
D’Souza

Shelve in
Databases/Oracle

User level:
Intermediate–Advanced

www.apress.com

SOURCE CODE ONLINE

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Expert Oracle Application
Express Plugins
Build and deploy plugins of your own design with Expert Oracle Application
Express Plugins. This book shows you how to use the new APEX functionality and
create well-packaged, documented, reusable components that package your code
for convenient reuse in other applications.

Expert Oracle Application Express Plugins provides step-by-step instructions
on how to build plugins, along with detailed explanations about all the available
options for plugins. It also contains some useful tools, techniques, and best prac-
tices to help ensure successful plugin development and implementation. You’ll
learn how to:

• Design and develop each of the four types of plugin
• Debug and troubleshoot plugin-based applications
• Deploy your plugins to the wider community
• Make your plugins compatible across different browsers
• Master the plugin APIs that APEX provides

Author Martin D’Souza walks you through examples of the different types of plugins
to ensure that you can create the right type when you need it. All the plugins high-
lighted in this book are open source plugins that can be easily integrated into com-
mercial applications.

Inside Expert Oracle Application Express Plugins, you’ll find all the knowl-
edge you need to get started developing reusable components with Application
Express’s new plugin architecture.

www.it-ebooks.info

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.it-ebooks.info

http://www.it-ebooks.info/

iii

Contents at a Glance

Contents at a Glance .. iii

Contents .. iv

About the Author ..ix

About the Technical Reviewer .. x

Acknowledgments ... xi

Introduction ... xiii

Chapter 1: Introduction to Plug-Ins .. 1

Chapter 2: Plug-In Fundamentals ... 7

Chapter 3: Item Plug-Ins .. 29

Chapter 4: Dynamic Action Plug-Ins ... 75

Chapter 5: Region Plug-Ins ... 113

Chapter 6: Process Plug-ins ... 143

Chapter 7: Best Practices & Community .. 157

Chapter 8: Debugging & Tools .. 177

Index ... 207

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 1

■ ■ ■

1

Introduction to Plug-Ins

Plug-ins allow third-party developers to add additional functionality to software applications and
frameworks. Plug-ins exist for many different types of applications, such Mozilla Firefox (Add-ons and
Extensions), Microsoft Word (Add-Ins), and development frameworks such as Salesforce.com.

As Oracle Application Express (APEX) has been growing, so have the requests from the APEX
community for specific features. To the best of their ability, the team from Oracle that develops APEX
has modified the product to meet these demands; however, it’s not fair to assume that they can add in
every request that they receive. For this reason, the plug-ins framework was created. Starting in APEX
4.0, the APEX framework was extended to allow all developers to create their own plug-ins to add
additional functionality in a supported and declarative way. APEX plug-ins can be shared within
organizations and with the entire APEX community.

About This Book
This book provides step-by-step instructions on how to build plug-ins, along with detailed explanations
about all the available options for plug-ins. It also contains some useful tools, techniques, and best
practices to help ensure successful plug-in development and implementation. This book is targeted
toward intermediate to advanced-level APEX developers.

It is assumed that you know the fundamentals of APEX and have developed some applications with
it. If you are new to APEX, you’re encouraged to read a beginners book and then use this one to further
enhance your APEX development skill set. A recommended book for new developers is Beginning Oracle
Application Express 4, which is also published by Apress.

Besides basic knowledge about APEX, this book assumes you are comfortable with the languages
and frameworks listed here. If you need to brush up on some of the web-based
technologies,www.w3schools.com has some excellent free tutorials to help you learn.

• PL/SQL

• JavaScript (JS)

• jQuery

• CSS

• HTML

www.it-ebooks.info

http://www.w3schools.com
http://www.it-ebooks.info/

CHAPTER 1 ■ INTRODUCTION TO PLUG-INS

2

■ Note This book contains examples on how to build all the different types of plug-ins. All the plug-ins that are
highlighted in this book are open source plug-ins that can be easily integrated into commercial applications
without concern about licensing.

Plug-Ins and Their Advantages
Plug-ins allow APEX developers to create their own supported and declarative objects in APEX. When
developed correctly, plug-ins behave exactly like native APEX objects and are seamless for both
developers and users alike.

There are several types of plug-ins that can currently be developed. Some of them focus on the user
interface (UI), and some are for process only. Page process plug-ins can go either way, because you can
use them during rendering to manipulate what the user sees, and during page processing to perform
back-end work. Most often, process plug-ins are used for back-end processing.

Following are the plug-in types available:

• UI / Front-end related

o Dynamic action

o Item

o Region

• Process / Back-end related

o Authorization *

o Authentication *

o Process

■ Note Plug-ins tagged with a “*” are new to 4.1. Since they are extremely new to APEX (at the time of writing),
they will not be covered in this book.

As APEX evolved, developers started to create their own frameworks to integrate new and advanced
features in APEX. These custom frameworks made it difficult to manage and maintain applications.
Plug-ins resolve the need for custom frameworks as they provide a declarative way to develop custom
objects within APEX.

Besides removing the need for customized frameworks, plug-ins allow developers to easily share
plug-ins within an organization and the community. Previously, when developers integrated a new
feature in APEX, they would share it via a blog post. Other developers would need to copy and then
modify the code to merge it into their application. If third-party files, such as JavaScript or CSS files, were
required, you would need to integrate them into your application somehow. All these moving parts
made it complex to share ideas and code. Plug-ins encapsulate all that complexity and remove the
dependencies, since they bundle all the required objects into a single item, which can be easily shared.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER1 ■ INTRODUCTION TO PLUG-INS

3

Getting Started
WAIT!You are probably eager to start learning to develop your first plug-in, but don’t skip over this
section. The rest of the book assumes that you have all the necessary tools in place to successfully and
efficiently develop plug-ins. This section will cover all the tools you’ll need throughout this book.

Oracle Database
Before using APEX, you’ll need to have an Oracle database to develop on. All the examples in this book
were built on an Oracle 11gR2 instance. Some of the code may not be compatible with previous versions
of Oracle but can be easily modified to work with older versions.

There are several options to choose from depending on your current situation. If you have access to
a development instance of Oracle 11gR2, then you can skip this subsection. If not, there are several easy
options for you:

apex.oracle.com: Oracle provides a free online instance of APEX for
development purposes. The SQL Workshop will allow you to create and modify
PL/SQL code. This is the easiest solution to setup; however, it will be
cumbersome to develop and debug PL/SQL code via a web interface. You may
encounter some restrictions connecting to external resources (such as web
services) using apex.oracle.com for the examples in this book.

Oracle XE: Oracle provides a free (both for commercial and personal use)
database called Oracle XE. It is an ideal option for installing a personal instance
of Oracle. Oracle XE does have some size and functional limitations, but they
should not hinder your ability to build plug-ins or follow the examples in this
book. For more information about how to download and install Oracle XE, go to
the following OTN page:
www.oracle.com/technetwork/database/express-edition/overview/index.html.

Virtual machine: Oracle provides a virtual machine image thatis a full version of
11gR2. You’ll first need to install Oracle Virtual Box:
www.oracle.com/technetwork/server-storage/virtualbox/index.html. The
developer virtual machine image can be downloaded from the OTN Developer
Days page:
www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-
vm-161299.html.

Install Oracle: If you want a full version of Oracle directly, you can obtain a
developer’s license and download a copy from OTN:
www.oracle.com/technetwork/database/enterprise-edition/overview/index.ht
ml. This is not a recommended approach for non-DBAs as it can take a while to
properly configure Oracle from scratch.Of the four options just listed, Oracle XE
may be the best option to implement on a personal or work PC. Each of the
links provides installation instructions where applicable. Before installing or
using any of the foregoingoptions, please read the licensing agreements.

www.it-ebooks.info

http://www.oracle.com/technetwork/database/express-edition/overview/index.html
http://www.oracle.com/technetwork/server-storage/virtualbox/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html
http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html
http://www.oracle.com/technetwork/database/enterprise-edition/overview/index.ht
http://www.it-ebooks.info/

CHAPTER 1 ■ INTRODUCTION TO PLUG-INS

4

APEX Instance
If you’re using a corporate database or a personal instance, you’ll need to ensure that a recent version of
APEX is installed. To follow along with the examples in this book, you will need APEX 4.1 or above. The
following query identifies the current version of APEX installed on your database:

SELECT *
FROM apex_release

If you don’t have APEX installed or need to upgrade it, you can download it from OTN:
www.oracle.com/technetwork/developer-tools/apex/downloads/index.html. The download page has
links to detailed instructions on how to install or upgrade APEX. If you are using apex.oracle.com, you do
not need to install or upgrade APEX.

Development IDE
When developing plug-ins, it’s highly recommended that you use a good PL/SQL and SQL IDE. SQL
Developer is a free, Java-based, PL/SQL, and SQL IDE developed by Oracle. You can download SQL from
OTN: www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html. SQL
Developer provides syntax highlighting, allows you to quickly browse all the database objects,
implement unit tests, and debug code. There are other third-party tools, such as Toad from Quest
software.

A good text editor will help when creating and modifying web files such as CSS, JS, and HTML. There
are many free text editors available such as Notepad++ (http://notepad-plus-plus.org).

Web Browser
APEX officially supports the following major browsers: IE 7+, Firefox 3.5+, Google Chrome 4.0+, and
Safari 4.0+. You can use any of these browsers to develop plug-ins, but some may be easier than others.

This book assumes that you will be developing plug-ins with either Firefox 4.0+ or Google Chrome
11.0+. When using Firefox, Firebug (http://getfirebug.com) should be installed. Chapter 8 describes
how to install and configure Firebug for Firefox.

Web Server
A web server is the gateway that allows your browser to communicate to the database and serve files to
the client’s browser. As part of the APEX installation process, you will have had to setup a web server.

One of the key components to developing certain types of plug-ins in APEX is the use of external
files, such as JavaScript and CSS files. When working with external files, it is easiest if you can store them
on an accessible web server and modify them directly.

Depending on your personal or organization’s setup, you may not have access to a web server.
Installing a local web server is not required for this book but is highly recommended if you don’t have
quick and easy access to one. Chapter 8 contains step-by-step instructions on how to install and
configure a free local web server.

www.it-ebooks.info

http://www.oracle.com/technetwork/developer-tools/apex/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/sql-developer/overview/index.html
http://notepad-plus-plus.org
http://getfirebug.com
http://www.it-ebooks.info/

CHAPTER1 ■ INTRODUCTION TO PLUG-INS

5

Summary
This chapter gives a high-level overview of what is and isn’t covered in this book. Although not all types
of APEX plug-ins will be covered, you will get a solid understanding of how they work. Once you’ve read
through this book,you should be able to use what you’ve learned to create your own plug-ins, which you
can share within your organization or with the APEX community.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 2

■ ■ ■

7

Plug-In Fundamentals

Plug-ins are shared component objects. Like other shared components, they are local to an application
and can be made accessible (via subscriptions) to other applications in the same workspace.

The main part of a plug-in consists of PL/SQL code with JavaScript and CSS as complimentary code
(when applicable). A plug-in consists of one or more PL/SQL functions. These functions can either
reside in the database (in a package or a set of functions) or be included within the plug-in. There are
specific headers for each type of function (i.e., they must take in a certain set of parameters and return a
specific type). What happens in each function is entirely up to you, the plug-in developer.

Certain types of plug-ins can also leverage third-party web files, such as JavaScript and CSS files.
These files can be stored in APEX or on a web server, or bundled as part of the plug-in. The PL/SQL code
in the plug-in must explicitly load these third-party files.

Plug-ins also contain attributes that, like native APEX objects, allow developers to customize the use
of the object. Attributes are either global or local. The PL/SQL functions have access to these attributes.

Creating a Plug-In
Before looking at all the plug-in options, you will need to create an “empty” or “skeleton” plug-in. An
empty plug-in is just a plug-in with no code in it yet. Later chapters will discuss how to build each plug-
in type in detail and will reference this section for the initial steps to create a plug-in. The following steps
describe how to create an empty plug-in:

1. In the Application Builder, create an empty application with a blank page,
Page 1.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

8

2. Select the new application, and then go to the SharedComponents
section. Under the User Interface region, click the “Plug-ins” link, as
shown in Figure 2-1.

Figure 2-1. Shared Components “Plug-ins” link

3. The Plug-ins page displays all the current plug-ins associated with your
application, as shown in Figure 2-2. Click the Create button to create a
new plug-in.

Figure 2-2. List of plug-ins

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

9

4. Enter Test for the Name and Internal Name fields. Select “item” as the
type, and click the Create button to complete creating an empty plug-in,
as shown in Figure 2-3. All of the options will be discussed in the next part
of this chapter.

Figure 2-3. Creating a plug-in

Plug-In Components
It is important to have a good understanding of each of the options before building your first plug-in.
This section will cover all the available options or components involved in building a plug-in. If some
components seem a bit confusing, don’t worry. They will all be used throughout the demos in this book.
To help follow along, edit the Test“empty”plug-in that you created in the previous section.

Name
Like most APEX objects, the Name section allows you to define the name and type for the plug-in, as
shown in Figure 2-3. The following fields are required in the Name section:

Name: This is the name that other developers will see when they use a plug-in
object. If developing plug-ins for the community, you may want to prefix the
name with your company name.

Internal Name: This is a unique internal name that is not visible to APEX
developers. APEX uses the internal name to register your plug-in in an
application. It’s recommended that you use the reverse DNS name of your
corporate website along with the plug-in name to help maintain uniqueness—
for example, COM.CLARIFIT.FROMTODATEPICKER. APEX uses the internal name to
determine if a plug-in is being installed or updated, so it’s important not to
change it once it’s been released. Once the plug-in has been used in an
application, the internal name cannot be changed.

4
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■ PLUG-IN FUNDAMENTALS

10

Type: The type of plug-in that you’re building; there are six different types of
plug-ins: authentication, authorization, dynamic action, item, region, and
process. Plug-ins can be run as part of the render, validation, or page process.
Table 2-1shows how each type of plug-in can be used in an APEX page. Once a
plug-in has been used in an application, the type cannot be changed. The type
cannot be changed because each plug-in type has a distinct set of attributes
that will become evident in the Callbacks section.

The plug-in type determines when, and how, the plug-in will be used, as shown in Table 2-1. Plug-
ins that can be rendered usually (except for authorization types) require HTML code to be sent to the
browser. Validation executions happen once the page is submitted. Processes can happen while the
page is being rendered or when the page is submitted.

Table 2-1. Plug-In Execution Options

Type Render Validation Process Comments

Authentication No No No

Authentication schemes are used to determine if
the user can access the application. As such it is
not run on a page or component level.

Authorization Yes Yes Yes

Authorization schemes can be executed for all
APEX objects on a page. They don’t actually
render, validate, or process anything in the
application.

Dynamic action Yes No No
Since dynamic actions are only valid for the display portion of
APEX they are only available during the render process

Item Yes Yes No

Starting in APEX 4.0, page items may contain
built-in validations that APEX developers don’t
need to explicitly define.

Process Yes No Yes

Process plug-ins can be run as a page render
process and page process. Usually it will be used
as part of a page process.

Region Yes No No

Similar to dynamic actions, regions are only valid
for the display portion of an APEX page and thus
are only available during the render process.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

11

Category: Dynamic actions are broken up into various categories, shown in
Figure 2-4, to help developers quickly find the appropriate dynamic action to
use. The category that a dynamic action belongs to has no impact on the
application. The Category option, shown in Figure 2-5, appears only when the
Type field is set to Dynamic Action.

Figure 2-4. Dynamic action categories

Figure 2-5. Plug-in category options

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

12

Subscription
You can share certain types of Shared Components objects in APEX with other applications within the
same workspace. This sharing mechanism is called subscriptions. Subscriptions also allow you to
subscribe to these objects. This means that you change something in your main object (referred to as a
master object) in an application and push your changes to other applications that subscribe to the object.
If you are unfamiliar with subscriptions, please refer to the manual.

The Subscription section, as shown in Figure 2-6, behaves exactly like other objects in APEX that
support the same functionality. APEX allows you to create a master object. When the master object
changes, you can push the changes to other objects that subscribe to it.

Figure 2-6.Plug-in Subscription section

Subscriptions may be useful if you have a plug-in that is used across multiple applications. If you
need to update it, you can update the master copy and have APEX push the changes to all the other
applications that subscribe to it. For more information about how to use subscriptions, refer to the APEX
documentation.

Settings
The Settings section contains one option that is present for all plug-ins. This option is the File Prefix
option.

File Prefix: The File Prefix, as shown in Figure 2-7, defines the root directory to
reference third-party files such as JavaScript and CSS. #PLUGIN_PREFIX# should
be used if the files are included as part of the plug-in. You can also reference
other APEX substitution strings, such as #IMAGE_PREFIX# and #APP_IMAGES#, as
well as a webserver URL. If referencing a web server, you should include the
trailing forward slash (/) to avoid having to include it in all references to files—
for example: http://www.clarifit.com/files/instead of
http://www.clarifit.com/files.

Figure 2-7. Plug-in Settings section

Most plug-ins will also contain custom attributes. Application-level attributes will also appear in the
Settings section. For example, as part of the item plug-in demo, you will create a special date picker.

3
www.it-ebooks.info

http://www.clarifit.com/files/instead
http://www.clarifit.com/files
http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

13

Figure 2-8shows the custom application attribute Icon Location that is used as part of the plug-in. Icon
Location is an application-level attribute that is applicable to all instances of the From To Date Picker in
the application.

Figure 2-8. Plug-in setting with custom attribute

Source
The main part of a plug-in is contained in PL/SQL code. The Source section contains the following
options, as shown in Figure 2-9.

PL/SQL Code: The plug-in architecture allows you to either include the PL/SQL
code as part of the plug-in or reference packages and functions in the database.
If bundling the PL/SQL code as part of the plug-in, you’ll need to include it in
the PL/SQL Code text area. The PL/SQL code is called from the callback
functions, which are covered in the next section.

Do Not Validate PL/SQL Code: Like other PL/SQL and SQL regions, APEX gives
you the option to exclude code from being validated when building your
application. If this checkbox is selected, and code is put in the PL/SQL Code
text area, it will be validated only at runtime. Unless there is a very specific
requirement, it is recommended to leave this checkbox unchecked.

Figure 2-9. Plug-in Source section

Callbacks
Callback functions are the main drivers for plug-ins. Callback functions are PL/SQL functions that
render items and regions, setup dynamic actions, execute authorizations and processes, validate items,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

14

and handle AJAX calls. Each of the plug-ins has a different set of callback functions. Table 2-2showsall of
the required and optional callback functions for each plug-in type.

Table 2-2. Available Plug-In Callback Functions

Plug-In Type

Render

/ AJAX

Validation

/ Execution

Authentication
n/a
Optional

n/a
n/a

Authorization
n/a
n/a

n/a
Required

Dynamic action
Required
Optional

n/a
n/a

Item
Required
Optional

Optional
n/a

Process
n/a
n/a

n/a
Required

Region
Required
Optional

n/a
n/a

Plug-In Type Session

/ Invalid

Authentication

/ Post

Authentication
Optional
Optional

Required
Optional

Authorization
n/a
n/a

n/a
n/a

Dynamic action
n/a
n/a

n/a
n/a

Item
n/a
n/a

n/a
n/a

Process
n/a
n/a

n/a
n/a

Region
n/a
n/a

n/a
n/a

Each of the callback functions passes in several parameters and returns an APEX_PLUGIN type.

Click the help link to obtain the required function headers for each of the callback functions. Detailed
information about each of APEX_PLUGIN types can be found in the APEX API documentation.

In the Callback section, you need to enter only the function name that APEX will call. The functions
can reference either a package or function in the database, or a function that was provided in the
PL/SQL Code region. The following is a list of all the callback functions and summary of what they do:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

15

Render: The render callback function is used to render the element, load
JavaScript and CSS files, and execute JavaScript code.

AJAX: If the plug-in requires an AJAX call, this function will handle it. Like
standard AJAX calls, you can reference the apex_application.g_x01 ~ g_x10
variables that are passed from the client back to the server as part of the AJAX
request.

Validation: Starting in APEX 4, certain types of items have default validations.
For example, on most items, you can select if a value is required, as shown in
Figure 2-10, and enable these validations to be fired when submitting the page.
It’s important to note that the validation function will be run only if the APEX
developer decides to as part of the submit process.

Figure 2-10. Page item Settings section

Execution: The execution callback function is the only callback function
available for process and authorization type plug-ins.

Session sentry: The session sentry function is used to validate that the current
session is valid. If left blank, APEX will default to its session validation function.

Invalid session: Function to call if session is deemed invalid

Authentication: This function will be run during the login process to ensure that
the user’s credentials are valid.

Post logout: Once APEX ends the user’s session, this function will be called. It
will determine where the user should go.

Callback functions can be a bit confusing when encountering them for the first time. The demos in
the following chapters will use each of the function types just listed to help you get comfortable using
them in your own plug-ins.

Standard Attributes
The Standard Attributes section contains a set of attributes that are related to the plug-in type. The
following example demonstrates how modifying a standard attribute will affect the available options for
an APEX object:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

16

1. In the Test plug-in that you created in the previous section, scroll down to
the Standard Attributes section, as shown in Figure 2-11, and ensure that
all options are unchecked.

Figure 2-11. Item plug-in Standard Attributes section

2. Create a new item on a page (in this example, Page 1). Select the item type
as Plug-ins, as shown in Figure 2-12.

Figure 2-12. Create Item section

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

17

3. Select the Test plug-in, as shown in Figure 2-13, and click the Next button.
You created the Test plug-in in the previous section.

Figure 2-13. Selecting plug-in

4. Enter the same values in Figure 2-14, and click the Next button.

Figure 2-14. Creating item name

5. Leave the Source page with the default values, and click the Create Item
button to finish.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

18

6. Edit P1_X. On the Edit Page Item page, there’s a minimal set of options
available for the item, as shown in Figure 2-15. Note that the Security,
Configuration, and Comments sections were omitted from this figure.

Figure 2-15. Item with no standard attributes

7. Go back and edit the Test plug-in. Check the Is Visible Widget box, as
shown in Figure 2-16, and click the Apply Changes button to save it.

Figure 2-16. Standard Attributes option checked

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

19

8. Go back to Page 1 and edit P1_X. You’ll notice that it now has more
available options and some new regions. Figure 2-17shows the new
options available for P1_X. Note that the Security, Configuration, Help
Text, and Comments sections were omitted from this figure.

Figure 2-17. Item with Is Visible standard attribute enabled

If a standard attribute option is changed while a plug-in is already in use, the option is still part of
the APEX object but not available for a developer to modify. For example, in the previous example, you
enabled the Is Visible Widget option. Enabling this attribute allows you to enter a label for the P1_X item.
If you entered a label for P1_X, and then disabled the Is Visible Widget option in the plug-in, the label
would disappear from the P1_X item edit page. The label would still exist in the underlying table that
stores P1_X information. It is important to remember this when modifying standard attributes once a
plug-in has been used within an application.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■ PLUG-IN FUNDAMENTALS

20

Custom Attributes
Custom attributes allow you to configure options that can be referenced in your plug-in callback code.
Custom attributes are already present in standard APEX objects. For example, if you create a password
page item (see Figure 2-18), its attributes are “Submit when Enter pressed” and “Does not save state”.

Figure 2-18. Password item custom attributes

There are two types of custom attributes. The following list describes them along with their
differences.

Application: Application attributes are attributes that are global for the plug-in
across the entire application. They can be configured only in the edit plug-in
page. For example, if you created a plug-in that uses a color attribute that
should be consistent across the application, you would create an application
attribute to store the color.

Component: Component attributes are attributes that are specific for an
instance of the plug-in. The password example that was previously discussed is
a good example of component attributes.

You can choose to have APEX automatically replace substitution strings if they are used in the
custom attribute value by setting the Substitute Attribute Values to Yes. For example, if a developer
entered in &APP_ID. as a value and Substitute Attribute Values was set to Yes, then the value would be
100 (assuming the application ID was 100). If you set Substitute Attribute Values to No, then you must
manually do string substitutions using apex_plugin_util.replace_substitutions.

To create either an application or component attribute, click the Add Attribute button, as shown in
Figure 2-19. Attributes are stored as type VARCHAR2 in the database, so you will need to do explicit
conversions if required. There’s a limit of 15 attributes for each application and component attribute.
The following subsections describe the available options for attributes.

Figure 2-19. Custom Attributes section

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

21

■ Note Some plug-in developers question why there are only 15 available custom attributes per plug-in. The
APEX team restricted the number of attributes to make it simple for other APEX developers to use plug-ins. If you
have too many attributes, other developers may get confused with all the options. Some plug-ins may warrant the
need for additional attributes; however, it is up to you, the plug-in developer, to make some assumptions and
choose default values. If users of the plug-in need to modify these default values, they can always modify them in
the plug-in Source section.

Name
The Name section allows you to define how the attributes appear on the object edit page. The following
list describes the available options shown in Figure 2-20.

Scope: The scope determines the type of plug-in attribute. The two types of
attributes were mentioned earlier. Once an attribute has been saved, the scope
cannot be modified.

Attribute: The attribute number determines the column in the table that this
attribute is stored in. There’s currently room for 15 attributes for each type.
Since this is used to store the attribute value in a table, the attribute number
cannot be modified once an attribute has been saved.

Display Sequence: Like other APEX objects, you can control the display order of
each attribute.

Label: The label is the name displayed to the APEX developer using the plug-in.

Figure 2-20. Custom attribute: Name

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

22

Settings
The Settings section, as shown in Figure 2-21, determines the attribute type. The options vary depending
on the selected type. The available options are as follows:

Type: The type of attribute will determine the rest of the available options in the
Settings section. Implicit validations will occur based on the type. For example,
if the type is set to Integer and a developer enters abc, an error message will be
displayed. If you click the help link (i.e., the Type label), you will get a list of all
the available types along with some additional information. Once a type has
been saved and the plug-in has been used in the application, it cannot be
modified.

Figure 2-21. Custom attribute: Settings

List of Values
The List of Values section, as shown in Figure 2-22, will appear only if the type is set to Checkboxes or
Select List. It allows you to define a static list of values for a developer to select a value from.

Figure 2-22. Custom attribute: List of Values

Default Value
If entered, the default value will appear as the value for the attribute when the plug-in is first created. If
the type is set to Checkboxes or Select List and it is a required attribute, then a default value is required.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

23

Condition
The Condition section is different than standard Condition sections for APEX objects. It determines the
dependency for the current attribute with respect to other attributes for the plug-in. For example,
suppose you had a plug-in that drew shapes and had the following attributes:

• Shape(square, circle)

• Length

• Width

• Radius

You would not want the Radius attribute to be displayed when the shape is a square. Instead you
would conditionally display the Length, Width, and Radius attributes depending on the type of shape.
Figure 2-23shows the Condition section for the Radius attribute.

Figure 2-23. Custom attribute: Condition

Depending on: This is the element that the current attribute is dependent on. In
the example, it was Shape.

Condition Type: The condition determines how to evaluate against the
“Depending on” value.

Expression: The value to compare against. If “in list” or “not in list” is selected,
the expression must be a comma-separated list. The expression value is case-
sensitive.

Help Text (for the Custom Attribute)
The Help Text section for a custom attribute allows you to provide some additional information for
developers that are leveraging the plug-in. This text will never be displayed to end users, just developers.
Like all other APEX help text, developers need to click the attribute label to see the help text. HTML code
is allowed in the help text.

Files
The Files section allows you to include third-party files with your plug-in, as shown in Figure 2-24. If files
are stored in the Files section, #PLUGIN_PREFIX# should be used as the File Prefix, as shown in Figure 2-7.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

24

Figure 2-24. Plug-in Files section

The advantage of storing the files as part of the plug-in is that you don’t need to worry about
connections to other web servers, etc. If your application receives a lot of page views or you need to
improve the page load time, it may help to store the file on a web server. When developing plug-ins, it
helps to store the files on a web server that allows you to easily manipulate the files.

When using files, you should include a version number at the end of the file name. Including a
unique version number for each file will make sure the browser uses the most recent version of the file
rather than an older, cached copy. This concept is discussed in detail in Chapter 7.

Events
Events are custom JavaScript events that will be triggered by the plug-in. Some built-in JavaScript events
that you may already know are onClick and onChange. Figure 2-25 shows the Events section on the plug-
in page.

■ Note www.w3schools.com/tags/ref_eventattributes.asp contains a list of standard JavaScript events.
jQuery handles these events in a very simple manner. For more information about jQuery events, see:
http://api.jquery.com/category/events.

Figure 2-25. Plug-in Events section

Since events are tightly coupled with JavaScript code, they are available only for plug-ins that relate
to page rendering: item, region, and dynamic action. Registering an event with a plug-in requires two
components on the plug-in form:

Name: Name is the display name that is shown to other APEX developers when
they are creating a dynamic action.

www.it-ebooks.info

http://www.w3schools.com/tags/ref_eventattributes.asp
http://api.jquery.com/category/events
http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

25

Internal Name: This is the name that is used in the JavaScript code to trigger the
event. APEX will lowercase the internal name automatically so you cannot use
camel case in your JavaScript code that manages this event.

Events can be referenced by dynamic actions or by custom JavaScript code. If used by a dynamic
action, they will show up in the list of dynamic actions. The following example demonstrates the
relationship with dynamic actions:

1. Edit the skeleton plug-in that you previously created at the beginning of
this chapter. Scroll down to the Events region, as shown in Figure 2-25.
Click the Add Event button.

2. The page will reload. Scroll back down to the Events region, which now
has a blank row for a new event, and enter Dummy Event for the Name
and dummy event for the Internal Name, as shown in Figure 2-26. Click
the Apply Changes button to save the modifications.

Figure 2-26. Plug-in Events section

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

26

3. On Page 1, create a new dynamic action by right-clicking the Dynamic
Action tree element, and select Create from the context menu, as shown in
Figure 2-27.

Figure 2-27. Creating a dynamic action

4. Select Advanced and click the Next button.

5. In the Name field, enter Test and click the Next button to continue.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

27

6. On the When page, expand the list of events. You’ll notice a list of built-in
events that are part of APEX. If you scroll to the bottom of the list, as
shown in Figure 2-28, you’ll notice Dummy Event in the list of events.

Figure 2-28. Dummy Event in dynamic action event list

7. Since you don’t need this dynamic action, hit the Cancel button to exit
from the Dynamic Action wizard.

Events can be a bit confusing the first time when learning about them. Some of the demos will
leverage events to help you understand how to build the additional functionality within your plug-in
JavaScript code.

