INTRODUCTION TO COMPUTATIONAL MODELING USING C AND OPEN-SOURCE TOOLS

José M. Garrido
INTRODUCTION TO COMPUTATIONAL MODELING USING C AND OPEN-SOURCE TOOLS

José M. Garrido
Kennesaw State University
Kennesaw Georgia, USA
Chapman & Hall/CRC
Computational Science Series

SERIES EDITOR

Horst Simon
Deputy Director
Lawrence Berkeley National Laboratory
Berkeley, California, U.S.A.

PUBLISHED TITLES

COMBINATORIAL SCIENTIFIC COMPUTING
Edited by Uwe Naumann and Olaf Schenk

CONTEMPORARY HIGH PERFORMANCE COMPUTING: FROM PETASCALE
TOWARD EXASCALE
Edited by Jeffrey S. Vetter

DATA-INTENSIVE SCIENCE
Edited by Terence Critchlow and Kerstin Kleese van Dam

PETASCALE COMPUTING: ALGORITHMS AND APPLICATIONS
Edited by David A. Bader

FUNDAMENTALS OF MULTICORE SOFTWARE DEVELOPMENT
Edited by Victor Pankratius, Ali-Reza Adl-Tabatabai, and Walter Tichy

GRID COMPUTING: TECHNIQUES AND APPLICATIONS
Barry Wilkinson

HIGH PERFORMANCE COMPUTING: PROGRAMMING AND APPLICATIONS
John Levesque with Gene Wagenbreth

HIGH PERFORMANCE VISUALIZATION:
ENABLING EXTREME-SCALE SCIENTIFIC INSIGHT
Edited by E. Wes Bethel, Hank Childs, and Charles Hansen

INTRODUCTION TO COMPUTATIONAL MODELING USING C AND
OPEN-SOURCE TOOLS
José M Garrido

INTRODUCTION TO CONCURRENCY IN PROGRAMMING LANGUAGES
Matthew J. Sottile, Timothy G. Mattson, and Craig E Rasmussen

INTRODUCTION TO ELEMENTARY COMPUTATIONAL MODELING: ESSENTIAL
CONCEPTS, PRINCIPLES, AND PROBLEM SOLVING
José M. Garrido

INTRODUCTION TO HIGH PERFORMANCE COMPUTING FOR SCIENTISTS
AND ENGINEERS
Georg Hager and Gerhard Wellein
PUBLISHED TITLES CONTINUED

INTRODUCTION TO REVERSIBLE COMPUTING
Kalyan S. Perumalla

INTRODUCTION TO SCHEDULING
Yves Robert and Frédéric Vivien

INTRODUCTION TO THE SIMULATION OF DYNAMICS USING SIMULINK®
Michael A. Gray

PEER-TO-PEER COMPUTING: APPLICATIONS, ARCHITECTURE, PROTOCOLS, AND CHALLENGES
Yu-Kwong Ricky Kwok

PERFORMANCE TUNING OF SCIENTIFIC APPLICATIONS
Edited by David Bailey, Robert Lucas, and Samuel Williams

PROCESS ALGEBRA FOR PARALLEL AND DISTRIBUTED PROCESSING
Edited by Michael Alexander and William Gardner

SCIENTIFIC DATA MANAGEMENT: CHALLENGES, TECHNOLOGY, AND DEPLOYMENT
Edited by Arie Shoshani and Doron Rotem
Contents

List of Figures xvi
List of Tables xxi
Preface xxiii
About the Author xxv

Chapter 1 Problem Solving and Computing 1

1.1 Introduction ... 1
1.2 Computer Problem Solving 1
1.3 Elementary Concepts 2
1.4 Developing Computational Models 4
1.5 A Simple Problem: Temperature Conversion 6
 1.5.1 Initial Problem Statement 6
 1.5.2 Analysis and Conceptual Model 7
 1.5.3 Mathematical Model 7
1.6 Categories of Computational Models 8
1.7 Computing the Area and Circumference of a Circle 10
1.8 General Process of Software Development 11
1.9 Programming Languages 12
 1.9.1 High-Level Programming Languages 12
 1.9.2 Interpreters 13
 1.9.3 Compilers 13
 1.9.4 Compiling and Execution of Java Programs 13
 1.9.5 Compiling and Executing C Programs 14
Summary ... 15
Exercises .. 16

Chapter 2 Programs 17

2.1 Introduction ... 17
2.2 Programs .. 17
2.3 Data Definitions 18
 2.3.1 Name of Data Items 18
 2.3.2 Data Types 19
 2.3.3 Data Declarations in C 19
Chapter 7 Repetition

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>85</td>
</tr>
<tr>
<td>7.2</td>
<td>Repetition with the While Loop</td>
<td>85</td>
</tr>
<tr>
<td>7.2.1</td>
<td>While-Loop Flowchart</td>
<td>85</td>
</tr>
<tr>
<td>7.2.2</td>
<td>While Structure in Pseudo-Code</td>
<td>86</td>
</tr>
<tr>
<td>7.2.3</td>
<td>While Loop in the C Language</td>
<td>87</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Loop Counter</td>
<td>87</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Accumulator Variables</td>
<td>88</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Summation of Input Numbers</td>
<td>88</td>
</tr>
<tr>
<td>7.3</td>
<td>Repeat-Until Loop</td>
<td>90</td>
</tr>
<tr>
<td>7.4</td>
<td>For Loop Structure</td>
<td>92</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Summation Problem with a For Loop</td>
<td>92</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Factorial Problem</td>
<td>93</td>
</tr>
<tr>
<td>7.4.2.1</td>
<td>Mathematical Specification of Factorial</td>
<td>94</td>
</tr>
<tr>
<td>7.4.2.2</td>
<td>Computing Factorial</td>
<td>94</td>
</tr>
</tbody>
</table>

Summary | 95 |
Exercises | 96 |

Chapter 8 Arrays

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>99</td>
</tr>
<tr>
<td>8.2</td>
<td>Declaring an Array</td>
<td>100</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Declaring Arrays in Pseudo-Code</td>
<td>100</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Declaring Arrays in C</td>
<td>100</td>
</tr>
<tr>
<td>8.3</td>
<td>Operations on Arrays</td>
<td>101</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Manipulating Array Elements in Pseudo-Code</td>
<td>101</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Manipulating Elements of an Array in C</td>
<td>101</td>
</tr>
<tr>
<td>8.4</td>
<td>Arrays as Arguments</td>
<td>102</td>
</tr>
<tr>
<td>8.5</td>
<td>A Simple Application with Arrays</td>
<td>104</td>
</tr>
<tr>
<td>8.6</td>
<td>Arithmetic Operations with Vectors</td>
<td>106</td>
</tr>
<tr>
<td>8.7</td>
<td>Multi-Dimensional Arrays</td>
<td>107</td>
</tr>
<tr>
<td>8.7.1</td>
<td>Multi-Dimensional Arrays in Pseudo-Code</td>
<td>108</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Multi-Dimensional Arrays in C</td>
<td>108</td>
</tr>
<tr>
<td>8.7.3</td>
<td>Passing Multi-Dimensional Arrays</td>
<td>109</td>
</tr>
<tr>
<td>8.8</td>
<td>Applications Using Arrays</td>
<td>110</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Problems with Simple Array Manipulation</td>
<td>110</td>
</tr>
<tr>
<td>8.8.1.1</td>
<td>Average Value in an Array</td>
<td>110</td>
</tr>
<tr>
<td>8.8.1.2</td>
<td>Maximum Value in an Array</td>
<td>112</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Searching</td>
<td>113</td>
</tr>
<tr>
<td>8.8.2.1</td>
<td>Linear Search</td>
<td>113</td>
</tr>
<tr>
<td>8.8.2.2</td>
<td>Binary Search</td>
<td>114</td>
</tr>
</tbody>
</table>

Summary | 115 |
Exercises | 116 |
Chapter 9 Pointers

9.1 Introduction ... 117
9.2 Pointer Fundamentals .. 117
9.3 Pointers with C ... 117
9.4 Dereferencing ... 118
9.5 Converting Pointer Types .. 119
9.6 Reference Parameters .. 119
9.7 Pointers with Value NULL ... 120
9.8 Arrays as Pointers .. 122
 9.8.1 Pointer Parameters for Arrays 122
 9.8.2 Functions that Return Arrays 123
 9.8.3 Dynamic Memory Allocation 124
9.9 Complex Data Structures .. 125
 9.9.1 Structure Types .. 125
 9.9.2 Array of Structures .. 125
 9.9.3 Pointers to Structures .. 126
9.10 Defining Type Names .. 127
9.11 Enumerated Types .. 128
Summary .. 128
Exercises .. 129

Chapter 10 Linked Lists .. 131

10.1 Introduction .. 131
10.2 Nodes and Linked List .. 131
 10.2.1 Nodes ... 132
 10.2.2 Manipulating Linked Lists 133
 10.2.3 Example of Manipulating a Linked List 135
 10.2.4 Linked List as an Abstract Data Type 138
10.3 Linked List with Two Ends .. 142
10.4 Double-Linked Lists ... 143
10.5 Higher-level Data Structures 145
 10.5.1 Stacks .. 145
 10.5.2 Queues .. 148
Summary .. 150
Exercises .. 151

Chapter 11 Text Data ... 153

11.1 Introduction .. 153
11.2 C Strings .. 153
11.3 String Input and Output .. 154
11.4 String Operations .. 155
11.5 Using the String Functions 156
Summary .. 158
Exercises .. 158
Chapter 16 Models with Interpolation and Curve Fitting

16.1 Introduction .. 203
16.2 Interpolation 203
 16.2.1 Linear Interpolation 204
 16.2.2 Non-Linear Interpolation 207
16.3 Curve Fitting 211
 16.3.1 Linear Polynomial Function 212
 16.3.2 Non-Linear Polynomial Function 214
Summary .. 215
Exercises .. 216

Chapter 17 Using Vectors with the GSL

17.1 Introduction .. 219
17.2 Vectors and Operations 220
 17.2.1 Addition of a Scalar and a Vector 220
 17.2.2 Vector Addition 220
 17.2.3 Multiplication of a Vector and a Scalar 220
 17.2.4 Dot Product of Two Vectors 221
 17.2.5 Length (Norm) of a Vector 221
17.3 Vector Properties and Characteristics 222
 17.3.1 Orthogonal Vectors 222
 17.3.2 Linear Dependence 222
17.4 Implementation of Vectors in C and the GSL ... 222
17.5 Simple Vector Operations 224
 17.5.1 Arithmetic Operations 224
 17.5.2 Additional Vector Functions 225
 17.5.3 Vector Views 228
 17.5.4 Complex Vectors 229
Summary .. 231
Exercises .. 232

Chapter 18 Matrices and Sets of Linear Equations

18.1 Introduction .. 235
18.2 Matrices ... 235
 18.2.1 Basic Concepts 235
 18.2.2 Arithmetic Operations 236
 18.2.3 Matrix Manipulation in C and the GSL 240
18.3 Simple Matrix Operations 242
 18.3.1 Arithmetic Operations 242
 18.3.2 Additional Matrix Functions 245
 18.3.3 GSL Matrix Views 250
18.4 Solving Systems of Linear Equations 253
Summary .. 259
Exercises .. 260
Chapter 21 Solving Linear Optimization Problems 301
21.1 Introduction .. 301
21.2 General Form .. 301
21.3 Foundations of the Algorithm 302
 21.3.1 Basic Concepts ... 302
 21.3.2 Problem Formulation in Standard Form 302
 21.3.3 Generalized Standard Form 304
 21.3.4 Additional Definitions 304
21.4 Simplex Algorithm ... 305
 21.4.1 General Description of the Simplex Algorithm 305
 21.4.2 Detailed Description of the Simplex Algorithm 305
 21.4.3 Degeneracy and Convergence 307
 21.4.4 Two-Phase Method 307
21.5 Software Implementations 307
 21.5.1 Solution with LP_solve 307
 21.5.1.1 Example 1 with LP_solve 308
 21.5.1.2 Example 2 with LP_solve 309
 21.5.1.3 Example 3 with LP_solve 310
 21.5.2 Implementation with GLPK glpsol 311
Summary .. 313
Exercises .. 314

Chapter 22 Sensitivity Analysis and Duality 317
22.1 Introduction .. 317
22.2 Sensitivity Analysis ... 317
 22.2.1 Coefficients of the Objective Function 317
 22.2.1.1 Using LP_solve Case Study 1 318
 22.2.1.2 Using GLPK glpsol Case Study 1 319
 22.2.1.3 Using LP_solve Case Study 2 321
 22.2.1.4 Using GLPK glpsol Case Study 2 323
 22.2.1.5 Using LP_solve Case Study 3 324
 22.2.1.6 Using GLPK glpsol Case Study 3 325
 22.2.2 Right-Hand Side of Constraints 326
 22.2.2.1 Using LP_solve Case Study 1 327
 22.2.2.2 Using glpsol Case Study 1 328
 22.2.2.3 Using LP_solve Case Study 2 328
 22.2.2.4 Using glpsol Case Study 2 329
 22.2.2.5 Using LP_solve Case Study 3 330
 22.2.2.6 Using glpsol Case Study 3 331
 22.3 Duality ... 332
 22.3.1 Formulating the Dual Problem 332
 22.3.2 Transforming a Problem to Standard Form 334
 22.3.3 Duality Discussion 335
Summary .. 336
Exercises .. 336
Chapter 23 Transportation Models

23.1 Introduction .. 339
23.2 Model of a Transportation Problem 339
23.3 Transportation Case Studies 341
 23.3.1 Transport Case Study 1 341
 23.3.2 Unbalanced Problem: Case Study 2 343
 23.3.3 Unbalanced Problem: Case Study 3 346
23.4 Transshipment Models .. 348
 23.4.1 General Form of Model 349
 23.4.2 Transshipment Problem: Case Study 4 349
23.5 Assignment Problems .. 352
 23.5.1 General Form of Model 352
 23.5.2 Assignment Problem: Case Study 5 352
Summary .. 354
Exercises .. 355

Chapter 24 Network Models

24.1 Introduction .. 357
24.2 Graphs .. 357
24.3 Shortest Path Problem 357
24.4 Shortest Path Problem: Case Study 1 358
24.5 Maximum Flow Problems 361
24.6 Critical Path Method ... 364
 24.6.1 Using Linear Optimization 365
 24.6.2 Critical Path Method: Case Study 2 365
 24.6.3 Reducing the Time to Complete a Project 367
 24.6.4 Case Study 3 ... 367
Summary .. 370
Exercises .. 370

Chapter 25 Integer Linear Optimization Models

25.1 Introduction .. 373
25.2 Modeling with Integer Variables 373
25.3 Applications of Integer Linear Optimization 374
 25.3.1 Branch and Bound 375
 25.3.2 Branch and Cut .. 375
25.4 Integer Linear Optimization: Case Study 1 376
25.5 Integer Linear Optimization: Case Study 2 377
Summary .. 381
Exercises .. 382

Appendix A GNU C Compiler Tool

A.1 Command Line Documentation 385
A.2 GCC Command Options 388
A.3 Options Controlling the Kind of Output 388
This page intentionally left blank
List of Figures

1.1 Computational science as an integration of several disciplines. . . . 4
1.2 Development of computational models. 4
1.3 Model development and abstract levels. 6
1.4 Continuous model. 8
1.5 Discrete changes of number of cars in the queue. 9
1.6 The waterfall model. 12
1.7 Compiling a Java source program. 14
1.8 Executing a Java program. 14
1.9 Compiling a C program. 14
1.10 Linking a C program. 15
2.1 Structure of a C program. 20
2.2 Structure of a C function. 22
2.3 A function calling another function 23
2.4 Compiling and executing a program in a Linux Terminal. 25
2.5 Compiling, linking, and executing a program. 27
3.1 A function calling another function 32
3.2 Function A calling function square 33
3.3 Calling function squared with an argument. 35
4.1 The slope of a line. 45
4.2 The slope of a secant. 46
4.3 The slope of a tangent. 47
5.1 Simple flowchart symbols. 59
5.2 A simple flowchart example. 60
5.3 A flowchart with a sequence. 61
5.4 Selection structure in flowchart form. 62
5.5 An example of the selection structure. 63
5.6 While loop of the repetition structure. 64
5.7 Repeat-until loop of the repetition structure. 65
5.8 Flowchart data input/output symbol. 66
6.1 Flowchart of the selection structure. 72
6.2 Example of selection structure. 74
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3</td>
<td>High-level flowchart for solving a quadratic equation.</td>
<td>77</td>
</tr>
<tr>
<td>7.1</td>
<td>A flowchart with a while-loop.</td>
<td>86</td>
</tr>
<tr>
<td>7.2</td>
<td>A flowchart with a repeat-until structure.</td>
<td>91</td>
</tr>
<tr>
<td>8.1</td>
<td>A simple array.</td>
<td>99</td>
</tr>
<tr>
<td>8.2</td>
<td>A two-dimensional array.</td>
<td>100</td>
</tr>
<tr>
<td>8.3</td>
<td>Plot of the values of the vertical position with time.</td>
<td>106</td>
</tr>
<tr>
<td>9.1</td>
<td>Pointer variable (x_{ptr}) pointing to variable (x).</td>
<td>118</td>
</tr>
<tr>
<td>10.1</td>
<td>Structure of a node.</td>
<td>132</td>
</tr>
<tr>
<td>10.2</td>
<td>A simple linked list.</td>
<td>132</td>
</tr>
<tr>
<td>10.3</td>
<td>A new node inserted in the front of a linked list.</td>
<td>136</td>
</tr>
<tr>
<td>10.4</td>
<td>A new node inserted after node 2.</td>
<td>136</td>
</tr>
<tr>
<td>10.5</td>
<td>A linked list with two ends.</td>
<td>142</td>
</tr>
<tr>
<td>10.6</td>
<td>A linked list with two links per node.</td>
<td>143</td>
</tr>
<tr>
<td>10.7</td>
<td>A stack as a dynamic data structure.</td>
<td>145</td>
</tr>
<tr>
<td>10.8</td>
<td>A queue as a dynamic data structure.</td>
<td>148</td>
</tr>
<tr>
<td>11.1</td>
<td>A C string.</td>
<td>153</td>
</tr>
<tr>
<td>12.1</td>
<td>Given and computed values of monthly price of electric energy.</td>
<td>167</td>
</tr>
<tr>
<td>13.1</td>
<td>Plot of data in the sequence.</td>
<td>172</td>
</tr>
<tr>
<td>13.2</td>
<td>Plot of first differences.</td>
<td>173</td>
</tr>
<tr>
<td>13.3</td>
<td>Number of patients for 1995–2002.</td>
<td>176</td>
</tr>
<tr>
<td>13.4</td>
<td>Number of links to connect (n) computers</td>
<td>178</td>
</tr>
<tr>
<td>14.1</td>
<td>Data with geometric growth.</td>
<td>184</td>
</tr>
<tr>
<td>14.2</td>
<td>Data decreasing with geometric growth.</td>
<td>185</td>
</tr>
<tr>
<td>14.4</td>
<td>Impurities in water (parts/gallon).</td>
<td>189</td>
</tr>
<tr>
<td>15.1</td>
<td>Graph of the equation (y = 2x^3 - 3x^2 - 36x + 14).</td>
<td>198</td>
</tr>
<tr>
<td>15.2</td>
<td>Graph of the equation (y = 3x^5 - 2).</td>
<td>199</td>
</tr>
<tr>
<td>16.1</td>
<td>Linear interpolation of an intermediate data point.</td>
<td>204</td>
</tr>
<tr>
<td>16.2</td>
<td>Graph of given data points.</td>
<td>206</td>
</tr>
<tr>
<td>16.3</td>
<td>Graph of linear interpolation of multiple data points.</td>
<td>207</td>
</tr>
<tr>
<td>16.4</td>
<td>Graph of given data points.</td>
<td>208</td>
</tr>
<tr>
<td>16.5</td>
<td>Cubic spline interpolation of data points.</td>
<td>210</td>
</tr>
<tr>
<td>16.6</td>
<td>Graph of given set of data points.</td>
<td>212</td>
</tr>
<tr>
<td>16.7</td>
<td>Polynomial of degree 1 fit from given data points.</td>
<td>214</td>
</tr>
<tr>
<td>16.8</td>
<td>Curve fitting of polynomial of degree 3.</td>
<td>215</td>
</tr>
<tr>
<td>19.1</td>
<td>The slope of (x = c).</td>
<td>264</td>
</tr>
</tbody>
</table>
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Celsius and Fahrenheit temperatures.</td>
<td>27</td>
</tr>
<tr>
<td>4.1</td>
<td>Values of height and vertical velocity.</td>
<td>51</td>
</tr>
<tr>
<td>12.1</td>
<td>Average price of electricity (cents per kW-h) in 2010.</td>
<td>163</td>
</tr>
<tr>
<td>13.1</td>
<td>Number of patients for years 1995–2002.</td>
<td>176</td>
</tr>
<tr>
<td>13.2</td>
<td>Number of cable installations for years 1995–2002.</td>
<td>178</td>
</tr>
<tr>
<td>13.3</td>
<td>Temperature changes in 12-hour period.</td>
<td>180</td>
</tr>
<tr>
<td>16.1</td>
<td>Temperature changes in 12-hour period.</td>
<td>216</td>
</tr>
<tr>
<td>16.2</td>
<td>Number of patients for years 1995–2002.</td>
<td>217</td>
</tr>
<tr>
<td>24.1</td>
<td>Airline routes from Chicago to Rio.</td>
<td>361</td>
</tr>
<tr>
<td>24.2</td>
<td>Project data.</td>
<td>365</td>
</tr>
<tr>
<td>24.3</td>
<td>Project additional cost.</td>
<td>368</td>
</tr>
<tr>
<td>25.1</td>
<td>Items for Knapsack.</td>
<td>376</td>
</tr>
<tr>
<td>B.1</td>
<td>System directories.</td>
<td>399</td>
</tr>
<tr>
<td>B.2</td>
<td>I/O redirection.</td>
<td>409</td>
</tr>
<tr>
<td>B.3</td>
<td>Test command operators for expressions with numbers.</td>
<td>418</td>
</tr>
<tr>
<td>B.4</td>
<td>Test command operators for expressions with strings.</td>
<td>418</td>
</tr>
<tr>
<td>B.5</td>
<td>Test command operators for expressions with files.</td>
<td>419</td>
</tr>
</tbody>
</table>
A computational model is a computer implementation of the solution to a (scientific) problem for which a mathematical representation has been formulated. These models are applied in various areas of science and engineering to solve large-scale and complex scientific problems. Developing a computational model involves formulating the mathematical representation and implementing it by applying computer science concepts, principles and methods.

Computational modeling focuses on reasoning about problems using computational thinking and multidisciplinary/interdisciplinary computing for developing computational models to solve complex problems. It is the foundation component of computational science, which is an emerging discipline that includes concepts, principles, and methods from applied mathematics and computer science.

This book presents an introduction to computational models and their implementation using the C programming language, which is still one of the most widely used programming languages. Fortran and C programming languages are the ones most suitable for high-performance computing (HPC). Although these programming languages are not new, they have evolved to become very powerful and efficient programming languages. The most recent standards are ISO/IEC 1539-1:2010 for Fortran and ISO/IEC 1999 for the C language.

MATLAB® is a registered trademark of The Mathworks, Inc.

The primary goal of this book is to present basic and introductory principles of computational models from the computer science perspective. The prerequisites are intermediate programming and at least Calculus I. Emphasis is on reasoning about problems, conceptualizing the problem, mathematical formulation, and the computational solution that involves computing results and visualization.

The book emphasizes analytical skill development and problem solving. The main software tools for implementing computational models are the C programming language and the Gnu Scientific Library (GSL) under Linux. The GSL is a software library of C functions that is freely available; it is a mature, stable, and well-documented library that has been well-supported since 1996. GnuPlot is an open-
source versatile tool for the visualization of the data computed. Other software tools used in the book are GLPK, LP_Solve and CodeBlocks.

The material in this book is aimed at intermediate to advanced undergraduate science (and engineering) students. However, the vision in the book is to promote and introduce the principles of computational modeling as early as possible in the undergraduate curricula and to introduce the approaches of multidisciplinary and interdisciplinary computing.

This book provides a foundation for more advanced courses in scientific computing, including parallel computing using MPI, grid computing and other techniques used in high-performance computing.

The material in the book is presented in five parts. The first part is an overview of problem solving, introductory concepts and principles of computational models, and their development. This part introduces the basic modeling and techniques for designing and implementing problem solutions, independent of software and hardware tools.

The second part presents an overview of programming principles with the C programming language. The relevant topics are basic programming concepts, data definitions, programming structures with flowcharts and pseudo-code, solving problems and algorithms, arrays, pointers, basic data structures, and compiling, linking, and executing programs on Linux.

The third part applies programming principles and techniques to implement the basic computational models. It gradually introduces numerical methods and mathematical modeling principles. Simple case studies of problems that apply mathematical models are presented. Case studies are of simple linear, quadratic, geometric, polynomial, and linear systems using GSL. Computational models that use polynomial evaluation, computing roots of polynomials, interpolation, regression, and systems of linear equations are discussed. Examples and case studies demonstrate the computation and visualization of data produced by computational models.

The fourth part presents an overview of more advanced concepts needed for modeling dynamical systems. Most of the models are formulated with ordinary differential equations, and the implementation of numerical solutions is explained.

The fifth part introduces the modeling of linear optimization problems and several case studies are presented. The problem formulation to implementation of computational models with linear optimization is shown.

José M. Garrido
Kennesaw, Georgia
José M. Garrido is professor in the Department of Computer Science, Kennesaw State University, Georgia. He holds a Ph.D. from George Mason University in Fairfax, Virginia, an M.S.C.S also from George Mason University, an M.Sc. from the University of London, and a B.S. in electrical engineering from the Universidad de Oriente, Venezuela.

Dr. Garrido’s research interests are object-oriented modeling and simulation, multidisciplinary computational modeling, formal specification of real-time systems, language design and processors, and modeling systems performance. Dr. Garrido developed the Psim3, PsimJ, and PsimJ2 simulation packages for C++ and Java. He has recently developed the OOSimL, the object-oriented simulation language (with partial support from the NSF).

Dr. Garrido has published several papers on modeling and simulation, and on programming methods. He has also published seven textbooks on object-oriented simulation, operating systems, and elementary computational models.
This page intentionally left blank
Chapter 1

Problem Solving and Computing

1.1 Introduction

Computer problem solving attempts to derive a computer solution to a real-world problem, and a computer program is the implementation of the solution to the problem. A computational model is a computer implementation of the solution to a (scientific) problem for which a mathematical representation has been formulated. These models are applied in various areas of science and engineering to solve large-scale and complex scientific problems.

A computer program consists of data definitions and a sequence of instructions. The instructions allow the computer to manipulate the input data to carry out computations and produce desired results when the program executes. A program is normally written in an appropriate programming language.

This chapter discusses problem solving principles and presents elementary concepts and principles of problem solving, computational models, and programs.

1.2 Computer Problem Solving

Problem solving is the process of developing a computer solution to a given real-world problem. The most challenging aspect of this process is discovering the method to solve the problem. This method of solution is described by an algorithm. A general process of problem solving involves the following tasks:

1. Understanding the problem
2. Describing the problem in a clear, complete, and unambiguous form
3. Designing a solution to the problem (algorithm)
4. Developing a computer solution to the problem.

An algorithm is a description of the sequence of steps performed to produce the desired results, in a clear, detailed, precise, and complete manner. It describes the
computations on the given data and involves a sequence of instructions or operations that are to be performed on the input data in order to produce the desired results (output data).

A program is a computer implementation of an algorithm and consists of a set of data definitions and sequences of instructions. The program is written in an appropriate programming language and it tells the computer how to transform the given data into correct results by performing a sequence of computations on the data. An algorithm is described in a semi-formal notation such as pseudo-code and flowcharts.

1.3 Elementary Concepts

A model is a representation of a system, a problem, or part of it. The model is simpler than, and should be equivalent to, the real system in all relevant aspects. In this sense, a model is an abstract representation of a problem. **Modeling** is the activity of building a model.

Every model has a specific purpose and goal. A model only includes the aspects of the real problem that were decided as being important, according to the initial requirements of the model. This implies that the limitations of the model have to be clearly understood and documented.

An essential modeling method is to use mathematical entities such as numbers, functions, and sets to describe properties and their relationships to problems and real-world systems. Such models are known as **mathematical models**.

A computational model is an implementation in a computer system of a mathematical model and usually requires high performance computational resources to execute. The computational model is used to study the behavior of a large and complex system. Developing a computational model consists of:

- Applying a formal software development process
- Applying **Computer Science** concepts, principles and methods, such as:
 - Abstraction and decomposition
 - Programming principles
 - Data structures
 - Algorithm structures
 - Concurrency and synchronization
 - Modeling and simulation
 - Multi-threading, parallel, and distributed computing for high performance (HPC)
Abstraction is a very important principle in developing computational models. This is extremely useful in dealing with large and complex problems or systems. Abstraction is the hiding of the details and leaving visible only the essential features of a particular system.

One of the critical tasks in modeling is representing the various aspects of a system at different levels of abstraction. A good abstraction captures the essential elements of a system, and purposely leaves out the rest.

Computational thinking is the ability of reasoning about a problem and formulating a computer solution. Computational thinking consists of the following elements:

- Reasoning about computer problem solving
- The ability to describe the requirements of a problem and, if possible, design a mathematical solution that can be implemented in a computer
- The solution usually requires multi-disciplinary and inter-disciplinary approaches to problem solving
- The solution normally leads to the construction of a computational model

Computational Science integrates concepts and principles from applied mathematics and computer science and applies them to the various scientific and engineering disciplines. Computational science is:

- An emerging multidisciplinary area
- The intersection of the more traditional sciences, engineering, applied mathematics, and computer science, and focuses on the integration of knowledge for the development of problem-solving methodologies and tools that help advance the sciences and engineering areas. This is illustrated in Figure 1.1.
- An area that has as a general goal the development of high-performance computer models.
- An area that mostly involve multi-disciplinary computational models including simulation.

When a mathematical analytical solution of the model is not possible, a numerical and graphical solution is sought and experimentation with the model is carried out by changing the parameters of the model in the computer, and studying the differences in the outcome of the experiments. Further analysis and predictions of the operation of the model can be derived or deduced from these computational experiments.

One of the goals of the general approach to problem solving is modeling the problem at hand, building or implementing the resulting solution using an appropriate tool environment (such as MATLAB® or Octave) or with some appropriate programming language, such as C.
1.4 Developing Computational Models

The process of developing computational models consists of a sequence of activities or stages that starts with the definition of modeling goals and is carried out in a possibly iterative manner. Because models are simplifications of reality there is a trade-off as to what level of detail is included in the model. If too little detail is included in the model one runs the risk of missing relevant interactions and the resultant model does not promote understanding. If too much detail is included in the model the model may become overly complicated and actually preclude the devel-
opment of understanding. Figure 1.2 illustrates a simplified process for developing computational models.

Computational models are generally developed in an iterative manner. After the first version of the model is developed, the model is executed, results from the execution run are studied, the model is revised, and more iterations are carried out until an adequate level of understanding is developed. The process of developing a model involves the following general steps:

1. Definition of the problem statement for the computational model. This statement must provide the description of the purpose for building the model, the questions it must help to answer, and the type of expected results relevant to these questions.

2. Definition of the model specification to help define the conceptual model of the problem to be solved. This is a description of what is to be accomplished with the computational model to be constructed; and the assumptions (constraints), and domain laws to be followed. Ideally, the model specification should be clear, precise, complete, concise, and understandable. This description includes the list of relevant components, the interactions among the components, the relationships among the components, and the dynamic behavior of the model.

3. Definition of the mathematical model. This stage involves deriving a representation of the problem solution using mathematical entities and expressions and the details of the algorithms for the relationships and dynamic behavior of the model.

4. Model implementation. The implementation of the model can be carried out with a software environment such as MATLAB and Octave, in a simulation language, or in a general-purpose high-level programming language, such as Ada, C, C++, or Java. The simulation software to use is also an important practical decision. The main tasks in this phase are coding, debugging, and testing the software model.

5. Verification of the model. From different runs of the implementation of the model (or the model program), this stage compares the output results with those that would have been produced by correct implementation of the conceptual and mathematical models. This stage concentrates on attempting to document and prove the correctness of the model implementation.

6. Validation of the model. This stage compares the outputs of the verified model with the outputs of a real system (or a similar already developed model). This stage compares the model data and properties with the available knowledge and data about the real system. Model validation attempts to evaluate the extent to which the model promotes understanding.

A conceptual model can be considered a high-level specification of the problem
and it is a descriptive model. It is usually described with some formal or semi-formal notation. For example, discrete-event simulation models are described with UML (the Unified Modeling Language) and/or extended simulation activity diagrams.

The conceptual model is formulated from the initial problem statement, informal user requirements, and data and knowledge gathered from analysis of previously developed models. The stages mentioned in the model development process are carried out at different levels of abstraction. Figure 1.3 illustrates the relationship between the various stages of model development and their abstraction level.

1.5 A Simple Problem: Temperature Conversion

The process of developing a computational model is illustrated in this section with an extremely simple problem: the temperature conversion problem. A basic sequence of steps is discussed for solving this problem and for developing a computational model.

1.5.1 Initial Problem Statement

American tourists visiting Europe do not usually understand the units of temperature used in weather reports. The problem is to devise some mechanism for indicating the temperature in Fahrenheit from a known temperature in Celsius.
1.5.2 Analysis and Conceptual Model

A brief analysis of the problem involves:

1. Understanding the problem. The main goal of the problem is to develop a temperature conversion facility from Celsius to Fahrenheit.

2. Finding the mathematical representation or formulas for the conversion of temperature from Celsius to Fahrenheit. Without this knowledge, we cannot derive a solution to this problem. The conversion formula is the mathematical model of the problem.

3. Knowledge of how to implement the mathematical model in a computer. We need to express the model in a particular computer tool or a programming language. The computer implementation must closely represent the model in order for it to be correct and useful.

4. Knowledge of how to test the program for correctness.

1.5.3 Mathematical Model

The mathematical representation of the solution to the problem is the formula expressing a temperature measurement \(F \) in Fahrenheit in terms of the temperature measurement \(C \) in Celsius, which is:

\[
F = \frac{9}{5} C + 32 \tag{1.1}
\]

Here \(C \) is a variable that represents the given temperature in degrees Celsius, and \(F \) is a derived variable, whose value depends on \(C \).

A formal definition of a function is beyond the scope of this chapter. Informally, a function is a computation on elements in a set called the domain of the function, producing results that constitute a set called the range of the function. The elements in the domain are sometimes known as the input parameters. The elements in the range are called the output results.

Basically, a function defines a relationship between two (or more variables), \(x \) and \(y \). This relation is expressed as \(y = f(x) \), so \(y \) is a function of \(x \). Normally, for every value of \(x \), there is a corresponding value of \(y \). Variable \(x \) is the independent variable and \(y \) is the dependent variable.

The mathematical model is the mathematical expression for the conversion of a temperature measurement in Celsius to the corresponding value in Fahrenheit. The mathematical formula expressing the conversion assigns a value to the desired temperature in the variable \(F \), the dependent variable. The values of the variable \(C \) can change arbitrarily because it is the independent variable. The model uses real numbers to represent the temperature readings in various temperature units.
1.6 Categories of Computational Models

From the perspective of how the model changes state in time, computational models can be divided into two general categories:

1. Continuous models
2. Discrete models

A continuous model is one in which the changes of state in the model occur continuously with time. Often the state variables in the model are represented as continuous functions of time. These types of models are usually modeled as sets of difference or differential equations.

For example, a model that represents the temperature in a boiler as part of a power plant can be considered a continuous model because the state variable that represents the temperature of the boiler is implemented as a continuous function of time.

A discrete model represents a system that changes its states at discrete points in time, i.e., at specific instants. The model of a simple car-wash system is a discrete-event model because an arrival event occurs, and causes a change in the state variable.
that represents the number of cars in the queue that are waiting to receive service from
the machine (the server). This state variable and any other only change its values
when an event occurs, i.e., at discrete instants. Figure 1.5 illustrates the changes in
the number of cars in the queue of the model for the simple car-wash system.

FIGURE 1.5: Discrete changes of number of cars in the queue.
Depending on the variability of some parameters, computational models can be separated into two categories:

1. Deterministic models
2. Stochastic models.

A deterministic model exhibits a completely predictable behavior. A stochastic model includes some uncertainty implemented with random variables, whose values follow a probabilistic distribution. In practice, a significant number of models are stochastic because the real systems modeled usually include properties that are inherently random.

An example of a deterministic simulation model is a model of a simple car-wash system. In this model, cars arrive at exact specified instants (but at the same instants), and all have exact specified service periods (wash periods); the behavior of the model can be completely and exactly determined.

The simple car-wash system with varying car arrivals, varying service demand from each car, is a stochastic system. In a model of this system, only the averages of these parameters are specified together with a probability distribution for the variability of these parameters. Uncertainty is included in this model because these parameter values cannot be exactly determined.

1.7 Computing the Area and Circumference of a Circle

In this section, another simple problem is formulated: the mathematical model(s) and the algorithm. This problem requires computing the area and circumference of a circle, given its radius. The mathematical model is:

\[
\begin{align*}
\text{cir} &= 2\pi r \\
\text{area} &= \pi r^2
\end{align*}
\]

The high-level algorithm description in informal pseudo-code notation is:

1. Read the value of the radius of a circle, from the input device.
2. Compute the area of the circle.
3. Compute the circumference of the circle.
4. Print or display the value of the area of the circle to the output device.
5. Print or display the value of the circumference of the circle to the output device.

A more detailed algorithm description follows:
1. Read the value of the radius \(r \) of a circle, from the input device.
2. Establish the constant \(\pi \) with value 3.14159.
3. Compute the area of the circle.
4. Compute the circumference of the circle.
5. Print or display the value of area of the circle to the output device.
6. Print or display the value of cir of the circle to the output device.

The previous algorithm now can be implemented by a program that calculates the circumference and the area of a circle.

1.8 General Process of Software Development

For large software systems, a general software development process involves carrying out a sequence of well-defined phases or activities. The process is also known as the software life cycle.

The simplest approach for using the software life cycle is the waterfall model. This model represents the sequence of phases or activities needed to develop the software system through installation and maintenance of the software. In this model, the activity in a given phase cannot be started until the activity of the previous phase has been completed.

Figure 1.6 illustrates the sequence of phases that are performed in the waterfall software life cycle. The various phases of the software life cycle are the following:

1. **Analysis**, which results in documenting the problem description and what the problem solution is supposed to accomplish.
2. **Design**, which involves describing and documenting the detailed structure and behavior of the system model.
3. **Implementation** of the software using a programming language.
4. **Testing** and verification of the programs.
5. **Installation** that results in delivery, installation of the programs.
6. **Maintenance**.

There are some variations of the waterfall model of the life cycle. These include returning to the previous phase when necessary. More recent trends in system development have emphasized an iterative approach, in which previous stages can be revised and enhanced.
A more complete model of software life cycle is the *spiral model* that incorporates the construction of *prototypes* in the early stages. A prototype is an early version of the application that does not have all the final characteristics. Other development approaches involve prototyping and rapid application development (RAD).

1.9 Programming Languages

A programming language is used by programmers to write programs. This language contains a defined set of syntax and semantic rules. The syntax rules describe how to write well-defined statements. The semantic rules describe the meaning of the statements.

1.9.1 High-Level Programming Languages

A high-level programming language is a formal notation in which to write instructions to the computer in the form of a program. A programming language help programmers in the writing of programs for a large family of problems.

High-level programming languages are hardware independent and are problem-oriented (for a given family of problems). These languages allow more readable pro-
grams, and are easy to write and maintain. Examples of these languages are Pascal, C, Cobol, Fortran, Algol, Ada, Smalltalk, C++, Eiffel, and Java.

Programming languages like C++ and Java can require considerable effort to learn and master. Several newer and experimental, higher-level, object-oriented programming languages have been developed. Each one has a particular goal.

There are several integrated development environments (IDE) that facilitate the development of programs. Examples of these are: Eiffel, Netbeans, CodeBlocks, and Codelite. Other IDEs are designed for numerical and scientific problem solving that have their own programming language. Some of these computational tools are: MATLAB, Octave, Mathematica, Scilab, Stella, and Maple.

The solution to a problem is implemented by a program written in an appropriate programming language. This program is known as the source program and is written in a high-level programming language.

Once a source program is written, it is translated or converted into an equivalent program in machine code, which is the only programming language that the computer can understand. The computer can only execute instructions that are in machine code.

The program executing in the computer usually reads input data from the input device and after carrying out some computations, it writes results to the output device(s).

1.9.2 Interpreters

An interpreter is a special program that performs syntax checking of a command in a user program written in a high-level programming language and immediately executes the command. It repeats this processing for every command in the program. Examples of interpreters are the ones used for the following languages: MATLAB, Octave, PHP and PERL.

1.9.3 Compilers

A compiler is a special program that translates another program written in a programming language into an equivalent program in binary or machine code, which is the only language that the computer accepts for processing.

In addition to compilation, an additional step known as linking is required before a program can be executed. Examples of programming languages that require compilation and linking are: C, C++, Eiffel, Ada, and Fortran. Other programming languages such as Java, require compilation and interpretation.

1.9.4 Compiling and Execution of Java Programs

To compile and execute programs written in the Java programming language, two special programs are required, the compiler and the interpreter. The Java compiler checks for syntax errors in the source program and translates it into bytecode, which is the program in an intermediate form. The Java bytecode is not dependent on any
particular platform or computer system. To execute this bytecode, the Java Virtual Machine (JVM), carries out the interpretation of the bytecode.

Figure 1.7 shows what is involved in compilation of a source program in Java. The Java compiler checks for syntax errors in the source program and then translates it into a program in byte-code, which is the program in an intermediate form.

The Java bytecode is not dependent of any particular platform or computer system. This makes the bytecode very portable from one machine to another.

Figure 1.8 shows how to execute a program in byte-code. The Java virtual machine (JVM) carries out the interpretation of the program in byte-code.

1.9.5 Compiling and Executing C Programs

Programs written in C must be compiled, linked, and loaded into memory before executing. An executable program file is produced as a result of linking. The libraries are a collection of additional code modules needed by the program. Figure 1.9 illustrates the compilation of a C program. Figure 1.10 illustrate the linkage of the program. The executable program is the final form of the program that is produced. Before a program starts to execute in the computer, it must be loaded into the memory of the computer.
Summary

Computational models are used to solve large and complex problems in the various scientific and engineering disciplines. These models are implemented by computer programs coded in a particular programming language. There are several standard programming languages, such as C, C++, Eiffel, Ada, Java. Compilation is the task of translating a program from its source language to an equivalent program in machine code. Languages in scientific computing environments such as MATLAB and Octave are interpreted. Computations are carried out on input data by executing individual commands or complete programs. Application programs are programs that the user interacts with to solve particular problems. Computational models are implemented as programs.

Key Terms

<table>
<thead>
<tr>
<th>computational model</th>
<th>mathematical model</th>
<th>abstraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>algorithm</td>
<td>conceptual model</td>
<td>model development</td>
</tr>
<tr>
<td>compilers</td>
<td>linkers</td>
<td>interpreters</td>
</tr>
<tr>
<td>programs</td>
<td>commands</td>
<td>instructions</td>
</tr>
<tr>
<td>programming language</td>
<td>Java</td>
<td>C</td>
</tr>
<tr>
<td>C++</td>
<td>Eiffel</td>
<td>Ada</td>
</tr>
<tr>
<td>bytecode</td>
<td>JVM</td>
<td>program execution</td>
</tr>
<tr>
<td>data definition</td>
<td>Source code</td>
<td>high-level language</td>
</tr>
<tr>
<td>simulation model</td>
<td>keywords</td>
<td>identifiers</td>
</tr>
</tbody>
</table>
Exercises

Exercise 1.1 Explain the differences between a computational model and a mathematical model.

Exercise 1.2 Explain the reason why the concept of abstraction is important in developing computational models.

Exercise 1.3 Investigate and write a short report on the programming languages used to implement computational models.

Exercise 1.4 What is a programming language? Why are they needed?

Exercise 1.5 Explain why there are many programming languages.

Exercise 1.6 What are the differences between compilation and interpretation in high-level programming languages?

Exercise 1.7 Explain the purpose of compilation. How many compilers are necessary for a given application? What is the difference between program compilation and program execution? Explain.

Exercise 1.8 What is the real purpose of developing a program? Can we just use a spreadsheet program such as MS Excel to solve numerical problems? Explain.

Exercise 1.9 Find and explain the differences in compiling and linking C, Java, and C++ programs.

Exercise 1.10 Explain the differences between data definitions and instructions in a program written in a high-level programming language.

Exercise 1.11 For developing small programs, is it still necessary to use a software development process? Explain. What are the main advantages in using a process for program development? What are the disadvantages?
Chapter 2

Programs

2.1 Introduction

This chapter presents an overview of the structure of a computer program, which include data definitions and basic instructions using the C programming language. Because functions are the building blocks and the fundamental components of C programs, the concepts of function definitions and function invocations are gradually explained, and complete C programs are introduced that illustrate further the role of functions. This chapter also presents concepts and principles that are used in developing computational models by implementing the corresponding mathematical models with C programs.

2.2 Programs

A program consists of data definitions and instructions that manipulate the data. A program is normally written in an appropriate programming language. It is considered part of the software components in a computer system. The general structure of a program consists of:

- Data definitions, which declare all the data to be manipulated by the instructions.
- A sequence of instructions, which perform the computations on the data in order to produce the desired results.
2.3 Data Definitions

The data in a program consists of one or more data items. These are manipulated or transformed by the computations (computer operations). Each data definition is specified by declaring a data item with the following:

- The *type* of the data item
- A unique *name* to identify the data item
- An optional initial *value*

The name of a data item is an *identifier* and is defined by the programmer; it must be different from any *keyword* in the programming language. The type of data defines:

- The set of possible values that the data item can take
- The set of possible operations or computations that can be applied to the data item

2.3.1 Name of Data Items

The names of the data items are used in a program for uniquely identifying the data items and are known as *identifiers*. The special text words or symbols that indicate essential parts of a programming language are known as *keywords*. These are reserved words and cannot be used for any other purpose.

For example, the problem for calculating the area of a triangle uses four data items, *a*, *b*, *c*, and *area*. The data items usually change their values when they are manipulated by the various operations. For example, the following sequence of instructions first sets the value of *y* to 34.5 then adds the value *x* and *y*; the results are assigned to *z*.

\[y = 34.5; \]
\[z = y + x; \]

The data items named *x* and *y* are known as *variables* because their values change when computations are applied on them. Those data items that do not change their values are known as *constants*. For example, *MAX_NUM*, *PI*, etc. These data items are given an initial value that will never change during the program execution.

When a program executes, all the data items used by the various computations are stored in the computer memory, each data item occupying a different memory location.
2.3.2 Data Types

Data types are classified into the three categories:

- Numeric
- Text
- Boolean

The numeric types are further divided into three basic types, integer, float, and double. The non-integer types are also known as fractional, which means that the numerical values have a fractional part.

Values of integer type are those that are countable to a finite value, for example, age, number of parts, number of students enrolled in a course, and so on. Values of type float and double have a decimal point; for example, cost of a part, the height of a tower, current temperature in a boiler, a time interval. These values cannot be expressed as integers. Values of type double provide more precision than type float.

Text data items are of two basic types: char and type string. Data items of type string consist of a sequence of characters. The values for these two types of data items are text values. The string type is the most common, such as the text value: 'Welcome!'.

The third data type is used for variables whose values can take any of two truth-values (True or False); these variables are of type bool. This type was first defined in the C99 standard for the C language.

2.3.3 Data Declarations in C

The data declarations are the data definitions and include the name of every variable or constant with its type. The initial values, if any, for the data items are also included in the data declaration.

In programming languages such as C, C++, and Java, a statement for the declaration of variables has the following basic syntactic structure:

```
(type) {variable_name};
```

The following lines of code in the C programming language are examples of statements that declare two constants and three variables of type int, float, and bool.

```c
const float PI = 3.1416;
const int MAX_NUM = 100;
int count;
float weight = 57.85;
bool busy;
```
2.4 Structure of a C Program

A typical program in the C language is structured as shown in Figure 2.1. It consists of several parts in the following sequence:

1. Compiler directives, which indicate to the compiler to append header files to the program that contain data and/or function declarations also known as function prototypes, and additional directives. A compiler directive starts with the pound symbol (#). A function prototype is only the header of a function and consists of the type of the function, the function name, and any parameters listed.

2. Global declarations, which may consist of data declarations and/or function declarations. These are global because they can be used by all functions in a program.

3. Definition of function main. This is the only required function in a C program; all other functions may be absent. In other words, a C program contains at lease function main. Execution of the program starts in this function, and normally ends in this function.
4. Definition of additional functions in the program.

Function definitions are the inclusion of programmer-defined functions that are invoked or called in the program. The other functions that can be called are the built-in functions provided by standard C libraries or by external libraries. In C, a library is a collection of related function definitions that may also include data declarations.

Once a function is defined, it can be called or invoked by any other function in the program. A function starts executing when it is called by another function. In a simple C program, a few functions are called in function main.

Before a function can be called in a C program, a function declaration is required. This declaration is also known as a function prototype. This is one of the reasons to have compiler directives and global declarations before the definition of function main and the other function definitions.

2.5 Instructions

An instruction performs a specific manipulation or computation on the data. In the source program, a computation is written with one or more appropriate language statements. In the source code, the assignment statement is the most fundamental statement (high-level instruction); its general form is:

\[
\{ \text{variable_name} \} = \{ \text{expression} \}
\]

The assignment operator is denoted by the \(= \) symbol and on the left side of this operator a variable name must always be written. On the right side of the assignment operator, an expression is written.

In the following source code, the first line is a simple assignment statement that will move the value 34.5 into variable \(x \). The second line is a slightly more complex assignment that will perform an addition of the value of variable \(x \) and the constant 11.38. The result of the addition is assigned to variable \(y \).

\[
x = 34.5; /* assign 34.5 to variable x */
y = x + 11.38;
\]

In the previous example, the second line of source code is an assignment statement and the expression on the right side of the assignment operator is \(x + 11.38 \). The expression on the right side of an assignment statement may be a simple arithmetic expression or a much more complex expression.
2.6 Simple Functions

A function carries out a specific task in a program and is an internal decomposition unit because every function belongs to the program.

As mentioned previously, data declared within a function is known only to that function—the scope of the data is local to the function. The local data in a function has a limited lifetime; it only exists during execution of the function.

2.6.1 Function Definitions

A C program is normally decomposed into source files, and these are divided into functions. These are function definitions that implement the functions in the source program.

![Figure 2.2: Structure of a C function.](image)

Figure 2.2 illustrates the general form of a function in the C language. In the source code, the general form of a function in the C programming language is written as follows:

```
function_type function_name ( [parameters] ) {
[ local declarations ]
[ executable language statements ]
}
```

The relevant documentation of the function definition is described in one or more lines of comments, which begins with the characters slash-star (/*) and ends with a star-slash (*)/.
The declarations that define local data in the function are optional. The instructions implement the body of the function. The following C source code shows a simple function for displaying a text message on the screen.

```c
/*
 * This function displays a message on the screen. */
void show_message () {
    printf("Computing data");
}
```

This is a very simple function and its only purpose is to display a text message on the screen. This function does not declare parameters and the type of this function is `void` to indicate that this function does not return a value.

2.6.2 Function Calls

The name of the function is used when calling or invoking the function by some other function. The function that calls another function is known as the calling function; the second function is known as the called function. When a function calls or invokes another function, the flow of control is altered and the second function starts execution immediately.

![Figure 2.3: A function calling another function](image)

When the called function completes execution, the flow of control is transferred back (returned) to the calling function and it continues execution from the point after it called the second function.

Figure 2.3 illustrates function A calling function B. After completing its execution, function B returns the flow of control to function A.

An example of this kind of function call is the call to function `show_message`, discussed previously. In C, the statement that calls a simple function uses the function name and an empty parentheses pair. The call to function `show_message` is written as:
After completion, and depending on the function type, the called function may or may not return a value to the calling function.

2.7 A Simple C Program

Listing 2.1 shows a very simple but complete C program. Lines 1–6 include comments that help in documenting the program. Line 7 is a compiler directive that indicates the inclusion of the header file `stdio.h`. This contains the function prototypes for the system functions (built-in) needed for input output (I/O) of data. Line 9 starts the definition of function `main`, it indicates the type and name of the function being defined. This simple program defines only a single function: `main`. Line 10 is a local data declaration; it declares variable `x` of type `double`.

Line 11 calls the system function `printf` to display the text string within quotes, on the screen. Line 12 is a simple assignment statement; it assigns value 45.95 to variable `x`. Line 13 invokes system function `printf` to display a text string and the value of variable `x`. The escape character \n is a line feed control character for output; it indicates a change to a new line. Line 14 is a termination statement by returning a value zero to the operating system.

Listing 2.1: A simple program in C.

```
1 /*
2 Program : welcome.c
3 Author  : J M Garrido, November 20, 2012.
4 Description : Display 'Welcome C World on the screen
5 and the value of a variable.
6 */
7 #include <stdio.h>
8
9 int main() {
10 double x; /* variable declaration */
11 printf("Welcome to the world of C \n");
12 x = 45.95; /* assigns a value to variable x */
13 printf("Value of x: %lf \n", x);
14 return 0; /* execution terminates OK */
15 }
```

Figure 2.4 shows the use of the GNU C compiler tool (`gcc`) to compile and link the C program (`welcome.c`), in a Linux Terminal. Note that by default, the executable file is named `a.out`. A recommended way to use `gcc` with a more appropriate and complete name that can be specified to the C compiler is:

```
gcc -Wall -o welcome.out welcome.c
```
FIGURE 2.4: Compiling and executing a program in a Linux Terminal.

The compiler flag \texttt{-Wall} should always be included so the compiler will display any warning messages, in addition to the error messages. The flag \texttt{-o} is used to indicate the name \texttt{welcome.out} of the executable file generated by the compiler.

\section*{2.8 A Simple Problem: Temperature Conversion}

This section revisits the temperature conversion problem, which is solved and implemented in C. The solution and implementation is derived by following a basic sequence of steps

\subsection*{2.8.1 Mathematical Model}

The mathematical representation of the solution to the problem, the formula expressing a temperature measurement \(F \) in Fahrenheit in terms of the temperature measurement \(C \) in Celsius is:

\[F = \frac{9}{5} C + 32 \]

The solution to the problem is the mathematical expression for the conversion of a temperature measurement in Celsius to the corresponding value in Fahrenheit. The mathematical formula expressing the conversion assigns a value to the desired temperature in the variable \(F \), the dependent variable. The values of the variable \(C \) can change arbitrarily because it is the independent variable. The mathematical model uses real numbers to represent the temperature readings in various temperature units.
2.8.2 Computational Model

The computational model is derived by implementing the mathematical model in a program using the C programming language. This model is developed using the console interface of Linux. In a similar manner to the previous examples implemented in C using a Linux Terminal, the computational model is developed by writing a C program, then compiling, linking, and executing the executable program generated by the compiler/linker.

The C program for the mathematical model can be written with the gedit editor on Linux. This is one of many free editors available on Linux. It is simple, efficient, and easy to use. The program is another very simple C program. Listing 2.2 shows the complete source program.

Listing 2.2: Temperature conversion program in C.

```c
/*
Program : tempctof.c
Author : Jose M Garrido
Description : Read value of temperature Celsius from console, convert to degrees Fahrenheit, and display value of this new temperature value on the output
*/

#include <stdio.h>

int main(void) {
    double tempc; /* temperature in Celsius */
    double tempf; /* temperature in Fahrenheit */
    printf("Enter value of temp in Celsius: ");
    scanf("%lf", &tempc);
    printf("Value of temp in Celsius: %lf \n", tempc);
    tempf = tempc * (9.0/5.0) + 32.0;
    printf("Temperature in Fahrenheit: %lf \n", tempf);
    return 0; /* execution terminates ok */
}
```

Compiling and linking the C program generates an executable file using the GNU C compiler/linker. Figure 2.5 shows a terminal window with the corresponding commands that compiles/links, and then executes the program.

Executing (running) the program computes the temperature in Fahrenheit given the value 5.0 for temperature in Celsius. The result is 41 degrees Fahrenheit.

The program can be executed several times to compute the Fahrenheit temperature starting with a given value of 10.0 for the temperature in Celsius and then repeating in increments of 5.0 degrees Celsius. The last computation is for a given value of 45.0 degrees Celsius.

Table 2.1 shows all the values of temperature in Celsius used to compute the corresponding temperature in Fahrenheit. This is a short set of results of the original problem.
Summary

The structure of a C computer program includes data definitions and basic instructions that manipulate the data. Functions are the building blocks and the fundamental components of C programs. Functions are defined and called in C programs. These basic programming constructs are used in developing computational models by implementing the corresponding mathematical models with C programs.
Exercises

Exercise 2.1 Why is a function a decomposition unit? Explain.

Exercise 2.2 What is the purpose of function main?

Exercise 2.3 Explain the various categories of function definitions.

Exercise 2.4 Develop a computational model (with a C program) that computes the area of a right triangle given values of the altitude and the base.

Exercise 2.5 Develop a computational model (with a C program) that computes the distance between two points in a plane: P_1 with coordinates (x_1, y_1), and P_2 with coordinates (x_2, y_2). Use the coordinate values: $(2, 3)$ and $(4, 7)$.

Exercise 2.6 Develop a computational model that computes the temperature in Celsius, given the values of the temperature in Fahrenheit.

Exercise 2.7 Develop a computational model that computes the circumference and area of a square, given the values of its sides.

Exercise 2.8 Develop a computational model (with a C program) that computes the slope of a line between two points in a plane: P_1 with coordinates (x_1, y_1), and P_2 with coordinates (x_2, y_2). Use the coordinate values: $(0, -3/2)$ and $(2, 0)$.
Chapter 3

Modular Decomposition: Functions

3.1 Introduction

A function is the main decomposition unit in a C program and it carries out a specific task in a program. When a function is called, it can receive input data from another function; the input data passed from another function is called an argument. The function can also return output data when it completes execution.

This chapter provides more details on function definitions, invocation, and decomposition. It also discusses the basic mechanisms for data transfer between two functions; several examples are included. Scientific and mathematical built-in functions are used in case studies.

3.2 Modular Decomposition

A problem is often too large and complex to deal with as a single unit. In problem solving and algorithmic design, the problem is partitioned into smaller problems that are easier to solve. The final solution consists of an assembly of these smaller solutions. The partitioning of a problem into smaller parts is known as decomposition. These small parts are known as modules, which are much easier to develop and manage.

System design usually emphasizes modular structuring, also called modular decomposition. With this approach, the solution to a problem consists of several smaller solutions corresponding to each of the subproblems. A problem is divided into smaller problems (or subproblems), and a solution is designed for each subproblem. These modules are considered building blocks for constructing larger and more complex algorithms.
3.3 Defining Functions

A C program is normally decomposed into source files, and these are divided into functions. A function is the smallest decomposition unit or module in a computational model. A function performs a related sequence of operations to accomplish a particular task. A function has to be defined before it can be used or called.

A function definition is a complete implementation of the function in the programming language. This definition includes the function header and the body of the function, which consists of local data definitions and instructions.

The function header or function prototype describes or specifies the type of data returned by the function, the name of the function, and the parameter list. This list includes the type and name of each parameter. The general form of a function definition in the C programming language is:

```c
⟨ type ⟩ ⟨ function_name ⟩ ⟨ parameter_list ⟩
{  .  .  [local data definitions]
    .  .  [instructions]
}
```

In C, the type specified in a function definition must be a primitive type, such as `int`, `float`, `double`, `char`, an aggregate type, or a programmer-defined type. The parameter list declares all the parameters of the function and must be written within parentheses.

The simplest function definition is one which has a function header that includes a `void` type, the function name, and an empty parameter list. The relevant comments for documentation of the function are described in the paragraph that starts with the symbols ‘/*’ and ends with ‘*/’.

As mentioned previously, local data declared within a function is known only to that function—the scope of the data is `local` to the function. The local data in a function has a limited lifetime; it only exists during execution of the function. The following sample C code shows a function with name `disp_mess`, which uses `void` as its type and has no parameters.

```c
/*
This function displays a message on the screen. */
void disp_mess() {
    printf("Computing data");
}
```
3.4 Calling Functions

A function is called by another function and starts executing immediately. Upon completion, the called function returns control to the calling function and the first function continues execution.

The name of the function is used when it is called or invoked by some other function. Suppose function main calls function disp_mess. After completing execution function disp_mess returns control to function main without returning a value. Function main continues execution from the point after the call. The function call to function disp_mess is shown in following C statement.

```
disp_mess();
```

3.5 Classification of Functions

There are three groups of functions:

1. Functions that do not return any value when they are called. The previous example, function show_message, is a simple (or void) function because it does not return any value to the function that invoked it.

2. Functions that return a single value after completion.

3. Functions that declare one or more parameters, which are data items used in the function.

3.5.1 Simple Function Calls

Simple functions do not return a value to the calling function. An example of this kind of function is disp_mess, discussed previously. There is no data transfer to or from the function.

Figure 3.1 shows a function A calling a second function B. After completing its execution, the called function B returns the flow of control to function A.

3.5.2 Calling Functions that Return Data

Data transfer is possible between the calling and the called function. This data transfer may occur from the calling function to the called function, from the called function to the calling function, or in both directions.

Value-returning functions transfer data from the called function to the calling
Introduction to Computational Modeling

FIGURE 3.1: A function calling another function

function. In these functions, a single value is calculated or assigned to a variable and is returned to the calling function.

The called function is defined with a type, which is the type of the return value. The function return type may be a simple type or a programmer-defined type. After the execution of the called function completes, control is returned to the calling function with a single value. The C language statements that define the form of a value-returning function are:

\[
\begin{align*}
\langle \text{return type} \rangle & \langle \text{function name} \rangle \langle \text{parameter list} \rangle \\
\{ & \ldots \\
\text{return} & \langle \text{return value} \rangle \\
\}
\end{align*}
\]

The value in the return statement can be any valid expression, following the return keyword. The expression can include constants, variables, object references, or a combination of these.

The following example defines a function, square, that returns the value of the square of variable x. The computed value is returned to the calling function. In the header of the function, the type of the value returned is indicated as float. The code for this function definition is:

```c
/*
   This function returns the square of variable x.
*/
float square () {
    float x;
    float sqx;
    x = 3.15;
    sqx = x * x;
    return sqx
}
```

The value-returning function can be called and the value returned can be used in several ways:
• Call the function in a simple assignment statement
• Call the function in an assignment statement with an arithmetic expression

FIGURE 3.2: Function A calling function square

Figure 3.2 shows a function with name A that calls function square. The return value from function square is used directly by function A in an assignment statement that assigns the value to variable y.

The value returned by the called function is used by the calling function by assigning this returned value to another variable. The following example shows a function calling function square. The calling function assigns the value returned to variable res.

```
res = square();
fres = y + w * square() + 23.45;
```

The value returned is used in an assignment with an arithmetic expression after calling a function. In the example shown, after calling function square, the value returned is assigned to variable res. In the second line of C code, the function call occurs in an arithmetic expression and the final value is assigned to variable fres.

3.5.3 Calling Functions with Arguments

These functions include one or more data declarations in the parameter list. These parameter declarations are similar to local data declarations and have local scope and persistence. The function may also return a type.

The parameter list is enclosed with parenthesis and consists of one or more parameter declarations separated by commas. Each parameter declaration includes the type and name of the parameter. A function with parameters is very useful because it allows data transfer into a function when called. The data values used when calling a function are known as arguments. The parameters are also known as formal parameters, and the arguments are also known as actual parameters.
Introduction to Computational Modeling

Every argument in the function call must be consistent with the corresponding parameter declaration in the function definition. The following example shows the definition of function `squared` that includes one parameter declaration, `p`, and returns the value of local variable, `res`.

```c
double squared (double p) {
    double res;
    res = p * p;
    return res;
}
```

Listing 3.1 shows a short but complete program in C. Line 7 is the function prototype for function `squared` and the function is called in line 14 with argument `x`. The function definition of this function has only one parameter declaration, so the function is called with one argument. It computes the square of the argument value, which is the value of variable `x` and is used as the input value in the function call. The value returned by the function call is assigned to variable `y`. In line 15, the program displays the values of `x` and `y`. The function definition of `squared` appears in line 18 to line 22.

Listing 3.1: C program to compute the square of a value.

```c
1 /*
2 Program : square.c
3 Author : Jose M Garrido
4 Description : Compute the square of the value of a
6 variable. */
7 #include <stdio.h>
8 double squared (double p); // prototype
9 int main(void) {
10     double x; /* variable declaration */
11     double y;
12     printf("Square of a value \
");
13     x = 45.95; /* assigns a value to variable x */
14     y = squared(x); /* compute square of x */
15     printf("The square of %lf is: %lf \
", x, y);
16     return 0; /* execution terminates OK */
17 }
18 double squared (double p) {
19     double res;
20     res = p * p;
21     return res;
22 }
```

The following listing shows the Linux shell commands that compile, link, and execute the program. The output results of the execution of the program are also shown.

```bash
$ gcc -Wall square.c
$ ./a.out
Square of a value
The square of 45.950000 is: 2111.402500
```
In these simple cases, all arguments in a function call are used as input values by
the function, which means that the argument values are transferred into the function.
More advanced techniques of data transfer in function calls will be discussed in a
subsequent chapter.

Figure 3.3 illustrates an example in which one parameter is declared in the func-
tion definition of squared. The function call requires an argument and a call to the
function computes the square of the value in the argument; the called function returns
the value computed.

FIGURE 3.3: Calling function squared with an argument.

3.6 Numerical Types

Numerical values are integers or floating point values. This section briefly de-
scribes the number representation of numerical values in a computer system and
consequently, and the range and precision of values.

3.6.1 Integer Numbers

In the C programming language, the types for integers are used for whole num-
bers and are: int, short int, and long int. The type int is the normal type for integers
and the values of this type each are stored in a 4-byte (32-bit) memory block on most
computer systems. This allows for integer values in the range of $-2,147,483,647$ to
2,147,483,647.
Values of type \texttt{short int} take less memory storage, only 2 bytes (16 bits) on most computer systems and allows for a range of values from \(-32,768\) to \(32,767\).

Values of type \texttt{long int} may take 8 bytes or more, depending on the system. This allows for integer values in a much larger range.

The type \texttt{long long} is for very long integer values and is 128 bits long. The default mode for integer values is \texttt{signed}; the mode \texttt{unsigned} can be used for types of integer already listed.

3.6.2 Numbers with Decimal Points

The type for numbers with a decimal point are known as floating point types. In C, the types for floating-point values are: \texttt{float}, \texttt{double}, and \texttt{long double}.

Scientific notation is used to display very large and very small floating-point values. For example:

\[
y = 5.77262e+12;
\]

The mathematical equivalent for this value is \(5.77262 \times 10^{12}\) and is usually an approximate value. Scientific notation can also be used in mathematical expressions with assignments. For example:

\[
x = 5.4e8 + y;
y = x \times 126.5e10;
\]

In the scientific notation number representation, there are two parts in a floating point numeric value: the \textit{significand} (also known as the \textit{mantissa}) and the \textit{exponent}. The base of the exponent is 10. Therefore, the value of the mantissa is scaled by a power of 10. The IEEE standard for floating-point numbers specifies how a computer should store these two parts of a floating-point number. This influences not only the range of values of the type used, but also the precision.

In a 32-bit floating-point representation, the mantissa is stored in the 24-bit slot and the exponent in the remaining 8-bit slot of the complete 32-bit block allocated to the floating-point value. Each of the two slots includes a bit for the sign. This gives a precision 7 digits, and a range that depends on the value of exponent from \(-38\) to \(38\). In C, the type \texttt{float} is implemented this way or in a very similar internal representation.

The type \texttt{double} is stored in an 8-byte (64 bits) block of memory. The significand part of the floating-point value is stored in a 53-bit slot, and the rest (11-bit slot) for the exponent value. This gives a precision of about 16 decimal digits and a much wider range of values.

Newer computer systems include type \texttt{long double}, which is stored in a 10-byte (80 bits) block of memory. The significand part of the floating-point value is stored in a 64-bit slot, and the rest (15 bits) for the exponent value. This gives a precision of about 19 decimal digits and a much wider range of values.
3.7 Built-in Mathematical Functions

The C programming language include libraries of built-in functions that compute the most common mathematical operations. To use the C standard mathematical library, the program must include at the top of the source program the following compiler directive:

```c
#include <math.h>
```

An example of these is the library of trigonometric functions. The following language statement includes an expression that calls function `sin` applied to variable `x`, which is the argument written in parentheses and its value is assumed in radians. The value returned by the function is the sine of `x`.

```c
y = 2.16 + sin(x);
```

To compute the value of a variable to a given power, function `pow` is used for exponentiation. The function computes x^n and needs two arguments the variable and the exponent. The following simple assignment statement computes x^n, which is the value of variable `x` to the power of `n` and assigns the value computed to variable `y`.

```c
y = pow(x, n);
```

To compute the square root of the value of a variable, z expressed mathematically as: \sqrt{z}, the C programming language provides the `sqrt()` function. For example, to compute the square root of `z` and assign the value to variable `q`, the C language statement is:

```c
q = sqrt(z);
```

Given the following mathematical expression:

$$var = \sqrt{\sin^2 x + \cos^2 y}$$

The C assignment statement to compute the value of variable `var` uses four functions: `sqrt()`, `pow`, `sin()`, and `cos()` and is coded as:

```c
var = sqrt( pow(sin(x), 2) + pow(cos(y), 2) );
```

The exponential function `exp()` computes e raised to the given power. The following C statement computes $q = y + xe^k$.
q = y + x * exp(k);

To compute the logarithm base e of x, denoted mathematically as $\ln x$ or $\log_e x$, C provides function `log()`. For example:

t = log((q-y)/x)

Listing 3.2 shows a complete C program that computes the area and circumference of a circle given the value of the radius. This program calls several C built-in functions. The compiler directive in line 8 provides the program with the function prototypes of functions in the standard input/output library. This is needed because the program calls functions `printf` and `scanf`. The compiler directive in line 9 provides the program with the function prototypes of the built-in mathematical library; it is necessary because the program calls function `pow` to compute the square of the radius, and accesses the constant $M.PI$, which has the value of π.

In line 15, the program reads the value of variable r from the input console (keyboard). Because variable r is used as an output argument in the call to function `scanf`, the name of the argument variable is preceded with an & symbol. In line 17 the program computes $area = \pi r^2$. In line 18, it computes $cir = 2 \pi r$.

Listing 3.2: C program to compute area and circumference of a circle.

```c
1 /*
2 Program : areacir.c
3 Description : Read value of the radius of a circle from
4 input console, compute the area and circumference,
5 display value of of these on the output console.
6 Author : Jose M Garrido, Nov 27 2012.
7 */
8 #include <stdio.h>
9 #include <math.h>
10 int main(void) {
11     double r; /* radius of circle */
12     double area;
13     double cir;
14     printf("Enter value of radius: ");
15     scanf("%lf", &r);
16     printf("\nValue of radius: %lf 
", r);
17     area = M_PI * pow(r, 2);
18     cir = 2.0 * M_PI * r;
19     printf("Value of area: %lf \n", area);
20     printf("Value of circumference: %lf \n", cir);
21     return 0; /* execution terminates ok */
22 }
```
Summary

Functions are fundamental modular units in a C program. Calling functions involves several mechanisms for data transfer. Calling simple functions does not involve data transfer between the calling function and the called function. Value-returning functions return a value to the calling function. Calling functions that define one or more parameters involve values sent by the calling function and used as input in the called function.

Key Terms

<table>
<thead>
<tr>
<th>modules</th>
<th>functions</th>
<th>function definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>function call</td>
<td>local declaration</td>
<td>arguments</td>
</tr>
<tr>
<td>return value</td>
<td>assignment</td>
<td>parameters</td>
</tr>
</tbody>
</table>
Exercises

Exercise 3.1 Why is a function a decomposition unit? Explain.

Exercise 3.2 What is the purpose of function main?

Exercise 3.3 Explain variations of data transfer among functions.

Exercise 3.4 Write the C code of a function definition that includes more than two parameters.

Exercise 3.5 Write the C code that calls the function that was defined with more than two parameters.

Exercise 3.6 Develop a C program that defines two functions, one to compute the area of a triangle, the other function to compute the circumference of a triangle. The program must include the function prototypes and call these functions from main.

Exercise 3.7 Develop a C program that defines two functions, one to compute the area of a circle, the other function to compute the circumference of a circle. The program must include the function prototypes and call these functions from main.

Exercise 3.8 Develop a C program that defines two functions, one to compute the area of an ellipse, the other function to compute the circumference of an ellipse. The program must include the function prototypes and call these functions from main.

Exercise 3.9 Develop a computational model (with a C program) that computes the slope of a line between two points in a plane: P_1 with coordinates (x_1, y_1), and P_2 with coordinates (x_2, y_2). The program should include two functions: main and slopef. The parameters of the second function (slopef) are the coordinates of the points in a plane. Use the coordinate values: $(0, -3/2)$ and $(2, 0)$.
Chapter 4

More Concepts of Computational Models

4.1 Introduction

This chapter starts with a brief discussion on errors that occur in computations. Then the important concept of rate of change is discussed. Another case study of a computational model is introduced with a simple problem: the free-falling object. An implementation in C is included in order to explain the solution to the problem discussed. The chapter then presents concepts and principles on simulation and simulation models; problem and model decomposition; software tools for implementing (programming), running the model, and the visualization of results. Types of simulation models are briefly explained: continuous, discrete, deterministic, and stochastic models.

