PDB1 READ WRITE

While the startup of the service can open the closed PDB with which the service is associated, shutdown
operation of the service will not change the open mode of the PDB. In other words, if we shut down the hrl service
while the pdb1 PDB is open for READ and WRITE, the pdb1 PDB keeps open for READ and WRITE.

Creating Net Service Names for PDBs

With the user-defined services with the property of the PDB, you can create the net service names in the tnsnames.
ora file for applications to access the PDBs. Using the previous example of the hrl and sales] services for the pdb1
PDB, we can create the HR_PDB1 and SALES_PDBI1 net service names, which the HR application uses and the sales
application can use, respectively, to connect to the pdbl PDB database:

HR_PDB1 =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST
(PORT

knewracscan.kcloud.dblab.com)
1521))

(CONNECT _DATA =

(SERVER = DEDICATED)

(SERVICE_NAME = hri.kcloud.dblab.com)
)

)
SALES_PDB1 =

(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP)(HOST = knewracscan.kcloud.dblab.com)
(PORT = 1521))

(CONNECT _DATA =
(SERVER = DEDICATED)
(SERVICE_NAME = salesi.kcloud.dblab.com)

)
)

12cR1: Miscellaneous New Features for RAC

In addition to the significant new features presented in detail in the previous sections, the following sections present
a brief high-level synopsis and overview of some of the notable miscellaneous new features within Oracle 12cR1
Clusterware.

119

www.it-ebooks.info

http://knewracscan.kcloud.dblab.com
http://hr1.kcloud.dblab.com
http://knewracscan.kcloud.dblab.com
http://sales1.kcloud.dblab.come
http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

Public Networks for RAC: IPv6 Support Added

RAC 12cR1 now supports IP addresses for Public and VIP based on the IPv6 protocol. This new feature gives RAC
users a choice of IPv4 or IPv6 protocol addresses. With 12cR1, Oracle database clients are pointed by the SCAN
listener to the suitable listener for either Ipv4 or IPv6 IP protocols. IPv6 is also supported for the GNS with the Stateless
Address Autoconfiguration Protocol.

The important thing to remember is that during the installation phase, you cannot mix and match both IPv4 and
IPv6 protocol configurations for VIP and SCAN IP addresses: you have to use either IPv4 or IPv6, but not both at the
same time, at the time of installation. However, once installation is complete, later on, IPv4 addresses can be added to
an existing IPv6 cluster and vice versa.

It should also be noted that the IPv6 protocol is not supported and cannot be configured for the Cluster Private
Interconnect (it is supported only for PUBLIC, SCAN, and VIP addresses).

Global Data Services

This is an exciting new feature that enables common services to operate for a group of replicated Oracle RAC or non-
RAC databases using Data Guard, Golden Gate, or another replication technology. This new feature can be utilized for
workload management functionality purposes in a distributed ecosystem: for example, Service Management, Failover,
and Load Balancing, etc., for replicated databases providing a set of common services.

Online Resource Attribute Modification

Online Resource Attribute Modification is a great new feature that makes it simpler and easier to perform the dynamic
editing, modification, and implementation of changed attributes related to resources in HOT mode, without the need
to restart the resource. SRVCTL and CRSCTL commands can be utilized for performing Online Resource Attribute
Modification without requiring a restart for the change to take effect.

RAC 12cR1: Policy-Based Management and Administration

With 12cR1, Cluster Configuration Policy Sets enable date- and time-sensitive application of policies in a RAC cluster.
In the modern era of Cloud Computing, this feature comes in real handy for on-demand, consolidated, and dynamic
management of highly available heterogeneous applications and workloads.

Cluster Configuration Policies define attributes for server pools such as node availability, resource placement,
etc. Policy Sets take this approach a bit further by grouping Cluster Configuration Policies for server pools. Cluster
Configuration Policy Sets groups various policies (one or more) together for a server pool.

Cluster Configuration Policies can be used for implementing policy-based management and administration for
different days and hours of the week, depending on type of workload, peak or off-peak timeframes, server categories
and capabilities, etc.

ASM Disk Group: Shared ASM Password File

Within 12cR1 ASM disk groups, shared password files are now supported, making it easier and more efficient for
maintenance purposes by keeping a single copy of a shared ASM password file.

Valid Node Checking: Restricting Service Registration

With this new feature, SCAN listener registration can be restricted to a specific set of nodes and subnet using the
SRVCTL command, thereby making the whole RAC experience more secure and easier to implement and maintain.

120

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

12cR1: Shared GNS

With 12cR1, the GNS can be used and shared among multiple RAC clusters, instead of just one GNS per cluster as was
the case in earlier versions of RAC.

RAC 12cR1: Restricting Service Registration

With 12cR1 by default, listener registration is now restricted to local IPs only. With this new feature, IP addresses or
subnets can be configured dynamically to allow listener registration requests. The SRVCTL command-line utility can
be used for this purpose.

Oracle ASM, ACFS, and ADVM: Improvements and New Features

As part of Oracle GI, with 12cR1, there are multiple improvements and new features within ASM, ACFS, and Oracle
ASM Dynamic Volume Manager (Oracle ADVM), for example, improved ACFS support for Oracle Grid Homes, new
ACFS security features and options to augment OS-level security features, support for implementing combination
security of Oracle Audit Vault and Oracle ACFS security, ACFS highly available NFS, ACFS snapshot improvements,
API for ACFS file tags, ASM rebalance improvements, support for ASM chown/chgp/chmod for files that are currently
open, API for ACFS plug-ins, Oracle Enterprise Manager support for new ACFS features, ASM file access control

for the Windows OS family, support for OCR backups in ASM disk groups, ACFS support for all kinds of Oracle DB
files, more OS family support for ACFS tagging and replication, ASM disk resynch improvements, enhanced support
for Cluster resources for ACFS and ADVM, rolling migration for GI one-off patches, ASMCMD improvements and
enhancements, new SQL statement functionality for ASM, etc.