Information
The Information section, as shown in Figure 2-29, allows you to include some metadata about your
plug-in. It contains the following fields:

Version: Like APEX applications, plug-ins contain version numbers. It is useful
to maintain the version number to indicate if a new version of the plug-in is
available.

About URL: You can put a link to a page that contains more information about
the plug-in. When a plug-in is built for public consumption, developers tend to
put their organization’s web site on it. If it is built for internal use, you can put a
link to a wiki page, which may contain more information about the business
requirements for the plug-in, etc.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

■

■

 PLUG-IN FUNDAMENTALS

28

Figure 2-29. Plug-in Information section

Help Text (for the Plug-In)
It is recommended that you include any instructions in the Help Text section for the plug-in as a whole,
as shown in Figure 2-30. The Help Text section can include both plain text and HTML markup. You can
also include additional information, such as license information and documentation, in the Help Text
section as well.

Figure 2-30. Plug-in Help Text section

Licensing
You can create plug-ins to give away, possibly in support of marketing your services. You can also create
plug-ins to sell. The plug-in Help Text section mentioned in the preceding section is an excellent place
to place your license terms, or at least to reference them.

Some plug-in developers prefer to publish their work under various open source licenses. There are
many different open source licenses, each written with somewhat different end goals in mind. The
following URL is a good source for information on the various open source licenses available:

www.opensource.org/licenses/index.html

If you choose to use an open sources license, you can just reference the license name and choose to
include only the URL to that license in the help text for your plug-in. Users can follow the link to the
actual license text if they are interested in the details.

Summary
This chapter covered all the components that make up a plug-in and introduced some of the APIs
required to build a plug-in. In the following chapters, you will build each different type of plug-in, and
that will make use of all the components that were covered in this chapter.

www.it-ebooks.info

http://www.opensource.org/licenses/index.html
http://www.it-ebooks.info/

C H A P T E R 3

 ■ ■ ■

29

Item Plug-Ins

Now that you know what plug-ins can do and their components, it’s time to build your first plug-in.
Don’t worry if you’re still a bit confused about how they work. This chapter will help answer most of your
questions. Since it is the first plug-in in this book, everything will be defined in detail.

This chapter is broken up into four main sections. The first section, “Business Problem,” describes
what the plug-in is supposed to do. In the second section, you will build your first plug-in. This section
will walk through each step and include some hints and tips. The third section, “Events,” describes an
advanced feature for plug-ins. The last section summarizes this chapter.

■ Note The plug-in that is built in this chapter was taken from a free, open source plug-in available from
http://apex-plugin.com. This chapter will walk you through how it was built step-by-step.

Business Problem
One of the first mistakes people tend to make when creating plug-ins is to think about cool features and
whiz-bang functionalities that their plug-in will have. Then they get so deep into the code that they
eventually forget the problem that they’re trying to resolve. The end result is either a failed attempt at
building a plug-in or a plug-in that does a lot of things but not what it was initially intended to do.

Since there are a lot of moving parts with plug-ins, it’s highly recommended that you take a step
back and explicitly state what business problem you’re trying to solve. This is a key step since you can
always refer back to that statement and see if the work you’re doing is going toward solving that business
problem.

 ■ Note Explicitly writing down your business problem may sound like an excerpt from a project management
book, but it is an important step for building plug-ins. Since plug-ins have so many components, it’s easy to get
sidetracked. Having a statement that you refer to will help keep you on track.

www.it-ebooks.info

http://apex-plugin.com
http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

30

Example Scenario
The example in this chapter is built around the need for dynamic constraints on the values entered into
a date field. The current date item allows you to select a min and max date, as shown in Figure 3-1.
These constraints can be either static dates or references to a variable using the &ITEM_NAME.(substitution
string) notation.

■ Note For more information about the &ITEM_NAME notation mentioned earlier, and about different methods to
reference variables, please read the following article: http://www.talkapex.com/2011/01/variables-in-
apex.html.

Regardless of how you define the min/max constraints for a date field, they are calculated once
when the page is loaded. As a result, the date constraints don’t dynamically change as the user is
working on the page.

Figure 3-1. Standard date item settings

A classic example of when you would want dynamic min/max date constraints is when booking
return airplane tickets. You normally select the date you’re leaving on and then select the date you’re
coming back on. When you select the return date, you can’t select any dates before the date you leave
on, as shown in Figure 3-2. The current min/max date options in the standard APEX date picker don’t
support this functionality.

www.it-ebooks.info

http://www.talkapex.com/2011/01/variables-in-apex.html
http://www.talkapex.com/2011/01/variables-in-apex.html
http://www.talkapex.com/2011/01/variables-in-apex.html
http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

31

Figure 3-2. Dynamic min/max date when booking tickets

Solution Requirements
To get around the static min/max date issue, you’re going to create a dynamic from/to date picker. The
new date picker will have the following functionality:

• Restrict the to date when a from date is selected; for example, suppose you
selected 20-Jan-2010 as your from date. When a user selects a date from the to date
picker, he or she can’t select anything before 20-Jan-2010 (i.e., the user can’t select
any dates from before 19-Jan-2010).

• Restrict the from date when a to date is selected; see the previous example in
reverse.

• Allow developers to select when the calendar is displayed

• Support multiple date formats; date formats do not need to be the same for both
the from and to dates.

• Back-end validation that dates are valid dates (if “execute validations” is set to yes)

• Back-end validation that from date is less than or equal to the to date

Building the Item Plug-In
Now that the business requirements have been defined, it’s time to start building the new date picker
plug-in. This plug-in will cover some of the most common features that you may encounter when

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

32

building an item-type plug-in. If at any point you want to verify anything, an example application,
covering all plug-ins in this book, is available on Apress’s web site. (See the catalog page for this book at
http://apress.com/ 9781430235033.)

■ Note This chapter’s example will use external JavaScript files as part of the plug-in. To make things easier,
the example assumes that you have read/write access to a web server that will allow you to modify the JavaScript
files. If you don’t have such access, you’ll need to either obtain access or create a local web server. An example of
how to install Apache, a free, open source web server, is covered in the Debugging & Tools chapter.

Creating the Plug-In and a Test Page
The first thing that you’ll need to do is create the plug-in. The process is exactly the same as covered in
the previous chapter except for the following changes:

• Name: ClariFit From To Date Picker

• Internal Name: COM.CLARIFIT.FROMTODATEPICKER

The plug-in type should be an item plug-in type. Once you have created the blank plug-in, the
Name region should look like Figure 3-3. Everything else should remain the same with the default
settings.

Figure 3-3. From/to date picker initial setup

www.it-ebooks.info

http://apress.com/
http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

33

The next thing that you’ll need to do is create and compile an empty PL/SQL package in your
schema. This package will be used to develop the from/to date picker item plug-in and the other plug-
ins in this book. The code for the empty package, pkg_apress_plugins, is as follows:

CREATE OR REPLACE PACKAGE pkg_apress_plugins AS

END pkg_apress_plugins;
/

CREATE OR REPLACE PACKAGE BODY pkg_apress_plugins as

END pkg_apress_plugins;
/

 ■ Note Storing the plug-in code in a package makes it easier/faster to develop. Once the plug-in is completed,
you can store the code directly in the plug-in or move to another package.

Create a page to see how the changes you make in the plug-in affect the page item. Here are the
steps to follow to do that:

1. Create a new blank page. Number it as Page 10, and name it From/To
Date Picker.

2. Create a new page item and select Plug-ins, as shown in Figure 3-4.

Figure 3-4.The Create Page Item wizard: Selecting the item type

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

34

3. Select ClariFit From To Date Picker and click the Next button, as shown in
Figure 3-5.

Figure 3-5.The Create Page Item wizard: Selecting the plug-in

4. On the Display Position and Name page, enter the values, as shown in
Figure 3-6.

Figure 3-6.The Create Page Item wizard: Selecting the display position and name

5. On the Source page, enter DD/MM/YYYY as the format mask, and click
the Create Item button to complete the wizard.

6. Create another item by repeating steps 1 through 5 with the following
changes:

a. Item name: P10_TO_DATE

b. Format mask: DD-MON-YYYY

Initial Configuration
Before writing any code for the plug-in, it is useful to configure the plug-in. There are usually two things
that should be setup right away: the file prefix and the standard attributes. As you develop a plug-in, you
can easily change these settings.

The file prefix defines the location for third-party files such as JavaScript and CSS files. The default
value is #PLUGIN_PREFIX#, which references files that are directly attached to the plug-in. When
developing plug-ins, it is usually easier to work on files that you have read/write access to. You can use a
corporate development web server or a local webserver. This example, and all examples in this book, will
reference a local webserver (covered in Chapter 8). It is assumed that you set the web server’s home
directory to c:\www.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

35

The following steps will point the file prefix to a local directory for development purposes (if using a
different web server, change the URL accordingly):

1. Create a directory called c:\www\FromToDatePicker.

2. Edit the plug-in and scroll down to the Settings region. Set the File Prefix
field to http://localhost/FromToDatePicker/,as shown in Figure 3-7.

Figure 3-7. Settings: File Prefix field

Standard attributes define what standard options are available for the application developer to use.
To start, check the options as shown in Figure 3-8.

Figure 3-8.Choosing standard attributes

Including JavaScript Code
The next thing to do is add the JavaScript code to display the calendar and add constraints so the from
and to dates are within a valid range. To display the date picker, you’ll use jQuery UI date picker, which
is the same tool that APEX uses for the standard date picker. The main difference is that you’ll add
additional support for the date restrictions.

■ Note You can get more information about the jQuery UI date picker from
http://jqueryui.com/demos/datepicker/.

There are two components to adding JavaScript to a plug-in. The first is to write some JavaScript
files with the plug-in. The second is to integrate the JavaScript code with the plug-in.

www.it-ebooks.info

http://jqueryui.com/demos/datepicker/
http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

36

The first step is to write the JavaScript code to support the from and to date pickers. The easiest way
to do this is to create a simple HTML file and build a proof of concept. This is a very important step since
things can become complex when integrating into a plug-in. In order to save time, you will not need to
do this step in this book; however, it is highly recommended when creating your own plug-ins from
scratch.

■ Note This section will cover all the JavaScript code required for the plug-in. When creating plug-ins, you will
probably develop and modify your JavaScript code throughout the process rather than all in one go, as it needs to
align with both the plug-in options and the PL/SQL code.

To create the external JavaScript file for this plug-in, create an empty file in
c:\www\FromToDatePicker called jquery.ui.clarifitFromToDatePicker_1.0.0.js. Edit the file in your text
editor, and add the following code (this is included in the downloadable files):

/**
 * ClariFit FromTo Date Picker for APEX
 * Plug-in Type: Item
 * Summary: Handles automatically changing the min/max dates
 *
 * Depends:
 * jquery.ui.datepicker.js
 * $.console.js - http://code.google.com/p/js-console-wrapper/
 *
 * Special thanks to Dan McGhan (www.danielmcghan.us) for his JavaScript help
 *
 * ^^^ Contact information ^^^
 * Developed by ClariFit Inc.
 * http://www.clarifit.com
 * apex@clarifit.com
 *
 * ^^^ License ^^^
 * Licensed Under: GNU General Public License, version 3 (GPL-3.0) -
http://www.opensource.org/licenses/gpl-3.0.html
 *
 * @author Martin Giffy D'Souza - www.talkapex.com
 */
(function($){
 $.widget('ui.clarifitFromToDatePicker', {
 // default options
 options: {
 //Information about the other date picker
 correspondingDatePicker: {
dateFormat: '', //Need other date format since it may not be the same as current date format
id: '',
value: ''
 }, //Value during page load
 //Options for this date picker

www.it-ebooks.info

http://code.google.com/p/js-console-wrapper/
http://www.danielmcghan.us
http://www.clarifit.com
mailto:apex@clarifit.com
http://www.opensource.org/licenses/gpl-3.0.html
http://www.talkapex.com
http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

37

datePickerAttrs: {
autoSize: true,
buttonImage: '', //Set by plugin attribute
buttonImageOnly: true,
changeMonth: true,
changeYear: true,
dateFormat: 'mm/dd/yy', //Default date format. Will be set by plugin
showAnim: '', //By default disable animation
showOn: 'button'},
datePickerType: '', //from or to
 },

 /**
 * Init function. This function will be called each time the widget is referenced with no
parameters
 */
 _init: function(){
var uiw = this;

 //For this plug-in there's no code required for this section
 //Left here for demonstration purposes
 $.console.log(uiw._scope, '_init', uiw);
 }, //_init

 /**
 * Set private widget variables
 */
 _setWidgetVars: function(){
var uiw = this;

 uiw._scope = 'ui.clarifitFromToDatePicker'; //For debugging

uiw._values = {
shortYearCutoff: 30, //roll over year
 };

uiw._elements = {
 $otherDate: null
 };

 }, //_setWidgetVars

 /**
 * Create function: Called the first time widget is associated to the object
 * Does all the required setup, etc. and binds change event
 */
 _create: function(){
 var uiw = this;

 uiw._setWidgetVars();

var consoleGroupName = uiw._scope + '_create';

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

38

 $.console.groupCollapsed(consoleGroupName);
 $.console.log('this:', uiw);
 $.console.log('element:', uiw.element[0]);

varelementObj = $(uiw.element),
otherDate,
minDate = '',
maxDate = ''
 ;

 //Get the initial min/max dates restrictions
 //If other date is not well formatted, an exception will be raised
try{
otherDate = uiw.options.correspondingDatePicker.value != '' ?
$.datepicker.parseDate(uiw.options.correspondingDatePicker.dateFormat,
uiw.options.correspondingDatePicker.value, {shortYearCutoff: uiw._values.shortYearCutoff}) :
''
minDate = uiw.options.datePickerType == 'to' ? otherDate : '',
maxDate = uiw.options.datePickerType == 'from' ? otherDate : ''
 uiw._elements.$otherDate = $('#' + uiw.options.correspondingDatePicker.id);
 }
catch (err){
 $.console.warn('Invalid Other Date', uiw);
 }

 //Register DatePicker
elementObj.datepicker({
autoSize: uiw.options.datePickerAttrs.autoSize,
buttonImage: uiw.options.datePickerAttrs.buttonImage,
buttonImageOnly: uiw.options.datePickerAttrs.buttonImageOnly,
changeMonth: uiw.options.datePickerAttrs.changeMonth,
changeYear: uiw.options.datePickerAttrs.changeYear,
dateFormat: uiw.options.datePickerAttrs.dateFormat,
minDate: minDate,
maxDate: maxDate,
showAnim: uiw.options.datePickerAttrs.showAnim,
showOn: uiw.options.datePickerAttrs.showOn,
 //Events
onSelect: function(dateText, inst){
var extraParams = { dateText: dateText, inst: inst },
 $this = $(this)
 ;
 $this.trigger('change'); // Need to trigger change event so that other date is updated
 $this.trigger('plugineventonselect', extraParams); // Trigger Plugin Event:
pluginEventOnSelect if something is listening to it
 }
 });

elementObj.bind('change.' + uiw.widgetEventPrefix, function(){
 // Sets the min/max date for related date element
 // Since this function is being called as an event, "this" refers to the DOM object and
not the widget "this" object

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

39

 // uiw references the UI Widget "this"
 $.console.log(uiw._scope, 'onchange', this);

var $this = $(this),
optionToChange = uiw.options.datePickerType == 'from' ? 'minDate' : 'maxDate',
selfDate = $.datepicker.parseDate(uiw.options.datePickerAttrs.dateFormat, $this.val(),
{shortYearCutoff: 30})
 ;

 uiw._elements.$otherDate.datepicker('option', optionToChange,selfDate); //Set the
min/max date information for related date option
 }); //bind

 $.console.groupEnd(consoleGroupName);
 },//_create

 /**
 * Removes all functionality associated with the clarifitFromToDatePicker
 * Will remove the change event as well
 * Odds are this will not be called from APEX.
 */
 destroy: function() {
 var uiw = this;

 $.console.log(uiw._scope, 'destroy', uiw);
 $.Widget.prototype.destroy.apply(uiw, arguments); // default destroy
 // unregister datepicker
 $(uiw.element).datepicker('destroy');
 }//destroy
}); //ui.clarifitFromToDatePicker
})(apex.jQuery);

It is important to understand some of the techniques used. Here are some of the main points for the
foregoing code:

• In the filename, jquery.ui.clarifitFromToDatePicker_1.0.0.js, a version
number (_1.0.0) was added to the end of the file. This was done to prevent browser
caching on updates to the file. The next time a modification is made to the file, just
update the version number in the filename.

• The overall structure of the JavaScript file uses the jQuery UI Widget Factory
framework. The jQuery UI Widget Factory framework is covered in the Debugging
& Tools chapter toward the end of this book. This framework is not required when
developing plug-ins, but it does make things easier to manage in the long run.

• The entire function is wrapped at the beginning so that you can use the $ jQuery
notation. If the function was not wrapped, you could still use the $ notation but
may run into namespacing issues. If you did not want to wrap your function, you
could use apex.jQuery instead of $.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

40

• The code was instrumented using Console Wrapper, a free, opensource wrapper
for Console. Console Wrapper has tight integration with APEX and, by default, will
be enabled only when APEX is run in debug mode. For more information, please
visithttp://code.google.com/p/js-console-wrapper/.

• options: Options that can be set by the calling function; some of these options will
be setup as plug-in attributes so APEX developers can explicitly configure them.

• _create: This instantiates the jQuery UI date picker for the input element and sets
the initial date restrictions based on other dates.

• plugineventonselect: In the _create function, there’s a call to
$(this).trigger('plugineventonselect', extraParams). This triggers a custom
event thatcan be used when creating a dynamic action. An additional
configuration (covered later) is required.

• _onChangeHandler: When a date is changed, this function will be called. It will
change the min/max date restriction for the other date.

Since jquery.ui.clarifitFromToDatePicker_1.0.0.js references Console Wrapper, you will also
need to copy the console wrapper file to c:\www\FromToDatePicker. $console_wrapper_1.0.3.js is
included with this book, or you can download it from http://code.google.com/p/js-console-wrapper/.

For now you will not need to include the JavaScript file directly in the plug-in since you’ll be
referencing the copy on the web server. If there are any bugs in the code, it is much easier to debug. At
the end of this chapter, you will bundle the JavaScript directly into the plug-in.

Adding Custom Attributes
Adding custom attributes can be done at any time while developing a plug-in. You’ll tend to know some
of the attributes right away and then add some additional attributes as you finalize the plug-in.

Based on the JavaScript code, there are two attributes that will be required: icon image location and
when to show the calendar. To create the icon image location attribute, do the following:

1. Edit the plug-in and scroll to the Custom Attributes region.

2. Click the Add Attribute button, as shown in Figure 3-9.

Figure 3-9. Adding an attribute

www.it-ebooks.info

http://code.google.com/p/js-console-wrapper/
http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

41

3. Fill in the Name region as in Figure 3-10. Since the icon image location
will probably be the same throughout the application, it should be an
application-level attribute.

Figure 3-10. Custom attribute: Name

4. In the Settings region, set the Type field to Text, and Required field to Yes,
as shown in Figure 3-11.

Figure 3-11. Custom attribute: Settings

5. In the Default Value region, enter &IMAGE_PREFIX.asfdcldr.gif, as
shown in Figure 3-12. This will leverage the calendar icon image that APEX
uses for standard date pickers.

Figure 3-12. Custom attribute: Default value

6. Since this attribute is not dependent on other attributes, you do not need
to modify the Condition region.

7. In the Help Text region, enter Default image to use for calendar icon.
This help text will be displayed when a developer clicks the attribute label.

8. If you want, enter some comments in the Comments region. Once
finished, click the Create button.

s
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

42

Creating the Show On attribute is similar to creating the icon image location application attribute,
but with some slight modifications. The following steps outline the process. (Only figures for new steps
are shown.)Figures for the other steps are essentially the same as before.

1. Edit the plug-in and scroll to the Custom Attributes region.

2. Click the Add Attribute button, as shown in Figure 3-9.

3. In the Name region, set the following values:
Scope: Component
Attribute:1
Display Sequence:10
Label: Show On
Since this attribute may change for each instance of the date picker, it’ll be
a component-level attribute. The attribute number is unique based on the
scope. Once an attribute has been created, the attribute number cannot
be changed.

4. In the Settings region, set the following values:
Type: Select List
Required: Yes

5. The next logical step is to add a value for the list of values. The catch is that
if you click the Add Value button it will submit the page and save the
custom attribute. Since you set this as a required attribute, you need to
define a default value first. In the Default Value region, set the default
value to “focus”.

6. You can now add values to the list of values. In the List of Values region,
click the Add Value button, as shown in Figure 3-13.

Figure 3-13. Custom attribute: List of values

7. Enter the values, as shown in Figure 3-14, for the LOV entry form. Click the
Create and Create Another button when complete.

Figure 3-14. Custom attribute: Adding LOV value

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

43

8. Repeat step 6 for:
Sequence:20
Display Value: Button
Return Value: button

9. Repeat step 6 for:
Sequence:30
Display Value: Both
Return Value: both
Instead of clicking the Create and Create Another button, just click the
Create button.

When you go back to edit the plug-in, the new application custom attribute now appears in the
Settings region on the plug-in page, as shown in Figure 3-15. If you edit P10_FROM_DATE, which uses
this plug-in, you should notice the new Show On setting that you just created, as shown in Figure 3-16.

Figure 3-15. Application-level custom attribute

Figure 3-16. Component-level custom attribute

There are two other component-level custom attributes that need to be created for the plug-in. They
are to select the type of date (from/to) and corresponding date item. To create these custom attributes,
do the following:

1. To simplify things, only items that need to be changed from their default
state or key fields will be listed.

2. Add a new custom attribute.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

44

3. Name:
Scope: Component
Attribute: 2
Display Sequence: 20
Label: Date Type

4. Settings:
Type: Select List
Required: Yes

5. Default Value:
Default Value: from

6. Check the Return To Page check box located in the top right corner of the
page, as shown in Figure 3-17, and click the Create button.

Figure 3-17. Return to Page check box

7. You will now need to add the following values for the list of values:

Sequence: 10
Display Value: From Date
Return Value: from

and

Sequence: 20
Display Value: To Date
Return Value: to

8. Add a new custom attribute. This attribute will be to select the
corresponding date item.

9. Name:
Scope: Component
Attribute: 3
Display Sequence: 30
Label: Corresponding Date Item

10. Settings:
Type: Page Item
Required: Yes

11. Click the Create button to complete this step.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

45

If you go back and edit P10_FROM_DATE, you’ll notice two additional attributes in the Settings
region, as shown in Figure 3-18. If you click the Apply Changes button in the top right corner, you’ll get a
“Value must be specified” error, as shown in Figure 3-19. This happens since you couldn’t define a
meaningful default value when creating the Corresponding Date Item attribute. To resolve this issue,
enter P10_TO_DATE in Corresponding Date Item. You should also update P10_TO_DATE and set Date
Type to To Date and Corresponding Date Item to P10_FROM_DATE.

Figure 3-18. P10_FROM_DATE settings

Figure 3-19. Missing setting value

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

46

■ Note If you deploy a plug-in and need to add additional attributes, you should be aware of the consequences
of having a required attribute with no default value. If no default value is set and the APEX developer upgrades the
plug-in without modifying each instance of the plug-in, unhandled behavior may occur with negative results. As
much as possible, when updating a plug-in, try to include a meaningful default value.

Rendering Function
Similar to the test plug-in that you created in the previous chapter, if you run Page 10, you will get the
error shown in Figure 3-20. This is because no render function has been defined. In this section, you will
define the render function so that the items display and work properly.

Figure 3-20.“No render function” error message

The render function is a PL/SQL function that writes the HTML code onto the page. For now store
the render function in the package that you previously created, PKG_APRESS_PLUGINS. First create the
entry in the package specification:

1. Open pkg_apress_plugins.pks in your SQL editor.

2. Edit the plug-in and scroll to the Callbacks region. Click the Render
Function Name label to bring the pop-up help, as shown in Figure 3-21.

Figure 3-21. Render function help text

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

47

3. Copy the item type plug-in render function interface header and paste it
into pkg_apress_plugins.pks, as shown in Figure 3-22.

Figure 3-22. Item type interface

4. Name/rename the function to f_render_from_to_datepicker, and include
a semicolon at the end of the return line so that the package specification
can compile.

5. Compile pkg_apress_plugins.pks.

The next thing to do is to create a function in the package body and enter some standard code that is
useful in all plug-ins. Copy the following code into pkg_apress_plugins.pkb:

 FUNCTION f_render_from_to_datepicker (
p_item IN apex_plugin.t_page_item,
p_plugin IN apex_plugin.t_plugin,
p_value IN VARCHAR2,
p_is_readonly IN BOOLEAN,
p_is_printer_friendly IN BOOLEAN)
 RETURN apex_plugin.t_page_item_render_result

 AS
 -- APEX information
v_app_idapex_applications.application_id%TYPE := v('APP_ID');
v_page_idapex_application_pages.page_id%TYPE := v('APP_PAGE_ID');

 -- Main plug-in variables
 v_result apex_plugin.t_page_item_render_result; -- Result object to be returned
 v_page_item_name VARCHAR2(100); -- Item name (different than ID)
 v_html VARCHAR2(4000); -- Used for temp HTML

 -- Application Plugin Attributes

 -- Item Plugin Attributes

 -- Other variables

 BEGIN

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

48

 -- Debug information (if app is being run in debug mode)
 IF apex_application.g_debug THEN
apex_plugin_util.debug_page_item (p_plugin => p_plugin,
p_page_item =>p_item,
 p_value => p_value,
p_is_readonly =>p_is_readonly,
p_is_printer_friendly =>p_is_printer_friendly);
 END IF;

 -- handle read only and printer friendly
 IF p_is_readonly OR p_is_printer_friendly THEN
 -- omit hidden field if necessary
apex_plugin_util.print_hidden_if_readonly (p_item_name => p_item.name,
 p_value => p_value,
p_is_readonly =>p_is_readonly,
p_is_printer_friendly =>p_is_printer_friendly);
 -- omit display span with the value
apex_plugin_util.print_display_only (p_item_name => p_item.NAME,
p_display_value =>p_value,
p_show_line_breaks => FALSE,
p_escape => TRUE, -- this is recommended to help prevent XSS
p_attributes =>p_item.element_attributes);
 ELSE
 NULL; -- Need to fill this in
 END IF; -- f_render_from_to_datepicker

 RETURN v_result;
 END f_render_from_to_datepicker;

This code can be used for any type of item plug-in as it includes some debug code, print code, and

standard variables. It does not include anything that will actually render the item in normal mode.
The render function returns a variable called v_result, which is of type

apex_plugin.t_page_item_render_result. For more information, refer to the APEX API documentation.
The next step is to link the function that you just created with the plug-in. To link the render

function with the plug-in, edit the plug-in and enter
pkg_apress_plugins.f_render_from_to_datepicker in the Render Function Name field, as shown in
Figure 3-23.

Figure 3-23. Adding render function

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

49

If you run Page 10 again, no errors should appear, like Figure 3-24.

Figure 3-24. From/to date picker with blank rendering

As Figure 3-24’s caption states, the region is blank as nothing was displayed. The next set of steps
will create the HTML input element so it displays on the screen. To do so, replace NULL; -- Need to
fill this in with the following code:

-- Not read only
-- Get name. Used in the "name" form element attribute which is different than the "id"
attribute
v_page_item_name := apex_plugin.get_input_name_for_page_item (p_is_multi_value => FALSE);

-- SET VALUES

-- OUTPUT

-- Print input element
v_html := '<input type="text" id="%ID%" name="%NAME%" value="%VALUE%" autocomplete="off">';
v_html := REPLACE(v_html, '%ID%', p_item.name);
v_html := REPLACE(v_html, '%NAME%', v_page_item_name);
v_html := REPLACE(v_html, '%VALUE%', p_value);

sys.htp.p(v_html);

-- JAVASCRIPT

-- Tell apex that this field is navigable
v_result.is_navigable := TRUE;

To summarize the foregoing code, it prints an input element and then tells APEX that it’s a navigable
item. The attribute autocomplete is set to off on the input element to prevent a list of values being
displayed when the user focuses on the field.

When defining the HTML code, mnemonics are used and then replaced for their appropriate values.
This is a technique that John Scott showed at ODTUG Kscope 11 to make things easier when writing the
HTML code. You do not need to use this technique, but it does make reading the code a bit easier. Of
course, if your application needs to be as performant as possible, you may want to use a concatenated
string and forgo the extra calls to the REPLACE function.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

50

■ Note It is important to include the NAME attribute in the input element, as it is used in the form submission, and
not the element’s ID attribute. In general the ID is used as reference when the page is displayed and the NAME
attribute is referenced from the server.

If you refresh Page 10, it will look like Figure 3-25 (note: if the item labels do not appear, then edit
each item and add the label). You could submit the form, and APEX would process the items as a regular
item.

Figure 3-25. From/to date picker with input elements

If you click either date field, nothing happens. They currently behave like regular text input fields.
This is because you haven’t linked the JavaScript code with the plug-in yet. Before including the
JavaScript code in your plug-in, you need to create some variables to reference the custom attributes.
Add the following code in the variable declaration section of the PL/SQL function:

...
-- Application Plugin Attributes
v_button_img apex_appl_plugins.attribute_01%type := p_plugin.attribute_01;

-- Item Plugin Attributes
v_show_on apex_application_page_items.attribute_01%type := lower(p_item.attribute_01); -- When
to show date picker. Options: focus, button, both
v_date_picker_type apex_application_page_items.attribute_01%type :=
lower(p_item.attribute_02); -- from or to
v_other_item apex_application_page_items.attribute_01%type := upper(p_item.attribute_03); --
Name of other date picker item

-- Other variables
-- Oracle date formats different from JS date formats
v_orcl_date_format_maskp_item.format_mask%type; -- Oracle date format:
http://www.techonthenet.com/oracle/functions/to_date.php
v_js_date_format_maskp_item.format_mask%type; -- JS date format:
http://docs.jquery.com/UI/Datepicker/formatDate
v_other_js_date_format_maskapex_application_page_items.format_mask%type; -- This is the other
datepicker's JS date format. Required since it may not contain the same format mask as this
date picker
...

www.it-ebooks.info

http://www.techonthenet.com/oracle/functions/to_date.php
http://docs.jquery.com/UI/Datepicker/formatDate
http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

51

Instead of using a variable name like v_attr_01 for application- and component-level attributes, use
meaningful variable names. This serves various purposes. It makes things easier for other developers to
modify the plug-in. There is also a chance that the attributes may change throughout the lifespan of the
plug-in.

