e @ Access Database Design & Programming, Second Edition

Steven Roman
Publisher: O'Reilly

o Second Edition July 1999
,m Ly ISBN: 1-56592-626-9, 429 pages

ACCess =
Database

Fxsdger & Pregernmmfig

CVREILLY"
This second edition of the best-selling Access Database Design &

Copyright Programming covers Access new VBA Integrated Development
Table of Contents Environment used by Word, Excel, and Powerpoint; the VBA language
Index itself; Microsoft's latest data access technology, Active Data Objects
Full Description (ADO); plus Open Database Connectivity (ODBC).
About the Author
Reviews
Reader reviews
Errata

Access Database Design & Programming, Second Edition

Dedication

Preface
The Book's Audience
Organization of This Book
Conventionsin This Book
Obtaining Updated | nformation
Reguest for Comments
Acknowledgments

|: Database Design

1. Introduction
1.1 Database Design
1.2 Database Programming

2. The Entity-Relationship Model of a Database
2.1 What Is a Database?
2.2 Entities and Their Attributes
2.3 Keys and Superkeys
2.4 Relationships Between Entities

3. Implementing Entity-Relationship M odels: Relational Databases
3.1 Implementing Entities
3.2 A Short Glossary
3.3 Implementing the Relationshipsin a Relational Database
3.4 The LIBRARY Relational Database
3.5 Index Files
3.6 NULL Values

4. Database Design Principles
4.1 Redundancy
4.2 Normal Forms
4.3 First Normal Form
4.4 Functional Dependencies
4.5 Second Normal Form
4.6 Third Normal Form
4.7 Boyce-Codd Normal Form
4.8 Normalization

Il: Database Queries

5. Query L anguages and the Relational Algebra
5.1 Query Languages
5.2 Relational Algebra and Relational Calculus
5.3 Details of the Relational Algebra

6. Access Structured Query L anguage (SQL)
6.1 Introduction to Access SOL
6.2 Access Query Design
6.3 Access Query Types
6.4 Why Use SQL?
6.5 Access SOL
6.6 The DDL_Component of Access SQL
6.7 The DML Component of Access SOL

III: Database Architecture

7. Database System Architecture
7.1 Why Program?
7.2 Database Systems
7.3 Database M anagement Systems
7.4 The Jet DBMS
7.5 Data Definition L anguages
7.6 Data Manipulation L anguages
7.7 Host L anguages
7.8 The Client/Server Architecture

IV: Visual Basic for Applications

8. The Visual Basic Editor, Part |
8.1 The Project Window
8.2 The Properties Window
8.3 The Code Window
8.4 The Immediate Window
8.5 Arranging Windows

9. The Visual Basic Editor, Part 11
9.1 Navigating the IDE
9.2 Getting Help
9.3 Creating a Procedure
9.4 Run Time, Design Time, and Break Mode
9.5 Errors
9.6 Debugging

10. Variables, Data Types, and Constants
10.1 Comments
10.2 Line Continuation
10.3 Constants
10.4 Variables and Data Types
10.5 VBA Ogperators

11. Functions and Subroutines
11.1 Calling Functions
11.2 Calling Subroutines
11.3 Parameters and Arguments
11.4 Exiting a Procedure
11.5 Public and Private Procedures
11.6 Fully Qualified Procedure Names

12. Built-in Functions and Statements
12.1 The MsgBox Function
12.2 The InputBox Function
12.3 VBA String Functions
12.4 Miscellaneous Functions and Statements
12.5 Handling Errorsin Code

13. Control Statements
13.1 Thelf...Then Statement
13.2 The For L oop
13.3 Exit For
13.4 The For Each Loop
13.5 The Do Loop
13.6 The Select Case Statement
13.7 A Final Note on VBA

V: Data Access Objects

14. Programming DAQ: Overview
14.1 Objects
14.2 The DAO Object Model
14.3 The Microsoft Access Object M odel
14.4 Referencing Objects
14.5 Collections Are Objects Too
14.6 The Properties Collection
14.7 Closing DA O Objects
14.8 A Look at the DAO Objects
14.9 The CurrentDb Function

15. Programming DAQO: Data Definition L anguage
15.1 Creating a Database
15.2 Opening a Database
15.3 Creating a Table and Its Fields
15.4 Creating an Index
15.5 Creating a Relation
15.6 Creating a QueryDef

16. Programming DA O: Data Manipulation L anguage
16.1 Recordset Objects
16.2 Opening a Recordset
16.3 Moving Through a Recordset

16.4 Finding Records in a Recordset
16.5 Editing Data Using a Recordset

V1: ActiveX Data Objects

17. ADO and OLE DB
17.1 What IsADQO?
17.2 Installing ADO
17.3 ADO and OLE DB
17.4 The ADO Object Model
17.5 Finding OL E DB Providers
17.6 A Closer Look at Connection Strings

VI1I: Appendixes

A.DAO 3.0/3.5 Collections, Properties, and Methods
A.1 DAO Classes
A.2 A Collection Object
A.3 Connection Object (DAO 3.5 Only)
A.4 Container Object
A.5 Database Object
A.6 DBEnNgine Object
A.7 Document Object

A.8 Error Object

A.9 Field Object
A.10 Group Object

A.11 Index Object
A.12 Parameter Object
A.13 Property Object
A.14 QueryDef Object
A.15 Recordset Object
A.16 Relation Object
A.17 TableDef Object

A.18 User Object
A.19 Workspace Object

B. The Quotient: An Additional Operation of the Relational Algebra

C. Open Database Connectivity (ODBC)
C.1 Introduction
C.2 The ODBC Driver Manager
C.3The ODBC Driver
C.4 Data Sources
C.5 Getting ODBC Driver Help
C.6 Getting ODBC Information Using Visual Basic

D. Obtaining or Creating the Sample Database
D.1 Creating the Database
D.2 Creating the BOOKS Table
D.3 Creating the AUTHORS Table
D.4 Creating the PUBLISHERS Table
D.5 Creating the BOOK/AUTHOR Table
D.6 Backing Up the Database
D.7 Entering and Running the Sample Programs

E. Suggestions for Further Reading

Colophon
Dedication

To Donna

Preface

Let me begin by thanking all of those readers who have helped to make the first edition
of this book so very successful. Also, my sincere thanks go to the many readers who have
written some very flattering reviews of the first edition on amazon.com and on O'Reilly's
own web site. Keep them coming.

With the recent release of Office 2000, and in view of the many suggestions | have
received concerning the first edition of the book, it seemed like an appropriate time to do
a second edition. | hope that readers will find the second edition of the book to be even
more useful than the first edition.

Actualy, Access has undergone only relatively minor changesin its latest release, at least
with respect to the subject matter of this book. Changes for the Second Edition are:

A discussion (Chapter 8, and Chapter 9 of Access new VBA Integrated
Development Environment. At last Access shares the same IDE as Word, Excdl,
and PowerPoint!

In response to reader requests, | have significantly expanded the discussion of the
VBA language itself, which now occupies Chapter 10, Chapter 11, Chapter 12,
and Chapter 13.

Chapter 17, which is new for this edition, provides afairly complete discussion of
ActiveX Data Objects (ADO). Thisis also accompanied by an appendix on Open
Database Connectivity (ODBC), which is still intimately connected with ADO.

Asyou may know, ADO is a successor to DAO (Data Access Objects) and is
intended to eventually replace DAO, athough | suspect that this will take some
considerable time. While the DAO modéd is the programming interface for the Jet
database engine, ADO has a much more ambitious goa—it is a programming
model for a universal data access interface called OLE DB. Simply put, OLE DB
is atechnology that is intended to be used to connect to any type of data—
traditional database data, spreadsheet data, Web-based data, text data, email, and
soon.

Frankly, while the ADO object model is smaller than that of DAO, the
documentation is much less complete and, as a result, ADO seems far more
confusing than DAO, especially when it comes to issues such as how to create the
infamous connection strings. Accordingly, | have spent considerable time

discussing this and other difficult issues, illustrating how to use ADO to connect
to Jet databases, Excel spreadsheets, and text files.

| should also mention that while the Access object model has undergone significant
changes, as you can see by looking at Figure 14.7, the DAO object model has changed
only in one respect. In particular, DAO has been upgraded from version 3.5 to version
3.6. Here iswhat Microsoft itself says about this new release:

DAO 3.6 has been updated to use the Microsoft® Jet 4.0 database engine. This includes
enabling all interfaces for Unicode. Data is now provided in unicode (internationally
enabled) format rather than ANSI. No other new features were implemented.

Thus, DAO 3.6 does not include any new objects, properties, or methods.

This book appears to be about two separate topics—database design and database
programming. It is. It would be misleading to claim that database design and database
programming are intimately related. So why are they in the same book?

The answer is that while these two subjects are not related, in the sense that knowledge of
one leads directly to knowledge of the other, they are definitely linked, by the simple fact
that a power database user needs to know something about both of these subjects in order
to effectively create, use, and maintain a database.

In fact, it might be said that creating and maintaining a database application in Microsoft
Access is done in three broad steps—designing the database, creating the basic graphical
interface (i.e., setting up the tables, queries, forms, and reports) and then getting the
application to perform in the desired way.

The second of these three stepsis fairly straightforward, for it is mostly a matter of
becoming familiar with the relatively easy-to-use Access graphical interface. Help is
available for this through Access's own online help system, as well as through the
literally dozens of overblown 1000-page-plus tomes devoted to Microsoft Access.
Unfortunately, none of the books that | have seen does any real justice to the other two
steps. Hence this book.

To be a bit more specific, the book has two goals:
To discuss the basic concepts of relational database theory and design.
To discuss how to extract the full power of Microsoft Access, through
programming in the Access Structured Query Language (SQL) and the Data
Access Object (DAO) component of the Microsoft Jet database engine.

To accomplish the first goal, we describe the how and why of creating an efficient
database system, explaining such concepts as:

Entities and entity classes

Keys, superkeys, and primary keys
One-to-one, one-to- many, and many-to- many relationships
Referential integrity

Joins of various types (inner joins, outer joins, equi-joins, semi-joins, e-j oins, and
S0 on>

Operations of the relational algebra (selection, projection, join, union,

intersection, and so on)

Norma forms and their importance

Of course, once you have a basic understanding of how to create an effective relational
database, you will want to take full advantage of that database, which can only be done
through programming. In addition, many of the programming techniques we discussin
this book can be used to create and maintain a database from within other applications,
such as Microsoft Visua Basic, Microsoft Excel, and Microsoft Word.

We should hasten to add that this book is not a traditional cookbook for learning
Microsoft Access. For instance, we do not discuss forms and reports, nor do we discuss
such issues as database security, database replication, and multiuser issues. Thisis why
we have been able to keep the book to a (hopefully) readable few hundred pages.

This book isfor Access users at al levels. Most of it applies equally well to Access 2.0,
Access 7.0, Access 8.0, and Access 9.0 (which is a component of Microsoft Office 2000).
We will assume that you have a passing acquaintance with the Access development
environment, however. For instance, we assume that you aready know how to create a
table or a query.

Throughout the book, we will use a specific modest-sized example to illustrate the
concepts that we discuss. The example consists of a database called LIBRARY that is
designed to hold data about the books in a certain library. Of course, the amount of data
we will use will be kept artificially small—just enough to illustrate the concepts.

The Book's Audience

Most books on Microsoft Access focus primarily on the Access interface and its
components, giving little attention to the more important issue of database design. After
all, once the database application is complete, the interface components play only a small
role, whereas the design continues to affect the usefulness of the application.

In attempting to restore the focus on database design, this book aspires to be a kind of
"second course” in Microsoft Access—a book for Access users who have mastered the
basics of the interface, are familiar with such things as creating tables and designing
gueries, and now want to move beyond the interface to create programmable Access
applications. This book provides a firm foundation on which you can begin to build your
database application development skills.

At the same time that this book is intended primarily as an introduction to Access for
aspiring database application developers, it also is of interest to more experienced Access
programmers. For the most part, such topics as normal forms or the details of the
relational algebra are almost exclusively the preserve of the academic world. By
introducing these topics to the mainstream Access audience, Access Database Design &
Programming offers a concise, succinct, readable guide that experienced Access

devel opers can turn to whenever some of the details of database design or SQL
statements escape them.

Organization of This Book

Access Database Design & Programming consists of 17 chapters that are divided into six
parts. In addition, there are five appendixes.

Chapter 1 examines the problems involved in using a flat database—a single table that
holds all of an application's data—and makes a case for using instead a relational
database design consisting of multiple tables. But because relational database
applications divide data into multiple tables, it is necessary to be able to reconstitute that
data in ways that are useful—that is, to piece data back together from their multiple
tables. Hence, the need for query languages and programming, which are in many ways
an integral part of designing a database.

Part |, Database Design

The first part of the book then focuses on designing a database—that is, on the process of
decomposing data into multiple tables.

Chapter 2 introduces some of the basic concepts of relational database management, like
entities, entity classes, keys, superkeys, and one-to-many and many-to- many
relationships.

Chapter 3 shows how these general concepts and principles are applied in designing a
real-world database. In particular, the chapter shows how to decompose a sample flat
database into a well-designed relational database.

Chapter 4 continues the discussion begun in Chapter 3 by focusing on the maor problem
of database design, that of eliminating data redundancy without losing the essential
relationships between items of data. The chapter introduces the notion of functional
dependencies and examines each of the mgjor forms for database normalization.

Once a database is properly normalized, or its data are broken up into discrete tables, it
must, almost paradoxically, be pieced back together again in order to be of any value at
all. The next part of the book focuses on the query languages that are responsible for
doing this.

Part |1, Database Queries

Chapter 5 introduces procedural query languages based on the relational algebra and
nonprocedural query languages based on the relational calculus, then focuses on the
major operations—like unions, intersections, and inner and outer joins—that are available
using the relational algebra.

Chapter 6 shows how the relational algebrais implemented in Microsoft Access, both in
the Access Query Design window and in Access SQL. Interestingly, the Access Query
Design window is really afront end that constructs Access SQL statements, which
ordinarily are hidden from the user or developer. However, it does not offer a complete
replacement for Access SQL—a number of operations can only be performed using SQL
statements, and not through the Access graphical interface. This makes a basic
knowledge of Access SQL important.

While SQL isacritical tool for getting at data in relational database management systems
and returning recordsets that offer various views of their data, it is also an unfriendly tool.
The Access Query Design window, for example, was developed primarily to hide the
implementation of Access SQL from both the user and the programmer. But Access SQL,
and the graphical query facilities that hide it, do not form an integrated environment that
the database programmer can rely on to shield the user from the details of an application’s
implementation. Instead, creating this integrated application environment is the
responsibility of a programming language (Visua Basic for Applications or VBA) and an
interface between the programming language and the database engine (DAO). Part 1V

and Part V examine these two tools for application development.

Part |11, Database Architecture

Part I11 consists of a single chapter, Chapter 7, that describes the role of programming in
database application development, and introduces the major tools and concepts needed to
create an Access application.

Part 1V, Visual Basic for Applications

When programming in Access VBA, you use the VBA integrated devel opment
environment (or IDE) to write Access VBA code. The former topic is covered in Chapter
8 and Chapter 9, while the following three chapters are devoted to the latter. In particular,
separate chapters are devoted to VBA variables, data types, and constants (Chapter 10),
to VBA functions and subroutines (Chapter 11), to VBA statements and its intrinsic
functions (Chapter 12), and to statements that ater the flow of program execution

(Chapter 13).
Part V, Data Access Objects

Chapter 14 introduces Data Access Objects, or DAO. DAO provides the interface
between Visual Basic for Applications and the Jet database engine used by Access. The

chapter provides an overview of working with objectsin VBA before examining the
DAO object model and the Microsoft Access object model.

Chapter 15 focuses on the subset of DAO that is used to define basic database objects.
The chapter discusses operations such as creating tables, indexes, and query definitions
under program control.

Chapter 16 focuses on working with recordset objects and on practical record-oriented
operations. The chapter discusses such topics as recordset ravigation, finding records,
and editing data.

Part VI, ActiveX Data Objects

Chapter 17 explores ActiveX Data Objects, Microsoft's newest technology for data
access, which offers the promise of a single programmatic interface to data in any format
and in any location. The chapter will examine when and why you might want to use
ADO, and show you how to take advantage of it in your code.

Appendixes

Appendix A isintended as a quick reference guide to DAO 3.0 (which isincluded with
Access for Office 95) and DAO 3.5 (which isincluded with Access for Office 97).

Appendix B examines one additional little-used query operation that was not discussed in
Chapter 5.

Appendix C examines how to use ODBC to connect to a data source.

Appendix D contains instructions for either downloading a copy of the sample files from
the book or creating them yourself.

Appendix Elists some of the major works that provide in-depth discussion of the issues
of relational database design and normalization.

Conventions in This Book

Throughout this book, we've used the following typographic conventions:

UPPERCASE
indicates a database name (e.g., LIBRARY) or the name of atable within a
database (e.g., BOOKYS). Keywords in SQL statements (e.g., SELECT) also
appear in uppercase, as well as types of data (e.g., LONG), commands (e.g.,

CREATE VALUE), options (HAVING), etc.

Constant w dth

indicates a language construct such as a language statement, a constant, or an
expression. Lines of code also appear in constant width, as do function and
method prototypes in body text.

Constant width italic

indicates parameter and variable names in body text. In syntax statements or
prototypes, constant width italic indicates replaceable parameters.

ltalic

isused in normal text to introduce a new term and to indicate object names (e.g.,
QueryDef), the names of entity classes (e.g., the Books entity class), and VBA
keywords.

Obtaining Updated Information

The sample tablesin the LIBRARY database, as well as the sample programs presented
in the book, are available online and can be freely downloaded. Alternately, if you don't
have access to the Internet either by using a web browser or afile transfer protocol (FTP)
client, and if you don't use anemail system that allows you to send and receive email
from the Internet, you can create the database file and its tables yourself. For details, see

Appendix D.

Updates to the material contained in the book, along with other Access-related
developments, are available from our web site,

http://www.oreilly.com/catal og/accessdata?. Simply follow the links to the Windows
section

Request for Comments
Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is aweb page for this book, which lists errata, examples, and any additional
information. Y ou can access this page at:

http://www.oreilly.com/catalog/accessdata?/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, software, Resource Centers, and the
O'Reilly Network, see the O'Reilly web site at:

http://www.oreilly.com

Acknowledgments

My thanks to Ron Petrusha, editor at O'Reilly & Associates, for making many useful
suggestions that improved this book.

Also thanks to the production staff at O'Reilly & Associates, including Jane Ellin, the
Production Editor, Edie Freedman for the cover design, Nancy Priest for interior design,
Mike Sierrafor Tools support, Chris Reilley and Rob Romano for the illustrations, David
Futato and Sheryl Avruch for quality and sanity control, and Seth Maidlin for the index.

Part I. Database Design

1.1 Database Design

As mentioned in the Preface, one purpose of this book isto explain the basic concepts of
modern relational database theory and show how these concepts are realized in Microsoft
Access. Allow me to amplify on this rather lofty goal.

To take a very simple view, which will do nicely for the purposes of this introductory
discussion, adatabase is just a collection of related data. A database management
system, or DBMS, is a system that is designed for two main purposes:

To add, delete, and update the data in the database
To provide various ways to view (on screen or in print) the datain the database

If the data are ssmple, and there is not very much data, then a database can consist of a
singletable. In fact, a smple database can easily be maintained even with aword
processor!

To illustrate, suppose you want to set up a database for the books in alibrary. Purely for
the sake of illustration, suppose the library contains 14 books. The same discussion
would apply to alibrary of perhaps afew hundred books. Table 1.1 shows the
LIBRARY_FLAT database in the form of asingle table.

Table1.1. The LIBRARY_FLAT Sample Database

ISBN Title AulD| AuName AuPhone |PublD| PubName | PubPhone |Price

1-1111-1111- |C++ 4 Roman 444-444- 1 Big House |123-456- $29.95

1 4444 7890

899'999999 Emma 1 Austen 111—1111- Big House %230456_ $20.00
ST [0 [T s 1 e
(5>91-045678» Hamlet 5 Shakespeare 2255555_ AlphaPress 8839999_ $20.00
g 1030 g 3 |Homer [S305 BigHouse [Too ™0 625,00
812'34567& Jane Eyre 1 Bronte ﬁilll_ ﬁrgﬁsle gégomo $49.00
399'777777' KingLear |5 Shakespeare 2255555_ AlphaPress 8839999_ $49.00
8555'55555 Macbeth 5 Shakespeare 2255555_ Alpha Press 3239999_ $12.00
g T30 Ivopy Dick 2 |Menville [55527 s looo0 " [sa000
13 lonLibety 8 |wmil Do - BigHouse (700" 1§25.00
o[S [o
?321_32132— Balloon 11 |Snoopy 33%_2321_ ﬁrgﬁsle gégomo $34.00
2321'32132— Balloon 12 |Grumpy ggcl)_OSZL ﬁgﬂsl,e gcl)g()ooo $34.00
855'123456 Main Street |10 |Jones 533333_ ﬁrgile 5(1)30000 $22.95
855_123456 Main Street |9 Smith %322222_ ﬁrgﬁsle gégomo $22.95
g123-45678 Ulysses 6 Joyce gggeﬁ%_ AlphaPress 8339999_ $34.00
3'22'233700 Visua Basic |4 Roman m4444_ Big House %230456_ $25.00

(Columns labeled AulD and Publ D are included for indentification purposes, i.e., to

uniquely identify an author or a publisher. In any case, their presence or absence will not

affect the current discussion.)

LIBRARY_FLAT (Table 1.1) was created using Microsoft Word. For such asimple
database, Word has enough power to fulfill the two goals mentioned earlier. Certainly,
adding, deleting, and editing the table presents no particular problems (provided we know
how to manage tables in Word). In addition, if we want to sort the data by author, for
example, we can just select the table and choose Sort from the Table menu in Microsoft
Word. Extracting a portion of the datain the DELETE_ME table (i.e., creating a view)
can be done by making a copy of the table and then deleting appropriate rows and/or

columns.

1.1.1 Why Use a Relational Database Design?

Thus, maintaining a smple, so-caled flat database consisting of a single table does not
require much knowledge of database theory. On the other hand, most databases worth
maintaining are quite a bit more complicated than that. Real- life databases often have
hundreds of thousands or even millions of records, with data that are very intricately
related. This is where using a full-fledged relational database program becomes essential.
Consider, for example, the Library of Congress, which has over 16 million books in its
collection. For reasons that will become apparent soon, a single table ssmply will rot do
for this database!

1.1.1.1 Redundancy

The main problems associated with using a single table to maintain a database stem from
the issue of unnecessary repetition of data, that is, redundancy. Some repetition of datais
always necessary, as we will see, but the idea is to remove as much unnecessary
repetition as possible.

The redundancy in the LIBRARY _FLAT table (Table 1.1) is obvious. For instance, the
name and phone number of Big House publishers is repeated six times in the table, and
Shakespeare's phone number is repeated thrice.

In an effort to remove as much redundancy as possible from a database, a database
designer must split the data into multiple tables. Here is one possibility for the
LIBRARY_FLAT example, which splits the original database into four separate tables.

A BOOKS table, shownin Table 1.2, in which each book has its own record

An AUTHORS table, shown in Table 1.3, in which each author has his or her own
record

A PUBLISHERS table, shown in Table 1.4, in which each publisher hasits own
record

BOOK/AUTHOR table, shown in Table 1.5, the purpose of which we will explain
abit later

Table 1.2. The BOOKS Table from the LIBRARY_FLAT Database

ISBN Title PublD Price
0-555-55555-9 Macbeth 2 $12.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-999999-9 Emma 1 $20.00
0-91-045678-5 Hamlet 2 $20.00
0-55-123456-9 Main Street 3 $22.95
1-22-233700-0 Visual Basic 1 $25.00
0-12-333433-3 On Liberty 1 $25.00
0-103-45678-9 lliad 1 $25.00

1-1111-1111-1 C++ 1 $29.95
0-321-32132-1 Balloon 3 $34.00
0-123-45678-0 Ulysses 2 $34.00
0-99-777777-7 King Lear 2 $49.00
0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 Moby Dick 3 $49.00
Table 1.3. The AUTHORS Table from the LIBRARY_FLAT Database
AulD AuName AuPhone
1 Austen 111-111-1111
12 Grumpy 321-321-0000
3 Homer 333-333-3333
10 Jones 123-333-3333
6 Joyce 666-666-6666
2 Melville 222-222-2222
8 Mill 888-888-8888
4 Roman 444-444-4444
5 Shakespeare 555-555-5555
13 Sleepy 321-321-1111
9 Smith 123-222-2222
11 Snoopy 321-321-2222
7 Spenser T7-777-7777

Table 1.4. The PUBLISHERS Table from the LIBRARY_FLAT Database

PublD PubName PubPhone
1 Big House 123-456-7890
2 AlphaPress 999-999-9999
3 Small House 714-000-0000

Table 1.5. The BOOK/AUTHOR Table from the LIBRARY_FLAT Database

ISBN AulD
0-103-45678-9 3
0-11-345678-9 2
0-12-333433-3 8
0-12-345678-9 1
0-123-45678-0 6
0-321-32132-1 11
0-321-32132-1 12
0-321-32132-1 13
0-55-123456-9 9
0-55-123456-9 10
0-555-55555-9 5
0-91-045678-5 5

0-91-335678-7 7
0-99-777777-7 5
0-99-999999-9 1
1-1111-1111-1 4
1-22-233700-0 4

Note that now the name and phone number of Big House appears only once in the
database (in the PUBLISHERS table), as does Shakespeare's phone number (in the
AUTHORS table).

Of course, there are still some duplicated data in the database. For instance, the PublD
information appears in more than one place in these tables. As mentioned earlier, we
cannot eliminate al duplicate data and still maintain the relationships between the data.

To get afedl for the reduction in duplicate data achieved by the four-table approach,
imagine (as is reasonable) that the database also includes the address of each publisher.
Then Table 1.1 would need a new column containing 14 addresses—many of which are
duplicates. On the other hand, the four-table database needs only one new column in the
PUBLISHERS table, adding a total of three distinct addresses.

To drive the difference home, consider the 16- millionbook database of the Library of
Congress. Suppose the database contains books from 10,000 different publishers. A
publisher's address column in aflat database design would contain 16 million addresses,
whereas a multitable approach would require only 10,000 addresses. Now, if the average
address is 50 characters long, then the multitable approach would save

(16,000,000 — 10,000) * 50 = 799 million characters

Assuming that each character takes 2 bytes (in the Unicode that is used internally by
Microsoft Access), the single-table approach wastes about 1.6 gigabytes of space, just for
the address field!

Indeed, the issue of redundancy alone is quite enough to convince a database designer to
avoid the flat database approach. However, there are several other problems with flat
databases, which we now discuss.

1.1.1.2 Multiple-value problems

It is clear that some books in our database are authored by multiple authors. This leaves
us with three choices in a single-table flat database:

We can accommodate multiple authors with multiple rows—one for each author,
asin the LIBRARY_FLAT table (Table 1.1) for the books Balloon and Main
Street.

We can accommodate multiple authors with multiple columns in a single ron—
one for each author.

We can include all authors names in one column of the table.

The problem with the multiple-row choice is that all of the data about a book must be
repeated as many times as there are authors of the book—an obvious case of redundancy.
The multiple column approach presents the problem of guessing how many Author
columns we will ever need, and creates a lot of wasted space (empty fields) for books
with only one author. It also creates major programming headaches.

The third choice is to include al authors names in one cell, which can lead to trouble of
its own. For example, it becomes more difficult to search the database for a single author.
Worse yet, how can we create an alphabetical list of the authors in the table?

1.1.1.3 Update anomalies

In order to update, say, a publisher's phone number in the LIBRARY_FLAT database
(Table 1.1), it is necessary to make changes in every row containing that number. If we
miss a row, we have produced a so-called update anomaly , resulting in an unreliable
table.

1.1.1.4 I nsertion anomalies

Difficulties will arise if we wish to insert anew publisher in the LIBRARY _FLAT
database (Table 1.1), but we do not yet have information about any of that publisher's
books. We could add a new row to the existing table and place NULL valuesin al but
the three publisher-related columns, but this may lead to trouble. (A NULL isavalue
intended to indicate a missing or unknown value for afield.) For instance, adding several
such publishers means that the ISBN column, which should contain unique data, will
contain several NULL values. This general problem is referred to asan insertion
anomaly.

1.1.1.5 Deletion anomalies

In contrast to the preceding problem, if we delete al book entries for a given publisher,
for instance, then we will also lose all information about that publisher. Thisis a deletion
anomaly .

This list of potential problems should be enough to convince us that the idea of using a
single-table database is generally not smart. Good database design dictates that the data
be divided into several tables, and that relationships be established between these tables.
Because a table describes a "relation,” such a database is called arelational database. On
the other hand, relational databases do have their complications. Here are a few
examples.

1.1.1.6 Avoiding data loss

One complication in designing arelational database is figuring out how to split the data
into multiple tables so as not to lose any information. For instance, if we had left out the
BOOK/AUTHOR table (Table 1.5) in our previous example, there would be no way to
determine the authors of each book. In fact, the sole purpose of the BOOK/AUTHOR
table is so that we do not lose the book/author relationship!

1.1.1.7 Maintaining relational integrity

We must be careful to maintain the integrity of the various relationships between tables
when changes are made. For instance, if we decide to remove a publisher from the
database, it is not enough just to remove that publisher from the PUBLISHERS table, for
this would leave dangling referencesto that publisher in the BOOKS table.

1.1.1.8 Creating views

When the data are spread throughout several tables, it becomes more difficult to create
various views of the data. For instance, we might want to see alist of al publishers that
publish books priced under $10.00. This requires gathering data from more than one
table. The point is that, by breaking data into separate tables, we must often go to the
trouble of piecing the data back together in order to get a comprehensive view of those
datal

1.1.2 Summary

In summary, it is clear that, to avoid redundancy problems and various unpleasant
anomalies, a database needs to contain multiple tables, with relationships defined
between these tables. On the other hand, this raises some issues, such as how to design
the tables in the database without losing any data, and how to piece together the data
from multiple tables to create various views of that data. The main goal of the first part of
this book is to explore these fundamental issues.

1.2 Database Programming

The motivation for learning database programming is quite ssmple—power. If you want
to have as much control over your databases as possible, you will need to do some
programming. In fact, even some simple things require programming. For instance, there
isno way to retrieve the list of fields of a given table using the Access graphical
interface—you can only get this list through programming. (Y ou can view such alist in
the table design mode of the table but you cannot get access to this list in order to, for
example, present the end-user with the list and ask if he or she wishes to make any
changestoiit.)

In addition, programming may be the only way to access and manipulate a database from
within another application. For instance, if you are working in Microsoft Excel, you can
create and manipulate an Access database with as much power as if you were working
with Access itsdlf, but only through programming! The reason is that Excel does not have

the capability to render graphical representations of database objects. Instead you can
create the database within Access and then manipulate it programmatically from within
Excdl.

It is also worth mentioning that programming can give you a great sense of satisfaction.
There is nothing more pleasing than watching a program that you have written step
through the rows of atable and make certain changes that you have requested. It is often
easier to write a program to perform an action such as this, than trying to remember how
to perform the same action using the graphical interface. In short, programming is not
only empowering, but it also sometimes provides the simplest route to a particular end.

And let us not forget that programming can be just plain fun!

Chapter 2. The Entity-Relationship Model of a
Database

Let us begin our discussion of database design by looking at an informal database model
called the entity-relationship model . This model of arelational database provides avery
useful perspective, especialy for the purposes of theinitial design of the database.

We will illustrate the general principles of this model with our LIBRARY database
example, which we will carry through the entire book. This example database is designed
to hold data about the books in a certain library. The amount of data we will use will be
kept artificially small—just enough to illustrate the concepts. (In fact, at this point, you
may want to take alook at the example database. For details on downloading it from the
Internet, or on using Microsoft Access to create it yourself, see.) In the next chapter, we
will actually implement the entity-relationship (E/R) model for our LIBRARY database.

2.1 What Is a Database?

A database may be defined as a collection of persistent data. The term persistent is
somewhat vague, but is intended to imply that the data has a more-or-less independent
existence, or that it is semipermanent. For instance, data that are stored on paper in a
filing cabinet, or stored magnetically on a hard disk, CD-ROM, or computer tape are
persistent, whereas data stored in a computer's memory are generally not considered to be
persistent. (The term "permanent” is a bit too strong, since very little in life is truly
permanent.)

Of course, thisis avery general concept. Most rea- life databases consist of data that
exist for a specific purpose, and are thus persistent.

2.2 Entities and Their Attributes

The purpose of a database is to store information about certain types of objects. In
database language, these objects are called entities. For example, the entities of the
LIBRARY database include books, authors, and publishers.

It is very important at the outset to make a distinction between the entities that are
contained in a database at a given time and the world of al possible entities that the
database might contain. The reason this is important is that the contents of a database are
constantly changing and we must make decisions based not just on what is contained in a
database at a given time, but on what might be contained in the database in the future.

For example, at agiven time, our LIBRARY database might contain 14 book entities.
However, as time goes on, new books may be added to the database and old books may
be removed. Thus, the entities in the database are constantly changing. If, for example,
based on the fact that the 14 books currently in the database have different titles, we
decide to use the title to uniquely identify each book, we may be in for some trouble
when, later on, a different book arrives at the library with the same title as a previous
book.

The world of all possible entities of a specific type that a database might contain is
referred to as an entity class . We will use italics to denote entity classes. Thus, for
instance, the world of all possible books is the Books entity class and the world of all
possible authors is the Authors entity class.

We emphasize that an entity classisjust an abstract description of something, whereas
an entity is a concrete example of that description. The entity classes in our very modest
LIBRARY example database are (at least so far):

Books
Authors
Publishers

The set of entities of a given entity class that are in the database at a given timeis called
an entity set. To clarify the difference between entity set and entity classwith an
example, consider the BOOK S table in the LIBRARY database, which is shown in Table
2.1.

Table2.1. The BOOKS Table from the LIBRARY Database

1SBN Title Price
0-12-333433-3 On Liberty $25.00
0-103-45678-9 lliad $25.00
0-91-335678-7 Faerie Queene $15.00
0-99-999999-9 Emma $20.00
1-22-233700-0 Visual Basic $25.00

1-1111-1111-1 C++ $29.95
0-91-045678-5 Hamlet $20.00
0-555-55555-9 Macbeth $12.00
0-99-777777-7 King Lear $49.00
0-123-45678-0 Ulysses $34.00
0-12-345678-9 Jane Eyre $49.00
0-11-345678-9 Moby Dick $49.00
0-321-32132-1 Balloon $34.00
0-55-123456-9 Main Street $22.95

The entities are books, the entity classisthe set of al possible books, and the entity set
(at this moment) is the specific set of 14 books listed in the BOOKS table. As mentioned,
the entity set will change as new books (book entities) are added to the table, or old ones
are removed. However, the entity class does not change.

Incidentally, if you are familiar with object-oriented programming concepts, you will
recognize the concept of aclass. In object-oriented circles, we would refer to an entity
classssmply as aclass, and an entity as an object.

The entities of an entity class possess certain properties, which are called attributes. We
usually refer to these attributes as attributes of the entity classitself. It is up to the
database designer to determine which attributes to include for each entity class. It is these
attributes that will correspond to the fields in the tables of the database.

The attributes of an entity class serve three main purposes:

Attributes are used to include information that we want in the database. For
instance, we want the title of each book to be included in the database, so we
include a Title attribute for the Books entity class.

Attributes are used to help uniquely identify individual entities within an entity
class. For instance, we may wish to include a publisher's ID number attribute for
the Publishers entity class, to uniquely identify each publisher. If combinations of
other attributes (such as the publisher's name and publisher's address) will serve
this purpose, the inclusion of an identifying attribute is not strictly necessary, but
it can still be more efficient to include such an attribute, since often we can create
amuch shorter identifying attribute. For instance, a combination of title, author,
publisher, and copyright date would make a very awkward and inefficient
identifying attribute for the Books entity class—much more so than the ISBN
attribute.

Attributes are used to describe relationships between the entities in different
entity classes. We will discuss this subject in more detail later.

For now, let us list the attributes for the LIBRARY database that we need to supply
information about each entity and to uniquely identify each entity. We will deal with the
issue of describing relationships later. Remember that our example is kept deliberately
small—in red life we would no doubt include many other attributes.

The attributes of the entity classesin the LIBRARY database are:

Books attributes
Title
ISBN
Price
Authors attributes
AuName
AuPhone
AulD
Publishers attributes
PubName
PubPhone
PublID

Let us make a few remarks about these attributes.

From these attributes aone, there is no direct way to tell who is the author of a
given book, since there is no author-related attribute in the Books entity class. A
similar statement applies to determining the publisher of a book. Thus, we will
need to add more attributes in order to describe these relationships.

The ISBN (International Standard Book Number) of a book serves to uniquely
identify the book, since no two books have the same ISBN (at least in theory). On
the other hand, the Title alone does not uniquely identify the book, since many
books have the same title. In fact, the sole purpose of ISBNs (here and in the red
world) is to uniquely identify books. Put another way, the ISBN is a quintessential
identifying attribute!

We may reasonably assume that no two publishers in the world have the same
name and the same phone number. Hence, these two attributes together uniquely
identify the publisher. Nevertheless, we have included a publisher's ID attribute to
make this identification more convenient.

Let us emphasize that an entity class is a description, not a set. For instance, the entity
class Booksis a description of the attributes of the entities that we identify as books. A
Books entity is the "database version” of a book. It is not a physical book, but rather a
book as defined by the values of its attributes. For instance, the following is a Books
entity:

Title = Gone Wth the Wnd
| SBN = 0-12-345678-9
Price = $24.00

Now, there is certainly more than one physical copy in existence of the book Gone With
the Wind, with this ISBN and price, but that is not relevant to our discussion. As far as
the database is concerned, there is only one Books entity defined by:

Title = Gone Wth the Wnd

| SBN = 0-12-345678-9
Price = $24.00

If we need to model multiple copies of physical books in our database (asareal library
would do), then we must add another attribute to the Books entity class, perhaps called
CopyNumber. Even till, a book entity isjust a set of attribute values.

These matters emphasize the point that it is up to the database designer to ensure that the
set of attributes for an entity uniquely identify the entity from among all other entities
that may appear in the database (now and forever, if possible!). For instance, if the Books
entity class included only the Title and Price attributes, there would certainly be cause to
worry that someday we might want to include two books with the same title and price.
While thisis allowed in some database application programs, it can lead to great
confusion, and is definitely not recommended. Moreover, it is forbidden by definitionin a
true relational database. In other words, no two entities can agree on all of their attributes.
(Thisis allowed in Microsoft Access, however.)

2.3 Keys and Superkeys

A set of attributes that uniquely identifies any entity from among all possible entitiesin
the entity class that may appear in the database is called a superkey for the entity class.
Thus, the set {ISBN} is a superkey for the Booksentity class and the sets { PublD} and
{ PubName, PubPhone} are both superkeys for the Publishers entity class.

Note that there is a bit of subjectivity in this definition of superkey, since it depends
ultimately on our decision about which entities may ever appear in the database, and this
is probably something of which we cannot be absolutely certain. Consider, for instance,
the Books entity class. Thereis no law that says al books must have an ISBN (and many
books do not). Also, there is no law that says that two books cannot have the same ISBN.
(The ISBN is assigned, at least in part, by the publisher of the book.) Thus, the set
{ISBN} isasuperkey only if we are willing to accept the fact that all books that the
library purchases have distinct ISBNs, or that the librarian will assign a unique ersatz
ISBN to any books that do not have areal ISBN.

It isimportant to emphasize that the concept of a superkey applies to entity classes, and
not entity sets. Although we can define a superkey for an entity set, this is of limited use,
since what may serve to uniquely identify the entities in a particular entity set may fail to
do so if we add new entities to the set. To illustrate, the Title attribute does serve to
uniquely identify each of the 14 books in the BOOKS table. Thus, { Title} is a superkey
for the entity set described by the BOOKS table. However, {Title} is not a superkey for
the Books entity class, since there are many distinct books with the sametitle.

We have remarked that {ISBN} is a superkey for the Books entity class. Of course, sois
{Title, ISBN}, but it is wasteful and inefficient to include the Title attribute purely for the
sake of identification.

Indeed, one of the difficulties with superkeys is that they may contain more attributes
than is absolutely necessary to uniquely indentify any entity. It is more desirable to work
with superkeys that do not have this property. A superkey is called a key when it has the
property that no proper subset of it is also a superkey. Thus, if we remove an attribute
from akey, the resulting set is no longer a superkey. Put more succinctly, akey isa
minimal superkey. Sometimes keys are called candidate keys, since it is usually the case
that we want to select one particular key to use as an identifier. This particular choiceis
referred to as the primary key . The primary keysin the LIBRARY database are ISBN,
AulD, and PublD.

We should remark that a key may contain more than one attribute, and different keys may
have different numbers of attributes. For instance, it is reasonable to assume that both

{ Socia SecurityNumber} and { FullName, Full Address, DateofBirth} are keysfor auUS
Citizens entity class.

2.4 Relationships Between Entities

If we are going to model a database as a collection of entity sets (tables), then we need to
also describe the relationships between these entity sets. For instance, an author
relationship exists between a book and the authors who wrote that book. We might call
this relationship WrittenBy. Thus, Hamlet is WrittenBy Shakespeare.

It is possible to draw a diagram, called anentity-relationship diagram, or E/R diagram, to
illustrate the entity classes in a database model, along with their attributes and
relationships. Figure 2.1 shows the LIBRARY E/R diagram, with an additional entity
class called Contributors (a contributor may be someone who contributes to or writes
only avery small portion of a book, and thus may not be accorded al of the rights of an
author, such as aroyalty).

Figure 2.1. The LIBRARY entity-relationship diagram

Title AuName

ISEN Price AulD AuPhone

N4 N4

/ 4 \ A 4 \\\

PubiD PubPhone ConlD ConPhone

PubName ConName

Note that each entity class is denoted by arectangle, and each attribute by an ellipse. The
relations are denoted by diamonds. We have included the Contributors entity classin this
model merely to illustrate a special type of relationship. In particular, since a contributor
is considered an author, there is an IsA relationship between the two entity classes.

The model represented by an E/R diagram is sometimes referred to as a semantic model,
since it describes much of the meaning of the database.

2.4.1 Typesof Relationships

Referring to Figure 2.1, the symbols 1 and OQrepresent the type of relationship between
the corresponding entity classes. (The symbol OQis read "many.") Relationships can be
classified into three types. For instance, the relationship between Booksand Authors is
many-to-many, meaning that a book may have many authors and an author may write
many books. On the other hand, the relationship from Publishersto Booksis one-to-
many, meaning that one publisher may publish many books, but a book is published by at
most one publisher (or so we will assume).

One-to-one relationships, where each entity on each side is related to at most one entity
on the other side of the relationship, are fairly rare in database design. For instance,
consider the Contributors-Authors relationship, which is one-to-one. We could replace
the Contributors class by a contributor attribute of the Authors class, thus eliminating the
need for a separate class and a separate relationship. On the other hand, if the

Contributors class had several attributes that are not shared by the Authors class, then a
separate class may be appropriate.

In Chapter 3 we will actually implement the full E/R model for our LIBRARY database.

Chapter 3. Implementing Entity-Relationship
Models: Relational Databases

An E/R model of adatabase is an abstract model, visualized through an E/R diagram. For
this to be useful, we must trandlate the abstract model into a concrete one. That is, we
must describe each aspect of the model in the concrete terms that a database program can
manipulate. In short, we must implement the E/R model. This requires implementing
severa things:

The entities

The entity classes

The entity sets

The relationships between the entity classes

The result of this implementation is arelational database.

Aswe will see, implementing the relationships usually involves some changes to the
entity classes, perhaps by adding new attributes to existing entity classes or by adding
new ertity classes.

3.1 Implementing Entities

Aswe discussed in the previous chapter, an entity is implemented (or described in
concrete terms) simply by giving the values of its attributes. Thus, the following is an
implementation of a Books entity:

Title = Gone Wth the Wnd
| SBN = 0-12-345678-9
Price = $24.00

3.1.1 Implementing Entity Classes—T able Schemes

Since the entities in an entity class are implemented by giving their attribute values, it
makes sense to implement an entity class by the set of attribute names. For instance, the
Books entity class can be identified with the set:

{ISBN, Title, Price}

(We will add the PublD attribute name later, when we implement the relationships.)

Since attribute names are usually used as column headings for atable, a set of attribute
names is called atable scheme Thus, entity classes are implemented as table schemes.
For convenience, we use notation such as:

Books(I1SBN, Title, Price)

which shows not only the name of the entity class, but also the names of the attributesin
the table scheme for this class. Y ou can also think of atable scheme as the column
headings row (the top row) of any table that is formed using that table scheme. (We will
see an example of thisin aminute.)

We have defined the concepts of a superkey ard a key for entity classes. These concepts
apply equally well to table schemes, so we may say that the attributes { A,B} form akey
for atable scheme, meaning that they form a key for the entity class implemented by that
table scheme.

3.1.2 Implementing Entity Sets—Tables

In arelational database, each entity set is modeled by atable. For example, consider the
BOOKS table shown in Table 3.1, and note the following:

The first row of the table is the table scheme for the Books entity class.

Each of the other rows of the table implements a Books entity.

The set of al rows of the table, except the first row, implements the entity set
itself.

Table 3.1. The BOOKS Table from the LIBRARY Database

ISBN Title Price
0-12-333433-3 On Liberty $25.00
0-103-45678-9 lliad $25.00
0-91-335678-7 Faerie Queene $15.00
0-99-999999-9 Emma $20.00
1-22-233700-0 Visual Basic $25.00
1-1111-1111-1 C++ $29.95
0-91-045678-5 Hamlet $20.00
0-555-55555-9 Macheth $12.00
0-99-777777-7 King Lear $49.00
0-123-45678-0 Ulysses $34.00
0-12-345678-9 Jane Eyre $49.00
0-11-345678-9 Moby Dick $49.00
0-321-32132-1 Balloon $34.00
0-55-123456-9 Main Street $22.95

More formally, atable T is a rectangular array of elements with the following properties:

The top of each column is labeled with adistinct attribute name A;. The labd Al
isaso caled the column heading.

The elements of the i th column of the table T come from a single set O, called
the domain for the i th column. Thus, the domain is the set of al possible values
for the attribute. For instance, for the BOOKS table in Table 3.1, the domain D, is
the set of all possible ISBNs and the domain D, is the set of all possible book
titles.

No two rows of the table are identical.

L et us make some remarks about the concept of atable.

A table may (but is not required to) have a name, such as BOOKS, which is
intended to convey the meaning of the table as a whole.

The number of rows of the table is called the size of the table and the number of
columns is called the degree of the table. For example, the BOOKS table shown
in Table 3.1 has size 14 and degree 3. The attribute names are ISBN, Title, and
Price.

As mentioned earlier, to emphasize the attributes of atable, it is common to
denote atable by writing T(As,...,An); for example, we denote the BOOK S table
by:

BOOKS(1 SBN, Title, Price)

The order of the rows of atable is not important, and so two tables that differ only
in the order of their rows are thought of as being the same table. Similarly, the
order of the columns of a table is not important as long as the headings are
thought of as part of their respective columns. In other words, we may feel free to
reorder the columns of atable, aslong as we keep the headings with their
respective columns.

Finaly, there is no requirement that the domains of different columns be different.
(For example, it is possible for two columns in a single table to use the domain of
integers.) However, there is a requirement that the attribute names of different
columns be different. Think of the potential confusion that would otherwise
ensue, in view of the fact that we may rearrange the columns of atable!

Now that we have defined the concept of atable, we can say that it is common to define a
relational database as afinite collection of tables. However, this definition belies the
fact that the tables also model the relationships between the entity classes, as we will see.
3.2 A Short Glossary

To help keep the various database terms clear, let us collect their definitions in one place.

Entity

An object about which the database is designed to store information. Example: a
book; that is, an ISBN, atitle, and a price, asin:

0-12-333433-3, On Liberty, $25.00
Attribute

A property that (partially or completely) describes an entity. Example: title.
Entity Class

An abstract group of entities, with a common description. Example: the entity
class Books, representing all books in the universe.

Entity Set

The set of entities from a given entity class that are currently in the database.
Example: the following set of 14 books:

0- 12-333433-3, On Liberty, $25.00

0-103-45678-9, Iliad, $25.00

0-91-335678-7, Faerie Queene, $15.00

0- 99-999999-9, Emma, $20.00

1-22-233700-0, Visual Basic, $25.00

1-1111-1111-1, C++, $29.95

0-91- 045678-5, Ham et, $20.00

0- 555-55555-9, Macheth, $12.00

0-99-777777-7, King Lear, $49.00

0- 123-45678-0, U ysses, $34.00

0- 12-345678-9, Jane Eyre, $49.00

0- 11- 345678-9, Mby Di ck, $49.00

0-321-32132-1, Balloon, $34.00

0-55-123456-9, Main Street, $22.95
Superkey

A set of attributes for anentity class that serves to uniquely identify an entity from
among all possible entitiesin that entity class. Example: the set { Title, ISBN} for
the Books entity class.

Key
A minimal superkey; that is, a key with the property that, if we remove an
attribute, the resulting set is no longer a superkey. Example: the set {ISBN} for
the Books entity class.

Table

A rectangular array of attribute values whose columns hold the attribute values for
a given attribute and whose rows hold the attribute values for a given entity.

Tables are used to implement entity sets. Example: the BOOKSS table shown
earlier in Table 3.1.

Table Scheme
The set of al attribute names for an entity class. Example:
{ISBN, Title,Price}

Since this is the table scheme for the entity class Books, we can use the notation
Books (ISBN,Title,Price).

Relational Database

A finite collection of tables that provides an implementation of an E/R database
modd.

3.3 Implementing the Relationships in a Relational Database

Now let us discuss how we might implement the relationships in an E/R database model.
For convenience, we repeat the E/R diagram for the LIBRARY database in Figure 3.1.

Figure 3.1. The LIBRARY entity-relationship diagram

Title AuName
ISBN Price AulD AuPhaone
X | 7 |
N |/ N |
= i
1 !
AR 20 AN
AN / ™,
PublD PubPhone ConlD ConPhone
PubName ConName

3.3.1 Implementing a One-to-M any Relationship—Foreign Keys

Implementing a one-to- many relationship, such as the Publisher Of relationship, is fairly
easy. Toillustrate, since { PublD} is a key for the Publishers entity class, we simply add
this attribute to the Books entity class. Thus, the Books entity class becomes:

Books(1 SBN, Ti tl e, Publ D, Pri ce)

The Books table scheme is now:

{ISBN, Title, Publ D, Pri ce}

and the BOOK S table now appears as shown in Table 3.2 (sorted by PubID).

Table 3.2. The BOOKS Table Sorted by Publ D

ISBN Title PublD Price
0-12-333433-3 On Liberty 1 $25.00
0-103-45678-9 lliad 1 $25.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-999999-9 Emma 1 $20.00
1-22-233700-0 Visual Basic 1 $25.00
1-1111-1111-1 C++ 1 $29.95
0-91-045678-5 Hamlet 2 $20.00
0-555-55555-9 Macheth 2 $12.00
0-99-777777-7 King Lear 2 $49.00
0-123-45678-0 Ulysses 2 $34.00
0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 Moby Dick 3 $49.00
0-321-32132-1 Balloon 3 $34.00
0-55-123456-9 Main Street 3 $22.95

The Publ D attribute in the Books entity class is referred to as a foreign key, because it isa
key for aforeign entity class, that is, for the Publishersentity class.

Note that the value of the foreign key PublD in the BOOKS table provides areference to
the corresponding value in PUBLISHERS. Moreover, since { PublD} is a key for the
Publishers entity class, there is at most one row of PUBLISHERS that contains a given

value. Thus, for each book entity, we can look up the PublD value in the PUBLISHERS
table to get the name of the publisher of that book. In this way, we have implemented the
one-to- many Publisher Of relationship.

The idea just described is pictured in more general terms in Figure 3.2. Suppose that there
is aone-to-many relationship between the entity classes (or, equivaently, table schemes)
Sand T. Figure 3.2 shows two tables S and T based on these table schemes. Suppose also

that { A,} isakey for table scheme S (the one side of the relationship). Then we add this
attribute to the table scheme T (and hence to table T). In this way, for any row of the
table T, we can identify the unique row in table Sto which it is related.

Figure 3.2. A one-to-many relationship shown in tablesSand T

Table 5 Table T
1 ;
A1 AE - - L] - ﬁ? 51 EE - - L
| v
ve— |
—_.______ ___——_._'_ .',
——_____
e
e
Key Faraign

The attribute set { A2} intable Sisakey for the table scheme S. For this reason, the
attribute set { A2} isaso caled aforeign key for the table scheme T. More generally, a set
of attributes of atable scheme T isaforeign key for T if it is akey for some other table
scheme S. Note that aforeign key for T isnot akey for T—it isakey for another table
scheme. Thus, the attribute set { PublD} is a key for Publishers, but aforeign key for
Books

Aswith our example, aforeign key provides areference to the entity class (table scheme)
for which it isakey. The table scheme T is called the referencing table scheme and the
table scheme Sis caled the referenced table scheme The key that is being referenced in
the referenced table scheme is called the referenced key .

Note that adding a foreign key to a table scheme does create some duplicate values in the
database, but we must expect to add some additional information to the database in order
to describe the relationships.

3.3.2 Implementing a One-to-One Relationship

Of course, the procedure of introducing a foreign key into a table scheme works equally
well for one-to-one relationships as for one-to- many relationships. For instance, we only
need to rename the ConlD attribute to AulD to make ConlID into aforeign key that will
implement the Authors-Contributors I sA relationship.

3.3.3 Implementing a Many-to-Many Relationship—New Entity Classes

The implementation of a many-to-many relationship is a bit more involved. For instance,
consider the WrittenBy relationship between Booksand Authors.

At first glance, we might think of just adding foreign keys to each table scheme, thinking
of the relationship as two distinct one-to- many relationships. However, this approach is
not good, since it requir es duplicating table rows. For example, if we add the ISBN key to
the Author s table scheme and the AulD key to the Books table scheme, then each book
that is written by two authors must be represented by two rows in the BOOKS table, so
we can have two AulDs. To be specific, since the book Main Sreet iswritten by Smith
and Jones, we would need two rows in the BOOKS table:

TITLE: Main Street, |SBN 0-55-123456-9, Price: $22.95 AulD: Smth
TITLE: Main Street, |SBN 0-55-123456-9, Price: $22.95 Aul D: Jones

It is clear that this approach will bloat the database with redundant information.

The proper approach to implementing a many-to- many relationship is to add a new table
scheme to the database, in order to break the relationship into two one-to-many
relationships. In our case, we add a Book/Author table scheme, whose attributes consist
precisely of the foreign keys ISBN and AulD:

Book/ Aut hor (| SBN, Aul D)

To get apictorial view of this procedure, Figure 3.3 shows the corresponding E/R
diagram. Note that it is not customary to include this as a portion of the original E/R
diagram, since it belongs more to the implementation of the design than to the design
itsalf.

Figure 3.3. A many-to-many relationship in the BOOK/AUTHOR table

Title AuName

ISEN Price AulD AuPhone

3.3.4 Referential Integrity

There are afew important considerations that we must discuss with regard to using
foreign keys to implement relationships. First, of course, is the fact that each value of the
foreign key must have a matching value in the referenced key. Otherwise, we would have
a so-called dangling reference. For instance, if the PublD key in a BOOKS table did not
match avalue of the PublD key in the PUBLISHERS table, we would have a book whose

publisher did not exist in the database; that is, a dangling reference to a nonexistent
publisher.

The requirement that each value in the foreign key is a value in the referenced key is
called the referential constraint , and the problem of ensuring that there are no dangling
referencesisreferred to as the problem of ensuring referential integrity.

There are several ways in which referentia integrity might be compromised. First, we
could add a value to the foreign key that is not in the referenced key. This would happen,
for instance, if we added a new book entity to the BOOKS table, whose publisher is not
listed in the PUBLISHERS table. Such an action will be rejected by a database
application that has been instructed to protect referential integrity. More subtle ways to
affect referential integrity are to change or delete a value in the referenced key—the one
that is being referenced by the foreign key. This would happen, for instance, if we deleted
a publisher from the PUBLISHERS table, but that publisher had at least one book listed
in the BOOKS table.

Of course, the database program can simply disallow such a change or deletion, but there
is sometimes a preferable alternative, as we discuss next.

3.3.5 Cascading Updates and Cascading Deletions

Many database programs allow the option of performing cascading updates, which
simply means that, if avalue in the referenced key is changed, then al matching entries
in the foreign key are automatically changed to match the new value. For instance, if
cascading updates are enabled, then changing a publisher's PublD in a PUBLISHERS
table, say from 100 to 101, would automatically cause all values of 100 in the PublD
foreign key of the referencing table BOOKS to change to 101. In short, cascading updates
keep everything "in sync."

Similarly, enabling cascading deletions means that if a value in the referenced table is
deleted by deleting the corresponding row in the referenced table, then all rows in the
referencing table that refer to that deleted key value will aso be deleted. For instance, if
we delete a publisher from a PUBLISHERS table, all book entries referring to that
publisher (through its PublD) will be deleted from the BOOKS table automatically. Thus,
cascading deletions also preserve referential integrity, at the cost of performing perhaps
massive deletions in other tables. Thus, cascading deletions should be used with
circumspection.

Asyou may know, Microsoft Access allows the user to enable or disable both cascading
updates and cascading deletions. We will see just how to do thisin Access later.

3.4 The LIBRARY Relational Database

We can now complete the implementation of the LIBRARY relatioral database (without
the CONTRIBUTORS entity class) in Microsoft Access. If you open the LIBRARY
database in Microsoft Access, you will see four tables:

AUTHORS
BOOK/AUTHOR
BOOKS
PUBLISHERS

(The LIBRARY_FLAT tableis not used in the relational database.)
These four tables correspond to the following four entity classes (or table schemes):
Authors (AulD,AuName,AuPhone)
Book/Author (ISBN,AulD)
Books (ISBN,Title,Publ D,Price)
Publishers (PublD, PubName, PubPhone)

The actual tables are shown in Table 3.3 through Table 3.6.

Table 3.3. The AUTHORS Table from the Access LI BRARY Database

AulD AuName AuPhone
1 Austen 111-111-1111
10 Jones 123-333-3333
1 Snoopy 321-321-2222
12 Grumpy 321-321-0000
13 Sleepy 321-321-1111
2 Melville 222-222-2222
3 Homer 333-333-3333
4 Roman 444-444- 4444
5 Shakespeare 555-555-5555
6 Joyce 666-666-6666
7 Spenser rr-777-7777
8 Mill 888-888-8888
9 Smith 123-222-2222
Table 3.4. The BOOK/AUTHOR Table from the LIBRARY Database
ISBN AulD

0-103-45678-9 3

0-11-345678-9 2

0-12-333433-3 8

0-12-345678-9 1

0-123-45678-0

0-321-32132-1

0-321-32132-1

0-321-32132-1

&IKIE|®

0-55-123456-9

©

0-55-123456-9

0-555-55555-9

0-91-045678-5

0-91-335678-7

0-99-777777-7

0-99-999999-9

1-1111-1111-1

1-22-233700-0

ARl OO

Table 3.5. The BOOKS Table from the LIBRARY Database

ISBN Title PublD Price
0-12-333433-3 On Liberty 1 $25.00
0-103-45678-9 liad 1 $25.00
0-91-335678-7 Faerie Queene 1 $15.00
(0-99-999999-9 Emma 1 $20.00
1-22-233700-0 Visual Basic 1 $25.00
1-1111-11112-1 C++ 1 $29.95
0-91-045678-5 Hamlet 2 $20.00
0-555-55555-9 Macbeth 2 $12.00
0-99-777777-7 King Lear 2 $49.00
0-123-45678-0 Ulysses 2 $34.00
0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 Moby Dick 3 $49.00
0-321-32132-1 Balloon 3 $34.00
0-55-123456-9 Main Street 3 $22.95

Table 3.6. The PUBLISHERS Table from the LIBRARY Database

PublD PubName PubPhone
1 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 Small House 714-000-0000

Notice that we have included the necessary foreign key { PubID} in the BOOKS table in

Table 3.5, to implement the Publisher Of relationship, which is one-to-many. Also, we
have included the BOOK/AUTHOR table (Table 3.4) to implement the WrittenBy
relationship, which is many-to- many.

Even though all relationships are established through foreign keys, we must tell Access

that these foreign keys are being used to implement the relationships. Here are the steps.

3.4.1 Setting Up the Relationshipsin Access

1. Just toillustrate a point, make the following small change in the BOOKS table:
Open the table and change the PublD field for Hamlet to 4. Note that there is no
publisher with PublD 4 and so we have created a dangling reference. Then close
the BOOK S window.

2. Now choose Relationships from the Tools menu. Y ou should get a window
showing the table schemes in the database, similar to that in Figure 3.4.
Relationships are denoted by lines between these table schemes. Asyou can see,

there are as yet no relationships. Note that the primary key attributes appear in
boldface.

Figure 3.4. The Relationships view of the BOOKS table

=2 Relationships M= El
=
mat LN 15BN T0H PublDy
Auhlame Aullr Title PubMame
AuPhone PublLs PubPhaona
Price

3. To set the relationship between PUBLISHERS and BOOKS, place the mouse
pointer over the PublD attribute name in the PUBLISHERS table scheme, hold
down the left mouse button, and drag the name to the PublD attribute name in the
BOOKS table scheme. Y ou should get a window similar to Figure 3.5.

Figure 3.5. Relationship between the PUBLISHERS and BOOKS table

Relationzhips HE
Table/Query: Related TablefQueary: Create
FLBLISHERS |BOCKS |-
FubID _= | PubIDy Cancel I
- Jain Type.., I

I™ Enforce Referential Integricy
r
.

Relationship Type: Cne-To-Marny

4. Thiswindow shows the relationship between PUBLISHERS and BOOKS, listing
the key { PublD} in Publishers and the foreign key {PublD} in Books (Wedid
not need to call the foreign key PublD, but it makes sense to do so, since it
reminds us of the purpose of the attribute.)

5. Now check the Enforce Referential Integrity box and click the Create button. Y ou
should get the message in Figure 3.6. The problem is, of course, the dangling
reference that we created by changing the PubID field in the BOOKS table to
refer to a nonexistent publisher.

Figure 3.6. Error message due to dangling reference

i Microzoft Access can't create this
relationship and enfoice referential integrily.

[ata in the table ‘BOOKES" wiolstes referentisl nbegriy
e

Fon example. theie may be records 1elating lo an
emplopes i the related bable, but no recond far e
employes n the pimany tsble

Edit the data go that reconds inthe primany tsble exist
fior &l related 1econds,

If you want bo create the relabionship without following
the: rules of referential mbegrity, clear the Enfoce
Referartial Integrnty check o

6. Click the OK button, reopen the BOOKS table, and fix the offending entry
(change the PublD field for Hamlet back to 2). Then close the BOOK S table and
reestablish the relationship between PUBLISHERS and BOOKS. Thistime,
check the Enforce Referential Integrity checkbox as well as the Cascade Update
Related Fields checkbox. Do not check Cascade Delete Related Fields.

7. Next, drag the ISBN attribute name from the BOOK S table scheme to the ISBN
attribute name in the BOOK/AUTHOR table scheme. Again check the Enforce
Referential Integrity and Cascade Update Related Fields checkboxes.

8. Finadly, drag the AulD attribute name from the AUTHORS table scheme to the
AulD attribute name in the BOOK/AUTHOR table scheme. Check the Enforce
Referential Integrity and Cascade Update Related Fields checkboxes. Y ou should
now see the lines indicating these relationships, as shown in Figure 3.7. Note the
small 1sand infinity signs, indicating the one side and many side of each
relationship.

Figure 3.7. Relationships view showing various table relationships

= = Relationships

Aoy
ALMzmE
AuPhores

9. Totest the enforcement of referential integrity, try the following experiment:
Open the BOOK S and PUBLISHERS tables and arrange them so thet you can see
both tables at the same time. Now change the value of PublD for Small House in
the PUBLISHERS table from 3 to 4. As soon as you move the cursor out of the
Small House row (which makes the change permanent), the corresponding PublD
vauesin BOOKS should change automatically! When you are done, restore the
PublD value in PUBLISHERS back to 3.

3.5 Index Files

When atableis stored on disk, it is often referred to as afile. In this case, each row of the
table isreferred to as a record and each column is referred to as afield. (These terms are
often used for any table.)

Since disk accessistypically slow, an important goal is to reduce the amount of disk
accesses necessary to retrieve the desired data from a file. Sequentia searching of the
data, record- by-record, to find the desired information may require a large number of disk
accesses, and is very inefficient.

The purpose of an index file isto provide direct (also called random) accessto datain a
database file.

Figure 3.8 illustrates the concept of an index file. We have changed the Publishers data
for illustration purposes, to include a city column. The file on the l€eft is the index file and
indexes the Publishers data file by the City field, which is therefore called the indexed
field. Thecity fileis called an index for the PUBLISHERS table. (The index fileis not a
table in the same sense as the PUBLISHERS table is atable. That is to say, we cannot
directly access the index file—instead we use it indirectly.) The index file contains the
cities for each publisher, along with a pointer to the corresponding data record in the
Publishersfile.

Figure 3.8. Index file between City and Publisher

Boston - . Huge Houss Seattle
Datias “'_1 . Littla House Kansas City
Kansas City . T | 3 Medium Houss Boston
Kanzas City * L Big House Kansas Gty
Seattle L et Huge House Dallas

An index file can be used in a variety of ways. For instance, to find al publishers located
in Kansas City, Access can first search the alphabetical list of citiesin the index file.
Sincethe list is aphabetical, Access knows that the Kansas City entries are al together,
and so once it reaches the first entry after Kansas City, it can stop the search. In other
words, Access does not need to search the ertire index file. (In addition, there are very
efficient search algorithms for ordered tables.) Once the Kansas City entries are found in
the index file, the pointers can be used to go directly to the Kansas City publishersin the
indexed file.

Also, since the index provides a sorted view of the datain the original table, it can be
used to efficiently retrieve arange of records. For instance, if the Books data were
indexed on price, we could efficiently retrieve all books in the price range between
$20.00 and $30.00.

A table can be indexed on more than one column; that is to say, a table can have more
than one index file. Also, a table can be indexed on a combination of two or more
columns. For instance, if the PUBLISHERS table aso included a State column, we could
index the table on a combination of City and State, as shown in Figure 3.9.

Figure 3.9. Index file between City, State, and Publisher

Bostonida ™ 1 Huge House Seattie W
DallasTx *—'—\l [_" 2 Little House kanzas iy | MO
Kansas CivKS = .) Madium House Bostan A
Kansas CityMO . = 4 Big House Kansas Clty | KS
SeatfieWA - o B Huge House Daliaz X

Anindex on a primary key isreferred to as aprimary index. Note that Microsoft Access
automatically creates an index on a primary key. An index on any other column or
columnsis called a secondary index. An index based on a key (not necessarily the
primary key) is called aunique index , since the indexed column contains unique values.

3.5.1 Example

To view the indexes for a given table in Microsoft Access, open the table in design view
and then choose Indexes from the View menu. For the BOOKS table, you should see a
window similar to Figure 3.10 (without the PubTitle entry).

Figure 3.10. Index View of the BOOKS table

f Indexes: BODKS]

Index Name Field Name
Primarvkey
PublID PublD #scending
PubTitle PublID fscendng
Tikle Ascending

ISEMN Ascending

Inde: Properties
Primaiy
Urnigue
Tgrare Mulks

Thez mame For thes indiex=. Each index can use
pEk 1 10 Fiehds.,

555

To add an index based on more than one attribute, you enter the multiple attributes on
successive rows of the Indexes dialog box. We have done thisin Figure 3.10, adding an
index called PubTitle based on the PublD and the Title attributes. This index indexes the
BOOKS entities firg by PublD and then by Title (within each PublD).

3.6 NULL Values

The question of NULLSs can be very confusing to the database user, so let us set down the
basic principles. Generally speaking, a NULL is a specia value that is used for two
reasons:

To indicate that a value is missing or unknown
To indicate that a value is not applicable in the current context

For instance, consider an author's table:

AUTHORS(Aul D, AuNane, AuPhone)

If a particular author's phone number is unknown, it is appropriate for that value to be
NULL. Thisis not to say that the author does not have a phone number, but simply that
we have no information about the number—it may or may not exist. If we knew that the
person had no phone number, then the information would no longer be unknown. In this
case, the appropriate value of the AuPhone attribute would be the empty string, or
perhaps the string "no phone," but not aNULL. Thus, the appropriateness of allowing
NULL values for an attribute depends upon the context.

The issue of whether NULLs should appear in akey needs some discussion. The purpose
of akey isto provide a means for uniquely identifying entities and so it would seem that
keys and NULLSs are incompatible. However, it is impractical to never allow NULLsIn
any keys. For instance, for the Publishers entity, this would mean not allowing a
PubPhone to be NULL, since { PubName,PubPhone} is akey. On the other hand, the so-
called entity integrity rule says that NULLs are not alowed in a primary key.

Onefina remark: The presence of aNULL as aforeign key value does not violate
referential integrity. That is, referential integrity requires that every non-NULL vauein a
foreign key must have a match in the referenced key.

Chapter 4. Database Design Principles

In Chapter 1, we tried to present a convincing case for why most databases should be
modeled as relational databases, rather than single-table flat databases. We tried to make
it clear why we split the single LIBRARY _FLAT table into four separate tables:
AUTHORS, BOOKS, PUBLISHERS, and BOOK/AUTHOR.

However, for large real- life databases, it is not always clear how to split the data into
multiple tables. As we mentioned in Chapter 1, the goa is to do thisin such away asto
minimize redundancy, without losing any information.

The problem of effective database design is a complex one. Most people consider it an art
rather than a science. This means that intuition plays a major role in good design.
Nonetheless, there is a considerable theory of database design, and it can be quite
complicated. Our goa in this chapter is to touch upon the general ideas, without
becoming involved in the details. Hopefully, this discussion will provide a helpful guide
to the intuition needed for database design.

4.1 Redundancy

Aswe saw in Chapter 1, redundant data tends to inflate the size of a database, which can
be a very serious problem for medium to large databases. Moreover, redundancy can lead
to several types of anomalies, as discussed earlier. To understand the problems that can
arise from redundancy, we need to take a closer look at what redundancy means.

Let us begin by observing that the attributes of a table scheme can be classified into three
groups:

Attributes used strictly for identification purposes

Attributes used strictly for informational purposes
Attributes used for both identification and informational purposes

For example, consider the table scheme:

{ Publ D, PubNane, PubPhone, Year Founded}

In this scheme, PublD is used strictly for identification purposes. It carries no
informational content. On the other hand, Y earFounded is strictly for informational
purposes in this context. It gives the year that the publishing company was founded, but
is not required for identification purposes.

Consider aso the table scheme;

{Title, Publ D, Aul D, PageCount , Copyri ght Dat e}

In this case, if we assume that there is only one book of a given title published by a given
publisher and written by a given author, then {Title,PublD,AulD} is akey. Hence, each
of these attributes is used (at least in part) for identification. However, Titleis also an
informational attribute.