NES High Availability

With 12cR1, Oracle ACFS can be configured to provide fault-tolerant failover for NFS exports. NFS exports can be
mounted with VIP addresses. This new capability ensures that NFS exports are fault tolerant and highly available.

12cR1: CHM Enhancements

With 12cR1, CHM has been improved to be a highly available monitoring tool that provides and reflects a
consolidated cluster view by using data collectors on the nodes of the cluster. CHM now also has improved capability
to detect failures and other issues. CHM now also supports Flex Clusters.

Windows: Support for Oracle Home User

With RAC 12cR1, an Oracle home user tied with a (non-admin) Windows domain user can be specified during the
installation phase within the Windows OS family. This new functionality enables a limited number of privileges for the
Oracle home user, restricting access to Oracle products.

The password for the Oracle home user can be stored within a wallet. Oracle tools can implicitly use the
password from the wallet, thereby alleviating the need for the user to specify the password.

OUI: Enhancements and Improvements

With RAC 12cR1, OUI has been improved in multiple facets, providing support for the new RAC enhancements like
Flex Cluster, Flex ASM, etc. Commonly used configurations can also now easily be used for installation during the
initial interview process in OUI.

121

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 © NEW FEATURES IN RAC 12C

12cR1: Installations/Upgrades—Running Scripts Automatically

With RAC 12cR1, scripts can be set up to run automatically at the tail-end of installations and upgrades, making the
whole process easier and minimizing the need for human intervention, thereby mitigating overall errors as well using
this methodology.

12cR1: Introducing Application Continuity

With 12cR1, application availability and continuity have been significantly enhanced by masking planned and
unplanned outages and failures (network, storage, processes, etc.) from application users.

This new feature has been implemented in a manner that is independent of the way the application behaves and
operates in case of a failure in RAC.

Application continuity can be implemented at the database service level by the following steps:

Setting the -failovertype parameter to TRANSACTION.

Setting the -commit_outcome parameter to TRUE.

Application continuity is transparently available to applications using Oracle connection pools (UCP), Weblogic
Server Active GridLink, and JDBC.

The next section is an extension and continuation of the application continuity paradigm and functionality.

Transaction Idempotence and Java Transaction Guard

Transaction idempotence is an exciting new feature that enhances the RAC experience by enabling application
recovery by masking most of the RAC system-level failures from the user. Java Transaction Guard allows Java to use
application continuity features.

Deprecated and Desupported Features

In this section, features and options are listed that are either deprecated or not supported with 12cR1. It is very
important to understand these points before you plan to upgrade your existing environment and/or plan a new 12c
cluster environment. The deprecated, desupported features include the following:

e Raw (block) storage devices are no longer supported by Oracle with 12¢. Therefore, consider
migrating the OCR/voting disk to ASM if they are on raw storage devices and if you have plans
to upgrade your existing environment to 12c.

e Oracle no longer supports the Oracle Cluster File System (OCFS) on the Windows OS family.

e Single-letter commands for the SRVCTL utility, for example, -n -s, have been desupported.

Summary

With a whole array of exciting new features ranging from Flex Clusters, Flex ASM, What-if command Evaluation, and
RAC-based PDBs to Application Continuity, 12cR1 brings about real change and enhancements to the overall RAC
experience. These new features reflect changing times in the industry and the evolution of Cloud Computing within
the IT ecosystem. Most of the new features related to RAC 12cR1 reflect the significance of the role that RAC plays
within the Cloud Computing space from a Database-as-a-service (DBAAS) model perspective.

122

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Storage and ASM Practices

by Kai Yu

In this chapter, I will discuss one of the key infrastructure components for the Real Application Cluster (RAC)
database: storage. In the RAC Database environment, storage needs to be accessible and shared by all the nodes

of the RAC Database. Database files such as data files, control files, online redo log files, temp files, spfiles, and

the Flash Recovery Area (FRA) are kept in this shared storage. In addition, two key sets of files of the Oracle
Clusterware—Oracle Cluster Registry (OCR) and voting disk files—are also stored here. Due to the presence of these
key components of the RAC Database and Clusterware, shared storage is one of the most critical components of the
RAC Database infrastructure.

This shared storage plays a key role in the stability of the Oracle Clusterware. In case any node of the RAC cluster
is not able to access the voting disk files that are stored in the storage within a predetermined time threshold (default
is 200 seconds), the RAC node will be evicted and get rebooted. As a result, the database instance on the RAC node
will also get rebooted. Even more seriously, if the OCR on the storage is lost permanently, the Oracle Clusterware
on the entire RAC cluster will no longer function. If this happens, the OCR needs to be recovered from its backup to
resume the normal operation of Oracle Clusterware.

Shared storage is also essential for the availability of the RAC Database. Any storage issue may lead to the loss of
a partial or entire RAC Database. For example, losing access to shared storage by a RAC node will bring down the RAC
Database instance on the RAC node. Loss of a data file or data corruption due to disk errors may cause the loss of a
partial or entire RAC Database.

The performance of the RAC Database depends upon the I/O performance of the shared storage. Storage I/0
performance is even more important in a RAC Database environment where the heavier I/Os from multiple RAC
Database nodes to a single shared storage may trigger huge I/0 bottlenecks that hinder database performance.