The other variables are there to manage the date formats. The from/to date picker allows for each
item to contain different date formats. Note that it is highly unlikely that each item would contain
different formats, but it is a possibility since the items are independent of each other.

To set the format masks for the dates, replace the section, starting with the code here. This code
uses an undocumented function that converts an Oracle date format to a JavaScript date format.

...
-- SET VALUES

-- If no format mask is defined, use the system-level date format
v_orcl_date_format_mask := nvl(p_item.format_mask, sys_context('userenv','nls_date_format'));

-- Convert the Oracle date format to JS format mask
v_js_date_format_mask := wwv_flow_utilities.get_javascript_date_format(p_format =>
v_orcl_date_format_mask);

-- Get the corresponding date picker's format mask
selectwwv_flow_utilities.get_javascript_date_format(p_format => nvl(max(format_mask),
sys_context('userenv','nls_date_format')))
intov_other_js_date_format_mask
fromapex_application_page_items
whereapplication_id = v_app_id
andpage_id = v_page_id
anditem_name = upper(v_other_item);
...

■ Note Prior to APEX 4.1, you would need to include the following line in the foregoing code to handle
substitution strings: v_button_img := apex_application.do_substitutions(v_button_img);. This is no
longer necessary since you can declaratively tell APEX to replace substitution strings, as shown in Figure 3-9.

To integrate the JavaScript functionality, add the following code (excluding the “…”) to the section,
starting with the code shown here.

...
-- JAVASCRIPT

-- Load javascript Libraries
apex_javascript.add_library (p_name => '$console_wrapper', p_directory =>
p_plugin.file_prefix, p_version=> '_1.0.3'); -- Load Console Wrapper for debugging
apex_javascript.add_library (p_name => 'jquery.ui.clarifitFromToDatePicker', p_directory =>
p_plugin.file_prefix, p_version=> '_1.0.0'); -- Version for the date picker (in file name)

-- Initialize the fromToDatePicker

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

52

v_html :=
'$("#%NAME%").clarifitFromToDatePicker({
correspondingDatePicker: {
 %OTHER_DATE_FORMAT%
 %ID%
 %VALUE_END_ELEMENT%
 },
datePickerAttrs: {
 %BUTTON_IMAGE%
 %DATE_FORMAT%
 %SHOW_ON_END_ELEMENT%
 },
 %DATE_PICKER_TYPE_END_ELEMENT%
});';
v_html := replace(v_html, '%NAME%', p_item.name);
 v_html := REPLACE(v_html, '%OTHER_DATE_FORMAT%',
apex_javascript.add_attribute('dateFormat', sys.htf.escape_sc(v_other_js_date_format_mask)));
 v_html := REPLACE(v_html, '%DATE_FORMAT%', apex_javascript.add_attribute('dateFormat',
sys.htf.escape_sc(v_js_date_format_mask)));v_html := replace(v_html, '%ID%',
apex_javascript.add_attribute('id', v_other_item));
v_html := replace(v_html, '%VALUE_END_ELEMENT%', apex_javascript.add_attribute('value',
sys.htf.escape_sc(v(v_other_item)), false, false));
v_html := replace(v_html, '%BUTTON_IMAGE%', apex_javascript.add_attribute('buttonImage',
sys.htf.escape_sc(v_button_img)));
v_html := replace(v_html, '%SHOW_ON_END_ELEMENT%', apex_javascript.add_attribute('showOn',
sys.htf.escape_sc(v_show_on), false, false));
v_html := replace(v_html, '%DATE_PICKER_TYPE_END_ELEMENT%',
apex_javascript.add_attribute('datePickerType', sys.htf.escape_sc(v_date_picker_type), false,
false));

apex_javascript.add_onload_code (p_code => v_html);
...

The first thing that the foregoing code does is load two different JavaScript libraries. The first is the
Console Wrapper. As previously discussed in this chapter, it will allow you to include enhanced
debugging in your JavaScript code. The second file is the custom JavaScript file that handles the from
and to date picking functionalities.

Both of the file load calls include the file name, a directory, and a version parameter. The file name
is the file prefix, not including the version number or the file extension. APEX assumes that the file has
the .js extension. If it does not use the standard .js extension, you can use the p_skip_extension
parameter. Referencing p_plugin.file_prefix for the directory is the best option as it allows APEX
developers to define where the files are coming from rather than having to modify the PL/SQL code.
That’s it! You’ve officially built a functional plug-in.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

53

To test that things are working, perform the following steps:

1. Go back to Page 10 (refresh if you already had it open). You’ll notice that
the two date pickers have slightly different widths, as shown in Figure 3-
26. This is because the JavaScript code automatically resizes the fields to
the appropriate widths based on the format mask. To change this feature,
or make it configurable, search the JavaScript file for the autoSize option
and change it to your desired size.

Figure 3-26. Date picker dynamic widths

2. Click in the From Date field, and select August 10, 2011 from the calendar,
as shown in Figure 3-27.

Figure 3-27. From Date calendar selector

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

54

3. Click in the To Date field, and you’ll notice that the calendar restricts you
from picking anything before August 10, 2011, as shown in Figure 3-28.

Figure 3-28. To Date calendar selector

4. To demonstrate how the different custom attributes can change the item,
modify P10_TO_DATE and change the Show On field to Button, as shown
in Figure 3-29. Click the Apply Changes button to save your modification.

Figure 3-29. Altering custom attribute

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

55

5. If you refresh Page 10 again, you’ll notice that the To Date field has an icon
beside it, as shown in Figure 3-30. The calendar will be displayed only
when the button is pressed.

Figure 3-30. Modified To Date field

The JavaScript file that you created included a lot of debug/instrumentation code to output to the
Console window. If you run the application in debug mode and view the Console window, it should look
like Figure 3-31. Having this extra information can be very useful when resolving issues that you may
encounter while developing a plug-in.

Figure 3-31. Console output

Adding a Validation Function
Now that the date picker is rendering the calendar correctly, we need to ensure that the dates are valid.
Developers could manually create a validation for each instantiation of the plug-in item. This would
require a lot of extra, redundant work. Item plug-ins allow plug-in developers to include validations as
part of the item. As you can imagine, this can save a lot of time if the plug-in is used many times.

Before looking at the validation function, it’s important to see what happens without a validation
function. To simulate this, do the following:

1. Edit Page 10.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

56

2. Right-click the From/To Date Picker region, and select Create Region
Button, as shown in Figure 3-32.

Figure 3-32. Create Region Button option

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

57

3. Enter SUBMIT for the Button Name and Submit for the Label, as shown
in Figure 3-33. Click the Next button to continue.

Figure 3-33. Create Button: Button attributes

4. On the Display Properties page, set the Alignment field to Left and click
the Next button.

5. On the Action When Clicked page, leave the default values, as shown in
Figure 3-34, and click the Create Button button to complete the wizard.

Figure 3-34. Create Button: Action When Clicked values

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

58

6. Create a new page PL/SQL process called Convert To Date to Oracle Date,
as shown in Figure 3-35. Click the Next button.

Figure 3-35. Create Page Process region

7. On the next page, enter the following code in the Enter PL/SQL Page
Process text area. This code is some dummy code that will convert the text
date into an Oracle date. It will fail if the date format is invalid.

DECLARE
v_format_maskapex_application_page_items.format_mask%type;
v_date date;
BEGIN

 -- Get format mask
 SELECT format_mask
 INTO v_format_mask
 FROM apex_application_page_items
 WHERE application_id= :app_id
 AND page_id= :app_page_id
 AND item_name = 'P10_TO_DATE';

 -- Convert text date to Oracle date
 -- This will fail if P10_TO_DATE has an invalid date format
IF :p10_to_date IS NOT NULL THEN
v_date := to_date(:p10_to_date, v_format_mask);
 END IF;

END;

8. Click the Create Process button to complete the wizard.

w
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

59

9. To test the new function and see what happens when no validations occur
on the date item, run Page 10 and click the To Date input element. Enter
abc, as shown in Figure 3-36.

Figure 3-36. Invalid to date

10. Clicking the Submit button will trigger the page process to run. You will
get an error like Figure 3-37 rather than a user-friendly error.

Figure 3-37. Invalid date error message

Going back to the plug-in requirements, there are two different validations that must occur:

• Back-end validation that dates are valid dates (if “execute validations” is set to yes)

• Back-end validation that the from date is less than or equal to the to date

The first step to creating a validation function is to get the validation function header and modify
the package specification (pks) file. To get the validation function header, do the following:

1. Edit the From/To Date Picker plug-in.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

60

2. In the Callbacks region, click the Validation Function Name label. This will
display the pop-up help, as shown in Figure 3-38.

Figure 3-38. Validation function spec

3. Copy the spec header and paste it into pkg_apress_plugins.pks. Name the
function f_validate_from_to_datepicker. The full function header should
look like the following code block in pkg_apress_plugins.pks:

...
FUNCTION f_validate_from_to_datepicker (
 p_item in apex_plugin.t_page_item,
p_plugin in apex_plugin.t_plugin,
 p_value IN VARCHAR2)
 RETURN apex_plugin.t_page_item_validation_result;
...

4. Modify pkg_apress_plugins.pkb and add the following code at the end of
the package. The function shown here shares some very similar aspects
when compared to the render function—for example, similar variable
declarations and the debug information. Note that this function is not
complete yet. v_result allows you to set the error message and some
additional attributes. Refer to the APEX documentation for all the
available options.

...
FUNCTION f_validate_from_to_datepicker (
 p_item IN apex_plugin.t_page_item,
 p_plugin IN apex_plugin.t_plugin,
 p_value IN VARCHAR2)
 RETURN apex_plugin.t_page_item_validation_result
AS
 -- Variables
v_orcl_date_formatapex_application_page_items.format_mask%type; -- oracle date format
v_date date;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

61

 -- Other attributes
v_other_orcl_date_formatapex_application_page_items.format_mask%type;
v_other_date date;
v_other_labelapex_application_page_items.label%type;
v_other_item_valvarchar2(255);

 -- APEX information
v_app_idapex_applications.application_id%type := v('APP_ID');
v_page_idapex_application_pages.page_id%type := v('APP_PAGE_ID');

 -- Item Plugin Attributes
v_date_picker_type apex_application_page_items.attribute_01%type :=
lower(p_item.attribute_02); -- from/to
v_other_item apex_application_page_items.attribute_01%type := upper(p_item.attribute_03); --
item name of other date picker

 -- Return
 v_result apex_plugin.t_page_item_validation_result;

BEGIN
 -- Debug information (if app is being run in debug mode)
 IF apex_application.g_debug THEN
apex_plugin_util.debug_page_item (p_plugin => p_plugin,
p_page_item =>p_item,
 p_value => p_value,
p_is_readonly => FALSE,
p_is_printer_friendly => FALSE);
 END IF;

 -- If no value then nothing to validate

 -- Check that it's a valid date

 -- Check that from/to date have valid date range
 -- Only do this for From dates

 -- No errors
 RETURN v_result;

END f_validate_from_to_datepicker;
...

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

62

5. To register the validation function, modify the plug-in and enter
pkg_apress_plugins.f_validate_from_to_datepicker in the Validation
Function Name field, as shown in Figure 3-39.

Figure 3-39. Registering validation callback function

If you run Page 10 and try to submit an invalid date, you’ll get the same error that you saw in Figure
3-37. The validation function that you added was just a skeleton function. In the next few steps, you’ll fill
in the blank sections to include all the necessary code to add all the validations.

The first thing to do is exit the validation if the value is null. You can do this since each item has a
general APEX attribute called Value Required, which will handle null entries. To ignore null values, add
the following code below the comment.

...
-- If no value then nothing to validate
IF p_value IS NULL THEN
 RETURN v_result;
END IF;
...

The next check is to ensure that the current item’s date is a valid date. This check will leverage the
APEX dictionary to find the current item’s date format and convert the item using that format mask. Add
the following code below the comment.

...
-- Check that it's a valid date
SELECT nvl(MAX(format_mask), sys_context('userenv','nls_date_format'))
 INTO v_orcl_date_format
 FROM apex_application_page_items
 WHERE item_id = p_item.ID;

IF NOT wwv_flow_utilities.is_date (p_date =>p_value, p_format =>v_orcl_date_format) THEN
v_result.message := '#LABEL# Invalid date';
 RETURN v_result;
ELSE
v_date := to_date(p_value, v_orcl_date_format);
END IF;
...

In the foregoing code, when setting the error message, #LABEL# is used. If you do not include this,
the error message will not include the name of the item. If the error message is displayed only in the
notification area, it would be difficult for the user to decipher where the error occurred.

You can set the location of the error message in the v_result object by setting the display_location
attribute. If you do not set this value, it will use the application’s default display location. To set the

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

63

default location, go to Shared Components Edit Definition and scroll to the Error Handling region, as
shown in Figure 3-40.

Figure 3-40. Modifying the Default Error Display Location field

There’s still one last check to include in the validation function to ensure that the from date is less
than or equal to the to date. In order to do this, you need to run the validation only once (i.e., not on
both date item validations). In this case, the validation will check for a valid date range only on the from
date item. Modify the code and add the following.

...
-- Check that from/to dates have valid date range
-- Only do this for From dates

-- At this point the date exists and is valid.
-- Only check for "from" dates so error message appears once
IF v_date_picker_type = 'from' THEN

 IF LENGTH(v(v_other_item)) > 0 THEN
 SELECT nvl(MAX(format_mask), sys_context('userenv','nls_date_format')), MAX(label)
 INTO v_other_orcl_date_format, v_other_label
 FROM apex_application_page_items
 WHERE application_id = v_app_id
 AND page_id = v_page_id
 AND item_name = upper(v_other_item);

v_other_item_val := v(v_other_item);

 IF wwv_flow_utilities.is_date (p_date =>v_other_item_val, p_format
=>v_other_orcl_date_format) THEN
v_other_date := to_date(v_other_item_val, v_other_orcl_date_format);
 END IF;

 END IF;

 -- If other date is not valid or does not exist, then no stop validation.
 IF v_other_date IS NULL THEN

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

64

 RETURN v_result;
 END IF;

 -- Can now compare min/max range.
 -- Remember "this" date is the from date. "other" date is the to date
 IF v_date>v_other_date THEN
v_result.message := '#LABEL# must be less than or equal to ' || v_other_label;
v_result.display_location := apex_plugin.c_inline_in_notification; -- Force to display inline
only
 RETURN v_result;
 END IF;

END IF; -- v_date_picker_type = from
...

■ Note In this plug-in, the JavaScript code does a lot of front-end validation to ensure that the date ranges are
valid, but it’s still highly recommended to validate all data on the server using PL/SQL. A second check to validate
all data at the serverside using PL/SQL is highly recommended so that clients will not be able to send deliberately
incorrect data to the server.

The foregoing code does some straightforward validation. The thing to note is that it is explicitly
setting the display location on the line that starts with v_result.display_location. The following steps
demonstrate how the new error looks:

1. Run Page 10 and enter August 10, 2011 for both dates, as shown in Figure
3-41.

Figure 3-41. Same from and to date

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

65

2. If you try to manually modify the to date to be less than the from date, the
JavaScript code will automatically correct the dates. To work around this,
you’ll need to remove the jQuery UI plug-in that is applied to one of the
dates. To do this, open the Console window and run the following code:

$('#P10_FROM_DATE').clarifitFromToDatePicker('destroy');

The output from the Console window (if running the app in debug mode)
should look like Figure 3-42.

Figure 3-42. jQuery UI destroy output

3. You can now manually modify the from date. Set it to 13/08/2011, as
shown in Figure 3-43.

Figure 3-43. Invalid date range

4. Click the Submit button. You should now get an error message like Figure
3-37,which checks that the date range is invalid.

Wrapping Up
Now that your plug-in is working properly, there are a few things to do before publishing it for others to
use. If using the plug-in for internal purposes only, you may not need to change anything since you can
reference a corporate web server and PL/SQL packages. These steps are there only if you’re planning to
release it publically or cannot guarantee that the APEX application will have access to a specific web
server and PL/SQL packages.

The first step is to move the PL/SQL code from pkg_apress_plugins directly into the plug-in. The
following steps will move the code from the package into the plug-in:

1. Edit the plug-in.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

66

2. Scroll down to the Source region, and copy the functions
f_render_from_to_datepicker and f_validate_from_to_datepicker from
pkg_apress_plugins.pkb into the PL/SQL Code text area, as shown in
Figure 3-44.

Figure 3-44. Embedding PL/SQL code in the plug-in

3. Go to the Callbacks region, and remove pkg_apress_plugins from the
render and validation function names, as shown in Figure 3-45. Click the
Apply Changes button to save your changes.

Figure 3-45. Updating call back functions

The plug-in is now running code that is embedded in your plug-in rather than from the package.
You want to do this as one of the last steps since it can be more cumbersome and annoying to modify
the PL/SQL in the plug-in rather than in a package where you can leverage all the features in a PL/SQL
editor.

The last step is to embed the JavaScript files that were stored on a local web server. The following
steps describe how to embed the JavaScript files in your plug-in:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

67

1. Edit the plug-in and scroll down to the Files region, as shown in Figure 3-
46, and click the Upload New File button.

Figure 3-46. Plug-in Files region

2. This will open a new page. Click the Choose File button, as shown in
Figure 3-47.

Figure 3-47. Upload New File region

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

68

3. Select C:\www\FromToDatePicker\$console_wrapper_1.0.3.js, as shown in
Figure 3-48. Click the Upload button to upload the file.

Figure 3-48. Selecting a file

4. Repeat steps 2 and 3 for C:\www\FromToDatePicker\
jquery.ui.clarifitFromToDatePicker_1.0.0.js.

5. The Files region should now look like Figure 3-49.

Figure 3-49. Files region with uploaded files

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

69

6. Go to the Settings region, and change the File Prefix field to
#PLUGIN_PREFIX#, as shown in Figure 3-50. By changing the File Prefix
field to #PLUGIN_PREFIX#, APEX will reference the embedded files rather
than files on your web server.

Figure 3-50. Plug-in Settings region

Events
Events allow you to declaratively link JavaScript events triggered from a plug-in to a dynamic action. In
the JavaScript file, a specific line was added to handle custom APEX events, as shown here:

$(this).trigger('plugineventonselect', extraParams);

Events can be a bit confusing at first, so the best way to explain them is through a demonstration.
The first thing that you need to do is register the event in the plug-in.

1. Edit the plug-in, and go to the Events region, shown in Figure 3-51. Click
the Add Event button.

Figure 3-51. Plug-in Events region

v
www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

70

2. Clicking the Add Event button refreshes the page and adds a new row in
the Events region. Set the Name to On Select Date and the Internal Name
to plugineventonselect, as shown in Figure 3-52.

The name can be anything you want (i.e., it is used more as a display name
that other developers will see). The internal name is the same name that
you used in the JavaScript trigger function and is case-sensitive.

Figure 3-52. Registering the plugineventonselect event

3. Click the Apply Changes button to save your modifications.

Now that the event has been registered with the plug-in, it can be leveraged throughout the
application. The following example demonstrates how a dynamic action will use the plug-in.

1. Edit Page 10. Right-click P10_FROM_DATE and select Create Dynamic
Action, as shown in Figure 3-53.

Figure 3-53. Adding a dynamic action

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

71

2. On the Implementation page, select the Advanced option, as shown in
Figure 3-54, and click the Next button.

Figure 3-54.Dynamic action: Implementation

3. Enter Display Selected Value in the Name field, as shown in Figure 3-55.
Click the Next button.

Figure 3-55. Dynamic action: Identification

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

72

4. The When section determines when the dynamic action will be fired. In
the Event list, select On Select Date [ClariFit From To Date Picker], as
shown in Figure 3-56. This is the event that we previously
registered/created in the plug-in.

Figure 3-56. Dynamic action: When

5. In the True Action page, set the Action to Execute JavaScript Code.
Uncheck the Fire On Page Load checkbox. In the Code text area, enter
window.alert('You selected: ' + this.data.dateText);.Figure 3-57 shows
the required change on this page. Click the Next button to continue.

Note that the variable dateText was defined in our JavaScript code in the
extraParams variable.

Figure 3-57. Dynamic action: True Action

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3 ■ ITEM PLUG-INS

73

6. On the Affected Elements page, do not select a Selection Type. Click the
Create button to create the dynamic action.

To trigger the dynamic action, run Page 10. Select a from date, and an alert window should display
the selected date like Figure 3-58.

Figure 3-58.A dynamic action in action

This example highlights how to include events in your JavaScript, register them with the plug-in,
and use them throughout the rest of your APEX application. Of course, you can do more elegant and
meaningful things with events, but this example was kept simple to highlight how everything integrates.

Summary
This chapter covered many things, including callback functions, custom attributes, how to develop
locally, and finally how to bundle a plug-in so it can be used anywhere. There are still a lot of things to
learn about plug-ins, and they will be covered in the following chapters.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 4

■ ■ ■

75

Dynamic Action Plug-Ins

Dynamic actions were introduced to APEX starting in version 4.0. When they were first introduced, they
were one of the most popular new features included in the release, alongside plug-ins. Dynamic actions
allow APEX developers to declaratively define actions based on browser events.

This chapter will cover the basics of dynamic actions, including an example and how they work. If
you are familiar with dynamic actions, you are still encouraged to read over the basics section, as the rest
of the chapter assumes that you’ve covered this section. Following the background information, this
chapter will build a dynamic action plug-in.

About Dynamic Actions
Since dynamic actions are relatively new to APEX, it is important that you have a good understanding of
how they work. This section will describe what dynamic actions are and how they work.

The easiest way to explain a dynamic action is to create and use one. As an example, this section will
walk you through creating a dynamic action that will print “hello world” on the screen. Follow along
with the example on your own machine. Going through the simple process of creating this dynamic
action will help you grasp what they are and why they are so useful.

To setup this example, you’ll need to create a new page as follows:

1. Create a new blank page, Page 20, called Dialog, with a blank HTML
region called My Region.

2. On Page 20, create a new region button called Trigger Dynamic Action. In
the Create Button wizard, on the Action When Clicked page, set the Action
field to Defined by Dynamic Action, as shown in Figure 4-1.

Figure 4-1. Create Button: Action When Clicked page

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

76

3. If using an older theme (pre APEX 4.1), you may get the same error as
Figure 4-2. An ID is required on the button for APEX to link the dynamic
action to. The following steps cover how to add an ID to the button.

Figure 4-2. Button ID error message

a. Exit the Create Button wizard and go to Shared Components.
Click the Templates link, under the User Interface region, as
shown in Figure 4-3.

Figure 4-3. User Interface region

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

77

b. Select the default Button template (highlighted by the check
mark in the Default column), as shown in Figure 4-4.

Figure 4-4. Selecting the default Button template

c. In the Normal Template region, change the code from

<button value="#LABEL#" onclick="#LINK#" class="button-
gray" type="button" #BUTTON_ATTRIBUTES#>

to

<button value="#LABEL#" onclick="#LINK#" class="button-
gray" type="button" #BUTTON_ATTRIBUTES# id=”#BUTTON_ID#”>

The only difference is that id=”#BUTTON_ID#” was added to the
tag.

d. Click the Apply Changes button to save your changes.

e. Repeat steps 1 and 2, and you should no longer get the Button ID
error message.

4. Select the default options for the remainder of the wizard, and create the
button.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

78

5. On the Page Edit page, right-click the new button that you added and
select Create Dynamic Action, as shown in Figure 4-5.

Figure 4-5. Create Dynamic Action context option

6. In the Name field, enter Test. Click the Next button to continue.

7. On the When page, ensure that the Event field is set to Click. Leave the rest
of the default options, and click the Next button.

Note that the Condition option is not a “standard” APEX condition.
Standard APEX conditions are executed while the page is being generated,
which determine if the object should be rendered on the page. Dynamic
action conditions are runtime conditions that will be evaluated in the
browser when a browser event is triggered (in this case, the button being
clicked). It will be evaluated each time the dynamic action is triggered.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

79

8. Dynamic actions have true and false actions, which are based on the
dynamic action condition. If no condition is specified, as in this example,
only the true action will be run.

The Action select list on the True Action page lists all the available actions
to perform. They are grouped into categories. Categories are there for
organization purposes only and do not affect a dynamic action’s
functionality.

For this example, set the Action field to Alert, which is under the
Notification category, as shown in Figure 4-6.

Figure 4-6. Dynamic action True Action page

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

80

9. Uncheck the Fire on Page Load checkbox, and enter Hello World in the
Text box, as shown in Figure 4-7. Click the Next button to continue.

Figure 4-7. Dynamic action alert text

10. Click the Create button on the Confirm screen to complete the wizard.

11. Run Page 20, and click the Trigger Dynamic Action button. You should see
a JavaScript alert window popup, as shown in Figure 4-8.

Figure 4-8. JavaScript alert window

How Dynamic Actions Work
As you can now see, it’s really easy to use dynamic actions. But what actually happens behind the
scenes? This section will discuss in detail how dynamic actions work. It’s important to fully understand
how they work, as you’ll need to know this information when creating your own dynamic actions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

81

Dynamic actions can be broken up into two sections: drivers and actions. Drivers define when the
dynamic action should be executed, and actions define what action should be run. Figure 4-9 is a
flowchart of how a dynamic action works.

Figure 4-9. Dynamic action flowchart

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

82

In the previous example, the driver was the button click. Since there was no condition, the only
action was showing the alert message box. When you create a dynamic action plug-in, you’re actually
creating something that will be run as an action.

Since dynamic actions are run on the front end, all the information that the action needs to perform
is actually available when the action is executed. To demonstrate the available information, modify the
Test dynamic action that you previously created:

1. On the Page 20 edit page, right-click the Alert action and select Edit from
the context menu, as shown in Figure 4-10.

Figure 4-10. Edit Alert action

2. In the Identification region, change the Action field from Alert to Execute
JavaScript Code, as shown in Figure 4-11. When doing so, you’ll notice
that a new region appears called Affected Elements.

Figure 4-11. Action Identification region

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

83

3. In the Execution Options region, uncheck the Fire On Page Load box.

4. In the Settings region, enter the following into the Code text area:

console.log(this);

5. Configure the Affected Elements region as shown in Figure 4-12.

Figure 4-12. Action Affected Elements region

Affected Elements allows an APEX developer to select which elements on
the page will be affected by the action. In this example, it will be all the
tabs on the page; however, since the JavaScript code is just displaying an
object, nothing will actually happen to the tabs.

6. Click the Apply Changes button to save your modifications.

7. Run Page 20, and open the Console window in Firefox. You can also view
the console output in other browsers, such as Google Chrome or Safari.
Viewing the console output in Firefox is a popular technique among
developers as it offers a lot of details and additional third-party plug-
ins/tools to help speed up development.

■ Note If you are unfamiliar with the browser console, Chapter 7describes it in detail.

8. Click the Trigger Dynamic Action button. Figure 4-13 shows what the
Console window is currently displaying.

Figure 4-13. Firefox Console window

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

84

9. If you drill down on the Object hyperlink (which represents the this
dynamic action object), you will see the following objects:

Figure 4-14. Dynamic action this object

The dynamic action this object contains five elements: action, affectedElements, browserEvent,
data, and triggeringElement. The following list describes each of these elements:

action: The action element contains a list of attributes that describe the action
as shown in Figure 4-15. The action, affectedElements, affectedElementsType,
affectedRegionId, eventResult, executeOnPageInit, and stopExecutionOnError
attributes are automatically set by APEX. In the PL/SQL code that generates the
action plug-in, you can define the ajaxIdentifier as well as attributes 01~15.
Note that these attributes are not the same as the custom attributes that you
create as part of the plug-in. They are defined directly within the plug-in
PL/SQL code. This will be covered in detail in the example plug-in later in this
chapter.

Figure 4-15. Dynamic action this—action

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

85

affectedElements:affectedElements is an array of elements that should be
modified/used by the action. In this example, it is the three tabs at the top of
the page, which represent the three elements (0, 1, and 2) in the array, as shown
in Figure 4-16. This means that in your JavaScript code you should reference
the affectedElementsarray rather than hard-code objects that should be
modified.

Referencing the affectedElements object rather than a hard-coded value is one
of the toughest things to get over when first working with dynamic actions. It
does take some getting used to, but you should be comfortable with this notion
after a while of working with dynamic actions.

Figure 4-16. Dynamic action this—affectedElements

browserEvent: The browserEvent attribute is the event that triggered the
dynamic action to fire. In Figure 4-17, you can see that the element that caused
the dynamic action to fire was the button.

Figure 4-17. Dynamic action this—browserEvent

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

86

browserEvent.currentTarget: This represents the target element to listen
onthat was defined by the APEX developer.browserEvent.target (not shown in
Figure 4-17) represents the exact object that triggered the event. The difference
between the two is subtle, and in this example they appear to be the same, but
there is a difference. Suppose you change the driver for the dynamic action
from a click of the button to a click of the region, as shown in Figure 4-18. Run
the page, and click the Trigger Dynamic Action button. The
browserEvent.currentTarget would be the div element (representing the
region), and the browserEvent.target would be the button element
(representing the exact object that was clicked).

Figure 4-18. Modifying the dynamic action driver

browserEvent.type(not shown in Figure 4-17):This highlights that it was a click
event that triggered this dynamic action.

data: The data attribute contains additional data that can be passed by the
event handler. An example of this was covered in the previous chapter in the
“Events” section.

triggeringElement: triggeringElement is the DOM object that the dynamic
action listener was applied to. This is the same thing as
browserEvent.currentTarget.

The dynamic action this object is a very important object since the entire JavaScript portion of the
dynamic action relies on its information. In the following example, you’ll use some of the elements
discussed earlier in your dynamic action. If you get confused with some of the JavaScript code, you
should come back to review this section.

Example Business Problem
When creating an application, developers need to create pop-up windows for users to view and modify
data. Since some browsers prevent web pages from using traditional pop-up windows (and they’re
annoying), you need to create a dialog/modal pop-up window. An example of such a window is the label
help dialog window in APEX, as shown in Figure 4-19.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

87

Figure 4-19. APEX label help dialog window

The following is a list of requirements for this dynamic action plug-in:

• Allow for modal and non-modal dialog windows.