4.2 Introduction to Errors in Computing

Performing numerical computations involves considering several important concepts:

- Number representation
- The number of significant digits
- Precision and accuracy
- Errors

4.2.1 Number Representation

Numeric values use numbers that are represented in number systems. Numbers based on decimal representation use base 10. This is the common number representation used by humans. There are three other relevant number systems: binary (base 2), octal (base 8), and hexadecimal (base 16). Digital computers use the base 2, or binary, system. In a digital computer, a binary number consists of a number of binary digits or bits.
Any number \(z \) that is not zero \((z \neq 0)\) can be written in scientific notation using decimal representation in the following manner:

\[
z = \pm .d_1d_2d_3 \cdots d_s \times 10^p
\]

Each \(d_i \) is a decimal digit (has a value from 0, 1 \ldots 9). Assuming that \(d_1 > 0 \), the part of the number \(d_1d_2d_3 \cdots d_s \) is known as the fraction, or mantissa or significand of \(z \). The quantity \(p \) is known as the exponent and its value is a signed integer.

The number \(z \) may be written using a binary representation, which uses binary digits or bits and base 2.

\[
z = \pm .b_1b_2b_3 \cdots b_r \times 2^q
\]

To represent the significand using a binary representation, the number of bits is different than the number of decimal digits in the decimal representation used previously. The exponent \(q \) also has a different value than the exponent \(p \) that is used in the decimal representation.

In a computer, most computations with numbers are performed in floating point arithmetic in which the value of a real number is approximated with a finite number of digits in its mantissa, and a finite number of digits in its exponent. In this number system, a real number that is too big cannot be represented and causes an overflow. In a similar manner, a real number that is too small cannot be represented and causes an underflow.

4.2.2 Number of Significant Digits

The number of significant digits is the number of digits in a numeric value that defines it to be correct. In engineering and scientific computing, it is convenient and necessary to be able to estimate how many significant digits are needed in the computed result.

The number of bits in a binary number determines the precision with which the binary number represents a decimal number. A 32-bit number can represent approximately seven digits of a decimal number. A 64-bit binary number can represent 13 to 14 decimal digits.

4.2.3 Precision and Accuracy

Precision refers to how closely a numeric value used represents the value it is representing. Accuracy refers to how closely a number agrees with the true value of the number it is representing. Precision is governed by the number of digits being carried in the numerical calculations. Accuracy is governed by the errors in the numerical approximation; precision and accuracy are quantified by the errors in a numerical calculation.
4.2.4 Errors

An error is the difference between the true value tv of a number and its approximate value av. The relative error is the proportion of the error with respect to the true value.

$$\text{error} = tv - av$$
$$\text{rel error} = \frac{\text{error}}{tv}$$

The accuracy of a numerical calculation is quantified by the error of the calculation. Several types of errors can occur in numerical calculations.

- Errors in the parameters of the problem
- Algebraic errors in the calculations
- Iteration errors
- Approximation errors
- Roundoff errors

An iteration error is the error in an iterative method that approaches the exact solution of an exact problem asymptotically. Iteration errors must decrease toward zero as the iterative process progresses. The iteration error itself may be used to determine the successive approximations to the exact solution. Iteration errors can be reduced to the limit of the computing device.

An approximation error is the difference between the exact solution of an exact problem and the exact solution of an approximation of the exact problem. Approximation error can be reduced only by choosing a more accurate approximation of the exact problem.

A roundoff error is the error caused by the finite word length employed in the calculations. Roundoff error is more significant when small differences between large numbers are calculated. Most computers have either 32 bit or 64 bit word length, corresponding to approximately 7 or 13 significant decimal digits, respectively. Some computers have extended precision capability, which increases the number of bits to 128. Care must be exercised to ensure that enough significant digits are maintained in numerical calculations so that roundoff is not significant.

In many engineering and scientific calculations, 32 bit arithmetic is sufficient. However, in many other applications, 64 bit arithmetic is required. In a few special situations, 128 bit arithmetic maybe required. Such calculations are called double precision or quad precision, respectively. Many computations are evaluated using 64 bit arithmetic to minimize roundoff errors.

A floating-point number has three components: sign, the exponent, and the significand. The exponent is a signed integer represented in biased format (a fixed bias
is added to it to make it into an unsigned number). The significand is a fixed-point number in the range $[1,2)$. Because the binary representation of the significand always starts with one (1) and dot, this is fixed and hidden and only the fractional part of the significand is explicitly represented.

Except for integers and some fractions, all binary representations of decimal numbers are approximations, because of the finite number of bits used. Thus, some loss of precision in the binary representation of a decimal number is unavoidable. When binary numbers are combined in arithmetic operations such as addition, multiplication, etc., the true result is typically a longer binary number which cannot be represented exactly with the number of available bits in the binary number capability of the digital computer. Thus, the results are rounded off in the last available binary bit. This rounding off gives rise to roundoff errors, which can accumulate as the number of calculations increases.

The most common representation of numbers for computations dealing with values in a wide range is the floating-point format. The IEEE floating-point standard format (ANSI/IEEE Standard 754-1985) is used by the computer industry. Other formats will differ in their parameters and representation details, but the basic tradeoffs and algorithms remain the same.

Two of the most common floating point formats are: short (32-bit) and long (64-bit) floating-point formats. The short format has adequate range and precision for most common applications (magnitudes ranging from 1.2×10^{38} to 3.4×10^{38}). The long format is used for highly precise computations or those involving extreme variations in magnitude (from about 2.2×10^{308} to 1.8×10^{308}).

The value zero has no proper representation. For zero and other special values, the smallest and largest exponent codes (all 0s and all 1s in the biased exponent field) are not used for ordinary numbers. An all-0s word (0s in sign, exponent, and significand fields) represents $+0$; similarly, 0 and $\pm \infty$ have special representations, as does any nonsensical or indeterminate value, known as “not a number” (NaN).

When an arithmetic operation produces a result that is not exactly representable in the format being used, the result must be rounded to some representable value. The ANSI/IEEE standard prescribes several rounding options.

4.3 Average and Instantaneous Rate of Change

A mathematical function defines the relation between two (or more) variables. This relation is expressed as: $y = f(x)$. In this expression, variable y is a function of variable x, and x is the independent variable because for a given value of x, there is a corresponding value of y.

The average rate of change of a variable, y, with respect to variable, x, (the independent variable) is defined over a finite interval, Δx.

The Cartesian plane consists of two directed lines that perpendicularly intersect their respective zero points. The horizontal directed line is called the x-axis and the
More Concepts of Computational Models

FIGURE 4.1: The slope of a line.

vertical directed line is called the \textit{y-axis}. The point of intersection of the x-axis and the y-axis is called the \textit{origin} and is denoted by the letter O.

The graphical interpretation of the average rate of change of a variable with respect to another is the \textit{slope of a line} drawn in the Cartesian plane. The vertical axis is usually associated with the values of the dependent variable, y, and the horizontal axis is associated with the values of the independent variable, x.

Figure 4.1 shows a straight line on the Cartesian plane. Two points on the line, P_1 and P_2, are used to compute the slope of the line. Point P_1 is defined by two coordinate values (x_1,y_1) and point P_2 is defined by the coordinate values (x_2,y_2). The horizontal distance between the two points, Δx, is computed by the difference $x_2 - x_1$. The vertical distance between the two points is denoted by Δy and is computed by the difference $y_2 - y_1$.

The \textit{slope} of the line is the inclination of the line and is computed by the expression $\Delta y/\Delta x$, which is the same as the average rate of change of a variable y over an interval Δx. Note that the slope of the line is constant, on any pair of points on the line.

As mentioned previously, if the dependent variable y does not have a linear relationship with the variable x, then the graph that represents the relationship between y and x is a curve instead of a straight line. The average rate of change of a variable y with respect to variable x over an interval Δx, is computed between two points, P_1 and P_2. The line that connects these two points is called a \textit{secant} of the curve. The average rate on that interval is defined as the slope of that secant. Figure 4.2 shows a secant to the curve at points P_1 and P_2.
The instantaneous rate of change of a variable, y, with respect to another variable, x, is the value of the rate of change of y at a particular value of x. This is computed as the slope of a line that is tangent to the curve at a point P.

Figure 4.3 shows a tangent of the curve at point P_1. The instantaneous rate of change at a specified point P_1 of a curve can be approximated by calculating the slope of a secant and using a very small interval, in different words, choosing Δx very small. This can be accomplished by selecting a second point on the curve closer and closer to point P_1 (in Figure 4.3), until the secant almost becomes a tangent to the curve at point P_1.

Examples of rate of change are: the average velocity, \bar{v}, computed by $\Delta y/\Delta t$, and the average acceleration \bar{a}, computed by $\Delta v/\Delta t$. These are defined over a finite time interval, Δt.

FIGURE 4.2: The slope of a secant.
4.4 The Free-falling Object

A problem is solved by developing a computational model and executing it. The model development generally follows the computational model development process discussed previously. A C program is used to implement and run the model.

4.4.1 Initial Problem Statement

There is a need to know the vertical position and the velocity of a free-falling object as time passes. The solution to this problem is the calculation of vertical distance traveled and the velocity as the object approaches the ground. Several relevant questions related to the free-falling object need to be answered. Some of these are:

1. How does the acceleration of gravity affect the motion of the free-falling object?

2. How does the height of the free-falling object change with time, while the object is falling?
3. How does the velocity of the free-falling object change with time, while the object is falling?

4. How long does the free-falling object take to reach ground level, given the initial height, \(y_0 \)? This question will not be answered here, it is left as an exercise.

4.4.2 Analysis and Conceptual Model

A brief analysis of the problem involves:

1. Understanding the problem. The main goal of the problem is to develop a model to compute the vertical positions of the object from the point where it was released and the speed accordingly with changes in time.

2. Finding the relevant concepts and principles on the problem being studied. Studying the mathematical expressions for representing the vertical distance traveled and the vertical velocity of the falling object. This knowledge is essential for developing a mathematical model of the problem.

3. Listing the limitations and assumptions about the mathematical relationships found.

4.4.2.1 Assumptions

The main assumption for this problem is that near the surface of the earth, the acceleration, due to the force of gravity, is constant with value 9.8 m/s\(^2\), which is also 32.15 ft/s\(^2\). The second assumption is that the object is released from rest. The third important assumption is that the frictional drag, due to resistance of the air, is not considered.

4.4.2.2 Basic Definitions

The vertical motion of an object is defined in terms of displacement (\(y \)), velocity (\(v \)), acceleration (\(g \)), and time (\(t \)).

A time change, denoted by \(\Delta t \), is a finite interval of time defined by the final time instance minus the initial time instance of the interval of time: \((t_2 - t_1)\). A change of displacement is denoted by \(\Delta y \), and it represents the difference in the vertical positions of the object in a finite interval: \((y_2 - y_1)\). In a similar manner a change of velocity is denoted by \(\Delta v \), and it represents the difference in the velocities in a finite interval: \((v_2 - v_1)\).

The velocity is the rate of change of displacement, and the acceleration is the rate of change of velocity. The average velocity, denoted by \(\bar{v} \), is the average rate of change of displacement with respect to time on the interval \(\Delta t \). The average acceleration, denoted by \(\bar{a} \), is the average rate of change of the velocity with respect to time on the interval \(\Delta t \). These are defined by the following mathematical expressions:

\[
\bar{v} = \frac{\Delta y}{\Delta t} \quad \text{and} \quad \bar{a} = \frac{\Delta v}{\Delta t}
\]
4.4.3 Mathematical Model

The mathematical representation of the solution to the problem consists of the mathematical formulas expressing the vertical displacement and the velocity of the object in terms of the time since the object was released and began free fall. Note that a general way to compute the average velocity, \bar{v}, is computed from the following expression:

$$ \bar{v} = \frac{v_0 + v}{2}, $$

with v_0 being the initial velocity and v the final velocity in that interval.

The mathematical model of the solution for a vertical motion of a free-falling object is considered next. Recall that in this model, the air resistance is ignored and the vertical acceleration is the constant $-g$. The vertical position as the object falls is expressed by the equation:

$$ y = y_0 + v_0 t - \frac{gt^2}{2} \quad (4.1) $$

The velocity of the object at any time is given by the equation:

$$ v_y = v_0 - gt, \quad (4.2) $$

where y is the vertical position of the object; t is the value of time; v is the vertical velocity of the object; v_0 is the initial vertical velocity of the object; and y_0 is the initial vertical position of the object. Equation 4.1 and Equation 4.2 represent the relationship among the variables: vertical position, vertical velocity, initial velocity, time instant, and initial vertical position of the object.

Note that in this model, the system state changes continuously with time. This type of state change is different compared with the example of the car-wash system. In the model of the car-wash system, the system state changes only at discrete instants of time. Another difference is that the model of the car-wash system includes an informal mathematical model, whereas the model of the free-falling object is a formal mathematical model, because it can be expressed completely by a set of mathematical equations (or expressions).

4.4.4 Computational Model

The next step is to implement the mathematical model using a C program. The computational model has an dependent part that corresponds to the mathematical expression (formula) for the vertical position, y, and the vertical velocity v_y of the object, and an independent part that allows arbitrary values given for time t. This really means that the computational model will use the equations (Equation 4.1 and Equation 4.2) defined previously.
Introduction to Computational Modeling

For the implementation of the mathematical model of the free-falling object, a C program is developed that has the general structure discussed previously.

Listing 4.1 shows the source program in C. Two constants are first declared in lines 11 and 12. Note that the initial velocity, \(v_0 \), is zero. The value for the gravity acceleration is \(G \), in meters per seconds squared, and the value of the initial height is \(Y_0 \), in meters. In C, the convention is to name the symbolic constants in upper case.

The symbolic constants and variables are declared on lines 10–14. The value of time is specified in line 15 by assigning a value of time to variable \(t \). The vertical position for the time \(t \) of the falling object is computed in line 16. The vertical velocity at time \(t \) is computed in line 17. The output statement in line 18 displays on the screen the values of variables \(t \) and \(y \). Line 19 displays the values of \(t \) and \(vel \).

Listing 4.1: Free-falling object program in C.

```c
#include <stdio.h>

int main(void) {
  const double G = 9.8;    /* acceleration of gravity */
  const double Y_0 = 40.0; /* initial height */
  double y;                /* vertical position of object */
  double vel;              /* vertical velocity */
  double t;                /* specified time */
  t = 1.2;                 /* value of time to compute y */
  y = Y_0 - 0.5 * (G * t * t);
  vel = - G * t;
  printf("Vertical position for time: \%lf is: \%lf\n", t, y);
  printf("Vertical velocity for time: \%lf is: \%lf\n", t, vel);
  return 0;               /* execution terminates ok */
}
```

The following Linux shell command uses the GNU C compiler to compile and link the program `freefall.c` and the name of the executable program generated is `freefall.out`. The second command executes the program and the results are displayed on the output console.

```
$ gcc -Wall freefall.c -o freefall.out
$ ./freefall.out
Vertical position for time: 1.200000 is: 32.944000
Vertical velocity for time: 1.200000 is: -11.760000
```

To compute the vertical position and velocity of the falling object for several
values of time, the program is executed several times. Table 4.1 shows most of the
values used of the height and the vertical velocity computed with the values of time
shown. This table represents a simple and short set of results of the original problem.

TABLE 4.1: Values of height and vertical velocity.

<table>
<thead>
<tr>
<th>t</th>
<th>0.0</th>
<th>0.5</th>
<th>0.7</th>
<th>1.0</th>
<th>1.2</th>
<th>1.8</th>
<th>2.2</th>
<th>2.5</th>
<th>2.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>40.0</td>
<td>38.7</td>
<td>37.6</td>
<td>35.1</td>
<td>32.9</td>
<td>24.12</td>
<td>16.28</td>
<td>9.37</td>
<td>1.58</td>
</tr>
<tr>
<td>vy</td>
<td>0.0</td>
<td>-4.9</td>
<td>-6.86</td>
<td>-9.8</td>
<td>-11.7</td>
<td>-17.6</td>
<td>-21.5</td>
<td>-24.5</td>
<td>-27.4</td>
</tr>
</tbody>
</table>

4.5 Simulation: Basic Concepts

A simulation model can approximate some properties of a real system over a
relatively long simulation interval, and show dynamic behavior of the system rep-
resented. A simulation model is a computational model, but not all computational
models are simulation models.

Simulation is a set of techniques, methods, and tools for developing a simulation
model of a system, and using and manipulating the simulation model to gain more
knowledge about the dynamic behavior of a system. The purpose of simulation is to
manipulate a simulation model to gain understanding about the behavior of the real
system that the model represents.

A simulation run is the manipulation of a model in such a way that it operates on
time or space to compress it, thus enabling one to perceive the interactions that would
not otherwise be apparent because of their separation in time or space. A simulation
run generally refers to a computerized execution of the model which is run over time
to study the implications of the defined interactions.

One of the great values of simulation is its ability to effect a time and space com-
pression on the system, essentially allowing one to perceive, in a matter of minutes,
interactions that would normally unfold over very lengthy time periods.

4.5.1 Simulation Models

A system is part of the real world under study that can be separated from the
rest of its environment for a specific purpose. Such a system is called the real system
because it is inherently part of the real world.

Recall that a model is an abstract representation of a real system. The model is
simpler than the real system, but it should be equivalent to the real system in all
relevant aspects. A simulation model is a computational model that has the following goals:

1. To study some relevant aspects of the dynamic behavior of a system by observing the operation of the system, using the sequence of events, or trace from the simulation runs

2. To estimate various performance measures

A simulation model is a computational model implemented as a set of procedures that when executed in a computer, *mimic* the behavior (in some relevant aspects) and the static structure of the real system. This type of model uses numerical methods as possibly the only way to achieve a solution. Simulation models include as much detail as necessary, that is, the representation of arbitrary complexity. The output of the model depends on its reaction to the following types of input:

- The passage of time;
- Data from the environment;
- Events (signals) from the environment.

Because there are two general types of computational models: continuous and discrete, from the perspective of how the model changes state in time during a simulation, there are two general categories of simulation:

1. Continuous
2. Discrete-event

Continuous simulation is used mainly to model and study the dynamic behavior of physical systems. The continuous time response of these models is represented by ordinary differential equations. The general purpose of a simulation model is to study the dynamic behavior of a system, i.e., the state changes of the model as time advances. The state of the model is defined by the values of its attributes, which are represented by state variables. For example in a discrete-event model, the number of waiting customers to be processed by a simple barbershop is represented as a state variable (an attribute), which changes its value with time. Whenever this attribute changes value, the system changes its state. For a model to be useful, it should allow the user to:

- Manipulate the model by supplying it with a corresponding set of inputs;
- Observe its behavior or output
- Predict the behavior of the real system from the behavior of the model, under the same circumstances

The reasons for developing a simulation model and carrying out simulation runs are:
More Concepts of Computational Models

- It may be too difficult, dangerous, and/or expensive to experiment with the real system.
- The real system is non-existent; simulations are used to study the behavior of a future system (to be built).

After a simulation model has been completely developed, the model is used to study the real system and solve the original problem. After being developed, a simulation model is used for:

- Designing experiments
- Performing simulation runs and collect data
- Analysis and interpretation—drawing inferences
- Documentation

4.5.2 Variability with Time

Depending on the variability of some parameters with respect to time, simulation models can be separated into two categories:

1. Deterministic models
2. Stochastic models.

A deterministic model displays a completely predictable behavior. A stochastic model includes some uncertainty implemented with random variables, whose values follow a probabilistic distribution. In practice, a significant number of models are stochastic because the real systems being modeled usually include inherent uncertainty properties.

An example of a deterministic simulation model is a model of a simple car-wash system. In this model, cars arrive at exact specified instants (but at the same instants), and all have exact specified service periods (wash periods); the behavior of the model can be completely and exactly determined.

The simple car-wash system with varying car arrivals, varying service demand from each car, is a stochastic system. In a model for this system, only the averages of these parameters are specified together with a probability distribution for the variability of these parameters. Uncertainty is included in this model because these parameter values cannot be exactly determined.

4.5.3 Simulation Results

A simulation run is an experiment carried on the simulation model for some period of observation; the time dimension is one of the most important in simulation. Several simulation runs are usually necessary, in order to achieve some desired solution.
The results of experimenting with discrete-event simulation models, i.e., simulation runs, can be broken down into two sets of outputs:

1. Trace of all the events that occur during the simulation period and all the information about the state of the model at the instants of the events; this directly reflects the dynamic behavior of the model;

2. Performance measures — the summary results of the simulation run.

The trace allows the users to verify that the model is actually interacting in the manner according to the model’s requirements. The performance measures are the outputs that are analyzed for estimates used for capacity planning or for improving the current real system.

Summary

The process of developing computational models consists of a series of phases for constructing the computational model. The various phases are: defining the problem statement and its specification, building the conceptual model, the mathematical model, the computational model, verification and validation. Simulation and simulation models are additional important concepts introduced in the study of computational models. Types of models are continuous, discrete, deterministic, and stochastic models. Computational models are implemented with the C programming language. Useful mathematical concepts discussed are: rates of change and the area under a curve. Errors that occur in computing are important to consider due to finite precision and the number of significant digits.

<table>
<thead>
<tr>
<th>Key Terms</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mathematical model</td>
<td>simulation</td>
<td>simulation model</td>
</tr>
<tr>
<td>computational model</td>
<td>continuous model</td>
<td>discrete model</td>
</tr>
<tr>
<td>deterministic model</td>
<td>stochastic model</td>
<td>rate of change</td>
</tr>
<tr>
<td>average change</td>
<td>instantaneous change</td>
<td>slope of line</td>
</tr>
<tr>
<td>roundoff errors</td>
<td>precision</td>
<td>significant digits</td>
</tr>
<tr>
<td>decimal numbers</td>
<td>binary numbers</td>
<td>floating-point numbers</td>
</tr>
</tbody>
</table>
Exercises

Exercise 4.1 Develop a computational model that computes the time the free-falling object takes to reach ground level and the vertical velocity at that time instance, given the initial height, y_0. Hint: derive a mathematical solution involving Equation 4.1 and Equation 4.2.

Exercise 4.2 Assume that the initial velocity, v_0, of the free-falling object is not zero. Develop a computational model that computes the time the object takes to reach ground level and the vertical velocity at that time instance, given the initial height, y_0. Hint: derive a mathematical solution involving Equation 4.1 and Equation 4.2.

Exercise 4.3 A large tent is to be set up for a special arts display in the main city park. The tent material is basically a circular canvas; the tent size can be adjusted by increasing or decreasing the distance from the center to the edge of the canvas, varying from 5 feet to 35 feet. The cost of the event will be based on the circular area occupied, $\$1.25$ per square foot. Develop a computational model that takes several values of the distance from the center to the outer edge of the canvas (the radius) and provide the cost for the event.

Exercise 4.4 An account is set up that pays a guaranteed interest rate, compounded annually. The balance that the account will grow to at some point in the future is known as the future value of the starting principal. Develop a computational model for calculating the future value given values of n years, P for the starting principal, and r for the rate of return expressed as a decimal (interest rate).
Chapter 5

Algorithms and Programs

5.1 Introduction

The purpose of computer problem solving is to design a solution to a problem; an algorithm is designed and implemented in a computer program. This program is executed or run with the appropriate input data to get the desired results.

This chapter presents concepts and explanations of design structures, which are used in designing an algorithm. A complete case study is developed.

5.2 Problem Solving

The design of the solution to a problem is described by an algorithm, which is a sequence of steps that need to be carried out to achieve the solution to a problem. The implementation of an algorithm and the corresponding data definitions is carried out with a standard programming language such as C or with software tools such as MATLAB® and Octave.

Developing a computational model involves implementing a computer solution to solve some real-world problem. Design of a solution to the problem requires finding some method to solve the problem.

Analyzing the problem includes understanding the problem, identifying the given (input) data and the required results. Designing a solution to the problem consists of defining the necessary computations to be carried out on the given data to produce the final required results.
5.3 Algorithms

The algorithm is usually broken down into smaller tasks; the overall algorithm for a problem solution is decomposed into smaller algorithms, each defined to solve a subtask.

An algorithm is a clear, detailed, precise, and complete description of the sequence of steps performed to produce the desired results. An algorithm can be considered the transformation on the given data and involves a sequence of commands or operations that are to be carried out on the data in order to produce the desired results.

A computer implementation of an algorithm consists of a group of data definitions and one or more sequences of instructions to the computer for producing correct results when given appropriate input data. The implementation of an algorithm will normally be in the form of a program, which is written in an appropriate programming language and it indicates to the computer how to transform the given data into correct results.

An algorithm is often described in a semiformal notation such as pseudo-code and flowcharts.

5.4 Algorithm Description

Designing a solution to a problem consists of designing and defining an algorithm, which will be as general as possible in order to solve a family or group of similar problems. An algorithm can be described at several levels of abstraction. Starting from a very high level and general level of description of a preliminary design, to a much lower level that has more detailed description of the design.

Several notations are used to describe an algorithm. An algorithmic notation is a set of general and informal rules used to describe an algorithm. Two widely used notations are:

- Flowcharts
- Pseudo-code

A flowchart is a visual representation of the flow of data and the operations on this data. A flowchart consists of a set of symbol blocks connected by arrows. The arrows that connect the blocks show the order for describing a sequence of design or action steps. The arrows also show the flow of data.

Several simple flowchart blocks are shown in Figure 5.1. Every flowchart block has a specific symbol. A flowchart always begins with a start symbol, which has an
A flowchart ends with a stop symbol, which has one arrow pointing to it.

The process or transformation symbol is the most common and general symbol, shown as a rectangular box. This symbol represents any computation or sequence of computations carried out on some data. There is one arrow pointing to it and one arrow pointing out from it.

The selection flowchart symbol has the shape of a vertical diamond and represents a selection of alternate paths in the sequence of design steps. It is shown in Figure 5.1 with a condition that is evaluated to True or False. This symbol is also known as a decision block because the sequence of instructions can take one of two directions in the flowchart, based on the evaluation of a condition.

The input-output flowchart symbol is used for a data input or output operation. There is one arrow pointing into the block and one arrow pointing out from the block.

An example of a simple flowchart with several basic symbols is shown in Figure 5.2. For larger or more complex algorithms, flowcharts are used mainly for the high-level description of the algorithms and pseudo-code is used for describing the details.

Pseudo-code is a notation that uses a few simple rules and English for describing the algorithm that defines a problem solution. It can be used to describe relatively large and complex algorithms. It is relatively easy to convert the pseudo-code description of an algorithm to a computer implementation in a high-level programming language.
5.5 Design Structures

There are four fundamental design structures with which any algorithm can be described. These can be used with flowcharts and with pseudo-code notations. The basic design structures are:

- **Sequence**, any task can be broken down into a sequence of steps.
- **Selection**, this part of the algorithm takes a decision and selects one of several alternate paths of flow of actions. This structure is also known as alternation or conditional branch.
- **Repetition**, this part of the algorithm has a block or sequence of steps that are to be executed zero, one, or more times. This structure is also known as looping.
- **Input-output**, the values of variables are read from an input device (such as the keyword) or the values of the variables (results) are written to an output device (such as the screen)

![A simple flowchart example](image)
5.5.1 Sequence

A sequence structure consists of a group of computational steps that are to be executed one after the other, in the specified order. The symbol for a sequence can be directly represented by a processing block of steps in a flowchart.

A sequence can also be shown as a flow of flowchart blocks. Figure 5.3 illustrates the sequence structure for both cases. The sequence structure is the most common and basic structure used in algorithmic design.

5.5.2 Selection

With the selection structure, one of several alternate paths will be followed based on the evaluation of a condition. Figure 5.4 illustrates the selection structure. In the figure, the actions or instructions in Processing1 are executed when the condition is true. The instructions in Processing2 are executed when the condition is false.

A flowchart example of the selection structure is shown in Figure 5.5. The condition of the selection structure is \(\text{len} > 0 \) and when this condition evaluates to true, the block with the action \(\text{add 3 to } k \) will execute. Otherwise, the block with the action \(\text{decrement } k \) is executed.

5.5.3 Repetition

The repetition structure indicates that a set of action steps are to be repeated several times. Figure 5.6 shows this structure. The execution of the actions in the Processing block are repeated while the condition is true. This structure is also known as the while loop.

A variation of the repetition structure is shown in Figure 5.7. The actions in the
5.6 Implementing Algorithms

The implementation of an algorithm is carried out by writing the code in an appropriate programming language, such as Ada, Fortran, Eiffel, C, C++, or Java.

Programming languages have well-defined syntax and semantic rules. The syntax is defined by a set of grammar rules and a vocabulary (a set of words). The legal sentences are constructed using sentences in the form of statements. There are two groups of words that are used to write the statements: reserved words and identifiers.

Reserved words are the keywords of the language and have a predefined purpose. These are used in most statements. Examples are: for, end, function, while, and if. Identifiers are names for variables, constants, and functions that the programmer chooses, for example, height, temperature, pressure, number_units, and so on.

This section discusses simple pseudo-code and computational model statements, such as the assignment and I/O statements.
5.6.1 Assignment and Arithmetic Expressions

The assignment statement is used to assign a value to a variable. This variable must be written on the left-hand side of the equal sign, which is the assignment operator. The value to assign can be directly copied from another variable, from a constant value, or from the value that results after evaluating an expression.

In the following example, the first statement assigns the constant value 21.5 to variable \(y \). The second statement assigns the value 4.5 to variable \(x \). In the third assignment statement in the example, variable \(z \) is assigned the result of evaluating the expression, \(y + 1.5 \times x^3 \). In pseudo-code, these assignment statements are simply written as follows:

\[
\begin{align*}
\text{set } y &= 21.5 \\
\text{set } x &= 4.5 \\
\text{set } z &= y + 1.5x^3
\end{align*}
\]

In C these are implemented as:

\[
\begin{align*}
y &= 21.5; \\
x &= 4.5; \\
z &= y + 10.5 \times \text{pow}(x, 3);
\end{align*}
\]

5.6.2 Simple Numeric Computations

An assignment is often written with an arithmetic expression that is evaluated and the result is assigned to a variable. For example, add 15 to the value of variable
add 15 to x
subtract y from z

In the example, in the first statement, the new value of \(x \) is assigned by adding 15 to the previous value of \(x \). In the second assignment, the new value of variable \(z \) is assigned the value that results after subtracting the value of \(y \) from the previous value of \(z \).

To add or subtract 1 in pseudo-code, the increment and the decrement statements can be used. For example, the statement increment \(j \), adds the constant 1 to the value of variable \(j \). In a similar manner, the statement decrement \(k \) subtracts the constant value 1 from the value of variable \(k \).

In C, the statements in the previous examples are written as:

\[
x = x + 15;
z = z - y;
\]

In the previous examples, only simple arithmetic expressions were used in the assignment statements. These are addition, subtraction, multiplication, and division. More complex calculations use various numerical functions in computational models, such as square root, exponentiation, and trigonometric functions. For example, the value of the expression \(\cos p + q \) assigned to variable \(y \) and \(\sqrt{x-y} \) assigned to variable \(q \). The statements in pseudo-code are:
In C, these assignment statements use the mathematical functions cos and sqrt.

\[
y = \cos(p) + q \\
q = \sqrt{x - y}
\]

To assign the value of the mathematical expression \(x^n \times y \times \sin^{2m} x\) to variable \(z\), the statement in pseudo-code is:

\[
z = x^n \times y \times \sin^{2m} x
\]

In C, this assignment statement is written as follows:

\[
z = \text{pow}(x, n) \times y \times \text{pow}(\sin(x), (2 \times m));
\]

5.6.3 Simple Input/Output

Input and output statements are used to read (input) data values from the input device (e.g., the keyboard) and write (output) data values to an output device (mainly to the computer screen). The flowchart symbol is shown in Figure 5.8.
In pseudo-code, display statement that can be used for the output of a list of variables and literals; it is written with the keyword display.

The output statement writes the value of one or more variables to the output device. The variables do not change their values. The general form of the output statement in pseudo-code is:

\[
\text{display } \langle \text{data list} \rangle \\
\text{display } "\text{value of } x \text{=} \", x, "\text{value of } y \text{=} \", y
\]

In C, function printf can display a single string and data value, so it can be used individually to display every variable and its value. The general form for this function call in C is:

\[
\text{printf } (" \text{[string], [format operators]}, \text{[variable list]} \));
\]

The previous example outputs the value of two variables, \(x \) and \(y \), so the output function is used two times.

\[
\text{printf } ("\text{values of } x: %lf \text{ and } y: %lf \n", x, y);
\]

The input statement using pseudo-code reads a value of a variable from the input device (e.g., the keyboard). This statement is written with the keywords read, for input of a single data value and assign to a variable.

The following two lines of pseudo-code include the general form of the input statement and an example that uses the read statement to read a value of variable \(y \).

\[
\text{read } (\text{var}_\text{name}) \\
\text{read } y
\]

The input statement implies an assignment statement for the variable \(y \), because the variable changes its value to the new value that is read from the input device.
The C programming languages provide several functions for console input/output. The function for input reads the value of a variable from the input device. The name of the function is `scanf`, and is used with a format operator. The general form for input in C for reading the value of a numeric floating-point variable, `var`, is shown in the following line of code.

```c
scanf("%lf", &var);
```

A string message is typically included to prompt the user for input of a data value. This is implemented with the `printf` function. The previous example for reading the value of variable `y` is written in C as follows:

```c
printf("Enter value of y: ");
scanf("%lf", &y);
```

5.7 Computing Area and Circumference

For this problem, a computational model is developed that computes the area and circumference of a circle. The input value of the radius is read from the keyboard and the results written to the screen.

5.7.1 Specification

The specification of the problem can be described as a high-level algorithm in informal pseudo-code notation:

1. Read the value of the radius of a circle, from the input device.
2. Compute the area of the circle.
3. Compute the circumference of the circle.
4. Output or display the value of the area of the circle to the output device.
5. Output or display the value of the circumference of the circle to the output device.

5.7.2 Algorithm with the Mathematical Model

A detailed description of the algorithm and the corresponding mathematical model follows:
1. Read the value of the radius \(r \) of a circle, from the input device.

2. Establish the constant \(\pi \) with value 3.14159.

3. Compute the area of the circle, \(area = \pi r^2 \).

4. Compute the circumference of the circle \(cir = 2\pi r \).

5. Print or display the value of \(area \) of the circle to the output device.

6. Print or display the value of \(cir \) of the circle to the output device.

The following lines of pseudo-code completely define the algorithm.

\[
\begin{align*}
 & \text{read } r \\
 & \pi = 3.1416 \\
 & area = \pi r^2 \\
 & cir = 2\pi r \\
 & \text{display } "\text{Area = }", area, \text{ " Circumference = }, cir
\end{align*}
\]

The computational model is implemented in the C programming language and is stored in file \texttt{areacir.c}, which is shown in Listing 5.1.

Listing 5.1: C program for computing the area and circumference.

```c
/*
 * Program : areacir.c
 * Author : Jose M Garrido, Nov 21 2012.
 * Description : Read value of radius of circle from input
compute the area and circumference, display value
of these on the output console.
 */

#include <stdio.h>
#include <math.h>

int main(void) {
    double r; /* radius of circle */
    double area;
    double cir;
    printf("Enter value of radius: ");
    scanf("%lf", &r);
    printf("\nValue of radius: %lf 
", r);
    area = M_PI * pow(r, 2);
    cir = 2.0 * M_PI * r;
    printf("Value of area: %lf \n", area);
    printf("Value of circumference: %lf \n", cir);
    return 0; /* execution terminates ok */
}
```

The following listing shows the shell Linux commands that compile and link the file \texttt{areacir.c} and execute the file \texttt{areacir.out}.
$ gcc -Wall areacir.c -o areacir.out
$./areacir.out
Enter value of radius: 3.15

Value of radius: 3.150000
Value of area: 31.172453
Value of circumference: 19.792034

Summary

An algorithm is a precise, detailed, and complete description of a solution to a problem. The notations to describe algorithms are flowcharts and pseudo-code. Flowcharts are a visual representation of the execution flow of the various instructions in the algorithm. Pseudo-code is an English-like notation to describe algorithms.

The design structures are sequence, selection, repetition, and input-output. These algorithmic structures are used to specify and describe any algorithm. The implementation of the algorithm is carried by programs written in the C programming language.

Key Terms

<table>
<thead>
<tr>
<th>algorithm</th>
<th>flowcharts</th>
<th>pseudo-code</th>
<th>variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>constants</td>
<td>declarations</td>
<td>structure</td>
<td>sequence</td>
</tr>
<tr>
<td>action step</td>
<td>selection</td>
<td>repetition</td>
<td>input/output</td>
</tr>
<tr>
<td>statements</td>
<td>data type</td>
<td>identifier</td>
<td>design</td>
</tr>
</tbody>
</table>

Exercises

Exercise 5.1 Write the algorithm and data descriptions for computing the area of a triangle. Use flowcharts.

Exercise 5.2 Write the algorithm and data descriptions for computing the area of a triangle. Use pseudo-code.

Exercise 5.3 Develop a computational model for computing the area of a triangle.
Exercise 5.4 Write the algorithm and data descriptions for computing the perimeter of a triangle. Use pseudo-code.

Exercise 5.5 Write the algorithm and data descriptions for computing the perimeter of a triangle. Use flowcharts.

Exercise 5.6 Develop a computational model with a computational model program for computing the perimeter of a triangle.

Exercise 5.7 Write the data and algorithm descriptions in flowchart and in pseudo-code to compute the conversion from a temperature reading in degrees Fahrenheit to Centigrade. The algorithm should also compute the conversion from Centigrade to Fahrenheit.

Exercise 5.8 Develop a computational model with a computational model program to compute the conversion from a temperature reading in degrees Fahrenheit to Centigrade. The program should also compute the conversion from Centigrade to Fahrenheit.

Exercise 5.9 Write an algorithm and data descriptions in flowchart and pseudo-code to compute the conversion from inches to centimeters and from centimeters to inches.

Exercise 5.10 Develop a computational model with a computational model program to compute the conversion from inches to centimeters and from centimeters to inches.
Chapter 6

Selection

6.1 Introduction

To completely describe an algorithm four design structures are used: sequence, selection, repetition, and input/output. This chapter explains the selection structure and the corresponding statements in pseudo-code and C statements for implementing computational models.

Conditions are expressions that evaluate to a truth-value (true or false). Conditions are used in the selection statements. Simple conditions are formed with relational operators for comparing two data items. Compound conditions are formed by joining two or more simple conditions with logical operators.

The solution to a quadratic equation is discussed as an example of applying the selection statements.

6.2 Selection Structure

The selection design structure is also known as alternation, because alternate paths are considered, based on the evaluation of a condition. This section covers describing the selection structure with flowcharts and pseudo-code, the concepts associated with conditional expressions, and implementation in the C programming language.

6.2.1 Selection Structure with Flowcharts

The selection structure is used for decision-making in the logic of a program. Figure 6.1 shows the selection design structure using a flowchart. Two possible paths for the execution flow are shown. The condition is evaluated, and one of the paths is selected. If the condition is true, then the left path is selected and Processing 1 is performed. If the condition is false, the other path is selected and Processing 2 is performed.
6.2.2 Selection with Pseudo-Code

With pseudo-code, the selection structure is written with an if statement, also known as an if-then-else statement. This statement includes three sections: the condition, the then-section, and the else-section. The else-section is optional. Several keywords are used in this statement: if, then, else, and endif. The general form of the if statement in pseudo-code is:

```
if { condition }
  then
  { statements in Processing 1 }
  else
  { statements in Processing 2 }
endif
```

When the condition is evaluated, only one of the two alternatives will be carried out: the one with the statements in Processing 1 if the condition is true, or the one with the statements in Processing 2 if the condition is not true. The pseudo-code of the selection structure in Figure 6.1 is written with an if statement as follows:

```
if condition is true
  then
    perform instructions in Processing 1
  else
    perform instructions in Processing 2
endif
```
6.2.3 Implementing Selection with the C Language

Similarly to pseudo-code, the C language includes the if statement that allows checking for a specified condition and executing statements if the condition is met. Note that C does not have the then keyword, but uses braces ({} and {}) instead of delimit blocks of code. The general form of the if statement in is:

```c
if (⟨condition⟩) {
    ⟨statements in Processing 1⟩
} else {
    ⟨statements in Processing 2⟩
}
```

The first line specifies the condition to check. If the condition evaluates to true, the program executes the body of the first indented block of statements, otherwise the second indented block of statements after the else keyword is executed.

C does not require you to indent the body of an if statement, but it makes the code more readable and it is good programming practice.

6.2.4 Conditional Expressions

Conditional or Boolean expressions are used to form conditions. A condition consists of an expression that evaluates to a truth-value, true or false.

A conditional expression can be constructed by comparing the values of two data items and using a relational operator. The following list of relational operators can be included in a conditional expression:

1. Equal, =
2. Not equal, ≠
3. Less than, <
4. Less or equal to, ≤
5. Greater than, >
6. Greater or equal to, ≥

With pseudo-code, these relational operators are used to construct conditions as in the following examples:

```
temp ≤ 64.75
x ≥ y
p = q
```

Pseudo-code syntax also provides additional keywords that can be used for the relational operators. For example, the previous conditional expressions can also be written as follows:
With the C programming language, the relational operators are written using the following symbols: ==, for “equal,” and !=, for “not equal.” Note that == is the operator that tests equality, and = is the assignment operator. If = is used in the condition of an if statement, it will result in a logical error. The other relational operators in C are: <, >, <=, and >=.

In programming, a variable that contains a truth or logical value is often known as a flag because it flags the status of some condition.

6.2.5 Example with Selection

In the following example, the condition to be evaluated is: \(len > 0 \), and a decision is taken to select which computation to carry out on variable \(k \). Figure 6.2 shows the flowchart for part of the algorithm that includes this selection structure. In pseudo-code, this example is written as:
if len greater than 0
then
 add 3 to k
else
 decrement k
endif

The previous example in pseudo-code can also be written in the following manner:

if len > 0
then
 k = k + 3
 y = x * 35.45
else
 k = k - 1
endif

In C, the previous example is written as follows:

if (len > 0) {
 k = k + 3;
 y = x * 35.45;
} else
 k = k - 1;

Note that the second block of statements within the if statement does not have to be enclosed in braces because it consists of only one statement.

6.3 A Computational Model with Selection

The following problem involves developing a computational model that includes a quadratic equation, which is a simple mathematical model of a second-degree equation. The solution to the quadratic equation involves complex numbers.

6.3.1 Analysis and Mathematical Model

The goal of the solution to the problem is to compute the two roots of the equation. The mathematical model is defined in the general form of the quadratic equation (second-degree equation):

\[ax^2 + bx + c = 0 \]
The given data for this problem are the values of the coefficients of the quadratic equation: \(a \), \(b \), and \(c \). Because this mathematical model is a second degree equation, the solution consists of the value of two roots: \(x_1 \) and \(x_2 \).

6.3.2 Algorithm for General Solution

The general solution gives the value of the two roots of the quadratic equation, when the value of the coefficient \(a \) is not zero (\(a \neq 0 \)). The values of the two roots are:

\[
\begin{align*}
 x_1 &= \frac{-b + \sqrt{b^2 - 4ac}}{2a} \\
 x_2 &= \frac{-b - \sqrt{b^2 - 4ac}}{2a}
\end{align*}
\]

The expression inside the square root, \(b^2 - 4ac \), is known as the discriminant. If the discriminant is negative, the solution will involve complex roots. Figure 6.3 shows the flowchart for the general solution and the following listing is a high-level pseudo-code version of the algorithm.

```plaintext
Input the values of coefficients a, b, and c
Calculate value of the discriminant
if the value of the discriminant is less than zero
  then calculate the two complex roots
  else calculate the two real roots
endif
display the value of the roots
```

6.3.3 Detailed Algorithm

The algorithm in pseudo-code notation for the solution of the quadratic equation is:

```plaintext
read the value of a from the input device
read the value of b from the input device
read the value of c from the input device
compute the discriminant, \( \text{disc} = b^2 - 4ac \)
if discriminant less than zero
  then // roots are complex
    compute \( x_1 = (-b + \sqrt{\text{disc}})/2a \)
    compute \( x_2 = (-b - \sqrt{\text{disc}})/2a \)
  else // roots are real
    compute \( x_1 = (-b + \sqrt{\text{disc}})/2a \)
    compute \( x_2 = (-b - \sqrt{\text{disc}})/2a \)
endif
display values of the roots: \( x_1 \) and \( x_2 \)
```

Listing 6.1 shows the C program that implements the algorithm for the solution of the quadratic equation, which is stored in the file `solquadra.c`.
FIGURE 6.3: High-level flowchart for solving a quadratic equation.
Listing 6.1 C program that computes the roots of a quadratic equation.

```c
/* Program : solquad.c 
Author : Jose M Garrido, Nov 21 2012. 
Description : Compute the roots of a quadratic equation. 
Read the value of the coefficients: a, b, and c from 
the input console, display value of roots. */

#include <stdio.h>
#include <math.h>

int main(void) {
    double a; /* coefficient a */
    double b;
    double c;
    double disc; /* discriminant */
    double x1r; /* real part of root 1 */
    double x1i; /* imaginary part of root 1 */
    double x2r;
    double x2i;
    printf("Enter value of coefficient a: ");
    scanf("%lf", &a);
    printf("Value of a: %lf \n", a);
    printf("Enter value of coefficient b: ");
    scanf("%lf", &b);
    printf("Value of a: %lf \n", b);
    printf("Enter value of coefficient c: ");
    scanf("%lf", &c);
    printf("Value of a: %lf \n", c);
    disc = pow(b, 2) - 4.0 * a * c;
    printf("disc: %lf \n", disc);
    if (disc < 0.0) {
        /* complex roots */
        disc = -disc;
        x1r = -b/(2.0 * a);
        x1i = sqrt(disc)/(2.0 * a);
        x2r = x1r;
        x2i = -x1i;
        printf("Complex roots \n");
        printf("x1r: %lf x1i: %lf \n", x1r, x1i);
        printf("x2r: %lf x2i: %lf \n", x2r, x2i);
    } else {
        /* real roots */
        x1r = (-b + sqrt(disc))/(2.0 * a);
        x2r = (-b - sqrt(disc))/(2.0 * a);
        printf("Real roots: \n");
        printf("x1: %lf x2: %lf \n", x1r, x2r);
    }
    return 0; /* execution terminates ok */
}
```
The following shell commands compile, link, and execute the C program `solquadra.c`. The program prompts the user for the three values of the coefficients, calculates the roots, then displays the value of the roots.

```
$ gcc -Wall solquadra.c -lm
$ ./a.out
Enter value of coefficient a: 1.5
Value of a: 1.500000
Enter value of coefficient b: 2.25
Value of a: 2.250000
Enter value of coefficient c: 5.5
Value of a: 5.500000
disc: -27.937500
Complex roots
x1r: -0.750000 x1i: 1.761865
x2r: -0.750000 x2i: -1.761865
```

6.4 Multi-Level Selection

There are often decisions that involve more than two alternatives. The general `if` statement with multiple paths is used to implement this structure. The case structure is a simplified version of the selection structure with multiple paths.

6.4.1 General Multi-Path Selection

The `elseif` clause is used to expand the number of alternatives. The `if` statement with \(n \) alternative paths has the general form:

```
if { condition }
  then { block1 }
elseif { condition2 }
  then { block2 }
elseif { condition3 }
  then { block3 }
else { blockn }
endif
```

Each block of statements is executed when that particular path of logic is selected. This selection depends on the conditions in the multiple-path `if` statement that
are evaluated from top to bottom until one of the conditions evaluates to true. The following example shows the if statement with several paths.

```java
if y > 15.50
    then increment x
elseif y > 4.5
    then add 7.85 to x
elseif y > 3.85
    then compute x = y*3.25
elseif y > 2.98
    then x = y + z*454.7
else x = y
endif
```

In C, this example is very similar as the following listing shows.

```c
if (y > 15.50)
    x = x + 1;
elseif (y > 4.5)
    x = x + 7.85;
elseif (y > 3.85)
    x = y * 3.25;
elseif (y > 2.98)
    x = y + z * 454.7;
else
    x = y;
```

6.4.2 Case Structure

The case structure is a simplified version of the selection structure with multiple paths. In pseudo-code, the case statement evaluates the value of a single variable or simple expression of a number or a text string and selects the appropriate path. The case statement also supports a block of multiple statements instead of a single statement in one or more of the selection options. The general case structure is:

```java
case { select_var } of
    value var_value1 : { block1 }
    value var_value2 : { block2 }
    ...
    value var_value_n : { blockn }
endcase
```

In the following example, the pressure status of a furnace is monitored and the pressure status is stored in variable `press_stat`. The following case statement first evaluates the pressure status and then assigns an appropriate text string to variable `msg`, then this variable is displayed.
Selection

```c
case press_stat of
  value 'E': msg = "Very dangerous"
  value 'D': msg = "Alert"
  value 'W': msg = "Warning"
  value 'N': msg = "Normal"
  value 'B': msg = "Below normal"
otherwise
  msg = "Pressure rising"
endcase
```

display "Pressure status: ", msg

The default option of the `case` statement can also be used by writing the keywords `default` or `otherwise` in the last case of the selector variable. For example, the previous example can be enhanced by including the default option in the `case` statement:

```c
case press_stat of
  value 'E': msg = "Very dangerous"
  value 'D': msg = "Alert"
  value 'W': msg = "Warning"
  value 'N': msg = "Normal"
  value 'B': msg = "Below normal"
  otherwise
    msg = "Pressure rising"
endcase
```

display "Pressure status: ", msg

In C, the pseudo-code `case` statement is implemented by the `switch` statement. The general form of this statement is:

```c
switch { ( select_var )
  case var_value1 : { block1 }
  case var_value2 : { block2 }
  ...
  case var_valueN : { blockN }
  default
    { blockN }
}
```

In the previous example of the pressure status of a furnace in variable `press_stat`. The following switch statement first evaluates the pressure status and then assigns an appropriate text string to variable `msg`, then this variable is displayed.
switch press_stat {
 case 'D':
 strcpy(msg, "Very dangerous");
 case 'A':
 strcpy(msg, "Alert");
 case 'W':
 strcpy(msg, "Warning");
 case 'N':
 strcpy(msg, "Normal");
 case 'B':
 strcpy(msg, "Below normal");
 default:
 strcpy(msg, "Pressure rising");
}
printf ("Pressure status: %s \n", msg);

6.5 Complex Conditions

The logical operators and, or, and not are used to construct more complex conditional expressions from simpler conditions. The general forms of complex conditions from two simple conditions, condexp1 and condexp2 in pseudo-code are:

\[
\text{condexp1 and condexp2} \\
\text{condexp1 or condexp2} \\
\text{not condexp1}
\]

The following example includes the not operator:

\[
\text{not } (x \leq q)
\]

The following example in pseudo-code includes the or logical operator:

\[
\text{if } a < b \text{ or } x \geq y \\
\text{then} \\
\text{\hspace{1cm}} \{ \text{block}_1 \} \\
\text{else} \\
\text{\hspace{1cm}} \{ \text{block}_2 \} \\
\text{endif}
\]

The previous condition can also be written in the following manner:

\[
a \text{ less than } b \text{ or } x \text{ is greater or equal to } y
\]
The C programming language provides several logical operators and functions for constructing complex conditions from simpler ones. The basic logical operators for scalars (individual numbers) in C are: the `&&` (and) operator, the `||` (or) operator, and the `!` (not) operator.

In the following example, two simple conditions are combined with the `&&` operator (and). The result condition evaluated to true.

\[x = 5.25; \]
\[(2.5 < x) \&\& (x < 21.75) \]

In C, the boolean type is available for C99 compliant compilers, as type `bool`. The header file `addtypes.h` defines type `bool`.

Summary

The selection structure is also known as alternation. It evaluates a condition then follows one of two (or more) paths. The two general selection statements `if` and `case` statements are explained in pseudo-code and in C. The first one is applied when there are two or more possible paths in the algorithm, depending on how the condition evaluates. The case statement is applied when the value of a single variable or expression is evaluated, and there are multiple possible values.

The condition in the `if` statement consists of a conditional expression, which evaluates to a truth-value (true or false). Relational operators and logical operators are used to form more complex conditional expressions.

Key Terms

<table>
<thead>
<tr>
<th>selection</th>
<th>alternation</th>
<th>condition</th>
<th>if statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>case statement</td>
<td>relational operator</td>
<td>logical operator</td>
<td>truth-value</td>
</tr>
<tr>
<td>then</td>
<td>else</td>
<td>endif</td>
<td>end</td>
</tr>
<tr>
<td>otherwise</td>
<td>elseif</td>
<td>end</td>
<td>switch statement</td>
</tr>
</tbody>
</table>

Exercises

Exercise 6.1 Develop a computational model that computes the conversion from gallons to liters and from liters to gallons. Include a flowchart, pseudo-code design
and a complete implementation in C. The user inputs the string: “gallons” or “liters”; the model then computes the corresponding conversion.

Exercise 6.2 Develop a computational model to calculate the total amount to pay for movie rental. Include a flowchart, pseudo-code design and a complete implementation in C. The movie rental store charges $3.50 per day for every DVD movie. For every additional period of 24 hours, the customer must pay $0.75.

Exercise 6.3 Develop a computational model that finds and displays the largest of several numbers, which are read from the input device. Include a flowchart, pseudo-code design and a complete implementation in C.

Exercise 6.4 Develop a computational model that finds and displays the smallest of several numbers, which are read from the input device. Include a flowchart, pseudo-code design and a complete implementation in C.

Exercise 6.5 Develop computational model program that computes the gross and net pay of the employees. The input quantities are employee name, hourly rate, number of hours, percentage of tax (use 14.5%). The tax bracket is $115.00. When the number of hours is greater than 40, the (overtime) hourly rate is 40% higher. Include a flowchart, pseudo-code design and a complete implementation in C.

Exercise 6.6 Develop a computational model that computes the distance between two points. A point is defined by a pair of values \((x, y)\). Include a flowchart, pseudo-code design and a complete implementation in C. The distance, \(d\), between two points, \(P_1(x_1, y_1)\) and \(P_2(x_2, y_2)\) is defined by:

\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]

Exercise 6.7 Develop a computational model that computes the fare in a ferry transport for passengers with motor vehicles. Include a flowchart, pseudo-code design and a complete implementation in C. Passengers pay an extra fare based on the vehicle’s weight. Use the following data: vehicles with weight up to 780 lb pay $80.00, up to 1100 lb pay $127.50, and up to 2200 lb pay $210.50.

Exercise 6.8 Develop a computational model that computes the average of student grades. The input data are the four letter grades for various work submitted by the students. Include a flowchart, pseudo-code design and a complete implementation in the C programming language.
Chapter 7

Repetition

7.1 Introduction

This chapter presents the repetition structure and specifying, describing, and implementing algorithms in developing computational models. This structure and the corresponding statements are discussed with flowcharts, pseudo-code, and in the C programming language. The repetition structure specifies that a block of statements be executed repeatedly based on a given condition. Basically, the statements in the process block of code are executed several times, so this structure is often called a loop structure. An algorithm that includes repetition has three major parts in its form:

1. the initial conditions
2. the steps that are to be repeated
3. the final results.

There are three general forms of the repetition structure: the while loop, the repeat-until loop, and the for loop. The first form of the repetition structure, the while construct, is the most flexible. The other two forms of the repetition structure can be expressed with the while construct.

7.2 Repetition with the While Loop

The while loop consists of a conditional expression and block of statements. This construct evaluates the condition before the process block of statements is executed. If the condition is true, the statements in the block are executed. This repeats while the condition evaluates to true; when the condition evaluates to false, the loop terminates.

7.2.1 While-Loop Flowchart

A flowchart with the while loop structure is shown in Figure 7.1. The process block consists of a sequence of actions.
The actions in the process block are performed while the condition is true. After the actions in the process block are performed, the condition is again evaluated, and the actions are again performed if the condition is still true; otherwise, the loop terminates.

The condition is tested first, and then the process block is performed. If this condition is initially false, the actions in the block are not performed.

The number of times that the loop is performed is normally a finite number. A well-defined loop will eventually terminate, unless it has been specified as a non-terminating loop. The condition is also known as the loop condition, and it determines when the loop terminates. A non-terminating loop is defined in special cases and will repeat the actions forever.

7.2.2 While Structure in Pseudo-Code

The form of the while statement includes the condition, the actions in the process block written as statements, and the keywords while, do, and endwhile. The block of statements is placed after the do keyword and before the endwhile keyword. The following lines of pseudo-code show the general form of the while-loop statement that is shown in the flowchart of Figure 7.1.

```plaintext
while (condition) do
    (block of statements)
endwhile
```

The following example has a while statement with a condition that checks the value of variable j. The block of statements is performed repeatedly while the condition \(j \leq \text{MAX_NUM} \) is true.
while $j <= \text{MAX_NUM}$ do
 set $\text{sum} = \text{sum} + 12.5$
 set $y = x \times 2.5$
 add 3 to j
endwhile
display "Value of sum: ", sum
display "Value of y: ", y

7.2.3 While Loop in the C Language

The following lines of code show the general form of the while-loop statement in C; it is similar to the pseudo-code statement and follows the loop definition shown in the flowchart of Figure 7.1.

```
while (condition) {
  (block of statements)
}
```

The previous example has a while statement with a condition that checks the value of variable j. The block of statements is enclosed in braces and repeats while the condition $j <= \text{MAX_NUM}$ is true. The following lines of code show the C implementation.

```
while (j <= \text{MAX\_NUM}) {
  \text{sum} = \text{sum} + 12.5;
  y = x \times 2.5;
  j = j + 3;
}
moutput('Value of sum: ', \text{sum})
moutput('Value of $y$: ', y)
```

7.2.4 Loop Counter

As mentioned previously, in the while-loop construct the condition is tested first and then the statements in the statement block are performed. If this condition is initially false, the statements are not performed.

The number of times that the loop is performed is normally a finite integer value. For this, the condition will eventually be evaluated to false, that is, the loop will terminate. This condition is often known as the loop condition, and it determines when the loop terminates. Only in some very special cases, the programmer can decide to write an infinite loop; this will repeat the statements in the repeat loop forever.

A counter variable stores the number of times (also known as iterations) that the loop executes. The counter variable is incremented every time the statements in the loop are performed. The variable must be initialized to a given value, typically to 0 or 1.
In the following pseudo-code listing, there is a while statement with a counter variable with name `loop_counter`. This counter variable is used to control the number of times the block statement is performed. The counter variable is initially set to 1, and is incremented every time through the loop.

```pseudo-code
Max_Num = 25 // maximum number of times to execute
set loop_counter = 1 // initial value of counter
while loop_counter < Max_Num do
  increment loop_counter
  display "Value of counter: ", loop_counter
endwhile
```

The first time the statements in the block are performed, the loop counter variable `loop_counter` has a value equal to 1. The second time through the loop, variable `loop_counter` has a value equal to 2. The third time through the loop, it has a value of 3, and so on. Eventually, the counter variable will have a value equal to the value of `Max_Num` and the loop terminates.

7.2.5 Accumulator Variables

An accumulator variable stores partial results of repeated calculations. The initial value of an accumulator variable is normally set to zero.

For example, an algorithm that calculates the summation of numbers from input includes an accumulator variable. The following pseudo-code statement accumulates the values of `innumber` in variable `total` and it is included in the while loop:

```pseudo-code
total = 0.0
while j < Max_num
  add innumber to total
endwhile
display "Total accumulated: ", total
```

After the endwhile statement, the value of the accumulator variable `total` is displayed using the pseudo-code statement to print the string “Total accumulated” and the value of `total`. In programming, each counter and accumulator variable serves a specific purpose. These variables should be well documented.

7.2.6 Summation of Input Numbers

The following simple problem applies the concepts and implementation of while loop and accumulator variable. The problem computes the summation of numeric values inputed from the main input device. Computing the summation should proceed while the input values are greater than zero.

The pseudo-code that describes the algorithm uses an input variable, an accumulator variable, a loop counter variable, and a conditional expression that evaluates whether the input value is greater than zero.
set innumber = 1.0 // number with dummy initial value
set loop_counter = 0
set sum = 0.0 // initialize accumulator variable
while innumber > 0.0 do
 display "Type number: "
 read innumer
 if innumber > 0.0 then
 add innumber to sum
 increment loop_counter
 display "Value of counter: ", loop_counter
 endif
endwhile
display "Value of sum: ", sum

Listing 7.1 shows the C program that implements the summation problem. The program is stored in file summ.c.

Listing 7.1 Source C program for summation.

```c
1 /* Program : summ.c
2 Description : Compute the summation of numbers greater
3 than zero. The program reads from input
4 console, displays value of the sum of numbers.
5 Author : Jose M Garrido, Nov 21 2012.
6 */
7 #include <stdio.h>
8 #include <math.h>
9 int main(void) {
10  double innumber;  /* number to read and sum */
11  double msum = 0.0;
12  printf("Enter value of input number: ");
13  scanf("%lf", &innumber);
14  printf("\nValue of input number: %lf 
", innumber);
15  while ( innumber > 0.0) {
16    msum = msum + innumber;
17    printf("Enter value of input number: ");
18    scanf("%lf", &innumber);
19    printf("\nValue input number: %lf 
", innumber);
20  }
21  printf("Value of summation: %lf 
", msum);
22  return 0;  /* execution terminates ok */
23 }
```

The following output listing shows the shell commands used to compile and link the source file summ.c, and execute the object file summ.out.
Introduction to Computational Modeling

```bash
$ gcc -Wall summ.c -o summ.out -lm
$ ./summ.out
Enter value of input number: 12.5
Value of input number: 12.500000
Enter value of input number: 10.0
Value of input number: 10.000000
Enter value of input number: 5.5
Value of input number: 5.500000
Enter value of input number: 4.25
Value of input number: 4.250000
Enter value of input number: 133.75
Value of input number: 133.750000
Enter value of input number: 0.0
Value of input number: 0.000000
Value of summation: 166.000000
```

7.3 Repeat-Until Loop

The `repeat-until` loop is a control flow structure that allows actions to be executed repeatedly based on a given condition. This construct consists of a process block of actions and the condition.

The actions within the process block are executed first, and then the condition is evaluated. If the condition is not true the actions within the process block are executed again. This repeats until the condition becomes true.

Repeat-until structures check the condition after the block is executed; this is an important difference from the while loop, which tests the condition before the actions within the block are executed. Figure 7.2 shows the flowchart for the repeat-until structure.

The pseudo-code statement of the repeat-until structure corresponds directly with the flowchart in Figure 7.2 and uses the keywords `repeat`, `until`, and `endrepeat`. The following portion of code shows the general form of the repeat-until statement.

```pseudo
repeat
   { statements in block }
until { condition }
endrepeat
```

The following lines of code shows the pseudo-code listing of a repeat-until statement for the previously discussed problem.
set innumber = 1.0 // dummy initial value
set l_counter = 0
set sum = 0.0 // accumulator variable
repeat
 display "Type number: "
 read innumber
 if innumber > 0.0
 then
 add innumber to sum
 increment l_counter
 display "Value of counter: ", l_counter
 endif
 until innumber <= 0.0
endrepeat
display "Value of sum: ", sum

In C, the repeat-until loop has the general form:

do
 { [block of statements] }
while (condition);
7.4 For Loop Structure

The for loop structure explicitly uses a loop counter; the initial value and the final value of the loop counter are specified. The for loop is most useful when the number of times that the loop is carried out is known in advance. In pseudo-code, the for statement includes the keywords: for, to, downto, do, and endfor and has the following general form in pseudo-code:

```
for ⟨counter⟩ = ⟨initial_val⟩ to ⟨final_val⟩
do
  Block of statements
endfor
```

On every iteration, the loop counter is automatically incremented. The last time through the loop, the loop counter reaches its final value and the loop terminates. The for loop is similar to the while loop in that the condition is evaluated before carrying out the operations in the repeat loop.

The following portion of pseudo-code uses a for statement for the repetition part of the summation problem.

```plaintext
for j = 1 to num do
  set sum = sum + 12.5
  set y = x * 2.5
endfor
display "Value of sum: ", sum
display "Value of y: ", y
```

Variable j is the counter variable, which is automatically incremented and is used to control the number of times the statements in a block will be performed. In C, the previous portion of code is written as follows.

```c
for ( j = 1; j <= num; j++ ) {
  sum = sum + 12.5;
  y = x * 2.5;
}
printf ("Value of sum: %lf \n" , sum);
printf ("Value of y: %lf \n", y)
```

7.4.1 Summation Problem with a For Loop

Using the for-loop construct of the repetition structure, the algorithm for the summation of input data can be defined in a relatively straightforward manner with pseudo-code. The most significant difference from the previous design is that the
number of data inputs from the input device is included at the beginning of the algorithm.

```c
set innumber = 1.0 // number with dummy initial value
set sum = 0.0 // initialize accumulator variable
display "Number of input data to read: 
read MaxNum
for loop_counter = 1 to MaxNum do
    display "Type number: 
    read innumber
    if innumber > 0.0
    then
        add innumber to sum
        display "Value of counter: ", loop_counter
    endif
endfor
display "Value of sum: ", sum
```

Listing 7.2 shows the C source program that implements the summation problem with a for-loop. The program is stored in file `summfor.c`.

Listing 7.2 C source program for summation with for-loop.

```c
1 /*
2 Program : summfor.c
3 Author : Jose M Garrido, Nov 21 2012.
4 Description : Compute the summation of numbers greater than zero. The program reads from input console, displays value of the sum of numbers.
5 */
6 #include <stdio.h>
7 #include <math.h>
8 int main(void) {
9     double innumber; /* number to read and sum */
10    double msum = 0.0;
11    int max_num; /* maximum values to read */
12    int j; /* loop counter */
13    printf("Enter number of input values: ");
14    scanf("%d", &max_num);
15    printf("Value of input number: %d 
", max_num);
16    for ( j = 1; j <= max_num; j++) {
17        printf("Enter value of input number: ");
18        scanf("%lf", &innumber);
19        if ( innumber > 0.0 )
20            msum = msum + innumber;
21    }
22    printf("Value of summation: %lf 
", msum);
23    return 0; /* execution terminates ok */
24 }
```

7.4.2 Factorial Problem

The factorial operation, denoted by the symbol !, can be defined in a general and informal manner as follows:
For example, the factorial of 5 is:

\[5! = 5 \times 4 \times 3 \times 2 \times 1 \]

7.4.2.1 Mathematical Specification of Factorial

A mathematical specification of the factorial function is as follows, for \(y \geq 0 \):

\[
y! = \begin{cases}
1 & \text{when } y = 0 \\
y(y - 1)! & \text{when } y > 0
\end{cases}
\]

The base case in this definition is the value of 1 for the function if the argument has value zero, that is \(0! = 1 \). The general (recursive) case is \(y! = y(y - 1)! \), if the value of the argument is greater than zero. This function is not defined for negative values of the argument.

7.4.2.2 Computing Factorial

In the following C program, the factorial function is named `fact` and has one argument: the value for which the factorial is to be computed. For example, \(y! \) is implemented as function `fact(y)`.

Listing 7.3 shows a C program, `factp.c` that includes function `main` that calls function `fact` to compute the factorial of a number and displays this value on the console.

Listing 7.3 C source program for computing factorial.

```c
1 /*
2 Program : factp.c
3 Author : Jose M Garrido, Nov 28 2012.
4 Description : Compute the factorial of a number.
5 */
6 #include <stdio.h>
7 #include <math.h>
8 int fact (int y); /* function fact prototype */
9 int main(void) {
10     int num;
11     int r;
12     printf("Enter number: ");
13     scanf("%d", &num);
14     printf("\nValue of input number: %d ", num);
15     r = fact(num);
16     printf(" Factorial of %d is: %d ", num, r);
17     return 0; /* execution terminates ok */
18 }
19 // the factorial function
20 int fact (int y) {
21     int f;
```
Repetition

22 int n;
23 int res;
24 f = 1;
25 if (y > 0) {
26 for (n = 1; n <= y; n++)
27 f = f * n;
28 res = f;
29 }
30 else if (y == 0)
31 res = 1;
32 else
33 res = -1;
34 return res;
35 }

Note that this implementation will always return -1 for negative values of the argument. The following shell commands compile, link, and execute the program for several values of the input number.

$ gcc -Wall factp.c -o factp.out
$./factp.out
Enter number: 5
Value of input number: 5
Factorial of 5 is: 120

$./factp.out
Enter number: 8
Value of input number: 8
Factorial of 8 is: 40320

$./factp.out
Enter number: 10
Value of input number: 10
Factorial of 10 is: 3628800

$./factp.out
Enter number: -5
Value of input number: -5
Factorial of -5 is: -1

Summary

The repetition structure is used in algorithms in order to perform repeatedly a group of action steps (instructions) in the process block. There are three types of loop structures: while loop, repeat-until, and for loop. In the while construct, the loop condition is tested first, and then the block of statements is performed if the condition is true. The loop terminates when the condition is false.
Introduction to Computational Modeling

In the repeat-until construct, the group of statements in the block is carried out first, and then the loop condition is tested. If the loop condition is true, the loop terminates; otherwise the statements in the block are performed again.

The number of times the statements in the block are carried out depends on the condition of the loop. In the for loop, the number of times to repeat execution is explicitly indicated by using the initial and final values of the loop counter. Accumulator variables are also very useful with algorithms and programs that include loops. Simple examples of C programs are executed.

<table>
<thead>
<tr>
<th>Key Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>repetition</td>
</tr>
<tr>
<td>do</td>
</tr>
<tr>
<td>loop counter</td>
</tr>
<tr>
<td>for</td>
</tr>
<tr>
<td>end</td>
</tr>
</tbody>
</table>

Exercises

Exercise 7.1 Develop a computational model that computes the maximum value from a set of input numbers. Use a while loop in the algorithm and implement in C.

Exercise 7.2 Develop a computational model that computes the maximum value from a set of input numbers. Use a for loop in the algorithm and implement in C.

Exercise 7.3 Develop a computational model that computes the maximum value from a set of input numbers. Use a repeat-until loop in the algorithm and implement in C.

Exercise 7.4 Develop a computational model that finds the minimum value from a set of input values. Use a while loop in the algorithm and implement in C.

Exercise 7.5 Develop a computational model that finds the minimum value from a set of input values. Use a for loop in the algorithm and implement in C.

Exercise 7.6 Develop a computational model that finds the minimum value from a set of input values. Use a repeat-until loop in the algorithm and implement in C.

Exercise 7.7 Develop a computational model that computes the average of a set of input values. Use a while loop in the algorithm and implement in C.
Exercise 7.8 Develop a computational model that computes the average of a set of input values. Use a for loop in the algorithm and implement in C.

Exercise 7.9 Develop a computational model that computes the average of a set of input values. Use a repeat-until loop in the algorithm and implement in C.

Exercise 7.10 Develop a computational model that computes the student group average, maximum, and minimum grade. The computational model uses the input grade for every student. Use a while loop in the algorithm and implement in C.

Exercise 7.11 Develop a computational model that computes the student group average, maximum, and minimum grade. The computational model uses the input grade for every student. Use a for loop in the algorithm and implement in C.

Exercise 7.12 Develop a computational model that reads rainfall data in inches for yearly quarters from the last five years. The computational model is to compute the average rainfall per quarter, the average rainfall per year, and the maximum rainfall per quarter and for each year. Implement in C.

Exercise 7.13 Develop a computational model that computes the total inventory value amount and total per item. The computational model is to read item code, cost, and description for each item. The number of items to process is not known. Implement in C.
Chapter 8

Arrays

8.1 Introduction

An array stores multiple values of data with a single name and most programming languages include facilities that support arrays. The individual values in the array are known as elements. Many programs manipulate arrays and each one can store a large number of values in a single collection.

To refer to an individual element of the array, an integer value or variable known as the array index is used after the name of the array. The value of the index represents the relative position of the element in the array. Figure 8.1 shows an array with 13 elements. This array is a data structure with 13 cells, and each cell contains an element value. In the C programming language, the index values start with 0 (zero).

![FIGURE 8.1: A simple array.](image)

To use arrays in a C program the following steps are carried out:

1. Declare the array with appropriate name, size, and type
2. Assign initial values to the array elements
3. Access or manipulate the individual elements of the array

In C, an array is basically a static data structure because once the array is declared, its size cannot be changed. The size of an array is the number of elements it can store. An array can also be created at execution time using pointers.

A simple array has one dimension and is considered a row vector or a column vector. To manipulate the elements of a one-dimensional array, a single index is required. A vector is a single-dimension array and by default it is a row vector.

A matrix is a two-dimensional array and the typical form of a matrix is an array with data items organized into rows and columns. In this array, two indexes are used: one index to indicate the column and one index to indicate the row. Figure 8.2 shows
a matrix with 13 columns and two rows. Because this matrix has only two rows, the
index values for the rows are 0 and 1. The index values for the columns are from 0
up to 12.

![A two-dimensional array](image)

FIGURE 8.2: A two-dimensional array.

8.2 Declaring an Array

An array is declared with an appropriate name, type, and size and the optional
initial values of the various elements. The size of the array is the number of elements
it can store.

8.2.1 Declaring Arrays in Pseudo-Code

In pseudo-code, the general form for declaring an array is:

```
define (array_name) array [size] of type (array_type)
```

The following pseudo-code statement declares array `y`, with a capacity of 20 ele-
ments.

```
define y array [20] of type float
```

The size of the array can be specified using a symbolic (identifier) constant. For
example, given the constant `MAX_NUM` with value 20, the array `y` can be declared in
pseudo-code by the following statement:

```
define y array [MAX_NUM] of type float
```

8.2.2 Declaring Arrays in C

In the C programming language, an array is declared with its type, name, and size.
For example, assume that the name of the one-dimensional array (vector) shown in
Figure 8.1 is `precip`; it can be declared in C in the following manner:
double rainf[13];

When the array is small, initial values can be given in the same statement that declares the array:

double rainf[13] = {2.75 6.4 15.0 7.65 10.5 5.25 12.5 8.25 6.9 3.5 15.5 5.5 9.4};

8.3 Operations on Arrays

A program can manipulate an array by accessing the individual elements of the array and performing some computation. Recall that an integer value known as the index is used with the name of the array to access an individual element of an array. In C, the range of index values starts with 0 and ends with the number equal to the size of the array minus 1.