As an essential part of the life cycle management of a RAC Database, the design, configuration, and management
of such a shared storage system is vital for the long-term health and performance of the RAC Database. However, in a
typical IT department, storage administration and database administration are two separate job responsibilities that
may belong to two different teams, in line with the separation of duties policy commonly followed in IT. Cooperation
and mutual understanding between the storage administrator and the database administrator (DBA) are crucial
for RAC Database storage design and configuration. In order to achieve database availability and performance
requirements defined by the database SLA (Service Level Agreement), some special design considerations and
best practices should be incorporated into the storage provisioning process for Oracle RAC Databases. Here we can
highlight some of the major tasks of storage provisioning and examine how the different roles such as the storage
administrator, the system administrator, and the DBA can play together.

123

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © STORAGE AND ASM PRACTICES

1. Architecting and implementing the storage solution. Since shared storage is required by
the RAC infrastructure, many IT departments use SAN (Storage Area Network) storage
for the RAC Database, as it can be accessed by multiple hosts through the storage
network. The reality is that a big SAN storage may be also shared by many different
applications. The storage administrator and the DBA need to work together to make sure
the storage requirements of the RAC Database are met. Some key areas for storage design
include storage network protocol, the topology of the physical network connections
among the RAC node hosts, and storage, storage capacity, and I/0 load balance among
the applications that share the same storage.

2. Provisioning storage volumes in the shared storage for the Oracle RAC Databases. At the
very least, you need to provision the storage volume for OCR and the voting disk files
and the volumes for the database files. The goal is to ensure that these volumes meet the
high availability and I/O performance and capacity requirements of the RAC Database
with the optimal design and configuration of these storage volumes, including the RAID
configuration of the volume; the capacity and number of disk spindles and what kind of
disks (speed of disks) form the storage volume; and the storage controller to which the
storage volume should be assigned.

3. Making the storage volumes accessible to the RAC nodes. This includes configuring the
logical network connections to the storage volumes and presenting the storage volumes as
OS devices in all the RAC nodes.

4. Creating Automatic Storage Management (ASM) diskgroups on the storage volumes for
OCR and voting disk files of the Oracle Clusterware.

5. Creating ASM diskgroups for database files and optional ASM Cluster File System (ACFES)
for non-Oracle Database files such as Oracle RAC home and clusterfile system for other
applications.

6. Ongoing maintenance tasks such as monitoring database I/O performance and identifying
storage I/0 issues and performing storage reconfiguration, upgrade, or migration tasks.

In the preceding task list, tasks 1 and 2 are usually completed by the storage administrator and the OS system
administrator with input from the Oracle DBA. Task 3 is performed by the OS system administrator with input from
the Oracle DBA. Tasks 4-6 are traditionally the Oracle DBA’s responsibility. In many IT organizations, especially
smaller IT departments, these responsibilities are combined and performed by one system administrator or DBA.

This chapter covers some of the techniques and best practices that are used for shared storage design and
configuration of the RAC Database, with a focus on how to meet the special storage requirements for the Oracle
Clusterware and RAC Database. These topics will be covered in this chapter:

e Shared architecture and configuration for RAC
e ASM

e Storing OCR and voting disk files in ASM

e ACFS

Storage Architecture and Configuration for Oracle RAC

In the Oracle RAC Database cluster, the cluster nodes connect directly to the same storage array where the critical
components of the Oracle Clusterware OCR and voting disk files and the database files are stored. The availability
of the storage array for each cluster node and the I/O performance of the storage array are critical to the Oracle

124

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © STORAGE AND ASM PRACTICES

RAC Database. Optimal storage array design and configuration are the foundation of Oracle RAC Database design.
Understanding the optimal configuration of the storage array and how it contributes to the Oracle RAC Database
design help us make the right design decisions and establish the optimized infrastructure for Oracle RAC Database at
the very start of RAC Database configuration.

Note Oracle RAC 12c introduced a new cluster architecture called Oracle Flex Cluster in addition to the standard
cluster configuration, which is similar to the Oracle 11gR2 cluster. In the Oracle 12c¢ Flex Cluster, there are two types of
cluster nodes: Hub nodes and Leaf nodes. All the Hub nodes have direct access to the shared storage, while the Leaf
nodes do not require direct access to shared storage. These Leaf nodes get data from the shared storage through Hub
nodes. (Please refer to Chapter 4 for more details.) This chapter will focus mainly on the standard cluster in which all the
nodes have direct access to the shared storage.

Storage Architecture and I/0 for RAC

Before we design the storage architecture, you need to understand the characteristics of I/O operations between

the Oracle RAC nodes and storage. The storage architecture for an Oracle RAC environment consists of OCR and
voting disk files of the Oracle Clusterware and database files and online redo logs for Oracle RAC Database. In theory,
these storage components can be stored in one physical volume. However, for optimal I/O performance and better
manageability, separate physical volumes may be created for each of the components.

To examine the I/O operations between the RAC Database nodes and the shared storage, for example, we create
four volumes for a two-node RAC Database as illustrated in Figure 5-1. These four volumes are the two online redo
log volumes, one OCR and voting disk volume, and one data volume. Each of the two online redo log volumes is for
one one redo log thread of one RAC node. The data volume is for database files, control files, etc. Online redo logs and
database files are very critical components of the RAC Database.