• Dialog window can be moved around the page by the user.

• Support multiple dialog windows at the same time.

• Dialog window must be selected for Region, DOM object, or jQuery Selector.

• For modal windows, background color and opacity must be the same across the
entire application.

• Ability to hide the dialog window on page load (i.e., user wants to see the
information only as a modal window)

• Allow the end user to hit the ESC key to close the modal window.

• Option to restore the dialog window to its previous non-dialog window state—for
example, if it was hidden before, it should be hidden after.

Building the Dynamic Action Plug-In
Now that the business requirements have been defined, you can start creating the dynamic action plug-
in. To start, create a new plug-in with the attributes listed here. Follow the same process as in the
preceding chapter. Once you are finished, click the Create button to save the plug-in.

• Name: ClariFit Dialog

• Internal Name: COM.CLARIFIT.APEXPLUGIN.APEX_DIALOG

• Type: Dynamic Action

• Category: Effect

Again, the category has no real impact on the plug-in. All it does is control where the dynamic action
is listed when a developer is implementing a dynamic action.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

88

■ Note Some of the steps that were covered in detail in the previous chapter are common to both types of plug-
ins. The following process will not include screenshots for those common steps.

Initial Configuration and Setup
Just like the first plug-in that you created, there are some housekeeping items that you need to perform.
The first is to create a directory on your web server that will host the necessary web files while
developing this application and modify the plug-in file prefix.

1. Create a directory called c:\www\ApexDialog.

2. Modify the plug-in. In the Settings region, set the File Prefix field to
http://localhost/ApexDialog/.

3. Click the Apply Changes button to save your changes.

Before creating a test scenario on Page 20, you will need to configure the standard attributes for this
plug-in. Referring to the requirements, the affected elements for this plug-in must be selected. They can
be only for Region, DOM object, or jQuery Selectors. To meet these requirements, modify the plug-in
and set the standard attributes options as in Figure 4-20.

Figure 4-20. Plug-in standard attributes

As with all plug-ins, you’ll need to reference a PL/SQL function(s) to manage the plug-in. The
following steps will define the PL/SQL function for the plug-in and create a corresponding empty
PL/SQL function in pkg_apress_plugins. The code for the function will be covered later on in this
chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

89

1. Modify the plug-in. In the Callbacks region,set the Render Function
Namefield to pkg_apress_plugins.f_render_dialog. Since this plug-in
does not require any AJAX calls, you can leave the AJAX Function Name
field empty.

2. The next thing to do is to define and create an empty PL/SQL function. To
obtain the function spec, click the Render Function Name label. Scroll
down to the bottom of the help text, and copy the function header
information, as shown in Figure 4-21.

Figure 4-21. Render Function Name help

3. Modify the package spec for pkg_apress_plugins, and paste the code at
the end. Name the function f_render_dialog. In SQL Developer, it should
look like Figure 4-22(note that the other functions have been collapsed).

Figure 4-22.pkg_apress_plugins.f_render_dialogpackage spec

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

90

4. Create the function f_render_dialog in the package body, which simply
returns an empty result variable, as shown in Figure 4-23 (note that the
other functions have been collapsed). You will fill in the rest of the
function later in this chapter.

Figure 4-23.pkg_apress_plugins.f_render_dialogpackage body (minimal)

The next thing to do is to modify Page 20 so that you can test the plug-in as you develop it. The
following steps will remove some of the unnecessary things from Page 20 and create the necessary test
items.

1. Edit Page 20, and delete the Test dynamic action.

2. Delete the TRIGGER_DYNAMIC_ACTION button.

3. Create a new HTML region with the following configuration:

Title: My Form
Sequence: 20

All other options should be left to the default settings. In the My Form
region, create the following items, button, and page branch:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

91

a. Create three Text Field page items in the My Form region called
P20_A, P20_B, and P20_C.

b. Create a region button called Submit in the My Form region
using the default configurations. Set its position in the bottom
left of the region.

c. Create a page branch (On Submit: After Processing,After
Computation, Validation, and Processing)that branches back to
Page 20. On the Branch Conditions page, set the When Button
Pressed field to SUBMIT (submit).

d. If you run Page 20 now, it should look like Figure 4-24.

Figure 4-24. Page 20 with three items

4. Create a new Report (Classic Report) region with the following
configurations:

Title: Employee Report
Sequence: 30
Query: SELECT * FROM emp
Rows per Page: 5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

92

5. If you run Page 20 now, it should look like Figure 4-25.

Figure 4-25. Page 20 with report

6. You will add the buttons to trigger the dynamic actions after setting up the
custom attributes, so that you can see how the custom attributes are
displayed in the Dynamic Action Creation wizard.

Custom Attributes
Just like the From/To Date picker item plug-in, this plug-in requires some custom attributes. Both
application- and component-level attributes are necessary.

The following list describes the attributes that are required for the plug-in given the set of
requirements. Create each of the following attributes using the same process as described in the
preceding chapter. Refer back to that chapter if you need to refresh your memory on the process.

• Scope: Application
Attribute: 1
Label: Background Color
Type: Text
Required: No
Display Width: 10

This value is not required since it will use the default jQuery UI theme color that is
defined with the APEX theme.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

93

• Scope: Application
Attribute: 2
Label: Background Opacity
Type: Select List
Required: Yes
Default: 0.3
LOVs:

a. Display Value: 10%
Return Value: 0.1

b. Display Value: 20%
Return Value: 0.2

c. … 30%~90%

d. Display Value: 100%
Return Value: 1

• Scope: Component
Attribute: 1
Label: Modal
Type: Yes/No
Default: Y

The Yes/No value is a special type of select list that will return either Y or N. Since
there are only two possible values, there is no required field. If no value is entered
for the Default Value, N will be used.

• Scope: Component
Attribute: 2
Label: Close on Escape
Type: Yes/No
Default: Y

• Scope: Component
Attribute: 3
Label: Dialog Title
Type: Text
Required: No
Translatable: Yes

If the Translatable option is set to Yes, the value of the attribute will be included in
the list of phrases to translate in multi-language applications.

• Scope: Component
Attribute: 4
Label: Hide Affected Elements on Page Load
Type: Yes/No
Default: Y

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

94

• Scope: Component
Attribute: 5
Label: On Close Visible State
Type: Select List
Required: Yes
Default: prev
LOVs:

Display Value: Previous (default)
Return Value: prev

Display Value: Show
Return Value: show

Display Value: Hide
Return Value: hide

To confirm your changes, modify the plug-in and go to the Settings region. Figure 4-26shows the
two application-level attributes that are now available. Figure 4-27 shows the entire list of custom
attributes for this plug-in.

Figure 4-26. Custom application attributes

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

95

Figure 4-27. Dialog plug-in custom attributes

If you encountered any issues creating the custom attributes, please refer to the sample application
that comes with this book. The help text was excluded from the foregoing descriptions, but they are
included in the sample applications.

Now that the custom attributes have been defined, when you use this plug-in in a dynamic action,
you will see the component-level custom attributes in the Settings page (wizard) or Settings region. The
following steps create two buttons that leverage this dynamic action plug-in:

1. Edit Page 20. Create a region button called Dialog My Form. On the Action
When Clicked page, set the Action field to Defined by Dynamic Action, as
shown in Figure 4-1.

2. Create another button with the same attributes, but change its name to
Dialog Emp Report. This button will be used to trigger the dialog window
for the Employee Report region.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

96

3. Run Page 20. It should now look like Figure 4-28. Note that the buttons’
positions have been set to the bottom left of the region to help with the
screenshots in this book. If you used the default option, they will be in the
top right corner of the My Region region.

If you click either of the buttons, nothing happens, as there are no
dynamic actions registered to them. This will be done in the next step.

Figure 4-28. Buttons added to My Region

4. Create a dynamic action on the DIALOG_MY_FORMbutton. Here are the
steps to follow:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

97

a. Edit Page 20. Right-click the DIALOG_MY_FORM button, and
select the Create Dynamic Action option from the context menu,
as shown in Figure 4-29.

Figure 4-29. Create Dynamic Action option for DIALOG_MY_FORM button

b. On the Identification page, set the Name field to Dialog Window.
Click the Next button to continue.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

98

c. Use the default options on the When page, as shown in Figure 4-
30. Click the Next button to continue.

Figure 4-30. Default When options

d. On the True Action page, set Action to ClariFit Dialog [Plug-in].
Modify the settings so that they are the same as Figure 4-31.
These settings are the custom attributes that you just added to
the plug-in. Click the Next button to continue.

Figure 4-31. Dialog plug-in settings

e. On the Affected Elements screen, set the Selection Typefield to
Region and the Regionfield to My Form(1) 20. Click the Create
button to complete the wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

99

5. Create a dynamic action on the DIALOG_EMP_REPORTbutton. These
steps are very similar to the previous steps with some slight modifications,
and are as follows:

a. Right-click the DIALOG_EMP_REPORT button, and select the
Create Dynamic Actionoption from the context menu.

b. On the Identification page, set the Namefield to Modal Window.
Click the Next button to continue.

c. Use the default options on the When page. Click the Next button
to continue.

d. On the True Action page, set Action to ClariFit Dialog [Plug-in].
Use the default plug-in settings, and click the Next button to
continue.

e. On the Affected Elements screen, set the Selection Typefield to
Region and the Regionfield to Employee Report (1) 30. Click the
Create button to complete the wizard.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

100

f. If you go back to the Page 20 edit page, it should look like Figure
4-32. In Figure 4-32, the tree elements for the buttons have been
expanded to show all the dynamic action information.

Figure 4-32. Page 20 dynamic actions

If you run Page 20, it will load but the buttons won’t do anything, as the PL/SQL code is not
complete nor is there any JavaScript code. You may also notice some JavaScript errors when the page
loads. These errors will go away when you finish coding the render function and the JavaScript code.

Render Function
Now that everything is set up, there are two key pieces missing for this dynamic action plug-in: the
PL/SQL render function and the JavaScript code. This section will display all the PL/SQL code and give a
full analysis based on the line numbers. The line numbers don’t start at 1 since there’s code from a
previous plug-in in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

101

■ Note In the previous chapter, the JavaScript section was before the PL/SQL render function, whereas this
chapter covers the render function first and then the JavaScript code. Developing a plug-in usually involves an
iterative approach. Once you get the base functionality working, you will probably work with both sets of code at
the same time.

Copy the following code (excluding the line numbers) into the package body for
pks_apress_plugins. An analysis of the code follows.

227 ...
228
229 FUNCTION f_render_dialog (
230 p_dynamic_action IN apex_plugin.t_dynamic_action,
231 p_plugin IN apex_plugin.t_plugin)
232 RETURN apex_plugin.t_dynamic_action_render_result
233 AS
234 -- Application Plugin Attributes
235 v_background_color apex_appl_plugins.attribute_01%TYPE := p_plugin.attribute_01;
236 v_background_opacity apex_appl_plugins.attribute_01%TYPE := p_plugin.attribute_02;
237
238 -- DA Plugin Attributes
239 v_modal apex_application_page_items.attribute_01%TYPE := p_dynamic_action.attribute_01;
-- y/n
240 v_close_on_esc apex_application_page_items.attribute_01%TYPE :=
p_dynamic_action.attribute_02; -- y/n
241 v_title apex_application_page_items.attribute_01%TYPE := p_dynamic_action.attribute_03;
-- text
242 v_hide_on_load apex_application_page_items.attribute_01%TYPE :=
upper(p_dynamic_action.attribute_04); -- y/n
243 v_on_close_visible_state apex_application_page_items.attribute_01%type :=
lower(p_dynamic_action.attribute_05); -- prev, show, hide
244
245 -- Return
246 v_result apex_plugin.t_dynamic_action_render_result;
247
248 -- Other variables
249 v_html varchar2(4000);
250 v_affected_elements apex_application_page_da_acts.affected_elements%type;
251 v_affected_elements_type apex_application_page_da_acts.affected_elements_type%type;
252 v_affected_region_id apex_application_page_da_acts.affected_region_id%type;
253 v_affected_region_static_id apex_application_page_regions.static_id%type;
254
255 -- Convert Y/N to True/False (text)
256 -- Default to true
257 FUNCTION f_yn_to_true_false_str(p_val IN VARCHAR2)
258 RETURN VARCHAR2
259 AS
260 BEGIN

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

102

261 RETURN
262 CASE
263 WHEN p_val IS NULL OR lower(p_val) != 'n' THEN 'true'
264 ELSE 'false'
265 END;
266 END f_yn_to_true_false_str;
267
268 BEGIN
269 -- Debug information (if app is being run in debug mode)
270 IF apex_application.g_debug THEN
271 apex_plugin_util.debug_dynamic_action (
272 p_plugin => p_plugin,
273 p_dynamic_action => p_dynamic_action);
274 END IF;
275
276 -- Cleanup values
277 v_modal := f_yn_to_true_false_str(p_val => v_modal);
278 v_close_on_esc := f_yn_to_true_false_str(p_val => v_close_on_esc);
279
280 -- If Background color is not null set the CSS
281 -- This will be done only once per page
282 IF v_background_color IS NOT NULL THEN
283 v_html := q'!
284 .ui-widget-overlay{
285 background-image: none ;
286 background-color: %BG_COLOR%;
287 opacity: %OPACITY%;
288 }!';
289
290 v_html := REPLACE(v_html, '%BG_COLOR%', v_background_color);
291 v_html := REPLACE(v_html, '%OPACITY%', v_background_opacitiy);
292
293 apex_css.ADD (
294 p_css => v_html,
295 p_key => 'ui.clarifitdialog.background');
296 END IF;
297
298 -- JAVASCRIPT
299
300 -- Load javascript Libraries
301 apex_javascript.add_library (p_name => '$console_wrapper', p_directory =>
p_plugin.file_prefix, p_version=> '_1.0.3'); -- Load Console Wrapper for debugging
302 apex_javascript.add_library (p_name => 'jquery.ui.clarifitDialog', p_directory =>
p_plugin.file_prefix, p_version=> '_1.0.0');
303
304 -- Hide Affected Elements on Load
305 IF v_hide_on_load = 'Y' THEN
306
307 v_html := '';
308
309 SELECT affected_elements, lower(affected_elements_type), affected_region_id,
aapr.static_id

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

103

310 INTO v_affected_elements, v_affected_elements_type, v_affected_region_id,
v_affected_region_static_id
311 FROM apex_application_page_da_acts aapda, apex_application_page_regions aapr
312 WHERE aapda.action_id = p_dynamic_action.ID
313 AND aapda.affected_region_id = aapr.region_id(+);
314
315 IF v_affected_elements_type = 'jquery selector' THEN
316 v_html := 'apex.jQuery(""' || v_affected_elements || '"").hide();';
317 ELSIF v_affected_elements_type = 'dom object' THEN
318 v_html := 'apex.jQuery(""#' || v_affected_elements || '"").hide();';
319 ELSIF v_affected_elements_type = 'region' THEN
320 v_html := 'apex.jQuery(""#' || nvl(v_affected_region_static_id, 'R' ||
v_affected_region_id) || '"").hide();';
321 ELSE
322 -- unknown/unhandled (nothing to hide)
323 raise_application_error(-20001, 'Unknown Affected Element Type');
324 END IF; -- v_affected_elements_type
325
326 apex_javascript.add_onload_code (
327 p_code => v_html,
328 p_key => NULL); -- Leave null so always run
329 END IF; -- v_hide_on_load
330
331 -- RETURN
332 v_result.javascript_function := '$.ui.clarifitDialog.daDialog';
333 v_result.attribute_01 := v_modal;
334 v_result.attribute_02 := v_close_on_esc;
335 v_result.attribute_03 := v_title;
336 v_result.attribute_04 := v_on_close_visible_state;
337
338 RETURN v_result;
339
340 END f_render_dialog;
341
342 ...

Hereis an explanation of key passages in the preceding code listing:

234–243: Application- and component-level custom attributes; remember to
use meaningful names to describe them rather than their attribute number. It
may also be helpful to put a comment on expected values when applicable so
that other developers know what values to expect.

250–253: Variables to store the affected elements; generally, in dynamic action
plug-ins, this information is required only in the JavaScript code (which can be
referenced in the this object). Due to the requirement of hiding the object on
page load, the affected element is required here. This will be discussed further
in the code analysis.

257–266: Inline function to convert Y/N values to true/false (string) values; this
is not required, but if you need to convert some of the same types, attributes
creating inline functions can save time.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

104

270–274: Standard debugging code; you can instrument the rest of your
function with more debugging code but at a minimum including this debug
statement.

280–296: This code sets the background color and opacity for modal windows.
This is a page-level setting (i.e., will be the same for all the modal windows).

You could use htp.p to output the code; however, it would be run for each
instance of this plug-in. In the example, it would be run twice because there
aretwo instances of the same plug-in on the page. Since it needs to be run only
once, there’s a parameter called p_key (line 295). If this key has already been
used, the code will not be reprinted. If the key is null, it will always be used.

300–302: Load JavaScript files.

304–329: This is a unique block of code. One of the custom attributes allows an
APEX developer to hide the affected region on page load. Since the dynamic
action code is run only when it is triggered, additional steps are required to find
the affected elements and explicitly hide them once the page is loaded.

On lines 316, 318, and 320, the JavaScript references the
apex.jQuerynamespace rather than $. This ensures that it is actually referencing
the jQuery code rather than a different JavaScript library.

On line 328,p_key is set to NULL (default value). This means that the code will
always be run. Since NULL is the default value, you don’t need to explicitly
reference it if you don’t need it.

331–336: Defines the return object; the first thing you’ll notice is that there’s no
explicit call to actually “run” any JavaScript code to trigger your plug-in like an
item plug-in. Instead, all you need to do is define the JavaScript function name.
This function should not take in any parameters, as all the values that you need
are available in the dynamic action this object (discussed earlier in this
chapter).

Lines 333–336 set attributes that are available in the this.actionJavaScript
object. These attributes are not the same as custom (application and
component) attributes. These attributes are passed as strings, so you should
ensure that you convert any non-string values to strings when setting them.
This is why the Y/N values (v_modal and v_close_on_esc) are converted to string
true/false values rather than Oracle Boolean values.

JavaScript
Similar to the previous section, this section will list the JavaScript code and then break down each
section. Before continuing, you’ll need to download and copy $console_wrapper_1.0.3.js and
jquery.ui.clarifitDialog_1.0.0.jsinto c:\www\ApexDialog (or the appropriate web server directory) for
this plug-in to work. These files are available in the source code files that accompany this book.Since the
previous chapter covered how to embed JavaScript files directly into your plug-in, this chapter will not
do so. You are encouraged to review the previous chapter (see the “Wrapping Up” section) and embed
the JavaScript files on your own.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

105

Here is a complete listing of jquery.ui.clarifitDialog_1.0.0.js followed by a breakdown of each
section. When reading through this code, you should start to notice how everything nicely meshes
together.

001 /**
002 * ClariFit jQuery UI Dialog
003 * Plug-in Type: Dynamic Action
004 * Summary: Displays a jQuery UI Dialog window for affected elements
005 *
006 * Depends:
007 * jquery.ui.dialog.js
008 * $.console.js - http://code.google.com/p/js-console-wrapper/
009 *
010 * Notes:
011 * Object to be shown in Dialog window needs to be wrapped in order to preserve its
position in DOM
012 * See: http://forums.oracle.com/forums/thread.jspa?messageID=3180532 for more
information.
013 *
014 * ^^^ Contact information ^^^
015 * Developed by ClariFit Inc.
016 * http://www.clarifit.com
017 * apex@clarifit.com
018 *
019 * ^^^ License ^^^
020 * Licensed Under: GNU General Public License, version 3 (GPL-3.0) -
www.opensource.org/licenses/gpl-3.0.html
021 *
022 * @author Martin Giffy D'Souza - www.talkapex.com
023 */
024 (function($){
025 $.widget('ui.clarifitDialog', {
026 // default options
027 options: {
028 //Configurable options in APEX plugin
029 modal: true,
030 closeOnEscape: true,
031 title: '',
032 persist: true, //Future option, no affect right now
033 onCloseVisibleState: 'prev' //Restore objects visible state once closed
034 },
035
036 /**
037 * Init function. This function will be called each time the widget is referenced with
no parameters
038 */
039 _init: function(){
040 var uiw = this;
041 var consoleGroupName = uiw._scope + '._init';
042 $.console.groupCollapsed(consoleGroupName);
043

www.it-ebooks.info

http://code.google.com/p/js-console-wrapper/
http://forums.oracle.com/forums/thread.jspa?messageID=3180532
http://www.clarifit.com
mailto:apex@clarifit.com
http://www.opensource.org/licenses/gpl-3.0.html
http://www.talkapex.com
http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

106

044 //Find the objects visible state before making dialog window (used to restore if
necessary)
045 uiw._values.beforeShowVisible = uiw._elements.$element.is(':visible');
046 $.console.log('beforeShowVisible: ', uiw._values.beforeShowVisible);
047
048 //Create Dialog window
049 //Creating each time so that we can easily restore its visible state if necessary
050 uiw._elements.$element.dialog({
051 modal: uiw.options.modal,
052 closeOnEscape: uiw.options.closeOnEscape,
053 title: uiw.options.title,
054 //Options below Can be made configurable if required
055 width: 'auto',
056 //Event Binding
057 beforeClose: function(event, ui) { $(this).trigger('cfpluginapexdialogbeforeclose',
{event: event, ui: ui}); },
058 close: function(event, ui) {
059 //Destroy the jQuery UI elements so that it displays as if dialog had not been
applied
060 uiw._elements.$element.dialog("destroy");
061
062 //Move out of wrapper and back into original position
063 uiw._elements.$wrapper.before(uiw._elements.$element);
064
065 //Show only if previous state was show
066 if ((uiw._values.beforeShowVisible && uiw.options.onCloseVisibleState == 'prev')
|| uiw.options.onCloseVisibleState == 'show'){
067 uiw._elements.$element.show();
068 }
069 else {
070 uiw._elements.$element.hide();
071 }
072
073 //Trigger custom APEX Event
074 uiw._elements.$element.trigger('cfpluginapexdialogclose', {event: event, ui: ui});
075 },
076 create: function(event, ui) { $(this).trigger('cfpluginapexdialogcreate', {event:
event, ui: ui}); }
077 });
078
079 //Move into wrapper
080 uiw._elements.$wrapper.append(uiw._elements.$element.parent('.ui-dialog'));
081
082 $.console.groupEnd(consoleGroupName);
083 }, //_init
084
085 /**
086 * Set private widget variables
087 */
088 _setWidgetVars: function(){
089 var uiw = this;
090

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

107

091 uiw._scope = 'ui.' + uiw.widgetName; //For debugging
092
093 uiw._values = {
094 wrapperId : uiw.widgetName + '_' + parseInt(Math.random()*10000000000000000),
//Random number to identify wrapper
095 beforeShowVisible: false //Visible state before show
096 };
097
098 uiw._elements = {
099 $element : $(uiw.element[0]), //Affected element
100 $wrapper : null
101 };
102
103 }, //_setWidgetVars
104
105 /**
106 * Create function: Called the first time widget is associated to the object
107 * Does all the required setup, etc. and binds change event
108 */
109 _create: function(){
110 var uiw = this;
111
112 uiw._setWidgetVars();
113
114 var consoleGroupName = uiw._scope + '._create';
115 $.console.groupCollapsed(consoleGroupName);
116 $.console.log('this:', uiw);
117 $.console.log('element:', uiw.element[0]);
118
119 //Create wrapper so that we keep object in its current place on the DOM
120 uiw._elements.$element.wrap('<div id="' + uiw._values.wrapperId + '"/>');
121 uiw._elements.$wrapper = $('#' + uiw._values.wrapperId);
122 $.console.log('wrapperId: ', uiw._values.wrapperId);
123
124 $.console.groupEnd(consoleGroupName);
125 },//_create
126
127 /**
128 * Removes all functionality associated with the clarifitDialog
129 * Will remove the change event as well
130 * Odds are this will not be called from APEX.
131 */
132 destroy: function() {
133 var uiw = this;
134
135 $.console.log(uiw._scope, 'destroy', uiw);
136 $.Widget.prototype.destroy.apply(uiw, arguments); // default destroy
137 // unregister datepicker
138 uiw._elements.$element.dialog("destroy")
139 }//destroy
140 }); //ui.clarifitDialog
141

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

108

142 $.extend($.ui.clarifitDialog, {
143 /**
144 * Function to be called from the APEX Dynamic Action process
145 * No values are passed in
146 * "this" is the APEX DA "this" object
147 */
148 daDialog: function(){
149 var scope = '$.ui.clarifitDialog.daDialog';
150 var daThis = this; //Note that "this" represents the APEX Dynamic Action object
151 $.console.groupCollapsed(scope);
152 $.console.log('APEX DA this: ' , daThis);
153
154 //Set options
155 var options = {
156 modal: daThis.action.attribute01 === 'false' ?false : true,
157 closeOnEscape: daThis.action.attribute02 === 'false' ?false : true,
158 title: daThis.action.attribute03,
159 onCloseVisibleState: daThis.action.attribute04
160 };
161
162 for(var i = 0, end = daThis.affectedElements.length; i < end; i++){
163 $.console.log('Dialoging: ', daThis.affectedElements[i]);
164 $(daThis.affectedElements[i]).clarifitDialog(options);
165 }//for
166
167 $.console.groupEnd(scope);
168 }//daDialog
169
170 });//Extend
171
172 })(apex.jQuery);

Here is an explanation of key passages in the preceding JavaScript code listing:

001–023: Plug-in comment and license information; always spend the extra few
minutes and include some notes about the code. You’ll be thankful in the long
run.

024+172: Namespacing the jQuery variable name, which was discussed in the
previous chapter; if you do not use this technique, you should reference
apex.jQuery instead of $.

025–140: jQuery UI Widget Factory code for this plug-in

033: onCloseVisibleState defines what to do with the dialog window once it’s
closed. This code supports it going back to its previous state (default option),
always showing, or always hiding.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

109

050–077: Display the dialog window; stores the visible state of the object before
it is converted to a dialog window. This is necessary to restore the window as
defined by one of the plug-in’s custom attributes.

This code also supports custom event binding. For example, line 057 will trigger
a custom event, which other APEX dynamic actions can leverage. This is
defined in the Events region in the plug-in.

On line 080, the element is moved into a wrapper. This is to ensure that the
page items remain in the same order that they were loaded on the page. For
more information, see the forum posting at the beginning of the file.

085–103: Set private variables for the widget; note that, though they appear to
be private variables, if end users really wanted to modify them, they could.

105–140: Create function that creates a wrapper for the affected element; the
_initfunctionrequires the wrapper to protect the order of the object in the
DOM.

142–170: This is static code that acts as the middle man between the call from
APEX and the UI Widget. daDialog does not require any parameters since it
obtains all the necessary information from the this object.

The variable daThis refers to the dynamic action this variable, which contains
everything about the dynamic action.

Lines 156–159 reference the dynamic action attributes. Again, these are not the
same as the plug-in’s custom attributes. They are defined in the returned
PL/SQL object.

Since the dynamic actions attributes are passed as strings, they need to be
explicitly converted to JavaScript objects (when applicable). Lines 156–157
convert attributes from strings to JavaScript Booleans.

Line 162 references the affectedElements to apply the JavaScript code to. The
JavaScript code does not necessarily care if the affected element(s) is a region or
a jQuery Selector, etc. APEX gives it an array of objects to work with.

Testing It Out
Since you have completed all the code and configuration, and built a good test page, it’s time to test your
plug-in. To start, refresh Page 20. It should look like Figure 4-33. The most noticeable difference is that
the Employee report is hidden since it was one of the plug-in’s configuration options.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

110

Figure 4-33. Page 20 final

If you click the Dialog My Form button, the My Form region now becomes a dialog window, as
shown in Figure 4-34. Since it is not a modal window, you can click outside of the dialog window. When
you close the dialog window, it will go back to its original position and visibility state.

Figure 4-34. My Form dialog window

If you click the Dialog Emp Report button, the Employee Report region will appear as a modal
window, like Figure 4-35. When you close the modal window, it will disappear.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4 ■ DYNAMIC ACTION PLUG-INS

111

Figure 4-35. Employee Report modal window

You are encouraged to modify each of the dynamic actions plug-in settings to see how they affect
the outcome.

Summary
This chapter covered what dynamic actions are and how they work. Dynamic actions declaratively let
APEX developers define and implement front-end events.

Compared to items, dynamic actions can be a bit more complex, which can make them difficult to
understand. It is important to have a solid understanding of their internal mechanisms before
developing a plug-in.

You may also start to notice some similarities between dynamic action and item plug-ins, such as
the render function, JavaScript code, and custom attributes. Having these similarities helps when you
are learning the APEX plug-in architecture.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 5

■ ■ ■

113

Region Plug-Ins

Region plug-ins, as you may guess, allow you to create your own region types in APEX. Before APEX 4.0,
if you wanted to create a “custom” region you would need to create a PL/SQL type region that would
generate all the content for your custom region. Region plug-ins take a similar approach, and also
provide an excellent declarative and supported framework for managing custom region types.

This chapter explains what region plug-ins do and don’t cover, helps you build a region plug-in, and
introduces AJAX functionalities. The plug-ins covered in previous chapters (item and dynamic action)
also support AJAX functionality, so the AJAX content in this chapter is relevant to the previous two plug-
in types as well.

Background on Regions and AJAX
Before developing a region plug-in with AJAX support, it’s important to cover two things: the
architecture of a region (i.e., the difference between the region itself and a region template) and AJAX in
APEX. It is important to understand these topics before developing the region plug-in and adding in
AJAX functionality.

Regions
The easiest way to explain the architecture of a region is by analyzing one. Figure 5-1 shows the My Form
region that you created in the previous chapter. The content inside the dotted line is part of the region’s
body. The content outside the dotted line is part of the region template. Region plug-ins only generate
content for the region body and they don’t need to be concerned with the region template. The region
template will wrap the region body with the standard display code, which is determined by the APEX
developer.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

114

Figure 5-1. Region body outline

Another way to view the difference between the region content and the template is to examine the
region template. Region templates define the look and feel of the region. To view the region template

1. Go to the application’s Shared Components.

2. Under the User Interface, click on the Templates link as shown in Figure
5-2.

Figure 5-2. Templates link in Shared Components

3. Filter the templates report by setting the Type list to Region.

4. Click on the default region. The default region has a check mark in the
Default column. Figure 5-3 shows the default region template in the
application as Reports Region.