8.3.1 Manipulating Array Elements in Pseudo-Code

To refer to an individual element in pseudo-code, the name of the array is used followed by the index value in rectangular brackets. The following statement assigns a value of 8.25 to element 5 of array

\[z \]

\[z[5] = 8.25 \]

The index may be an integer constant, a symbolic constant (identifier), or an integer variable. The following statement assigns the value 4.5 to element 6 of array

\[y \]

\[y[k] = 4.5 \]

8.3.2 Manipulating Elements of an Array in C

After declaring an array in C, the individual elements can be used in the same manner simple variables are used. To reference an individual element of an array, the appropriate index value is written in brackets. The following assignment statements may be used to initialize the elements of array

\[rainf \]

that was declared previously:

double rainf[13];

double rainf[13] = {2.75 6.4 15.0 7.65 10.5 5.25 12.5 8.25 6.9 3.5 15.5 5.5 9.4};
Accessing the elements of a vector in C is also known as indexing a vector. The values of the index of a one-dimensional array is an integer value that starts with zero, thus the first element of a simple array has an index value of zero. Accessing a particular element of an array uses the name of the array followed by the index value in brackets. The following assignment statement assigns a value of 14.5 to element 6 of array y.

\[y[5] = 14.5; \]

The index value used can be an integer constant, a symbolic constant (identifier), or an integer variable. The following lines of C code declare vector \textit{height}, assign a value 4 to variable \textit{k}, and assign the value 132.5 to element 5 (with index 4) of array \textit{w}, using variable \textit{k} as the index.

\[
\begin{align*}
\text{float } w[5] &= \{12.5 \ 8.25 \ 7.0 \ 21.35 \ 6.55\} ; \\
k &= 4 ; \\
w[k] &= 132.5 ;
\end{align*}
\]

In addition to accessing individual elements of an array in a simple assignment statement, more complex arithmetic operations are also supported in C. The following example involves a trigonometric operation with element 4 of vector \textit{w}; the assignment sets the value to variable \textit{x}. The C symbolic constant \textit{M_PI} is the value for \(\pi\).

\[x = \sin(0.04 \times w[4]/M_{\text{PI}}); \]

8.4 Arrays as Arguments

The arguments in a function call can be used as input values, output values, or input-output values by the function. In the C programming language, there are two general techniques to pass arguments when calling a function:
• pass by value
• pass by reference

Using *pass by value*, a copy of the value of the argument is passed to the corresponding parameter of the function. With this technique, the value of the argument is not changed by the function. Any attempt to change the value is only local to the function.

Using *pass by reference*, an address of the argument is passed to the corresponding parameter. The function can change the value of this argument and when the function completes its execution, this argument will have a different value.

For input arguments, pass by value is used with simple variables. For output arguments, pass by reference is used. To pass simple variables by reference, *pointers* need to be used.

An array is always passed by reference and only the array name is used as the argument in the function call. The corresponding array parameter in the function definition does not include the & symbol before the parameter name. When the parameter is declared as a one-dimensional array, the size of the array need not be specified.

Because an array is passed by reference, the function being called can modify the value of the elements of the array. However, in the case that the function should not change the values of the elements of an array, the keyword *const* must be included before the parameter declaration in the function prototype and in the function definition. The following example illustrates this notion in the function prototype for function *myfunc*.

```c
void myfunct ( const double x [], int xsize );
```

Two examples of very simple and useful functions that manipulate arrays are defined in the library *basic_lib*; these are: *arracol* and *linspace*. Function *arracol* assigns equally-spaced values with a fixed increment. The function parameters in the function prototype and definition are: *arr*, *startv*, *lastval*, and *incr*. These are the array name, the starting value, the last value, and the increment value. The function returns the number of values assigned to the array. The parameters are declared of type *double* and the function prototype is:

```c
int arraycol ( double arr[], double startv, double lastv, double incr);
```

In the following example, the third line of C code calls function *arraycol* to assign values to vector *y*, starting with value 3.15, having a final value of 20.5 and increments of 0.45.

```c
int j;
.
.
j = arraycol ( y, 3.15, 20.5, 0.45);
```
The other function in library basic_lib is linspace, which assigns values to a single-dimension array. This function also assigns values that are equally spaced using the initial value, the final value, and the number of values in the vector. In the following example, a call to function linspace assigns vector y equally-spaced values starting with 3.15, a final value of 20.5, and a total of 20 values.

\[
\text{linspace}(y, \text{3.15, 20.5, 20});
\]

The following C source listing is the definition of function linspace; note that the first parameter is a one-dimensional array of type double.

```c
/* This function computes the num element values
   in the array starting from low to high. */
void linspace (double a[], double low, double high, int num) {
    int i; /* used as index of the array */
    double diff;
    diff = (high - low)/(num-1);
    a[0] = low;
    for (i = 1; i < num; i++) {  
        a[i] = a[i-1] + diff;
    }
    return;
} // end linspace
```

8.5 A Simple Application with Arrays

The following example describes a program that computes height, velocity, and acceleration of a free-falling object by computing finite rates of change. The program results are used to plot the vertical position of the object with respect to time using GnuPlot.

Listing 8.1 shows the complete C program that computes the values of height in problem of the free falling object. The source program is stored in file ffallobj3.c. Function linspace is called to generate values of time starting at 0.0, ending at 2.94, using N different values. All the values of time used are stored in vector \(t_f \).

Listing 8.1 Computing the vertical position and velocity of the object.

```c
1 /* ffallobj3.c  
2 Compute height, velocity, and acceleration  
3 of a free-falling object  
4 Computing finite rates of change  
5 Plot of vert position vs time with GnuPlot  
6 This program uses the 'basic_lib' library  
7 J Garrido, 1-3-2013  
8 */
```
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "basic_lib.h"
int main() {
    const int N = 50;
    const float g = 9.8;
    double y0; // initial vertical position
    double dtf; // fixed time increment
    int j;
    double tf[N]; // vector of time
    double hf[N]; // vector of computed vertical position
    double * dhf; // differences of hf
    double vel[N-1];
    double accel[N-2];
    printf("Free-falling object \n");
    // printf("Type initial vertical pos: ");
    // scanf("%lf", &y0);
    y0 = 40.0;
    printf("Time Vertical Position \n");
    linspace(tf, 0.0, 2.94, N); // values of time
    dtf=tf[2]- tf[1]; // delta t
    for (j = 0; j < N; j++) {
        hf[j] = y0 - 0.5 * (g * pow(tf[j],2)); // height
        printf(" %.4f %.3f \n", tf[j], hf[j]);
    }
    dhf=diff(hf, N); // Differences in vertical pos
    // Vertical velocity
    printf("Vertical velocity \n");
    for (j = 0; j < N-1; j++) {
        vel[j] = dhf[j]/dtf; // rate of chg vertical position
        printf(" %f \n", vel[j]);
    }
    printf("Acceleration of object \n");
    // differences of the vertical velocity vector
    dvel = diff(vel, N-1);
    for (j = 0; j < N-2; j++) {
        accel[j] = dvel[j]/dtf; // rate of change of velocity
        printf(" %f \n", accel[j]);
    }
    return 0;
} // end main
```

The following shell commands compile, link, and compute the vertical position (height) of the free-falling object for every value of time stored in vector \textit{tf}. The values of height are stored in the new vector, \textit{hf}.

```
$ gcc -Wall ffallobj3.c -o ffallobj2a.out basic_lib.o -lm
$ ./ffallobj3.out | tee ffallobj2a.gpl
Free-falling object
Time  Vertical position
0.000000  40.000000
0.196000  39.811762
0.392000  39.247046
```
Figure 8.3 shows the plot of the change of the vertical position (height) of the free-falling object, with respect to time. Note that the graph represents a curve and not a straight line. This is because the mathematical relation between the variables h_f and t is non-linear, more specifically, it is a quadratic relationship between these two variables. This plot is produced by GNUplot using the results produced by the program execution.

8.6 Arithmetic Operations with Vectors

Simple arithmetic operations can be performed that relate a vector and a number, also known as a scalar. These operations are: addition, subtraction, multiplication,
and division. These operations are applied to all elements of the vector. For example, the following for-loop in C, adds the scalar 3.25 to all elements of vector `height`, which was previously declared with N elements.

```c
for (j = 0; j < N; j++) {
    hf[j] = hf[j] + 3.25; // add 3.25 to all elements of hf
}
```

Several array operations can be implemented in C. The simplest array operations are: addition, subtraction, multiplication, division, and exponentiation of two vectors. Element by element operations are usually inside a loop using similar notation for multiplication, division, and exponentiation. The following lines of code in C apply several simple array operations on two small row vectors.

```c
double x [6];
double y [6];
const int N = 3;
x[0] = 1.0;
x[1] = 2.0;
x[3] = 3.0;
y[0] = 4.0;
y[1] = 5.0;
y[2] = 6.0;
/* vector addition */
for (j = 0; j < N; j++) {
    x[j] = x[j] + y[j];
    printf("x: %lf y: %lf \n", x[j], y[j]);
}
/* vector subtraction */
for (j = 0; j < N; j++) {
    x[j] = x[j] - y[j];
    printf("x: %lf y: %lf \n", x[j], y[j]);
}
/* vector multiplication */
for (j = 0; j < N; j++) {
    x[j] = x[j] * y[j];
    printf("x: %lf y: %lf \n", x[j], y[j]);
}
```

8.7 Multi-Dimensional Arrays

A multi-dimensional array is declared with one or more dimensions. A common name for a two-dimensional array is a matrix) and this is a mathematical structure with values arranged in columns and rows. Two index values are required, one for the rows and one for the columns. Figure 8.2 shows an example of a two-dimensional array.
8.7.1 Multi-Dimensional Arrays in Pseudo-Code

To declare a two-dimensional array in pseudo-code, two index numbers are used. The first number defines the range of values for the first index (rows) and the second number defines the range of values for the second index (columns).

The following pseudo-code statements declare a two-dimensional array named `rainf` with size 30 rows and 10 columns.

```pseudo-code
define ROWS = 30 of type integer
define COLS = 10 of type integer

define rainf array [ROWS][COLS] of type float
```

To reference individual elements of a two-dimensional array, two integer numbers are used as indexes. In the following pseudo-code statements each individual element is accessed using index variables `i` and `j`. The code assigns all the elements of array `rainf` to 0.0:

```pseudo-code
for j = 0 to COLS - 1 do
    for i = 0 to ROWS - 1 do
        set rainf [i][j] = 0.0
    endfor
endfor
```

In these operations with two-dimensional arrays, nested loops are used: an outer loop and an inner loop. The inner loop varies the row index `i` from 0 to value `ROWS-1`, and outer loop varies the row index `j` from 0 to `COLS-1`. The assignment sets the value 0.0 to the element at row `i` and column `j`.

8.7.2 Multi-Dimensional Arrays in C

The following lines of code declare in C, vectors `x` and `w` and a two-dimensional array `z`. The element values of `x` are assigned from a starting value of 2 ending in 11 in increments of 2. For array `w`, the assignments of values starting at 1.0, a final value of 9.0, and in increments of 2.0.

The for-loop assigns values to the the elements of the double-dimension array `z` to the first row from the elements of row vector `x`, to the elements of the second row from the values in vector `w`.

```c
for j = 0 to COLS - 1 do
    for i = 0 to ROWS - 1 do
        set rainf [i][j] = 0.0
    endfor
endfor
```
double x[10];
double w[10];
double z[2][10];
const int N = 5;
m = arraycol(x, 2.0, 11.0, 2.0);
m = arraycol(w, 1.0, 9.0, 2.0);
for(j = 0; j < N; j++) {
 z[0][j] = x[i];
 z[1][j] = w[i];
}

To access individual elements of a two dimensional array, two indexes are used. The first number is the index for rows and the second number is the index for columns. To access the value of the element in array z defined previously at row 1 and column 3, the syntax is: z[1][3]. For example:

\[
zz = z[1][3] + 13.5;
\]

The following lines of C code declare a two-dimensional array named `rainf` with size 3 rows and 6 columns, and assign the value 2.4 to every element of the array.

\[
const int COLS = 6;
const int ROWS = 3;
double rainf[ROWS][COLS];
for (j = 1; j < COLS; j++)
 for (i = 0; i < ROWS; i++)
 rainf [i][j] = 2.4;
\]

8.7.3 Passing Multi-Dimensional Arrays

For multi-dimensional arrays, the parameter declaration in a function definition and function prototype, all index sizes except the first one must be specified. This is illustrated in the following function prototype.

\[
void yfunct (double y [[]][200], int yrows);
\]

This function prototype has a declaration with two parameters, the first one `y` is a double-dimensional array with the size of the second dimension equal to 200. The first dimension is not indicated. The second parameter is an integer that is used by the function as the value of the size of the first dimension. The function prototype of function `yfunct` may be more conveniently declared in the following form:

\[
void yfunct (double y [[]][N], int yrows);
\]
In this function prototype, \(N \) has been declared as a symbolic constant of type integer and indicates the size of the second dimension of the array. The following statements declare the symbolic constants \(M \) and \(N \), declare a two-dimensional array \(\text{myarray} \), then call function \(\text{yfunct} \) with two arguments.

```c
const int M = 100; // number of rows
const int N = 200; // number of columns
... double myarray [M][N]; ...
  yfunct ( myarray, M );
```

8.8 Applications Using Arrays

This section discusses several simple applications of arrays; a few of these applications perform simple manipulation of arrays, other applications perform slightly more complex operations with arrays such as searching and sorting.

8.8.1 Problems with Simple Array Manipulation

The problems discussed in this section compute the average value and the maximum value in an array named \(\text{varr} \). The algorithms that solve these problems examine all the elements of the array.

8.8.1.1 Average Value in an Array

To compute the average value in an array, an algorithm can be designed to first compute the summation of all the elements in the array. The accumulator variable \(\text{sum} \) is used to store this. Second, the algorithm computes the average value by dividing the value of \(\text{sum} \) by the number of elements in the array. The following listing has the pseudo-code description of the algorithm.

1. Initialize the value of the accumulator variable, \(\text{sum} \), to zero.
2. For every element of the array, add its value to the accumulator variable \(\text{sum} \).
3. Divide the value of the accumulator variable by the number of elements in the array, \(n \).

The accumulator variable \(\text{sum} \) stores the summation of the element values in the array named \(\text{varr} \) with \(n \) elements. The average value, \(\text{ave} \), of array \(\text{varr} \) using index \(j \) starting with \(j = 0 \) to \(j = n - 1 \) is expressed mathematically as:

\[
\text{ave} = \frac{1}{n} \sum_{j=0}^{n-1} \text{varr}_j
\]
Arrays

The following listing describes the algorithm using pseudo-code. The number of values is \((num)\) and the array elements are inputted from the input device.

description
This algorithm computes the average of the elements in array varr.
*/
variables
define sum of type float
define ave of type float // average value
define j of type integer
define num of type integer
define array varr [N] of type float
begin
 display "Enter number of values"
 read num
 for j = 0 to num - 1 do
 display "Enter element value: ", input
 endfor
 //
 set sum = 0
 for j = 0 to num - 1 do
 add myarr[j] to sum
 endfor
 set ave = sum / num
 display "Average value in array: ", ave

Listing 8.2 shows the C function that implements the algorithm that computes the average value of the elements in the array. This code is stored in file \texttt{mean.c}.

Listing 8.2: C function that computes average of values in an array.

1 /* File: mean.c
2 This function returns the average or
3 mean value in an array with \(n\) elements. */
4
5 double mean(double x[], int n)
6 {
7 /* Declare and initialize variables. */
8 int k;
9 double sum=0;
10
11 /* Determine mean values. */
12 for (k=0; k < n; k++)
13 {
14 sum = sum + x[k];
15 }
16
17 /* Return average value. */
18 return (sum/n);
19 }
8.8.1.2 Maximum Value in an Array

Consider a problem that deals with finding the maximum value in an array named \(\text{varr} \). The algorithm with the solution to this problem also examines all the elements of the array.

The variable \(\text{max_arr} \) stores the maximum value found so far. The name of the index variable is \(j \). The algorithm description is:

1. Read the value of the number of values, \(num \), and the value of the array elements.
2. Initialize the variable \(\text{max_arr} \) that stores the current largest value found (so far). This initial value is the value of the first element of the array.
3. Initialize the index variable (value zero).
4. For each of the other elements of the array, compare the value of the next array element; if the value of the current element is greater than the value of \(\text{max_arr} \) (the largest value so far), change the value of \(\text{max_arr} \) to this element value, and store the index value of the element in variable \(k \).
5. The index value of variable \(k \) is the index of the element with the largest value in the array.

The algorithm description in pseudo-code appears in the following listing.

```plaintext
description
Find the element with the maximum value in the array and write its index value. */

variables
define j of type integer
define k of type integer // index of max elelemnt
define max_arr of type float // largest element
define varr array [N] of type float

begin
display "Enter array size: "
read num
for j = 0 to num - 1 do
    display "Enter array element: "
    read varr[j]
endfor
set k = 0
set max_arr = varr[0]
for j = 1 to num - 1 do
    if varr[j] > max_arr
        then
            set k = j
            set max_arr = varr[j]
        endif
endfor
display "index of max value: ", k
```
Listing 8.3 contains a C function that implements the algorithm for finding the maximum value in an array; the function is stored in the file arrmax.c.

Listing 8.3: A C function that finds maximum value in an array.

```c
/* File: arrmax.c */
/* This function returns the maximum */
/* value in the array x with n elements. */
/* */
double max(double x[], int n)
{
    /* Declare local variables. */
    int k;
    double max_x;

    /* Find the maximum value in the array. */
    max_x = x[0];
    for (k=1; k < n; k++)
    {
        if (x[k] > max_x)
            max_x = x[k];
    }

    /* Return maximum value. */
    return max_x;
}
```

8.8.2 Searching

Searching consists of looking for an array element for a particular value and involves examining some or all elements of an array. The search ends when and if an element of the array has a value equal to the requested value. Two general techniques for searching are: linear search and binary search.

8.8.2.1 Linear Search

With linear search the elements of an array are examined in a sequential manner starting from the first element of the array, or from some specified element. Every array element is compared with the requested or key value, and if an array element is equal to the requested value, the algorithm has found the element and the search terminates. This may occur before the algorithm has examined all the elements of the array.

The index of the element in the array that is found is the result of the search. If the requested value is not found, the algorithm indicates this with a negative result or in some other manner. The following is an algorithm description of a general linear search using a search condition of an element equal to the value of a key.

1. Repeat for every element of the array:
(a) Compare the current element with the requested value or key. If the value of the array element satisfies the condition, store the value of the index of the element found and terminate the search.

(b) If values are not equal, continue search.

2. If no element with value equal to the value requested is found, set the result to value -1.

The following algorithm in pseudo-code searches the array for an element with the requested value, $kval$. The algorithm outputs the index value of the element equal to the requested (or key) value $kval$. If no element with value equal to the requested value is found, the algorithm outputs a negative value.

```pseudo
This algorithm defines a linear search of array varr using key value kvar. The result is the index value of the element found, or $-1$ */
variables
define kval of type float,
define varr array [] of type float,
define num of type integer
define j of type integer
define found = false of type boolean
begin
set j = 0
while j < num and found not equal true do
  if varr [j] == kval
    then
      set result = j
      set found = true
    else
      increment j
  endif
endwhile
if found not equal true
then
  set result = -1
endif
end
```

The algorithm outputs the index value of the element that satisfies the search condition, whose value is equal to the requested value $kval$. If no element is found that satisfies the search condition, the algorithm outputs a negative value.

8.8.2.2 Binary Search

Binary search is a more complex search method, compared to linear search. This search technique is very efficient compared to linear search because the number of comparisons is smaller.

The prerequisite for binary search technique is that the element values in the array

Introduction to Computational Modeling
to search be sorted in ascending order. The array elements to include are split into two halves or partitions of about the same size. The middle element is compared with the key (requested) value. If the element with this value is not found, the search is continues on only one partition. This partition is again split into two smaller partitions until the element is found or until no more splits are possible because the element is not found.

With a search algorithm, the efficiency of the algorithm is determined by the number of operations, which compare the element values in the array, with respect to the size of the array. The average number of comparisons with linear search for an array with \(N \) elements is \(\frac{N}{2} \), and if the element is not found, the number of comparisons is \(N \). With binary search, the number of comparisons is \(\log_2 N \). The informal description of the algorithm is:

1. Assign the lower and upper bounds of the array to lower and upper.
2. While the lower value is less than the upper value, continue the search.
 (a) Split the array into two partitions. Compare the middle element with the key value.
 (b) If the value of the middle element is equal to the key value, terminate search and the result is the index of this element.
 (c) If the key value is less than the middle element, change the upper bound to the index of the middle element minus 1. Continue the search on the lower partition.
 (d) If the key value is greater or equal to the middle element, change the lower bound to the index of the middle element plus 1. Continue the search on the upper partition.
3. If the key value is not found in the array, the result is \(-1\).

Summary

An array in C is a data structure that stores several values of the same type. Each of these values is known as an element. After the array has been declared the capacity of the array cannot be changed. To refer to an individual element an index is used to indicate the relative position of the element in the array.

Searching an array consists of looking for a particular element value or key. Two common search algorithms are linear search and binary search. Computing an approximation of the rate of change and the area under a curve is much more convenient using arrays, as shown in the case study discussed.
Introduction to Computational Modeling

Key Terms

<table>
<thead>
<tr>
<th>declaring arrays</th>
<th>accessing elements</th>
<th>array capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>array element</td>
<td>element reference</td>
</tr>
<tr>
<td>searching</td>
<td>linear search</td>
<td>binary search</td>
</tr>
<tr>
<td>key value</td>
<td>algorithm efficiency</td>
<td>summation</td>
</tr>
<tr>
<td>accumulator</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exercises

Exercise 8.1 Develop a computational model that computes the standard deviation of values in an array. Implement using the C programming language. The standard deviation measures the spread, or dispersion, of the values in the array with respect to the average value. The standard deviation of array \(X \) with \(n \) elements is defined as:

\[
std = \sqrt{\frac{sqd}{n-1}},
\]

where

\[
 sqd = \sum_{j=0}^{n-1} (X_j - Av)^2 .
\]

Exercise 8.2 Develop a computational model that finds the minimum value element in an array and returns the index value of the element found. Implement using the C programming language.

Exercise 8.3 Develop a computational model that computes the average, minimum, and maximum rainfall per year and per quarter (for the last five years) from the rainfall data provided for the last five years. Four quarters of rainfall are provided, measured in inches. Use a matrix to store these values. Implement using the C programming language.

Exercise 8.4 Develop a computational model that sorts an array using the Insertion sort technique. This sort algorithm divides the array into two parts. The first is initially empty; it is the part of the array with the elements in order. The second part of the array has the elements in the array that still need to be sorted. The algorithm takes the element from the second part and determines the position for it in the first part. To insert this element in a particular position of the first part, the elements to right of this position need to be shifted one position to the right. Implement using the C programming language.
Chapter 9

Pointers

9.1 Introduction

Programming languages such as C and C++ support pointers that allow a much more powerful and flexible manner to manipulate data structures. These data structures are mainly arrays and linked lists, which can handle large number of values in data collections.

In some cases, using pointers is much more convenient for handling variables and arrays. There are several computational tasks that can only be performed with pointers, such as dynamic memory allocation. Other computational tasks are also performed more easily with pointers.

9.2 Pointer Fundamentals

Every variable is stored in a particular memory location (allocated by the compiler and operating system) and every memory location is defined by an address.

A pointer variable is one that contains the location or address of memory where another variable, data value, or function is stored. A pointer is a variable whose value is the address of another variable. Pointers are one of the more versatile features of C.

Pointers are important for implementing more advanced types of data as well. For example, a linked list is a data structure that uses pointers to link individual nodes.

9.3 Pointers with C

The C programming language uses the asterisk (*) to declare a pointer variable. In C, a pointer is declared with the type of the variable it will point to. A pointer variable of type char can be used to point to a single character or an array of characters.
similar type can be used for a `struct`. The following are examples of simple pointer variable declarations.

```c
int * jintptr; // an integer pointer variable
int* intPtr;   // another pointer variable
double *xptr;
char* charPtr;  // declares a pointer of type char
```

To assign a value to a pointer variable the `&` operator is used. This operator gets the address of a variable to point at and this value can be assigned to a pointer. For example,

```c
double x;
double *xptr;
x = 234.75;
xptr = &x;     // xptr now points to x
```

Figure 9.1 shows that the value of variable `x` is 234.75 and the value of pointer variable `xptr` is the address of variable `x`. Variable `xptr` points to variable `x`.

![Figure 9.1: Pointer variable xptr pointing to variable x.](image)

9.4 Dereferencing

Once a pointer variable has an appropriate value, which means the pointer variable is actually pointing to a variable, it can be used to dereference a variable. For example, continuing the previous lines of C code, pointer variable `xptr` can be used to change the value of the variable it currently points to. The following assignment statement changes the value of `x` using pointer `xptr`.

```c
*xptr = 193.25;
```
9.5 Converting Pointer Types

In some applications it may be necessary to convert one pointer type to another. This is also known as casting. The general syntax for converting the types of non-pointer variables is:

(type) variable

For example, using an assignment statement, the following lines of C code change the type of a variable from int to long.

long xl;
int xi;
x1 = 56;
x1 = (long) xi;

For pointer variables, a similar type conversion can be used. The casting of pointer types follows an almost identical syntax, except that the asterisk (*) must be included. The general syntax is:

(type *) pointer_variable

For example, the type conversion from a pointer to an integer to a pointer to a long variable. The next lines of C code present the example of pointer type conversion from int to long.

long *xlptr;
int *xiptr;
xiptr = ξ
xlptr = (long *) xiptr;

9.6 Reference Parameters

The simplest technique to get a return value from a function call is to use the function return value and this is written in an assignment statement. The main limitation is that the function call returns only one value at a time back to the calling function.

Recall that there are two general techniques to pass arguments when calling a function:
• pass by value

• pass by reference

The other technique to return data from a function is using pass by reference. The function declares reference or variable parameters that allow the return of more than one value. A reference parameter is declared as a pointer variable. The following example illustrates the definition and call of function `swap_values` using reference parameters `x` and `y`.

```c
#include <stdio.h>
void swap_values (int *x, int *y); // prototype
int main()
{
    int a = 25;
    int b = 64;
    swap_values (&a, &b);
    printf ("a = %d and b = %d\n", a, b);
    return 0;
}
void swap_values (int *xptr, int *yptr)
{
    int temp;
    temp = *yptr;
    *yptr = *xptr;
    *xptr = temp;
}
```

Function `scanf` is a library input function that is used to get data from the console (keyboard). This function uses pointers to variables. When calling this function, the address of each variable that is read is passed to the function using the `&` operator. For example, the following code reads an integer value of variable `my_var` from the console:

```c
int my_integer;
scanf ("%d", &my_var);
```

9.7 Pointers with Value NULL

Before assigning an actual value to a pointer variable, it is always a good practice to assign a NULL value to a pointer variable. The NULL value is a constant with a value of zero defined in the C standard libraries. A pointer that is assigned NULL is known as a null pointer and the pointer does not currently point to any variable. The following short program illustrates the use of the NULL value for pointer variables:
Pointers

1 /* This program displays the value of a pointer variable
2 Type conversion with casting is necessary to
3 'unsigned int' to use format '%x'
4 */
5 #include <stdio.h>
6 int main ()
7 {
8 int *intptr;
9 unsigned int outval;
10 intptr = NULL;
11 if (intptr == NULL) {
12 outval = (unsigned int) intptr;
13 printf("Value of intptr: %x \n", outval);
14 }
15 return 0;
16 }

After compiling and linking, the program is executed and it displays the following result:

Value of intptr: 0

The program includes a simple check for a null pointer using an if statement. Because a C pointer is an address which is a numeric value, there are a few basic arithmetic operations that can be performed on a pointer. These are:

- increment the value of the pointer with the ‘++’ operator
- decrement the value of the pointer with the ‘--’ operator
- addition to the value of the pointer with the ‘+’ operator
- subtraction from the value of the pointer with the ‘-’ operator

The increment operator will add a value depending on the size of the type of the pointer variable. For integers that are four bytes in length, the increment operator adds 4 to the address value of the pointer variable.

The following example illustrates the use of the increment operator on a pointer variable. An array is really implemented as a pointer to the first element and it cannot directly be incremented so its address must be assigned to a pointer variable.

1 #include <stdio.h>
2 int main ()
3 {
4 const int ARRAY_SIZE = 5;
5 int j;
6 int *intptr;
7 int myarray[] = {10, 20, 30, 40, 50};
8 intptr = myarray;
9 for (j = 0; j < ARRAY_SIZE; j++) {
10 printf("Current element: %d value: %d \n", myarray[j], myarray[j+1]);
9.8 **Arrays as Pointers**

In the previous section it was shown that an array can be manipulated as a pointer. This is useful when using array parameters and when an array is the return value in a function.

9.8.1 Pointer Parameters for Arrays

An array can be used as an argument in a function call. In the function definition, the corresponding parameter is declared as a pointer. Arrays as arguments are considered to be pointers by the functions receiving them. Therefore, they are always reference or variable parameters, which means that the called functions can modify the original copy of the variable. The following C program illustrates this.

```c
/*
 Program: arraymult.c
 This program uses an integer array as argument
to call function arraymult.
The function declares the parameter as an integer pointer.
*/
#include <stdio.h>
void farraymult (int *jarray, int mult); // prototype
const int ARR = 7; /* array size */
int main()
{
 int j;
 int marray[] = {10, 20, 30, 40, 50, 60, 70};
farraymult (marray, 15);
```
Pointers

Pointers

```c
for (j = 0; j < ARR; j++)
    printf("Element: %d value: %d \n ", j, marray[j]);
return 0;
}

void farraymult (int *parray, int pmult)
{
    int j;
    for (j = 0; j < ARR; j++)
        parray[j] *= pmult;
}
```

In function `farraymult`, the first parameter is declared as an integer pointer, however, it can also be declared as an array parameter. In this case, the function declaration or prototype is:

```c
void arraymult (int parray[], int pmult);
```

Compiling, linking, and executing the program displays the following output:

```bash
$ gcc -Wall arrmult.c
$ ./a.out
Element: 0 value: 150
Element: 1 value: 300
Element: 2 value: 450
Element: 3 value: 600
Element: 4 value: 750
Element: 5 value: 900
Element: 6 value: 1050
```

9.8.2 Functions that Return Arrays

In C, a function that returns an array specifies a pointer type as the function return type. In the following example, line 10 is the function prototype of function `farraymult` and the function definition appears in lines 22–30. The return type of the function is a pointer to an integer. Line 17 is the function call and a pointer assignment.

```c
/*
 * Program: arraymult2.c
 * This program uses an integer array as argument
 * to call function arraymult.
 * The function declares the parameter as an integer pointer.
 * The function returns a new array as an integer pointer
 */
#include <stdlib.h>
#include <stdio.h>
int * farraymult (const int *jarray, int mult);
const int ARR = 7; /* array size */
12 int main()
13 {
14     int j;
15     int marray[] = {10, 20, 30, 40, 50, 60, 70};
16     int *farray;
17     farray = farraymult (marray, 15);
18     for (j = 0; j < ARR; j++)
19         printf("Element: %d value: %d \n ", j, farray[j]);
20     return 0;
21 }
22 int * farraymult (const int *parray, int pmult)
23 {
24     int * rarray; /* new array */
25     int j;
26     rarray = malloc(ARR * sizeof(int));
27     for (j = 0; j < ARR; j++)
28         rarray[j] = parray[j] * pmult;
29     return rarray;
30 }

9.8.3 Dynamic Memory Allocation

During the execution of a program, it can request additional memory and the operating system can allocate the requested memory to the program. This technique of memory allocation is known as dynamic memory allocation. This is performed by assigning a contiguous block of memory to a pointer variable. In C, this allocation of memory is carried out with function _malloc_. Memory allocated can be resized with function _realloc_ and memory can be deallocated with function _free_.

Calling function _malloc_ requires one argument, the number of bytes of memory to allocate. The function returns a _void_ pointer, which provides the address of the beginning of the allocated block of memory.

Calling function _realloc_ function requires two arguments: the pointer to the memory block to be reallocated, and a number of _type size_t_ that specifies the new size for the block. The function returns a void pointer to the newly reallocated block.

The deallocation of memory that has been allocated to a block is performed by calling function _free_. Calling this function requires only one argument, the pointer to the block to deallocate. The function does not return a value.

In the previous example, function _arraymult_ creates an array of _ARR_ elements by calling the library function _malloc_ in line 26. The number of bytes for an integer of type _int_ is 4; therefore, the total number of bytes allocated is _RR_ times 4. Pointer variable _rarray_ points to the block of memory allocated. In line 29, the function returns the value of pointer variable _rarray_.

```c
12 int main()
13 {
14 int j;
15 int marray[] = {10, 20, 30, 40, 50, 60, 70};
16 int *farray;
17 farray = farraymult (marray, 15);
18 for (j = 0; j < ARR; j++)
19 printf("Element: %d value: %d \n ", j, farray[j]);
20 return 0;
21 }
22 int * farraymult (const int *parray, int pmult)
23 {
24 int * rarray; /* new array */
25 int j;
26 rarray = malloc(ARR * sizeof(int));
27 for (j = 0; j < ARR; j++)
28 rarray[j] = parray[j] * pmult;
29 return rarray;
30 }
```
9.9 Complex Data Structures

C supports two general categories of data structures that can be combined in various ways. These are arrays and structures. A structure type is a complex or composite type because it allows its components to have different types. To define a structure type, the `struct` keyword and a type name are used and enclose the data components of the structure.

9.9.1 Structure Types

The following example declares a structure type `ComplexNum` with two data components of type `double`.

```c
struct ComplexNum {
 double realpart;
 double imagpart;
};
```

This definition introduces `struct ComplexNum` as a new type. This programmer-defined type can be used to declare variables of this type. In the following example, two variables: `var1` and `var2` are declared. Note that the keyword `struct` must be included when declaring these variables. Variables `var1` and `var2` are basically data structures. Using the dot notation, an individual component of a structure can be accessed by indicating the name of the structure, a dot, and the name of the component. In the example, a value is assigned to each individual components of the structure variable `var1`. Then the entire structure variable `var1` is copied to the structure variable `var2`.

```c
struct ComplexNum var1, var2;
var1.realpart = 132.54; // assign value to component of var1
var1.imagpart = 37.32; // assign value to component of var1
var2 = var1; // copy the whole structure var1 to var2
```

Although assignment to a structure can be performed directly from another structure of the same type with an assignment statement, direct comparison is not allowed. Instead, the individual components are compared with an `if` statement.

As mentioned previously, this type of complex data structure allows its components to have different types. The data structure is also known as a `record` and the individual components are also known as `fields`.

9.9.2 Array of Structures

An array of structure type can be declared in a similar manner to an array of a simple or primitive type. To declare an array of a structure, a previously-defined structure type is used as the type of the array.
The following example declares an array with name `cmplxarray` of 200 elements of type `struct ComplexNum`. Then values are assigned to the individual components of the first two elements of the array.

```c
struct ComplexNum cmplxarray[200];
cmplxarray[0].realpart = 54.85;
cmplxarray[0].imagpart = 17.87;
cmplxarray[1].realpart = 54.85;
cmplxarray[1].imagpart = 17.87;
```

### 9.9.3 Pointers to Structures

To declare a pointer variable to a structure, the statement includes the structure type with an asterisk and a variable name. This is a pointer of a structure type previously defined. The following example in C illustrates declaration of pointer variable `cmplxPtr`.

```c
struct ComplexNum *cmplxPtr;
```

The following program shows the definition of a structure type, declarations of structure variables, declaration of pointer variables, and use of pointer variables to structures.

In lines 7 and 8, the program declares variables `var` and `var2` of type `ComplexNum`. In line 9, it declares a pointer variable `cmplxPtr` of type `ComplexNum`. In lines 11 and 12, values are assigned to the components of variable `var`. In line 14, the address of `var` is assigned to pointer variable `cmplxPtr`. In line 15, dereferencing is used to access the value of the variable pointed at by pointer `cmplxPtr` and the value is directly assigned to variable `var2`. In lines 16 and 17, the dot notation is used to display the value of the components of `var2`. In lines 18 and 19, dereferencing is used to display the individual components of the structure pointed at by `cmplxPtr`.

```c
#include <stdio.h>
struct ComplexNum {
 double realpart;
 double imagpart;
};
int main () {
 struct ComplexNum var;
 struct ComplexNum var2;
 struct ComplexNum * cmplxPtr;

 var.realpart = 132.54; // value to component of var
 var.imagpart = 37.32;

 cmplxPtr = &var; /* cmplxPtr points now to var */
 var2 = *cmplxPtr; /* dereferencing pointer */
 printf("var2.real: %lf var2.imag: %lf \n", var2.realpart,
 var2.imagpart);
 printf("var.real: %lf var.imag: %lf \n",
 (*cmplxPtr).realpart, (*cmplxPtr).imagpart);
```
The following C language statements declare an array of pointers to `struct ComplexNum`, then assign the address of structure variable `var` to the third element of the pointer array `cmplxPtrArray`.

```c
struct ComplexNum* cmplxPtrArray[150];
```

```
cmplxPtrArray[2] = &var;
```

An alternate syntax can be used for dereferencing a pointer to a `struct`. The special characters `->` after the name of the pointer variable can access any of the fields in the `struct`. This is shown in the following two statements:

```
xr = cmplxPtr->realpart;
xi = cmplxPtr->imagpart;
```

One convenient feature of the C type syntax is that it avoids the circular definition problems which come up when a pointer structure needs to refer to itself. The following definition defines a `node` in a linked list. Note that no preparatory declaration of the node pointer type is necessary.

```c
struct mynode {
 int data1;
 double data2;
 struct mynode* next; /* to the next node */
};
```

**9.10 Defining Type Names**

C supports the definition of new types, which basically provides new shorthand names for types. The `typedef` statement is used defining types and the syntax is:

```
typedef (type) { type_name }
```

The following example defines the type name `ComplexType` as the name for the type `struct ComplexNum`.

```c
typedef struct ComplexNum ComplexType;
ComplexType var; // Declare variable var
```

The following is another example of applying `typedef`. A typical node in a linked list consists of the data components and a link component, which connects the current node to the next node. The type `NodePtr` is the type of the link component, `next`. 
typedef struct node* NodePtr;
struct node {
    int data1;
    double data2;
    NodePtr next;
};

9.11 Enumerated Types

Enumerated types are arithmetic types and they are used to define variables that can only be assigned certain discrete integer values. The type is defined by enumerating the allowed values in symbolic form. The symbol $F$ will have the value 0, $D$ value of 1, $C$ value of 2, $B$ value of 3, and $A$ value of 4.

```c
enum Lettergrade { F, D, C, B, A };
typedef enum Lettergrade Gradet;
Gradet grade;
grade = B;
```

In the following example, the first statement defines an enumerated type with name `boolean` that includes only two possible values 0 and 1. The symbolic name `False` has a value of 0 and the symbolic name `True` has a value of 1. The second statement defines the name `Bool` for the type `enum boolean`. The third line is a declaration of variable `flag` of type `Bool`. The fourth line is an assignment statement; the value `True` is assigned to variable `flag`.

```c
enum boolean {False, True};
typedef enum boolean Bool;
Bool flag;
flag = True;
```

Summary

Pointers allow a much more powerful and flexible manner to manipulate data structures. These data structures are mainly arrays and linked lists, which can handle large number of values in data collections.

There are several computational tasks that can only be performed with pointers,
such as dynamic memory allocation. Other computational tasks are performed more easily with pointers.

---

**Key Terms**

- declaring pointers
- dereferencing structures
- enumerated types
- initializing pointers
- reference parameter
- pointer to structures
- null pointer
- address of a variable
- dynamic memory allocation
- type renaming
- type conversion

---

**Exercises**

**Exercise 9.1**  Develop a C program with a function that declares two pointer parameters and an integer parameter. The function must compare the characters in the two strings pointed by the first two parameters and return 0 if the first $k$ (defined by the third parameter) characters of the strings are equal, otherwise the function returns the index value of the first character that does not match.

**Exercise 9.2**  Develop a C program with a function that declares two pointer parameters and an integer parameter. The function must copy the characters in the string pointed at by the first parameter to the second string. The function must copy the first $k$ (defined by the third parameter) characters of the strings.

**Exercise 9.3**  Using the structure previously defined, `struct ComplexNum`, develop a C program that performs complex addition, subtraction, multiplication, and division of the complex values of the elements of array $x$ with the complex values of the elements in array $y$. Include a function for each complex operation that returns a new array with the results.

**Exercise 9.4**  Apply the definition of the structure `invdef` and develop a C program that maintains inventory data in a warehouse in an array of structure data. The program must display the parts that have a number of units less than 5. The program must also compute the total (sales) value of the inventory.

```c
struct invdef {
 int partcode;
 int numunits;
 double price;
 char pdescription[31];
};
```
This page intentionally left blank
Chapter 10

Linked Lists

10.1 Introduction

A linked list is a data structure that consists of a sequence of data items of the same or similar types and each data item or node has one or more links to another node. This data structure is dynamic in the sense that the number of data items can change. A linked list can grow and shrink during the execution of the program that is manipulating it. Recall that an array is also a data structure that stores a collection of data items, but the array is static because once it is created, more elements cannot be added or removed.

This chapter discusses the basic forms of simple linked lists, double-ended linked lists, and multiple linked lists. The operations possible on linked lists and higher-level data structures, such as stacks and queues, implemented with linked lists are also discussed. Abstract data types (ADTs) are discussed and defined for queues and stacks.

10.2 Nodes and Linked List

A linked list is a sequence of nodes that are connected in some fashion. A node is a relatively smaller data structure that contains data and one or more links that are used to connect the node to one more other nodes. In graphical form, a node may be depicted as a box, which is divided into two types of components:

- A data block that stores one or more data components of some specified type.
- One or more link components that connect the node to other nodes.

Linked lists and arrays are considered low-level data structures. These are used to implement higher-level data structures. Examples of simple higher-level data structures are stacks and queues and each one exhibits a different behavior implemented by an appropriate algorithm. More advanced and complex higher-level data structures are priority queues, trees, graphs, sets, and others.
Introduction to Computational Modeling

Figure 10.1 shows a representation of a simple node. A linked list is a data structure that consists of a chain or sequence of nodes connected in some manner. The last node on a simple linked list has a link with value NULL. Figure 10.2 illustrates the general form of a simple linked list. Note that head pointer $H$ points to the first node (the head) of the linked list. The last node (Node 3 in Figure 10.2) has a link that points to a black dot to indicate that the link is pointing nowhere. When comparing linked lists with arrays, the main differences observed are:

- Linked lists are dynamic in size because they can grow and shrink; arrays are static in size.
- In linked lists, nodes are linked by references and based on many nodes; whereas, an array is a large block of memory with the elements located contiguously.
- The nodes in a linked list are referenced by relationship not by position; to find a data item, always start from the first item (no direct access). Recall that access to the elements in an array is carried out using an index.

Figure 10.2: A simple linked list.

10.2.1 Nodes

As mentioned previously, a simple node in a linked list has a data block and a link that connects it to another node. These nodes can be located anywhere in memory.
and do not have to be stored contiguously in memory. The following listing shows the C code with the definition of structure for a node and the definition of the types **NodeType** and **NodePtr**. The structure for the node includes a pointer **datablock** as the data component of the node.

```c
typedef struct node NodeType;
typedef NodeType * NodePtr;
struct node {
 DataT *datablock;
 NodePtr link;
};
```

A data block is another structure defined depending on the application with several variables, each of a different type. A program declares a variable of type **DataT** and assigns the values of each component of the data block. The following listing of C code illustrates this.

```c
typedef struct Datablock DataT;
struct Datablock { // data block type
 char name [31];
 int age;
 int jobcode;
};

DataT *pdata; // declare a pointer data block
pdata = malloc(sizeof(DataT));
strcpy(pdata->name, "Joseph Hunt");
pdata->age = 45;
pdata->jobcode = 6524;
```

To create a new node with the structure previously defined for a node, a pointer of type **NodePtr** is declared, dynamic memory allocation is performed for the size of the node, and its address is assigned to the pointer. The following lines of C statements declare a pointer **newPtr** of type **NodeType**, allocate memory for a new node, assign the address of the node to **newPtr**, and assign the value of the pointer **datablock** of the node.

```c
NodePtr newPtr;
newPtr = (NodePtr) malloc (sizeof(NodeType));
newPtr->datablock = pdata;
newPtr->link = NULL;
```

### 10.2.2 Manipulating Linked Lists

In addition to defining the data structure for the nodes, a set of operations is defined in order to create and manipulate the linked list. Some of the basic operations defined on a simple linked list are:
• Create an empty linked list
• Insert a new node at the front of the linked list
• Insert a new node at the back of the linked list
• Insert a new node at a specified position in the linked list
• Get a copy of the data in the node at the front of the linked list
• Get a copy of the data in the node at a specified position in the linked list
• Remove the node at the front of the linked list
• Remove the node at the back of the linked list
• Remove the node at a specified position in the linked list
• Traverse the list to display all the data in the nodes of the linked list
• Check whether the linked list is empty
• Check whether the linked list is full
• Find a node of the linked list that contains a specified data item

As mentioned previously, the pointer variable $H$ always points to the first node of the linked list. This node is also known as the head node because it is the front of the linked list. If the list is empty, then the value of $H$ is NULL. To create an empty list, all that is needed is the assignment:

```c
Nodeptr H;
int numnodes; // current number of nodes
H = NULL;
umnodes = 0;
```

To check if a list is empty, the value of the head pointer $H$ needs to be compared for equality with the constant value NULL.

```c
 if (H == NULL && numnodes == 0) . . .
```

A function can be defined with name isEmpty that checks whether the list is empty by examining the value of the head pointer $H$, which is a reference to the first node in the list. The value of this pointer has a value NULL when the list is empty.

To insert a new node as the first node of an empty linked list, then the head of the list should point to this node. Assuming that pointer variable newPtr points to a newly-created node, the following assignment statement inserts the node and it becomes the head of the linked list:
H = newPtr;

To insert a new node at the head of a *non-empty* linked list, the head pointer \( H \) is pointing at the current first node, so the value of \( H \) will be copied to the link component of the new node. The new value of the head pointer \( H \) will be value of the pointer to the new node. After creating and initializing a new node, the following statements insert the new node in the front of the linked list.

\[
\begin{align*}
\text{newPtr->link} &= H; \\
H &= \text{newPtr};
\end{align*}
\]

To remove and delete the node at the front of the linked list, the head pointer \( H \) will point to the second node. The node to be removed has to be destroyed after its data have been copied to another variable.

\[
\begin{align*}
\text{NodePtr cnodeptr;}
\text{cnodeptr} &= H; \quad // \text{pointer to current head node} \\
H &= H->\text{link}; \quad // \text{pointer to second node} \\
\text{pdata} &= \text{cnodeptr}\rightarrow\text{datablock}; \quad // \text{get data} \\
\text{free(cnodeptr);} \quad // \text{de-allocate memory, destroy node}
\end{align*}
\]

*Traversing* a linked list involves accessing every node in the list by following the links to the next node until the last node. Recall that the link of the last node is \( \text{NULL} \).

The following portion of code traverses a linked list to display the data of every node.

\[
\begin{align*}
\text{cnodeptr} &= H; \quad // \text{point to first node} \\
\text{while ( cnodeptr != NULL )} \{ \\
\quad \text{display_data (cnodeptr);} \quad // \text{display data of node} \\
\quad \text{cnodeptr} = \text{cnodeptr}\rightarrow\text{link} \quad // \text{point to next node}
\}
\end{align*}
\]

A node can be inserted to the linked list at the front, at the back, or in any other place specified. For a simple linked list, insertion at the front of the list is simpler. Function *insert_front* can be defined that creates a new node and inserts the new node to the front of the linked list. Figure 10.3 shows the insertion of a new node to the front of the list.

More flexibility is obtained by having the operation to insert a node at a specified position in the linked list. For example insert a new node after current node 2. Figure 10.4 illustrates changing the links so that a new node is inserted after node 2.

### 10.2.3 Example of Manipulating a Linked List

Listing 10.1 is the C source code of a program that includes a global data declaration that defines the structure of a node, pointer types of the node structure, and various functions that implement the operations discussed on a linked list. Function
main, which appears on lines 20 to 62 calls these functions to create and manipulate a linked list. The C source code of this program is stored in file datablistp.c. The C files that define the linked list structures and the function definitions are stored in linked.h and linked.c.

Listing 10.1: C program for creating and manipulating a linked list.

```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "basic_lib.h"
#include "linked.h"
```

```c
/* Program: datablistp.c
 * This program shows how to create nodes and various ways
to link them in a linked list using data blocks.
The linked list is implemented in library ’linked’.
J. M. Garrido Feb. 2013 */
```
Linked Lists

12 struct Datablock { // data block type
13     char name[31];
14     int age;
15     int jobcode;
16 }; 
17 DataT* make_dblock(char *name, int age, int jobcode);
18 void display_data(DataT *pdata);
19 void traverse_display();
20 int main() {
21     DataT *dblock;
22     create_list(); // create empty linked list
23     printf("Inserting data to front of list\n");
24     dblock = make_dblock("John Doe", 38, 1523);
25     insert_front(dblock);
26     dblock = make_dblock("Joseph Hunt", 59, 1783);
27     insert_front(dblock);
28     dblock = make_dblock("William Dash", 49, 2581);
29     insert_front(dblock);
30     traverse_display(); // display all blocks in list
31     printf("Removing front: ");
32     dblock = remove_front();
33     display_data(dblock);
34     free(dblock);
35     traverse_display();
36     dblock = make_dblock("David Winemaker", 48, 1854);
37     printf("Inserting to pos 2: ");
38     display_data(dblock);
39     insert_node(dblock, 2);
40     traverse_display();
41     dblock = make_dblock("Mary Washington", 54, 1457);
42     printf("Inserting 3: ");
43     display_data(dblock);
44     insert_node(dblock, 3);
45     traverse_display();
46     printf("Inserting front: ");
47     dblock = make_dblock("Ann Smith", 44, 1568);
48     display_data(dblock);
49     insert_front(dblock);
50     traverse_display();
51     printf("Removing 2: ");
52     dblock = remove_node(2);
53     display_data(dblock);
54     traverse_display();
55     free(dblock);
56     printf("Removing last node \n");
57     dblock = remove_last();
58     display_data(dblock);
59     traverse_display();
60     free(dblock);
61     return 0;
62 }
63 DataT* make_dblock(char *name, int age, int jobcode) {
64     DataT *ldatab;
65     ldatab = malloc(sizeof(DataT));
66     strcpy(ldatab->name, name);
67     ldatab->age = age;
68     ldatab->jobcode = jobcode;
return ldatab;
// display data block
void display_data(DataT *pblock) {
    printf("Data: %s %d %d \n", pblock->name,
    pblock->age, pblock->jobcode);
}
// display data block
void traverse_display () {
    printf("Traverse and display data in list\n");
    int i;
    DataT *lblock;
    if (numnodes <= 0 )
        return;
    lblock = get_front(); // get first data block
    display_data(lblock);
    for (i=2; i <= numnodes; i++) {
        lblock = get_next(); // get next data block
        display_data(lblock);
    }
}

The following listing includes the Linux shell commands to compile, link, and execute the program datablistp.c, and get the results produced.

$ gcc -Wall datablistp.c basic_lib.o linked.o
$ ./a.out
List all nodes in linked list
Data from node: William Dash 49 2581
Data from node: Joseph Hunt 59 1783
Data from node: John Doe 38 1523
Data removed front node: William Dash 49 2581
insert nodes at pos 2, 3, and front
List all nodes in linked list
Data from node: Ann Smith 44 1568
Data from node: Joseph Hunt 59 1783
Data from node: John Doe 38 1523
Data from node: David Winemaker 48 1854
Data from node: Mary Washington 54 1457
Data removed node 2: Joseph Hunt 59 1783
List all nodes in linked list
Data from node: Ann Smith 44 1568
Data from node: John Doe 38 1523
Data from node: David Winemaker 48 1854
Data from node: Mary Washington 54 1457
Removing last node
List all nodes in linked list
Data from node: Ann Smith 44 1568
Data from node: John Doe 38 1523
Data from node: David Winemaker 48 1854

10.2.4 Linked List as an Abstract Data Type

An abstract data type (ADT) is a concept used in software development that involves modularity, abstraction, and information hiding. An ADT is a collection of
data definitions and well-defined operations that allows programmers to apply the ADT without being concerned about the lower-level implementations. The programmers’ perceptions are at a high-level of abstraction and they should mainly understand the function specifications (function prototypes). The lower-level details, which are the function implementations (function definitions), will normally be hidden from the programmers.

In the case of a linked list, the possible operations on a linked list in the form of function prototypes are visible to all users so they can manipulate the linked list. In C, function prototypes are normally stored in header files. The various function implementations are stored in a separate file.

The program in this section that defines, creates, and manipulates a linked list is slightly more complex than the one in the previous section. The data definitions and the function prototypes of a linked list are stored in the header file linked2.h. The functions definitions (implementations) of a linked list are stored in file linked2.c. These two files (linked2.h and linked2.c) are examples of what is often referred to as a library of linked list definitions and function implementations for linked list.

The program that uses these definitions is stored in file datablistp2.c, which is a relatively short program because it is using a function library with pre-defined functions of a linked list. Note that the program creates two linked lists using the ADT defined in files linked2.h and linked2.c.

Listing 10.2: C program using linked list ADT library.

```c
/* Program: datablistp2.c
 This program illustrates using linked list ADTs.
 The linked list is implemented in library ’linked2’.
 J. M. Garrido Feb. 2013 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "basic_lib.h"
#include "linked2.h"

// typedef struct Datablock DataT; in ’linked.h’

struct Datablock { // data block type
 char name [31];
 int age;
 int jobcode;
};

DataT* make_dblock(char *nname, int nage, int njobcode);
void display_data (DataT *pdata);
void traverse_display(listT *plist);

int main() {
 DataT *dblock;
 listT alist; // a linked list
 listT blist; // another linked list
 listT *alistp = &alist;
 listT *blistp = &blist;
 create_list(alistp, 25, "ListA"); // create empty list
 create_list(blistp, 35, "ListB"); // create empty list
 printf("Inserting data to front of %s \n", alistp->lname);
 make_dblock("John", 25, 1); // create data
 display_data(alistp->data); // display data
 traverse_display(alistp); // traverse list
 create_list(alistp, 25, "ListA"); // create empty list
 create_list(blistp, 35, "ListB"); // create empty list
 printf("Inserting data to front of %s \n",alistp->lname);
 make_dblock("Jane", 30, 2); // create data
 display_data(blistp->data); // display data
 traverse_display(blistp); // traverse list
 return 0;
}
```
Introduction to Computational Modeling

dblock = make_dblock("John Doe", 38, 1523);
insert_front(alistp, dblock);
dblock = make_dblock("Joseph Hunt", 59, 1783);
insert_front(blistp, dblock);
dblock = make_dblock("William Dash", 49, 2581);
insert_front(alistp, dblock);
printf("Number of nodes in %s: %d
", 
alistp->lname, alistp->numnodes);
printf("Number of nodes in %s: %d
", blistp->lname, 
blistp->numnodes);
traverse_display(alistp); // display all blocks in alist
traverse_display(blistp); // display all blocks in blist
printf("Inserting to pos 2 %s: ", alistp->lname);
dblock = make_dblock("David Winemaker", 48, 1854);
display_data(dblock);
insert_node(alistp, dblock, 2);
traverse_display(alistp);
traverse_display(blistp);
dblock = make_dblock("Mary Washington", 54, 1457);
display_data(dblock);
insert_node(alistp, dblock, 3);
traverse_display(alistp);
traverse_display(blistp);
dblock = make_dblock("Ann Smith", 44, 1568);
display_data(dblock);
insert_front(alistp, dblock);
traverse_display(alistp);
printf("Remove 2 %s: ", alistp->lname);
dblock = remove_node(alistp, 2);
display_data(dblock);
traverse_display(alistp);
free(dblock);
printf("Removing last node %s ", alistp->lname);
dblock = remove_last(alistp);
display_data(dblock);
traverse_display(alistp);
printf("Number of nodes in %s: %d
", blistp->lname, 
blistp->numnodes);
traverse_display(blistp);
free(dblock);
return 0;
}

DataT* make_dblock(char *pname, int page, int pjobcode) {
    DataT * ldatab;
    ldatab = malloc(sizeof(DataT));
    strcpy(ldatab->name, pname);
    ldatab->age = page;
    ldatab->jobcode = pjobcode;
    display_data(ldatab);
    return ldatab;
In line 12 of the source program, a structure is defined as the data block that the program uses to store data. The required name of the structure is Datablock and the form of the structure may vary. Each of these data blocks will be stored in a node of the linked list by the appropriate functions in the linked list library. The name of the structure is used to define type DataT in the library. In lines 22 and 23, the program declares two linked lists; in lines 24 and 25 it declares and initializes pointers to these linked lists.

The following listing includes the Linux shell commands to compile, link, and execute the program datablistp2.c, and the results are produced. Note that the pre-compiled file linked2.o is linked with the program to produce the executable file.

```
$ gcc -Wall datablistp2.c linked2.o basic_lib.o
$./a.out
Inserting data to front of ListA
Data: John Doe 38 1523
Data: Joseph Hunt 59 1783
Number of nodes in ListA: 2
Number of nodes in ListB: 1
Traverse and display data in: ListA
Data: William Dash 49 2581
Traverse and display data in: ListB
Data: Joseph Hunt 59 1783
Removing front ListA: Data: William Dash 49 2581
Traverse and display data in: ListA
Data: John Doe 38 1523
Data: David Winemaker 48 1854
Inserting to pos 2 ListA: Data: David Winemaker 48 1854
Traverse and display data in: ListA
Data: John Doe 38 1523
Traverse and display data in: ListB
```

83 });
84 // display data block
85 void display_data(DataT *pblock) {
86   printf("Data: %s %d %d \n", pblock->name,
87       pblock->age, pblock->jobcode);
88 }
89 void traverse_display (listT *plist) {
90   printf("Traverse and display data: %s \n", plist->lname);
91   int i;
92   DataT *lblock;
93   if (plist->numnodes <= 0 )
94     return;
95   lblock = get_front(plist); // get first data block
96   display_data(lblock);
97   for (i=2; i <= plist->numnodes; i++) {
98     lblock = get_next(plist); // get next data block
99     display_data(lblock);
100   }
101 }
10.3 Linked List with Two Ends

The linked lists discussed previously have only one end, which points to the first node, and this pointer is also known as the head of the linked list. In addition to the head node, providing a pointer to the last node gives the linked list more flexibility. With two ends, a linked list has two pointers: a pointer to the first node $H$, the head or front of the list, and a pointer to the last node $T$, the tail of the linked list. Figure 10.5 illustrates a linked list with a head pointer $H$ and a tail pointer $T$.

With a pointer to the last node (the tail), in addition to the pointer to the first node (the head), the linked list now provides the ability to directly add a new node to the back of the linked list without traversing it from the front. In a similar manner, the last node of a linked list can be removed without traversing it from the front.
To create an empty linked list with two ends, two pointers have to be declared and initialized, the head and the tail of the list. The structure of a node used previously does not change for a linked list with two ends.

```c
NodePtr H = NULL; // head of list
NodePtr T = NULL; // tail of list
int numnodes = 0;
```

Linked lists with two ends are very useful and convenient for implementing higher-level data structures such as queues.

### 10.4 Double-Linked Lists

Linked lists that have nodes with only one link, a pointer to the next node, can only traverse the linked list in one direction, starting at the front and toward the tail of the list. To further enhance the flexibility of a linked list, a second link is included in the definition of the nodes. This second link is a pointer to the previous node. These linked lists are also known as doubly linked lists. Figure 10.6 illustrates the general form of a linked list with nodes that have two links: a pointer to the next node and a pointer to the previous node.

![Diagram of a linked list with two links per node.](image)

**FIGURE 10.6:** A linked list with two links per node.

The following listing of C statements defines a node type with two links, `next` that points to the next node in the linked list and `prev` that points to the previous node in the linked list. This is an example of a node structure with more than one link components, in addition to the data block.
typedef struct node NodeType;
typedef NodeType * NodePtr;
struct node {
  DataT datablock;
  NodePtr next; // pointer to next node
  NodePtr prev; // pointer to previous node
};

The linked list library linked3 defines double-linked lists with two ends. It is stored in files linked3.h and linked3.c. The following listing shows the C code in the header file of this library.

// double-linked list with two ends
typedef struct Datablock DataT;
typedef struct node NodeType;
typedef NodeType * NodePtrT;
struct node { // node type
  DataT * datablock;
  NodeType * next; // pointer to next node
  NodeType * prev; // pointer to previous node
};
//
typedef struct llist listT;
struct llist {
  NodePtrT H; // head of list
  NodePtrT T; // tail of list
  int numnodes;
  int maxnodes;
  NodePtrT current;
  char lname[30];
};
//
void create_list(listT *plist, int maxn, char *pname);
void insert_front (listT *plist, DataT *cdata);
DataT* remove_front(listT *plist);
void traverse_display (listT *plist);
Bool empty_list (listT *plist);
Bool full_list (listT *plist);
void insert_node(listT *plist, DataT *ndata, int pos);
void insert_last(listT *plist, DataT *ndata);
DataT* remove_node(listT *plist, int pos);
DataT* get_data(listT *plist, int pos);
DataT* get_front(listT *plist); // get data from first node
DataT* get_next(listT *plist); // copy data from next node
DataT* remove_last(listT *plist); // remove last node
int listSize(listT *plist);
10.5 Higher-level Data Structures

Higher-level data structures are those used directly in problem solving and can be implemented by lower-level data structures. This section discusses and describes the structure and operations of two simple and widely-known higher-level data structures: queues and stacks. These can be implemented with low-level data structures such as arrays and linked lists.

10.5.1 Stacks

A stack is a higher-level dynamic data structure that stores a collection of data items in a data block. The data in a stack may be a data block with variables of a simple type, pointers to data objects, or a combination of these. Each node in a stack includes a data block and one or more links.

A stack has only one end: the top of the stack. The main characteristics of a stack are:

- Data blocks can only be inserted at the top of the stack (TOS)
- Data blocks can only be removed from the top of the stack
- Data blocks are removed in reverse order from that in which they are inserted into the stack. A stack is also known as a last in and first out (LIFO) data structure.

![Figure 10.7: A stack as a dynamic data structure.](image-url)
Figure 10.7 illustrates the form of a stack. It shows the top of the stack as the insertion point and the removal point. The operations that manipulate a stack ADT are:

- **create_stack**, create an empty stack.
- **sEmpty**, returns true if the stack is empty; otherwise returns false.
- **sFull**, returns true if the stack is full; otherwise returns false.
- **top**, returns a copy of the data block at the top of the stack without removing the node from the stack.
- **pop**, removes the node from the top of the stack.
- **push**, inserts a new node to the top of the stack.
- **stackSize**, returns the number of nodes currently in the stack.

The most direct way to implement a stack is with a single-list linked list in which insertions and deletions are performed at the front of the linked list. The linked list library `linked2` already implemented is used to implement a stack library, which is stored in files `stack.h` and `stack.c`. Listing 10.3 shows the C source code of a program that uses the stack ADT in the library to create and manipulate data in a stack.

Listing 10.3: C program using an stack ADT library.

```c
/* Program: datastack.c
1 This program shows stack manipulation using data blocks.
2 The stack ADT library is implemented in `stack`
4 */
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include "basic_lib.h"
9 #include "stack.h"
10 #include "linked2.h"
11 // typedef struct Datablock DataT; in `linked2`
12 struct Datablock { // data block type
13 char name [31];
14 int age;
15 int jobcode;
16 };
17 DataT* make_dblock(char *nname, int nage, int njobcode);
18 void display_data(DataT *pdata);
19 int main() {
20 int nums;
21 DataT *dblock;
22 stackType mstacka;
23 stackType * stackp = &mstacka; // stack pointer
24 create_stack(stackp, 35, "stackA"); // create empty stack
25 printf("Push data into stack: ");
26 dblock = make_dblock("John Doe", 38, 1523);
```
Linked Lists

The following listing shows the Linux shell commands that compile, link, and execute the program. The results produced are also shown.

```c
$ gcc -Wall datastack.c basic_lib.o stack.o linked2.o
$./a.out
Push data into stack: Data: John Doe 38 1523
Push data into stack: Data: Joseph Hunt 59 1783
Push data into stackA: Data: William Dash 49 2581
Pop from stack: Data: William Dash 49 2581
Push into stack: Data: David Winemaker 48 1854
Size of stackA: 3
Pop from stack: Data: David Winemaker 48 1854
```
10.5.2 Queues

A queue is a dynamic data structure that stores a collection of data items or nodes and that has two ends: the head and the tail. The rules for basic behavior of a queue are:

- Data items can only be inserted at the tail of the queue
- Data items can only be removed from the head of the queue
- Data items must be removed in the same order as they were inserted into the queue. This data structure is also known as a first in and first out (FIFO) data structure.

Figure 10.8 illustrates the form of a queue. It shows the insertion point at the tail and the removal point at the head of the queue. The operations that manipulate a queue are:

- isEmpty, returns true if the queue is empty; otherwise returns false.
- isFull, returns true if the queue is full; otherwise returns false.
- copyHead, returns a copy of the data object at the head of the queue without removing the object from the queue.
- removeHead, removes the head item from the queue
- insertTail, inserts a new data item into the tail of the queue.
- queueSize, returns the number of data items currently in the queue.

Queues can be implemented with single-linked lists, but are more efficiently implemented with double-linked lists with two ends. The linked list library linked3 defines double-linked lists with two ends; it is stored in files linked3.h and linked3.c and is used mainly to implement queues.
Listing 10.4 shows the C source code of a program that creates a queue from a queue ADT library, which is stored in files queue.h and queue.c. The program is stored in file dataqueue.c.

Listing 10.4: C program using a queue ADT library.

```c
/* Program: dataqueue.c
This program shows stack manipulation using data blocks.
The stack is implemented in library 'stack'.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "basic_lib.h"
#include "queue.h"

// typedef struct Datablock DataT; in 'linked.h'
struct Datablock { // data block type
 char name [31];
 int age;
 int jobcode;
};

DataT* make_dblock(char *nname, int nage, int njobcode);
void display_data(DataT *pdata);

int main() {
 int nums;
 DataT *dblock;
 queueT mqueuea;
 queueT * queuep = &mqueuea; // queue pointer
 create_queue(queuep, 35, "queueA"); // create empty queue
 dblock = make_dblock("John Doe", 38, 1523);
 display_data(dblock);
 enqueue(queuep, dblock);
 dblock = make_dblock("Joseph Hunt", 59, 1783);
 display_data(dblock);
 enqueue(queuep, dblock);
 dblock = make_dblock("William Dash", 49, 2581);
 display_data(dblock);
 enqueue(queuep, dblock);
 nums = queueSize(queuep);
 printf("Queue size: %s %d
", queuep->lname, nums);
 printf("Copy Head data from queue: %s \n", queuep->lname);
 dblock = head(queuep);
 display_data(dblock);
 dblock = make_dblock("David Winemaker", 48, 1854);
 display_data(dblock);
 enqueue(queuep, dblock);
 nums = queueSize(queuep);
 printf("Size of queue: %s \n", nums);
 printf("Dequeue from queue: ");
 dblock = dequeue(queuep);
 display_data(dblock);
 free(dblock);
}```
The following listing shows the Linux shell commands that compile, link, and execute the program. The results produced by the program execution are also shown.

```
$ gcc -Wall dataqueue.c basic_lib.o queue.o linked3.o
$ ./a.out
Enqueue data: Data: John Doe 38 1523
Enqueue data: Data: Joseph Hunt 59 1783
Enqueue data: Data: William Dash 49 2581
Queue size: queueA 3
Copy Head data from queue: queueA
Data: John Doe 38 1523
Enqueue: Data: David Winemaker 48 1854
Size of queue: 4
Dequeue from queue: Data: John Doe 38 1523
```

Summary

Linked lists are dynamic data structures for storing a sequence of nodes. The data is part of the structure known as a node. After the list has been declared and created, it can grow or shrink by adding or removing nodes. Lists can have one or two ends. Each node may have one or more links. A link is a pointer to another node of the linked list. Abstract data types (ADTs) of higher-level data structures are implemented with linked lists. Queues and stacks are examples of higher-level data structures and can be implemented with arrays or by linked lists.
Exercises

Exercise 10.1 Design and implement in C a linked list in which each node represents a flight stop in a route to a destination. The data in each node is the airport code (an integer number). The airline can add or delete intermediate flight stops. It can also calculate and display the number of stops from the starting airport to the destination airport.

Exercise 10.2 The linked library for linked lists defines nodes with only one link and with only one end. Develop a stack library that uses double-linked lists with two ends. Develop a complete C program that creates and manipulates three stacks.

Exercise 10.3 The linked library for linked lists defines nodes with only one link and with only one end. Add a function that searches for a node with a given name and returns a copy of the data block. Develop a complete C program that uses the modified library.

Exercise 10.4 Develop a library that defines an array of \(N \) linked lists. This can be used if the linked list is used to implement a priority queue with \(N \) different priorities. A node will have an additional component, which is the priority defined by an integer variable. Develop a complete C program.
This page intentionally left blank
Chapter 11

Text Data

11.1 Introduction

In computational models, most of the data defined and manipulated is numerical in nature. This chapter presents text data also known as text strings. There is a significant number of string operators and functions that manipulate strings.

11.2 C Strings

An individual text symbol is also known as a text character. In C, a text character is of type `char` and a simple string is basically a sequence of text characters. A string is implemented as a one-dimensional array with the last character being a special character with value `\0` to mark the end of the string.

An individual text character is denoted by a text symbol enclosed in single quotes, and this can be assigned to a variable of type `char`. For example:

```c
char chvar;
chvar = 'g';
```

As mentioned previously, a string is declared as an array of type `char`. The size of the array must be sufficiently large to store the text string and the terminating `\0` character.

Figure 11.1 shows a string `Washington` by showing an array of characters (individual symbols of type `char`) of total size 13 although the array only has 11, including
the special '\0' character that indicates the end of the string. The following statement declares string variable *inst* and initializes it with string literal.

```c
```

Because a string is an array of characters, each individual character can be referenced using an index value. For example, the seventh character—the one with index value 6—is accessed by indicating 6 in brackets with the string variable *inst*. The result of this assignment statement is the character *t*.

```c
char chvar;
chvar = inst[6];
```

11.3 String Input and Output

The C programming language includes a standard library of functions that performs common string operations, including input/output of strings. The two string functions to input a string from the console and display string respectively are functions *gets()* and *puts()* . Input and output of strings can also be performed with functions *scanf()* and *printf*. Reading a string variable with function *scanf* can only take a word because when white space is encountered, function *scanf* terminates.

Listing 11.1 shows a C program with string input and output. This program is stored in file *string_io.c*.

Listing 11.1 C program with string input and output.

```c
/* Program: string_io.c
This program illustrates basic string I/O in C.
*/
#include <stdio.h>
int main() {
    char myarraya[20];
    char myarrayb[20];
    char inst[20] = "BW State University";
    printf("Inst: %s 
", inst);
    printf("Type string max 19 characters 
");
    gets(myarraya);
    printf("String a: %s\n", myarraya);
    puts(myarraya);
    printf("\nType another string (max 19 chars)\n");
    scanf("%s", myarrayb); /* no blank spaces */
    printf("String b: %s\n", myarrayb);
    return 0;
}
```
Lines 6 and 7 declare two string variables `myarraya` and `myarrayb`, each of size 20, that will store up to 19 text characters and the special \`\0\` character at the end to delimit the string. Line 8 declares and initializes string variable `inst`, also of size 20. Line 9 displays the value of string variable `inst`. For this, it uses the `%s` format. Line 11 reads a string including blank spaces from the console using function `gets`. Line 13 displays the string on the console screen using function `puts`. Line 15 reads the value of string variable `myarrayb` from the console using function `scanf`. Line 16 displays the string on the console screen using function `printf`. The following listing shows the commands to compile, link, and execute the program.

```bash
$ gcc -Wall string_io.c
$ ./a.out
Inst: BW State University
Type string max 19 characters
Kennesaw State U.
String a: Kennesaw State U.

Type another string (max 19 chars)
Columbus State U.
String b: Columbus
```

11.4 String Operations

There are several string functions available in the C standard function library. The function prototypes for the string functions are stored in header file `string.h`, which must be appended at the top of the C source file that uses string manipulation.

One of the most useful library functions is `strcpy` which copies the characters of one string to another. The order of the arguments of function `strcpy()` is the second string is assigned to the first one. Another useful string function is `strlen` which returns the number of characters in the specified C string excluding the trailing \`\0\`.

The following function list includes the function prototypes and a brief description of the most useful string manipulation functions.

```c
char *strcpy (char *dest, char *src)
    Copy source string `src` into the destination `dest` string.

char *strncpy(char *string1, char *string2, int n)
    Copy the first `n` characters of string `string2` to string `string1`.

int strcmp(char *string1, char *string2)
    Compare `string1` and `string2` to determine alphabetic order.

int strncmp(char *string1, char *string2, int n)
    Compare the first `n` characters of two strings.
```
11.5 Using the String Functions

The size of the string array can be found by calling function `strlen`. In the following example, the integer variable `slen` will have a value of 19 columns.

```c
char inst[20] = "BW State University";
int slen;
slen = strlen(inst);
```

String concatenation joins two strings. In the following example, the string variable `world` is appended to the end of string variable `hello`.

```c
char hello[20];
char world[20];
strcpy(hello, "Hello, there ");
strcpy(world, "World");
strcat(hello, world); /* world appended at end of hello */
```

A substring can be accessed by specifying the pointer relative to the beginning of the string that contains the substring. In the following example, a substring of a string `mlist` that starts at position `pos` and that contains `n` characters is to be copied to destination string `dest`.