RAC Node RAC Node
(" RAC Database I 4 RAC Database)
Instance Database < Database Instance
Buffer Cache Buffer Cache
Block|Shipping HO

EEEH
EEH B B

DBWn ‘ Server
b. 4

Process ‘ ‘
— ' OCR/
Online Votingdisk Onllne
Redo Redo

Oracle
Clusterware

Oracle
Clusterware

Logs

Shared Storage

Figure 5-1. Oracle RAC Database architecture

125

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © STORAGE AND ASM PRACTICES

The OCR and voting disk volume is for the OCR and voting disk file. The OCR stores the metatada of the
resources that Oracle Clusterware manages, such as Oracle RAC Database, listeners, virtual IPs, and service. The
voting disk files are used to store and manage the node membership of the cluster. Oracle Clusterware processes
Cluster Ready Service (CRS), and Cluster Synchronization Services (CSS) on each RAC node constantly accesses
OCR and voting disks. OCR and voting disks need to be accessible from each of the RAC nodes all the time. If a RAC
node fails to access the voting disk file in 200 seconds, it will trigger a node eviction event that causes the RAC node to
reboot itself. Therefore, the critical requirement for OCR and voting disk is the availability and fault tolerance of the
storage volume.

To understand how the Oracle RAC Database accesses shared storage, let’s review the Oracle RAC Database
architecture. Figure 5-1 shows a two-node RAC Database. Each of the RAC Database instances has a set of database
background processes, such as the log writers (LGWR), DB writers (DBWn) and server processes, etc., along with
RAC-specific processes such as LMS, LMON, LMD, etc. Each RAC instance also has its memory structure, including
the System Global Area (SGA) memory structure, where database buffer cache and redo log buffers are located. The
database buffer cache is the memory area that stores copies of data blocks read from data files. The redo log buffer is a
circular buffer in the SGA that stores redo entries describing changes made to the database.

When a user sends a query request to the database instance, a server process is spawned to query the database.
The block request is sent to the master instance of the block to check if this block has been read into any instance’s
buffer cache. If the blocks cannot be found in any instance’s buffer cache, the server process will have to get the block
from the storage I/O by reading the data block from the data files to the local buffer cache through data file read
operations. If the data block is found in the buffer cache of one or more RAC instances, the instance will ask the Global
Cache Service (GCS) which is the LMS process to get the latest copy of the block. If the latest copy is on a remote
instance, the copy will be shipped from the buffer cache of the remote instance to the local buffer cache. In this way,
Oracle cache fusion moves the current blocks between the RAC instances. As long as the block is in an instance’s
buffer cache, all other instances can get the latest copy of the block from the buffer cache of an instance instead of
reading from the storage.

Different types of application workloads determine the way in which RAC Database instances interact with the
storage. For example, the data file read can be “random read” or “sequential read.” For online transaction processing
(OLTP) type database workloads, most queries involve small random reads on the data files by taking advantage of the
index scan. For data warehouse or decision support (DSS) workloads, the queries involve large sequential reads of the
data files due to large full-table scan operations. In order to achieve optimal I/O performance for the OLTP workload,
it is very critical to have a fast I/O operation, as measured by IOPS (I/O operations per second) and I/0 latency. The
IOPS number is about the I/0 throughput, namely, how many I/O operations can be performed per second, while I/O
latency is defined as the time which it takes to complete a single I/O operation.

One way to achieve higher IOPS is to have the data striped across multiple disk drives so that these multiple
disk drives can be read in parallel. Another more promising solution is to use Solid State Drives (SSD), which
can significantly increase IOPS and reduce I/0 latency by removing the performance bottleneck created by the
mechanical parts of the traditional hard disk. For DSS workloads, it is important to be able to read a large amount of
data contiguously stored in the disk to the buffer cache at high speed (as defined by MBPS (megabytes/second)). The
bandwidth of the components linking the server with the storage such as HBAs (Host Bus Adapters), storage network
protocol, physical connection fabrics, and the storage controllers is the key to this type of performance. In reality,
many database applications fix these two types of workloads. When we look for storage for the database, its IOPS,
MBPS, and I/0 latency should be evaluated to ensure that they meet the database I/0 requirements.

Besides reading data from storage, writing data to storage is also critical to RAC Database performance. This is
especially true for the OLTP-type database workload. Two important disk write operations are as follows:

e writing redo logs from the redo log buffer in SGA to the online redo log files in the storage by
the logwriter process (LGWR).

e writing modified blocks (dirty blocks) in the buffer cache to the data files by the DB writer
process (DBWn).

126

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © STORAGE AND ASM PRACTICES

While writing dirty blocks by DBWR involves a random write operation, writing redo logs by LGWR involves a
sequential write operation. In order to guarantee that a data change made by a transaction is fully recoverable, the
transaction would have to wait until all the redo logs for the transaction and the system change number (SCN) of the
transaction are written to the online redo logs. In an OLTP database with high-volume transactions, this sequential
writing operation by LGWR can be the performance bottleneck that holds up these database transactions. A high
number of ‘log file sync’ wait events shown in the AWR report is a good indication of this performance bottleneck.

In order to optimize database performance, we need to focus on how to improve the LGWR’s I/O performance by
allocating the online redo logs on storage that has high IOPS and low I/0 latency.

Although user transactions don’t have to wait for the DBWR directly. a slow DBWR writing operation could still
delay user transactions. As we know, at a database checkpoint, the DBWR process needs to write all the dirty blocks
to the data files in the storage. A slow DBWR process can delay the checkpoint operation; for instance, if during the
checkpoint the logwriter needs to reuse a log file that has redo information on a dirty block. The logwriter process has
to wait until DBWR finishes writing the dirty block for the checkpoint. The logwriter wait caused by the slow DBWR
process will slow down the user transactions. In this case, you will see the “Checkpoint not complete, cannot allocate
new log” message in the alert.log file. This indicates that the logwriter had to wait and transaction processing was
suspended while waiting for the checkpoint to complete. Therefore, the speed of writing dirty blocks to data files by
DBWR impacts database performance.