We should hasten to add that these classifications are somewhat subjective, and depend
upon the assumptions made about the entity class. Nevertheless, this classification does
provide a useful intuitive framework.

We can at least pin down the strictly informational attributes a bit more precisely by
making the following observation. The sign that an attribute is being used (at least in
part) for identification purposesisthat it is part of some key. Thus, an attribute that is not
part of any key is being used, in that table scheme, strictly for informational purposes.
Let us call such an attribute a strictly informational attribute.

Now consider the table shown in Table 4.1. In this case, both Title and PubName are
strictly informational, since {ISBN} isthe only key, and neither Title nor PubName is
part of that key. However, the values of Title are not redundant (the fact that they are the
same does not mean that they are not both required), whereas the values of PubName are
redundant.

Table4.1. A Table with Two Informational Attributes

ISBN Title PublD PubName
1-1111-1111-1 C++ 1 Big House
0-91-335678-7 Faerie Queene 1 Big House
1-011-22222-0 C++ 2 ABC Press

The reason that Title is not redundant is that there is no way to eliminate any of these
titles. Each book entity must have its title listed somewhere in the database—one title per
ISBN. Thus, the two titles C++ must both appear somewhere in the database.

On the other hand, PubName is redundant, as can easily be seen from the fact that the
same PubName is listed twice without adding any new information to the database. To
look at this another way, consider the table with two cells blank in Table 4.2. Can you fill
in the title field for the last row? Not unless you call the publisher to get the title for that

ISBN. In other words, some information is missing. On the other hand, you can fill in the
blank PubName field.

Table 4.2. A Tablewith Blank Cellsto Illustrate Attribute Dependency

I1SBN Title PublD PubName
1-1111-1111-1 Macbeth 1 Big House
2-2222-2222-2 Hamlet 1
5-555-55555-5 2 ABC Press

The issue here is quite ssmple. The Title attribute depends only upon the ISBN attribute
and {ISBN} isakey. In other words, Title depends only upon a key. However, PubName
depends completely upon PublD, which is not a key for this table scheme. (Of course,
PubName also depends on the key {ISBN}, but that is not relevant.)

Thus, we have seen a case where redundancy results from the fact that one attribute
depends upon another attribute that is not a key. Armed with this observation, we can
move ahead.

4.2 Normal Forms

Those who make a study of database design have identified a number of special forms, or
properties, or constraintsthat a table scheme may possess, in order to achieve certain
desired goals, such as minimizing redundancy. These forms are called normal forms
There are six commonly recognized normal forms, with the inspired names:

First normal form (or 1NF)

Second normal form (or 2NF)

Third normal form (or 3NF)

Boyce Codd normal form (or BCNF)
Fourth normal form (or 4NF)

Fifth normal form (or 5NF)

We will consider the first four of these normal forms, but only informally. Each of these
normal forms is stronger than its predecessors. Thus, for instance, atable scheme that is
in third normal form is aso in second norma form. While it is generally desirable for the
table schemes in a database to have a high degree of normalization, as we will seein this
chapter, the situation is not as simple as it may seem.

For instance, requiring that all table schemes be in BCNF may, in some cases, cause
some loss of information about the various rel ationships between the table schemes. In
generd, it is possible to manipulate the data to achieve third normal form for al table
schemes, but this may turn out to be far more work than it is worth.

The plain fact is that forcing all table schemes to be in a particular normal form may
require some compromises. Each individual situation (database) must be examined on its
own merit. It isimpossible to make general rules that apply in all situations.

The process of changing a database design to produce table schemes in normal formis
called normalization.

4.3 First Normal Form

First normal form isvery smple. A table scheme is said to be in first normal form if the
attribute values are indivisible. To illustrate, we considered in Chapter 1 the question of
including all the authors of a book in a single attribute, called Authors. Hereisan
example entity:

| SBN = 0-55-123456-9

Title = Main Street

Aut hors = Jones, H. and Smth, K
Publ i sher = Smal | House

Since the table scheme in this case allows more than one author name for the Authors
attribute, the scheme is not in first normal form. Indeed, one of the obvious problems
with the Authors attribute is that it isimpossible to sort the data by individual author
name. It is aso more difficult to, for instance, prepare a mailing label for each author, and
o on.

Attributes that allow only indivisible values are said to be scalar attributes or atomic
attributes. By contrast, an attribute whose values can be, for example, alist of items
(such asalist of authors) is said to be a structured attribute. Thus, atable schemeisin
first normal form if al of its attributes are atomic. Good database design almost always
requires that all attributes be atomic, so that the table schemeisin first normal form.

In general, making the adjustments necessary to ensure first normal form is not hard, and
it isagood general rule that table schemes should be put in first normal form. However,
as with the other normal forms (and even more so the higher up we go) each situation
must be considered on its own merits. For instance, a single field might be designed to
hold a street address, such as 1333 Bessemer Street. Whether the house number and the
street name should be separated into distinct attributes is a matter of context. Put another
way, whether or not a street address is atomic depends upon the context. If there is reason
to manipulate the street numbers apart from the street names, then they should certainly
congtitute their own attribute. Otherwise, perhaps not.

4.4 Functional Dependencies

Before we can discuss the other normal forms, we need to discuss the concept of
functional dependency , which is used to define these normal forms. This concept is quite
simple, and we have actually been using it for some time now. As an example, we have
remarked that, for the Publishers table scheme, the PubName attribute depends

completely on the PublD attribute. (More properly, we should say that the value of the
PubName attribute depends completely on the value of the PublD attribute, but the above
shorthand is convenient.) Thus, we can say that the functional dependency from PublD to
PubName, written:

Publ D

%

PubName

holds for the Publishers table scheme. This can be read "Publ D determines PubName" or
"PubName depends on PublD."

More generally, suppose that { A1,...,Ax} are attributes of atable scheme and that
{B4s,...,Bn} are aso attributes of the same table scheme. We do not require that the Bs be
different from the As. Then the attributes B,...,B, depend on the attributes Ay,...,Ax,
written:

{AL, . AK}
9
{B1,. . .,Bn}

if the values of Ay,...,Ax completely determine the values of By,...,Bn. Our main interest is
when there is only one attribute on the right:

{AL,. . ., Ak}
-
{ B}
For instance, it is probably safe to say that:

{ PubNanme, PubPhone}

{ Publ D}

which is just another way of saying that there is only one publisher with a given name
and phone number (including area code).

It is very important to understand that a functional dependency means that the attributes
on the left completely determine the attributes on the right for now and for al time to
come, no matter what additional data may be added to the database. Thus, just as the
concept of akey relatesto entity classes (table schemes) rather than individual entity sets
(tables), so does functional dependency. Every table scheme has its set of associated
functional dependencies, which are based on the meaning of the attributes.

Recall that a superkey is aset of attributes that uniquely determines an entity. Put another
way, a superkey is aset of attributes upon which all other attributes of the table scheme
are functionally dependent.

Some functional dependencies are obvious. For instance, an attribute functionally
depends upon itself. Also, any set of attributes functionally determines any subset of
these attributes, asin:

{A B, C

{A B}

This just says that if we know the values of A, B, and C, then we know the value of A
and B! Such functional dependencies are not at all interesting, and are called trivial
dependencies . All other dependencies are called nontrivial.

4.5 Second Normal Form

Intuitively, atable scheme T isin second normal form, or 2NF, if all of the strictly
informational attributes (attributes that do not belong to any key) are attributes of the
entities in the table scheme, and not of some other class of entities. In other words, the
informational attributes provide information specifically about the entities in this entity
class and not about some other entities.

Let usillustrate with an example.

Consider asimplified table scheme designed to store house addresses. One possibility is:

{City, Street, HouseNunber, HouseCol or, Ci t yPopul ati on}

The CityPopulation attribute is out of place here, because it is an attribute of cities, not
house addresses. More specifically, CityPopulation is strictly an informational attribute
(not for identification of houses) but it gives information about cities, not house
addresses. Thus, this table scheme is not in second normal form.

We can be alittle bit more formal about the meaning of second normal form as follows.
Referring to the previous example, we have the dependency:

{Gty}
{Ci tyPopul ati on}

where CityPopulation does not belong to any key, and where City is a proper subset of a
key, namely, the key { City, Street, HouseNumber}. (By proper subset, we mean a subset
that is not the whole set.)

A table schemeisin 2NF if it is not possible to have a dependency of the form:

{AL,. . ., AK}

{ B}

where B does not belong to any key (is strictly informational) and { A1,...,Ax} isaproper
subset of some key, and thus does not identify the entities of this entity class, but rather
identifies the entities of some other entity class.

Let us consider another example of a table scheme that is not in second normal form.

Consider the following table scheme, and assume for the purposes of illustration that,
while there may be many books with the same title, no two of them have the same
publisher and author:

{Title, Publ D, Aul D, Pri ce, AuAddr ess}

Thus, {Title, PublD, AulD} isthe only key. Now, AuAddress does not belong to any
key, but it depends upon { AulD}, which is a proper subset of the key, in symbols:

{ Aul D}

{ AuAddr ess}

Hence, this table scheme is not in second normal form. In fact, AuAddressis not a piece
of information about the entities modeled in the table scheme (i.e., books), but rather
about authors. Of course, we could remove the AuAddress attribute to bring the table
scheme into second normal form. (If each publisher charged a single price for al of its
books, then Price would also cause a violation of second normal form, but thisis not the
case, of course.)

4.6 Third Normal Form

Second normal form is good, but we can do better. We have seen that if atable schemeis
in second normal form, then no strictly informational attribute depends on a proper subset
of akey. However, there is another undesirable possibility. Let us illustrate with an
example.

Consider the following table scheme and assume, for the purposes of illustration, that no
two books with the same title have the same publisher:

{Titl e, Publ D, PageCount , Pri ce}

The only key for this table scheme is { Title,Publ D} . Both PageCount and Price are
informational attributes only.

Now, let us assume that each publisher decides the price of its books based solely on the
page count. First, we observe that this table is in second normal form. To see this,
consider the proper subsets of the key. These are:

{Title} and {Publ D}

But none of the dependencies:

{Title}
9
{ PageCount }
{Title}
2
{Price}
{ Publ D}
9
{ PageCount }
{ Publ D}
9

{Price}

hold for this table scheme. After all, knowing the title does not determine the book, since
there may be many books of the same title, published by different publishers. Hence, the
table isin second normal form.

It isaso not correct to say that:

{ PageCount }

{Price}

holds, because differert publishers may use different price schemes, based on page count.
In other words, one publisher may price books over 1000 pages at one price, whereas
another may price books over 1000 pages at a different price. However, it is true that:

{ Publ D, PageCount }

{Price}

holds. In other words, here we have an informational attribute (Price) that depends not on
aproper subset of akey, but on a proper subset of a key (PublD) together with another
informational attribute (PageCount).

Thisis bad, since it may produce redundancy. For instance, consider Table 4.3. Note that

the price attribute is redundant. After al, we could fill in the Price value for the third row
if it were blank, because we know that PublD 2 charges $34.95 for 500- page books.

Table 4.3. Redundant Data in a Table

Title PublD PageCount Price
Moby Dick 1 500 29.95
Giant 2 500 34.95
Moby Dick 2 500 34.95

We can summarize the problem with the dependency:

{ Publ D, PageCount }
{Price}
by saying that the attribute Price depends upon a set of attributes:

{ Publ D, PageCount }

that is not a key, not a superkey, and not a proper subset of akey. It isamix containing
one attribute from the key { Title,PublD} and one attribute that is not in any key.

With this example in mind, we can now define third normal form. A table schemeisin
third normal form, or 3NF, if it is not possible to have a dependency of the form:

{AL,. . ., AK}
{B}

where B does not belong to any key (is strictly informational) and { A1,...,Ax} isnot a
superkey. In other words, third normal form does not permit any strictly informationa
attribute to depend upon anything other than a superkey. Of course, superkeys determine
all attributes, including strictly informational attributes, and so all attributes depend on
any superkey. The point is that, with third normal form, strictly informational attributes
depend only on superkeys.

4.7 Boyce-Codd Normal Form

It is possible to find table schemes that are in third normal form, but still have
redundancy. Here is an example.

Consider the table scheme { City,StreetName,ZipCode} , with dependencies.
{City, Street Nanme}
{Zi pCode}
and:
{ Zi pCode}
{City}

(Although in redl life, a zip code may be shared by two different cities, we will assume
otherwise for the purposes of illustration.) This table scheme isin third norma form. To
see this, observe that the keys are { City,StreetName} and { ZipCode,StreetName} . Hence,
no attribute is strictly informational and there is nothing to violate third normal form.

On the other hand, consider Table 4.4. We can fill in the blank city name because
{ ZipCode} —{ City}.

Table4.4. A Table with Dependencies

City StreetName ZipCode

LosAngeles Hollywood Blvd 95000

Vine St 95000

The problem here is with the dependency:
{Zi pCode}
{Gty}

which does not violate third normal form because, as we have mentioned, { City} is not
strictly informational.

The previous example gives us the idea to strengthen the condition in the definition of
third normal form, by dropping the requirement that B be strictly informational. Thus, we
can define our last, and strongest, normal form. A table scheme is in Boyce-Codd normal
form, or BCNF, if it is not possible to have a dependency of the form:

{AL,. . ., Ak}

where {A1,...,A} isnot asuperkey. In other words, BCNF form does not permit any
attribute to deperd upon anything other than a superkey.

As mentioned earlier, al attributes must depend on any superkey, by the very definition

of superkey. Thus, BCNF is the strongest possible restriction of this type—it saysthat an
attribute is not allowed to depend onanything other than a superkey.

4.8 Normalization

Aswe mentioned earlier, the process of changing a database design to produce table
schemes in normal form is called normalization.

As avery smple example, the table scheme:
{I'SBN, Ti tl e, Aut hor s}
isnot even in first normal form, because the Authors attribute might contain more than

one author and is therefore not atomic. By trading in this table scheme for the two
schemes:

{I1SBN, Title, Aul D} and {Aul D, AuNane}

we have normalized the database into first normal form.
Here is another example involving the higher normal forms.

Recall from an earlier example that the table scheme { City,StreetName,ZipCode} , with
dependencies:

{City, Street Nane}
{ Zi pCode}

and:

{ Zi pCode}
{City}

isin third norma form. However, Table 4.5 shows that there is still some redundancy in
the table scheme. The table scheme is not in BCNF. In fact, this was the example we used
to motivate our definition of BCNF. (The example violates BCNF.)

Table 4.5. A Table with Redundant Data

City StreetName ZipCode

LosAngeles Hollywood Blvd 95000

Vine St 95000

However, we can split this table scheme into two schemes:
{Zi pCode, City}
and:

{Zi pCode, St reet Nane}

In this case, Table 4.5 gets split into two tables, Table 4.6 and Table 4.7, and the
redundancy is gone!

Table4.6. First Table Derived from Table 4.5 to Eliminate Redundancy

ZipCode City

95000 LosAngeles

Table 4.7. Second Table Derived from Table 4.5 to Eliminate Redundancy

ZipCode StreetName

95000 Hollywood Blvd

95000 Vine St

Generally speaking, the design of a database may begin with an E/R diagram. This
diagram can be implemented according to the principles that we discussed in Chapter 3.
The result may very well be a perfectly satisfactory database design. However, if some of
the table schemes have redundancies, it may be desirable to split them into smaller table
schemes that satisfy a higher normal form, as in the previous example.

4.8.1 Decomposition

Although the decomposition of atable scheme into smaller (hopefully normalized) table
schemes is desirable from an efficiency point of view, in order to reduce redundancy and
avoid various anomalies, it does carry with it some risk, which primarily comes in two
forms:

The possible loss of information
The possible loss of dependencies

The following example illustrates the first problem—Ioss of information.
Consider the table scheme:

{ Aul D, AuNane, Publ D}

The only dependency in this table scheme is:

{ Aul D}

{ AuNane}
We could decompose this table scheme into the two schemes:

{Aul D, AuNane} and {AuNane, Publ D}

Now consider Table 4.8, which has two different authors with the same name. The
decomposition gives the two tables shown in Table 4.9 and Table 4.10.

Table 4.8. A Tablewith Two Identical Author Names

AulD AuName PublD

Al John Smith

P1
A2 John Smith P2

Table 4.9. Partial Decomposition of Table 4.8

AulD AuName

Al John Smith

A2 John Smith

Table 4.10. Partial Decomposition of Table 4.8

AuName PublD

John Smith

P1
John Smith P2

Unfortunately, if we were to ask Microsoft Access to show us the data for al authors
named John Smith, we would get the table shown in Table 4.11, which is not the table we
started with! Information has been lost, in the sense that we no longer know that both
John Smiths together have published only two books, each author with a different
publisher. (It may look as though we have more information, since the table is bigger, but
in reality we have lost information.)

Table4.11. An Incorrect Reconstruction of Table 4.8

AulD AuName PubID
Al John Smith P1
Al John Smith P2
A2 John Smith P1
A2 John Smith P2

The second problem we mentioned in connection with the decomposition of atable
scheme is that of loss of dependencies. The issue is this. During the life of the database,
we will be making changes (updates, insertions, and deletions) to the separate tables in
the decomposition. Of course, we must be careful to preserve the functional dependencies
that are inherited from the original table scheme. However, this does not necessarily
guarantee that all of the origina dependencies will be preserved!

Hereis asimple example to illustrate the problem. Consider the table scheme:
{1 SBN, PageCount, Pri ce}
with dependencies:

{1 SBN}

{PageCount }
{ PageCount }

{Price}

Consider the decomposition into the table schemes:

{1 SBN, PageCount} and {I SBN, Pri ce}

Note that the key {ISBN} isin both schemes in the decomposition.

Unfortunately, the decomposition has caused us to lose the dependency { PageCount} —>
{Price}, in the sense that these two attributes are not in the same table scheme of the
decomposition. To illustrate, consider Table 4.12, which has two different books with the
same page count and price. The decomposition of this table into two tables is shown in
Table4.13 and Table 4.14.

Table 4.12. Table Example to Show Further Decomposition

ISBN PageCount Price

0-111-11111-1 500 $39.95

0-111-22222-2 500 $39.95

Table 4.13. Partial Decomposition of Table4.12

ISBN PageCount

0-111-11111-1 500

0-111-22222-2 500

Table 4.14. Partial Decomposition of Table 4.12

ISBN Price

0-111-11111-1 $39.95

0-111-22222-2 $39.95

Now here is the problem. Looking at the second table, we have no indication that the
original scheme required that PageCount determines Price. Hence, we might change the
price of the second book to $12.50, as we've donein Table 4.15.

Table 4.15. Decomposition Example Changing Price

ISBN Price

0-111-11111-1 $39.95

0-111-22222-2 $12.50

But putting the tables back together for alook at al of the data gives us Table 4.16,
which reveals aviolation of the requirement that PageCount determines Price. In fact,
somebody at the publishing company is going to be very unhappy that the company is
now selling a 500- page book at below cost!

Table 4.16. Looking at Data by Combining TablesTable 4.12 Through Table
4.15

ISBN PageCount Price
0-111-11112-1 500 $39.95
0-111-22222-2 500 $12.50

By contrast, consider the decomposition of the original table scheme into:
{1 SBN, PubPhone} and {PubPhone, PubNane}

Here, no dependency is lost, so we can update each separate table without fear.

The previous two examples illustrate the pitfalls in decomposing a table scheme into
smaller schemes. If a decomposition does not cause any information to be lost, it is called
alossless decomposition. A decomposition that does not cause any dependencies to be
lost is called a dependency-preserving decomposition.

Now it is possible to show that any table scheme can be decomposed, in a lossless way,
into a collection of smaller schemes that are in the very nice BCNF form. However, we
cannot guarantee that the decomposition will preserve dependencies. On the other hand,
any table scheme can be decomposed, in alossess way that also preserves dependencies,
into a collection of smaller schemes that are in the almost-as-nice third normal form.

However, before getting too excited, we must hasten to add that the algorithms that we
give do not always produce desirable results. They can, in fact, create decompositions
that are less intuitive than we might do just using our intuition. Nevertheless, they can be
relied upon to produce the required decomposition, if we can't do it ourselves.

We should conclude by saying that there is ro law that says that a database is aways
more useful or efficient if the tables have a high degree of normalization. These issues are
more subjective than objective and must be dealt with, as a design issue, on an ad hoc
basis. In fact, it appears that the best procedure for good database design is to mix eight
parts intuition and experience with two parts theory. Hopefully, our discussion of
normalization has given you a genera feeling for the issues involved, and will provide a
good jumping-off place if you decide to study these somewhat complicated issuesin
greater depth. (See Appendix E, for some books for further study.)

Part |I: Database Queries

Chapter 5. Query Languages and the Relational
Algebra

In the first part of this book, we have tried to make a convincing argument that good
database design is important to the efficient use of a database. As we have seen, this
generally involves breaking the data up into separate pieces (tables). Of course, this
implies that we need methods for piecing the data back together again in various forms.

After all, one of the main functions of a database program is to alow the user to view the
datain a variety of ways. When data are stored in multiple tables, it is necessary to piece
the data back together to provide these various views. For instance, we might want to see
alist of al publishers that publish books priced under $10.00. This requires gathering
data from more than one table. The point is that, by breaking data into separate tables, we
must often go to the trouble of piecing the data back together in order to get a
comprehensive view of those data.

Thus, we can state the following important maxim:

As adirect consequence of good database design, we often need to use methods for
piecing data from severa tables into a single coherent form.

Many database applications provide the user with relatively easy ways to create
comprehensive views of data from many tables. For instance, Microsoft Access provides
agraphical interface to create queries for that purpose. Our goal in this chapter is to
understand how a database application such as Access goes about providing this service.

The short answer to thisis the following:

1. The user of adatabase application, such as Access, asks the application to provide
a specific view of the data by creating a query.

2. The database application then converts this query into a statement in its query
language, which in the case of Microsoft Access is Access Sructured Query
Language, or Access SQL. (Thisisaspecia form of standard SQL.)

3. Finally, aspecia component of Access (known as the Jet Query Engine, which
we will discuss again in Chapter 7) executes the SQL statement to produce the
desired view of the data.

In view of this answer, it is time that we turn away from a discussion of database design
issues and turn toward a discussion of issues that will lead us toward database
programming, and in particular, programming in query languages such as Access SQL.

We can now outline our plan for this and the next chapter. In this chapter, we will discuss
the underlying methods involved in piecing together data from separate tables. In short,
we will discuss methods for making new tables from existing tables. Thiswill give us a
clear understanding as to the general tasks that must be provided by a query language.

In the next chapter, we will take alook at Access SQL itself. We will seethat SQL is
much more than just a ssimple query language, for not only is it capable of manipulating
the components of an existing database (into various views), but it is aso capable of
creating those components in the first place.

5.1 Query Languages

A query can be thought of as arequest of the database, the response to which is a new
table, which we will refer to as aresult table . For instance, referring to the LIBRARY
database, we might request the titles and prices of all books published by Big House that
cost over $20.00. The result table in this case is shown in Table 5.1.

Table 5.1. Books Published by Big House Costing Over $20.00

Title Price PubName
On Liberty $25.00 Big House
Iliad $25.00 Big House
Visual Basic $25.00 Big House
C++ $29.95 Big House

It is probably not necessary to emphasize the importance of queries, for what good is a
database if we have no way to extract the datain meaningful forms?

Special languages that are are used to formulate queries, in other words, that are designed
to create new tables from old ones, are known as query languages. (There does not seem
to be agreement on the precise meaning of the term query language, so we have decided
to use it in amanner that seems most consistent with the term query.)

There are two fundamental approaches to query languages: one is based on algebraic
expressions and the other is based on logical expressions. In both cases, an expression is
formed that refers to existing tables, constants (i.e., values from the domains of tables),
and operators of various types. How the expression is used to create the return table
depends on the approach, as we will see.

Before proceeding, let us discuss a bit more terminology. A table whose data are actually
stored in the database is called a base table . Base table data are generally stored in a
format that does not actually resemble a table—but the point is that the data are stored. A
table that is not stored, such as the result table of a query, is called aderived table . It is
generally possible to save (i.e., store) aresult table, which then would become a base
table of the database. In Microsoft Access, thisis done by creating a so-called make-table

query .

Finaly, aview isaquery expression that has been given a name, and is stored in the
database. For example, the expression:

all titles where (PubName = Big House) and (Price > $20.00)

isaview. Note that it is the expression that is the view, not the corresponding result table
(as might be implied by the name view).

Whenever the expression (or view) is executed, it creates aresult table. Therefore, a view
is often referred to as avirtual table . Again, it isimportant not to confuse a view with the
result table that is obtained by executing the expression. The virtue of a virtual table (or
view) is that an expression generally takes up far less room in storage than the
corresponding result table. Moreover, the data in aresult table are redundant, since the
data are already in the base tables, even though not in the same logical structure.

5.2 Relational Algebra and Relational Calculus

The most common agebraic query language is called the relational algebra. This
language is procedural, in the sense that its expressions actually describe an explicit
procedure for returning the results. Languages that use logic fall under the heading of the
relational calculus (there is more than one such language in common use). These
languages are nonprocedural, since their expressions represent statements that describe
conditions that must be met for arow to be in the result table, without showing how to
actually obtain those rows. Let usillustrate these ideas with an example.

Consider the following request, written in plain English:

Get the names and phone numbers for publishers who publish books costing under
$20.00.

For reference, let us repeat the relevant tables for this request. The BOOKS table appears
in Table 5.2, while the PUBLISHERS table is shown in Table 5.3.

Table5.2. The BOOKS Table from the LIBRARY Database

ISBN Title PublD Price
0-555-55555-9 Macbeth 2 $12.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-999999-9 Emma 1 $20.00
0-91-045678-5 Hamlet 2 $20.00
0-55-123456-9 Main Street 3 $22.95
1-22-233700-0 Visua Basic 1 $25.00
0-12-333433-3 On Liberty 1 $25.00
0-103-45678-9 Iliad 1 $25.00
1-1111-1111-1 C++ 1 $29.95
0-321-32132-1 Balloon 3 $34.00
0-123-45678-0 Ulysses 2 $34.00
0-99-777777-7 King Lear 2 $49.00
0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 Moby Dick 3 $49.00

Table5.3. The PUBLISHERS Table from the LIBRARY Database
Publ D | PubName | PubPhone

1 Big House 123-456-7890

2 AlphaPress 999-999-9999

3 Small House 714-000-0000

Here is a procedure for executing this request. Don't worry if some of the terms do not
make sense to you now; we will explain them later.

1. Jointhe BOOKS and PUBLISHERS tables, on the PublD attribute.
2. Sdect those rows (of the join) with Price attribute less than $20.00.
3. Project onto the columns PubName and PubPhone.
In the relational algebra, this would be trandated into the following expression:

Pr o] pubName,PubPhone(S8l Price<20.00(BOOK S join PUBLISHERYS))

The result table is shown in Table 5.4.

Table 5.4. Publisherswith Books Under $20.00

PubName PubPhone

Big House 123-456-7890

AlphaPress 999-999-9999

In arelational calculus, the corresponding expression might appear as
{(x,y) | PUBLISHERS(z,x,y) and BOOK S(a,b,z,c) and ¢ < $20.00}
where the bar | is read "such that" and the entire expression is read:

The set of al pairs (x,y) such that (z,x,y) isarow in the PUBLISHERS table, (a,b,z,c) is
arow in the BOOKS table, and ¢ < $20.00.

Note that the variable z appears twice, and it must be the same for each appearance. This
is precisely what provides the link between the BOOK S and PUBLISHERS tables. In
other words, the row PUBLISHERS(z,x,y) in the PUBLISHERS table and the row
BOOK S(a,b,z,c) in the BOOKS table have an attribute value in common (represented by
the common letter z). This attribute, which is the first attribute in PUBLISHERS and the
third attribute in BOOKS, is PublD.

As you can see from the previous example, the relational calculusis generaly more
complex (and perhaps less intuitive) than the relational algebra, and we will not discuss it
further in this book, beyond making the following comments: Firt, it isimportant to at
least be aware of the existence of the relational calculus, since there are commercially
available applications, such as IBM's Query-by-Example, that use the relational calculus.
Second, most relational calculus-based languages have exactly the same expressive

power as the relational algebra. In other words, we get no more or less by using a
relational calculus than we do by using the relational algebra.

5.3 Details of the Relational Algebra

We are now ready to discuss the details of the relational algebra. The operations that are
part of the relational algebra are described in this section. Y ou should find most of these
operations intuitive.

Before beginning, however, we should say a word about how Microsoft Access
implements the operations of the relational algebra. Most of these operations can be
implemented in Microsoft Access by creating a query. Thisis most easily donein
Access's Query Design mode, which provides the graphical environment shown in Figure
5.1.

Figure5.1. The Access Query design window

= Buenyl : Select Query

Field: [Ttk FublD Frice Pubfl ams =

Table: |EOOKS BO0KS BODES PUBLIEHERS I
Sart: [Azcending

Show:]] B

Critena: 321

" laLy o

The user can add table schemes from the database to the upper portion of the Query
Design window. From there, various attributes can be moved to the design grid. Note that
the second row of the gid shows the table from whence the attribute comes, just in case
two tables have attributes of the same name (which happens often).

The grid has options for sorting and for determining whether or not to display a particular
attribute in the result table. It al'so has room for criteria used to filter out data from the
query.

Note also that we do not need to include the PublD field from both tables in the lower
portion of the design window. Microsoft Access takes care of forming the appropriate
join based on the information in the upper portion of the window.

Microsoft Access trandates the final query design into a statement in the query language
known as structured query language, or SQL. We will discuss the details of Access SQL
(which differs somewhat from standard SQL) in Chapter 6, where the knowledge we gain
here will prove very useful. We should also mention that Access SQL is more powerful
than the Access Query Design interface, so some operations must be written directly in
SQL. Fortunately, Access allows the user to write SQL statements.

Let usrecall some notation used earlier in the book. In order to emphasize the attributes
of atable (or table scheme), we use the notation T(A1,...,An). As an example, the BOOKS
table can be written

BOOKS(ISBN,Title,Publ D,Price)

and the Books table scheme can be written

Bookg(ISBN,Title,PublD,Price)

5.3.1 Renaming

Renaming refers simply to changing the name of an attribute of atable. If atable T hasan
attribute named A, we will denote the table resulting from the operation of renaming A to
B by:

renA9 B(T)
For the table:

ISBN Title Price PublD
0-103-45678-9 TheFirm $24.95 1
0-11-345678-9 Moby Dick $49.00 2
0-12-333433-3 War and Peace $25.00 1

the result of performing:
reNiseN 7 BookiD Price? cot (BOOKS)

isshown in Table 5.5.

Table5.5. The BOOKS Table with Renamed Fields

Bookl D Title Cost PublD
0-103-45678-9 The Firm $24.95 1
0-11-345678-9 Moby Dick $49.00 2
0-12-333433-3 War and Peace $25.00 1

5.3.2 Union

If Sand T are tables with the same attributes, then we may form the union S UT, which
isjust the table obtained by including all of the rows from both Sand T.

5.3.2.1 Example

Ax A
a b
c d
e f
Ay A
g h
i i
Al A2
a b
c d
e f
g h
i i

Note that if Sand T do not have the same attributes, but do have the same degree—that
is, the same number of columns, then we can first rename the attributes of one table to
match the other, and then take their union. Of course, this will not always make sense,
since it may result in combining attribute values from different domains into one column.

Let us consider an example of how to take a union in Microsoft Access.

Unions can be formed in one of two ways in Microsoft Access. The first is
straightforward:

1. First, we need some expendable tables to use in this example. We can create these
tables by copying the BOOKS table as follows. Highlight the BOOKS table in the
Database Window and choose Copy from the Edit menu. Then choose Paste from
the Edit menu. You will get the dialog box in Figure 5.2.

Figure5.2. The Access Paste Table dialog

Paste Tahle Az EHE

Tabbe Hame:
[Lnizn

Eli_H

Pashe Options

™~ Struchure Cnly

& Structure and Dats

" fppend Data bo Existing Table

Type the table name Unionl and click OK. Choose Paste a second time to create a
table named Union2. Open Unionl and delete the last seven rows from the table.
(Just highlight the rows and hit the Delete key.) Open Union2 and delete the first
seven rows of the table. Thus, Unionl will consist of the first half of the BOOKS
table and Union2 will consist of the second half of BOOKS.

2. The simplest way to take the union is to use the same Copy...Paste procedure that
we used in Step 1. To illustrate, highlight Union2 and choose Copy from the Edit
menu. Then choose Paste and enter the table name Unionl. Select the Append
Data to Existing Table option. If you then click OK, the rows of the copied table
(Union2) will be appended to the rows of the table Unionl. In other words,
Unionl will now contain the union of the original Unionl table and the Union2

table, which in this case is the complete contents of BOOKS. Thisis expressed in
symbols as:

NewUnionl = OriginalUnionl UUnionZ

Open Unionl to verify that it now has 14 rows. Then delete the last seven rows
again to restore Unionl to its original condition.

Another way to create a union is to use an Append Query as follows:
1. From the Query tab in the Database window choose the New button. Select
Design View and then add Union2 to the design window. Select Append from the
Query menu to get the dialog in Figure 5.3.

Figure5.3. The Access Append dialog

Apperd

Append Tao

Tabile fame: |Lr|i|:n1|

& Current Databess
™ amother Datzbase:

|

[7] %]

Cenndl

2. Click OK to get the window shown in Figure 5.4. Drag the asterisk (*) in the table
scheme for Union2 to the first cell in the Field row of the design grid. This will
fill in the first column of the design grid as shown in Figure 5.4. Run the query
(choose Run from the Query menu). You will get awarning that you are about to
append seven rows and that the process cannot be undone. Click OK and then

open the Unionl table to verify that it now has 14 rows.

Figure 5.4. The Access Append Query window

= Quend : Append Query

Field | Union2 -

Table: | Linice2

Apperd T | Uniced ”

1] |

5.3.3 Intersection

Theintersection S mT of two tables S and T with the same attributes is the table formed

by keeping only those rows that appear in both tables. Here is an example:

Ax

A

Ay

A

Al AZ

e

We will see an example of how to form an intersection in Microsoft Access when we
discuss differences, in the next section.

5.3.4 Difference

The difference S— T of two tables Sand T with the same attributes is the table consisting
of al rows of Sthat do not appear in T, as shown in the following tables:

Aq A,
a b
c d
e f
g h
Ag Az
c d
i i
e f
Ay Az
b
g h

Let us consider an example of how to take an intersection or difference in Microsoft

Access.

1. First, we need some expendable tables. Asin the first step of the example for

creating a union, use the Copy and Paste features to create two tables named
Diffl and Diff2 that are exact copies of BOOKS. Open Diff1 and remove the last
four rows. Open Diff2 and remove the first four rows. Thus, Diff1 contains the
first ten books from BOOKS and Diff2 contains the last ten books from BOOKS.
Now switch to the Query tab and start a new query. Add both Diff1 and Diff2 to
the query. You may notice a connecting line between the two ISBN attributes. If
there is no such line, drag one ISBN name to the other to create aline. Now right
click on the line and choose Join Properties from the popup menu. This should
produce the dialog box shown in Figure 5.5. Select option 2, which will include
al records (rows) from Diff1 and al rows of Diff2 that have a matching ISBN in
Diff1. Thisis aso-caled left-outer join. We will discuss thisin more detail |ater
in this section. Click OK.

Figure5.5. The Access Join Properties dialog

Join Properties E

™ 1: ondy inchude rows where the joined fields From both
tables are aqual,

& B Include ALL recards from TFFL" and only those records
from 'Taf2" where the joined Relds are aqual,

™ 3 Include ALL records From T2 and only those records
Fron 'CafFL" where the joined fields are equal,

o | cancel |

3. Drag the asterisk (*) from Diff1 to the design grid and then drag ISBN from Diff2

to the second column of the design grid. The Design Window should now appear
asin Figure 5.6.

Figure5.6. The Access Select Query design window showing a join
between two properties

=? Query? : Select ueny Mi=1E3
[el el A
i] —* (15BN
Tite Tithe
PubID PubID
Price Price:
=
1I I k
Field [ISEN - =
Table: | Dift Diff 2 |
Sk
Shitr] [
Criesia

ar. il
4 | ¥

4. Now run the query. Y ou should get atable as shown in Figure 5.7. This table
contains the ten rows from Diff1, with an extra column that gives the matching
ISBN from Diff2, if there is one. Otherwise, the column containsa NULL. We
can see that the six rows that have a matching ISBN in column Diff2.ISBN form
the intersection of the two tables. Also, the four rows that do not have a matching
ISBN form the difference Diff1 — Diff2. Hence, we only need to add asmple
criterion to the query to obtain either the intersection or the difference.

Figure5.7. The Access Select Query window showing the intersection of
two tables

&1 qubifference? - Select Query M=l E

|| Diffl.ISBN Title PublD Price Diff2. ISBN
¥ | REYEEEE iad $25.00
| |0-11-345678-9 Moby Dick $49.00
| |0-12-333433-3 On Liberty $25.00
0-12-345678-9 Jane Eyre $49 00

| |0-123.45678.0 Ulysses
0-321-32132-1 Balloon
0-55-123456-9 Main Street
0-555-55555-9 MacBeth
0-91-045678-5 Hamlet
0-91-335678-7 Faene Quesens

cord: I1| || 1 _k | H k% cf 10

$34.00 0-123-45576-0
§24.00 0-321-3213241
$2295 0-55-123436-9
§12.00 0-555-55555-4
$2000 0-91-045576-5
$15.00 0-21-335578-7

= b b L) L kI ld == L =

E3
Ra

5. To get the intersection Diff1 ﬂDiffZ, return to the design view of the query and
add the words Is Not Null under the Criteria row in the Diff2.I1SBN column. Run
the query.

6. To get the difference Diff1 — Diff2, return to the design view of the query and add
the words Is Null under the Criteria row in the Diff2.1SBN column. Run the

query.
5.3.5 Cartesian Product

To define the Cartesian product of tables, we need to adjust the way we write attribute
names, just in case both tables have an attribute of the same name. If atable T has an
attribute named A, the fully qualified attribute name (or just qualified attribute name) is
T.A. Thus, we may write BOOKS.ISBN or AUTHORS.AuID.

If S(A1,...,An) and T(Ba,...,Bm) are tables then the Cartesian product Sx T of Sand T is
the table whose attribute set contains the fully qualified attribute names of all attributes
fromSand T:

{SA4,...SAnT.By,...,T.Bn}

Therowsof Sx T are formed by combining each row s of Swith each row t of T, to
form a new row st. An example will help make this clear:

A1 A,
a b
c d
e f
B; B> Bs
g h i
] k I

SA; SA; T.B1 T.By T.B3

o|oo|jOoj0|l |
-+ *lo | o|T|T
«

X O] xX|o| x|

Notice that if Shask rowsand T has| rows then the Cartesian product has kj rows.
Hence, the Cartesian product of two tables can be very large.

To form a Cartesian product of two tables in Microsoft Access, proceed as follows:

1. Create the two tables Sand T in the previous example.

2. Create anew query and add the tables S and T. Make certain that there are no
lines joining the two table schemes. (If there are, right click on the lines and
choose Delete from the popup menu.)

3. Drag the asterisks from each table scheme to the design grid. Y ou should now
have a design window as shown in Figure 5.8. Run the query to get the Cartesian
product.

Figure 5.8. The Access Query window illustrating a Cartesian product of two
tables

i=f Queryl : Select Query !EE

o o

Field: [5+ T =
Tahle
Sorit: | -
Slheowar: [w] =] (]
Ciiteria

o hal
il | ¥

Lo oy

5.3.6 Projection

Projection is a very simple concept. Intuitively, a projection of atable onto a subset of its
attributes (columns) is the table formed by throwing away all other columns.

More formaly, let T(A1,...An) be atable, where A = {A4,...,An} isthe attribute set. If B is
asubset of A then the projection of T onto B is just the table obtained from T by keeping
only those columns headed by the attribute names in B. We denote this table by projg (T).

As an example, for the table:

ISBN Title Price PublD
0-103-45678-9 TheFirm $24.95 1
0-11-345678-9 Moby Dick $49.00 2
0-12-333433-3 War and Peace $25.00 1
the projection proj ssn price(BOOKYS) is:

ISBN Price
0-103-45678-9 $24.95
0-11-345678-9 $49.00
0-12-333433-3 $25.00

Note that, if the projection produces two identical rows, the duplicate rows must be
removed, since atable is not allowed to have duplicate rows. (This rule of relationa
databases is not enforced by al commercial database products. In particular, it is not
enforced by Microsoft Access. That is, some products allow identical rows in atable. By
definition, these products are not true relational databases—but that is not necessarily a

flaw.)

The Query Design window in Microsoft Access was tailor-made for creating projections.
Just add the table to the design window and drag the desired attribute names to the design

grid. Run the query to get the projection. Figure 5.9 shows the Query Design window for
computing the projection of Books onto the attributes ISBN and Price.

Figure5.9. Creating a projection using the BOOKS table

8 Queiyl : Select Quedy

= | Price

BOOKS

5.3.7 Selection

Just as the operation of projection selects only a subset of the columns of atable, so the
operation of selection selects a subset of the rows of atable. The first step in defining the
operation of selection is to define a selection condition or selection criterion to be any
legally formed expression that involves:

Constants (i.e., members of any attribute domain)
Attribute names

Arithmetic comparison relations (=, %, <, <, >, 2)
Logical operators (and, or, not)

For example, the following are selection conditions:

Price > $10.00
Price <$50.00 and AuName = "Bronte"
(Price <$50.00 and AuName = "Bronte") or (not AuName = "Austen”)

If condition is a selection condition, then the result table obtained by applying the
corresponding selection operation to atable T is denoted by:

Sd condition (T)
or sometimes by:
T where condition

and is the table obtained from T by keeping only those rows that satisfy the selection
condition.

For example, for the BOOKS in the LIBRARY database:

ISBN Title PublD Price
0-103-45678-9 lliad 1 $25.00
0-11-345678-9 Moby Dick 3 $49.00
0-12-333433-3 On Liberty 1 $25.00
0-12-345678-9 Jane Eyre 3 $49.00
0-123-45678-0 Ulysses 2 $34.00
0-321-32132-1 Balloon 3 $34.00
0-55-123456-9 Main Street 3 $22.95
0-555-55555-9 Macbeth 2 $12.00
0-91-045678-5 Hamlet 2 $20.00
0-91-335678-7 Faerie Queene 1 $15.00
0-99-777777-7 King Lear 2 $49.00
0-99-999999-9 Emma 1 $20.00

1-1111-11112-1 C++ $29.95
1-22-233700-0 Visual Basic $25.00
the table s&lprice >$25_oo(BOOKS) is:

ISBN Title PublD Price
0-12-345678-9 Jane Eyre 3 $49.00
0-11-345678-9 Moby Dick 3 $49.00
0-99-777777-7 King Lear 2 $49.00
0-123-45678-0 Ulysses 2 $34.00
1-1111-11112-1 C++ 1 $29.95
0-321-32132-1 Balloon 3 $34.00

Some authors refer to selection as restriction, which does seem to be a more appropriate
term, and has the advantage that it is not confused with the SQL SELECT statement,
which is much more general than just selection. However, it is less common than the term
"selection,” so we will use this term.

The Query Design window in Microsoft Access was aso tailor- made for creating
selections. We just use the Criteria rows to apply the desired restrictions. For example,

Figure 5.10 shows the design window for the selection:

SH price>s25.00(BOOKYS)

from the previous example.

Figure5.10. Creating a selection in the Query Design window

=7 Queryl : Select Uueny

50N
Tiths
Pl
Frice
-
4] | LIJ
Field [BOOES.” Frice =
Table: [ROOES EOOES |
Sart
Shawr = [

Critesia
o

Y ou will probably agree that the operations we have covered so far are pretty
straightforward—union, intersection, difference, and Cartesian product are basic set-
theoretic operations. Selecting rows and columns are clearly valuable table operations.

Actually, the six operations of renaming, union, difference, Cartesian product, projection,
and selection are enough to form the complete relational algebra, by combining these
operations with constants and attribute names to create relational algebra expressions.

However, it is very convenient to define some additional operations on tables, even
though they can theoretically be expressed in terms of the six operations previously
mentioned. So let us proceed.

5.3.8Joins

The various types of joins are among the most important and useful of the relational
algebra operations. Loosely speaking, joining two tables involves combining the rows of
two tables based on comparing the values in selected columns.

5.3.8.1 Equi-join

In an equi-join, rows are combined if there are equal attribute values in certain selected
columns from each table.

To be specific, let Sand T be tables and suppose that { Cs,...,Cy} are selected attributes of

Sand {D1,...,D¢} are selected attributes of T. Each table may have additional attributes as
well. Note that we select the same number of attributes from each table.

The equi-join of Sand T on columns{Cj,...,Cy} and { Dx,...,Dx} isthe table formed by
combining arow of Swith arow of T provided that corresponding columns have equa
value, that is, provided that:

S.C; =T.D1,SC,=T.Dy, ...,.S.C = T.Dk

As an example, consider the tables:

A A,
1 4
4 5
6 3
B, B, Bs
2 3 4
7 3
1 1 4

To form the equi-join:

5 :?q.:u'-_,l'.']r'i.l_,h -h T

3

we combine rows for which:

S.A; = Ty
This gives:
SA; SA; TB; TB; T.B3
1 4 2 3 4
1 4 1 1 4
6 3 6 7 3

Notice that the equi- join can be expressed in terms of the Cartesian product and the
selection operation as follows:

] f'q.'.'fJ'-_,l'rJr'.lJ[.l “ Dy G = |7'LIII = :‘-il.:l‘.l S Dy €= |7'1ILH » T

This smply says that, to form the equi-join, we take the Cartesian product Sx T of Sand
T (i.e., the set of all combinations of rows from S and T) and then select only those rows
for which

5.0, =T, 8.0, =T.0, ..., 5.C, =T.D,

5.3.8.2 Natural join

The natural join (nat-join) is a variation on the equi-join, based on the equality of all
common attributes in two tables.

To be specific, suppose that Sand T are tables and that the set of all common attributes
between these tables is {C;,...,C} . Thus, each table may have additional attributes, but no
further attributes in common. The natural join of S and T, which we denote by:

Snat-join T

is formed in two steps:

1. Form the equi-join on the common attributes { Cy,...,Cy} .
2. Remove the second set of common columns from the table.

Consider these tables:

Ay A Az As

m |n o} |p
B A, Ay B,
a b o d
c j I f
f b d g
X y z h
s j I j

In this case, the set of common attributes is{ A2,A4} . The corresponding columns are
shaded for easier identification.

The equi-joinon Az and A4 is:

SA;

SA;

SA; S A4

T.B;

T.A,

T.A,

T.B,

a b

b

g

i i

j

f

i j

j

i

Deleting the second set of common columns (the columns that come from T, as shaded in

the previous table) gives:

SA;

SA;

SA3

SA,

T.B;

T.Bs4

b

g

j

f

i

]

The importance of the natural join comes from the fact that, when there is a one-to- many
relationship from Sto T, we can arrange it, by renaming if necessary, so that the only
common attributes are the key of S and the foreign key in T. In this case, the natural join
Snat-join T is simply the table obtained by matching rows that are related through the
one-to- many relationship.

For example, consider the following BOOK S and PUBLISHERS tablesin Table 5.6 and
Table 5.7, respectively.

Table5.6. The BOOKS Table

ISBN Title Price PublD
0-103-45678-9 TheFirm $24.95 1
0-11-345678-9 Moby Dick $49.00 2
0-12-333433-3 War and Peace $25.00 1
0-12-345678-9 Jane Eyre $34.00 1
0-26-888888-8 Persuasion $13.00 3
0-555-55555-9 Emma $12.00 3

0-91-045678-5 The Chamber $20.00 3
0-91-335678-7 Partners $15.00 1
0-99-777777-7 Triple Play $44.00 3
0-99-999999-9 Mansfield Park $18.00 1
Table5.7. The PUBLISHERS Table
PublD PubName PubPhone
1 Big House 212-000-1212
2 Little House 213-111-1212
3 Medium House 614-222-1212

Then PUBLISHERS nat-join BOOKS is the table formed by taking each PUBLISHERS
row and adjoining each BOOKS row with a matching PublD, as shown in Table 5.8.

Table 5.8. The PUBLISHERS nat-join BOOKS Table

PublD PubName PubPhone ISBN Title Price
1 Big House 212-000-1212 0-103-45678-9 The Firm $24.95
1 Big House 212-000-1212 0-12-333433-3 War and Peace $25.00
1 Big House 212-000-1212 0-12-345678-9 Jane Eyre $34.00
1 Big House 212-000-1212 0-91-335678-7 Partners $15.00
1 Big House 212-000-1212 0-99-999999-9 Mansfield Park $18.00
2 Little House 213-111-1212 0-11-345678-9 Moby Dick $49.00
3 Medium House 614-222-1212 0-26-888888-8 Persuasion $13.00
3 Medium House 614-222-1212 0-555-55555-9 Emma $12.00
3 Medium House 614-222-1212 0-91-045678-5 The Chamber $20.00
3 Medium House 614-222-1212 0-99-777777-7 Triple Play $44.00
5.3.8.30-J0i>

The e-join (read>theta join, since eis the Greek letter theta) is similar to the equi-join
and is used when we need to make a comparison other than equality between column

values. In fact, the e-j oin can use any of these arithmetic comparison relations>

= FE << > 2

Let Sand T be tables and suppose that {C;,...,Cy} are selected attributes of S and
{Ds,...,Dx} are selected attributes of T. Each table may have additional attributes as well.

Note that we select the same number of attributes from each table. Let 919k be

comparison relations. Then the e—join of tables Sand T on columns >1,...,Cy and Dx,...,Dk
is:

S Bjoinic o cen =%l en, cenl3xT)

Thus, to form the e—j oin we take the Cartesian product Sx T of Sand T and then select

those rows for which the value in column >; stands in relation 81 to the value in column
D; and similarly for each of the other columns.

As an example, consider these tables:

A A,
1 2
4 5
6 3

B, B, Bs
2 3 4
6 7 3

To form the e—joi n>

S Bjein, o5 T

we keep only those rows of the Cartesian product of the two tables for which the valuein
column Az is gthe value in column Bs:

SA; SA; T.B1 T.B, T.B3

oo+
wlw| NN
olN[o|N
N w|[~N|w
w(h|wls

Notice that a e-j oin, where all relations >8i are equality (=), is precisaly the equi-join.

5.3.9 Outer Joins

The natural join, equi-join, and e-join arereferred to as>inner joins. Each inner join has
a corresponding left outer join and right outer join, which are formed by first taking the
corresponding inner join and then including some additional rows.

In particular, for the left outer join, if sisarow of Sthat was not used in the inner join,
we include the row s, filled out to the proper size with NULL values. An example may
help to clarify this concept.

In an earlier example, we saw that the natura join of the tables:

Aq A, As A4
a b c d
e f g h
[i k I
m n 0 p

B; A, A, B,
a b c d
c] I f
f b d g
X y z h
S] I]
is:

Al Ay Az Ay B4 B4

a b d g

i

f

i

J

The corresponding left outer join is the same as the nat-join, but with a few extra rows:

Ay A, Az Aq B B,
a b c d f g
[j k | c f
[j k | S h
e f g] NULL NULL
m n o] p NULL NULL

In particular, the left outer join also contains the two rows of S that were not involved in
the natural join, with NULL values used to fill out the rows. The right outer join is
defined similarly, where the rows of T are included, with NULL vaues in place of the S

values.

One of the simplest uses for an outer join isto help see what is not part of an inner join!
For instance, the previous table shows us instantly that the second and fourth rows:

f

g

n

o

of table Sare not involved in the natura join S nat-join T! Put another way, the values:

A2:f,A4:h

and:

Az=n,As=p

arenot present in any rows of table T.

5.3.10 Implementing Joinsin Microsoft Access

Now let us consider how to implement the various types of joinsin Microsoft Access.
The Access Query Design window makes it easy to create equi-joins. Of course, a natural
joinis easily created from an appropriate equi-join by using a projection. Let usillustrate

this statement with an example.

Begin by creating the following two ssimple tables, Sand T, shown in Figure 5.9 and
Figure 5.10.

Table5.9. The S Table

A1 AZ

f

Table5.10. The T Table

B B, Bs

<l|lala| x|z

N|I<|X|—|—

L et us create the equi-join:

5 e';l.'.'.u'-_,l'rjr'.l.l,llj By A, - Ii:rl.
Open the Query Design window (by asking for a new query) and add these two tables. To
establish the associations:

5.4, = T.B, and . = T.B,
drag the attribute name A; to B; and drag the attribute name A; to B,. This should create
the lines shown in Figure 5.11. Drag the two asterisks down to the first two columns of
the design grid, asin Figure 5.11. (Access provides the asterisk as a quick way to drag all
of the fields to the design grid. It is the same as dragging each field separately with one
exception—changes to the underlying table design are reflected in the asterisk. In other
words, if new fields are added to the underlying table, they will be included automatically
in the query.)

Figure5.11. Establishing associationsin the Access Query Design window

1= Querp? | Select Query Hi=1E3
" -
Al " |El
Az P |5z
B3
«] | L[J
Fiekt |5 T.* =
Table: |5 T |
Sl
Shave = |
Critesiac
or. -
1| *

Now all we need to do is run the query. The result is shown in Table 5.11.

Table5.11. An Equi-Join of TablesSand T

Ay

A

B

B,

Bs

d

d

d

d

In other words, Microsoft Access uses the relationships defined graphicaly in the upper
portion of the window to create an equi-join.

The Access Query Design window does not allow us to create a e-joi n that does not use
equality. However, we can easily create such ajoin from an equi-join by altering the
corresponding SQL statement. We will discuss SQL in detail in>Chapter 6. For now, let
us modify the previous example to illustrate the technique.

From the Design view for the query in the previous example, select SQL from the View
menu. Y ou should see the window shown in Figure 5.12.

Figure5.12. The SQL statement generated from Figure5.11

= Queny? - Select Query

SELECT 5.5 T.% -
FROM 5 INNER JOIN T ON [5.A2 = T.B2) AND [5.A1 = T.B1):

Thisisthe SQL statement that Access created from our query design for the previous
example. Now, edit the two equal signs by changing each of them to <= (less than or
equal to). Note that, for text, the less than or equal to sign refers to alphabetical order.

Now run the query. The result table should appear as shown in Table 5.12.

Table5.12. Result Table from a 9-Join>

Ay A, B B, B3

«Q

—

‘e o|jo|o

Q ojlo|o

OfDODIOIOIOO0 0|V DY OID
| =*lalao|lao|lao|lo|TC|TC|T|T|T
Xlo<|lala|lT|Io<|la|la|l x| T
=7 INIK | X|—|7INIK | X|—|~—

—

Notice that for each row of the table, A; precedes or equals B; in aphabetical order and
A precedes or equals By.

Finally, observe that if we try to return to the design view of this query, Access issues the

message in Figure 5.13, because the design view cannot create e-joi ns that are not based
strictly on equality>

Figure5.13. Access error for attempting to create unequal e-joi n>

Microsoft Access E

i Microzoft Accezz can't represent the join
expiezsion 5A2 =T B2 in Design view.

" Ore on moee fields may have been deleted o
renamed.

" The name of one of mole fields o tables specified
in the join exprassion may be mizspeled

* The join may use an opesator thal in'l suppoited in
Drezign views, such az > or <.

To create an outer join, return the SQL statement of the previous example back to its
original form (with equal signs) and then return to design view. Click the right mouse

button on one of the connecting lines between the table schemes and choose Join
Properties from the popup menu. This should produce the dialog box shown in Figure
5.14.

Figure5.14. The Access dialog box for joining properties

Join Properties HE

™ 1 Cnly inchode rows whese the joined fiskds: from boch
tzbles are equal,

(e :2_; Incdude ALL records From 5" and onby those records from
T where the foined fislds are equal,

™ 3 Include ALL records From T and onby those records From
‘% whiere Hhe joined fizlds are squal,

ok | cancel |

Select option 2, which will produce a left outer join. (Option 1 creates an inner join,
option 2 creates a left outer join, and option 3 creates aright outer join.) Do the same for
the other connecting line. Take a peek at the SQL statement, which should appear asin

Figure 5.15.
Figure5.15. The SQL statement illustrating a left outer join

= Query? : Select Query

SELECT S T* -
FROM 3 LEFT JOIN T OM [5.A1 = T.B1] AND [5.A2 = T.B2|:

Now you can run the query, which should produce the result table in Table 5.13, where
the empty cells contain the NULL value.

Table5.13. A Left Outer Join

A A; Bi1 B> Bs
a b
c d d y
o d d X
e f

Of course, aright outer join is created similarly, by choosing option 3 in Figure 5.14.

5.3.11 Semi-Joins

A semi-join is formed from an inner join (or e-j oin) by projecting onto one of the tables
that participated in the join. In other words, we first form the join>

5 O-joinT

and then just keep the columns that came from S or from T. Thus, the formula for the left
semi-join is:

5 .';J_."J'-.'.'r’.lur-_,rr.'.'rr(.__i_:l-,]I '-i";HL”ll = PR colurmes of ql,_hl.'](-Ji_:__-,Jl _,:.hi_:l-j_i[.‘\ = TN

Similarly, the formula for the right semi-join is:

5 .l'.'_!._‘hl'-."-f-'”r.'-_,.'fl.lﬂ."-]:_:,__“L._ '-(‘h[':'s-jhl = Pl «;ll'l.:n"lsal""|'[“w]('-_":1-:'1- 'FI.E'A-:L[H xT)

The concept of a semi-join occursin relation to the DISTINCTROW keyword of the
SELECT clause in Access SQL, which we will discussin Chapter 6. For now, let us
consider an example of the semi-join, which should indicate why semi-joins are useful.

Imagine that we add a new publisher to the PUBLISHERS table (Another Pressin Table
5.14), but do not add any books for this publisher to the BOOKS table. Consider the inner
join of the tables PUBLISHERS and BOOKS:

PUBLISHERS joinpyBLIsHERS PubiD=BooK s Pubip BOOKS

For the LIBRARY database, the result table resulting from this join is shrown in Table

5.15.

Table 5.14. The PUBLISHERS (New) Table
PublD PubName PubPhone

1 Big House 123-456-7890

2 AlphaPress 999-999-9999

3 Small House 714-000-0000

4 Another Press 111-222-3333
Table 5.15. Result Table from an I nner Join

PUB:;llij:_'DERS PubName | PubPhone ISBN Title BOOKS.PublD| Price

Small 714-000- 0-12-345678

3 House 0000 9 Jane Eyre 3 $49.00
Small 714-000- 0-11-345678- .

3 House 0000 9 Moby Dick (3 $49.00

3 Small 714-000- 0-321-32132- |Balloon 3 $34.00

House 0000 1
3 ﬁ”;fs'e 3(1)30000- 855'123456 Main Street |3 $22.95
1 Big House %530456_ 312_333433 On Liberty |1 $25.00
1 Big House %30456' 3103'45678“ Iliad 1 $25.00
1 Big House %2930456' 391'33567& gie;ie 1 $15.00
1 Big House %530456_ 399_999999 Emma 1 $20.00
1 Big House %30456' (1)'22'233700 Visual Basic |1 $25.00
1 Big House %2930456' 1’1111'1111' Cit 1 $29.95
2 AlphaPress 3239999_ g91_04567& Hamlet 2 $20.00
2 Alpha Press 8339999' 3555'55555 Macbeth 2 $12.00
2 Alpha Press 2239999' 399'777777' King Lear |2 $49.00
2 AlphaPress 3239999_ g123_4567& Ulysses 2 $34.00

If we now project onto the PUBLISHERS table, we get the left semi-join:

PUBLISHERS | eft-semi-j Oi NPUBLISHERS PubiD=BOOK S.Pubip BOOK S

for which the result table is shown in Table 5.16.

Table5.16. Result Table from a Semi-Join

PublD PubName PubPhone
3 Small House 714-000-0000
1 Big House 123-456-7890
2 Alpha Press 999-999-9999

Thisisthe set of al publishers that have book entries in the BOOK S database.

5.3.12 Other Relational Algebra Operations

There is one more operation in the relational algebrathat occurs from time to time, called
the quotient. However, since this operation is less common, and a bit involved, we will
cover it in Appendix B. (You may turn to that appendix after finishing this chapter, if you
are interested.)

5.3.13 Optimization

Let us conclude this discussion with a brief remark about optimization . As we have
discussed, statements in the relational algebra are procedural; that is, they describe a
procedure for carrying out the operations. However, this procedure is often not very
efficient. Let usillustrate with an extreme example.

Consider the two table schemes;
{ISBN,Title,Price} and {ISBN,PageCount}

If Sisatable based on the first scheme and T is a table based on the second scheme, then
the natura joinis:

b _||';;f.|_|'|' = Mg s T 2. Price PageCounl Illlx‘;c].‘{ b, = .I."\LLH LY
According to this formula, the join is carried out in the following steps:

1. Form the Cartesian product.
2. Take the appropriate selection.
3. Takethe appropriate projection.

Now imagine two tables Sand T, where S has 10,000 rows and T has 10,000 rows.
Assume also that the tables have only one common attribute, for which no values are the
same in both tables. In this case, according to the definition of natural join, thejoinis
actually the empty table.

However, according to the procedure described, the first step in computing thisjoin is to
compute the product S x T, which has 10000 x 10000 = 100,000,000 rows; that is, one
hundred million rows! Obvioudly, thisis not the best procedure for computing the join!

Fortunately, database programs that use a procedural language have optimization routines
to avoid problems like this. Such aroutine looks at the task it is requested to perform, and
tries to find an aternative procedure that will produce the same output with less
computation. Thus, from a practical standpoint, procedural languages sometimes behave
similarly to nonprocedural ones.

6.1 Introduction to Access SQL

Aswe have said, Microsoft Access uses aform of query language referred to as
Structured Query Language, or SQL. (I prefer to pronounce SQL by saying each letter
separately, rather than saying "sequel." Accordingly, we will write "an SQL statement”
rather than "a SQL statement.”)

SQL is the most common database query language in use today. It is actually more than
just a query language, as we have defined the term in the previous chapter. It isa

compl ete database management system (DBMYS) language, in that it has the capability
not only to manipulate the components of a database, but aso to create them in the first
place. In particular, SQL has the following components:

1. A data definition language, or DDL, component, to allow the definition (creation)
of database components, such as tables.

2. A data manipulation language, or DML, component, to allow manipulation of
database components.

3. A data control language, or DCL, component, to provide internal security for a
database.

We will discuss the first two components of SQL in some detail in this chapter.

SQL (also known as SEQUEL) was developed by IBM in San Jose, California. The
current version of SQL is called SQL-92. However, Microsoft Access, like all other
commercia products that support SQL, does not implement the complete SQL-92
standard, and in fact adds some additional features of its own to the language. Since this
book uses Microsoft Access, we will discuss the Access version of SQL.

6.2 Access Query Design

In Microsoft Access, queries can be defined in severa different ways, but they all come
down to an SQL statement in the end. The Query Wizard helps create a query by asking
the user to respond to a series of questions. This approach is the most user-friendly, but

also the least powerful. Access also provides a Query Design window with two different
views. The Design View is shown in Figure 6.1.

Figure6.1. The Access Query Design View

i=F Queryl : Select Query M= E

L

PubMame
PubPhone

Figld: [Title Price Publ ame

Table: |BOOKS BOOKS FLBLISHERS
Sort:

Sk [w] [#]]

Clitenia; »Z0

Query Design View displays table schemes, along with their relationships, and alows the
user to select columnsto return (projection) and specify criteriafor the returned data
(selection). Figure 6.1 shows a query definition that joins the BOOKS and PUBLISHERS
table and returns the Title, Publisher, and Price of all books whose price is over $25.00.

The Query Design window also has an SQL View. Switching to this view shows the SQL
statement that corresponds to the Design View query. Figure 6.2 shows the corresponding
SQL statement for the query in Figure 6.1.

Figure 6.2. The Access SQL View of Figure6.1

= Quenyl ; Select Query
SELECT BOOKS.Title, BOOKS. Price. PUBLISHERS.PubName

FROM PUBLISHERS INNER JOIN BODKS ON
PUBLISHERS.PublD = BOOKS.PublD
WHERE [[[B00KS.Price)»25]);

In addition to using the Design View, users can enter SQL statements directly into the
SQL View window. In fact, some constructions, such as directly creating the union of
two tablesin athird table, cannot be accomplished using Design View, and therefore
must be entered in SQL View. However, such constructs are rare, and it is often possible
to complete a project without the need to enter SQL statements directly.

6.3 Access Query Types

Access supports a variety of query types. Hereis alist, along with a brief description of
each:

Select Query. These queries return data from one or more tables and display the
resultsin a result table. The table is (usualy) updatable, which means that we can
change the data in the table and the changes will be reflected in the underlying
tables. Select queries can also be used to group rows and calculate sums, counts,
averages, and other types of totals for these groups.
Action Queries. These are queries that take some form of action. The action
queries are:
o MakeTable Query. A query that is designed to create a new table with
data from existing tables.
o Delete Query. A query that is used to delete rows from a given table or
tables.
o Append Query. A query that is used to append additional rows to the
bottom of an existing table.
o Update Query. A query that is used to make changes to one or more rows
in atable.
L Queries. These are queries that must be entered in SQL View. The SQL
queries are:

o Union Query. A query that creates the union of two or more tables.

o Pass-Through Query. A query that passes the uninterpreted SQL
statement through to an external database server. (We will not discuss
these queries in this book.)

o Data-Definition Query. These are queries that use the DDL component of

SQL, such as CREATE TABLE or CREATE INDEX.

Crosstab Query. Thisis a specia type of select query that displays valuesin a
spreadsheet format, with both row and column headings. For instance, we might
wish to know how many books are published by each publisher at each price. This
ismost conveniently pictured as a crosstab query, as shown in Table 6.1.

Table6.1. A CROSSTAB Query

Price

Total

Big House

Medium House

Small House

$12.00

$13.00

$15.00

$18.00

$20.00

$25.00

$34.00

$44.00

$49.00

$99.00

RPIOIRPIOAONOOIFRIFPIW F

[y Ny =y N

Parameter Query. For select or crosstab queries, we may choose to let the user
supply certain data at run-time, by filling in adialog box. This can be done in both
Design View and SQL View. When the query asks for information from the user,

it isreferred to as a parameterized query, or parameter query.

Finally, we mention that Access allows a select or action query to contain another select
query. Thisis done by nesting SQL SELECT statements, as we will see. The interna
query is called a subquery of the external query. Access allows multiple levels of

subqueries.

6.4 Why Use SQL?

Asyou look through the syntax of the SQL statements in this chapter, you may be struck
by the fact that SQL is not a particularly pleasant language. Moreover, as we have said,
many features of SQL can be accessed through the Access Query Design Window. So

why program in SQL at all?

Here are some reasons.

There are some important features of SQL that cannot be reached through the
Query Design Window. For instance, there is no way to create a union query, a
subguery, or an SQL pass-through query (which is a query that passes through
Access to an external database server, such as Microsoft SQL Server) using the
Query Design Window.

Y ou cannot use the DDL component of SQL from within the Query Design
Window. To use this component, you must write SQL statements directly.

SQL can be used from within other applications, such as Microsoft Excel, Word,
and Visual Basic, to run the Access SQL engine.

SQL isan industry standard language for querying databases, and as such is
useful outside of the Microsoft Access environment.

Despite these important reasons, we suggest that, on first reading, you go lightly over the
SQL commands, to get a flavor for how they work. Then you can use this chapter as a
reference whenever you need to actually write SQL statements yourself. Fortunately,
SQL hasrelatively few actual commands, which makesit easy to get an overal picture of
the language. (For instance, SQL is single-statement oriented. It does not have control
structures such as For... Next... loops, nor conditional statements such asIf...Then...
statements.)

We should also mention that using the Query Design Window itself is a good way to
learn SQL, for you can create a query in the Design Window and then switch to SQL
View to see the corresponding SQL statement, obligingly created by Microsoft Access.

6.5 Access SQL

SQL is anonprocedura language, meaning, as we have seen, that expressionsin SQL
state what needs to be done, but not how it should be done. This frees the programmer to
concentrate on the logic of the SQL program. The Access Query Engine takes care of
optimization.

One way to experiment with SQL isto enter aquery using Design View and then switch
to SQL View to see how Access resolves the query into SQL. It is also worth mentioning
that the Help system has complete detail s on the syntax and options of each SQL
statement.

Incidentally, reading the definition of SQL statements can be tiresome. Y ou may wish to
just skim over the syntax of each statement and go directly to the examples. The main
goal hereisto get areasonable fed for SQL statements and what they can do. You can
then look up the correct syntax for the relevant statement when needed (as | do).

6.5.1 Syntax Conventions

In looking at the SQL commands, we need to establish a consistent syntax. We will
employ the following conventions:

Uppercase words are SQL keywords, and should be typed in as written.
Words in italics are intended to be replaced with something else. For instance, in
the statement:

CREATE TABLE Tabl eNane
we must replace Tabl eNane with the name of atable.

An item in sguare brackets [] is optional.

Braces ({}) are used to (hopefully) clarify the syntax. They are never to be
included in the statement proper.

Parentheses should be typed as shown.

The symbol ::= means '"defined as’ and the symbol | means "or." For instance, the
line:

Tabl eEl enent ::= ColumDefinition | Tabl eConstraint

means that a table element is defined as either a column definition or atable
constraint.

Thesyntaxitem ... meansthat you can repeat i t emas often as desired,
separated by commas. For instance, in the line:

CREATE TABLE Tabl eNane (Tabl eEl enent, ...)

you may repeat the Tabl eEl ement as many times as desired but at |east once,
since it is not enclosed in square brackets, so it is not optional. (The parentheses
must be included.) If a group of items may be repeated, then we use curly braces
to enclose those items (for easier reading). For instance, the following expression
means that you may repeat the clause Col Name [ASC| DESC] :

{ <Col Name [ASC| DESC] },

6.5.1.1 Notes

You may break the linesin an SQL statement at any point, which is useful for
improving readability.

Each SQL statement should end with a semicolon (although Access SQL does not
require this).

If atable name (or other name) contains a character that SQL regards asillegal,
then the name must be enclosed in square brackets. For instance, the forward
dash character isillegal in SQL and so the table name BOOK/AUTHOR is aso
illegal. Thus, it must be enclosed in square brackets: [BOOK/AUTHOR]. This
should not be confused with the use of square brackets to denote optional itemsin
SQL syntax descriptions.

6.6 The DDL Component of Access SQL

We begin by looking at the data definition commands in Access SQL. These commands
do not have a counterpart in Query Design View (although, of course, you can perform
these functions through the Access graphical environment). Access SQL supports these
four DDL commands:

CREATE TABLE
ALTER TABLE
DROP TABLE
CREATE INDEX

We should mention now that there is some duplication of featuresin the DDL commands.
For instance, you can add an index to atable using either the ALTER TABLE command
or the CREATE INDEX command.

6.6.1 The CREATE TABLE Statement
The CREATE TABLE command has the following syntax:

CREATE TABLE Tabl eNane
(Col umbDefinition,...
[,Mlti-ColumConstraint,...]);

In words, the parameters to the CREATE TABLE statement are a table name, followed
by one or more column definitions, followed by one or more (optional) multicolumn
constraints. Note that the parentheses are also part of the syntax.