Figure 5-3. Default region template

5. On the Edit Region Template page, scroll down to the Definition region.
Figure 5-4 shows the content of the Template text area.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

115

Figure 5-4. Region template definition

In Figure 5-4, you’ll notice that there are some HTML tags that wrap the content of the region. These
are some special tags that APEX will replace with the appropriate region attributes such as #TITLE# and
the button tags (#CLOSE#, #PREVIOUS#, … ,#HELP#). The #BODY# substitution string is what will be
replaced with the content from the region plug-in.

Because the region plug-in handles only the “meat” of the region, region plug-ins need only to focus
on what is necessary to be displayed as part of the region. You don’t need to be concerned about styling
the region, displaying the region buttons, and so on, since the region template handles all these
elements.

AJAX
At a very high level, AJAX allows the browser to send data to the server and receive a response back from
it without having to submit the page. With respect to APEX, this means that you can send some data to
APEX, run a block of PL/SQL code, and send data back to the browser without having to submit the page.

■ Note Wikipedia has an excellent description of AJAX at the following link:
http://en.wikipedia.org/wiki/Ajax_(programming).

Prior to APEX 4.0, AJAX functions were handled through an On Demand application process.
Though it is not required, building an AJAX function using the old (pre-APEX 4.0) method may help you
understand and appreciate how the new plug-in AJAX function works. The following steps cover how to
build and use a simple AJAX function the “old way.” This function will send the user’s current value to
APEX and return the value multiplied by two.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Ajax_
http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

116

■ Note With APEX 4.0, manually creating AJAX functions is not required because the same functionality can
easily be provided by a dynamic action of type PL/SQL. This example is solely to demonstrate how things work and
is not a recommended practice for making AJAX calls in APEX 4.0 and higher.

1. Create a new blank page with the following attributes:

Page Number: 30
Name: AJAX (Old)
HTML Region 1: My Region
Tab: AJAX (Old)

2. Edit the new page, Page 30, and create a new page item in My Region with
the following attributes:

Item Type: Number Field
Item Name: P30_X

3. Create a region button with the following attributes:

Button Name: Run AJAX
Button Alignment: Left
Action: Defined by Dynamic Action

If you run Page 30, it should now look like Figure 5-5.

Figure 5-5. AJAX demo page

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

117

4. Go to Shared Components and click on the Application Processes link as
shown in Figure 5-6.

Figure 5-6. Application Processes link in Shared Components

5. In the Application Processes window, click the Create button.

6. On the Identification wizard page, enter the values as shown in Figure 5-
7. Setting the Point to On Demand… allows this process to be accessible
via an AJAX call. Click the Next button to go to the next step.

Figure 5-7. Create Application Process > Identification

7. On the Source page, enter the following PL/SQL code in the Process Text
text area. This is the code that will be run when the AJAX function is
triggered by the browser. Click the Next button to continue.

In the code, apex_application.g_x01 is a value that will be passed from the
AJAX JavaScript call to APEX. APEX supports up to ten values
(apex_application.g_x01 .. apex_application.g_x10) along with one
clob value (apex_application.g_clob_01).

The PL/SQL code “sends” a value back to the client’s browser by printing
the value with the htp.p call. JavaScript will interpret this value as a string
that will need to be converted accordingly.

-- Takes value and multiplies it by 2
-- No error handling etc, as this is a demo
DECLARE

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

118

 v_num pls_integer;
BEGIN
 v_num := to_number(apex_application.g_x01);

 v_num := v_num * 2;

 htp.p (v_num);
END;

8. On the Conditionality page, leave the default options (i.e., no condition)
and click the Create Process to complete the wizard.

9. The final thing to do is to write the JavaScript code that will trigger the
AJAX call. Edit Page 30 and right click on the RUN_AJAX button. Select the
Create Dynamic Action option from the context menu.

10. In the Identification section, set the Name to Run AJAX Function. Click
the Next button to continue.

11. Figure 5-8 shows the default options on the When page. Leave these
settings and click the Next button.

Figure 5-8. Create Dynamic Action > When

12. On the True Action page, set the Action to Execute JavaScript Code.
Uncheck the Fire On Page Load check box. Enter the following JavaScript
code in the Code text area. Click the Next button to continue.

In the JavaScript code below, you’ll notice that the first line of code
references the AJAX_DEMO application process.

The function addParam defines the x01..x10 values that will set the
PL/SQL apex_application.g_x01 .. apex_application.g_x10 variables
as part of the AJAX request.

// Demo code for AJAX calls
var ajax = new htmldb_Get(null,$v('pFlowId'), 'APPLICATION_PROCESS=AJAX_DEMO',0);

// Value to send to PL/SQL code
// Note: this does not "submit" P30_X (that can be done but in another way)
ajax.addParam('x01', $v('P30_X'));

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

119

// Trigger AJAX call (will send POST to APEX)
var ajaxResult = ajax.get();

// Display the result in an alert window
window.alert(ajaxResult);

a.

b.

13. On the Affected Elements page, click the Create button to finish the
wizard.

14. Run Page 30. Enter 2 in the text box and click the Run Ajax button. An
alert window should pop up with the value 4, as shown in Figure 5-9.

Figure 5-9. Run AJAX result

■ Note apex_application.g_x01..x10 variables are not associated with plugin.attribute_01..15
variables. They are submitted as part of every APEX request and a globally accessible (i.e., they’re not specific to
any particular object).

If you open the Console window, you’ll see the POST request that the browser made to the server.
Figure 5-10 shows the result from the POST request. From the console result, you can clearly see how the
values are sent to the server. Figure 5-11 shows the response back from the server. As previously
mentioned, this result is a simple string in JavaScript. If you need to do anything with it, you’ll need to
explicitly convert it to the correct data type. In this example, you’d need to convert it to a number.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

120

Implementing AJAX functionality via a plug-in is much easier to do than the process just described.
In the region plug-in example to follow, you will create an AJAX function and you should be able to see
the common features with this example.

Figure 5-10. AJAX POST request

Figure 5-11. AJAX POST response

Example Business Problem
As with the other plug-ins, the first thing you should do is state your business requirements. This region
plug-in should display the titles from an RSS feed. The plug-in should also implement some additional
related functionality. The following is the complete list of requirements:

• Display a list of RSS feed titles.

• Configure the maximum number of RSS feeds in the region, ranging from 5, 10,
and 15 items.

• Needs to currently support RSS feeds from Blogger (www.blogger.com).

• When a user clicks on an RSS title, a modal window appears and displays the
content of the RSS feed. The default modal window size will be configurable.

The plug-in you are going to build will use some of the UTL_HTTP features in Oracle to obtain RSS feeds.
HTTP access and other network services are potential security vulnerabilities, so their access is restricted

www.it-ebooks.info

http://www.blogger.com
http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

121

in Oracle Database 11g and higher. You will need to enable network services and grant access to them in
order to create the plug-in described next.

■ Note If running Oracle Database 10g or lower, you can skip this section. HTTP access is not restricted in those
lower releases. If you are using apex.oracle.com as your server, then you won’t be able to create this chapter’s
plug-in at all. That’s because apex.oracle.com restricts UTL_HTTP access.

Think twice about enabling UTL_HTTP access in a production environment. Discuss such changes
with your database administrator. Be sure that you do not violate any security policies. The example to
follow is meant for demonstration purposes and should be thoroughly reviewed before implementation
in a production environment.

The following are the assumptions made in describing the process of enabling the UTL_HTTP
access needed by this chapter’s example plug-in:

• The current user that the APEX application is being run as (i.e., parsing schema) is
the APRESS user. In the scripts and queries below, substitute APRESS for your
user.

• Unless explicitly specified, scripts and queries will be run as the SYSTEM or SYS
user. You may need to ask your DBA to run these scripts for you.

All the scripts are in the files included with this book. If your environment is not as described in the
preceding list, you will need to modify the scripts before executing them. For example, you may need to
substitute in the user name that you are using.

When you have the scripts ready for your environment, follow these steps to enable UTL_HTTP
access:

1. Run the following, which will grant access to external networks for your
current user. Don’t forget to change the value of v_user to your
username.

-- Run as SYSTEM or SYS
-- Creates a ACL with access to all domains and ports
-- Or leverages one that already exists
DECLARE
 v_acl dba_network_acls.acl%TYPE;
 v_user VARCHAR2(30) := 'APRESS'; -- *** CHANGE TO YOUR USER
 v_cnt pls_integer;
BEGIN
 v_user := upper(v_user);

 -- Get current ACL (if it exists)
 SELECT max(acl)
 INTO v_acl
 FROM dba_network_acls
 WHERE host = '*'
 AND lower_port IS NULL
 AND upper_port IS NULL;

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

122

 IF v_acl IS NULL THEN
 -- No ACL exists. Create one
 v_acl := 'apress_full_access.xml';

 -- Create ACL with access to your user
 dbms_network_acl_admin.create_acl (
 acl => v_acl,
 description => 'ACL Access for Apress demo',
 principal => v_user,
 is_grant => TRUE,
 privilege => 'connect',
 start_date => NULL,
 end_date => NULL);

 -- Grant access to ACL to all ports and ports
 dbms_network_acl_admin.assign_acl (
 acl => v_acl,
 host => '*', -- This is the network that you have access to.
 lower_port => NULL,
 upper_port => NULL);
 ELSE
 -- ACL Exists, just need to give access to user (if applicable)
 SELECT count(acl)
 INTO v_cnt
 FROM dba_network_acl_privileges
 WHERE acl = v_acl
 and principal = v_user;

 IF v_cnt = 0 THEN
 -- User needs to be granted
 dbms_network_acl_admin.add_privilege(
 acl => v_acl,
 principal => v_user,
 is_grant => true,
 PRIVILEGE => 'connect');
 ELSE
 -- User has access to network
 -- Nothing to be done
 NULL;
 END IF;

 END IF;

 COMMIT;

END;
/

2. Execute the following queries to confirm that the ACL setup worked. You
should see your user associated to the network ACL with full access.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

123

-- All ACLs
SELECT host, lower_port, upper_port, acl
FROM dba_network_acls;

-- Privileges for ACLs
-- Lists which users have access to which ACL
SELECT acl, principal, privilege, is_grant, invert, start_date, end_date
FROM dba_network_acl_privileges;

3. Confirm that your user now has network access by running the following
script, with DBMS_OUTPUT enabled as your current user. You should see
“Ok. Have access” as part of the output.

-- Test that user has network access now
-- Run as APRESS user
-- Determines if current user has access to external connections
-- Makes a simple connection to www.google.com on port 80
-- Result will be in DBMS_OUTPUT
DECLARE
 v_connection utl_tcp.connection;
BEGIN
 v_connection := utl_tcp.open_connection(remote_host => 'www.google.com', remote_port => 80);
 utl_tcp.close_connection(v_connection);

 dbms_output.put_line('Ok: Have Access');

 EXCEPTION
 WHEN others THEN
 IF sqlcode = -24247 THEN
 -- ORA-24247: network access denied by access control list (ACL)
 dbms_output.put_line('No ACL network access.');
 ELSE
 dbms_output.put_line('Unknown Error: ' || sqlerrm);
 END IF;
END;
/

If you see the message “Ok. Have access,” then all is well. Proceed with creating the example plug-
in.

Building the Region Plug-in
Now that the business requirements have been defined, you can start creating the region plug-in.
Similar to the dynamic action plug-in example in the preceding chapter, some steps will not be covered
on a step-by-step basis as they have already been covered previously.

Initial Configuration and Setup
To start building a region plug-in, create a new plug-in with the attributes listed below. Once you are
finished, click the Create button to save the plug-in.

www.it-ebooks.info

http://www.google.com
http://www.google.com
http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

124

Name: ClariFit RSS Reader

Internal Name: COM.CLARIFIT.APEXPLUGIN.RSS_READER

Type: Region

Next, create a directory to store and reference external web files. This will allow you to easily make
modifications as you build your plug-in. Here are the steps:

1. Create a directory called c:\www\RSSReader

2. Modify the plug-in. In the Settings region set the File Prefix to
http://localhost/RSSReader/

3. Click the Apply Changes button to save your changes.

Scroll down to the Standard Attributes section and check off the has "Escape Special Characters"
Attribute option as shown in Figure 5-12. Click the Apply Changes button to save your change. In this
plug-in, the Escape Special Characters attribute will be used to escape the RSS feed content (if enabled in
region). The RSS feed URL will be defined by a custom attribute rather than the region source.

Figure 5-12. Region plug-in standard attributes

Since this plug-in does not require a traditional “Region Source,” such as an SQL query or some
plain text, you do not need to check those boxes off. If you create a plug-in that requires the user to enter
a SQL query as the region source, you can parse the query using the APEX_PLUGIN_UTIL.GET_DATA
and APEX_PLUGIN_UTIL.GET_DATA2 function. For more information, please refer to the APEX API
documentation.

Custom Attributes
The following are the custom attributes that the plug-in will use. These attributes are based on the
requirements. Specify the attributes for the region using the dialog shown in Figure 5-14, following the
list.

• Scope: Component
Attribute:1
Label: RSS Type
Type: Select List
Required: Yes
Default Value: Blogger

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

125

• LOVs:
Display Value: Blogger
Return Value: Blogger

For now, Blogger will be the only support RSS feed. If you want to support
additional RSS feeds, you can modify this list and the code accordingly.

• Scope: Component
Attribute: 2
Label: RSS URL
Type: Text
Required: Yes
Display Width: 50

• Scope: Component
Attribute: 3
Label: Max Rows
Type: Select List
Required: Yes
Default: 5

• LOVs:
Display Value: 5
Return Value: 5

Display Value: 10
Return Value: 10

Display Value: 15
Return Value: 15

• Scope: Component
Attribute: 4
Label: Modal Width (controls width of the modal window)
Type: Integer
Required: Yes
Display Width: 3
Maximum Width: 4
Default Value: 700

• Scope: Component
Attribute: 5
Label: Modal Height (controls height of the modal window)
Type: Integer
Required: Yes
Display Width: 3
Maximum Width: 4
Default Value: 400

You should feel comfortable with and understand the impacts of adding and modifying custom
attributes by now. The only difference that you’ll experience with region plug-in custom attributes is
how they are displayed on the region’s edit page.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

126

Instead of being displayed in the usual Settings section, as shown in Figure 5-13, a new tab called
Region Attributes contains the custom attributes. Figure 5-14 shows this new tab when modifying a
region that is a plug-in region with custom attributes.

Figure 5-13. Dynamic action plug-in custom attribute settings

Figure 5-14. Region plug-in custom attribute settings

Creating a Test Page
Before creating the render and AJAX functions, you should set up a test page to help view your changes.
The following steps create a test page and a region that uses the new region plug-in:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

127

1. Create a new page with Page Type of Plug-ins. Click the Next button.

Just to clarify, there’s no such thing as a Page plug-in. In this case, plug-in
refers to a region plug-in.

2. In the Type page, select ClariFit RSS Reader as the Plug-in. Click the
Next button.

3. On the Page and Region Attributes page, set the following values, then
click the Next button to continue.

Page Number: 40
Page Name: RSS Reader
Region Name: RSS Reader

4. On the Tab Options page, click the Use an existing tab set and create a
new tab within the existing tab set radio button. In the New Tab Label
field, enter RSS Reader. Click the Next button to continue.

5. On the Settings page, leave the default options but set the RSS URL to
http://www.talkapex.com/feeds/posts/default, as shown in
 Figure 5-15. Click the Next button to continue.

(Note: You can use any Blogger URL by replacing www.talkapex.com with
your URL.)

 Figure 5-15. RSS Reader settings

6. On the confirmation page, click the Finish button to create the page.

At this point, if you run Page 40, it will display an error message since you have not defined or
created a render function, as shown in Figure 5-16. The next section will define and create the region
render PL/SQL function.

Figure 5-16. No render function error message

www.it-ebooks.info

http://www.talkapex.com/feeds/posts/default
http://www.talkapex.com
http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

128

Creating the Render Function
Just like the other plug-ins, this plug-in will store its PL/SQL code in the pkg_apress_plugins package. To
start, get the region plug-in render function template and paste it into pkg_apress_plugins spec. Name
the render function as f_render_rss_reader. Your pkg_apress_plugins package specification should now
look like Figure 5-17.

■ Hint To get the render function spec template, click render function label and view the help file.

Figure 5-17. pkg_apress_plugins.f_render_rss_reader Package Spec

The next thing you’ll need to do is register the render function with the plug-in. Edit the plug-in and
scroll down to the Callbacks region. Set the Render Function Name to
pkg_apress_plugins.f_render_rss_reader, as shown in Figure 5-18.

Figure 5-18. Region plug-in callbacks

Modify the package body for pkg_apress_plugins and add the following code at the bottom of code.

341 …
342
343 FUNCTION f_render_rss_reader(
344 p_region IN apex_plugin.t_region,

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

129

345 p_plugin IN apex_plugin.t_plugin,
346 p_is_printer_friendly IN boolean)
347 RETURN apex_plugin.t_region_render_result
348 AS
349 -- Region Plugin Attributes
350 v_rss_type apex_application_page_regions.attribute_01%type := p_region.attribute_01; --
blogger (can add more types)
351 v_rss_url apex_application_page_regions.attribute_01%type := p_region.attribute_02;
352 v_max_row_nums pls_integer := to_number(p_region.attribute_03);
353 v_dialog_width apex_application_page_regions.attribute_01%type := p_region.attribute_04;
354 v_dialog_height apex_application_page_regions.attribute_01%type :=
p_region.attribute_05;
355
356 -- Other
357 v_html VARCHAR2(4000); -- Used for temp HTML
358 v_div_id VARCHAR2(255) := 'clarifitRSSReader_' || p_region.id; -- Used for dialog window
placeholder
359 v_rss_xml_namespace VARCHAR2(255);
360
361 -- Return
362 v_return apex_plugin.t_region_render_result;
363
364 -- Procedures
365 PROCEDURE sp_display_rss_title(
366 p_rss_id IN VARCHAR2,
367 p_rss_title IN VARCHAR2,
368 p_rn IN pls_integer, -- Current row number
369 p_row_cnt IN pls_integer -- Total number of rows in the query
370)
371 AS
372 BEGIN
373 -- Handle first row items
374 IF p_rn = 1 THEN
375 sys.htp.p('<table>');
376 END IF; -- First row
377
378 v_html := ('<tr><td><a
href="javascript:$.clarifitRssReader.showContentModal(''%RSS_ID%'',
clarifitRssReaderVals.R%REGION_ID%);">%TITLE%</td></tr>');
379 v_html := REPLACE(v_html, '%TITLE%', p_rss_title);
380 v_html := replace(v_html, '%RSS_ID%', p_rss_id);
381 v_html := REPLACE(v_html, '%REGION_ID%', p_region.id);
382
383 sys.htp.p(v_html);
384
385 -- If Last row close table
386 IF p_rn = p_row_cnt THEN
387 sys.htp.p('</table>');
388 END IF;
389
390 END sp_display_rss_title;
391

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

130

392 BEGIN
393
394 -- Debug information (if app is being run in debug mode)
395 IF apex_application.g_debug THEN
396 apex_plugin_util.debug_region (
397 p_plugin => p_plugin,
398 p_region => p_region,
399 p_is_printer_friendly => p_is_printer_friendly);
400 END IF;
401
402 IF NOT p_is_printer_friendly THEN
403 -- Load JavaSript Files
404 apex_javascript.add_library (p_name => '$console_wrapper', p_directory =>
p_plugin.file_prefix, p_version=> '_1.0.3'); -- Load Console Wrapper for debugging
405 apex_javascript.add_library (p_name => 'clarifitRSSReader', p_directory =>
p_plugin.file_prefix, p_version=> '_1.0.0'); -- Load Console Wrapper for debugging
406
407 -- CSS Properties
408 apex_css.add (
409 p_css => '
410 .clarifitRssReader-label {font-weight: bold}
411 .clarifitRssReader-author {font-style: italic}
412 .clarifitRssReader-link {font-style: italic}
413 ',
414 p_key => 'clarifitRssReader');
415
416 -- Initial JS. Only run if not in printer friendly mode
417 sys.htp.p('<div id="' || v_div_id || '"></div>'); -- Used for dialog placeholder
418
419 -- Set JavaScript global variables that will be used to handle display options
420 sys.htp.p('<script type="text/javascript">(function($){');
421 -- Only run this code once so as not to overwrite the global variable
422 apex_javascript.add_inline_code (
423 p_code => 'var clarifitRssReaderVals = {}',
424 p_key => 'clarifitRssReaderVals');
425
426 -- Extend feature allows you to append variables to JSON object
427 v_html := '
428 $.extend(clarifitRssReaderVals,
429 {"R%REGION_ID%" : {
430 %AJAX_IDENTIFIER%
431 %RSS_TYPE%
432 %IMAGE_PREFIX%
433 %DIALOG_WIDTH%
434 %DIALOG_HEIGHT%
435 %DIV_ID_END_ELEMENT%
436 }});';
437
438 v_html := REPLACE(v_html, '%REGION_ID%', p_region.id);
439 v_html := REPLACE (v_html, '%AJAX_IDENTIFIER%',
apex_javascript.add_attribute('ajaxIdentifier', apex_plugin.get_ajax_identifier));

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

131

440 v_html := REPLACE (v_html, '%RSS_TYPE%', apex_javascript.add_attribute('rssType',
v_rss_type));
441 v_html := REPLACE (v_html, '%IMAGE_PREFIX%',
apex_javascript.add_attribute('imagePrefix', apex_application.g_image_prefix));
442 v_html := REPLACE (v_html, '%DIALOG_WIDTH%',
apex_javascript.add_attribute('dialogWidth', sys.htf.escape_sc(v_dialog_width)));
443 v_html := REPLACE (v_html, '%DIALOG_HEIGHT%',
apex_javascript.add_attribute('dialogHeight', sys.htf.escape_sc(v_dialog_height)));
444 v_html := REPLACE (v_html, '%DIV_ID_END_ELEMENT%',
apex_javascript.add_attribute('divId', v_div_id, FALSE, FALSE));
445
446 apex_javascript.add_inline_code (p_code => v_html);
447
448 sys.htp.p('})(apex.jQuery);</script>');
449 END IF; -- printer friendly
450
451 -- For each type
452 IF v_rss_type = 'blogger' THEN
453 v_rss_xml_namespace := 'http://www.w3.org/2005/Atom';
454
455 FOR x IN (
456 SELECT id, title, rownum rn, count(1) over() row_cnt
457 FROM xmltable(
458 XMLNAMESPACES(DEFAULT 'http://www.w3.org/2005/Atom'),
459 '*' passing httpuritype
(v_rss_url).getxml().EXTRACT('//feed/entry','xmlns="http://www.w3.org/2005/Atom"')
460 COLUMNS id VARCHAR2(4000) PATH 'id',
461 title VARCHAR2(48) PATH 'title',
462 author VARCHAR2(1000) path 'author/name'
463)
464 WHERE ROWNUM <= v_max_row_nums
465) loop
466
467 sp_display_rss_title(
468 p_rss_id => x.ID,
469 p_rss_title => x.title,
470 p_rn => x.rn,
471 p_row_cnt => x.row_cnt);
472 END loop;
473
474 -- Add additional support for RSS feeds here.
475 ELSE
476 -- Unknown RSS type
477 sys.htp.p('Error: unknown RSS type');
478 END IF;
479
480 -- Return
481 RETURN v_return;
482
483 END f_render_rss_reader;
484
485 …

www.it-ebooks.info

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom
http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

132

The following is a description of the preceding code that is keyed to the line numbers:

349-354: Define the plug-in’s attributes and use meaningful variables. All the
attributes are strings that need to be explicitly converted to appropriate PL/SQL
data types when applicable.

365-390: Reusable internal procedure to display each of the RSS titles in a table
format. The titles include links that will trigger some JavaScript code to display
the RSS content in a modal window. This will be used to make an AJAX call

395-400: Minimal debug information. Always include some debug information
in your plug-in.

402-449: Contains code that is only applicable in normal display mode. The
code is there to support the display of the RSS content in a modal window. If
the page is run in print mode, then this code is not required.

Line 404 references a JavaScript file that has yet to be created. You will create
this file when implementing the AJAX support.

When developing plug-ins with AJAX support, you may tend to initially focus on
getting the region to display what you want to display and then add the
additional code.

439: This line is very important for AJAX calls. The key component is the
reference to the apex_plugin.get_ajax_identifier function.

In the AJAX example at the beginning of the chapter, the JavaScript code
referenced the PL/SQL code to run by identifying the application process
AJAX_DEMO. Plug-ins need a similar identifier/reference. The APEX plug-in
APIs make things simple so that you don’t need to worry about naming this
identifier. The apex_plugin.get_ajax_identifier function provides a unique
name.

451-472: Handle RSS type-specific code to obtain the RSS title and some meta
data. Lines 475-476 handle what happens if an unknown RSS type is defined. In
this case, it displays a simple error message. How you handle errors is entirely
up to you, depending on your business needs. You can use a “soft” error
message (as in this case) or a more “harsh” error messages (i.e., raise an
application error).

If you run Page 40, it should look like Figure 5-19. Note the values for the RSS feed may vary
depending on the URL. If you click on any of the titles, nothing happens as the JavaScript still hasn’t
been added and the AJAX function has not been defined. This will be covered in the next section.

If you discard the JavaScript specific code, the code for this plug-in is pretty simple and straight
forward. The primary responsibility for a region plug-in is to display some content. You don’t need to be
concerned about items and buttons attached to the region as they are handled as part of the standard
APEX region process.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

133

Figure 5-19. RSS Reader rendered

Creating the AJAX Function
This section will add AJAX support to the plug-in. Though this example is for a region plug-in, the
concept is the same for other plug-ins that support AJAX calls. Because AJAX involves both server side
code (handled by PL/SQL for APEX) and JavaScript code, this section will cover both sets of code.

JavaScript
When working with code that links PL/SQL with JavaScript (and vice versa), it can be difficult to
determine whether to start with the client side code (JavaScript) or the server side code (PL/SQL). When
dealing with AJAX functions, it is sometimes easier to start with the JavaScript portion. Once the base
JavaScript code is working, you start working on the server code. This is usually an iterative process,
modifying both JavaScript and the PL/SQL code.

The JavaScript code will use the Console Wrapper JavaScript instrumentation package. To that end,
copy $console_wrapper_1.0.3.js into in c:\www\RSSReader. Then create an empty file named
clarifitRSSReader_1.0.0.js in c:\www\RSSReader. This is the same name that was used in the render
function. Open the file and paste in the following code:

■ Note This JavaScript code is slightly different from the code used for the previous plug-ins. It does not use the
jQuery UI Widget Factory framework.

01 (function($){
02
03 $.clarifitRssReader = (function(){
04 var that = {};
05
06 /**
07 * Display the RSS feed's content in a Dialog window
08 */
09 that.showContentModal = function(pRssId, pObj){
10 var scope = '$.clarifitRssReader.showContentModal';
11 $.console.groupCollapsed(scope);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

134

12 $.console.logParams();
13
14 var $elem = $('#' + pObj.divId);
15
16 //Ensure default options
17 var defaultOptions = {
18 dialogWidth: 700,
19 dialogHeight: 400,
20 modal: true
21 };
22
23 pObj = $.extend(defaultOptions, pObj);
24
25 //Display Loading Message
26 $elem.html('<div style="text-align:center;"><img src="' + pObj.imagePrefix + 'ws/ajax-
loader.gif" style="display: block;margin-left: auto;margin-right: auto"></div>');
27 $elem.dialog({
28 title: 'Loading...',
29 modal: pObj.modal
30 });
31
32 //Prep AJAX call to get HTML content
33 var ajax = new htmldb_Get(null,$v('pFlowId'), 'PLUGIN=' + pObj.ajaxIdentifier,0);
34 ajax.addParam('x01', pObj.rssType);
35 ajax.addParam('x02', pRssId);
36 var ajaxResult = ajax.get();
37
38 var json = $.parseJSON(ajaxResult);
39 $.console.log('json: ', json);
40
41 if (json.errorMsg == ''){
42 //No Error message, display content
43 //Modify content to include some additional information about the rss post
44 json.content = 'By:<span
class="clarifitRssReader-author">' + json.author + '
' + '<span
class="clarifitRssReader-label">Link: ' + '<a href="' + json.link + '" target="blank"
class="clarifitRssReader-link">' + json.link + '

' + json.content;
45
46 //Display in Modal window
47 $elem.dialog('close'); //close Loading messsage
48 $elem.html(json.content);
49 $elem.dialog({
50 title: json.title,
51 width: pObj.dialogWidth,
52 height: pObj.dialogHeight,
53 modal: pObj.modal
54 });
55 $.console.groupEnd(scope);
56 }
57 else {
58 //Error occurred
59 $elem.dialog('close'); //close Loading messsage

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

135

60 $elem.html('An error occurred loading RSS feed');
61 $elem.dialog({
62 title: 'Error',
63 width: pObj.dialogWidth,
64 height: pObj.dialogHeight,
65 modal: pObj.modal
66 });
67 }//error message
68
69 };//showContentModal
70
71 return that;
72 })();//$clarifitRssReader
73
74 })(apex.jQuery);

The following is a description of the preceding code that is keyed to the line numbers:

1 & 74: Like other JavaScript code, this block of JavaScript explicitly defines the
jQuery namespace but leverages the version of jQuery that is part of APEX.

26-30: Displays a “Loading...” message when the user clicks on a RSS title and is
waiting for the server to respond.

32-36: This is what actually makes the AJAX call. This code is very similar to the
example code covered in the Background > AJAX section at the beginning of
this chapter. The major difference is that on line 33, instead of referencing an
application process by APPLICATION_PROCESS, it references the plug-in
process by PLUGIN. The name of the plug-in AJAX identifier is defined in the
region’s render function with a call to apex_plugin.get_ajax_identifier (refer
back to the render function).

38: The response from the server comes back as a string. Since it is really a JSON
object, you need to explicitly convert it to a JavaScript JSON object. If you are
expecting a non-string value, you will always need to explicitly convert it.

41-67: Displays the RSS content (received from the AJAX call) in a modal
window or the error message accordingly.

Refresh Page 40 and click on one of the RSS links. Look in the console window and you should see
the POST request, as shown in Figure 5-20. You can see the values that are passed to APEX (x01 and x02)
that will be used in your PL/SQL AJAX render function.