Having explained the requirements of storage I/O under different database workloads and its impact on
database performance, in the next section I will discuss the technology options that we should consider in the storage
architecture design for the Oracle RAC Database.

RAID Configuration

As you saw in the last section, the availability and performance of a RAC Database depends on the shared storage
infrastructure configuration. One of the most important storage configurations is RAID (Redundant Array of
Inexpensive Disks), which was introduced as a way to combine multiple disk drive components into a logical unit.
The following are some of the commonly used levels of RAID configuration adopted to enhance storage reliability and
performance:

e RAID 0 for block level striping: data blocks are striped across a number of disks in a sequential
order. This is often used to improve storage performance as it allows reading data from
multiple disks in parallel. As RAID 0 doesn’t provide mirroring or parity, any drive failure will
destroy the array.

e RAID I for mirroring: two or more disks have exact copies of the data. This is often used to
achieve reliability against disk failures, as it saves more than one copy of the database. This
can improve the data read performance, as the data read can get the data from the faster of
multiple copies. But it will slow down the data writes, as the controller needs to write more
than one copy of the data. It also cuts the storage capacity and the number of disks in half.
This option requires minimal two disk drives. RAID 1 doesn’t provide striping.

e RAID 1+0 for mirroring and block level striping: As shown on the right side of Figure 5-2, this
option create mirror sets by mirroring the disks, then stripe data blocks such as B1, B2...
across these mirrored sets so it is also called as “stripe of mirrors”. It provides both reliability
and performance improvement.

e RAID 0+1 for block level striping and mirroring: As shown on the left side of Figure 5-2, this
option create two striping sets each with data blocks such as B1, B2..., and then let them
mirror each other, so it is also called as “mirror of stripes”. This option achieves both reliability
and performance improvement.

127

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © STORAGE AND ASM PRACTICES

3
Striping [[21] T [82] 70 [=2] OO [4) Im l] gl
Set B5 B6 B7 B8 B5 B6 | | B7 | B8
oy W Ny W
mirroring @in'c ﬁ“éi i
re— o— pr— i

Striping [[B1 - bsz = 53 B4 B1 [e2] B3 | B4 |
Set |[B5] 86 | ca 85 | Bs [B¢ | 87 =
- T FJ w3 — ' :
RAID 0+1 RAID 1+0

Figure 5-2. RAID 0+1 vs. RAID 1+0

The difference between RAID 1+0 and RAID 0+1 is that if one disk fails in RAID 0+1, the entire striping set
fails. Then, if another disk in the second mirroring set fails, this array is lost. While in the RAID 1+0 configuration,
as long as both disks in the same mirror set fail, the array is fine. Both these options reduce the disk capacity by
half. This configuration is commonly used for OLTP-type database workload, as this option doesn’t impose a heavy
performance overhead for the write operation which is very frequent for OLTP type of workload.

e RAID 5 for striping blocks with parity on all the disks. To provide error protection, distributed
parity blocks are kept on all the disks. In case of a disk failure, the parity blocks are used to
reconstruct the errant sector. Although this option reduces the capacity of only one disk, it
imposes a heavy performance overhead for write operations, as the parity block has to be
recalculated every time. Considering the cost savings, RAID 5 may be an acceptable configuration
option for a data warehouse-type database, which mostly does read operations and which needs
a significant amount of disk capacity, but it is not a good choice for update-heavy databases
engaged in OLTP workloads.

e RAID 6 for striping blocks with parity on all the disks. It is similar to RAID 5 except for having
double distributed parity. It provides fault tolerance up to two failed drives.

A RAID array can be implemented as either hardware RAID or software RAID. Hardware RAID operates at
the level of the RAID Controller; the OS does not know anything about it. When the data comes from the OS to the
storage, the RAID controller card takes care of striping or mirroring. In software RAID, the OS takes the responsibility
of striping the data and writing to the appropriate disk as needed. Software RAID is low cost as it doesn’t require
special hardware, but it costs the host CPU resource. Hardware RAID doesn’t consume any host CPU, but there is an
additional cost for the RAID controller card. The external storage used for shared storage in Oracle RAC Database
usually uses SAN or something similar. The storage controller of these storage systems provides hardware RAID
functionality and supports different kinds of disk RAID configuration such as RAID 0, 1, 1+0, and 5, etc. It is a part
of the storage design and configuration to create a disk RAID configuration (called the RAID group in some storage
product terminologies) based on a set of individual physical disks. Then, data volumes or logical unit numbers (LUNSs)
can be created on these RAID configurations or groups.

Figure 5-3 shows an example of the storage configuration. Table 5-1 lists the design of the RAID groups and the
storage volumes associated with these RAID groups. In this example, there are three RAID 10 RAID groups—DataGl,
DataG2, and DataG3—and two RAID 1 RAID groups—RedoG1 and RedoG2. There are eight storage volumes or LUNs:
Datal-Data3, OCR1-OCR3, and Redol-Redo2. These volumes are used as the storage LUNs for database files, OCT,
voting disk files, and Redo logs, as indicated by their names. Figure 5-3 shows an example of the actual configuration of
storage volumes on a storage Controller Management GUI tool called Dell PowerVault Modular Disk Storage Manager
(MDSM). Although different storage vendors have different storage management tools, they provide similar functionality
that allows storage administrators to create storage volumes based on physical disks with certain RAID configurations.