6.6.1.1 Column definition

A column definition is defined as follows:

Col umbDefinition ::= Col umNane
Dat aType[(Si ze)]
[Si ngl e- Col umConstr ai nt]

In words, a Col urmDef i ni ti on isaCol unmName, followed by a Dat aType (with size if
appropriate), followed by a Si ngl e- Col umConst r ai nt .

There are several datatypes available in Access SQL. For comparison, thelist in Table
6.2 includes the corresponding selection in the Access Table Design window. (We have
not included al synonyms for the data types.) Note that the SQL type INTEGER
corresponds with the Access data type Long. Note also that the Sze option affects only
TEXT columns, indicating the length of the field. (If it is omitted, the text lengthdefaults
to 255.)

Table 6.2. Access SQL Data Types

SQL Data Type Table Design Field Type
BOOLEAN, LOGICAL, or YES/INO Yes/No
BYTE or INTEGER1 Number, Field Size = Byte
COUNTER or AUTOINCREMENT AutoNumber, Field Size = Long Integer
CURRENCY or MONEY Currency
DATETIME, DATE, or TIME Date/Time
SHORT, INTEGERZ2, or SMALLINT Number, Field Size = Integer
LONG, INT, INTEGER, or INTEGER4 Number, Field Size = Long
SINGLE, FLOAT4, or REAL Number, Field Size = Single
DOUBLE, FLOAT, FLOAT8, NUMBER, or NUMERIC Number, Field Size = Double
TEXT, ALPHANUMERIC, CHAR, CHARACTER, or Text
STRING
LONGTEXT, LONGCHAR, MEMO, or NOTE Memo
LONGBINARY, GENERAL, or OLEOBJECT (OLE) Object
GUID IADutoNumber, Field Size = Replication

6.6.1.2 Constraints
Constraint clauses can be used to:

Designate a primary key
Designate aforeign key, thus establishing a relationship between two tables
Force a column to contain only unique values

(In SQL-92, these clauses have two other uses: to disallow NULLs and to restrict
allowable values to a specified range.)

There are two types of constraint clausesin a CREATE TABLE command. The single-
column constraint is used (as indicated in the syntax) within a column definition. Its
syntax is:

Si ngl e- Col umConstraint ::=
CONSTRAI NT
I ndexName
[PRI MARY KEY |
UNI QUE |
REFERENCES Ref er encedTabl e [(ReferencedCol um, ...)]]

The first option designates the column as a primary key, and creates an index file of the
name | ndexName on that column. The second option designates the column as a
(candidate) key, and creates a unique index file on that key, by the name | ndexNane. The
third option designates the column as a foreign key that references the

Ref er encedCol umm, . .. column(s) of the Ref er encedTabl e. The

Ref erencedCol umm, . . . clauseisoptiona if the referenced table has a primary key,
since that key will be the referenced key.

For multicolumn constraints, the CONSTRAINT clause must appear after all column
definitions, and has the syntax:

Mul ti - Col umConstraint ::=
CONSTRAI NT
I ndexName
[PRI MARY KEY (Col utmNane, ...) |
UNI QUE (Col umName, ...) |
FOREI GN KEY (Referenci ngCol um,...)
REFERENCES Ref er encedTabl e [(Ref erencedCol um, ...)]]

Here are some examples.

Create the Publishers table scheme:

CREATE TABLE PUBLI SHERS

(Publ D TEXT(10) CONSTRAI NT Pri maryKeyNanme PRI MARY KEY,
PubNanme TEXT(100),

PubPhone TEXT(20));

Create the Books table scheme and link to Publishersusing PublD as foreign key:

CREATE TABLE BOOKS

(I'SBN TEXT(13) CONSTRAI NT Pri maryKeyNane PRI MARY KEY,

TI TLE TEXT(100),

PRI CE MONEY,

Publ D TEXT(10) CONSTRAI NT Test FORElI GN KEY (Publ D) REFERENCES
Publ i shers

(Publ D));

6.6.1.3 Notes

The CREATE TABLE statement does not provide away to create an index with
nonunique values. This can be done using the CREATE INDEX statement,
however.

In specifying aforeign key, the CREATE TABLE statement does enable
referential integrity rules, but does not allow the option of enabling cascading
updates or deletes. (This is one place where Access SQL is weaker than SQL-92,
which has a FOREIGN KEY clause thet alows the programmer to specify ON
UPDATE CASCADE and/or ON DELETE CASCADE.)

6.6.2 The ALTER TABLE Statement
The ALTER TABLE command is used to:

Add a new column to atable.

Dedlete a column from atable.
Add or delete single- or multiple-column index.

The syntax for the ALTER TABLE command is:

ALTER TABLE
Tabl eName
ADD COLUWN Col Name Col Type[(size)] [Single-ColumConstraint] |
DROP COLUWMN Col Nane |
ADD CONSTRAI NT Mul ti-Col umConstraint |
DROP CONSTRAI NT Mul ti Col utrml ndexNane;

Asyou can see, the Single- and Multi-Column Constraint clauses (as defined earlier) can
be used here to add or delete (DROP) an index.

6.6.2.1 Notes

New columns are added at the beginning of the table, immediately following any
primary key columns.

Y ou cannot delete a column that is part of an index. The index must first be
removed using a DROP CONSTRAINT statement (or DROP INDEX).

6.6.3 The CREATE INDEX Statement

The CREATE INDEX command has the following syntax:

CREATE [UNIQUE] | NDEX | ndexNane
ON Tabl eNanme ({Col Nane [ASC| DESC]},...]1)
[WTH { PRI MARY | DI SALLOW NULL | | GNORE NULL}]

where ASC stands for ascending and DESC for descending. Note that:

The UNIQUE keyword prevents duplicate values in the index.

WITH PRIMARY designates the primary key and creates a primary index file. In
this case, the UNIQUE keyword is redundant.

WITH DISALLOW NULL disallows NULL vauesin the key.

WITH IGNORE NULL allows NULL valuesin the key, but does not include
them in the index file. (Hence, they will be skipped in any searches that use the
index.)

6.6.3.1 Note

The CREATE INDEX command is specific to Access SQL and is not part of the SQL-92
standard.

6.6.4 The DROP Statement

The syntax for the DROP statement, which is used for deleting tables and indexes, is:
DROP TABLE Tabl eNanme | DROP | NDEX | ndexName ON Tabl eNane

6.6.4.1 Note

A table must be closed before it can be deleted or an index can be removed from the
table.

6.7 The DML Component of Access SQL
We now turn to the DML component of SQL. The commands we will consider are:

SELECT
UNION
UPDATE
DELETE
INSERT INTO
SELECT INTO
TRANSFORM
PARAMETER

Before getting to these statements, however, we must discuss a few relevant points.
6.7.1 Updatable Queries

In many situations, a query is updatable , meaning that we may edit the valuesin the
result table and the changes are automatically reflected in the underlying tables. The
details of when thisis permitted are fairly involved, but they are completely detailed in
the Access Help facility. (This information is not easy to find, however. Y ou can locate it
by entering "updatable query" in the Access Answer Wizard and choosing "Determine
when | can update data from a query.")

6.7.2Joins

Let's begin with a brief discussion of how Access SQL denotes joins. Note that ajoin
clause is not an SQL statement by itself, but must be placed within an SQL statement.

6.7.2.1 Inner joins

The INNER JOIN clause in Access SQL actually denotes ae-join on one or more
columns. (See the discussion of joins in>Chapter 5.) In particular, the syntax is:

Tabl el 1 NNER JO N Tabl e2

ON Tabl el. Col um1

1 Tabl e2. Col um1l
[{AND| OR ON Tabl el. Col um2

> Tabl e2. Col um2}, ...]

where each Bis one of =, <, >, <=, >=, <> (not equal to).
6.7.2.2 Outer joins

The syntax for an outer join clauseis:

Tabl el {LEFT [OUTER]} | {RIGHT [OUTER]} JO N Tabl e2
ON Tabl el. Col um1

1 Tabl e2. Col um1
[{AND| OR ON Tabl el. Col um2

2 Tabl e2. Col um2}, .. .]
whereisone of =, <, >, <=, >=, or < >. Note that the word OUTER is optional.

6.7.2.3 Nested joins

JOIN statements can be nested. Here is an example that joins the BOOKS, AUTHORS,
PUBLISHERS, and BOOK/AUTHOR tables and then selects the Title, AuName, and
PubName columns. We have indented some lines in the hope of increasing readability.
(We will describe the SELECT statement soon.)

SELECT Title, AuNanme, PubNanme
FROM
AUTHORS | NNER JO N
(PUBLI SHERS | NNER JO N
(BOOKS | NNER JO N [BOOK/ AUTHOR]
ON BOOKS. | SBN=[BOOK/ AUTHOR] . | SBN)
ON PUBLI SHERS. Publ D = BOCKS. Publ D)
ON AUTHORS. Aul D = [BOOK/ AUTHOR] . Aul D

To see how this was constructed, it helps to look at the relationships between the tables
involved. Figure 6.3 shows a portion of the relationships window in Access.

Figure 6.3. A portion of the Relationships window in Access

L oo
Pailly oo | 15BN = e
A ame AulD Pubhlame

AwPhone PubPhome

One way to create the previous join statement is to work from the inside out. We first join
BOOKS and BOOK/AUTHOR by the statement:

(BOOKS | NNER JOI N [BOOK/ AUTHOR]
ON BOOKS. | SBN=[BOOK/ AUTHOR] . | SBN)

We then join thisto PUBLISHERS on the PublD column:

(PUBLI SHERS | NNER JOI N
(BOOKS | NNER JOI N [BOOK/ AUTHOR]
ON BOOKS. | SBN=[BOOK/ AUTHOR] . | SBN)
ON PUBLI SHERS. Publ D = BOOKS. Publ D)

and finally we join thisto AUTHORS on the AulD column.

6.7.2.4 Self-joins

A table can bejoined to itself, resulting in a self-join . In order to do this, SQL requires
the use of the AS AliasName syntax. For instance, we can write:

BOOKS | NNER JO N BOOKS AS BOOKS2 ON ...

The least confusing way to think of this statement is as though Access creates a second
copy of the BOOKS table and calls it BOOK S2. We can now refer to the columns of
BOOKS as BOOK S.ColumnName or BOOK S2.ColumnName.

6.7.2.5 Notes

An outer join may be nested inside an inner join, but an inner join may not be
nested inside an outer join.

We may use Access expressions, which involve functions (such as Left$, Len,
Trim$, and Instr) in SQL statements (even though the "official" syntax does not
describe this).

In Access, we can define relationships between tables. However, these
relationships have no effect on SQL statements. Thus, an INNER JOIN statement
does not require that a relationship already exist between the participating tables.
Relationships are used in Design View, however, and trandate into INNER JOIN
statements. For example, if we add BOOKS and PUBLISHERS to the Query
Design View window, move Title and PubName to the Design grid and then view
the SQL equivalent, we will see an INNER JOIN clause in the SQL statement.

6.7.3TheSELECT Statement

The SELECT statement is the workhorse of SQL commands (as you can tell by the
length of our discussion on this statement). The statement returns a table, and can
perform both of the relational algebra operations selection and projection. The syntax of
the SELECT statement is:

SELECT [predicate] ReturnColummDescription,...
FROM Tabl eExpr essi on

[WHERE RowCondi ti on]

[GROUP BY GroupByCriterial

[HAVI NG GroupCriteria]

[ORDER BY OrderByCriteria]

Let us describe the various components of this statement. We note immediately that the
keyword SELECT isin some ways unfortunate, since it denotes the relational algebra
operation of projection, not selection. It isthe WHERE clause that performs selection.

6.7.3.1 Predicate

The predicate is used to describe how to handle duplicate return rows. It can have one of
the following values: ALL, DISTINCT, DISTINCTROW, or TOP.

The default option ALL returns al qualifying rows, including duplicates. If there is more
than one qualifying row with the same valuesin al of the columns that are requested in
the ReturnColumnDescription, then the option DISTINCT returns only the first such row.
The:

TOP nunber
or.

TOP percent PERCENT

option returns the top number (or percent) of rows in the sort order determined by the
ORDER BY clause.

The DISTINCTROW option can be a bit confusing, so let us see if we can straighten it
out. The Access Help system says that the DISTINCTROW option "Omits data based on
entire duplicate records, not just duplicate fields." It doesn't say how thisis done.
Microsoft Technet is a bit less vague:

In contrast, DISTINCTROW is unigue to Microsoft Access. It causes a query to return
unique records, not unique values. For example, if 10 customers are named Jones, a query
based on the SQL statement "SELECT DISTINCTROW Name FROM Customers'
returns all 10 records with Jones in the Name field. The mgor reason for adding the
DISTINCTROW reserved word to Microsoft Access SQL is to support updatable semi-

joins, such as one-to-many joins in which the output fields all come from the table on the
"one" side. DISTINCTROW is specified by default in Microsoft Access queriesand is
ignored in queries in which it has no effect. Y ou should not delete the DISTINCTROW
reserved word from the SQL dialog box.

The intended purpose of DISTINCTROW is simple. DISTINCTROW applies only when
the FROM clause involves more than one table. Consider this statement:

SELECT ALL PubName
FROM PUBLI SHERS | NNER JO N BOOKS
ON PUBLI SHERS. Publ D = BOOKS. Publ D;

Since there are many books published by the same publisher, the result table tblALL
shown in Table 6.3 has many duplicate publisher names.

Table6.3. ThetblALL Table

PubName

Small House

Small House

Small House

Small House

Big House

Big House

Big House

Big House

Big House

Big House

Alpha Press

AlphaPress

AlphaPress

Alpha Press

To remove duplicate publisher names, we can include the DISTINCT keyword. Thus, the
statement

SELECT DI STI NCT PubNane
FROM PUBLI SHERS | NNER JO N BOOKS
ON PUBLI SHERS. Publ D = BOOKS. Publ D;

produces the table tbIDISTINCT that is shown in Table 6.4.

Table6.4. ThetbIDISTINCT Table

PubName

AlphaPress

Big House
Small House

Now consider what happens if the PUBLISHERS table is changed, by adding a new
publisher with the same name as an existing publisher (but a different PublD and phone),
aswe have donein Table 6.5. The previous DISTINCT statement will give the same
result table as before, thus leaving out the new publisher.

Table6.5. The PUBLISHERS (Altered) Table

PublD PubName PubPhone
1 Big House 123-456-7890
2 Alpha Press 999-999-9999
3 Small House 714-000-0000
4 Small House 555-123-1111

What is called for is a selection criterion that will return both publisher names simply
because they come from different rows of the PUBLISHERS table. This is the purpose of
DISTINCTROW. Thus, the statement:

SELECT DI STI NCTROW PubName
FROM PUBLI SHERS | NNER JO N BOOKS
ON PUBLI SHERS. Publ D = BOCKS. Publ D;

produces the result table tbIDISTINCTROW shown in Table 6.6 (note that we also had to
add a book to the BOOKS table, with PublD 4).

Table 6.6. The tbIDISTINCTROW Table

PubName

Small House

Big House

Alpha Press
Small House

We can now describe how DISTINCTROW works. Consider the following SQL
skeleton:

SELECT DI STI NCTROW Col utmsRequest ed
FROM Tabl esCl ause

Here ColumnsRequested is alist of columns requested by the statement and TablesClause
isajoin of tables. Let us refer to atable mentioned in TablesClause asareturn table if at
least one of its columns is mentioned in ColumnsRequested. Thus, in the statement:

SELECT DI STI NCTROW PubName

FROM PUBLI SHERS | NNER JO N BOOKS
ON PUBLI SHERS. Publ D = BOCKS. Publ D;

PUBLISHERS is areturn table but BOOKS is not. Here is how DISTINCTROW works;

1. Form the join(s) described in TablesClause.

2. Project the resulting table onto all of the columns from all return tables (not just
the columns requested). Put another way, remove all columns that are not part of a
return table.

3. Remove al duplicate rows, where two rows are corsidered duplicatesif they are
composed of the same rows from each result table. It is not the values that are
compared, but the actual rows. It is necessary to add this because two different
rows may have identical values in an Access table.

Let us illustrate with a simple example.

Consider the following tables, named Templ, Temp2, and Temp3 respectively:

A]_ AZ

link

BIR|IR

link
B1 B, B3

bl y z

b2 link link2
Cl C2 CS

cl t link2

c2 \Y; link2

c3 a X

The statement

SELECT *

FROM

(Tenmpl INNER JO N Tenp2 ON Tenpl. A2 = Tenp2. B2)
I NNER JO N Tenp3 ON Temp2. B3 = Tenp3. C3;

gives the result table tblALL:
A, A, B B, B Cy C, Cs
a3 link b2 link link2 c2 \Y link2
a3 link b2 link link2 cl t link2
a2 link b2 link link2 c2 \Y link2
a2 link b2 link link2 cl t link2

Now let us add the DISTINCTROW keyword and select a single column from just thlA:

SELECT DI STI NCTROW Al

FROM

(Tenmpl INNER JO N Tenp2 ON Tenpl. A2 = Tenp2. B2)
I NNER JO N Tenp3 ON Tenp2. B3 = Tenp3. C3;

Now we consider the projection onto the rows of the only return table (tblA):

Ay A;

link

link

link

RIRI&|I&

link

It is clear that the first two rows of this table are the same row of tblA, so they produce
only one row in the final result table. The same holds for the last two rows. Hence, the
result tableis:

Ap

a2
a3

Let us now change this by requesting a column from tblC, thus making it a return table as
well:

SELECT DI STI NCTROW A1, C1

FROM

(Tenmpl INNER JO N Tenp2 ON Tenpl. A2 = Tenp2. B2)
I NNER JO N Tenp3 ON Tenp2. B3 = Tenp3. C3;

The projection onto return table rows is now:

Al A2 Cl C2 C3
a3 link c2 \Y link2
a3 link cl t link2
a2 link c2 \Y link2
a2 link cl t link2

These row "pairs' are dl distinct. In fact:

Row 1 comes from row 1 of tblA and row 2 of tbIC.
Row 2 comes from row 1 of tblA and row 1 of tbIC.
Row 3 comes from row 2 of tblA and row 2 of tbIC.
Row 4 comes from row 2 of tblA and row 1 of tbIC.

It follows that the return table includes all rows:

Al | Cl

cl

c2

cl

&I®|RIR

c2

Finally, consider what happens if we change the third row of tblA to:

A]_ AZ

X

link

RIRIR

link

Running the first DISTINCTROW statement:

SELECT DI STI NCTROW Al

FROM

(Tenpl INNER JO N Tenp2 ON Tenpl. A2 = Tenp2. B2)
I NNER JO N Tenp3 ON Tenp2. B3 = Tenp3. C3;

gives:

Aq

a2
a2

Comparing this to the previous result table DISTINCTROW A1 emphasizes the fact that,
even though the second and third rows of tbiINewA are identical in values, they are
different rows, so they both contribute to the final result table. If we were to replace the
DISTINCTROW keyword with the word DISTINCT, then the result table would have
only one row, since then it is the values in each row that form the basis for comparison.

Of course, thiswould not be an issue if al tables had akey, since then the values in a row
would determine the row. Y ou may see now why, some time ago, we recommended
against having two different rows with the same column values, even though Access
permits this possibility (but true relational databases do not).

Notice what happens if al tables mentioned in the TablesClause are return tables. This
would happen, for instance, if there is only one table in TablesClause. In this case, the
projection does nothing and since each row of the TablesClause result table must come
from a distinct combination of rows of the result tables, we deduce that DISTINCTROW
has exactly the same effect as ALL, or, to put it another way, DISTINCTROW is
ignored.

It is useful to compare DISTINCTROW and DISTINCT. We can see that the only
differenceisthat a DISTINCT statement will return distinct values, rather than values

from distinct rows. However, these will be the same if the requested columns from each
return table uniquely identify their rows.

Let usillustrate with the PUBLISHERS example. Suppose we return a key (PublD) for
PUBLISHERS, as in the statement:

SELECT DI STI NCTROW Publ D, PubNane
FROM PUBLI SHERS | NNER JO N BOOKS
ON PUBLI SHERS. Publ D = BOCKS. Publ D;

Then the result table will return all PUBLISHERS rows that have at |east one book in the
BOOKS table, as Table 6.7 shows.

Table 6.7. Publisherswith at Least One Book in BOOKS

PublD PubName

Small House

Big House

AlphaPress

AIN|IFP[W

Small House

Thisis, in fact, the semi-join:
PUBLI SHERS semi - j 0i NpygLi sHers, Publ D=Bocks. Publ 0 BOOKS

Recall that the semi-join is the projection of the join onto one of the tables (in this case,
the PUBLISHERS table). Thus, as Microsoft itself says, the purpose of the
DISTINCTROW option is to return an updatable semi-join.

Of course, the same statement with DISTINCT in place of DISTINCTROW will return
the same result table. However, there is one big difference. Since DISTINCT statements
can completely hide the origin of the returned values, it would be a disaster if Access
allowed such aresult table to be updatable—and indeed it does not. For instance, recall
the table tbIDISTINCT discussed earlier and shownin Table 6.8.

Table6.8. ThetbIDISTINCT Table

PubName

Alpha Press

Big House

Small House

Changing the name of Small House in this result table would be disastrous, since we
would not know which Small House was being affected!

On the other hand, the result table of the DISTINCTROW statement has a
"representative” from each row of the PUBLISHERS table, as Table 6.9 shows. Hence,
while it still may not be a good idea to change this particular table, since we cannot tell
which Small House is which, it would be reasonable to make a change to both names, for
instance.

Table 6.9. The tbIDISTINCTROW Table

PubName

Small House

Big House

Alpha Press

Small House

More generally, Access does not permit updating of the result table of aDISTINCT
statement, but it does permit updating of the result table for a DISTINCTROW statement.

Finally, we mention that Microsoft Access includes the DISTINCTROW keyword by
default when you create a query using the Access Query Design Window.

6.7.3.2 ReturnColumnDescription

The ReturnColumnDescription describes the columns, or combination of columns, to
return. It can be any of the following:

* (indicating all columns)

The name of a column

An expression involving column names, enclosed in brackets, along with strings
and string operators; for example, [PublD] & ™" & [Title]

(Note that, according to the syntax of the SELECT statement, ReturnColumnDescription
can be repeated as many times as desired.)

When two returned columns (from different tables) have the same name, it is necessary to
gualify the column names using the table names. For instance, to qualify the PublD
column name, we write BOOK S.PublD and PUBLISHERS.PublD. We can aso write
BOOKS.* to indicate al columns of the BOOKS table.

Finally, each ReturnColumnDescription can end with:

[AS Al'i asName]

to give the return column a (new) name.

For example, the following statement:

SELECT DI STI NCTROW
[ISBN] & " from" & [PubNane] AS [ISBN from PubNane]
FROM PUBLI SHERS | NNER JOI N BOOKS ON PUBLI SHERS. Publ D = BOOKS. Publ D;

returns a single column result table ISBN-PUB, as shown in Table 6.10.

Table6.10. The ISBN-PUB Table

ISBN from PubName

0-12-345678-9 from Small House

0-11-345678-9 from Small House

0-321-32132-1 from Small House

0-55-123456-9 from Small House

0-12-333433-3 from Big House

0-103-45678-9 from Big House

0-91-335678-7 from Big House

0-99-999999-9 from Big House

1-22-233700-0 from Big House

1-1111-1111-1 from Big House

0-91-045678-5 from Alpha Press

0-555-55555-9 from Alpha Press

0-99-777777-7 from Alpha Press

0-123-45678-0 from Alpha Press

Not only does the AS AliasName option allow us to name a "compound column,” it also
allows us to rename duplicate column names without having to qualify the names.

6.7.3.3 FROM TableExpression

The FROM clause specifies the tables (or queries) from which the SELECT statement is
to take its rows. The expression TableExpression can be a single table name, several table
names separated by commas, or a join clause. The TableExpression may also include the
AS AliasName syntax for table name aliases.

When tables are separated by commas in the FROM clause, a Cartesian product is
formed. For example, the statement:

SELECT *
FROM AUTHORS, PUBLI SHERS;

will produce the Cartesian product of the two tables.

6.7.3.4 WHERE RowCondition

The RowCondition is any Access expression that specifies which rows are included in the
result table. Expressions can involve column names, constants, arithmetic (=, <, >, <=,

>=, <> BETWEEN) and logical (AND, OR, XOR, NOT, IMP) relations, aswell as
functions. Here are some examples:

WHERE Title LIKE "F*"

WHERE Len(Trim(Title)) > 10

WHERE Instr(Title, "Wind") > AND Len(Trim(Title)) > 10
WHERE DateSold = #5/21/96#

Note that dates are enclosed in number signs (#) and the strings are enclosed in quotation
marks (").

6.7.3.5 GROUP BY GroupByCriteria

The GROUP BY option allows records to be grouped together for the purpose of
computing the value of an aggregate function (Avg, Count, Min, Max, Sum, First, Last,
SDev, SDeVP, Var, and VarP). It is equivalent to creating a so-called totals query. The
GroupBYyCriteria can contain the names of up to ten columns. The order of the column
names determines the grouping levels, from highest to lowest.

For example, the following statement lists each publisher by name, along with the
minimum price of each publisher's books in the BOOKS table:

SELECT PUBLI SHERS. PubNanme, M N(Price) AS [M ninum Pri ce]
FROM PUBLI SHERS | NNER JO N BOOKS

ON PUBLI SHERS. Publ D = BOCKS. Publ D

GROUP BY PUBLI SHERS. PubNane;

The result table appearsin Table 6.11.

Table 6.11. Each Publisher's L east Expensive Book

PubName Minimum Price
AlphaPress $12.00
Big House $15.00
Small House $22.95

6.7.3.6 HAVING GroupCriteria

The HAVING option is used in conjunction with the GROUP BY option and allows usto
specify a criterion, in terms of aggregate functions, for deciding which data to display.

For example, the following command is the same as the previous one, with the additional
HAVING option that restricts the return table to those publishers whose minimum price
is less than $20.00:

SELECT PUBLI SHERS. PubName, M N(Price) AS [M ni num Pri ce]
FROM PUBLI SHERS | NNER JO N BOOKS

ON PUBLI SHERS. Publ D = BOCKS. Publ D
GROUP BY PUBLI SHERS. PubNane
HAVI NG M N(Pri ce) <20. 00;

The result table is shown in Table 6.12.

Table 6.12. Each Publisher's Cheapest Book Under $20.00

PubName Minimum Price

Alpha Press $12.00

Big House $15.00

Note that the WHERE clause restricts which rows participate in the grouping, and hence
contribute to the value of the aggregate functions, whereas the HAVING clause affects
only which values are displayed.

6.7.3.7 ORDER BY OrderByCriteria

The ORDER BY option describes the order in which to return the rows in the return
table. The OrderByCriteria has the form:

OrderByCriteria ::= {ColumName [ASC | DESC]}, ...

In other words, it isjust alist of columns to use in the ordering. Rows are sorted first by
the first column listed, then rows with identical valuesin the first column are sorted by
the values in the second column, and so on.

6.7.4 The UNION Statement

The UNION statement is used to create the union of two or more tables. The syntax is:

[TABLE] Query
{UNION [ALL] [TABLE] Query},...

where Quer y is either a SELECT statement, the name of a stored query, or the name of a
stored table preceded by the TABLE keyword. The ALL option forces Access to include
all records. Without this option, Access does not include duplicate rows. The use of ALL
increases performance as well, and is thus recommended even when there are no
duplicate rows.

6.7.4.1 Example

The following statement takes the union of al rows of BOOKS and those rows of
NEWBOOKS that have Price > $25.00, sorting the result table by Title:

TABLE BOOKS
UNI ON ALL

SELECT * FROM NEWBOOKS WHERE Price > 25.00
ORDER BY Title;

6.7.4.2 Notes

All queriesin a UNION operation must return the same number of fields.
However, the fields do not need to have the same size or data type.

Columns are combined in the union by their order in the query clauses, not by
their names.

Aliases may be used in the first SELECT statement (if there is one) to change the
names of returned columns.

An ORDER BY clause can be used at the end of the last Quer y to order the
returned data. Use the column names from the first Query.

GROUP BY and/or HAVING clauses can be used in each query argument to
group the returned data.

The result table of a UNION is not updatable.

UNION is not part of SQL-92.

6.7.5 The UPDATE Statement

The UPDATE statement is equivalent to an Update query, and is used for updating data
in atable or tables. The syntax is:

UPDATE Tabl eNanme | QueryNane
SET Newval ueExpression, ...
WHERE Criteria;

The WHERE clause is used to restrict updating to qualifying rows.

6.7.5.1 Example

The following example updates the Price column in the BOOKS table with new prices
from atable called NEWPRICES that has an ISBN and a Price column:

UPDATE

BOOKS | NNER JO N NEWPRI CES ON BOOKS. | SBN = NEWPRI CES. | SBN
SET BOCKS. Price = NEWPRI CES. Price

WHERE BOOKS. Price <> NEWPRI CES. Pri ce;

Note that UPDATE does not produce a result table. To determine which rows will be
updated, first run a corresponding SELECT query, asin:

SELECT * FROM
BOOKS | NNER JO N NEWPRI CES ON BOOKS. | SBN = NEWPRI CES. | SBN
WHERE BOOKS. Price <> NEWPRI CES. Price

6.7.6 The DELETE Statement

The DELETE statement is equivalent to a Delete query and is used to delete rows from a
table. Here is the syntax:

DELETE
FROM Tabl eNane
WHERE Criteria

Criteria isused to determine which rows to delete.

This command can be used to delete all data from atable, but it will not delete the
structure of the table. Use DROP for that purpose.

Y ou can use DELETE to remove records from tables that have a one-to- many
relationship. If cascading delete is enabled when you delete a row from the one side of
the relationship, all matching rows are deleted from the many side. The action of the
DELETE statement is not reversable. Always make backups before deleting! Y ou can run
a SELECT operation before DELETE to see which rows will be affected by the DELETE
operation.

6.7.7 The INSERT INTO Statement

The INSERT INTO statement is designed to insert new rows into atable. This can be
done by specifying the values of a new row using this syntax:

| NSERT | NTO Target [(FieldNane,...)]
VALUES (Val uel,...)

If you do not specify the Fi el dNane (S), then you must include values for each field in
the table.

Let'slook at severa examples of the INSERT INTO statement. The following statement
inserts a new row into the BOOKS table:

I NSERT | NTO BOOKS
VALUES ("1-000-00000-0", "SQ is Fun",1, 25.00);

The following statement inserts a new row into the BOOK S table. The Price and PublD
columns have NULL values.

I NSERT | NTO BOOKS (I SBN, Titl e)
VALUES ("1-1111-1111-1","Gone Fishing");

To insert multiple rows, use this syntax:

| NSERT | NTO Target [(FieldNane,...)]
SELECT Fi el dNane, . ..

FROM Tabl eExpr essi on

In both syntaxes, Tar get isthe name of the table or query into which rows are to be
inserted. In the case of a query, that query must be updatable and all updates will be
reflected in the underlying tables. Tabl eExpr essi on isthe name of the table from which
records are inserted, or the name of a saved query, or a SELECT statement.

Assume that NEWBOOKS is a table with three fields: ISBN, PublD, and Price. The
following statement inserts rows from BOOKS into NEWBOOKS. It inserts only those
books with Price > $20.00.

| NSERT | NTO NEWBOOKS
SELECT | SBN, PublD, Price
FROM BOOKS

VWHERE Pri ce>20;

6.7.7.1 Note

Text field values must be enclosed in quotation marks.

6.7.8 The SELECT... INTO Statement

The SELECT... INTO statement is equivalent to a MakeTable query. It makes a new
table and inserts data from other tables. The syntax is:

SELECT Fi el dNane, . ..

| NTO NewTabl eNane

FROM Sour ce

VWHERE RowCondi ti on
ORDER BY Order Condition

Fi el dNare isthe name of the field to be copied into the new table. Sour ce is the name of
the table from which data is taken. This can also be the name of a query or ajoin
Statement.

For example, the following statement creates a new table called EXPENSIVEBOOKS
and includes books from the BOOKS table that cost more than $45.00:

SELECT Title, |SBN
| NTO EXPENSI VEBOOKS
FROM BOOKS

VWHERE Pri ce>45
ORDER BY Title;

6.7.8.1 Notes

This statement is unique to Access SQL.
This statement does not create indexes in the new table.

6.7.9 TRANSFORM

The TRANSFORM statement (which is not part of SQL-92) is designed to create
crosstab queries. The basic syntax is:

TRANSFORM Aggr egat eFuncti on
Sel ect St at enent
Pl VOT Col ummHeadi ngsCol um [IN (Value,...)]

The Aggr egat eFunct i on is one of Access's aggregate functions (Avg, Count, Min, Max,
Sum, First, Last, SDev, SDevP, Var, and VarP). The Col unmmHeadi ngsCol umm isthe
column that is pivoted to give the column headings in the crosstab result table. The

Val ues in the IN clause option specify fixed column headings.

The SalectSatement is a sdect statement that uses the GROUP BY clause, with some
modifications. In particular, the select statement must have at least two GROUP BY
columns and no HAVING clause.

As an example, suppose we wish to display the total number of books from each
publisher by price. The SELECT statement:

SELECT PubNanme, Price, COUNT(Title) AS Tot al
FROM PUBLI SHERS | NNER JO N BOOKS

ON PUBLI SHERS. Publ D=BOOKS. Publ D
GROUP BY PubNane, Price;

whose result table is shown in Table 6.13, doesn't really give the information in the

desired form. For instance, it is difficult to tell how many books cost $20.00. (Remember,
this small tableis just for illustration.)

Table 6.13. Book Prices by Publisher

PubName Price Total
Big House $15.00 1
Big House $20.00 1
Big House $25.00 2
Big House $49.00 1
Medium House $12.00 2
Medium House $20.00 1
Medium House $34.00 1
Medium House $49.00 1
Small House $49.00 1

We can transform this into a crosstab query in two steps.

1. Add aTRANSFORM clause at the top and move the aggregate function whose
value is to be computed to that clause.

2. Add aPIVOT line at the bottom and move the column whose values will form the
column headings to that clause. Also, delete the reference to this column in the
SELECT clause.

This gives:

TRANSFORM COUNT(Titl e)

SELECT Price

FROM PUBLI SHERS | NNER JO N BOOKS
ON PUBLI SHERS. Publ D=BOOKS. Publ D

GROUP BY Price

Pl VOT PubNane;

with the result table shown in Table 6.14.

Table 6.14. A Cross-Tabulation of Book Prices by Publisher

Price Big House Medium House Small House
$12.00 2
$15.00 1
$20.00 1 1
$25.00 2
$34.00 1
$49.00 1 1 1

We can group the rows by the values in more than one column. For example, suppose
that the BOOK S table also had a DISCOUNT column that gave the discount from the
regular price of the book (as a percentage). Then by including the DISCOUNT columniin
the SELECT and GROUP BY clauses, we get:

TRANSFORM COUNT(Titl e)

SELECT Price, Di scount

FROM PUBLI SHERS | NNER JO N BOOKS
ON PUBLI SHERS. Publ D=BOCKS. Publ D

GROUP BY Price, Discount

Pl VOT PubNane;

for which the result table is shown in Table 6.15.

Table 6.15. Book Prices and Discount by Publisher

Price Discount Big House Medium House Small House
$12.00 30% 2
$15.00 20% 1
$20.00 20% 1

$20.00 30% 1

$25.00 10%

$25.00 20%

$34.00 10% 1
$49.00 10% 1
$49.00 30% 1 1

In this case, each row represents a unique price/discount pair.

A crosstab can also include additional row aggregates by adding additional aggregate
functions to the SELECT clause, as follows:

TRANSFORM COUNT(Titl e)
SELECT Price, COUNT(Price) AS Count, SUMPrice) AS Sum
FROM PUBLI SHERS | NNER JO N BOOKS
ON PUBLI SHERS. Publ D=BOCKS. Publ D
GROUP BY Price
Pl VOT PubNane;

which gives the result table shown in Table 6.16.

Table 6.16. Aggregating Resultsin a Crosstab Table

Price Count Sum BigHouse Medium House Small House
$12.00 2 $24.00 2
$15.00 1 $15.00 1
$20.00 2 $40.00 1 1
$25.00 2 $50.00 2
$34.00 1 $34.00 1
$49.00 3 $147.00 1 1 1

Finally, by including fixed column names, we can reorder or omit columns from the
crosstab result table. For instance, the next statement is just like the previous one except
for the PIVOT clause:

TRANSFORM COUNT(Titl e)
SELECT Price, COUNT(Price) AS Count, SUMPrice) AS Sum
FROM PUBLI SHERS | NNER JO N BOOKS
ON PUBLI SHERS. Publ D=BOCKS. Publ D
GROUP BY Price
PI VOT PubNane IN ("Snmall House", "Medium House");

The result table is shown in Table 6.17. Note that the order of the columns has changed
and Big House is not shown.

Table 6.17. Omitting Columns from a Crosstab Table

Price Count Sum Small House Medium House
$12.00 2 $24.00 2
$15.00 1 $15.00
$20.00 2 $40.00 1
$25.00 2 $50.00
$34.00 1 $34.00 1
$49.00 3 $147.00 1 1

6.7.10 Subqueries
SQL permits the use of SELECT statements within the following:

Other SELECT statements
SELECT...INTO statements
INSERT...INTO statements
DELETE statements
UPDATE statements

The internal SELECT statement is referred to as a subquery, and is generaly used in the
WHERE clause of the main query.

The syntax of a subquery takes three possible forms, described below.

6.7.10.1 Syntax 1
Conparison [ANY | SOVE | ALL] (SQ.Statenent)

where Conpar i son is an expression followed by a comparison relation that compares the
expression with the return value(s) of the subquery. This syntax is used to compare a
value against the values obtained from another query.

For example, the following statement returns all titles and prices of books from the
BOOKS table, whose prices are greater than the maximum price of all books in the table
BOOK S2:

SELECT Title, Price
FROM BOCKS
WHERE Price > (SELECT Max(Price) FROM BOOKS2);

Note that since the subquery returns only one value, we do not need to use any of the
keywords ANY, SOME, or ALL.

The following statement selects all BOOK S titles and prices for books that are more
expensive than ALL of the books published by Big House:

SELECT Title, Price
FROM BOOKS
WHERE Price > ALL

(SELECT Price

FROM PUBLI SHERS | NNER JO N BOOKS ON PUBLI SHERS. Publ D =
BOOKS. Publ D

WHERE PubName = "Bi g House");

Note that ANY and SOME have the same meaning and return al choices that make the
comparison true for at least one value returned by the subquery. For example, if we were
to replace ALL by SOME in the previous example, the return table would consist of all
book titles and prices for books that are more expensive than the cheapest book published
by Big House.

6.7.10.2 Syntax 2
Expression [NOT] IN (SQLSt at ement)

This syntax is used to look up a column value in the result table of another query.

For example, the following statement returns all book titles from BOOKS that do not
appear in the table BOOK S2:

SELECT Title
FROM BOCKS
VWHERE Title NOT IN (SELECT Titl e FROM BOOKS2);

6.7.10.3 Syntax 3
[NOT] EXI STS (SQLSt at enent)

This syntax is used to check whether an item exists (is returned) in the subquery.

For example, the following statement selects all publishers that do not have books in the
BOOKStable:

SELECT PubNane

FROM PUBLI SHERS

WHERE NOT EXI STS
(SELECT * FROM BOOKS WHERE BOOKS. Publ D =
PUBLI| SHERS. Publ D) ;

Notice that the PUBLISHERS table is referenced in the subquery. This causes Access to
eva uate the subguery once for each value of PUBLISHERS.PubID in the PUBLISHERS
table.

6.7.10.4 Notes

When using Syntax 1 or 2, the subquery must return a single column or an error
will occur.

The SELECT statement that constitutes the subquery follows the same format and
rules as any other SELECT statement. However, it must be enclosed in
parentheses.

6.7.11 Parameters

Access SQL allows the use of parameters to obtain information from the user when the
query isrun. The PARAMETERS line must be the first line in the statement, and has the
Syntax:

PARAMETERS Nane Dat aType, . .

An example will illustrate the technique.

The following statement will prompt the user for a portion of the title of a book, and
return all books from BOOK S with that string in the title. Note the semicolon at the end
of the PARAMETERS line.

PARAMETERS [Enter portion of title] TEXT,

SELECT *

FROM BOCKS

WHERE Instr(Title, [Enter portion of title]) > O;

Thefunction I nst r (Text 1, Text 2) returnsthe first location of the text string Text 2
within the text string Text 1. Note that Nane is repeated in the WHERE clause, and will
be filled in by the value that the user enters as aresult of Nane appearing in the
PARAMETERS clause.

Part Ill: Database Architecture

7.1 Why Program?

There is no doubt that SQL is a powerful language—as far as it goes. However, it isa
somewhat unfriendly language and it lacks the sophisticated control structures of a more
traditional language, such as For...Next... loops and If...Then... statements.

Thisis not realy a problem, since SQL is designed for a very specific purpose related to
database component creation and manipulation. SQL is not designed to provide an
overal programming environment for Microsoft Accessitself. Thisroleis played by
Visual Basic for Applications, or VBA.

VBA is the macro or scripting language for all of the major Microsoft Office products:
Microsoft Access, Excel, PowerPoint, and Word (starting with Word 97). It isavery
powerful programming language that gives the programmer access to the full features of
these applications, as well as the means to make the applications work together.

One of the major components of VBA isits support for the Data Access Objects model,
or DAQO. DAO is the programming language interface for the Jet database management
system (DBMYS) that underlies Microsoft Access. It provides a more-or-less object-
oriented data definition language (DDL) ard data manipulation language (DML), thereby

allowing the VBA programmer to define the structure of a database and manipulate its
data

Of course, it is natural to wonder why you would want to use DAO, and VBA in general,
rather than using the built-in graphical interface of Microsoft Access. The answer is
simple. While the graphical interface is very easy to use, and is quite adequate for many
purposes, it is simply not as powerful as the programming languages. The database
creator gains more power and flexibility over the database by directly manipulating the
basic objects of the database (such as the tables, queries, relationships, indexes, and so
on) through programming.

As asimple example, there is no way to get alist of the fields of a given table (i.e, the
table's table scheme) using the Access graphical interface. However, thisisa simple
matter using programming techniques. The following short program:

Di m db As DATABASE
Dimtdf As Tabl eDef
Dmfld As Field

Set db = Current Db

Set tdf = db. Tabl eDef s(" BOOKS")

For Each fld In tdf.Fields
Debug. Print fl d. Name

Next

displays the following list of fields for the BOOKS table in the Debug window:

| SBN

Title
Publ D
Price

Thisis agood place to discuss the relationship between DAO and SQL. The fact is that
DAO both uses SQL and overlaps SQL. That is, there are many commands in DAO that
can accept an SQL statement as an argument. For instance, the following VBA code
opens arecordset (discussed later in the book) using an SQL statement to define the
records in the recordset:

Get current database
Set dbs = CurrentDb()

' Wite SQ statenent
strSel ect = "Select * FROM Books WHERE Price=10"

Open recordset using SQ statenent
Set rsCheap = dbs. OpenRecordset (strSel ect)

On the other hand, DAO overlaps SQL in the sense that many actions can be performed
using either language. For instance, a table can be created using either the SQL statement
CREATE TABLE or the DAO method CreateTable. The choice is up to the programmer.

Our main goal in the remaining portion of this book is to discuss the DAO model. Before
doing so, however, we need to set the stage by discussing the overall architecture of a
database management system, and of the Jet DBMS in particular, so we can put DAO in
its proper context. We will do so in this chapter, and also take a quick peek at DAO
programming. In Part 1V, we will present a brief introduction to programming in VBA.
Then we will turn to DAO itself in the following chapters of the book. Finally, welll
conclude by examining ActiveX Data Objects, or ADO, Microsoft's recent technology for
universal data access.

7.2 Database Systems
A database system is often pictured as athree-level structure, as shown in Figure 7.1.

Figure7.1. Thethree-level structure of a database system

view view2 viewd viewd
» [y 4
\ / /
I L S v ¥

!

Physical
Database

At the lowest level of the structure is the physical database, which consists of the raw
data existing on a physical object, such as a hard disk. At thislevel, the data have no
logical meaning, as related to the database. However, the data do have a very definite
physical structure, to allow efficient access. In other words, the data are more than just a
string of bits.

In fact, there are a variety of structures in which the data might be stored, including hash
tables, balanced trees, linked lists, rested records, and so on, and the choice of data
structure is not a simple one. However, we will not pursue a discussion of the physical
database in this book. Suffice it to say that, at the physical level, the datais viewed as a
structured collection of bits and the sole purpose of the structure is to provide efficient
access to the data. The physical level of a database is often referred to as the internal
level.

The conceptual database is a conceptual view of the database as awhole. It gives the
dataalogical structure. For instance, in arelational database system, the data are viewed
as a collection of tables, with column headings describing the attributes of the
corresponding entity class. Moreover, tables are related to one another through certain
columns.

The conceptual model is intended to model the entire database. However, individual users
may be interested in views of only specific portions of the data. For instance, in the
LIBRARY database, a student using the library's online database catalogis probably not
interested in the price of the book, but is interested in where it is located on the shelves.
Thus, a single database, such as LIBRARY, may need different views for the student than
for the librarian.

The highest level in the three-tier structure consists of the individual views of the data
that may be held by users of the database. Views are also referred to as subschemes, and
this level of thetier is aso referred to as the external level.

As another example, we can think of the Microsoft Visual Basic programming language
as providing an external view of the Jet Database Management System that is geared
toward database programmers. We can think of Microsoft Access as providing an
external view that is geared, not just to programmers, but also to high-level users of
varying degrees of sophistication. After all, auser does not need to know anything about
database programming to create a database in Microsoft Access, although he or she does
need to have a familiarity with the conceptual leve of arelational database.

Thinking of a database system as a three-tier structure has distinct advantages. One
advantage is that it allows for a certain level of independence that permits the individual
tiers to be changed or replaced without affecting the other tiers. For instance, if the
database is moved to a new computer system that stores the data in hash tables rather than
balanced trees, this should not affect the conceptual model of the data, nor the views of
users of the database. Also, if we switch from the Visual Basic view of the database to
the Access view, we can still use the same conceptual database model. Put more bluntly,
adatabase table in Visual Basic is still a database table in Microsoft Access.

7.3 Database Management Systems

A DBMS is a software system that is responsible for managing all aspects of a database,
a al levels. In particular, a DBMS should provide the following features, and perhaps
more:

A mechanism for defining the structure of a database, in the form of a data
definition language, or DDL.

A mechanism for data manipulation, including data access, sorting, searching, and
filtering. This takes the form of a data manipulation language, or DML.
Interaction with a high-level host language or host application, allowing
programmers to write database applications designed for specific purposes. The

host language can be a standard programming language, such as C or Visua
Basic, or a database application language, such as Microsoft Access.

Efficient and correct multiuser accessto the data.

Effective data security.

Robustness; that is, the ability to recover from system failures without data loss.
A data dictionary, or data catalog. Thisis a database (in its own right) that
provides alist of the definitions of al objectsin the main database. For instance, it
should include information on al entities in the database, along with their
attributes and indexes. This "data about data’ is sometimes referred to as
metadata. The data dictionary should be accessible to the user of the database, so
that he or she can obtain this metadata.

7.4 The Jet DBMS

Asthetitle of the book suggests, our primary interest is in the DBMS that underlies
Microsoft Access (and also Visua Basic). Accordingly, we will take our examples from
this DBMS, called the Jet DBMS or the Jet Database Engine. The relationship between
the Jet DBM S and other database-related programs, including Microsoft Access and
Visual Basic, can be pictured asin Figure 7.2.

Figure 7.2. Therelationships and structure of the Jet Database Engine (DBMS)

Datahase Datahase
Application Application

Visual Baalnl Access | Excel | Ward |

I I] I

Viswal Basic For Applications |

Host Languages for the Jet DBMS

;Z'_1'_' _'_'_'_'_'_'_'_'_i

Data Access Objects (DAD)
(includes DDL and DML)
Query Engine IASM Engine

Jet Internal Replication ‘

The Jet Database Engine (Jet DEMS)

Microsoft
Access
Datahase

Microsoft's applicationlevel products Visua Basic, Access, and Excel play host to
Visual Basic for Applications (or VBA), which is the underlying programming language
(also called scripting or macro language) for these applications. (Microsoft Word Version
7 does not use VBA—it uses a similar language called Word Basic. However, as of
Microsoft Word 97, Word does use VBA.) As expected, each of these applications
integrates VBA into its environment in a specific way, since each application has a
different purpose.

In turn, Visual Basic for Applications is the host language for the Jet DBMS. The Jet
DBMS contains the Data Access Object component (or DAO), which is the programming
language interface for the Jet DBMS. The DAO provides a more-or-less object-oriented
DDL and DML, thereby allowing the VBA programmer to define the structure of a
database and manipulate its data.

The Jet Database Engine is a collection of components, generally in the form of dynamic
link libraries (DLLSs), designed to provide specific functions within the Jet DBMS. (A
DLL isessentially a collection of functions for performing various tasks.) The Jet Query
Engine handles the trandation of database queriesinto Access SQL (structured query
language), and the subsequent compilation, optimization, and execution of these queries.

In short, it handles queries. The Internal |SAM component is responsible for storing and
retrieving data from the physical database file. ISAM stands for Indexed Sequential
Access Method, and is the method by which data are stored in a Jet database file. The
Replication Engine alows exact duplicates of a database to coexist on multiple systems,
with periodic synchronization.

The host languages for the Jet DBMS, such as Visual Basic and Access, are used by
database programmers to create database applications for specific purposes. For instance,
we might create a Library database application, which alibrary can use to maintain
information about its books, or an Order Entry database application for a small business.

Incidentally, the Jet DBMS is also capable of interfacing with non-Access- formatted
databases, such as those with format Xbase (dBase), Paradox, Btrieve, Excel, and
delimited text formats. It can also interface with ODBC (ODBC stands for open database
connectivity and is discussed in Appendix C) to access server database applications
across networks.

Let us take a closer ook at the components of the Jet DBMS. We will study these
components in much greater detail in separate chapters of the book.

7.5 Data Definition Languages

We have aready mentioned that a DBM S needs to provide a method for defining new
databases. Thisis done by providing a data definition language, or DDL, to the
programmer. A DDL is not aprocedural language; that is, its instructions do not actually
perform operations. Rather, a DDL is a definitional language.

7.5.1 The Jet Data Definition Language

Example 7.1 illustrates the use of the Jet data definition language. The code will run in
Visual Basic or in an Access code module, so feel free to key it in and try it yourself.
(Use anew database in Access, since some of this code will conflict with the LIBRARY
database that we have been working with in earlier chapters.) The purpose is to create a
new database called LIBRARY, aong with atable called BOOKS, containing two fields,
ISBN and TITLE, and one index. (Don't worry if some portions of this code don't make
sense to you at this point.) Note that Access uses a space followed by an underscore
character () to indicate that the next line is a continuation of the current line.

Example 7.1. Use of the Jet Data Definition Language
Dat a Definition Language exanpl e

Decl are variables of the required types
Dimws As Workspace
Di m dbLi brary As Dat abase
Di m t bl Books As Tabl eDef
Di m fl dBooks As Field
Di m i dxBooks As | ndex

Use the default workspace, called Wrkspaces(0)
Set ws = DBEngi ne. Wr kspaces(0)

Create a new dat abase naned LI BRARY
in the default Workspace
Set dbLibrary = _
ws. Cr eat eDat abase("d:\dao\li brary. mdb",
dbLangCeneral)
dbLi brary. Nane = "L| BRARY"

Create a new table called BOOKS
Set tbl Books = dbLi brary. Creat eTabl eDef (" BOOKS")

Define ISBN field and append to the

table's Fields collection
Set fl dBooks = tbl Books. CreateFi el d("ISBN', dbText)
fl dBooks. Si ze = 13
t bl Books. Fi el ds. Append f I dBooks

Define Title field and append to the

table's Fields collection
Set fl dBooks = tbhl Books.CreateField("Title", dbText)
fl dBooks. Si ze = 100
t bl Books. Fi el ds. Append f | dBooks

Add the table to the db's Tabl es col |l ection
dbLi brary. Tabl eDef s. Append t bl Books

Create an index
Set i dxBooks = tbl Books. Creat el ndex("1 SBNI dx")
i dxBooks. Uni que = Fal se

I ndi ces need their own fields
Set fl dBooks = i dxBooks. CreateFiel d("| SBN")

Append to the proper collections
i dxBooks. Fi el ds. Append fl dBooks
t bl Books. | ndexes. Append i dxBooks

Asyou can see, the clue that we are dealing with a DDL are the commands
CreateDatabase, CreateTableDef, CreateField, and Createlndex (in boldface for easier
identification). You can aso see from this code that the Jet DBM S uses the collections to
hold the properties of an object. For instance, the fields that we create for atable must be
appended to the Fields collection for that table. This has the advantage that we don't need
to keep a separate reference to each field—the collection does that for us. This approach
istypical of object-oriented programming.

7.6 Data Manipulation Languages

A DBMS must aso provide alanguage designed to manipulate the data in a database.
This language is called a database manipulation language, or DML. To the database

programmer, however, the distinction between aDDL and a DML may be just a logical
one, defined more by the purpose of the language than the syntax.

7.6.1 The Jet Data M anipulation Language

Example 7.2 is Jet DML code to add two records to the BOOK S table, set the index, and
display the records.

Example 7.2. Jet DML Code Altering the BOOKS Table
Dat a Mani pul ati on Language exanpl e

Di m r sBooks As Recordset

Open t he dat abase
Set dbLibrary = ws. OpenDat abase("d:\dao\library. ndb")

Create a recordset for the BOOKS table
Set rsBooks = dbLi brary. OpenRecor dset (" BOOKS")

Add two records
r sBooks. AddNew
rsBooks! | SBN = "0-99- 345678- 0"
rsBooks! Title = "DB Programring is Fun"
r sBooks. Updat e
r sBooks. AddNew
rsBooks! | SBN = "0-78-654321- 0"
rsBooks! Title = "DB Programrng isn't Fun"
r sBooks. Updat e

Set i ndex
r sBooks. I ndex = "1 SBNI dx"

Show t he records
r sBooks. MoveFi r st

MsgBox "I SBN: " & rsBooks!ISBN & " Tl: " & rsBooks!Title
r sBooks. MbveNext
MsgBox "1 SBN: " & rsBooks!ISBN & " TI: " & rsBooks!Title

As you can see even from this small example, the DML is designed to perform a variety
of actions, such as:

Moving through the data in the database

Adding data to the database

Editing or updating data in the database

Deleting data from the database

Querying the data and returning those portions of the data that satisfy the query

7.7 Host Languages

Data are seldom manipulated without some intended purpose. For instance, consider a
LIBRARY database consisting of information about the booksin alibrary. If a student

wishes to access these data, it is probably with the intention of finding a certain book, for
which the student has some information, such as the title. On the other hand, if alibrarian
wishes to access the information, it may be for other purposes, such as determining when
the book was added to the library, or how much it cost. These issues probably don't
interest the student.

The point here is that a DBM S should supply an interface with a high-level language with
which programmers can program the database to provide specific services; that is, with
which programmers can create database applications. Thus, when a student logs onto a
library's computer to search for a book, he or she may be accessing a different database
application than the librarian might access. The language that is used for database
application programming is the host language for the DBMS. As mentioned earlier, a
host language may be a traditional programming language, such as C or COBOL, or it
may be an application level language, such as Microsoft Access or Visua Basic, asitis
for the Jet DBMS.

In fact, the Jet DBMS is so tightly integrated into both of these applications that it is hard
to tell where one leaves off and the other begins. Put another way, it sometimes seems as
though Microsoft Accessisthe Jet DBMS, whereas it is more accurate to say that Access
and Visua Basic are front ends, or host applications, for the Jet DBMS.

7.8 The Client/Server Architecture
The client/server model of a database system isreally very simple, but its meaning has
evolved somewhat through popular usage. The client/server model is shown in Figure

7.3.

Figure 7.3. The client/server mode example

- = Application = DEMS -
Datahase

Chignt Senver

End User

The server in aclient/server model is ssmply the DBMS, whereas the client is the
database application serviced by the DBMS. (We could also think of Visual Basic and
Access as clients of the Jet DBMS server.)

The basic client/server model says nothing about the location of the various components.
However, since the components are distinct, it is not uncommon to find them on different
computers. The two most common configurations are illustrated in Figure 7.4 and Figure
7.5. The distributed client/server model (Figure 7.4), wherein the client is on one
computer and the server and database are on another, is so popular that it is usualy

simply referred to as the client/server model. The remote database modd (Figure 7.5)
refers to the case in which the client and server are on the same computer, but the
database is on a remote computer.

Figure 7.4. The distributed client/server model example

............................

L e— oems | L,
m opication | ; Bl Database

Gignt Sarver

' End Liser

Figure 7.5. The remote database example

D e
Cliant Sarver atabas

v End User

Part IV: Visual Basic for Applications

Chapter 8. The Visual Basic Editor, Part |

The first step in becoming an Access VBA/DAO programmer is to become familiar with
the environment in which Access programming is done. Each of the main Office
applications has a programming environment referred to as its Integrated Development
Environment or IDE. Microsoft also refers to this programming environment as the
Visual Basic Editor.

Our plan in this chapter and the next is to describe the major components of the Access
IDE. Werealize that you are probably anxious to get to some actual programming, but it
IS necessary to gain some familiarity with the IDE before you can use it. Nevertheless,
you may want to read quickly through this chapter and the next and then refer back to
them as needed.

Until the release of Office 2000, not all of the Office Suite applications used the same
IDE. In Office 97, Word, Excel, and PowerPoint use the full VBA IDE, whereas Access

97 uses a simple code module environment. However, with the appearance of Access 9
for Office 2000, al four of the Office applications use the same IDE, as show in Figure
8.1. To start the Access IDE, simply choose Visual Basic Editor from the Macros
submenu of the Tools menu, or hit Alt+F11.

Let ustake alook at some of the components of this IDE.

Figure8.1. The Access VBA IDE

Dbject Procedure Code
Box Box Wimdow
gl Mt 48 Viniinl Anaie: - Aok - [CadaFofank [Coda)]
% Sl Edt Wew Ireort Dobug Bun ook drkHng Wrdow Halp =181 x|
L]
Fla-@ BEéh o |y o e MEE QD T
x| |twnwia W | |oee Matios) =
D G pricn apare Databas v z
+ B acweman [AOWEAAIN] -
& BodkCode [Fook)
P-"JJ,"EEF = =3 hcTosD Anoeex: CLyss Qoece
Ex,[].'{:ln'E'r | Illlu;-;h. arm
2 CodeForBook
i Mirrda] =3
- ¥ Clhiica Mok s =
]
ICederonDook Hod. =]
Aiphatatc | Camegorzed |
ke rc
Propertias =34 | A
Window — x|
Lol | ! o
|
immediate
Window

8.1 The Project Window

The window in the upper-left corner of the client area (below the toolbar) is called the
Project Explorer. Figure 8.2 shows a close-up of this window.

Figure 8.2. The Project Explorer

C1E O

+ B acwzmain [ACWZMAIN)
. ¥ pookCode (Book)
-4 Microsoft Access Class Obijects
[Form_AForm
=% Modules
A CodaForBook
2 Modulel
i Clazs Modules
Y Classi

Note that the Project Explorer has a tredlike structure, similar to the Windows Explorer's
folders pane (the left-hand pane). Each entry in the Project Explorer is called anode. The
top nodes, of which there are two in Figure 8.2, represent the currently open Access VBA
projects (hence the name Project Explorer). The view of each project can be expanded or
contracted by clicking on the small boxes (just as with Windows Explorer).

As you know, Access is a single document interface (SDI) program, meaning that you
can only open one database for each session of Access. Each Access session has its own
IDE as well. Hence, the project window for a given instance of the IDE will contain only
one user project. However, as you can see in Figure 8.2, Access may add another project
to the project window. The ACWZMAIN project in Figure 8.2 was added when | invoked
the Access wizard to create a table, for instance. If you try to access any of the codein
the ACWZMAIN project, you will be rewarded with a"Project Unviewable" error

message.
8.1.1 Project Names

Each project has a name, which the programmer can choose. The default name for a
project is the name of the database. The top node for each project is labeled:

Proj ect Nane (Dat abaseNane)
where Pr oj ect Nare IS the name of the project and Dat abaseNane is the name of the

Access database. The name of the project can be changed using the Properties window,
which we will discuss a bit later.

8.1.2 Project Contents

At the level immediately below the top (project) level, as Figure 8.2 shows, there are
nodes named:

Microsoft Access Class Objects
Modules

Class Modules

Under the Microsoft Access Class Objects node, there is a node for each Access form in
the database that contains some code (just creating a form does not add a node to the
Projects window). The form nodes provide access to the code module "behind" the form,
where we can write code to implement events, such as clicking on a command button.

In fact, Access forms have two components — a user-interface component (the form's
background and any controls on the form) and a code component. By right-clicking on a
form node, we can choose to view the object itself or the code component for that object.
We will not discuss creating Access forms in this book, however.

8.1.2.1 Standard modules

Under the Modules node, there is a node for each standard module in the project. By
double-clicking on the node for a standard module, Access will display the code window
for that module. A standard module is a code module that contains general procedures.
VBA allows two kinds of procedures: functions and subroutines. The only difference
between a function and a subroutine is that a function returns a value, whereas a
subroutine does not. We will discuss functions and subroutines in Chapter 11.

These procedures may be intended to be run by the user (in response to a button click, for
instance), or they may be support programs that are intended to be run by code from
within other procedures (in the same or other modules).

8.1.2.2 Class modules

Under the Classes node, there is anode for each class module in the project. By double-
clicking on a class module node, Access will display the code window for the
corresponding class module.

Class modules are code modules that contain code related to custom objects. The Access
object model contains built-in objects representing such objects as forms and reports. It is
also possible to create custom objects and endow them with various properties. To do so,
we would place the appropriate code within a class module.

However, since creating custom objects is beyond the scope of this book, we will not be
using class modules. (For an introduction to object-oriented programming using VB,
allow me to suggest my book, Concepts of Object-Oriented Programming with Visual
Basic, published by Springer-Verlag, New York.)

8.2 The Properties Window

The Properties window (see Figure 8.1) displays the properties of an object and allows us
to change them.

When a standard module is selected in the Project window, the only property that appears
in the Properties window is the modul€e's name. However, when aform is selected in the
Projects window, many of the object's properties appear in the Properties window, as
shownin Figure 8.3.

The Properties window can be used to change some of the properties of the object while
no code is running, that is, at design time. (Note that while most properties can be
changed either at design time or run time, some properties can only be changed at design
time and some can only be changed at run time. Run-time properties generally do not
appear in the Properties window.)

Figure 8.3. The Properties window

8.3 The Code Window

The Code window displays the code that is associated with the selected item in the
Projects window. To view this code, select the item in the Projects window and either
choose Code from the View menu or hit the F7 function key. For objects with only a
code component (that is, standard or class modules), you can just double-click on the
item in the Projects window.

8.3.1 Procedure and Full-M odule Views

Generally, a code module contains nore than one procedure. The IDE offers the choice
between viewing one procedure at atime (called procedure view) or al procedures at
one time (called full-module view), with a horizontal line separating the procedures. Each
view has its advantages and disadvantages, and you will probably want to use both views
at different times. Unfortunately, Microsoft has not supplied a menu choice for selecting

the view. (I've complained about thisin my other books as well, but Microsoft does not
seem to be listening to me. Strange.) To change views, we need to click on the small
buttons in the lower-left corner of the Code window. (The default view can be set using
the Editor tab of the Options dialog box.)

Incidentally, the default font for the module window is Courier, which has arather thin
looking appearance and may be somewhat difficult to read. Y ou may want to change the
font to FixedSys (on the Editor Format tab of the Options dialog, under the Tools menu),
which is much more readable.

8.3.2 The Object and Procedure List Boxes

At the top of the Code window there are two drop-down list boxes (see Figure 8.1). The
Object box contains alist of the objects that are associated with the current project, and
the Procedure box contains a list of all of the procedures associated with the object
selected in the Object box. The precise contents of these boxes vary depending on the
type of object selected in the Project Explorer.

Whena standard module is selected in the Project window, the Object box contains only
the entry (General), because there are no objects in a standard module with which to
associate code (or any objects at al). In this case, the procedures list box contains a list of
the current procedures in that module.

When aform is selected, the Objects list box contains alist of each control on the form,
as well as entries for page and form headers and footers, the detail section of the form,
and so on. As Figure 8.4 shows, when we select an object, such as a command button, in
the Objects list box, the Procedures list box contains alist of procedures for that object.
By selecting a procedure, Access will automatically place the cursor in the appropriate
location in the code window, so we can start entering code.

Figure 8.4. The events for a Workbook object

|emdPushie | |Click =]
ption Mmpat atabas DbIChek |
Enter
Private Sub cmdPushMe (Exit
GotFocus
mad onbk KeyDown
End 3uk KeyPress
Keylp
LostFocus
MouseDown
Mouseliove
Mougelp

For example, if we choose the Click event in the Procedures box, Access will create the
following code shell for this event, and place the cursor within this procedure:

Private Sub cndPushMe_Click()

End Sub

8.4 The Immediate Window

The Immediate window (see Figure 8.1) has two main functions. First, we can send
output to this window using the command Debug. Pri nt . For instance, the code shown in
Figure 8.5 produces the result shown in the Immediate window (there were four records
in the recordset when | executed this code). (We will see how to execute the codein a
procedure shortly.) This provides a nice way to experiment with different code snippets.

The other main function of the Immediate window is to execute commands. We can enter
aline of code directly in the Immediate window. Hitting the Enter key at the end of the
line asks Access to execute that line of code. Note that this only works for single physical
lines of code, but you can place more than one logical line of code on the same physical
line by separating the logical lines with colons, asin:

For i = 1 To 10: Debug.Print i: Next

Figure 8.5. The Immediate Window

|{GQneraI] ﬂ |Test j
Option Compare Database =
Sub Test ()

Dim rs Az Recordset
S=t rs = CurrentDb.OpenRecordset ("Names")
Debug.Print rs.RecorcdCount
End Sub
-
== 4] | b
x|
¢] -
-
Ki 3

The Immediate window is an extremely valuable tool for debugging a program, and you
will probably use it often (as| do).

8.5 Arranging Windows
If you need more space for writing code, you can close the Properties window, the

Project window, and the Immediate window. On the other hand, if you are fortunate
enough to have a large monitor, then you can split your screen as shown in Figure 8.6 in

order to see the Access VBA IDE and the corresponding Access database at the same
time. In some cases (but not all), you can trace through each line of your code and watch
the results in the database! (Y ou can toggle between Access and the IDE using the
Alt+F11 function key combination.)

Figure 8.6. A split screen approach

I T —— . || =]
BT G AT BTN AT N T R

H-BSRY ikd - 2 4 %H. M Ba-0

EE e L

Ha-B - @B oo mkl HEE T) e =
e — T T -
RlE = = — 5
ki (i]
A _—
= cxrn
e |
" o
(ot Foae =] - _-I‘I
i] —
| | e

8.5.1 Docking

Many of the windows in the IDE (including the Project, Properties, and Immediate
windows) can be in one of two states: docked or floating. This state can be set using the
Docking tab on the Options dialog box, which is shown in Figure 8.7.

Figure 8.7. The Docking options

x|
Edior | Evitor Format | Ganaral '—‘“'—*’"'ﬂl
Dackable
© o Wi
P Locak Windaw
B Watch Windion
W Project Exploner
W Proparties \Window
™ Qhiject Browser

A docked window is one that is attached, or anchored, to an edge of another window or to
one edge of the client area of the main VBA window. When a dockable window is
moved, it snaps to an anchored position. On the other hand, a floating window can be
placed anywhere on the screen.

Chapter 9. The Visual Basic Editor, Part I

In this chapter, we conclude our discussion of the Visual Basic Editor. Again, let us
remind the reader that he or she may want to read quickly through this chapter and refer
to it later as needed.

9.1 Navigating the IDE

If you prefer the keyboard to the mouse (as | do), then you may want to use keyboard
shortcuts. Here are some tips.

9.1.1 General Navigation

The following keyboard shortcuts are used for navigating the IDE:

F7 Go to the Code window.

F4 Go to the Properties window.

Ctrl-R Go to the Project window.

Ctrl-G Go to the Immediate window.
Alt+F11 Toggle between Accessand VB IDE.

9.1.1.1 Navigating the code window at design time

Within the code window, the following keystrokes are very useful:

F1 Help on the item under the cursor.

Go to the definition of the item under the cursor. (If the cursor is over acall to afunction or

Shift+F2 subroutine, hitting Shift+F2 sends you to the definition of that procedure.)

Control+ - -
Shift+F2 Return to the last position where editing took place.

9.1.1.2 Tracing code

The following keystrokes are useful when tracing through code (discussed later):

F8 Step into

Shift+F8 Step over
Ctrl+Shift+F8 Step out

Ctrl+F8 Run to cursor

F5 Run

Ctrl+Break Break

Shift+F9 Quick watch

Fo Toggle breakpoint
Ctrl+Shift+F9 Clear all breakpoints
9.1.1.3 Bookmarks

It is also possible to insert bookmarks within code. A bookmark marks a location to
which we can return easily. To insert a bookmark, or to move to the next or previous
bookmark, use the Bookmarks submenu of the Edit menu. The presence of a bookmark is
indicated by a small blue square in the left margin of the code.

9.2 Getting Help

The smplest way to get help on any particular item is to place the cursor on that item and
hit the F1 key. Thisworks not only for VBA language keywords but also for portions of
the VBA IDE.

Note that Microsoft provides multiple help files for Access, the VBA language, and the
Access object model. While this is quite reasonable, occasionally the help system gets a
bit confused and refuses to display the correct help file when we strike the F1 key.

Note also that a standard installation of Microsoft Office does not install the VBA help
files for the various applications. Thus, you may need to run the Office setup program
and install Access VBA help by selecting that option in the appropriate setup dialog box.
(Do not confuse Access help with Access VBA help.)

9.3 Creating a Procedure

There are two ways to create a new procedure (that is, a subroutine or a function) within a
code module. First, after selecting the correct project in the Project Explorer, we can

select the Procedure option from the Insert menu. This will produce the dialog box shown
in Figure 9.1. Just type in the name of the procedure and select Sub or Function (the
Property choice is used with custom objects in a class module). We will discuss the issue
of Public versus Private procedures and static variables later in this chapter.

Figure9.1. The Add Procedure dialog box

Add Procedure

= Eunction
" Progerty
Scope

& Puglic

" Priyate

™ &l Local varisbies &= Statics

A smpler aternative isto begin typing:
Sub SubNarme
or:

Functi on Functi onNane

in any code window (following the current End Sub or End Funct i on Statement, or in the
genera declarations section). As soon as the Enter key is struck, Access will move the
line of code to a new location and thereby create a new subroutine. (It will even add the
appropriateending — End Sub or End Functi on.)

9.4 Run Time, Design Time, and Break Mode

The VBA IDE can bein any one of three modes: run mode , break mode, or design mode.
When the IDE is in design mode, we can write code.