If you click on the Response tab, you’ll see that a bunch of HTML was returned. Scanning through
the HTML, you’ll notice that the content is essentially a standard error page in APEX. The error message
is “No AJAX function has been defined for plug-in PLUGIN_COM.CLARIFIT.APEXPLUGIN.RSS_READER,”
as shown in Figure 5-21. This makes sense as you still have not defined an AJAX function for the plug-in.
If you ever get a similar response while developing AJAX support for a plug-in, it helps to scan through
the returned HTML to see what is going wrong.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

136

Figure 5-20. AJAX POST request

Figure 5-21. AJAX error message

Writing the AJAX Callback Function
Now that the JavaScript code is complete and “talking” to APEX, it’s time to define the server side code.
The first thing is to do is create the function specification and register it with the plug-in:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

137

1. Edit the plug-in and scroll down to the Callbacks region. Click on the
AJAX Function Name label to view the help text. Similar to render
functions, AJAX function header templates are provided in the help text.
Copy the function header for region type plug-ins as shown in
 Figure 5-22.

 Figure 5-22. AJAX function help

2. Paste the function template into the package spec for
pkg_apress_plugins. Name the function f_ajax_rss_reader and compile
the package spec.

3. To register the function with the plug-in, edit the plug-in and scroll down
to the Callbacks section. Enter pkg_apress_plugins.f_ajax_rss_reader in
the AJAX Function Name field. Click the Apply Changes button to save
your change.

The final step is to enter the code for the package body. Edit the package body for
pkg_apress_plugins and copy the following code at the bottom of the package:

484 …
485
486 FUNCTION f_ajax_rss_reader (
487 p_region IN apex_plugin.t_region,
488 p_plugin IN apex_plugin.t_plugin)
489 RETURN apex_plugin.t_region_ajax_result
490 AS
491 -- APEX Application Variables (x01..x10)
492 v_rss_type VARCHAR2(255) := LOWER(apex_application.g_x01);
493 v_rss_id VARCHAR2(255) := apex_application.g_x02;
494
495 -- Region Plugin Attributes
496 v_rss_url apex_application_page_regions.attribute_01%TYPE := p_region.attribute_02;
497
498 -- Other Variables
499 v_author VARCHAR2(255);
500 v_title VARCHAR2(255);
501 v_link VARCHAR2(1000);

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

138

502 v_content CLOB;
503 v_cnt pls_integer;
504
505 -- Return
506 v_return apex_plugin.t_region_ajax_result;
507
508 -- Functions
509
510 -- Prints HTML JSON object for page to process
511 PROCEDURE sp_print_json(
512 p_author IN VARCHAR2,
513 p_title IN VARCHAR,
514 p_content IN CLOB,
515 p_link IN VARCHAR2,
516 p_error_msg IN VARCHAR2 DEFAULT NULL)
517
518 AS
519 v_html CLOB;
520 v_content clob;
521 BEGIN
522 v_content := p_content;
523
524 -- Escape HTML if required
525 IF p_region.escape_output THEN
526 v_content := sys.htf.escape_sc(v_content);
527 END IF;
528
529 v_html := '{
530 %AUTHOR%
531 %TITLE%
532 %CONTENT%
533 %LINK%
534 %ERROR_MSG_END_ELEMENT%
535 }';
536
537 v_html := REPLACE(v_html, '%AUTHOR%', apex_javascript.add_attribute('author',
sys.htf.escape_sc(p_author), FALSE));
538 v_html := REPLACE(v_html, '%TITLE%', apex_javascript.add_attribute('title',
sys.htf.escape_sc(p_title), FALSE));
539 v_html := REPLACE(v_html, '%CONTENT%', apex_javascript.add_attribute('content',
v_content, FALSE));
540 v_html := REPLACE(v_html, '%LINK%', apex_javascript.add_attribute('link',
sys.htf.escape_sc(p_link), FALSE));
541 v_html := REPLACE(v_html, '%ERROR_MSG_END_ELEMENT%',
apex_javascript.add_attribute('errorMsg', sys.htf.escape_sc(p_error_msg), FALSE, FALSE));
542
543 sys.htp.p(v_html);
544 END sp_print_json;
545
546 -- Wrapper for error message
547 PROCEDURE sp_print_error_msg(
548 p_error_msg IN VARCHAR2)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

139

549 AS
550 BEGIN
551 sp_print_json(
552 p_author => NULL,
553 p_title => NULL,
554 p_content => NULL,
555 p_link => null,
556 p_error_msg => p_error_msg);
557 END sp_print_error_msg;
558
559 BEGIN
560
561 IF v_rss_type = 'blogger' THEN
562 -- Get blog details
563 DECLARE
564 http_request_failed EXCEPTION;
565 PRAGMA EXCEPTION_INIT(http_request_failed, -29273);
566 BEGIN
567 SELECT author, title, CONTENT, LINK
568 INTO v_author, v_title, v_content, v_link
569 FROM xmltable(
570 XMLNAMESPACES(DEFAULT 'http://www.w3.org/2005/Atom'),
571 '*' passing httpuritype
(v_rss_url).getxml().EXTRACT('//feed/entry','xmlns="http://www.w3.org/2005/Atom"')
572 COLUMNS ID VARCHAR2(4000) path 'id',
573 title VARCHAR2(48) path 'title',
574 link VARCHAR2(1000) path 'link[@rel="alternate"]/@href',
575 author VARCHAR2(1000) path 'author/name',
576 content CLOB PATH 'content')
577 WHERE ID = v_rss_id;
578
579 sp_print_json(
580 p_author => v_author,
581 p_title => v_title,
582 p_content => v_content,
583 p_link => v_link);
584
585 EXCEPTION
586 WHEN NO_DATA_FOUND THEN
587 sp_print_error_msg(p_error_msg => 'Invalid RSS ID');
588 WHEN TOO_MANY_ROWS THEN
589 sp_print_error_msg(p_error_msg => 'RSS ID returned multiple matches');
590 WHEN http_request_failed THEN
591 sp_print_error_msg(p_error_msg => 'HTTP Connection Error');
592 WHEN OTHERS THEN
593 sp_print_error_msg(p_error_msg => 'Unknown Error');
594 END; -- Select
595
596 -- Add more RSS type support here
597 ELSE
598 -- Return error message
599 sp_print_error_msg(p_error_msg => 'Unknown RSS Type');

www.it-ebooks.info

http://www.w3.org/2005/Atom
http://www.w3.org/2005/Atom
http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

140

600 END IF; -- v_rss_type
601
602 RETURN v_return;
603
604 EXCEPTION
605 WHEN OTHERS THEN
606 sp_print_error_msg(p_error_msg => 'Unknown Error');
607 END f_ajax_rss_reader;
608 …

The following is a description of the preceding code that is keyed to the line numbers:

491-493: Meaningful variable names for values passed in as part of POST
request. Remember these variables have nothing to do with plug-in specific
attributes.

495-496: Plug-in specific variables.

505: The return object contains a dummy attribute. The only thing to really
“return” is what is printed back using htp.p calls.

510-544: Reusable function to print out a JSON object with all the applicable
data that the JavaScript function will use to display the RSS content in a modal
window. This function is essentially what sends data back to the client’s
browser.

524-527: Escapes special characters from the RSS content based on the region’s
escape option. This will play a factor in how the content is displayed to the user.
You will see exactly how this impacts the application when testing the plug-in.

546-557: Wrapper function to handle errors. In this example, errors will be
handled by the JavaScript function. How you handle AJAX errors is your
decision; however, you should make sure that that the application is still
useable.

559-607: Code to obtain the contents of an RSS feed.

Testing the Plug-in
The final thing to do is test the final product. Refresh Page 40. It should look like it did in Figure 5-19. If
you click on one of the RSS titles, a modal window will appear and display the content from the RSS feed,
as shown in Figure 5-23.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

141

Figure 5-23. RSS feed content

The first thing that stands out in Figure 5-23 is that the content shows all the HTML tags rather than
being in a human readable format. This is because of the region’s Escape Special Characters option,
which is currently set to its default value: Yes.

To change this option (and you should only do so if the RSS feed is from a trusted source), edit the
region and scroll down to the Security section. Set the Escape Special Characters to No, as shown in
Figure 5-24. Run Page 40 and click on the same link as before. The content is a lot more human readable
now, as shown in Figure 5-25.

Figure 5-24. Region security settings

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5 ■ REGION PLUG-INS

142

Figure 5-25. RSS feed content (unescaped)

Summary
This chapter provided some background information to help you understand what is required for a
region plug-in and how AJAX works in APEX. You also built a region plug-in that contained an AJAX
function.

■ Note This plug-in did not embed the code or the external files into the plug-in. If you want to do so, please
refer to the Item plug-in chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 6

■ ■ ■

143

Process Plug-ins

The last type of plug-in that will be covered in this book is the Process type plug-in. This chapter will also
cover process plug-ins, when to use/develop them, and provide an example of them.

A process plug-in is a plug-in that executes a block of PL/SQL using the APEX plug-in architecture.
Like all APEX processes, they can be run anywhere on a page where a page process can run. This
includes both during page load and during page processing (when the page is submitted). Because of
this, process plug-ins may be used for both display purposes and processing data (though it is not
common to use it for display content).

PL/SQL Region vs. Process Plug-in
One of the most common questions people tend to have when first looking at process plug-ins is Why?
For example, why would you need a process plug-in when you can just write a stored procedure and
reference it in a page process? This is an excellent and justified question.

They’re a few reasons why you’d need to create a process plug-in over using a PL/SQL procedure:

Reusability: If you plan to make your plug-in public or share across domains
within an organization that do not have access to your current code base (i.e.
schema), you’ll need a simple and easy way to store the code. By using a plug-
in, you can bundle all the code together.

Hide Complexity: Similar to the previous reason, some process plug-ins can
get complex. For example, if dealing with some web services, it may easier to
store it all in a plug-in so that other developers don’t need to worry about any
complex code that may be required.

In the example that follows, we’ll create a plug-in that masks some complexity/business logic and
can be reused.

Business Problem
Always take time to review the business problem that a plugin is trying to resolve. Make that your
common practice.

In this case, developers would like a process to quickly send text messages to a specific cellphone.
Here is the list of requirements:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PROCESS PLUG-INS

144

• Send a text message to specified cell phone.

• Specify parameters that include carrier info, phone number, and message.

• Support cell phones using Telus, Rogers, and AT&T providers.

■ Note Normally you would use a web service that would handle which carrier a number belongs to and send the
text message directly to that carrier’s messaging service. To simplify things, the example plug-in requires that the
APEX developer pass the name of the cell phone carrier/provider for the cell phone number.

Building the Process Plug-in
This section will leverage the requirements listed in the previous section to build a process type plug-in.
This plug-in will send text messages to cell phones by emailing specific email addresses based on the cell
phone provider.

Resolving Technical Requirements
This plug-in will leverage the APEX_MAIL package to send emails (which will be forwarded to the cell
phone by the cell phone provider). You will need to ensure that your APEX instance is properly
configured to send emails. The following steps describe how to configure APEX with your SMTP (email)
server.

■ Note These steps require admin access to the APEX administration (internal) workspace. You may need to ask
your DBA to provide you with admin access. You may also need to ask your IT administrator for the correct SMTP
server settings.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PROCESS PLUG-INS

145

1. As shown in Figure 6-1, log into the INTERNAL workspace used to manage
the APEX instance on a database.

Figure 6-1. Internal Workspace Login

2. As shown in Figure 6-2, click on the Manage Instance button.

Figure 6-2. APEX Internal Workspace

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PROCESS PLUG-INS

146

3. In the Instance Settings region, click on the Instance Settings link as shown
in Figure 6-3.

Figure 6-3. Manage Instance

4. In the Instance Settings page, scroll down to the Email region as shown in
Figure 6-4. Enter the appropriate SMTP server information. The figure
omits an example SMTP server and related details because all that
information is specific to your own environment. Once you are finished,
click Apply Changes.

Figure 6-4. Email SMTP Configuration

It’s important to note that APEX does not send emails immediately. Instead it will queue up emails
and periodically send them based on a scheduled job. You can manually “push” emails off the queue by
using the APEX_MAIL.PUSH_QUEUE procedure.

Setting up Initial Configuration
Create a new process plug-in with the following attributes:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PROCESS PLUG-INS

147

Name: ClariFitText Message

Internal Name: COM.CLARIFIT.APEXPLUGIN.TEXT_MSG

Type:Process

Execution Function Name:pkg_apress_plugins.f_execute_txt_msg

The Execution Function Name references a procedure that has yet to be created. The procedure will
be created in the Execution Function section below.

You’ll notice that process plug-ins don’t have many default configurable settings. This is because
page processes run PL/SQL code and don’t require a lot of attributes.

Adding Custom Attributes
The following steps list the custom attributes that the plug-in will use. These attributes are based on the
requirements. Please create the following attributes for the plug-in:

• Scope: Application
Attribute:1
Label:Force Push Mail Queue
Type: Yes/No
Required: Yes
Default Value: Y

• Scope:Component
Attribute:1
Label:Phone Number
Type:Text
Required:Yes
Display Width:30
Maximum Width:60

North American phone numbers only require 10 digits, however it makes sense to
leave the phone number width to more than 10 characters since an APEX
developer will probably reference a page item and use a substitution string that
may easily exceed 10 characters. The same is true for the attributes listed below.
This will be highlighted on the test page.

• Scope: Component
Attribute:2
Label:Carrier Code
Type: Text
Required:Yes
Display Width:30
Maximum Width:60

• Scope: Component
Attribute:3
Label:Text Message
Type: Textarea
Required:Yes

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PROCESS PLUG-INS

148

Execution Function
Just like the other plug-ins, the first thing to do is retrieve the function header information from the help
text on the plug-in page. Using the header template, add the following lines to the specification of
pkg_apress_plugins and recompile it.

FUNCTION f_execute_txt_msg (
 p_process IN apex_plugin.t_process,
 p_plugin IN apex_plugin.t_plugin)
 RETURN apex_plugin.t_process_exec_result;

Modify the package body for pkg_apress_plugins and add the following code at the bottom of the body.
A detailed description follows the code.

610 …
611 FUNCTION f_execute_txt_msg (
612 p_process IN apex_plugin.t_process,
613 p_plugin IN apex_plugin.t_plugin)
614 RETURN apex_plugin.t_process_exec_result
615 AS
616
617 -- Types
618 TYPE typ_carrier_info IS record (
619 email_addr VARCHAR2(255),
620 num_digits NUMBER(2,0) --If null then any list of numbers will work
621);
622
623 TYPE tt_carrier_info IS TABLE OF typ_carrier_info INDEX BY varchar2(10); -- index by
carrier code
624
625
626 -- Application Plugin Attributes
627 v_force_push_queue_flag apex_application_page_items.attribute_01%TYPE :=
upper(p_plugin.attribute_01); -- force pushing the APEX mail queue
628
629 -- Item Plugin Attributes
630 v_phone_number apex_application_page_items.attribute_01%TYPE := p_process.attribute_01;
631 v_carrier_code apex_application_page_items.attribute_01%TYPE :=
upper(p_process.attribute_02); -- Cell phone carrier code
632 v_txt_msg apex_application_page_items.attribute_01%TYPE := p_process.attribute_03; --
Text message to send
633
634 -- Other variables
635 v_return apex_plugin.t_process_exec_result;
636 v_all_carrier_info tt_carrier_info;
637
638 v_carrier_info typ_carrier_info; -- Current carrier info
639
640 -- Functions
641 FUNCTION f_ret_carrier_info_rec(
642 p_email_addr VARCHAR2,
643 p_num_digits NUMBER)
644 RETURN typ_carrier_info

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PROCESS PLUG-INS

149

645 AS
646 v_carrier_info typ_carrier_info;
647 BEGIN
648 v_carrier_info.email_addr := p_email_addr;
649 v_carrier_info.num_digits := p_num_digits;
650 RETURN v_carrier_info;
651 END;
652
653 BEGIN
654 -- Debug
655 IF apex_application.g_debug THEN
656 apex_plugin_util.debug_process (
657 p_plugin => p_plugin,
658 p_process => p_process);
659 END IF;
660
661 -- Remove non numeric values from phone number
662 -- This allows phone numbers to be in any format
663 v_phone_number := regexp_replace(v_phone_number, '[^[:digit:]]', '');
664
665 -- Load Carrier info
666 -- Email addresses obtained from: http://www.emailtextmessages.com/
667 v_all_carrier_info('TELUS') := f_ret_carrier_info_rec(p_email_addr =>
'@NUM@@msg.telus.com', p_num_digits => 10);
668 v_all_carrier_info('ROGERS') := f_ret_carrier_info_rec(p_email_addr =>
'@NUM@@pcs.rogers.com', p_num_digits => 10);
669 v_all_carrier_info('ATT') := f_ret_carrier_info_rec(p_email_addr => '@NUM@@txt.att.net',
p_num_digits => 10);
670 -- Can add more carrier code information here
671
672 -- Set current carrier
673 BEGIN
674 v_carrier_info := v_all_carrier_info(v_carrier_code);
675 v_carrier_info.email_addr := REPLACE(v_carrier_info.email_addr, '@NUM@',
v_phone_number); -- Replace mnemonic
676 EXCEPTION
677 WHEN NO_DATA_FOUND THEN
678 raise_application_error(-20001, 'Invalid carrier code');
679 END;
680
681 -- VALIDATIONS
682 IF v_phone_number IS NULL THEN
683 raise_application_error(-20001, 'Missing phone number');
684 elsif v_carrier_info.num_digits IS NOT NULL AND v_carrier_info.num_digits !=
LENGTH(v_phone_number) THEN
685 raise_application_error(-20001, 'Number of digits is incorrect. Have: ' ||
v_phone_number || '. Expected: ' || v_carrier_info.num_digits);
686 END IF;
687
688 -- Send meail to text message
689 apex_mail.send(
690 p_to => v_carrier_info.email_addr,

www.it-ebooks.info

http://www.emailtextmessages.com/
http://www.it-ebooks.info/

CHAPTER 6 ■ PROCESS PLUG-INS

150

691 p_from => NULL,
692 p_body => v_txt_msg);
693
694 -- Push mail queue only if necessary
695 IF v_force_push_queue_flag = 'Y' THEN
696 -- Send text message right away
697 apex_mail.push_queue();
698 END IF;
699
700 -- Return
701 v_return.success_message := p_process.success_message;
702 RETURN v_return;
703
704 END f_execute_txt_msg;
705…

The following is a description of the preceding code that is keyed to line numbers:

622-632: Plug-in attributes. Just like the other examples from previous
chapters, it helps to convert them into meaningful names rather than reference
them throughout your code using the attribute numbers.

640-651: Since some plug-ins may not have any dependencies on other code in
the database, you can store functions and procedures directly inside the plug-in
function. You can also store the additional function and procedures in the plug-
in source region.

654-659: All plug-ins should include the appropriate debug code. There’s really
no reason why they shouldn’t include debug statements.

663: This regular expression converts the phone number into digits. When
applicable, this is a good technique since it allows end users to enter in phone
numbers in any format they like. For example (123) 456-7890 and 123-456-7890
will both be converted to 1234567890. This technique also helps the APEX
developer since they don’t need to explicitly convert the phone number to a
special format to work with the plug-in. You can use this technique for other
types of inputs as well.

672-686: Determines the email address to use for the text message. The
important thing to note is how the errors are handled. Since it doesn’t make
sense to continue with the process if the text messages aren’t sent, an
application level error is raised. The error will be handled by the standard APEX
error handling process.

701: You can define your own success message or use the one that the user
provided in the Process Success Message text area as shown in Figure 6-5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PROCESS PLUG-INS

151

Figure 6-5. Process Messages

You’ll notice that they’re a lot of similarities with this code compared to the other three plug-ins
from the previous chapters. It declares variables (assigning logical names to plug-in attributes), calls the
APEX plug-in debug statement (when running in debug mode), processes the information, and then
does something (in this case, emails the phone carrier the text message).

Compared to the other plug-ins, the major difference with this plug-in is that it does not actually
display anything. Since it is a process plug-in, it can be run when the page is being processed and it may
not make sense to actually display anything. The only feedback to the end user is the success message
(defined on line 701), which will be displayed to the end user if one is specified.

Testing it Out
Now that you’ve built the process plug-in, the last thing to do is ensure it works. The following steps will
walk you through building an example page that utilizes this plug-in:

1. Using the page creation wizard, create a new page with the following
attribute:

Type:Blank Page
Page Number:60
Name:Text Message
HTML Region 1:Text Message
New Tab: Text Message

2. Edit Page 60. In the Text Message region, create the following page items:

a. Type:Select List
Item Name: P60_CARRIER_CODE
Value Required:Yes
LOV-Display Null Value:- Select Carrier -
LOV-Query:STATIC2:Telus;TELUS,Rogers;ROGERS,ATT;AT&T

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PROCESS PLUG-INS

152

b. Type: Text Field
Item Name:P60_PHONE_NUMBER
Value Required: Yes

c. Type: Text Area
Item Name:P60_TEXT_MSG
Value Required: Yes
Character Counter:Yes

3. In the Text Message region, create a region button with the following
attributes:

Button Name:SEND_TEXT_MESSAGE
Label:Send Text Message
Position: Bottom of Region
Alignment:Left
Action: Submit Page
Execute Validations:Yes

4. Create a Page Process to send the text message (and use the plug-in).
These steps include screen shots, as they have not been covered in earlier
sections.

a. In the Page Processing region, right click on the Processing tree
element and select Create Process as shown in Figure 6-1.

Figure 6-6. Create Page Process

b. For the Process Type, select Plug-ins.

c. Select ClariFit Send Text Message.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PROCESS PLUG-INS

153

d. On the Process Attributes page, enter Send Text Message in the
Name field as shown in Figure 6-7. Click the Next button to
continue.

Figure 6-7. Create Page Process: Process Attributes

e. The Process displays the custom attributes for the plug-in. In
some cases, you may hard code in the values. In this example,
you’ll use user-defined values that reference the appropriate
page items using substitution strings. Enter the values as shown
in Figure 6-8.

Figure 6-8. Create Page Process: Process

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PROCESS PLUG-INS

154

f. On the Messages page, enter in the following values:

Success Message:Text message sent.
Error Message:Error sending text message.

These values are not required but are recommended since it will
notify the end user.

g. On the Process Conditions page, select SEND_TEXT_MESSAGE
for the When Button Pressed option and click the Create Process
button to complete the wizard.

■ Note In step 4.e, the width of the phone number attribute is not restricted to 10 characters (for North American
numbers). Since substitution strings may be used and the substitution string may exceed 10 characters, it would
not make sense to restrict the input length. You should keep this in mind when setting restrictions on attributes for
process plug-ins.

To test out the process, run Page 60. Enter the appropriate information and click the Send Text
Message button. The page will be submitted and you should see a success message as shown in Figure 6-
9.

Figure 6-9. Text Message Example

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6 ■ PROCESS PLUG-INS

155

■ Note The phone number can be entered using any type of format. That’s because the plug-in extracts only the
numbers and uses that for the email address. When developing plug-ins, you may want to consider making some
attributes’ formats irrelevant where applicable.

Summary
This chapter covered how to build a process plug-in and when you would do so instead of using a
PL/SQL process referencing a procedure.

This plug-in did not embed the code into the plug-in because it was already covered. For process
type plug-ins, you would normally embed the PL/SQL code since the plug-in would most likely be
shared.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 7

■ ■ ■

157

Best Practices & Community

As with all programming languages and frameworks, there are some best practices to help developers
create solid and robust plug-ins. These best practices are just recommendations and can vary by
organization depending on your individual requirements. You may find that some of the best practices
described in this chapter are not worded exactly as they are in your organization. That’s perfectly fine, as
they are meant to be a guideline. Adopt them as necessary to suit your team’s needs.

APEX has a vibrant and vocal development community. When plug-ins were first introduced,
various plug in–specific web sites were created to help share plug-ins and demonstrate different
techniques. Reach out to this community when you need support. Give back when you are able to
provide support for others.

■ Note Special thanks to Patrick Wolf and Dan McGhan for providing some of their thoughts for this chapter.

When to Create a Plug-in
So, when exactly do you create a plug-in? This is a very common question that developers ask about
plug-ins. The answer is, as Oracle guru Tom Kyte would say, “It depends.” There’s no set answer, but the
following are some things to consider when responding to the question:

Time: i.e., do you have the time to write this plug-in? If you’re in a time crunch,
you may not be able to spend the time writing a full-blown plug-in.
Alternatively, if you have time restrictions, you may consider writing a plug-in
with the minimal set of features to get you going. When you have more time,
then you can go back and add additional features as required.

Cost of not writing plug-in: What would be the cost of not writing a plug-in?
Sometimes, writing a plug-in may seem like extra work and unnecessary when
you’re pressed for time. If you’re doing a bunch of hacks just to avoid writing a
plug-in, then it will probably cost you more in the long run. This is similar to the
idiom “one step forward, two steps back.”

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

158

Reusability: As with code modularization, if you plan to reuse certain
functionality and it makes sense to do so, write a plug-in. If you’re unsure in a
particular situation, hold off and wait to see if you reuse the same code
somewhere else. If so, then you should probably write a plug-in. The main thing
to remember is not to start creating your own custom framework for a
workaround when one already exists.

Moving parts: If without a plug-in your code has to make a lot of assumptions
and has a lot of moving parts, you may want to write a plug-in. Encapsulating
all of the code in a single location will allow you to better control how things.

It is also important not to get carried away by developing plug-ins for things that are already
supported. For instance, you should not write a dynamic action plug-in for a browser alert message.

Be Aware About Security
One side effect of creating your own plug-ins is that you may introduce various security exploits in your
application without knowing it. The following subsections discuss some common security mistakes and
how to avoid them when creating a plug-in.

Cross-Site Scripting Attacks
Cross-site scripting, commonly referred to as XSS, is when a user puts malicious JavaScript code on your
web site to silently steal information. A good opportunity for this is an application which allows users to
enter comments at the bottom of the page. When other users view the page, they’ll see the comments
posted by all users. If the comment values are not escaped, a malicious user can put code into a
comment which can send the malicious user private information about any user currently logged in.

To prevent users from entering code into text fields and having that code executed, you can escape
user input when it’s being displayed. To do this you can use the APEX_PLUGIN_UTIL.ESCAPE function.
Instead of always forcing escaped values, you should use the plug-in escape variable. For example, in
item type plug-ins, APEX developers can choose to escape the values as shown in Figure 7-. The value of
the Escape special characters checkbox in the figure is reflected in the corresponding
p_item.escape_output variable accessible from within the plug-in functions.

■ Note For more information about cross-site scripting in general, please read
http://en.wikipedia.org/wiki/Cross-site_scripting.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Cross-site_scripting
http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

159

Figure 7-1. Escape special characters

SQL Injection Attacks
SQL injection happens when a user enters a SQL statement, or a fragment of a statement, in an input
value with the intent of trying to expose security holes in an application. A simple example can be built
around an “execute immediate” block of PL/SQL used to invalidate a user input item. Suppose you had a
page item, P1_NAME, that used a plug-in item to call an execute immediate block using the item value as
part of the validation. The execute immediate invocation would look like the following:

execute immediate 'BEGIN some_validation_procedure (p_name => ''' || p_value || '''); END;';

If the p_value is “Martin”, the execute immediate block will run the following code:

BEGIN some_validation_procedure (p_name => 'Martin'); END;

At first glance, the preceding code and the example look good, but what if the user enters some
malicious code in the item value? For example, what if the user enters '); TRUNCATE TABLE users; --?
The execute immediate block will then run the following code:

BEGIN some_validation_procedure (p_name => ''); TRUNCATE TABLE users; --'); END;

You’ll notice that this code will call some_validation_procedure, and then truncate a table. Besides
dropping a table, a malicious user can obtain all your data using the right techniques. SQL injection is
clearly something you want to guard against.

APEX has some functions that, when used properly, can prevent SQL injection.

• APEX_PLUGIN_UTIL.EXECUTE_PLSQL_CODE

• APEX_PLUGIN_UTIL.GET_DATA(2)

• APEX_PLUGIN_UTIL.GET_DISPLAY_DATA(2)

• APEX_PLUGIN_UTIL.GET_PLSQL_EXPRESSION_RESULT

• APEX_PLUGIN_UTIL.GET_PLSQL_FUNCTION_RESULT

It’s recommended that you use these functions when needed, both for security reasons and to make
your coding easier, as these functions and procedures will also enable all bind variables. For more
information, read the APEX_PLUGIN_UTIL API documentation.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

160

Using the APEX_PLUGIN_UTIL.EXECUTE_PLSQL_CODE procedure to rewrite the previous example, the
execute immediate call would look like the following:

apex_plugin_util.execute_plsql_code(p_plsql_code => 'BEGIN some_validation_procedure (p_name
=> :' || v_page_item_name || '); END;';

In this case, a bind variable is used to pass in the p_name parameter.
The APEX_PLUGIN_UTIL.EXECUTE_PLSQL_CODE procedure will automatically bind the value for you.

Protect Sensitive Information
It’s important not to put sensitive information in code that is accessible to end users. A classic example
of this is having an AJAX function that updates a table with a value as follows:

//AJAX JavaScript Function
var ajax = new htmldb_Get(null,$v('pFlowId'), 'PLUGIN=' + pObj.ajaxIdentifier,0);
ajax.addParam('x01', 'my_table'); // Table to update
ajax.addParam('x02', 'my_column'); // Some column
ajax.addParam('x03', 'some_value'); // Some column
ajax.addParam('x04', 'my_pk_column = 123'); // Column to update
var ajaxResult = ajax.get();

-- Corresponding PL/SQL Procedure
l_sql :=
 ' UPDATE ' || apex_application.g_x01 ||
 ' SET ' || apex_application.g_x02 || ' = ''' || apex_application.g_x03 || '''' ||
 ' WHERE ' || apex_application.g_x03;

execute immediate l_sql;

If a malicious user looks at the preceding JavaScript code, which is currently accessible, the user can
obtain two pieces of information. The first is at least one table in your schema. Using this information,
the user can guess some other tables in your schema. More importantly, he/she can update any value by
simply modifying the JavaScript code.

Instead of using the previously shown technique, you should re-evaluate what you’re trying to
accomplish and move as much business logic back into the plug-in as possible. All you should allow end
users to specify is the value. The meta data—i.e., the table, column, and row to update—should remain
in the plug-in.