128

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © STORAGE AND ASM PRACTICES

Table 5-1. Storage RAID configuration design
RAID Group Name RAID Level Number of Disks ~ Volumes

DataG1 10 4 Datal, OCR1
DataG2 10 4 Data2, OCR2
DataG3 10 4 Data3, OCR3
Redogl 1 2 Redol
Redog2 1 2 Redo2

;'-j-@i Datal (RAID 10) (272.465 GE)
{3 Datal (270.000 GE)

—{3) OCR1 (1.000 GB)

{2 Free Capacity (1.465 GB)
_—J-% DataG2 (RAID 10) (272.465 GE)
—{3) Data2 (270.000 GE)

{3 OCR2 (1.000 GE)

(") Free Capacity (1.465 GB)
=85 patacz R 10) @272.465 GB)

{3 OCR3 (1.000 GB)

L)) Free Capacity (1.465 GB)
_—j-% Redogl (RAID 1) (136.232 GB)
{3 Redo1 (40.000 GB)

() Free Capacity (96.232 GB)
;i-% Redog2 (RAID 1) (136.232 GB)
{3 Redo2 (40.000 GE)

L)' Free Capacity (96.232 GB)

Figure 5-3. An example of storage RAID configuration for RAC Database

Storage Protocols

Apart from RAID configuration, it is a critical part of storage design to determine how the RAC node hosts share access
to the storage and perform database I/O operations through the storage. This design includes the topology of physical
links between the hosts and the storage and storage protocols that are used to transfer the data. Here we explore some
widely used storage network protocols such as Small Computer System Interface (SCSI), Fibre Channel (FC), Internet
Protocol (IP), and Network Area Storage (NAS). SCSI, FC, and IP protocols send block-based data, called the block
base protocol, while NAS sends file-based data across the network, called the file-based protocol.

The SCSI protocol defines how host operating systems do I/O operations on disk drives. In the SCSI protocol, the
data is sent in a chunk of bits called a “block” in parallel over a physical connection such as a copper SCSI cable. Every
bit needs to arrive at the other end of cable at the same time. This limits the maximum distance between the host and
the disk drives to under 25 meters. In order to transfer the data over a longer distance, the SCSI protocol usually works
with other protocols such as FC and Internet SCSI (iSCSI).

129

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © STORAGE AND ASM PRACTICES

FC is a SAN technology that carries data transfers between hosts and SAN storage at very high speeds. The
protocol supports 1 Gbps, 2 Gbps, 4 Gbps, and 16 Gbps (most recently) and maintains very low latency. The FC
protocol supports three different topologies: 1) connecting two devices in a point-to-point model; 2) An FC-arbitrated
loop connecting up to 128 devices; 3) FC switched fabric model. FC switched fabric is the most common topology for
Oracle RAC Database. The example in Figure 5-4 shows a configuration of two-node Oracle RAC connecting with Dell
Compellent SC8000 FC SAN storage using two FC switches.

RAC Node 1 RAC Node 2

Fibre Channel Switch SW2

ERL_at RO S . LGRSt]
o s * i

Al M |

B L R

saensnen
Lot

FC Storage Controller: FC1 FC Storage Controller FC2

FC Storage Enclosure A

FC Storage Enclosure B

Fibre Connection
SAS Connection

Figure 5-4. FC switch fabric topology

To provide highly available storage connections, each RAC host has two HBAs (Host Bus Adapter), each of which
connects to an FC switch through a fiber optical cable. Each FC switch connects to both FC storage controllers. To
increase the storage 1/0 bandwidth, each FC switch is connected to both FC controllers with two fiber cables. By using
FC switches, the number of servers that can connect to an FC storage is not restricted. And the distance between hosts
and storage can be up to 10 km. The components in the storage path such as HBAs, fiber optical cables, FC switches,
and the storage controllers are very robust and capable of providing highly efficient and reliable data transfer between
the server hosts and the storage. The FC storage controller can also connect to multiple storage enclosures. These
storage enclusures are connected by daisy-chained SAS cables. The physical links between the storage controllers and
the storage enclosures use SAS cables.

Figure 5-3 shows a configuration with two enclosures connected to two storage controllers. It is also possible to
add more storage enclosures. Storage vendors usually specify the maximum number of storage enclosures that their
controllers can support. Adding multiple storage enclosures allows you to add more disk spindles to the storage. For
example, if one enclosure holds 24 disks, two enclosures can hold up to 48 disks. You also can put disks of different
speeds in different enclosures. For example, to improve storage I/0 performance, you can put SSDs in one enclosure
and 15K rpm hard disks in another enclosure. Today, many SAN storage vendors provide some kind of storage tiering

130

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © STORAGE AND ASM PRACTICES

technology that can direct application workloads to different levels of storage media to achieve the most suitable
performance and cost characteristics. As well as the redundant connection paths, a disk RAID configuration such as
RAID 10 or RAID 5 should be implemented to avoid any single point of failure at the disk level.