```c
char *strchr(char *string, int c)
    Find first occurrence of character `c` in `string`.
char *strrchr(char *string, int c)
    Find last occurrence of character `c` in `string`.
char *strstr(char *string2, char *string1)
    Find first occurrence of string `string1` in `string2`.
char *strtok(char *s, const char *delim)
    Parse the string `s` into tokens using `delim` as delimiter.
Listing 11.2 shows the C source code of a program that illustrates the general use of several string functions. The program is stored in file: compstr.c.

Listing 11.2 C program with string operations.

```c
1 /* Program compstr.c
2 This program performs calls to various
3 string functions */
4 #include <string.h>
5 #include <stdio.h>
6 int main() {
7 char mystringa[25];
8 char mystringb[45];
9 char thirdstring[20];
10 int strflag;
11 int numchars;
12 strcpy(mystringa, "This is a C-string");
13 strcpy(mystringb, "Another C-string");
14 strflag = strcmp(mystringa, mystringb);
15 if (strflag != 0)
16 printf("Result: strings not equal \n");
17 numchars = strlen(mystringb);
18 printf("Number chars in second string: %d \n", numchars);
19 printf("\nType third string: ");
20 // scanf("%s", thirdstring);
21 gets(thirdstring);
22 printf("Third string: %s \n", thirdstring);
23 numchars = strlen(thirdstring);
24 printf("Number chars in third string: %d \n", numchars);
25 strcat(mystringb, thirdstring);
26 printf("Strings joined: %s \n", mystringb);
27 numchars = strlen(mystringb);
28 printf("Number chars in joined string: %d \n", numchars);
29 return 0;
```

The following listing shows the commands to compile, link, and execute the previous program. Then a sample execution of the program is also shown.
SUMMARY

Strings are sequences of text characters. They are implemented as one-dimensional arrays of type `char`. To refer to an individual character in a string, an integer value, known as the index, is used to indicate the relative position of the character in the string. The C programming language provides the programmer with a standard library of string functions. Several string functions have been shown in the examples presented.

**Key Terms**
- strings
- text character
- index
- char arrays
- char pointers
- C standard string library
- string pointers
- string functions
- substring

**Exercises**

**Exercise 11.1** Develop a C program that takes (as input) a string with a sequence of characters and complement the character sequence into a new string that it returns. This should be performed in such a way that any character ‘a’ is converted to a character ‘t’, any character ‘g’ is converted to character ‘c’, any character ‘t’ to character ‘a’, and any character ‘c’ to character ‘g’.

**Exercise 11.2** Develop a C function that converts the first character in a string to upper case, but only if the first character is a letter.
Exercise 11.3  Develop a C function that reverses the characters in a string and returns a new string.

Exercise 11.4  Develop a C function that finds the number of times a specified character occurs in a string.

Exercise 11.5  Develop a C function that finds the number of times a string (substring) occurs in a second string.

Exercise 11.6  Develop a C function that gets a substring of a string and returns the new string.

Exercise 11.7  Develop a C function that defines an array of strings. The program must read from the console the values of each string in the array, then display the string in the entire array.
This page intentionally left blank
Chapter 12

Computational Models with Arithmetic Growth

12.1 Introduction

Given a real-world problem, a mathematical model is defined and formulated then one or more techniques are used to implement this model in a computer to derive the corresponding computational model. This chapter presents an introduction to simple mathematical models that exhibit arithmetic growth and describes the overall behavior of simple mathematical and computational models. This includes definitions and explanations of several important concepts related to modeling.

Some of these concepts have been briefly introduced in preceding chapters. The derivation of difference and functional equations is explained; their use in mathematical modeling is illustrated with a few examples. A complete computational model implemented with the C programming language is presented and discussed.

12.2 Mathematical Modeling

The three types of methods that are used for modeling are:

1. Graphical
2. Numerical
3. Analytical

*Graphical* methods apply visualization of the data to help understand the data. Various types of graphs can be used; the most common one is the line graph.

*Numerical* methods directly manipulate the data of the problem to compute various quantities of interest, such as the average change of the population size in a year.

*Analytical* methods use various forms of relations and equations to allow computation of the various quantities of interest. For example, an equation can be derived that defines how to compute the population size for any given year. Each method has
its advantages and limitations. The three methods complement each other and are normally used in modeling.

12.2.1 Difference Equations

A data list that contains values ordered in some manner is known as a sequence. Typically, a sequence is used to represent ordered values of a property of interest in some real problem. Each of these values corresponds to a recorded measure at a specific point in time. In the example of population change over a period of five years, the ordered list will contain the value of the population size for every year. This type of data is discrete data and the expression for the ordered list can be written as:

\[ \langle p_1, p_2, p_3, p_4, p_5 \rangle \]

In this expression, \( p_1 \) is the value of the population of year 1, \( p_2 \) is the value of the population for year 2, \( p_5 \) is the value of the population for year 5, and so on. In this case, the length of the list is 5 because it has only five values, or terms.

Another example is the study of changes in electric energy price in a year in Georgia, given the average monthly price. Table 12.1 shows the values of average retail price of electricity for the state of Georgia.\(^1\) The data given corresponds to the price of electric power that has been recorded every month for the last 12 months. This is another example of discrete data. The data list is expressed mathematically as:

\[ \langle e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8, e_9, e_{10}, e_{11}, e_{12} \rangle \]

Given the data that has been recorded about a problem and that has been recorded in a list, simple assumptions can be made. One basic assumption is that the quantities in the list increase at a constant rate. This means the increment is assumed to be fixed. If the property is denoted by \( x \), the increment is denoted by \( \Delta x \), and the value of a term measured at a particular point in time is equal to the value of the preceding term and the increment added to it. This can be expressed as:

\[ x_n = x_{n-1} + \Delta x \quad (12.1) \]

Another assumption is that the values of \( x \) are actually always increasing, and not decreasing. This means that the increment is greater than zero, denoted by \( \Delta x \geq 0 \). At any point in time, the increment of \( x \) can be computed as the difference of two consecutive measures of \( x \) and has the value given by the expression:

\[ \Delta x = x_n - x_{n-1} \quad (12.2) \]

These last two mathematical expressions, Equation 12.1 and Equation 12.2, are

known as difference equations and are fundamental for the formulation of simple mathematical models. We can now derive a simple mathematical model for the monthly average price of electric energy, given the collection of monthly recorded energy price in cents per kW-h of the last 12 months. This model is formulated as:

\[ e_n = e_{n-1} + \Delta e \]

The initial value of energy price, prior to the first month of consumption, is denoted by \( e_0 \), and it normally corresponds to the energy price of a month from the previous year.

**TABLE 12.1:** Average price of electricity (cents per kW-h) in 2010.

<table>
<thead>
<tr>
<th>Month</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>10.22</td>
<td>10.36</td>
<td>10.49</td>
<td>10.60</td>
<td>10.68</td>
<td>10.80</td>
<td>10.88</td>
<td>10.94</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Sep</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>11.05</td>
<td>11.15</td>
<td>11.26</td>
<td>11.40</td>
</tr>
</tbody>
</table>

### 12.2.2 Functional Equations

A functional equation has the general form: \( y = f(x) \), where \( x \) is the independent variable, because for every value of \( x \), the function gives a corresponding value for \( y \). In this case, \( y \) is a function of \( x \).

An equation that gives the value of \( x_n \) at a particular point in time denoted by \( n \), without using the previous value, \( x_{n-1} \), is known as a functional equation. In this case the functional equation can also be expressed as: \( x = f(n) \). From the data given about a problem and from the difference equation(s), a functional equation can be derived. Using analytical methods, the following mathematical expression can be derived and is an example of a functional equation.

\[ x_n = (n - 1)\Delta x + x_1 \] (12.3)

This equation gives the value of the element \( x_n \) as a function of \( n \). In other words, the value \( x_n \) can be computed given the value of \( n \). The value of \( \Delta x \) has already been computed. The initial value of variable \( x \) is denoted by \( x_1 \) and is given in the problem by the first element in the sequence \( x \).
12.3 Models with Arithmetic Growth

Arithmetic growth models are the simplest type of mathematical models. These models have a linear relationship in the variable because the values of the variable increase by equal amounts over equal time intervals. Using $x$ as the variable, the increase is represented by $\Delta x$, and the difference equation defined in Equation 12.1:

$$x_n = x_{n-1} + \Delta x$$

Examples are time dependent models, in which a selected property is represented by a variable that changes over time.

From the given data of a real problem, to decide if the model of the problem will exhibit arithmetic growth, the given data must be processed by computing the differences of all consecutive values in the data. The differences thus consist of another list of values. If the differences are all equal, then the model exhibits arithmetic growth, and therefore it is a linear model.

Equation 12.1 and the simplifying assumption of constant growth can be applied to a wide variety of real problems, such as: population growth, monthly price changes of electric energy, yearly oil consumption, and spread of disease.

Using graphical methods, a line chart or a bar chart can be constructed to produce a visual representation of the changes in time of the variable $x$. Using numerical methods, given the initial value $x_0$ and once the increase $\Delta x$ in the property $x$ has been derived, successive values of $x$ can be calculated using Equation 12.1. As mentioned before, with analytical methods, a functional equation can be derived that would allow the direct calculation of variable $x_n$ at any of the $n$ points in time that are included in the data list given. This equation is defined in Equation 12.3:

$$x_n = x_1 + \Delta x (n - 1)$$

12.4 Using the C Programming Language

The external C library `basic.lib` includes two functions that are needed to implement computational models with arithmetic growth. These functions are: `diff` and `linspace`. The first function, `diff` computes the differences of a vector (sequence) of data values given.

Calling the `diff` function requires two arguments. The first argument is the specified vector, the second argument is the size of the vector. The function produces another vector that has the values of the differences of the values in the given vector.
double e[10] = {1.25, 2.15, 4.55, 3.2, 1.05, 2.45, 3.85, 1.15, 2.75, 3.55};
double *de; /* vector with the computed differences */
int n;
n = 10; /* size of vector e */
de = diff(e, n);

The differences computed in vector e are:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.9000</td>
<td>2.4000</td>
<td>-1.3500</td>
<td>-2.1500</td>
<td>1.4000</td>
<td>1.4000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-2.7000</td>
</tr>
<tr>
<td>1.6000</td>
<td>0.8000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Listing 12.1 shows the C program that computes the differences and the approximate price of electricity for 12 months. The array for the monthly price is denoted by e, and the array for months is denoted by m. The array of differences is denoted by de and is computed in line 27 of the program. The data is taken from Table 12.1.

In the problem under study, the number of measurements is the total number of months, denoted by n and has a value of 12. To compute the average value of the increments in price of electric energy in the year we can use the general expression for calculating average:

\[
\Delta e = \frac{1}{n} \sum_{i=1}^{n} de_i
\]

Computing the average is implemented in C, with the \texttt{mean(v)} library function that computes the average of the values in a vector. Using \texttt{d} to denote the average increment \(\Delta e\), the following statement in C illustrates this and is included in line 31 of the C program.

\texttt{d = mean(de, N-1)}

Listing 12.1: C program for computing the differences in price of electricity.
15 double deltax;  /* average difference */
16 int j;
17
18 printf("Monthly price of electricity\n");
19 m[0] = 1;
20 for (j = 1; j < N; j++)
21 m[j] = m[j-1] + 1;
22 /* Array Monthly price for electric energy */
23 for (j = 0; j < N; j++)
24 printf("%lf ", e[j]);
25 /* differences in sequence e */
26 printf("\nDifferences of the given data\n");
27 de = diff (e, N);
28 for (j = 0; j < N-1; j++)
29 printf("%f ", de[j]);
30 /* average of increments */
31 deltax = mean(de, N-1);
32 printf("\nAverage difference: %lf \n", deltax);
33 /* Calculating price of electric energy */
34 c[0] = e[0];
35 for (j = 1; j < N; j++)
36 c[j] = deltax * j + e[0];
37 printf("\nCalculated prices of elect: \n");
38 for (j = 0; j < N; j++)
39 printf("%f ", c[j]);
40 printf("\n\n\nData for Plotting\n");
41 for (j = 0; j < N; j++)
42 printf("%d %lf %lf \n", m[j], e[j], c[j]);
43 return 0;
44 }

With the value of average increment of price of electricity, the functional equation of the model can be applied to compute the price of electric energy for any month. The new array, c, is defined and contains all the values computed using the functional equation and the average value of the increments. This is shown in lines 34–36 of the C program.

The following listing shows the commands and results after compiling, linking and executing the C program.

```
$ gcc -Wall priceelect.c basic_lib.o
$./a.out > priceelect.lst
Monthly price of electricity
11.150 11.260 11.400
Differences of the given data
0.140 0.130 0.110 0.080 0.120 0.080 0.060 0.110 0.100 0.110 0.140
Average difference: 0.107273
Calculated prices of elect:
10.970909 11.078182 11.185455 11.292727 11.400
```
12.5 Producing the Charts of the Model

Two lists of values for the price of electric energy are available as arrays. The first one is the data given with the problem and is denoted by \( e \), the second list was computed in the C program using the functional equation for all 12 months, and the list is denoted by \( c \). The array with data representing the months of the year is denoted by \( m \).

Gnuplot is used to produce charts with these three data lists or arrays. Two line charts are generated on the same plot, one line chart of array \( e \) with array \( m \), the second chart using array \( c \) and array \( m \). The Gnuplot commands that create and draw the charts are stored in the script file: `priceelect.cgp` and are shown as follows:

```plaintext
set title "Plot of Monthly Price of Electricity vs Time"
set xlabel "Time (secs)"
set ylabel "Monthly price of electricity"
set size 1.0, 1.0
set samples 12
plot "priceelect.gpl" u 1:2 with linespoints, "priceelect.gpl" u 1:3 with linespoints
```

Figure 12.1 shows the line chart with the original data given in Table 12.1 and the line with computed values of the monthly price of electricity.

![Figure 12.1: Given and computed values of monthly price of electric energy.](image)
12.6 Validation of a Model

Validation of a model is the analysis that compares the values computed with the model with the actual values given. For example, starting with the first value of the monthly consumption of electric energy, the model is used to compute the rest of the monthly values of consumption. These values can then be compared to the values given.

If the corresponding values are close enough, the model is considered a reasonable approximation to the real system.

Summary

Several basic concepts of mathematical models are presented. A computational model is a computer implementation of a mathematical model. Making simplifying assumptions and using abstraction are important steps in formulating a mathematical model. This involves a transition from the real world to the abstract world. Simple mathematical techniques such as difference equations and functional equations are used. With arithmetic growth models, the values of the differences of the data is constant. The difference and functional equations for these models are linear.

<table>
<thead>
<tr>
<th>Key Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>arithmetic growth</td>
</tr>
<tr>
<td>numerical methods</td>
</tr>
<tr>
<td>data list</td>
</tr>
<tr>
<td>differences</td>
</tr>
<tr>
<td>difference equations</td>
</tr>
<tr>
<td>mathematical methods</td>
</tr>
<tr>
<td>analytical methods</td>
</tr>
<tr>
<td>ordered list</td>
</tr>
<tr>
<td>average difference</td>
</tr>
<tr>
<td>functional equations</td>
</tr>
<tr>
<td>graphical methods</td>
</tr>
<tr>
<td>discrete data</td>
</tr>
<tr>
<td>sequence</td>
</tr>
<tr>
<td>linear models</td>
</tr>
<tr>
<td>model validation</td>
</tr>
</tbody>
</table>

Exercises

Exercise 12.1 Construct a line chart of the data list in Table 12.1 and discuss how the price of electric energy changes in a specified period.

Exercise 12.2 Construct a bar chart of the data list in Table 12.1 and discuss how the price of electric energy changes in a specified period.
Exercise 12.3  Formulate a mathematical model based on a difference equation of the data list in Table 12.1.

Exercise 12.4  Develop a C program that uses the data in Table 12.1 to compute the average increase in price of electric energy per month from Equation 12.1 and/or Equation 12.2. Start with the second month, calculate the price for the rest of the months. Discuss the difference between the data in the table and the corresponding values calculated.

Exercise 12.5  Develop a C program that uses the data from a different problem to compute the differences and decide whether the model of the problem exhibits arithmetic growth.
Chapter 13

Computational Models with Quadratic Growth

13.1 Introduction

A computational model with quadratic growth is one in which the differences in the data are not constant but growing in some regular manner. Recall that with arithmetic growth these differences are constant. This chapter presents an introduction to computational models in which the differences in the data follow a pattern of arithmetic growth.

This chapter explains the computation of difference and functional equations; their use in the mathematical model is illustrated with a few examples. A complete computational model implemented with the C programming language is presented and discussed.

13.2 Differences of the Data

The data values in a quadratic growth model do not increase (or decrease) by a constant amount. With quadratic growth, the differences of the data change linearly. The differences of the differences, known as the second differences, are constant.

The data in a problem is used to set up an ordered list of values, or sequence. This type of list is denoted as follows:

\[ \langle p_1, p_2, p_3, p_4, p_5 \rangle \]

The following is an example of a data list given in a generic problem and Figure 13.1 shows the graph of these values.

\[ S = \langle 6.5, 10.5, 17.5, 27.5, 40.5, 56.5, 75.5, 97.5, 122.5 \rangle \]

The differences of these values is another sequence, \( D \), that can be derived and
represents the differences of the values in sequence $S$. The values in $D$ are the increases (or decreases) of the values in the first sequence, $S$.

$$D = \langle 4.0, 7.0, 10.0, 13.0, 16.0, 19.0, 22.0, 25.0 \rangle$$

The increases of the values of the differences, $D$, appear to change linearly and follow an arithmetic growth pattern; this is an important property of quadratic growth models. Figure 13.2 shows the graph with the data of the first differences.

The C program that declares the arrays for the data sequences in the problem, their differences, their second differences is stored in file: differences.c.

Listing 13.1 shows the source code of this C program. Note that the first differences are computed in line 28 and the second differences are computed in line 32. As mentioned in the previous chapter, the differences are computed by calling function `diff()`, which is in the `basic_lib` library.

Listing 13.1: Program that computes the first and second differences.
Computational Models with Quadratic Growth

FIGURE 13.2: Plot of first differences

```c
int j;
/* Array with original data sequence */
double s[] = {6.5, 10.5, 17.5, 27.5, 40.5, 56.5, 75.5, 97.5, 122.5};
double *d; /* first differences */
double *d2; /* second differences */
x[0] = 1;
for (j = 1; j < N; j++)
 x[j] = x[j-1] + 1;
/* Array with problem data */
printf("Data sequence \n");
for (j = 0; j < N; j++)
 printf("%lf ", s[j]);
/* Compute first differences in sequence e */
d = diff(s, N);
for (j = 0; j < N-1; j++)
 printf("%f ", d[j]);
/* Compute first differences in sequence e */
d2 = diff(d, N-1);
printf("\nFirst Differences of the given data\n");
for (j = 0; j < N-1; j++)
 printf("%f ", d2[j]);
/* Compute differences of the differences */
for (j = 0; j < N-2; j++)
 printf("%f ", d2[j]);
printf("\nData for Plotting\n");
for (j = 0; j < N; j++)
 printf("%d %lf \n", x[j], s[j]);
printf("\nData of differences for plotting\n");
for (j = 0; j < N-1; j++)
 printf("%d %lf \n", x[j], d[j]);
return 0;
```

![Plot of first differences](image)
The following listing shows the shell commands on Linux to compile, link, and execute the C program. The output produced by the execution of the program shows the data given by the problem, the first differences, and the second differences.

```
$ gcc -Wall differences.c basic_lib.o
$./a.out

Data sequence
6.500 10.500 17.500 27.500 40.500 56.500 75.500 97.500 122.500

First Differences of the given data
4.000 7.000 10.000 13.000 16.000 19.000 22.000 25.000

Second differences
3.000 3.000 3.000 3.000 3.000 3.000 3.000
```

In the example, the second differences are constant, all have value 3.0. This is another important property of quadratic growth models.

### 13.3 Difference Equations

An ordered data list or sequence is used to represent ordered values of a property of interest in some real problem. Each of these values can correspond to a recorded measure at a specific point in time. The expression for the values in a sequence, $S$, with $n$ values can be written as:

$$ S = \langle s_1, s_2, s_3, s_4, s_5 \ldots s_n \rangle $$

In a similar manner, the expression for the values in the differences, $D$, with $m$ values and with $m = n - 1$, can be written as:

$$ D = \langle d_1, d_2, d_3, d_4, d_5 \ldots d_m \rangle $$

Because the values in the sequence of second differences are all the same, the value is denoted by $dd$, and computed simply as $dd = d_n - d_{n-1}$.

To formulate the difference equation, the value of a term, $s_{n+1}$ in the sequence is computed with the value of the preceding term $s_n$ plus the first term of the differences $d_1$, plus the single value $dd$ of the second differences added to it times $n - 1$. This equation, which is the difference equation for quadratic growth models, can be expressed as:

$$ s_{n+1} = s_n + d_1 + dd \ (n - 1) $$ (13.1)
13.4 Functional Equations

An equation that gives the value of a term $x_n$ without using consecutive values (the previous value, $x_{n-1}$ or the next value, $x_{n+1}$), is known as a functional equation. The difference equation for quadratic growth models, Equation 13.1 can be rewritten as:

$$s_n = s_{n-1} + d_1 + dd (n-2)$$  \hspace{1cm} (13.2)

Equation 13.2 can be manipulated by substituting $s_{n-1}$ for its difference equation, and continuing this procedure until $s_1$. In this manner, a functional equation can be derived. The following mathematical expression is a general functional equation for quadratic growth models.

$$s_n = s_1 + d_1 (n-1) + dd (n-2)n/2$$  \hspace{1cm} (13.3)

Equation 13.3 gives the value $s_n$ as a function of $n$ for a quadratic growth model. The value of the first term of the original sequence is denoted by $s_1$, the value of the first term of the differences is denoted by $d_1$, and the single value, $dd$, is the second differences.

13.5 Examples of Quadratic Models

Equation 13.1 and Equation 13.3 represent mathematical models of quadratic growth models. These can be applied to a wide variety of real problems, such as: computer networks, airline routes, roads and highways, and telephone networks. In these models, the first differences increase in a linear manner (arithmetic growth), as the two examples discussed in previous sections of this chapter. Other models with quadratic growth involve addition of ordered values from several sequences that exhibit arithmetic growth.

13.5.1 Growth of Number of Patients

Statistical data maintained by a county with several hospitals include the number of patients every year. Table 13.1 gives the data of the number of patients in the years from 1995 to 2002, and their increases. Figure 13.3 shows the graph for the number of patients in the hospital by year from 1995 through 2002. It can be observed that the number of patients from 1995 through 2002 does not follow a straight line; it is not linear.

Table 13.1 shows that the number of patients increases every year by a constant

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>5,500</td>
<td>8,500</td>
<td>13,500</td>
<td>20,500</td>
<td>29,500</td>
<td>40,500</td>
</tr>
<tr>
<td>Increase</td>
<td>0</td>
<td>3,000</td>
<td>5,000</td>
<td>7,000</td>
<td>9,000</td>
<td>11,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>53,500</td>
<td>68,500</td>
</tr>
<tr>
<td>Increase</td>
<td>13,000</td>
<td>15,000</td>
</tr>
</tbody>
</table>


number. The differences in the number of patients from year to year increase in a regular pattern, in a linear manner. This implies that the increases of the number of patients follow an arithmetic growth.

Computing the first and second differences of the data for this problem is similar to the one already discussed.

13.5.2 Growth of Computer Networks

The following example represents a simple network that connects computers directly to each other and a number of links is necessary for the direct connection between computers. To connect two computers, 1 single link is needed. To connect 3 computers, 3 links are needed. To connect 4 computers, 6 links are needed.

It can be noted that as the number of computers increases, the number of links increases in some pattern. To connect 5 computers, 4 new links are needed to connect
the new computer to the 4 computers already connected. This gives a total of 10 links. To connect 6 computers, 5 new links are needed to connect the new computer to the 5 computers that are already connected, a total of 15 links.

Let \( L_n \) denote the number of links needed to connect \( n \) computers. The difference equation for the number of links can be expressed as:

\[
L_n = L_{n-1} + (n-1)
\]

This equation has the same form as the general difference equation for quadratic growth, Equation 13.2. The parameters are set as: \( d_1 = 0 \) and \( d_{dd} = 1 \).

Using the expression for the difference equation for \( L_n \), the following C program is used to construct the data sequence for \( L \) for \( n \) varying from 1 to 50. The source code is stored in the file links.c and is shown in Listing 13.2.

By executing the program, all the terms in the sequence \( L \) are computed and the results are used to produce a chart using GnuPlot. Figure 13.4 shows the graph of the number of links needed to connect \( n \) computers.

Listing 13.2: C source program that computes the number of links.

```c
1 /*
2 Program: links.c
3 C program computes the number of links needed
4 to connect n computers
5 J. M. Garrido, January 2013.
6 */
7 #include <stdio.h>
8 int main() {
9 const int M = 50; // limit on number of computers
10 int j;
11 int n[M]; // number of computers
12 int links[M]; // links
13 printf("Links of computer network\n");
14
15 n[0] = 1;
16 for (j = 1; j < M; j++)
17 n[j] = n[j-1] + 1;
18 links[0] = 0;
19 // compute the links as n varies from 2 to m
20 for (j=1; j < M; j++)
21 links[j] = links[j-1] + (j-1);
22 // data for plot
23 printf("Number of computers number of links\n");
24 for (j=0; j < M; j++)
25 printf(" %d %d \n", n[j], links[j]);
26 return 0;
27 }
```

From the general functional equation, Equation 13.3, the functional equation for the network problem discussed can be expressed as:

\[
L_{n+1} = L_1 + (n+1)n/2
\]
Notice that $L_1$ is always zero ($L_1 = 0$) because no link is necessary when there is only one computer ($n = 1$).

\[ L_n = n(n - 1)/2 \]

### 13.5.3 Models with Sums of Arithmetic Growth

A variety of models have data about a property that follows an arithmetic growth pattern. The summation or running totals of the data of this property is also important. The following example will illustrate this concept.

A county maintains data about the cable installations for multi-purpose services, such as TV, phones, Internet access and others. The data include new cable installations (in thousands) per year and the total number of cable installations per year. This data is shown in Table 13.2.

#### TABLE 13.2: Number of cable installations for years 1995–2002.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New</td>
<td>1.5</td>
<td>1.9</td>
<td>2.3</td>
<td>2.7</td>
<td>3.1</td>
<td>3.5</td>
<td>3.9</td>
<td>4.3</td>
</tr>
<tr>
<td>Sum</td>
<td>1.5</td>
<td>3.4</td>
<td>5.7</td>
<td>8.4</td>
<td>11.5</td>
<td>15.0</td>
<td>18.9</td>
<td>25.2</td>
</tr>
</tbody>
</table>

For this type of data, the general principle is that the new cable installations
follow an arithmetic growth pattern, and the summations of the cable installations follow a quadratic growth pattern. Two sequences are needed: \( a \) for the new cable installations, and \( b \) for the sums of cable installations.

\[
a = \langle a_1, a_2, a_3, a_4, a_5 \ldots a_n \rangle \quad b = \langle b_1, b_2, b_3, b_4, b_5 \ldots b_n \rangle
\]

To develop a difference equation and a functional equation of the sums of cable installations, a relation of the two sequences, \( a \) and \( b \), needs to be expressed.

It can be observed from the data in Table 13.2 that the data in sequence \( a \) follows an arithmetic growth pattern. The difference equation for \( a \) can be expressed as:

\[
a_n = a_{n-1} + \Delta a, \quad \Delta a = 400, \quad n = 2 \ldots m
\]

The functional equation for \( a \) can be expressed as:

\[
a_n = 1500 + 400(n - 1)
\]

It can also be observed from the data in Table 13.2 that the data in sequence \( b \) is related to the data in sequence \( a \). The difference equation for sequence \( b \) is expressed as:

\[
b_n = b_{n-1} + a_n, \quad n = 2 \ldots m
\]

Substituting \( a_n \) for the expression in its functional equation and using the general functional equation for quadratic growth, Equation 13.3:

\[
b_n = b_1 + d_1(n - 1) + d d((n - 2)n)/2
\]

Finally, the functional equation for the sequence \( b \) is expressed as:

\[
b_n = 1500 + 1900n + 400(n - 1)n/2
\]

**Summary**

This chapter presented some basic concepts of quadratic growth in mathematical models. Simple mathematical techniques such as difference equations and functional
equations are used in the study of models with quadratic growth. In these models the increases follow an arithmetic growth pattern; the second differences are constants. The most important difference with models with arithmetic growth is that the increases cannot be represented by a straight line, as with arithmetic models. The functional equation of quadratic growth is basically a second degree equation, also known as a quadratic equation.

### Key Terms

- quadratic growth
- second differences
- non-linear representation
- network problems
- differences
- summation
- quadratic equation
- roots
- coefficients

### Exercises

**Exercise 13.1** On a typical spring day, the temperature varies according to the data recorded in Table 13.3. Develop a C program to compute first and second differences. Formulate the difference equations and functional equations for the temperature. Is this discrete or continuous data? Discuss.

<table>
<thead>
<tr>
<th>Time</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. ($^\circ F$)</td>
<td>51</td>
<td>56</td>
<td>60</td>
<td>65</td>
<td>73</td>
<td>78</td>
<td>85</td>
<td>86</td>
<td>84</td>
<td>81</td>
<td>80</td>
<td>70</td>
</tr>
</tbody>
</table>

**Exercise 13.2** Develop a C program to compute first and second differences. Produce line chart of the data list in Table 13.1. Discuss how the number of patients changes in a specified period.

**Exercise 13.3** Formulate a mathematical model based on a difference equation of a modified computer network problem similar to one discussed in this chapter. There are three servers and several client computers connected via communication links. All connections between pairs of clients require two links. The connection between servers also requires two links. Use the concepts and principles explained in this chapter to derive an equation for the number of links.
**Exercise 13.4**  Formulate a mathematical model based on a functional equation of a modified computer network problem similar to one discussed in this chapter. There are three servers and several client computers connected via communication links. All connections between pairs of clients require two links. The connection between servers also requires two links. Use the concepts and principles explained in this chapter to derive an equation for the number of links.

**Exercise 13.5**  Formulate a mathematical model based on a functional equation of a modified computer network problem similar to one discussed in this chapter. There are $K$ servers and several client computers connected via communication links. All connections between pairs of clients require two links. The connection of a server to the other $K-1$ servers requires a single link. Use the concepts and principles explained in this chapter to derive an equation for the number of links.
This page intentionally left blank
Chapter 14

Models with Geometric Growth

14.1 Introduction

This chapter presents an introduction to computational models in which the data follow a pattern of geometric growth. In such models, the data exhibit growth in such a way that in equal intervals of time, the data increase by an equal percentage or factor.

The difference and functional equations in models with geometric growth are explained; their use in mathematical modeling is illustrated with a few examples. Several computational models implemented with C and the basic_lib library are presented and discussed.

14.2 Basic Concepts

The data in the sequence represent some relevant property of the model and are expressed as a variable $s$. An individual value of variable $s$ is known as a term in the sequence and is denoted by $s_n$. A sequence with $m$ data values or terms, is written as follows:

$$\langle s_1, s_2, s_3, s_4, s_5, \ldots, s_m \rangle$$

In models with geometric growth, the data increase (or decrease) by an equal percentage or growth factor in equal intervals of time. The difference equation that represents the pattern of geometric growth has the general form:

$$s_{n+1} = c \cdot s_n \quad (14.1)$$

In Equation 14.1, the parameter $c$ is constant and represents the growth factor, and $n$ identifies an individual value such that $n \leq m$. With geometric growth, the data increases or decreases by a fixed factor in equal intervals.
14.2.1 Increasing Data

The data in a sequence will successively increase in value when the value of the growth factor is greater than 1. For example, consider a data sequence that exhibits geometric growth with a growth factor of 1.45 and a starting value of 50.0. The sequence with 8 terms is:

\[(50.0, 72.5, 105.125, 152.43, 221.02, 320.48, 464.70, 673.82)\]

Figure 14.1 shows a graph of the data with geometric growth. Note that the data increases rapidly.

14.2.2 Decreasing Data

The data in a sequence will successively decrease in value when the value of the growth factor is less than 1. For example, consider a data sequence that exhibits geometric growth with a growth factor of 0.65 and a starting value of 850.0. The sequence with 10 terms is:

\[(850.0, 552.5, 359.125, 233.43, 151.73, 98.62, 64.10, 41.66, 27.08, 17.60)\]

Figure 14.2 shows a graph of the data with geometric growth. Note that the data decreases rapidly because the growth factor is less than 1.0.
Models with Geometric Growth

14.2.3 Case Study 1

The population of a small town is recorded every year; the increases per year are shown in Table 14.1, which gives the data about the population during the years from 1995 to 2003. The table also shows the population growth factor.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop.</td>
<td>81</td>
<td>90</td>
<td>130</td>
<td>175</td>
<td>206</td>
<td>255</td>
<td>288</td>
<td>394</td>
<td>520</td>
</tr>
<tr>
<td>Fac.</td>
<td>-</td>
<td>1.111</td>
<td>1.444</td>
<td>1.346</td>
<td>1.177</td>
<td>1.237</td>
<td>1.129</td>
<td>1.368</td>
<td>1.319</td>
</tr>
</tbody>
</table>

Note that although the growth factors are not equal, the data can be considered to grow in a geometric pattern. The values of the growth factor shown in the table are sufficiently close and the average growth factor calculated is $1.2667$.

The following computational tasks are performed: (1) create the data lists (arrays) of the sequence $s$ with the values of the original data in Table 14.1; (2) compute the average growth factor from the data in the table; (3) compute the values of a second data list $y$ using $1.267$ as the average growth factor and the difference equation $y_{n+1} = 1.267 \cdot y_n$, and (4) plot the graphs.

The C program that performs these tasks is stored in file: popstown.c. When the program executes, the following listing is produced.
Program to compute average growth factor
Given data of population per year
1995 81.000000 1996 90.000000
1997 130.000000 1998 175.000000
1999 206.000000 2000 255.000000
2001 288.000000 2002 394.000000
2003 520.000000

Factors in array s:
1.111111 1.444444 1.346154 1.177143 1.237864 1.129412 1.368056
1.319797

Mean factor: 1.266748
1995 81.000000
1996 102.606554
1997 129.976603
1998 164.647547
1999 208.566881
2000 264.201591
2001 334.676725
2002 423.950931
2003 537.038814

Figure 14.3 shows a graph with two curves; one with the population in the town by year from 1995 through 2003 taken directly from Table 14.1. The other curve shown in the graph of Figure 14.3 is the computed data applying Equation 14.1 with 1.267 as the growth factor, using the difference equation \( s_{n+1} = 1.267 s_n \).

Listing 14.1 shows the C source code of the program file: popstown.c. The factors of the population data are computed in line 24 and average growth factor is computed in line 28 of the program. The computed data is calculated in lines 31–32.

Listing 14.1: C program that computes the population average growth factor.

```c
1 /* program: popstown.c
2 This program computes the growth factor of the population per year.
3 J Garrido 11-2-2012
4 */
5
6 #include <stdio.h>
7 #include <math.h>
8 #include "basic_lib.h"
9
10 int main() {
11 const int N = 9;
12 double s[] = {81.0, 90.0, 130.0, 175.0, 206.0, 255.0, 288.0, 394.0, 520.0};
14 double cs[N]; /* computed values */
15 double * f; /* pointer for array of factors
16 double meanv;
```
17 int n;
18 int j;
19 printf("Program to compute average growth factor\n\n");
20 n = N;
21 printf("Given data of population per year\n");
22 for (j = 0; j < N; j++)
23 printf("%d %f \n", x[j], s[j]);
24 f = factor(s, n);
25 printf("Factors in array s: \n");
26 for (j = 0; j < N-1; j++)
27 printf("%f ", f[j]);
28 meanv = mean(f, n-1);
29 printf("\n\nMean factor: %f \n", meanv);
30 cs[0] = s[0];
31 for (j=0; j < N-1; j++)
32 cs[j+1] = meanv + cs[j];
33 for (j = 0 ; j < N; j++)
34 printf("%d %f \n", x[j], cs[j]);
35 return 0;
36 } // end main

14.2.4 Case Study 2

Consider part of a water treatment process in which every application of solvents removes 65% of impurities from the water, to make it more acceptable for human consumption. This treatment has to be performed several times until the level of
purity of the water is adequate for human consumption. Assume that when the water has less than 0.6 parts per gallon of impurities, it is adequate for human consumption.

In this problem, the data given is the contents of impurities in parts per gallon of water. The initial data is 405 parts per gallon of impurities and the growth factor is 0.35.

The C program shown below declares the data lists (arrays) of the sequence $s$ with the data of the contents of impurities in parts per gallon of water. The output data produced by executing the program and GnuPlot is used to plot the graphs. The program is stored in file: watertr.c. When the program executes, the following output listing is produced.

```
Program to compute growth of impurities in water
Initial impurity in water: 405.000000
Number of applications: 10
Factor: 0.350000
Impurities after each application
1.000000 405.000000
2.000000 141.750000
3.000000 49.612500
4.000000 17.364375
5.000000 6.077531
6.000000 2.127136
7.000000 0.744498
8.000000 0.260574
9.000000 0.091201
10.000000 0.031920
```

Figure 14.4 shows the graph of the impurities in parts per gallon of water for several applications of solvents. Listing 14.2 shows the C program that computes the impurities in parts per gallon of water, and draws the graphs.

Listing 14.2: C source program that computes the impurities of water.

```c
/* program: watertr.c
 * This program computes the impurities in water given the growth
 * factor.
 * Uses 'basic_lib'
 * J Garrido 11-2-2012
 */
#include <stdio.h>
#include <math.h>
#include "basic_lib.h"

int main() {
 const int N = 10; /* Number of applications */
 double s[N];
 double x[N];
 double f = 0.35; /* constant factor */
 int n;
 int j;
 double xf;
 s[0] = 405.0; /* initial impurity of water */
 printf("Program to compute growth of impurities in water\n\n");
```
FIGURE 14.4: Impurities in water (parts/gallon).

14.3 Functional Equations

From the difference equation for models with geometric growth, Equation 14.1, the first few terms of sequence $s$ can be written as:
Equation 14.1 was referenced by substituting $s_{n-1}$ for its difference equation, and continuing this procedure up to $s_n$. In this manner, a functional equation can be derived. Recall that a functional equation gives the value of a term $s_n$ without using the previous value, $s_{n-1}$. The following mathematical expression is a general functional equation for geometric growth models.

$$s_n = s_1 c^{n-1}$$  \hspace{1cm} (14.2)

Equation 14.2 gives the value $s_n$ as a function of $n$ for a geometric growth model, with $n \geq 1$. Note that this functional equation includes the fixed value $s_1$, which is the value of the first term of the data sequence.

A functional equation such as Equation 14.2 is an example of an exponential function because the independent variable, $n$, is the exponent. This type of growth in the data is also known as exponential growth.

Functional equations can be used to answer additional questions about a model. For example: what will the population be 12 years from now? What amount of impurities are left in the water after 8 repetitions of the application of solvents?

When the growth factor does not correspond to the desired unit of time, then instead of $n$, a more appropriate variable can be used. For example the first population data in Case Study 1, Section 14.2.3, the variable $n$ represents number of years. To deal with months instead of years, a small substitution in the functional equation is needed. Variable $t$ will represent time, and the starting point of the data is at $t = 0$ with an initial value of $y_0$. This gives meaning to the concept of a continuous model. Because one year has 12 months and using the same growth factor $c$ as before, the following is a modified functional equation can be applied when dealing with months.

$$y(t) = y_0 c^{t/12}$$  \hspace{1cm} (14.3)
Summary

This chapter presented some basic concepts of geometric growth in mathematical models. The data in these models increase or decrease in a constant growth factor for equal intervals. Simple mathematical techniques such as difference equations and functional equations are used in the study of models with geometric growth. The functional equation of geometric growth is basically an exponential function, so this type of growth is also known as exponential growth.

Some important applications involving computational models with geometric growth are: pollution control, human drug treatment, population growth, radioactive decay, and heat transfer.

Key Terms

- geometric growth
- exponential growth
- average growth
- growth factor
- exponent
- exponentiation rules
- logarithms
- continuous data
- exponent base

Exercises

Exercise 14.1 In the population problem Case Study 1 Section 14.2.3, use the average growth factor already calculated and compute the population up to year 14. For this, modify the corresponding C source file then compile, link, and execute. Draw the graphs with GnuPlot.

Exercise 14.2 In the population problem Case Study 1 Section 14.2.3, use the average growth factor already calculated and compute the population up to year 20. For this, modify the corresponding C source file then compile, link, and execute. Draw the graphs with GnuPlot.

Exercise 14.3 In the population problem Case Study 1 Section 14.2.3, estimate the population for year 18 and month 4. Use the average growth factor already calculated and the modified functional equation, Equation 14.3. Develop a C program for this.

Exercise 14.4 In the population problem Case Study 1 Section 14.2.3, estimate the population for month 50. Use the average growth factor already calculated and the modified functional equation, Equation 14.3. Develop a C program for this.

Exercise 14.5 In the population problem Case Study 1 Section 14.2.3, compute
the year when the population reaches 750,000. Use the average growth factor and develop a C program for this.

**Exercise 14.6** In the population problem Case Study 1 Section 14.2.3, compute the month when the population reaches 875,000. Use the average growth factor already calculated and the modified functional equation, Equation 14.3. Develop a C program for this.

**Exercise 14.7** In a modified water treatment problem Case Study 2 Section 14.2.4, an application of solvents removes 57% of impurities in the water. Compute the levels of impurities after several repetitions of the application of solvents. Use this growth factor and develop a C program for this.

**Exercise 14.8** In the original water treatment problem Case Study 2 Section 14.2.4, compute the levels of impurities after 8 repetitions of the application of solvents. Use this growth factor and develop a C program for this.

**Exercise 14.9** In the modified water treatment problem, Exercise 14.8, compute the levels of impurities after 8 repetitions of the application of solvents. Use the growth factor and develop a C program for this.

**Exercise 14.10** In the original water treatment problem Case Study 2 Section 14.2.4, compute the number of repetitions of the application of solvents that are necessary to reach 0.5 parts per gallon of impurities. Use the growth factor and develop a C program for this.
Chapter 15

Computational Models with Polynomials

15.1 Introduction

Linear and quadratic equations are special cases of polynomial functions. These equations are of higher order than quadratic equations and more general mathematical methods are used to solve them.

This chapter presents general concepts and techniques to evaluate and solve polynomial functions with emphasis on numerical and graphical methods. Solutions implemented with the C programming language and the Gnu Scientific Library (GSL) are presented and discussed.

15.2 General Forms of Polynomial Functions

Linear and quadratic equations are special cases of polynomial functions. The degree of a polynomial function is the highest degree among those in its terms. A linear function such as: \( y = 3x + 8 \), is a polynomial equation of degree 1 and a quadratic equation, such as: \( y = 4.8x^2 + 3x + 7 \), is a polynomial function of degree 2; thus the term “second degree equation”.

A function such as: \( y = 2x^4 + 5x^3 - 3x^2 + 7x - 10.5 \), is a polynomial function of degree 4 because 4 is the highest exponent of the independent variable \( x \). A polynomial function has the general form:

\[
y = p_1x^n + p_2x^{n-1} + p_3x^{n-2} + \ldots + p_{k-1}x + p_k
\]

This function is a polynomial equation of degree \( n \), and \( p_1, p_2, p_3, \ldots, p_k \) are the coefficients of the equation and are constant values.

In addition to the algebraic form of a polynomial function, the graphical form is also important; a polynomial function is represented by a graph. As mentioned previously, Gnuplot is used for plotting data.
15.3 GNU Scientific Library

The GNU Scientific Library (GSL) is a collection of functions for numerical computing. The functions have been written from scratch in C, and present a modern Application Programming Interface (API) for C programmers, allowing wrappers to be written for very high level languages. The source code is distributed under the GNU General Public License.

The library of functions covers a wide range of topics in numerical computing. The following list includes some of these topics:

- Complex Numbers
- Roots of Polynomials
- Special Functions
- Vectors and Matrices
- Permutations
- Combinations
- Sorting
- BLAS Support
- Linear Algebra
- Fast Fourier Transforms
- Eigensystems
- Random Numbers
- Quadrature
- Random Distributions
- Quasi-Random Sequences
- Histograms
- Statistics
- Monte Carlo Integration
- N-Tuples
- Differential Equations Simulated Annealing
- Numerical Differentiation
- Interpolation
- Series Acceleration
- Chebyshev Approximations
- Root-Finding
- Discrete Hankel Transforms
- Least-Squares Fitting
- Minimization
- IEEE Floating-Point
- Basis Splines
- Wavelets

15.4 Evaluation of Polynomial Functions

A polynomial function is evaluated by using various values of the independent variable $x$ and computing the value of the dependent variable $y$. In a general mathematical sense, a polynomial function defines $y$ as a function of $x$. With the appropriate expression, several values of polynomial can be computed and graphs can be produced.

The GSL functions evaluate a polynomial, $P(x)$, using Horner’s method for stability. The general form of the polynomial is:

$$P(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_{n-1} x^{n-1}$$
Function *gsl_poly_eval* is the main function for evaluating polynomials with real coefficients for the real variable \(x\). The prototype of this function is:

```c
double gsl_poly_eval (const double c[], const int len, const double x);
```

With a computer program, a relatively large number of values of \(x\) can be used to evaluate the polynomial function for every value of \(x\). The set of values of \(x\) that are used to evaluate a polynomial function are taken from an interval \(a \leq x \leq b\). Where \(a\) is the lower bound of the interval and \(b\) is the upper bound. The interval is known as the *domain* of the polynomial function. In a similar manner, the interval of the values of the function \(y\) is known as the *range* of the polynomial function.

To evaluate a polynomial function \(y = f(x)\) with the C programming language and the GSL, two arrays are defined: one with values of \(x\) and the other with values of \(y\).

For example, the polynomial function \(y = 2x^3 - 3x^2 - 36x + 14\) is evaluated and the values in the two arrays \(x\) and \(y\) are computed by the following C program. Only 20 values of \(x\) are evaluated in this example. The following listing is the output produced by executing the program.

```
Evaluating polynomial with coefficients:
14.000000 -36.000000 -3.000000 2.000000
Data points calculated of the polynomial
x0 = -6.000000000000000000 y0 = -310.000000000000000000
x1 = -5.315789473684210600 y1 = -179.827525878407950000
x2 = -4.631578947368421200 y2 = -82.326578218399206000
x3 = -3.947368421052631900 y3 = -13.653448024493390000
x4 = -3.263157894736842500 y4 = +30.035573698789893000
x5 = -2.578947368421053100 y5 = +52.584195946931032000
x6 = -1.894736842105263700 y6 = +57.836172771541041300
x7 = -1.210526315789474300 y7 = +49.635077999798429000
x8 = -0.526315789473684850 y8 = +31.824755795305457000
x9 = +0.157894736842104640 y9 = +8.248870097681900000
x10 = +0.842105263157894130 y10 = -17.248870097681856000
x11 = +1.526315789473683600 y11 = -40.824755795305421000
x12 = +2.210526315789473000 y12 = -58.635077999780400000
x13 = +2.894736842105262400 y13 = -66.836172771541041300
x14 = +3.578947368421051800 y14 = -61.584195946931054000
x15 = +4.263157894736841600 y15 = -39.035573698789932000
x16 = +4.947368421052631000 y16 = +4.653448024493316700
x17 = +5.631578947368420400 y17 = +73.326578218399092000
x18 = +6.315789473684209700 y18 = +170.827525878407810000
x19 = +6.999999999999999100 y19 = +300.999999999999830000
```

Evaluating polynomial functions with the GSL library involves calling function *gsl_poly_eval* in a C program. A polynomial function is represented by a vector of *coefficients* in ascending order. Function *gsl_poly_eval* takes the coefficient vector and the vector \(x\) as arguments. The function computes the values of the polynomial (values of \(y\)) for all the given values of \(x\). For example, for the polynomial equation \(y = 2x^3 - 3x^2 - 36x + 14\), the coefficient vector is \([14, -36, -3, 2]\).
Listing 15.1 shows the source code of the C program is stored in file polyval1.c. The program evaluates the polynomial and computes the values in vector $y$. Line 18 defines the array with the polynomial coefficients: $a$, $b$, $c$, and $d$. Line 29 defines array $x$ with 20 different values from the interval $-6.0 \leq x \leq 7.0$. Line 30 calls a local function `polyval` that computes the value of the function for every value in array $x$ by calling the GSL function `gsl_poly_eval`. Function `polyval` uses a loop to compute the value of a polynomial function for every value of the independent variable $x$.

Listing 15.1: A program that computes the values of a polynomial.

```c
/* File: polyval1.c
This program evaluates a polynomial given in the form of
a coefficient vector.
The program uses the GSL library
J. M. Garrido, Feb 23 2013
*/
#include <stdio.h>
#include <gsl/gsl_poly.h>
#include "basic_lib.h"
#define N 4 // number of coefficients
#define M 20
void polyval(double p[], double xv[], double yv[], int n, int m);
int main () {
 int i;
 int j;
 /* coefficients of Polynomial */
 double a[N] = {14.0, -36.0, -3.0, 2.0}; /* coefficients */
 double xi, xf;
 double x[M];
 double y[M];
 printf("Evaluating polynomial with coefficients: \n");
 for (i=0; i < N; i++)
 printf("%f ", a[i]);
 printf("\n");
 printf("\n");
 /* Evaluate the polynomial at the following points in x */
 xf = 7.0; /* final value of x */
 linspace(x, xi, xf, M); // vector of values for x
 polyval(a, x, y, N, M);
 printf("\n");
 printf("Data points calculated of the polynomial x y \n");
 for(j=0; j < M; j++)
 printf("%+.18f %+.18f \n", x[j], y[j]);
 return 0;
}
void polyval (double p[], double xv[], double yv[], int n, int m) {
 int j;
 yv[0] = gsl_poly_eval(p, N, xv[0]);
 for (j = 1; j < M; j++) {
 yv[j] = gsl_poly_eval(p, N, xv[j]);
 }
 return;
} /* end polyval */
```
The following shell commands in Linux are used to compile, link with the GSL, and execute the program.

$ gcc -Wall polyval1.c -o polyval1.out basic_lib.o -lgsl -lgslcblas -lm
$ ./polyval1.out

To evaluate the polynomial equation \( y = 3x^5 - 2 \), the corresponding coefficient vector is \([-2, 0, 0, 0, 0, 3]\). The program calls function \( \text{polyval()} \) to evaluate the polynomial in the interval \(-2.5 \leq x \leq 2.5\). The program is basically the same as the previous example. Executing this program produces the following output:

Polynomial with coefficients:
-2.000000 0.000000 0.000000 0.000000 0.000000 3.000000
Data points calculated of the polynomial
x0 = -2.500000000000000000 y0 = -294.968750000000000000
x1 = -2.236842105263158000 y1 = -169.95597295887620000
x2 = -1.973684210526315900 y2 = -91.848242954416730000
x3 = -1.710526315789473900 y3 = -45.930895369591468000
x4 = -1.447368421052631900 y4 = -21.055307423130900000
x5 = -1.184210526315789800 y5 = -8.986599372137392900
x6 = -0.921052631578947790 y6 = -3.988599851388054900
x7 = -0.657894736842105750 y7 = -2.369745855779596900
x8 = -0.394736842105263660 y8 = -0.2028751437745421400
x9 = -0.131578947368421570 y9 = -0.000118318673849600
x10 = +0.131578947368420520 y10 = -1.999881681326150600
x11 = +0.394736842105262610 y11 = -1.971248562254578800
x12 = +0.657894736842104640 y12 = -1.63025414422006000
x13 = +0.921052631578946680 y13 = -0.011410848611957127
x14 = +1.184210526315788700 y14 = +4.986599372137360000
x15 = +1.447368421052630700 y15 = +17.055307423130150000
x16 = +1.710526315789472800 y16 = +41.930895369591326000
x17 = +1.973684210526314800 y17 = +87.848242954414170000
x18 = +2.236842105263157100 y18 = +165.995597295887310000
x19 = +2.499999999999999100 y19 = +290.96874999999490000

A graph can easily be produced with Gnuplot using the values in arrays of \( x \) and \( y \) computed. Figure 15.1 shows the graph of the polynomial function \( y = 2x^3 - 3x^2 - 36x + 14 \) with the data computed previously. Using Gnuplot and executing the script files \( \text{polyval1.cgp} \) produces the graph in Figure 15.1.

In a similar manner, executing the command file \( \text{polyval2.cgp} \) with Gnuplot produces a graph of polynomial equation \( y = 3x^5 - 2 \). Figure 15.2 shows the graph of this polynomial function.

### 15.5 Solving Polynomial Equations

The solution to quadratic equation, which is a second degree equation, is relatively straight forward. The solution to this equation involves finding two values of \( x \).
that give $y$ value zero. These two values of $x$ are known as the *roots* of the function. For higher order polynomial functions, the degree of the polynomial determines the number of roots of the function. A polynomial function of degree 7 will have 7 roots.

It is not generally feasible to find the roots of polynomial equations of degree 4 or higher by analytical methods. The GSL implements an algorithm that uses an iterative method to find the approximate locations of roots of polynomials. The GSL includes library function `gsl_poly_complex_solve`, that computes the complex roots of a polynomial function. This function takes the coefficients vector of the polynomial function as one of the arguments, and returns a vector with the roots. This vector is known as the roots vector. Listing 15.3 shows the C source code of a program that computes the roots of a polynomial function. The program is stored in file `polyrootsc.c`.

**Listing 15.2: A C program that computes the roots of a polynomial function.**

```c
/* Program: polyrootsc.c
This program solves a polynomial given in the form of
a coefficient vector and uses the GSL library.
The program computes the (complex) roots.
J. M. Garrido, Jan 5 2013
*/

#include <stdio.h>
#include <gsl/gsl_poly.h>

#define N 5 // number of coefficients
int main () {
 int i;
 /* coefficients of Polynomial */
 double a[N] = {3.0, 3.0, -14.0, -17.0, 23.0};
 double z[2*N]; /* complex roots */
 printf("Program solves a polynomial\n");
 printf(" with coefficients: \n");
```

**FIGURE 15.1: Graph of the equation $y = 2x^3 - 3x^2 - 36x + 14$.**
For the polynomial function: \( y = 2x^3 - 3x^2 - 36x + 14 \), the following output was produced when executing the program. The solution vector, \( z \), has the values of the roots of the polynomial function. The individual values of vector \( z \) are: \( s_1 = 4.8889 \), \( s_2 = -3.7688 \), and \( s_3 = 0.3799 \).

Program solves a polynomial with coefficients:
14.000000 -36.000000 -3.000000 2.000000
The roots of polynomial are:
z0 = +0.379907627008756910 +0.000000000000000000
z1 = +4.888924027976250000 +0.000000000000000000
z2 = -3.768831654985081000 +0.000000000000000000

The solution to the polynomial equation \( y = 3x^5 - 2 \) is computed in a similar manner executing the C program. Four of the roots computed are complex values, which are known as complex roots. Executing the command file produces the following results:
Program solves a polynomial with coefficients:
-2.000000 0.000000 0.000000 0.000000 0.000000 3.000000
The roots of polynomial are:
z0 = -0.746000971036307360 +0.542001431391172630
z1 = -0.746000971036307360 -0.542001431391172630
z2 = +0.284947015295443530 +0.876976737942012030
z3 = +0.284947015295443530 -0.876976737942012030
z4 = +0.922107911481727880 +0.000000000000000000

The following output was produced after computing the roots of the polynomial function: \( y = 23x^4 - 17x^3 - 14x^2 + 3x + 3. \)

Program solves a polynomial with coefficients:
3.000000 3.000000 -14.000000 -17.000000 23.000000
The roots of polynomial are:
z0 = +0.52528823758778870 +0.000000000000000000
z1 = -0.436656945625196860 +0.19425427938322930
z2 = -0.436656945625196860 -0.19425427938322930
z3 = +1.087156088445222500 +0.000000000000000000

Summary

This chapter presented some basic techniques for solving polynomial equations that are very useful in computational modeling. Linear and quadratic equations are special cases of polynomial equations. The concepts discussed apply to polynomial functions of any degree. The main emphases of the chapter are: evaluation of a polynomial function, the graphs of these functions, and solving the functions by computing the roots of the polynomial functions. The C programming language and the GSL are used for several case studies.

Key Terms

<table>
<thead>
<tr>
<th>polynomial functions</th>
<th>polynomial evaluation root vector</th>
<th>roots evaluation interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>coefficient vector</td>
<td>function domain</td>
<td>variable interval</td>
</tr>
<tr>
<td>function domain</td>
<td>function range</td>
<td></td>
</tr>
</tbody>
</table>
Exercises

Exercise 15.1  Develop a C program to evaluate the polynomial function \( y = x^4 + 4x^2 + 7 \). Find an appropriate interval of \( x \) for which the function evaluation is done and plot the graph.

Exercise 15.2  Develop a C program to evaluate the polynomial function \( y = 3x^5 + 6 \). Find an appropriate interval of \( x \) for which the function evaluation is done and plot the graph.

Exercise 15.3  Develop a C program to evaluate the polynomial function \( y = 2x^6 - 1.5x^5 + 5x^4 - 6.5x^3 + 6x^2 - 3x + 4.5 \). Find an appropriate interval of \( x \) for which the function evaluation is done and plot the relevant data.

Exercise 15.4  Develop a C program to solve the polynomial function \( y = x^4 + 4x^2 + 7 \).

Exercise 15.5  Develop a C program to solve the polynomial function \( y = 3x^5 + 6 \).

Exercise 15.6  Develop a C program to solve the polynomial function \( y = 2x^6 - 1.5x^5 + 5x^4 - 6.5x^3 + 6x^2 - 3x + 4.5 \).
Chapter 16

Models with Interpolation and Curve Fitting

16.1 Introduction

The mathematical model in a computational model can be expressed as a set of polynomial functional equations of any order. If only raw data is available, estimates of the values of the function can be computed for other values of the independent variable, within the bounds of the available set of values of the independent variable. Computing these estimates is carried out using interpolation techniques.

If the mathematical model in the form a polynomial function is needed to represent the raw data, then curve fitting, also known as regression, techniques are used. In the general case, the coefficients of the polynomial can be computed (estimated) for a polynomial function of any degree. This chapter discusses two general numerical techniques that help estimate data values: interpolation and curve fitting. Solutions implemented with the GSL and the C programming language are presented and discussed.

16.2 Interpolation

The given or raw data in a problem usually provides only a limited number of values of data points \((x, y)\). These are normally values of a function \(y\) for the corresponding values of variable \(x\). As mentioned previously, using an interpolation technique, one can estimate intermediate data points. These intermediate values of \(x\) and \(y\) are not part of the original data. The GSL includes a set of functions for performing interpolation of several types. Two well-known interpolation techniques are:

- linear interpolation
- cubic spline interpolation.
16.2.1 Linear Interpolation

In linear interpolation technique the assumption is that the intermediate data point (value of the function \( y \) for a value of \( x \)), between two known data points: \((x_1, y_1)\) and \((x_2, y_2)\), can be estimated by a straight line between the known data points. In other words, the intermediate data point \((x_i, y_i)\) falls on the straight line between the known points: \((x_1, y_1)\) and \((x_2, y_2)\).

Assume that there are two data points: \((0.5, 1.5)\) and \((6.5, 8.5)\). An intermediate data point between the given points is to be estimated for \(x = 4.25\). Applying a linear interpolation technique, the estimated value computed for \(y\) is 5.875. The new intermediate data point is therefore \((4.25, 5.875)\). Figure 16.1 illustrates the technique of estimating an intermediate data point on a straight line between two given data points.

The GSL has several library functions that perform linear interpolation given three vectors: \(x\), \(y\), and \(xint\). The first two vectors store the values of the given data points. The third vector, \(xint\), stores the new or intermediate values of \(x\) for which estimates are to be computed and these are new or intermediate data points. The following C program computes the values of the intermediate data points and stores these in vector \(yint\). In the previous example, vector \(xint\) has only a single value, 4.25 and the value of \(yint\) computed is: 5.875.

In the following problem, there are eight given data points in vectors: \(x\) and \(y\). Vector \(x\) has equally spaced values of \(x\) starting at 0 and increasing by 1. Linear interpolation is used to estimate intermediate data points for every value of \(x\) spaced 0.25, starting at 0 and up to 7. The values given in the problem are stored in the three given vectors, \(x\), \(y\), and \(xint\), and the values in vector \(yint\) are computed using linear
interpolation. The values given and the values computed using linear interpolation are shown as follows:

<table>
<thead>
<tr>
<th>i</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00000000000000000e+000</td>
<td>0.00000000000000000e+000</td>
</tr>
<tr>
<td>1</td>
<td>1.00000000000000000e+000</td>
<td>3.00000000000000000e+000</td>
</tr>
<tr>
<td>2</td>
<td>2.00000000000000000e+000</td>
<td>6.00000000000000000e+000</td>
</tr>
<tr>
<td>3</td>
<td>3.00000000000000000e+000</td>
<td>8.00000000000000000e+000</td>
</tr>
<tr>
<td>4</td>
<td>4.00000000000000000e+000</td>
<td>1.20000000000000000e+001</td>
</tr>
<tr>
<td>5</td>
<td>5.00000000000000000e+000</td>
<td>1.70000000000000000e+001</td>
</tr>
<tr>
<td>6</td>
<td>6.00000000000000000e+000</td>
<td>2.30000000000000000e+001</td>
</tr>
<tr>
<td>7</td>
<td>7.00000000000000000e+000</td>
<td>2.60000000000000000e+001</td>
</tr>
</tbody>
</table>

The estimated intermediate values were computed in program `linterp1f.c`, which appears in Listing 16.1. Line 31 in the listing calls function `linterp` to compute the estimated intermediate points using linear interpolation.

Figure 16.2 shows a plot of the data given in the problem. Figure 16.3 illustrates the linear interpolation of several intermediate data points given two arrays of the original data points x and y.

Listing 16.1: C program that computes linear interpolation of data points.
Program: linterp1f.c

Interpolation of Discrete Points
Using linear interpolation with GSL

# include <stdio.h>
# include <math.h>
# include <gsl/gsl_interp.h>
# include "basic_lib.h"

// Number of Discrete Points (original data)
#define N 8

// Data for Linear Interpolation
double x[N] = {0.0, 3.0, 6.0, 8.0, 12.0, 17.0, 23.0, 26};

// fill new array
h = 0.25;

// linear interpolation

16.2.2 Non-Linear Interpolation

Non-linear interpolation can generate more improved estimates for intermediate data points than linear interpolation. The GSL includes functions that implement the cubic spline interpolation technique, and smoother curves can be generated using this technique.

The following example applies the cubic spline interpolation technique to data provided by the problem, using an array of values of nx for intermediate data points.
The C program in file csinterpf.c is shown in Listing 16.2. Line 32 calls function csinterp to compute the interpolation using the cubic spline technique. This program is very similar to the previous program that performed linear interpolation. The first argument used in calling the library function gsl_interp_alloc is the gsl constant gsl_interp_cspline, which specifies the type of interpolation to apply.

FIGURE 16.4: Graph of given data points.

Listing 16.2: Script to compute cubic spline interpolation of data.

```c
/* Program: csinterpf.c
 Interpolation of Discrete Points
 Using Cubic Spline interpolation with GSL
 J. M. Garrido, Feb 22, 2013 */
#include <stdio.h>
#include <math.h>
#include <gsl/gsl_interp.h>
#include "basic_lib.h"
/* Number of Discrete Points (original data) */
#define N 20
void csinterp(double x[], double y[], double nx[], double ny[],
 int m, int n);
int main() {
 int i;
 int n;
 double h;
 double x[N];
 double y[N] = {-310.0, -179.8, -82.3, -13.6, 30.0, 52.6,
 57.8, 49.6, 31.8, 8.2, -17.2, -40.8, -58.6, -66.8, -61.5,
 -39.0, 4.6, 73.3, 170.8, 301.0};
```
Models with Interpolation and Curve Fitting

```c
19 double xint[2*N], yint[2*N];
20 /* Linear Interpolation */
21 xi = -6.0; /* first value of x */
22 xf = 7.0; /* last value */
23 linspace(x, xi, xf, N);
24 printf("Discrete Points for Cubic Spline Interpolation\n");
25 printf(" i x y\n");
26 for(i = 0; i < N; i++)
27 printf("%3d %25.17e %25.17e\n", i, x[i], y[i]);
28 printf("\n");
29 /* Evaluation */
30 h = 0.45; // x increment
31 n = arraycol(xint, -5.0, xf, h); /* fill new array */
32 csinterp(x, y, xint, yint, N, n);
33 printf(" x interpolated y \n");
34 for(i = 0; i < n; i++)
35 printf("%25.17e %25.17e \n", xint[i], yint[i]);
36 return 0;
37 }
38 void csinterp(double x[], double y[], double nx[], double ny[],
39 int m, int n) {
40 gsl_interp *workspace;
41 /* type of Interpolation: Cubic Spline */
42 workspace = gsl_interp_alloc(gsl_interp_cspline, m);
43 gsl_interp_init(workspace, x, y, m); /* Initialize worksp */
44 for(i = 0; i < n; i++)
45 ny[i] = gsl_interp_eval(workspace, x, y, nx[i], NULL);
46 gsl_interp_free(workspace); /* free memory */
```
Figure 16.4 shows the graph of original data points that define a curve. Figure 16.5 shows the graph of the original data points and the computed intermediate data points. Executing the program produces the output shown in the following listing.

Discrete Points for Cubic Spline Interpolation

<table>
<thead>
<tr>
<th>i</th>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-6.000000000000e+000</td>
<td>-3.100000000000e+02</td>
</tr>
<tr>
<td>1</td>
<td>-5.3157894736842106e+000</td>
<td>-1.798000000001e+02</td>
</tr>
<tr>
<td>2</td>
<td>-4.6315789473684212e+000</td>
<td>-8.229999999997e+01</td>
</tr>
<tr>
<td>3</td>
<td>-3.9473684210526319e+000</td>
<td>-1.360000000000e+01</td>
</tr>
<tr>
<td>4</td>
<td>-3.2631578947368425e+000</td>
<td>3.000000000000e+00</td>
</tr>
<tr>
<td>5</td>
<td>-2.5789473684210531e+000</td>
<td>5.260000000000e+00</td>
</tr>
<tr>
<td>6</td>
<td>-1.8947368421052637e+000</td>
<td>5.779999999999e+00</td>
</tr>
<tr>
<td>7</td>
<td>-1.2105263157894743e+000</td>
<td>4.960000000000e+00</td>
</tr>
<tr>
<td>8</td>
<td>-5.2631578947368485e-001</td>
<td>3.180000000000e+01</td>
</tr>
<tr>
<td>9</td>
<td>1.5789473684210464e-001</td>
<td>8.199999999999e+00</td>
</tr>
<tr>
<td>10</td>
<td>8.4210526315789413e-001</td>
<td>-1.719999999999e+01</td>
</tr>
<tr>
<td>11</td>
<td>1.5263157894736836e+000</td>
<td>-4.079999999999e+00</td>
</tr>
<tr>
<td>12</td>
<td>2.2105263157894730e+000</td>
<td>-5.860000000000e+00</td>
</tr>
<tr>
<td>13</td>
<td>2.8947368421052624e+000</td>
<td>-6.679999999999e+00</td>
</tr>
<tr>
<td>14</td>
<td>3.5789473684210518e+000</td>
<td>-6.150000000000e+00</td>
</tr>
<tr>
<td>15</td>
<td>4.2631578947368416e+000</td>
<td>-3.900000000000e+00</td>
</tr>
<tr>
<td>16</td>
<td>4.9473684210526310e+000</td>
<td>4.599999999999e+00</td>
</tr>
<tr>
<td>17</td>
<td>5.6315789473684204e+000</td>
<td>7.329999999999e+00</td>
</tr>
<tr>
<td>18</td>
<td>6.3157894736842097e+000</td>
<td>1.708000000000e+00</td>
</tr>
<tr>
<td>19</td>
<td>6.9999999999999991e+000</td>
<td>3.010000000000e+00</td>
</tr>
</tbody>
</table>
16.3 Curve Fitting

Curve fitting techniques attempt to find the best polynomial expression that represents a given sequence of data points. The most widely-used curve fitting technique is the \textit{least squares} technique. Recall that a polynomial function has the general form:

\[ y = p_1 x^n + p_2 x^{n-1} + p_3 x^{n-2} + \cdots + p_{k-1} x + p_k \]

The parameters \( p_1, p_2, p_3, \ldots, p_k \) are the coefficients of the equation, which are constants. If a polynomial function of degree 1 is fitted to the given data, the technique is known as \textit{linear regression}, and a straight line is fitted to the data points. As mentioned previously, if the degree of the polynomial is greater than 1, then a curve, instead of a straight line, is fitted to the given data points.

The GSL provides several functions to compute the coefficients \( p \) of the polynomial function of degree \( n \). The arguments for the function calls are vectors \( x \) and \( y \) that define the data points, and the value of the desired degree of the polynomial.
212

Introduction to Computational Modeling

FIGURE 16.6: Graph of given set of data points.

The GSL functions compute a vector that consists of the values of the coefficients
of a polynomial function of degree \(n\) that best fit the given data points in vectors \(x\) and \(y\).

16.3.1 Linear Polynomial Function

The following example illustrates the fitting of a polynomial of degree 1 to a
given set of data points. Figure 16.6 shows a given set of data points for which poly-
nomial fit is to be carried out.

Listing 16.4 includes the C program that computes the coefficients of a poly-
nomial of degree 1 by calling function \texttt{polynomialfit} in line 27. With the coeffi-
cients computed, function \texttt{polyval()} is called in line 34 to evaluate the polynomial
with additional data points. The C source code of the program code is stored in
file \texttt{polyfitm1.c}. Using GnuPlot, the computed data points are plotted and Fig-
ure 16.7 shows the graph of the fitted line.