Instrument Your Code
Code instrumentation has been mentioned throughout this book. If mentioning it again seems
repetitive, it is. Regardless of what language you are programming in, instrumenting your code will
always pay off in the end. This is especially true when you encounter issues in production level plug-ins.

If you bundle your plug-ins (i.e., include all the code directly in the plug-in), then having the ability
to receive debug information from other developers is critical. If you do not develop your plug-ins with
this in mind, it can be very difficult to debug a remote issue.

The examples in this book use code instrumentation both in the JavaScript and the PL/SQL blocks.
Only a minimal number of debug statements were added to help with the readability of the code. You

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

161

are encouraged to add additional debug statements using the APEX_DEBUG_MESSAGE package or your own,
internal, debugging, and logging package.

For more information on how to instrument your code and view the results of adding the debug
statements, read the upcoming Chapter 8 on debugging and tools.

Comment Your Code
Another standard development best practice is to comment your code. This is a principle that should go
without saying. Someone else will eventually work on, or look at, your code. This is especially true with
plug-ins, as they are meant to be reusable.

Since some plug-ins are tightly integrated with JavaScript, it helps to comment on how certain
features may be interpreted/used by JavaScript. For example, in a render function, if you’re adding
specific code that will be used by a JavaScript function, then state why you are adding that code. Your
comments will help programmers who follow you in working on that code.

On the JavaScript side, state what sort of data you expect from the plug-in, both during initialization
and during an AJAX call (if applicable). When dealing with AJAX functionality, always be sure to
comment on what each global APEX application variable (x01–x10) means.

Base Your Code Upon Templates
Having templates for plug-in code can really help speed up and standardize your coding process. By
now you should realize that there are a lot of similarities among the different types of plug-in functions.
You can create a generic template for all types of plug-in functions or more specific templates based on
the plug-in and function type.

For JavaScript, using the jQuery UI Widget Factory definitely helps out. A template is provided in
Chapter 8 that will work in just about any environment. You may also want to augment the template
with additional commenting and code that supports your corporate standards.

Versioning External Files
Some web servers will instruct browsers to cache certain types of files. This helps reduce network load
and speed up the time it takes for a page to load, since it does not need to wait for files to download.

Browser caching can present a small problem if your plug-in contains certain external files such as a
JavaScript or CSS files. If you update a file for a plug-in, the browser may still use the old (cached)
version until the file’s expiration date. If your application relies on the newer version of the file, users will
encounter an issue.

There are several ways to get around the browser caching issue, but one of the easiest ways is to
simply rename the file each time you make a change. For example, if your plug-in contains a file called
myPlugin.js, rename it to myPlugin.1.0.0.js. The next time you make a change to the file, rename the
file again (in this example to myPlugin.1.0.1.js) and the browser will recognize it as a new file. The only
catch with this technique is that you need to remember to modify your plug-in’s render function and
reference the new file name.

The following example demonstrates this problem and the impact of renaming a file. To keep things
simple, the example does not use a plug-in, but the principles are essentially the same for a file that is
loaded as part of a plug-in.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

162

■ Note The following set of instructions assumes that you have installed a local Apache web server. If you have
not installed Apache, please refer to the installation instructions in Chapter 8 before continuing with this section.

This demo uses Google Chrome to leverage some of its network traffic display tools. If you do not
have this browser installed, you can download and install it from http://www.google.com/chrome. The
remaining part of this demo assumes that you are running it in Google Chrome.

Configure your Apache server.

a. It is common practice for web servers to explicitly tell the browser how long to
cache a file. These next steps will modify the Apache server to set the default
cache timeout (called Expires) in Apache.

b. In Windows, open Notepad in administrator mode. To run in administrator
mode, right-click the application on the menu and select Run as
administrator as shown in Figure 7-2 In earlier versions of Windows, you may
not be required to use the Run as administrator feature.

Figure 7-2. Open Notepad as administrator

www.it-ebooks.info

http://www.google.com/chrome
http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

163

c. In Notepad, open the Apache configuration file, httpd.conf, from the location
defined in Chapter 8, Debugging & Tools. Figure 7-3 shows the default location
on Windows 7.

Figure 7-3. Open Apache httpd.conf file

d. Search the file for expires. The first result should bring you to the following
line: #LoadModuleexpires_module modules/mod_expires.so. Uncomment this
line by removing the hash (#) symbol.

e. Search the file for <IfModulecgid_module>. Just above this line, add the
following lines:

<IfModule mod_expires.c>
ExpiresActive on
ExpiresByType text/javascript "access plus 60 seconds"
ExpiresByType application/javascript "access plus 60 seconds"

</IfModule>

This setting will cache JavaScript files from your local web server for 60
seconds. Of course, web servers can cache files for a much longer period of
time, but this is just for demo purposes.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

164

f. Save the file and then restart the Apache server. To restart the Apache server,
click Start All Programs Apache HTTP Server 2.2 Control Apache Server
Restart as shown in Figure 7-4.

Figure 7-4. Restart Apache HTTP server

Set up the demo.

Create a new directory: c:\www\browserCachDemo.

Create a new file in c:\www\browserCachDemo called apressDemo.js.

Edit apressDemo.js by entering console.log('version 1'); and save your changes.
You may want to leave this file open in your text editor, as you’ll be modifying it
later in this example.

Create a new blank page with the following settings:

Page Type: Blank Page
Page Number: 50
Name: Cache Demo
Tab: Cache Demo

Edit Page 50. Right-click the Cache Demo link and select Edit from the content menu as shown in
Figure 7-5.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

165

Figure 7-5. Edit Page 50

It the HTML Header and Body Attribute section, enter the following in the HTML
Header text box as shown in Figure 7-6.

 <script src="http://localhost/browserCachDemo/apressDemo.js"
 type="text/javascript"></script>

Click the Apply changes button.

Figure 7-6. Page 50 HTML Header and Body Attribute tab

Create a new HTML region on Page 50 called Cache Demo.

Add a region button to the Cache Demo region with the following attributes:

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

166

Button Name: RELOAD_PAGE
Position: Bottom of Region
Alignment: Left
Action: Redirect to Page in this Application
Page: 50

This button will be used to simulate someone clicking a link to the page. If you
refresh the page using the browser’s refresh button, it will automatically fetch
the files from the web server rather than using cached versions.

View the initial browser request.

Go back to the main Application 100 page in the Application Builder. Click the big
Run Application button.

On the run page, you can log in to the application and continue to Page 50.

Open the JavaScript console by pressing Ctrl+Shift+J.

On the JavaScript console, click the Network tab and filter by clicking the Scripts
button. Figure 7-7 highlights these two buttons.

Figure 7-7. Google Chrome JavaScript console configuration

Click the Cache Demo tab at the top of the page. The JavaScript console should look
like Figure 7-8. The two things to note from Figure 7-8 are that the Status for
apressDemo.js is 200 OK and that the console printed version 1 as expected. 200
OK means that it downloaded the file from the web server.

Figure 7-9 shows the network timeline for the file load. You’ll notice that it took
~300ms to get the file from the server.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

167

Figure 7-8. JavaScript console network information for initial file load

Figure 7-9. JavaScript console network timeline for initial file load

If you click the apressDemo.js file in Figure 7-8, you will see the header information for the file. The most
important thing is the Expires attribute which is highlighted in Figure 7-10. Notice that it’s exactly 60
seconds after the time in the Date field. This means that the browser should use the local copy for the
next 60 seconds. After that, it should request a new copy from the server. As previously mentioned, the
Expires tag is usually set for a much longer time frame.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

168

Figure 7-10. Network header information for apressDemo.js

Before reloading the page, update the JavaScript file (apressDemo.js) and change the
text from version 1 to version 2.

Click the Reload Page button, which simulates a link on another page going to Page
50.

Figure 7-11 shows the network panel from the developer console. A few things stand
out. This time apressDemo.js was retrieved from cache rather than from the web
server (assuming that you reloaded the page within 60 seconds of the previous
page view). This is explicitly stated in the Status column.

The other thing is that in the console area, it shows version 1, even though the
JavaScript file was updated with the text version 2. This is expected, since
apressDemo.js was loaded from cache rather than from the file server.

Figure 7-12 shows the timeline for this page request. You’ll notice that it took no
time to get the files since they were already in cache.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

169

Figure 7-11. JavaScript console network information for page reload

Figure 7-12. JavaScript console network timeline for page reload

You can now see that using a cached file can create some issues, since the client’s browser may not
be using the current version of a file on your web server. By no means is it a bad thing to have cached
files (it’s actually a very good thing), but you need to be aware of its impact on your plug-ins that use
external files.

The way to get around this is pretty simple. If you use a unique file name for each change that is
made to an external file, the browser will consider it as a new file and always retrieve it (at least once)
from the server.

The easiest way to ensure a unique file name is to add a suffix to the filename with a version number
and increase that version number for each change. The following steps demonstrate how to simply do
this working from the previous example.

Make a copy of apressDemo.js and call it apressDemo2.js. By making a copy of the
file, you ensure that any old apps that reference the old version still work.

Edit Page 50 (see Figure 7-8) and go to the HTML Header and Body Attribute section.
Change the file name from apressDemo.js to apressDemo2.js as shown in Figure
7-13.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

170

Figure 7-13. HTML Header and Body Attribute apressDemo2.js reference

Go back to the application and click the Reload Page button. The developer console
window should look like Figure 7-14

You can now see that the browser assumes apressDemo2.js is a new file and
retrieves it from the web server rather than its cache. The JavaScript console
also displays the correct message.

Figure 7-14. Developer console for apressDemo2.js

This section covered in detail the effects of browser caching external files and how to work around
this issue. It is extremely important that you remember and understand this, as it can help prevent
problems in the long run.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

171

Compress JavaScript and CSS Files
To help reduce bandwidth and improve overall page load time, you should minimize your JavaScript
and CSS files. Minimizing these files reduces the amount of text in the file to a bare minimum.
Minimizing files makes the code unreadable by humans, so it’s usually done as a last step before the
plug-in is released.

There are several free minimization tools available to minimize JavaScript and CSS files. Wikipedia
has a good list of these tools at http://en.wikipedia.org/wiki/Minification_(programming).

To give an example of how much space a minimized file can save compared to the full version,
jquery.ui.clarifitFromToDatePicker_1.0.0.js was minimized using the YUI Compressor tool
(http://developer.yahoo.com/yui/compressor/). The original file size was 5.36KB, whereas the
compressed version is 2.06KB. For larger files, you’ll see larger gains. Figure 7-15 shows part of the
output of the minimized version.

Figure 7-15. Part of minimized jquery.ui.clarifitFromToDatePicker_1.0.0.js

If your plug-in uses multiple JavaScript files, you can minimize all of them and merge them into one
file. Though this makes one “large” file, it reduces the number of network requests to the server.
Reducing the number of network requests usually speeds up page load time in your application (unless
it’s a very large file).

To make it easier for you to quickly review the files as a learning tool, the examples in this book did
not contain minimized JavaScript and CSS files.

www.it-ebooks.info

http://en.wikipedia.org/wiki/Minification_
http://developer.yahoo.com/yui/compressor/
http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

172

Put Thought Into Your Error Handling
Managing errors for plug-ins can be a tricky thing. The biggest question is, do you raise a hard error (i.e.,
completely stop everything) or do you raise a soft error and allow the user to continue using the
application?

The answer is... “It depends.” To help determine how to handle each type of error you expect to
encounter, you need to put yourself in the user’s shoes. Ask yourself this: “Can the user properly
continue if this error occurs?”

For a simple example, think about an item plug-in. If you encounter an error in the render function
(i.e., the function that displays the item), what should you do? At a high level you have two options: raise
an application error, making the page unusable by the user, or try to soften the blow and display a
generic Unhandled error occurred. Please contact your system administrator. error message. In this
case, it would make sense to raise an application error; the user couldn’t, and probably shouldn’t,
continue with the application, since it’s missing some data that it expects the user to see and modify.

For an example of a soft error, imagine that an error occurs in an AJAX function on the
server/PL/SQL side. If you raise an application error in the PL/SQL block, it really doesn’t do much, as
the user won’t get the error message. Instead, they’re left waiting for an expected response from the
server. As a workaround, you can explicitly catch errors and then send a message back to the JavaScript
code letting it know what has happened. The JavaScript code can then display a soft error message to the
user. This technique is shown in Chapter [insert number], Region Plug-in.

Write Good Help Text
Plug-ins allow for help text in two main areas: the plug-in and custom attributes. Overall, plug-in help
can be added by editing the plug-in and going to the Help Text section as shown in Figure 7-16. The
plug-in help text is in HTML markup.

Figure 7-16. Plug-in help text

To add/modify help text for a custom attribute, edit the custom attribute and scroll to the Help Text
region shown in Figure 7-17. The help text supports HTML markup (though you’ll need to type it

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

173

manually) and becomes available when a developer clicks the custom attribute label when using the
plug-in as shown in Figure 7-18.

Figure 7-18. Custom attribute help text

Figure 7-19. RSS Reader: RSS Type help text

Since plug-ins are used by other APEX developers, the help text should be written in language that is
appropriate for other developers (i.e., end users won’t be viewing this help text). The examples in this
book did not contain help text since they were described in detail.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

174

Participate in the Plug-in Community
The APEX community has really embraced plug-ins and has written a lot of excellent blog articles, as
well as posting some free plug-ins online for other developers to use and learn from. The following is a
list of some useful web sites and blogs:

http://apex-plugin.com: Most developers will post their plug-ins on this site for
others to use.

http://plugins.clarifit.com: Plug-in demo site maintained by ClariFit.

http://skillbuilders.com/plugins: Plug-in demo site maintained by
Skillbuilders.

http://www.TalkApex.com: Blog (by yours truly) with some posts on plug-in
development.

http://www.danielmcghan.us: Blog by Dan McGhan, who writes most of
Skillbuilders plug-ins.

http://blog.theapexfreelancer.com: Blog by Matt Nolan, who has created
some commercial plug-ins.

http://www.inside-oracle-apex.com: Blog by Patrick Wolf from Oracle. He
created plug-ins for APEX.

http://apexblogs.info: APEX blog RSS aggregator that has some plug in–
specific content.

By far the best site to get APEX plug-ins is http://apex-plugin.com/. This site allows any APEX
developer to post a plug-in for others to use. Most of these plug-ins are free, but some require a license.
You are encouraged to go to the site and try some of the plug-ins. If you do create a plug-in for public
consumption, you are encouraged to post it on this site.

The plug-ins on apex-plugin.com are not created or supported by Oracle, so you should be slightly
cautious about using them in your applications. Though the APEX community is a small and trustworthy
one, there is still a possibility that someone may post a plug-in with malicious code, or a plug-in may
have a security vulnerability. The following blog posts discuss this issue in detail, with some excellent
feedback from some of the experts in the field: http://www.talkapex.com/2011/04/malicious-code-in-
apex-plugins.html and http://www.talkapex.com/2011/04/malicious-code-in-apex-plugins-
feedback.html.

The articles also discuss scalability issues when using others’ plug-ins. Though this is an area of
concern, it must be taken with a grain of salt. If you only have a small set of users on your system,
scalability may not be a concern. On the flip side, if you have thousands—or hundreds of thousands—of
users, then scalability is a very big concern and you should modify the open-source plug-in to fit your
needs and requirements.

Oracle also has some plug-ins which they maintain. To view this list, edit your application. Go to
Shared Components Plug-ins. Click the View Plug-in Repository button as shown in Figure 7-19. This
will open another web page, which will direct you to Oracle’s plug-in repository.

www.it-ebooks.info

http://apex-plugin.com:
http://plugins.clarifit.com:
http://www.TalkApex.com:
http://www.danielmcghan.us:
http://blog.theapexfreelancer.com:
http://www.inside-oracle-apex.com:
http://apex-plugin.com/
http://www.talkapex.com/2011/04/malicious-code-in-apex-plugins.html
http://www.talkapex.com/2011/04/malicious-code-in-apex-plugins.html
http://www.talkapex.com/2011/04/malicious-code-in-apex-plugins.html
http://www.talkapex.com/2011/04/malicious-code-in-apex-plugins-feedback.html
http://www.talkapex.com/2011/04/malicious-code-in-apex-plugins-feedback.html
http://www.talkapex.com/2011/04/malicious-code-in-apex-plugins-feedback.html
http://www.it-ebooks.info/

CHAPTER 7 ■ BEST PRACTICES & COMMUNITY

175

Figure 7-20. View Plug-in Repository

Summary
This chapter covered some of the best practices to follow when creating plug-ins. Again, these are
recommendations, and you should modify and add to them to coincide with your organization’s
standards. The main thing to take away from these best practices is that you’re aware of them and
understand the consequences of using or not using them.

This chapter also covered how you can participate in the APEX plug-in community. There are a lot
of benefits to participating in a plug-in community. Even if you can’t publish your plug-ins, you can at
least provide feedback and comments to enhance existing plug-ins.

www.it-ebooks.info

http://www.it-ebooks.info/

C H A P T E R 8

■ ■ ■

177

Debugging & Tools

Developing plug-ins, especially your first plug-in, can be difficult without the appropriate tools and
debugging techniques. This chapter discusses how to instrument your plug-in. It also covers some tools
to help assist and speed up your plug-in development.

Debugging and Code Instrumentation
Instrumenting your plug-ins will help quickly and effectively resolve issues as you encounter them. In
some cases where your plug-in is used in other environments (i.e., you publish for others to use), you
may not have the luxury of viewing the application and will need to solely rely on what information you
can get from various debugging and logging tools.

This section will cover how to instrument both PL/SQL and JavaScript code. It is important to
instrument both parts, as they can both play major roles in your plug-ins.

JavaScript Console Wrapper
When writing JavaScript code for a plug-in, it is important to add as much debugging code as possible.
This can be extremely useful for debugging your own issues during the initial phases of plug-in
development and for resolving them once they are in production or others are using them.

Before continuing with this section, you should read the section under Tools Firebug and Console
in the Firefox on how to install and view Console outputs.

At a high level, Console allows you to add some additional code in JavaScript, which will display the
results in a special window. This means that you do not need to interrupt the user with debugging
messages, etc.

Some of the older browsers do not support JavaScript calls to the Console APIs. This can be a bit of
an annoyance since you may instrument your code with console.log calls and then have to remove
them before going to production.
APEX provides you with a simple JavaScript function called apex.debug. It handles the browser–specific
issues so you can keep it in your code and it will not crash applications that are run in older browsers.
When used, it will only display messages in the Console window when the application is run in debug
mode.

Figure 8-1 shows a simple example of the apex.debug function when the application is run in regular
(non-debug) mode. You’ll notice that nothing was displayed in the Console window. Figure 8-2 shows
the exact same call when the application is run in debug mode. In this case, a message was displayed in
the Console window.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

178

Figure 8-1. apex.debug in regular (non-debug) mode

Figure 8-2. apex.debug in debug mode

Apex.debug is good for basic messages, but it does not handle more complex logging requirements.
Console Wrapper is a third–party, open–source library that handles both basic and complex logging
requirements. It also is tightly integrated with APEX so that, by default, it only displays Console messages
when the application is run in debug mode. All the JavaScript examples in this book leverage Console
Wrapper, which can be downloaded for free at http://code.google.com/p/js-console-wrapper.

The web site provides detailed examples and information on how to use the Console Wrapper. The
following are some examples of Console Wrapper compared with the apex.debug function. Note that
these examples should be run directly in the Console window with your APEX application running in
debug mode.

Figure 8-3 demonstrates how to reference multiple variables in one call. You’ll
notice that the apex.debug method only displays the first value. To get around
this, you’d need to make an individual call for each variable with apex.debug.
Console Wrapper handles unlimited variables in one call.

Figure 8-3. Console Wrapper: multiple values

www.it-ebooks.info

http://code.google.com/p/js-console-wrapper
http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

179

Error! Reference source not found. Groups can be nested. If you want your
group to be collapsed by default, use the $.console.groupCollapsed function
instead of $.console.group.

Figure 8-4. Console Wrapper: grouping

Console Wrapper also includes a very helpful function to display all the
parameters in a function without having to explicitly list each parameter. Figure
8-5 shows how to use the $.console.logParams function. It also has additional
checks in place to show parameters that are not explicitly linked to an input
parameter. Figure 8-6 highlights this functionality.

Figure 8-5. Console Wrapper: log parameters.

Figure 8-6. Console Wrapper: log parameters with unexpected parameters.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

180

APEX Debug
Just like instrumenting your JavaScript code, it’s equally important to instrument your PL/SQL plug-in
code. APEX makes instrumenting plug-ins very simple by providing API debugging functions for each
type of plug-in. All of the examples in this book leverage these API calls.

At the beginning of each plug-in, you should always reference the appropriate debug procedure
based on the plug-in type. The procedure looks like APEX_PLUGIN_UTIL.DEBUG_<plugin-type>. For
example, the region type debug procedure call is APEX_PLUGIN_UTIL.DEBUG_REGION. Additional
information about each of these procedures can be found in the API documentation.

The following example shows how you can view the output from the plug-in debug call and what
type of information it stores. This example references the region plug-in that was created in the chapter
on region plug-ins.

1. Log into the APEX Application Builder, then run the demo application.
Logging into the APEX Application Builder first allows you to easily run
the application in debug mode.

2. Run the application and go to page 40 (RSS reader). At the bottom of the
page, click the Debug button in the APEX Developer Toolbar as shown in
Figure 8-7.

Figure 8-7. APEX Developer Toolbar

3. When you click the Debug button, the page reloads and it appears as
though nothing happened. In fact, when the page reloaded, it stored a lot
of debug information. To view this information, click the View Debug
button (to the left of the Debug button) on the APEX Developer Toolbar as
shown in Figure 8-7. A new window should pop up, which should look
like Figure 8-8.

Figure 8-8. APEX debug message data window

4. Click on the most recent page–view link. From Figure 8-8, this would be
43041 under the View Identifier column. Since the View Identifier number
is a unique number, it will probably be a different number.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

181

5. Search the page for Region: RSS Reader. You’ll notice that following this
line, there is a lot of plug-in-specific information, as shown in Figure 8-9.
If the plug-in had not made a call to APEX_PLUGIN_UTIL.DEBUG_REGION, this
information would not be available in the debug window.

Figure 8-9. Plug-in debug output

You can include additional debug messages throughout your plug-in by using the
APEX_DEBUG_MESSAGE API calls. These messages will appear in the same debug report as Figure 8-9. Please
read the API documentation for more information about this package.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

182

Tools
When coding, developers tend to have a set of tools to help speed up their development time. This
section will cover some tools that can be helpful when developing plug-ins. They are used and
mentioned throughout the book so you should take the time to review and understand each one.

Firebug and Console in the Firefox Browser
Firefox is an excellent browser to develop web–based applications with (some developers deem it as the
best browser for development). It has a lot of great features and available add-ons that help developers.

Firebug is a very popular Firefox add-on that allows you to, among other things, debug and quickly
develop/test JavaScript code. I often use Firebug as my default development and debugging tool. In
some situations, though, I leverage Google Chrome’s development tools for their debugging features.
Both browsers support the Console API, which allows you to display messages in the browser’s Console
window without interrupting the user. The following steps cover how to install Firebug on Firefox 4.

■ Note Console is also available in most of the major browsers. The following list describes how to view the
Console output in each of the major browsers:

- Firefox: Install Firebug (http://getfirebug.com) - F12
- Google Chrome: Ctrl+Shift+J
- Safari: Ctrl+Alt+C
- IE (9+): F12, then go to the Console tab

1. Make sure that you’ve installed Firefox 4 or greater. If you haven’t, you can
download it at http://www.mozilla.com.

www.it-ebooks.info

http://getfirebug.com
http://www.mozilla.com
http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

183

6. In the top–left corner, click the Firefox button and select the Add-ons
menu option, as shown in Figure 8-10, which will open a new tab.
Alternatively, you can use the shortcut Ctrl+Shift+A.

Figure 8-10. Firefox Add-ons

7. On the Add-ons Manage tab, enter firebug in the search field in the top–
right corner and click enter to submit your search.

8. Click the Install button beside the Firebug search result (third option in
Figure 8-11).

Figure 8-11. Install Firebug

9. Once installed, you’ll need to restart Firefox for Firebug to be activated.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

184

Now that Firebug is installed, you’ll need to configure it to enable the Console. The Console allows
you to quickly output debug messages and view errors and warnings in JavaScript. The following steps
enable the Console:

1. In Firefox, go to any web site and click the F12 button. The Firebug
window will appear at the bottom of the screen. Click on the Console tab
and select Enabled under its menu as shown in Figure 8-12.

Figure 8-12. Enable Firebug Console.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

185

2. The Console window should now appear on the screen. The last thing you
need to do is display the command window, which will allow you to run
your own JavaScript code. Click the Console tab and check Command
Editor as shown in Figure 8-13.

Figure 8-13. Enable Console Command Editor

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

186

3. The Firebug screen should now display the Command Editor window as
shown in Figure 8-14.

Figure 8-14. Console Command Editor

From the Console Command Editor, you can run any JavaScript commands to test your code. It
usually helps to develop the code in the editor first, then move it into a static file. The advantage of this
approach is that you don’t need to refresh your page each time you make a modification.

Console also provides a great logging API. The following links contain examples and screenshots of
the logging API:

• http://getfirebug.com/logging - Intro and screenshots

• http://www.tuttoaster.com/learning-javascript-and-dom-with-console - Step-
by-step demos and screenshots

• http://getfirebug.com/wiki/index.php/Console_API - Console API

jQuery UI Widget Factory
When developing certain types of plug-ins, you will need to include some custom JavaScript code. In
some cases, this JavaScript code will be fairly simple. In other cases, the code may be more complex.
When developing more complex code, it helps to use a framework to standardize and simplify some of
the process.

The jQuery UI Widget Factory is a framework that allows you to build custom JavaScript code. It is
an extension of jQuery UI, which is already included with APEX, so there is no additional code that you
need to add in order to leverage your plug-ins.

This section will cover some of the basic structure around building code that leverages the Widget
Factory. It does not include all the information about the framework, but rather a brief summary to help
you get started. For more information, please read the main documentation page:
http://docs.jquery.com/UI_Developer_Guide#The_widget_factory.

The example below is a simple widget built using the jQuery UI Widget Factory framework that will
toggle the font size of an element. It is very basic and perfect for highlighting the fundamental items that
are required for the Widget Factory. It also includes some logging code to help highlight the functions

www.it-ebooks.info

http://getfirebug.com/logging
http://www.tuttoaster.com/learning-javascript-and-dom-with-console
http://getfirebug.com/wiki/index.php/Console_API
http://docs.jquery.com/UI_Developer_Guide#The_widget_factory
http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

187

when called. The logging code uses the Console Wrapper library (http://code.google.com/p/js-
console-wrapper/).

■ Note Special thanks to Dan McGhan for helping come up with some of the standards when using the jQuery UI
Widget Factory.

$.widget('ui.toggleFontSize', {
 // default options
 options: {
 toggleFontSize: '40px' // Default the toggle font to bold if one not provided
 },

 /**
 * Set private widget varables
 */
 _setWidgetVars: function(){
 var uiw = this;

 uiw._scope = 'ui.toggleFontSize'; //For debugging

 uiw._values = {
 baseFontSize: '', // This is the font size that the text started with.
 };

 uiw._elements = {
 $element : $(uiw.element) //Enter elements here for quick reference
 };
 }, //_setWidgetVars

 /**
 * Create function: Called the first time widget is associated to the object
 * Will implicitly call the _init function after
 */
 _create: function(){
 var uiw = this;

 uiw._setWidgetVars(); // Set variables

 var consoleGroupName = uiw._scope + '_create';
 $.console.groupCollapsed(consoleGroupName);
 $.console.log('this:', uiw);

 uiw._values.baseFontSize = uiw._elements.$element.css('fontSize');

 $.console.groupEnd(consoleGroupName);
 },//_create

www.it-ebooks.info

http://code.google.com/p/js-console-wrapper/
http://code.google.com/p/js-console-wrapper/
http://code.google.com/p/js-console-wrapper/
http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

188

 /**
 * Init function: This function will be called each time the widget is referenced with no
parameters.
 */
 _init: function(){
 var uiw = this;

 $.console.log(uiw._scope, '_init', uiw);

 //Toggle Font Size
 if (uiw._elements.$element.css('fontSize') == uiw._values.baseFontSize){
 uiw._elements.$element.css('fontSize', uiw.options.toggleFontSize);
 }
 else{
 uiw._elements.$element.css('fontSize', uiw._values.baseFontSize);
 }
 }, //_init

 /**
 * Returns the base font size that the object started with
 * Need to write a specific function since it's a private variable
 */
 getBaseFontSize: function(){
 var uiw = this;

 $.console.log(uiw._scope, 'getBaseFontSize', uiw);
 return uiw._values.baseFontSize;
 },//getBaseFontSize

 /**
 * Removes all functionality associcated with widget
 * In most cases in APEX, this won't be necessary
 */
 destroy: function() {
 var uiw = this;
 $.console.log(uiw._scope, 'destroy', uiw);

 //restore the font size back to its original size
 uiw._elements.$element.css('fontSize', uiw._values.baseFontSize);

 $.Widget.prototype.destroy.apply(uiw, arguments); // default destroy
 }//destroy

}); //ui.toggleFontSize

Here is the breakdown of each of the main elements from the preceding code:

$.widget(name, options): This line defines the widget. The name is a string,
which should be “ui.xyz” where xyz is the camel case name of your widget. The
options variable is a JSON object that contains both private and public variables
and functions.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

189

_setWidgetVars: This function is used to define and set private variables. This is
not a reserved function name in the jQuery UI Widget Factory, but rather a
technique to store private variables.

options: options is a reserved name that consists of a set of public variables.
The values that are placed in this variable are the default values. When the
widget is called, the calling function can define each of these option values.

_create: The _create function is a reserved function that is run the first time the
widget is bound to an object.

_init: The _init function is a reserved function that is called after the _create
function and each time the widget is called with no parameters. The _init
method is not required, and you may not require it for your APEX plug-ins.

getBaseFontSize: This is a custom function that is publicly accessible. It is
required since the variable baseFontSize is a private variable and needs a
specific getter method to retrieve its value.

destroy: The destroy method disassociates the widget from the object and
should undo anything that the widget did to the object. In this example, the
destroy method returns the font size back to its original state. The destroy
method is not required and you probably won’t need to implement it for APEX
plug-ins.