Run mode occurs when a procedure is running. To run (or execute) a procedure, just
place the cursor anywhere within the procedure code and hit the F5 key (or select Run
from the Run menu). If for some reason a running procedure seems to be hanging, we can
usually stop the procedure by hitting Ctrl+Break (hold down the Control key and hit the
Break key).

Break mode is entered when a running procedure stops because of either an error in the
code or adeliberate act on our part (described a bit later). In particular, if an error occurs,

Access will stop execution and display an error dialog box, an example of whichis
shown in Figure 9.2.

Figure 9.2. An error message

Microsoft Visunl Bosic

Run-tima error "3078":

The Microsoft Jet database engine cannot find the nput table o
query Mamesx', Make sure it exists and that its name is spelled
correcthy,

End

Error dialog boxes offer a few options. end the procedure, get help (such as it may be)
with the problem, or enter break mode to debug the code. In the latter case, Access will
stop execution of the procedure at the offending code and highlight that code in yellow.
We will discuss the process of debugging code a bit later.

Aside from encountering anerror, there are several ways we can deliberately enter break
mode for debugging purposes:

Hit the Ctrl+Break key and choose Debug from the resulting dialog box.
Include a st op statement in the code, which causes Access to enter break mode.
Insert a breakpoint on an existing line of executable code. Thisis done by placing
the cursor on that line and hitting the F9 function key (or using the Toggle
Breakpoint option on the Debug menu). Access will place ared dot in the left
margin in front of that line ard will stop execution when it reaches the line. You
may enter more than one breakpoint in a procedure. Thisis generally preferred
over using the st op statement, because breakpoints are automatically removed
when we close down the Visua Basic Editor, so we don't need to remember to
remove them, as we do with St op statements.

Set awatch statement that causes Access to enter break mode if a certain
condition becomes true. We will discuss watch expressions a bit later.

To exit from Break mode, choose Reset from the Run menu.

Note that the caption in the title bar of the VBA IDE indicates which mode is currently
active. The caption contains the word "[running]” when in run mode and "[break]" when
in break mode.

9.5 Errors

In computer jargon, an error isreferred to as abug. In case you are interested in the origin
of this word, the story goes that when operating the first large-scale digital computer,

caled the Mark |, an error was traced to a moth that had found its way into the hardware.
Incidentally, the Mark | (circa 1944) had 750,000 parts, was 51 feet long, and weighed
over 5 tons. How about putting that on your desktop? It also executed about one
instruction every 6 seconds, as compared to over 200 million instructions per second for a

Pentium!

Errors can be grouped into three types based on when they occur — design time, compile
time, or run time.

9.5.1 Design-Time and Compile-TimeErrors

As the name implies, adesign-time error occurs during the writing of code. Perhaps the
nicest feature of the Visual Basic Editor is that it can be instructed to watch as we type
code and stop us when we make a syntax error. This automatic syntax checking can be
enabled or disabled in the Options dialog box shown in Figure 9.3, but | strongly suggest
that you keep it enabled.

Figure 9.3. The Options dialog box

Uptions

Editar |I:|.i|lur I'l.ll'nhll Geaneral | Docking I

Coda Setngs

W Wifn Sertas Chieck) I At [ndent

¥ Becpiire Varisble Declaration I l:'i
[# o Lt Membars

¥ Ao Cuiick Infa

[¥ sarn Data Tipg

Winclore Sattings
[Drag-and-Crop Text Editng
Default o Full Modules View

¥ Procedure Separaor

B] | Cancs| Help

Notice also that there are other settings related to the design-time environment, such as
how far to indent code in response to the Tab key. We will discuss some of these other
settings a bit later.

To illustrate automatic syntax checking, Figure 9.4 shows what happens when we
deliberately enter the syntactically incorrect statement x == 5 and then attempt to move to
another line. Note that Microsoft refers to this type of error as a compile error in the
dialog box, and perhaps we should as well. However, it seems more descriptive to call it
adesign-time error or just a syntax error.

Figure 9.4. A syntax error message

|{Ganaral] j | lest LI

Sub Testi(]

-
Microsofl Vizual Hasic

H l‘\'._ Compile arrar
=

Expeciec expression

k

[= 5|4 |

Before a program can be executed, it must be compiled, or trandated into a language that
the computer can understand. The compilation process occurs automatically when we
request that a program be executed. We can also specifically request compilation by
choosing the Compile Project item under the Debug menu. If Access encounters an error
while compiling code, it displays a compile error message.

9.5.2 Run-TimeErrors

An error that occurs while aprogram is running is called arun-timeerror . Figure 9.2
illustrates a run-time error message that occurred in response to the line:

Set rs = Current Db. OpenRecor dset (" Nanesx")

because no table named Namesx exists.

9.5.3Logical Errors

There is one more type of error that we should discuss, since it is the most insidious type
of dl. A logical error can be defined as the production of an unexpected and incorrect
result. As far as Access is concerned, there is no error, because Access has no way of
knowing what we intend. (Thus, alogical error is not arun-time error in the traditional
sense, even though it does occur at run time.)

To illustrate, the following code purports to compute the average of some numbers:

Dim x(3) As |nteger
Dim Ave As Single
x(0)
x(1)
x(2)
x(3)
Ave = (x(0) + x(1) + x(2) + x(3)) / 3
MsgBox "Average is: " & Ave

U100 Wk

The result is the message box shown in Figure 9.5. Unfortunately, it is incorrect. The
penultimate line in the preceding program should be:

Ave = (x(0) + x(1) + x(2) + x(3)) / 4
Note the 4 in the denominator, since there are 4 numbers to average. The correct average
is4.25. Of course, Access will not complain because it has no way of knowing whether
we really want to divide by 3.

Figure 9.5. Theresult of alogical error

Microsoft Access -

Awarage is: 5 bbEbE 7

Precisely because Access cannot warn us about logical errors, they are the most
dangerous, because we think that everything is correct.

9.6 Debugging

Invariably, you will encounter errors in your code. Design-time and compile-time errors
arerelatively easy to deal with because Access helps us out with error messages and by
indicating the offending code. Logical errors are much more difficult to detect and to fix.
This is where debugging plays a major role. The Access IDE provides some very
powerful ways to find bugs.

Debugging can be quite involved, and we could include a whole chapter on the subject.
There are even special software applications designed to assist in complex debugging
tasks. However, for most purposes, a few simple techniques are sufficient. In particular,
Access makes it easy to trace through a program, executing one line a atime, watching
the effect of each line asit is executed.

Let us discuss some of the tools that Access provides for debugging code.
9.6.1 Tracing

The process of executing code one line at atime is referred to as tracing or code stepping.
Access provides three options related to tracing: stepping into, stepping over, and
stepping out of. The difference between these methods refers to handling calls to other
procedures.

To illustrate the difference, consider the code shown in Example 9.1. In ProcedureA, the
first line of code adds a new record to arecordset denoted by r s. The second line calls
ProcedureB and the third line updates the recordset. ProcedureB sets the value of the
LastName and FirstName fields for the current record. Don't worry about the exact

syntax of this code. The important thing to notice is that the second line of ProcedureA
calls ProcedureB.

Example 9.1. Sample Code for Tracing Methods

Sub Procedur eA()
rs. AddNew ' Add a new record
Call ProcedureB
rs. Updat e ' Update recordset
End Sub

Sub ProcedureB()
rs!Last Nane = "Smith"
rs!FirstName = "John"
End Sub

9.6.1.1 Step Into (F8 or choose Step I nto from the Debug menu)

Sep Into executes code one statement (or instruction) at atime. If the statement being
executed calls another procedure, stepping into that statement ssimply transfers control to
the first line in the called procedure. For instance, with reference to the previous code,
stepping into the line:

Cal |l ProcedureB
in ProcedureA transfers control to thefirst line of ProcedureB:

rs!Last Name = "Snith"

Further tracing proceeds in ProcedureB. Once all of the lines of ProcedureB have been
traced, control returns to ProcedureA at the line immediately following the call to
ProcedureB, that is, at the line:

rs. Updat e

Step Into has another important use. If we choose Step Into while still in design mode,
that is, before any code is running, execution begins but break mode is entered before the
first line of code is actually executed. Thisis the proper way to begin tracing a program.
9.6.1.2 Step Over (Shift+F8 or choose Step Over from the Debug menu)

Sep Over issimilar to Step Into, except that if the current statement being traced is a call
to another procedure, the entire called procedure is executed without stopping (rather
than tracing through the called procedure). Thus, for instance, stepping over the line:

Call ProcedureB
in the previous procedure executes ProcedureB and stops at the next line:

rs. Update

in ProcedureA. Thisis useful if we are certain that ProcedureB is not the cause of the
problem and we don't want to trace through that procedure line by line.

9.6.1.3 Step Out (Ctrl+Shift+F8 or choose Step Out from the Debug menu)

Sep Out isintended to be used within a called procedure (such as ProcedureB). Step Out
executes the remaining lines of the called procedure and returns to the calling procedure
(such as ProcedureA). Thisis useful if we are in the middle of a called procedure and
decide that we don't need to trace any more of that procedure, but want to return to the
calling procedure. (If you trace into a called procedure by mistake, just do a Step Out to
return to the calling procedure.)

9.6.1.4 Run to Cursor (Ctrl+F8 or choose Run To Cursor from the Debug
menu)

If the Visual Basic Editor isin break mode, we may want to execute several lines of code
at one time. This can be done using the Run To Cursor feature. Simply place the cursor
on the statement immediately following the last line you want to execute and then
execute.

9.6.1.5 Set Next Statement (Ctrl+F9 or choose Set Next Statement from the
Debug menu)

We can also change the flow of execution while in break mode by placing the cursor on
the statement that we want to execute next and selecting Set Next Statement from the
Debug menu. This will set the selected statement as the next statement to execute, but not
execute it until we continue tracing.

9.6.1.6 Breaking out of Debug mode

When we no longer need to trace our code, we have two choices. To return to design
mode, we can choose Reset from the Run menu (there is no hotkey for this). To have
Access finish executing the current program, we can hit F5 or choose Run from the Run
menu.

Chapter 10. Variables, Data Types, and Constants

In the next few chapters, we will discuss the basics of the VBA programming language,
which underlies all of the Microsoft Office programming environments. During our
discussion, we will consider many short coding examples. | hope that you will take the
time to key in some of these examples and experiment with them.

10.1 Comments

We have aready discussed the fact that comments are important. Any text that follows an
apostrophe is considered a comment and is ignored by Access. For example, thefirst line
in the following code is a comment, as is everything following the apostrophe on the third
line:

Decl are a recordset variable
Dimrs As Recordset
Set rs = Current Db. OpenRecordset (" Nanes") ' Get recordset for Nanes

When debugging code it is often useful to temporarily comment out lines of code so they
will not execute. The lines can subsequently be uncommented to restore them to active
duty. The CommentBlock and UncommentBlock buttons, which can be found on the Edit
toolbar, will place or remove comment marks from each currently selected line of code
and are very useful for commenting out severa lines of code in one step. (Unfortunately,
there are no keyboard shortcuts for these commands, but they can be added to a menu and
given menu accelerator keys.)

10.2 Line Continuation

The very nature of Access VBA syntax often leads to long lines of code, which can be
difficult to read, especially if we need to scroll horizontally to see the entire line. For this
reason, Microsoft recently introduced a line continuation character into VBA. This
character is the underscore, which must be preceded by a space and cannot be followed
by any other characters (including comments). For example, the following code:

Set rs = CurrentDb. OpenRecordset (" Names",
dbOpenFor war dOnl y)

istreated as one line by Access.

It is important to note that a line continuation character cannot be inserted in the middie
of aliteral string constant, which is enclosed in quotation marks.

10.3 Constants

The VBA language has two types of constants. A literal constant (also called a constant
or literal) is a specific value, such as a number, date, or text string, that does not change,
and that is used exactly as written. Note that string constants are enclosed in double
guotation marks, asin " Donna Sni t h", and date constants are enclosed between number
Signs, asin #1/ 1/ 96#.

For instance, the following code stores a date in the variable called dt :

Dimdt As Date
dt = #1/2/97#

A symbolic constant (also sometimes referred to simply as a constant) is aname for a
literal constant.

To define or declare a symbolic constant in a program, we use the Const keyword, asin:

Const | nvoicePath = "d:\Ilnvoices\"

In this case, Access will replace every instance of | nvoi cePat h in our code with the
string " d: \ I nvoi ces\". Thus, I nvoi cePat h is a constant, Since it never changes value,
but it is not a literal constant, since it is not used as written.

The virtue of using symbolic constants is that, if we decide later to change
"d:\lnvoices\" t0"d:\d dlnvoi ces\ ", we only need to change the definition of
I nvoi cePat h t0O:

Const I nvoicePath = "d:\ A dl nvoi ces\"

rather than searching through the entire program for every occurrence of the phrase
"d:\Invoices\".

Note that it is generally good programming practice to declare any symbolic constants at
the beginning of the procedure in which they are used (or in the Declarations section of a
code module). This improves readability and makes housekeeping simpler.

In addition to the symbolic constants that you can define using the Const statement, VBA
has a large number of built-in symbolic constants (about 700), whose names begin with
the lowercase letters vb. Access VBA adds several hundred additional symbolic constants
that begin with the letters ac.

Among the most commonly used VBA constants are vbCr Lf , which is equivalent to a
carriage return followed by aline feed, and vbTab, which is equivalent to the tab
character.

10.3.1 Enums

Microsoft has introduced a structure into VBA to categorize the plethora of symbolic
constants. This structure is called an enum , which is short for enumeration. For instance,
the built-in enum for the constant values that can be returned when the user dismisses a
message box (by clicking on a button) is:

Enum VbMsgBoxResul t
vbOK = 1
vbCancel = 2
vbAbort 3
vbRetry 4
vblgnore = 5
vbYes = 6
vbNo = 7

End Enum

When the user hitsthe OK button on a dialog box (assuming it has one), VBA returns the
valuevboK. Certainly, it isalot easier to remember that VBA will return the symbolic
constant vbox than to remember that it will return the constant 1. (We will discuss how to
get and use this return value later.)

VBA aso defines some symbolic constants that are used to set the types of buttons that
will appear on a message box. These are contained in the following enum (which
includes some additional constants not shown):

Enum VbMsgBoxStyl e
vbOKOnly = 0
vbOKCancel =1
vbAbort Retryl gnore = 2
vbYesNoCancel = 3

vbYesNo = 4
vbRet ryCancel = 5
End Enum

To illustrate, consider the following code:

I f MsgBox("Proceed?", vbOKCancel) = vbOK Then
pl ace code to execute when user hits OK button
El se
pl ace code to execute when user hits any other button
End If

In the first ling, the code MsgBox (" Pr oceed?", vbOKCancel) causes Accessto display a
message box with an OK button and a Cancel button and the message "Proceed?’, as
shownin Figure 10.1.

Figure 10.1. Example message box

Microsoft Access [x|
Frocaed?

If the user clicks the OK button, Access will return the constant value vbOK; otherwise it
will return the value vbCancel . Thus, the | f statement in the first line will distinguish
between the two responses. (We will discussthel f statement in detail in Chapter 13.
Here we are interested in the role of symbolic constants.)

In case you are not yet convinced of the value of symbolic constants, consider the
following enum for color constants:

Enum Col or Const ant
vbBl ack = 0

S

vbBl ue = 16711680
vbMagenta = 16711935
vbCyan = 16776960
vbWhite = 16777215

vbRed = 255

vbG een = 65280
vbYel | ow = 65535

End Enum

Which would you rather type:

AText Box. For eCol or
or.
AText Box. For eCol or

Need | say more?

10.4 Variables and Data Types

vbBIl ue

16711680

A variable can be thought of as a memory location that can hold values of a specific type.
The value in a variable may change during the life of the program—hence the name

variable.

In VBA, each variable has a specific data type, which indicates which type of data it may
hold. For instance, a variable that holds text strings has a String data type and is called a
string variable. A variable that holds integers (whole numbers) has an Integer data type
and is called an integer variable. For reference, Table 10.1 shows the complete set of
VBA data types, along with the amount of memory that they consume and their range of
values. We will discuss afew of the more commonly used data types in a moment.

Table 10.1. VBA Data Types

Type Sizein Memory Range of Values
Byte 1 byte 0to 255
Boolean 2 bytes Trueor False
Integer 2 bytes —32,76810 32,767
Long (long 4 bytes 2,147,483,648 t0 2,147,483,647
integer)
Single
4 byt A imately —3.4E38 to 3.4E38
(single-precision ytes pproximately ©
real)
Double .
8 bytes Approximately —1.8E308 to 4.9E324

(double-
precision real)
Currency .
8 bvtes Approximately —922,337,203,685,477.5808 to
i y 922,337,203,685,477.5807
(scaled integer)
Date 8 bytes 1/1/100 to 12/31/9999
Object 4 bytes Any Object reference
Variable length: Variable length: <= about 2 billion (65,400 for Win
. 31
String 10 bytes + string length; Fixed
length: string length Fixed length: up to 65,400
16 bytesfor numbers Number: same as Double
Variant
22 bytes + string length String: same as String
User-defined Varies

10.4.1 Variable Declaration

To declare a variable means to define its data type. Variables are declared with the bi m
keyword (or with the keywords Pri vat e and Publ i ¢, which we will discuss later in this
chapter). Here are some examples:

Dim Name As String
Di m Hol i day As Date
Di m Age As | nteger

Di m Hei ght As Single
Di m Money As Currency
Di m db as Dat abase
Dimrs as Recordset

The general syntax of a variable declaration is:
Di m Vari abl eNane As Dat aType

If aparticular variable is used without first declaring it, or if it is declared without
mentioning adatatype, asin bDi mAge, then VBA will treat the variable as having type
Variant. Aswe can see from Table 10.1, thisis generally a waste of memory, since
variants require more memory than most other types of variables.

For instance, an integer variable requires 2 bytes, whereas a variant that holds the same
integer requires 16 bytes, which is awaste of 14 bytes. It is not uncommon to have
hundreds or even thousands of variables in a complex program, and so the memory waste
could be significant. For this reason, it is a good idea to declare all variables.

Perhaps more importantly, much more overhead is involved in maintaining a Variant than
its corresponding String or Integer, for example. This in turn means that using Variants
typically results in worse performance than using an equivalent set of explicit data types.

We can place more than one declaration on a line to save space. For instance, the line:
Dim Age As Integer, Nane As String, Money As Currency

declares three variables. Note, however, that a declaration such as:

Di m Age, Height, Weight As Integer

islegal, but Age and Hei ght are declared as Variants, not Integers. In other words, we
must specify the type for each variable explicitly.

It isalso possible to tell VBA the type of the variable by appending a special character to

the variable name. In particular, VBA alows the type-declaration suffixes shown in
Table 10.2. (1 personally dislike these suffixes, but they do save space.)

Table 10.2. Type-Declaration Suffixes

Suffix Type

integer

long

single

double

currency

ANIENEE

string

For instance, the line:
Di m Name$

declares a variable called Nane$ of type String. We can then write:

Name$ = "Donna"

Finaly, let us note that although Access alows variable and constant declarations to be
placed anywhere within a procedure (before the item is used, that is), it is generally good
programming practice to place all such declarations at the beginning of the procedure.
This improves code readability and makes housekeeping much simpler.

10.4.2 The Importance of Explicit Variable Declaration

We have said that using the Variant data type generally wastes memory and often results
in poorer performance, and that all variables are assumed to be variants unless you
specify otherwise. There is an additional, even more important reason to declare all
variables explicitly. This has to do with making typing errors, which we al do from time
to time. In particular, if we accidentally misspell a variable name, VBA will think we
mean to create a new variablel

10.4.2.1 Option Explicit

To avoid this problem, we need a way to make Access refuse to run a program if it
contains any variables that we have not explicitly declared. Thisis done smply by
placing the line:

Option Explicit
in the Declarations section of each code module. Since it is easy to forget to do this, VBA
provides an option called Require Variable Declaration in its Options dialog box. When

this option is selected, VBA automatically inserts the Opt i on Explicit linefor us.
Therefore, | strongly recommend that you enable this option.

Now let us briefly discuss some of the data typesin Table 10.1.
10.4.3 Numeric Data Types

The numeric data types include Integer, Long, Single, Double, and Currency. A long is
also sometimes referred to as along integer.

10.4.4 Boolean Data Type

A Boolean variable is a variable that takes on one of two values: Tr ue or Fal se. Thisisa
very useful data type that was only recently introduced into VBA. Prior to its
introduction, VBA recognized as Fal se and any nonzero value as Tr ue, and you may still
see this usage in older code.

10.4.5 String Data Type

A string is a sequence of characters. (An empty string has no characters, however.) A
string may contain ordinary text characters (letters, digits, and punctuation) as well as
specia control characters such asvbcCr Lf (carriage return/line feed characters) or vbTab
(tab character). As we have seen, a string constant is enclosed within quotation marks. An
empty string is denoted by a pair of adjacent quotation marks, asin:

EmptyString = ""

There are two types of string variablesin VBA: fixed-length and variable-length. A
fixed-length string variable is declared as follows:

Di m Fi xedStri ngVarName As String * StringlLen

where st ri ngLen specifies the number of characters reserved for the string. For instance,
the following statement declares a fixed-length string of length 10 characters:

Dim sNane As String * 10

Observe that the following code, which concatenates two strings:

Dims As String * 10
s = "test"
Debug.Print s & "/"

produces the output:
t est /

This shows that the content of a fixed-length string is padded with spaces in order to
reach the correct length.

A variable-length string variable is a variable that can hold strings of varying lengths (at
different times, of course). Variable- length string variables are declared simply as:

Di m Vari abl eStri ngvVarName as String
As an example, the code:

Dims As String

s = "test"
Debug. Print s & "/"
s = "another test"

Debug.Print s & "/"
produces the output:

test/
anot her test/

Variable-length string variables are used much more often than fixed- length strings,
although the latter have some very specific and important uses (which we will not go into
in this book).

10.4.6 Date Data Type

Variables of the Date data type require 8 bytes of storage and are actually stored as
decimal (floating-point) numbers that represent dates ranging from January 1, 100 to
December 31, 9999 (no year 2000 problem here) and times from 0:00:00 to 23:59:59.

Asdiscussed earlier, literal dates are enclosed within number signs, but when assigning a
date to a date variable, we can also use valid dates in string format. For example, the
following are al valid date/time assignments:

Dim dt As Date

dt = #1/2/98#
dt = "January 12, 2001"
dt = #1/1/95#

dt
dt

#12:50: 00 PM¢
#1/ 13/ 76 12:50: 00 PM¢

VBA has alarge number of functions that can manipulate dates and times. If you need to
manipulate dates or times in your programs, you should probably spend some time with
the Access VBA help file. (Start by looking under "Date Data Type")

10.4.7 Variant Data Type

The Variant data type provides a catch-all data type that is capable of holding data of any
other type except fixed- length string data and user-defined types. We have aready noted
the virtues and vices of the Variant data type, and discussed why variants should
generaly be avoided.

10.4.8 Access Object Data Types

Access VBA/DAO has a number of additional data types that fall under the genera
category of Object datatype. Here is a sampling:

Some Access Objects
Form
Module
Report
Control
Section

Some DAO Objects
Workspace
Database
Recordset
Field
Error
User

Thus, we can declare variables such as:

Dimfm As Form
Dimws As Wr kspace
Di m db As Dat abase
Dimrs As Recordset
Dimfld As Field

We will devote much of this book to studying the objects in the DAO object modd, for it
is through these objects that we can manipulate Access databases programmatically. (We
will briefly describe the Access object model as well, but not go into its details, for its
primary use is to manipulate Access forms and reports, not actual data. In fact, the Access
object model does not even have a Table object!)

10.4.8.1 The generic As Object declaration

It is also possible to declare any Access object using the generic object data type j ect ,
as in the following example:

Dimrs As bject

While you may see this declaration from time to time, it is much less efficient than a
specific object declaration, such as:

Dimrs As Recordset

This is because Access cannot tell what type of object the variable r s refersto until the
program is running, so it must use some execution time to make this determination. This
isreferred to as late binding and can make programs run significantly more slowly.

10.4.8.2 The Set statement

Declaring object variables is done in the same way as declaring nonobject variables. For
instance, here are two variable declarations:

Dimint As Integer ' nonobj ect variable declaration
Di m db As Dat abase ' object variable declaration

On the other hand, when it comes to assigning a value to variables, the syntax differs for
object and nonobject variables. In particular, we must use the set keyword when
assigning a value to an object variable. For example, the following line assigns the
current Access database to the variabledb :

Set db = Current Db

10.4.9 Arrays

An array variable is a collection of variables that use the same name, but are
distinguished by an index value. For instance, to store 10 fields objects in variables, we
could declare an array variable as follows:

Dim MyFields(1 To 10) As Field

The array variable is MyFi el ds. It has size 10. The lower bound of the array is 1, and the
upper bound is 10. Each of the variables:

MyFields(1), MyFields(2),..., MyFi el ds(10)
areFi el d variables. Note that if we omit the first index in the declaration, asin:

Dim MyFi el ds(10) As Field

then VBA will automatically set the first index to 0, so the size of the array will be 11.

The virtue of declaring array variables is clear, since it would be very unpleasant to have
to declare 10 separate variables. In addition, as we will see, there are ways to work
collectively with all of the elementsin an array, using a few simple programming
constructs. For instance, the following code sets al 10 Field types to Integer:

For i =1 To 10
MyFi el ds(i). Type = dbl nteger
Next i

10.4.9.1 Thedimension of an array

The WyFi el ds array defined in the previous example has dimension one. We can aso
define arrays of more than one dimension. For instance, the array:

Dim Stats(1 To 10, 1 To 100) As Integer

isatwo-dimensional array whose first index ranges from 1 to 10 and whose second index
ranges from 1 to 100. Thus, the array has size 10* 100 = 1000.

10.4.9.2 Dynamic arrays

When an array is declared, asin:

Dim FileName(1l To 10) As String

the upper and lower bounds are both specified, and so the size of the array is fixed.
However, there are many situations in which we do not know at declaration time how
large an array we may need. For this reason, VBA provides dynamic arrays and the
ReDi m statement.

A dynamic array is declared with empty parentheses, asin:

Dim Fil eName() as String

Dynamic arrays can be sized (or resized) using the ReDi mstatement, asin:
ReDi m Fil eName(1 to 10)

This same array can later be resized again, asin:

ReDim Fil eNane(1l to 100)

Note that resizing an array will destroy its contents unless we use the Pr eser ve keyword,
asin:

ReDi m Preserve Fil eName(1 to 200)

However, when Pr eser ve is used, we can only change the upper bound of the array (and
only the last dimension in a multidimensional array).

10.4.9.3 The UBound function

The UBound function is used to return the current upper bound of an array. Thisis very
useful in determining when an array needs redimensioning. To illustrate, suppose we
want to collect an unknown number of filenames in an array named Fi | eNane. If the next
file number isi Next Fi | e, the following code checks to see if the upper bound is less
thani Next Fi | e and if S0, it increases the upper bound of the array by 10, preserving its
current contents, to make room for the next filename:

I f UBound(Fil eName) < i NextFile Then
ReDi m Preserve Fil eNane(UBound(Fil eNane) + 10)
End If

Note that redimensioning takes time, so it is wise to add some "working room" at the top
to cut down on the number of times the array must be redimensioned. This is why we
added 10 to the upper bound in this example, rather than just 1. (There is a tradeoff here
between the extra time it takes to redimension and the extra space that may be wasted if
we do not use the entire redimensioned array.)

10.4.10 Variable Naming Conventions

VBA programs can get very complicated, and we can use al the help we can get in trying
to make them as readable as possible. In addition, as time goes on, the ideas behind the
program begin to fade, and we must rely on the code itself to refresh our memory. Thisis
why adding copious comments to a program is so important.

Another way to make programs more readable is to use a consistent naming convention
for constants, variables, procedure names, and other items. In general, a name should
have two properties. First, it should remind the reader of the purpose or function of the
item. For instance, suppose we want to assign Field variables to some fields in an Access
table. The code:

Dmfldl As Field, fld2 as Field
Set fldl Fi el ds(" Sal es")
Set fld2 Fi el ds(" Transacti ons")

is perfectly legal, but 1000 lines of code and 6 months later, will we remember which
fieddisf1d1 and whichisf| d2? Since we went to the trouble of naming the fieldsin a
descriptive manner, we should do the same with thef | d variables, asin:

DimfldSales As Field, fldTrans as Field
Set fl dSal es Fi el ds(" Sal es")
Set fldTrans Fi el ds(" Transacti ons")

Of course, there are exceptions to all rules, but in general, it is better to choose
descriptive names for variables (as well as other items that require naming, such as
constants, procedures, controls, forms, and code modules).

Second, a variable name should reflect something about the properties of the variable,
such as its data type. Many programmers use a convention in which the first few
characters of a variable's name indicate the data type of the variable. This is sometimes
referred to as a Hungarian naming convention, after the Hungarian programmer Charles
Simonyi, who is credited with its invention.

Table 10.3 and Table 10.4 describe the naming convention that we will generally use for
standard and object variables, respectively. Of course, you are free to make changes for
your own personal use, but you should at least try to be reasonably consistent. These
prefixes are intended to remind us of the data type, but it is not easy to do this perfectly
using only a couple of characters, and the longer the prefix, the less likely it is that we
will useit! (Note the ¢ prefix for integers or longs. Thisis acommonly used prefix when
the variable is intended to count something.)

Table 10.3. Naming Convention for Standard Variables

Variable Prefix
Boolean booal, b, or f
Byte b, byt, or bt
Currency cur
Date dor dte
Double dor dbl
Integer i,c,orint
Long I, c, oring
Single sor sng
String sor str
User-defined type typ, u, or ut
Variant Vv or var
Table 10.4. Naming Convention for Some Object Variables
Variable Prefix
Database db
Workspace ws
Recordset rs
TableDef tdef
Fied fid
Index idx
QueryDef gdef

In addition to a data type, every variable has a scope and a lifetime. Some programmers
advocate including a hint as to the scope of avariable in the prefix, using g for global,

and mfor module level. For example, the variable gi Si ze isaglobal variable of type
Integer. We will discuss the scope and lifetime of a variable next (but we will not
generally include scope prefixes in variable names).

10.4.11 Variable Scope

Variables and constants have a scope, which indicates where in the program the variable
or constant is recognized (or visible to the code). The scope of a variable or constant can
be either procedure-level (also called local), module-level private, or module-level
public. The rules may seem a bit involved at first, but they do make sense.

10.4.11.1 Procedure-level (local) variables

A local or procedure-level variable or constant is a variable or constant that is declared
within a procedure, as is the case with the variable Local var and the constant

Local Const ant in Figure 10.2. A local variable or constant is not visible outside of the
procedure. Thus, for instance, if we try to run ProcedureBin Figure 10.2, we will get the
error message, "Variable not defined,” and the name Local var will be highlighted.

Figure 10.2. Examples of variable scope

[(Gemaral) = | |Procedured
option Explicit

]|l

Fublic Publicvar As Integer
Fublic Conat PublicConstant = &

Frivate PriveteVar ha Integer
Dim Al=oPrivate Rs Integer

Const PrivateConst = 7

Sub Procedureh)

Dim Localwvar ks Intager

I
Conat LocalConst = §

Localvar = (
FublicWar = 5
FrivateVac = 9

End Sub

Sub ProcedureRi)}
Localvar = 1
End Sub

J5 oL of

One of the advartages of local variables is that we can use the same name in different
procedures without conflict, since each variable is visible only in its own procedure.

10.4.11.2 Module-level variables

A module-level variable (or constant) is one that is declared in the declarations section of
a code module. Module-level variables and constants come in two flavors: Private and
Public.

Simply put, a module-leve public variable (or constant) is available to all proceduresin
all of the modules in the project, not just the module in which it is declared, whereas a
module-level private variable (or constant) is available only to the procedures in the
module in which it was declared.

Public variables and constants are declared using the Publ i ¢ keyword, asin:

Publ i ¢ APubl nt As I nteger
Publ i ¢ Const APubConst = 7

Private variables and constants are declared using the Pri vat e keyword, asin:

Private APrivatelnt As |nteger
Private Const APrivateConst =7

The bi mkeyword, when used at the module level, has the same scope as Pri vat e, but is
not as clear, so it should be avoided.

Public variables are also referred to as global variables, but this descriptive term is not de
rigueur.

10.4.12 Variable Lifetime

Variables adso have alifetime. The difference between lifetime and scope is quite simple:
lifetime refers to how long (or when) the variable is valid (that is, retains a value) whereas
scope refers to where the variable is accessible or visible.

To illustrate the difference, consider the following procedure:

Sub Procedur eA()
Di m Local Var As | nteger
Local Var = 0
Call ProcedureB
Local Var = 1
End Sub

Note that Local var isaloca variable. When the line;

Cal|l ProcedureB

is executed, execution switches to ProcedureB. While the lines of ProcedureB are being
executed, the variable Local Var isout of scope, sinceit islocal to ProcedureA. But it is
still valid. In other words, the variable till exists and has avalue, but it is ssimply not
accessible to the code in ProcedureB. In fact, ProcedureB could aso have alocal
variable named Local Var , which would have nothing to do with the variable of the same
name in ProcedureA.

Once ProcedureB has completed, execution continues in ProcedureA with the line:

Local Var =1
which is a valid instruction, since the variable Local Var is back in scope.

Thus, the lifetime of the local variable Local var extends from the moment that
ProcedureA is entered to the moment that it is terminated, including the period during
which ProcedureB is being executed as aresult of the call to this procedure, even though
during that period, Local Var isout of scope.

Incidentally, you may notice that the Microsoft help files occasionally get the notions of
scope and visibility mixed up a bit. The creators of the files seem to understand the
difference, but they don't always use the terms correctly.

10.4.12.1 Static variables

To repeat, avariable may go in and out of scope and yet remain valid during that time,
that is, retain avalue during that time. However, once the lifetime of avariable expires,
the variable is destroyed and its value is lost. It is the lifetime that determines the
existence of avariable; its scope determines its visibility.

Thus, consider the following procedures:

Sub Procedur eA()
Call ProcedureB
Cal|l ProcedureB
Cal| ProcedureB
Cal| ProcedureB
Cal | ProcedureB

End Sub

Sub ProcedureB()
Dim x As | nteger
X =5

End Sub
When ProcedureA is executed, it ssimply calls ProcedureB five times. Each time

ProcedureB is caled, the local variable x is created anew and dedroyed at the end of that
cal. Thus, x is created and destroyed five times.

Normally, thisis just want we want. However, there are times when we would like the
lifetime of alocal variable to persist longer than the lifetime of the procedure in which it
is declared. As an example, we may want a procedure to do something special the first
timeit is caled, but not subsequent times.

A static variable isaloca variable whose lifetime is the lifetime of the entire module,

not just the procedure in which it was declared. In fact, a static variable retains its value
as long as the document or template containing the code module is active (even if no code
IS running).

Thus, a static variable has the scope of alocal variable, but the lifetime of a module-level
variable. C'est tout dire!

For instance, the procedure in Example 10.1 uses a static variable to execute some code
only the first time the procedure is called, other code only after the first time, and still
other code every time the procedure is run.

Example 10.1. Using a Static Variable
Sub StaticExanpl e()

Decl are static Bool ean vari abl e
Static NotFirstTine As Bool ean

If first time, then run special code
If NotFirstTime = Fal se Then

Code here that runs only the first time procedure is called

No |l onger the first tine
Not FirstTime = True

El se

Not the first tine
Code here will run if not first tine

End If
Code here will always run (unless procedure is exited beforehand)

End Sub

The f statement checksto seeif the value of Not Fi r st Ti ne iSFal se, asit will be the
first time the procedure is called. During this first call, the line:

Not FirstTine = True
will execute, so that in subsequent calls to this procedure, the | f condition:

If NotFirstTinme = Fal se

will be Fal se and the aternate code will execute.
Static variables are not used very often, but they can be quite useful at times.

It may have occurred to you that we could acconplish the same effect by using a module-
level private variable to keep arecord of whether the procedure has been called, instead
of astatic local variable. However, it is considered better programming style to use the
most restrictive scope possible, which, in this case, isalocal variable with an "extended"
lifetime. This helps prevent accidental alteration of the variable in other portions of the
code. (Remember that this code may be part of a much larger code module, with alot of
things going on. It is better to hide the Not Fi r st Ti me variable from this other code.)

10.4.13 Variable I nitialization

When a procedure begins execution, all of itslocal variables are automatically initialized,
that is, given initial values. In general, however, it is not good programming practice to
rely on this initiadlization, since it makes the program less readable and somewhat more
prone to logical errors. Thus, it is agood ideato initialize al local variables explicitly, as
in the following example:

Sub Exanpl e()

Dim x As | nteger
Dims As String

X

0 " Initialize x to O
s -

Initialize s to enpty string

nore code here

End Sub

Note, however, that static variables cannot be initialized, since that defeats their purpose!
Thus, it is important to know the following rules that VBA uses for variable initialization
(note also that they are intuitive):

Numeric variables (Integer, Long, Single, Double, Currency) are initialized to
zero.

A variable-length string is initialized to a zero-length (empty) string.

A fixed-length string is filled with the character represented by the ASCI|
character code O, or Chr (0).

Variant variables are initialized to Enpt y.

Object variables are initialized to Not hi ng.

The Not hi ng keyword actually has several related usesin Access VBA. It isused to
release an object variable, asin:

Set rs = Not hi ng

and to determine if an object variable references avalid object, asin:
If rs I's Nothing

It is also sometimes used as a return value for some functions, generally to indicate that
some operation has failed. Finally, it is used to initialize object variables.

10.5 VBA Operators

VBA uses a handful of simple operators and relations, the most common of which are
shownin Table 10.5.

Table 10.5. VBA Operators and Relations

Type Name Symbol
Arithmetic Operators Addition +
Subtraction -
Multiplication *
Division /
Division with Integer result \
Exponentiation "
Modulo Mod
String Operator Concatenation &
Logical Operators AND AND
OR OR
NOT NOT
Comparison Relations Equal =
Lessthan <
Greater than
Lessthan or equal to <=
Greater than or equal to >=
Not equal to <>

The Mod operator returns the remainder after division. For example:
8 Mod 3

returns 2, since the remainder after dividing 8 by 3is 2.

To illustrate string concatenation, the expression:

"To be or " & "not to be"

is equivalent to:

"To be or not to be"

Chapter 11. Functions and Subroutines

VBA allows two kinds of procedures: functions and subroutines. The only difference
between a function and a subroutine is that a function returns a value, whereas a
subroutine does not.

11.1 Calling Functions

A function declaration has the form:

[Public or Private] Function FunctionName(Paraml As DataTypel, _
Paranm2 As DataType2,...) As ReturnType

Note that we must declare the data types not only of each parameter to the function, but
also of the return type. Otherwise, VBA declares these items as variants.

We will discuss the optional keywords Publ i ¢ and Pri vat e later in this chapter, but you
can probably guess that they are used here to indicate the scope of the function, just as
they are used in variable declarations.

For example, the AddOne functionin Example 11.1 adds 1 to the original value.

Example 11.1. The AddOne Function

Public Function AddOne(Val ue As Integer) As I|nteger
AddOne = Value + 1
End Function

To use the return value of afunction, we just place the call to the function within the
expression, in the location where we want the value. For instance, the code:

MsgBox "Adding 1 to 5 gives: " & AddOne(5)

produces the message box in Figure 11.1, where the expression AddOne(5) is replaced by
the return value of AddOne, which in this caseis 6.

Figure11.1. The message dialog displayed by Example 11-1

]

Adding 1105 gives: B

oK

Note that, in general, any parameters to a function must be enclosed in parentheses within
the function call.

In order to return a value from a function, we must assign the function's name to the
return value somewhere within the body of the function. Example 11.2 shows a dightly
more complicated example of afunction.

Example 11.2. Assigning a Function's Return Value
Function ReturnCount() As Variant

Return count of records in recordset

If rs Is Nothing Then

Ret urnCount = "No recordset"”
El se

Ret urnCount = rs. RecordCount
End | f

End Functi on

This function returns a count of the number of records in the recordset referenced by the
variabler s. However, if r s does not currently reference a recordset, then the function
returns the words "No recordset.”

Note that since the return value may be a number or a string, we declare the return type as
Variant. Note also that Ret ur nCount is assigned twice within the body of the function. Its
value, and hence the value of the function, is set differently depending upon the value
returned by the | f statement.

11.2 Calling Subroutines

A subroutine declaration has the form:

[Public or Private] Sub SubroutineName(Paranl As Dat aTypel
Paran? As Dat aType2,...)

Thisis similar to the function declaration, with the notable absence of the As Ret ur nType
portion. (Note also the word sub in place of Functi on.)

Since subroutines do not return a value, they cannot be used within an expression. To call
a subroutine named SubroutineA, we can write either:

Cal | SubroutineA(paranmeters, . . .)
or smply:

Subr outi neA paraneters,

Note that any parameters must be enclosed in parentheses when using the cal I keyword,
but not otherwise.

11.3 Parameters and Arguments

Consider the following very simple subroutine, which does nothing more than display a
message box declaring a person’'s name:

Sub Di spl ayName(sName As String)
MsgBox "My nane is " & sNanme
End Sub

To call this subroutine, we would write, for example:
Di spl ayNane "Wl f gang"

or:

Cal| DisplayNane("Wl fgang")

The variable sNamre in the procedure declaration:

Sub Di spl ayNanme(sNanme As String)

is called a parameter of the procedure. The call to the procedure should contain a string
variable or aliteral string that is represented by the variable sNane in this procedure. (but
see the discussion of optional arguments in the next section). The value used in place of
the parameter when we make the procedure call is called an argument. Thus, in the
previous example, the argument is the string "Wolfgang."

Note that many programmers incorrectly fail to make a distinction between parameters
and arguments, using the names interchangeably. However, since a parameter is like a
variable and an argument is like a value of that variable, failing to make this distinction is
like failing to distinguish between a variable and its value!

11.3.1 Optional Arguments

In VBA, the arguments to a procedure may be specified as optional, using the opt i onal
keyword. (It makes no sense to say that a parameter is optiond; it is the value that is
optional.)

For instance, the definition of the OpenRecordset method is:
Set recordset = object.OpenRecordset(source, type, options, |ockedits)

wheretype , options ,and| ockedi ts are optional. Thus, for instance, each of the
following lines of code are legal:

Dimrs As Recordset

Set rs = CurrentDb. OpenRecordset (" Nanes")

Set rs = CurrentDb. OpenRecordset (" Names", dbOpenForwar dOnlvy)
Set rs = CurrentDb. OpenRecordset ("Nanmes", dbOpenForwardOnly,
dbReadOnl y)

Set rs = CurrentDb. OpenRecordset ("Nanes", dbOpenForwardOnly, _
dbReadOnly, dbOptinistic)

To define afunction with optional arguments, we just include the keyword Opt i onal in
the parameter declaration, asin Example 11.3.

Example 11.3. Using an Optional Argument

Sub ChangeFi el dType(sFi el dName As String, _
Optional NewSize As Vari ant)

Change type to integer
rs! Fi el ds(sFi el dNane) . Type = dbl nt eger

If size supplied, use it. Else use 25
If Not |sM ssing(NewSize) Then

rs!Fi el ds(sFi el dNane) . Si ze
El se

rs!Fi el ds(sFi el dNane) . Si ze = 25
End | f

Cl nt (NewSi ze)

End Sub

The second parameter is declared with the opt i onal keyword. Because of this, we may
call the procedure with or without an argument for this parameter, asin:

ChangeFi el dType(" Age", 10)
and:
ChangeFi el dType(" Age")

Note that the IsMissing function is used in the body of the procedure to test whether the
argument is present. If the argument is present, then the font size is changed. Note also
that we declared the NewSi ze parameter as type Variant because IsMissing works only
with parameters of type Variant. (Other types of variables are given default values, which
precludes the possibility of them going missing.) Thus, we converted the Variant to type
Integer using the Clnt function.

Note that a procedure may have any number of optional arguments, but they must all
come at the end of the parameter list.

11.3.2 Named Arguments

Normally, the arguments to a function are matched to the parameters by their position in
the function call. For instance, in the function call:

Set rs = CurrentDb. OpenRecordset (" Obj ects”, dbOpenForwar dOnly)

Access can tell that the argument dbOpenFor war donl y is the value for the second
parameter (Type) of the function. Such arguments are called positional arguments.

Many built-in VBA/DAO functions also allow named arguments For example, the
OpenRecordset function can be called as follows:

Set rs = Current Db. OpenRecordset (Narme: =" Obj ects", _
Type: =dbOpenFor war dOnl y)

Here, each argument has the form:
Par amet er Name: =Ar gunment

There are three main advantages to named arguments:

Named arguments can improve readability and clarity.

Blank spaces (separated by commas) are required for missing optional arguments
when using a positional declaration, but not when using named arguments.

The order in which reamed arguments are listed is immaterial, which, of coursg, is
not the case for positional arguments. For instance, the previous function call

could be written:
Set rs = Current Db. OpenRecordset (Type: =dbOpenFor war dOnly,
Nane: =" Cbj ects")

Named arguments can improve readability quite a bit, and are highly recommended.
However, they can require considerably more space, so for the short examples in this
book, we usually will not use them.

11.3.3 ByRef Versus ByVal Parameters

Parameters come in two flavors: ByRef and ByVval . Many programmers do not have a
clear understanding of these concepts, but they are very important and not that difficult to
understand.

To explain the difference, consider the two proceduresin Example 11.4. ProcedureA
simply sets the value of the module-level variable x to 5, displays that value, calls the
procedure AddOne with the argument x, and then displays the value of x again.

Example 11.4. Testing the ByVal and ByRef Keywords
Sub Procedur eA()

X =5 ' Set x to 5
MsgBox x " Display x

Call AddOne(x) ' Call AddOne
MsgBox x ' Display x again

End Sub

Sub AddOne(ByRef i As Integer)
i =i +1
End Sub

Note the presence of the ByRef keyword in the AddOne procedure declaration. This
keyword tells VBA to pass areference to the variable x to the AddOne procedure.
Therefore, the AddOne procedure, in effect, replaces its parameter i by the variable x. As
aresult, the line:

So, after AddOne is called, the variable x has the value 6.

On the other hand, suppose we change the AddOne procedure, replacing the keyword
ByRef with the keyword ByVal :

Sub AddOne(ByVal i As Integer)
i =i +1
End Sub

In this case, VBA does not pass a reference to the variable x, but rather it passes its value.
Hence, the variablei in AddOne simply takes on the value 5. Adding 1 to that value
gives 6. Thus, i equals 6, but the value of the argument x is rot affected! Hence, both
message boxes will display the value 5 for x.

ByRef andByVval both have their uses. When we want to change the value of avariable,
we must declare the corresponding parameter as ByRef , so that the called procedure has
access to the actual variable itself. Thisis the case in the previous example. Otherwise,
the AddOne procedure does absolutely nothing, since the local variablei is incremented,
but it is destroyed immediately afterwards, when the procedure ends.

On the other hand, when we pass an argument for informational purposes only, and we
do not want the argument to be altered, it should be passed by value, using the By Vval
keyword. In this way, the called procedure gets only the value of the argument.

There is one downside to passing arguments by value: it can take alot of memory (and
time). When passing a string variable that contains a large string by value, the entire
string must be duplicated.

Thus, we can summarize by saying that if we want the procedure to modify an argument,
the argument must be passed by reference. If not, the argument should be passed by value
unless this will produce an unacceptable decrease in performance, or unless we are very
sure that it will not get changed by accident.

It is important to note thet VBA defaults to ByRef if we do not specify otherwise. This
means that the values of arguments are subject to change by the called procedure, unless
we explicitly include the keyword ByVal . Caveat scriptor !

11.4 Exiting a Procedure

VBA providestheExi t Sub and Exi t Funct i on statements, should we wish to exit from
a procedure before the procedure would terminate naturally. For instance, if the value of a
parameter is not suitable, we may want to issue a warning to the user and exit, as

Example 11.5 shows.

Example 11.5. Using the Exit Sub Statement
Sub Di spl ayName(sName As String)

If sNane = "" then
Msgbox " Pl ease enter a nanme."
Exit Sub
End | f
MsgBox "Name entered is " & sNane
End Sub

While we are on the subject of exiting, we should comment on the use of the End
statement, which will terminate a procedure. Simply put, you should almost never usethe
End statement in VBA programming, since it produces a rather abrupt termination of a
program. (I never like to say never.) Hereis a partial list of what happens when the End
statement is executed:

Code execution stops abruptly, without invoking the Unload, QueryUnload, or
Terminate event of any forms in the application, which means that forms are not
given the opportunity to prevent the program from terminating or from
performing any necessary cleanup.

All module-level variables and all static local variables are reset. (Nonstatic local
variables go out of scope, as expected.) Objects created from class modules are
destroyed.

Files opened using the open statement are closed.

While there may be some rather specialized situations in which this behavior is desirable,

you will no doubt recognize such a situation if and when it arises. In the meantime, it is
probably best to smply avoid using the End statement.

11.5 Public and Private Procedures

Just as variables and constants have a scope, so do procedures. We can declare a
procedure using the Publ i ¢ or Pri vat e keyword, asin:

Publ i ¢ Function AddOne(i As Integer) As I|nteger

or:

Private Function AddOne(i As Integer) As |nteger

The difference issimple: aPri vat e procedure can only be called from within the module
in which it is defined, whereas a Publ i ¢ procedure can be called from within any module
in the project.

Note that if the Publ i ¢ or Pri vat e keyword is omitted from a procedure declaration,
then the procedure is considered to be Publ i c.

11.6 Fully Qualified Procedure Names

When we call a public procedure that lies in another code module, there is a potential
problem with ambiguity, for there may be more than one public procedure with the same
name in another module. VBA will execute the first one it finds, and this may not be the
one we had in mind!

The solution is to use a qualified procedure name, which has the form:

Modul eNane. Pr ocedur eNane

For instance, if a public procedure named AddOne lies in a module named Utilities, then
we can call this procedure using the syntax:

Utilities. AddOne

Chapter 12. Built-in Functions and Statements

VBA has alarge number of built-in functions and statements. For possible reference,
Table 12.1 shows the VBA functions, and Table 12.2 shows the statements. We will take
alook at afew of the more commonly used functions and statements in this chapter and
the next.

Table 12.1. VBA Functions

Abs DDB IsError RightB
Array Dir IsMissing Rnd
Asc DoEvents ISNull RTrim
AscB Environ IsNumeric Second
AscW EOF IsObject Seek
Atn Error Lbound Sgn
CBool BExp Lcase Shell
CByte FileAttr Left Sn
CCur FileDateTime LeftB SN
CDate FileLen Len Space
CDhl Fix LenB Spc

CDec Format LoadPicture Sqr
Choose FreeFile Loc Str
Chr FVv LOF StrComp
ChrB GetAllSettings Log StrConv
Chrw GetAttr Ltrim String
Cint GetAutoServerSettings Mid Switch
CLng GetObject MidB SYD
Command GetSetting Minute Tab
Cos Hex MIRR Tan
CreateObject Hour Month Time
CSng lif MsgBox Timer
Cstr IMEStatus Now TimeSeria
CurDir Input Nper TimeVaue
Cvar InputB NPV Trim
CVDate InputBox Oct TypeName
CVErr InStr Partition UBound
Date InStrB Pmt UCase
DateAdd Int PPmt val
DateDiff Ipmt PV VarType
DatePart IRR QBColor Weekday
DateSerial IsArray Rate Y ear
DateValue IsDate RGB
Day | SEmpty Right

Table 12.2. VBA Statements
AppActivate Do...Loop Mid Reset
Beep End MidB Resume
Cal Enum MKDir Return
ChDir Erase Name RmDir
ChDrive Error On Error RSet
Close Event On...GoSub SavePicture
Const Exit On...GoTo SaveSetting
Date FileCopy Open Seek
Declare For Each...Next Option Base Select Case
DefBool For...Next Option Compare SendKeys
DefByte Function Option Explicit Set
DefCur Get Option Private SetAttr
DefDate GoSub...Return Print # Static
DefDbl GoTo Private Stop
DefDec If...Then...Else Property Get Sub
Defint Implements Property Let Time
DefLng Input # Property Set Type
DefObj Kill Public Unload
DefSng Let Put Unlock

DefStr Line Input # RaiseEvent While...Wend
DefVar Load Randomize Width #
DeleteSetting Lock ReDim With

Dim L Set Rem Write #

To help smplify the exposition, we will follow Microsoft's lead and use square brackets
to indicate optional parameters. Thus, for instance, the second parameter in the following
procedure is optional :

Sub ChangeFi el dType(sFi el dNanme, [NewSi ze])

Note that we have also omitted the data type declarations, which will be discussed
separately.

12.1 The MsgBox Function

We have been using the MsgBox function unofficially for some time now. Let us
introduce it officially. The MsgBox function is used to display a message and wait for the
user to respond by pushing a button. The most commonly used syntax is:

MsgBox(prompt [, buttons] [, title])

(Thisis not the function's complete syntax. There are some additional optional
parameters related to help contexts that you can look up in the help documentation.)

pronpt isa String parameter containing the message to be displayed in the dialog box.
Note that a multiline message can be created by interspersing the vbCr Lf constant within

the message.

but t ons iSaLong parameter giving the sum of values that specify various properties of
the message box. These properties are the number and type of buttons to display, the icon
style to use, the identity of the default button, and the modality of the message box. (A
system modal dialog box remains on top of al currently open windows and captures the
input focus systemwide, whereas an application modal dialog box remains on top of the
application's windows only and captures the application's focus.) The various values of
but t ons that we can sum are shown in Table 12.3. (They are officially defined in the
VbMsgBoxSt yl e enum.)

Table 12.3. The MsgBox buttons Argument Values

Purpose Constant Value Description
Button Types vbOKOnly 0 Display OK button only
vbOK Cancel 1 Display OK and Cancel buttons
vbAbortRetrylgnore 2 Display Abort, Retry, and Ignore buttons
vbY esNoCancel 3 Display Yes, No, and Cancel buttons

vbYesNo 4 Display Yes and No buttons
vbRetryCancel 5 Display Retry and Cancel buttons

Icon Types vbCritical 16 Display Critical Message icon
vbQuestion 32 Display Warning Query icon
vbEXxclamation 48 Display Warning Messageicon
vblnformation 64 Display Information Message icon

Default Button vbDefaultButtonl 0 First button is default
vbDefaultButton2 256 Second button is default
vbDefaultButton3 512 Third button is default
vbDefaultButton4 768 Fourth button is default

Modality vbA pplicationM odal 0 Application modal message box
vbSystemModal 4096 |System modal message box

For instance, the code:

MsgBox " Proceed?", vbQuestion + vbYesNo

displays the message box shown in Figure 12.1, which includes a question mark icon and
two command buttons, labeled Y es and No.

Figure12.1. A MsgBox dialog box

Microsoft Access .
E) Procesd?
TVas] Mo |

Thetitl e parameter isastring expression that is displayed in the title bar of the dialog
box. If we omit this argument, then "Microsoft Access' will be displayed, asin Figure
12.1.

The MsgBox function returns a number indicating which button was selected. These

return values are given in Table 12.4. (They are officially defined in the vbMsgBoxResul t
enum.)

Table 12.4. MsgBox Return Values

Constant Value Description
vbOK 1 OK button pressed
vbCancel 2 Cancel button pressed
vbAbort 3 Abort button pressed
vbRetry 4 Retry button pressed

vblgnore 5 Ignore button pressed

vbYes 6 Y es button pressed

vbNo 7 No button pressed

12.2 The InputBox Function

The InputBox function is designed to get input from the user. The most commonly used
(but not the complete) syntax is:

| nput Box(pronpt [, title] [, default])

where pr onpt isthe message in the input box, ti t 1 e isthe title for the input box, and
def aul t isthe default value that is displayed in the text box. For instance, the code:

sName = | nput Box("Enter your nane.", "Nane", "Albert")

produces the dialog box in Figure 12.2.

Figure 12.2. An InputBox dialog box

Noame

Entar your name.

Cancal

The InputBox function returns the string that the user enters into the text box. Thus, in our
example, the string variable sNanme will contain this string.

Note that if we want a number from the user, we can still use the InputBox function and
simply convert the returned string (such as" 12. 55") to a number (12.55) using the Val
function, discussed later in the chapter.

12.3 VBA String Functions

Here are a handful of useful functions that apply to strings (both constants and variables):

The Len function

The Len function returns the length of a string, that is, the number of charactersin
the string. Thus, the code:

Len("January I nvoice")

returns the number 15.

The UCase and LCase functions

These functions return an all uppercase or all lowercase version of the string
argument. The syntax is:

UCase(string)
LCase(string)

For instance,
MsgBox UCase(" Donna")
will display the string DONNA.
The Left, Right and Mid functions
These functions return a portion of a string. In particular:
Left(string, nunber)
returns the leftmost nunber charactersinstring, and:
Ri ght (string, numnber)
returns the rightmost nunber charactersin st ri ng. For instance:
MsgBox Ri ght ("Donna Smith", 5)
displays the string Smi t h.
The syntax for Mid is:
M d(string, start, |ength)

This function returns the first | engt h number of characters of st ri ng, starting at
character number st art . For instance:

M d("Library.xls",9,3)
returnsthe string x1 s. If the | engt h parameter is missing, asin:

M d("Library.xls",9)
the function will return the rest of the string, starting at start .

The InStr function

The syntax for this very useful function is:

InStr(Start, StringToSearch, StringToFi nd)

The return value is the position, starting at st ar t , of the first occurrence of
St ringToFi nd within St ri ngToSear ch. If Start ismissing, then the function
starts searching at the beginning of st ri ngToSear ch. For instance:

MsgBox InStr(1, "Donna Smith", "Smith")

displays the number 7, because "Smith" begins at the seventh position in the
string "Donna Smith."

The Str and Val functions
The Str function converts a number to a string. For instance:

Str(123)

returns the string 123. Conversely, the Val function converts a string that
represents a number into a number (so that we can do arithmetic with it, for
instance). For example:

val ("4.5")

returns the number 4. 5 and:

Val ("1234 Main Street")

returns the number 1234. Note, however, that Val does not recognize dollar signs
or commas. Thus:

Val ($12. 00)
returns o, not 12. 00.

The Type Conversion functions
The Str and Val functions have been replaced by the more modern type
conversion functions; CBool, CByte, CCur, CDate, CDbl, CDec, Cint, CLng,
CSng, CVar, and CStr. For instance, the function CStr converts its argument to a
sring, asin:

CStr(123)

One advantage of the newer type conversion functions over the older Str and Val
functions is that the new functions are international-aware. For instance, the CCur

function converts an expression to currency format, taking into account the
particular decimal separators, thousands separators, and other currency options
that are determined by the locale setting of the computer upon which the function
is being used.

The Trim, LTrim, and RTrim functions

The LTrim function removes leading spaces from a string. Similarly, RTrim
removes trailing spaces, and Trim removes both leading and trailing spaces. Thus:

Trim(" extra ")
returnsthe string ext r a.
The String and Space functions

The Sring function provides away to quickly create a string that consists of a
single character repeated a number of times. For instance:

sText = String(25, "B")

setssText to astring consisting of 25 Bs. Also, the Space function returns a
string consisting of a given number of spaces. For instance:

sText = Space(25)
setssText to astring consisting of 25 spaces.
The Like operator and StrCmp function

TheLi ke operator is very useful for comparing two strings. Of course, we can use
the equal sign:

stringl = string2

which is true when the two strings are identical. However, Li ke will aso make a
case-insensitive comparison or alow the use of pattern matching.

The expression:
string Like pattern

returns Tr ue if stri ng fitspat t er n, and Fal se otherwise. (Actualy, the
expression can also return Nul | .) We will describepat t er n in a moment.

The type of string comparison that the Li ke operator uses depends upon the
setting of the Opt i on Conpar e statement. There are two possibilities:

Opti on Conpare Binary
Opti on Conpare Text

one of which should be placed in the Declarations section of amodule (in the
same place as Opt i on Expl i ci t). Note that the default is Opt i on Conpar e
Bi nary.

Under Opt i on Conpar e Bi nary, String comparison is in the order given by the
ANSI character code, as shown here:

A<B<...<Z<a<h<...<z<A<...<@<acx.

Under Opt i on Conpar e Text , string comparison is based on a case-insensitive
sort order (determined by your PC's locale setting). This gives a sort order as
shown here:

A=z=a<A=a<B=b<...<Z=z<@=g¢9
By the way, the last item in the Text sort order isthe [character, with ANSI value
91. Thisis useful to know if you want to place an item last in alphabetical order—

just surround it by sgquare brackets.

The pattern- matching features of the Li ke operator allow the use of wildcard
characters, character lists, or character ranges. For example:

?

matches any single character

*

matches zero or more characters

#

matches any single digit (0-9)

[charlist]

matches any single character incharl i st
['charlist]

matches any single character not in charl i st

For more details, check the VBA help file.

The StrCmp function also compares two strings. Its syntax is:

StrConp(stringl, string2 [, conpare])

and it returns a value indicating whether st ri ng1 is equal to, greater than, or less
than st ri ng2. For more details, check the VBA help file.

12.4 Miscellaneous Functions and Statements

WEe'l conclude our discussion of Access VBA functions and statements by examining a
hodgepodge of language constructs that perform such tasks as evaluating objects or
variables, evaluating an expression, and altering program flow based on an expression's
values.

12.4.1 The lsFunctions

VBA has severd |s functions that return Boolean values indicating whether a certain
condition holds. We have already discussed the IsMissing function in connection with
optional arguments. Here are some additional Is functions.

12.4.1.1 The IsDate function

This function indicates whether an expression can be converted to a date. For instance,
the code:

Dimx As String
x = "1/ 1/ 45"
Debug. Pri nt | sDate(x)

will print Tr ue to the Immediate window.
12.4.1.2 The IsEmpty function

This function indicates whether a variable has been initialized. For example, the code:

Dim x As Vari ant
If |IseEnpty(x) Then .

tests whether the variable x is empty.

12.4.1.3 The IsNull function

This function is used to test whether avariable or field isNul | (that is, contains no data).
Note that code such as:

If var = Null Then

will always return Fal se because most expressions that involve Nul | automatically
return Nul | . The proper way to determine if the variable var isNul | isto write:

If IsNull(var) Then
Hereisatypical scenario:

Dimrs As Recordset
Dims As String
Set rs = CurrentDb. OpenRecordset (" Nanmes")
rs. MoveFir st
If Not IsNull(rs!LastNane) Then
s = rs! Last Nanme

End | f

12.4.1.4 ThelsNumeric function

This function indicates whether an expression can be evaluated as a number. For
instance, consider the code:

Dims As String
s = "123"
If IsNuneric(s) Then Debug. Print "Nunmber”

Thiswill print the word "Number." However, if we change the second line to:

s = "123 Main St"

then the Debug. Pri nt statement will not execute.

12.4.2 The Immediate | f Function

The Immediate If function has the syntax:

1 f(Expression, TruePart, FalsePart)

If Expressi on iSTr ue, then the function returns Tr uePart . If Expr essi on iSFal se, the
function returns Fal sePar t . For instance, consider the following code:

Dimrs As Recordset
Dims As String

Set rs = Current Db. OpenRecordset (" Nanes")
rs. MoveFi r st

If Not IsNull (rs!LastNanme) Then
s = rs! Last Nane)
End | f

This code fills a string variable with a field value. We must make a distinction between a
Null and nonNull field value because the code:

s = rs! Lastnanme

will produce the error "Invalid use of Null" if we try to assign a Null value to a string
variable.

It is very important to note that the Immediate If function always evauates both
TruePart and Fal sePart, even though it returns only one of them. Hence, we must be
careful about undesirable side effects. For example, the following code will produce a
division by zero error because even though the 1If function returns 1/x only when x is not
equal to 0, the expression 1/x is evaluated in all cases, including when x =0:

0
IHf(x =0, x 2, 1/ x)

X
y

12.4.3 The Switch Function

The syntax of the Switch function is:

Swi tch(exprl, valuel, expr2, value2, ... , exprn, valuen)

whereexpr n and val uen are expressions. Note that there need only be one expression
value pair, but the function is more meaningful if there are at least two such pairs.

The Switch function evaluates each expression expr n. When it encounters the first Tr ue
expression, it returns the corresponding value. As with the IIf function, Switch always
evaluates al of the expressions. If none of the expressionsis Tr ue, the function returns
Nul I . This can be tested with the 1sNull function.

The procedure in Example 12.1 displays the type of file based on its extension: Access
database, text, or dbase database.

Example 12.1. The Switch Function
Sub ShowFi |l eType(Fil eExt As String)

Dim Fil eType As Vari ant
FileType = Switch(Fil eExt

Fi | eExt
Fi | eExt

"mdb", "Database", _
"txt", "Text", _
"dbf", "dBase")

Di splay result
If Not IsNull(FileType) Then
MsgBox Fil eType
El se
MsgBox " Unrecogni zed type"
End If

End Sub

There is one subtlety in this code. Since the Switch function can return anul | vaue, we
cannot assign the return value to a String variable, as we might first try to do:

Dim Fil eType As String

FileType = Switch(Fil eExt
Fi | eExt
Fi | eExt

"mdb", "Database", _
"txt", "Text", _
"dbf", "dBase")

Thiswill produce an error if Fi | eExt isnot "mdb," "txt,” or "dbf,” in which case we will
get the very annoying error message, "Invalid use of Null." The solution is to declare

Fi | eType asa Variant, which can hold any data type, including no data type, which is
indicated by the Nul | keyword. (This issue can be avoided by using a Sel ect Case
statement, discussed in Chapter 13.)

12.4.4 The Begp Statement

This simple statement, whose syntax is:

Beep

sounds a single tone through the computer's speakers. It can be useful (when used with
restraint) if we want to get the user's attention. However, there is a caveat: The results are
dependent upon the computer's hardware, and so the statement may not produce a sound
a al! Thus, if you use this statement in your code, be sure to warn the user.

12.5 Handling Errors in Code

We discussed the various types of errorsin Chapter 9, but we have scrupulously avoided
the question of how to handle run-time errorsin code. Indeed, VBA provides several
tools for handling errors (On Er r or , Resune, the Err object, and so on), and we could
include an entire chapter on the subject in this book.

Proper error handling is extremely important. Indeed, if you are, or intend to become, a
professional application developer, then you should familiarize yourself with error
handling procedures.

On the other hand, if your intention is to produce Access VBA code for your own
persona use, then the reasons for adding error handling routines are somewhat mitigated.
For when an error occurs within one of your own programs, VBA will stop execution,
display an error message, and highlight the offending code. This should enable you to
debug the application and fix the problem. (It would be unreasonable to expect another
user of your program to debug your code, however.)

Let us undertake a brief discussion of the highlights of error hardling. (For more details,
may | suggest my book Concepts of Object-Oriented Programming in Visual Basic,
published by Springer-Verlag. It has a detailed chapter on error handling.)

12.5.1 TheOn Error Goto L abd Statement

The on Err or statement tells VBA what to do when arun-time error occurs. The most
common form of the statement is;

On Error GoTo | abel

wherel abel isalabel. For instance, consider the following code:

Sub RecordCt ()
On Error GoTo ERR_EXAMPLE

Dimrs As Recordset
Set rs = CurrentDb. OpenRecordset (" Name")

MsgBox rs. Recor dCount

Exit Sub

ERR_EXAMPLE:
MsgBox "Error " & Err.Number & " - " & Err.Description, vbCritical
Exit Sub

End Sub

The purpose of this procedure is smply to display the number of rows in atable.
However, the database does not happen to have a table called Name. Hence, when VBA
encounters the line:

Set rs = Current Db. OpenRecordset (" Nane")
aruntime error will occur.

To deal with this possibility in afriendly manner, we add some error checking. The line:

On Error GoTo ERR_EXAMPLE

tells VBA to move execution to the label ERR_EXAMPLE if an error does occur. The code
following this label is called the error-handling code. If an error should occur, the next
line executed is the MsgBox line, in which case the dialog in Figure 12.3 will be
displayed. This message gives a description of the error, obtained from the error object,
which we discuss in the next section.

Figure12.3. An error dialog

g Ervor 3878 - The Mcrosof .| et deisbese engne cannal fnd e input table ar queny Hame'. kske sume fexdsss and het iz

sl (8 apalad comacthy

It is important to note the:

Exit Sub

line just before the ERR_EXAMPLE label. Without this statement, the error- handling code
will always be executed, even when there is no error! Omitting this line is a common
mistake. Note also that |abels always end with a colon.

The process of adding error-handling code to a procedure is sometimes referred to as
error-trapping.

12.5.2 Handling Errorsin the Calling Procedure

Consider the following version of the RecordCt function:

Function RecordCt(Tabl eNanme As String) As I|nteger
On Error GoTo ERR_EXAMPLE
Dimrs As Recordset
Set rs = Current Db. OpenRecor dset (Tabl eNane)
RecordCt = rs. Recor dCount
rs. Close
Exit Function
ERR_EXAMPLE
RecordCt = -1 ' Indicates error
rs. Close

Exit Function

End Functi on

In this case, if there is an error, the function will smply return the value - 1, rather than
displaying a message box. This behavior is better then that of the previous version,
because in this case the calling procedure can decide what to do.

Here is a procedure that calls RecordCt:

Sub Mai n()

On Error GoTo Err_Main

Dimrc As Long
rc = RecordCt (" Object")

If rc = -1 Then

code here to handle error
El se

code here for no error
End | f
Exit Sub

Err_Mai n:
MsgBox "Error " & Err.Nunber & " - " & Err.Description, vbCritica
Exit Sub

End Sub

Note that areturn value of - 1 isnot perceived by VBA as an error at al, so we need to
handle the error using code such as:

If rc = -1 Then

12.5.3 The Calls Stack
What happens if we do not trap errors in a procedure?

If the procedure was not called by another procedure, but rather was called directly by the
user, or if the procedure is an event procedure, that is, code that executes in response to a
user manipulating a control on aform (for instance, clicking on a command button), then
VBA just displays an error message and halts the program.

However, if the procedure in which the error occurred was called by another procedure,
then VBA passes the error to the calling procedure, just as though the calling procedure
had caused the error.

To illustrate this, consider the following procedures:

Function RecordCt2(Tabl eNane As String) As I|nteger
Dimrs As Recordset

Set rs = Current Db. OpenRecor dset (Tabl eNane)
RecordCt 2 = rs. Recor dCount

rs.Cl ose

End Function

Sub Mai n2()
On Error GoTo Err_Main

Dimrc As Long
rc = RecordCt2("Objects")

More code here
Exit Sub

Err_Mai n:
MsgBox "Error " & Err.Number & " - " & Err.Description, vbCritica
Exit Sub

End Sub

The RecordCt2 function has no error-trapping code. If Main2 calls RecordCt2 with a bad
table name, the error in RecordCt2 will be passed to Main2, whose error-trapping code
will execute. Thus, we will get an error message from Main2. (This may be just fine.)

More generaly, if ProcedureA calls ProcedureB, which calls ProcedureC, and so on,
then an error in any one procedure will be passed up the call stack (list of proceduresin

reverse order of execution) until a procedure with error-handling code is encountered. If
none is encountered, then VBA will issue its own error message and terminate the

program.

Incidentally, you can view the call stack while in break mode by choosing Call Stack
from the View menu.