Using the configuration shown in Figure 5-4, let’s examine how multiple I/O paths are formed from a RAC
node to the storage servers. In an FC storage configuration, all the devices connected to the fibers such as HBAs and
storage controller ports are given a 64-bit identifier called World Wide Number (WWN). For example, the HBA's WWN
number in Linux can be found as follows:

$ more /sys/class/fc_host/host8/port_name
0x210000e08b923bd5

On the switch layer, a zone is configured to connect an HBA's WWN with a storage controller port’s WWN. As
shown in Figure 5-4, these WWNs are as follows:

1. RAChost 1 has HBA1-1 and HBA1-2, which connect to FC switches SW1 and SW2,
respectively.

2. RAC host 2 has HBA2-1 and HBA2-2, which connect to FC switches SW1 and SW2,
respectively.

3. There are two FC controllers, FC1 and FC2, which are connected to FC switches SW1 and
SW2, respectively.

The storage zoning process is to create multiple independent physical I/O paths from RAC node hosts to the
storage through the FC switches to eliminate the single point of failure.

After zoning, each RAC host establishes multiple independent physical I/O paths to the SAN storage. For
example, RAC host 1 has four paths:

e 1/OPathl: HBA1-1, SW2, FC1
e 1/OPath2: HBA1-1, SW2, FC2
e 1/OPath3: HBA1-2, SW1, FC1
e 1/OPath4: HBA1-2, SW1, FC2

These redundant I/O paths give a host multiple independent ways to reach a storage volume. The paths using
different HBAs show up as different devices in the host (such as /dev/sda or /dev/sdc), even though these devices
point to the same volume. These devices share one thing in common, in that they all have the same SCSIID. In the
next section, I will explain how to create a logical device that includes all the redundant I/O paths. Since this logical
device is supported by multiple independent I/O paths, the storage access to this volume is protected from
multiple-component failure up to a case when one HBA, one switch, and one controller all fail at the same time.

An FC SAN provides a highly reliable and high-performance storage solution for RAC Database. However, the
cost and complexity of FC components make it hard to adopt for many small and medium businesses. However, the
continuously improving speed of Ethernet and the low cost of its components has led to more adoption of the iSCSI
storage protocol. iSCSI SAN storage extends the traditional SCSI storage protocol by sending SCSI commands over IP on
Ethernet. This protocol can transfer data at a high speed for very long distances, especially by adding high-performance
features such as high-speed NICs with TCP/IP Offload engines (TOE), and switches with low-latency ports. The new 10g
GbE Ethernet allows iSCSI SAN storage to deliver even higher performance. Today, network bandwidths for both FC and
iSCSI are improving. FC has moved to 1 Gbps, 2 Gbps, 4 Gbps, and even 16 Gbps, and iSCSI is also moving from 1 GbE to
10 GbE. Both FC and iSCSI storage are able to delive storage performance good enough to meet enterprise database needs.

As shown in Figure 5-5, iSCSI storage uses regular Ethernet to connect hosts and storage. For traditional 1GbE
Ethernet, it can use regular Ethernet network cards, cables, and switches for data transfer between servers and
storage. To design 10 GbE iSCSI storage SAN solution, you would have to make sure all the components support
10GDbE Ethernet, including 10 GbE network adapter, high-speed cables, 10 GbE switches, and 10GbE storage
controllers. And of course, this configuration will raise the cost of iSCSI storage deployment.

131

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © STORAGE AND ASM PRACTICES

Servers with
multiple NIC ports
dedicated to iSCSI

storage
connections

Gigabit
Ethernet
Switches

Figure 5-5. iSCSI storage configuration for a two-node RAC

Multipath Device Configuration

It is arecommended best practice to configure redundant I/O paths between Oracle RAC servers and storage, to
ensure high availability of shared storage access, as shown in the figures in the last section. For example, from RAC
hostl, there are four redundant I/O paths to a same storage volume. These redundant I/O paths are represented by
multiple SCSI devices on the RAC node that point to the same storage volume (also called logical unit, identified by
the LUN). Since these SCSI devices are pointing to the same LUN, they have the same SCSI ID.

For example, /dev/sdc and /dev/sde represent two redundant I/O paths to the same LUN with the scsi ID:
36842b2b000742679000007a8500b2087. You can use the scsi_ID command to find the SCSIID of a device:

[root@k2r720n1 $scsi id /dev/sdc
36842b2b000742679000007a8500b2087

The following Linux shell script finds the SCSI IDs of the devices:

[root@k2r720n1 ~]# for i in sdc sdd sde sdf ; do printf "%s %s\n" "$i" "$(scsi_id --page=0x83
--whitelisted --device=/dev/$i)"; done
sdc 36842b2b000742679000007a8500b2087
sdd 36842b2b000742679000007a5500b1cd9
sde 36842b2b000742679000007a8500b2087
sdf 36842b2b000742679000007a5500b1cd9

Many OS have their own multipathing software that can be used to create a pseudo-device to facilitate the
sharing and balancing of I/O operations of LUNs across all available I/O paths. For example in Linux, a commonly
used multipath device driver is the Linux native Device Mapper. To verify whether or not the rpm package is already
installed, you can run this command:

[root@k2r720n1 yum.repos.d]# rpm -qa | grep device-mapper-multipath
device-mapper-multipath-1ibs-0.4.9-56.el16_3.1.x86_64
device-mapper-multipath-0.4.9-56.e16 _3.1.x86_64

If the rpm package is not installed by default, you can install it from the yum repository:

$yum -y install device-mapper-multipath

132

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © STORAGE AND ASM PRACTICES

Or install it manually:
rpm -ivh device-mapper-multipath-0.4.9-56.e16_3.1.x86_64.rpm

To configure the multipath driver to combine these I/0 paths into a pseudo-device, you need to add related entries
to the multipathing driver configuration file /etc/multipath.conf. This is an example of the /etc/multipath.conf file:

defaults {
udev_dir /dev
polling interval 5
path_selector "round-robin 0"
path_grouping policy failover
getuid_callout "/lib/udev/scsi_id --whitelisted --device=/dev/%n"
prio const
path_checker directio
rr_min_io 1000
rr_weight uniform
failback manual
no_path_retry fail
user_friendly names yes