To demonstrate how to use this widget, open ch08\jqueryUIWidgetFactory-Demo.html in Firefox.
This file is included as part of the book’s attached files. Once you have opened the file in Firefox, click
F12 to open Firebug. This will allow you to see the log outputs in the Console window. Click each link in
the order described below. Screenshots are included to highlight all the changes. Figure 8-15 shows the
original state of the page.

Figure 8-15. jQuery UI Widget Factory demo: initial page

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

190

1. $('#bar').toggleFontSize(): This will attach the widget to the object and
toggle the font size to the default 40px since no option was passed in as
shown in Figure 8-16. Notice how both the _create and _init functions
were called.

Figure 8-16. jQuery UI Widget Factory demo: step 1

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

191

10. $('#bar').toggleFontSize(): Will toggle the font back to its original size.
It only calls the _init function since the widget has already been attached
to the object. This can be seen in the Console window in Figure 8-17.

Figure 8-17. jQuery UI Widget Factory demo: step 2

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

192

11. $('#bar').toggleFontSize('option', 'toggleFontSize'): This is a getter
method that can return any of the variables in the JSON options object.
Since you haven’t set the font size yet, this will return the default size,
40px, as shown in Figure 8-18.

Figure 8-18. jQuery UI Widget Factory demo: step 3

12. $('#bar').toggleFontSize('option', 'toggleFontSize','200px'):This
is a setter method that can set any of the items in the options object. It
will return the jQuery object which is the bar item. It does not affect how
bar is currently displayed on the page until it is toggled again.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

193

13. $('#bar').toggleFontSize(): This will toggle the font size. Figure 8-19
shows that bar is much larger now. This is because it was set to 200px in
the previous step.

Figure 8-19. jQuery UI Widget Factory demo: step 5

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

194

14. $('#bar').toggleFontSize('destroy'): The destroy method removes the
widget from the object and should undo anything that the widget did.
Figure 8-20 shows that bar has been reset to its original state.

Figure 8-20. jQuery UI Widget Factory demo: step 6

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

195

15. $('#bar').toggleFontSize({toggleFontSize: '80px'}): This will attach
the widget to the object. Since the widget was removed from the object in
the previous step, both the _create and _init functions are executed as
shown in Figure 8-21. This call is different than the first call in step 1 since
it defines a value in the option object.

Figure 8-21. jQuery UI Widget Factory demo: step 7

16. $('#bar').toggleFontSize('getBaseFontSize'): To call a public function
using the widget framework, pass in the function name. In this case, the
function getBaseFontSize will return the private variable value
baseFontSize, which is shown in Figure 8-22.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

196

17. The final output of the Console window should look like Figure 8-
22.

Figure 8-22. jQuery UI Widget Factory demo: final Console output

This section covered the basics of the jQuery UI Widget Factory framework and provided a simple
example of how to create a widget. For plug-ins that require a very small amount of JavaScript, creating a
widget may not be necessary. For more complex plug-ins, using the Widget Factory framework will help
a lot.

Apache HTTP Server
Some of your plug-ins will require third–party files such as JavaScript, CSS, and images. When working
with these files, it is highly recommended that you modify them directly from a web server before
bundling them as part of the plug-in. In some situations, you may not have easy access to your corporate
development web server or one may not exist. If this is the case, you can easily install a local web server
on your desktop.

Apache HTTP Server is a free, open–source web server that is used in many corporate environments.
The following instructions describe how to install and configure the Apache HTTP Server on Windows 7:

1. Go to http://httpd.apache.org. On the left–hand side, click from a mirror
under the Download heading.

www.it-ebooks.info

http://httpd.apache.org
http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

197

2. On the Download page, select the most recent stable build and download
the Windows binary file as shown in Figure 8-23.

Figure 8-23. Download Apache HTTP Server

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

198

3. Run the file once it has finished downloading. Keep clicking the Next
button, reading the license agreement when prompted, until you come to
the Server Information step. Since this will only be used for your personal
development, you can enter any information here. Some example setup
data is shown in Figure 8-24. Click the Next button to continue.

Figure 8-24. Apache HTTP Server information

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

199

4. Select Typical from the Setup Type window as shown in Figure 8-25. Click
Next to continue.

Figure 8-25. Apache HTTP setup type

5. On the next screen, Destination Folder, select the default location. Keep
note of where this is on your computer, as you’ll need it to find the
configuration file. Click the Next button to proceed to the final step.

6. On the final screen, click Install to install the Apache HTTP Server. Once
completed, click the Finish button.

After installing Apache, you’ll need to configure it. The following steps describe how to configure the
Apache Server for simple local use:

■ Note In Windows 7, administrative privileges are required to edit the Apache configuration file. The instructions
below include the additional steps required to modify the file as an administrator. If using an older version of
Windows, you should be able to edit the file directly.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

200

1. In Windows, click Start All Programs Apache HTTP Server 2.2 Configure
Apache Server. Right click on Edit the Apache httpd.conf Configuration File
and select Open file location as shown in Figure 8-26.

Figure 8-26. Open Apache config location

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

201

18. Copy or note the location of the file. In this example, the configuration
file is located in C:\Program Files (x86)\Apache Software
Foundation\Apache2.2\conf as shown in Figure 8-27.

Figure 8-27. Apache configuration file location

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

202

19. Open Notepad as an administrator. Click Start All Programs Accessories.
Right click on Notepad and select Run as administrator as show in Figure
8-28.

Figure 8-28. Open Notepad as administrator.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

203

20. In Notepad, open the Apache configuration file, httpd.conf, from the
location that was copied in step 2 as shown in Figure 8-29. You will need
to change the file type to All Files in order to see httpd.conf.

Figure 8-29. Open Apache httpd.conf file

21. The options that you will modify are to tell Apache where to look for the
web files. There are two options that need to be changed to do this. The
first is the DocumentRoot. Change the DocumentRoot from

DocumentRoot "C:/Program Files (x86)/Apache Software
Foundation/Apache2.2/htdocs"

to

DocumentRoot "C:/ www"

where c:/www points to a directory on your local machine. Apache is case–
sensitive, so ensure that the DocumentRoot directory option has the same
case as the directory on your file system. Apache also uses forward slashes
(/) instead of back slashes (\) when referencing directories. Please note
that the original DocumentRoot value may be different depending on you
installation options.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

204

22. When you modify the DocumentRoot, you also need to modify the
corresponding Directory settings. Change the Directory option from

<Directory "C:/Program Files (x86)/Apache Software
Foundation/Apache2.2/htdocs">

to

<Directory "C:/www">

where c:/www is the same value from the DocumentRoot that you
configured in the previous step.

23. Once you have modified the values, save the configuration file. If you
haven’t already done so, create the directory that you referenced in the
configuration file.

24. The last step for the configuration is to restart the Apache HTTP Server.
To restart it, click Start All Programs Apache HTTP Server 2.2 Control
Apache Server and select Restart.

Figure 8-30. Restart Apache HTTP Server.

You can quickly test that your configuration works by creating a simple .html file in your
DocumentRoot directory (in this case, c:\www). Then open your web browser and go to
http://localhost/mytestfile.html.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

■

■ DEBUGGING & TOOLS

205

APEX Dictionary and APIs
APEX comes with some excellent tools that can really help resolve some of your issues and speed up
development. The APEX dictionary is one such tool. Each of the included APIs can be considered as a
tool, too.

APEX Dictionary
Since APEX resides in the database, you can easily obtain all its information from querying certain

views. Using these views can help you obtain additional information about specific objects in your APEX
application.

APEX provides a view called the APEX_DICTIONARY, which lists all the views and their columns.
The following query lists all the available views in the APEX dictionary. Figure 8-31 shows part of the
result from the query below.

SELECT apex_view_name, comments
FROM apex_dictionary
WHERE column_id = 0

Figure 8-31. APEX Dictionary results

Some of these views were used in the plug-ins in this book to help retrieve additional information
that was not available via the plug-in parameters. For example, in the from/to item–date picker, a view
could be configured (APEX_APPLICATION_PAGE_ITEMS) to find some metadata about the other date
item.

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8 ■ DEBUGGING & TOOLS

206

Below is a list of some of the APEX views that you will find very helpful when creating plug-ins:

Item plug-ins:APEX_APPLICATION_ITEMS

Dynamic action plug-ins:APEX_APPLICATION_PAGE_DA and
APEX_APPLICATION_PAGE_DA_ACTS

Region plug-ins:APEX_APPLICATION_PAGE_REGIONS

Process plug-ins:APEX_APPLICATION_PAGE_PROC and APEX_APPLICATION_PROCESSES

The APEX dictionary is a very powerful tool that tends to get overlooked. You are encouraged to

spend some time reviewing the views that are available.

APEX APIs
APEX provides a set of APIs that can help with your plug-in development. Examples of some of these
APIs are used throughout this book. Here is a list of some of the most useful ones for plug-in
development:

APEX_CSS: Handles CSS–related code

APEX_JAVASCRIPT: Handles JavaScript and JSON code. Good for escaping values
in JavaScript as well.

APEX_PLUGIN: Primarily used for plug-in data types. Also contains a few
functions to help with AJAX calls and item plug-ins.

APEX_PLUGIN_UTIL: Debugs calls for all types of plug-ins, along with some utility
functions and procedures.

JavaScript APIs: JavaScript functions. Before writing your own functions to do
something that you think should be part of APEX, look through this list.

Of course, you may use other packages not listed above. For a complete list of APIs, along with help
and examples, view the APEX documentation. To get the latest copy of the APEX documentation, go to
http://apex.oracle.com and click the Application Express Documentation under the Getting Started
heading.

Summary
Spending time to instrument your code may initially seem like additional work. In the end, it always pays
off to have this in your code. If you don’t use it, another developer who has to work with it will.

There are a lot of tools you can use to help speed up development time. This chapter covers some of
the most popular tools used by plug-in developers. There are other tools you may want to add to your
repertoire that will help you with your development.

Again, it is worthwhile to spend the time up front and install/configure these tools. Once you have
these tools in place, you will notice huge improvements on your development time.

www.it-ebooks.info

http://apex.oracle.com
http://www.it-ebooks.info/

INDEX

 ■ ■ ■

207

A, B
AJAX error message, 136
AJAX POST request, 136
As Oracle Application Express (APEX), 1

APIs, 206
dictionary, 205–206

C
Components, plug-ins, 9

callback functions, 14–15
custom attributes, 20–21

condition, 23
default value, 22
dummy event in dynamic action, 27
dynamic action events 25–26
events, 24–25
files, 23–24
help text, 23
list of values, 22
settings, 22

help text, 28
information, 27–28
licensing, 28
name

category options, 11
execution options, 10
internal name, 9
name, 9
type, 10

name attribute, 21

setting with custom attribute, 13
settings section, 12
source, 13
standard attributes, 15

check list, 18
creating item name, 16–17
enabled standard attribute, 19
item with no standard attributes, 18
section, 16–17

subscription, 12

D, E, F, G, H
Debugging and code instrumentation, 177

APEX debug, 180
developer toolbar, 180
debug mode, 178
debugging, 177,180–181
message data window, 180
PL/SQL plug-in code, 180
plug-in debug output, 181
regular, 178
RSS reader, 181

JavaScript console wrapper, 177
examples and information, 178
firebug and console, 177
grouping, 179
log parameters, 179
multiple values, 178

Dynamic action,plug-ins
action context option, 78
action element, 84

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

208

action when clicked page, 75
affected elements region, 83
affectedElements, 85
alert text, 80
browserEvent.currentTarget, 85–86
business problem, 86–87
create button, 87
custom attributes

application attributes, 94
dialog box, 95
jQuery UI theme color, 92
memory process, 92
settings region, 94
Yes/No value, 93

default button template, 77
default when options, 98
Dialog My Form, 95
dialog plug-ins settings, 98
DIALOG_EMP_REPORT button, 99
DIALOG_MY_FORM button, 97
edit alert action, 82
empty PL/SQL function, 89
Firefox console window, 83
flowchart, 81
HTML region, creation, 90
identification region, 82
ID error message, 76
initial configuration and setup, 88

callbacks, 89
function f_render_dialog, 90
hello world, 75
page 20 with report, 92
pkg_apress, 89
standard attributes, 88
web server, directory creation, 88

JavaScript, 104, 109
JavaScript alert window, 80
my region, 96
name help, render function, 8
object hyperlink, 84
page 20 with three items, 91
PL/SQL code, 100
render function, 100, 104
testing it out, 109, 111

My Form dialog window, 110
page 20 final, 110

translatable option, 93
trigger, 75
true action page, 79

true and false actions, 79
uncheck fire, 80
user interface region, 76

I, J, K, L, M, N, O
Item,plug-ins

adding
adding render function, 48
altering custom attribute, 54
coding, 47–48
console output, 55
date calendar selector, 54
date picker dynamic widths, 53
edit, 46
entry creation, 46
foregoing code, 49
from date calendar selector, 53
from/to date picker, blank

rendering, 49
from/to date picker, input elements,

50
interface, 47
item type interface, 47
JAVASCRIPT, 51–52
modified to date field, 55
no render function, 46
PL/SQL function, 50–51
render function help text, 46

adding custom attributes, 40
adding attribute, 40
adding LOV value, 42
application-level custom attribute,

43
component-level custom attribute,

43–44
default value, 41
icon image creation, 40
list of values, 42
missing setting value, 45
name region, 41
P10_FROM_DATE setting, 45
return to page check box, 44
settings, 41
steps, creating icon image, 42

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

209

business problem, 29
action in action, 73
date item settings, 30

dynamic action
adding, 70
action,when/true action 72
identification, 71
implementation, 71
edit, 69
events region, 69
JavaScript, 69
registering, 69,70
true action, 72
dynamic from/to date picker, 31
features and whiz-bang, 29
min/max date constraint, 30–31

file prefix field selection, 35
initial configuration, 34
JavaScript Code, 35, 40
rendering function, 46
standard attributes, 35
test page creation

default settings, 32
display position and name, 34
from/to date picker initial setup, 32
page item wizard, item type

selection, 33
page item wizard/selecting the plug-

in, 34
validation function adding, 55

check,valid date, 61
click create process,complete, 58
create button/action when clicked

values, 57
create button/button attributes, 57
create page process region, 58
create region button option, 56
edit page, 55
error display location field, 63
error message setting, 62
from and to date, 64
from/to date picker, edit, 59
invalid date error message, 59
invalid date range, 65
invalid to date, 59
jQuery UI destroy output, 65

registering validation callback
function, 62

valid date,check, 62
validation function spec, 60

wrapping up, 65
embedding PL/SQL code, 66
file selection, 68
files region with uploaded files,

67,68
internal purposes, 65
PL/SQL code, 65
settings region, 69
updating call back functions, 66
upload new file region, 67

P, Q
Plug-ins

advantages, 2
APEX instance, 4
code upon templates, 161
comment your code, 161
community participation, 174
compress JavaScript and CSS files, 171
creation, 7, 157–158

internal filed, 9
list, 8
moving parts, 157
shared components, user interface

region, 8
reusability, 157
timer,157cost,writing plug-in, 157

development IDE, 4
error handling, 172
help text, 172

add/modify, 172
custom attribute, 173
editing, 172
RSS type, 173

instrument your code, 160
Oracle database, 3
repository view, 175
security awareness, 158

cross-site scripting attacks, 158
escape special characters, 159
protect sensitive information, 160

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

210

SQL injection attacks, 159–160
versioning external files

apressDemo2.js reference, 170
cache Demo region, 165
configuration, 162
developer console, 170
edit page 50, 165
Google Chrome JavaScript, 166
HTML header and body attribute

tab, 165
JavaScript console network

information, 167
JavaScript console network timeline,

167
network header information, 168
network load and speed up

reduction, 161
open apache httpd.conf file, 163
open notepad as administrator, 162
page reload, JavaScript console

network information, 169
restart apache HTTP server, 164
timeline,JavaScript console network,

169
Web browser, 4
Web server, 4

Process,plug-ins, 143
business problem, 143
vs. PL/SQL Region, 143
resolving technical requirements, 144,148

adding custom attributes, 147
APEX internal workspace, 145
email SMTP configuration, 146
execution function, 150
internal workspace login, 145
manage instance, 146
preceding code, 150
process messages, 151
setting up initial configuration, 146

testing it out, 151
create page process, 152, 153
creation wizard, 151
example, text message, 154
process attribute, 153
text message region, 151

R, S
Region plug-ins, 113

ACL network, 122, 123
AJAX

addParam function, 118
application processes link, 117
callback function, 136, 137, 138, 139,

140
create application process >

identification page, 117
create dynamic action > when page,

118
demo page, 116
execute JavaScript code, 118
function help, 137, 140
htp.p call JavaScript, 117
JavaScript coding, 133–136
On demand application process, 115
PL/SQL code, 115
POST request, 119, 120
POST response, 119, 120
Run Ajax button, 119

#BODY# substitution string, 115
custom attributes, 124–126
default region template, 114
definition, region template, 115
initial configuration and setup, 123, 124
PL/SQL type region, 113
region body outline, 113–114
region security settings, 141
render function creation

callbacks, 128, 132
package modification, 128, 130–132
pkg_apress_plugins.f_render_rss_re

ader Package Spec, 128
requirements list, 120
RSS feed content, 141
templates link, 114
test page creation, 126, 127
unescaped, RSS feed content (), 141, 142
UTL_HTTP access, 121–122

T, U, V, W, X, Y, Z
Tools, 182

Apache HTTP server, 196

www.it-ebooks.info

http://www.it-ebooks.info/

■ INDEX

211

config location, 200
configuration file location, 200–201
DocumentRoot, 203
downloading, 196, 197
httpd.conf file, 203
notepad,administrator., 202
open–source web server, 196
restart, 204
server information, 198
setup type window, 199

firebug and console,Firefox Browser, 182
add-ons menu option, 183
command editor, 185, 186
debugging tool, 182
enabling, 184
installation, 183

jQuery UI Widget factory, 186
baseFontSize, 195
demo initial page, 189
demo step 2, 191
demo step 3, 192
demo step 5, 193
demo step 6, 194
demo step 7, 195
demo step1, 190
destroy method, 194
final console output, 196
font size, toggle, 186
framework, 186
getBaseFontSize, 189
JSON options object., 192
preceding code, 188
setWidgetVars, 189
toggleFontSize(), 190

www.it-ebooks.info

http://www.it-ebooks.info/

Expert Oracle Application
Express Plug-Ins

Building Reusable Components

Martin Giffy D’Souza

www.it-ebooks.info

http://www.it-ebooks.info/

Expert Oracle Application Express Plug-Ins: Building Reusable Components

Copyright © 2011 by Martin Giffy D’Souza

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-4302-3503-3

ISBN-13 (electronic): 978-1-4302-3504-0

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

President and Publisher: Paul Manning
Lead Editor: Jonathan Gennick
Technical Reviewer: Edmund Zehoo
Editorial Board: Steve Anglin, Mark Beckner, Ewan Buckingham, Gary Cornell, Morgan Ertel,

Jonathan Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic
Shakeshaft, Gwenan Spearing, Matt Wade, Tom Welsh

Coordinating Editor: Adam Heath
Copy Editor: Mary Ann Fugate
Compositor: Apress Production (Christine Ricketts)
Indexer: SPI Global
Artist: SPI Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media, NY., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be caused
directly or indirectly by the information contained in this work.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
http://www.apress.com/source-code/.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/
http://www.it-ebooks.info/

iv

Contents

Contents at a Glance .. iii

Contents .. iv

About the Author ..ix

About the Technical Reviewer . .. x

Acknowledgments xi

Introduction .. xii

Chapter 1: Introduction to Plug-Ins . .. 1

About This Book . .. 1

Plug-Ins and Their Advantages . .. 2

Getting Started.. 3

Oracle Database ... 3

APEX Instance .. 4

Development IDE . .. 4

Web Browser ... 4

Web Server . .. 4

Summary . .. 5

Chapter 2: Plug-In Fundamentals 7

www.it-ebooks.info

http://www.it-ebooks.info/

■ CONTENTS

v

Creating a Plug-In ... 7

Plug-In Components ... 9

Name ... 9

Subscription ... 12

Settings .. 12

Source .. 13

Callbacks ... 13

Standard Attributes .. 15

Custom Attributes .. 20

Files ... 23

Events .. 24

Information .. 27

Help Text (for the Plug-In) .. 28

Licensing .. 28

Summary .. 28

Chapter 3: Item Plug-Ins .. 29

Business Problem ... 29

Example Scenario .. 30

Solution Requirements .. 31

Building the Item Plug-In .. 31

Creating the Plug-In and a Test Page .. 32

Initial Configuration.. 34

Including JavaScript Code ... 35

Adding Custom Attributes .. 40

Rendering Function .. 46

www.it-ebooks.info

http://www.it-ebooks.info/

■ CONTENTS

vi

Adding a Validation Function ... 55

Wrapping Up .. 65

Events ... 69

Summary .. 73

Chapters 4: Dynamic Action Plug-Ins ... 75

About Dynamic Actions .. 75

How Dynamic Actions Work ... 80

Example Business Problem .. 86

Building the Dynamic Action Plug-In .. 87

Initial Configuration and Setup .. 88

Custom Attributes .. 92

Render Function ... 100

JavaScript .. 104

Testing It Out ... 109

Summary .. 111

Chapter 5: Region Plug-Ins ... 113

Background on Regions and AJAX ... 113

Regions .. 113

AJAX... 115

Example Business Problem .. 120

Building the Region Plug-in .. 123

Initial Configuration and Setup .. 123

www.it-ebooks.info

http://www.it-ebooks.info/

■ CONTENTS

vii

Custom Attributes .. 124

Creating a Test Page .. 126

Creating the Render Function .. 128

Creating the AJAX Function ... 133

Testing the Plug-in ... 140

Summary .. 142

Chapter 6: Process Plug-ins ... 143

PL/SQL Region vs. Process Plug-in .. 143

Business Problem ... 143

Building the Process Plug-in .. 144

Resolving Technical Requirements .. 144

Setting up Initial Configuration .. 146

Adding Custom Attributes .. 147

Execution Function .. 148

Testing it Out ... 151

Summary .. 155

Chapter 7: Best Practices & Community .. 157

When to Create a Plug-in .. 157

Be Aware About Security .. 158

Cross-Site Scripting Attacks .. 158

SQL Injection Attacks ... 159

Protect Sensitive Information .. 160

Instrument Your Code ... 160

www.it-ebooks.info

http://www.it-ebooks.info/

■ CONTENTS

viii

Comment Your Code ... 161

Base Your Code Upon Templates .. 161

Versioning External Files .. 161

Compress JavaScript and CSS Files ... 171

Put Thought Into Your Error Handling .. 172

Write Good Help Text .. 172

Participate in the Plug-in Community .. 174

Summary .. 175

Chapters 8: Debugging & Tools .. 177

Debugging and Code Instrumentation .. 177

JavaScript Console Wrapper .. 177

APEX Debug ... 180

Tools ... 182

Firebug and Console in the Firefox Browser .. 182

jQuery UI Widget Factory ... 186

Apache HTTP Server .. 196

APEX Dictionary and APIs ... 205

APEX Dictionary ... 205

APEX APIs .. 206

Summary .. 206

Index ... 207

www.it-ebooks.info

http://www.it-ebooks.info/

ix

About the Author

Martin Giffy D’Souza is a co-founder and CTO at ClariFit Inc.
(www.clarifit.com), a consulting firm and custom solutions provider
that specializes in APEX and PL/SQL development. Martin’s experience
in the technology industry has been focused on developing database-
centric web applications using the Oracle APEX technology stack.

Prior to co-founding ClariFit Inc., Martin’s career has seen him
hold a range of positions within award-winning companies. Martin is
also the author of the highly recognized blog, www.TalkApex.com, which
boasts a multitude of posts on a wide array of APEX-focused topics. He
has also presented at numerous international conferences such as
APEXposed, COUG, and ODTUG, for which he won the Presenter of the
Year award in 2011.

Martin is an Oracle ACE and holds a computer engineering degree
from Queen’s University in Kingston, Ontario, Canada.

www.it-ebooks.info

http://www.clarifit.com
http://www.TalkApex.com
http://www.it-ebooks.info/

x

About the Technical Reviewer

Edmund T. Zehoo is the chief technology officer and co-founder of Arigoo Pte Ltd., an e-forms and
workflows solution vendor based in Singapore. He was the lead architect in the four-year design of
Arigoo’s flagship product from scratch, which is now a mature product in Singapore with a list
of multinational corporate customers to its name. He also holds more than eight years of experience in
building performance-critical .NET e-forms and workflows solutions hosted on top of Oracle databases
for large companies and governmental institutions located in Singapore

www.it-ebooks.info

http://www.it-ebooks.info/

xi

Acknowledgments

This book wouldn’t have been possible if it weren’t for several individuals who have helped out behind
the scenes, providing support through answering questions and giving me some ideas and feedback.
More specifically, thanks to Patrick Wolf and Daniel McGhan for their input and excellent
recommendations. As well thanks to my business partners, Cameron Mahbubian and Chris Hritzuk, for
working extra hard on the business to allow me to focus on this book.

Of course, it goes without saying that I’d like to thank my family. Despite the fact that they have no
idea what a database is (in spite of my many attempts to try to explain it to them), they’ve always been
very supportive of everything I do and this book was no different. Thanks to my parents, Norbert and
Susanne, for all their support and guidance.

There’s a saying that goes, “Behind every great man, there’s an even greater woman.” Special thanks
to my partner, Stephanie Schubert, for being understanding and supportive over some very late nights as
I wrote this book. Without her support, this book wouldn’t have happened.

—Martin Giffy D’Souza

www.it-ebooks.info

http://www.it-ebooks.info/

xii

Introduction

When APEX 4.0 was first released, I was very excited about all of the new features and fixes. The two new
features that interested me the most were dynamic actions and plug-ins. I was fortunate to be able to
write about dynamic actions in the Expert Oracle Application Express book earlier this year. When the
opportunity presented itself to write a book entirely dedicated to plug-ins, I couldn’t resist.

After writing countless examples on how to modify APEX on my blog, www.talkapex.com, I was
ecstatic when plug-ins were introduced to APEX. They offer developers a standardized, declarative way
to write customized objects in APEX and easily reuse them within an application. Of course, you can
share plug-ins with your organization or even with the entire APEX community. I’ve written many free
plug-ins, which can be found at plugins.clarifit.com and are available for download at www.apex-
plugin.com.

Halfway through writing this book, APEX 4.1 was released. APEX 4.1 introduced some new features
and enhancements to the plug-in framework, and I decided to go back and re-write several sections in
this book to reflect the changes between versions. The only thing from the new plug-in features
introduced in APEX 4.1 that is not covered in this book is the two new types of plug-ins: authorization
and authentication. The four other types of plug-ins are covered in detail in this book, and you should be
able to leverage the knowledge obtained from them to help yourself write authorization and
authentication plug-ins.

This book provides you with all the necessary information to get a solid foundation of how to build
an APEX plug-in. It also includes information on some tools that will be helpful to you when developing
plug-ins. You may find it helpful to flip back and forth between your current page and Chapters 7 and 8,
which focus on best practices, debugging, and tools.

Once you finish this book, or even get through the first example plug-in, I encourage you to try to
create your own plug-in. It will feel awkward at first, and you will inevitably run into some issues on your
first try. Don’t get discouraged and stop. With some extra work, you will get the knack of how plug-ins
work and will learn to love writing them soon enough. Once you get the hang of them, you will never go
back.

My best advice for writing your first plug-in is to choose a really simple problem and go from there.
The first time I took a stab at writing a plug-in, I had a complex issue I was trying to solve. After many
hours, I had to scrap all my work and start over with the goal of solving a simple problem first.
Throughout the book, I emphasize always listing out your requirements before writing a single line of
code. I hope you follow this advice, which will inevitably save you time.

Good luck, and I hope you enjoy this book and find it helpful.

—Martin Giffy D’Souza

www.it-ebooks.info

http://www.talkapex.com
http://www.apex-plugin.com
http://www.apex-plugin.com
http://www.apex-plugin.com
http://www.it-ebooks.info/

	Cover
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction

	Introduction to Plug-Ins
	About This Book
	Plug-Ins and Their Advantages
	Getting Started
	Oracle Database
	APEX Instance
	Development IDE
	Web Browser
	Web Server

	Summary

	Plug-In Fundamentals
	Creating a Plug-In
	Plug-In Components
	Name
	Subscription
	Settings
	Source
	Callbacks
	Standard Attributes
	Custom Attributes
	Files
	Events
	Information
	Help Text (for the Plug-In)

	Licensing
	Summary

	Item Plug-Ins
	Business Problem
	Example Scenario
	Solution Requirements

	Building the Item Plug-In
	Creating the Plug-In and a Test Page
	Initial Configuration
	Including JavaScript Code
	Adding Custom Attributes
	Rendering Function
	Adding a Validation Function
	Wrapping Up

	Events
	Summary

	Dynamic Action Plug-Ins
	About Dynamic Actions
	How Dynamic Actions Work
	Example Business Problem
	Building the Dynamic Action Plug-In
	Initial Configuration and Setup
	Custom Attributes
	Render Function
	JavaScript
	Testing It Out

	Summary

	Region Plug-Ins
	Background on Regions and AJAX
	Regions
	AJAX

	Example Business Problem
	Building the Region Plug-in
	Initial Configuration and Setup
	Custom Attributes
	Creating a Test Page
	Creating the Render Function
	Creating the AJAX Function
	Testing the Plug-in

	Summary

	Process Plug-ins
	Resolving Technical Requirements
	Setting up Initial Configuration
	Adding Custom Attributes
	Execution Function
	Testing it Out
	Summary

	Best Practices & Community
	When to Create a Plug-in
	Be Aware About Security
	Cross-Site Scripting Attacks
	SQL Injection Attacks
	Protect Sensitive Information

	Instrument Your Code
	Comment Your Code
	Base Your Code Upon Templates
	Versioning External Files
	Compress JavaScript and CSS Files
	Put Thought Into Your Error Handling
	Write Good Help Text
	Participate in the Plug-in Community
	Summary

	Debugging & Tools
	Debugging and Code Instrumentation
	JavaScript Console Wrapper
	APEX Debug

	Tools
	Firebug and Console in the Firefox Browser
	jQuery UI Widget Factory
	Apache HTTP Server

	APEX Dictionary and APIs
	APEX Dictionary
	APEX APIs

	Summary

	Index
	A, B
	C
	I, J, K, L, M, N, O
	P, Q
	R, S
	T, U, V, W, X, Y, Z