12.5.4 TheError Object

Theerror object, denoted by Er r, belongs to the VBA object model. The most important
properties of this object are:

Number

The VBA error number

Source

The name of the current VBA project
Description

A description of the error

Thus, for instance, the line:

MsgBox "Error " & Err.Nunber & " - " & Err.Description, vbCritica
displays the error number and its description.

The Err object has a Clear method:

Err. Cl ear

that will clear all of the properties of the Er r object, setting its Nunber property to 0
(which indicates the absence of an error).

1255 TheOn Error GoTo 0 Statement
The statement:

On Error GoTo O

turns off any previous On Error GoTo | abel Statements. Any error occurring
subsequently will be handled by VBA in its own inimitable way.

12.5.6 TheOn Error Resume Next Statement

The syntax:

On Error Resune Next

tells VBA to continue executing the code immediately following the line that caused the
error. There are two important uses for this form of on Error. The first isto cause VBA
to ignore an error. For instance, the code:

Sub exanpl e()

On Error Resume Next
MsgBox rs. Recor dCount

End Sub
will report the record count when r s isavalid recordset and do nothing otherwise.

Another important use for the on Error Resume Next Syntax is for in-line error checking,
where we check for errors immediately following the line that may have caused an error.
For instance, another way to handle errors in the RecordCount property is as follows:

Sub exanpl e()
On Error Resume Next
MsgBox rs. Recor dCount
I f Err.Nunmber <> 0 Then
code to handle error here

End If
End Sub

12.5.7 The Resume Statement

It is also possible to include the Resune statement in the error- handling portion of the
code. Thiswill cause VBA to resume execution at the line that follows the one that
caused the error. Thus, the previous code is equivalent to the following:

Sub exanpl e()

On Error GoTo ERR_EXAMPLE
MsgBox rs. Recor dCount

An error will cause execution to resume here after
di spl ayi ng an error nessage

Exit Sub

ERR_EXAMPLE:
MsgBox Err. Description, vbCritical
Resume Next

End Sub
There are three variations on the Resune Statement:

Resune
Resune Next
Resune ALabel

The first version will cause VBA to resume with the line that caused the error. Thisis
useful if your error-handling code actually repairs the error condition and you want the
line that caused the original error to be executed again.

To illustrate, if the procedure in Example 12.2 encounters an error, it branches to an error
handler. This handler checks for error number 3078, which is the "Can't find table" error.
If thisis the error, then the procedure displays a dialog box asking for a new table name.
If the user enters a new name, the Resune statement is executed and so the line:

Set rs = Current Db. OpenRecor dset (Tabl eNane)

is repeated. Note that it is vital to give the user away out, however. Thisis done by
letting the user leave the dialog box blank. (Incidentally, | got the correct error number
3078 by ssimulating the error and reading the resulting error message dialog box.)

Example 12.2. Error Handling with the Resume Statement
Functi on RecordCt 3(Tabl eNanme As String) As I|nteger

On Error GoTo ERR_EXAMPLE
Dimrs As Recordset

Set rs = Current Db. OpenRecor dset (Tabl eNane)

RecordCt = rs. Recor dCount

rs.Cl ose
Exit Function

ERR_EXAMPLE:
If Err.Nunber = 3078 Then
" Can't find table
sTable = I nputBox("Can't find table " & sTable & _
". Please enter table nane again or |eave blank to
end. ")
If sTable = "" Then
rs. Close
Exit Function
El se
Resune
End | f
El se
" Unknown error
MsgBox "Error " & Err.Number & " - " & Err.Description
vbCritica
rs. Close
Exit Function

End | f

End Function
The third variation:
Resunme ALabe

causes VBA to resume execution at the line labeled ALabel .

Chapter 13. Control Statements

We conclude our discussion of the VBA language with a discussion of the main VBA
control statements which are statements that affect the flow of control (or flow of
execution) in a program.

13.1 The If...Then Statement

Thelf... Then statement is used for conditiona control. The syntax is:

If Condition Then
statements go here . . .
El sel f Anot her Conditi on Then

' nore statenents go here .

El se

nmore statenents go here .

End If

Note that we may include more than one El sel f part, and that both the El sel f part(s)
and the El se part are optional. We can also squeeze all parts of this statement onto a
single line, which is generally only a good idea when the El sel f and El se parts are not
required.

To illugtrate, the following code checks to seeif the Fi r st Nane field is null. If o, it
replaces the Nul | value with a question mark. If not, it capitalizes the first name.

rs. Edit

If IsNull (rs!FirstName) Then

rs!'FirstName = " 2"
El se

rs!First Name = UCase(rs! FirstNanme)
End | f
rs. Update

13.2 The For Loop

TheFor. .. Next statement provides a method for repeatedly looping through a block of
code (that is, one or more lines of code). This loop is naturally referred to as aFor loop.
The basic syntax is:

For counter = start To end
bl ock of code goes here .

Next counter

Thefirst time that the block of code is executed, the variable count er (called the loop
variable for the For loop) is given the value st ar t . Each subsequent time that the block
of code is executed, the loop variable count er isincremented by 1. When count er
exceeds the value end, the block of code is no longer executed. Thus, the code block is
executed atotal of end - start + 1 times, each time with adifferent value of count er .

Note that we can omit the word count er in the last line of a For loop (replacing Next
count er with just Next). This may cause the For |oop to execute a bit more quickly, but
it also detracts a bit from readability.

To illustrate, the following code prints the names of the fields in the Objectstable:

Sub PrintFields()

Dimi As Integer
Dimrs As Recordset
Set rs = CurrentDb. OpenRecordset (" Obj ects”)

For i = 0 To rs.Fields.Count - 1
Debug. Print rs.Fields(i).Name
Next

rs. Close

End Sub

Note that the limits of the For statement aretors. Fi el ds. Count - 1 because the fields
are indexed starting at (rather than 1). We will discuss this issue in more detail when we
talk about DAO programming.

For loops are often used to initialize an array. For instance, the code:

For i = 0 To 10
iArray(i) =0
Next i

assigns avalue of to each of the 11 variablesi Arr ay (0) through i Array (10).

Note that the loop variable count er will usually appear within the block of code, as it
does in this array initialization example, but thisis not a requirement. However, if it does
appear, we need to be very careful not to change its value, since that will certainly mess
up the For loop. (VBA automatically increments the loop variable each time through the
loop, so we should leave it done.)

13.3 Exit For

VBA providestheExit For statement to exit aFor loop prematurely. For instance, the
code in Example 13.1 finds the first field whose type is Integer.

Example 13.1. Finding the First I nteger Field
Sub Fi ndFi rstlntegerField()

Dimi As Integer
Dimrs As Recordset
Set rs = CurrentDb. OpenRecordset (" Obj ects")

For i = 0 To rs.Fields.Count - 1
If rs.Fields(i).Type = dblnteger Then Exit For
Next

If i < rs.Fields.Count Then
First Integer field found
El se
No such field exists
End | f

rs.Close

End Sub

We can also control the step size and direction for the counter in aFor loop using the
St ep keyword. For instance, in the following code, the counter i isincremented by 2
each time the block of code is executed:

For i = 1to 10 Step 2
code bl ock goes here
Next i

The following loop counts down from 10 to 1 in increments of —1. This can be useful
when we want to examine a collection (such as the cells in arow or column) from the
bottom up.

For i =10 to 1 Step -1
code bl ock goes here
Next i

13.4 The For Each Loop

TheFor Each loop is avariation on the For loop that was designed to iterate through a
collection of objects (as well as through elements in an array), and is generally much
more efficient than using the traditional For loop. The genera syntax is:

For Each ObjectVar In CollectionNane
bl ock of code goes here

Next Obj ect Var

where vj ect Var isavariable of the same object type as the objects within the
collection. The code block will execute once for each object in the collection.

The following version of PrintFieldsuses aFor Each loop. It is more elegant than the
previous version (and more efficient as well):

Sub PrintFields2()
Dmfld As Field
Dimrs As Recordset
Set rs = CurrentDb. OpenRecordset (" Obj ects”)
For Each fld In rs.Fields
Debug. Print fld. Nane
Next
rs.Cl ose

End Sub
Thus, when iterating through a collection of objects, we have two choices:

For Each object in Collection

code bl ock here
Next obj ect

or.

For i = 1 to Coll ection. Count
code bl ock here

Next i

It isimportant to keep in mind that the For Each loop can be much faster than the For
loop when dealing with collections of objects.

13.5 The Do Loop

The Do loop has severa variations. To describe these variations, we use the notation:
{While | Until}

to represent either the word whi | e or the word unt i |, but not both. With thisin mind,
here are the possible syntaxes for the Do 1oop:

Do {While | Until} condition
code bl ock here

Loop
or:

Do
code bl ock here

Loop {While | Until} condition

Actually, thereis afifth possibility, because we can dispense with condi ti on completely
and write:

Do
code bl ock here

Loop

The Do loop is used quite often in DAO programming to iterate through a recordset. Here
isatypical example that prints all values of a particular field in a recordset:

Sub DoExanpl e()

Dimrs As Recordset
Set rs = Current Db. OpenRecordset (" Obj ects")

rs. MoveFi r st

Do While Not rs. ECF
Debug. Print rs! Nane
rs. MoveNext

Loop

rs. Close

End Sub

We will discuss the EOF property as well as the MoveFirst and MoveNext methods when
we discuss Recordset objects later in the book.

Just asthe For loop hasan Exit For statement for terminating the loop, a Do loop has an
Exi t Do statement for exiting the Do loop.

13.6 The Select Case Statement

Aswe have seen, thel f. .. Then. .. construct is used to perform different tasks based on
different possibilities. An aternative construct that is often more readable is the Sel ect
Case Statement, whose syntax is:

Sel ect Case testexpression
Case val uel

statements to execute if testexpression = valuel
Case val ue2
statements to execute if testexpression = value2

Case El se
statenents to execute otherw se
End Sel ect

Note that the Case El se part is optional. To illustrate, the following code is the Sel ect
Case version of Example 12.1 in Chapter 12 (see the discussion of the Switch function)
that displays the type of afile based on its extension. | think you will agree that thisisa
bit more readable than the previous version:

Sub ShowFi | eType(Fil eExt As String)
Dim Fil eType As Vari ant

Sel ect Case Fil eExt

Case "mdb"

Fil eType = "Dat abase"
Case "txt"

Fil eType = "text"
Case "dbf"

Fil eType = "dBase"

Case Else
Fil eType = "unknown"
End Sel ect

Di splay result
MsgBox Fil eType

End Sub

Note that VBA alows us to place more than one condition in the same Case statement
(separated by commas). This is useful when more than one case produces the same result.

13.7 A Final Note on VBA

There is alot more to the VBA language than we have covered here. In fact, the
Microsoft VBA reference manual is about 300 pages long. However, we have covered
the main points needed to begin Access VBA/DAO programming. (For areference on the
VBA language, you might want to check out the book VB & VBA in a Nutshell, by Paul
Lomax, also published by O'Reilly.)

Actually, many Access VBA programming tasks require only asmall portion of VBAs
features, and you will probably find yourself wrestling much more with DAQO's object
model than with the VBA language itself.

We conclude our discussion of the VBA language per se with a brief outline of topics for
further study, which you can do using the VBA help files.

13.7.1 File-Rélated Functions

VBA has alarge number of functions related to file and directory housekeeping. Table
13.1 contains a selection of them.

Table 13.1. Some VBA File and Directory Functions

Function Description
Dir Find afile with a certain name.
FileLen Get the length of afile.
FileTimeDate Get the date stamp of afile.
FileCopy Copy afile.
Kill Delete afile.
Name Rename afile or directory.
RmDir Delete adirectory.
MKkDir Make anew directory.

In addition to the file-related functionsin Table 13.1, there may be times when it is useful
to create new text files to store data. VBA provides a number of functions for this
purpose, headed by the open statement, whose (simplified) syntax is:

Open pat hnane For node As [#]fil enunber

Once afile has been opened, we can read or write to it.

13.7.2 Date and Time-Related Functions

VBA has alarge number of functions related to manipulating dates and times. Table 13.2
contains a selection.

Table 13.2. Some Date and Time-Related Functions

Function Description
Date, Now, Time Get the current date or time.
DateAdd, DateDiff, DatePart Perform date calculations.
DateSerial, DateValue Return adate.
TimeSeria, TimeVaue Return atime.
Date, Time Set the date or time.
Timer Time aprocess.

13.7.3 The Format Function

The Format function is used to format strings, numbers and dates. Table 13.3 gives afew
examples.

Table 13.3. Format Function Examples

Expression Return Value!
Format(Date, "Long Date") Thursday, April 30, 1998
Format(Time, "Long Time") 5:03:47 PM
Format(Date, "mm/dd/yy hh:mm:ssAMPM") 04/30/98 12:00:00 AM
Format(1234.5, " $##,#4#0.00") $1,234.50
Format("HELLO", "<") "hello"

[The exact format of the return value is governed by certain system settings.

Part V: Data Access Objects
Chapter 14. Programming DAO: Overview

We have seen that Access SQL provides away to create and manipulate database objects,
such as tables and queries, through its DDL and DML components. In addition, users can
enter SQL statements directly into the Access SQL View window.

On the other hand, Microsoft Access allows us to program the Jet database engine
directly, through its programming interface, which is known as Data Access Objects, or
DAO. This gives the user far more control over a database.

DAO is acomplicated structure, and we will not discuss al of its aspects. Our focusin
this book will be on gaining a general understanding of the following concepts and
components:

The organization of DAO, which is at least partly object-oriented
The DDL component of DAO
The DML component of DAO

We will certainly not cover all aspects of the DDL and DML components. Our main goal
isto prepare you so thet you can get whatever additional information you need from
Microsoft Access's extensive ontline help for the DAO model, or from similar hardcopy
reference manuals.

14.1 Objects

Before discussing the various components of the DAO model, we must discuss the
concept of an object. In the parlance of object-orientation, an object is something that is
identified by its properties and its methods (or actions).

Aswe will see (and as the name implies) DAO is full of objects. For example, each saved
table in an Access database is an object, called a TableDef object. (Actualy, it isthe
definition of the table, rather than its data, that is an object of type TableDef.) Some of the
properties of TableDef objects are Name, RecordCount, DateCreated, and LastUpdated.

An object's methods can be thought of as procedures or functions that act on the object.
For instance, one of the methods of a TableDef object is CreateField, which, as the name
implies, is used to create a new field for the TableDef object. Another method is
OpenRecordset, which creates another object called a Recordset object that can be used
to manipulate the data in the table. (A more object-oriented view of methods is that they
are messages that are sent to the "object” saying, in effect, perform the following action.)

14.1.1 Object Variables

In order to access the properties or invoke the methods of an object, we need to first
define an object variable to reference that object.

VBA and DAO offer awide variety of object data types . Thereisa dight differencein
syntax when declaring and setting an object variable, as opposed to a standard variable.
For instance, here is an example using the Database object type. Note that the full
pathname of the LIBRARY database on my PC is d:\dbase\library.mdb :

Di m dbLi brary as Dat abase

Set dbLibrary = "d:\dbase\library. ndb"
In generd, the syntax is:

Di m obj ect Vari abl e as Cbj ect Dat aType
Set obj ectVariable = Object Nanme

Note that the only difference between setting object variables and setting standard
variables is the keyword set . However, this minor syntactic difference belies amuch
more significant difference between standard variables and object variables.

In particular, a standard variable can be thought of as a name for alocation in the
computer's memory that holds the data. For instance, in the code:

DimintVar As |nteger
intvVar = 123

the variable intVar is a4-byte memory location that holds the integer value 123. Figure
14.1 illustrates the variable intVar. (Actually, the 4-byte memory location holds the value
123in binary format, but that is not relevant to our discussion.)

Figure 14.1. An example of theintVar variable

intlar 123

Of course, if we were to write:

DimintVar As |nteger
DimintVar2 As |nteger

intvar = 123
intVar2 = intVar
intVar2 = 567

we would not expect the last line of code to have any effect upon the value of the variable
intVar, which should still be 123.

On the other hand, an object variable is not the name of a memory location that holds the
object's "value," whatever that means. Rather, an object variable holds the address of the
area of memory that holds the object. Put another way, the object variable holds a
reference to, or pointsto, the object. It is therefore called a pointer variable. The ideais
pictured in Figure 14.2, where rsBooks and rsBooks2 are object variables, both pointing
to an object of type Recordset.

Figure 14.2. An example of a pointer variable

rsBooks addressof @—— = Recordset

/ -

rsBooksd address of

To illustrate this further, consider the code in Example 14.1.
Example 14.1. An Object Variable Example

Sub exabj ect Var ()

"Decl are sone object variables

Di m dbLi b As DATABASE

Di m rsBooks As Recordset

Di m rsBooks2 As Recordset

"Set dbLib to the current database (i.e. LIBRARY)
Set dbLib = CurrentDb

'"Open a recordset object for the BOOKS table
Set rsBooks = dbLi b. OpenRecordset (" BOOKS")

"Two object variables will refer to the same object
Set rsBooks2 = rsBooks

"Use a property of this object
MsgBox "BOOKS record count: " & rsBooks. RecordCount

"Destroy the object using rsBooks2 reference
r sBooks2. Cl ose

' Now rsBooks has nothing to refer to, so we get error
MsgBox "BOOKS record count: " & rsBooks. Recor dCount

End Sub

First, we declare two object variables of type Recordset (we will discuss thistypein
detail later). The line:

Set rsBooks = dbLi b. OpenRecordset (" BOOKS")
setsrsBooksto point to (or refer to) a Recordset object created from the BOOK S table.

Note again that, unlike standard variables, setting an object variable requires the use of
the keyword Set. The line:

Set rsBooks2 = rsBooks
sets rsBooks?2 to point to the same Recordset object as rsBooks as shown in Figure 14.2.

Next, the line:

MsgBox "BOOKS record count: " & rsBooks. Recor dCount
displays the message box in Figure 14.3, showing that there are 14 books in the recordset.

Figure 14.3. The message box from the exaObjectVar() example

Miciosolt Access

BOOKS recond count 14

To illustrate the fact that both variables point to the same object, the line:
r sBooks2. Cl ose
uses the pointer rsBooks2 to destroy (or close) the Recordset object. Then, when the line:

MsgBox "BOOKS record count: " & rsBooks. Recor dCount

is executed, the Recordset object that both variables referred to is gone, and so the
expression rsBooks.RecordCount causes an "Object isinvalid or not set" error, as shown

in Figure 14.4.

Figure 14.4. Error message from the exaObjectvar () example

Miciozolt Access

Run-tme eiroe 3420

Object irnsslid or ro longes 5=t

The mora of this example isthat it is important to remember that object variables refer to
objects and that more than one variable can refer to the same object. Despite this, it is
customary to use the misleading statement "the objVar object” when we really should be
saying "the object referred to by objVar."

14.1.2 Object Variable Naming Conventions
Tables Table 14.1 and Table 14.2 describe the naming convention for both standard and

object variables that we will (try to) use in this book. (Table 14.1 isarepeat of Table
10.3.) We will explain the various object types as we proceed through this chapter.

Table 14.1. Standard Variable Naming for VBA

Variable Prefix
Boolean booal, b, or f
Byte b, byt, or bt
Currency cur
Date dt or dte
Double dor dbl
Integer i,c,orint
Long I, c, oring
Single sor sng
String str
User-defined type typ, u, or ut
Variant Vv or var

Table 14.2. Object Variable Naming for VBA

Variable Prefix
Container con
Database db
Document doc
Dynaset dyn
Error err
Field fld
Form frm
Index idx
Object obj
Parameter prm
Property prp
QueryDef qdf
Recordset rs
Relation rel
Report rpt
Snapshot snp
Table thl
TableDef tdf or tbl
User usr
Workspace ws

14.1.3 Referencing the Properties and M ethods of an Object

The general syntax for referring to an object's properties and methods is very simple.
Suppose that objVar is avariable that refers to an object. If AProperty is a property of

this object, then we can access this property using the syntax:

obj Var . AProperty

If AMethod is a method for this object, then we can invoke that method with the syntax:
obj Var. AMet hod(any requi red paraneters)

Toillustrate, consider the code in Example 14.2.

Example 14.2. A Property and Method Example
Sub exaPropertyMet hod()

Di m dbLi b As DATABASE
Di m qdf Expensi ve As Quer yDef

Get current database (LI BRARY)
Set dbLib = CurrentDb

Show Nane property
MsgBox dbLi b. Nanme

I nvoke the CreateQueryDef nmethod to create a query
Set qdf Expensi ve = dblLi b. Creat eQuer yDef (" Expensi ve", _
"SELECT * FROM BOOKS WHERE Price > 20")

End Sub
The line;

Set dbLib = Current Db

sets the object variable of type Database to point to the current database, that is, the
LIBRARY database. The line:

MsgBox dbLi b. Name
displays the value of the Name property of dbLib. The line:

Set qdf Expensive = dbLi b. Creat eQuer yDef (" Expensi ve", _
"SELECT * FROM BOOKS WHERE Price > 20")

invokes the CreateQueryDef method to create a new query named Expensive and defined
by the SQL statement:

SELECT * FROM BOOKS WHERE Price > 20
Note that the code:

dbLi b. Cr eat eQuer yDef (" Expensi ve", "SELECT * FROM BOOKS WHERE
Price > 20")

invokes the method, which returns the QueryDef object, which is then pointed to by the
object variable qdfExpensive. If you run this program, you will notice a new entry in the

Query tab of the Database window. (If the query Expensiveis already in the database,
delete it before running this program. Also, you may need to switch away from and then
return to the Query tab to refresh the list.)

14.2 The DAO Object Model

As the name Data Access Objects suggests, the DAO is, at least in part, an object-
oriented environment. In particular, the DAO is implemerted as a hierarchy of collections
of objects. Figure 14.5 shows the DAO Object Model, describing the collections and their
objects.

Figure 14.5. The DAO Object Model

Workspaces Errors

| | |

Groups Users
Databases [|

Users Groups

I I I I 1

TahleDels QueryDels Recordsets Containers Relalions
Fields Fields L Fields L Documents L Fields

Indexes Paramelers

L Fields

Each of the shaded boxes represents a collection of objects. (Thus DBEngineis the only
noncollection.) The name of the objects contained within a given collection isjust the
singular of the collection name. For instance, the TableDefs collection holds TableDef
objects and the Documents collection holds Document objects. DBEngine is the only
standal one object—not contained in any collection.

There is a potential point of confusion about the DAO object hierarchy in Figure 14.5 that
we should address. Consider, for example, the relationship between the Databases and
Workspaces collections. It would be incorrect to say, as one might infer from the
diagram, that the Databases collection is contained in the Workspaces collection. Indeed,
the line from Workspaces to Databases means that each Workspace object has (or as
Microsoft would say, "contains') a Databases collection.

Perhaps the best way to view the situation is to say that each object in the DAO hierarchy
has associated with it three things: collections, methods, and properties. For instance, a
Wor kspace object has associated with it the following items:

Collections
Databases
Groups
Users
Properties (not shown in Figure 14.5)
Methods
BeginTrans
Close
CommitTrans
CreateDatabase
CreateGroup
CreateUser
OpenDatabase
Rollback
Properties
IsolateODBCTrans
Name
UserName

Let us pause for a brief aside. In an object-oriented environment such as C++, or
even Visua Basic, a collection is aso considered an object. Moreover, the value
of aproperty of one object can be another object (these are so-called object
properties). Hence, in such an object-oriented environment, we would probably
think of the collections associated with an object as just additional properties of
that object. However, Microsoft chose not to express this explicitly in the DAO.

Figure 14.6 shows a more detailed example of the object-collection relationship.
The Containers collection in this case contains three Container objects, each of
which has (the same) properties and methods. Each object also "contains' a
Documents collection, which contains some Document objects.

Figure 14.6. A detailed example of the object-collection relationship

Property Property Property
'\ leFranrtj '\ leFranrtj '\ ;Franrtr

—e Method —e Method —e Method |

Documents Colleclion

Documents Collection

Documents Collection

Thus, according to this model, there may be more than one Documents collection.
Indeed, there is one Documents collection for every Container object. Similarly,
there is one Databases collection for each Workspace object and one TableDefs
collection for each Database object.

14.3 The Microsoft Access Object Model
You may have noticed that there are no collections in the DAO object model
corresponding to Access forms or reports. The fact is that DAO is not the whole object

story. Microsoft Access defines its own collections of objects, as shown in Figure 14.7.

Figure 14.7. The Microsoft Access object model

Application

[[[|
DoCmd Screen

E:nﬂ&luala ‘
CurrentDala
I_J CodeProject
CurreniProject

WebOptions

 MewforAggess®

objects

Access defines the Forms collection to hold al currently open forms. (Note the words
"currently open.") Similarly, the Reports collection holds all currently open reports. The
Application, DoCmd and Screen objects are not contained in a collection. The Modules
collection holds all open code modules.

The References collection holds all Reference objects. A Reference object is areference
to another application's type library, which is a file containing information on the objects
that the application exposes through Automation. It is through Automation objects that an
application can share some of its features with other applications. However, we will not
go further into this subject in this book. (Allow me to recommend my book Concepts of
Object-Oriented Programming with Visual Basic, published by Springer-Verlag (ISBN O-
387-94889-9), for more information on OLE Automation geared toward the Visual Basic
programmer.)

Asyou can see in Figure 14.7, Microsoft has added several new objects to the object
model for Access 9 for Office 2000. (In fact, there are a few more objects not shown in
the figure.) Severa of these objects relate to the Internet. The CodeData and
CurrentData objects have child collections containing all tables and all queries (whether
open or not). The CodeProject and CurrentProject objects have child collections
containing al forms, reports, modules, macros, and DataAccessPages (whether open or
not).

We will not discuss the Access object model in general in this book, since it belongs
more to issues related to the Access user interface (forms and reports) than to database
manipulation.

On the other hand, we will discuss some aspects of the Access object model. For
instance, the line:

Set db = Current Db

sets the variable db to point to the currently open database. The function CurrentDDb,
which we will discuss in more detail later, is not a DAO function—you will not find it in
the DAO reference manual. It is a part of the Access object model (it is a method of the
Application object, to be precise). Thus, the Access object model, and DAO both provide
supporting objects and instructions for database management.

14.4 Referencing Objects

The first step in understanding the objects in the DAO and Microsoft Access object
hierarchies is to understand how to refer to an object in the hierarchy. In particular, we
can refer to an object by the name of ObjectName that belongs to a collection named
CollectionName, by any of the following syntaxes:

CollectionName! ObjectName, or CollectionName! [ObjectN ame] when
ObjectName hasillega characters, such as spaces.

CollectionName(" ObjectName").

CollectionName(StringVar), where StringVar holds the string ObjectName.
CollectionName(Index), where Index is the index number of the object in the
collection. Indexes start with and go up to one less than the number of objectsin
the collection. (As we will see, the number of elementsin a collection is denoted
by CollectionName.Count.)

For instance, the TableDef object named BOOKS in the TableDefs collection is denoted
by:

Tabl eDef s! BOOKS
or:

Tabl eDef s(" BOOKS")
or:

Di m strBooks as String
st rBooks = " BOOKS"
Tabl eDef s(st r Books)

or, if BOOKS happens to be the first TableDef object in the TableDefs collection:

Tabl eDef s(0)

The exclamation point (!) used in the first syntax is called the bang operator .

14.4.1 Fully Qualified Object Names

There is a problem with these names. For instance, to which object does Fields(0) refer?
There are severa Fields collections in the DAO hierarchy, as can be seen from Figure
14.5. Let usrefer to the names described in the previous syntax as semiqualified names.
To avoid the problem that a semiqualified name may not be unique, we must use the fully
gualified object name, which is formed by tracing the entire hierarchy from the top
(DBENgine) to the desired object. For instance, the fully qualified name for BOOKS is:

DBENngi ne. Wr kspaces(0) . Dat abases! [d: \ dbase\li brary. ndb] . Tabl eDef s! BOOKS

Let us examine this name. It is composed of four separate semiqualified object names,
separated by periods. These periods are referred to as the dot operator :

DBENgi ne.

Wor kspaces(0).

Dat abases! [d: \ dbase\li brary. ndb].
Tabl eDef s! BOOKS

Perhaps the easiest way to make serse of this name is to start from the bottom. The
semiqualified name of the object we are interested in is:

Tabl eDef s! BOOKS
This object is contained in the TableDefs collection for the Database object named:
Dat abases! [d: \ dbase\li brary. nmib]

Thisobject is, in turn, contained in the Databases collection of the default Workspace
object (more on this later), which is:

Wor kspaces(0)

which, in turn, is contained in the DBENgine object. Separating each of these object
names by the dot operator gives the fully qualified object name.

In general, the syntax for a semiqualified object name is:
Col | ecti on! Obj ect
and for afully qualified object name, it is:

DBENngi ne. Col | ectionl! Gbjectl. - - - .CollectionN ObjectN

There seems to be much confusion over when to use the bang operator (!) and when to
use the dot operator (.). Perhaps the following will help:

The bang operator is used to separate an object's name from the name of the
collection of which it is a member. In other words, bang signifies a member of a
collection. It thus appears in semiqualified object names.

The dot operator is used to separate each semiqualified object name in afully
qualified object name. In other words, it signifies the next step in the hierarchy.
The dot operator is also used to denote a property or method of an object.

This naming convention is really not as confusing as it may look at first, if you remember
the previous three maxims. However, if you want confusing, stay tuned for default
collections, coming soon.

14.4.2 Using Object Variables to Advantage

Asyou can see, afully qualified object name can be quite lengthy. This problem is
compounded by the fact that it may be necessary to refer to the same object many times
in a program. There are two common ways to deal with this issue.

One way isto use object variables. Consider the code in Example 14.3 to display the
RecordCount property of the BOOKS table.

Example 14.3. An Object Variable Example

Sub exaObj Var ()

Dimws As Workspace

Di m dbLi b As DATABASE

Di m t df Books As Tabl eDef

Set ws = DBEngi ne. Wr kspaces(0)

Set dbLib = ws. Dat abases![d:\dbase\library. ndb]
Set tdf Books = dbLi b. Tabl eDef s! BOOKS

MsgBox t df Books. Recor dCount

End Sub

By defining three object variables, ws, dbLib, and tdfBooks, we were able to avoid
writing the fully qualified name of BOOKS (on a single line, that is). Also, the line:

MsgBox t df Books. Recor dCount
ismuch easier to read. (It reads: "Message me the record count of TableDef tdfBooks.")
The use of object variablesin this way has several advantages, and is highly

recommended. Firgt, it tends to make the lines of code shorter and more readable.
Second, we can refer to the object variable tdfBooks many times without having to write

the fully qualified object name each time. As aresult, the program will run somewhat
faster, since VBA does not have to resolve the object name by climbing down the object
hierarchy more than once.

14.4.3 Default Collections

There is another method that can be used for shortening fully qualified object names. In
particular, each object has a default collection , which can be used as follows. Consider a
portion of afully qualified name:

Col | ectionl! Obj ectl. Col |l ection2! Ohject2

If Collection2 is the default collection of Objectl, then this name may be shortened to:

Col | ectionl! Obj ect 1! Obj ect?2

where we have omitted the default collection name Collection2, as well as the preceding
dot.

For instance, the default collection of DBEnNgine is Workspaces. Hence:
DBENngi ne. Wr kspaces! MyWor kspace

can be shortened to:

DBENngi ne! MyWor kspace

and the phrase:

DBENngi ne. Wor kspaces(0)

can be shortened to:

DBENngi ne(0)

Also, since the default collection for a Workspace object is Databases, the phrase:
DBENngi ne. Wr kspaces(0) . Dat abases(0)

can be shortened to:

DBENngi ne(0) (0)

Table 14.3 shows the default collections in the DAO and Access object model.

Table 14.3. DAO and Access Object Default Collections

Object Default Collection
DBEnNgine Workspaces
Workspace Databases
Database TableDefs
TableDef Fields
Recordset Fields
QueryDef Parameters
Index Fields
Relation Fields
Container Documents
User Groups
Group Users
Forms Controls
Reports Controls

The use of default collections can save space. However, it does very little for readability
(to say the least) and is probably best Ieft to programmers with so much experience that
they hardly read the names anyway! To emphasize the point, each of the linesin Example
14.4 displays the RecordCount property of the BOOKS table. Note that the full name of
the database library file on my computer is d:\dbase\library.mdb.

Example 14.4. A Default Collections Example
Sub exaDef aul t Col | ecti ons()

MsgBox DBEnNngi ne. Wr kspaces(0) . Dat abases! [d:\ dbase\library. mdb]. _
Tabl eDef s! BOOKS. Recor dCount

MsgBox _

DBENngi ne(0) . Dat abases! [d: \ dbase\li brary. mdb] . Tabl eDef s! BOOKS. Recor dCoun
t

MsgBox DBENngi ne(0)![d:\dbase\library. ndb]. Tabl eDef s! BOOKS. Recor dCount
MsgBox DBEngi ne(0)![d:\dbase\library. mdb]! BOOKS. Recor dCount

MsgBox DBENgi ne(0) (0) ! BOOKS. Recor dCount

End Sub

14.5 Collections Are Objects Too

In atrue object-centric environment, everything is an object. While Access, VBA, and
DAO may not go thisfar, it is true that collections are objects and so they have their own
properties and methods.

In the Access environment, collections can be divided into three types:

Microsoft Accesscollections, which are part of the Access object hierarchy
DAO caollections, which are part of the DAO hierarchy
User-defined collections, which are VBA objects of type Collection

Note that only user-defined collections are of type Collection, which isa VBA datatype,
not a DAO data type. The properties and methods of collections are not very complicated,
s0 let us list them here.

14.5.1 Propertiesand Methods of Access Collections

The Access collections Forms, Reports, and Controls have no methods and only one
property: Count, which reports the number of objects in the collection. Thus, the line:

For ns. Count

reports the number of opened forms in the current database. (We will see later, when we
discuss Container objects, that there is away to get the number of saved forms aswell.)

14.5.2 Properties and Methods of DAO Collections

DAO callections fall into two categories with respect to their properties and methods. All
DAO collections have a single property: Count. All DAO collections also have the
Refresh method, which we will discuss a bit later. In addition, some of the collections
have the Append and corresponding Delete methods, while others do not.

Collections that have Append and Delete methods:
Workspaces
TableDefs
QueryDefs
Groups
Users
Relations
Fields
Indexes
Properties (explained later)
Collections that do not have Append and Delete methods:
Databases
Errors
Recordsets
Containers
Documents
Parameters

Evidently, some collections do not have Append or Delete methods because DAO
does not want the user to append or delete objects from these collections. Thisis
reasonable because DAO takes care of collection housekeeping automatically for

these collections. For example, DAO automatically appends new databases to the
Databases collection whenever they are created using the CreateDatabase
method. However, it does not do so for new TableDef or QueryDef objects, for
instance.

Note that Microsoft Access will do the housekeeping chores for you when objects
are created and saved using the Access interface.

14.5.3 Properties and M ethods of User-Defined Collections

User-defined Collection objects have one property: Count. They have three methods: Add
, Remove, and Item. Add and Remove perform as advertised by their names, and we will
see an example shortly. The Item method is used to identify the items in the collection,
since they may or may not have names.

A single user-defined collection can contain objects of various types, including other
collections. Here is an example to illustrate the Add method.

In Example 14.5, we create two collections. colParent and col Child. We then place
colChild inside colParent, along with the BOOKS TableDef object. Thus, the colParent
collection contains two objects of very different types—one Collection object and one
TableDef object. (While this example is not of much practical value, it does illustrate the
point.)

Example 14.5. A Collections Example
Sub exaCol | ections()

Declare two vari abl es of type collection
Di m col Parent As New Col | ecti on
Dimcol Child As New Col | ecti on

Di m t df Books As Tabl eDef
Di m obj Var As bj ect

Set tdf Books = DBEngi ne(0)(0). Tabl eDef s! Books

Use Add nmethod of collection object

to add objects to col Parent collection
col Parent. Add col Child
col Parent . Add t df Books

Di spl ay size of collection
MsgBox "Size of Parent collection " & col Parent. Count

Iterate through collection. Note use of
TypeOF st at enent
For Each obj Var |In col Parent
If TypeOf objVar Is Collection Then
MsgBox "Col | ection"
El self TypeOfF obj Var |s Tabl eDef Then
MsgBox obj Var . Name

End If
Next

End Sub

In Example 14.5, we used the Add method of the collection object to add items to the
collection and the Count property of the collection object, which returns the size of the
collection. Note also the use of the TypeOf statement to determine the type of each object
in the collection.

Now let us consider the Item method, which returns a specific object from a collection.
The general syntax is:

Col | ection. ltem(index)

where index is an index into the collection. Note that DA O collections begin with index
and go to index Collection.Count - 1.

To illustrate the Item method, in place of the code:

For Each tbl In db. Tabl eDefs
strThls = strThls & vbCrLf & tbl. Nanme
Next t bl

of the previous example, we could have written:

For i = 0 To db. Tabl eDefs. Count - 1

strThls = strThls & vbCrLf & _
db. Tabl eDefs. Iten(i). Nane

Next i

We should remark that an object's ordinal position in a collection is never guaranteed,
and can sometimes change without warning. Thus, for example, it is unwise to rely on the
fact that the object that is Item(0) at some time will aways be Item(0).

Incidentally, one of the drawbacks of collections that contain different types of objects, as
in the previous example, is that we can seldom do the same thing to al of the objectsin
the collection. For this reason, creating collections containing different types of objectsis
not very useful in general.

14.5.4 Say It Again

It is worth reemphasizing that the collections in the DAO hierarchy are not contained in
their parent collections (asis the case for the user-defined collections in the previous
example). For example, the TableDefs collection contains only TableDef objects (table
definitions). It does not contain the Fields collection. Rather, each TableDef object
contains a Fields collection. We can confirm this with the code in Example 14.6 which

displays the size of the TableDefs collection for the LIBRARY database as 14, and then
displays the names of each of its 14 objects, showing that there is nothing but TableDef
objects in the TableDefs collection.

Example 14.6. A TableDef Example
Sub exaCheckTabl eDef s()

Di m db As DATABASE
Dimtbl As Tabl eDef
DimstrTbls As String

Set db = CurrentDb

strTbls = ""
MsgBox db. Tabl eDef s. Count
For Each tbl In db. Tabl eDefs
strThls = strThls & vbCrLf & tbl.Nane & " - " & TypeNane(tbl)
Next

MsgBox strThls

End Sub

Running the code in Example 14.6 produces two message boxes; the second is shown in
Figure 14.8, which also shows that most of the TableDefsin the database are system table
definitions, created by Microsoft Access for its own use. (Just in case some additional
tables get added to the LIBRARY database after this book goes to print, you may find a
different list of tables when you run this example.) Figure 14.8 aso illustrates the use of
the function TypeName,

Figure 14.8. A list of TableDefs generated by exaCheckTableDefs()

.Hic=|u=1:|lt Accoss =)

AUTHORS - TableDaf
BOOKEAUTHOR - TablkeDief
BOOES - T zbleDef
MSyzACE : - TableDef
MSpzModules - Tabdalef
MSysModues? - TableDef
M5yp=0bjects - TablaDaf
MSysDuenes - TableDef
M5y:Relationzhips - TableDal
FUBLISHERS - TableDef

14.5.5 Refreshing Certain Collections

There are times when the Microsoft Jet engine does not have the latest information on the
contents of a collection. For example, this can happen in a multiuser environment, when
one user makes a change to a collection. It can aso happen when a host environment,

such as Microsoft Access, makes a change to the environment. To see this, try the
following simple experiment.

Enter the following code:

Sub tenp()

Di m db As DATABASE
Set db = DBEngi ne(0)(0)

db. Tabl eDef s. Refresh
MsgBox "Table count: " & db. Tabl eDefs. Count

End Sub

Run the procedure. Y ou should get a message that there are 13 tables in the TableDefs
collection. Now use Microsoft Access to create a new table and save the table. Then
rerun the code above. It will still report that there are 13 tables! Now remove the
comment mark on the line:

db. Tabl eDef s. Ref resh

and rerun the code. Y ou should now get an accurate table count.

The point here is that the Jet engine does not keep track of the machinations of its host
application—Microsoft Access. Hence, to be certain that a collection is up to date, you
may need to use the Refresh method.

14.6 The Properties Collection

Oneitem that has been left out of the diagram of the DAO object model which isshown
earlier in Figure 14.5 (and is done so in most DAO diagrams) is the Properties collection.
This is because every DAO object has a Properties collection, so it would clutter up the
diagram considerably, without adding much information. Figure 14.9 shows a Properties
collection.

Figure 14.9. An Access properties collection diagram

Any DAD Colleclion

Froperties

The purpose of the Properties collections is simple. Properties are objects too and so they
are contained in collections, just like all other objects of the DAO (except DBENgine).

Thus, the Properties collection of an object contains the Property objects (better known
simply as properties) for the object.

The fact that the properties of an object are themselves objects, and thus reside in a
collection, implies that we may access these properties in several different ways. For
example, the RecordCount property of the TableDef object BOOKS can be referred to in
any of the following ways (among others):

Tabl eDef s! BOOKS. Properti es! Recor dCount
Tabl eDef s(" BOOKS") . Properti es("RecordCount")

or just:
Tabl eDef s! BOOKS. Recor dCount

Of course, the latter form is the simplest and most commonly used. Note that the
Properties collection is never the default collection for any object. Hence, for example,
the syntax:

Tabl eDef s! BOOKS! Recor dCount

(which differs from the previous only by a bang) will cause VBA to look for the
RecordCount object in the default Fields collection for the BOOKS TableDef object. Of
course, it will not find such an object and so the error message "Item not found in this
collection™ will result.

14.6.1 The Virtues of Properties Collections

There are severa virtues to the existence of Properties collections. Oneisthat it is
possible to iterate through all of the properties of an object, using the For Each Syntax
discussed earlier, for instance, without even knowing the names of the properties.

For example, the following simple code:

Di m db As DATABASE
Dimprp As Property
Set db = CurrentDb

For Each prp In db. Tabl eDef s! BOOKS. Properties
Debug. Print prp. Nane
Next prp

produces the following list of all properties of the BOOK'S object:

Nane

Updat abl e
Dat eCr eat ed
Last Updat ed
Connect

Attri butes

Sour ceTabl eNane
Recor dCount

Val i dati onRul e
Val i dati onText
ConflictTabl e
O der ByOn

Or der By

Another virtue of Propertiescollectionsisthat they allow for the creation (and storage)
of new properties. We discuss this next.

14.6.2 Types of Properties

In generd, the properties of an object can be classified into three groups, depending upon
their origin:

Built-in properties
Application-defined properties
User-defined properties

The Jet database engine defines built-in propertiesfor its objects. For instance, a
TableDef object has a built-in Name property. In addition, Microsoft Access (and other
applications that may be using the Jet engine) can create application-defined properties
For example, if you create atable in Microsoft Access and fill in the Description field in
the View...Properties dialog box, Access creates a Description property for the table and
appends it to the Properties collection for that TableDef object. Finaly, aswe will see
later, the user can create his or her own properties.

It is important to note that an application-defined property is created only if the user
assigns a vaue to that property. For example, if you do not specifically type a description
in the Description field, as discussed earlier, then Access will not create a Description
property. In other words, Access does not create a blank Description property. If you then
use this property in your code, an error will result. Thus, when writing programs that
refer to either application-defined or user-defined properties, it is important to check for
errors, in case the referenced property does not exist.

Of course, each Property object, being an object, has its own properties, but you will be
glad to hear that these properties do not have Property objects. (Where would this end?)

We should also mention that properties can be classified as read/write, read-only, or
write-only. A read/write property can be both read and written to (i.e., changed), whereas
aread-only property can be read but not changed, and a write-only property can be
changed but not read. When an object is first created, its read/write properties can be set.
However, in many cases, once the object is appended to a collection, some of these
properties may become read-only, and can therefore no longer be changed.

The properties of a Property object are described below. A Property object has no

methods.

14.6.2.1 Property: I nherited

For the built-in Property objects, this value is aways (False). For user-defined properties,
this value is true if the property exists because it was inherited from another object. For
instance, any Recordset object that is created from a QueryDef object inherits the

QueryDef 's properties.

14.6.2.2 Property: Name

The usua Name property, which in this case is the name of the property represented by

this property object.

14.6.2.3 Property: Type

This value gives the data type of the object. Note that the Type property is read/write until
the Property object is appended to a Properties collection, after which it becomes read-
only. The value of the Type property is an integer. VBA provides built-in constants so
that we do not need to remember integer values. Table 14.4 gives these values, along with
their numerical values, which are returned in code such as MsgBox Property.Type.

Table 14.4. Constantsfor the Type Property in VBA

Data Type Constant Numerical Value
Boolean dbBoolean 1
Byte dbByte 2
Integer dblnteger 3
Long dbLong 4
Currency dbCurrency 5
Single dbSingle 6
Double dbDouble 7
Date/Time dbDate 8
Text dbText 10
Long Binary (OLE Object) dbLongBinary 11
Memo dbMemo 12
GUID dbGUID 15

14.6.2.4 Property: Value

Finally, we get to the main property of a Property object—its value, which can be any
value commensurate with the assigned Type property of the Property object.

Let us consider another example of how to use the Properties collection.

The code in Example 14.7 will display the entire contents of the Properties collection for
the BOOK S TableDef object in the LIBRARY database.

Example 14.7. Properties Collection Example
Sub exaProperties()

Dim db As DATABASE
Dimtbl As Tabl eDef
Dimprp As Property
Dimstr As String

Set db = Current Db
Set tbl = db! BOOKS

str =
For Each prp In tbl.Properties

str = str & prp. Nane

str = str &" =" & prp. Val ue

str = str & " (" & prp.Type & ") "

str = str & prp.Ilnherited & vbCrLf
Next prp

MsgBox "BOOKS has " & tbl.Properties. Count
& " properties: " & vbCrLf & str

End Sub

Running this procedure gives the window shown in Figure 14.10, where each line has the
form Name = Value (Type) Inherited.

Figure 14.10. Window generated from executing exaProperties

Miciozolt Access [=]

BOOES hat 13 propeities

MName = BOOKS [12] Falze

Updatable = Tiue [1] Falee

DateCreated = 32497 41206 P (8] Falze
Lasilpdated = 342797 52354 PM [B] Fale
Connect = [12] Fals=s

Ablrbutes = 0 [4] Falsa

SourceTableMame = [12) False
RecordCount = 14 [4) Falze

ValidstiorFule = [12] False

ValidstionT eet = [12) Fakia

ConfictTable = [12] Faboe

ReplicaFiter = [12) Falze

CrdesBy0n = Falze [1] Falee

14.6.3 User-Defined Properties

We mentioned that a user can add user-defined properties to an object. Let us consider an
example of adding a new property to the BOOKS TableDef object.

The code in Example 14.8 adds the user-defined property named User Property to the
BOOKS table. It uses the CreateProperty method of the TableDef object.

Example 14.8. A User-Defined Properties Example
Sub exaUser Defi nedProperty()

Add user-defined property to BOOKS Tabl eDef obj ect

Di m db As DATABASE
Dimtbl As Tabl eDef
Dimprp As Property

Dimstr As String

Set db = Current Db
Set tbl = db! BOOKS

Create new property using CreateProperty nethod
Set prp = tbl.CreateProperty("UserProperty", dbText,"Programm ng DAO is
fun.")

Append it to Properties collection
t bl . Properties. Append prp

List all properties

str =""
For Each prp In tbl.Properties

str str & prp. Nanme

str str & " =" & prp. Val ue

str str & " (" & prp.Type & ")

str str & prp.Inherited & vbCrlLf
Next prp

MsgBox "BOOKS has " & tbl.Properties.Count & " properties: " & vbCrLf &
str

End Sub

This procedure produces the window shown in Figure 14.11. Note the last property on the
list.

Figure 14.11. Window generated from executing exaUser DefinedProperty

Miciosoft Access []

BOOES has 14 propedies

Mame = BOOKS [12) Falze

Updatable = Tree [1) Falze

DateCreated = 3/24/97 $12:06 PH (9) False
Lagilpdsted = 3/27/97 52354 PM [B)Falze
Cormect = [12] Falze

Attiibkes: = 0[4) Falze

Sowrcel sbleMame = [12) Fale
RecordCourt = 14 [4) Falze

WaldstionFule = [12] Falss

VadationT ext = [12] Fake

CorfbclTable = [12] Fal=

ReglicaFiter = [12) Fala

OideByln = False [1] False

U zerPropeshy = Programming DAD e fun. [10) Falze

14.7 Closing DAO Objects

We should make a few remarks about closing DAO objects that have been opened
programmatically. The Database, Recordset, and Workspace objects each have a Close
method. This method will remove these objects from their respective collections. Thisis
appropriate for the three object types mentioned previously for the following reasons:

The Databases collection is defined to be the collection of all open database
objects.

The Recordset objects are temporary objects, to be used only for data

mani pulation purposes.

Attempts to close the default Workspace object are ignored, but you can close
other Workspace objects.

Note that objects of types other than the three mentioned are intended to be persistent
members of their collections, stored on disk in the Access mdb file. However, they can be
removed from their respective collections by using the Delete method.

Here are some caveats to keep in mind with respect to closing objects:

Aswe will seein Chapter 16, you should update (i.e., complete) all pending edits
before closing an open Recordset object.

When a procedure that declares a Recordset or Database object is exited, the
recordset or database is closed and any unsaved changes or pending edits are |ost.
If you close a Database object while any Recordset objects are still open, or if
you close a Wor kspace object while any of its Database objects are open, those
Recordset objects will be automatically closed and any pending updates or edits
will be lost.

14.8 A Look at the DAO Objects

Now we can look briefly at each of the collections (and their objects) in the DAO Object
Model. We will discuss each object and mention a few of the more commonly used
properties and methods. A complete list of al collections, methods, and properties of
each object isgiven in Appendix A.

14.8.1 DBENgine Object

The DBENgine object, of which there is only one, represents the Jet database engine. This
is the only object in the DAO that is not contained in a collection. We have seen several
examples of its use, along with the fact that the default collection for the DBEngine
object is Workspaces, and so:

DBENgi ne. Wr kspaces(0)

is equivalent to:

DBENgi ne(0)

We have also seen that:

DBEngi ne(0) (0)

denotes the first database in the first (default) workspace.

The DBENgine object has methods to create a new workspace (CreateWorkspace), to
compact a database (CompactDatabase), and to repair a database (RepairDatabase),
among others.

148.2 Errors

From time to time, an operation may cause one or more errors to occur (or so | am told).
When this happens, the Errors collection is first emptied and then filled with one Error
object for each error that the operation caused. (Some operations may cause more than
one error.) Note that if no errors occur, the Errorscollection remains as it was before the
operation.

Example 14.9, which deliberately produces an error, illustrates the use of the Errors
collection. It also demonstrates the use of three Error object properties. Number (the
VBA error number), Description (a description in words of the error), and Source (the
object or application that generated the error).

Example 14.9. An Errors Collection Example
Sub exaErrorsCol | ection()

Not e decl aration of object variable of type Error

Di m dbsTest As DATABASE
DimtxtError As String
DimerrObj As Error

On Error GoTo ehTest

' A statenent that produces an error
Set dbsTest = _
DBENngi ne. Wr kspaces(0) . OpenDat abase(" NoSuchDat abase")

Exit Sub

ehTest:
txtError = ""

' Loop through the Errors collection

' to get the Number, Description and Source
" for each error object

For Each errCbj In DBEngine.Errors

txtError = txtError & Format$(errObj. Nunber)
txtError = txtError & ": " & errQbj.Description
txtError = txtError & " (" & errQbj.Source & ")"
txtError = txtError & vbCrlLf

Next

MsgBox t xt Error
Exit Sub

End Sub

Running this code produces the window in Figure 14.12.

Figure 14.12. Error message from executing exaErrorsCollection

Microzoft Access

I024: Couldr't find file MoSuchDatabase’. (D80 Workspace)

14.8.3 Workspaces

There is one Workspace object for each Access user session. In a single-user
environment, there is generally only one session running. When a user starts Access with
Nno security options enabled, Access automatically creates a Workspace called:

DBEngi ne. Wr kspaces(0)

Since we are not concerned in this book with multiple users or with database security
issues, we will not be creating multiple workspaces.

The vaues of the Name and User Name properties of the default Workspace object are
easily determined by running the following code:

Sub Test ()

MsgBox "Count: " & DBEngi ne. Wr kspaces. Count
MsgBox "Nane: " & DBEngi ne. Wor kspaces(0). Nane
MsgBox "User Nane: " & DBENngi ne. Wor kspaces(0) . User Nane

End Sub

This code should produce three message boxes, indicating that there is only one open
workspace, with name #Default Wor kspace# and username admin.

Among the methods of a Workspace object are CreateDatabase (for creating a new
database) and OpenDatabase (for opening an existing database). Another interesting
group of methods is BeginTrans, CommitTrans, and Rollback, which alow the
programmer to group several operations into one transaction. At the end of the
transaction, the programmer can commit the operations or rollback the database to its
state prior to any of the operations in the transaction. One use for thisis in updating
related tables (as in transferring money from one table to another). If the entire group of
operations is not completed successfully, then arollback is probably desirable.

Workspace objects aso have a Close method, for closing opened workspaces. However,
the method is ignored when applied to the default Workspace under Microsoft Access.

14.8.4 Users

The Jet engine provides security by assigning access permissions to users of the engine.
A User object represents a user of the Jet engine. The Users collection contains all User
objects. (Of course, female users are never to be considered objects.)

14.8.5 Groups

A Group object represents a set of User objects (users) that have a common set of access
permissions. By using Group objects, a new user can be given a set of access permissions
simply by adding the corresponding User object to the appropriate Group object. The
Groups collection holds all Group objects.

14.8.6 Databases

A Database object represents a currently open database. In Microsoft Jet, you can have
multiple databases open at one time (using the OpenDatabase function, discussed in
Chapter 15). However, the Microsoft Access environment can display a graphical
interface for only one database. In the Microsoft Access environment, when a database is
opened it is assigned to DBENgine.Wor kspaces(0).Databases(0).

Database objects have a variety of methods for creating new objects. CreateProperty,
CreateQueryDef, CreateTableDef, and OpenRecordset. Thereis aso an Execute method
for running action queries or executing SQL statements on the database. As mentioned
earlier, Database objects also have a Close method.

14.8.7 TableDefs

A TableDef object represents a table definition for a saved table in the database. A
TableDef object is more than a table scheme, in that it also has a RecordCount property
that gives the number of rows in the table (and thus, in some sense, reflects the data in the
table). However, it isless than atable, in that it does not describe the actual datain the
table. The TableDefs collection contains all TableDef objects for a given database.
TableDef objects have methods for creating fields (CreateField), indexes (Createl ndex),
and opening recordsets (OpenRecor dset).

14.8.8 QueryDefs

A QueryDef object represents a saved query in the database. The QueryDefscollection
contains all QueryDef objects for a given database. One of the most interesting properties
of a QueryDef object is SQL, which can be used to set or read the SQL definition of the
QueryDef object.

14.8.9 Recordsets

A Recordset object represents data from one or more tables or queries, and is used to
manipulate that data. Note that a Recordset object is temporary, in that it is not saved
with the application. In fact, recordsets are created in code using the OpenRecordset
function. The Recordsetscollection contains all open Recordset objects in the current
database.

Recordset objects are the workhorses of the DAO object model, with about 15 different
methods and about 20 different properties. There are actually three types of Recordset
objects—Table-type, Dynaset, and Shapshot—used for different purposes. We will
discuss recordsets in Chapter 15.

14.8.10 Relations

A Relation object represents a relationship between certain fields in tables or queries. The
Relation object can be used to view or create relationships. The Relations collection
contains al Relation objects for a given database. We will discuss how to create a
relation in the next chapter.

14.8.11 Containers

The Microsoft Jet engine provides the Containers collection as alocation where a host
application, such as Microsoft Access, can store its own objects. This is done through the
use of Container objects, as shown in Figure 14.13.

Figure 14.13. Container objects diagram of the M S Jet engine

~ Containers Collection |

Dalabases Tahles Relations
Container Container Container
Forms Reports Macros Modules

Confainer Container Container Container |
Documents Colleclion

Report Document Objects

Documents Collection

Form Document Objects

The Jet engine itself creates three Container objects:

A Databases container object, containing information about the database

A Tables container object, containing information about each saved table and
query

A Relations container object, containing information about each saved
relationship

It is important not to confuse these Container objects (which are not collections, despite
their names) with the Databases, TableDefs, and Relations collections. Indeed, these
objects are at entirely different locations in the DAO object hierarchy, and serve different
purposes, as we will see.

In addition to the Container objects created by the Jet engine, Microsoft Access stores its
forms, reports, macros, and modules in the Containers collection. Hence, the Containers
collection also contains:

A Forms container object, containing information about all saved forms
A Reports container object, containing information about all saved reports

A Macros container object, containing information about all saved macros
A Modules container object, containing information about all saved modules

The Formsand Reports Container objects should not be confused with the Microsoft
Access collections of the same name (in the Access object model). In particular, the
former contains information about all saved objects, whereas the latter contains
information about all open objects.

To illustrate the aforementioned difference, create and save two formsin an Access
session and make sure that only one form is open. Then run the code in Example 14.10,
which should report that the open form count is 1 but the saved form count is 2.

Example 14.10. A Containers Collection Example
Sub exaFor msCont ai ner ()

Di m db As DATABASE
DimfrmAs Form
Di m doc As Document

Set db = Current Db

Debug. Print "Opened formcount: " & Forns. Count
For Each frmIn Forns
Debug. Print frm Name
Next
Debug. Pri nt

Debug. Print "Saved form count: " & db. Contai ners! Forns. Docunent s. Count
For Each doc In db. Containers! Forns. Docunent s

Debug. Pri nt doc. Nane
Next

End Sub

Note that a user cannot create new or delete existing Container objects—they are
controlled by the Jet engine only. Put another way, there is no such thing as a user-
defined Container object. The properties of a Container object generally reflect security-
related issues, such as permission and user/group names. Container objects have no
methods.

14.8.12 Documents

We have seen that applications (including Jet and Access) store objects through the use of
Container objects. However, the Forms Container object, for example, is not of any real
interest per se. It is the Form objects that reside within the Forms container that are of
interest. Actually, these Form objects are referred to as Document objects and are
contained in the Documents collection of the Forms container, aso shown in Figure 14.6.
(If you are getting a bit confused, Figure 14.6 should help—it aways helps me.)

Thus, it isthe Document objects (in a Documents collection) that are the raison d'étre for
the Container objects. Example 14.11 illustrates a few of the properties of a Document
object: Container, DateCreated, LastUpdated, Name, and Owner. It displays the value of
various properties of the Document objects in the Documents collection of the Tables
Container object.

Example 14.11. Properties of the Document Object

Sub exaTabl esDocunent s()
Di m db As DATABASE

Set db = Current Db

Di m docs As Documents
Di m doc As Document

Set docs = db. Cont ai ners! Tabl es. Docunent s
Debug. Print "Count: " & docs. Count

For Each doc In docs
Debug. Print "Container: " & doc. Container
Debug. Print "DateCreated: " & doc. DateCreated
Debug. Print "LastUpdated: " & doc. Last Updated
Debug. Print "Nane: " & doc. Nane
Debug. Print "Omer: " & doc. Owner
Debug. Pri nt

Next doc

End Sub

Here is a portion of the output from executing Example 14.11:

Count: 16

Cont ai ner: Tabl es

Dat eCreat ed: 10/22/96 3:16: 44 PM
Last Updated: 10/24/96 1:36:16 PM
Name: AUTHORS

Omer: admn

Cont ai ner: Tabl es

Dat eCreat ed: 10/22/96 3:19: 47 PM
Last Updated: 10/24/96 1:36:16 PM
Nanme: BOOK/ AUTHOR

Omer: admn

Cont ai ner: Tabl es

Dat eCreated: 5/15/96 6:16:29 PM
Last Updat ed: 5/15/96 6:16:29 PM
Nanme: MSysACEs

Owner: Engi ne

Cont ai ner: Tabl es

Dat eCreated: 5/15/96 6:16: 31 PM
Last Updated: 5/15/96 6:16:31 PM
Nanme: MsSysl| MEXCol umms

Owner: adm n

14.8.13 Fields

The Fields collection contains Field objects, which describe the various fieldsin a
TableDef, QueryDef, Index, Relation, or Recordset object.

14.8.14 Parameters

The parameters of a parameter query are represented by Parameter objects, contained in
the Parameters collection for that QueryDef object. Note that Parameter objects cannot
be added to or deleted from the Parameter s coll ection—Parameter objects represent
existing parameters. Let us consider an example.

The code in Example 14.12 creates a parameter query named Parameter Query and
demonstrates some of the properties of a Parameter object—namely, Name, Type, and
Value.

Example 14.12. A Parameter Query Example

Sub exaPar anet ers()
Dim db As DATABASE
Di m qdf As Quer yDef
DimstrSQ As String

Set db = Current Db

Create an SQL statement with paraneters
strSQ = "SELECT * FROM BOOKS WHERE _
Price > [Enter mnimum price]”

Create a new QueryDef object
Set qdf = db. Creat eQueryDef (" ParameterQuery", strSQL)

Supply val ue for paraneter
qdf . PARAMETERS! [Enter m ni mum price] = 15

Now query query
Debug. Print qdf. PARAMETERS! [Enter m ni mum price]. Name
Debug. Pri nt qdf. PARAMETERS! [Enter m ni num price]. Type
Debug. Pri nt qdf. PARAMETERS! [Enter m ni num _
price]. Val ue

End Sub

14.8.15 I ndexes

An Indexes collection contains al of the saved Index objects (i.e., indexes) for a TableDef
object. We will discuss how to create an index in the next chapter.

14.9 The CurrentDb Function

We have seen that DAO refers to the current database as:
DBENngi ne. Wr kspaces(0) . Dat abases(0)

or, through default collections, as:

DBENngi ne(0) (0)

However, within Microsoft Access, there is a preferred way to refer to this database,
since, unlike DBENging(0)(0), it is aways current with respect to changes made using the
Access graphical interface. This preferred way is to use the Access function CurrentDb.
Unfortunately, there is some confusionas to precisely what this function does.

Hereis part of what the Access Help system says about this function:

The CurrentDb function returns an object variable of type Database that represents the
database currently open in the Microsoft Access window.

The CurrentDb function provides a way to access the current database from Visual Basic
code without having to know the name of the database. Once you have a variable that
points to the current database, you can also access and manipulate other objects and
collections in the data access object hierarchy.

Y ou can use the CurrentDb function to create multiple object variables that refer to the
current database. In the following example, the variables dbsA and dbsB both refer to the
current database:

Di m dbsA As Dat abase, dbsB As Dat abase
Set dbsA = CurrentDb
Set dbsB = CurrentDb

This certainly makes it appear as though the object variables dbsA and dbsB point to a
single Database object, namely, the currently open database. In other words, executing
the instruction:

Set db = Current Db

implies that db points to the Database object known to DAO as DBEngine(0)(0).
However, the Help system goes on to say:

Note: In previous versions of Microsoft Access, you may have used the syntax
DBEnNgine.Wor kspaces(0).Databases(0), or DBEngine(0)(0) to return a pointer to the
current database. In Microsoft Access for Windows 95, you should use the CurrentDb
function instead. The CurrentDb function creates another instance of the current
database, while the DBENgine(0)(0) syntax refers to the open copy of the current

database. Using the CurrentDb function enables you to create more than one variable of
type Database that refers to the current database. Microsoft Access still supports the
DBEnNgine(0)(0) syntax, but you should consider making this modification to your code
in order to avoid possible conflicts in a multiuser database.

This seems to contradict the previous statements, by indicating that each time CurrentDb
is executed, it creates anew Database object. Actually, if the current database is
considered an object, then the statement "...creates another instance of the current
database..." makes no sense, since one cannot create an instance of an object. (In object-
oriented terms, one can create an instance of aclass and such an instance is called an
object.)

In any case, each call to CurrentDb does seem to create a new object, as we can see from
the experiment in Example 14.13, which checks the Count property of the Databases
collection both before and after calling CurrentDb, showing that the count goes up.

Example 14.13. A CurrentDb Function Example
Sub exaCurrent DB()

Di m db, dbExtra, dbOriginal As DATABASE
Dimstr As String
Dimi As Integer

Set dbOriginal = DBEngi ne(0)(0)

Check the database count
MsgBox "lnitial db count: " & _
DBENngi ne. Wor kspaces(0) . Dat abases. Count

I nvoke Current DB
Set dbExtra = CurrentDb()

Check the database count again
MsgBox "Count after CurrentDb run: " & _
DBENngi ne. Wor kspaces(0) . Dat abases. Count

Di spl ay the two dat abase nanes
str =""
For Each db I n DBEngi ne. Wr kspaces(0). Dat abases
str = str & vbCrLf & db. Name
Next db
MsgBox "Db Nanes: " & vbCrLf & str

dbExtra. Cl ose

End Sub

If each call to CurrentDb produces a pointer to a new object, then it is natural to wonder
what happens if we change the object pointed to by one of these pointers. Does it affect
the other objects? What about DBENgine(0)(0) ? Consider the codein Example 14.14,
which does the following:

Creates two Database object variables doOne and dbTwo, and sets both equal to
CurrentDb

Adds a new field NewFieldl to the BOOK S table using dbOne

Adds a new field NewField2 to the BOOKS table using doTwo

Displays the list of fields for BOOKS using dbOne

Displays the list of fields for BOOKS using dbTwo

Closes dbOne and dbTwo; that is, it removes their objects from the Databases
collection

Example 14.14. The doOne and dbTwo Variable Example
Sub exaCurrent Db2()
Di m dbOne As Dat abase, dbTwo As DATABASE

DimfldNew As Field
Dimstr As String

Set dbOne
Set dbTwo

Current Db
Current Db

Get field list in BOOKS
str = "Fields before: " & vbCrlLf
"' MsgBox dbOne. Tabl eDef s! Books. Fi el ds. Count
For Each fl dNew I n dbOne. Tabl eDef s! Books. Fi el ds
str = str & fldNew. Nane & vbCrLf
Next

Use dbOne to add a new field to BOOKS
Set fl dNew = dbOne. Tabl eDef s! Books. Cr eat eFi el d(" NewFi el d1", dbl nteger)
dbOne. Tabl eDef s! Books. Fi el ds. Append f | dNew

Use dbTwo to add a new field to BOOKS
Set fl dNew = dbTwo. Tabl eDef s! Books. Cr eat eFi el d(" NewFi el d2", dbl nteger)
dbTwo. Tabl eDef s! Books. Fi el ds. Append fl dNew

'""Stop - (see the explanation in the text)

Refresh Fields collection using dbOne!!!
dbOne. Tabl eDef s! BOOKS. Fi el ds. Refresh

Get field list now using dbOne
str = str & vbCrLf & "Fields after using dbOne: " & vbCrlLf
For Each fl dNew I n dbOne. Tabl eDef s! Books. Fi el ds
str = str & fl dNew. Name & vbCrLf
Next

Get field list now using dbTwo
str = str & vbCrLf & "Fields after using dbTwo: " & vbCrlLf
For Each fl dNew I n dbTwo. Tabl eDef s! Books. Fi el ds
str = str & fldNew. Nane & vbCrLf
Next

MsgBox str

dbOne. Cl ose

dbTwo. Cl ose

End Sub

Running this code produces the window shown in Figure 14.14.

Figure 14.14. Message box from executing exaCurrentDb2

Microzoft Access

Fields before:
ISBM

Tiktle

PublD

Price

Fields after usng dblne:
ISEM

Title

PublD

Frice

MeswFueid]

MewField?

Fields after usng dbTwio:
ISEM

Title

Pubil

Piice

MNesField]

MewField?

Running exaCurrentDb2

To examine the behavior of the procedure shown in Example 14.14, do the
following:

1
2.

o &

6.

Run the program as is. Access displaysthe diadog in Figure 14.14.
Delete NewField1l and NewField2 from the BOOKS table. Y ou can do
this by opening the table in Design view, selecting each field separately,
and choosing the Delete Row option from the Edit menu.

Comment out (using either the Rem statement or the ' character) the call
to the Refresh method, then run the procedure. Access displays the
dialogin Figure 14.15.

Once again, delete NewField1l and NewField2 from the BOOKS table.
Remove the comment from the call to the Refresh method, and change it
to read dbTwo. Tabl eDef s! Books. Fi el ds. Ref r esh. When you run the
procedure, Access once again displays the dialog shown in Figure 14.15.
Once again, delete NewField1 and NewField2 from the BOOK S table.

It's necessary to delete both NewField1l and NewField2 each time you run some
variation of this procedure, since otherwise Access will display a"Can't define
field more than once" error message.

Thus, it appears that changing the Database object pointed to by doTwo doesin fact also
change the Database object pointed to by dbOne. However, if we do not refresh the
Fields collection using the variable dbOne, or if we refresh using the variable dbTwo
instead, we get the message box shown in Figure 14.15. Note that NewField2 is missing
from the second group.

Figure 14.15. Message box from executing exaCurrentDb2() when refreshing

with dbTwo

Fieldz befora
ISEM

Tila

PublD

Price

Figldz after uzing dbOns:
ISEN

Title

PublD

Pnce

MewFielid]

Fiekds after usng dbTwo:
ISEN

Title

PublD

Frice

Mewkieid]

MewFisid2

Note also that even before the two objects dbOne and dbTwo have been closed, the
Access graphical interface has been updated to reflect the two new fields. In fact, if you
uncomment the st op line in Example 14.14 and check the design of the BOOKS table
though Access, you will find that both new fields appear, even before the Refresh method
iscalled.

All of this experimenting leaves us with afeeling that there are some mysteries associated
with CurrentDb that Microsoft is not revealing (at least not readily). We can summarize
as follows:

Invoking CurrentDb creates another member of the Databases collection.

On the other hand, each variable set through CurrentDb seems to affect the same
database.

Refreshing is required to keep objects created through multiple invocations of
CurrentDb current, belying the purpose of CurrentDb to some extent.

On the other hand, the Access interface does not require refreshing—it reflects the
latest operations performed using any of the invocations of CurrentDb.

These issues notwithstanding, it makes sense to follow Microsoft's recommendation to
use CurrentDb, since it does reflect the current state of the Access environment more

accurately than DBENgine(0)(0). Just be advised that some circumspection (refreshing) is
needed when creating more than one variable through CurrentDb.

Finaly, if you do use CurrentDb, then you should use it according to Microsoft's rules,
found in the Access 7.0 readme file acreadme.txt (but missing from the Access 8.0
readme file acread80.wri). Its text is reproduced below. Note the use of the word "once."

Using the CurrentDb Function to Return a Reference to the Current Database

When you write code that includes a reference to the current database, you should declare
avariable of type Database and use the CurrentDb function once to assign to it a pointer
to the current database. Y ou should avoid using CurrentDDb to return the current database
in a statement that also returns a reference to another object, such as a Set statement. It
was possible to do this in some beta versions of Microsoft Access, but in Microsoft
Access for Windows 95, your code may not run properly. For example, to determine the
number of Document objects in the Documents collection, you should write code such as
that shown in the following two examples:

Di m dbs As Dat abase, con As Cont ai ner
Set dbs = CurrentDb

Set con = dbs. Cont ai ners! Forns

Debug. Pri nt con. Docunent s. Count

- Or_

Debug. Print _
Curr ent Db. Cont ai ner s! For ns. Docunent s. Count

Code such as the following will not work:

Di m con As Cont ai ner
Set con = CurrentDb. Cont ai ners! For ns
Debug. Print con. Docunent s. Count

Chapter 15. Programming DAQO: Data Definition
Language

In our overview of DAO, we noted that Data A ccess Objects consists of two conceptually
distinct components. a data definition language (or DDL), which allows us to create or
access some basic database system objects, like databases, table definitions, and indexes;
and a data manipulation language (or DML), which allows us to perform the practical
operations of adding data (records) to our tables, deleting unwanted data, and modifying
existing data. In this chapter, we discuss the data definition language (DDL) aspects of
DAO.