}

multipaths {
multipath {

wwid 36842b2b000742679000007a8500b2087 #<---sdc and sde
alias ocrvoting

}

multipath {
wwid 36842b2b000742679000007a5500b1cd9 #<--- sdd and sdf
alias data

}

Start the multipath service:

service multipathd start
Starting multipathd daemon: [OK]

The device-mapper-multipath daemon creates a pseudo-device ‘ocrvoting’:

[oracle@k2r720n1 ~]$ 1s -1 /dev/mapper/

lrwxrwxrwx 1 root root 7 Oct 29 06:33 /dev/mapper/data -> ../dm-9

lrwxrwxrwx 1 root root 7 Oct 29 06:33 /dev/mapper/ocrvoting -> ../dm-8

This shows that the soft links such as /dev/mapper/data pointing to block device /dev/dm-9

In addition to the benefit of combining multipath devices into a single pseudo-device, the multipath driver also
creates a consistent device name. In Linux, by default the device name of storage LUN may not guarantee consistency
every time the OS gets rebooted. For example, for the same LUN, /dev/sdc may be changed to /dev/sdd the next time
the OS gets rebooted. This can create a serious problem if the RAC Database uses this volume to store the database
files, as the RAC Database instance recognizes the volume by name. If the name changes, this volume cannot be
found again. And in the Oracle RAC environment, we also need to make sure the same shared storage LUN has the

133

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © STORAGE AND ASM PRACTICES

same consistent name on every node of the RAC. However, by default, a storage volume is not guaranteed to have

the same name across all the RAC nodes. By mapping a LUN SCSI ID to the pseudo-device name and also setting
‘user_friendly_names’ to ‘yes’ in the multipath.conf file, the pseudo-device name will be kept consistent every time
each of the RAC servers gets rebooted, and this name is guaranteed to be identical on every node of the RAC if we use
the same multipath.conf on all the RAC nodes.

Set Ownership of the Devices

The next challenge in setting up devices for the Oracle RAC environment is to set proper ownership of these devices.
When these devices were initially created, they were owned by the root user, thus:

$ 1s -1 /dev/mapper/*
lrwxrwxrwx 1 root root 7 Oct 29 17:16 ocrvoting -> ../dm-8
lrwxrwxrwx 1 root root 7 Oct 29 17:16 data -> ../dm-9

And block devices dm-8 and dm-9 are owned by root:

$1s -1 /dev/dm-*
brw-rw---- 1 root disk 253, 8 Oct 29 06:33 /dev/dm-8
brw-rw---- 1 root disk 253, 9 Oct 29 06:33 /dev/dm-9

In the Oracle RAC Database, if Oracle ASM is selected to manage the shared storage volumes for OCR, voting disk
files, and database files, the ASM instance needs to have write privileges on these devices. The solution is to change
the ownership of these devices from root to the owner of the ASM instance, for example the ‘grid’ user.

There are two methods to change the proper ownerships in Linux:

e Use the Linux udev utility to create udev rules that change the ownership of the devices.

e Create ASM disks using ASMLib. The ASM disks will be given a new owner, which can be the
owner of ASM instance like the “grid” user.

Of these two methods, the udev rule method is based on a Linux utility which is available for various versions
of Linux such as Red Hat Enterprise Linux 5.x and 6.x, and Oracle Linux 5.x and 6.x. Oracle ASMLib has been
generally available for both Red Hat Enterprise Linux 5.x and Oracle Linux 5.x. However, for Enterprise Linux 6.,
ASMLib was initially only available for Oracle Linux 6.x UEK kernel. ASMLib was not available for Oracle Linux 6 Red
Hat-compatible kernel and Red Hat Exterprise Linux 6, until Spring 2013, when Oracle released the rpm packages for
Oracle Linux 6 and Red Hat made the ASMLib kernel package for Red Hat Enterprise Linux 6 (beginning with 6.4). The
dev rules method is the choice if you don’t use ASMLib. Let’s discuss how to set the udev rules in detail here. ASMLib
will be discussed in the next section.

The following are the steps to create udev rules for the devices:

1. Getthe SCSIID (WWIDs) for all the devices that will be used for the RAC Database by
using the SCSI script mentioned previously.

2. Create a udev rule file, for example /etc/udev/rules.d/99-oracle-asmdevices.rules

KERNEL=="dm-*", PROGRAM="scsi_id --page=0x83 --whitelisted

--device=/dev/%k" ,RESULT=="36842b2b000742679000007a8500b2087", OWNER:="grid", GROUP:="asmadmin"
KERNEL=="dm-*", PROGRAM="scsi_id --page=0x83 --whitelisted

--device=/dev/%k" ,RESULT=="36842b2b000742679000007a5500b1cd9", OWNER:="grid", GROUP:="asmadmin"
L EE PP end udev rule contents --------mmmmm e

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 © STORAGE AND ASM PRACTICES

3. Run the start_udev command to apply the newly created rules:

[root@k2r720n1 rules.d]# start udev
Starting udev: [ok 1]

4, Check the new ownership and permission settings:

#1s -1 /dev/dm-*
brw-rw---- 1 grid asmadmin 253, 8 Oct 29 12:08 /dev/dm-8
brw-rw---- 1 grid asmadmin 253, 9 Oct 29 12:08 /dev/dm-9

In summary, the provisioning of storage volumes for an Oracle RAC Database consists of these steps:
e Establish redundant