Listing 16.4: C program that computes linear regression of given data points.

```c
/* Program: polyfitm1.c */
/* This program fits a polynomial of degree 1 to a set of data points. Then it evaluates the fitted polynomial
to generate data for plotting. The program uses the GSL library. */
#include <stdio.h>
#include <gsl/gsl_poly.h>
#include "basic_lib.h"
```
Models with Interpolation and Curve Fitting

```c
#include "polyfitgsl.h"
#define NC 2 /* size of coefficient vector */
void polyval(double p[], double xv[], double yv[], int n, int m);
int main()
{
 const int NP = 8; // Number of given data points
 const int M = 30; // number of computed data points
 /* const int NC = 2 ; Number of coefficients */
 double x[] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0};
 double y[] = {0.0, 3.0, 6.0, 8.0, 12.0, 21.0, 43.0, 66.0};
 double coeff[NC]; // vector of coefficients
 int i;
 double xc[M]; /* computed values for x using polynomial */
 double yc[M];
 printf("Program finds best fit polynomial of degree %d \n", NC-1);
 printf("Data points (x,y): \n");
 for (i = 0; i < NP; i++)
 printf(" %f %f \n", x[i], y[i]);
 polynomialfit(NP, NC, x, y, coeff); /* find coefficients */
 printf("\nCoefficients of polynomial found\n");
 for(i=0; i < NC; i++)
 printf("%.18f
", coeff[i]);
 /* Evaluate the fitted polynomial */
 linspace(xc, 0.0, 7.0, M);
 printf("\nData points calculated with the polynomial \n");
 for(i=0; i < M; i++)
 printf("%.18f %.18f \n", i, xc[i], yc[i]);
 return 0;
} /* end main */
void polyval (double p[], double xv[], double yv[], int n, int m) {
 int j;
 yv[0] = gsl_poly_eval(p, n, xv[0]);
 for (j = 1; j < m; j++)
 yv[j] = gsl_poly_eval(p, n, xv[j]);
 return;
} /* end polyval */
```

When the program executes, the output produced as shown in the following listing.

```
Program finds best fit polynomial of degree 1
Data points (x,y):
 0.000000 0.000000
 1.000000 3.000000
 2.000000 6.000000
 3.000000 8.000000
 4.000000 12.000000
 5.000000 21.000000
 6.000000 43.000000
 7.000000 66.000000
Coefficients of polynomial found
```

```
16.3.2 Non-Linear Polynomial Function

Executing the program to compute the coefficients of a polynomial of degree 3 by calling function polynomialfit using 4 as the value of the second argument (number of coefficients), produces the following output.

Program finds best fit polynomial of degree 3
Data points (x,y):
0.000000 0.000000
1.000000 3.000000
2.000000 6.000000
3.000000 8.000000
4.000000 12.000000
5.000000 21.000000
6.000000 43.000000
7.000000 66.000000

Coefficients of polynomial found
0.030303
4.908730
Figure 16.8 shows the graph of a fitted curve that corresponds to a polynomial of degree 3 with the same data points used with the previous example.

Summary

This chapter presented two important techniques that deal with raw data: interpolation and curve fitting. Interpolation is used to compute estimates of the value of the function for intermediate values of the independent variable, within the bounds of available set of values of the independent variable. Curve fitting or regression techniques are used when a polynomial function is needed that would represent the raw data. Solutions implemented with the GSL and the C programming language were presented and discussed.
Introduction to Computational Modeling

Key Terms

<table>
<thead>
<tr>
<th>Intermediate data</th>
<th>Estimated data</th>
<th>Raw data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear interpolation</td>
<td>Non-linear interpolation</td>
<td>Curve fitting</td>
</tr>
<tr>
<td>Cubic spline interpolation</td>
<td>Curve fitting</td>
<td>Regression</td>
</tr>
</tbody>
</table>

Exercises

Exercise 16.1 In a typical spring day, the temperature varies according to the data recorded in Table 16.1. Develop a C program and apply linear interpolation to compute estimates of intermediate values of the temperature. Produce a plot of the given and estimated data.

<p>| TABLE 16.1: Temperature changes in 12-hour period. |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp. ($\degree F$)</td>
<td>51</td>
<td>56</td>
<td>60</td>
<td>65</td>
<td>73</td>
<td>78</td>
<td>85</td>
<td>86</td>
<td>84</td>
<td>81</td>
<td>80</td>
<td>70</td>
</tr>
</tbody>
</table>

Exercise 16.2 In a typical spring day, the temperature varies according to the data recorded in Table 16.1. Develop a C program and apply cubic spline interpolation to compute estimates of intermediate values of the temperature. Produce a plot of the given and estimated data.

Exercise 16.3 In a typical spring day, the temperature varies according to the data recorded in Table 16.1. Apply curve fitting to derive the polynomial function of degree 2 that represents the given data. Develop a C program and use the polynomial function to compute estimates of intermediate values of the temperature. Produce a plot of the given and estimated data.

Exercise 16.4 In a typical spring day, the temperature varies according to the data recorded in Table 16.1. Apply curve fitting to derive the polynomial function of degree 3 that represents the given data. Develop a C program and use the polynomial function to compute estimates of intermediate values of the temperature. Produce a plot of the given and estimated data.

Exercise 16.5 In a typical spring day, the temperature varies according to the data recorded in Table 16.1. Apply curve fitting to derive the polynomial function of degree 4 that represents the given data. Develop a C program and use the polynomial function to compute estimates of intermediate values of the temperature. Produce a plot of the given and estimated data.
function to compute estimates of intermediate values of the temperature. Produce a plot of the given and estimated data.

Exercise 16.6 Develop a C program that uses the data in Table 16.2 and applies linear interpolation to compute estimates of intermediate values of the number of patients. Produce a plot of the given and estimated data.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>5,500</td>
<td>8,500</td>
<td>13,500</td>
<td>20,500</td>
<td>29,500</td>
<td>40,500</td>
</tr>
<tr>
<td>Increase</td>
<td>0</td>
<td>3,000</td>
<td>5,000</td>
<td>7,000</td>
<td>9,000</td>
<td>11,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>53,500</td>
<td>68,500</td>
</tr>
<tr>
<td>Increase</td>
<td>13,000</td>
<td>15,000</td>
</tr>
</tbody>
</table>

Exercise 16.7 Develop a C program and use the data in Table 16.2 and apply non-linear interpolation to compute estimates of intermediate values of the number of patients. Produce a plot of the given and estimated data.

Exercise 16.8 Develop a C program and use the data in Table 16.2 and apply curve fitting to derive a polynomial function of degree 2. Use this function to compute estimates of intermediate values of the number of patients. Produce a plot of the given and estimated data.

Exercise 16.9 Develop a C program and use the data in Table 16.2 and apply curve fitting to derive a polynomial function of degree 3. Use this function to compute estimates of intermediate values of the number of patients. Produce a plot of the given and estimated data.
This page intentionally left blank
Chapter 17

Using Vectors with the GSL

17.1 Introduction

This chapter presents an overview of vectors, implementation techniques with programming in C and the GSL, and a summary of computing with vectors. In general, an array is a term used in programming and defined as a data structure that is a collection of values and these values are organized in several ways. The following arrays: X, Y, and Z have their data arranged in different manners. Array X is a one-dimensional array with n elements and it is considered a row vector because its elements \(x_1, x_2, \ldots, x_n \) are arranged in a single row.

\[
X = \begin{bmatrix} x_1 & x_2 & x_3 & \cdots & x_n \end{bmatrix}
\]

Array Z is also a one-dimensional array; it has m elements organized as a column vector because its elements: \(z_1, z_2, \ldots, z_m \) are arranged in a single column.

The following array, Y, is a two-dimensional array organized as an \(m \times n \) matrix; its elements are arranged in m rows and n columns. The first row of Y consists of elements: \(y_{11}, y_{12}, \ldots, y_{1n} \). Its second row consists of elements: \(y_{21}, y_{22}, \ldots, y_{2n} \). The last row of Y consists of elements: \(y_{m1}, y_{m2}, \ldots, y_{mn} \).

\[
Y = \begin{bmatrix} y_{11} & y_{12} & \cdots & y_{1n} \\ y_{21} & y_{22} & \cdots & y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m1} & y_{m2} & \cdots & y_{mn} \end{bmatrix}
\]
17.2 Vectors and Operations

A vector is a mathematical entity that has magnitude and direction. In physics, it is used to represent items such as the velocity, acceleration, or momentum of a physical object. A vector \(\mathbf{v} \) can be represented by an \(n \)-tuple of real numbers:

\[
\mathbf{v} = (v_1, v_2, \ldots, v_n)
\]

Several operations with vectors are performed with a vector and a scalar or with two vectors.

17.2.1 Addition of a Scalar and a Vector

To add a scalar to a vector involves adding the scalar value to every element of the vector. In the following example, the scalar \(\alpha \) is added to the elements of vector \(\mathbf{Z} \), element by element.

\[
\mathbf{Z} = \begin{bmatrix}
 z_1 \\
 z_2 \\
 z_3 \\
 \vdots \\
 z_m
\end{bmatrix} = \begin{bmatrix}
 z_1 + \alpha \\
 z_2 + \alpha \\
 z_3 + \alpha \\
 \vdots \\
 z_m + \alpha
\end{bmatrix}
\]

17.2.2 Vector Addition

Vector addition of two vectors that are \(n \)-tuple involves adding the corresponding elements of each vector. The following example illustrates the addition of two vectors, \(\mathbf{Y} \) and \(\mathbf{Z} \).

\[
\mathbf{Y} = \begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 \vdots \\
 z_m
\end{bmatrix} \quad \mathbf{Z} = \begin{bmatrix}
 z_1 \\
 z_2 \\
 z_3 \\
 \vdots \\
 z_m
\end{bmatrix} \quad \mathbf{Y} + \mathbf{Z} = \begin{bmatrix}
 y_1 + z_1 \\
 y_2 + z_2 \\
 y_3 + z_3 \\
 \vdots \\
 y_m + z_m
\end{bmatrix}
\]

17.2.3 Multiplication of a Vector and a Scalar

Scalar multiplication is performed by multiplying the scalar with every element of the specified vector. In the following example, scalar \(\alpha \) is multiplied by every element \(z_i \) of vector \(\mathbf{Z} \).
Using Vectors with the GSL

\[Z = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ \vdots \\ z_m \end{bmatrix} \quad Z \times \alpha = \begin{bmatrix} z_1 \times \alpha \\ z_2 \times \alpha \\ z_3 \times \alpha \\ \vdots \\ z_m \times \alpha \end{bmatrix} \]

17.2.4 Dot Product of Two Vectors

Given vectors \(v = (v_1, v_2, \ldots, v_n) \) and \(w = (w_1, w_2, \ldots, w_n) \), the dot product \(v \cdot w \) is a scalar defined by:

\[v \cdot w = \sum_{i=1}^{n} v_i w_i = v_1 w_1 + v_2 w_2 + \ldots + v_n w_n \]

Therefore, the dot product of two vectors in an \(n \)-dimensional real space is the sum of the product of the vectors’ components.

When the elements of the vectors are complex, then the dot product of two vectors is defined by the following relation. Note that \(\overline{v_i} \) is the complex conjugate of \(v_i \).

\[v \cdot w = \sum_{i=1}^{n} \overline{v_i} w_i = \overline{v_1} w_1 + \overline{v_2} w_2 + \ldots + \overline{v_n} w_n \]

17.2.5 Length (Norm) of a Vector

Given a vector \(v = (v_1, v_2, \ldots, v_n) \) of dimension \(n \), the Euclidean norm of the vector denoted by \(\|v\|_2 \), is the length of \(v \) and is defined by the square root of the dot product of the vector:

\[\|v\|_2 = \sqrt{v \cdot v} = \sqrt{v_1^2 + v_2^2 + \cdots + v_n^2} \]

In the case that vector \(v \) is a 2-dimensional vector, the Euclidean norm of the vector is the value of the hypotenuse of a right angled triangle. When vector \(v \) is a 1-dimensional vector, then \(\|v\|_2 = |v_1| \), the absolute value of the only component \(v_1 \).
17.3 Vector Properties and Characteristics

A vector $v = (v_1, v_2, \ldots, v_n)$ in \mathbb{R}^n (an n-dimensional real space) can be specified as a column or row vector. When v is an n column vector, its transpose v^T is an n row vector.

17.3.1 Orthogonal Vectors

Vectors v and w are said to be orthogonal if their dot product is zero. The angle θ between vectors v and w is defined by:

$$
\cos(\theta) = \frac{v \cdot w}{\|v\|_2 \|w\|_2}
$$

where θ is the angle from v to w, non-zero vectors are orthogonal if and only if they are perpendicular to each other, i.e., when $\cos(\theta) = 0$ and θ is equal to $\pi/2$ or 90 degrees. Orthogonal vectors v and w are called orthonormal if they are of length one, i.e., $v \cdot v = 1$, and $w \cdot w = 1$.

17.3.2 Linear Dependence

A set k of vectors $\{x_1, x_2, \ldots, x_k\}$ is linearly dependent if at least one of the vectors can be expressed as a linear combination of the others. Assuming there exists a set of scalars $\{\alpha_1, \alpha_2, \ldots, \alpha_k\}$, vector x_k is defined as follows:

$$
x_k = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_{k-1} x_{k-1}
$$

If a vector w depends linearly on vectors $\{x_1, x_2, \ldots, x_k\}$, this is expressed as follows:

$$
w = \alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_k x_k
$$

17.4 Implementation of Vectors in C and the GSL

Vectors are created and manipulated in C by calling the various library function in the GSL. Before using a vector, it needs to be created. Function `gsl_vector_alloc` creates a vector of the specified length n, and returns a pointer to the vector. When a vector is no longer needed in the program, it is destroyed by calling the GSL function `gsl_vector_free`.
A vector is manipulated by accessing its elements and changing and/or retrieving the value of the elements. The GSL library function \texttt{gsl_vector_set} assigns the value specified to the \textit{i}-th element of a vector. The GSL Function \texttt{gsl_vector_set_all} sets the value specified to all elements of a vector.

The value of individual elements of a vector can be retrieved by calling the GSL function \texttt{gsl_vector_get}. This function returns the \textit{i}-th element of a vector.

The functions \texttt{gsl_vector_get} and \texttt{gsl_vector_set} perform portable range checking and report an error if the index value of an element is outside the allowed range.

Listing 17.1 shows the source code of a C program that uses the GSL functions to create and manipulate a vector. Line 6 includes the header file that contains the definitions for calling the GSL functions for vectors. Line 11 calls function \texttt{gsl_vector_alloc} to create vector \texttt{pv} with \textit{N} elements. In line 12, all elements of vector \texttt{pv} are set to value 2.5. In line 17, element \textit{i} of vector \texttt{pv} is set to value 5.25. In line 21 vector \texttt{pv} is destroyed by calling function \texttt{gsl_vector_free}.

Listing 17.1: C program that creates and manipulates a vector.

```c
#include <stdio.h>
#include <gsl/gsl_vector.h>

int main (void) {
    const int N = 8;
    int i;
    int n;
    gsl_vector * pv = gsl_vector_alloc (N); // create vector
    gsl_vector_set_all(pv, 0.25); // assign 0.25 to all elements
    n = N - 3;
    printf("Program creates and manipulates a vector\n\n");
    /* set the first \textit{n} elements of vector to 5.25 */
    for (i = 0; i < n; i++)
        gsl_vector_set (pv, i, 5.25); // assign value to element \textit{i}
    printf("Data from vector\n\n");
    for (i = 0; i < N; i++)
        printf ("element %d = %g\n", i, gsl_vector_get (pv, i));
    gsl_vector_free (pv); // release allocated memory
    return 0;
}
```

The following listing shows the Linux shell commands to compile, link, and execute the program, then shows the output produced by the program.

```
gcc -Wall vector_man.c -o vectorm.out -lgsl -lgslcblas -lm
./vectorm.out
Program creates and manipulates a vector
Data from vector
  element 0 = 5.25
  element 1 = 5.25
  element 2 = 5.25
```

element 3 = 5.25
element 4 = 5.25
element 5 = 0.25
element 6 = 0.25
element 7 = 0.25

17.5 Simple Vector Operations

Operations on vectors are performed with a vector and a scalar or with two vectors. These are performed by calling GSL functions in C.

17.5.1 Arithmetic Operations

To add a scalar to a vector involves adding the scalar value to every element of the vector. With C and GSL, calling function `gsl_vector_add_constant`. This function adds the specified constant value to the elements of the vector specified.

In the following portion of code, vector `pv` is created and then its elements are assigned values. On the fifth line, function `gsl_vector_add_constant` is called to add the constant `x` to all the elements of vector `pv`.

```c
const double x = 10.45;
gsl_vector * pv = gsl_vector_alloc (N); // create vector
gsl_vector_set_all(pv, 0.5); // assign 2.5 to all elements
gsl_vector_set (pv, 3, 5.25);
gsl_vector_add_constant (pv, x);
```

To add two vectors involves adding the corresponding elements of each vector, and a new vector is created. This addition operation on vectors is only possible if the row vectors (or column vectors) are of the same size. In the following example, vectors `pv` and `qv` are both vectors of size `N`. Calling function `gsl_vector_add` adds the elements of vector `qv` to the elements of vector `pv`.

```c
gsl_vector * pv = gsl_vector_alloc (N); // create vector pv
gsl_vector * qv = gsl_vector_alloc (N); // create vector qv
// ...
gsl_vector_add (pv, qv); // vector qv added to vector pv
```

In a similar manner, subtracting a scalar from a vector can be specified; subtracting two vectors of the same size. Calling function `gsl_vector_sub`, as in the following line of code, subtracts the elements of vector `qv` from the elements of vector `pv`.

```c
gsl_vector_sub (pv, qv); // vector qv subtracted from vector pv
```
Multiplying a vector by a scalar results in multiplying each element of the vector by the value of the scalar. Function `gsl_vector_scale` multiplies the elements of the specified vector by the constant factor specified. In the following call to this function, the elements of vector `pv` are multiplied by the constant `x`.

```c
    gsl_vector_scale (pv, x);
```

Element by element multiplication, also known as dot multiplication, multiplies the corresponding elements of two vectors. This operation is applied to two vectors of equal size and is performed by calling the GSL function `gsl_vector_mul`. This function multiplies the elements of the specified vector by the elements of the second specified vector. In the following function call, vectors `pv` and `qv` are dot-multiplied and the results are stored in vector `pv`.

```c
    gsl_vector_mul (pv, qv);
```

Element by element division, also known as dot division, divides the corresponding elements of two vectors. This operation is applied to two vectors of equal size and is performed by calling the GSL function `gsl_vector_div`. This function divides the elements of the specified vector by the elements of the second specified vector. In the following function call, the elements of vector `pv` are divided by the elements of vector `qv` and the results are stored in vector `pv`.

```c
    gsl_vector_div (pv, qv);
```

17.5.2 Additional Vector Functions

Various additional functions can be applied to vectors. Copying one vector to another vector is performed by calling the GSL function `gsl_vector_memcpy`. This function copies the elements of the specified source vector into the specified destination vector. The two vectors must have the same length.

In the following function call, the elements of vector `qv` are copied to the corresponding elements of vector `pv` and the results are stored in vector `pv`.

```c
    gsl_vector_memcpy (pv, qv);
```

The comparison of two vectors for equality is performed by calling the GSL function `gsl_vector_equal`. This function returns 1 if the specified vectors are equal (by comparison of element values) and 0 otherwise.

In the following function call, the elements of vector `qv` are compared to the corresponding elements of vector `pv` and the result is an integer value assigned to variable `vflag`.
Because there are only two possible outcomes in the call to this function, the return value may be considered a boolean value (true is represented by 1 and false is represented by 0), which can be used in a conditional statement.

The attribute size of a vector stores the number of elements in the vector. The following line of C code gets the size of vector pv and assigns this value to n.

\[
 n = pv\rightarrow size;
\]

Function \texttt{gsl_vector_max} gets the maximum value stored in the specified vector. The following function call gets the maximum value in vector pv and assigns this value to \(x \), which should be a variable of type \texttt{double}.

\[
 x = \texttt{gsl_vector_max(pv)};
\]

In addition to the maximum value in a vector, the index of the element with that value may be desired. Calling function \texttt{gsl_vector_max_index} returns the index value of the element with the maximum value in a specified vector. In the following function call, the index value of the element with the maximum value in vector pv is returned and assigned to integer variable \(idx \).

\[
 idx = \texttt{gsl_vector_max_index (pv)};
\]

In a similar manner, function \texttt{gsl_vector_min} gets the minimum value (of type \texttt{double}) stored in a vector. Function \texttt{gsl_vector_min_index} returns the index value (of type \texttt{int}) of the minimum value in the specified vector. Listing 17.2 shows a C source listing of a program that includes the implementation of the operations on vectors that have been discussed. The program is stored in file \texttt{vector_ops.c}.

Listing 17.2: C program that shows various operations on vectors.
Using Vectors with the GSL

17 gsl_vector * qv = gsl_vector_alloc (N); // create vector qv
18 // gsl_vector_set_all(pv, 8.25); // assign 8.25 to elements
19 gsl_vector_set_all(qv, 10.5); // assign 10.5 to elements
20
21 linspace (zz, 1.25, 122.45, N);
22 for (i = 0; i < N; i++)
23 printf("zz[%d] = %g\n", i, zz[i]);
24 printf("\nDifferences in zz\n");
25
26 yy = diff (zz, N);
27 for (i = 0; i < N-1; i++)
28 printf("yy[%d] = %g\n", i, yy[i]);
29 for (i = 0; i < N-1; i++)
30 gsl_vector_set(qv, i, yy[i]); // copy elements yy to qv
31 printf("Data from vectors pv and qv\n");
32 for (i = 0; i < N; i++)
33 printf("element %d = %6.3f %6.3f\n", i,
34 gsl_vector_get (pv, i), gsl_vector_get(qv, i));
35 gsl_vector_add_constant (pv, x); // add x to elements of pv
36 printf("\nAddition of scalar %g to vector pv\n", x);
37 for (i = 0; i < N; i++)
38 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
39 if (gsl_vector_equal(pv, qv) == 1)
40 printf("Vectors pv and qv are equal\n");
41 else
42 printf("Vectors pv and qv are not equal\n");
43 gsl_vector_add (pv, qv); // vector qv added to vector pv
44 printf("\nAddition of vector qv to vector pv\n");
45 for (i = 0; i < N; i++)
46 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
47 for (i = 0; i < N; i++)
48 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
49 for (i = 0; i < N; i++)
50 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
51 for (i = 0; i < N; i++)
52 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
53 for (i = 0; i < N; i++)
54 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
55 for (i = 0; i < N; i++)
56 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
57 gsl_vector_scale (pv, x); // multiply vector pv by scalar x
58 printf("\nMultiplication of vector pv by scalar %g\n", x);
59 for (i = 0; i < N; i++)
60 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
61 gsl_vector_mul (pv, qv); // multiplication of vectors pv and qv
62 printf("\nMultiplication of vectors pv and qv\n");
63 for (i = 0; i < N; i++)
64 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
65 for (i = 0; i < N; i++)
66 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
67 gsl_vector_div (pv, qv);
68 printf("\nDivision of vectors pv and qv\n");
69 for (i = 0; i < N; i++)
70 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
71 gsl_vector_memcpy (pv, qv); // copy vector qv to pv
72 printf("\nCopy of vector qv to pv\n");
73 for (i = 0; i < N; i++)
74 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
75 for (i = 0; i < N; i++)
76 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
77 for (i = 0; i < N; i++)
78 printf("element %d = %g\n", i, gsl_vector_get (pv, i));
79 x = 105.25;
80 printf("Assign %g to element 4 of pv\n", x);
81 gsl_vector_set (pv, 4, x);
82 printf("\nMax value in pv: %g\n", gsl_vector_max (pv));
83 printf("\nIndex of max: %d\n", gsl_vector_max_index (pv));
84 gsl_vector_free (pv); // release allocated memory
85 gsl_vector_free (qv); // release allocated memory
The operation to handle part of a vector is typically useful when a vector needs to be created that is a subvector of another vector. A GSL vector view is a temporary object, stored on the stack, which can be used to operate on a subset of vector elements. Function `gsl_vector_subvector`, when called, returns a vector view defined as a subvector of another vector. The arguments are: the vector, the start of the new vector is offset by the number of elements from the start of the original vector, and the number of elements of the new vector. The following C statement calls function `gsl_vector_subvector` and defines `asv` as a subvector of vector `av`:

```c
asv = gsl_vector_subvector(av, offset, nsize);
```

A subvector has type `gsl_vector_view` and can be manipulated as a vector using various GSL vector functions. The address of component `vector` (with the `&` operator) has top used as argument. The following statement calls function `gsl_vector_get` to retrieve element `i` of subvector `asv`.

```c
x = gsl_vector_get (&asv.vector, i);
```

A vector view of an array is created by calling function `gsl_vector_view_array`. The arguments are: the base or pointer to the start of the array and the number of elements for the vector. Other similar vector view functions are provided by the GSL. In the following C statements, an array `a` is declared and initialized, then a vector view is created using the array with 8 elements.

```c
double a[] = {4.45, 1.65, 6.25, 2.48, 1.22, 10.59, 11.22, 8.55};
avv = gsl_vector_view_array(a, 8);
```

Listing 17.3 shows the C source code of a program two vector views and performs several vector operations. The C program is stored in file `vector_v2.c`.

Listing 17.3: Creating and using vector views.
Using Vectors with the GSL

```c
const int N = 8;
int i;
double a[] = {4.45, 1.65, 6.25, 2.48, 1.22, 10.59, 11.22, 8.55};
int offset; /* starting element of subvector */
int nsize; /* size of subvector */
gsl_vector_view avv = gsl_vector_view_array(a, N); // view
printf("Program creates and manipulates a subvector\n\n");
printf("Data from vector\n");
for (i = 0; i < N; i++)
  printf ("element %d = %.1f\n", i, gsl_vector_get (&avv.vector, i));
offset = 2;
nsize = 4;
gsl_vector_view bvv = gsl_vector_subvector(&avv.vector, offset, nsize);
for (i = 0; i < nsize; i++)
  printf ("element %d = %.1f\n", i, gsl_vector_get (&bvv.vector, i));
return 0;
```

17.5.4 Complex Vectors

Complex vectors store collections of complex values. Using GSL, a complex variable is of type `gsl_complex` and several GSL functions can be called to manipulate complex numbers. A complex value can be defined with its rectangular or polar representation. The following C statements declare complex variable `z1`, then assigns its component values using the rectangular representation by calling function `gsl_complex_rect`.

```c
gsl_complex z1;
z1 = gsl_complex_rect(4.75, 9.6);
```

There are several functions to perform complex arithmetical operations and other functions to perform complex trigonometric operations. The following C statements perform a complex multiplication of complex variables `z1` and `z2`, the complex product is assigned to complex variable `z3`. The real and imaginary components, which are of type `double` by default, are retrieved with the macros: `GSL_REAL` and `GSL_IMAG`.

```c
z3 = gsl_complex_mul(z1, z2);
real3 = GSL_REAL(z3);
imag3 = GSL_IMAG(z3);
```

A complex vector is created by calling function `gsl_vector_alloc` with an integer argument that indicates the number of complex elements of the vector. To set a complex value to an element of a complex vector, function `gsl_vector_complex_set` is called. Function `gsl_vector_complex_get` is called to retrieve the complex value of
an element of the specified vector. There are several functions that perform arith-
metical operations of complex vectors. Listing 17.4 shows the C source code of a
program defines and manipulates complex variables, and performs several complex
vector operations. The C program is stored in file vector_man2.c.

Listing 17.4: C program that uses complex variables and complex vectors.

```c
1 /* Program: vector_man2.c  
2 This program allocates, initializes, complex vectors. It sets
3 complex values to the first n elements and retrieves data from
4 a complex vector using the GSL functions.
5 J. M. Garrido, January 12, 2013
6 */
7 #include <stdio.h>
8 #include <gsl/gsl_complex.h>
9 #include <gsl/gsl_complex_math.h>
10 #include <gsl/gsl_vector.h>
11 int main (void) {
12 const int N = 8;
13 gsl_complex z1; // complex values
14 gsl_complex z2;
15 gsl_complex z3;
16 gsl_complex z4;
17 gsl_complex zv;
18 double xarg;
19 double xabs;
20 double z3r;
21 double z3i;
22 double z4r;
23 double z4i;
24 int i;
25 int n;
26 printf("Program creates and manipulates a complex vector\n");
27 z1.dat[0] = 2.5; // real part
28 z1.dat[1] = 1.25; // imaginary part
29 z2 = gsl_complex_rect (4.5, 8.5); // in rectangular form
30 xarg = gsl_complex_arg(z1);
31 xabs = gsl_complex_abs(z2);
32 z3 = gsl_complex_add(z1, z2);
33 z4 = gsl_complex_mul(z1, z2);
34 z3r = GSL_REAL(z3);
35 z3i = GSL_IMAG(z3);
36 z4r = GSL_REAL(z4);
37 z4i = GSL_IMAG(z4);
38 printf("Argument of z1: %lf absolute val of z2: %lf \n", 
39 xarg, xabs);
40 printf("z3= %lf+i%lf z4= %lf+i%lf \n", z3r, z3i, z4r, z4i);
41 /* Using complex vectors */
42 gsl_vector_complex * pv = gsl_vector_complex_alloc (N);
43 gsl_vector_complex_set_all(pv, z1); // assign z1 to elements
44 n = N - 3;
45 /* set the first n elements of vector to z2 */
46 for (i = 0; i < n; i++)
47 gsl_vector_complex_set (pv, i, z2); // value to element i
48 printf("Data in complex vector\n");
49 for (i = 0; i < N; i++) {
```

Introduction to Computational Modeling
When this program executes, the following output is produced:

Program creates and manipulates a complex vector
Argument of z1: 0.463648 absolute val of z2: 9.617692
z3= 7.000000+i9.750000 z4= 0.625000+i26.875000
Data in complex vector
 element 0 4.5 + i8.5
 element 1 4.5 + i8.5
 element 2 4.5 + i8.5
 element 3 4.5 + i8.5
 element 4 4.5 + i8.5
 element 5 2.5 + i1.25
 element 6 2.5 + i1.25
 element 7 2.5 + i1.25

Summary

Arrays are data structures that store collections of data. To refer to an individual element, an integer value, known as the index, is used to indicate the relative position of the element in the array. C and the GSL manipulate arrays as vectors and matrices. Many operations and functions are defined for creating and manipulating vectors and matrices.

<table>
<thead>
<tr>
<th>Key Terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrays</td>
</tr>
<tr>
<td>vectors</td>
</tr>
<tr>
<td>column vector</td>
</tr>
<tr>
<td>vector operations</td>
</tr>
<tr>
<td>elements</td>
</tr>
<tr>
<td>array elements</td>
</tr>
<tr>
<td>row vector</td>
</tr>
<tr>
<td>vector functions</td>
</tr>
<tr>
<td>index</td>
</tr>
<tr>
<td>matrices</td>
</tr>
<tr>
<td>two-dimensional array</td>
</tr>
<tr>
<td>complex vectors</td>
</tr>
</tbody>
</table>
Exercises

Exercise 17.1 Develop a C program that computes the values in a vector V that are the sines of the elements of vector T. The program must assign to T a vector with 75 elements running from 0 to 2π. Plot the elements of V as a function of the elements of T; use GnuPlot.

Exercise 17.2 Develop a C program that finds the index of the first negative number in a vector. If there are no negative numbers, it should set the result to -1.

Exercise 17.3 The Fibonacci series is defined by: $F_n = F_{n-1} + F_{n-2}$. Develop a C program that computes a vector with the first n elements of a Fibonacci series. A second vector should also be computed with the ratios of consecutive Fibonacci numbers. The program must plot this second vector using GnuPlot.

Exercise 17.4 Develop a C program that reads the values of a vector P and computes the element values of vector Q with the cubes of the positive values in vector P. For every element in P that is negative, the corresponding element in Q should be set to zero.

Exercise 17.5 Develop a C program that reads the values of a vector P and assigns the element values of vector Q with every other element in vector P.

Exercise 17.6 Develop a C program that reads the values of a matrix M of m rows and n columns. The program must create a column vector for every column in matrix M, and a row vector for every row in matrix M.

Exercise 17.7 A trapezoid is a four-sided region with two opposite sides parallel. The area of a trapezoid is the average length of the parallel sides, times the distance between them. The area of the trapezoid with width $\Delta x = x_2 - x_1$, is computed as the width, Δx, times the average height, $(y_2 + y_1)/2$.

$$A_t = \Delta x \frac{y_1 + y_2}{2}$$

For the interval of $[a, b]$ on variable x, it is divided into $n-1$ equal segments of length Δx. Any value of y_k is defined as $y_k = f(x_k)$. The trapezoid sum to compute the area under the curve for the interval of $[a, b]$, is defined by the summation of the areas of the individual trapezoids and is expressed as follows.

$$A = \sum_{k=2}^{k=n} [\Delta x \frac{1}{2}(f(x_{k-1}) + f(x_k))]$$

The larger the number of trapezoids, the better the approximation of the area. The area from a to b, with segments: $a = x_1 < x_2 < \ldots < x_n = b$ is given by:
Using Vectors with the GSL

\[A = \frac{b - a}{2n} \left[f(x_1) + 2f(x_2) + \ldots + 2f(x_{n-1}) + f(x_n) \right] \]

Develop a C function that computes an estimate of the area under a curve given by a sequence of values \(y \) with a corresponding sequence of values \(x \). The function must be called from \(\textit{main} \). The program must use the GSL.
This page intentionally left blank
Chapter 18

Matrices and Sets of Linear Equations

18.1 Introduction

As mentioned in previous chapters, in scientific computing, data is conveniently organized as collections of values known as vectors and matrices and are used to implement data lists and sequences of values. This chapter presents basic concepts of matrices, programming in C and the GSL, and a summary of computing with matrices. Systems of linear equations are solved using the GSL.

18.2 Matrices

In general, a matrix is a two-dimensional array of data values and is organized in rows and columns. The following array, \(Y \), is a two-dimensional array organized as an \(m \times n \) matrix; its elements are arranged in \(m \) rows and \(n \) columns.

\[
Y = \begin{bmatrix}
y_{11} & y_{12} & \cdots & y_{1n} \\
y_{21} & y_{22} & \cdots & y_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{m1} & y_{m2} & \cdots & y_{mn}
\end{bmatrix}
\]

The first row of \(Y \) consists of elements: \(y_{11}, y_{12}, \ldots, y_{1n} \). The second row consists of elements: \(y_{21}, y_{22}, \ldots, y_{2n} \). The last row of \(Y \) consists of elements: \(y_{m1}, y_{m2}, \ldots, y_{mn} \). In a similar manner, the elements of each column can be identified.

18.2.1 Basic Concepts

A matrix is defined by specifying the rows and columns of the array. An \(m \) by \(n \) matrix has \(m \) rows and \(n \) columns. A square matrix has the same number of rows and columns, \(n \) rows and \(n \) columns, which is denoted as \(n \times n \). The following example shows a \(2 \times 3 \) matrix, which has two rows and three columns:
A matrix of dimension $m \times 1$ is known as a column vector and a matrix of dimension $1 \times n$ is known as a row vector. A vector is considered a special case of a matrix with one row or one column. A row vector of size n is typically a matrix with one row and n columns. A column vector of size m is a matrix with m rows and one column.

The elements of a matrix are denoted with the matrix name in lower-case and two indices, one corresponding to the row of the element and the other index corresponding to the column of the element. For matrix Y, the element at row i and column j is denoted by y_{ij} or by $y_{i,j}$.

The main diagonal of a matrix consists of those elements on the diagonal line from the top left and down to the bottom right of the matrix. These elements have the same value of the two indices. The diagonal elements of matrix Y are denoted by y_{ii} or by $y_{j,j}$. For a square matrix, this applies for all values of i or all values of j. For a square matrix X (an $n \times n$ matrix), the elements of the main diagonal are:

$$x_{1,1}, x_{2,2}, x_{3,3}, x_{4,4}, \ldots, x_{n,n}$$

An identity matrix of size n, denoted by I_n, is a square matrix that has all the diagonal elements with value 1, and all other elements (off-diagonal) with value 0. The following is an identity matrix of size 3 (of order n):

$$I = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

18.2.2 Arithmetic Operations

The arithmetic matrix operations are similar to the ones discussed previously for vectors. The multiplication of a matrix Y by a scalar λ calculates the multiplication of every element of matrix Y by the scalar λ. The result defines a new matrix.

$$Y = \begin{bmatrix}
y_{11} & y_{12} & \cdots & y_{1n} \\
y_{21} & y_{22} & \cdots & y_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{m1} & y_{m2} & \cdots & y_{mn}
\end{bmatrix} \quad \lambda Y = \begin{bmatrix}
\lambda y_{11} & \lambda y_{12} & \cdots & \lambda y_{1n} \\
\lambda y_{21} & \lambda y_{22} & \cdots & \lambda y_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda y_{m1} & \lambda y_{m2} & \cdots & \lambda y_{mn}
\end{bmatrix}$$

In a similar manner, the addition of a scalar λ to matrix Y, calculates the addition.
of every element of the matrix with the scalar λ. The subtraction of a scalar λ from a matrix Y, denoted by $Y - \lambda$, computes the subtraction of the scalar λ from every element of matrix Y.

The matrix addition is denoted by $Y + Z$ of two $m \times n$ matrices Y and Z, calculates the addition of every element of matrix Y with the corresponding element of matrix Z. The result defines a new matrix. This operation requires that the two matrices have the same number of rows and columns.

$$Y + Z = \begin{bmatrix} y_{11} + z_{11} & y_{12} + z_{12} & \cdots & y_{1n} + z_{1n} \\ y_{21} + z_{21} & y_{22} + z_{22} & \cdots & y_{2n} + z_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m1} + z_{m1} & y_{m2} + z_{m2} & \cdots & y_{mn} + z_{mn} \end{bmatrix}$$

Similarly, the subtraction of two matrices Y and Z, denoted by $Y - Z$, subtracts every element of matrix Z from the corresponding element of matrix Y. The result defines a new matrix.

The element-wise multiplication (also known as the Hadamard product or Schur product) of two matrices, multiplies every element of a matrix X by the corresponding element of the second matrix Y and is denoted by $X \circ Y$. The result defines a new matrix. The following is the general form of the element-wise multiplication of matrix X multiplied by matrix Y.

$$Z = X \circ Y = \begin{bmatrix} x_{11} \times y_{11} & x_{12} \times y_{12} & \cdots & x_{1n} \times y_{1n} \\ x_{21} \times y_{21} & x_{22} \times y_{22} & \cdots & x_{2n} \times y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} \times y_{m1} & x_{m2} \times y_{m2} & \cdots & x_{mn} \times y_{mn} \end{bmatrix}$$

The determinant of a matrix A, denoted by $\det A$ or by $|A|$, is a special number that can be computed from the matrix. The determinant is useful to describe various properties of the matrix that are applied in systems of linear equations and in calculus.

The determinant provides important information when the matrix consists of the coefficients of a system of linear equations. If the determinant is nonzero the system of linear equations has a unique solution. When the determinant is zero, there are either no solutions or many solutions.

One of several techniques to compute the determinant of a matrix is applying Laplace’s formula, which expresses the determinant of a matrix in terms of its minors. The minor $M_{i,j}$ is defined to be the determinant of the submatrix that results from matrix A by removing the ith row and the jth column. Note that this technique is not very efficient. The expression $C_{i,j} = (1)^{i+j}M_{i,j}$ is known as a cofactor. The determinant of A is computed by
Introduction to Computational Modeling

\[
\det A = \sum_{j=1}^{n} C_{i,j} \times a_{i,j} \times M_{i,j}
\]

The matrix multiplication of an \(m \times n\) matrix \(X\) and an \(n \times p\) matrix \(Y\), denoted by \(XY\), defines another matrix \(Z\) of dimension \(m \times p\) and the operation is denoted by \(Z = XY\). In matrix multiplication, the number of rows in the first matrix has to equal the number of columns in the second matrix. An element of the new matrix \(Z\) is determined by:

\[
z_{ij} = \sum_{k=1}^{n} x_{ik} y_{kj}
\]

that is, element \(z_{ij}\) of matrix \(Z\) is computed as follows:

\[
z_{ij} = x_{i1} y_{1j} + x_{i2} y_{2j} + \ldots + x_{im} y_{nj}
\]

The matrix multiplication is not normally commutative, that is, \(XY \neq YX\). The following example defines a 2 by 3 matrix, \(X\), and a 3 by 3 matrix, \(Y\). The matrix multiplication of matrix \(X\) and \(Y\) defines a new matrix \(Z\).

\[
X = \begin{bmatrix}
1 & 2 & 1 \\
0 & 2 & 1
\end{bmatrix} \quad Y = \begin{bmatrix}
1 & 2 & 0 \\
0 & 3 & 1 \\
-2 & 1 & 1
\end{bmatrix}
\]

\[
Z = XY = \begin{bmatrix}
-1 & 9 & 3 \\
-2 & 7 & 3
\end{bmatrix}
\]

The transpose of an \(m \times n\) matrix \(X\) is an \(n \times m\) matrix \(X^T\) formed by interchanging the rows and columns of matrix \(X\). For example, for the given matrix \(X\), the transpose \((X^T)\) is:

\[
X = \begin{bmatrix}
1 & 2 & 1 \\
0 & 5 & 3
\end{bmatrix} \quad X^T = \begin{bmatrix}
1 & 0 \\
2 & 5 \\
1 & 3
\end{bmatrix}
\]

The conjugate of an \(m \times n\) complex matrix \(Z\) is a matrix \(\bar{Z}\) with all its elements conjugate of the corresponding elements of matrix \(Z\). The conjugate transpose of an \(m \times n\) matrix \(Z\), is an \(n \times m\) matrix that results by taking the transpose of matrix \(Z\) and then the complex conjugate. The resulting matrix is denoted by \(Z^H\) or by \(Z^*\) and is also known as the Hermitian transpose, or the adjoint matrix of matrix \(Z\). For example:

\[
Z = \begin{bmatrix}
1.5 + 2.3i & 2.1 - 1.4i & 1 + 0.7i \\
0 + 3.2i & 2.1 - 1.5i & 3.7 + 3.5i
\end{bmatrix} \quad Z^H = \begin{bmatrix}
1.5 - 2.3i & 0 - 3.2i \\
2.1 + 1.4i & 5.2 + 1.5i \\
1 - 0.7i & 3.7 - 3.5i
\end{bmatrix}
\]
A square matrix Y is symmetric if $Y = Y^T$. The following example shows a 3×3 symmetric matrix Y.

$$
Y = \begin{bmatrix}
1 & 2 & 7 \\
2 & 3 & 4 \\
7 & 4 & 1 \\
\end{bmatrix}
$$

A square matrix X is triangular if all the elements above or below its diagonal have value zero. A square matrix Y is upper triangular if all the elements below its diagonal have value zero. A square matrix Y is lower triangular if all the elements above its diagonal have value zero. The following examples shows a matrix Y that is upper triangular.

$$
Y = \begin{bmatrix}
1 & 2 & 7 \\
0 & 3 & 4 \\
0 & 0 & 1 \\
\end{bmatrix}
$$

The rank of a matrix Y is the number of independent columns in matrix Y, or the number of linearly independent rows of matrix Y. The inverse of an $n \times n$ matrix X is another matrix X^{-1} (if it exists) of dimension $n \times n$ such that their matrix multiplication results in an identity matrix of order n. This relation is expressed as:

$$
X^{-1}X = XX^{-1} = I_n
$$

A square matrix X is orthogonal if for each column x_i of X, $x_i^T x_j = 0$ for any other column x_j of matrix X. If the rows and columns are orthogonal unit vectors (the norm of each column x_i of X has value 1), then X is orthonormal. A matrix X is orthogonal if its transpose X^T is equal to its inverse X^{-1}. This implies that for orthogonal matrix X,

$$
X^TX = I
$$

Given matrices A, X, and B, a general matrix equation is expressed by $AX = B$. This equation can be solved for X by pre-multiplying both sides of the matrix equation by the inverse of matrix A. The following the expression shows this:

$$
A^{-1}AX = A^{-1}B
$$

This results in

$$
X = A^{-1}B
$$
18.2.3 Matrix Manipulation in C and the GSL

Matrices are created and manipulated in C by calling the various library functions in the GSL. Before using a matrix, it needs to be created. Function `gsl_matrix_alloc` creates a matrix of the specified length \(m \) rows and \(n \) columns, and returns a pointer to the matrix. Matrices are stored in row-major order, the elements of each row form a contiguous block in memory. This is the standard C-language ordering of two-dimensional arrays.

When a matrix is no longer needed in the program, it can be destroyed by calling the GSL function `gsl_matrix_free`. The first of the following C statements shows matrix `mmat` created with \(M \) rows and \(N \) columns. The second statement destroys matrix `mmat`.

```
gsl_matrix * mmat = gsl_matrix_alloc (M, N);
gsl_matrix_free (mmat);
```

A matrix is manipulated by accessing its elements and changing and/or retrieving the value of the elements. The GSL library function `gsl_matrix_set` assigns the value specified to the element indexed with row \(i \) and column \(j \) of a matrix. The GSL function `gsl_matrix_set_all` sets the value specified to all elements of a matrix. Function `gsl_matrix_set_zero` sets all elements of the specified matrix to zero.

Function `gsl_matrix_set_identity` creates an identity matrix and sets it to the specified matrix. Therefore, the elements of the main diagonal will have a value of 1, and all other elements will have a value of zero.

The value of individual elements of a matrix can be retrieved by calling the GSL function `gsl_matrix_get`. This function returns the value of the \((i, j)\)-th element of the specified matrix. The first of the following C statements calls function `gsl_matrix_set` to assign the value of variable `val` to the element \(i, j \) of matrix `mmat`. The second statement retrieves the value of element \(i, j \) of matrix `mmat` and assigns this value to variable `y`.

```
gsl_matrix_set (mmat, i, j, val);
y = gsl_matrix_get (mmat, i, j);
```

The functions `gsl_matrix_get` and `gsl_matrix_set` and similar functions perform portable range checking and report an error if the index value of an element is outside the allowed range.

Listing 18.1 shows the source code of a C program that uses GSL functions to create and manipulate a matrix. Line 7 includes the header file that contains the declarations for calling the GSL functions for matrices. Line 14 calls function `gsl_matrix_alloc` to create matrix `mmat` with \(M \times N \) elements. In line 23, element \(i \) of matrix `mmat` is set to the specified value. In line 35 matrix `mmat` is destroyed by calling function `gsl_matrix_free`.

Matrices and Sets of Linear Equations

Listing 18.1: C program that creates and manipulates a matrix.

```c
/* Program: matrix_bops.c */

#include <stdio.h>
#include <gsl/gsl_matrix.h>

int main (void)
{

const int M = 10; // number of rows
const int N = 3; // number of columns
int i, j;
double val;
gsl_matrix * mmat = gsl_matrix_alloc (M, N);

// generate values of matrix elements
for (i = 0; i < M; i++) {
    printf("Row %d \n", i);
    for (j = 0; j < N; j++) {
        val = 12.25 + 100*i + j;
        printf("%g \t", val);
        gsl_matrix_set (mmat, i, j, val);
    }
    printf("\n");
}

// retrieve element data from the matrix
for (i = 0; i < M; i++) {
    for (j = 0; j < N; j++) {
        val = gsl_matrix_get (mmat, i, j);
        printf("mMAT(%d,%d) = %5.2f \n", i, j, val);
    }
    printf("\n");
}

return 0;
}
```

The following listing includes the Linux shell commands in a terminal window to compile, link, and execute the program; it also includes the output results produced by the program execution.

```
$ gcc -Wall -o matrixbops.out matrix_bops.c -lgsl -lm
$ ./matrixbops.out
Simple operations on a matrix
Generate values of elements for matrix
Row 0
 12.25 13.25 14.25
Row 1
 112.25 113.25 114.25
Row 2
 212.25 213.25 214.25
```
18.3 Simple Matrix Operations

The basic operations on matrices are performed with a matrix and a scalar or with two matrices. These are carried out by calling several GSL functions in C.

18.3.1 Arithmetic Operations

To add a scalar to a matrix, involves adding the scalar value to every element of the matrix. With C and GSL, this is performed by calling function `gsl_matrix_add_constant`. This function adds the specified constant value to the elements of the matrix specified.

In the following portion of code, matrix `pm` is created then all its elements are assigned the value 3.5. On the fourth line, function `gsl_matrix_add_constant` is called to add the constant `x`, which has value 10.45 to all the elements of matrix `pm`. In a similar manner, subtracting a scalar from a matrix can be specified.

```c
const double x = 10.45;
gsl_matrix * pm = gsl_matrix_alloc (M, N); // create matrix pm
gsl_matrix_set_all (pm, 3.5); // assign 3.5 to all elements
gsl_matrix_add_constant (pm, x); // add x to all elements
```
Matrix addition adds two matrices and involves adding the corresponding elements of each matrix. This addition operation on matrices is only possible if the two matrices are of the same size. In the following example, matrix \(pm\) and \(qm\) are both matrices of size \(M \times N\). Calling function `gsl_matrix_add` adds the elements of matrix \(qm\) to the elements of matrix \(pm\).

```c
gsl_vector * pm = gsl_matrix_alloc (M, N); // create matrix pm
gsl_vector * qm = gsl_matrix_alloc (M, N); // create matrix qm
// ...
gsl_matrix_add (pm, qm); // add matrix qm to matrix pm
```

Matrix subtraction is carried out by subtracting the corresponding elements of each of two matrices. The matrices must be of the same size and the matrix subtraction is performed by calling function `gsl_matrix_sub`. In the following line of code, the elements of matrix \(qm\) are subtracted from the elements of matrix \(pm\).

```c
gsl_matrix_sub (pm, qm); // matrix qm subtracted from matrix pm
```

Matrix scalar multiplication involves multiplying each element of the matrix by the value of the scalar. Calling function `gsl_matrix_scale` multiplies the elements of the specified matrix by the constant factor specified. In the following call to this function, the elements of matrix \(pm\) are multiplied by the constant \(x\).

```c
gsl_matrix_scale (pm, x);
```

Element by element matrix multiplication involves multiplying the corresponding elements of two matrices. This operation is applied to two matrices of equal size \((m \times n)\) and is performed by calling the GSL function `gsl_matrix_mul_elements`. The function call multiplies the elements of the first matrix specified by the elements of the second specified matrix. In the following function call, matrices \(pm\) and \(qm\) are element multiplied and the results are stored in vector \(pm\).

```c
gsl_matrix_mul_elements (pm, qm);
```

Element by element matrix division involves dividing the corresponding elements of two matrices. This operation is applied to two matrices of equal size \((m \times n)\) and is performed by calling the GSL function `gsl_matrix_div_elements`. This function divides the elements of the first specified matrix by the elements of the second specified matrix. In the following function call, the elements of matrix \(pm\) are divided by the elements of matrix \(qm\) and the results are stored in matrix \(pm\).

```c
gsl_matrix_div_elements (pm, qm);
```
Listing 18.2 shows the C source code of a program that copies the elements from C two-dimensional arrays into GSL matrices \texttt{ga} and \texttt{gb}. Then it computes scalar addition and subtraction, scalar multiplication, and element addition, subtraction, multiplication, and division of matrices \texttt{ga} and \texttt{gb}. The program is stored in file \texttt{matrix_arith.c}.

Lines 22–29 of the program copy the values of the elements from the C two-dimensional arrays \texttt{a} and \texttt{b} to the GSL matrices \texttt{ga} and \texttt{gb}. Lines 31–48 perform the various arithmetic operations on matrices \texttt{ga} and \texttt{gb}. The prototype of function \texttt{display_mat} is specified in line 10 and the function is defined in the program on lines 53–65. Lines 54–55 get the number of rows and the number of columns of a GSL matrix.

Listing 18.2: C program that several arithmetic matrix operations.

```c
/* Program: matrix_arith.c
This program computes matrix arithmetic operations using the
GSL library. It copies data from C arrays into gsl matrices.
*/

#include <stdio.h>
#include <gsl/gsl_blas.h>
define M 2 // number of rows matrix a
define N 3 // number of columns matrix a

void display_mat(gsl_matrix * gslmat);
int main (void) {
  int i, j;
double val;
double a[M][N] = { {0.11, 0.12, 0.13},
                   {0.21, 0.22, 0.23} };
double b[M][N] = { {1.11, 10.12, 8.75},
                   {9.21, 3.22, 6.55} };
double x = 7.5;
gsl_matrix * ga = gsl_matrix_alloc (M, N);
gsl_matrix * gb = gsl_matrix_alloc (M, N);
printf("GSL Arithmetic Matrix Operations\n");
  for (i = 0; i < M; i++) {
    for (j = 0; j < N; j++) {
      val = a[i][j];
      gsl_matrix_set (ga, i, j, val);
      val = b[i][j];
      gsl_matrix_set (gb, i, j, val);
    }
  } /* Compute scalar addition */
  gsl_matrix_add_constant (ga, x); // add x to elements of ga
  printf("\nMatrix ga after scalar addition: \n");
display_mat(ga); // display matrix
  /* matrix addition and subtraction of ga and gb */
  gsl_matrix_add (ga, gb); // add matrix gb to matrix ga
  printf("\nMatrix ga after matrix addition: \n");
display_mat(ga);
  gsl_matrix_sub (ga, gb); // subtract matrix gb to matrix pm
  printf("\nMatrix ga after matrix add and scalar sub: \n");
  gsl_matrix_add_constant (ga, -x); // add -x to elements of ga
  printf("\nMatrix ga after matrix add and scalar sub: \n");
```
Matrices and Sets of Linear Equations

```c
41 display_mat(ga);
42 /* Compute scalar multiplication of matrix ga */
43 gsl_matrix_scale (ga, x);
44 printf("\nMatrix ga after scalar mul: \n");
45 display_mat(ga);
46 /* matrix element multiplication and div of ga and gb */
47 gsl_matrix_mul_elements (ga, gb);
48 gsl_matrix_div_elements (ga, gb);
49 printf("\nMatrix ga after matrix element mul and div: \n");
50 display_mat(ga);
51 return 0;
52 } // end main
53 void display_mat(gsl_matrix * gslmat) {
54 int m = gslmat->size1; // get number of rows
55 int n = gslmat->size2; // get number of cols
56 int i, j;
57 double val;
58 for (i = 0; i < m; i++) {
59     for (j = 0; j < n; j++) {
60         val = gsl_matrix_get (gslmat, i, j);
61         printf("%g ", val);
62     }
63     printf("\n");
64 }
65 } // end display_mat
```

The following listing shows the output results produced by the program execution.

GSL Arithmetic Matrix Operations

Matrix ga after scalar addition:
7.61 7.62 7.63
7.71 7.72 7.73

Matrix ga after matrix addition:
8.72 17.74 16.38
16.92 10.94 14.28

Matrix ga after matrix add and scalar sub:
0.11 0.12 0.13
0.21 0.22 0.23

Matrix ga after scalar mul:
0.825 0.9 0.975
1.575 1.65 1.725

Matrix ga after matrix element mul and div:
0.825 0.9 0.975
1.575 1.65 1.725

18.3.2 Additional Matrix Functions

Various additional functions can be applied to matrices. To create an identity matrix and set it to the specified matrix, function `gsl_matrix_set_identity` is called. The function takes the number of rows and the number of columns of the specified
matrix. In the following example, the first statement creates matrix `mymat`, the second statement sets the matrix to an identity matrix.

```c
#include <gsl/gsl_matrix.h>

int m, n;

gsl_matrix * mymat = gsl_matrix_alloc (m, n);
gsl_matrix_set_identity (mymat);
```

Copying one matrix to another matrix is performed by calling the GSL function `gsl_matrix_memcpy`. This function copies the elements of the specified source matrix into the specified destination matrix. The two matrices must have the same length $m \times n$. In the following example, the elements of matrix `qm` are copied to the corresponding elements of matrix `pm` and the results are stored in matrix `pm`.

```c
#include <gsl/gsl_matrix.h>

gsl_matrix * pm, * qm;

gsl_matrix_memcpy (pm, qm);
```

Copying rows and columns from matrices to vectors and copying rows and columns from vectors to matrices is performed by functions: `gsl_matrix_get_row`, `gsl_matrix_get_col`, `gsl_matrix_set_row`, and `gsl_matrix_set_col`. In the following example, the first statement copies the elements of column j of matrix `mymat`, to vector `pv`. The second statement copies vector `qv` to row i of matrix `mymat`.

```c
#include <gsl/gsl_matrix.h>

int i, j;

gsl_matrix_get_col (pv, mymat, j);
gsl_matrix_set_row (mymat, i, qv);
```

To exchange the rows and columns of a matrix, the following functions are defined: `gsl_matrix_swap_rows` and `gsl_matrix_swap_columns`. The following example exchanges rows ia and ib of matrix `mymat`.

```c
#include <gsl/gsl_matrix.h>

int ia, ib;

gsl_matrix_swap_rows (mymat, ia, ib);
```

Function `gsl_matrix_swap_rowcol` exchanges row i and column j of the specified square matrix. Function `gsl_matrix_transpose_memcpy` gets the transpose of the second specified matrix and sets it to the first matrix specified.

The comparison of two matrices for equality is performed by calling the GSL function `gsl_matrix_equal`. This function returns 1 if the specified vectors are equal (by comparison of element values) and 0 otherwise.

In the following function call, the elements of matrix `qm` are compared to the corresponding elements of `pm` and the result is an integer value assigned to variable `vflag`.

```c
#include <gsl/gsl_matrix.h>

int vflag;

vflag = gsl_matrix_equal (pm, qm);
```

Because there are only two possible outcomes in the call to this function, the return value may be considered a boolean value (true is represented by 1 and false is represented by 0), which can be used in a conditional statement.

The attributes `size1` and `size2` of a matrix store the number of rows and the number of columns of the corresponding matrix. The following lines of C code get the size of matrix `pm` and assigns these values to variables `m` and `n`.

```c
#include <gsl/gsl_matrix.h>

int m, n;

gsl_matrix * pm;

m = gsl_matrix_size1 (pm);
n = gsl_matrix_size2 (pm);
```
Function `gsl_matrix_max` gets the maximum value stored in the specified matrix. The following function call gets the maximum value in matrix `pm` and assigns this value to `x`, which should be a variable of type `double`.

```
x = gsl_matrix_max(pm);
```

In addition to the maximum value in a matrix, the index of the element with that value may be desired. Calling function `gsl_matrix_max_index` gets the index values (row and column) of the element with the maximum value in the specified matrix. In the following function call, the index values of the element with the maximum value in matrix `pm` are stored in the reference arguments `im` and `jm`.

```
gsl_matrix_max_index (pm, &im, &jm);
```

In a similar manner, function `gsl_matrix_min` gets the minimum value (of type `double`) stored in the specified matrix. Function `gsl_matrix_min_index` gets the index values (row and column) of the minimum value in the specified matrix.

Listing 18.3 shows a C source listing of a program that performs several of the matrix manipulation operations discussed. The program is stored in file `matrix_ops2.c`. In lines 20–22, the program creates two matrices and one vector. In line 31, the program creates an identity matrix to the size of matrix `gb`. Line 35 copies matrix `ga` to matrix `gb`. Line 40 copies row `i` to vector `pv`. Line 46 changes the values in vector `pv` by adding a constant to its elements. Line 47 copies vector `pv` to column `j` of matrix `ga`. Line 53 exchanges rows 2 and 1 of matrix `ga`. Line 57 copies the transpose of matrix `ga` to matrix `gb`. Line 63 gets the index values of the row and column of the element with minimum value in matrix `gb`.

Listing 18.3: C program that includes several matrix operations.
Introduction to Computational Modeling

```c
double x = 11.75;
gsl_matrix * ga = gsl_matrix_alloc (M, N);
gsl_matrix * gb = gsl_matrix_alloc (M, N);
gsl_vector * pv = gsl_vector_alloc (N); // create vector pv

for (i = 0; i < M; i++) {
  for (j = 0; j < N; j++) {
    val = a[i][j];
    gsl_matrix_set (ga, i, j, val);
  }
}

/* Set identity matrix to gb */
gsl_matrix_set_identity (gb);

printf("\nMatrix gb identity matrix: \n");
display_mat(gb); // display matrix

/* copy matrix ga to gb */
gsl_matrix_memcpy (gb, ga);

printf("\nMatrix gb after copied from ga: \n");
display_mat(gb);

/* copy row i of matrix ga to vector pv */
i = 1; // row 1
i = 1; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
i = 2; // row 1
i = 1; // row 1
```
Matrices and Sets of Linear Equations

73 jj = ga->size2; // cols
74 printf("Size of matrix ga: %d rows, %d cols \n", ii, jj);
75 return 0;
76 } // end main
77 void display_mat(gsl_matrix * gslmat) {
78 int m = gslmat->size1; // get number of rows
79 int n = gslmat->size2; // get number of cols
80 int i, j;
81 double val;
82 for (i = 0; i < m; i++) {
83 for (j = 0; j < n; j++) {
84 val = gsl_matrix_get (gslmat, i, j);
85 printf("%g ", val);
86 }
87 printf("\n");
88 }
89 } // end display_mat

The following listing shows the output results produced by the program execution.

GSL Matrix Operations
Matrix gb identity matrix:
1 0 0
0 1 0
0 0 1
Matrix gb after copied from ga:
3.11 5.12 2.13
1.21 8.22 5.23
6.77 2.88 7.55
Vector pv from matrix ga row: 1
element 0 = 1.21
element 1 = 8.22
element 2 = 5.23
Matrix ga after setting col: 2
3.11 5.12 12.96
1.21 8.22 19.97
6.77 2.88 16.98
Matrix ga after exchanging row: 2 and 1
3.11 5.12 12.96
6.77 2.88 16.98
1.21 8.22 19.97
Matrix gb after setting transpose of ga
3.11 6.77 1.21
5.12 2.88 8.22
12.96 16.98 19.97
Maximum value in matrix gb: 19.97
Minimum value in matrix gb, row: 0 col 2
Matrices ga and gb are not equal
Size of matrix ga: 3 rows, 3 cols
18.3.3 GSL Matrix Views

To use a submatrix of a matrix, the GSL provides matrix views. These are of type `gsl_matrix_view` and the elements of the views can be accessed with the address of component `matrix` of the view (using the & operator). In the following example, matrix `a` is created with 7 rows and 5 columns. Then a matrix view `suba` of matrix `a` is created to get a submatrix of `a`. The upper left element of the submatrix is on row 2 and column 2 of matrix `a`. The submatrix, `suba`, has 4 rows and 3 columns. The third statement illustrates how to use a matrix view to add 12.4 to the elements of the submatrix `suba`.

```c
#include <stdio.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>

#define M 3 // number of rows matrix a
#define N 3 // number of columns matrix a

void display_mat(gsl_matrix * mat);

int main (void) {
    int i, j;
    double val;
    double a[M][N] = { {3.11, 5.12, 2.13},
                      {1.21, 8.22, 5.23},
                      {7.25, 8.65, 2.66} }
    double x = 11.75;
    gsl_matrix * ga = gsl_matrix_alloc (M, N);
    gsl_matrix_view subga =
        gsl_matrix_submatrix( ga, 1, 1, M-1, N-1);
    printf("GSL Sub-Matrix Operations\n");
    for (i = 0; i < M; i++) {
        for (j = 0; j < N; j++) {
            val = a[i][j];
            gsl_matrix_set (ga, i, j, val);
            val += x;
            gsl_matrix_set (ga, i, j, val);
        }
    }
    return 0;
}
```

Listing 18.4 shows the C source code of a program that creates a matrix view of a matrix to get a submatrix and perform operations on this submatrix. Line 19 creates a matrix view, `subga`, of matrix `ga`. This defines a submatrix that starts on row 1 and column 1 of matrix `ga`. The submatrix has one less `(M - 1)` row and one less `(N - 1)` column than matrix `ga`. Line 31 calls function `display_mat` to display submatrix `subga`. Line 33 adds the value of variable `x` to the elements of submatrix `subga`. Similarly, line 37 multiplies the value of variable `x` to the elements of submatrix `subga`. The program is stored in file `matrix_views.c`.

Listing 18.4: C program matrix views.
Matrices and Sets of Linear Equations

26
27 printf("Matrix ga \n");
28 display_mat(ga);
29 /* display submatrix subga */
30 printf("Submatrix subga \n");
31 display_mat(subga.matrix);
32 /* Compute scalar addition */
33 gsl_matrix_add_constant (&subga.matrix, x); // add x to ga
34 printf("\nSubmatrix subga after scalar addition: \n");
35 display_mat(&subga.matrix); // display matrix
36 /* Compute scalar multiplication of submatrix subga */
37 gsl_matrix_scale (&subga.matrix, x);
38 printf("\nSubmatrix subga after scalar multiplication: \n");
39 display_mat(&subga.matrix);
40 return 0;
41 } // end main
42
43 void display_mat(gsl_matrix * gslmat) {
44 int m = gslmat->size1; // get number of rows
45 int n = gslmat->size2; // get number of cols
46 int i, j;
47 double val;
48 for (i = 0; i < m; i++) {
49 for (j = 0; j < n; j++) {
50 val = gsl_matrix_get (gslmat, i, j);
51 printf("%6.2f ", val);
52 }
53 printf("\n");
54 } // end display_mat

The following listing is the output produced by the program execution.

GSL Sub-Matrix Operations
Matrix ga
 3.11 5.12 2.13
 1.21 8.22 5.23
 7.25 8.65 2.66
Submatrix subga
 8.22 5.23
 8.65 2.66
Submatrix subga after scalar addition:
 19.97 16.98
 20.40 14.41
Submatrix subga after scalar multiplication:
 234.65 199.52
 239.70 169.32

When a C array has already been declared and initialized, it is convenient to create a GSL matrix view of the array, instead of copying the elements of the array to a GSL matrix. Function gsl_matrix_view_array gets a matrix view of the specified array. The size of the array ($n \times m$) has to be specified also. This function takes a linear array, so if the array is two-dimensional a pointer conversion is necessary. In the following example, the first statement declares and initializes array myarray. The second statement creates a matrix view of the array, with 2 rows and 4 columns.
double myarray[] = {3.5, 4.56, 1.25, 12.55, 6.45, 10.05, 7.85, 5.25};
gsl_matrix_view mav = gsl_matrix_view_array(myarray, 2, 4);

Listing 18.5 shows a C source program that applies array views. This program includes a small change compared to the previous C program; the only changes in the program are lines 18–19. The results of the program execution are the same. The C source code of the program is stored in file matrix_views2.c.

Listing 18.5: C program matrix views.

Other GSL functions that define matrix views and vector views are:
- function \texttt{gsl_matrix_view_vector} gets the matrix view of the specified vector;
- function \texttt{gsl_matrix_row} gets the vector view of a given row number of the specified matrix;
Matrices and Sets of Linear Equations

- function `gsl_matrix_subrow` gets the vector view of a given row number of the specified matrix, starting at element `offset` and with `n` elements;
- function `gsl_matrix_column` gets the vector view of a given column of the specified matrix;
- function `gsl_matrix_subcolumn` gets the vector view of a given column of the specified matrix, starting at element `offset` and with `n` elements;
- function `gsl_matrix_diagonal` gets the vector of the given diagonal of the specified matrix.

The following lines of C code statements first create vector `pv` and matrix `pm`. The next statement creates a matrix view `mv` with `m` rows and `n` columns of vector `pv`. The next source statement creates a vector view `bvv` of row 3 of matrix `pm`. The next statement creates a vector view `bvvs` of a subrow of matrix `pm` from row 2, starting at element 3, size of 6. The next statement creates a vector view `cvv` of column 2 of matrix `pm`. The next statement creates a vector view `cvvs` of a subcolumn of matrix `pm` from row 2, starting at element 1, size of 8. The last statement creates vector view `dv` of the diagonal of matrix `pm`.

```c
gsl_vector * pv = gsl_vector_alloc (N);
gsl_matrix * pm = gsl_matrix_alloc (M, N);
gsl_matrix_view mv = gsl_matrix_view_vector (pv, m, n);
gsl_vector_view bvv = gsl_matrix_row (pm, 3); // row 3
  gsl_vector_view bvvs = gsl_matrix_subrow (pm, 2, 3, 6);
gsl_vector_view cvv = gsl_matrix_column (pm, 2); // column 2
  gsl_vector_view cvvs = gsl_matrix_subcolumn (pm, 2, 1, 8);
gsl_vector_view dv = gsl_matrix_diagonal (pm);
```

18.4 Solving Systems of Linear Equations

Several methods exist on how to solve systems of linear equations applying vectors and matrices. Some of these methods are: substitution, cancellation, or matrix manipulation. A system of `n` linear equations can be expressed by the general equations:

\[
\begin{align*}
a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n &= b_1 \\
a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n &= b_2 \\
\vdots \quad \vdots \quad \vdots \quad \vdots \\
a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n &= b_n
\end{align*}
\]
This system of linear equations is more conveniently expressed in matrix form in the following manner:

\[
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_n
\end{bmatrix} =
\begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_m
\end{bmatrix}
\tag{18.1}
\]

This can also be expressed in a more compact matrix form as: \(AX = B \). Matrix \(A \) is the coefficients matrix (of the variables \(x_i \) for \(i = 1 \ldots n \)). \(X \) is the vector of unknowns \(x_i \), and \(B \) is the vector of solution. Consider a simple linear problem that consists of a system of three linear equations (\(n = 3 \)):

\[
\begin{align*}
5x_1 + 2x_2 + x_3 &= 25 \\
2x_1 + x_2 + 3x_3 &= 12 \\
-x_1 + x_2 + 2x_3 &= 5
\end{align*}
\]

In matrix form, this system of three linear equations can be written in the following manner:

\[
\begin{bmatrix}
5 & 2 & 1 \\
2 & 1 & 3 \\
-1 & 1 & 2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} =
\begin{bmatrix}
25 \\
12 \\
5
\end{bmatrix}
\tag{18.2}
\]

Matrix \(A \) is a square \((n \times n) \) of coefficients, \(X \) is a vector of size \(n \), and \(B \) is the solution vector also of size \(n \).

\[
A = \begin{bmatrix}
5 & 2 & 1 \\
2 & 1 & 3 \\
-1 & 1 & 2
\end{bmatrix} \quad X = \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \quad B = \begin{bmatrix}
25 \\
12 \\
5
\end{bmatrix}
\tag{18.3}
\]

Decomposing the coefficient matrix, \(A \) is the main technique used in GSL to compute the determinant, matrix inversion, and the solution a set of linear equations. Common numerical methods used are:

- Gaussian Elimination
- LU Decomposition
- SV Decomposition
- QR Decomposition
With LU Decomposition, a general square matrix A is factorized into upper and lower triangular matrices, applying the matrix relation: $PA = LU$, where P is a permutation matrix, L is unit lower triangular matrix and U is upper triangular matrix.

Function $gsl_linalg_LU_decomp$ factorizes the specified square matrix A into the LU decomposition. The function returns matrix A with the diagonal and upper triangular part of the original matrix A. In the following example, the first C statement creates a GSL square $(M \times M)$ matrix a. The second statement creates a permutation of size M. The third statement performs the LU decomposition of matrix a.

```c
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_permutation.h>
#include <gsl/gsl_linalg.h>

int main() {
    gsl_matrix * a = gsl_matrix_alloc (M, M);
    gsl_permutation * p = gsl_permutation_alloc (M);
    gsl_linalg_LU_decomp (a, p, &s);
}
```

To compute the determinant of a matrix A, first the LU decomposition must be performed, then function $gsl_linalg_LU_det$ is called. To compute the inverse of a matrix A, function $gsl_linalg_LU_invert$ is called. In the following example, the first C statement performs the LU decomposition of matrix a. The second statement computes the determinant d of matrix a. The third statement computes the inverse matrix $invm$ of matrix a.

```c
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_permutation.h>
#include <gsl/gsl_linalg.h>

int main() {
    gsl_matrix * a = gsl_matrix_alloc (M, M);
    gsl_permutation * p = gsl_permutation_alloc (M);
    gsl_linalg_LU_decomp (a, p, &s);
    d = gsl_linalg_LU_det (a, s);
    gsl_linalg_LU_invert (a, p, invm);
}
```

For computing matrix multiplication of two matrices A and B, the GSL provides a set of general matrix multiplication functions for several types of data. For type `double`, the GSL function is gsl_blas_dgemm and it calculates the value of matrix C using the following relation in which α and β are scalar coefficients:

$$C = \alpha AB + \beta C$$

The following statements in the C language, assign values to the scalars $alpha$ and $beta$ then call the function to compute matrix c by multiplying matrix a by matrix b.

```c
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_blas.h>

int main() {
    double alpha = 1.0;
    double beta = 0.0;
    gsl_blas_dgemm (blasNoTrans, blasNoTrans, alpha, a, b, beta, c);
}
```

Listing 18.6 shows the C source program that computes the determinant of a matrix, the matrix inversion of a matrix, and the matrix multiplication of two matrices. In line 41, matrix ga is copied to matrix $mymat$ to retain the original matrix (ga). Line 44 performs the LU decomposition of matrix $mymat$. In line 45, the determinant of matrix $mymat$ is computed and stored in variable $determ$. In line 47, the inverse matrix of $mymat$ is computed and stored in matrix $invmat$. Lines 61–62 calls function is gsl_blas_dgemm to compute the matrix multiplication of matrices ga and gb and the result matrix is gc.

Listing 18.6: Computing matrix determinant, inversion, and multiplication.
/* Program: matrix_mul4.c
This program computes matrix determinant, matrix inversion,
and matrix multiplication using the GSL library. It copies data
from C arrays into GSL matrices, instead of using matrix views.
J. Garrido. December 22, 2012
*/

#include <stdio.h>
#include <gsl/gsl_linalg.h>
#include <gsl/gsl_blas.h>

#define M 3 // number of rows matrix A
#define N 3 // number of columns matrix A
#define K 2

void display_mat(gsl_matrix * gslmat);

int main (void) {
 int i, j;
 double alpha;
 double beta;
 double val;
 double a[M][N] = { {2.15, 1.10, 5.15},
 {1.25, 2.35, 7.55},
 {2.44, 3.55, 8.25}};
 double b[N][K] = { {10.21, 9.22},
 {12.15, 7.22},
 {1.35, 3.25}};
 double determ; // determinant
 gsl_matrix * ga = gsl_matrix_alloc (M, N);
 gsl_matrix * mymat = gsl_matrix_alloc (M, N);
 gsl_matrix * invmat = gsl_matrix_alloc(M, N);
 gsl_matrix * gb = gsl_matrix_alloc (N, K);
 gsl_matrix * gc = gsl_matrix_alloc (M, K);
 printf ("Program computes matrix determinant, inversion\n");
 printf ("and multiplication (C = A B)\n
Matrix A: \n
");
 for (i = 0; i < M; i++) {
 for (j = 0; j < N; j++) {
 val = a[i][j];
 gsl_matrix_set (ga, i, j, val);
 }
 }
 display_mat(ga);
 int s;
 gsl_matrix_memcpy(mymat, ga);
 // create a permutation
 gsl_permutation * p = gsl_permutation_alloc (M);
 gsl_linalg_LU_decomp (mymat, p, &s);
 determ = gsl_linalg_LU_det(mymat, s); // determinant
 printf ("Determinant of matrix A: %g \n", determ);
 gsl_linalg_LU_invert(mymat, p, invmat);
 printf ("Inverse matrix of A: \n\n");
 for (i = 0; i < M; i++) {
 for (j = 0; j < N; j++) {
 val = a[i][j];
 gsl_matrix_set (gmat, i, j, val);
 }
 }
 display_mat(ga);
 printf ("\n\nMatrix B: \n\n");
 for (i = 0; i < N; i++) {
 for (j = 0; j < K; j++) {
 val = b[i][j];
 gsl_matrix_set (gb, i, j, val);
 }
 }
 display_mat(gb);
The following listing is the output produced by the program execution.

Program computes GSL Matrix determinant, inversion, and multiplication (C = A B)

Matrix A:
2.15 1.10 5.15
1.25 2.35 7.55
2.44 3.55 8.25

Determinant of matrix A: -13.6988

Inverse matrix of A:
0.54 -0.67 0.28
-0.59 -0.38 0.72
0.09 0.36 -0.27

Matrix B:
10.21 9.22
12.15 7.22
1.35 3.25

Matrix C = AB:
42.27 44.50
51.51 53.03
79.18 74.94

To solve a system of linear equations expressed in matrix form \(AX = B\), GSL provides function `gsl_linalg_LU_solve`. This function uses the LU decomposition of matrix \(A\) by first calling function `gsl_linalg_LU_decomp`. The following example shows three C statements that solve a system of linear equations \(ax = b\). The first statement creates a permutation \(p\) of size \(M\). The second statement performs an LU decomposition of matrix \(a\), and changes the matrix. The third statement solves the system of linear equations by using LU decomposition; the results are stored in vector \(x\).

```c
    gsl_permutation * p = gsl_permutation_alloc (M);
    gsl_linalg_LU_decomp (a, p, &s);
    gsl_linalg_LU_solve (a, p, b, x); // solve linear equations
```

Listing 18.7 shows the C source code of a program that solves a system of linear equations, \(AX = B\), using LU decomposition of matrix \(A\). The program reads as input data all values it requires to execute.
Listing 18.7: C program that solves a system of linear equations.