Let us begin by noting the following:

To indicate variables of a certain type, we will write the type name followed by
the suffix Var. For example, DatabaseVar denotes a variable of type Database
and TableDefVar denotes a variable of type TableDef.

In describing the syntax of certain methods, we will use square brackets ([]) to
indicate optional items.

We will generally give the full syntax of methods, but will only give details on the
more common options. Of course, full details are available through the Access
Help system.

15.1 Creating a Database

Databases are created using the CreateDatabase method of a Workspace object. The
gereral syntax of this method is:

Set Dat abaseVar = [WorkspaceVar.] Creat eDat abase _
(Dat abaseNane, | ocale [, options])
where:

DatabaseName s a string expression representing the full path and name of the
database file for the database being created. If you don't supply afilename
extension, then the extension .mdb is automatically appended.

locale is a string expression used to specify collating order for creating the
database. Y ou must supply this argument or an error will occur. For the English
language, use the built-in constant dbLangGeneral.

options relates to specifying encryption or use of a specific version of the Jet
database engine. For more information, please see Access Help.

15.1.1 Notes

The CreateDatabase method creates a new Database object, appends the database
to the Databases collection, saves the database on disk, and then returns an

opened Database object, but the database has no structure or content at this point.
To duplicate a database, you can use the CompactDatabase method of a
Workspace object, specifying a different name for the compacted database.

A database cannot be deleted programmatically through DAO. To delete a
database programatically, use the KILL statement in VBA.

Example 15.1 creates a new database named MoreBks.mdb on the directory c:/temp, and
then lists the tables that are contained in the database.

Example 15.1. A CreateDatabase Method Example
Sub exaCreat eDb()

Di m dbNew As DATABASE
Dimtbl As Tabl eDef

Set dbNew = Creat eDat abase

("c:\tenp\ MoreBks", dbLangGeneral)

For Each tbl I n dbNew. Tabl eDefs
Debug. Pri nt tbl. Nane

Next

dbNew. Cl ose

End Sub

The program in Example 15.1 displays the following list of tables:

MSysACEs
MSysObjects
MSysQueries
MSysRelationships

These tables are created by Microsoft Access for its own use.
15.2 Opening a Database

To open an existing database, use the OpenDatabase method of a Workspace object. The
syntax is:

Set Dat abaseVar = [WorkspaceVar.] OpenDat abase _
(Dat abaseNane[, exclusive[, read-only[, source]]])

where DatabaseName is the name of an existing database. (As indicated by the square
brackets, the other parameters are optional.) For information about the optional
parameters, see the Access Help system.

It is important to remember to close a database opened through the OpenDatabase
method. This removes the database from the Databases collection.

15.3 Creating a Table and Its Fields

Tables are created using the CreateTableDef method of a Database object. The full
syntax of this method is:

Set Tabl eDef Var = Dat abaseVar. Cr eat eTabl eDef _
([Tabl eDef Nane[, attributes[, source[, connect]]]])

where;

TableDefNameis a string or string variable holding the name of the new TableDef
object.
For information about the optional parameters, see the Access Help system.

15.3.1 Notes

The new TableDef object must be appended to the TableDefs collection using the
Append method. However, before appending, the table must have at least one
field.

CreateTableDef does not check for an aready used TableDefName. If
TableDefName does refer to an object aready in the TableDefscollection, an
error will occur when you use the Append method, but not before.

To remove a TableDef object from a TableDefs collection, use the Del ete method.

Fields are created for a table using the CreateField method of the TableDef object. The
syntax is.

Set Fieldvar =Tabl eDefVar. CreateField _
([Fi el dNanme[, type [, size]l]l)

where:

FieldNameis a string or string variable that names the new Field object.

typeis an integer constant that determines the data type of the new Field object.
(SeeTable15.1))

sizeis an integer between 1 and 255 that indicates the maximum size, in bytes, for
atext field. This argument isignored for other types of fields.

15.3.1.1 Note

To remove afield from a TableDef object, use the Delete method.

Table 15.1. Constantsfor the Type Property

Data Type Constant Numerical Value
Boolean dbBoolean 1
Byte dbByte 2
Integer dblnteger 3
Long dbLong 4
Currency dbCurrency 5
Single dbSingle 6
Double dbDouble 7
Date/Time dbDate 8
Text dbText 10
Long Binary (OLE Object) dbLongBinary 11
Memo dbMemo 12
GUID dbGUID 15

Field objects have a variety of properties, among which are:

AllowZeroLength: Tr ue if a zero-length value is valid for atext or memo field.
(Setting this property for a nontext field generates an error.)

DefaultValue : Sets or returns the default value of a Field object.

Required : Tr ue indicates that a null value is not allowed.

ValidationRule and ValidationText: Used for validation of field vaues. (See the
following example.)

The procedure in Example 15.2 creates a new table named NewTable, creates a new field
named NewField, sets certain properties of the field and appends it to the Fields
collection, and then appends the new table to the TableDefs collection.

Example 15.2. A CreateTableDef Method Example
Sub exaCreat eTabl e()

Di m db As DATABASE
Di m t bl New As Tabl eDef
Dimfld As Field

Set db = CurrentDb

Set tbl New = db. Creat eTabl eDef (" NewTabl e")
Set fld = tbl New. CreateFi el d("NewFi el d*, dbText, 100)

Set properties of field BEFORE appendi ng

zero length value is OK
fld. Al'l owZeroLength = True
default value is 'Unknown'
fld. DefaultVvalue = "Unknown"
Nul I val ue not all owed
fld. Required = True
Val i dati on
fld.ValidationRul e
fld.ValidationText

"Li ke "A*" or Like 'Unknown'"
"Known val ue must begin with A"

Append field to Fields collection
t bl New. Fi el ds. Append fld

Append table to Tabl eDef collection
db. Tabl eDef s. Append t bl New

End Sub

Setting the validation properties of afield requires setting two properties. The
ValidationRule property is atext string that describes the rule for validation and the
ValidationText is a string that is displayed to the user when validation fails. After running
the code from Example 15.2, a new table appears in the Access Database window. (You
may need to move away from the Tables tab and then return to that tab to see the new
table.) Opening this table in Design View shows the window in Figure 15.1. Note that the
field properties setting reflects the properties set in our code.

Figure 15.1. Design view of table generated from running exaCreateTable

[& MewT able - Table [0 %]
Field Mame [DataTwpe | Description [a]
| | Heficld] Tt N
Feld Properties
=eneral] Loskup | A Field
Fisld Size 100 nane Cai
Format D up ED
Trput Mask b4
Canbior characters
Dt ault Vahss Lirkmown . I_l':fl'm
Walidabion Rule Like "% Cr Like 'Unknown' ——
Walidabion Text Kriossin wabue must begin vith & Priess Fl
Required = fior hilp
Al Zero Length Yes an fiekd
tndexed Mo Tl

Incidentally, TableDef objects also have ValidationRule and ValidationText properties,
used to set validation rules that involve multiple fields in the table.

15.3.2 Changing the Properties of an Existing Table or Field

We have remarked that some properties that are read/write before the object is appended
to its collection become read-only after appending. One such example is the Type
property of afield. On the other hand, the Name property of afield can be changed. This
is an example of a change that can be made using DAO but not by using SQL.

15.4 Creating an Index

Indexes are created using the Createlndex method for a TableDef object. Here is the
syntax:

Set | ndexVar = Tabl eDef Var. Cr eat el ndex([| ndexNane])

Creating an index by itself does nothing. We must append one or more fields to the
Fields collection of the index in order to actually index the table. Moreover, the order in
which the fields are appended (when there is more than one field) has an effect on the
index order. Thisis demonstrated in Example 15.3, in which a new index called
PriceTitle is added to the BOOKS table.

Example 15.3. A Createl ndex Method Example

Sub exaCreat el ndex()

Di m db As DATABASE
Dimtdf As Tabl eDef
Dimidx As | NDEX
Dmfld As Field

Set db = Current Db
Set tdf = db. Tabl eDef s! BOOKS

Create index by the name of PriceTitle
Set idx = tdf.Createlndex("PriceTitle")

Append the price and then the Title fields
to the Fields collection of the index

Set fld = idx.CreateField("Price")

i dx. Fi el ds. Append fld

Set fld = idx.CreateField("Title")

i dx. Fi el ds. Append fld

Append the index to the indexes collection
for BOOKS
tdf . I ndexes. Append i dx

End Sub

Figure 15.2 shows the result of running the program from Example 15.3. (To view this
dialog box, open the BOOKS table in design view and select the Indexes option from the
View menu.) The figure shows clearly why we first create two fields—Price and Title—
and append them, in that order, to the Fields collection of the index.

Figure 15.2. Indexes view of BOOKS table from running exaCreatel ndex

£ Indexes: BOOKS]
Iy M amme Field Flare Sart Order -
PricaTiths Price Ascendng
THe Ascending J
Primaryiey 15BN Ascending
PubID PubID Ascending
PubTitle Publ Ascandng
THe Ascendng j
Inidex Broperties
Primary Mo
lhlEr-B Mo The name for this index, Eact
Ignore Mulls Mo ndex can use up bo 10 fields.

Aswe discussed in an earlier chapter, an index for atable is actually afile that contains
the values of the fields that make up the index, along with a pointer to the corresponding
records in the table. Microsoft tends to blur the distinction between an index (as afile)
and the fields that contribute to the index. Thus, to say that an index is primary isto say
that the fields (actualy, the attributes) that make up the index constitute a primary key.

With this in mind, some of the important index properties are:
DistinctCount: Gives the number of distinct values in the index.

IgnoreNulls: Determines whether a record with a null value in the index field (or
fields) should be included in the index

Primary : Indicates that the index fields constitute the primary key for the table.
Required: Determines whether al of the fields in a multifield index must be filled
in.

Unique: Determines whether the values in aindex must be unique, thus making
the index fields a key for the table.

Note that the difference between a primary key index and a unique values index is that a
primary key is not allowed to have NULL values.

15.5 Creating a Relation
Relations are created in DAO using the CreateRelation method. The syntax is:

Set Rel ati onVar = Dat abaseVar. Creat eRel ati on

([Rel Nane[, KeyTabl e[, ForeignTable[, Attributes]]]])
where:

RelName s the name of the new relation.

KeyTable is the name of the referenced table in the relation (containing the key).
ForeignTable is the name of the referencing table in the relation (containing the
foreign key).

Attributes is a constant, whose values are shown in Table 15.2.

Table 15.2. Attributes for a Relation Object

Constant Description

dbRelationUnique Relationship is one-to-one

dbRelationDontEnforce |No referential integrity

Relationship existsin a noncurrent database that contains the two attached

dbRelationlnherited tables

dbRel ationUpdateCascade|Cascading updates enabled

dbRel ationDel eteCascade |Cascading del etions enabled

15.5.1 Notes

All of the properties of a Relation object become read-only after the object is
appended to a Relations collection.

Field objects for the referenced and referencing tables must be appended to the
Fields collection prior to appending the Relation object to the Relations
collection.

Duplicate or invalid names will cause an error when the Append method is
invoked.

To remove a Relation object from a collection, use the Delete method for that
collection.

Example 15.4 illustrates the use of Relation objects. In this example, we will create a new
relation in the LIBRARY database. The first step isto create a new table, using Microsoft
Access. Call the table SALESREGIONS and add two text fields: PublD and
SalesRegions. Then add a few rows shown in Table 15.3 to the table.

Table 15.3. The SALESREGIONS Table

PublD SalesRegions

United States

Europe

Asia

United States

NNEIELE

Latin America

The code in Example 15.4 creates a relation between the PublD field of the
PUBLISHERS table (the primary key) and the PublD field of the SALESREGIONS table
(the foreign key).

Example 15.4. A CreateRelation Method Example
Sub exaRel ati ons()
Di m db As DATABASE

Dimrel As Relation
Dimfld As Field

Set db = CurrentDb

Create relation
Set rel = db. CreateRel ati on("PublisherRegi ons", _
"PUBLI SHERS", "SALESREG ONS")

Set referential integrity with cascadi ng updates
rel.Attri butes = dbRel ati onUpdat eCascade

Specify the key field in referenced table
Set fld = rel.CreateField("PublD")

Specify foreign key field in referencing table.
fld. Forei gnNanme = "Publ D"

" Append Field object to Fields collection of
Rel ati on object.
rel.Fields. Append fld

Append Rel ati on object to Relations collection.
db. Rel ati ons. Append rel

End Sub

After running this code, make sure the Database window is active and select Tools —2
Relationships from the Access menu bar. Then select Relationships —2Show All and you
should see awindow similar to that in Figure 15.3, showing the new relationship.

Figure 15.3. Relationships window after running exaRelations

=} Helabionships M=l E3

-

PubiMame
PuibPhane

E
.

15.6 Creating a QueryDef
Creating a QueryDef object is done using the CreateQueryDef method. The syntax is.

Set QueryDef Var = Dat abaseVar. Creat eQueryDef _
([QueryDef Nanme] [, SQLText])

where QueryDefNameis the name of the new QueryDef object and SQLText isa string
expression that constitutes a valid Access SQL statement.

15.6.1 Notes

If you include QueryDefName, the QueryDef is automatically saved (appended to
the appropriate QueryDefs collection) when it is created. The Name property and
the SQL property of a QueryDef can be changed at any time.

Y ou can create atemporary QueryDef, which is not appended to a collection, by
setting the QueryDefName property to a zero-length string (""). Y ou cannot
change the name of atemporary QueryDef.

If you omit the SQLText argument, you can define the QueryDef by setting its
SQL property before or after you append it to a collection.

To remove a QueryDef object from a QueryDefs collection, use the Delete
method.

15.6.2 Running a Query

Recall from Chapter 6, that Microsoft Access supports several types of queries. In
particular, a select query returns a recordset, whereas an action query does not return a

recordset, but rather takes action on existing data, such as making a new table, deleting
rows from atable, appending rows to atable, or updating the values in a table.

If a QueryDef object represents an action query, then we can use its Execute statement to
run the query. If the QueryDef object represents a select query, then we can open the
corresponding result table (recordset) using the OpenRecordset method on the QueryDef
object. Let usillustrate.

The code in Example 15.5 creates a new select query and displays the record count for
the resulting recordset.

Example 15.5. A CreateQueryDef Method Example
Sub exaCreat eSel ect ()

Di m db As DATABASE

Di m qdf As QueryDef

DimstrSQ As String

Dimrs As Recordset

Set db = Current Db

Create an SQL SELECT st at enent
strSQL = "SELECT * FROM BOOKS WHERE Price > 20"

Create a new QueryDef object
Set qdf = db. Creat eQueryDef (" NewQuery", strSQ)

Open a recordset for this query
Set rs = qdf. OpenRecordset

Move to end of recordset
rs. MovelLast

Show record count
MsgBox "There are " & rs.RecordCount & " books with price exceeding
$20"

End Sub

The code in Example 15.6 creates a new action query and executes it. The effect isto
raise the price of each book in the BOOKS table by 10%.

Example 15.6. A New Action Query Example
Sub exaCreat eAction()

Creates an action query and executes it
Di m db As DATABASE
Di m qdf As Quer yDef
DimstrSQ As String

Set db = Current Db

Create an SQ. UPDATE st at enent
to raise prices by 10%
strSQL = "UPDATE BOOKS SET Price = Price*l1.1"

Create a new QueryDef object
Set qdf = db. CreateQueryDef ("Pricelnc", strSQ)

qdf . Execut e

End Sub

Note that once a QueryDef object exists, we may till use the OpenRecordset or Execute
methods to run the query. The Execute method can also be used on a Database object to
run an SQL statement. Here is an example that reduces the price of each book in the
BOOK S table by 10%:

Di m db As DATABASE
Set db = CurrentDb
db. Execut e "UPDATE BOOKS SET Price = Price*0.9"

15.6.3 Properties of a QueryDef Object

When a QueryDef object is created or changed, Jet sets certain of its properties, such as
DateCreated, LastUpdated, and Type. (Note that the QueryDefs collection may need
refreshing before these properties can be read.) Some of the possible query types are
listedin Table 15.4.

Table 15.4. Possible Query Type Constants

Constant Query Type Value

dbQSel ect Select 0
dbQAction Action 240
dbQCrosstab Crosstab 16
dbQDelete Delete 32
dbQUpdate Update 48
dbQAppend Append 64
dbQMakeTable Make-table 80

The RecordsAffected property returns the number of records affected by the last
application of the Execute method. Let usillustrate.

Example 15.7 modifies the earlier action query example to perform the action (10% price
increase) if and only if the increase will affect more than 15 books in the table. Thisis
done using the BeginTrans, Committrans, and Rollback properties of the current

Wor kspace object.

Example 15.7. A RecordsAffected Property Example

Sub exaCreat eActi on2()

Dimws As Workspace
Di m db As DATABASE
Di m gqdf As Quer yDef
DimstrSQ As String

Set ws
Set db

DBENngi ne(0)
Current Db

Create an SQ. UPDATE st at enent
to raise prices by 10%
strSQL = "UPDATE BOOKS SET Price = Price*1l.1 WHERE Price > 20"

Create a new QueryDef object
Set qdf = db. CreateQueryDef ("Pricelnc", strSQ)

Begin a transaction
ws. Begi nTr ans

Execute the query
qdf . Execut e

Check the nunber of records effected and either rollback transaction
or proceed
I f qgdf.RecordsAffected > 15 Then
MsgBox qdf. RecordsAffected & " records affected " & _
"by this query. Transaction cancelled."
ws. Rol | back
El se
MsgBox qdf. RecordsAffected & " records affected " & _
"by this query. Transaction conpleted."
ws. Commi t Tr ans
End | f

End Sub

Chapter 16. Programming DAQO: Data Manipulation
Language

In Chapter 15, we examined how to use DAO to create and access the magjor components
of adatabase, like its tables, its indexes, or its query definitions. For the most part,
though, the focus of a database application is on accessing and manipulating discrete
items of data stored in one or more records. In this chapter, we'll continue our overview
of Data Access Objects by examining its data manipulation component, which allows you
to perform such practical maintenance operations as adding, deleting, and updating
records and accessing the records that your application is to display.

16.1 Recordset Objects

The main tool for manipulating data is the Recordset object. There are three types of
Recordset objects:

A table-type Recordset object is a representation of the records in asingle tablein
the database. It is like awindow into the table. Thus, operations on this type of
recordset directly affect the table. We emphasize that a table-type recordset can be
opened for asingle table only. It cannot be opened for ajoin of more than one
table, or for aquery. A table-type recordset can be indexed using a table index.
This provides for quick manuvering within the table, using the Seek method,
which we will discuss later in the chapter.

A dynaset-type Recordset object is a dynamic (changeable) set of records that can
contain fields from one or more tables or queries. Dynaset-type recordsets are
generally updatable in both directions. Thus, changes in the recordset are reflected
in the underlying tables or queries and changes in the underlying tables or queries
are reflected in the dynaset-type recordset. With a dynaset-type recordset, no data
are brought into memory. Rather a unique key is brought into memory to
reference each row of data. Searching through a dynaset-type recordset is done
with the Find method, which is generally dower than the Seek method (which
uses one of the table's indexes).

A snapshot-type Recordset object is a static (nonchangeable) set of records that
can contain fields from one or more tables or queries. These recordsets cannot be
updated. For searching, a snapshot-type recordset can be faster than a dynaset-
type recordset.

16.2 Opening a Recordset

To create, or open, arecordset, Jet provides the OpenRecordset method. This method can
be used on Database, TableDef, QueryDef, or existing Recordset objects. The syntax is:

Set RecSet Var = Dat abaseVar. OpenRecordset _
(source[, type[, options]])

or:

Set RecSet Var = Obj ect Var. OpenRecordset _
([type[, options]])

where;

ObjectVar pointsto an existing TableDef, QueryDef, or Recordset object.
When opening a recordset based upon a database (the first syntax), source isa
string specifying the source of the records for the new recordset. The source can
be a table name, a query name, or an SQL statement that returns records. For
table-type Recordset objects, the source can only be a table name.
If you do not specify atype, then atable-type recordset is created if possible.
Otherwise, the Type value can be one of the following integer constants:

o dbOpenTabl e to open atable-type Recordset object

o dbOpenDynaset to open adynaset-type Recordset object

o dbOpenSnapshot to open asnapshot-type Recordset object

Options has severa possible values related to multiuser situations. It also can take
the value dbFor war donl y, which means that the recordset is a forward-only
scrolling snapshot. This type of snapshot is useful for rapid searching.

16.2.1 Note

A new Recordset object is automatically added to the Recordsets collection when you
open the object, and is automatically removed when you close it, using the Close method.

The code in Example 16.1 opens, and then closes, a recordset of each type, based on the
BOOKS table. It also displays (in the debug window) the value of the RecordCount
property for these recordsets. For a dynaset and snapshot type recordset, the RecordCount
property is the number of records accessed. Accordingly, to determine the total number
of records in such a recordset, we need to invoke the MovelLast method, thereby
accessing al records. For atable-type recordset, the RecordCount property gives the total
number of records. (We will discuss the MovelLast method later.)

Example 16.1. An OpenRecordset Method Example

Sub exaRecordsets()

Di m db As DATABASE

DimrsTabl e As Recordset
Di mrsDyna As Recordset
Di mrsSnap As Recordset

Set db = CurrentDb

Open tabl e-type recordset
Set rsTable = db. OpenRecordset (" Books")
Debug. Print "Tabl eCount: " & rsTabl e. RecordCount

Open dynaset-type recordset
Set rsDyna = db. OpenRecordset (" Books", dbOpenDynaset)
Debug. Print "DynaCount: " & rsDyna. RecordCount
rsbDyna. Movelast
Debug. Print "DynaCount: " & rsDyna. RecordCount

Open snapshot -type recordset
Set rsSnap = db. OpenRecordset (" Books", dbOpenSnapshot)
Debug. Print "SnapCount: " & rsSnap. RecordCount
rsSnap. Movelast
Debug. Print "SnapCount: " & rsSnap. RecordCount

Cl ose al
rsTabl e. Cl ose
rsDyna. Cl ose
rsSnap. Cl ose

End Sub

16.2.2 Default Recordset Types

If you do not specify atype in the OpenRecordset method, Jet will choose one for you
according to the following rules:

The default Type when opening a recordset on a Database object (first syntax) or
a TableDef object (second syntax) is a table-type Recordset object.

The default Type when opening a recordset on a QueryDef object is a dynaset-
type Recordset object. (Table-type recordsets are not available.)

The default Type when opening a recordset on an existing table-type Recordset
object is a dynaset-type recordset. If the recordset is not table-type, then the new
recordset has the same type as the original.

16.3 Moving Through a Recordset

All recordsets have a current position (pointed to by the current record pointer) and a
current record. Normally, the current record is the record at the current position.
However, there are two exceptions. The current position can be:

Before the first record
After the last record

in which cases there is no current record.

To change the current position (and hence the current record), Jet provides several Move
methods:

MoveFirst moves to the first record.

MovelLast moves to the last record.

MoveNext moves to the next record.
MovePrevious moves to the previous record.
Move[n] moves forward or backward n positions.

In each case the syntax has the form:

Recor dSet Var . MoveConmmand

16.3.1 BOF and EOF

The properties BOF (Beginning of File) and EOF (End of File) are set by Jet after each
move command. The concepts of BOF, EOF, current record, and current position can be
confusing. Perhaps the following notes will help.

16.3.1.1 Notes on the BOF and EOF properties

BOF is Tr ue when the current position is before the first record in the recordset,
not at the first record.

EOF is Tr ue when the current position is after the last record in the recordset, not
at the last record.

If either of BOF or EOF is Tr ue, then there is no current record.

If you open a recordset containing no records, then BOF and EOF are set to Tr ue.
If the recordset has some records, then Jet does atacit MoveFirst, so the first
record becomes the current record and both BOF and EOF are set to Fal se.

If you delete the last remaining record in a recordset, then BOF and EOF remain
Fal se until you attempt to change the current position.

16.3.1.2 Notes on the Move methods

If you use MovePrevious when the first record is current, the BOF property is set
to Tr ue, and there is no current record. A further MovePrevious will produce an
error and BOF remains Tr ue.

If you use MoveNext when the last record is current, the EOF property is set to
True, and there is no current record. A further MoveNext will produce an error
and EOF remains Tr ue.

If the recordset is a table-type recordset, then movement follows the current
index, which is set using the Index property of the Recordset object. If no index is
set (or if the recordset is not table-type), the order of returned recordsis not
predictable.

The most common use of the Move methods is to cycle through each record in a
recordset. Example 16.2 illustrates this. It creates both a table-type and a dynaset-type
recordset on BOOKS and prints (in the debug window) alist of PublDs and Titles. Note
the use of the:

Do While Not rs. EOF

statement, which is typical of thistype of procedure. Also, note the presence of this line:

rsTabl e. MoveNext

within the Do loop. It isa common error to forget to advance the current record pointer,
in which case the PC will enter an endless loop, in this case printing the same line over
and over again!

Example 16.2. Moving Through a Recordset
Sub exaRecor dset Move()

Di m db As DATABASE

DimrsTabl e As Recordset

DimrsDyna As Recordset

Set db = Current Db

Set rsTable = db. OpenRecordset (" Books")
Debug. Pri nt "Books indexed by PublD/Title:"

Move through table-type recordset using PubTitle index
rsTabl e. I NDEX = "PubTitle"
rsTabl e. MoveFi r st
Do Wil e Not rsTabl e. EOF
Debug. Print rsTable!PublD & " / " & rsTable!Title
rsTabl e. MoveNext
Loop

Debug. Pri nt

Move through dynaset-type recordset

Debug. Print "Dynaset-type recordset order:"

Set rsDyna = db. OpenRecordset (" Books", dbOpenDynaset)

rsDyna. MoveFi r st

Do Whil e Not rsDyna. EOF
Debug. Print rsDyna!PublD & " / " & rsDynalTitle
rsDyna. MoveNext

Loop

rsTabl e. Cl ose
rsDyna. Cl ose

End Sub

It is worth remarking that, for a dynaset-type or snapshot-type recordset, or for a table-
type recordset for which the Index property has not been set, you cannot predict or rely
on the order of records in the recordset.

In this connection, two Recordset properties of particular use are AbsolutePosition and
PercentPosition, which give the ordinal position of the current record in a dynaset-type or
snapshot-type recordset and the percent position, respectively. Let usillustrate by

modifying Example 16.2, as shown in Example 16.3.
Example 16.3. The Modified Recordset Position Example

Sub exaRecor dset Posi tion()

Dim db As DATABASE

DimrsDyna As Recordset

DimstrMsg As String

Set db = CurrentDb

Set rsDyna = db. OpenRecordset (" Books", dbOpenDynaset)

Move through recordset and di splay position
rsDyna. MoveFi r st
Do Wil e Not rsDyna. EOF

strMsg
strMsg

rsDyna! PubID & " / " & rsDynalTitle
strMsg & " /| " &

str$(rsDyna. Absol ut ePosi ti on)
strMsg = strMsg & " / " & _

For mat $(r sDyna. Percent Posi tion, "##")
Debug. Print strMsg

rsDyna. MoveNext
Loop

rsDyna. Cl ose

End Sub

16.4 Finding Records in a Recordset

The method used to search for arecord in arecordset is different for indexed table-type
recordsets than for other recordsets.

16.4.1 Finding Recordsin a Table-Type Recor dset

To locate arecord in an indexed table-type recordset, you use the Seek method. Note that
the recordset's Index property must be set before the Seek method can be used. The syntax
of the Seek method is:

Tabl eTypeRecSet Var . Seek compari son, keyl, key2,..

where comparison is one of the following strings:

"

and key1, key2,... are values corresponding to each field in the current index.

16.4.1.1 Notes

The Seek method searches through the specified key fields and locates the first
matching record. Once found, it makes that record current and the NoMatch
property of the recordset is set to Fal se. If the Seek method fails to locate a
match, the NoMatch property is set to Tr ue, and the current record is undefined.

If comparison is equal (=), greater than or equal to (>=), or greater than (>), Seek
starts its search at the beginning of the index. If comparison is less than (<) or less
than or equal to (<=), Seek startsits search at the end of the index and searches
backward unless there are duplicate index entries at the end. In this case, Seek
starts at an arbitrary entry among the duplicate index entries at the end of the
index.

The code in Example 16.4 uses the Seek method on the Title index of BOOKS to find the
first title that begins with the word "On."

Example 16.4. The Seek Method Example

Sub exaRecor dset Seek()

Di m db As DATABASE
DimrsTabl e As Recordset

Set db = CurrentDb
Set rsTable = db. OpenRecordset (" Books")

Find first book (if any) with title beginning
with the word "On".
rsTable.INDEX = "Title"
rsTabl e. Seek ">=", "On"
If Not rsTabl e. NoMatch Then
MsgBox rsTable! Title
El se
MsgBox "No title beginning with word "On'."
End If

rsTabl e. Cl ose

End Sub
16.4.2 Finding Recordsin a Dynaset-Type or Shapshot-Type Recor dset

To search for arecord in a dynaset-type or snapshot-type recordset, Jet provides various
Find methods:

FindFirst finds the first matching record in the recordset.

FindNext finds the next matching record, starting at the current record.
FindPrevious finds the previous matching record, starting at the current record.
FindLast finds the last matching record in the recordset.

The syntax of these methodsis:
Recordset Var. Fi ndvet hod criteria
where;

RecordsetVar represents an existing dynaset-type or snapshot-type Recordset
object.

criteriais a string expression, using the same syntax as a WHERE SQL clause
(but without the word WHERE).

It is important to note that, if a record matching the criteriais not located, the NoMatch
property is set to Tr ue, the current position is undetermined, and so there is no current

record. It is thus important to position the current record pointer. Thisis usually done by
setting a bookmark at the current record before starting the search. Then, if the search
fails, the original position can be restored using the bookmark. In fact, a bookmark is a
system generated string that Jet can use to identify arecord. Thus, by setting a bookmark
on the current record and then moving to another record, we can return to the
bookmarked record. Let us illustrate.

The code in Example 16.5 displays all book titles starting with "M" and then returns to
the current record before the search.

Example 16.5. A Find Method Example
Sub exaRecor dset Fi nd()

Di m db As DATABASE
Dimrs As Recordset
Di m bnkRet ur nHere As Vari ant

Set db Current Db

Set rs = db. OpenRecordset (" Books", dbOpenDynaset)

Di splay current title
Debug. Print "Current title: " & rslTitle

Set bookmark at current record
bnkRet ur nHere = rs. Booknmar k

Find books (if any) with first letter of title
equal to 'M.
rs.FindFirst "Left$(Title,1) ="'M"
Do Wil e Not rs.NoMatch
Debug. Print rs!Title
rs. FindNext "Left$(Title, 1) ="'M"
Loop

Return to original |ocation
rs. Bookmark = bnkRet ur nHere
Debug. Print "Returned to: " & rs!Title

rs. Close

End Sub

16.5 Editing Data Using a Recordset

Let us now discuss the methods used to edit, add, or delete data from a table-type or
dynaset-type recordset. Snapshot-type recordsets are static, so data in such a recordset
cannot be changed. Thus, in this section, the term recordset will refer to table-type or
dynaset-type recordsets. Recall that any changes made to a recordset are reflected in the
underlying tables or queries.

16.5.1 Editing an Existing Record
Editing an existing record is done in four steps:

Make the record the current record.

Invoke the Edit method for the recordset.
Make the desired changes to the record.
Invoke the Update method for the recordset.

EaB N

It isimportant to note that if you move the current record pointer before invoking the
Update method, any changes to the record will be lost.

The code in Example 16.6 changes al of thetitlesin a copy of the BOOKS table to
uppercase. Before running this code you should use the Copy and Paste menu options
(under the Edit menu) to make a copy of BOOKS, called Books Copy. (Select BOOKS in
the Database window, choose Edit —2Copy, then choose Edit —?Paste.)

Example 16.6. Editing Data With Recor dset
Sub exaRecordsetEdit ()

Di m db As DATABASE
Dimrs As Recordset

Set db = Current Db
Set rs = db. OpenRecordset (" Books Copy")

rs. MoveFi r st
Do While Not rs. EOF

rs. Edit
rs!Title = UCase$(rs! Title)
rs. UPDATE
rs. MoveNext
Loop
rs. Close
End Sub

To emphasize an earlier point, you might want to start over with afresh Books Copy table
and run the previous code without the line:

rs. Updat e

to see that no changes are made to the table.

16.5.2 Deleting an Existing Record

Deleting the current record is done with the Del ete method of the Recordset object. The
syntax is smply:

Recor dSet Var . Del et e

16.5.2.1 Notes

Deletions are made without any warning or confirmation. If you want
confirmation, you must write appropriate code to do so.

Note that, immediately after arecord is deleted, there is no valid current record.
The current record pointer must be moved to an existing record (usually by
invoking MoveNext).

The procedurein Example 16.7 deletes all books that have a price greater than $20.00 in
acopy of the BOOKS table, after asking for confirmation. Before running this code, you
should use the Copy and Paste commands to make a copy of BOOKS, called Books
Copy.

Example 16.7. Using the Delete Method with Recor dset
Sub exaRecor dset Del et e()

Denmonstrates del eting records

Del etes all books that have a price greater than
$20.00 in a copy of the BOOKS table.

Before running this, use Copy, Paste to nmake a
copy of the BOOKS table

Di m db As DATABASE
Dimrs As Recordset
Di m Del eteCt As Integer

Set db = Current Db

Set rs = db. OpenRecordset (" Books Copy")
DeleteCt =0

rs. MoveFi rst
Do While Not rs. EOF
If rs!Price > 20 Then
If MsgBox("Delete " &rs!Title & "(" & _
Format (rs!Price, Currency) & ")?", vbYesNo) = _
vbYes Then
rs.Del ete
Del eteCt = DeleteCt + 1
End | f
End | f
rs. MoveNext
Loop

rs.Cl ose

MsgBox Format $(DeleteCt) & " records deleted."

End Sub

16.5.3 Adding a New Record
Adding a new record to arecordset is done in three steps:

1. Invoke the AddNew method to create a blank record, which Jet makes the current
record.

2. Fill in the fields of the record.

3. Invoke the Update method to save the record.

The syntax of the AddNew method is simply:
Recor dset Var . AddNew

16.5.3.1 Notes

Once the Update method is invoked, the record that was the current record prior
to invoking the AddNew method again becomes the current record. To make the
new record curent, use a bookmark together with the LastModified property, as
shownin Example 16.8.

In atable-type recordset, the new record is placed in its proper order with respect
to the current index. In a dynaset-type recordset, the new record is placed at the
end of the recordset. If the recordset has a sort order (such as might be inherited
from an underlying query), the new record can be repositioned using the Requery
method.

Example 16.8 adds a new book to the BOOKS table, and makes it the current record. It
also demonstrates the With...End With construct.

Example 16.8. Adding a Record with Recordset
Sub exaRecor dset AddNew()

Di m db As DATABASE
Dimrs As Recordset

Set db = CurrentDb

Open recordset
Set rs = db. OpenRecordset (" Books")

Debug. Print "Current title: " & rslTitle

Use Wth...End Wth construct
Wth rs
. AddNew ' Add new record
' SBN = "0-000" ' Set fields

ITitle "New Book"

| Publ D 1

IPrice 100

. UPDATE ' Save changes.

. Bookmark = rs. Last Modi fi ed ' Go to new record
Debug. Print "Current title: " & rs!Title

End Wth

rs. Close

End Sub

Part VI: ActiveX Data Objects

17.1 What Is ADO?

In this chapter, we will discuss Microsoft's latest database programming object model,
called ActiveX Data Objects, or ADO. This object modd is a successor to DAO and is
intended to replace DAO. Of course, the arrival of ADO raises the question of whether to
redo existing DAO applicationsin ADO as well as whether to write new applicationsin
ADO.

Asto the former, | can't see any immediate need to do so unless the applicationwould
benefit by some new feature of ADO. One possibility is that ADO may provide superior
performance, but this is an ad hoc issue that will require experimentation in each
situation. As to the latter, this decision is somewhat of a moving target. While DAO is
more established and has proven to be reliable and stable, ADO is definitely Microsoft's
current wave of the future. For instance, the new VB6 DataBinding object moddl isjust a
front end for an OLE DB data client and is designed to use ADO. In order to keep up
with Microsoft's latest technologies—clearly a desirable goa—we will need to get on the
ADO bandwagon. We can only hope that Microsoft will offer us other good reasons to
join this bandwagon.

Actudly, ADO is the immediate successor to Remote Data Objects (RDO), which is, in
turn, the immediate successor to DAO. Since RDO did not get much first-string playing
time, we will not discuss it in this book. Our plan is to discuss the terminology related to
ADO and its underlying technology, called OLE DB. Then we will look at the ADO
object model and do afew examples, such as connecting to a Jet database, an Excel
Spreadsheet, and atext file. Thiswill give you a solid foundation in ADO and OLE DB
— certainly enough to understand the documentation (such asit is), and dig more deeply
if the need arises.

It appears from the documentation that | have seen (from Microsoft and from others) that
most writers feel that the most important use for ADO is to connect to an SQL Server
data provider. However, in my consulting practice, | seldom encounter SQL Server (or
perhaps | just unconsciously avoid it). Much more often, | encounter the need to connect
to an Excel spreadsheet, for instance. A great many business clients like to do database
management in Excel, probably because they are familiar with that application, since they

use it for financia analysis (which isits intended purpose). It seems that it is only the
VBA consultant, and not those who hire him or her, who appreciates how limited Excel is
when it comes to database management!

There seem to be three approaches to dealing with Excel "databases’ (and | have used all
three):

We can twist and coerce Excel into doing more database management than it is
intended to do. However, this creates bloated Excel workbooks with code that
runs at a snail's pace.

We can migrate the data from Excel into Access, where it really belongs.

We can connect directly to an Excel spreadsheet using Open Database
Connectivity (ODBC) for programming in ADO (or DAO).

We will discuss the latter approach in this chapter. This does seem to work, but for major
data manipulation, | definitely prefer the second alternative.

17.2 Installing ADO

We should mention a word about installing ADO. ADO isinstalled along with Office
2000, but not with Office 97.

To seeif you have ADO installed on your system, first open an Access code module and
then open the References dialog under the Tools menu. If you see an entry such as the
one highlighted in Figure 17.1, you're all set.

Figure 17.1. Referenceto the ADO object library

Helerences

Lrailable References:

[# Yigual Basic For Applcations il
[Micrcsaft Accass 8.0 Objact Lbrary

[utility

A Micresaft Da0 3,51 Ciaject Library

=

M Acciess

M Acte Setup Control Library

M Actimetdore conrol bype library Pricrity
M Active DLL to perform Migration af M.

O] Actd=Iru Shall

[APE Datahase Sehy Wizard

[4PI Declaration Loader

[Application Perfor mance Explorer 20L..

M Application Perfor mance Explorer Client ﬂ

H

Canoe:

[

Brorwse, .

#*

*

Microsoft Actvel Data Objects 2.0 Library
Path: ChProgram Fikes\Cormmon Files'systemhadoMSADO S DLL

Language: Standard

If, on the other hand, you have no such listing, you might want to do afile search of your
hard disk, looking for MSADOxx.DLL. If you don't have the file, then you can download
the required software components from Microsoft's web site. At the time of this writing,
the URL is http://www.microsoft.com/data/mdac2.htm (If this URL is no longer valid,
try searching for ADO or MDAC, which stands for Microsoft Data Access Components.)
Note that the small version of the software kit is over 5 MB! Enjoy.

Note also that there is considerable confusion when it comes to versions of ADO, a
situation that Microsoft does not seem to want to clarify. Version 2.0 refers to the
following items, as reported by the type library itself (or the VBA IDE References dialog
box). Note the different version numbers:

Implementation: msado15.dl|

Object library name: msado15.dl|

Object Library Version: 2.0

Documentation String: Microsoft ActiveX Data Objects 1.5 Library
Help File: msado10.hlp

On the other hand, version 2.1 of ADO refers to the following items:

I mplementation: msadol5.dll

Object library name: msado20.tlb

Object Library Version: 2.0

Documentation String: Microsoft ActiveX Data Objects 2.0 Library
Help File: (none)

Thus, version 2.1 uses the same implementation as version 2.0, which is presumably the
same as version 1.5! (Put another way, referring to Figure 17.1, if you highlight a
referenceto ADO 2.1, you will still see areference to the msado15.dll library!)

The type library has changed for version 2.1 of ADO, having been extracted from within
the implementing DLL. However, this new type library does not report a help file,
although the file ado20.chm appears to be such a file. (Accordingly, the type library
contains no context-sensitive help references.)

Frankly, this situation does not seem to make much sense to me, but the bottom lineis
that ADO appears to be implemented by the same file (msado15.dll) through several
"versions."

17.3 ADO and OLE DB

As we have seen, the DAO mode is the programming interface for the Jet database
engine. On the other hand, ADO has a more ambitious goa—it is the programming

model for auniversal data access interface called OLE DB. Simply put, OLE DB isa
technology that is intended to be used to connect to any type of data—traditional database
data, spreadsheet data, Web based data, text data, email data, and so on.

Technically speaking, OLE DB isaset of COM interfaces. An interfaceisjust a
collection of functions, also called services, with asimilar purpose. The term COM refers
to the Component Object Model, which is Microsoft's model for communication between
software components. Thus, smply put, OLE DB is a set of functions or services.

Figure 17.2 gives an overview of ADO and OLE DB from aVB programmer's
perspective.

Figure17.2. OLE DB and ADO

Data Comsumers Applications

Cursor Ouery

Service Providers Engine Processor

Data Providers DBMS | |Spreadsheet] | ISAM File

17.3.1 Data Stores

The purpose of OLE DB isto provide applications with universal data access—that is,
with a common method for accessing data in essentially any format, including traditional
database formats, text formats, spreadsheet formats, email formats, file system formats,
web-based formats, and more. OLE DB uses the term data store to refer to any data that
can be accessed through the OLE DB services. The term data source seemsto be a
synonym for data store, although this term is used in different ways in other related
contexts (such as the VB6 DataBinding object model). Indeed, the term "data source” is
one of the most abused in Microsoft's arsenal.

17.3.2 Data Providers

In order to create access to a particular type of data, a developer must write an OLE DB
data provider for that type of data store. Thisis usually done in a C-type devel opment
environment such as Visua C++, but it can be donein VB as well.

The purpose of an OLE DB data provider is to expose the data in data stores of a
particular type in tabular format, with rows (records) and columns (fields). In other
words, the role of a data provider is to make data from a data store look like a table, even
if the raw format does not resemble atable. For this reason, a data provider usually has
direct access to the data in data stores of that type.

Note that some data providers may also implement more sophisticated data retrieval and
manipulation techniques, such as SQL. However, thisis not arequirement. Thisisin
distinction to ODBC, where an ODBC data provider must implement aform of SQL. (For
more on this, see Appendix C.)

Hereis asampling of the OLE DB data providers available at the time of thiswriting:

Microsoft OLE DB Simple Provider (a JavaBeans-related interface)

Microsoft OLE DB Provider for ODBC Drivers (for Open Database Connectivity)
Microsoft OLE DB Provider for Oracle (for Oracle databases)

Microsoft Jet 3.51 OLE DB Provider (for Jet databases)

Microsoft OLE DB Provider for SQL Server (for SQL Server databases)
Microsoft OLE DB Provider for Directory Services (provides directory services,
that is, logon, administration, and replication services, for Windows NT Server
networks)

Two of these providers are especialy interesting for us: the Microsoft Jet 3.51 OLE DB
Provider and the Microsoft OLE DB Provider for ODBC Drivers. The ODBC provider is
the default data provider and can be used to connect to a variety of data sources, such as
an Excel spreadsheet or atext file, through ODBC. We will consider examples of how to
use these providers later in the chapter.

It seems as though the distinction between data provider and data store (or data source) is
often blurred. Thus, the term "data provider" may refer to a combination of both the data
store (the raw data) and the data provider (the software component that implements OLE
DB for that type of data store).

17.3.3 Data Consumers

An OLE DB data consumer is a software component that communicates with a data
provider in order to gain access to and manipulate a data store. To a data consumer, al
OLE DB data has a tabular format, with rows and columns.

17.3.4 Service Providers

In addition to the standard data providers, a developer may implement custom service
providers (see Figure 17.2), which do not have direct access to the data (in the parlance
of OLE DB, service providers do not own data). The purpose of a service provider isto
provide additional services (features) for that particular type of data store through the use
of OLE DB interfaces.

Here are some examples of OLE DB data services:

The Microsoft Data Shaping Service for OLE DB, which provides support for the
construction of hierarchical (shaped) Recordset objects from one or more data
providers. A hierarchical recordset is onein which the value in a particular field
can be another recordset object, which would then be considered a child of the
first (parent) recordset.

The Microsoft OLE DB Persistence Provider, which provides support for saving a
Recordset object to a file and restoring a Recordset object from afile.

The Microsoft OLE DB Remoting Provider, which enables a user on alocal
machine to invoke data providers that reside on a remote machine.

Actually, an OLE DB service provider is both an OLE DB consumer and an OLE DB
data provider. For example, consider a heterogeneous query processor. (The term
heterogeneous refers to the fact that the query processor can process queries that
reference data in more than one data source.) When a consumer asks the query processor
to provide data from multiple OLE DB data sources, the query processor acts like a
consumer when it submits the query to multiple data providers and retrieves the data from
the data sources (through each source's data provider), and it acts like a provider when it
returns the results of the query to the consumer that requested the data.

17.4 The ADO Object Model

OLE DB isdesigned for C programmers. In order to make it accessibleto VB
programmers, Microsoft created the ADO object model. This model gives VB
programmers access to certain aspects of the OLE DB paradigm, by allowing the
programmer to program an object model, rather than having to use the OLE DB API
functions directly. For instance, a VB programmer can get access to a data provider by
creating a Connection object and setting its Provider property. Thus, the Connection
object represents a connection to a data store, through a data provider.

The ADO object model is actually quite small, even smaller than the DAO object model.

Table 17.1 shows the complete list of ADO objects (along with corresponding collection
objects).

Table 17.1. The ADO Objects

Command

Connection

Error (Errors)

Field (Fields)

Parameter (Parameters)

Property (Properties)

Recordset

The ADO object model is shown in Figure 17.3. Unlike the DAO model, which has a
single object (DBENgine) at the top of the model, the ADO object model is headed by a
triumvirate of three externally creatable objects: Command, Connection, and Recordset.
(The Parameter object is also externally creatable.)

An externaly creatable object is an object that can be created directly using the VBA New
operator, as in:

Dimrs As New Recordset
or, alternatively:

Dimrs As Recordset
Set rs = New Recordset

Thus, as we will see, unlike DAO, a Recordset object can be created independently at the
"beginning” of an ADO session.

Let us emphasize that while DAO is centered around the DBENgine object, through
which amost al action begins, in ADO, as we will soon see, the "action” can begin with
any of the three main ADO objects. Connection, Command, or Recordset. If you are
accustomed to programming in DAO, this can take a bit of getting used to.

Incidentally, the treelike view of the ADO object model shown in Figure 17.3 is from my
Object Browser software program. For more on this, please see the card at the end of the
book. Y ou can also get more information on this object browser at my web site:
http://www.romanpress.com

Figure17.3. The ADO Object Model

—--70 Command
+ 7o Connection
70 Parameter
+ T Properties
—-?H Parameters
+ 7o Parameter
—| 7HEl Propetties
10 Property
4+ 70 Recordset
—--70 Connection
=7 Errors
7o Error
+ - 7H Properties
+ 7o Recordset
—-- 72 Recordset
-1 TH Fields
— 70 Field
T Properties +
+ TH Properies
+ 7o Recordset

Our plan isto take alook at the Command, Connection, Field, Property, and Recordset
objects, along with their properties and methods. (We will also touch lightly upon the
Parameter object.)

It is important to emphasize that some features (objects, properties, or methods) of the
ADO object model may not be implemented (or implemented fully) by a particular data
provider. Thisisin contrast to the DAO object model, where the entire model is
implemented. This is important enough to bear repeating:

To a large extent, it is up to a data provider to decide which features of the ADO
object model to support.

There are potentialy four ways in which to determine whether a particular feature is
supported by a particular data provider:

Check the documentation for the data provider (if you can find it).

Use the Supports method of the Recordset object to determine whether certain
features are supported (but this only applies to the Recordset object).

Use dynamic properties, discussed later.

Experiment. If you get the error message shown in Figure 17.4, then you know
that the operation that caused the message is not supported!

Figure 17.4. An " operation not supported’ message

]

Run-tirne error 3219
The operation requested by the application is not ellowed in this contesxd.

Cebug End Help |

Note that we will discuss most of the properties and methods in the ADO object model,
with the primary exception of those that relate to batch processing or transaction
processing.

For the record, batch processing refers to sending multiple commands at one time. When
communication between consumer and provider takes place over a retwork, this can save
considerable time. Transaction processing refers to the grouping of multiple operations
into a single transaction. At the end of the transaction, the programmer can commit the
operations or rollback the data source to its state prior to any of the operations in the
transaction. One use for thisis in updating related tables (as in transferring money from
one table to another). If the entire group of operations is not completed successfully, then
arollback is probably desirable.

17.4.1 The Three-Pronged Approach to Data Manipulation

Asfar as data manipulation is concerned (as opposed to data definition), the main
purpose of ADO isto create a recordset that provides access to the data. Asis indicated
by the object model in Figure 17.3, there are three ways to obtain a Recordset object. The
three methods are:

Create a Recordset object directly and use its Open method, asin:
Dimrs As ADODB. Recordset
Set rs = New ADODB. Recor dset

rs.Open ...

Create a Connection object and use its Execute method to return a recordset, asin:
Dimcn As ADODB. Connecti on
Dimrs As ADODB. Recor dset

cn. Provider = ...
cn. ConnectionString = ...
cn. Open

Set rs = cn. Execute(...)

Create a Command object:
Dim cmd As ADODB. Conmand

Dimrs As ADODB. Recor dset

Set cnd = New ADODB. Conmand
Set cnd. Acti veConnection = ...
cnd. CommandText = ...

Set rs = cnd. Execute

Note that we will tend to qualify all ADO objects with the prefix ADODB. Thiswill help
distinguish between ADO objects and DAO objects of the same name. In fact, the line:

Dimrs As Recordset

will be interpreted by VBA as either an ADO or a DAO recordset depending on which of
the references to the corresponding object library has higher priority in the References
dialog box (under the Tools menu). Since it is a dangerous practice to rely on this priority
(which can easily differ from system to system), it is best to always qualify:

Dimrsl As ADODB. Recordset
Dimrs2 As DAO. Recordset

The RecordsetExample procedure shown in Example 17.1 illustrates each of the previous
approaches to creating a recordset. Note, however, that only the first method (using the
Open method of the Recordset object) allows us to set various recordset options. The
other methods create read-only, forward-only recordsets. We will discuss thisissuein
detail at the appropriate time.

Example 17.1. Three Methods of Creating a Recordset Object
Sub Recordset Exanpl e()

Creating recordsets in different ways

Dimrs As ADODB. Recor dset
Dim cn As ADODB. Connecti on

Set up connection
Set cn = New ADODB. Connecti on
cn. Provider = "M crosoft Jet 3.51 OLE DB Provider"

cn. ConnectionString = "Data Source=D:\BkAccessl |\ AccessCode. ndb"
cn. Open

Use rs.Open with table (or SQL)
This is the nost flexible nmethod

Set rs = New ADODB. Recor dset
rs. Open "Nanes", cn, adOpenDynam c, adLockReadOnly, adCndTabl e

rs. MoveFi r st
Debug. Print "Use rs. Open:

Debug. Print "ActiveConnection: " & rs. ActiveConnection
Debug. Print "Source: " & rs. Source

Use cn. Execute
Al ways a read-only, forward only cursor

Set rs = cn. Execut e(" SELECT * FROM Nanes")

rs. MoveFi r st

Debug. Pri nt

Debug. Print "Use cn. Execute: "

Debug. Print "ActiveConnection: " & rs. ActiveConnection
Debug. Print "Source: " & rs. Source

rs.Cl ose

Use Command obj ect

Al ways a read-only, forward only cursor
Di mcnd As ADODB. Conmand

Set cnd = New ADODB. Command

Set cnd. Acti veConnection = cn

cnd. CommandText = "SELECT * FROM Nanes"
Set rs = cnd. Execute

rs. MoveFi rst

Debug. Pri nt

Debug. Print "Use Conmand object: "

Debug. Print "ActiveConnection: " & rs.ActiveConnection
Debug. Print "Source: " & rs. Source

rs.Cl ose

cn. Cl ose

End Sub

For future reference, let us note the output from the Debug.Print statements in Example
17.1. In each case, the ActiveConnection property of the recordset is the same. | have
broken the string into multiple lines to aid readability:

Provi der =M crosoft. Jet. OLEDB. 3. 51;
Persi st Security Info=Fal se;

User | D=Adm n;

Dat a Sour ce=D: \ BkAccessl I\ AccessCode. ndb;
Mode=Shar e Deny None;

Ext ended Properties=";

COUNTRY=0;

CP=1252;

LANG D=0x0409";

Local e Identifier=1033;

Jet OLEDB: System dat abase="";

Jet OLEDB: Regi stry Path="";

Jet OLEDB: Dat abase Password="";

Jet OLEDB: G obal Partial Bul k Ops=2

As we will see when we discuss connection strings in more detail later in the chapter, this
after-the-fact approach is one of the best (read: only) waysto actualy see what a
complete connection string looks like.

As for the Source property, here is the output:

Use rs.Open with table:
Source: select * from Nanes

Use cn. Execut e:
Source: SELECT * FROM Nanes

Use Conmmand obj ect:
Source: SELECT * FROM Nanes

We will refer to this output when we discuss the Source property.
Let us now take a look at the various objects in the ADO object model. Our intention is
not to be comprehensive, but to cover the main objects and their main properties and

methods. After looking at the ADO model, we will look at several examples of
connecting to a variety of data sources.

17.4.2 The Connection Object

The Connection object represents a connection to a data store, through a data provider.
17.4.2.1 Properties of the Connection object

The main properties of the Connection object are:

CommandTimeout

Sets the length of time to wait for a response to a command from the data source
before issuing a timeout error message.

ConnectionString
Holds the information needed to make the connection. This may include the name
of the data provider, the name of the data source, a password, and auser ID. We
will discuss connection strings at some length later in the chapter.

ConnectionTimeout

Sets the length of time to wait for a connection to be made before issuing a
timeout error message.

CursorLocation

A recordset's cursor (which is adevice used to traverse the recordset and which
defines the current recordset) can reside on the client side of the connection or on
the server side. Typically, client-side cursors offer more capabilities than server-
side, but server-side cursors may be better at reflecting changes to the data source
made by other users. Ultimately, the choice of which type of cursor to use
depends on the capabilities of the data provider and on the particular needs at the
time. We will see examples of using both types of cursors later on.

DefaultDatabase

Errors

Mode

By setting a default database for a particular connection, we can avoid the need to
qualify each table name in an SQL statement with the database name.

Returns the Errors collection of al Error objects (if any) for the previous
command.

Specifies the access mode for the connection and can be set to any one of the
following:

adModeUnknown

Permission has not yet been set or cannot be determined. This is the default.
adModeRead

Read-only permission.

adModeWrite

Write-only permission.

adModeReadWrite

Read/write permission.

adModeShareDenyRead

Prevents other users from opening the connection with read permission.

adModeShareDenyWrite

Prevents other users from opening the connection with write permission.

adModeShareExclusive

Prevents other users from opening the connection.

adModeShareDenyNone
Prevents other users from opening the connection with any permission.
Provider

Specifies the data provider. Note that the data provider can alternatively be
specified in the ConnectionString property.

State

This read-only property returns the state of the connection. The possible values
are given by the following enum:

Enum Obj ect St at eEnum
adStateCl osed = 0
adStateOpen = 1
adSt at eConnecting = 2
adsSt at eExecuting = 4
adSt at eFetching = 8

End Enum

Version

Returns the ADO version number as a string.
17.4.2.2 Methods of the Connection object
The main methods of the Connection object are:

Close
Closes the connection. Its syntax is ssmply:

cn. Cl ose
Execute

Executes acommand. A command can be a database query, an SQL statement, a
stored procedure, or a provider-specific command in text form. We emphasize
that the form of command depends on the data provider. For instance, not all data
providers support stored procedures or even SQL statements.

Note that some commands return a recordset and some do not. Accordingly, there
are two syntaxes for the Execute method:

Syntax for a non recordset-returning conmand
Connecti onObj ect . Execut e CommandText, RecordsAffected, Options

Syntax for a recordset-returni ng conmmand
Dimrs As ADODB. Recor dset
Set rs =
Connecti onCbj ect . Execut e(CommandText, Recor dsAffected, Options)

We will see several examples of the use of the Execute method.

Recor dsAf f ect ed isaLong parameter that we must supply. ADO will fill this
variable with the number of records that are affected by the command. The
optional Options parameter can assume a variety of values indicating how the data
provider should interpret the CommandText argument. The possible values are:
adCmdText

CommandText is atextual definition of a command.

adCmdTable

CommandText is atable name. The rows of this table should be returned by an
SQL query created internally by ADO.

adCmdTableDirect

CommandText is a table name. The provider should return al rows from this
table.

adCmdStoredProc

CommandText is the name of a stored procedure.

adCmdUnknown

The type of command in the CommandText argument is not known.
adAsyncExecute

The command should execute asynchronoudly. (This means that the command
will execute and then fire the ExecuteCompl ete event to signal that it has
completed.)

adAsyncFetch

The remaining rows after the initial quantity specified in the CacheS ze property
should be fetched asynchronoudly.

Open

Opens a connection; that is, it creates an actua connection to the data provider. Its
syntax is.

connecti on. Open ConnectionString, UserlD, Password, Options

where all parameters are optional. The Connect i onSt ri ng parameter isthe tricky
one here. We will discuss connection strings at length later in the chapter. Note
that the Connection object has a ConnectionString property that can be used to set
the connection string as well. However, the Connect i onSt ri ng parameter will
override any setting of the ConnectionString property.

Microsoft warns that we should not pass UserID and password values in both the
ConnectionString property and the Connect i onSt ri ng parameter of the Open
method, for this may lead to unpredictable results. (And here | thought that
computers did not produce unpredictable results.)

Note that it is important to close a connection using the Close method when the
connection is no longer required. However, closing the connection does not
remove the Connection object from memory, so its properties may still be

accessed or dtered. In order to remove the Connection object from memory, we
must set the variable that references the Connection object to Not hi ng.

The Opt i ons parameter can assume one of the following values:

adConnectUnspecified

The default value. Opens the connection synchronously. Code execution pauses
until the connection is made.

adAsyncConnect

Opens the connection asynchronously. The ConnectComplete event is fired when
the connection is complete.

OpenSchema

Gets database information from the data provider. The simplest syntax for this
method is:

Connecti onObj ect. OpenSchema(Quer yType)

where Quer yType can be one of several constants specifying the type of
information to retrieve. The method returns a Recordset object with the requested
data

For instance, the following code lists the tables in a Jet database:

Get list of tables
Set rs = cn. OpenSchema(adSchemaTabl es)

Do Wil e Not rs. EOF
Debug. Print rs! TABLE NAME & " Type: " & rs! TABLE TYPE
rs. MoveNext

Loop

17.4.3 The Recor dset Object

A Recordset object represents a recordset. To quote the documentation, "When you use
ADO, you manipulate data almost entirely using Recordset objects.”

Recordsets are created using the Open method with code such as:

Dimrs As ADODB. Recor dset
Set rs = New ADODB. Recor dset

rs. Cursor Type = adOpenDynam c
rs. CursorLocati on = adUseServer
rs. Open "SELECT * FROM Nanes", c¢n

As we have seen, a Recordset object may also be created using the Execute method of the
Connection object or the Command object.

Let us reiterate that even though the raw data in a particular data store (such as atext file
or mail store) may not have the appearance of atraditional table with rows and columns,
all ADO recordsets are structured with rows (records) and columns (fields). In fact, that is
the primary purpose of ADO—to give all forms of raw data a table-like format.

17.4.3.1 Cursors

A recordset cursor is adevice that is used to traverse the records (or rows) in a recordset.
Recordsets (and their cursors) can reside on the client side of the connection or on the
server side. Although we will not discuss remote connections, that is, connections over a
network, in this introduction to ADO, the terminology is still vaid. For instance, if we
connect to alocal Excel spreadsheet using the OLE DB provider for ODBC, then the
dividing line between client and server is still the connection, even though both "sides" of
this connection are on the same computer.

The cursor location is set using the CursorL ocation property of the Recordset object; its
value can beadUseCl i ent Or adUseSer ver.

ADO also supports four types of cursors, determined by the setting of the CursorType
property:

Dynamic cursor (Cur sor Type = adOpenDynam ¢)

This type of cursor is automatically updated to show additions, deletions, and
edits to the recordset made by other users. It also permits al forms of movement
through the recordset that do not use bookmarks, as well as those that do use
bookmarks if the provider supports bookmarks. (Note, however, that the provider
must support bookmarks or backward cursor movement in order to use the
MovePrevious method.)

Keyset cursor (Cur sor Type = adOpenKeyset)

This type of cursor is similar to adynamic cursor, except that it does not show
records that have been added by other users, nor does it allow access to records
that have been deleted by other users. However, edits by other users are visible.
Keyset cursors must support bookmarks and therefore allow all forms of
movement through the recordset.

Static cursor (Cursor Type =adQOpenStatic)

Thistype of cursor provides a static copy of a set of records. Thisislike a
snapshot DAO recordset. Static cursors are used to find data or to generate
reports. They must support bookmarks and therefore allow all forms of recordset
movement. However, additions, deletions, and edits by other users are not visible.
Note that all client-side cursors are static cursors. Even if we specify a different
type of cursor for aclient-side cursor, ADO will open a static cursor instead.

Forward-only cursor (Cur sor Type = adQpenFor war dOnly)

This type of cursor behaves identically to a dynamic cursor except that it permits
only forward scrolling. This is the analog of supplying the dbFor war dOnl y
constant as an argument to the DAO OpenRecordset method. As with forward-
onl y DAO recordsets, forward-only cursors perform more efficiently when we
need to make only a single pass through the recordset.

17.4.3.2 LockType

The LockType property is a key property for recordsets. This property indicates the type
of lock that is placed on the records during editing. It can be one of the following values:

adLockReadOnl y

Records are read-only. Note that this is the default value, which means that if we
want to do any editing, we must set this property to another value.

adLockPessi m stic

In this case, the data provider ensures successful editing of records, usualy by
locking records at the data source as soon as the Edit method is called. Thisis
termed pessimistic locking. It occurs on a record-by-record basis.

adLockOptim stic

In this case, the provider locks records only when the Update method is called.
Thisis termed optimistic locking. It occurs on arecord-by-record basis.

adLockBat chOptim stic
Optimistic batch updates. Thisis required for batch update mode.

We emphasize that adLockReadOnl y is the default value, which means that if we want to
do any editing, we must set this property to another value.

17.4.3.3 Properties of the Recordset object
The main properties of the Recordset object are described below.

AbsolutePage, PageCount, and PageSize

To help the user page through the datain a recordset (especially when that datais
intended to be displayed on the Web), ADO alows us to group the datainto
logical pages. (The page count starts at 1, by the way.) The PageSize property is
used to specify the number of records per page (the default is 10 records per
page).

The PageCount property returns the number of pagesin the recordset. If a data
provider does not support pages, it will indicate this by always returning a
PageCount value of —1.

The AbsolutePage property is used to either set the current record at the beginning
of apage, or to return the page number of the current record. The return value of
AbsolutePage may be a page number or one of the following values:
adPosUnknown

Indicates that the current position is unknown, the recordset is empty, or the data
provider does not support pages.

adPosBOF
Indicates that the current record pointer is pointed at BOF (BOF is Tr ue).

adPosEOF

Indicates that the current record pointer is pointed at EOF (EOF is Tr ue).

AbsolutePosition

This property works like the corresponding DAO property; namely, it provides
the ordinal position of the current record in the recordset (the first positionis
position 1). Aswith DAO, however, the AbsolutePosition property can change
when another record is deleted or if the recordset is refreshed. Thus, we cannot
rely on the value of AbsolutePosition to return to a given record at alater time. To
mark arecord for later retrieval, we should use bookmarks.

ActiveConnection

The ActiveConnection property of arecordset returns the connection string for the
corresponding connection. If there is no active connection, it returns Not hi ng. For
instance, in the code:

Dimrs As New ADODB. Recor dset

Debug. Print rs. ActiveConnection
Debug. Print rs. ActiveConnection Is Nothing

the second line will produce a runtime error, whereas the third line will return
True.

Thus, if the recordset r s is associated with the connection cn, then the following
values are the same:

cn. ConnectionString
rs. ActiveConnection

For an open recordset, this property is read-only (as you would expect). However,
for a closed recordset, we can set the ActiveConnection property to avalid
connection string and ADO will open the connection for us automatically. Setting
the property to Not hi ng will disconnect the recordset from any provider.

Note that the ActiveConnection property can be set to either a string that specifies
the connection or to a valid Connection object variable name.

We will have much more to say about connection strings later in the chapter. For
now, we refer the reader to the RecordsetExample subroutine in Example 17.1 for
an example of the ActiveConnection property. As mentioned earlier, querying the
ActiveConnection property is one of the best ways to get the full syntax of a
connection string for a data provider. Needing to resort to this techniqueis a
reflection on the poor quality of the documentation for OLE DB data providers,
especially when it comes to connect strings.

BOF and EOF

Aswith DAO, these Boolean properties indicate whether the current record
pointer lies before the first record (BOF is Tr ue) or after the last record (EOF is
True). In either case, there is no current record.

Bookmark

Each record in an ADO recordset has a bookmark associated with it. (A bookmark
has Variant data type.) We can retrieve this bookmark and store it in a variable

with code such as:
bk = rs. Bookmark
We can then return to this record at any time by writing:

rs. Bookmark = bk
CacheSize

Specifies the number of records that will be placed in the client-side memory

buffer at one time. Put another way, it is the number of records that are fetched
from the data store at one time.

CursorLocation

As discussed earlier, this property specifies the location of the cursor: client-side
or server-side.

CursorType

As discussed earlier, this property specifies the type of cursor: dynamic, keyset,
static, or forward-only.

EditMode

Like DAO, ADO uses atemporary editing buffer for the current record. The
EditMode property indicates the current status of the data in this buffer. Its

possible values are:

adEdi t None

Indicates that no editing operation is in progress.
adEdi t I nProgress

Indicates that the data in the current record buffer has been modified but has not
yet been saved.

Fields

Filter

adEdi t Add

Indicates that the AddNew method has been invoked, and the new datain the
current record buffer has not yet been saved.

adEdi t Del et e

I ndicates that the current record has been deleted.

Returns the Fields collection for the given recordset. We will discuss Field
objects later in the chapter.

Filters the current recordset by restricting the records that are visible. Thus, for
instance, after executing the code:

rs.Filter = "Lastnane = '"Smth' OR FirstNane Like 'A*""

the recordset referenced by r s isfiltered so that we have access only to those
records that meet the filter condition. We can release the filter by writing:

rs.Filter = ""

Note that after setting a filter, the current record pointer is moved to the first
record that fits the filter criteria. Note also that Microsoft warns that it is
preferable to define and open a new recordset on the data source than to make
extensive use of filters.

LockType

This property, discussed earlier, indicates the type of lock that is placed on the
records during editing.

MaxRecords

Limits the number of records returned by a query. The default value of o indicates

that all matching records should be returned. This property is read-only for an
open recordset.

RecordCount

Indicates the number of records in an open recordset. The property returns - 1
when ADO cannot determine the number.

Note that if the recordset supports either approximate positioning or bookmarks
(asindicated, for example, by the Supports method discussed |ater), then the
RecordCount value is aways correct regardless of whether the recordset has been
fully populated by using the Movel ast method. Thus, if neither positioning nor
bookmarks are supported, the only way to make sure that the RecordCount
property is accurate is to fully populate the recordset, which may place a
significant drain on resources because all records in the recordset will need to be
retrieved from the data source.

Source

This Variant property gives the source of the data for the recordset. It is read-only
when the recordset is open. It can be set to avalid Command object variable
name, an SQL statement, a table name, or a stored procedure call. (As aways
with ADO, this depends on the level of support from the data provider.) See the
Recor dsetExample subroutine in Example 17.1 for examples of the Source

property.
State

This read-only property returns the state of the recordset. The possible values are
given by the following enum :

Enum Obj ect St at eEnum
adStateCl osed = 0
adStateOpen = 1
adSt at eConnecting = 2
adSt at eExecuting = 4
adSt at eFetching = 8

End Enum

17.4.3.4 Methods of the Recordset object
The main methods of the Recordset object are described in this section.

AddNew

Adds new records to a recordset, provided that the data provider and the current
cursor type support this feature, of course. The general syntax is:

recordset. AddNew Fi el ds, Val ues

whereFi el ds isan optional single field name or an array of field names ard the
optional val ues isthe corresponding value (for asingle field) or value array (for
afield array) to assign to the fields in the new record. For instance, the code:

rs. AddNew Array(Last Name, FirstNanme), Array("Einstein", "Albert")

adds a new record with values Last Nane = " Ei nst ei n" and Fi r st Name =
"Al bert".

Clone
Creates a new Recordset object that is a duplicate of the Recordset object to
which it is applied. It isimportant to note, however, that a cloned Recordset
object is not entirely independent of its parent. Here is what the documentation
says about cloned recordsets:
Changes made to one Recordset object are visible in all of its clones regardless of
cursor type. However, after you execute Requery on the original Recordset, the
clones will no longer be synchronized to the original.

Closing the original Recordset does not close its copies; closing a copy does not
close the original or any of the other copies.

Y ou can only clone a Recordset object that supports bookmarks. Bookmark
values are interchangeable; that is, a bookmark reference from one Recordset
object refers to the same record in any of its clones.

Close
Closes the recordset.

Delete

Deletes one or more records. Its syntax is:

rs.Del ete AffectRecords

where AffectRecords is one of the following constants:

adAf f ect Current

Deletes the current record.

adAf fect Group

Causes al records that match the current filter only to be deleted.
adAf fect Al l

Deletes all records.

adAf fect Al | Chapters

Deletes all chapter records.

GetRows

Move,

This method retrieves multiple records into an array. The syntax is:
array = recordset. Get Rows(Rows, Start, Fields)

Rows is an optional Long parameter that specifies the number of rows to retrieve.
Its default is adGet RowsRest , indicating that the method should retrieve all of the
remaining records in the recordset. The optional St art parameter specifies the
starting row to retrieve. It should be either a bookmark or one of the values:
adBookmar kCur rent (Start at the current record; this is the default),

adBookmar kFi rst (start at the first record), or adBookmar kLast (Start at the last
record). Finally, Fi el ds can be asingle field name (or ordinal position) or an
array of field names (or ordinal positions). If the Fi el ds parameter is not missing,
only those fields will be returned; otherwise all fields will be returned.

Note that the DAO version of the GetRows method has a different syntax.
Here are some things to keep in mind concerning the GetRows method:

The first subscript in the array identifies the field and the second identifies
the record. Thisis counterintuitive.

The lower bound on the returned array is 0, whereas the upper bound is
one less than the number of records actualy returned. Thus, if we specify
more rows than are returned, the upper bound provides a way to get the
number of rows actually returned. (Use the VBA UBound function to get
the upper bound and add 1 to get the number of records returned.)

After acall to GetRows, the current record is the next unread record, or
EOF if there are no more records. Thus, subsequent callsto Get Rows can
be made without specifying the st art parameter.

MoveFirst, MovelLast, MoveNext, MovePrevious
These methods are used to move the current record pointer.
The Move method has the syntax:

recordset. Move NunmRecords, Start

where NunRecor ds IS a Long specifying the number of records to move the
current record pointer relative to st ar t , which is either a bookmark or one of the
values adBooknar kCur r ent , adBookmar kFi r st , Of adBookmar kLast .

According to the documentation, "the Move method is supported on all Recordset
objects." Of course, exactly what this meansis unclear. Does it refer to al types
of recordsets for a provider that supports the Move method or does it mean that all
providers must support this method?

If you are experiencing performance problems with Move, you might want to
consider whether the CacheSize setting is causing too many retrievals. It may be
possible to improve performance by setting the CacheSize value to a larger
number. Thisis a tradeoff between performance and memory usage (as always).

Note that if the Recordset object to which we apply the Move method is forward-
only, we can still pass aNunRecor ds value that is less than zero, provided that the
destination is within the current set of cached records. If not, an error will occur.
On the other hand, a call to MovePrevious will generate an error even if the
resulting move lies within the currently cached group of records.

The MoveFirst, Movel ast, MoveNext, and MovePrevious methods work
smilarly to those methods in DAO. Note, however, that the Recordset object
must support bookmarks or backward cursor movement in order to use the
MovePrevious method. Otherwise, the method will generate an error. On the other
hand, the MoveFirst method will work on aforward-only recordset, but it may
cause the provider to re-execute the command that retrieved the Recordset object
in the first place.

NextRecordset

Open

It is possible to set up a compound command that contains several individua
commands. For instance, the statement:

SELECT * FROM t abl el; SELECT * FROM t abl e2

consists of two separate SQL statements. If we execute this command using the
Execute method, ADO will execute and retrieve only the first SQL statement. To
execute the second command and get the corresponding recordset, we use the
NextRecordset method. For more on this, we refer the reader to the ADO
documentation.

The Open method opens a recordset. The full syntax is:

recordset. Open Source, ActiveConnection, CursorType, LockType,

Opti ons

Aswith the Connection object, the parameters are optional and can be specified
separately using properties of the Recordset object.

The Sour ce parameter specifies the data source. Setting this parameter will
override the setting of the Sour ce property (if any). The parameter can be set to a
Variant that identifies avalid Command object variable name, or to an SQL
statement, a table name, or a stored procedure call (if supported by the data
provider, as usual).

Setting the Act i veConnect i on parameter will override the current value of the
ActiveConnection property (if any). The setting can be the name of avalid
Connection object variable, or a string that describes the connection. This will
cause ADO to establish (open) the connection.

For adiscussion of the Cur sor Type and LockType parameters, see the Cursors
and LockType sections in the discussion of the Recordset Object earlier in this
chapter. Note that if we set either of these parameters, the setting will also be
made automatically in the corresponding property value.

The Opt i ons parameter is used when Sour ce isastring (not a Command object)
to identify the type of the Sour ce argument. It can be one of the following values:

adCmdText
Treats the Sour ce argument as a text string that describes a command.

adCmdTable

Treats the Sour ce argument as atable name. ADO should generate an SQL query
to return the table rows.

adCmdTableDirect

Treats the Sour ce argument as a table name and returns all rows.
adCmdFile

Returns a recordset from the file named by Sour ce.
adCmdStoredProc

Treats the Sour ce argument as the name of a stored procedure.
adCmduUnknown

The Sour ce argument type is unknown.

These values can be combined with values that relate to asynchronous fetching of
records:

adAsyncExecute

The Sour ce should be executed asynchronously. A FetchComplete event will fire
when the operation is complete.

adAsyncFetch
The initial quantity specified in the Initial Fetch Size property is fetched, any
remaining rows are fetched asynchronously. If arequired row has not yet been

fetched, further code execution is blocked (halted) until the requested row
becomes available.

adAsyncFetchNonBlocking
Similar to adAsynchFet ch, except that further code execution is never blocked. If

the requested row has not been fetched, the current row automatically moves to
the end of thefile.

It isimportant to close a recordset using the Close method when the recordset is
no longer required. However, closing the recordset does not remove the Recordset
object from memory, so its properties may still be accessed or altered. In order to
remove the Recordset object from memory, we must set the recordset variable
that references the object to Not hi ng.

Requery
Updates the recordset by requerying the data source.

Resync
Resynchronizes the recordset with the underlying data. It differs from the Requery
method in that it does not re-execute the original query that produced the

recordset. Hence, it will cause any changes to existing records to be visible, but it
will not show any new records.

Supports

Gets information on what features are supported for recordsets of the specified
type by the data provider. The syntax is:

bool ean = recordset. Supports(Cursor Options)

The return value is Tr ue if the feature described by Cur sor Opt i ons is supported
and Fal se otherwise.

Hereisalist of the possible values for cur sor Opt i ons:

adAddNew

The AddNew method is supported.

adApproxPosition

The AbsolutePosition and AbsolutePage methods are supported.
adBookmark

The Bookmark property is supported.

adDelete

The Delete method is supported.

adHoldRecords

With respect to transaction processing, we can retrieve more records or change
the next retrieve position without committing all pending changes.

adMovePrevious
The MovePrevious method is supported. Also, Move and GetRows can be used to

move the current record pointer backwards without requiring the use of
bookmarks.

adResync

The Resync method is supported.
adUpdate

The Update method is supported.
adUpdateBatch

Batch updating is supported.
adSeek

The Seek method is available.

adindex

The Index property with which to name an index is available (ADO 2.1 only).

To illustrate, the SupportsExample procedure in Example 17.2 compares static
and dynamic cursors for a Jet connection.

Example 17.2. The SupportsExample Procedure
Sub Support sExampl e()

Conpares support options for static and dynam c cursors

Dimrs As ADODB. Recor dset
Di m cn As ADODB. Connecti on
Di m | RecordsAffected As Long

' Set up connection

Set cn = New ADODB. Connecti on

cn. Provider = "M crosoft Jet 3.51 OLE DB Provider"

cn. ConnectionString = "Data Source=D:\ BkAccessl |\ AccessCode. ndb"
cn. Open

Set rs = New ADODB. Recor dset

Check support options for server-side static cursor

rs. CursorlLocati on = adUseServer

rs. Qpen "SELECT * FROM Nanes", cn, adOpenStatic, adLockOptimstic
' Get recordset support

Debug. Pri nt

Debug. Print "Server-Side Static Recordset:"

Debug. Pri nt "adAddNew. " & rs. Supports(adAddNew)

Debug. Pri nt "adBookmark: " & rs. Supports(adBookmark)

Debug. Print "adDelete: " & rs. Supports(adDel ete)

Debug. Print "adFind: " & rs. Supports(adFi nd)

Debug. Print "adUpdate: " & rs. Supports(adUpdate)

Debug. Pri nt "adMovePrevious: " & rs. Supports(adhovePrevi ous)

rs.Cl ose

Check support options for server-side dynam c cursor
rs. CursorlLocati on = adUseServer

rs. Open "SELECT * FROM Nanes", cn, adOpenDynami c,
adLockOptim stic

' Get recordset support

Debug. Pri nt

Debug. Print "Server-Side Dynam c Recordset:"

Debug. Print "adAddNew. " & rs. Supports(adAddNew)
Debug. Pri nt "adBookmark: " & rs. Supports(adBookmark)
Debug. Print "adDelete: " & rs. Supports(adDel ete)

Debug. Print "adFind: " & rs. Supports(adFi nd)

Debug. Print "adUpdate: " & rs. Supports(adUpdate)
Debug. Pri nt "adMovePrevious: " & rs. Supports(adhovePrevi ous)

rs.Cl ose

cn. Cl ose

End Sub
The output is:

Server-Side Static Recordset:
adAddNew. True

adBookmar k: True

adDel ete: True

adFi nd: True

adUpdate: True
adMovePrevi ous: True

Server-Side Dynam ¢ Recordset:
adAddNew. True

adBookmar k: Fal se

adDel ete: True

adFi nd: True

adUpdate: True

adMovePrevi ous: True

Thus, we can see that static cursors support bookmarks, whereas dynamic cursors
do not.

Update

Updates the current record after editing. The method can be used to set values as
well, since its general syntax is:

recordset. Update Fields, Values

whereFi el ds isasingle field name or an array of field names and val ues are the
corresponding values to assign to the fields in the record. For instance, the code:

rs. Update Array(LastName, FirstNane), Array("Einstein", "Albert")

updates the record by setting Last Name = " Ei nst ei n" and Fi r st Nanme ="
Al bert™".

17.4.4 The Command Object

A Command object represents a definition of a command that may be executed by a data
provider. We have seen an example (the RecordsetExample subroutine in Example 17.1)
of how a Command object can be used to create a recordset. The RecordsetExample
procedure also demonstrates that a Command object is not always required in order to
execute a command. However, a Command object is required when we want to execute
the same command more than once. Also, a Command object is needed to pass
parameters to a query.

17.4.4.1 Command objects and connections

The ActiveConnection property is used to specify the connection over which the
command will pass. The ActiveConnection property can be set to either atext string that
describes the connection or to a Connection object variable that refersto avalid
connection.

It is important to note that if we want to assign a single connection to multiple commands
(at different times), a connection object variable should be used. For if we use atext
string, ADO will create a new connection object for each command, even if the
connection string is the same.

Setting the ActiveConnection property to Not hi ng disassociates the Command object
from the current connection and causes the data provider to release any associated
resources on the data source. This may or may not be required, depending on the data
provider, before associating a new Connection object to the command.

17.4.4.2 Properties of the Command object

Let us discuss the main properties of the Command object.

ActiveConnection

Sets the connection over which the command will be sent. As discussed earlier, it
can be atext string (a connection string) or a Connection object variable.

CommandText
Sets (or retrieves) the actual command. Thisis usually an SQL statement, but it
can be any string that is recognized as a command by the data provider (such asa
stored procedure call). According to the documentation, some data providers may
alter the text of a command string. We can view any changes by examining the
value of the CommandText property.

CommandTimeout

Sets or returns the length of time to wait for the command to execute before
displaying atimeout error. The default is 30 seconds.

CommandType

Sets the type of command; it has the same values as the Opt i ons parameter in the
Open method of the Recordset object:

adCmdText

A text string that describes a command.

adCmdTable

A table name whose records are returned by generating an internal SQL query.

adCmdTableDirect

A table name whose records are retur ned.

adCmdFile

The name of afile containing a recordset.

adCmdStoredProc

The name of a stored procedure.

adExecuteNoRecords

CommandText is acommand or stored procedure that does not return rows. This
value is aways combined with either adCndText Or adCndSt or edPr oc.

adCmdUnknown

Unknown type.

Name

This property can be used to assign a name to a command.

Parameters

Returns a Parameters collection, which contains the parameters that are required
by the command (if any). We will not discuss parameterized queries for ADO in
this book.

Prepared

If we set the Prepared property to Tr ue, the data provider will compile the
command specified in the CommandText property, assuming that it supports this
feature. This may sow execution the first time that the command is executed.
However, subsequent executions of the same command should proceed more
quickly. Note that if the data provider does not support command compilation, it
may return an error as soon as this property is set to Tr ue, or it may smply ignore
the request to prepare the command and set the Prepared property to Fal se.

17.4.4.3 Methods of the Command object

L et us discuss the main methods of the Command object.

CreateParameter

Creates a Parameter object. A Parameter object represents a parameter that is
associated with a parameterized query. We will not discuss parameterized queries
for ADO in this book.

Execute

Executes the command represented by the Command object. As with the Execute
method of the Connection object, there are two possible syntaxes based on
whether or not the command returns a recordset:

Syntax for a non recordset-returning command
CommandObj ect . Execut e Recor dsAffected, Paraneters, Options

Syntax for a recordset-returni ng comand
Dimrs As ADODB. Recor dset
Set rs = CommandObj ect . Execut e(Recor dsAf f ect ed, Paraneters,

Options)
Note that all parameters are optional.

TheRecor dsAf f ect ed parameter is aLong that returns the number of records
affected by the command. The Par anet er s parameter isa Variant array of
parameters that may be required by the SQL statement (if any). The valuesin this
array will override any parameter values set through the Parameters property.
(The order of parametersin the array is the order in which the parameters are
passed.)

Finally, the Opt i ons parameter is equivalent to the CommandType property (and
has the same possible values).

17.4.5 The Property Object and Dynamic Properties
The ADO objects:

Recordset
Parameter
Field
Connection
Command

each have a Properties property that returns a Properties collection. This collection
contains a Property object for each dynamic property of the object.

ADO objects can have two types of properties: built-in and dynamic. Built-in properties
are the familiar properties implemented by ADO itself. These are the properties that we
have been discussing up to now. Note that the Properties collection does not contain

Property objects for built-in properties.

On the other hand, dynamic properties are defined by the data provider and are thus
specific to a particular data provider. There is one Property object in the Properties
collection for each dynamic property, and this Properties collection provides the only
method for referencing a dynamic property, asin:

bj ect. Properties(PropertyNane)

or:

bj ect. Properties(Propertyl ndex)

Dynamic properties have four built-in properties of their own:

Name

|dentifies the property, as in the previous code.

Type
An integer that specifies the data type of the property. It can be one of the values
in Table17.2.

Table 17.2. The Values of the Type Property

adEmpty =0 adlUnknown = 13 adNumeric = 131
adSmallint = 2 adDecimal = 14 adUserDefined = 132
adinteger = 3 adTinylnt = 16 adDBDate = 133
adSingle=4 adUnsignedTinylnt =17 adDBTime = 134
adDouble =5 adUnsignedSmallint = 18 adDBTimeStamp = 135
adCurrency = 6 adUnsignedint = 19 adVarChar = 200
adDate =7 adBigint = 20 adLongVarChar = 201
adBSTR =8 adUnsignedBigint = 21 adVarWChar = 202
adIDispatch=9 adGUID =72 adLongVarWChar = 203
adError = 10 adBinary = 128 adVarBinary = 204
adBoolean = 11 adChar = 129 adLongVarBinary = 205
adVariant = 12 adWChar = 130

Note also that the Type property can be set to a digunction (ORing) of one of the
congtantsin Table 17.2 and one of the following values:

adArray

Indicates that the Type value is an array of values.

adByRef

Indicates that the Type valueis a pointer to a value.

adVector

Indicates that the Type value is a DBVECTCR structure, as defined by OLE DB.
This structure contains a count of elements and a pointer to data of type

DBTYPE_VECTOR. For more on this, see the ADO documentation.

For example, the vaue:

adl nt eger OR adArray

represents an array of integers.
Value

A Variant containing the value of the dynamic property.
Attributes

A Long that describes attributes of the property. It can be a sum of one or more of
the following values:

adPropNotSupported
The property is not supported by the data provider.
adPropRequired

The user must specify avalue for this property before the data source is
initialized.

adPropOptional
The property is optiona.
adPropRead

The property can be read.

adPropWrite

The property can be set.
To illustrate, consider the PropertiesExample procedure shown in Example 17.3.

Example 17.3. The PropertiesExample Procedure
Sub Properti esExanpl e()

Dimrs As ADODB. Recor dset
Di m cn As ADODB. Connecti on
Di m prop As ADCDB. Property

' Set up connection
Set cn = New ADODB. Connecti on
cn. Provider = "M crosoft Jet 3.51 OLE DB Provider"

cn. ConnectionString = "Data Source=d:\BkAccessl |\ AccessCode. ndb"
cn. Open

Open recordset
Set rs = New ADODB. Recor dset
rs. Open "Nanes", cn, adOpenDynani c, adLockReadOnly, adCndTabl e

For Each prop In rs.Properties
Debug. Pri nt prop. Nane
Next

rs. Close
cn. Cl ose
End Sub

This procedure prints alist of dynamic property names for a Jet recordset. The rather
impressive output is:

Preserve on Abort

Bl ocki ng Storage Objects
Use Bookmar ks

Ski p Del et ed Bookmar ks
Bookmar k Type

Cache Deferred Col ums
Fet ch Backwar ds

Hol d Rows

Scrol | Backwar ds

Col um Privil eges
Preserve on Commi t

Def er Col umm

Del ay Storage Object Updates
| mobi | e Rows

Literal Bookmarks
Literal Row ldentity
Maxi mum Open Rows

Maxi mum Pendi ng Rows
Maxi mum Rows

Colum Wi table

Menory Usage

Noti fi cati on Phases
Bookmar ks Or der ed

O hers'
O hers'

Inserts Visible
Changes Visible

Om I nserts Visible
Own Changes Visible
Qui ck Restart

Reent r ant
Renpve Del et ed Rows

Report

Event s

Mul ti pl e Changes

Row Privil eges

Row Thr eadi ng Model
Cbj ects Transact ed

Updatability

Strong Row ldentity
| Accessor
| Col umsl nf o

| Col utMmsRowset

| Connect i onPoi nt Cont ai ner
| Rowset
| Rowset Change

| Rowset |l dentity

| Rowset I nfo

| Rowset Locat e

| Rowset Resynch

| Rowset Scrol |

| Rowset Updat e

| SupportErrorlnfo
| LockByt es

| Sequenti al St ream
| St or age
| Stream
| Rowset | ndex

Col um Set Notification

Row Del ete Notification

Row First Change Notification

Row I nsert Notification

Row Resynchroni zation Notification

Rowset
Rowset

Rel ease Notification
Fetch Position Change Notification

Row Undo Change Notification
Row Undo Del ete Notification
Row Undo I nsert Notification
Row Update Notification
Append- Only Rowset

Change I nserted Rows

Return Pending Inserts

| Convert Type

Notification Granularity
Access Order

Lock Mbde

Jet
Jet
Jet
Jet
Jet
Jet

OLEDB
OLEDB
OLEDB
OLEDB
OLEDB
OLEDB

:Partial Bulk Ops

: Pass Through Query Connect String
: ODBC Pass- Through St at enment

G bit Value

:Use Gbit

:3.5 Enabl e | Rowset | ndex

Bookmar kabl e

Of course, getting documentation on these properties is another matter. Let me know if
you find any.

17.4.6 The Field Object

The Field object represents afield (or column) in arecordset. The Fields property of the
Recordset object returns the Fields collection of all Field objects for that recordset.

The Field object has but two methods, AppendChunk and GetChunk, which are used with
large text or binary fields. We refer the reader to the documentation for more on these
methods.

17.4.6.1 Properties of the Field object

Here are the properties of the Field object.

ActualSize and DefinedSize
The DefinedSize property is used to set the size of afield asit is defined. The
Actual Size property returns the size of the actual data stored in that field for the
current record. Thus, for example, a String field named Fi r st Name may have

DefinedSize 25, but if the actual datain a given record at a particular timeis
"Al bert" then the Actual Size property will return 6.

Attributes

The Attributes property of aField object can be a sum of the following values.
Note that for a Field object, the Attributes property is read-only.

adFldMayDefer

The field is deferred; that is, the field values are not retrieved from the data source
when the record is retrieved. Instead, we must explicitly request the values.

adFldUpdatable
The field value is writable.
adFldUnknownUpdatable

The provider cannot determine if we can write to the field.

adFIdFixed

The field contains fixed- length data.

adFldIsNullable

The field accepts Nul | values.

adFldMayBeNull
Nul I values can be read from the figld.
adFldLong

The fiedld isalong binary field. Hence, the AppendChunk and GetChunk methods
are available for this field.

adFIdRowID

The field contains some type of record 1D, such as arecord number or unique
identifier.

adFldRowVersion
The field contains a time or date stamp used to track updates.
adFldCacheDeferred
The provider caches field values and subsequent reads are done from the cache.
Name
The name of the field. Note that the Name property is read-only for Field objects.
NumericScale and Precision
The read-only NumericScale property is used to return the number of digits to the
right of the decimal place that is used to represent numeric values. The read-only
Precision property returns the total number of digits used to represent a numeric
value. Both are Byte properties.
Value, UnderlyingValue, and OriginalValue
The Value property sets or returns the value of the field for the current record.
The UnderlyingVaue property returns the current field value from the database.

This value may be the result of a recent update to the recordset by another
transaction, whereas the OriginalVVaue property returns the original value that

was retrieved from the recordset and thus does not reflect any updates by another
transaction.

The UnderlyingVaue and Original Value properties are read-only. To set avaue,
we must use the Value property.

Type

Specifies the data type for the field. The possible values are listed earlier in Table
17.1.

17.5 Finding OLE DB Providers

It is clearly important to be able to determine which OLE DB providers are installed on a
particular system. The Windows registry contains entries for each installed OLE DB
provider. An example is shown in Figure 17.5.

Figure 17.5. Registry entry for an OLE DB provider

Bagiry Edi Yew Helo

B[] {DEE IS M 4-EFa0 -1 1CE-SDE HINAADN B BIET) ﬂ Mema ais
L] {DCTFFIBC-36E3-11 -7 -D0CHMF L ALrSH) _'E],'I'-faull shimozok OLE D Provides lor SOL Server
)
] ExiendecEnmrs

_| Ispro Basai

=3 OLE DB Pezridar

] Frog

] “eronndepondesiFrogl O -
. LH K1 I +
Wy CompuianFEEY_CLASEES ROOTVCLEDWRCTFFIG0-10E 51100 FAb-00 COFCEaCA N CUE. DB Feoradar

Unfortunately, Windows does not make it a simple matter to extract this registry
information using code. The ListDPs procedure shown in Example 17.4 will do the trick.
Y ou don't need to worry about al of the coding details related to the registry, but you
may want to change some of the code, since it currently just prints the list of data
providers to the Immediate window. Also, don't forget to include the code in the
declarations section, also shown in Example 17.4.

Example 17.4. The ListDPs Procedure

Decl arati ons for ListDPs

Type FILETI ME
dwLowDat eTi e As Long
dwHi ghDat eTi me As Long
End Type

Publ i ¢ Const HKEY_CLASSES ROOT = &H80000000

Publ i ¢ Const ERROR _SUCCESS = 0&

Publ i ¢ Const KEY_QUERY_VALUE = &H1

Publ i ¢ Const KEY_ENUVERATE_SUB_KEYS = &H8

Publ i ¢ Const KEY_NOTIFY = &H10

Publ i ¢ Const SYNCHRONI ZE = &H100000

Publ i ¢ Const STANDARD_RI GHTS_READ = &H20000

Publ i ¢ Const KEY_READ = ((STANDARD RI GHTS READ Or KEY_QUERY_VALUE Or _

KEY_ENUMERATE_SUB_KEYS Or KEY_NOTI FY) And (Not SYNCHRONI ZE))
Public Const REG SZ = 1

Decl are Function RegOpenKeyEx Lib "advapi32.dll" Alias _
"RegOpenKeyExA" (ByVal hKey As Long, ByVal |pSubKey As String,
ByVal ul Options As Long, ByVal sanDesired As Long,
phkResult As Long) As Long

Decl are Function RegCl oseKey Lib "advapi 32.dl 1" _

(ByVvVal hKey As Long) As Long

are Function RegEnunKeyEx Lib "advapi 32.dl 1" Alias _

"RegEnunKeyExA" (ByVal hKey As Long, ByVal dw ndex As Long,

ByVal | pNane As String, |pcbName As Long, _

ByVal | pReserved As Long, ByVal |pClass As String, _

| pcbCl ass As Long, |pftLastWiteTime As FILETIME) As Long

are Function RegQueryVal ueEx Lib "advapi 32.dl 1" Alias _

"RegQueryVal ueExA" (ByVal hKey As Long, ByVal |pVal ueNane As

String, _

ByVal | pReserved As Long, |pType As Long, |pData As Any,

| pcbData As Long) As Long

are Function RegQueryVal ueExStr Lib "advapi 32.dl1" Alias _

"RegQueryVal ueExA" (ByVal hKey As Long, ByVal | pVal ueName As

String, _

ByVal | pReserved As Long, |pType As Long, ByVal |pData As String,
| pcbData As Long) As Long

Dec

Dec

Dec

Private Sub ListDPs()

Search the registry for Data Providers
Const BUF_LEN As Long = 2048

mlret As Long, lret2 As Long, lret3 As Long
m hCLSI DKey As Long, hCl assKey As Long, hCl assSubKey As Long

m | buf KeyNane As Long

m buf KeyNanme As String * BUF_LEN

m | buf Cl assNane As Long

m buf Cl assName As String * BUF_LEN

m | buf KeyName2 As Long

m buf KeyNanme2 As String * BUF_LEN

m | buf Cl assNane2 As Long

m buf Cl assNanme2 As String * BUF_LEN

m | buf Val ue As Long
m buf Value As String * BUF_LEN

mft As FILETIME, ft2 As FILETIME
m | xKey As Long, |xKey2 As Long

o0 OO UVOUOUDD UODOOD U0

Di m | Val ueType As Long

Di m bProvi der As Bool ean
Dim sDPs As String
Dim sNane As String

' Open CLSID key

Iret = RegOpenKeyEx(HKEY_CLASSES_ROOT, "CLSID', 0, KEY_READ, hCLSI DKey)

If Iret <> ERROR_SUCCESS Then
MsgBox "Cannot open CLSID key", vbCritical
Exit Sub

End | f

| buf KeyNanme = BUF_LEN
buf KeyName = String(BUF_LEN, Chr$(0))
| buf Cl assNane = BUF_LEN
buf Cl assNane = String(BUF_LEN, Chr$(0))
I ret = RegEnunKeyEx(hCLSI DKey, | xKey, bufKeyName, | buf KeyNane,
0, buf Cl assNanme, |bufClassNane, ft)
| xKey = | xKey + 1
DoEvent s
If Iret = ERROR_SUCCESS Then
' We have a subkey of CLSID (a class key) -
' check its subkeys for OLE DB Provider key
I ret2 = RegOpenKeyEx(HKEY_CLASSES ROOT, "CLSID\" & _
Lef t $(buf KeyNane, | buf KeyNane), 0, KEY_READ, hCl assKey)
If Iret2 <> ERROR_SUCCESS Then
MsgBox "Cannot open key " & Left$(buf KeyName, | buf KeyNane)
RegCl oseKey hCLSI DKey
Exit Sub
End | f
' CGot a class key, check its subkeys
We conpile the subkeys and their default values in sDPs
to be discarded if the class is not a provider
sDPs = ""
bProvi der = Fal se
| xKey2 = 0
Do
| buf KeyNane2 = BUF_LEN
buf KeyName2 = String(BUF_LEN, Chr$(0))
| buf Cl assNane2 = BUF_LEN
buf Cl assNane2 = String(BUF_LEN, Chr$(0))
Iret2 = RegEnunKeyEx(hCl assKey, | xKey2, bufKeyNane2, _
| buf KeyNane2, 0, bufCl assNane2, | bufCl assNane2, ft2)
If Iret2 = ERROR_SUCCESS Then
' Test for OLE DB Provider
| f LCase$(Left$(buf KeyNane2, | buf KeyName2)) = _
"ole db provider" Then
bProvi der = True
Exit Do
End If

End If
| xKey2 = | xKey2 + 1
Loop Wiile Iret2 = ERROR_SUCCESS
" Finished | oopi ng through subkeys of the class key
If a provider, display all key val ues
I f bProvider Then

Debug. Print ""
Debug. Print "***NEW PROVI DER***"
Debug. Print "CLSID = " & Left$(buf KeyNane, | bufKeyNane)
| xKey2 = 0
Do
| bufValue = 0 "''this causes a GPF --> BUF_LEN

buf Val ue = String(BUF_LEN, Chr$(0))
| buf KeyNane2 = BUF_LEN
buf KeyNanme2 = String(BUF_LEN, Chr$(0))
| buf Cl assNane2 = BUF_LEN
buf Cl assNane2 = String(BUF_LEN, Chr$(0))
Iret2 = RegEnunKeyEx(hCl assKey, | xKey2, bufKeyNanme2, _
| buf KeyNane2, 0, bufCl assName2, | bufCl assNane2, ft2)
If lret2 = ERROR_SUCCESS Then
' Open the key and get the default val ue
Iret3 = RegOpenKeyEx(HKEY_CLASSES ROOT, _
"CLSID\" & Left$(buf KeyNanme, |bufKeyNanme) & "\" &
Left $(buf KeyNane2, | buf KeyNane2),
0, KEY_QUERY_VALUE, hC assSubKey)
If Iret3 = ERROR_SUCCESS Then
sName = ""
' Get the length and check for string
Iret3 = RegQueryVal ueEx(hCl assSubKey, sNanme, 0&,
| Val ueType, 0&, | bufVal ue)

Check for string
If | ValueType = REG SZ Then

If | bufValue <> 0 Then
Iret3 = RegQueryVal ueExStr (hCl assSubKey, sNane,

0& | Val ueType, bufVal ue, | bufVal ue)
End If

I f Left$(buf KeyName2, | bufKeyNane2) <> _
"Ext endedErrors" Then
Debug. Print Left$(buf KeyNane2, | bufKeyNane2) &

" =" & Left$(bufVal ue, |bufVal ue)

End If
End If ' string
RegCl oseKey hCl assSubKey
End If

End If
| xKey2 = | xKey2 + 1
Loop Wiile Iret2 = ERROR_SUCCESS

End | f

RegCl oseKey hCl assKey
End If

Loop While Iret = ERROR_SUCCESS
RegCl oseKey hCLSI DKey

End Sub

Here is the output of ListDPs on my system:

*** NEW PROVI DER* * *

CLSI D = {0C7FF16C- 38E3- 11d0- 97AB- 00C04FC2AD98}

I nprocServer32 = C:\Program Fil es\ Cormon Fil es\system ol e
db\ SQLOLEDB. DLL

OLE DB Provider = Mcrosoft OLE DB Provider for SQ. Server
Progl D = SQLOLEDB. 1

Ver si onl ndependent Progl D = SQLOLEDB

*** NEW PROVI DER* * *

CLSI D = {3449A1C8- C56C- 11D0- AD72- 00C04FC29863}

I nprocServer32 = C:\Program Fil es\ Commpon Fil es\syst em nsadc\ MSADDS. DLL
OLE DB Provi der = MsDat aShape

Progl D = MsDat aShape. 1

Ver si onl ndependent Progl D = MsDat aShape

*** NEW PROVI DER* * *

CLSI D = {c8b522cb-5cf 3-11ce- ade5- 00aa0044773d}

I nprocServer32 = C:\Program Fil es\ Cormon Fil es\ System OLE
DB\ MSDASQL. DLL

OLE DB Provider = Mcrosoft OLE DB Provider for ODBC Drivers
Progl D = MSDASQL. 1

Ver si onl ndependent Progl D = MSDASQL

*** NEW PROVI DER* * *

CLSI D = {dee35060-506b- 11cf - blaa- 00aa00b8de95}

| nprocServer32 = C:\Program Fi | es\ Conmon Fil es\system ol e
db\ MSJTOR35. DLL

OLE DB Provider = Mcrosoft Jet 3.51 OLE DB Provider
Progl D = M crosoft. Jet. OLEDB. 3. 51

Ver si onl ndependent Progl D = M crosoft. Jet. OLEDB

*** NEW PROVI DER* * *

CLSI D = {df c8bdc0-e378-11d0- 9b30- 0080c7e9f e95}

I nprocServer32 = C:\Program Fil es\ Cormon Fil es\system ol e
db\ MSDACSP. DLL

OLE DB Provider = Mcrosoft OLE DB Sinple Provider

Progl D = MSDAGSP. 1

Ver si onl ndependent Progl D = MSDAGCSP

*** NEW PROVI DER* * *

CLSI D = {e8cc4cbe-fdff-11d0-b865-00a0c9081c1d}

I nprocServer32 = C:\Program Fil es\ Cormon Fil es\system ol e
db\ MSDAORA. DLL

OLE DB Provider = Mcrosoft OLE DB Provider for Oracle
Progl D = MSDACRA. 1

Ver si onl ndependent Progl D = MSDAORA

*** NEW PROVI DER* * *

CLSI D = { EBCCCB79- 7C36- 101B- AC3A- 00AA0044773D}

I nprocServer32 = C:\ol edbsdk\ bi n\ SAMPPROV. DLL

OLE DB Provider = Mcrosoft OLE DB Sanpl e Provider
Progl D = SanpPr ov

Ver si onl ndependent Progl D = SanpPr ov

With referenceto this output, a CLSID is a number that is intended to identify the data
provider (in this case) or any software component (in more general settings) throughout
the universe. Thisiswhy it is aso referred to as a GUID, or globally unique identifier.
We have no use for this value, however.

Thel nprocServer 32 entry shows the fully qualified name of the DLL that actually
implements the data provider. For instance, the Jet provider has the filename C:\Program
Filess\Common Files\system\ole db\MSITOR35.DLL.

The OLE DB Provi der entry is the name of the provider. This can be used with the
Provider property of the Connection object. The Pr ogl D entry is the provider's
programmatic ID, an identifying string that is friendlier than the CLSID and is supposed
to be unique as well. The ProglD can aso be used as the value of the Provider property.

17.6 A Closer Look at Connection Strings

It seems fair to say that the most confusing aspect of using ADO is determining the
correct connection string required to establish a connection to an OLE DB provider.
Certainly, thisis one of the first confusing aspects of ADO, if not the only one.

In the beginning, there was only one OLE DB provider — Microsoft OLE DB Provider
for ODBC Drivers. This was a good way for Microsoft to introduce OLE DB, because it
meant that any ODBC provider automatically became an OLE DB provider.

Today, the list of OLE DB providers has grown to include the following (and presumably
there are more of which | am not aware):

Microsoft OLE DB Simple Provider (a JavaBeans-related interface)

Microsoft OLE DB Provider for ODBC Drivers (for Open Database Connectivity)
Microsoft OLE DB Provider for Oracle (for Oracle databases)

Microsoft Jet 3.51 OLE DB Provider (for Jet databases)

Microsoft OLE DB Provider for SQL Server (for SQL Server databases)
Microsoft OLE DB Provider for Directory Services (provides directory services,
that is, logon, administration and replication services, for Windows NT Server
networks)

Aside from the ODBC provider, the SQL Server provider is used most often in examples,
so we will not do so here. On the PC side, | think that the most interesting OLE DB
providers are the Jet provider and the ODBC provider, especially since the latter can be
used to connect to such things as Excel spreadsheets and text documents. Accordingly,
we will take alook at how to set up connection strings using these two providers.

17.6.1 The Microsoft Jet 3.51 OLE DB Provider

Oddly enough, the MSDN Library (which is now the main source of documentation for
Microsoft's devel opment platforms) does not seem to document the Jet 3.51 OLE DB
provider—at least | couldn't find any documentation. However, some experimentation
will yield sufficient details to use the provider.

You may be wondering why you would want to use this OLE DB provider to connect to a
Jet database when DA O was specifically designed for this purpose and works quite well.
Thisisafair question. | suppose one answer is that we had better stay current with
Microsoft's technology or we may find ourselves in trouble later on. Frankly, | wish | had
a better answer at thistime.

The place to start is with the results of the ListDPs procedure shown earlier for the Jet
provider:

CLSID = {dee35060-506b- 11cf-blaa- 00aa00b8de95}

I nprocServer32 = C:\Program Fil es\ Common Fil es\system ol e
db\ MSJTOR35. DLL

OLE DB Provider = Mcrosoft Jet 3.51 OLE DB Provider
Progl D = M crosoft. Jet. OLEDB. 3. 51

Ver si onl ndependent Progl D = M crosoft. Jet. OLEDB

Recall that we can use either the ProglD entry or the OLE DB Provider entry as the value
of the Provider property of the Connection object.

The AccessExample procedure in Example 17.5 illustrates a connection to a Jet database.

Example 17.5. The AccessExample Procedure
Sub AccessExanpl e()

Dimrs As ADODB. Recor dset
Di m cn As ADODB. Connecti on

Set up connection
Set cn = New ADODB. Connecti on
cn. Provider = "M crosoft Jet 3.51 OLE DB Provider"
cn. ConnectionString = "Data Source=D:\BkAccessl |\ AccessCode. ndb"

cn. Open

Get full connection string after opening
Debug. Print "Full connection string: " & cn.ConnectionString

Get list of 2s
Set rs = cn. OpenSchema(adSchemaTabl es)
Do While Not rs. EOF
Debug. Print rs! TABLE NAME & " Type: " & rs! TABLE TYPE
rs. MoveNext
Loop

rs. Close

cn. Cl ose

End Sub
After declaring and creating a Connection object:

Di mcn As ADODB. Connecti on
Set cn = New ADODB. Connecti on

we set the Provider property:
cn. Provider = "M crosoft Jet 3.51 OLE DB Provider"

As for the ConnectionString property, without knowing much about the connection string
format, we try specifying just a data source:

cn. ConnectionString = "Data Source=D:\BkAccessl |\ AccessCode. ndb"
Then we open the connection and print the ConnectionString property:

cn. Open

Debug. Print "Full connection string:

& cn. ConnectionString
The resulting output gives us a full connection string, which in this case is:

Provi der=M crosoft.Jet. OLEDB. 3. 51

Persi st Security Info=Fal se;

User | D=Adm n; _

Dat a Sour ce=D: \ BkAccessl |\ AccessCode. ndb;
Mode=Share Deny None; _

Ext ended Properties="; COUNTRY=0; CP=1252; LANG D=0x0409";
Local e Identifier=1033; _

Jet OLEDB: System dat abase="";

Jet OLEDB: Regi stry Path=""; _

Jet OLEDB: Dat abase Password=""; _

Jet OLEDB: G obal Partial Bul k Ops=2

Much of this connection string, such as the Persist Security Info, is obscure. Fortunately,
we don't seem to need it. Note that the Pr ovi der parameter is the ProglD rather than the
text description that we used to set this value.

Finaly, to test the connection, we also print out alist of al of the tables in the database
using the OpenSchema method of the Connection object. The result is:

MSysACEs Type: SYSTEM TABLE
MSys| MEXCol uitms Type: TABLE
MSys| MEXSpecs Type: TABLE
MSysModul es Type: TABLE
MSysModul es2 Type: TABLE
MSysOhj ects Type: SYSTEM TABLE
MSysQueries Type: SYSTEM TABLE

MSysRel ati onshi ps Type: SYSTEM TABLE
Names Type: TABLE
Tabl el Type: TABLE

17.6.2 The Microsoft OLE DB Provider for ODBC Drivers

Open Database Connectivity, or ODBC for short, is an Application Programming
Interface (API) designed for connecting to databases of various types. The term database
isused here in avery genera sense to refer not only to traditional relational databases,
such as Access, FoxPro, Oracle, or SQL Server databases, but also to less traditional
"databases,” such as delimited text files or Excel workshests.

Since ODBC is still very commonly used and will be for some time, | have included
Appendix C, which describes this technology in some detail. For now, we want to discuss
how to connect to an ODBC data source through the OLE DB provider for ODBC. To
understand the process completely and create your own connection strings, you must be
familiar with ODBC Data Source Names. These are discussed in Appendix C. However,
to modify the connection strings for the Excdl files and text files that we will discuss
later, you don't really need to know anything about DSNs beyond the following.

Theterm Data Source Name, or DSN, refers not smply to the name of the data source,
but to a description of the data source and its accompanying driver, as well asthe
attributes of a connection between the two. For instance, a DSN includes the name of the
data source, the complete path of the data source, the name of the driver, and details
about the connection to the data source, such as whether the connection is read-only. As
we will seein the Appendix C, there are various types of DSNs. A DSN is created using
the ODBC Administrator, which can be activated by clicking on the ODBC icon in the
Windows Control Panel. Appendix C discusses how to use this applet.

Again referring to the output of the ListDPs procedure described earlier, we first note that
the Provider property of the Connection object can be set to either MSDASQL (or its
version-dependent counterpart, MSDASQL. 1) or the string " M cr osof t Jet 3. 51 OLE DB
Provi der". Also, since this provider is the default, we can smply omit the Provider
property altogether.

Fortunately, there is some documentation for the Microsoft OLE DB provider for ODBC,
and, equally fortunately, it is quite clearly written, asfar as it goes. Here is what the
documentation says about the connect string (this is from the Microsoft MSDN Library
CD):

Because you can omit the Provider parameter, you can therefore compose an ADO
connection string that is identical to an ODBC connection string for the same data source,
using the same parameter names (DRIVER=, DATABASE=, DSN=, and so on), values,
and syntax as you would when composing an ODBC connection string. Y ou can connect
with or without a predefined data source name (DSN) or FileDSN.

Syntax with a DSN or FileDSN:

"[Provider=MSDASQL ;] { DSN=name | FileDSN=filename } ; [DATABA SE=database;]
UlD=user; PWD=password"

Syntax without a DSN (DSN- |less connection):

"[Provider=MSDASQL ;] DRIVER=driver; SERVER=server; DATABA SE=database;
UID=user; PWD=password"

If you use a DSN or FileDSN, it must be defined through the ODBC Administrator in the
Windows Control Panel. As an aternative to setting a DSN, you can specify the ODBC
driver (DRIVER=), such as "SQL Server," the server name (SERV ER=), and the database
name (DATABASE=).

Y ou can also specify a user account name (UID=), and the password for the user account
(PWD=) in the ODBC-specific parameters or in the standard ADO-defined User ID and
Password parameters. If you include both the ADO and the ODBC-specific parameters
for these values, the ADO parameters take precedence.

Although a DSN definition already specifies a database, you can specify a DATABASE
parameter in addition to aDSN to connect to a different database. This also changes the
DSN definition to include the specified database. It is a good idea to aways include the
DATABASE parameter when you use a DSN. This will ensure that you connect to the
proper database because another user may have changed the default database parameter
since you last checked the DSN definition.

This seems to be saying that when we omit the provider portion of the connection string
(which can aways be supplied using the Provider property), an OLE DB connection
string isidentical with an ODBC connection string. Of course, this begs the question:
"How do we compose an ODBC connection string?"’

The simplest answer is to let Windows do this for us. However, the starting point for this
isaDSN that we must create, probably using the ODBC Administrator. The
GetODBCConnectString procedure in Example 17.6 will extract a connection string from
aDSN. The procedure first uses DAO (yes, DAO) to create an ODBC workspace. Then
the OpenConnection method:

Set ¢ = ws. OpenConnection("", dbDriverPronmpt, , "ODBC, ")

causes Windows to display the ODBC Administrator so we can create a DSN. Once this
is done, the procedure prints the compl ete connection string.

Example 17.6. The GetODBCConnectString Procedure
Private Sub Get ODBCConnect Stri ng()

Create an ODBC wor kspace and get the connect string for a DSN

Di m db As Dat abase, ws As Wirkspace, rs As Recordset

Dimcn As Connecti on

Set ws = Creat eWrkspace("NewODBC', "adm n", "", dbUseCODBC)
' The follow ng causes a pronpt for the DSN

Set cn = ws. OpenConnection("", dbDriverPronpt, , "ODBC;")
Debug. Pri nt cn. Connect

cn. Cl ose

End Sub

Actualy, there are two types of ODBC connection strings—DSN and DSN-less. Here are
examples of the two types of connection strings for a connection to an Excel worksheet
and to atext file. These strings were obtained using the GetODBCConnectString
procedure:

Excel DSN-|ess connection string
ODBC; _

DBQ=D: \ BkAccessl I\ Connect . xI s;
Defaul t Di r=D: \ bkado; _
Driver={Mcrosoft Excel Driver (*.xls)};
Driverld=790; _

FI L=excel 5.0; _

I mplicitConmm t Sync=Yes;
MaxBuf f er Si ze=512;

Max ScanRows=8,;

PageTi neout =5;

ReadOnl y=0; _

Saf eTr ansact i ons=0;

Thr eads=3;

Ul D=admi n; _

User Commi t Sync=Yes;

' Excel DSN connection string
ODBC, _

DSN=Connect Excel ; _

DBQ=D: \ BkAccessl I\ Connect . xI s;
Def aul t Di r =D: \ bkado;
Driverld=790; _

FI L=excel 5.0; _
MaxBuf f er Si ze=512;

PageTi meout =5;

Ul D=admi n;

' Text file DSN-Iess connection string

oDBC;

Def aul t Di r=D: \ bkado; _

Driver={Mcrosoft Text Driver (*.txt;*.csv)};
Driverld=27; _

Ext ensi ons=t xt, csv, t ab, asc;

FI L=text; _

I mplicitConmm t Sync=Yes;

MaxBuf f er Si ze=512;

MaxScanRows=25;

PageTi neout =5;

Saf eTransacti ons=0; _
Threads=3; _

Ul D=admi n; _

User Conmi t Sync=Yes;

Text file DSN connection string
ODBC; _
DSN=Connect Text; _
DBQ=D: \ bkado; _
Def aul t Di r =D: \ bkado; _
Driverld=27; _
Fl L=text; _
MaxBuf f er Si ze=512; _
PageTi meout =5; _
Ul D=admi n; _

The main difference between the two types of connection stringsisthat in a DSN
connection string, the DSN file is referenced so that ODBC can get information from that
file. InaDSN-less string, all required information must be supplied directly. Thus, in
many ways DSN-less connection strings are superior since they do not require an external
DSN file.

Let me reiterate (lest you become annoyed with me) that we will discuss creating DSNs
using the ODBC Administrator in Appendix C. At this point, however, you should just
keep the following in mind:

If you just want to connect to an Excel spreadsheet or text file, you can modify
and use the connection strings in the upcoming examples.

If you want to create a connection string for a different ODBC provider, you can
use the GetODBCConnectString procedure to get the proper connection string,
but for this you will need to use the ODBC Administrator to create a DSN. A
discussion of how to do thisis given in Appendix C, aong with more details on
DSNs and ODBC in general. Aswe will see in the appendix, by creating aFile
DSN, the GetODBCConnectString procedure will produce a DSN-less connection
string!

S0 let us turn to some actual examples.

17.6.2.1 Connecting to an Excel workbook

The Excel Example procedure shown in Example 17.7 illustrates how to connect to an
Excel worksheet named MasterTable (shown in Figure 17.6) in the workbook
D:\BkAccessl 1\Connect.xls.

Figure 17.6. A test Excel worksheet

A =] C D E
1 a b G d a
2 u 2 2 2 2
3 v 3 3 3 3
4 W 4 4 4 4
5 X 5 5 5]
6 W B g B g
-

The procedure uses the SQL statement:

"SELECT * FROM [Mast er Tabl e$] "

to open a recordset based on thistable. (I can't tell you how long it took me to determine
that a dollar sign must be appended to the end of an Excel worksheet rame.)

We set the connect string to:

Connection string
cn. ConnectionString = _
"DRI VER={ M crosoft Excel Driver
(*.xls)},; DBQ=D: \ BkAccessl I\ Connect . xI s; "

Note the DBQ parameter. Based on the documentation from Microsoft that | quoted
earlier, | first tried to use the parameter name DATABASE, but was rudely rewarded with
the message "Operation cancelled” at the line:

cn. Open

(In case you are wondering how | discovered that DBQ was the correct name, | used the
ODBC Administrator to create a DSN and inspected the DSN file with atext editor.)

The Excel Example procedure in Example 17.7 prints the full connection string, which in
thiscaseis:

Provi der =MSDASQL. 1; _

Connect Ti neout =15; _

Ext ended Properties="DBQ=D:\BkAccessl |\ Connect.xls; _
Driver={Mcrosoft Excel Driver (*.xls)};
Driverld=790; _

MaxBuf f er Si ze=512;
PageTi neout =5; ";
Local e I dentifier=1033

Next, the procedure prints the field names for the Excel worksheet, which are the entries
in the first row. (I didn't know this until | ran this code.) It then prints the remaining rows

of the table. Note the use of the GetRows function to grab al of the records in the
recordset at once.

Finally, the procedure gathers some support information for future reference.

Example 17.7. The ExcelExample Procedure
Sub Excel Exanpl e()

Dimr As Integer, f As Integer
Dimvrecs As Vari ant

Dimrs As ADODB. Recor dset
Di m cn As ADODB. Connecti on
Dimfld As ADODB. Fi el d

' Set up connection
Set cn = New ADODB. Connecti on

' Set provider
' Note we can al so use the ProglD: "MSDASQL. 1", or nothing!
cn. Provider = "M crosoft OLE DB Provider for ODBC Drivers"
' Connection string
cn. ConnectionString = _

"DRI VER={ M crosoft Excel Driver
(*.xls)}; DBQ@D: \ BkAccessl |\ Connect . xl s; "

Open the connection

cn. Open

' Get full connection string after opening
Debug. Print "Full connection string: " & cn.ConnectionString

' Get recordset using rs.open SQ statenent
Set rs = New ADODB. Recor dset
rs.CursorlLocation = adUsed i ent
rs. Open "SELECT * FROM [MasterTabl e$]", cn, adOpenDynami c,
adLockOptim stic
" Print the field names (fromfirst row)
For Each fld In rs.Fields
Debug. Print fld. Nane,
Next
Debug. Pri nt

' Get the rows all at once
vrecs = rs. Cet Rows(6)

For r = 0 To UBound(vrecs, 1)
For f = 0 To UBound(vrecs, 2)
Debug. Print vrecs(f, r),
Next
Debug. Pri nt
Next

Check support options while we are here

Debug. Pri nt

Debug. Print "Client-Side Dynam c Recordset:"

Debug. Print "adAddNew. " & rs. Supports(adAddNew)

Debug. Pri nt "adBookmark: " & rs. Supports(adBookmnark)

Debug. Print "adDelete: " & rs. Supports(adDel ete)

Debug. Print "adFind: " & rs. Supports(adFi nd)

Debug. Print "adUpdate: " & rs. Supports(adUpdate)

Debug. Pri nt "adMovePrevious: " & rs. Supports(adMovePrevi ous)

rs. Close
cn. Cl ose

End Sub
The output from the support information code is:

Client-Side Dynam c Recordset:
adAddNew. True

adBookmar k: True

adDel ete: True

adFi nd: True

adUpdate: True

adMovePrevi ous: True

This shows that ADO provides pretty good access to an Excel worksheet.

17.6.2.2 Connecting to a text file

The TextExample procedure, shown in Example 17.8, illustrates how to create a text file
and add text to it using the ODBC provider for OLE DB. (Before running this procedure,
you will probably want to change the Def aul t Di r value.)

Example 17.8. The TestExample Procedure
Sub Text Exanpl e()

Dimrs As ADODB. Recor dset
Dim cn As ADODB. Connecti on
Dim sCS As String

DimsSQ. As String

' Decl are new connection

Set cn = New ADODB. Connecti on

Form connection string

sCS = "Defaul tDir=d:\bkado;"
sCS = sCS & "Driver={Mcrosoft Text Driver (*.txt; *.csv)};"
sCS = sCS & "Driverld=27;"

cn. ConnectionString = sCS

cn. Open

' Get full connection string after opening

Debug. Print "Full connection string: " & cn.ConnectionString

' Create a newtext file and add a |ine
On Error Resune Next
cn. Execute "CREATE TABLE [newfile.txt] (FirstName TEXT, LastNane

TEXT) ; "

If Err.Nunmber <> 0 And Err. Nunber <> vbObjectError + 3604 Then

MsgBox "Error: " & Err.Number & ": " & Err.Description
Err.d ear
End If
sSQ = "INSERT INTO [newfile.txt] (FirstNanme, LastNanme) Val ues
('steve', '"roman');"

cn. Execut e sSQL

Open a recordset

Set rs = New ADODB. Recor dset

rs. Open "SELECT * FROM NewfFile.txt", cn, adOpenDynam c,
adLockOptim stic

Check support options while we are here

Debug. Pri nt

Debug. Print "Client-Side Dynam c Recordset:"

Debug. Pri nt "adAddNew. " & rs. Supports(adAddNew)

Debug. Pri nt "adBookmark: " & rs. Supports(adBookmark)

Debug. Print "adDelete: " & rs. Supports(adDel ete)

Debug. Print "adFind: " & rs. Supports(adFi nd)

Debug. Print "adUpdate: " & rs. Supports(adUpdate)

Debug. Pri nt "adMovePrevious: " & rs. Supports(adhobvePrevi ous)

rs. Close
cn. Cl ose

End Sub

In this case, there is awrinkle in the connection string requirements. We seem to need the
clause:

Driverld = 27;

in the connection string, even though the driver name is aso given. Without the

Driver | d, we get the confusing error message "Data source name not found and no
default driver specified." Aswith the Excel example, to figure thisout, | created a DSN
with the ODBC Administrator and inspected the resulting file. Starting with the entire
connection string based on that file, | owly eiminated entries until | got aminimal
working connection string.

Note also that when creating a new text file, we need to deal with the possibility that the
file dready exists. The line:

On Error Resune Next

tells VBA that if an error occurs, it should simply skip the line that produced the error
and execute the next line. Now consider the code that will handle an error:

If Err.Nunmber <> 0 And Err. Nunber <> vbObjectError + 3604 Then

MsgBox "Error: " & Err.Nunber & ": " & Err.Description
Err. Cl ear
End If

If we remove the On Error Resume Next line, the second time we run the procedure, we
will get the error message in Figure 17.7.

Figure17.7. An error

[X]

Furtime emor <2147 217900 (8004021 4)";
[Microsat][ODBEC Tex Driver] Table 'newfile#td’ alraacdy sxists

Debug End | Help |

Now, VBA uses error numbers starting with the constant vbQbj ect Er r or (which equals
& H8004000) to indicate object errors. The error number in Figure 17.7 is thus:

&H8004000 + &HO0el4 = vbObjectError + 3604
So, the error-handling code:

If Err.Nunmber <> 0 And Err. Nunber <> vbQObjectError + 3604 Then
MsgBox "Error: " & Err.Nunmber & ": " & Err.Description
Exit Sub

End | f

looks for errors message other than error number vboj ect Er r or +3604. If it finds such
an error it displays a message and exits. However, if the error is the one shown in Figure
17.7, then the procedure just ignores it. Thisis what we want, because the next line of
code just inserts aline in the existing file.

The full connection string for this text connection is:

Pr ovi der =MSDASQL. 1;

Connect Ti meout =15; _

Ext ended Properties="Defaul tDir=d:\bkado; _
...Driver={Mcrosoft Text Driver (*.txt; *.csv)};
...Driverld=27; MaxBuf f er Si ze=512; PageTi nmeout =5; ";

Local e Identifier=1033

and the support-related output is:

Client-Side Dynam c Recordset:

adAddNew. True
adBookmar k: Fal se
adDel ete: True
adFi nd: True

adUpdate: True
adMovePr evi ous:

True

Thus, we even have pretty good access to atext file, but we cannot use bookmarks.

17.6.2.3 ODBC support

The documentation for the ODBC data provider does include some useful tables that
describe which features are available for various recordset types. These tables are
reproduced here as Table 17.3 and Table 17.4.

Table 17.3. Availability of Properties by Recordset

Property ForwardOnly Dynamic K eyset Static
AbsolutePage not available not available read/write read/write
AbsolutePosition not available not available read/write read/write
ActiveConnection read/write read/write read/write read/write
BOF read-only read-only read-only read-only
Bookmark not available not available read/write read/write
CacheSize read/write read/write read/write read/write
CursorLocation read/write read/write read/write read/write
CursorType read/write read/write read/write read/write
EditMode read-only read-only read-only read-only
EOF read-only read-only read-only read-only
Filter read/write read/write read/write read/write
LockType read/write read/write read/write read/write
Marshal Options read/write read/write read/write read/write
MaxRecords read/write read/write read/write read/write
PageCount not available not available read-only read-only
PageSize read/write read/write read/write read/write
RecordCount not available not available read-only read-only
Source read/write read/write read/write read/write
State read-only read-only read-only read-only
Status read-only read-only read-only read-only

Table 17.4. Availability of Methods by Recordset
M ethod ForwardOnly Dynamic K eyset Static
AddNew Yes Yes Yes Yes
CancelBatch Yes Yes Yes Yes
CancelUpdate Yes Yes Yes Yes

Clone No No Yes Yes
Close Yes Yes Yes Yes
Delete Yes Yes Yes Yes
GetRows Yes Yes Yes Yes
Move Yes Yes Yes Yes
MoveFirst Yes Yes Yes Yes
Movel ast No Yes Yes Yes
MoveNext Yes Yes Yes Yes
MovePrevious No Yes Yes Yes
NextRecordset (except Jet) Yes Yes Yes Yes
Open Yes Yes Yes Yes
Requery Yes Yes Yes Yes
Resync No No Yes Yes
Supports Yes Yes Yes Yes
Update Yes Yes Yes Yes
UpdateBatch Yes Yes Yes Yes

Part VII: Appendixes

Appendix A. DAO 3.0/3.5 Collections, Properties,
and Methods

Microsoft Access 97 comes with a utility known as the Object Browser, which can be
used to explore the DAO aobject hierarchy. Figure A.1 shows the Object Browser, which
can be invoked from an Access code module by striking the F2 function key (or from the
View menu).

Figure A.1. The Object Browser

= Dbject Browser _[O] =]

[pao =) | Baf] B
| RN, 1K
Classes Mambers of Dalabase’
@ =globals» Connact j
4 Connection Connecton
& Connections Contamnears
o Cortainer DesignMastariD
Corilainers Mame
Properfias
& Databases QuenDels
£ DBEENgIne CuenyTimaout
&% Dacurnent RecordsAffactad
&4 Docurnents % Recordsets
&4 Error Rilafions
&5 Errors ReplicalD 0
&8 Fleld TahleDefs
B Fields Traneactions
24 Group Updatable
&2 Groups Warsion
&4 Index & Cloge
&) Indexes || wicreaPopery =]
Class Database il
Member of D140
Ari oper datshes. Ll

The Object Browser can be a very useful tool, but there are times when a hardcopy
reference is also useful. Accordingly, this appendix contains information on the
collections, properties, and methods of each of the objects in the DAO 3.0 object
hierarchy (which underlies Access 95) and the DAO 3.5 (which underlies Access 97). If
nothing else, this information should help point you to the right spot in the Access On
Line Help System.

In presenting this DA O reference, atable listing the classes and collections available in
DAO isfollowed by tables listing the properties and methods exposed by each class, as
well as the collections that are accessible from each object. The tables also indicate
whether each item appliesto DAO 3.0, DAO 3.5, or both. Finally, there is a summary
description of each item.

A.1 DAO Classes

ClassName | Version Description
Connection (3.5 An open ODBCDirect connection
Connections |3.5 A collection of Connection objects

Container 3.0/3.5 |Storage for information about a predefined object type

Containers 3.0/3.5 |A collection of Container objects

Database 3.0/3.5 |Anopen database

Databases 3.0/3.5 |A collection of Database objects

DBEnNgine 3.0/3.5 |The Jet database engine

Document 3.0/3.5 |Information about a saved, predefined object

Documents |3.0/3.5 |A collection of Document objects

Error 3.0/3.5 |Information about any error that occurred with a DA O object

Errors 3.0/3.5 |A collection of Error objects

Fied 3.0/3.5 |A columnthat is part of atable, query, index, relation, or recordset
Fields 3.0/3.5 |A collection of Field objects

Group 3.0/3.5 |A group of user accounts

Groups 3.0/3.5 |A collection of Group objects

Index 3.0/3.5 |Object used to order values and provide efficient access to a recordset
Indexes 3.0/3.5 |A collection of Index objects

Parameter 3.0/3.5 |Parameter for a parameter query

Parameters 3.0/3.5 |A collection of Parameter objects

Properties 3.0/3.5 |A collection of Property objects

Property 3.0/3.5 |A built-in or user-defined property

QueryDef 3.0/3.5 |A saved query definition

QueryDefs 3.0/3.5 |A collection of Querydef objects

Recordset 3.0/3.5 |Therepresentation of the recordsin atable or that result from a query
Recordsets |3.0/3.5 |A collection of Recordset objects

Relation 3.0/3.5 |A relationship between fields in tables and queries

Relations 3.0/3.5 |A collection of Relation objects

TableDef 3.0/3.5 |A saved table definition

TableDefs 3.0/3.5 |A collection of Tabledef objects

User 3.0/3.5 |A user account

Users 3.0/3.5 |A collection of User objects

Workspace (3.0/3.5 |A session of the Jet database engine

Workspaces |3.0/3.5 |A collection of Workspace objects

A.2 A Collection Object

Each of the Collection objects listed earlier in Section A.1 supports a single method and a
single property.

A.2.1 Methods
Method | Type Version Description
Refresh Sub 3.0/35 Updates the collection to reflect recent changes

A.2.2 Properties

Property

Type

Version

Description

Count

Integer

3.0/35

Number of objectsin the collection (read-only)

In addition, DynaCollection objects—that is, Collection objects whose members can be
dynamically added and removed—have the two additional methods:

A.2.3 Methods
Method Parameters Returns | Version Description
Append |Object AsObject Sub 3.0/3.5 Appends an object to the collection

|De|ete |NameAs String

|Sub

13.0/3.5

|De| etes an object from the collection

A.3 Connection Object (DAO 3.5 Only)

A.3.1 Collections

Property

Type Version

Description

Database Database 35

Returns a Database reference to this Connection object

QueryDefs |QueryDefs |3.5

A collection of QueryDef objects

Recordsets |RecordSets (3.5

A collection of Recordset objects open in this connection

A.3.2 Methods
Method Parameters Returns |Version Description
Cancels execution of an asynchronous
Cancdl Sub 3.5 Execute or OpenRecordset method
Closes the Connection object and
Close Sub 3.5 everything it contains
CreateQueryDef [[Name], [SQL Text]) QueryDef |3.5 Creates a new QueryDef object
Execute Query As String, [Options] |Sub 35 Executes an SQL statement
Name As String, [Type], .
OpenRecordSet [Options], [LockEdif] Recordset|3.5 Creates a new Recordset object

A.3.3 Properties

Property Type |Version Description
Connect String |35 Information saved from the Connect argument of the OpenDatabase
method
Name String |3.5 Name of the Connection object
. Number of seconds before timeout occurs when executing an ODBC
QueryTimeout |Integer (3.5 query
RecordsAffected|Long (3.5 Number of records affected by the last Execute method
StillExecuting |Boolean |3.5 Indicates whether an asynchronous method call is still executing
Transactions Boolean 3.5 Indicates whether the DAO object supports transactions
Updatable Boolean 3.5 Indicates whether the connection allows data to be updated

A.4 Container Object

A.4.1 Collections

Property Type Version Description
Documents Documents 3.0/3.5 Collection of Document objects in the container
A.4.2 Properties

Property Type |Version Description

AllPermissions|Long

3.0/3.5

All permissions that apply to the current username

Inherit Boolean

3.0/3.5

Indicates whether new Document objects inherit default permissions
properties

Name String |3.0/3.5 |The name of this object
Owner String |3.0/3.5 |Setsor returns the owner of the object
- Sets or returns permissions for the user or group indicated by the
Permissons |Long (3.0/3.5 UserName property when accessing the object
UserName String |3.0/3.5 |User or group to which the Permissions property applies

A.5 Database Object

A.5.1 Collections

Property Type Version Description
Connection |Connection |3.5 An open ODBCDirect connection
Containers |Containers |3.0/3.5 |Collection of Container objectsin the Database object
QueryDefs |QueryDefs |3.0/3.5 |Collection of QueryDef objectsin the Database object
Recordsets |Recordsets |3.0/3.5 |Collection of Recordset objects open in Database object
Relations Relations 3.0/3.5 |Collection of Relation objectsin the Database object
TableDefs |TableDefs [3.0/3.5 |Collection of TableDef objects in the Database object
A.5.2 Methods
M ethod Parameters Returns |Version Description
Close Sub [3.0/35 |Closesthe Database object and
everything it contains
Creates a new user-defined
CreateProperty |[[Name], [Type], [Value], [DDL] |Property |3.0/3.5 Property object
CreateQueryDef [[Name], [SQL Text] QueryDef [3.0/3.5 |Creates a new QueryDef object
. [Name], [Table], [ForeignTable], . . .
CreateRelation [Attributes] Relation |3.0/3.5 |Creates anew Relation object
[Name], [Attributes], .
CreateTableDef [SourceT ableName]. [Connect] TableDef |3.0/3.5 |Creates anew TableDef object
Execute Query As String, [Options] Sub 3.0/3.5 |Executesaquery
. PathName As String, Description Makes a new replica based on the
MakeReplica As String, [Options] Sub 30535 current replicable database
bstrOld As String, bstrNew As Changes the password of an
NewPassword String Sub 3.0/35 existing database
OpenRecordset IName As String, [Type], [Options] |Recordset|3.0/3.5 |Creates a new Recordset object
PopulatePartial |DbPathName As String Sub 35 Synchronizes a partial replica
. DbPathName As String, . .
Synchronize [ExchangeType] Sub 3.0/3.5 |Synchronizes the database object
A.5.3 Properties
Property Type |Version Description
CollatingOrder |Long (3.0/3.5 |Definesthe order used for sorting and comparisons
. Information saved from the Connect argument of the OpenDatabase
Connect String
method
DesignMasterID |String {3.0/3.5 |Unique identifier for areplica design master
Name String [3.0/3.5 |The name of this Database object

QueryTimeout |Integer |3.0/3.5 zluuer:]yber of seconds before timeout occurs when executing an ODBC
RecordsAffectedLong |3.0/3.5 |Number of records affected by the last Execute method

ReplicalD String |3.0/3.5 |Uniqueidentifier for areplica

Transactions Boolean |3.0/3.5 |Indicates whether the Database object supports transactions
Updatable Boolean |3.0/3.5 |Indicates whether the Database object can be modified

Version String |3.0/3.5 |Version number of the Database object format

A.6 DBEnNngine Object

A.6.1 Collections

Property Type Version Description
Errors Errors 3.0./3.5 |Collection of errors from the most recently failed DAO operation
Properties |Properties |3.0/3.5 |Collection of Property objects
Workspaces |Workspaces [3.0/3.5 |Collection of open Workspace objects
A.6.2 Methods
Method Parameters Returns [Version Description
BeginTrans Sub 3.0/3.5 |Beginsanew transaction
CommitTrans Sub 30 Ends the transaction and
saves any changes
. . Ends the transaction and
CommitTrans [Option as Long] Sub 35 saves any changes
SrcName As String, DstName As
CompactDatabase|String, [DstConnect], [Options], Sub 3.0 Compacts a closed database
[SrcConnect]
SrcName As String, DstName As
CompactDatabase|String, [DstLocal€], [Optiong], Sub 35 Compacts a closed database
[SrcLocal€]
CreateDatabase '[\l Oal;:t]i?)'r?]s String, Connect As String, Database |3.0 Creates anew database
Name As String, Locale As String, Createsanew .MDB
CreateDatabase [Option] Database |3.5 database
Name As String, UserName As Creates anew Workspace
CreateWorkspace String, P ord As String Workspace|3.0 object
Name As String, UserName As
CreateWorkspace |String, Password As String, Workspace|3.5 Cr_eates anew Workspace
object
[UseTypel
. Completes pending engine
Idle [Action] Sub 3.0/35 tasks such as lock removal
. Name As String, [Options], . Opens aconnectionto a
OpenConnection [ReadOnly], [Connect] Connection|3.5 database
Name As String, [Exclusive], .
OpenDatabase [ReadOnly], [Connect] Database |3.0 Opens a specified database
Name As String, [Optiong], .
OpenDatabase [ReadOnly], [Connect] Database |3.5 Opens a specified database
RegisterDatabase |Dsn As String, Driver As String, Sub 3.0/3.5 |Enters connection

Silent As Boolean, Attributes As information for an ODBC
String data source
i . Repairs a corrupted
RepairDatabase |[Name As String Sub 3.0/3.5 database
Rolls back any changes
Rollback Sub 3.0/35 sincethe last BeginTrans
. . Overrides Jet registry
SetOption Option AsLong, Value Sub 35 settings
A.6.3 Properties
Property Type |Version Description
DefaultPassword |String |3.0/3.5 |Password if aWorkspace object is created without a password
DefaultType Long (3.5 Sets the default Workspace type
DefaultUser String {3.0/3.5 |User nameif aWorkspace object is created without a user name
. . Path and filename of theinitialization file (in Jet 3.0) or the complete
IniPeth String |3.0/3.5 Registry path (Jet 3.5) containing Jet engine settings
LoginTimeout |Integer|3.0/3.5 |Number of seconds allowed for logging in to an ODBC database
SystemDB String |3.0/3.5 |Path to the system database
Version String {3.0/3.5 |Version number of the Jet database engine

A.7 Document Object

A.7.1 Methods

M ethod Parameters Returns|Version Description

[Name], [Type], [Valug], Creates a new user-defined Property

CreateProperty [DDL] Property|3.0/3.5 object
A.7.2 Properties

Property Type |Version Description
AllPermissions [Long (3.0/3.5 |All permissionsthat apply to the current username
Container String |3.0/3.5 |Name of the Container object this Document object belongs to
DateCreated Variant |3.0/3.5 |Date and time the Document object was created
LastUpdated Variant |3.0/3.5 |Date and time of the most recent change to the Document object
Name String [3.0/3.5 |Name of this Document object
Owner String |3.0/3.5 |The owner of the object
Permissions Long |3.0/3.5 |Permissionsfor user or group accessing the Document object
UserName String [3.0/3.5 |User or group for which the Permissions property applies

A.8 Error Object

A.8.1 Properties

Property Type | Version Description
Description String |3.0/3.5 Description of the error
HelpContext Long |3.0/35 Help context ID for atopic describing the error
HelpFile String |3.0/3.5 Path to Help file describing the error

Number Long |3.0/35 Error code of the most recent error
Source String |3.0/3.5 Name of the object class that generated the error
A.9 Field Object
A.9.1 Collections
Property Type Version Description

Properties Properties 3.0/35 Collection of Property objects
A.9.2 Methods

M ethod Parameters Returns|Version Description
AppendChunk |Val Sub 3.0/3.,5 |Writeslong binary datato afield

CreateProperty

[Namg], [Type], [Valug],

Property|3.0/3.5 |Créates anew user-defined Property

[DDL] object
FieldSize Long |3.0 Returnsthefield sizefield
GetChunk Offset AsLong, Bytes As Byte 3.0/3.5 |Reads binary datafrom afield

Long

A.9.3 Properties

Property Type |Version Description
AllowZeroL ength|Boolean |3.0/3.5 |Indicates whether azero-length string is valid for this field
Attributes Long |3.0/3.5 |Valueindicating characteristics of this Field object
CollatingOrder |Long |3.0/3.5 |Language used for sorting and comparisons
DataUpdatable |Boolean|3.0/3.5 |Indicates whether the datain the field are updatable
DefaultVaue String |3.0/3.5 |Default value of the field for anew record
FieldSize Long |3.5 The size of amemo field or along binary field
ForeignName String [3.0/3.5 |The name of theforeign field
Name String [3.0/3.5 |The name of this Field object
OrdinalPosition |Integer [3.0/3.5 |Therelative position of thisfield object
OriginaValue |Variant |3.5 Value stored in the database server at the start of a batch update
Required Boolean |3.0/3.5 |Indicates whether the Field requires anon-Null value
Sze Long |3.0/3.5 |[Maximum size of thefield
SourceField String [3.0/3.5 |Name of the original source of datafor aField object
SourceTable String [3.0/3.5 |Name of the original sourcetable
Type Integer |3.0/3.5 |Datatype of thefield
ValidateOnset |Boolean|3.0/3.5 c[j);tat;r;nc; :ﬁi\(v:ne?;; ;/I:I |(ge:t;:I)r;e o\;:;ttjjres; immediately (aTruevalue) or is
ValidationRule |String |3.0/3.5 |Expression that must evaluate to True for a successful update
ValidationText |String |3.0/3.5 |Messageto display if validation with ValidationRule fails
Value Variant |3.0/3.5 |TheField object's data
VisibleValue Variant |3.5 Data currently stored in the database server

A.10 Group Object

A.10.1 Collections

Property Type Version Description
Properties Properties 3.0/3.5 A collection of Property objects
Users Users 3.0/3.5 A collection of User objects
A.10.2 Methods
Method Parameters Returns | Version Description
CreateUser |[Name], [PID], [Password] User 3.0/3.5 Creates a new User object
A.10.3 Properties
Property | Type | Version Description
Name String [3.0/3.5 Name of the Group object
PID String [3.0/3.5 Personal identifier (PID) for the group or user account

A.11 Index Object

A.11.1 Collections

Property Type Version Description
Fields Fields 3.0/3.5 Collection of fieldsin the Index object
Properties Properties 3.0/3.5 Collection of Property objects
A.11.2 Methods

Method Parameters Returns|Version Description
CreateField [Name], [Type], [Size€] Field |3.0/3.5 |Createsanew Field object

[Name], [Type], [Value], Creates anew user-defined Property

CreateProperty [DDL] Property|3.0/3.5 object
A.11.3 Properties

Property Type | Version Description
Clustered Boolean (3.0/3.5 |Indicateswhether the index is clustered
DistinctCount |Long 3.0/3.5 |Number of unique valuesin thisIndex object
Foreign Boolean (3.0/3.5 |Indicates whether an Index object represents aforeign key
IgnoreNulls Boolean (3.0/3.5 |Indicates whether Null values are stored in the index
Name String |3.0/3.5 |Name of thisIndex object
Primary Boolean (3.0/3.5 |Indicates whether thisisaprimary index
Required Boolean (3.0/3.5 |Indicates whether the index requires anon-Null value
Unique Boolean (3.0/3.5 |Indicates whether thisisauniqueindex for atable

A.12 Parameter Object

A.12.1 Properties

Property | Type |Version

Description

Direction |Integer (3.5 Indicates whether a Parameter is for input, output, or returned values

Name String [3.0/3.5 |Name of this Parameter object.