```c
/* Program: lineqs1.c
The following program solves the linear system A x = b.
The system is solved using LU decomposition of the matrix A.
Modified December 10, 2012 by J. Garrido*/
#include <stdio.h>
#include <gsl/gsl_linalg.h>
int main (void) {
    int m; // number of rows in A
    int n; // number of columns in A
    double val;
    int i;
    int j;
    int s;
    scanf("%d ", &m); // read number of rows
    scanf("%d ", &n); // read number of columns
    printf("Program to solve system of linear equations with
           LU decomposition\n");
    printf("Matrix A, number of rows: %d 
", m);
    printf("Matrix A, number of cols: %d 
", n);
    gsl_matrix * mmat = gsl_matrix_alloc (m, n);
    gsl_vector * b = gsl_vector_alloc(n);
    gsl_vector *x = gsl_vector_alloc (n);
    printf("Matrix A: 
");
    // input values into matrix A
    for (i = 0; i < m; i++) {
        printf("Row %d 
", i);
        for (j = 0; j < n; j++) {
            scanf("%lf ", &val);
            printf("%g ", val);
            gsl_matrix_set (mmat, i, j, val);
        }
    }
    printf("vector b: 
");
    // Input values into vector b
    for (i = 0; i < n; i++) {
        scanf("%lf ", &val);
        printf("%.2f ", val);
        gsl_vector_set(b, i, val);
    }
    gsl_permutation * p = gsl_permutation_alloc (n);
    gsl_linalg_LU_decomp (mmat, p, &s);
    gsl_linalg_LU_solve (mmat, p, b, x);
    printf("Solution Vector x: 
");
gsl_vector_fprintf (stdout, x, "%g");
gsl_matrix_free (mmat);
gsl_permutation_free (p);
gsl_vector_free (x);
return 0;
```

The following output listing is produced by executing the program.

Program to solve system of linear equations with LU decomposition
Matrix A, number of rows: 4
Matrix A, number of cols: 4

Matrix A:
Row 0
3.25 1.6 8.55 4.25
Row 1
1.45 3.25 2.75 1.55
Row 2
2.25 5.35 1.3 7.5
Row 3
3.5 7.15 3.85 3.6

vector b:
1.20 2.55 3.65 4.75

Solution Vector x:
-0.858919
0.915252
0.273682
0.0440242

Summary

Computations that involve single numbers are known as scalars. Matrices are data structures that store collections of data in two dimensions: rows and columns. To refer to an individual element, two index values are used: one to indicate the row and the other to indicate the column of the element in the array. With the C programming language and the GSL, several functions are available to create and manipulate matrices. Several case studies are presented that show for each problem, the C source program and the output produced by the program execution.

Key Terms

<table>
<thead>
<tr>
<th>arrays</th>
<th>elements</th>
<th>index</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrices</td>
<td>array elements</td>
<td>GSL matrices</td>
</tr>
<tr>
<td>column vector</td>
<td>row vector</td>
<td>double-dimension array</td>
</tr>
<tr>
<td>matrix operations</td>
<td>matrix functions</td>
<td>determinant</td>
</tr>
<tr>
<td>inverse matrix</td>
<td>system of linear equations</td>
<td>LU decomposition</td>
</tr>
</tbody>
</table>
Exercises

Exercise 18.1 Develop a C program that reads the values of a matrix \(M \) of \(m \) rows and \(n \) columns. The program must use the GSL and create a new matrix that has the same number of rows and columns, from the appropriate elements in matrix \(M \). Hint: if \(m < n \) then the second matrix would be an \(m \times m \) square matrix.

Exercise 18.2 Develop a computational model that inputs and processes the rainfall data for the last five years. For every year, four quarters of rainfall are provided, measured in inches. Hint: use a matrix to store these values. The attributes are: the precipitation (in inches), the year, and the quarter. The program must compute the average, minimum, and maximum rainfall per year and per quarter (for the last five years). Implement with C using a GSL matrix.

Exercise 18.3 A computational model has a mathematical representation as a set of three linear equations. Find the solution to the following set of linear equations using LU elimination, and implement with C and the GSL.

\[
\begin{align*}
3x_1 & + 5x_2 & + 2x_3 & = 8 \\
2x_1 & + 3x_2 & - x_3 & = 1 \\
x_1 & - 2x_2 & - 3x_3 & = -1
\end{align*}
\]
19.1 Introduction

Computational models of dynamical systems are used to study the behavior of systems over time. The foundations for modeling dynamical systems are based on the mathematical concepts of derivatives, integrals, and differential equations. Models of dynamical systems use difference and differential equations to describe the behavior of the systems they represent. This chapter discusses models of dynamical systems and the computer (numerical) solution to the corresponding types of equations using C and the GSL.

19.2 Continuous and Discrete Models

As mentioned in Chapter 1, from the perspective of how a computational model represents the changes of the system state with time, computational models can be divided into two general categories:

1. Continuous models
2. Discrete-event models

A continuous model is one in which the changes of state in the model occur continuously with time. Often the state variables in the model are represented as continuous functions of time.

For example, a model that represents the temperature in a boiler as part of a power plant can be considered a continuous model because the state variable that represents the temperature of the boiler is implemented as a continuous function of time. These types of models are usually modeled as a set of differential equations.
19.3 Derivative of a Function

A mathematical function defines a relationship between two (or more) variables. A simple relation is expressed as: \(y = f(x) \). In this expression, variable \(y \) is a function of variable \(x \) that is the independent variable; for a given value of \(x \) there is a corresponding value of \(y \).

The derivative of a function is used to study some relevant properties of the function, for example the rate of change. The derivative of a function \(y = f(x) \) at a particular point is the slope of the tangent line at that point and can be computed with the value of \(\Delta y/\Delta x \) when \(\Delta x \) is infinitely small. In mathematics, this is the limit when \(\Delta x \) approaches zero or \(\Delta x \to 0 \). A description of a graphical interpretation of the slope of a tangent to a function at some specified point appears in Chapter 4. This was explained as the rate of change of \(y \) with respect to \(x \). The exact slope, \(m \), of the tangent is expressed as:

\[
m = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}
\]

The derivative of a variable \(y \) with respect to variable \(x \) is expressed as:

\[
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}
\]

It is assumed that \(y \) is a function of \(x \), expressed as \(y = f(x) \), and that \(y \) is a continuous function in an interval of interest. The function \(f(x) \) is continuous in an interval if its limit exists for every value of \(x \) in the interval.

The derivative of \(y \) with respect to \(x \) is the instantaneous rate of change of \(y \) with respect to \(x \) and is denoted as:

\[
\frac{dy}{dx} \quad \text{or} \quad y'
\]

The second derivative of \(y \) with respect to \(x \) is denoted as:

\[
y'' \quad \text{or} \quad \frac{d^2y}{dx^2}
\]

The third and higher order derivatives are similarly denoted. A derivative of order \(n \) is denoted as:

\[
y^{(n)} \quad \text{or} \quad \frac{d^n y}{dx^n}
\]

When a variable \(q \) is a function of two independent variables, \(q = f(x,y) \), the
derivative of \(q \) has to be specified with respect to \(x \) or with respect to \(y \). This concept is known as a \textit{partial derivative}. The partial derivative of \(q \) with respect to \(x \) is denoted by \(\delta q / \delta x \) and the partial derivative of \(q \) with respect to \(y \) is denoted by \(\delta q / \delta y \).

19.3.1 Computing the Derivative of a Function

The derivative of a curve given by \(y = f(x) \) at some specified point \(x = c \) can be approximated by the use of \textit{finite differences}. Figure 19.1 shows the curve given by \(y = f(x) \) at point \(x = c \). A finite difference or change of the values of variable \(y \) at \(x = c \) is denoted by \(\Delta y = f(c + h) - f(c) \) and a finite difference or change of the values of variable \(x \) is denoted by \(\Delta x = h \). An approximation of the derivative of \(f(x) \), denoted by \(f'(x) \), at \(x = c \) can be computed by:

\[
\left. f'(x) \right|_{x=c} \approx \frac{f(c + h) - f(c)}{h}
\]

This expression is known as the \textit{forward difference} of \(f(x) \) at \(x = c \). A similar expression allows computing an approximation to the derivative of \(f(x) \) at \(x = c \) using the \textit{backward difference}.

\[
\left. f'(x) \right|_{x=c} \approx \frac{f(c) - f(c - h)}{h}
\]

Another similar expression allows computing an approximation to the derivative of \(f(x) \) at \(x = c \) using the \textit{central difference}.

\[
\left. f'(x) \right|_{x=c} \approx \frac{f(c + h) - f(c - h)}{2h}
\]

The value of \(h \) can be chosen smaller and smaller to improve the approximation of the derivative of \(f(x) \) at \(x = c \). Because of roundoff and truncation errors, care must be taken in applying the previous expressions of finite differences. There are finite difference expressions for higher order derivatives. For example an estimate of the second derivative of \(f(x) \) at \(x = c \) can be computed with the central finite difference expression:

\[
\left. f''(x) \right|_{x=c} \approx \frac{f(c + h) - 2f(c) + f(c - h)}{h^2}
\]

19.3.2 Computing the First Derivative Using C

Listing 19.1 shows the source program `deriv1.c` that computes the approximations of the numerical values of \(f(x) = x^2 \) using forward and central differences for several values of \(h \).
Listing 19.1: C program that computes the approximation of a derivative

/* The following program estimates the derivative of the function
 f(x) = x^2 at x=2.
The derivative is computed using forward and central differences.
J M Garrido, April, 2013.
File: deriv1.c */
#include <stdio.h>
#include <math.h>
const int n = 20;
double myf (double x) {
 return pow (x, 2);
}

int main (void) {
 double resultf, resultc; // relative errors
 double h, x;
 int i;
 printf ("Derivative of f(x) = x^2; exact value = %.10f\n\n"), h = 0.5;
for (i = 0; i < n; i++) {
 x = 2.0;
 printf ("x = 2.0 h = %.10f \
", h);
 printf ("f'(x) = %.10f %.10f +/- %.10e +/- %.10e \
", resultf, resultc, abserrf, abserrc);
 h = h / 5.0;
}
The following listing is a partial execution output of the program. The best value of the derivative is 4.0000000361 using $h = 0.0000000512$ with forward differences. The best value using central differences appears using $h = 0.1$.

Computing derivative of $f(x) = x^2$; exact value = 4.00000

$x = 2.0$ $h = 0.50000$
$f'(x)=4.500000000 4.00000000 0.00000000e+00 +/- 1.111111111e-01 +/- 2.220446049e-16$

$x = 2.0$ $h = 0.1000000$
$f'(x)=4.100000000 4.00000000 0.00000000e+00 +/- 2.439024392e-02 +/- 8.881784198e-16$

$x = 2.0$ $h = 0.0200000$
$f'(x)=4.020000000 4.00000000 0.00000000e+00 +/- 4.975123781e-03 +/- 8.881784198e-16$

$x = 2.0$ $h = 0.0040000$
$f'(x)=4.004000000 4.00000000 0.00000000e+00 +/- 9.990009989e-04 +/- 1.298960938e-14$

$x = 2.0$ $h = 0.0008000$
$f'(x)=4.000800000 4.00000000 0.00000000e+00 +/- 1.999600078e-04 +/- 1.795230630e-13$

$x = 2.0$ $h = 0.0001600$
$f'(x)=4.000160000 4.00000000 0.00000000e+00 +/- 3.999840159e-05 +/- 6.530331830e-13$

$x = 2.0$ $h = 0.0000320$
$f'(x)=4.000032000 4.00000000 0.00000000e+00 +/- 7.999940437e-06 +/- 1.795230630e-13$

$x = 2.0$ $h = 0.0000064$
$f'(x)=4.000006400 4.00000000 0.00000000e+00 +/- 1.599987998e-06 +/- 1.140820771e-13$

$x = 2.0$ $h = 0.0000012$
$f'(x)=4.000001280 4.00000000 0.00000000e+00 +/- 3.599999999e-07 +/- 1.241653446e-13$

$x = 2.0$ $h = 0.0000002$
$f'(x)=4.000000025 4.00000000 0.00000000e+00 +/- 6.315840848e-08 +/- 1.241653446e-13$

$x = 2.0$ $h = 0.0000001$
$f'(x)=4.000000036 4.00000000 0.00000000e+00 +/- 9.014622966e-09 +/- 1.241653446e-13$

$x = 2.0$ $h = 0.0000001$
$f'(x)=4.000000054 4.00000000 0.00000000e+00 +/- 1.827398791e-09 +/- 1.241653446e-13$

$x = 2.0$ $h = 0.0000001$
$f'(x)=3.999999998 3.99999999 0.00000000e+00 +/- 3.995803037e-09 +/- 1.241653446e-13$

$x = 2.0$ $h = 0.0000001$
$f'(x)=3.999999984 3.99999998 0.00000000e+00 +/- 3.995803037e-09 +/- 1.241653446e-13$

$x = 2.0$ $h = 0.0000001$
$f'(x)=3.999999916 3.99999916 0.00000000e+00 +/- 2.0836286e-07 +/- 1.241653446e-13$

19.3.3 Numerical Differentiation

The GSL functions that can be used for numerical differentiation are (taken from the GSL Reference manual):

```c
int gsl_deriv_central (const gsl_function *ufunc, double x, double h, double *result, double *abserr)
```

This function computes the derivative of the function ufunc at the point x using an adaptive central difference algorithm with a step-size of h. The value of the derivative is returned by the function and the estimate of its absolute error is returned in abserr.
int gsl_deriv_forward (const gsl_function *ufunc, double x, double h, double *result, double *abserr)

This function computes the derivative of the function ufunc at the point x using an adaptive forward difference algorithm with a step-size of h. The function is evaluated only at points greater than x. The derivative is returned by the function and an estimate of its absolute error is returned in abserr. This function should be used if ufunc has a discontinuity at x, or is undefined for values less than x.

int gsl_deriv_backward (const gsl_function *ufunc, double x, double h, double *result, double *abserr)

This function computes the derivative of the function ufunc at the point x using an adaptive backward difference algorithm with a step-size of h. The function is evaluated only at points less than x, and not at x itself. The derivative is returned by the function and an estimate of its absolute error is returned in abserr. This function should be used if ufunc has a discontinuity at x, or is undefined for values greater than ufunc.

Listing 19.2 shows the source program deriv1b.c that uses the GSL and computes the approximations of the numerical values of $f(x) = x^2$ with forward and central differences.

Listing 19.2: C program with GSL that approximates a derivative

```c
1 /* This program computes approximate derivative of the function
2 f(x) = x^2 at x=2 using gsl_deriv_central and
3 gsl_deriv_forward.
4 J M Garrido, April 2013, File: deriv1b.c */
5 #include <stdio.h>
6 #include <gsl/gsl_math.h>
7 #include <gsl/gsl_deriv.h>
8 double myf (double x, void * params) {
9 return pow (x, 2);
10 }
11 int main (void) {
12 gsl_function F;
13 double result, abserr;
14 double x = 2.0;
15 F.function = &myf;
16 F.params = 0;
17 printf("Computing the derivative of f(x) = x^2 ");
18 printf("at x = 2.0\n\n");
19 printf("Exact value: f'(x) = %.10f\n\n", 2 * x);
20 gsl_deriv_central (&F, x, 1e-8, &result, &abserr);
21 printf("Central diff: f'(x) = %.10f +/- %.10f\n\n", result, abserr);
22 gsl_deriv_forward (&F, x, 1e-8, &result, &abserr);
23 printf("Forward diff: f'(x) = %.10f +/- %.10f\n\n", result, abserr);
```
The following listing shows the Linux shell commands to compile, link, and execute the program, followed by the execution output of the program.

```bash
$ gcc -Wall deriv1b.c -o deriv1b.out -lgsl -lgslcblas -lm
$ ./deriv1b.out
Computing the derivative of \( f(x) = x^2 \) at \( x = 2.0 \)
Exact value: \( f'(x) = 4.0000000000 \)
With central diff: \( f'(x) = 3.9999999757 \pm 0.0000007105 \)
With forward diff: \( f'(x) = 3.9999959493 \pm 0.0000188910 \)
```

19.4 Numerical Integration

Several methods exist for the approximation of the integration of functions. The simplest methods are the Trapezoid method and Simpson’s method. A more advanced method is that of Gauss Quadrature. The integral of function \(f(x) \) is formulated as:

\[
I = \int_{x_a}^{x_b} f(x) w(x) \, dx
\]

The function \(w(x) \) is a weight function of \(f(x) \), \(x_a \) is the lower bound, and \(x_b \) is the upper bound of the integration interval. In the practical cases presented in this chapter, \(w(x) \equiv 1 \).

19.4.1 Area under a Curve

A general method for approximating the area under a curve in the interval \(x = x_a \) and \(x = x_b \) is the trapezoid method. It consists of dividing the interval \([x_a, x_b]\) into several trapezoids, computing the areas of the trapezoids, and adding these areas.

A trapezoid is a geometric figure with four sides and only two parallel opposite sides. The area of a trapezoid with width \(\Delta x = x_{i+1} - x_i \), is computed as:

\[
q = \Delta x \frac{y_i + y_{i+1}}{2}
\]

There are \(n - 1 \) equal subintervals, \(\Delta x \), in the interval \([x_a, x_b]\) on variable \(x \) and \(y_i = f(x_i) \). The sum of the areas of the trapezoids is:

\[
A = \sum_{k=1}^{k=n-1} \left[\Delta x \frac{1}{2} (y_k + y_{k+1}) \right]
\]
The approximation of the area can be improved with smaller value of the width (\(\Delta x\)) of the trapezoids. Figure 19.2 shows a segment of a curve divided into \(n - 1\) trapezoids. The area from \(x_a\) to \(x_b\) with: \(x_a = x_1 < x_2 < \ldots < x_n = x_b\) is:

\[
A = \frac{x_b - x_a}{2n} \left[y_1 + 2y_2 + \ldots + 2y_{n-1} + y_n \right]
\]

FIGURE 19.2: The area under a curve.

19.4.2 Trapezoid Method

Numerical integration consists of approximating the integral of a function in a given interval. The area under a curve on an interval is the basic concept used for computing an approximation of the integral of a function. This applies for functions continuous and nonnegative on the given interval. For functions that have negative values in a subinterval, the area of this subinterval is given a negative sign. The program in Listing 19.3, `integ.c`, implements the Trapezoid method to compute an approximate integral of function \(f(x) = e^x\) in the interval \((0, 1)\) of \(x\).

Listing 19.3: C program that computes an integral of \(f(x) = e^x\)

```c
/* This program computes the numerical integral of f(x)=e^x
   on the interval (0, 1). It uses the trapezoid method starting
   with small number of trapezoids and increasing.
   J M Garrido, may 7, 2013.
   File: integ.c
*/
#include <stdio.h>
#include <math.h>
double exactint = 1.718282;
```
10 double myf (double x) {
11 return (exp(x));
12 }
13 int main (void) {
14 double xa, xb;
15 double deltax;
16 double sum;
17 double x, y;
18 int i;
19 double error;
20 int n = 4;
21 double error;
22 double error;
23 printf ("Computing the integral of f(x) = eˆx \n");
24 while (n <= 8182) {
25 deltax = (xb - xa)/n;
26 sum = 0.0;
27 x = xa;
28 for (i = 1; i < n; i++) {
29 x = x + deltax;
30 y = myf(x);
31 sum = sum + y;
32 }
33 sum = deltax * ((myf(xa)+myf(xb))/2.0 + sum);
34 error = (sum - exactint);
35 printf ("n = %d Sum = %.15f error = %.15e \n", n, sum,
36 error);
37 n = n * 2;
38 } // end while
39 }
40
The following listing shows the compilation, linkage, and execution of the program. Note that with n = 256 (number of trapezoids), the computed approximation is reasonably close to the exact value of the integral, 1.8282.

\$ gcc -Wall integ.c -lm
\$./a.out
Computing the integral of f(x) = eˆx
n = 4 Sum = 1.7272219045557517 error = 8.939904557516476e-003
n = 8 Sum = 1.720518592164302 error = 2.236592164301721e-003
n = 16 Sum = 1.718841128579995 error = 5.591285799944057e-004
n = 32 Sum = 1.71821663161327 error = 1.396603163270616e-004
n = 64 Sum = 1.71828182400995 error = 3.47860509405595e-005
n = 128 Sum = 1.718281965015813 error = 8.56808347822341e-006
n = 256 Sum = 1.718281836993845 error = 2.013366819708651e-006
n = 512 Sum = 1.718281836993845 error = 3.746860941511443e-007
n = 1024 Sum = 1.718281836993845 error = 3.49843710279339e-008
n = 2048 Sum = 1.718281836993845 error = 1.374017626343260e-007
n = 4096 Sum = 1.718281836993845 error = 1.630061547963635e-007

19.4.3 Numerical Integration with C and the GSL

The GSL provides several functions that implement methods for adaptive and non-adaptive integration of general functions, and some functions with specialized
methods for specific cases. In the function call, the user specifies the absolute and relative error bounds required.

In partitioning the integration interval, the adaptive functions tend to adjust according to the behavior of the function \(f(x) \).

The most common GSL functions that can be used for numerical integration are (taken from the GSL Reference Manual):

```
int gsl_integration_qag (const gsl_function *ufunc,
                        double a, double b, double epsabs, double epsrel,
                        size_t limit, int key,
                        gsl_integration_workspace *workspace, double *result,
                        double *abserr)
```

This function implements an adaptive integration method that requires a workspace structure. It returns the approximation of the integral in parameter result, and an estimate of the absolute error in abserr. The function to integrate is supplied in the program and referenced by ufunc. Parameters \(a \) and \(b \) are the lower and upper bounds of the integration interval. Parameter limit is the maximum number of subintervals to use and may not exceed the allocated size of the workspace. The value of parameter key depends on the integration rule (Gauss-Kronrod rules) applied and varies from 1 to 6.

```
int gsl_integration_qng (const gsl_function *ufunc,
                        double a, double b, double epsabs, double epsrel,
                        double *result, double *abserr, size_t *neval)
```

This function implements a non-adaptive integration method. The parameters are similar to the previous function.

```
int gsl_integration_qags (const gsl_function *ufunc,
                        double a, double b, double epsabs, double epsrel,
                        size_t limit, gsl_integration_workspace *workspace,
                        double *result, double *abserr)
```

This function implements an adaptive integration method with singularities.

Listing 19.4 shows a C program that uses the GSL to compute an approximation of the integral of the function \(f(x) = e^x \), which is supplied as function myf in the program.

Listing 19.4: C program that computes integral of \(f(x) = e^x \) and uses the GSL
The following listing shows compilation and linkage of the previous C program with the GSL using the script file `gslblas`. This is followed by the execution results.

```
$ ./gslblas gslints1.c
$ ./a.out
Computed integral of f(x) = e^x: 1.718281828459045
exact integral = 1.718282000000000e+00
estimated error = 1.907676048750245e-14
actual error = -1.715409549962743e-07
```

19.5 Differential Equations

An ordinary differential equation (ODE) is one that includes derivatives of a function with a single independent variable. For example the following equation is a differential equation of order one.

\[
\frac{dy}{dx} + 20y - 6x = 23.5
\]
The general form of a differential equation of order \(n \) is expressed as:

\[
\frac{d^n z(t)}{dt^n} + a_1 \frac{d^{n-1} z(t)}{dt^{n-1}} + \cdots + a_{n-1} \frac{dz(t)}{dt} + a_n z(t) = Q
\]

(19.1)

The solution to a differential equation is an expression for the function \(y = f(x) \).

It is convenient when solving a differential equation of a higher order with numerical methods, to reduce the order of the equation to order one.

A differential equation of order \(n \) can be reduced to \(n \) first-order differential equations. The following variable substitutions are necessary to reduce Equation (19.1) to a system of \(n \) first-order equations:

\[
x_1 = z(t), \quad x_2 = \frac{dz(t)}{dt}, \quad x_3 = \frac{d^2 z(t)}{dt^2}, \ldots, \quad x_n = \frac{d^{n-1} z(t)}{dt^{n-1}}
\]

(19.2)

Substituting the Equations (19.2) in Equation (19.1), the following first-order equations result:

\[
\frac{dx_1}{dt} = x_2 \\
\frac{dx_2}{dt} = x_3 \\
\frac{dx_3}{dt} = x_4 \\
\ldots \\
\frac{dx_n}{dt} = Q - a_1 x_n - a_2 x_{n-1} - \cdots - a_{n-1} x_2 - a_n x_1
\]

(19.3)

19.6 Dynamical Systems and Models

Models of dynamical systems describe the behavior of systems varying with time. Differential equations are used to model this behavior as it changes continuously with time. A model of a dynamical system has two major components:

- The state vector that indicates the current state at a particular time instance
- A set of (linear) differential equations that describe the continuous change of state.
Figure 19.3 illustrates the high-level view of a dynamical system and includes the variables used in the modeling: $U(t)$ is the vector of input variables, $Y(t)$ is the vector of output variables, and $X(t)$ is the vector of state variables. All these variables are functions of time.

The dynamic behavior of a continuous linear system is described by the following set of linear differential equations.

$$
\dot{x}_1 = a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n + b_{11}u_1 + b_{12}u_2 + \ldots + b_{1m}u_m \\
\dot{x}_2 = a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n + b_{21}u_1 + b_{22}u_2 + \ldots + b_{2m}u_m \\
\vdots \\
\dot{x}_n = a_{n1}x_1 + a_{n2}x_2 + \ldots + a_{nn}x_n + b_{n1}u_1 + b_{n2}u_2 + \ldots + b_{nm}u_m \quad (19.4)
$$

19.6.1 State Equations

Equations (19.4) are known as state equations, and are expressed in matrix form as:

$$
\dot{X} = AX + BU \quad (19.5)
$$

This state equation uses the following matrix definitions:

$$
\dot{X} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix}, \quad A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{2m} & \cdots & a_{mn} \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nm} \end{bmatrix}, \quad U = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{bmatrix} \quad (19.6)
$$
In the state equations, \(\dot{x} \) that denotes \(dx/dt \), \(A \) is an \(m \times n \) matrix, \(X \) is a column vector of size \(n \), \(\dot{X} \) is a column vector of size \(n \), \(B \) is an \(n \times m \) matrix, and \(U \) is a column vector of size \(m \).

19.6.2 Output Equations

The output equations of a model of a dynamical system are expressed as follows:

\[
\begin{align*}
y_1 &= c_{11}x_1 + c_{12}x_2 + \ldots + c_{1n}x_n + d_{11}u_1 + d_{12}u_2 + \ldots + d_{1m}u_m \\
y_2 &= c_{21}x_1 + c_{22}x_2 + \ldots + c_{2n}x_n + c_{21}u_1 + d_{22}u_2 + \ldots + d_{2m}u_m \\
\vdots \\
y_n &= a_{k1}x_1 + a_{k2}x_2 + \ldots + a_{kn}x_n + d_{k1}u_1 + d_{k2}u_2 + \ldots + d_{km}u_m \quad (19.7)
\end{align*}
\]

Equation (19.7) can also be written in matrix form as: \(Y = CX + DU \), in which \(C \) is an \(k \times m \) matrix, \(Y \) is a column vector of size \(k \), \(D \) is an \(k \times m \) matrix, and \(U \) is a column vector of size \(m \).

In a more compact form, the model of a dynamical system can be expressed with two matrix equations:

\[
\begin{align*}
\dot{X} &= AX + BU \\
Y &= CX + DU
\end{align*}
\quad (19.8)
\]

19.7 Formulating Simple Examples

This section describes the formulation of problems using state variables with differential equations and applying basic laws of physics.

19.7.1 Free-Falling Object

An object is released from a certain height, \(h_0 \), and falls freely until it reaches ground level. The problem is to study the changes in the vertical location of the object and its velocity as time progresses.

Assume that the mass of the object is \(m \), and the only force applied on the object is that due to gravity, \(g \). Let \(x \) denote the vertical displacement of the object, that is, its height as a function of time, and \(v \) its vertical velocity. Applying Newton’s law of force that relates mass, acceleration and force, gives the following expression:

\[
-mg = m \frac{d^2x}{dt^2}
\]
This differential equation of order 2 can be reduced to two first-order differential equations. Because the velocity is the instantaneous rate of change of the displacement and the acceleration is the instantaneous rate of change of the velocity, the two first-order differential equations are:

\[
 v = \frac{dx}{dt}
\]

\[
 -mg = m\frac{dv}{dt}
\]

The two state variables are the velocity, \(v\), and the displacement, \(x\). There is only one input variable, \(u_1\), and its value is the constant \(g\). The two state equations in the form of general state equations in (19.4), are the following:

\[
 \frac{dx}{dt} = 0x + v + 0
\]

\[
 \frac{dv}{dt} = 0x + 0v + -g
\]

Following the general matrix and vector form in Equation (19.6), the state vector \(X\), matrix \(A\), matrix \(B\), and vector \(U\) are:

\[
 X = \begin{bmatrix} x \\ v \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ -1 \end{bmatrix} \quad U = [g]
\]

The output equations are:

\[
 y_1 = x + 0v
\]

\[
 y_2 = 0x + v
\]

Matrix \(C\) and matrix \(D\) are:

\[
 C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
\]

19.7.2 Object on Horizontal Surface

A force, \(F\), is applied to an object on a horizontal surface. The resistance of the surface on the object due to friction is proportional to the velocity of the object, and its value is \(-kv\). The constant \(k\) is the coefficient of friction of the surface. The
horizontal displacement of the object is denoted by x. The problem is to find the instantaneous change in the displacement of the object.

The dynamic behavior of the object is defined by Newton’s law, and is expressed as follows:

$$m \frac{d^2 x}{dt^2} = F - kv$$

Because the velocity is the instantaneous change of the displacement, and the acceleration is the instantaneous change in the velocity of the object, the previous equation is expressed as follows:

$$\begin{align*}
\frac{dx}{dt} &= v \\
\frac{dv}{dt} &= \frac{F - kv}{m}
\end{align*}$$

For this problem, the two state variables are displacement x, and the velocity v, of the object. The input variable, u_1, is the force F. The two state equations are expressed as follows:

$$\begin{align*}
\frac{dx}{dt} &= 0x + v + 0 \\
\frac{dv}{dt} &= 0x - \frac{kv}{m} + \frac{F}{m}
\end{align*}$$

In this problem, the state vector X, matrix A, matrix B, and vector U are:

$$X = \begin{bmatrix} x \\ v \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 \\ 0 & -k/m \end{bmatrix}, \quad B = \begin{bmatrix} 0 \\ 1/m \end{bmatrix}, \quad U = [F]$$

The output equations are:

$$\begin{align*}
y_1 &= x + 0v \\
y_2 &= 0x + v
\end{align*}$$

Matrix C and matrix D are:

$$C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
19.7.3 Object Moving on an Inclined Surface

A force F is applied to an object on an inclined surface. The elevation angle is θ. The frictional force that resists movement is proportional to the velocity of the object. The problem is to derive the change of the displacement and the velocity of the object on the inclined surface.

The projection of the force of gravity of the object on the inclined surface is $mg\sin \theta$. As explained in previous problems, applying the law of Newton, the following equations are derived:

$$v = \frac{dx}{dt}$$

$$m \frac{dv}{dt} = F - kv - mg \sin \theta$$

For this problem, the two state variables are displacement x, and the velocity v, of the object. The input variables are: the force F and the acceleration due to the gravity. The two state equations are expressed as follows:

$$\frac{dx}{dt} = 0x + v + 0$$

$$\frac{dv}{dt} = 0x - \frac{kv}{m} + \frac{F}{m} - g \sin \theta$$

In this problem, the state vector X, matrix A, matrix B, and vector U are:

$$X = \begin{bmatrix} x \\ v \end{bmatrix} \quad A = \begin{bmatrix} 0 & 1 \\ 0 & -k/m \end{bmatrix} \quad B = \begin{bmatrix} 0 & 0 \\ 1/m & -\sin \theta \end{bmatrix} \quad U = \begin{bmatrix} F \\ g \end{bmatrix}$$

The output equations are:

$$y_1 = x + 0v$$

$$y_2 = 0x + v$$
Matrix C, vector Y, and matrix D are:

$$
C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad Y = \begin{bmatrix} x \\ v \end{bmatrix} \quad D = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}
$$

19.8 Solution of Differential Equations

There are many ordinary differential equations (ODEs) that cannot be solved analytically. Numerical methods are techniques that compute estimates using software implementations. Euler’s method is the simplest technique for solving differential equations numerically. With this method, the time step is constant from one iteration to the next. However, this may not be feasible for many functions or may result in an inaccurate solution.

Methods that adjust the time step as the computation proceeds are known as *adaptive* methods. The Dormand–Prince pair of Runge–Kutta is one of the best adaptive methods.

Part of the description of using GSL for ordinary differential equations is taken from the GNU Reference Manual. With the GSL, a system of differential equations is defined using the `gsl_odeiv2_system` data type. The following functions are available with the GSL:

- `gsl_odeiv2_step_rk2`
 This function uses the Runge–Kutta (2, 3) method.

- `gsl_odeiv2_step_rk4`
 This function uses the 4th order Runge–Kutta. Error estimation is carried out by the step doubling method.

- `gsl_odeiv2_step_rkf45`
 This function uses the Runge–Kutta–Fehlberg (4, 5) method, which is a good general-purpose integrator.

- `gsl_odeiv2_step_rkck`
 This function uses the Runge–Kutta Cash–Karp (4, 5) method.

- `gsl_odeiv2_step_rk8pd`
 This function uses the Runge–Kutta Prince–Dormand (8, 9) method.

- `gsl_odeiv2_step_rk1imp`
 This function uses a Gaussian first order Runge–Kutta (Euler or backward Euler method). Error estimation is carried out by the step doubling method. It requires the Jacobian and access to the driver object with `gsl_odeiv2_step_set_driver`.
Introduction to Dynamical Systems

gsl_odeiv2_step_rk2imp
This function uses a Gaussian second order Runge–Kutta (mid-point rule). Error estimation is carried out by the step doubling method. It requires the Jacobian and access to the driver object with gsl_odeiv2_step_set_driver.

gsl_odeiv2_step_rk4imp
This function uses a Gaussian 4th order Runge–Kutta. Error estimation is carried out by the step doubling method. It requires the Jacobian and access to the driver object with gsl_odeiv2_step_set_driver.

gsl_odeiv2_step_bsimp
This function uses the Bulirsch–Stoer method of Bader and Deuflhard. It is generally suitable for stiff problems and requires the Jacobian.

gsl_odeiv2_step_msadams
This function uses the Adams method in Nordsieck form (a variable-coefficient linear multistep). It uses explicit Adams–Bashforth (predictor) and implicit Adams–Moulton (corrector) methods in \(P(EC)^m \) functional iteration mode. Method order varies dynamically between 1 and 12. It requires the access to the driver object with gsl_odeiv2_step_set_driver.

gsl_odeiv2_step_msbdf
This function uses a variable-coefficient linear multistep backward differentiation formula (BDF) method in Nordsieck form. It uses the explicit BDF formula as predictor and the implicit BDF formula as corrector.

A modified Newton iteration method is used to solve the system of non-linear equations. It is generally suitable for stiff problems and requires the Jacobian and the access to the driver object via gsl_odeiv2_step_set_driver.

In a **stiff problem**, some methods for solving the equation are numerically unstable, and the step size is forced to be unacceptably small in a region where the solution curve is very smooth.

The general structure of a C program that solves numerically a set of first-order ordinary differential equations with the GSL has the following sequence of parts in its code:

1. Set up the ODE system of type gsl_odeiv2_system. The components of the ODE system are: the programmer-defined function with the right-hand side of the first-order differential equations to solve, the dimension or number of differential equations to solve, and a pointer to an array of parameters used in the equations.

2. A call to one of the GSL driver functions that starts the ODE solver, for example, function gsl_odeiv2_driver_alloc_y_new. The arguments to the function call are: the name of the ODE system structure; the name of the GSL stepper method, for example gsl_odeiv2_step_rkf45; the starting step size for ode solver; the absolute error requested; the relative error requested.
3. A loop that performs the evolution of the system by advancing the system from the initial time to the final time, at each step, from time t and position y using the stepping function step. The new time and position are stored in t and y on output. An evolution function is called in the loop, for example `gsl_odeiv2_evolve_apply`.

4. A programmer-defined function that specifies the set of differential equations to solve. This function defines an array and expressions of the right-hand side of the equations.

19.8.1 Model with a Single Differential Equation

This case study is a very simple model represented by only a single first-order differential equation. The problem consists of solving numerically the following differential equation:

$$\frac{dx}{dt} = \alpha [1 + \sin(\omega t)]$$

This equation is solved with $\alpha = 0.015$ and $\omega = 2\pi/365$, an initial value $x(0) = 2$, and an interval of t from 0.0 to 365.0.

Listing 19.5 shows the C program that solves numerically the single differential equation and it is stored in file `todel.c`. The structure for the ode system is declared in line 33 and the values of the components are set up in lines 38–40. The GSL driver function is called in lines 46–47. The loop that performs the evolution of the system is coded in lines 58–66. The programmer-defined function `dfunc` that specifies the differential equation (19.9) appears in lines 74–82.

Listing 19.5: C program that solves a single differential equation

```c
/* Program: todel.c
This program solves a single differential equation
dx/dt = a x [1 + sin(omega t)]
This problem is the C/GSL version from original Matlab version
J M Garrido, Feb 2013. CS dept, KSU
Uses GSL_odeiv2 driver ODE functions
This program solves the equation
x'(t) - alpha x(t) (1+sin(omega t)) = 0
=> dy[0]/dt = f[0] = alpha * y[0] * (1+ sin (omega*t))
*/
#include <stdio.h>
#include <math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_matrix.h>
#include <gsl/gsl_odeiv2.h>

/* function prototype */
int dfunc (double t, const double y[], double f[],
           void *params_ptr);
```
int main () {
 const int dimension = 1; /* number of differential equations */
 int status; /* status of driver function */
 const double eps_abs = 1.e-8; /* absolute error requested */
 const double eps_rel = 1.e-10; /* relative error requested */
 double alpha = 0.015; /* parameter for the diff eq */
 double omega = 2.0*M_PI/365.0; /* parameter for the diff eq */
 double myparams[2]; /* array for parameters */
 double y[dimension]; /* current solution vector */
 double t, t_next; /* current and next independent variable */
 double tmin, tmax, delta_t; /* range of t and output step size */
 double h = 1.0e-6; /* starting step size for ode solver */
 gsl_odeiv2_system ode_system;
 myparams[0] = alpha; /* problem parameters */
 myparams[1] = omega;
 printf("\n Solving a system with a single diff equation\n\n");
 /* load values into the ode_system structure */
 ode_system.function = dfunc; /* the right-hand-side */
 ode_system.dimension = dimension; /* number of diffeq's */
 ode_system.params = myparams; /* parameters pass to dfunc */
 tmin = 0.0; /* starting t value */
 tmax = 365.0; /* final t value */
 delta_t = 1.0;
 y[0] = 2.0; /* initial value of x */
 gsl_odeiv2_driver * drv =
 gsl_odeiv2_driver_alloc_y_new(&ode_system,
 gsl_odeiv2_step_rkf45, h, eps_abs, eps_rel);
Introduction to Computational Modeling

48 printf("Input data: \n");
49 printf(" alpha = %g; omega = %g \n", alpha, omega);
50 printf(" Starting step size (h): %0.5e \n", h);
51 printf(" Time parameters: %f %f %f \n", tmin, tmax, delta_t);
52 printf(" Absolute and relative error requested: %0.6e %0.6e \n", eps_abs, eps_rel);
53 printf(" Number of equations (dimension): %d \n", dimension);
54 printf(" Time dx/dt \n");
55 t = tmin; /* initialize t */
56 printf ("%5.5e %5.5e \n", t, y[0]); /* initial values */
57 /* step from tmin to tmax */
58 for (t_next = tmin + delta_t; t_next <= tmax; t_next += delta_t)
59 {
60 status = gsl_odeiv2_driver_apply (drv, &t, t_next, y);
61 if (status != GSL_SUCCESS) {
62 printf("Error: status = %d \n", status);
63 break;
64 }
65 printf ("%5.5e %5.5e \n", t, y[0]); /* print at t=t_next */
66 } // end for
67 gsl_odeiv2_driver_free (drv);
68 return 0;
69
70 /*
71 Define array of right-hand-side functions y[i].
72 params is a void pointer that is used in many GSL routines
73 */
74 int dfunc (double t, const double y[], double f[],
75 void *params_ptr) {
76 double *lparams = (double *) params_ptr;
77 /* get parameter(s) from params_ptr */
78 double alpha = lparams[0];
79 double omega = lparams[1];
80 /* evaluate the right-hand-side functions at t */
81 f[0] = alpha * y[0] * (1 + sin (omega*t));
82 return GSL_SUCCESS; /* GSL_SUCCESS in gsl/errno.h as 0 */
83 }

The resulting output is an array that includes a vector with the values of time and a vector with the values of x. Figure 19.5 shows the graph generated with Gnuplot of the values of x with time and is a visual representation of the numerical solution of the differential equation (19.9).

19.8.2 Model with a System of Differential Equations

Most practical models are represented by a system of first-order and/or higher-order differential equations. For example, consider the following system of linear first-order differential equation:
These equations can be expressed in the form of state equations and for this, state vector X and matrix A are:

$$X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad A = \begin{bmatrix} -1 & -1 \\ 1 & -2 \end{bmatrix}$$ (19.11)

For this problem, matrix B, and vector U are empty. The output equations are:

$$y_1 = x_1 + 0x_2$$
$$y_2 = 0x_1 + x_2$$

Matrix C, and vector Y are expressed in the following form:

$$C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad Y = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$ (19.12)

This problem can be solved numerically using C and the GSL in a similar manner as with the previous case study. The C code of the programmer-defined function `dfunc` that specifies the two first-order differential equations (19.10) is shown as follows.

```c
int dfunc (double t, const double y[], double f[], void *params_ptr)
{
    /* evaluate the right-hand-side functions at t */
    f[0] = - y[0] - y[1];
    f[1] = y[0] - 2.0 * y[1];
    return GSL_SUCCESS; /* GSL_SUCCESS in gsl/errno.h as 0 */
}
```

The initial conditions are set as $x_1 = 1.0$ and $x_2 = 1.0$ at $t = 0$; the time span is set for values of t from 0.0 to 5.0. The C program that implements the solution of the model with the two differential equations (19.10) is stored in file `tode2.c`.

Figure 19.6 shows the graph generated by Gnuplot of the values of variables x and y with time, and represents visually the numerical solution of the differential equations (19.10).
19.8.3 Model with Drag Force

An object is released from a specified height, \(h_0 \), and falls freely until it reaches ground level. The problem is to formulate and solve a model to study the changes in the vertical position of the object and its velocity as time progresses.

Assume that the mass of the object is \(m \), and there are two forces applied on the object: one due to gravity with acceleration \(g \) and the second is the drag force against the direction of movement. Let \(x \) denote the vertical displacement of the object, and \(v \) its vertical velocity. The drag force is \(cv^2 \), in which \(c \) is the drag constant. Applying Newton’s law of force that relates mass, acceleration and force, gives the following expression:

\[
-mg + cv^2 = m \frac{d^2x}{dt^2}
\]

The vertical velocity is the instantaneous rate of change of the vertical position and the acceleration is the instantaneous rate of change of the vertical velocity. The second-order differential equation can be reduced to two first-order differential equations:

\[
\begin{align*}
\dot{v} &= \frac{dx}{dt} \\
-mg + cv^2 &= m \frac{dv}{dt}
\end{align*}
\]
The two state variables are the vertical position, x, and the vertical velocity, v. The two state equations are the following:

\[
\frac{dx}{dt} = v \\
\frac{dv}{dt} = \left(\frac{c}{m}\right)v^2 - g
\]

The output equations are:

\[
y_1 = x \\
y_2 = v
\]

This problem is solved with the parameters $m = 80.0$ and $c = 0.2$; the acceleration constant g is always $9.8 \, (m/s^2)$. The C program that implements the solution to the model of the free-falling object is stored in file `odefall.c`. The C code of the programmer-defined function `dfunc` that specifies the two first-order differential equations is shown as follows.

```c
int dfunc (double t, const double y[], double f[], void *params_ptr) 
{ 
    /* get parameter(s) from params_ptr */
```
286

FIGURE 19.8: Vertical velocity of free-falling object.

```c
double *lparams = (double *) params_ptr;
double m = lparams[0]; /* mass of object */
double c = lparams[1];    /* drag constant */
/* evaluate the right-hand-side functions at t */
f[0] = y[1];
return GSL_SUCCESS; /* GSL_SUCCESS defined in gsl/errno.h as 0 */
```

Figure 19.7 shows the graph of the vertical displacement with time generated by Gnuplot. Observe that after about 10 seconds, the displacement changes linearly. Figure 19.8 shows the graph of vertical velocity of the object with time. Observe that the velocity of the object increases negatively at an exponential rate until about 20 seconds. After this time instant, the velocity remains constant.

19.8.4 Prey and Predator Model

This model helps to study how the population of two animal species changes over time. The prey (rabbits) population is represented by \(x_1(t)\). The predator (wolves) population is represented by \(x_2(t)\). Without the predator, the prey population will grow as:

\[
\frac{dx_1}{dt} = ax_1, \quad a > 0
\]

Without the prey, the population of the predator will decrease as:
\[
\frac{dx_2}{dt} = -bx_2, \quad b > 0
\]

FIGURE 19.9: Population changes of prey and predator.

In these expressions, \(a\) and \(b\) are constants. When the two species live and interact in the same environment, the prey population will decline when the predator population increases. This interaction produces additional changes in the population of the two species that are given by the following state equations:

\[
\begin{align*}
\frac{dx_1}{dt} &= ax_1 - cx_1x_2 \\
\frac{dx_2}{dt} &= -bx_2 + dx_1x_2
\end{align*}
\]

The output equations are:

\[
\begin{align*}
y_1 &= x_1 \\
y_2 &= x_2
\end{align*}
\]

For a numerical solution, assume \(a = 0.25\), \(b = 0.12\), \(c = 0.0025\), and \(d = 0.0013\). At the beginning, there are 125 rabbits and 47 wolves, so the initial conditions for the problem are: \(x_1(0) = 125\) and \(x_2(0) = 47\).
The C function that implements the evaluation of the two differential equations is shown in the following listing and the complete C program is stored in file `predprey.c`.

```c
int dfunc (double t, const double y[], double f[], void *params_ptr)
{
    /* No need to get parameter(s) from params_ptr
    because these are declared as global */
    /* evaluate the right-hand-side functions at t */
    f[0] = a * y[0] - c * y[0] * y[1];
    f[1] = - b * y[1] + d * y[0] * y[1];
    return GSL_SUCCESS; /* defined as 0 */
} // end of dfunc
```

Figure 19.9 shows the graph of the population changes of the prey and predator over time. Observe that after about 10 seconds, the displacement changes linearly.

Figure 19.10 shows the phase plot of the two population changes. Because this shows a closed curve, it implies that the prey and predator populations follow periodic cycles.

![Relation of Prey and Predator](image)

FIGURE 19.10: Phase plot of the population changes.
Summary

Function differentiation and integration are used to better understand the behavior of functions that represent relationships in the properties of a system and are important in formulating computational models. Many systems in science and engineering can be modeled with ordinary differential equations. This chapter presented how to implement mathematical models that are formulated with differential equations, and their numerical solutions. Several case studies were presented and discussed with solutions implemented with the GSL and the C programming language.

Key Terms

<table>
<thead>
<tr>
<th>functions</th>
<th>derivative</th>
<th>integrals</th>
</tr>
</thead>
<tbody>
<tr>
<td>rate of change</td>
<td>area under a curve</td>
<td>finite differences</td>
</tr>
<tr>
<td>continuous models</td>
<td>dynamical systems</td>
<td>state variables</td>
</tr>
<tr>
<td>state equations</td>
<td>output equations</td>
<td>differential equations</td>
</tr>
<tr>
<td>initial values</td>
<td>Runge-Kutta methods</td>
<td></td>
</tr>
</tbody>
</table>

Exercises

Exercise 19.1 Develop a C program that computes the derivative of function $f(x) = (5x - 3)^2e^x$ at the point $x = 2$. Use finite differences.

Exercise 19.2 Develop a C program that uses the GSL and computes the derivative of function $f(x) = (5x - 3)^2e^x$ at the point $x = 2$.

Exercise 19.3 An object falls freely, the vertical position of the object is: $y(t) = 16t^2 + 32t + 6$. Compute the velocity and the acceleration at various values of time. To solve this problem, develop a C program that applies finite differences (central, backward, and forward).

Exercise 19.4 An object falls freely, the vertical position of the object is: $y(t) = 16t^2 + 32t + 6$. Compute the velocity and the acceleration at various values of time. To solve this problem, develop a C program that uses the GSL and applies finite differences.

Exercise 19.5 Develop a C program that computes an approximation of the integral of the function $f(x) = x^2$ in the interval $(0.0, 2.0)$ of x. In the program, apply the Trapezoid method. Use a value $n = 6$, then a value $n = 20$.
Exercise 19.6 Develop a C program that uses the GSL and computes an approximation of the integral of the function \(f(x) = x^2 \) in the interval \((0.0, 2.0)\) of \(x\).

Exercise 19.7 Develop a C program that implements and solves numerically the following mathematical model, and generate a graph with Gnuplot using the values of the variables in the numerical solution. Use a time interval from \(t = 0\) to \(t = 8.0\).

\[
\frac{dy}{dt} = t + e^{t/2}\cos(2\pi t)
\]

Exercise 19.8 This problem presents a simplified model of a water heater. The temperature of the water in a tank is increased by the heating elements and the temperature varies with time. The differential equation is:

\[
cm \frac{dT}{dt} = q - hA(T - t_s)
\]

where \(T\) is the temperature of the water as a function of time, \(m\) is the mass of the water (in Kg), \(A\) is the area of the surface of the heater, \(q\) is the constant rate at which the elements produce heat, \(h\) is the Newton cooling coefficient, and \(t_s\) is the temperature of the surroundings (a constant). Develop a C program that implements and solves numerically the mathematical model, and generate a graph with Gnuplot of the temperature with time. Use the following values: \(c = 4175\), \(m = 245\), \(A = 2.85\), \(h = 12.0\), \(q = 3600\), \(t_s = 15\). The initial condition is \(T(0) = 15\) and perform computations over an interval from \(t = 0.0\) to \(t = 2750.0\).

Exercise 19.9 Edward N. Lorenz was a pioneer of Chaos Theory; the following simplified differential equations are known as the Lorenz Equations. Develop a C program that implements and solves numerically the mathematical model:

\[
\begin{align*}
\frac{dx}{dt} &= \sigma(y - x) \\
\frac{dy}{dt} &= x(\rho - z) \\
\frac{dz}{dt} &= xy - \beta z
\end{align*}
\]

Use the following values for the constants: \(\sigma = 10\), \(\beta = 8/3\), and \(\rho = 28\). Use initial conditions: \(x(0) = 8\), \(y(0) = 8\), and \(z(0) = 27\) and a time span from \(t = 0\) to \(t = 20\). Draw a plot with Gnuplot of the variables in the numerical solution; first plot \(z\) with respect to \(x\), then the three variables with respect to time. Investigate and plot a three dimensional plot \((x, y, z)\).

Exercise 19.10 Develop a C program that implements and solves numerically the following mathematical model:
Use the initial values: $u(0) = 1$, $u'(0) = 2$, $v(0) = 3$, and $v'(0) = 4$. Solve over the interval from $x = 0$ to $x = 3$. Generate a plot with Gnuplot of the variables in the numerical solution.

Exercise 19.11 Investigate the SIR model for disease spread, which was proposed by W. O. Kermack and A. G. McKendrick. In this model, three groups of population are considered: $S(t)$ is the population group not yet infected and is susceptible, $I(t)$ is the population group that has been infected and is capable of spreading the disease, and $R(t)$ is the population group that has recovered and is thus immune. The mathematical model consists of the following differential equations:

\[
\begin{align*}
\frac{ds}{dt} &= -\alpha si \\
\frac{di}{dt} &= \alpha si - \beta i \\
\frac{dr}{dt} &= \beta i
\end{align*}
\]

Use the values of the constants: $\alpha = 1$ and $\beta = 0.3$. The initial conditions are: $s = 0.999$, $i = 0.001$, and $r = 0.0$. Develop a C program that implements and solves numerically the mathematical model and plot with Gnuplot the values of the variables in the numerical solution.
Chapter 20

Linear Optimization Modeling

20.1 Introduction

Mathematical optimization consists of finding the best possible values of variables from a given set that can maximize or minimize a real function. An optimization problem can be formulated in such a form that it can be possible to find an optimal solution; this is known as mathematical modeling and is used in almost all areas of science, engineering, business, industry, and defense. The goal of optimization modeling is of formulating a mathematical model of the system and attempting to optimize some property of the model. The actual optimization is carried out by executing the computer implementation of the model. This chapter discusses the formulation of simple linear optimization models.

The formulating of a problem for linear constrained optimization is also known as linear optimization modeling or the mathematical modeling of a linear programming problem (LPP). Linear optimization modeling consists of four general steps, and these are as follows:

1. Identify a linear function, known as the objective function, to be maximized or minimized. This function is expressed as a linear function of the decision variables.

2. Identify the decision variables and assign to them symbolic names, x, y, etc. These decision variables are those whose values are to be computed.

3. Identify the set of constraints and express them as linear equations and inequalities in terms of the decision variables. These constraints are derived from the given conditions.

4. Include the restrictions on the non-negative values of decision variables.

The objective function, \(f \), to be maximized or minimized is expressed by:

\[
 f(x_1, x_2, \ldots, x_n) = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \quad (20.1)
\]

The set of \(m \) constraints are expressed in the form:

\[
 a_{i1} x_1 + a_{i2} x_2 + \ldots + a_{in} x_n \leq b_i \quad i = 1, \ldots, m \quad (20.2)
\]
Or, of the form:

\[a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \geq b_i \quad i = 1, \ldots, m \quad (20.3) \]

The sign restrictions for variables are denoted by: \(x_j \geq 0 \), or \(x_j \leq 0 \), or \(x_j \) unrestricted in sign, \(j = 1, \ldots, n \). Many problems are formulated with a mixed of \(m \) constraints with \(\leq, = \), and \(\geq \) forms.

20.2 Formulation of Problems

There are many real and practical problems to which the linear optimization modeling may be applied. The following examples, although very simple because they use only two variables, help to illustrate the general method involved in linear optimization modeling.

20.2.1 Case Study 1

An industrial chemical plant produces two products, A and B. The market price for a pound of A is $12.75, and that of B is $15.25. Each pound of substance A produced requires 0.25 lbs of material P and 0.125 lbs of material Q. Each pound of substance B produced requires 0.15 lbs of material P and 0.35 lbs of material Q. The amounts of materials available in a week are: 21.85 lbs of material P and 29.5 lbs of material Q. Management estimates that at the most, 18.5 pounds of substance A can be sold in a week. The goal of this problem is to compute the amounts of substance A and B to manufacture in order to optimize sales.

20.2.1.1 Understanding the Problem

For easy understanding and for deriving the mathematical formulation of the problem, the data given is represented in a table as follows. As stated previously, the main resource required in the production of the chemical substances A and B are the amounts of material of type P and Q.

<table>
<thead>
<tr>
<th>Material</th>
<th>Available</th>
<th>Substance of type A</th>
<th>Substance of type B</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>21.85</td>
<td>0.250</td>
<td>0.15</td>
</tr>
<tr>
<td>Q</td>
<td>29.50</td>
<td>0.125</td>
<td>0.35</td>
</tr>
</tbody>
</table>
20.2.1.2 Mathematical Formulation

Let \(x_1 \) denote the amount of substance (lbs) of type A to be produced, and \(x_2 \) denote the amount of substance (lbs) of type B to be produced. The total sales is \(12.75x_1 + 15.25x_2 \) (to be maximized). The objective function of the linear optimization model formulation of the given problem is:

Maximize \(S = 12.75x_1 + 15.25x_2 \)

Subject to the constraints:

\[
\begin{align*}
0.25x_1 + 0.15x_2 & \leq 21.85 \\
0.125x_1 + 0.35x_2 & \leq 29.5 \\
x_1 & \leq 18.5 \\
x_1 & \geq 0 \\
x_2 & \geq 0
\end{align*}
\]

20.2.2 Case Study 2

A manufacturer of toys produces two types of toys: X and Y. In the production of these toys, the main resource required is machine time and three machines are used: M1, M2 and M3. The machine time required to produce a toy of type X is 4.5 hours of machine M1, 6.45 hours of machine M2, and 10.85 hours of machine M3. The machine time required to produce a toy of type Y is 7.25 hours of machine M1, 3.65 hours of machine M2, and 4.85 hours of machine M3. The maximum available machine time for the machines M1, M2, M3 are 415, 292 and 420 hours respectively. A toy of type X gives a profit of 4.75 dollars, and a toy of type Y gives a profit of 3.55 dollars. Find the number of toys of each type that should be produced to get maximum profit.

20.2.2.1 Understanding the Problem

For easy understanding and for deriving the mathematical formulation of the problem, the data given is represented in a table as follows. As stated previously, the main resource required in the production of toys is machine time of machines M1, M2, and M3.

<table>
<thead>
<tr>
<th>Machine</th>
<th>Total time available</th>
<th>Req time toy type X</th>
<th>Req time toy type Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>415</td>
<td>4.5</td>
<td>7.25</td>
</tr>
<tr>
<td>M2</td>
<td>292</td>
<td>6.45</td>
<td>3.64</td>
</tr>
<tr>
<td>M3</td>
<td>420</td>
<td>10.85</td>
<td>4.85</td>
</tr>
</tbody>
</table>
20.2.2.2 Mathematical Formulation

Let \(x \) denote the number of toys of type \(X \) to be produced, and \(y \) denote the number of toys of the type \(Y \) to be produced. The total profit is: \(= 4.75x + 3.55y \) (to be maximized). The objective function of the linear optimization model formulation of the given problem is:

Maximize: \(P = 4.75x + 3.55y \)

Subject to the constraints:

\[
\begin{align*}
4.5x + 7.25y & \leq 415 \\
6.45x + 3.65y & \leq 292 \\
10.85x + 4.85y & \leq 420 \\
x & \geq 0 \\
y & \geq 0
\end{align*}
\]

20.2.3 Case Study 3

A person needs to follow a diet that has at least 5,045 units of carbohydrates, 450.75 units of fat and 325.15 units of protein. Two types of food are available: \(P \) and \(Q \). A unit of food of type \(P \) costs 2.55 dollars and a unit of food of type \(Q \) costs 3.55 dollars. A unit of food of type \(P \) contains 9.75 units of carbohydrates, 18.15 units of fat and 13.95 units of protein. A unit of food type \(Q \) contains 22.95 units of carbohydrates, 12.15 units of fat and 18.85 units of protein. A mathematical linear model is needed to find the minimum cost for a diet that consists of a mixture of the two types of food and that meets the minimum diet requirements.

20.2.3.1 Understanding the Problem

For easy understanding and for deriving the mathematical formulation of the problem, the data given is represented in a table. For each type of food, the data include the cost per unit of food, and the contents, carbohydrates, fat, and proteins. The data for the diet problem is represented as follows:

<table>
<thead>
<tr>
<th>Food type</th>
<th>Cost</th>
<th>Carbohydrates</th>
<th>Fat</th>
<th>Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>2.55</td>
<td>9.75</td>
<td>18.15</td>
<td>13.95</td>
</tr>
<tr>
<td>(Q)</td>
<td>3.55</td>
<td>22.95</td>
<td>12.15</td>
<td>18.85</td>
</tr>
</tbody>
</table>

20.2.3.2 Mathematical Formulation

Let \(x_1 \) denote the amount of units of food type \(P \) and \(x_2 \) the units of food type \(Q \) contained in the diet. The total cost of the diet is: \(= 2.55x_1 + 3.55x_2 \). As stated previously, the main limitation is the lower bound requirement of carbohydrates, fat, and proteins. The combination of units of type \(P \) and of type \(Q \) should have the minimum specified units of carbohydrates, fat, and proteins. The objective function of linear optimization model formulation of the given diet problem is:
Minimize: \(C = 2.55x_1 + 3.55x_2 \)
Subject to the following constraints:

\[
\begin{align*}
9.75x_1 + 22.95x_2 & \geq 5045 \\
18.15x_1 + 12.15x_2 & \geq 450.75 \\
13.95x_1 + 18.85x_2 & \geq 325.15 \\
x_1 & \geq 0 \\
x_2 & \geq 0
\end{align*}
\]

20.2.4 Case Study 4

The owners of a farm acquired a loan of $16,850.00 to produce three types of crops: corn, barley, and wheat, on 140 acres of land. An acre of land can produce an average of 135 bushels of corn, 45 of barley, or 100 bushels of wheat. The net profit per bushel of barley is $3.05, for corn is $1.70, and for wheat is $2.25. After the harvest, these crops must be stored in relatively large containers. At the present, the farm can store 3895 bushels. The total expenses to plant an acre of land is: $95.00 for corn, $205.00 for barley, and $115.00 for wheat. What amount of land should be the farm plan to dedicate to each crop in order to optimize profit?

20.2.4.1 Understanding the Problem

As in previous case studies, the data given is represented in a table for easy understanding and for deriving the mathematical formulation of the problem. There are three types of resources that will impose constraints on the problem formulation: the total storage capacity of the farm for the crops, the total available funds, and the total amount of land. The data for this problem is represented as follows:

<table>
<thead>
<tr>
<th>Resource</th>
<th>Total</th>
<th>Corn</th>
<th>Barley</th>
<th>Wheat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage (bushels)</td>
<td>3895</td>
<td>135</td>
<td>45</td>
<td>100</td>
</tr>
<tr>
<td>Funds ($)</td>
<td>16,850.00</td>
<td>95.00</td>
<td>205.00</td>
<td>115.00</td>
</tr>
<tr>
<td>Land (acres)</td>
<td>140</td>
<td>(x_1)</td>
<td>(x_2)</td>
<td>(x_3)</td>
</tr>
</tbody>
</table>

20.2.4.2 Mathematical Formulation

Let \(x_1\) denote the amount of land in acres allotted to corn, \(x_2\) the amount of land allotted to barley, and \(x_3\) the amount of land dedicated to wheat. This problem is to optimize profit. The total net profit is denoted by \(P\) and for each crop it consists of: net profit per bushel times the number of bushels per acre, times the amount of acres to plant. The constraints are derived from the resource limitations of the problem. The arithmetic expression for \(P\) is given by:

\[
P = 135 \times 1.70 \times x_1 + 45 \times 3.05 \times x_2 + 100 \times 2.25 \times x_3
\]
The objective function of the linear optimization formulation of the given problem is:

Maximize: \(P = 229.5x_1 + 137.25x_2 + 225.00x_3 \)

subject to the following constraints:

\[
\begin{align*}
135x_1 + 45x_2 + 100x_3 & \leq 3895 \\
95x_1 + 205x_2 + 115x_3 & \leq 16850.00 \\
x_1 + x_2 + x_3 & \leq 140 \\
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0
\end{align*}
\]

Summary

Linear optimization modeling consists of formulating a mathematical linear model that includes: the linear function to be optimized (maximized or minimized), a set of decision variables, and a set of constraints. The computational models of this type are also known as Linear Programming Models.

Key Terms

- linear optimization
- decision variables
- constraints
- linear programming
- linear problems
- problem formulation
- sign restriction
- objective function
- technological coefficient

Exercises

Exercise 20.1 A factory produces three types of bed, A, B, and C. The company that owns the factory sells beds of type A for $250.00 each, beds of type B for $320.00 each, and beds of type C for $625.00 each. Management estimates that all beds produced of types A and C will be sold. The number of beds of type B that can be sold is at the most 45. The production of different types of bed requires different amounts of resources such as: basic labor hours, specialized hours, and materials. The following table provides this data.
<table>
<thead>
<tr>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ft.</td>
<td>60 ft.</td>
<td>80 ft.</td>
<td>Material</td>
</tr>
<tr>
<td>15 h</td>
<td>20 h</td>
<td>40 h</td>
<td>Basic labor</td>
</tr>
<tr>
<td>5 h</td>
<td>15 h</td>
<td>20 h</td>
<td>Specialized labor</td>
</tr>
</tbody>
</table>

The amounts of resources available are: 450 ft. of material, 210 hours of basic labor, and 95 hours of specialized labor. The problem is to optimize profit. Write the formulation of the mathematical optimization problem.

Exercise 20.2 An automobile factory needs to have a different number of employees working for every day of the week. Each employee has to work 5 consecutive days a week and have two days of rest. The following are the requirements of the factory: Monday needs 330 employees, Tuesday needs 270 employees, Wednesday needs 300 employees, Thursday needs 390 employees, Friday needs 285 employees, Saturday needs 315 employees, and Sunday needs 225 employees. To improve profitability, the factory is required to optimize the number of employees. (Hint: the key decision is how many employees begin work on each day. Employees who begin work on Monday are those who do not begin on Tuesday or Wednesday). Write the formulation of the mathematical optimization problem.

Exercise 20.3 Consider the problem in Exercise 20.2 with the following changes: the problem is to optimize the labor costs of the auto factory based on amount of labor time in hours worked by employees. Full-time employees work 8 hours per day and cost the factory $12.50 per hour. Part-time employees work 4 hours a day and cost $8.50 per hour. The total amount of part-time labor should be at the most 30% of total labor time. Write the formulation of the mathematical optimization problem.

Exercise 20.4 A factory manufactures 5 different products: P_1, P_2, P_3, P_4, and P_5. The factory needs to maximize profit. Each product requires machine time on three different devices: A, B, and C, each of which is available 135 hours per week. The following table provides the data (machine time in minutes):

<table>
<thead>
<tr>
<th>Product</th>
<th>Device A</th>
<th>Device B</th>
<th>Device C</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>20</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>P_2</td>
<td>13</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>P_3</td>
<td>15</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>P_4</td>
<td>16</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>P_5</td>
<td>18</td>
<td>14</td>
<td>6</td>
</tr>
</tbody>
</table>

The unit sale price for products P_1, P_2, and P_3 is 7.50, 6.00, and 8.25 respectively. The first 26 units of P_4 and P_5 have a sale prices 5.85 each, all excess units have a sale price of 4.50 each. The operational costs of devices A and B are 5.25 per hour, and 5.85 for device C. The cost of materials for products P_1 and P_2 are 2.75. For products P_3, P_4, and P_5 the materials cost is 2.25. Hint: assume that x_i,
\[i = 1 \ldots 5 \] are the number of units produced of the various products and use two new variables \(y_4 \) and \(y_5 \) for the units produced of \(P_4 \) and \(P_5 \) respectively in excess of 26. Write the formulation of the mathematical optimization problem.

Exercise 20.5 A company produces a certain number of products and distributes these to various customer distribution centers that request specified numbers of units of the product. There are two production facilities \(P_1 \) and \(P_2 \). There are three storage facilities: \(S_1 \), \(S_2 \), and \(S_3 \). The company also has four distribution centers: \(D_1 \), \(D_2 \), \(D_3 \), and \(D_4 \). This problem can be represented as a network in which there is a cost per unit to ship products from a production facility to a storage facility, and from a storage facility to a distribution center. The problem must optimize the cost of distribution of the products. The following table provides the costs per unit shipped from a source node to a destination node.

<table>
<thead>
<tr>
<th>Source node</th>
<th>(S_1)</th>
<th>(S_2)</th>
<th>(S_3)</th>
<th>(D_1)</th>
<th>(D_2)</th>
<th>(D_3)</th>
<th>(D_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>4 6 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P_2)</td>
<td>10 4 7 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_1)</td>
<td>0 0 0 17 20 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_2)</td>
<td>0 0 0 20 15 25 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S_3)</td>
<td>0 0 0 30 18 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Chapter 21

Solving Linear Optimization Problems

21.1 Introduction

The Simplex algorithm, due to George B. Dantzig, is used to solve linear optimization problems. It is a tabular solution algorithm and is a powerful computational procedure that provides fast solutions to relatively large-scale applications. There are many software implementations of this algorithm, or variations of it. The basic algorithm is applied to a linear programming problem that is in standard form, in which all constraints are equations and all variables non-negative. This chapter presents the general principles and the basic concepts of numerical solution to linear optimization problems. Several case studies are presented using the software solvers: LPsolve and GLPK.

21.2 General Form

The following is a general form of a linear optimization problem that is basically organized in three parts.

1. The objective function, f, to be maximized or minimized, mathematically expressed as:

 $$f(x_1, x_2, \ldots, x_n) = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$$ \hspace{1cm} (21.1)

2. The set of m constraints, which is of the form:

 $$a_{i1} x_1 + a_{i2} x_2 + \ldots + a_{in} x_n \leq b_i \hspace{0.5cm} i = 1, \ldots, m$$ \hspace{1cm} (21.2)

 The other form is:

 $$a_{i1} x_1 + a_{i2} x_2 + \ldots + a_{in} x_n \geq b_i \hspace{0.5cm} i = 1, \ldots, m$$ \hspace{1cm} (21.3)

3. The sign restriction for variables: $x_j \geq 0$, or $x_j \leq 0$, or x_j unrestricted in sign, $j = 1, \ldots, n$.

301
Many problems are formulated with a mix of \(m \) constraints with \(\leq, =, \) and \(\geq \) forms. Note that the objective function, which is expressed mathematically in (21.1), and the constraints, which are expressed mathematically in (21.2) and (21.3), are linear mathematical (algebraic) expressions.

An important assumption included in the general formulation of a linear optimization problem is that the variables, \(x_i, i = 1, \ldots, n \), take numeric values that are real or fractional. In the case that one or more variables only take integer values, then other techniques and algorithms are used. These methods belong to the class of Integer Programming or Mixed Integer Programming.

21.3 Foundations of the Algorithm

21.3.1 Basic Concepts

For a given linear optimization problem, a point is the set of values corresponding to one for each decision variable. The feasible region for the problem, is the set of all points that satisfy the constraints and all sign restrictions. If there are points that are not in the feasible region, they are said to be in an infeasible region.

The optimal solution to a linear maximization problem is a point in the feasible region with the largest value of the objective function. In a similar manner, the optimal solution to a linear minimization problem is a point in the feasible region with the smallest value of the objective function.

There are four cases of solutions to consider in a linear optimization problem.

1. A unique optimal solution
2. An infinite number of optimal solutions
3. No feasible solutions
4. An unbounded solution

In a linear maximization problem, a constraint is binding at an optimal solution if it holds with equality when the values of the variables are substituted in the constraint.

21.3.2 Problem Formulation in Standard Form

Because the Simplex algorithm requires the problem to be formulated in standard form, the general form of the problem must be converted to standard form.

- For each constraint of \(\leq \) form, a slack variable is defined. For constraint \(i \), slack variable \(s_i \) is included. Initially constraint \(i \) has the general form:
Solving Linear Optimization Problems 303

\[a_1x_1 + a_2x_2 + \ldots + a_nx_n \leq b_i \quad (21.4) \]

To convert constraint \(i \) of the general form of the expression in (21.4) to an equality, slack variable \(s_i \) is added to the constraint, and \(s_i \geq 0 \). The constraint will now have the form:

\[a_1x_1 + a_2x_2 + \ldots + a_nx_n + s_i = b_i \quad (21.5) \]

- For each constraint of \(\geq \) form, an excess variable is defined. For constraint \(i \), excess variable \(e_i \) is included. Initially constraint \(i \) has the general form:

\[a_1x_1 + a_2x_2 + \ldots + a_nx_n \geq b_i \quad (21.6) \]

To convert constraint \(i \) of the general form of the expression in (21.6) to an equality, excess variable \(e_i \) is subtracted from the constraint, and \(e_i \geq 0 \). The constraint will now have the form:

\[a_1x_1 + a_2x_2 + \ldots + a_nx_n - e_i = b_i \quad (21.7) \]

Consider the following formulation of a numerical example:

Maximize: \(5x_1 + 3x_2 \)
Subject to:

\[
\begin{align*}
2x_1 + x_2 & \leq 40 \\
x_1 + 2x_2 & \leq 50 \\
x_1 & \geq 0 \\
x_2 & \geq 0
\end{align*}
\]

After rewriting the objective function and adding two slack variables \(s_1 \) and \(s_2 \) to the problem, the transformed problem formulation in standard form is:

Maximize: \(z - 5x_1 - 3x_2 = 0 \).
Subject to the following constraints:

\[
\begin{align*}
2x_1 + x_2 + s_1 & = 40 \\
x_1 + 2x_2 + s_2 & = 50
\end{align*}
\]

\[
\begin{align*}
x_1 & \geq 0 \\
x_2 & \geq 0 \\
s_1 & \leq 0 \\
s_2 & \leq 0
\end{align*}
\]
21.3.3 Generalized Standard Form

A generalized standard form of a linear optimization problem is:

Maximize (or minimize) $f = c_1x_1 + c_2x_2 + \ldots + c_nx_n$

Subject to the following constraints:

\[
\begin{align*}
& a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n = b_1 \\
& a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n = b_2 \\
& \quad \quad \vdots \quad \quad \vdots \\
& a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n = b_m \\
\end{align*}
\]

(21.8)

$x_i \geq 0, \quad i = 1, 2, \ldots, n.$

The constraints can be written in matrix form as follows:

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{bmatrix}
\]

(21.9)

Equation (22.2) can also be written as $AX = B$, in which A is an $m \times n$ matrix, X is a column vector of size n, and B is a column vector of size m.

21.3.4 Additional Definitions

To derive a basic solution to Equation (22.2), a set m of variables known as the basic variables is used to compute a solution. These variables are the ones left after setting the nonbasic variables, which is the set of $n - m$ variables chosen and set to zero.

There can be several different basic solutions in a linear optimization problem. There could be one or more sets of m basic variables for which a basic solution cannot be derived.

A basic feasible solution to the standard formulation of a linear optimization problem is a basic solution in which the variables are non-negative.

The solution to a linear optimization problem is the best basic feasible solution to $AX = B$ (or Equation (22.2)).
21.4 Simplex Algorithm

In addition to transforming the constraints to standard form, the expression of the objective function must be changed to an equation with zero on its right-hand side. The general expression:

\[f = c_1x_1 + c_2x_2 + \ldots + c_nx_n \]

is changed to

\[f - c_1x_1 - c_2x_2 - \ldots - c_nx_n = 0 \]

This equation becomes row 0 in the complete set of equations of the problem formulation. After this transformation the Simplex method can be used to solve the linear optimization problem.

21.4.1 General Description of the Simplex Algorithm

The following is a general description of the Simplex algorithm:

1. Find a basic feasible solution to the linear optimization problem; this solution becomes the initial basic feasible solution.

2. If the current basic feasible solution is the optimal solution, stop.

3. Search for an adjacent basic feasible solution that has a greater (or smaller) value of the objective function. An adjacent basic feasible solution has \(m - 1 \) variables in common with the current basic feasible solution. This becomes the current basic feasible solution, continue in step 2.

A linear optimization problem has an unbounded solution if the objective function can have arbitrarily large values for a maximization problem, or arbitrarily small values for a minimization problem. This occurs when a variable with a negative coefficient in the objective row (row 0) has a non-positive coefficient in every constraint.

21.4.2 Detailed Description of the Simplex Algorithm

A shorthand form of the set of equations known as the simplex tableau is used in the algorithm. Each tableau corresponds to a movement from one basic variable set BVS (extreme or corner point) to another, making sure that the objective function improves at each iteration until the optimal solution is reached. The following sequence of steps describes the application of the simplex solution algorithm:

1. Convert the LP to the following form:

 (a) Convert the minimization problem into a maximization one.
(b) All variables must be non-negative.
(c) All RHS values must be non-negative.
(d) All constraints must be inequalities of the form \leq.

2. Convert all constraints to equalities by adding a slack variable for each constraint.

3. Construct the initial simplex tableau with all slack variables in the basic variable set (BVS). The row 0 in the table contains the coefficient of the objective function.

4. Determine whether the current tableau is optimal. That is: If all RHS values are non-negative (called, the feasibility condition) and if all elements of the row 0 are non-positive (called, the optimality condition). If the answers to both questions are Yes, then stop. The current tableau contains an optimal solution. Otherwise, continue.

5. If the current basic variable set (BVS) is not optimal, determine, which nonbasic variable should become a basic variable and, which basic variable should become a nonbasic variable. To find the new BVS with the better objective function value, perform the following tasks:
 (a) Identify the entering variable: The entering variable is the one with the largest positive coefficient value in row 0. (In case of a tie, the variable that corresponds to the leftmost of the columns is selected).
 (b) Identify the outgoing variable: The outgoing variable is the one with smallest non-negative column ratio (to find the column ratios, divide the RHS column by the entering variable column, wherever possible). In case of a tie the variable that corresponds to the upmost of the tied rows is selected.
 (c) Generate the new tableau: Perform the Gauss-Jordan pivoting operation to convert the entering column to an identity column vector (including the element in row 0).

At the start of the simplex procedure; the set of basis is constituted by the slack variables. The first BVS has only slack variables in it. The row 0 presents the increase in the value of the objective function that will result if one unit of the variable corresponding to the jth column was brought in the basis. This row is sometimes known as the indicator row because it indicates if the optimality condition is satisfied.

Criterion for entering a new variable into the BVS will cause the largest per-unit improvement of the objective function. Criterion for removing a variable from the current BVS maintains feasibility (making sure that the new RHS, after pivoting remain non-negative). Warning: Whenever during the Simplex iterations you get a negative RHS, it means you have selected a wrong outgoing variable.
Note that there is a solution corresponding to each simplex tableau. The numerical of basic variables are the RHS values, while the other variables (non-basic variables) are always equal to zero. Note also that variables can exit and enter the basis repeatedly during the simplex algorithm.

21.4.3 Degeneracy and Convergence

A linear optimization problem (LP) is degenerate if the algorithm loops endlessly, cycling among a set of feasible basic solutions and never gets to the optimal solution. In this case, the algorithm will not converge to an optimal solution. Most software implementations of the Simplex algorithm will check for this type of non-terminating loop.

21.4.4 Two-Phase Method

The Simplex algorithm requires a starting basic feasible solution. The two-phase method can find a starting basic feasible solution whenever it exists. The two-phase simplex method proceeds in two phases, phase I and phase II. Phase I attempts to find an initial basic feasible solution. Once an initial basic feasible solution has been found, phase II is then applied to find an optimal solution to the original objective function.

The simplex method iterates through the set of basic solutions (feasible in phase II) of the LP problem. Each basic solution is characterized by the set of \(m \) basic variables \(x_{B1}, \ldots, x_{Bm} \). The other \(n \) variables are called nonbasic variables and denoted by \(x_{N1}, \ldots, x_{Nn} \).

21.5 Software Implementations

This section discusses several software tools that solve linear optimization problems using the Simplex algorithm and variations of it. Two software tools are briefly discussed and problem formulation and executions are shown with several examples, these are: LP_solve and GLPK.

21.5.1 Solution with LP_solve

LP_solve is a non-commercial linear optimization software package, written in ANSI C by Michel Berkelaar. LP_solve is a free (see LGPL for the GNU lesser general public license) linear (integer) programming solver based on the revised simplex method and the Branch-and-bound method for the integers.

LP_solve was originally developed by Michel Berkelaar at Eindhoven University of Technology. Jeroen Dirks contributed the procedural interface, a built-in MPS
Introduction to Computational Modeling

reader, and many fixes and enhancements to the code. Starting at version 3.0, lp_solve is released under the LGPL license. Before that, the code could only be used for non-commercial purposes.

The following example is a simple linear optimization problem formulation formatted to be solved by using LP_solve; it is stored in the script file model.lp.

/* model.lp */
max: 143 x + 60 y;
120 x + 210 y <= 15000;
110 x + 30 y <= 4000;
x + y <= 75;

The following listing shows the Linux shell command to start execution of LP_solve with the file model.lp, at a terminal window.

$ lp_solve model.lp
Value of objective function: 6315.62
Actual values of the variables:
 x 21.875
 y 53.125

21.5.1.1 Example 1 with LP_solve

The following simple linear optimization problem, which was discussed previously as Example 1, is formulated as follows:

Minimize: 4x_1 + 8x_2 + 3x_3
Subject to the following constraints:

\[
egin{align*}
2x_1 &+ 5x_2 &+ 3x_3 &\geq 185 \\
3x_1 &+ 2.5x_2 &+ 8x_3 &\geq 155 \\
8x_1 &+ 10x_2 &+ 4x_3 &\geq 600 \\
x_1 &\geq 0 \\
x_2 &\geq 0 \\
x_3 &\geq 0
\end{align*}
\]

To solve this problem with LP_solve, it is formatted as shown in the following listing, which is stored in the text file example1.lp:

/* example1.lp */
Minimize: 4 x1 + 8 x2 + 3 x3;
2 x1 + 5 x2 + 3 x3 >= 185;
3 x1 + 2.5 x2 + 8 x3 >= 155;
8 x1 + 10 x2 + 4 x3 >= 600;
To compute the solution to this optimization problem, the following Linux shell command is used to start execution of LPsolve with the file example1.lp at a terminal window.