Type Integer |3.0/3.5 |Datatype of the object

Vaue Variant |3.0/3.5 |Theobject'svalue

A.13 Property Object

A.13.1 Properties

Property | Type |Version

Description

Inherited |Boolean |3.0/3.5 |Indicates whether aproperty isinherited from an underlying object

Name String |3.0/3.5 |Name of the Property object

Type Integer |3.0/3.5 |The Property object's datatype

Vaue Variant |3.0/3.5 |The property value

A.14 QueryDef Object
A.14.1 Collections

Property Type Version

Description

Fields Fields 3.0/3.5

Collection of fieldsin the QueryDef object

Parameters |Parameters |3.0/3.5

Collection of Parameter objectsin the QueryDef object

Properties |Properties 3.0/35

Collection of Property objectsin the QueryDef object

A.14.2 M ethods

M ethod Parameters Returns |Version Description
Cancels execution of an asynchronous
Cancel Sub 3.5 OpenRecordset method
Close Sub 3.0/3.5 |Closesthe open QueryDef object

CreateProperty [DDL]

[Name], [Type], [Valug],

Property (3.0/3.5

Creates a new user-defined Property object

Execute [Options] Sub 3.0/3.5 |Execute the Querydef

OpenRecordset|[Type], [Options] Recordset|3.0 Creates anew Recordset object
[Type], [Optiong], .

OpenRecordset [LockEdit] Recordset|3.5 Creates a new Recordset object

A.14.3 Properties

Property Type |Version

Description

CacheSize Long |3.5

Number of records to be locally cached from an ODBC data source

Connect String |3.0/3.5

Value providing information about a data source for a QueryDef

DateCreated Variant (3.0/3.5

Date and time the QueryDef was created

LastUpdated Variant |3.0/3.5

Date and time of the most recent change to the QueryDef

MaxRecords Long |35 Maximum number of records to return from the query

Name String |3.0/3.5 |Name of this QueryDef object

ODBCTimeout |Integer |3.0/3.5 (l\;lljjrgtgzrd ZI asbfca;)ends to wait before atimeout occurs when querying an

Prepare Variant 135 Indicates whether to prepare atemporary stored procedure from the
query

RecordsAffectedLong |3.0/3.5 |Number of records affected by the last Execute method

ReturnsRecords |Boolean |3.0/3.5 |Indicates whether an SQL pass-through query returns records

SQL String |3.0/3.5 |SQL statement that defines the query

StillExecuting |Boolean |3.5 Indicates whether an asynchronous method call is still executing

Type Integer |3.0/3.5 |Thedatatype of the object

Updatable Boolean |3.0/3.5 |Indicates whether the query definition can be changed

A.15 Recordset Object

A.15.1 Collections

Property Type Version Description
Connection Connection 35 Indi cates which Connection owns the Recordset
Fields Fields 3.0/3.5 Collection of fields in the Recordset object
A.15.2 Methods
Method Parameters Returns |Version Description
AddNew Sub 3.0/3.5 |Addsanew record to the Recordset
Cancels execution of an asynchronous Execute,
Cancel Sub 3.5 OpenRecordset, or OpenConnection method
Cancel Update Sub 3.0/35 Cancels any pending AddNew or Update
statements
Clone Recordset|3.0/3.5 |Creates a duplicate Recordset
Close Sub 3.0/3.5 |Closesan open Recordset object
Returns a copy of the QueryDef that created
CopyQueryDef QueryDef |3.0/3.5 the Recordset
Delete Sub 3.0/3.5 |Deletes arecord from the Recordset
Edit Sub 3.0/3.5 |Preparesarow of the Recordset for editing
. [Rowsg], . .
FillCache [StartBookmark] Sub 3.0/3.5 |Fillsthe cache for an ODBC-derived Recordset
FindFirst Criteria As String Sub 3.0/3.5 |Locatesthefirst record that satisfiesthe criteria
FindL ast CriteriaAs String Sub 3.0/3.5 |Locatesthelast record that satisfiesthe criteria
FindNext [(CriteriaAsString |Sub |3.0/3.5 |Cocatesthenextrecord that satisfiesthe
criteria
FindPrevious |Criteria As String Sub 3.035 I&?fe?it ?the previous record that satisfies the
GetRows [cRows] Variant (3.0/3.5 |Writes multiple recordsinto an array
Rows AsLong, Repositions the record pointer relative to the
Move [StartBookmark] Sub 3.0/35 current position or to a bookmark
MoveFirst Sub 3.0/3.5 |Movesto thefirst record in the Recordset
Movel ast Sub 3.0 Movesto the last record in the Recordset

Movel ast [Options AsLong] Sub 35 Movesto the last record in the Recordset
MoveNext Sub 3.0/3.5 [Movesto the next record in the Recordset
MovePrevious Sub 3.0/3.5 |[Movesto the previousrecord in the Recordset
Retrieves the next recordset in a multiquery
NextRecordset Boolean (3.5 Recordset
OpenRecordset|[Type], [Options] Recordset|3.0/3.5 |Creates a new Recordset object
Requery [NewQueryDef] Sub 3.0/35 Re—executes the query on which the Recordset
is based
Seek Egylparlson As String, Sub 3.0/3.5 |Locatesarecord in atable-type Recordset
Update Sub 3.0/35 Saves changes initiated by the Edit or AddNew
methods
A.15.3 Properties
Property Type [Version Description
AbsolutePosition Long |3.0/3.5 |Returnsor setstherelative record number of the current record
BatchCollisionCount|Long |3.5 Indicates the number of rows having collisionsin the last batch
update
BatchCollisions Variant |3.5 Indicates which rows had collisionsin the last batch update
BatchSize Long |35 Determines how many updates to include in a batch
BOE Boolean!3.0/3.5 Indicates whether the current record position is before the first
record
Bookmark As Byte |3.0/3.5 |Uniquely identifies a particular record in a Recordset
Bookmarkable Boolean|3.0/3.5 |Indicates whether a Recordset supports bookmarks
. Indicates the number of records from an ODBC data source to be
CacheSize Long |3.0/35 cached locally
CacheStart As Byte [3.0/35 Bookmarks the first record to be cached from an ODBC data
source
DateCreated Variant 13.0/35 Indicates the date and time when the underlying base table was
created
EditMode Integer |3.0/3.5 |Indicatesthe state of editingfor the current record
EOF Boolean|3.0/3.5 |Indicates whether the current record position is after the last record
Filter String [3.0/3.5 |Defines afilter to apply to a Recordset
Index String [3.0/35 :)?:Ijly (;ates the name of the current Index object (table-type Recordset
LastModified As Byte |3.0/3.5 |Bookmarksindicating the most recently added or changed record
. Indicates the date and time of the most recent change to the
LastUpdated Variant |3.0/3.5 underlying base table
L ockEdits Boolean!3.0/3.5 I nd!cates Fhe type of locking (optimistic or pessimistic) in effect
during editing
Name String |3.0/3.5 |Indicates the name of the Recordset object
NoMatch Boolean!3.0/3.5 Indicates whether the Seek or Find methods succeeded in finding a
record
PercentPosition Single [3.0/3.5 |Indicates or changes the approximate location of the current record
RecordCount Long |3.0/3.5 [Indicatesthe number of recordsin the Recordset object
RecordStatus Integer 3.5 Indicates the batch update status of the current record
Restartable Boolean|3.0/3.5 |Indicates whether the Recordset supports the Requery method

Sort String [3.0/3.5 |Definesthe sort order for recordsin a Recordset

StillExecuting Boolean|3.5 Indicates whether an asynchronous method call is still executing
Transactions Boolean|3.0/3.5 |Indicates whether the Recordset supports transactions

Type Integer |3.0/3.5 |Indicates the object's datatype

Updatable Boolean|3.0/3.5 |Indicates whether recordsin the Recordset can be updated
UpdateOptions Long |35 Determines how abatch update query will be constructed
validationRule String [3.0/35 Sgg;?:'ensan expression that must evaluate True for a successful
ValidationText String |3.0/3.5 |Indicates the message to appear if ValidationRule fails

A.16 Relation Object

A.16.1 Collections

Property Type Version Description
Fields Fields 3.0/3.5 Collection of fieldsin this Relation object
Properties Properties 3.0/3.5 Collection of Property objects
A.16.2 Methods

M ethod Parameters Returns | Version Description

CreateField [Name], [Type], [Size] Field 3.0/35 Creates anew Field object
A.16.3 Properties

Property Type |Version Description
Attributes Long |[3.0/3.5 |Miscellaneous characteristics of the Relation object
ForeignTable |String [3.0/3.5 |Specifiesthe name of the foreign (referencing) table in arelationship
Name String |3.0/3.5 |Name of this Relation object
PartialReplica|Boolean|3.5 Irzlcgates whether the relation provides a partial replica's synchronizing
Table String [3.0/3.5 |Specifiesthe primary (referenced) TableDef or Querydef

A.17 TableDef Object

A.17.1 Collections

Property Type Version Description
Fields Fields 3.0/3.5 |Coallection of fieldsin this TableDef object
Indexes Indexes 3.0/3.5 |Collection of indexes associated with this TableDef object
Properties |Properties |3.0/3.5 |Collection of Property objects
A.17.2 Methods
Method Parameters Returns |Version Description
CreateField [Name], [Typg], [Size] Fidd 3.0/3.5 |Creates anew Field object
Createlndex |[Name] Index 3.0/3.5 |Creates anew Index object
CreateProperty [Name], [Type], [Value], Property (3.0/3.5 |Creates anew user-defined Property object

[DDL]

OpenRecordset

[Type], [Options]

RefreshLink

Recordset|3.0/3.5 |Creates a new Recordset object
Updates connection information for an
Sub 3.0/3.5 attached table

A.17.3 Properties

Property Type |Version Description
Attributes Long |3.0/3.5 |Miscellaneous characteristics of the TableDef object
ConflictTable Sring |3.0/35 l;lyz;m?rgfn it;gi% (r:10ntai ning records that conflicted during replica
Connect String |3.0/3.5 |Data source for the TableDef
DateCreated Variant |3.0/3.5 |Date and time when the table was created
LastUpdated Variant |3.0/3.5 |Date and time when the TableDef was |ast changed
Name String |3.0/3.5 |[Name of the TableDef
RecordCount Long |3.0/35 |Number of records
ReplicaFilter Variant |3.5 Indicates which records to include in a partial replica
SourceTableName [String (3.0/3.5 |[Name of alinked table's original source table.
Updatable Boolean |3.0/3.5 |Indicates whether the TableDef definition can be changed
VaidationRule |String |3.0/3.5 |Expression that must evaluate to True for a successful update
ValidationText String |13.0/3.5 |Messageto display if ValidationRule fails

A.18 User Object

A.18.1 Collections

Property

Type

Version

Description

Groups

Groups

3.0/3.5

Collection of Group objectsin a User object

Properties

Properties

3.0/3.5

Collection of Property objects

A.18.2 Methods

Method

Parameters

Returns|Version Description

CreateGroup

[Name], [PID]

Group |3.0/3.5 |Createsanew Group object

NewPassword

String

bstrOld As String, bstrNew As

Changes the password of an existing user

3.0/35 account

Sub

A.18.3 Properties

Property

Type

Version

Description

Name

String

3.0/35

The name of the User object

Password

String

3.0/3.5

Password for the user account

PID

String

3.0/3.5

Personal identifier (PID) for agroup or user account

A.19 Workspace Object

A.19.1 Collections

Property

Type

Version

Description

Connections

Connections

35

Collection of Connection objects

Databases Databases 3.0/3.5 Collection of open Database objects
Groups Groups Collection of Group objectsin a Workspace object
Users Users 3.0/3.5 Collection of User objects for a Workspace object
A.19.2 Methods
Method Parameters Returns [Version Description
BeginTrans Sub 3.0/3.5 |Beginsanew transaction
Close Sub 3.0/3.5 |Closethe Workspace object
CommitTrans Sub 3.0/35 Ends the transaction and saves
any changes

Name As String, Connect As Creates anew Microsoft Jet
CreateDatabase String, [Option] Database |3.0/3.5 database (.mdb)
CreateGroup [Namg], [PID] Group 3.0/3.5 |Creates anew Group object
CreateUser [Name], [PID], [Password] User 3.0/3.5 |Creates anew User object

. |IName As String, [Options], : Opens a connection to a
OpenConnection [ReadOnly], [Connect] Connection|3.5 database
OpenDatabase Name As String, [Exclusive], Database |3.0/3.5 |Opensadatabase
P [ReadOnly], [Connect] e P
Undoes any changes since the
Rollback Sub 3.0/35 last BeginTrans
A.19.3 Properties
Property Type |Version Description

DefaultCursorDriver |Long |3.5 Selects the ODBC cursor library
IsolateODBCTrans |Integer|3.0/3.5 |Indicates whether multiple transactions are isolated (ODBC only)
LoginTimeout Long |3.5 Number of seconds allowed for logging in to an ODBC database
Name String |3.0/3.5 |Name of this W orkspace object
UserName String |3.0/3.5 |User that created the Workspace object

Appendix B. The Quotient: An Additional

Operation of the Relational Algebra

The quotient of two tablesis not used often, but has a very specific use. It arises when we
wish to select those rows of atable that are sufficient to provide all possible valuesin
certain columns. As an example, imagine a business that makes furniture. The database
for this business has a table on the types of wood that they use and on suppliers of wood
and which types they supply. Examples are shown in Table B.1 and Table B.2 (of course,
these tables would include more columns, but thisis just to illustrate the point):

Table B.1. WOOD

Type

Mahogany

Red oak

Poplar

Walnut
TableB.2. SUPPLIER/TYPE

Sname Type
Jones Wood Supply mahogany
Austin Hardwoods red oak
Orange Coast mahogany
Jones Wood Supply poplar
West Lumber poplar
Jones Wood Supply walnut
Austin Hardwoods wal nut
Jones Wood Supply red oak
Orange Coast wal hut
West Lumber red oak
Orange Coast poplar
Orange Coast red oak
Fred's Woods wal nut

Note that there are four types of wood. Suppose we want to know which suppliers supply
all four types—a reasonable question. The answer, which is shown in Table B.3, is called

the quotient.

Table B.3. SUPPLIER/TYPE WOOD

Sname

Jones Wood Supply

Orange Coast

and is called the quotient of the table SUPPLIERS/TY PE by WOOD, written
SUPPLIER/TY PE + WOOD.

Asyou can see, the quotient can certainly come up in real-life situations. The reason for
defining a specific operation for this purpose is that expressing the quotient in terms of
the other relations is a bit complex. Let's do it to illustrate the virtue of the quotient.

Theideais actually relatively smple. We first get atable, call it T, containing al rows
that are not in the SUPPLIER/TY PE table. This new table will involve only those
suppliers who have not supplied all types of wood. (If a supplier supplies al four types of
wood, then there will be four rows in the SUPPLIER/TY PE table and therefore no rows
in T.) Then we subtract this from a table containing al (participating) suppliers. Here is
the step-by-step procedure:

Step 1: Form the table:

R = [proj SName(SUPPLI ER/ TYPE) ? WOOD] - SUPPLI ER/ TYPE

Table B.4, the table R, contains al rows of the form (SName, Type) that are not in the
SUPPLIER/TY PE table. Put another way, it is the set of "missing possibilities’ in the
Cartesian product (which isthe set of all possibilities).

TableB.4.R
Sname Type
Austin Hardwoods poplar
West Lumber wal nut
Austin Hardwoods mahogany
West Lumber mahogany
Fred's Woods wal nut

Step 2: Form the table:

pr oj SNane(R)

That is, project the table R onto the SName column, giving the SUPPLIERS that do not
supply al types of wood, as shown in Table B.5.

Table B.5. projSName(R)

SName

Austin Hardwoods

West Lumber

Fred's Woods

Step 3: Findly, form the table:

proj SName(SUPPLI ERS/ TYPE) - proj SName (R)

That is, subtract the table in Step 2 from the first column of the SUPPLIERS/TY PE table.
This gives the suppliers that supply al four types of wood, as Table B.6 illustrates.

Table B.6. SUPPLIER/TYPE + WOQOD

SName

Jones Wood Supply

Orange Coast

Appendix C. Open Database Connectivity (ODBC)

In this appendix, we take a close look at ODBC, which is a part of both DAO and ADO
and probably will be for some time to come, despite Microsoft's desire to replace all
previous database technologies with OLE DB and ADO.

ODBC is part of DAO in the sense that DAO supports ODBC workspaces for connecting
to ODBC providers. Also, ODBC is part of OLE DB in the sense that the first OLE DB
data provider was for ODBC data sources and this s still the most flexible OLE DB
provider.

Our discussion of ODBC will be fairly detailed, but it will not be reference-like.
However, you should feel free to skim through this appendix for whatever information
suits your particular needs. If you get more deeply involved in database connectivity, you
may find that some of this information will prove useful later on.

Incidentaly, all of the code examples in this chapter are available on my web site:
http://www.romanpress.com

C.1 Introduction

Open Database Connectivity, or ODBC for short, is an Application Programming
Interface (API) for connecting to databases of various types. (An API is essentidly just a
set of functions, also called services, for performing various tasks. These functions are
usually contained in one or more dynamic link libraries (DLLS).) The term database is
used here in avery general sense to refer not only to traditional relational databases, such
as Access or FoxPro databases, but also to less traditional "databases’ such as delimited
text files or Excel worksheets.

Typicaly, the functions in the ODBC API are implemented in database-specific ODBC
drivers. In this way, an application is shielded from having to know the specifics of the
various types of databases.

Figure C.1 shows the components involved in the use of ODBC.

Figure C.1. An overview of ODBC

| ODBC Driver |---- Dala Source
ieati QDB Oriver |- -
Application |[----- Manager 1 ODBC Driver [---- Dala Source

| ODBC Driver ---- Dala Source

Since most data access is done using the SQL language, the primary ODBC-related task
for an application is to submit SQL statements to the Driver Manager, which sends the

commands to the appropriate driver and also processes any data that is returned as a
result of the SQL statements.

C.2 The ODBC Driver Manager

The purpose of the ODBC Driver Manager is to manage communication between the
application and the driver. The application communicates directly with the Driver
Manager, which in turn either processes the command or sends it on (with or without
some modification) to the driver. (It is possible for an application to communicate
directly with a driver, but thisis not usual.)

Generaly, the Driver Manager just passes API function calls from the application to the
correct driver. However, it does implement some API functions and also performs some
basic error checking. In particular, it is responsible for implementing the following
driver/data source information functions:

SQL DataSources: Returns information about a data source.

SQLDrivers: Lists driver descriptions and attributes.

SQL GetFunctions. Determines whether a given driver supports a given ODBC
function.

The Driver Manager is aso responsible for managing the connection to and
disconnection from an ODBC driver. In particular, when an application wants to use a
particular driver, the application calls one of the following connection functions:

SQL Connect: Establishes a connection to a driver and a data source.
SQL DriverConnect: Establishes a connection using a connection string.
SQL DriverBrowse: Establishes a connection iteratively.

Each of these functions must include information about the driver in its parameters (in
different forms, however). Using this driver information, the Driver Manager |oads the
driver (if it is not aready loaded) and calls the appropriate connection function
(SQLConnect, SQLDriverConnect or SQLDriverBrowse) in the driver.

When the application is done using the driver, it calls SQLDisconnect. The Driver
Manager passes this call to the driver, which disconnects from the data source.

C.3 The ODBC Driver

An ODBC driver is a code component that implements the functions in the ODBC API.
Each driver is specific to a particular database type. Drivers expose the capabilities of the
underlying database management system (DBMS) but do not, in general, enhance its
capabilities. The main exception is that drivers for DBMSs that do not have standalone
database engines, as is the case with dBASE, Xbase, and ASCI|I text, for example, must
implement a database engine that supports a minimal amount of SQL.

In particular, an ODBC driver must implement the following tasks (among others):

Connecting to and disconnecting from the data source.

Sending data to and retrieving data from the data source.

Checking for API function errors that are not checked by the Driver Manager.
Submitting SQL statements to the data source for execution. For this, the driver
may need to modify the ODBC-style SQL statements to a form of SQL that the
DBMS understands.

C.3.1Driver Types

In generd, there are two types of ODBC drivers. A file-based driver accesses the
physical datain the database directly. Thus, it must process not only ODBC function
calls, but also SQL statements. Put another way, a file-based driver must also be a
database engine that can process ODBC SQL (at a minimum). For example, dBASE
drivers are file-based drivers because dBA SE does not provide a standal one database
engine the driver can use.

By contrast, a DBMS-based driver accesses the physical data only through a separate
database engine. In this case the driver processes ODBC calls but passes SQL statements
to the database engine for processing. For example, Microsoft Access provides a

standal one database engine called Jet, so an Access driver can be DBMS-based. (There
are also file-based Access database drivers that communicate directly with MDB files.)

The advantage of DBM S-based drivers is that they can accept and pass aong the
DBMS's specific brand of SQL. For instance, a DBMS-based driver for Microsoft Access
can pass Access SQL datements to the Access database (Jet) engine for processing. On
the other hand, afile-based Access driver, which contains its own proprietary database
engine that accesses MDB files directly, may support only ODBC SQL, in which case
attempts to pass Access-specific SQL statements to the driver are likely to result in

errors.

C.4 Data Sources

A data source s, in general, a source of data. However, this term is one of the most
abused and inconsistently misused terms in database-related programming (at least in
Microsoft's arsenal). For instance, when the data are contained in a text file, then the term
"data source” refers simply to the physical datain the file. Similarly, when the data are
contained in an Access database file (extension MDB) that is being accessed by afile-
based driver, the term data source refers to the MDB file. On the other hand, when the
data are contained in an Access database file that is being accessed by a DBMS-based
driver, then the data source is considered to be the combination of the Access DBMS and
the MDB file. On the other hand, in the context of the new VB6 DataBinding object
model, the term data source refers to a source for the data binding, which is often a VB6
class module that has its DataSourceBehavior property set to vbDat aSour ce. In this case,
the data source itself contains no data whatsoever!

Thus, just what constitutes a data source depends upon the circumstances. In fact, since a
data source is dways associated with a particular driver under ODBC, we will usually
think of the pair together. This view is supported by the fact that when configuring a data
source using the ODBC Administrator, we are first required to select adriver.

The term data source is a'so sometimes used (unfortunately) to stand for the description
of a data source, that is, the name and path of the database, password, user name,
connection attributes, and so on. What a mess.

C.4.1 DSNs and Data Source Types

The ODBC literature uses the term Data Source Name or DSN quite frequently.
Unfortunately, it does not refer smply to the name of the data source! Rather, it refers to
adescription of the data source, the accompanying driver, and the attributes of a
connection between the two. For instance, a DSN includes the name of the data source,
the complete path of the data source, the name of the driver, and details about the
connection to the data source, such as whether or not the connection is read-only. We will
see examples of DSNs alittle later. The important thing to keep in mind is that the name
DSN is quite misleading. Perhaps a better term would have been Data Connection
Description (or DCD).

C.4.1.1 Machine data sources

Data sources are said to fall into two categories. machine data sources and file data
sources. Note, however, it is really the DSNs that fall into these categories. The
difference isin where and how the DSN (and not the data source itself) is stored.

For a machine data source, the DSN is stored in the system registry of a machine under a
specific name, called the DSN name (or Data Source Name name). A machine data
source can be registered under one of two registry keys:

HKEY_LOCAL_MACHI NE/ SOFTWARE/ ODBC/ ODBC. | NI
HKEY_CURRENT_USER/ SOFTWARE/ ODBC/ ODBC. | NI

In the former case, the DSN is available to all users of the machine. In the latter case, the
DSN is available only to the user under whose name it is registered. When aDSN is
stored in the HKEY_LOCAL_MACHI NE key, the data source is referred to as a system data
source, athough again this term should really be applied to the DSN. When the DSN is
stored in the HKEY_LOCAL_USER key, the data source (actually DSN) isreferred to as a
user data source.

Incidentally, the registry key HKEY_LOCAL_MACHI NE/ SOFTWARE/ ODBC/ ODBCI NST. | NI
contains information about each installed ODBC component, including drivers. Thisisa
good place to find the filename of adriver, should you be interested.

C.4.1.2 Filedata sources

For afile data source, the DSN is kept in an ordinary text file, with extension DSN, and is
accessible to anyone with access to the file, so that a file data source (that is, afile DSN)
is not registered to any one user or machine. Thus, afile DSN does not have a DSN name
per se (under which it is registered). It does have afilename, of course.

The main advantage of afile data source is that it can be copied to any machine, so that
identical data sources can be used by several machines. A file data source can also be
shared by more than one application.

C.4.2 Creating DSNs. The ODBC Administrator

DSNs are generally created by the user with a program called the ODBC Administrator.
This program is accessed by clicking on the ODBC icon in the Windows Control Panel.
The opening dialog is shown in Figure C.2.

Figure C.2. The ODBC Administrator

f" ODBC Data Source Administrator

UzerD5SH |3',"E'?m [,ENI File DIEN | Dirvars | Tr.:u:lrgl Connedlion Pooling I Aboul |

COLE_DB_NYind_Jat Micrasolt Access Drmeer M midb) ﬁc\nl’lgule
CLE_DB_MYind_SCL S0L Server

Visual Foefro Dataoese Microsolt Visual FoxFro Drser

wigual FoxPro Tables Microsalt Visual Fodro Dmeer

Lizer Datn Sounces: Add I
Mame Cieraier |
Microsol Access Drreer (*midh) Eemove I
M5 Actess 97 Database Micmsol Acoess Deneer (= midb)

indicated data provader. A User data source is ok visibla 10 oL, and can

@ AnDDEC User dala Source SAones informamn abowd fiow o conie ol o fe
anhy be used on the current machine

0% Cancel | | Help |

Once the type of DSN (User, System or File) is chosen and the user clicks the Add
button, the dialog in Figure C.3 is displayed, prompting the user for the name of the
driver.

Figure C.3. Choose a driver

Create Mew Dala Source

Salect a driver for which you sant i setup a dela counce.

Marme I"-."E-H-E‘l | Compamy | | &

ISITII00 Microsof Corporation |
Microsoh dBease Driver (*.dbi) 351171300 Microsoft Corporation 1
Microson Excel Direver (*xds) 3151171300 Microsoft Corporalion 1
Microsoh FoxFro Driver (= dbd) 3181171300 Microsoh Corporaion 1
Microsol DDEC Dmver for Oracle 200006325 Microsolt Corporation |
Microsof DDBC for Crade LETIZ92700 Micrmosof Corpombon |
Microsok Paredme Diver (*db) 351171300 Microsoft Corporation 1
Microsol Tesd Driver (=t “cevd 351171300 Microsoft Corporatiion =
Miciosoh Visual FoxFro Diver EODAG?00 Microsof Comporation
S0L Server 36000319 Micasal DJTUU'WJULILI
1| *

I Sinesh I Cance| |

The ODBC Administrator then calls the driver so it can display any of its dialog boxes
that request specific information required by the driver to connect to the data source.
(Thus, these dialog boxes vary fromdriver to driver.) After the user enters the
information, the DSN data is stored in the appropriate place (the registry or a DSN file).

C.4.3 Example DSNs

It is helpful to take alook at a few examples of DSNs created using the ODBC
Administrator.

C.4.3.1 Excel system data source

Here is an example of the registry entries for a system DSN consisting of an Excel
workbook. The DSN name is ConnectExcel :

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ ODBC\ ODBC. | NI \ Connect Excel]
"Driver"="C:\\WNNT\\ Syst enB2\\ odbcjt32.dlI"

"DBQ'="d: \\ bkado\\connect. x| s"

"Defaul tDir"="d:\\bkado"

"Description"="An exanpl e Excel data source”
"Driverld"=dword: 00000316

"FIL"="excel 5.0;"

"ReadOnl y" =hex: 00

"Saf eTransacti ons" =dwor d: 00000000

"up'=""

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ ODBC\ ODBC. | NI \ Connect Excel \ Engi nes]

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ ODBC\ ODBC. | NI'\ Connect Excel \ Engi nes\ Excel]
“I'nplicitConmtSync"="Yes"

"MaxScanRows" =dwor d: 00000008

"Thr eads" =dwor d: 00000003

"User Conmit Sync" ="Yes"

"Fi r st RowHasNanes" =hex: 01

As you can see, the Driver value entry holds the name of the ODBC driver for Excel. The
DBQ value entry gives the name of the Excel workbook, which is the database in this
case. Each worksheet in the workbook is a database table. (For some reason, the value of
FILis"excel 5.0" even though the version of Excel that | used here is Excd 97.) The

Engi nes\ Excel subkey reports, anong other things, whether the Excel tables
(worksheets) use the first row for field names.

The ODBC Administrator dialogs that created this data source are shown in Figure C.4
and Figure C.5.

Figure C.4. Creating an Excel data source, Part 1

f-‘ ODBC Data Source Administrator

UserDSH Syatem DSH |FI|E DEN | Drwarsl Trucirgl Cannadion Paaling I Aboul |

Sxatarn Data Sources Add
Mame | Lirse |
ConnedAccess hcrosoll Access Dirver = mdb] Eiemove I
NI SRS ocrosol Exce! Dirver (Fads)
Connad T axt mescrosot Ted Drrver (b * c8v) Cionfigure... I

indiceted dato proseder. A System dalo source is visible 1o all users an this

@ An QDEC System data source storas irfomation about how 1o connedt 1o the
maching, nclding MNT serices

o Sancel | | Help |

0DBC Microsoft Excel Setup

Diata Source Hame: |F.nnn-r-rJFmrI fuls
Diescriphon Pn Exampla Excal Dala Saurca |
Datsbmse
Help
‘Yargion |E='I'E" a7 LI

“Workbook O BkAcoessilh Comnect ds

SelectWorkbook. |

|

Cirvwee

Biows bo Sican i F Read Onpy

C.4.3.2 Excsel filedata source

The contents of an Excel file DSN are shown here:

[ODBC]

DRI VER=M crosoft Excel Driver (*.xls)
Ul D=adni n

User Commi t Sync=Yes

Thr eads=3

Saf eTransacti ons=0

ReadOnl y=0

PageTi meout =5

Max ScanRows =8
MaxBuf f er Si ze=512

I mplicitConmitSync=Yes

FI L=excel 5.0

Driverl d=790

Def aul t Di r =D: \ bkado

DBQ=D: \ BkAccessl I\ Connect . xI s

Note that thisis not as extensive as the system DSN. For instance, it does not include the
Fi r st RowHasNames value.

C.4.3.3 Text system data source

Here is an example for atext data source. In this case, a "table" is atext file with
extensiont xt, csv, t ab, Of asc

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ ODBC\ ODBC. | NI'\ Connect Text]
"Driver"="C:\\WNNT\\ Syst enB2\\ odbcjt32.dlI"

"Defaul tDir"="D:\\bkado"

"Description"="A text data source”

"Driverld"=dword: 0000001b

"FIL"="text:;"
"Saf eTransacti ons" =dwor d: 00000000
"up=""

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ ODBC\ ODBC. | NI \ Connect Text \ Engi nes]

[HKEY_LOCAL_MACHI NE\ SOFTWARE\ ODBC\ ODBC. | NI \ Connect Text \ Engi nes\ Text]
"Ext ensi ons" ="t xt, csv, tab, asc"

"lnmplicitCommtSync"="Yes"

"Thr eads" =dwor d: 00000003

"User Conmi t Sync" ="Yes"

Note that nowhere in the registry is there a reference to the actual table (text file) or
tables for this data source. This information is placed in a specia text file called
schema.ini that is created by the ODBC Administrator. The fileis placed in the directory
DefaultDir. Here are the contents of the schema.ini file, which in this case actually
describes two separate text connections:

[donna. t xt]
Col NanmeHeader =Tr ue
For mat =TabDel i m t ed

MaxScanRows=25

Char act er Set =CEM

Col 1=FI RSTNAME Char W dth 255
Col 2=LASTNAME Char W dth 255

[textfile.csv]

Col NameHeader =Fal se
For mat =CSVDel i m t ed
MaxScanRows=25

Char act er Set =CEM

Col 1=F1 Char Wdth 255
Col 2=F2 Char W dth 255

Note that if new text "tables' are added to the connection, additional sections are created
in the schema.ini file. The ODBC dialogs that created the first connection are shown in
Figure C.6 and Fiqure C.7.

Figure C.6. Text data source setup

DDBC Tewt Setup

™ Use Cumeri Direclory

Data Souce Mame |Cc~nnBGITB-d QK |
Deschiplion |H sample lexd cornadion Cencsl |
Dainbase
Help |
Duractar: dbkado
Select Direstory |

Filas
Extansions Lest
Extenzicn Add
. mEC
Fiemows

I Detouh 4

Define Fornst I

Figure C.7. Setup for the donna.txt sourcefile

Dehne Text Format
Takbles Colurmins
<dednulty Guess

LAaSTHAME

F Cojurmin MName Headear

Format [Tab Detmiled - Data Type: |Cher -] Akl
Hame: |F|I2.E_HAHE by

Buorass 1o Scan 25

i
Lharadnrs r AMEl * OEM width |‘E'E' Remouve
Ok I Canrcel | Help |

C.4.4 Connecting to a Data Source

It is not our intention to go into the details of the ODBC API functions. However, we do
want to briefly discuss the functions that are used to establish a data source connection,
since this will shed some light on the issues of DSNs and the infamous connection string.

The ODBC API has three functions for establishing data source connections:
L Connect, SQLDriver Connect, and SQLBrowseConnect. We will briefly discuss the
first two.

C.4.5 The SQL Connect Function

L Connect is the ssimplest connection function. The parameters to this function consist
of aDSN and optionally a user ID and password. This function is the best choice when
the DSN contains al of the information required for the connection. Note that this is not
always the case. For instance, suppose that the connection requires one password to log
on to a server and a second password to log onto a specific database on the server. The
first password can be included as an argument to SQLConnect, but the second password
must be stored in the DSN. If you don't want to store a password in a DSN, the DSN will
not be sufficient to make the connection and so the SQLConnect function will not be

appropriate.

Since SQLConnect does not interact with the user (unlike the other connection functions),
it is the correct choice when the programmer wants to write his or her own interaction
code (such as prompting the user for auser ID or passwords).

C.4.6 Connection Strings

A connection string is atext string that contains information used for establishing a data
source connection. Note, however, that a connection string may or may not contain all of
the required information (just as a DSN may not be complete). A connection string
consists of a series of keyword/value pairs separated by semicolons. Aswe will see, a
connection string is used by SQLDriver Connect. Note that SQLConnect does not use a
connection string. Since DSNs serve essentially the same purpose, connection strings and
DSNs are basically just two sides of the same coin. (In fact, connection strings are built
from DSNs by ODBC.)

C.4.7 SQL Driver Connect

When the parameters to SQL Connect — a DSN, a password, and auser ID — are not
sufficient to make the desired connection, the SQLDriver Connect function may do the
job. There are two reasons to use SQLDriver Connect rather than SQLConnect. First, if a
system DSN does not contain sufficent connection information, it is much simpler to
construct a custom connection string in code than it is to alter the registry entriesin a
DSN. (For afile DSN, thisissue is mitigated somewhat, but it is still easier to create a
connection string in code than to open and alter atext file.) Second, SQLDriver Connect is
capable of prompting the user for connection information by displaying ODBC dialog
boxes.

To illustrate, if adriver requires two passwords (as discussed earlier), then a connection
string could contain these passwords (along with other data):

Ul D=SRoman; Ser ver PAD=SubRosa; DBPWD=Secr et ;

Aswe mentioned, if a connection string is not complete, SQLDriver Connect may prompt
the user for additional connection information. For example, if the connection string is:

DSN=Connect ToWhat ever;

this might cause the driver to display a dialog box asking for the necessary user ID and
password.

In addition, if SQLDriverConnect receives an empty connection string, the Driver
Manager displays a dialog box prompting the user for the correct DSN.

C.5 Getting ODBC Driver Help

Y ou may be able to get some limited help for an ODBC driver by starting the DSN
creation process through the ODBC Administrator and then clicking the Help button once
adriver-specific dialog appears. This brings up the ODBC Microsoft Desktop Database
Drivers Help file. However, thisinformation is at best sketchy and often misleading. For

instance, under the topic Connection Strings, the help file says that a connection string
includes the following keywords:

DSN: Name of the data source

DBQ: Name of the directory
DRIVERID: Aninteger ID for the driver
FIL: File type

However, as we will see in the upcoming examples, the DBQ value is the name of the
directory for the Microsoft Text Driver but ot the name of the actual workbook for the
Microsoft Excel Driver! The help file also does not give any indication as to when or
whether these keywords are always required. Nevertheless, the information contained in
the help file can be very useful.

C.6 Getting ODBC Information Using Visual Basic

It is clear that in order to use ODBC effectively, the programmer may need to know what
drivers and data sources exist on a particular computer. Thisinformation is accessible
through afew ODBC API calls.

The following code includes a procedure called Li st ODBCSour ces, which prints (to the
Immediate window) alist of all data sources on a system, and Li st ODBCDr i ver s, which
printsalist of ODBC drivers on the system. This code can be placed in an Access code
module:

Const SQL_NULL_HANDLE = 0
Const SQL_HANDLE ENV = 1

Const SQL_FETCH NEXT = 1

Const SQL_FETCH FIRST = 2

Const SQL_SUCCESS = 0

Const SQL_ATTR_ODBC_VERSI ON = 200
Const SQL_OV_ODBC2 = 2

Const SQL_I'S_I NTEGER = -6

Di m nRet Code As Long

Decl are Function SQLDrivers Lib "odbc32.dll" (ByVal
Envi ronment Handl e As Long, ByVal Direction As Integer, _
ByVal DriverDescription As String, ByVal BufferlLengthl As Integer,

DescriptionLengthPtr As Integer, ByVal DriverAttributes As String,

ByVal BufferLength2 As Integer, AttributesLengthPtr As Integer) _
As | nteger

Note that pointers to nunbers are passed as nunbers by reference!
Decl are Function SQ.Dat aSources Lib "odbc32.dl 1" (Byval _
Envi ronnent Handl e As Long, ByVal Direction As Integer, _
ByVal ServerNane As String, ByVal BufferLengthl As I|nteger,
NameLengt h1Ptr As |Integer, ByVal Description As String,

ByVal BufferLength2 As Integer, NaneLength2Ptr As Integer) As
| nt eger

Decl are Function SQLFreeHandl e Lib "odbc32.dll" (Byval _
Handl eType As |Integer, ByVal Handle As Long) As |nteger

Decl are Function SQLAI |l ocHandl e Lib "odbc32.dl " (ByVal
Handl eType As |Integer, ByVal InputHandl e As Long,
Qut put Handl ePtr As Long) As | nteger

Decl are Function SQ.Set EnvAttr Lib "odbc32.dl 1" (Byval _
Envi ronment Handl e As Long, ByVal EnvAttribute As Long, _
ByVal ValuePtr As Long, ByVal StringLength As Long) As Integer

Decl are Function SQLDi sconnect Lib "odbc32.dl 1" (ByVal
Connecti onHandl e As Long) As Integer

Public Function TrinD(sName As String) As String
' Keep left portion of string sNane up to first O.

Dim x As Integer

X = InStr(sNane, Chr$(0))

f x >0 Then TrinD = Left$(sNane, x - 1) Else TrinD = sNane

End Function

Private Sub ListODBCSources()

Prints a list of ODBC data soruces/drivers on system

Di m | HEnv As Long

Di m sServer Nane As String * 32
Di m sDescri ption As String * 128
Di m nServer NaneLength As | nteger

Di m nDescri pti onLength As |nteger

Al | ocate an environnent handl e.
nRet Code = SQLAI | ocHandl e(SQL_HANDLE ENV, SQL_NULL HANDLE, | HEnv)

' Set ODBC behavi or

nRet Code = SQLSet EnvAttr (I HEnv, SQL_ATTR_ODBC_VERSI ON,
SQL_Ov_0DBC2, SQL_I S_| NTEGER)

" Put first data source nane in sServerNane

nRet Code = SQLDat aSour ces(| HEnv, SQ.L_FETCH FI RST, sServer Nane,
Len(sServer Nane), nServer NameLength, sDescription,
Len(sDescription), nDescriptionLength)

Debug. Print "DATA SOURCE / DRI VER"
Do Wil e nRet Code = SQ._SUCCESS

Debug. Print Left$(sServerName, _
nServer NaneLength) & " / " & TrinD(sDescription)

' Next data source

nRet Code = SQLDat aSour ces(| HEnv, SQ._FETCH_NEXT, _
sServer Name, Len(sServerName), nServerNanmeLength, _
sDescription, Len(sDescription), nDescriptionLength)
Loop
nRet Code = SQLFreeHandl e(SQL_HANDLE _ENV, | HEnv)
End Sub

Private Sub Li st ODBCDrivers()

Prints a |ist of ODBC drivers on system

Di m | HEnv As Long

Di m sDri ver Desc As String * 1024
DimsDriverAttr As String * 1024
Dim sDriverAttributes As String

Di m nDri ver DescLength As Integer
DimnAttrLength As Integer

Dim x As | nteger

DimsAll As String

Al l ocate an environnent handl e.
nRet Code = SQLAI | ocHandl e(SQL_HANDLE_ENV, SQL NULL HANDLE, | HEnv)

' Set ODBC behavi or
nRet Code = SQ.Set EnvAttr (| HEnv, SQL_ATTR ODBC VERSI ON
SQL_OV_0ODBC2, SQL_I S | NTEGER)

' Get first driver

nRet Code = SQLDrivers(l HEnv, SQ._FETCH FI RST, sDriverDesc,
Len(sDriverDesc), nDriverDescLength, sDriverAttr,
Len(sDriverAttr), nAttrLength)

sAll =""
Do Wil e nRet Code = SQL_SUCCESS
' Replace NULL separators with col ons
sDriverAttributes = Left$(sDriverAttr, nAttrLength - 1)
Do
X = InStr(sDriverAttributes, Chr$(0))
If x = 0 Then Exit Do
sDriverAttributes = Left$(sDriverAttributes, x - 1) & _
"o " & Md$(sDriverAttributes, x + 1)
Loop

sAll = sAll & Left$(sDriverDesc, nDriverDescLength) & _
“/ " & sDriverAttributes & vbCrLf
' Next data source
nRet Code = SQLDrivers(l HEnv, SQL_FETCH NEXT, sDriverDesc,
Len(sDriverDesc), nDriverDescLength, sDriverAttr,
Len(sDriverAttr), nAttrLength)

Loop

Debug. Print "ODBC Drivers”
Debug. Print sAll

nRet Code = SQLFreeHandl e(SQL_HANDLE ENV, | HEnv)

End Sub
The output produced by running LissODBCSources on my system is:

DATA SOURCE / DRI VER

M5 Access 7.0 Database / M crosoft Access Driver (*.mnmdb)
Vi sual FoxPro Tables / Mcrosoft Visual FoxPro Driver

Vi sual FoxPro Database / M crosoft Visual FoxPro Driver
MS Access 97 Database / M crosoft Access Driver (*.ndb)
OLE DB NW nd_Jet / Mcrosoft Access Driver (*.ndb)
OLE_ DB NWnd_SQL / SQ. Server

Connect Excel / Mcrosoft Excel Driver (*.xl|s)

Connect Access / M crosoft Access Driver (*.ndb)

Connect Text / Mcrosoft Text Driver (*.txt; *.csv)

The output of LisODBCDriversis:

ODBC Drivers

SQL Server / UsageCount=10 : SQ.Level =1 : Fil eUsage=0 :

Dri ver ODBCVer =02. 50 : Connect Functi ons=YYY : API Level =2 :

\ Setup=sql srv32.dll : .01=: s=YYN : DSNConverted=F : CPTi neout =60 :
Fi | eExt ns=Nul |

M crosoft ODBC Driver for Oracle / UsageCount=3 : SQ.Level =1 :
Fil eUsage=0 : Driver ODBCVer=02. 50 : Connect Functions=YYY : API Level =1

M crosoft Access Driver (*.mdb) / UsageCount=10 : API Level =1 :
Connect Functi ons=YYN : Driver ODBCVer=02.50 : Fil eUsage=2 :
Fil eExtns=*. mdb : SQ.Level =0 : s=YYN

M crosoft dBase Driver (*.dbf) / UsageCount=6 : APILevel =1 :
Connect Functi ons=YYN : Driver ODBCVer=02.50 : Fil eUsage=1 :
Fi | eExt ns=*.dbf,*. ndx, *. mdx : SQ.Level=0 : [g=: =: ;g=":
=

g:

M crosoft FoxPro Driver (*.dbf) / UsageCount=6 : APILevel =1 :
Connect Functi ons=YYN : Driver ODBCVer =02.50 : Fil eUsage=1 :
Fi |l eExt ns=*.dbf,*.cdx,*.idx,*.ftp : SQ.Level =0

M crosoft Excel Driver (*.xls) / UsageCount=4 : APILevel =1 :
Connect Functions=YYN : Driver ODBCVer=02.50 : Fil eUsage=1 :
FileExtns=*.xls : SQ.Level =0

M crosoft Paradox Driver (*.db) / UsageCount=3 : APILevel =1 :
Connect Functi ons=YYN : Driver ODBCVer=02.50 : FileUsage=1 :
Fil eExtns=*.db : SQLLevel =0

M crosoft Text Driver (*.txt; *.csv) / UsageCount=4 : APILevel =1 :
Connect Functi ons=YYN : Driver ODBCVer=02.50 : Fil eUsage=1 :
Fil eExtns=*.,* asc,*.csv, *.tab, *.txt,*.csv : SQ.Level =0

M crosoft ODBC for Oracle / UsageCount=2 : SQ.Level =1 : FileUsage=0
Dri ver ODBCVer =02. 50 : Connect Functi ons=YYY : APl Level =1 : CPTi neout =120

M crosoft Visual FoxPro Driver / UsageCount=2 : APILevel =0
Connect Functi ons=YYN : Driver ODBCVer=02.50 : Fil eUsage=1 :
Fi | eExt ns=*. dbc, *. dbf : SQ.Level =0

Let us briefly describe the ODBC functions used in these procedures. Y ou can skip this
materia if it does not interest you.

C.6.1 Preiminaries

Before using the ODBC functions we are interested in, we must first get a handle to the
ODBC environment. Obtaining an environment handle is done by calling
LAllocHandle, whose Visual Basic declaration is:

Decl are Function SQLAIl ocHandl e Lib "odbc32.dl " (
ByVal Handl eType As |nteger, _
ByVal | nputHandl e As Long, _
Qut put Handl ePtr As Long) As | nteger

The actual cdl to useis:

nRet Code = SQLAI | ocHandl e(SQL_HANDLE_ENV, SQL_NULL_HANDLE, | HEnv)

The return value is an error code or if no error has occured, in which case | HEnv will
receive the handle as a Long.

Once we have obtained an environment handle, we must set the environment attribute
known as ODBC behavior , using the SQL SetEnvAttr function, as follows:

Set ODBC behavi or
nRet Code = SQLSet EnvAttr (I HEnv, SQL_ATTR ODBC VERSI ON, _
SQL_OV_0DBC2, SQ._I S | NTEGER)

Note the use of the | HEnv argument to identify the environment handle. This function call
sets the ODBC behavior to ODBC version 2.x (SQ._Oov_obBc2). Actualy, it does not
seem to matter whether we set the behavior to ODBC version 2 or version 3
(sQ._ov_opBc3) aslong as we set it to one of these values!

C.6.2 Getting Driver Information

To get information about the installed ODBC drivers on a system, we use the SQLDrivers
function. The declaration for this function is:

Decl are Function SQLDriverConnect Lib "odbc32.dlI" (_
ByVal ConnectionHandl e As Long, ByVal W ndowHandl e As Long, _
ByVal | nConnectionString As String, ByVal StringlLengthl As Integer,

ByVal Qut ConnectionString As String, ByVal BufferLength As I|nteger,

StringLength2Ptr As Integer, ByVal DriverConpletion As |Integer) As
I nt eger

The following is the complete procedure to list all drivers and their attributes in a text
box. (This procedure, and the following ones, are bare-bones, with no error checking.
Feel free to augmert them for your own use.)

Private Sub Li st ODBCDrivers()

Di m | HEnv As Long

Di m sDri ver Desc As String * 1024
Dim sDriverAttr As String * 1024
Dim sDriverAttributes As String

Di m nDri ver DescLength As |nteger

Dim nAttrLength As | nteger

Dim x As I nteger

DimsAll As String

txtDrivers =
" Allocate an environnment handl e.
nRet Code = SQLAI | ocHandl e(SQL_HANDLE_ENV, SQL NULL HANDLE, | HEnv)

' Set ODBC behavi or
nRet Code = SQ.Set EnvAttr (I HEnv, SQL_ATTR ODBC VERSI ON,
SQL_OV_0ODBC2, SQL_I S | NTEGER)

' Get first driver

nRet Code = SQLDrivers(l HEnv, SQ._FETCH FI RST, sDriverDesc,
Len(sDriverDesc), nDriverDescLength, sDriverAttr,
Len(sDriverAttr), nAttrLength)

sAll =""
Do Wil e nRet Code = SQL_SUCCESS
' Replace NULL separators between atributes with col ons
sDriverAttributes = Left$(sDriverAttr, nAttrLength - 1)
Do
X = InStr(sDriverAttributes, Chr$(0))
If x = 0 Then Exit Do
sDriverAttributes = Left$(sDriverAttributes, x - 1)
& " : " & Md$(sDriverAttributes, x + 1)

Loop
' Save it

sAll = sAll & Left$(sDriverDesc, nDriverDescLength) _
& " | " & sDriverAttributes & vbCrlLf

' Next data source

nRet Code = SQLDrivers(l HEnv, SQL_FETCH NEXT, sDriverDesc,

Len(sDriverDesc), nDriverDescLength, sDriverAttr, _
Len(sDriverAttr), nAttrLength)

Loop
txtDrivers = sAl
nRet Code = SQLFreeHandl e(SQL_HANDLE_ENV, | HEnv)

End Sub

Some of the driver attributes are worth discussing briefly.

DriverODBCVersion

Gives the version of ODBC that the driver supports. Note that even though the
drivers on my system are version 3.5 or later, their ODBC versions are only 2.5.
Thus, they support only ODBC 2.5.

SQLLevel

Describes, in general terms, the level of compliance of the driver to SQL. Level is
basic SQL-92 compliance. Level 1is FIPS127-2 Transitional (whatever that is),
Level 2is SQL-92 Intermediate, and Level 3is SQL-92 Full.

ConnectionFunctions

Indicates which of the three connectionrelated functions (SQLConnect,

QL Driver Connect, or SQLBrowseConnect) are supported by this driver. The
value has the form XXX, where X isY or N. Thus, avalue of YYN means that
the driver supports SQLConnect and SQLDriver Connect but not
OLBrowseConnect.

FileExtns

For file-based drivers (that access the physical data directly), thisindicates which
filename extensions the driver recognizes.

FileUsage

This attribute indicates how a file-based driver views the data in the physical
database. A vaue of indicates that the driver is not file-based. A value of 1
indicates that a file-based driver treats data source files as tables. A value of 2
indicates that the driver treats the data files as databases.

C.6.3 Getting Data Sour ces

The process of getting alist of al data sources is quite similar. It uses the function
NLDataSources, whose syntax is similar to SQLDrivers. The Visual Basic declaration
is:

Decl are Function SQLDat aSources Lib "odbc32.dll" (ByVal _
Envi ronnent Handl e As Long, ByVal Direction As Integer, _
ByVal ServerName As String, ByVal BufferLengthl As Integer,
NameLengt hlPtr As Integer, ByVal Description As String, _
ByVal BufferLength2 As Integer, NaneLength2Ptr As Integer) As
I nt eger

The complete code is:

Private Sub ListODBCSources()

Di m | HEnv As Long
Di m sServer Nane As String * 32
Di m sDescri ption As String * 128

Di m nServer NaneLength As | nteger
Di m nDescri pti onLength As | nteger

| st Dat aSour ces. Cl ear

Al l ocate an environnent handl e.
nRet Code = SQLAI | ocHandl e(SQL_HANDLE_ENV, SQL_NULL_HANDLE, | HEnv)

' Set ODBC behavi or
nRet Code = SQLSet EnvAttr (I HEnv, SQL_ATTR ODBC VERSI CON,
SQL_OV_0DBC2, SQ._I S | NTEGER)

" Put first data source nane in sServerNane

nRet Code = SQLDat aSour ces(| HEnv, SQ.L_FETCH FI RST, sServer Nane,
Len(sServer Nane), nServer NaneLength, sDescription,
Len(sDescription), nDescriptionLength)

| st Dat aSour ces. Addl t em " DATA SOURCE / DRI VER'
Do Wil e nRet Code = SQ._SUCCESS

| st Dat aSour ces. Addl t em Left $(sServer Name, _
nServer NaneLength) & " / " & TrinD(sDescription)

Next data source

nRet Code = SQLDat aSour ces(| HEnv, SQ.L_FETCH_NEXT, _
sServer Nanme, Len(sServerNanme), nServerNanmelLength, _
sDescription, Len(sDescription), nDescriptionLength)

Loop
nRet Code = SQLFr eeHandl e(SQL_HANDLE_ENV, | HEnv)

End Sub

Appendix D. Obtaining or Creating the Sample
Database

The sample flat file "database," as well as the Access database and the sample programs,
are all available for free download from the O'Reilly Internet site. Y ou can choose from
any of the three following methods to download the data that accompanies the book:

Viathe World Wide Web. The sample files are available from
ftp://ftp.oreilly.com/published/oreilly/windows/access.design2/CodeA ccess2.zip.
Via an ftp client program. You can use an ftp client such asWS FTP32 to ftp to
ftp.ora.com, change to the directory published/oreilly/windows/access.design2,
and get the file CodeAccess2.zip.

In each case, the sample files are stored in a single file compressed using the PKZip file
format. If you don't own a utility program capable of decompressing the software (or if
you're still doing these things from the command line), we highly recommend that you
download an evaluation copy of the shareware utility WinZip, from Nico Mak
Computing, Inc.; it isavailable at http://www.winzip.cony.

EXAMPLE.ZIP contains LIBRARY _FLAT.DOC, the flat database created with Microsoft
Word, aswell as LIBRARY95.MDB, the sample Access database for Access for Office
95, and LIBRARY97.MBD, the sample Access database for Access for Office 97. (The
two versions perform optimally when using different file formats.) The .MDB file itself
contains the following:

The four tables (BOOKS, AUTHORS, PUBLISHERS, and BOOK/AUTHOR)
and their primary indexes

A code module, Examples, that contains al of the example programs from the
book

It does not, however, contain definitions of relationships, nor does it include any query
definitions. The book assumes that you'll be creating these from scratch.

If you don't have access to the Internet or to an email account from a service provider
with a gateway to the Internet, it is quite easy to create the sample files yourself. In the
remainder of this section, we'll guide you through the steps required to create each of the
tablesin the Library database, LIBRARY.MDB.

D.1 Creating the Database

The first step isto create the database itself by doing the following:

1. Start Microsoft Access.

2. When the Microsoft Access dialog appears over the main Microsoft Access
window, as shown in Figure D.1, select the Blank Database button and Click OK.
Access opens the File New Database dialog.

FigureD.1. The Microsoft Access dialog

Miciosoll Access

Create a Hew D atabass Lsing

% ‘ ™ Blans [atabese

a:::\.‘ " Datebaze Wsid

EE;, & Dpen an Exising D otaboss

LC:eancolwhpiesthcontacts moh
C:\oooks access desgribook s.mdb
C:heancolwbiestcompes. mda

[o] cn:a|

3. Navigate to the directory in which you'd like to save the database file. If the
directory doesn't exist, you can create it by clicking on the Create New Folder
button (the third button from the left on the toolbar); you should then navigate to
the newly created directory. In the File name text box, typein | i brary. ndb. Then
click the Create button.

Access creates the new database and opens the Library Database window, which should
resemble Figure D.2. Thisis a completely empty database; it doesn't even contain any
tables that are capable of holding data. Our next step is to define each of those tables and
enter some data into them.

Figure D.2. The Library Database window

B Tables | Iﬂluﬁﬂ] (B Fore | ;'Hepm:l 3 Macros | #Muduh:l

|
_ e |

Hew

D.2 Creating the BOOKS Table

To define the design of the Books table, perform the following steps:

1. Click the New button in the Library Database window. Access opens the New
Table dialog, which contains alist box with avariety of options. Select Design
View and click OK. Access opens the Tablel Table window, as shown in Figure
D.3, which allows you to define the fields in a new database table.

Figure D.3. The Tablel Table window

i Tablel : Tahle M [=]1E3
i Fild Hame Dala Typs Drascriplion -
(]
H =
Ficld Propestie:
Garsral | Leokup |
- rl'il A ~ | I - |
bo b chaacisrs kong
inchiding spatat. Freds
F1 Fioe heelp om hiakd
Names.

2. Enter the information shown in Table D.1 into the Field Name and Data Type
columns of the Tablel Table window. Note that you can select the data type from
adrop-down list box.

TableD.1. Fields of the BOOKS Table

3.

Field Name Data Type
ISBN Text
Title Text
PubID Text
Price Currency

When you select afield, its properties are displayed in the lower portion of the
dialog. Next, enter the individual field properties shown in Table D.2 in the Field
Properties portion of the dialog. Note that you don't have to add or modify any
properties of the Price field.

Table D.2. Nondefault Properties of the BOOKS Table
Field Name Property Value
ISBN Indexed Y es (No Duplicates)
Title Field Size 200
Indexed Y es (Duplicates OK)
PublD Indexed Y es (Duplicates OK)
Price Format Currency

4. Designate ISBN as the table's primary key. To do this, either click on the Primary
Key button on the toolbar (the 11th button from the left of the toolbar, and
immediately to the left of the Undo button), or right-click on the row selector (the
shaded gray field to the right of the ISBN's Field Name column) and select
Primary Key from the pop-up menu.

5. Save the completed table design. Either click the Save button on the toolbar (the
second button from the left) or select the Save option from the File menu. When
Access opens the Save As diaog, type BOOKS into the Table Name text box and
click OK.

6. Closethe BOOKS table in Design View.

Y ou're now ready to begin entering data into the table. Select the BOOK S table in the
database window and click on the Open button. Access opens the BOOK S tablein
Datasheet View, which alows you to input information into the database. Enter the data
shown in Table D.3. When you've finished, close the table. Note that you don't have to
explicitly save the data that you've entered into the table; Access automatically takes care

of writing the records that you've entered to disk.

Table D.3. Data for the BOOKS Table

ISBN Title PublD Price
0-555-55555-9 Macbeth 2 12.00
0-91-335678-7 Faerie Queene 1 15.00
0-99-999999-9 Emma 1 20.00
0-91-045678-5 Hamlet 2 20.00
0-55-123456-9 Main Street 3 22.95
1-22-233700-0 Visua Basic 1 25.00
0-12-333433-3 On Liberty 1 25.00
0-103-45678-9 lliad 1 25.00
1-1111-1111-1 C++ 1 29.95
0-321-32132-1 Balloon 3 34.00
0-123-45678-0 Ulysses 2 34.00
0-99-777777-7 King Lear 2 49.00
0-12-345678-9 Jane Eyre 3 49.00
0-11-345678-9 Moby Dick 3 49.00

D.3 Creating the AUTHORS Table

To create the AUTHORS table, follow the same basic steps listed in the previous Section
D.2. Thefield definitions for the AUTHORS table are shown in Table D.4.

TableD.4. Fields of the AUTHORS Table

Field Name

Data Type

AulD

Text

AuName

Text

AuPhone

Text

Thereis only a single property that you need to set:

Field Name:

Aul

D

Property:

Indexed

Value:

Y es (No Duplicates)

When you've finished creating the fields and assigning their attributes, define AulD as
the table's primary key. Then save the table, assigning it the name AUTHORS.

Next, enter the author data into the table; it is shown in Table D.5.

Table D.5. Data for the AUTHORS Table

AulD AuName AuPhone
1 Austen 111-111-1111
12 Grumpy 321-321-0000
3 Homer 333-333-3333
10 Jones 123-333-3333
6 Joyce 666-666-6666
2 Meville 222-222-2222
8 Mill 888-888-8888
4 Roman 444-444-4444
5 Shakespeare 555-555-5555
13 Sleepy 321-321-1111
9 Smith 123-222-2222
11 Snoopy 321-321-2222
7 Spenser T7-777-7777

D.4 Creating the PUBLISHERS Table

Once again, follow the same basic steps listed in the earlier section Section D.2 to create
the PUBLISHERS table. Field definitions for the PUBLISHERS table are shown in Table

D.6.
Table D.6. Fields of the PUBLISHERS Table
Field Name Data Type
PublD Text
PubName Text
PubPhone Text

Once again, there is only a single property that you need to set:

Field Name: PublD

Property: Indexed

Value: Y es (No Duplicates)

Designate PublD as the primary key, and save the table as PUBLISHERS.
Once you've finished creating the PUBLISHERS table, you can enter datainto it. The

PUBLISHERS table contains records for only three publishers; these are shown in Table
D.7.

Table D.7. Data for the PUBLISHERS Table

PublD PubName PubPhone
1 Big House 123-456-7890
2 AlphaPress 999-999-9999
3 Small House 714-000-0000

D.5 Creating the BOOK/AUTHOR Table

The BOOK/AUTHOR table is the fina table needed for our examples. Once again, create
it following the same basic steps described earlier in Section D.2. It consists of only two
fields, asshownin Table D.8. Once you've entered the field names and data types into the
table definition, change the two properties listed in Table D.9 and save the table as
BOOK/AUTHOR. When you save the table, Access will open the dialog shown in Figure
D.4. The table in fact does not have a primary key, so click on the No button; Access will
save the table without designating a primary key.

Table D.8. Fields of the BOOK/AUTHOR Table

Field Name Data Type

ISBN text

AulD text

Table D.9. Nondefault Properties of the BOOK/AUTHOR Table

Field Name Property Value
ISBN Indexed Y es (Duplicates OK)
AulD Indexed Y es (Duplicates OK)

Figure D.4. The " no primary key" warning dialog

Microsolt Access

' '\, There iz no primary key defined.
dlthough & pimarp ke isn't ieguied, if's highly recommended, & kable
st have & primany ke lor you bo define: & relation ship bebween This
table and other bables in the database

Do oty vt ho cresbe & primany ke now?

[Yex I Ho Cancel

Once you've created the BOOK/AUTHOR table, you can enter the data shown in Table
D.10 into it.

Table D.10. Data for the BOOK/AUTHOR Table

ISBN AulD

0-103-45678-9

0-11-345678-9

0-12-333433-3

0-12-345678-9

0-123-45678-0

0-321-32132-1

0-321-32132-1

0-321-32132-1

0-55-123456-9

0-55-123456-9 10

0-555-55555-9

0-91-045678-5

0-91-335678-7

0-99-777777-7

0-99-999999-9

1-1111-1111-1

ARl N|OT|OT

1-22-233700-0

Once you've finished this data entry, you'll still have to define the relationships among
the tables. Thisis discussed in detail in Section 3.4.1, in Chapter 3. Once this detail is
taken care of, you can use the tables to create the queries and to run the programs
discussed in the text of the book.

D.6 Backing Up the Database

Once you've created the BOOKS database, it's a good idea to make a backup copy of
each of the tables. That way, you can feel free to make modifications to individual tables,
to try out the book's sample programs, and generally to experiment with the data, the
tables, and the database, without having to be concerned that you'll corrupt the data. Y ou

can make a backup copy by following this procedure for each of the four tables of the
Books database:

1. Highlight the table you'd like to back up.

2. Select the Save As option from the File menu. Access opens the Save As... dialog
shownin Figure D.5.

3. Select the Within the current database button. Access will suggest a filename for
your backup copy, such as Copy of BOOKS, as shown in Figure D.5.

4. Click the OK button to create the backup copy. It will appear in the Tables
property sheet of the Database dialog.

Figure D.5. The Save As... dialog

Save Az HE

Save Table BOOKS'
T To o gvbeenal Fils o Dastabazs
Cancsl

& Within the cunent dalahase as

Wess Hames |l

If the datain any of your tables do become lost or corrupted, you can restore the table as
follows:

1. Highlight the backup copy of the table in the database window.

2. Select the Save As option from the File menu. Access again opens the Save As...
diaog shown in Figure D.5.

3. Select the Within the current database button.

4. Replace Access suggested filename (Copy of Copy of...) with the name of the
original table and click OK.

5. Access displays a message warning that the name you entered has already been
assigned to another table and asking whether you want to replace it. Click OK.

. Before replacing any of the tables that participate in relationships
a with other tables, you'll have to delete that table's relationships. To
_'fk? do this, select the Relationships option from the Tools menu. When
Access opens the Relationships window, right click on the line
depicting each relationship in which atable participates, then select
the Delete option from the pop-up menu.

D.7 Entering and Running the Sample Programs

If you've downloaded the sample file from O'Reilly & Associates, your database aready
includes a code module, Examples, that contains all of the book's sample VBA programs.

If not, you can create a code module yourself and enter programs into it. To create the
code module:

1.

2.
3.

Select the Modules tab when the Library database is open in the Database
window.

Click on the New button to create a new code module.

When Access opens a new code module (which it will usually name Modulel,
unless your database already contains code modules saved with their default
names), click on the Save button on the toolbar.

When Access displays the Save As dialog, enter the name of your new code
module, Examples, in the Module Name text box and click OK.

Y ou can then begin entering code for each of the program examples. To do this, for each
code example:

1.
2.

Select the Procedure option from the Insert menu.

When Access opens the Insert Procedure dialog, enter the name of the procedure
in the Name text box. Since al of the programs listed in the book are subroutines,
you don't have to worry about the dialog's other options. Just click OK.

To run a program:

1. Select the Modules tab in the Database window, and open the Examples module.
2.
3. When Access opens the Debug window, simply type in the name of the program

Select the Debug Window option from theView menu.

you'd like to run.

Appendix E. Suggestions for Further Reading

Hereisabrief list of some books on database theory:

Atzeni, P. and De Antonellis, V., Relational Database Theory, Benjamin Cummings,
1993, 389 pages. A highly theoretical and mathematical treatment of the subject.

Codd, E.F., The Relational Model for Database Management: Version 2, Addison
Wesley, 1990, 538 pages. The classic exposition of the relational model by one of its
creators and chief proponents.

Date, C.J., An Introduction to Database Systems 6th Edition, AddisonWesley, 1995,
839 pages. A less formal and highly readable book.

Simovici, D. and Tenney, R., Relational Database Systems, Academic Press, 1995, 485
pages. Thisis avery mathematical treatment of the subject. Much better written than the
Atzeni and De Antonellis book.

Ullman, J., Principles of Database and Knowl edge-Base Systems, Volume 1. Classical
Database Systems, Computer Science Press, 1988, 631 pages. A book with a somewhat
different point of view. Not as mathematical as Atzeni or Simovici, but more
mathematical than Date.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially dry subjects.

The animal on the cover of Access Database Design & Programming is a tamandua, one
of three species comprising the anteater family. The tamandua is also known as the
collared anteater (although vested anteater might be a better name). Tamanduas live in
the tropical rainforest. They spend much of their time in the forest canopy, feasting on
ants and termites; they often move awkwardly when they descend to the ground.
Tamanduas use their powerful forearms for self defense. When attacked they will back up
against arock or cling to atree branch with their hind legs while fighting and clawing
with their forearms. Amazonian Indians sometimes use tamanduas to clear their homes of
ants and termites. Despite this useful trait, the tamandua is an endangered species. They
are often killed for their tails, the tendons of which are used to make ropes.

Clairemarie Fisher O'Leary was the production editor and copyeditor for Access
Database Design & Programming; Maureen Dempsey and Nancy Kotary provided
quality control; Colleen Gorman and Anna Snow provided production assistance; Robert
Romano created the illustrations using Adobe Photoshop 5 and Macromedia FreeHand 8;
Mike Sierra provided FrameMaker technical support; Brenda Miller wrote the index.

Edie Freeman designed the cover of this book using a 19th-century engraving from the
Dover Pictorial Archive. The cover layout was produced by Kathleen Wilson, using
QuarkXpress 3.3 and the ITC Garamond font. The inside layout was designed by Alicia
Cech, based on a series design by Nancy Priest, and implemented in FrameMaker 5.5 by
Mike Sierra. The text and heading fonts are ITC Garamond Light and Garamond Book.
This colophon was written by Clairemarie Fisher O'Leary.