```
$ lp_solve example1.lp
Value of objective function: 317.5
Actual values of the variables:
x1  66.25
x2  0
x3  17.5
```

On Windows, using LPsolve can be performed with a command window or using the LPsolve IDE, which may be a more convenient interface to the user.

21.5.1.2 Example 2 with LPsolve

The problem formulation of Example 2, as was defined previously, is the following:

Maximize: $143x_1 + 60x_2$
Subject to the following constraints:

- $120x_1 + 210x_2 \leq 15000$
- $110x_1 + 30x_2 \leq 4000$
- $x_1 + x_2 \leq 75$
- $x_1 \geq 0$
- $x_2 \geq 0$

To solve this problem with LPsolve, it is formatted as shown in the following listing, which is stored in the text file example2.lp:

```
/* Example2.lp */
Maximize: 144 x1 + 60 x2;
120 x1 + 210 x2 \leq 15000;
110 x1 + 30 x2 \leq 4000;
x1 + x2 \leq 75;
x1 \geq 0;
x2 \geq 0;
```

To compute the solution to this optimization problem, the following Linux shell command is used to start execution of LPsolve with the file example2.lp using a verbose option (v4), at terminal window.

```
$ lp_solve -v4 example2.lp
Model name: '' - run #1
Objective: Maximize(R0)
SUBMITTED
Model size: 3 constraints, 2 variables, 6 non-zeros.
```
Introduction to Computational Modeling

Sets: 0 GUB, 0 SOS.

Using DUAL simplex for phase 1 and PRIMAL simplex for phase 2. The primal and dual simplex pricing strategy set to 'Devex'.

Optimal solution 6337.5 after 2 iter.

Excellent numeric accuracy $||\star|| = 3.04201e-14$

Value of objective function: 6337.5

Actual values of the variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>21.875</td>
</tr>
<tr>
<td>x2</td>
<td>53.125</td>
</tr>
</tbody>
</table>

21.5.1.3 Example 3 with LP_solve

The following linear optimization problem was presented previously; its formulation is:

Minimize: $3x_1 + 4x_2 + 6x_3 + 7x_4 + x_5$
Subject to the following constraints:

<table>
<thead>
<tr>
<th>Constraint</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2x_1 - x_2 + x_3 + 6x_4 - 5x_5 \geq 6$</td>
<td></td>
</tr>
<tr>
<td>$x_1 + x_2 + 2x_3 + x_4 + 2x_5 \geq 3$</td>
<td></td>
</tr>
<tr>
<td>$x_1 \geq 0$</td>
<td></td>
</tr>
<tr>
<td>$x_2 \geq 0$</td>
<td></td>
</tr>
<tr>
<td>$x_3 \geq 0$</td>
<td></td>
</tr>
<tr>
<td>$x_4 \geq 0$</td>
<td></td>
</tr>
<tr>
<td>$x_5 \geq 0$</td>
<td></td>
</tr>
</tbody>
</table>

To solve this problem with LP_solve, it is formatted as shown in the following listing, which is stored in the text file example3.lp:

```plaintext
/* Example3.lp with LP_solve */
Minimize: 3 x1 + 4 x2 + 6 x3 + 7 x4 + x5;
2 x1 - x2 + x3 + 6 x4 - 5 x5 >= 6;
x1 + x2 + 2 x3 + x4 + 2 x5 >= 3;
```

To compute the solution to this optimization problem, the following Linux shell command is used to start execution of LP_solve with the file example3.lp at a terminal window.

```
$ lp_solve example3.lp
```

Value of objective function: 9.0

Actual values of the variables:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>3</td>
</tr>
<tr>
<td>x2</td>
<td>0</td>
</tr>
</tbody>
</table>
21.5.2 Implementation with GLPK \texttt{glpsol}

The GNU Linear Programming Kit (GLPK) is a powerful, proven tool for solving linear optimization problems with multiple constraints. GNU MathProg (GMPL GNU Mathematical Programming Language) is a high-level language for formulating and solving mathematical programming models. MathProg is specific to GLPK, but resembles a subset of AMPL and the \texttt{glpsol} program is the command line solver.

The following simple linear optimization problem, which was discussed previously as Example 1, is formulated as follows:

Minimize: $4x_1 + 8x_2 + 3x_3$

Subject to the following constraints:

\[
\begin{align*}
2x_1 + 5x_2 + 3x_3 & \geq 185 \\
3x_1 + 2.5x_2 + 8x_3 & \geq 155 \\
8x_1 + 10x_2 + 4x_3 & \geq 600 \\
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0
\end{align*}
\]

To solve this problem with \texttt{glpsol}, it is formatted as shown in the following listing, which is stored in the text file \texttt{example1.mod}:

```
# Example1.mod
# Using GLPK glpsol
/* Decision variables */
var x1 >= 0;
var x2 >= 0;
var x3 >= 0;
/* Objective function */
minimize z: 4*x1 + 8*x2 + 3*x3;
/* Constraints */
s.t. R1: 2*x1 + 5*x2 + 3*x3 >= 185;
s.t. R2: 3*x1 + 2.5*x2 + 8*x3 >= 155;
s.t. R3: 8*x1 + 10*x2 + 4*x3 >= 600;
end;
```

To compute the solution to this optimization problem, the following Linux shell command is used to start execution of \texttt{glpsol} with the file \texttt{example1.mod} at a terminal window.
The result of the computations is stored in file `example1.sol` and the following listing shows the data.

Problem: example1
Rows: 4
Columns: 3
Non-zeros: 12
Status: OPTIMAL
Objective: z = 317.5 (MINimum)

<table>
<thead>
<tr>
<th>No.</th>
<th>Row name</th>
<th>St</th>
<th>Acty</th>
<th>Lower</th>
<th>Upper</th>
<th>Marg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>z</td>
<td>B</td>
<td>317.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>R1</td>
<td>NL</td>
<td>185</td>
<td>185</td>
<td>0</td>
<td>0.5</td>
</tr>
<tr>
<td>3</td>
<td>R2</td>
<td>B</td>
<td>338.75</td>
<td>155</td>
<td></td>
<td>0.375</td>
</tr>
<tr>
<td>4</td>
<td>R3</td>
<td>NL</td>
<td>600</td>
<td>600</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Col name</th>
<th>St</th>
<th>Acty</th>
<th>Lower</th>
<th>Upper</th>
<th>Marginal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x1</td>
<td>B</td>
<td>66.25</td>
<td>0</td>
<td>0</td>
<td>1.75</td>
</tr>
<tr>
<td>2</td>
<td>x2</td>
<td>NL</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.75</td>
</tr>
<tr>
<td>3</td>
<td>x3</td>
<td>B</td>
<td>17.5</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Karush-Kuhn-Tucker optimality conditions:
Summary

The solution to linear optimization modeling is performed by software tools known as LP solvers. These software tools implement algorithms, of which the most important one for deriving a solution to these problems is the Simplex algorithm. A common implementation is the two-phase Simplex algorithm. Some solvers require that the linear optimization problem formulation be in standard form, in which all constraints are equations and all variables non-negative. The solvers discussed and used in this chapter are open source programs. There are also several commercial proprietary solvers as well, such as Lindo.
Exercises

Exercise 21.1 Minimize: $2x_1 + 3x_2$
Subject to the following constraints:

\[
\begin{align*}
0.5x_1 + 0.25x_2 & \leq 4.0 \\
x_1 + 3x_2 & \geq 36 \\
x_1 + x_2 & = 10 \\
x_1 & \geq 0 \\
x_2 & \geq 0
\end{align*}
\]

Exercise 21.2 Maximize: $2x_1 + 3x_2 + x_3$
Subject to the following constraints:

\[
\begin{align*}
x_1 + x_2 + x_3 & \leq 40 \\
2x_1 + x_2 - x_3 & \geq 10 \\
- x_2 + x_3 & \geq 10 \\
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0
\end{align*}
\]

Exercise 21.3 A factory produces three types of beds, A, B, and C. The company that owns the factory sells beds of type A for $250.00 each, beds of type B for $320.00 each, and beds of type C for $625.00 each. Management estimates that all beds produced of types A and C will be sold. The number of beds of type B that can be sold is at the most 45. The production of different types of beds requires a different amount of resources such as: basic labor hours, specialized hours, and materials. The following table provides this data.

<table>
<thead>
<tr>
<th>Type A</th>
<th>Type B</th>
<th>Type C</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ft.</td>
<td>60 ft.</td>
<td>80 ft.</td>
<td>Material</td>
</tr>
<tr>
<td>15 h</td>
<td>20 h</td>
<td>40 h</td>
<td>Basic labor</td>
</tr>
<tr>
<td>5 h</td>
<td>15 h</td>
<td>20 h</td>
<td>Specialized labor</td>
</tr>
</tbody>
</table>

The amounts of resources available are: 450 ft. of material, 210 hours of basic labor, and 95 hours of specialized labor. The problem is to optimize profit. Write the formulation of the mathematical optimization problem. Use LP solver and GLPK glpsol to find a numerical solution to the linear optimization problem.
Exercise 21.4 An automobile factory needs to have a different number of employees working for every day of the week. Each employee has to work 5 consecutive days a week and have two days of rest. The following are the requirements of the factory: Monday needs 330 employees, Tuesday needs 270 employees, Wednesday needs 300 employees, Thursday needs 390 employees, Friday needs 285 employees, Saturday needs 315 employees, and Sunday needs 225 employees. To improve profitability, the factory is required to optimize the number of employees. (Hint: the key decision is how many employees begin work on each day. Employees who begin work on Monday are those who do not begin on Tuesday or Wednesday). Write the formulation of the mathematical optimization problem. Use LP solver and GLPK glpsol to find a numerical solution to the linear optimization problem.

Exercise 21.5 Consider the problem in Exercise 21.4 with the following changes: the problem is to optimize the labor costs of the auto factory based of amount of labor time in hours worked by employees. Full-time employees work 8 hours per day and cost the factory $12.50 per hour. Part-time employees work 4 hours a day and cost $8.50 per hour. The total amount of part-time labor should be at the most 30% of total labor time. Write the formulation of the mathematical optimization problem. Use LP solver and GLPK glpsol to find a numerical solution to the linear optimization problem.

Exercise 21.6 A factory manufactures 5 different products: P_1, P_2, P_3, P_4, and P_5. The factory needs to maximize profit. Each product requires machine time (in minutes) on three different devices: A, B, and C, each of which is available 135 hours per week. The following table provides the data on machine time needed:

<table>
<thead>
<tr>
<th>Product</th>
<th>Device A</th>
<th>Device B</th>
<th>Device C</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>20</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>P_2</td>
<td>13</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>P_3</td>
<td>15</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>P_4</td>
<td>16</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>P_5</td>
<td>18</td>
<td>14</td>
<td>6</td>
</tr>
</tbody>
</table>

The unit sale price for products P_1, P_2, and P_3 is $7.50, $7.00, and $8.25 respectively. The first 26 units of P_4 and P_5 have a sale prices $5.85 each; all excess units have a sale price of $4.50 each. The operational costs of devices A and B are $5.25 per hour, and $5.85 for device C. The cost of materials for products P_1 and P_3 are $2.75. For products P_2, P_3, and P_5 the materials cost is $2.25. Hint: assume that $x_i, i = 1...5$ are the number of units produced of the various products and use two new variables y_4 and y_5 for the units produced of P_4 and P_5 respectively in excess of 26. Write the formulation of the mathematical optimization problem. Use LP solver and GLPK glpsol to find a numerical solution to the linear optimization problem.
Exercise 21.7 A company produces a certain number of products and distributes these to various customer distribution centers that request a specified number of units of the product. There are two production facilities P_1 and P_2. There are three storage facilities: S_1, S_2, and S_3. The company also has four distribution centers: D_1, D_2, D_3, and D_4. This problem can be represented as a network in which there is a cost per unit to ship products from a production facility to a storage facility, and from a storage facility to a distribution center. The problem must optimize the cost of distribution of the products. The following table provides the cost per unit shipped from a source node to a destination node. Use LP solver and GLPK glpsol to find a numerical solution to the linear optimization problem.

<table>
<thead>
<tr>
<th>Source node</th>
<th>S_1</th>
<th>S_2</th>
<th>S_3</th>
<th>D_1</th>
<th>D_2</th>
<th>D_3</th>
<th>D_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P_2</td>
<td>10</td>
<td>4</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>17</td>
<td>20</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>15</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>S_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>30</td>
<td>18</td>
<td>11</td>
</tr>
</tbody>
</table>
Chapter 22

Sensitivity Analysis and Duality

22.1 Introduction

This chapter presents the general concepts and techniques of sensitivity analysis and duality. With sensitivity analysis, we can find out how relatively small changes in the parameters of a linear optimization problem can cause changes in the optimal solution computed.

The concepts of marginal values, which are also known as shadow prices, and the reduced costs are extremely useful in sensitivity analysis. Duality helps to better understand sensitivity analysis as well as the nature of linear optimization.

22.2 Sensitivity Analysis

Sensitivity analysis deals with the effect of independent, multiple changes in the values of:

- the coefficients of the objective function of linear program models having unique solution
- the right-hand side of the constraints.

Other useful points in the analysis is the study of the change in the solution to a problem that occurs when a new constraint is added, and the changes when a new variable is added to the problem.

22.2.1 Coefficients of the Objective Function

How much can the objective function coefficients change before the values of the variables change? Or when the objective function coefficient of a single variable is changed, for what range of values of this coefficient will the optimal values of the decision variables be retained?

The concept of reduced cost is associated with the coefficients of the variables in the objective function. It is a very useful concept and applies to a variable with value
zero in the optimal value of the objective function. The reduced cost of a variable is the amount by which the objective function will decrease when the variable is forced a value of 1.

The simplest and most direct way to find the reduced costs of variables and the allowable changes to the coefficients in the objective function is to observe the output results in the computer solution to a linear optimization problem. These are briefly discussed next for following software solver tools: LP solve and GLPK glpsol.

22.2.1 Using LP solve Case Study 1

To find the sensitivity of a simple problem, consider the following formulation.
Maximize: $60x_1 + 30x_2 + 20x_3$
Subject to the following constraints:

\[
\begin{align*}
8x_1 & + 6x_2 & + x_3 & \leq 48 \\
4x_1 & + 2x_2 & + 1.5x_3 & \leq 20 \\
2x_1 & + 1.5x_2 & + 0.5x_3 & \leq 8
\end{align*}
\]

\[
\begin{align*}
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0
\end{align*}
\]

The formulation of the problem is formatted for solving with LP solve and stored in file sensit1.lp. The solution to this problem is specified with the –S4 option in the Linux shell command in a terminal window, and the results can be observed in the following listing.

```
$ lp_solve -S4 sensit1.lp
Value of objective function: 280.00000000

Actual values of the variables:

\[
x_1 \ 2
\]

\[
x_2 \ 0
\]

\[
x_3 \ 8
\]

Actual values of the constraints:

\[
R1 \ 24
\]

\[
R2 \ 20
\]

\[
R3 \ 8
\]

Objective function limits:

\[
\begin{array}{ccc}
\text{From} & \text{Till} & \text{FromValue} \\
x_1 & 56 & 80 & -1e+030 \\
x_2 & -1e+030 & 35 & 1.6 \\
x_3 & 15 & 22.5 & -1e+030
\end{array}
\]

Dual values with from - till limits:

\[
\begin{array}{ccc}
\text{Dual value} & \text{From} & \text{Till} \\
R1 & 0 & -1e+030 & 1e+030 \\
R2 & 10 & 16 & 24 \\
R3 & 10 & 6.666667 & 10
\end{array}
\]
```
From the output listing produced by LP solve, it can be observed that the first part of the output (Value of objective function) displays the value computed for the objective function. This is the optimal value of the solution to the problem. The next part of the output (Actual values of the variables) shows the values of the variables, \(x_1, x_2, \) and \(x_3 \) that make the solution optimal. Note that in this problem, variable \(x_2 \) has a value of zero. The coefficient of this variable will have a much lower effect on the objective function.

The next part of the output (Objective function limits:) has the range of values of the coefficients of variables in the objective function that retain the conditions for the optimal solution of the problem. The range of values of the coefficient of variable \(x_1 \) is defined by the lower bound (indicated in the From column) of 56 and the upper bound (indicated in the Till column) of 80. Any values of the coefficient of \(x_1 \) outside this range will change the conditions of the objective function to a suboptimal value.

In a similar manner, the range of values of the coefficient of variable \(x_2 \) is indicated from an extremely low value (\(-\infty\)) to an upper bound of 35, and finally the range of values of the coefficient of variable \(x_3 \) is in the range from a lower bound of 15 to an upper bound of 22.5.

For a variable with actual value zero, the column ‘FromValue’ shows a value that the variable takes when its coefficient value reaches the value in the ‘Till’ column (for a maximization problem) or the value in the ‘From’ column (for a minimization problem). Variable \(x_2 \) will take the value 1.6 when its coefficient reaches the value of 35.

Variable \(x_2 \) has a reduced cost of \(-5\) and is shown in column ‘Dual value’. This is the amount the objective function would change if the value of \(x_2 \) is changed to 1. Variables \(x_1 \) and \(x_3 \) are basic variables and have a zero reduced cost.

22.2.1.2 Using GLPK glpsol Case Study 1

To find the sensitivity of the simple problem discussed previously with the following formulation.

Maximize: \(60x_1 + 30x_2 + 20x_3\)

Subject to the following constraints:

\[
\begin{align*}
8x_1 & + 6x_2 & + x_3 & \leq 48 \\
4x_1 & + 2x_2 & + 1.5x_3 & \leq 20 \\
2x_1 & + 1.5x_2 & + 0.5x_3 & \leq 8 \\
\end{align*}
\]

\[
\begin{align*}
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0 \\
\end{align*}
\]

The formulation of the problem is formatted as follows for solving with GLPK glpsol and stored in file sensit1.mod.
Introduction to Computational Modeling

/* Example for testing sensitivity */
/* sensit1.mod using glpsol */

/* Decision variables */
var x1 >= 0;
var x2 >= 0;
var x3 >= 0;

/* Objective function */
maximize z: 60*x1 + 30*x2 + 20*x3;

/* Constraints */
s.t. R1: 8*x1 + 6*x2 + x3 <= 48;
s.t. R2: 4*x1 + 2*x2 + 1.5*x3 <= 20;
s.t. R3: 2*x1 + 1.5*x2 + 0.5*x3 <= 8;
end;

The execution of the glpsol program is initiated with the following shell command in a terminal window:

$ glpsol --ranges msens.sol -m sensit1.mod

The results of execution are stored in file sensit1.sol with the following listing.

GLPK 4.45 - SENSITIVITY ANALYSIS REPORT Page 2

Problem: sensit1
Objective: z = 280 (MAXimum)

<table>
<thead>
<tr>
<th>No.</th>
<th>Col</th>
<th>St</th>
<th>Acty</th>
<th>Obj coef Marginal</th>
<th>Lower Activity range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x1</td>
<td>BS</td>
<td>2.000</td>
<td>60.000</td>
<td>-Inf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+Inf 4.00000</td>
</tr>
<tr>
<td>2</td>
<td>x2</td>
<td>NL</td>
<td>.</td>
<td>30.000</td>
<td>-4.00000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-5.00000 Inf 1.60000</td>
</tr>
<tr>
<td>3</td>
<td>x3</td>
<td>BS</td>
<td>8.0000</td>
<td>20.0000</td>
<td>-16.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+Inf 13.3333</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Col</th>
<th>Obj coef range</th>
<th>Obj value limit</th>
<th>Limiting variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1</td>
<td>56.000</td>
<td>272.000</td>
<td>x2</td>
</tr>
<tr>
<td></td>
<td>80.000</td>
<td>320.000</td>
<td>C2</td>
</tr>
<tr>
<td>X2</td>
<td>-Inf</td>
<td>300.000</td>
<td>x3</td>
</tr>
<tr>
<td></td>
<td>35.000</td>
<td>272.000</td>
<td>x1</td>
</tr>
</tbody>
</table>
The range of values of the coefficients in the objective function appear in column ‘Obj coef range’ for the three decision variables x_1, x_2, and x_3. These values correspond to those computed by LP solve, as shown previously.

Column ‘Acty’ (activity) shows the actual values of variables x_1, x_2, and x_3. Note that variable x_2 has a value of zero and column ‘Activity range’ shows the value 1.6, which is the value that the variable will take when its coefficient reaches the value of 35.

Variable x_2 has a reduced cost of −5 and is shown in column ‘Marginal.’ This is the amount the objective function would change if the value of x_2 is changed to 1.

Variables x_1 and x_3 are basic variables and have a zero reduced cost.

22.2.1.3 Using LP solve Case Study 2

The following simple linear optimization problem, which was discussed previously as Example 1, is formulated as follows:

Minimize: $4x_1 + 8x_2 + 3x_3$

Subject to the following constraints:

\[
\begin{align*}
2x_1 & + 5x_2 + 3x_3 \geq 185 \\
3x_1 & + 2.5x_2 + 8x_3 \geq 155 \\
8x_1 & + 10x_2 + 4x_3 \geq 600 \\
x_1 & \geq 0 \\
x_2 & \geq 0 \\
x_3 & \geq 0
\end{align*}
\]

To solve this problem with LP solve, it is formatted as shown in the following listing, which is stored in the text file example1.lp:

```plaintext
/* example1.lp */
Minimize: 4 x1 + 8 x2 + 3 x3;
2 x1 + 5 x2 + 3 x3 >= 185;
3 x1 + 2.5 x2 + 8 x3 >= 155;
8 x1 + 10 x2 + 4 x3 >= 600;
```

The execution of the lp_solve program to get the solution to this problem is specified with the -S4 option, and the results are found in the following listing.

```
$ lp_solve -S4 example1.lp

Value of objective function: 317.50000000

Actual values of the variables:
```

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td></td>
</tr>
<tr>
<td>x_3</td>
<td></td>
</tr>
</tbody>
</table>

Introduction to Computational Modeling

\[
\begin{align*}
x_1 & \quad 66.25 \\
x_2 & \quad 0 \\
x_3 & \quad 17.5
\end{align*}
\]

Actual values of the constraints:
\[
\begin{align*}
R_1 & \quad 185 \\
R_2 & \quad 338.75 \\
R_3 & \quad 600
\end{align*}
\]

Objective function limits:
\[
\begin{array}{cccc}
& \text{From} & \text{Till} & \text{FromValue} \\
x_1 & 2 & 6 & -1e+030 \\
x_2 & 6.25 & 1e+030 & 14 \\
x_3 & 2 & 4.4 & -1e+030
\end{array}
\]

Dual values with from – till limits:
\[
\begin{array}{cccc}
& \text{Dual value} & \text{From} & \text{Till} \\
R_1 & 0.5 & 150 & 450 \\
R_2 & 0 & -1e+030 & 1e+030 \\
R_3 & 0.375 & 246.6667 & 740 \\
x_1 & 0 & -1e+030 & 1e+030 \\
x_2 & 1.75 & -1e+030 & 14 \\
x_3 & 0 & -1e+030 & 1e+030
\end{array}
\]

From the output listing produced by LP$_solve$, it can be observed that the first part of the output (Value of objective function:) displays the value computed for the objective function, 317.5. This is the optimal value of the problem. The next part of the output (Actual values of the variables:) shows the values of the variables, \(x_1\), \(x_2\), and \(x_3\) that make the solution optimal.

The next part of the output (Objective function limits:) has the range of values of the coefficients of variables in the objective function that retain the optimal solution of the problem. The range of values of the coefficient of variable \(x_1\) is defined by the lower bound of 2 and the upper bound of 6. Any values of the coefficient of \(x_1\) outside this range will change the objective function to a suboptimal value.

In a similar manner, the range of values of the coefficient of variable \(x_2\) is in the range from a lower bound of 6.25 to an extremely high value \((\infty)\), and finally the range of values of the coefficient of variable \(x_3\) is in the range from a lower bound of 2 to an upper bound of 4.4. Variable \(x_2\) will take the value 14 when its coefficient reaches the value of 6.25.

For a variable with actual value zero, the column ‘FromValue’ shows a value that the variable takes when its coefficient value reaches the value in the ‘Till’ column (for a maximization problem) or the value in the ‘From’ column (for a minimization problem). Variable \(x_2\) will take the value 14 when its coefficient reaches the value of 6.25.

Variable \(x_2\) has a reduced cost of 1.75 and is shown in column ‘Dual value.’ This is the amount the objective function would change if the value of \(x_2\) is changed to 1. Variables \(x_1\) and \(x_3\) are basic variables and have a zero reduced cost.
22.2.1.4 Using GLPK glpsol Case Study 2

To solve this problem with GLPK glpsol, it is formatted as shown in the following listing, which is stored in the text file example1.mod:

```plaintext
# Example1.mod
# Using GLPK glpsol

/* Decision variables */
var x1 >= 0;
var x2 >= 0;
var x3 >= 0;

/* Objective function */
minimize z: 4*x1 + 8*x2 + 3*x3;

/* Constraints */
s.t. R1: 2*x1 + 5 *x2 + 3 *x3 >= 185;
s.t. R2: 3*x1 + 2.5 *x2 + 8*x3 >= 155;
s.t. R3: 8*x1 + 10 *x2 + 4 *x3 >= 600;
end;
```

The execution of the glpsol program is initiated with the following shell command in a terminal window:

```
$ glpsol --ranges examplesens.sol -m example1.mod
```

The results of execution are stored in file examplesens.sol with the following listing.
The range of values of the coefficients in the objective function appear in column ‘Obj coef range’ for the three decision variables x_1, x_2, and x_3. These values correspond to those computed by LPsolve.

Column ‘Acty’ (activity) shows the actual values of variables x_1, x_2, and x_3. Note that variable x_2 has a value of zero and column ‘Activity range’ shows the value 14, which is the value that the variable will take when its coefficient reaches the value of 6.25.

Variable x_2 has a reduced cost of 1.75 and is shown in column ‘Marginal.’ This is the amount the objective function would change if the value of x_2 is changed to 1. Variables x_1 and x_3 are basic variables and have a zero reduced cost.

22.2.1.5 Using LPsolve Case Study 3

The following simple linear optimization problem, which was discussed previously as Example 2, is formulated in LPsolve as follows:

```/* Example2.lp in LP_solve */
Maximize: 144 x1 + 60 x2;
120 x1 + 210 x2 <= 15000;
110 x1 + 30 x2 <= 4000;
x1 + x2 <= 75;
```

Executing LPsolve program at the Linux shell command in a terminal window to solve this problem, yields the following output.

```
$ lp_solve -S4 example2.lp
Value of objective function: 6337.5000000
 Actual values of the variables:
   x1 = 21.875
   x2 = 53.125
 Actual values of the constraints:
   R1 = 13781.2
   R2 = 4000
   R3 = 75
Objective function limits:
```

End of report.
Following the same procedure used in the previous case studies, it can be observed that the first part of the output (Value of objective function:) displays the value computed for the objective function, 6337.50. This is the optimal value of the problem. The next part of the output (Actual values of the variables:) shows the values of the variables, x1 and x2, that make the solution optimal.

The next part of the output (Objective function limits:) has the range of values of the coefficients of variables in the objective function that retain the optimal solution of the problem. The range of values of the coefficient of variable x1 is defined by the lower bound of 60 and the upper bound of 220. Any values of the coefficient of x1 outside this range will change the objective function to a suboptimal value.

For a variable with actual value zero, the column ‘FromValue’ shows a value that the variable takes when its coefficient value reaches the value in the ‘Till’ column (for a maximization problem) or the value in the ‘From’ column (for a minimization problem). Variables x1 and x2 have a value different than zero.

Variables x1 and x2 have a reduced cost of zero as shown in column ‘Dual value.’

22.2.1.6 Using GLPK glpsol Case Study 3

To solve this problem with GLPK glpsol, it is formatted as shown in the following listing, which is stored in the text file example2.mod:

```
# Example2.mod in glpsol
#
/* Decision variables */
var x1 >= 0;
var x2 >= 0;

/* Objective function */
maximize z: 144*x1 + 60*x2;

/* Constraints */
  s.t. R1: 120*x1 + 210*x2 <= 15000;
  s.t. R2: 110*x1 + 30*x2 <= 4000;
  s.t. R3:    x1 +    x2 <= 75;
end;
```
The execution of the `glpsol` program is initiated with the following shell command in a terminal window:

```
$ glpsol --ranges examp2sens.sol -m example2.mod
```

The results of execution are stored in file `examp2sens.sol` with the following listing.

```
GLPK 4.45 - SENSITIVITY ANALYSIS REPORT Page 2

Problem: example2
Objective: z = 6337.5 (MAXimum)

<table>
<thead>
<tr>
<th>No.</th>
<th>Col</th>
<th>St</th>
<th>Acty</th>
<th>Obj coef</th>
<th>Lower</th>
<th>Activity</th>
<th>Obj coef range</th>
<th>Obj val</th>
<th>Limiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x1</td>
<td>BS</td>
<td>21.87500</td>
<td>144.00000</td>
<td>.</td>
<td>8.33333</td>
<td>+Inf</td>
<td>36.36364</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x2</td>
<td>BS</td>
<td>53.12500</td>
<td>60.00000</td>
<td>.</td>
<td>-Inf</td>
<td>+Inf</td>
<td>66.66667</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Col</th>
<th>Obj coef range</th>
<th>Obj val</th>
<th>Limiting</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>60.00000</td>
<td>4500.000</td>
<td>R2</td>
</tr>
<tr>
<td></td>
<td>220.00000</td>
<td>8000.000</td>
<td>R3</td>
</tr>
<tr>
<td>x2</td>
<td>39.27273</td>
<td>5236.36364</td>
<td>R3</td>
</tr>
<tr>
<td></td>
<td>144.00000</td>
<td>10800.000</td>
<td>R2</td>
</tr>
</tbody>
</table>

End of report
```

The range of values of the coefficients in the objective function appear in column ‘Obj coef range’ for the two decision variables x_1 and x_2. These values correspond to those computed by LPsolve.

Column ‘Acty’ (activity) shows the actual values of variables x_1 and x_2. Note that both variables x_1 and x_2 have a non-zero value. These variables are basic variables and have a zero reduced cost.

22.2.2 Right-Hand Side of Constraints

As mentioned previously, another part of sensitivity analysis involves finding out how changes in the right-hand side of a constraint would change the basis of the optimal solution to a problem.

The dual value (marginal or shadow price) in a constraint is the amount by which the objective function will decrease when the right-hand side of the constraint is incremented by one. Another way way to define a dual value is the rate of change of the objective function with respect to the right-hand side of the constraint.
The right-hand side of a single constraint can vary within a specified range. The dual value of constraint will only hold while the right-hand of the constraint is in the range of values.

A constraint that is not active has a dual value of zero. This is a constraint that is not binding because its actual value is less (or greater) than the value of the right-hand side specified in the problem formulation.

This second set of data is provided by computer solvers such as LP solver, glpsol and display output results that can be used for sensitivity analysis. This section includes discussion of the output produced by LP_solve and glpsol for the three case studies presented previously.

22.2.2.1 Using LP_solve Case Study 1

The output produced by LP_solve shows the dual value for every constraint and the range of values that the right-hand side of each constraint can change, with the current solution of the problem remaining optimal. The following partial listing is the output produced by LP_solve for the problem in case study 1.

```
$ lp_solve -S4 sensit1.lp
Value of objective function: 280.00000000
Actual values of the constraints:
R1  24
R2  20
R3  8
Dual values with from - till limits:
<table>
<thead>
<tr>
<th>Dual value</th>
<th>From</th>
<th>Till</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0</td>
<td>-1e+030</td>
</tr>
<tr>
<td>R2</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>R3</td>
<td>10</td>
<td>6.666667</td>
</tr>
</tbody>
</table>
```

An important quantity associated with constraints is provided column Dual value. As mentioned previously, this value is also known as marginal value and shadow price. This value indicates the amount the objective function will change when the constraint value is incremented by 1. In the output listing shown, constraint R2 has a dual value of 10, and the value of the constraint can change from 16 to 24. Constraint R3 also has a dual value of 10, and the value of the constraint can change from 6.666667 to 10. The dual value of a constraint only holds in that range of values of the constraint.

However, constraint R1 has a dual value of zero. Its actual value is 24 and the constraint in the problem was specified as ≤ 48. Constraint R1 is said to be not active. This constraint has very minimum effect on the value of the objective function. Its range of values is actually from 24 (its actual value) to ∞.
22.2.2.2 Using glpsol Case Study 1

The output produced by GLPK glpsol shows the dual prices in the Marginals column. It also shows the range of values that the right-hand side of each constraint can change, with the current solution of the problem remaining optimal. The following listing is the output produced by glpsol, which is similar to the output listing produced by LP_solve for the problem in Case Study 1.

```
GLPK 4.45 - SENSITIVITY ANALYSIS REPORT  Page 1

Problem: sensit1  Objective:  z = 280  (MAXimum)

<table>
<thead>
<tr>
<th>No.</th>
<th>Row name</th>
<th>St</th>
<th>Activity</th>
<th>Slack Marginal</th>
<th>Lower Upper</th>
<th>Acty range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>z</td>
<td>BS</td>
<td>280.000</td>
<td>-280.000</td>
<td>-Inf</td>
<td>240.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+Inf</td>
<td>280.000</td>
</tr>
<tr>
<td>2</td>
<td>R1</td>
<td>BS</td>
<td>24.000</td>
<td>24.000</td>
<td>-Inf</td>
<td>13.333</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>48.000</td>
<td>32.000</td>
</tr>
<tr>
<td>3</td>
<td>R2</td>
<td>NU</td>
<td>20.000</td>
<td>.</td>
<td>-Inf</td>
<td>16.000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.000</td>
<td>24.000</td>
</tr>
<tr>
<td>4</td>
<td>R3</td>
<td>NU</td>
<td>8.000</td>
<td>.</td>
<td>-Inf</td>
<td>6.666</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.000</td>
<td>10.000</td>
</tr>
</tbody>
</table>

Row name  Obj coef  Obj value at  Limiting
          range    break point  variable
          ---------  ------------  --------
  z        -1.00000   .            R2
  +Inf      +Inf         
  R1       -1.25000  250.00000   R3
  5.00000   400.00000   R2
  R2       -10.00000 240.000000  x3
  +Inf      320.00000  x1
  R3       -10.00000 266.66667  x1
  +Inf      300.00000  x3
```

Note that the listing shows constraint R1 with a Slack value of 24.0, which is the difference between its specified value (48.0) and its actual value, which is 24.0. This constraint is not active in the optimal solution of the problem.

22.2.2.3 Using LP_solve Case Study 2

The output produced by LP_solve shows the dual values for each constraint and the range of values that the right-hand side of each constraint can change, with the
current solution of the problem remaining optimal. The following listing is the output produced by LP_solve for the problem in Case Study 2.

The execution of the LP_solve program is specified with the -S4 option, and the results are found in the following partial listing.

```
$ lp_solve -S4 example1.lp
Value of objective function: 317.50000000
Actual values of the constraints:
R1 185
R2 338.75
R3 600
Dual values with from - till limits:

<table>
<thead>
<tr>
<th></th>
<th>Dual value</th>
<th>From</th>
<th>Till</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0.5</td>
<td>150</td>
<td>450</td>
</tr>
<tr>
<td>R2</td>
<td>0</td>
<td>-1e+030</td>
<td>1e+030</td>
</tr>
<tr>
<td>R3</td>
<td>0.375</td>
<td>246.667</td>
<td>740</td>
</tr>
</tbody>
</table>
```

The important quantity associated with constraints is provided column Dual value (also known as marginal value and shadow price). This value indicates the amount the objective function will change when the constraint value is incremented by 1.

In the output listing shown, constraint R1 has a dual value of 0.5, and the value of the constraint can change from 150 to 450. Constraint R3 has a dual value of 0.375, and the value of the constraint can change from 246.667 to 740. The dual value of a constraint only holds in that range of values of the constraint.

Constraint R2 has a dual value of zero. Its actual value is 338.75 and the constraint in the problem was specified as \(\geq 155 \). Constraint R1 is said to be not active. This constraint has very minimum effect on the value of the objective function. Its range of values is actually from \(-\infty\) to 338.75 (its actual value).

22.2.2.4 Using glpsol Case Study 2

The output produced by GLPK glpsol shows the dual prices in the Marginals column. It also shows the range of values that the right-hand side of each constraint can change, with the current solution of the problem remaining optimal. The following listing is the output produced by glpsol, which is similar to the output listing produced by LP_solve for the problem in case study 2.

```
GLPK 4.45 - SENSITIVITY ANALYSIS REPORT
Problem: example1
Objective: z = 317.5 (MINimum)

<table>
<thead>
<tr>
<th>No.</th>
<th>Row</th>
<th>St</th>
<th>Activity</th>
<th>Slack</th>
<th>Lower Marginal</th>
<th>Upper</th>
<th>Activity range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>z</td>
<td>BS</td>
<td>317.500</td>
<td>-317.500</td>
<td>-Inf</td>
<td></td>
<td>342.000</td>
</tr>
</tbody>
</table>
```
The listing shows constraint R1 with a Slack value of \(-183.75\), which is the difference between its specified value (155.0) and its actual value, which is 338.75. This constraint is not active in the optimal solution of the problem.

22.2.2.5 Using LP solves Case Study 3

The output produced by LP solvers shows the dual value for every constraint and the range of values that the right-hand side of each constraint can change, with the current solution of the problem remaining optimal. The following partial listing is the output produced by LP solve for the problem in Case Study 3.

```c
/* Example2.lp in LP_solve */
Maximize: 144 x1 + 60 x2;
120 x1 + 210 x2 <= 15000;
110 x1 + 30 x2 <= 40000;
    x1 + x2 <= 75;
```

Executing the LP solve program at the Linux shell command terminal window to solve this problem yields the following output. Only a partial listing is shown.
Sensitivity Analysis and Duality

\$ lp_solve -S4 example2.lp

Value of objective function: 6337.50000000

Actual values of the constraints:
R1 13781.2
R2 4000
R3 75

Dual values with from - till limits:

<table>
<thead>
<tr>
<th>Row</th>
<th>Dual value</th>
<th>From</th>
<th>Till</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>0</td>
<td>-1e+030</td>
<td>1e+030</td>
</tr>
<tr>
<td>R2</td>
<td>1.05</td>
<td>2916.667</td>
<td>8250</td>
</tr>
<tr>
<td>R3</td>
<td>28.5</td>
<td>36.36364</td>
<td>80</td>
</tr>
</tbody>
</table>

The important quantity associated with constraints is provided in column Dual value. This value indicates the amount the objective function will change when the constraint value is incremented by 1.

In the output listing shown, constraint R2 has a dual value of 1.05, and the value of the constraint can change from 2916.667 to 8250. Constraint R3 has a dual value of 28.5, and the value of the constraint can change from 36.36364 to 80. The dual value of a constraint only holds in that range of values of the constraint.

Constraint R1 has a dual value of zero. Its actual value in the problem was specified as, \(\leq 15000 \). Constraint R1 is said to be not active. This constraint has very minimum effect on the value of the objective function. Its range of values is actually from 13781.2 (its actual value) to \(\infty \).

22.2.2.6 Using glpsol Case Study 3

The output produced by GLPK glpsol shows the dual prices in the Marginals column. It also shows the range of values that the right-hand side of each constraint can change, with the current solution of the problem remaining optimal. The following listing is the output produced by glpsol, which is similar to the output listing produced by LP_solve for the problem in case study 3.

GLPK 4.45 - SENSITIVITY ANALYSIS REPORT

Problem: example2
Objective: \(z = 6337.5 \) (MAXimum)

<table>
<thead>
<tr>
<th>No.</th>
<th>Row</th>
<th>St</th>
<th>Activity</th>
<th>Slack</th>
<th>Marginal</th>
<th>Lower Activity</th>
<th>Upper Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>z</td>
<td>BS</td>
<td>6337.500</td>
<td>-6337.500000</td>
<td>-Inf</td>
<td>5236.36364</td>
<td>6337.500000</td>
</tr>
<tr>
<td>2</td>
<td>R1</td>
<td>BS</td>
<td>13781.250</td>
<td>1218.75000</td>
<td>-Inf</td>
<td>4363.63636</td>
<td>15000.00000</td>
</tr>
<tr>
<td>3</td>
<td>R2</td>
<td>NU</td>
<td>4000.000</td>
<td>1.05000</td>
<td>-Inf</td>
<td>2916.66667</td>
<td>4000.00000</td>
</tr>
</tbody>
</table>
The listing shows constraint R1 with a Slack value of 1218.75, which is the difference between its specified value (15000.0) and its actual value, which is 13781.250. This constraint is not active in the optimal solution of the problem.

22.3 Duality

For every linear optimization problem, known as the primal, there is an associated problem known as its dual. The relationship between these two problems helps to understand the connection between the reduced cost and the shadow price.

22.3.1 Formulating the Dual Problem

Assume that the primal linear maximization problem has the generalized standard form:

Maximize \(f = c_1x_1 + c_2x_2 + \ldots + c_nx_n \)

Subject to the following constraints:

\[
\begin{align*}
 a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n & \leq b_1 \\
 a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n & \leq b_2 \\
 \vdots & \quad \vdots \\
 a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n & \leq b_m \\

 x_i & \geq 0, \quad i = 1, 2, \ldots, n.
\end{align*}
\]
The constraints in matrix form are as follows:

\[
\begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{2m} & \cdots & a_{mn}
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
\end{bmatrix}
\leq
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{bmatrix}
\] (22.2)

This linear problem can also be written as: maximize \(f = C'X \) such that \(AX \leq B \), in which \(C \) is a column vector of size \(n \), \(X \) is a column vector of size \(n \), \(A \) is an \(m \times n \) matrix, and \(B \) is a column vector of size \(m \). The dual problem is a minimization problem formulated in standard form as follows:

Minimize \(g = b_1y_1 + b_2y_2 + \cdots + b_my_m \)
Subject to the following constraints:

\[
\begin{align*}
 a_{11}y_1 + a_{21}y_2 + \cdots + a_{m1}y_m & \geq c_1 \\
 a_{12}y_1 + a_{22}y_2 + \cdots + a_{m2}y_m & \geq c_2 \\
 \vdots & \vdots & \vdots & \vdots \\
 a_{1n}y_1 + a_{2n}y_2 + \cdots + a_{mn}y_m & \geq c_n
\end{align*}
\] (22.3)

\[y_i \geq 0, \quad i = 1, 2, \ldots, m. \]

The constraints in matrix form are as follows:

\[
\begin{bmatrix}
 a_{11} & a_{21} & \cdots & a_{m1} \\
 a_{12} & a_{22} & \cdots & a_{m2} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{1n} & a_{2n} & \cdots & a_{mn}
\end{bmatrix}
\begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_m
\end{bmatrix}
\leq
\begin{bmatrix}
 c_1 \\
 c_2 \\
 \vdots \\
 c_n
\end{bmatrix}
\] (22.4)

The matrix form of this dual linear problem can also be written as: minimize \(g = B'Y \) such that \(A'Y \geq C \), in which \(C \) is a column vector of size \(n \), \(X \) is a column vector of size \(n \), \(A \) is an \(m \times n \) matrix, and \(B \) is a column vector of size \(m \). In a similar manner, if the primal problem is a minimization problem, its dual is a maximization problem. For example, the following primal maximization problem is in standard form.

Maximize \(f = 144x_1 + 60x_2 \)
Subject to the following constraints:

\[
\begin{align*}
 120x_1 + 210x_2 & \leq 15000 \\
 110x_1 + 30x_2 & \leq 4000 \\
 x_1 + x_2 & \leq 75
\end{align*}
\]

\[x_1 \geq 0, \quad x_2 \geq 0. \]
The dual problem of the given primal is formulated as follows:

Minimize \(g = 15000y_1 + 4000y_2 + 75y_3 \)

Subject to the following constraints:

\[
egin{align*}
120y_1 + 110y_2 + y_3 & \geq 144 \\
210y_1 + 30y_2 + y_3 & \geq 60 \\
y_1 \geq 0, \quad y_2 \geq 0.
\end{align*}
\]

22.3.2 Transforming a Problem to Standard Form

A primal linear problem has to be formulated in standard form before its dual can be formulated. A standard maximization form is also known as the normal maximization form that has been explained previously.

When a linear problem is not in standard (or normal) form, then a few transformations are necessary. For example, the following linear maximization problem formulation is not in standard form.

Maximize \(f = 144x_1 + 60x_2 \)

Subject to the following constraints:

\[
egin{align*}
120x_1 + 210x_2 & \leq 15000 \\
110x_1 + 30x_2 & = 4000 \\
x_1 + x_2 & \geq 75 \\
x_1 \geq 0, \quad x_2 \text{ urs.}
\end{align*}
\]

This problem has a constraint with an equal sign (=), a constraint with a ≥ sign, and a variable with unrestricted sign. Therefore, the problem is not formulated in standard (normal) form. The following transformation steps are necessary:

- To transform a constraint with a ≥ to a constraint with a ≤ sign, the constraint must be multiplied by -1. For example, the constraint \(x_1 + x_2 \geq 75 \), is transformed to \(-x_1 - x_2 \leq -75 \).

- To transform a constraint with an equal sign, it must be replaced by two inequality constraints, one with a ≤ sign and another with a ≥ sign. For example, the second constraint in the problem \(110x_1 + 30x_2 = 4000 \) is replaced by the two constraints: \(110x_1 + 30x_2 \geq 4000 \) and \(110x_1 + 30x_2 \leq 4000 \). The first of these constraints is transformed to a constraint with a ≤ sign by multiplying it by -1.

- When a decision variable \(x_i \) is unrestricted in sign (urs), it means that it can take positive, negative, and zero values. The equivalence \(x_i = x'_i - x''_i \) is applied; therefore, variable \(x_i \) is replaced by \(x'_i - x''_i \). In the problem previously discussed, variable \(x_2 \) is unrestricted in sign, so it is replaced by \(x'_2 - x''_2 \).
Sensitivity Analysis and Duality

The transformed linear maximization (primal) problem formulation is now expressed as follows:

Maximize \(f = 144x_1 + 60x_2' - 60x_2'' \)
Subject to the following constraints:
\[
\begin{align*}
120x_1 & + 210x_2' - 210x_2'' & \leq & & 15000 \\
110x_1 & + 30x_2' - 30x_2'' & \leq & & 4000 \\
-110x_1 & - 30x_2' + 30x_2'' & \leq & & -4000 \\
-x_1 & - x_2' + x_2'' & \leq & & -75 \\
\end{align*}
\]
\[x_1 \geq 0, \quad x_2' \geq 0, \quad x_2'' \geq 0. \]

The final step is to find the dual problem of the primal problem discussed. Because the primal problem is a maximization problem, its dual is a minimization problem. The formulation of the dual problem is as expressed as follows:

Minimize \(g = 15000y_1 + 4000y_2 - 4000y_3 - 75y_4 \)
Subject to the following constraints:
\[
\begin{align*}
120y_1 & + 110y_2 - 110y_3 - y_4 & \geq & & 144 \\
210y_1 & + 30y_2 - 30y_3 & \geq & & 60 \\
-210y_1 & - 30y_2 & \leq & & 60 \\
y_1 \geq 0, \quad y_2 \geq 0, \quad y_3 \geq 0, \quad y_4 \geq 0. \]
\]

In a similar manner, a linear minimization (primal) problem that is not in standard form can be transformed to a standard form. To transform a constraint with a \(\leq \) to a constraint with a \(\geq \) sign, the constraint must be multiplied by \(-1\). The other steps are the same as outlined previously.

22.3.3 Duality Discussion

The constraint values of the primal problem are related to the variables of the dual problem. These variables are known as shadow prices.

The weak duality theorem states that the objective function of value \(g \) of the dual problem at any feasible solution: \(y_1, y_2, \ldots, y_m \), is always greater than or equal to the objective value \(z \) of the primal problem at any feasible solution \(x_1, x_2, \ldots, x_n \). This can be expressed in matrix form as follows:

\[
g = By \geq C'X = z
\]

The strong duality theorem specifies that the primal and dual problems have equal optimal values of the objective function. This theorem can be used to solve the primal linear optimization problem.

Recall that the shadow price of constraint \(i \) of a linear maximization problem is the amount by which the optimal value of the objective function increases when the right-hand value of constraint \(i \) is increased by 1. The strong dual theorem can be used to calculate the shadow price of constraint \(i \).
Summary

Sensitivity analysis and duality are important concepts and the information is valuable in addition to the data on optimality. Sensitivity analysis helps to find the effect of small changes in the parameters of the formulation of a linear optimization problem. Duality helps to improve the understanding of a linear optimization problem.

Key Terms

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>Duality</th>
<th>Objective Coefficients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right-hand Constraints</td>
<td>Marginal Values</td>
<td>Shadow Prices</td>
</tr>
<tr>
<td>Reduced Costs</td>
<td>Dual Value</td>
<td>Primal Problem</td>
</tr>
<tr>
<td>Dual Problem</td>
<td>Normal Maximization</td>
<td></td>
</tr>
</tbody>
</table>

Exercises

Exercise 22.1 A factory manufactures 5 different products: P_1, P_2, P_3, P_4, and P_5. The factory needs to maximize profit. Each product requires machine time on three different devices: A, B, and C, each of which is available 135 hours per week. The following table provides the data:

<table>
<thead>
<tr>
<th>Product P_i</th>
<th>Device A</th>
<th>Device B</th>
<th>Device C</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>20</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>P_2</td>
<td>13</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>P_3</td>
<td>15</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>P_4</td>
<td>16</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>P_5</td>
<td>18</td>
<td>14</td>
<td>6</td>
</tr>
</tbody>
</table>

The unit sale price for products P_1, P_2, and P_3 is 7.50, 6.00, and 8.25 respectively. The first 26 units of P_4 and P_5 have a sale prices 5.85 each, all excess units have a sale price of 4.50 each. The operational costs of devices A and B are 5.25 per hour, and 5.85 for device C. The cost of materials for products P_1 and P_4 is 2.75. For products P_2, P_3, and P_5 the materials cost is 2.25. Hint: assume that x_i, $i = 1 \ldots 5$ are the number of units produced of the various products and use two new variables y_4 and y_5 for the units produced of P_4 and P_5 respectively in excess of 26.
Write the formulation of the mathematical optimization problem, compute the optimal solution with `lp_solve`, and find out the range of prices that preserve the optimal solution. If the price of P_1 changes by 35%, how does the optimal solution change?

Exercise 22.2 Find the dual of Exercise 22.1. Compute the solution with `lp_solve`.
Chapter 23

Transportation Models

23.1 Introduction

This chapter presents the general concepts and formulation of transportation and trans-shipment problems. These are special cases of linear optimization problems.

The main goal is to formulate these problems as linear optimization problems and compute minimum cost to transport a product as the optimal solution computed. Transportation problems deal with finding the optimal manner by which a product or commodity produced or available at different supply points can be transported to a number of destinations or demand points. Typically the objective function is the cost of transportation subject to capacity constraints at the supply points and demand constraints at the demand points.

23.2 Model of a Transportation Problem

A transportation problem is formulated as a standard linear optimization problem. The objective function is defined to minimize the cost of transportation, subject to demand and supply constraints.

Assume there are \(m \) supply points and \(n \) demand points in a problem. Let \(c_{ij} \) denote the given unit cost of transportation from supply point \(i \) to demand (destination) point \(j \). Let \(x_{ij} \) denote the amount of product to be transported from supply point \(i \) to demand (destination) point \(j \). The objective function can then be expressed as follows:

Minimize \(z \),

\[
z = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} c_{ij}
\]

This equation can be expanded and written as equations in which each row of the right-hand side of equation represents the cost of transportation from a supply point. For example, row 1 of the right-hand side of the equation represents the cost of transportation from supply point 1; row 2 represents the cost of transportation...
from supply point 2, the last row represents the cost of transportation from supply point \(m \).

\[
z = c_{11}x_{11} + c_{12}x_{12} + \cdots + c_{1n}x_{1n} +
\]

\[
c_{21}x_{21} + c_{22}x_{22} + \cdots + c_{2n}x_{2n} +
\]

\[
\vdots \quad \vdots \quad \ddots \quad \vdots \quad +
\]

\[
c_{m1}x_{m1} + c_{m2}x_{m2} + \cdots + c_{mn}x_{mn}
\]

In transportation problems there are two types of constraints: supply constraints and demand constraints. Let \(s_i \) denote the amount of product at the supply point \(i \). Let \(d_j \) denote the amount of product at the demand point \(j \).

The supply constraints have the right-hand side as an upper bound. There are \(m \) supply constraints, the constraint of supply point \(i \) is expressed as follows:

\[
\sum_{j=1}^{j=n} x_{ij} \leq s_i
\]

This equation can be expanded to show all the quantities of the product to be shipped from supply point \(i \). There are \(m \) supply constraints, with each row representing the total quantity of product transported from an indicated supply point. For example, the first row (1) represents the quantities of product shipped from supply point 1. The second row (2) represents the quantities of product shipped from supply point 2. The last row (\(m \)) represents the quantities of product shipped from supply point \(m \).

\[
x_{11} + x_{12} + \cdots + x_{1n} \leq s_1
\]

\[
x_{21} + x_{22} + \cdots + x_{2n} \leq s_2
\]

\[
\vdots \quad \vdots \quad \ddots \quad \vdots \quad \vdots \quad \vdots
\]

\[
x_{m1} + x_{m2} + \cdots + x_{mn} \leq s_m
\]

The demand constraints have the right-hand side as a lower bound. There are \(n \) demand constraints, the constraint of supply point \(j \) is expressed as follows:

\[
\sum_{i=1}^{i=m} x_{ij} \geq d_j
\]

This equation can be expanded to show all the quantities of the product to be received at demand point \(j \). There are \(n \) demand constraints, with each row representing the total quantity of product to be transported and received by the indicated demand point. For example, the first row (1) represents the quantities of product at demand point 1. The second row (2) represents the quantities of product at demand point 2. The last row (\(n \)) represents the quantities of product at demand point \(n \).
\[
\begin{align*}
x_{11} + x_{21} + \cdots + x_{m1} & \geq d_1 \\
x_{12} + x_{22} + \cdots + x_{m2} & \geq d_2 \\
\vdots & \vdots \vdots \\
x_{1n} + x_{2n} + \cdots + x_{mn} & \geq d_m
\end{align*}
\]

The decision variables \(x_{ij}\) have sign constraint: \(x_{ij} \geq 0,\) for \(i = 1, 2, \ldots, m\) and \(j = 1, 2, \ldots, n.\)

23.3 Transportation Case Studies

The following three case studies help to illustrate the modeling of transportation problems.

23.3.1 Transport Case Study 1

The distribution manager of a company needs to minimize global transport costs between a set of three factories (supply points) S1, S2, and S3, and a set of four distributors (demand points) D1, D2, D3, and D4. The following table shows the transportation cost from each supply point to every demand point, the supply of the product at the supply points, and the demand of the product at the demand points.

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>20</td>
<td>40</td>
<td>70</td>
<td>50</td>
<td>400</td>
</tr>
<tr>
<td>S2</td>
<td>100</td>
<td>60</td>
<td>90</td>
<td>80</td>
<td>1500</td>
</tr>
<tr>
<td>S3</td>
<td>10</td>
<td>110</td>
<td>30</td>
<td>200</td>
<td>900</td>
</tr>
<tr>
<td>Demand</td>
<td>700</td>
<td>600</td>
<td>1000</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

The transportation unit costs for every supply point are shown from columns 2 to 5. The transportation unit cost from supply point S1 to demand point D1 is 20. The transportation unit cost from supply point S1 to demand point D2 is 40. The transportation unit cost from supply point S2 to demand point D3 is 90, and so on.

The last column in the table shows the supply capacity of the supply point, in quantity of the product. The capacity of supply point S1 is 400. The summation of the values in the last column is the total supply in the system; this value is 2800. The last row of the table shows the demand of each demand point, in quantity of the product. The demand of demand point D1 is 700, of demand point D2 is 600, and so on. The summation of the values in the last row is the total demand in the system; this value is 2800.

Note that the total supply is 2800, and the total demand is also 2800. This is calculated by summing the values of the last column and the last row. Because the
value for the amount of product of total supply and the amount of total demand is the same, this transportation problem is said to be \textit{balanced}. The objective function can be expressed as follows:

Minimize z,

$$ z = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} c_{ij} $$.

This problem has $m = 3$ supply points and $n = 4$ demand points. The objective function can be completely written with the unit cost values of the product to be transported, given in the table shown previously. The objective function is expressed as follows:

$$ z = 20x_{11} + 40x_{12} + 70x_{13} + 50x_{14} + $$
$$ 100x_{21} + 60x_{22} + 90x_{23} + 80x_{24} + $$
$$ 10x_{31} + 110x_{32} + 30x_{33} + 200x_{34} $$

The supply constraints are:

$$ x_{11} + x_{12} + x_{13} + x_{14} \leq 400 $$
$$ x_{21} + x_{22} + x_{23} + x_{24} \leq 1500 $$
$$ x_{31} + x_{32} + x_{33} + x_{34} \leq 900 $$

The demand constraints are:

$$ x_{11} + x_{21} + x_{31} \geq 700 $$
$$ x_{12} + x_{22} + x_{32} \geq 600 $$
$$ x_{13} + x_{23} + x_{33} \geq 1000 $$
$$ x_{14} + x_{24} + x_{34} \geq 500 $$

The formulation of the problem is formatted for solving with LP solve and stored in file \texttt{transport1.lp}.

/* File: transport1.lp
Objective function: Cost of transportation */
Minimize: 20 x11 + 40 x12 + 70 x13 + 50 x14 +
100 x21 + 60 x22 + 90 x23 + 80 x24 +
10 x31 + 110 x32 + 30 x33 + 200 x34;

/* Capacity Constraints (Supply constraints) */
x11 + x12 + x13 + x14 <= 400;
x21 + x22 + x23 + x24 <= 1500;
x31 + x32 + x33 + x34 <= 900;

/* Demand constraints */
x11 + x21 + x31 >= 700;
x12 + x22 + x32 >= 600;
x13 + x23 + x33 >= 1000;
x14 + x24 + x34 >= 500;
The execution of the LP_solve program to solve this linear optimization problem produces the results that can be observed in the following listing.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>141000</td>
</tr>
<tr>
<td>x11</td>
<td>400</td>
</tr>
<tr>
<td>x12</td>
<td>0</td>
</tr>
<tr>
<td>x13</td>
<td>0</td>
</tr>
<tr>
<td>x14</td>
<td>0</td>
</tr>
<tr>
<td>x21</td>
<td>0</td>
</tr>
<tr>
<td>x22</td>
<td>600</td>
</tr>
<tr>
<td>x23</td>
<td>400</td>
</tr>
<tr>
<td>x24</td>
<td>500</td>
</tr>
<tr>
<td>x31</td>
<td>300</td>
</tr>
<tr>
<td>x32</td>
<td>0</td>
</tr>
<tr>
<td>x33</td>
<td>600</td>
</tr>
<tr>
<td>x34</td>
<td>0</td>
</tr>
</tbody>
</table>

Note that the optimal total transportation cost is 141,000 and some of the values of x are zero. If $x_{ij} = 0$, then the amount of the product to be transported from supply point i to demand point j is zero. In this problem, the total demand of demand point D1 is satisfied by the amount 400 from supply point S1, and the amount 300 from supply point S3. There was no supply from supply point D2 to demand point D1, therefore $x_{21} = 0$.

23.3.2 Unbalanced Problem: Case Study 2

The transportation problem discussed in the previous section is an example of a balanced problem. In this case, the total supply is equal to the total demand and is expressed mathematically as:

$$\sum_{i=1}^{m} s_i = \sum_{j=1}^{n} d_j$$

If the transportation problem is not balanced, the total supply may be less than the total demand, or the total supply may be greater than the total demand. When total supply is greater than the total demand, the problem is unbalanced and its formulation must include a dummy demand point to balance the problem, and the transportation costs to this demand point are zero.

The following problem has a small variation to the one discussed in the previous section. The distribution manager of a company needs to minimize global transport costs between a set of three factories (supply points) S1, S2, and S3, and a set of four distributors (demand points) D1, D2, D3, and D4.

The following table shows the transportation cost from each supply point to every demand point, the supply of the product at the supply points, and the demand of the product at the demand points.
The last column in the table shows the supply capacity of the supply point, in quantity of the product. The capacity of supply point S1 is 600. The summation of the values in the last column is the total supply in the system, this value is 2800. The last row of the table shows the demand of each demand point, in quantity of the product. The demand of demand point D1 is 700, of demand point D2 is 600, and so on. The summation of the values in the last row is the total demand in the system, this value is 2800.

Note that the total supply is 3000, and the total demand is 2800. This is calculated by summing the values of the last column and the last row. Because the value for the amount of product of total supply is greater than the amount of total demand, this transportation problem is said to be unbalanced.

The transportation unit costs for every supply point are shown from columns 2 to 5. The transportation unit cost from supply point S1 to demand point D1 is 20. The transportation unit cost from supply point S1 to demand point D2 is 40. The transportation unit cost from supply point S2 to demand point D3 is 90, and so on.

Because there is an excess supply of 200, the formulation of the problem must include a dummy demand point, D5, with a demand of 200. The transportation costs to demand point D5 are zero, and this is expressed as follows:

\[c_{i5} = 0, \quad i = 1, \ldots, 3 \]

This problem now has \(m = 3 \) supply points and \(n = 5 \) demand points. The objective function can be completely written with the unit cost values of the product to be transported, given in the table shown previously. The objective function is expressed as follows:

\[
z = 20x_{11} + 40x_{12} + 70x_{13} + 50x_{14} + \\
100x_{21} + 60x_{22} + 90x_{23} + 80x_{24} + \\
10x_{31} + 110x_{32} + 30x_{33} + 200x_{34}
\]

The supply constraints have the right-hand side as an upper bound. There are 3 supply constraints, the constraint of supply point \(i \) is expressed as follows:

\[
\sum_{j=1}^{n} x_{ij} \leq s_i
\]

There are 3 supply constraints, with each row representing the total quantity of product transported from an indicated supply point. For example, the first row (1)
represents the quantities of product shipped from supply point 1. The second row (2) represents the quantities of product shipped from supply point 2. The last row (3) represents the quantities of product shipped from supply point 3.

\[
\begin{align*}
 x_{11} + x_{12} + x_{13} + x_{14} + x_{15} & \leq 600 \\
 x_{21} + x_{22} + x_{23} + x_{24} + x_{25} & \leq 1500 \\
 x_{31} + x_{32} + x_{33} + x_{34} + x_{35} & \leq 900
\end{align*}
\]

The demand constraints have the right-hand side as a lower bound. There are 5 demand constraints, the constraint of supply point \(j \) is expressed as follows:

\[
\sum_{i=1}^{m} x_{ij} \geq d_j
\]

There are 5 demand constraints, with each row representing the total quantity of product to be transported and received by the indicated demand point.

\[
\begin{align*}
 x_{11} + x_{21} + x_{31} & \geq 700 \\
 x_{12} + x_{22} + x_{32} & \geq 600 \\
 x_{13} + x_{23} + x_{33} & \geq 1000 \\
 x_{14} + x_{24} + x_{34} & \geq 500 \\
 x_{15} + x_{25} + x_{35} & \geq 200
\end{align*}
\]

The decision variables \(x_{ij} \) have the sign constraint: \(x_{ij} \geq 0 \), for \(i = 1, 2, 3 \) and \(j = 1, 2, \ldots, 5 \). The formulation of the problem is formatted for solving with LP.solve and stored in file transport1u.lp.

/* Transport1u.lp
Minimize global transport costs between a set of three factories (supply points) S1, S2, and S3, and four distributors (demand points) D1, D2, D3, and D4. There is an excess supply of 200, so a dummy demand point, D5 is added to balance the problem.
*/

/* Objective function
Cost of transportation */
Minimize: 20 x11 + 40 x12 + 70 x13 + 50 x14 + 100 x21 + 60 x22 + 90 x23 + 80 x24 + 10 x31 + 110 x32 + 30 x33 + 200 x34;

/* Capacity Constraints (Supply constraints) */
\begin{align*}
 x_{11} + x_{12} + x_{13} + x_{14} + x_{15} & \leq 600; \\
 x_{21} + x_{22} + x_{23} + x_{24} + x_{25} & \leq 1500; \\
 x_{31} + x_{32} + x_{33} + x_{34} + x_{35} & \leq 900;
\end{align*}

/* Demand constraints */
\begin{align*}
 x_{11} + x_{21} + x_{31} & \geq 700; \\
 x_{12} + x_{22} + x_{32} & \geq 600;
\end{align*}
\[x_{13} + x_{23} + x_{33} \geq 1000; \]
\[x_{14} + x_{24} + x_{34} \geq 500; \]
\[x_{15} + x_{25} + x_{35} \geq 200; \]

The execution of the LP_solve program to solve this linear optimization problem produces the results that can be observed in the following listing.

<table>
<thead>
<tr>
<th>Variables</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>131000</td>
</tr>
<tr>
<td>x11</td>
<td>600</td>
</tr>
<tr>
<td>x12</td>
<td>0</td>
</tr>
<tr>
<td>x13</td>
<td>0</td>
</tr>
<tr>
<td>x14</td>
<td>0</td>
</tr>
<tr>
<td>x21</td>
<td>0</td>
</tr>
<tr>
<td>x22</td>
<td>600</td>
</tr>
<tr>
<td>x23</td>
<td>200</td>
</tr>
<tr>
<td>x24</td>
<td>500</td>
</tr>
<tr>
<td>x31</td>
<td>100</td>
</tr>
<tr>
<td>x32</td>
<td>0</td>
</tr>
<tr>
<td>x33</td>
<td>800</td>
</tr>
<tr>
<td>x34</td>
<td>0</td>
</tr>
<tr>
<td>x15</td>
<td>0</td>
</tr>
<tr>
<td>x25</td>
<td>200</td>
</tr>
<tr>
<td>x35</td>
<td>0</td>
</tr>
</tbody>
</table>

23.3.3 Unbalanced Problem: Case Study 3

When the demand exceeds the supply, the problem formulation includes a *penalty* associated with the *unmet demand*. Suppose that in the original problem discussed previously, supply point S1 produces 300 units of the product (instead of 400). This problem is now unbalanced, with an unmet demand of 100.

A dummy supply point, S4 with a supply of 100, is added to the problem formulation. The penalty for unmet demand at demand point D1 is 125; at demand point D2 is 147; at demand point D3 is 95; and at demand point D4 is 255.

The following table shows the transportation cost from each supply point to every demand point, the supply of the product at the supply points, and the demand of the product at the demand points.

<table>
<thead>
<tr>
<th>Supply</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>20</td>
<td>40</td>
<td>70</td>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>S2</td>
<td>100</td>
<td>60</td>
<td>90</td>
<td>80</td>
<td>1500</td>
</tr>
<tr>
<td>S3</td>
<td>10</td>
<td>110</td>
<td>30</td>
<td>200</td>
<td>900</td>
</tr>
<tr>
<td>S4</td>
<td>125</td>
<td>147</td>
<td>95</td>
<td>255</td>
<td>100</td>
</tr>
</tbody>
</table>

| Demand | 700 | 600 | 1000 | 500 |
Note that the dummy supply point S4 has been included in the table. The penalty amounts have also been included for this supply point. The total supply and demand is now 2800.

This problem has $m = 4$ supply points and $n = 4$ demand points. The objective function can be completely written with the unit cost values of the product to be transported, given in the table shown previously. The objective function is expressed as follows:

\[
 z = 20x_{11} + 40x_{12} + 70x_{13} + 50x_{14} + 100x_{21} + 60x_{22} + 90x_{23} + 80x_{24} + 10x_{31} + 110x_{32} + 30x_{33} + 200x_{34} + \\
 125x_{41} + 147x_{42} + 95x_{43} + 255x_{44}
\]

There are 4 supply constraints, with each row representing the total quantity of product transported from an indicated supply point. For example, the first row (1) represents the quantities of product shipped from supply point 1. The second row (2) represents the quantities of product shipped from supply point 2. The last row (4) represents the quantities of product shipped from supply point 4.

\[
 x_{11} + x_{12} + x_{13} + x_{14} \leq 300 \\
 x_{21} + x_{22} + x_{23} + x_{24} \leq 1500 \\
 x_{31} + x_{32} + x_{33} + x_{34} \leq 900 \\
 x_{41} + x_{42} + x_{43} + x_{44} \leq 100
\]

The demand constraints have the right-hand side as a lower bound. There are 4 demand constraints, with each row representing the total quantity of product to be transported and received by the indicated demand point.

\[
 x_{11} + x_{21} + x_{31} + x_{41} \geq 700 \\
 x_{12} + x_{22} + x_{32} + x_{42} \geq 600 \\
 x_{13} + x_{23} + x_{33} + x_{43} \geq 1000 \\
 x_{14} + x_{24} + x_{34} + x_{44} \geq 500
\]

The decision variables x_{ij} have the sign constraint: $x_{ij} \geq 0$, for $i = 1, \ldots, 4$ and $j = 1, \ldots, 4$. The formulation of the problem is formatted for solving with LP solvers and stored in file transport1ub.lp.

/* Transport1ub.lp
Minimize global transport costs between a set of
three factories (supply points) S1, S2, and S3,
and four distributors (demand points) D1, D2, D3, and D4.
There is an excess demand of 100, so a dummy supply point, S4
is added to balance the problem.
Penalty costs are also included.
*/
/* Objective function -- Cost of transportation */
Minimize: 20 x11 + 40 x12 + 70 x13 + 50 x14 +
 100 x21 + 60 x22 + 90 x23 + 80 x24 +

Introduction to Computational Modeling

\[10 \times x_{31} + 110 \times x_{32} + 30 \times x_{33} + 200 \times x_{34} + 125 \times x_{41} + 147 \times x_{42} + 95 \times x_{43} + 255 \times x_{44}; /* \text{penalty} */\]

/* Capacity Constraints (Supply constraints) */
\[x_{11} + x_{12} + x_{13} + x_{14} \leq 300;\]
\[x_{21} + x_{22} + x_{23} + x_{24} \leq 1500;\]
\[x_{31} + x_{32} + x_{33} + x_{34} \leq 900;\]
\[x_{41} + x_{42} + x_{43} + x_{44} \leq 100; /* \text{Dummy supply point} */\]

/* Demand constraints */
\[x_{11} + x_{21} + x_{31} + x_{41} \geq 700;\]
\[x_{12} + x_{22} + x_{32} + x_{42} \geq 600;\]
\[x_{13} + x_{23} + x_{33} + x_{43} \geq 1000;\]
\[x_{14} + x_{24} + x_{34} + x_{44} \geq 500;\]

The execution of the LP solve program to solve this linear optimization problem produces the results that can be observed in the following listing.

<table>
<thead>
<tr>
<th>Variables</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>146500</td>
</tr>
<tr>
<td>x_{11}</td>
<td>300</td>
</tr>
<tr>
<td>x_{12}</td>
<td>0</td>
</tr>
<tr>
<td>x_{13}</td>
<td>0</td>
</tr>
<tr>
<td>x_{14}</td>
<td>0</td>
</tr>
<tr>
<td>x_{21}</td>
<td>0</td>
</tr>
<tr>
<td>x_{22}</td>
<td>600</td>
</tr>
<tr>
<td>x_{23}</td>
<td>400</td>
</tr>
<tr>
<td>x_{24}</td>
<td>500</td>
</tr>
<tr>
<td>x_{31}</td>
<td>400</td>
</tr>
<tr>
<td>x_{32}</td>
<td>0</td>
</tr>
<tr>
<td>x_{33}</td>
<td>500</td>
</tr>
<tr>
<td>x_{34}</td>
<td>0</td>
</tr>
<tr>
<td>x_{41}</td>
<td>0</td>
</tr>
<tr>
<td>x_{42}</td>
<td>0</td>
</tr>
<tr>
<td>x_{43}</td>
<td>100</td>
</tr>
<tr>
<td>x_{44}</td>
<td>0</td>
</tr>
</tbody>
</table>

23.4 Transshipment Models

A transshipment model includes intermediate or transshipment points in a transportation model. A transshipment point is an intermediate point between one or more supply points and one or more demand points. Quantities of a product can be sent from a supply point directly to a demand point or via a transshipment point.
23.4.1 General Form of Model

A transshipment point can be considered both, a supply point and a demand point. At a transshipment point, \(k \), the total quantity of product shipped to this point must equal the total quantity of the product shipped from this intermediate point and can be expressed as follows:

\[
\sum_{i=1}^{m} x_{i,k} = \sum_{j=1}^{n} x_{k,j}
\]

Where \(m \) is the number of supply points, \(n \) is the number of demand points, and \(x_{ij} \) is the amount of the product shipped from supply point \(i \) to demand point \(j \). From the previous equation, the transshipment constraint of a point, \(k \), is expressed as follows:

\[
\sum_{i=1}^{m} x_{i,k} - \sum_{j=1}^{n} x_{k,j} = 0 \quad (23.1)
\]

23.4.2 Transshipment Problem: Case Study 4

Various quantities of a product are shipped from two cities (supply points), S1 and S2, to three destinations (demand points), D1, D2, and D3. The products are first shipped to three warehouses (transshipment points), T1, T2, and T3, then shipped to their final destinations.

The following table shows the transportation cost from each supply point to the intermediate points and to every demand point. The table also includes the supply of the product at the supply points, and the demand of the product at the demand points.

<table>
<thead>
<tr>
<th>Supply</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>16</td>
<td>10</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S2</td>
<td>15</td>
<td>14</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>T2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>T3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Demand</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>200</td>
<td>100</td>
<td>300</td>
</tr>
</tbody>
</table>

Note that the total supply of the product is 600 and the total demand is also 600. Therefore, this is a balanced problem.

The problem can be formulated directly as a standard transportation problem, using the data in the previous table. The conventional notation for the quantity of product is used and \(x_{ij} \) denotes the quantity of product shipped from point \(i \) to point \(j \). For example: \(x_{23} \) denotes the quantity of product shipped from supply point S2 to transshipment point T3.

This problem has \(m = 2 \) supply points, \(n = 3 \) demand points, and 3 transshipment
points. Because a transshipment point can be a supply point and a demand point, the problem can be formulated with a total of 5 supply points and 6 demand points.

The objective function can be completely written with the unit cost values of the product to be transported given in the table. The objective function is expressed as follows:

$$
z = 16x_{11} + 10x_{12} + 12x_{13} + 15x_{21} + 14x_{22} + 17x_{23} + 6x_{34} + 8x_{35} + 10x_{36} + 7x_{44} + 11x_{45} + 11x_{46} + 4x_{54} + 5x_{55} + 12x_{56}
$$

There are three transshipment constraints, one for each transshipment point. These constraints are:

$$
x_{11} + x_{21} - x_{34} - x_{35} - x_{36} = 0 \quad (T1)
$$
$$
x_{12} + x_{22} - x_{44} - x_{45} - x_{46} = 0 \quad (T2)
$$
$$
x_{13} + x_{23} - x_{54} - x_{55} - x_{56} = 0 \quad (T3)
$$

There are two supply constraints, each representing the total quantity of product transported from an indicated supply point.

$$
x_{11} + x_{12} + x_{13} \leq 300
$$
$$
x_{21} + x_{22} + x_{23} \leq 300
$$

There are three demand constraints, each representing the total quantity of product transported to the indicated demand point.

$$
x_{36} + x_{46} + x_{56} \geq 300
$$
$$
x_{35} + x_{45} + x_{55} \geq 100
$$
$$
x_{34} + x_{44} + x_{54} \geq 200
$$

There are three transshipment constraints applying the balance equations (Equation 23.1) at each one.

$$
x_{11} + x_{21} - x_{34} - x_{35} - x_{36} = 0
$$
$$
x_{12} + x_{22} - x_{44} - x_{45} - x_{46} = 0
$$
$$
x_{13} + x_{23} - x_{54} - x_{55} - x_{56} = 0
$$

The decision variables x_{ij} have the sign constraint: $x_{ij} \geq 0$, for $i = 1, \ldots, 5$ and $j = 1, \ldots, 6$. The formulation of the problem is formatted for solving with LP-solve and stored in file transship1.lp.
Transship1.lp

The distribution manager needs to minimize global transport costs. There are two supply points: S1 and S2; three transshipment points: T1, T2, and T3; three demand points: D1, D2, D3

Objective function -- Cost of transportation

\[
\begin{align*}
\text{Minimize:} & \quad 16x_{11} + 10x_{12} + 12x_{13} + \\
& \quad 15x_{21} + 14x_{22} + 17x_{23} + \\
& \quad 6x_{34} + 8x_{35} + 10x_{36} + \\
& \quad 7x_{44} + 11x_{45} + 11x_{46} + \\
& \quad 4x_{54} + 5x_{55} + 12x_{56}; \\
\end{align*}
\]

Capacity Constraints (Supply constraints)

\[
\begin{align*}
x_{11} + x_{12} + x_{13} & \leq 300; / * S1 */ \\
x_{21} + x_{22} + x_{23} & \leq 300; / * S2 */ \\
\end{align*}
\]

Demand constraints

\[
\begin{align*}
x_{34} + x_{44} + x_{54} & \geq 200; / * D1 */ \\
x_{35} + x_{45} + x_{55} & \geq 100; / * D2 */ \\
x_{36} + x_{46} + x_{56} & \geq 300; / * D3 */ \\
\end{align*}
\]

Transshipment constraints

\[
\begin{align*}
x_{11} + x_{21} - x_{34} - x_{35} - x_{36} = 0; / * T1 */ \\
x_{12} + x_{22} - x_{44} - x_{45} - x_{46} = 0; / * T2 */ \\
x_{13} + x_{23} - x_{54} - x_{55} - x_{56} = 0; / * T3 */ \\
\end{align*}
\]

The execution of the LP_solve program to solve this linear optimization problem produces the results that can be observed in the following listing.

<table>
<thead>
<tr>
<th>Variables</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>12400</td>
</tr>
<tr>
<td>x11</td>
<td>0</td>
</tr>
<tr>
<td>x12</td>
<td>0</td>
</tr>
<tr>
<td>x13</td>
<td>300</td>
</tr>
<tr>
<td>x21</td>
<td>0</td>
</tr>
<tr>
<td>x22</td>
<td>300</td>
</tr>
<tr>
<td>x23</td>
<td>0</td>
</tr>
<tr>
<td>x34</td>
<td>0</td>
</tr>
<tr>
<td>x35</td>
<td>0</td>
</tr>
<tr>
<td>x36</td>
<td>0</td>
</tr>
<tr>
<td>x44</td>
<td>0</td>
</tr>
<tr>
<td>x45</td>
<td>0</td>
</tr>
<tr>
<td>x46</td>
<td>300</td>
</tr>
<tr>
<td>x54</td>
<td>200</td>
</tr>
<tr>
<td>x55</td>
<td>100</td>
</tr>
<tr>
<td>x56</td>
<td>0</td>
</tr>
</tbody>
</table>
23.5 Assignment Problems

An assignment problem is a special case of a transportation problem that is formulated as a linear optimization model. The basic goal is to find an optimal assignment of resources to tasks. The typical objective is to minimize the total time to complete a task or to minimize the cost of the assignment.

23.5.1 General Form of Model

A simple description of the general assignment problem is: minimize the total cost of a set of workers assigned to a set of tasks. The constraints are: each worker is assigned no more than a specified number of jobs, each job requires no more than a specified number of workers.

An assignment of a resource \(i\) to a job \(j\) is denoted by \(x_{ij}\). Let \(m\) be the number of resources and \(n\) the number of jobs. The decision variables \(x_{ij}\) have the constraint: \(x_{ij} = 1 \) or \(x_{ij} = 0\), for \(i = 1 \ldots m\) and \(j = 1 \ldots n\). The cost of resource \(i\) to complete the job \(j\) is denoted by \(c_{ij}\). The total cost of the resource allocation is:

\[
\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij}x_{ij}
\]

Let \(P_j\) denote the maximum number of resources to be assigned to job \(j\). Similarly, let \(Q_i\) denote the maximum number of jobs that resource \(i\) can be assigned to. In simple problems, all these parameters are equal to 1. The two types of constraints are \(m\) resource constraints and \(n\) job constraints. The job constraints are expressed as:

\[
\sum_{i=1}^{m} x_{ij} \leq P_j, \quad j = 1 \ldots n
\]

The resource constraints are expressed as:

\[
\sum_{j=1}^{n} x_{ij} \leq Q_i, \quad i = 1 \ldots m
\]

23.5.2 Assignment Problem: Case Study 5

A factory has 3 machines: M1, M2, and M3. These are to be assigned to four jobs: T1, T2, T3, and T4. The following table is the cost matrix that gives the expected costs when a specific machine is assigned a specific job. The goal of the problem is to optimize the assignment of machines to jobs. In this problem, each machine can only be assigned to one job, and each job can only receive one machine.
Note that the total number of machines is 3 and the total number of jobs is 4, so this is an unbalanced problem. A dummy machine, M4, is included with zero cost when assigned to a job.

The problem can be formulated directly using the data in the previous table. The conventional notation for an assignment of resource i to job j is used and denoted by x_{ij}. For example: x_{23} denotes the assignment of machine M2 to job T3.

The goal of the problem is to minimize the objective function, which is the cost of the assignment of the various machines to the jobs and expressed as follows:

$$
\begin{align*}
 z & = 13x_{11} + 16x_{12} + 12x_{13} + 11x_{14} + \\
 & + 15x_{21} + 2x_{22} + 13x_{23} + 20x_{24} + \\
 & + 5x_{31} + 7x_{32} + 10x_{33} + 6x_{34} +
\end{align*}
$$

The dummy machine assignments are not included in the objective function because their costs are zero. There are four resource constraints, each representing the possible assignments of a machine.

$\begin{align*}
 x_{11} + x_{12} + x_{13} + x_{14} & = 1 & (M1) \\
 x_{21} + x_{22} + x_{23} + x_{24} & = 1 & (M2) \\
 x_{31} + x_{32} + x_{33} + x_{34} & = 1 & (M3) \\
 x_{41} + x_{42} + x_{43} + x_{44} & = 1 & (M4)
\end{align*}$

There are four job constraints, each representing the possible assignments of the machines to it.

$\begin{align*}
 x_{11} + x_{21} + x_{31} + x_{41} & = 1 & (T1) \\
 x_{12} + x_{22} + x_{32} + x_{42} & = 1 & (T2) \\
 x_{13} + x_{23} + x_{33} + x_{43} & = 1 & (T3) \\
 x_{14} + x_{24} + x_{34} + x_{44} & = 1 & (T4)
\end{align*}$

The decision variables x_{ij} have the constraint: $x_{ij} = 0$ or $x_{ij} = 1$, for $i = 1, \ldots, 4$ and $j = 1, \ldots, 4$. The formulation of the problem is formatted for solving with LPsolve and stored in file assign1.lp.

/* assignment1.lp
A factory has 3 machines: M1, M2, and M3. These are to be assigned to four jobs: T1, T2, , T3, and T4.
The cost matrix gives the expected costs when a specific machine is assigned a specific job.
*/
/* Objective function -- cost assignments */
Minimize: 13 x11 + 16 x12 + 12 x13 + 11 x14 +
Introduction to Computational Modeling

\[15x_{21} + 2x_{22} + 13x_{23} + 20x_{24} + 5x_{31} + 7x_{32} + 10x_{33} + 6x_{34}; \]

/* Job Constraints */
\[x_{11} + x_{21} + x_{31} + x_{41} = 1; /* T1 */ \]
\[x_{12} + x_{22} + x_{32} + x_{42} = 1; /* T2 */ \]
\[x_{13} + x_{23} + x_{33} + x_{43} = 1; /* T3 */ \]
\[x_{14} + x_{24} + x_{34} + x_{44} = 1; /* T4 */ \]

/* Machine constraints */
\[x_{11} + x_{12} + x_{13} + x_{14} = 1; /* M1 */ \]
\[x_{21} + x_{22} + x_{23} + x_{24} = 1; /* M2 */ \]
\[x_{31} + x_{32} + x_{33} + x_{34} = 1; /* M3 */ \]
\[x_{41} + x_{42} + x_{43} + x_{44} = 1; /* Dummy M4 */ \]

The execution of the LPsolve program to solve this linear optimization problem produces the results that can be observed in the following listing. Note that M4 is assigned to T3, but because M4 is a dummy machine, no machine is assigned to T3.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>18</td>
</tr>
<tr>
<td>x_{11}</td>
<td>0</td>
</tr>
<tr>
<td>x_{12}</td>
<td>0</td>
</tr>
<tr>
<td>x_{13}</td>
<td>0</td>
</tr>
<tr>
<td>x_{14}</td>
<td>1</td>
</tr>
<tr>
<td>x_{21}</td>
<td>0</td>
</tr>
<tr>
<td>x_{22}</td>
<td>1</td>
</tr>
<tr>
<td>x_{23}</td>
<td>0</td>
</tr>
<tr>
<td>x_{24}</td>
<td>0</td>
</tr>
<tr>
<td>x_{31}</td>
<td>1</td>
</tr>
<tr>
<td>x_{32}</td>
<td>0</td>
</tr>
<tr>
<td>x_{33}</td>
<td>0</td>
</tr>
<tr>
<td>x_{34}</td>
<td>0</td>
</tr>
<tr>
<td>x_{41}</td>
<td>0</td>
</tr>
<tr>
<td>x_{42}</td>
<td>0</td>
</tr>
<tr>
<td>x_{43}</td>
<td>1</td>
</tr>
<tr>
<td>x_{44}</td>
<td>0</td>
</tr>
</tbody>
</table>

Summary

Two important application areas of linear optimization are transportation and trans-shipment problems. The goal of the first type of problem is finding the minimum cost to transport a product. The goal of the second type of problem is the finding the optimal manner to transport products to destination or demand points.
Key Terms

- supply points
- transportation cost
- balanced problem
- transshipment constraints
- dummy assignments
- demand points
- demand constraints
- unbalanced problem
- job constraints
- destination points
- supply constraints
- transshipment points
- resource constraints

Exercises

Exercise 23.1 A factory of automobile spare parts has two supply locations: S_1 and S_2. There are three demand points that require 35, 42, and 50 parts respectively. Supply point S_1 has a capacity of 85 parts and S_2 a capacity of 65 parts. The following table shows transportation costs and the costs (penalty) for excess demand of each supply point. Formulate and solve the optimization problem with lp_solve.

<table>
<thead>
<tr>
<th></th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>Supply</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>25</td>
<td>45</td>
<td>42</td>
<td>85</td>
</tr>
<tr>
<td>S2</td>
<td>20</td>
<td>60</td>
<td>50</td>
<td>65</td>
</tr>
<tr>
<td>Demand</td>
<td>35</td>
<td>42</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Penalty</td>
<td>100</td>
<td>85</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

Exercise 23.2 In Exercise 23.1, management of the factory decided to meet excess demand by purchasing additional parts and sending these to the demand points. The cost of purchasing and sending each of these parts is $140.00. Formulate and solve the optimization problem with lp_solve.

Exercise 23.3 A computer manufacturer produces three types of computer laptops: T1, T2, and T3. These are built in three facilities: F1, F2, and F3. In a week of 44 hours, the demand is for a total of 10 computers that must be produced. Formulate and solve the minimum cost of producing the computers. The following table includes the time (in hours) and the cost of producing every type of computer.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Time</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>5</td>
<td>$180</td>
<td>$120</td>
<td>$84</td>
</tr>
<tr>
<td>F2</td>
<td>4</td>
<td>$150</td>
<td>$90</td>
<td>$90</td>
</tr>
<tr>
<td>F3</td>
<td>3.5</td>
<td>$129</td>
<td>$60</td>
<td>$60</td>
</tr>
</tbody>
</table>
Exercise 23.4 In Exercise 23.3, each computer type has a different time (in hours) that it takes to manufacture it depending on the facility where it is built. The following table includes this data. Formulate and solve the minimum cost of producing the computers.

<table>
<thead>
<tr>
<th>Facility</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>4.5</td>
<td>4</td>
<td>4.5</td>
</tr>
<tr>
<td>F2</td>
<td>4.5</td>
<td>4.3</td>
<td>5</td>
</tr>
<tr>
<td>F3</td>
<td>3.5</td>
<td>3.5</td>
<td>4</td>
</tr>
</tbody>
</table>
Chapter 24

Network Models

24.1 Introduction

This chapter presents the general concepts, formulation, and solution of problems that can be described with network models. These are special cases of linear optimization problems. The main goal is to formulate these problems as linear optimization models and compute the minimum cost or the maximum flow from a source point to a destination point in the network.

Examples of these types of problems are: shortest path problems, maximum flow problems, and minimum spanning tree problems.

24.2 Graphs

A graph is used as a visual representation of a network. A graph consists of a finite set of nodes (also known as vertices) and a finite set of arcs that connect pairs of nodes. A directed arc connects an ordered pair of vertices; if an arc starts at node P (head) and ends at node Q (tail), it is denoted as (P, Q). An arc will typically have an associated weight or length.

A path is a sequence of arcs with the property that for every arc its tail vertex is the head vertex of the next arc. The length (or cost) of the path is the summation of the lengths of the individual arcs in it.

24.3 Shortest Path Problem

A shortest path problem consists of finding the path from an initial node in the graph to a final node with the shortest length. Several algorithms have been developed to solve this general problem, the most important of which is Dijkstra’s algorithm.

This section discusses the formulation of shortest path problems as transshipment problems. For this, the techniques of the previous chapters are applied. As discussed
Introduction to Computational Modeling

previously, a transshipment model includes intermediate or transshipment points in a transportation model. A transshipment point is an intermediate point between one or more supply points and one or more demand points.

The general problem consists of transporting one unit of a product from a source point P to a destination point Q. The intermediate nodes are the transshipment points. Units of the product can be sent from the source point to the destination point using one of several possible paths.

When in a graph there is no arc between two points, an artificial arc is included and its length is given a relatively large value, H. An arc from a node to the same node will have zero length.

The cost of sending 1 unit of product from node i to node j is the length of the arc and denoted by c_{ij}. For example: c_{23} denotes the cost of sending 1 unit of product shipped from node 2 to node 3. The shipment of 1 unit of the product from node i to node j is denoted by x_{ij}. Therefore, the value of x_{ij} is 1 or zero.

The objective function indicates the total cost of transporting 1 unit of the product from the source node to the destination node and can be expressed as follows:

Minimize: z,

$$z = \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}x_{ij}$$

The number of nodes is n and there is one supply point and one demand point. A transshipment point can be considered both a supply point and a demand point. At a transshipment point, k, the total inputs to this point must equal the total outputs from this intermediate point and can be expressed as follows:

$$\sum_{i=1}^{p} x_{i,k} = \sum_{j=1}^{q} x_{k,j}$$

Where p is the number of supply points, q is the number of demand points, and x_{ij} denotes a unit of 1 product or no product (0) shipped from point i to point j. From the previous equation, the transshipment constraint of a point, k, is expressed as follows:

$$\sum_{i=1}^{p} x_{i,k} - \sum_{j=1}^{q} x_{k,j} = 0$$

24.4 Shortest Path Problem: Case Study 1

A product is shipped from a supply city (supply point), represented by node 1, to a destination city (demand point), represented by node 6. The product is first shipped to one or more cities that are represented by intermediate nodes 2–5. The goal of
the problem is to find the shortest path from the supply city to the destination city. The distance between the cities is shown by the arcs between nodes in the graph of Figure 24.1.

The problem can be formulated directly as a standard transportation problem, using the data in the previous figure. This problem has one supply point and one demand point. The objective function can be completely written with the unit cost values of the product to be transported. The objective function is to minimize the following expression:

\[z = 0x_{11} + 4x_{12} + 2x_{13} + Hx_{14} + Hx_{15} + Hx_{16} + Hx_{21} + 0x_{22} + Hx_{23} + 5x_{24} + Hx_{25} + Hx_{26} + Hx_{31} + 1x_{32} + 0x_{33} + 8x_{34} + 10x_{35} + Hx_{36} + Hx_{41} + Hx_{42} + Hx_{43} + 0x_{44} + 2x_{45} + 6x_{46} + Hx_{51} + Hx_{52} + Hx_{53} + Hx_{54} + 0x_{55} + 2x_{56} + Hx_{61} + Hx_{62} + Hx_{63} + Hx_{64} + Hx_{65} + 0x_{66} \]

There are two source-destination constraints, each representing 1 unit of product transported from the indicated source node to the indicated destination node.

\[
\begin{align*}
x_{12} + x_{13} &= 1 \quad \text{(Source node)} \\
x_{46} + x_{56} &= 1 \quad \text{(Destination node)}
\end{align*}
\]

There are four intermediate nodes, so there are four transshipment constraints, one for each intermediate node. These constraints are:

\[
\begin{align*}
x_{12} + x_{32} - x_{42} &= 0 \quad \text{(Node 2)} \\
x_{13} - x_{32} - x_{34} - x_{35} &= 0 \quad \text{(Node 3)} \\
x_{24} + x_{34} - x_{45} - x_{46} &= 0 \quad \text{(Node 4)} \\
x_{35} + x_{45} - x_{56} &= 0 \quad \text{(Node 5)}
\end{align*}
\]

The decision variables \(x_{ij}\) have the sign constraint: \(x_{ij} = 0\) or \(x_{ij} = 0\), for \(i = \)
$1, \ldots, 6$ and $j = 1, \ldots, 6$. The formulation of the problem is formatted for solving with LP solve and stored in file network1.lp.

```latex
/* network1.lp */
Given the graph, find the shortest path from node 1 to node 6.

/* Objective function -- cost assignments */
Minimize: $z =$
\begin{align*}
0 \cdot x_{11} + 4 \cdot x_{12} + 2 \cdot x_{13} + 100 \cdot x_{14} + 100 \cdot x_{15} + 100 \cdot x_{16} + \\
100 \cdot x_{21} + 0 \cdot x_{22} + 100 \cdot x_{23} + 5 \cdot x_{24} + 100 \cdot x_{25} + 100 \cdot x_{26} + \\
100 \cdot x_{31} + 1 \cdot x_{32} + 0 \cdot x_{33} + 8 \cdot x_{34} + 10 \cdot x_{35} + 100 \cdot x_{36} + \\
x_{30} \cdot x_{41} + 100 \cdot x_{42} + 100 \cdot x_{43} + 0 \cdot x_{44} + 2 \cdot x_{45} + 6 \cdot x_{46} + \\
100 \cdot x_{51} + 100 \cdot x_{52} + 100 \cdot x_{53} + 100 \cdot x_{54} + 0 \cdot x_{55} + 2 \cdot x_{56} + \\
100 \cdot x_{61} + 100 \cdot x_{62} + 100 \cdot x_{63} + 100 \cdot x_{64} + 100 \cdot x_{65} + 0 \cdot x_{66};
\end{align*}

/* Source and destination Constraints */
\begin{align*}
x_{12} + x_{13} &= 1; \quad /* Source */ \\
x_{46} + x_{56} &= 1; \quad /* Destination */
\end{align*}

/* Intermediate nodes constraints */
\begin{align*}
x_{12} + x_{32} - x_{24} &= 0; \quad /* Node 2 */ \\
x_{13} - x_{32} - x_{34} - x_{35} &= 0; \quad /* Node 3 */ \\
x_{24} + x_{34} - x_{45} - x_{46} &= 0; \quad /* Node 4 */ \\
x_{35} + x_{45} - x_{56} &= 0; \quad /* Node 5 */
\end{align*}

The execution of the LP solve program to solve this linear optimization problem produces the results that can be observed in the following listing.

<table>
<thead>
<tr>
<th>Variables</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>12</td>
</tr>
<tr>
<td>x_{11}</td>
<td>0</td>
</tr>
<tr>
<td>x_{12}</td>
<td>0</td>
</tr>
<tr>
<td>x_{13}</td>
<td>1</td>
</tr>
<tr>
<td>x_{14}</td>
<td>0</td>
</tr>
<tr>
<td>x_{15}</td>
<td>0</td>
</tr>
<tr>
<td>x_{16}</td>
<td>0</td>
</tr>
<tr>
<td>x_{21}</td>
<td>0</td>
</tr>
<tr>
<td>x_{22}</td>
<td>0</td>
</tr>
<tr>
<td>x_{23}</td>
<td>0</td>
</tr>
<tr>
<td>x_{24}</td>
<td>1</td>
</tr>
<tr>
<td>x_{25}</td>
<td>0</td>
</tr>
<tr>
<td>x_{26}</td>
<td>0</td>
</tr>
<tr>
<td>x_{31}</td>
<td>0</td>
</tr>
<tr>
<td>x_{32}</td>
<td>0</td>
</tr>
<tr>
<td>x_{33}</td>
<td>0</td>
</tr>
<tr>
<td>x_{34}</td>
<td>0</td>
</tr>
<tr>
<td>x_{35}</td>
<td>0</td>
</tr>
<tr>
<td>x_{36}</td>
<td>0</td>
</tr>
<tr>
<td>x_{41}</td>
<td>0</td>
</tr>
<tr>
<td>x_{42}</td>
<td>0</td>
</tr>
<tr>
<td>x_{43}</td>
<td>0</td>
</tr>
<tr>
<td>x_{44}</td>
<td>0</td>
</tr>
<tr>
<td>x_{45}</td>
<td>1</td>
</tr>
</tbody>
</table>
The results show that the minimum path has length = 12. The path selected consists of the following arcs: \( x_{13}, x_{32}, x_{24}, x_{45}, \) and \( x_{56}. \)

### 24.5 Maximum Flow Problems

There are many problems in which the goal is to send the maximum quantity of a product from a source node to a destination node of a network. The main limitation is the capacity of each segment of the network represented by the arcs. For these problems, the Ford-Fulkerson algorithm was developed. In this section, the linear optimization formulation is discussed.

The following maximum flow problem illustrates the basic approach to formulate a linear optimization problem. An airline company needs to plan and setup an optimal number of flights from Chicago to Rio de Janeiro. The intermediate stops that need to be included are: first Atlanta, then Bogota and/or Caracas. Table 24.1 shows the routes, the corresponding arcs in Figure 24.2, and the capacity (maximum number of flights allowed) of each route.

<table>
<thead>
<tr>
<th>Route</th>
<th>Arc</th>
<th>Max number of flights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicago to Atlanta</td>
<td>( x_{12} )</td>
<td>7</td>
</tr>
<tr>
<td>Atlanta to Bogota</td>
<td>( x_{23} )</td>
<td>4</td>
</tr>
<tr>
<td>Atlanta to Caracas</td>
<td>( x_{24} )</td>
<td>3</td>
</tr>
<tr>
<td>Bogota to Caracas</td>
<td>( x_{34} )</td>
<td>6</td>
</tr>
<tr>
<td>Bogota to Rio</td>
<td>( x_{35} )</td>
<td>3</td>
</tr>
<tr>
<td>Caracas to Rio</td>
<td>( x_{45} )</td>
<td>4</td>
</tr>
</tbody>
</table>

TABLE 24.1: Airline routes from Chicago to Rio.
The problem can be formulated directly as a standard transportation problem, using the data in Table 24.1 and Figure 24.2.

Let $x_{ij}$ denote the number of flights from node $i$ to node $j$, and $c_{ij}$ the capacity between nodes $i$ and $j$. This problem has one supply point (source) and one demand point (destination). The objective function can be written by observing that the maximum flow from node 1 to node 5 is actually the flow from node 1 to node 2, which is represented by the variable $x_{12}$. The objective function is then to maximize the expression: $z = x_{12}$.

To simplify the formulation of the problem, three types of constraints are considered:

- Source-destination constraints
- Transshipment constraints
- Capacity constraints

There is one source-destination constraint, which represents the balance in the flow from the source node and the flow into the destination node in Figure 24.2. This constraint is expressed as follows:

$$x_{12} = x_{35} + x_{45}$$

There are three intermediate nodes (2, 3, and 4), so there are three transshipment constraints, one for each intermediate node. These constraints are:

$$x_{12} - x_{23} - x_{24} = 0 \quad \text{(Node 2)}$$
$$x_{23} - x_{34} - x_{35} = 0 \quad \text{(Node 3)}$$
$$x_{24} + x_{34} - x_{45} = 0 \quad \text{(Node 4)}$$

The capacity constraints represent the maximum number of flights possible on the indicated route:

$$x_{ij} \leq c_{ij}$$
These are shown as the value of the arcs in Figure 24.2. There are six arcs in the graph, therefore there are six capacity constraints.

\[
\begin{align*}
  x_{12} & \leq 7 \\
  x_{23} & \leq 4 \\
  x_{24} & \leq 3 \\
  x_{34} & \leq 6 \\
  x_{35} & \leq 3 \\
  x_{45} & \leq 4
\end{align*}
\]

The decision variables \( x_{ij} \) have the sign constraint: \( x_{ij} \geq 0 \), for \( i = 1, \ldots, 5 \) and \( j = 1, \ldots, 5 \). The formulation of the problem is formatted for solving with LP solve and stored in file maxflow1.lp.

/* maxflow1.lp
An airline company needs to find the max number of flights that connect Chicago and Rio de Janeiro.
Find the maximum flow from node 1 (source) to node 5 (destination).
*/
/* Objective function -- cost assignments */
Maximize: x12;

/* Source and destination Constraints */
x12 = x45 + x35; /* Source to destination*/

/* Arc capacity constraints */
x12 <= 7;
x23 <= 4;
x24 <= 3;
x34 <= 6;
x35 <= 3;
x45 <= 4;

/* Intermediate nodes constraints */
x12 - x23 - x24 = 0; /* Node 2 */
x23 - x34 - x35 = 0; /* Node 3 */
x24 + x34 - x45 = 0; /* Node 4 */

The execution of the LP solve program to solve this linear optimization problem produces the results that can be observed in the following listing.

<table>
<thead>
<tr>
<th>Variables</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>7</td>
</tr>
<tr>
<td>x12</td>
<td>7</td>
</tr>
<tr>
<td>x45</td>
<td>4</td>
</tr>
<tr>
<td>x35</td>
<td>3</td>
</tr>
<tr>
<td>x23</td>
<td>4</td>
</tr>
<tr>
<td>x24</td>
<td>3</td>
</tr>
<tr>
<td>x34</td>
<td>1</td>
</tr>
</tbody>
</table>
24.6 Critical Path Method

The critical path method (CPM) is a network model that can help in the scheduling of large projects. The important computations are the total time to complete the project and the interval that represents how long an activity of the project can be delayed without causing delays to the project. This method calculates the minimum completion time for a project and the possible start and finish times for the project activities.

A network model of a project typically consists of a sequence of the various activities that need to be performed, and the duration of each activity. A directed arc represents an activity, a node represents a start or finish event of an activity. A special initial node represents the start of the project, and a special end node represents the completion of the project.

In any project there are cases in which more than one activity needs to be completed before the next activity can start. Figure 24.3 illustrates this situation. Activity $A_j$ and activity $A_k$ have to be completed before activity $A_l$ can start. Another situation is an activity that needs to be completed before two or more activities can start. Figure 24.4 illustrates this by showing activity $A_l$ that needs to be completed before activities $A_m, A_k,$ and $A_p$ can start.

The following terms are used in project scheduling using the duration of the activities in the project. The early event time of node $i$, denoted by $e_i$, is the earliest time at which the event can occur. The late event time of node $i$, denoted by $l_i$, is the latest time at which the event can occur.

The total float, denoted by $f_{ij}$ of an activity $A_{ij}$ is the time interval by which the starting time of the activity can be delayed and not cause delay in the completion time of the project.

An activity that has a total float equal to zero is known as a critical activity. A critical path consists of a sequence of critical activities. Delays in the activities in a critical path will delay the completion of the project.
24.6.1 Using Linear Optimization

Recall that for any activity $A_{ij}$, the start time of the activity is the event represented by node $i$ and the completion time of the activity is the event represented by node $j$. Let $x_k$ denote the time occurrence of event $k$ and the duration of activity $A_{ij}$ is denoted by $\Delta_{ij}$. For every activity $A_{ij}$, the completion time of the activity is given by the expression $x_j \geq x_i + \Delta_{ij}$.

Let $f$ denote the finish node of the project, the event time of the completion of the project is denoted by $x_f$. Similarly, node 1 is the start node of the project and the event time of the start of the project is denoted by $x_1$. The total time interval or duration of the entire project is given by the expression $x_f - x_1$. Let $n$ denote the total number of nodes in the project network, this implies that $x_f = x_n$. The formulation of the linear optimization problem that finds the critical path of a project is given by the following expressions:

Minimize: $z = x_f - x_1$

Subject to:

$$x_j \geq x_i + \Delta_{ij}, \quad i = 1, \ldots, n - 1, \quad j = 2, \ldots, n$$

The variables $x_i, i = 1, \ldots, n$ are unrestricted in sign.

24.6.2 Critical Path Method: Case Study 2

A project has been defined with the activities and their duration given in Table 24.2. The goal of the problem is to find the critical path of the project. The various activities and their predecessors are shown by the arcs between nodes in the graph of Figure 24.5.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Predecessor</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_{12}$</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>$A_{23}$</td>
<td>$A_{12}$</td>
<td>9</td>
</tr>
<tr>
<td>$A_{35}$</td>
<td>$A_{23}$</td>
<td>13</td>
</tr>
<tr>
<td>$A_{36}$</td>
<td>$A_{23}$</td>
<td>6</td>
</tr>
<tr>
<td>$A_{34}$</td>
<td>$A_{23}$</td>
<td>5</td>
</tr>
<tr>
<td>$A_{45}$</td>
<td>$A_{34}$</td>
<td>7</td>
</tr>
<tr>
<td>$A_{56}$</td>
<td>$A_{45}, A_{35}$</td>
<td>4</td>
</tr>
</tbody>
</table>

The problem can be formulated directly as a standard transportation problem, using the data in Table 24.2 and in Figure 24.5.
This problem has node 6 as the final node of the project. The objective function is then to minimize the expression: $z = x_6 - x_1$. The constraints are expressed as follows:

$$
\begin{align*}
    x_2 &\geq x_1 + 6 & \text{Activity } A_{12} \\
    x_3 &\geq x_2 + 9 & \text{Activity } A_{23} \\
    x_4 &\geq x_3 + 5 & \text{Activity } A_{34} \\
    x_5 &\geq x_4 + 7 & \text{Activity } A_{45} \\
    x_5 &\geq x_3 + 13 & \text{Activity } A_{35} \\
    x_6 &\geq x_3 + 6 & \text{Activity } A_{36} \\
    x_6 &\geq x_5 + 4 & \text{Activity } A_{56}
\end{align*}
$$

The decision variables $x_i$ have unrestricted sign constraint for $i = 1, \ldots, 6$. The formulation of the problem is formatted for solving with LP.solve and stored in file cpm1.lp.

```plaintext
/* cpm1.lp
Find the minimum path for the project described in
Critical path method: case study 1 */
/* Objective function -- Total project time interval */
Minimize: x6 - x1; /* Activity Constraints */
 x2 >= x1 + 6; /* Activity A_{13} */
 x3 >= x2 + 9; /* Activity A_{12} */
 x4 >= x3 + 5; /* Activity A_{35} */
 x5 >= x4 + 7; /* Activity A_{34} */
 x5 >= x3 + 13; /* Activity A_{45} */
 x6 >= x3 + 6; /* Activity A_{36} */
 x6 >= x5 + 4;
```

The execution of the LP.solve program to solve this linear optimization problem produces the results that can be observed in the following listing. The total time interval for completion of the project is 32 days and the start time of every activity is shown in the listing.

<table>
<thead>
<tr>
<th>Variables</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>32</td>
</tr>
<tr>
<td>x6</td>
<td>32</td>
</tr>
<tr>
<td>x1</td>
<td>0</td>
</tr>
</tbody>
</table>
24.6.3 Reducing the Time to Complete a Project

When a decision is taken to reduce the total time to complete a project, additional resources must be allocated to the various activities. Linear optimization is used to minimize the total cost of allocating the additional resources to the project activities.

Let \( r_{ij} \) denote the number of days that the duration of activity \( A_{ij} \) is reduced, and \( c_{ij} \) denote the cost per day of allocating additional resources to activity \( A_{ij} \). Let \( R \) denote the time (in days) that an activity can be reduced, and let \( T \) denote the new total time (in days) of the project completion. The objective function to minimize is:

\[
z = \sum_{i=1}^{n-1} \sum_{j=2}^{n} c_{ij} r_{ij}, \quad \text{for all activities } A_{ij}
\]

The time-reduction constraints are expressed as:

\[
r_{ij} \leq R, \quad \text{for all activities } A_{ij}
\]

The activity constraints are expressed as:

\[
x_j = x_i + \Delta_{ij} - r_{ij}, \quad \text{for all activities } A_{ij}
\]

The total time constraint is:

\[
x_n - x_1 \leq T
\]

24.6.4 Case Study 3

Consider a reduction of 4 days in the total time to complete the project described previously as Case Study 1. The completion time is now 28 days. The activity completion time can be reduced up to 2 days. The following table shows the cost per day of reducing each activity of the project.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Reduction Cost Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>x2</td>
<td>6</td>
</tr>
<tr>
<td>x3</td>
<td>15</td>
</tr>
<tr>
<td>x4</td>
<td>20</td>
</tr>
<tr>
<td>x5</td>
<td>28</td>
</tr>
</tbody>
</table>

The various activities and their predecessors are shown by the arcs between nodes in the graph of Figure 24.5. This problem has node 6 as the final node of the project.
TABLE 24.3: Project additional cost.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>A12</td>
<td>22.50</td>
</tr>
<tr>
<td>A23</td>
<td>15.75</td>
</tr>
<tr>
<td>A35</td>
<td>15.25</td>
</tr>
<tr>
<td>A36</td>
<td>16.50</td>
</tr>
<tr>
<td>A34</td>
<td>25.30</td>
</tr>
<tr>
<td>A45</td>
<td>17.50</td>
</tr>
<tr>
<td>A56</td>
<td>14.75</td>
</tr>
</tbody>
</table>

The goal of the problem is to find the minimum cost of reducing the total completion time of the project. The objective function is then to minimize the expression:

$$ z = 22.50r_{12} + 15.75r_{23} + 13.25r_{35} + 16.50r_{36} + 25.30r_{34} + 17.50r_{45} + 14.75r_{56} $$

The time-reduction constraints are expressed as follows:

$$ r_{12} \leq 2, \quad \text{Activity A}_{12} $$
$$ r_{23} \leq 2, \quad \text{Activity A}_{23} $$
$$ r_{34} \leq 2, \quad \text{Activity A}_{34} $$
$$ r_{45} \leq 2, \quad \text{Activity A}_{45} $$
$$ r_{35} \leq 2, \quad \text{Activity A}_{35} $$
$$ r_{36} \leq 2, \quad \text{Activity A}_{36} $$
$$ r_{56} \leq 2, \quad \text{Activity A}_{56} $$

The activity constraints are expressed as follows:

$$ x_2 \geq x_1 + 6 - r_{12}, \quad \text{Activity A}_{12} $$
$$ x_3 \geq x_2 + 9 - r_{23}, \quad \text{Activity A}_{23} $$
$$ x_4 \geq x_3 + 5 - r_{34}, \quad \text{Activity A}_{34} $$
$$ x_5 \geq x_4 + 7 - r_{45}, \quad \text{Activity A}_{45} $$
$$ x_5 \geq x_3 + 13 - r_{35}, \quad \text{Activity A}_{35} $$
$$ x_6 \geq x_3 + 6 - r_{36}, \quad \text{Activity A}_{36} $$
$$ x_6 \geq x_5 + 4 - r_{56}, \quad \text{Activity A}_{56} $$

The decision variables $x_i$ have unrestricted sign constraint for $i = 1, \ldots, 6$. The formulation of the problem is formatted for solving with LPsolve and stored in file cpm1b.lp.

```plaintext
/* cpm1b.lp
Find the minimum path for the project described in
CPM Case study 2. */
/* Objective function -- cost assignments */
```
Minimize: $22.5r_{12} + 15.75r_{23} + 13.25r_{35} + 16.5r_{36} + 25.3r_{34} + 17.5r_{45} + 14.75r_{56};$

/* Time-reduction constraints
   An activity duration can be reduced up to 2 days */
\begin{align*}
r_{12} &\leq 2; /* Activity A_{12} */ \\
r_{23} &\leq 2; /* Activity A_{23} */ \\
r_{34} &\leq 2; /* Activity A_{34} */ \\
r_{45} &\leq 2; /* Activity A_{45} */ \\
r_{35} &\leq 2; /* Activity A_{35} */ \\
r_{36} &\leq 2; /* Activity A_{36} */ \\
r_{56} &\leq 2; /* Activity A_{56} */ \\
\end{align*}

/* Activity Constraints */
\begin{align*}
x_{2} &\geq x_{1} + 6 - r_{12}; /* Activity A_{12} */ \\
x_{3} &\geq x_{2} + 9 - r_{23}; /* Activity A_{23} */ \\
x_{4} &\geq x_{3} + 5 - r_{34}; /* Activity A_{34} */ \\
x_{5} &\geq x_{4} + 7 - r_{45}; /* Activity A_{45} */ \\
x_{5} &\geq x_{3} + 13 - r_{35}; /* Activity A_{35} */ \\
x_{6} &\geq x_{3} + 6 - r_{36}; /* Activity A_{36} */ \\
x_{6} &\geq x_{5} + 4 - r_{56}; /* Activity A_{56} */ \\
\end{align*}

/* Total project time constraint */
\begin{align*}
x_{6} - x_{1} &\leq 28; \\
\end{align*}

The execution of the LP_solve program that solves this linear optimization problem produces the results observed in the following listing. The total cost of reducing time interval for completion of the project is $58.50. It can be noted that the completion time of activities $A_{12}, A_{36}, A_{34},$ and $A_{45}$, were not reduced. However, the completion time of activity $A_{56}$ was reduced in 2 days.

\begin{tabular}{|c|c|}
\hline
Variables & result \\
\hline
$z$ & 58.5 \\
$r_{12}$ & 0 \\
$r_{23}$ & 1 \\
$r_{35}$ & 0.999999 \\
$r_{36}$ & 0 \\
$r_{34}$ & 0 \\
$r_{45}$ & 0 \\
$r_{56}$ & 2 \\
x2 & 6 \\
x1 & 0 \\
x3 & 14 \\
x4 & 19 \\
x5 & 26 \\
x6 & 28 \\
\hline
\end{tabular}
Summary

Linear optimization modeling can be used to study and calculate various problems that are represented by networks. The typical problems are shortest path problems, maximum flow problems and critical path method for project management. A dummy activity has zero duration and is necessary to prevent two activities with the same start node and the same end node.

Key Terms

<table>
<thead>
<tr>
<th>shortest path</th>
<th>routes</th>
<th>traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum flow</td>
<td>critical path</td>
<td>minimum spanning tree</td>
</tr>
<tr>
<td>graph</td>
<td>nodes</td>
<td>arcs</td>
</tr>
<tr>
<td>path</td>
<td>vertex</td>
<td>activity</td>
</tr>
<tr>
<td>event</td>
<td>early event time</td>
<td>late event time</td>
</tr>
<tr>
<td>total float</td>
<td>critical activity</td>
<td>transshipment point</td>
</tr>
<tr>
<td>transporting cost</td>
<td>artificial node</td>
<td>arc capacity</td>
</tr>
</tbody>
</table>

Exercises

Exercise 24.1  A company manufactures bicycles in two facilities: F1 and F2. Facility F1 can build a maximum of 400 bicycles per year at a cost of $850 per unit. Facility F2 can build a maximum of 300 bicycles per year at a cost of $950. There are two main destinations D1 and D2. Destination D1 demands 400 bicycles per year and D2 demands 300 bicycles per year. The following table includes the transportation costs from a facility F1, F2, or the intermediate point D3 to destination points D1, D2, and D3. The bicycles may be sent to an intermediate location D3. Compute the minimum total cost that meets the demand.

<table>
<thead>
<tr>
<th>Transportation Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
</tr>
<tr>
<td>F1</td>
</tr>
<tr>
<td>F2</td>
</tr>
<tr>
<td>D3</td>
</tr>
</tbody>
</table>

Exercise 24.2  Repeat the previous problem with the additional condition that the maximum number of bicycles transported to the intermediate point (D3) is 185.
Exercise 24.3  A low-end computer laptop can be purchased for about $400 and can be used for five years with no salvage value. The maintenance of the computer is estimated to cost $85 for year 1, $140 for year 2, $210 for year 3, $250 for year 4, and $270 for year 5. Compute the minimum total cost of purchasing and using the computer for six years.

Exercise 24.4  Traffic engineers are studying traffic patterns in part of a city. The immediate problem is to find the maximum flow of vehicles from a source point, \( S \), to a destination point, \( D \). Figure 25.1 and the following table show the flow capacity of the various roads (between nodes). Note that the direction of the traffic is important. Formulate and solve a linear optimization problem that computes the maximum traffic flow from point \( S \) to point \( D \).

\[ \text{FIGURE 24.6: Graph of road capacity in city.} \]

<table>
<thead>
<tr>
<th>Arc</th>
<th>Capacity</th>
<th>Arc</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-3</td>
<td>6</td>
<td>4-5</td>
<td>5</td>
</tr>
<tr>
<td>3-S</td>
<td>1</td>
<td>5-4</td>
<td>1</td>
</tr>
<tr>
<td>S-4</td>
<td>7</td>
<td>4-6</td>
<td>7</td>
</tr>
<tr>
<td>4-S</td>
<td>1</td>
<td>6-4</td>
<td>1</td>
</tr>
<tr>
<td>S-2</td>
<td>5</td>
<td>4-D</td>
<td>2</td>
</tr>
<tr>
<td>2-S</td>
<td>0</td>
<td>D-4</td>
<td>0</td>
</tr>
<tr>
<td>2-4</td>
<td>1</td>
<td>5-D</td>
<td>8</td>
</tr>
<tr>
<td>4-2</td>
<td>4</td>
<td>D-5</td>
<td>0</td>
</tr>
<tr>
<td>2-3</td>
<td>2</td>
<td>5-6</td>
<td>2</td>
</tr>
<tr>
<td>3-2</td>
<td>1</td>
<td>6-5</td>
<td>2</td>
</tr>
<tr>
<td>3-4</td>
<td>2</td>
<td>6-D</td>
<td>8</td>
</tr>
<tr>
<td>4-3</td>
<td>1</td>
<td>D-6</td>
<td>2</td>
</tr>
<tr>
<td>3-5</td>
<td>4</td>
<td>5-3</td>
<td>3</td>
</tr>
</tbody>
</table>
This page intentionally left blank
Chapter 25

Integer Linear Optimization Models

25.1 Introduction

This chapter presents the general concepts and formulation of problems that can be solved with modes of integer linear optimization. These are models with more constraint than the standard linear optimization problems.

An integer linear optimization problem in which all variables are required to be integer is called a pure integer linear problem. If some variables are restricted to be integer and others are not, the problem is a mixed integer linear problem. The special case of integer variables that are restricted to be 0 or 1 is very useful and are known as pure (mixed) 0–1 linear problems or pure (mixed) binary integer linear problems.

25.2 Modeling with Integer Variables

An integer linear optimization problem is a conventional linear optimization problem with the additional constraints that the decision variables be integer variables. This implies that for a maximization integer linear problem, the optimal value of the objective function is less or equal to the optimal value of the linear optimization problem.

Removing the constraints that the variables must be integer variables results in a linear problem similar to the ones discussed in previous chapters. This linear problem is known as the linear problem relaxation of the integer linear problem.

In most situations, computing the optimal value of the two linear problems will produce very different results. The following pure integer linear problem illustrates this. The objective function is to maximize the following expression:

\[ z = 20x_1 + 20x_2 + 10x_3 \]

Subject to the following restrictions:

\[ \begin{align*}
2x_1 & + 20x_2 & + 4x_3 & \leq 15 \\
6x_1 & + 20x_2 & + 4x_3 & = 20 
\end{align*} \]
The formulation of the problem is formatted for solving with LP_solve and is stored in file intprob1.lp.

```plaintext
/* intprob1.lp
variables x1, x2, and x3 are integer variables
Objective function */
Maximize: 20x1 + 10x2 + 10x3;

/* Constraints */
2x1 + 20x2 + 4x3 <= 15;
6x1 + 20x2 + 4x3 = 20;
/* Integer variables */
int x1, x2, x3;
```

The execution of the LP_solve program to solve this linear optimization problem produces the results that can be observed in the following listing.

<table>
<thead>
<tr>
<th>Variables</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>60</td>
</tr>
<tr>
<td>x1</td>
<td>2</td>
</tr>
<tr>
<td>x2</td>
<td>0</td>
</tr>
<tr>
<td>x3</td>
<td>2</td>
</tr>
</tbody>
</table>

The result of solving this integer linear problem is $z = 60$, and the values of the integer variables are $x_1 = 2, x_2 = 0, \text{ and } x_3 = 2$.

Relaxing the constraints that the variables $x_i, i = 1 \ldots 3$ be integer variables, results in a different numerical solution and can be observed in the following listing.

<table>
<thead>
<tr>
<th>Variables</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>66.6666666666667</td>
</tr>
<tr>
<td>x1</td>
<td>3.33333333333333</td>
</tr>
<tr>
<td>x2</td>
<td>0</td>
</tr>
<tr>
<td>x3</td>
<td>0</td>
</tr>
</tbody>
</table>

### 25.3 Applications of Integer Linear Optimization

A brief description of some typical problems that can be formulated as integer optimization problems follows.
• Knapsack Problem. Given a knapsack with fixed capacity and a collection of items, each with a weight and value, find the number of items to put in the knapsack that maximizes the total value carried subject to the requirement that that weight limitation not be exceeded.

• The Transportation Problem. Given a finite number of suppliers, each with fixed capacity, a finite number of demand centers, each with a given demand, and costs of transporting a unit from a supplier to a demand center, find the minimum cost method of meeting all of the demands without exceeding supplies.

• Assignment Problem. Given equal numbers of people and jobs and the value of assigning any given person to any given job, find the job assignment (each person is assigned to a different job) that maximizes the total value.

• Shortest Route Problem. Given a collection of locations and the distance between each pair of locations, find the cheapest way to get from one location to another.

• Maximum Flow Problem. Given a series of locations connected by pipelines of fixed capacity and two special locations (an initial location or source and a final location or sink), find the way to send the maximum amount from source to sink without violating capacity constraints.

The techniques used to solve integer linear problems are Branch-and-Bound and Branch-and-Cut algorithms. They are both implicit enumeration techniques, implicit meaning that (hopefully) many solution will be skipped during enumeration as they are known to be non optimal.

25.3.1 Branch and Bound

The the most widely used method for solving integer linear optimization models is branch and bound. Subproblems are created by restricting the range of the integer variables. For binary variables, there are only two possible restrictions: setting the variable to 0, or setting the variable to 1. More generally, a variable with lower bound l and upper bound u will be divided into two problems with ranges l to q and q+1 to u respectively. Lower bounds are provided by the linear optimization relaxation to the problem. If the optimal solution to a relaxed problem is (coincidentally) integral, it is an optimal solution to the subproblem, and the value can be used to terminate searches of subproblems whose lower bound is higher.

25.3.2 Branch and Cut

For branch and cut, the lower bound is again provided by the linear optimization relaxation of the integer program. The optimal solution to this linear program is at a corner of the feasible region (the set of all variable settings which satisfy the constraints). If the optimal solution to the problem is not integral, this algorithm searches
for a constraint which is violated by this solution, but is not violated by any optimal integer solutions. This constraint is called a cutting plane. When this constraint is added to the model, the old optimal solution is no longer valid, and so the new optimal will be different, potentially providing a better lower bound. Cutting planes are iteratively until either an integral solution is found or it becomes impossible or too expensive to find another cutting plane. In the latter case, a traditional branch operation is performed and the search for cutting planes continues on the subproblems.

Almost all the sample problems described in this chapter are computationally solved with lp_solve, which is a linear (integer) optimization solver based on the revised simplex method and the Branch-and-bound method for the integer variables.

25.4 Integer Linear Optimization: Case Study 1

A hiker needs to take as many items as possible in his knapsack for the next hike. The knapsack has a capacity of 25 pounds. Each items has a priority from 1 to 10 that indicates the relative importance of the item, and a weight. This data is included in Table 25.1.

<table>
<thead>
<tr>
<th>Item</th>
<th>Priority</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>5.5</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>9.5</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>13.5</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>6.5</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>6</td>
</tr>
</tbody>
</table>

The decision variables, \(x_i, i = 1, \ldots, 5\), for this integer linear problem can have only two possible values: (0, 1). \(x_i = 1\) indicates that item \(i\) is put in the knapsack and \(x_i = 0\) indicates that it is not put in the knapsack. These variables are also known as binary variables.

The goal of this problem is to find the best way to pack the items in the knapsack by priority, given the constraint of the weight capacity of the knapsack. The objective function is to maximize the following expression:

\[
    z = 7x_1 + 5x_2 + 10x_3 + 6x_4 + 8x_5
\]

Subject to the following restrictions:

\[
    5.5x_1 + 9.5x_2 + 13.5x_3 + 6.5x_4 + 6x_5 \leq 25
\]
The formulation of the problem formatted for solving with LP solve is stored in file knapsack.lp.

```/* knapsack.lp
The Knapsack problem. There 5 items that a hiker needs to take. Each item has a priority and a weight. variables x1, x2, x3, x4, and x5 are integer variables with values 0 or 1. */
/* Objective function */
Maximize: 7x1 + 5x2 + 10x3 + 6x4 + 8x5;
/* Constraints */
5.5x1 + 9.5x2 + 13.5x3 + 6.5x4 + 6x5 <= 25;
/* Integer binary variables */
bin x1, x2, x3, x4, x5;```

The execution of the LP solve program to solve this linear optimization problem produces the results that can be observed in the following listing.

<table>
<thead>
<tr>
<th>Variables</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>25</td>
</tr>
<tr>
<td>x1</td>
<td>1</td>
</tr>
<tr>
<td>x2</td>
<td>0</td>
</tr>
<tr>
<td>x3</td>
<td>1</td>
</tr>
<tr>
<td>x4</td>
<td>0</td>
</tr>
<tr>
<td>x5</td>
<td>1</td>
</tr>
</tbody>
</table>

The results listing shows that only items 1, 3, and 5 are put in the knapsack because of the weight constraint.

25.5 Integer Linear Optimization: Case Study 2

A factory manufactures three types of automobile parts. The following table has the data on the unit requirements of materials (pounds) and labor (hours), as well as the unit sales price and unit variable cost. The total available labor per week is 200 hours and the total of 170 pounds of material available per week. There are three types of machines that need to be rented, one for each type of part. The weekly costs for renting these machines are: $150.00 for machine 1, $100.00 for machine 2, and $85.00 for machine 3. The goal of the problem is to maximize the profit of producing the three types of automobile parts.
In formulating this linear optimization model, let x_1 denote the number of parts manufactured of type 1, x_2 denote the number of parts manufactured of type 2, and x_3 denote the number of parts manufactured of type 3. These integer variables are used to formulate the total sales, S, with the following expression:

$$S = 34x_1 + 22x_2 + 40x_3$$

The total costs variable, V, is formulated with the following expression:

$$V = 18x_1 + 12x_2 + 22x_3$$

The cost of renting the machines (the fixed cost) depends on whether the parts of a specific type are produced. Let y_1 denote whether the parts of type 1 are produced, y_2 denote whether the parts of type 2 are produced, and y_3 denote whether the parts of type 3 are produced. These binary variables are used to formulate the total fixed cost, F, with the following expression:

$$F = 150y_1 + 100y_2 + 85y_3$$

The weekly profit is the objective function of the problem and can be expressed as:

$$P = S - V - F$$

The objective function can then be formulated with the following expression:

$$z = 34x_1 + 22x_2 + 40x_3$$
$$-18x_1 - 12x_2 - 22x_3$$
$$-150y_1 - 100y_2 - 85y_3$$

There are two types of problem constraints: the first type of constraint derives from the total available labor and material per week. The second type of constraint associates the type of part produced with the corresponding machine that needs to be rented.

$$7x_1 + 5x_2 + 7x_3 \leq 170 \quad \text{(Material available)}$$
$$5x_1 + 4x_2 + 12x_3 \leq 200 \quad \text{(Labor available)}$$
In this problem, given the total available material and labor per week, the maximum possible number of parts of type 1 that can be produced is 24. In a similar manner, the maximum possible number of parts of type 2 that can be produced is 34, and maximum possible number of parts of type 3 that can be produced is 16. These machine constraints are:

\[
\begin{align*}
 x_1 &\leq 24y_1 \\
 x_2 &\leq 34y_2 \\
 x_3 &\leq 16y_3
\end{align*}
\]

The formulation of the problem is formatted for solving with LP_solve and stored in file intprob2.lp.

C:\computational_mod\LP_prog\LP_solve>lp_solve intprob2.lp

Value of objective function: 240.00000000

Actual values of the variables:
The results show that the optimal value of profit is $240.00 and only 34 automobile parts of type 2 are to be produced.

An additional constraint on the problem is: at least two machines must be rented. This constraint is formulated with the following expression:

\[y_1 + y_2 + y_3 \geq 2 \]

The execution of the LP solve program to solve the linear optimization problem with this additional constraint is stored in file intprob2d.lp and produces the results that can be observed in the following listing, using the command window.

C:\computational_mod\LP_prog\LP_solve>LP_solve intprob2d.lp

Value of objective function: 195.00000000
Actual values of the variables:
- x1 = 0
- x2 = 20
- x3 = 10
- y1 = 0
- y2 = 1
- y3 = 1

The results show that the optimal value of profit is now $195.00 and 20 automobile parts of type 2 and 10 automobile parts of type 3 are to be produced.

Instead of the previous constraint, another constraint on the problem is: if machine 1 is rented then machine 3 should also be rented. This constraint is formulated with the following expression:

\[y_1 - y_3 \leq 1 \]

The execution of the LP solve program to solve the linear optimization problem with this constraint produces the results that can be observed in the following listing, using the command window. The formulation of the problem is formatted for solving with LP solve and stored in file intprob2c.lp.

C:\computational_mod\LP_prog\LP_solve>LP_solve intprob2c.lp

Value of objective function: 240.00000000
Actual values of the variables:
- x1 = 0
- x2 = 34
- x3 = 0
- y1 = 0
- y2 = 1
- y3 = 0
The results are the same as the first solution to this problem. The results show that the optimal value of profit is $240.00 and only 34 automobile parts of type 2 are to be produced.

Instead of the previous constraint, another constraint on the problem is: all three machines should be rented. This constraint is formulated with the following expression:

\[y_1 + y_2 + y_3 = 3 \]

The execution of the LP solve program to solve the linear optimization problem with this constraint produces the results that can be observed in the following listing, using the command window:

C:\computational_mod\LP_prog\LP_solve>LP_solve intprob2d.lp

Value of objective function: 69.00000000

Actual values of the variables:

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>x3</th>
<th>y1</th>
<th>y2</th>
<th>y3</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>3</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

The results show that the optimal value of profit is $69.00 and 11 automobile parts of type 1, 3 parts of type 2, and 11 parts of type 3 are to be produced.

Summary

Integer linear optimization modeling can be used to study and calculate various problems that are represented by variables that have only integer values. The additional restrictions on decision variables, is that the values be binary, are useful on some types of problems. If not all variables have integer values then it is a mixed integer linear problem. Typical applications of problems that can be solved with integer linear optimization are: knapsack problems, transportation problems, assignment problems, shortest route problems, and maximum flow problems.
Exercises

Exercise 25.1 A company manufactures two types of duffel traveling bags. Three units of material are used to manufacture bags of type 1, and six units of material to manufacture bags of type 2. The total units available of material is 150. The initial setup cost to manufacture bags is $15 for type 1 and $30 for type 2. The company can sell bags of type 1 with a profit of $2 per bag and type 2 with a profit of $5 per bag. Compute the number of bags of each type to produce and the maximum profits possible.

Exercise 25.2 A computer distributor has four warehouses (W1, W2, W3, and W4) and each can ship 120 units per week. The operational costs of the warehouses are: $385 for W1, $480 for W2, $290 for W3, and $145 for W4. There are three demand points (D1, D2, and D3) that have the following weekly demands: 75 for D1, 68 for D2, and 35 for D3. The distributor has the following operational restrictions: at most, two warehouses can be operating; if warehouse W1 is operating then W2 must also be operating; either warehouse W4 or warehouse W2 must be operating. Compute the minimum weekly cost while meeting demand. The following table includes data on the cost of transporting a unit from a warehouse to a destination point.

<table>
<thead>
<tr>
<th>From</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>$18</td>
<td>$36</td>
<td>$47</td>
</tr>
<tr>
<td>W2</td>
<td>$45</td>
<td>$12</td>
<td>$22</td>
</tr>
<tr>
<td>W3</td>
<td>$22</td>
<td>$34</td>
<td>$15</td>
</tr>
<tr>
<td>W4</td>
<td>$20</td>
<td>$46</td>
<td>$32</td>
</tr>
</tbody>
</table>

Exercise 25.3 Traffic engineers are studying traffic patterns in part of a city. The immediate problem is to find the maximum flow of vehicles from a source point, S, to a destination point, D. Figure 25.1 and the following table show the flow capacity of the various roads (between nodes). Note that the direction of the traffic is important. Formulate and solve a linear optimization problem that computes the maximum traffic flow from point S to point D.
FIGURE 25.1: Graph of road capacity in city.

<table>
<thead>
<tr>
<th>Arc</th>
<th>Capacity</th>
<th>Arc</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-3</td>
<td>6</td>
<td>4-5</td>
<td>5</td>
</tr>
<tr>
<td>3-S</td>
<td>1</td>
<td>5-4</td>
<td>1</td>
</tr>
<tr>
<td>S-4</td>
<td>7</td>
<td>4-6</td>
<td>7</td>
</tr>
<tr>
<td>4-S</td>
<td>1</td>
<td>6-4</td>
<td>1</td>
</tr>
<tr>
<td>S-2</td>
<td>5</td>
<td>4-D</td>
<td>2</td>
</tr>
<tr>
<td>2-S</td>
<td>0</td>
<td>D-4</td>
<td>0</td>
</tr>
<tr>
<td>2-4</td>
<td>1</td>
<td>5-D</td>
<td>8</td>
</tr>
<tr>
<td>4-2</td>
<td>4</td>
<td>D-5</td>
<td>0</td>
</tr>
<tr>
<td>2-3</td>
<td>2</td>
<td>5-6</td>
<td>2</td>
</tr>
<tr>
<td>3-2</td>
<td>1</td>
<td>6-5</td>
<td>2</td>
</tr>
<tr>
<td>3-4</td>
<td>2</td>
<td>6-D</td>
<td>8</td>
</tr>
<tr>
<td>4-3</td>
<td>1</td>
<td>D-6</td>
<td>2</td>
</tr>
<tr>
<td>3-5</td>
<td>4</td>
<td>5-3</td>
<td>3</td>
</tr>
</tbody>
</table>
Appendix A

GNU C Compiler Tool

A.1 Command Line Documentation

On a terminal window, the following command can be typed and the short documentation on the usage of the GNU C compiler will display.

```bash
$ gcc --help
Usage: gcc [options] file...
Options:

--pass-exit-codes
   Exit with highest error code from a phase

--help
   Display this information

--target-help
   Display target specific command line options

--help=
   {common—optimizers—params—target—warnings—[8] {joined —separate—undocumented}}[...]
   Display specific types of command line options. (Use `v --help` to display command line options of sub-processes)

--version
   Display compiler version information

--dumpspecs
   Display all of the built in spec strings

--dumpversion
   Display the version of the compiler

--dumpmachine
   Display the compiler’s target processor

--print-search-dirs
   Display the directories in the compiler’s search path
```
--print-libgcc-file-name
Display the name of the compiler’s companion library

--print-file-name=<lib>
Display the full path to library <lib>

--print-prog-name=<prog>
Display the full path to compiler component <prog>

--print-multiarch
Display the target’s normalized GNU triplet, used as a component in the library path

--print-multi-directory
Display the root directory for versions of libgcc

--print-multi-lib
Display the mapping between command line options and multiple library search directories

--print-multi-os-directory
Display the relative path to OS libraries

--print-sysroot
Display the target libraries directory

--print-sysroot-headers-suffix
Display the sysroot suffix used to find headers

-Wa,<options>
Pass comma-separated <options> on to the assembler

-Wp,<options>
Pass comma-separated <options> on to the preprocessor

-Wl,<options>
Pass comma-separated <options> on to the linker

-Xassembler (arg)
Pass <arg> on to the assembler

-Xpreprocessor (arg)
Pass <arg> on to the preprocessor

-Xlinker (arg)
Pass <arg> on to the linker

--save-temps
Do not delete intermediate files
–save-temps=(arg)
Do not delete intermediate files

–no-canonical-prefixes
Do not canonicalize paths when building relative prefixes to other gcc components

–pipe
Use pipes rather than intermediate files

–time
Time the execution of each subprocess

–specs=(file)
Override built-in specs with the contents of <file>

–std=(standard)
Assume that the input sources are for <standard>

–sysroot=(directory)
Use <directory> as the root directory for headers and libraries

–B (directory) Add <directory> to the compiler’s search paths

–v Display the programs invoked by the compiler

–###
Like –v but options quoted and commands not executed

–E
Preprocess only; do not compile, assemble or link

–S
Compile only; do not assemble or link

–c
Compile and assemble, but do not link

–o (file)
Place the output into <file>

–pie
Create a position independent executable

–shared Create a shared library

–x (language)
Specify the language of the following input files. Permissible languages include: c c++, assembler, or none. ‘none’ means revert to the default behavior of guessing the language based on the file’s extension

Options starting with –q, –f, –m, –O, –W, or –param are automatically passed on to the various sub-processes invoked by gcc. In order to pass other options on to these processes the –W<letter> options must be used.
A.2 GCC Command Options

The GCC tool normally performs preprocessing, compilation, assembly and linking of the source C program. See http://gcc.gnu.org.

Most of the command-line options that you can use with GCC are useful for C programs; when an option is only useful with another language (usually C++), the explanation says so explicitly. If the description for a particular option does not mention a source language, you can use that option with all supported languages.

The gcc program accepts options and file names as operands. Many options have multi-letter names; therefore multiple single-letter options may not be grouped: \texttt{-dv} is very different from \texttt{-d -v}.

You can mix options and other arguments. For the most part, the order you use doesn’t matter. Order does matter when you use several options of the same kind; for example, if you specify \texttt{-l} more than once, the directories are searched in the order specified. Also, the placement of the \texttt{-l} option is significant.

Many options have long names starting with \texttt{-f} or with \texttt{-W} for example, \texttt{-fmove-loop-invariants}, \texttt{-Wformat} and so on. Most of these have both positive and negative forms; the negative form of \texttt{-ffoo} would be \texttt{-fno-foo}. This manual documents only one of these two forms, whichever one is not the default.

A.3 Options Controlling the Kind of Output

Compilation can involve up to four stages: preprocessing, compilation proper, assembly and linking, always in that order. GCC is capable of preprocessing and compiling several files either into several assembler input files, or into one assembler input file; then each assembler input file produces an object file, and linking combines all the object files (those newly compiled, and those specified as input) into an executable file.

For any given input file, the file name suffix determines what kind of compilation is performed:

\texttt{file.c}
C source code that must be preprocessed.

\texttt{file.i}
C source code that should not be preprocessed.

\texttt{file.h}
C, header file to be turned into a precompiled header (default), or C, C++ header file to be turned into an Ada spec (via the \texttt{-fdump-ada-spec} switch).
GNU C Compiler Tool

file.s

other
An object file to be fed straight into linking. Any file name with no recognized suffix is treated this way.

--x none
Turn off any specification of a language, so that subsequent files are handled according to their file name suffixes (as they are if --x has not been used at all).

--pass-exit-codes
Normally the gcc program will exit with the code of 1 if any phase of the compiler returns a non-success return code. If you specify -pass-exit-codes, the gcc program will instead return with numerically highest error produced by any phase that returned an error indication. The C, C++, and Fortran frontends return 4, if an internal compiler error is encountered.

--c
Compile or assemble the source files, but do not link. The linking stage simply is not done. The ultimate output is in the form of an object file for each source file. By default, the object file name for a source file is made by replacing the suffix .c, .i, .s, etc., with .o. Unrecognized input files, not requiring compilation or assembly, are ignored.

--S
Stop after the stage of compilation proper; do not assemble. The output is in the form of an assembler code file for each non-assembler input file specified. By default, the assembler file name for a source file is made by replacing the suffix .c, .i, etc., with .s. Input files that don’t require compilation are ignored.

--E
Stop after the preprocessing stage; do not run the compiler proper. The output is in the form of preprocessed source code, which is sent to the standard output. Input files that don’t require preprocessing are ignored.

--o file
Place output in file file. This applies regardless to whatever sort of output is being produced, whether it be an executable file, an object file, an assembler file or preprocessed C code. If --o is not specified, the default is to put an executable file in a.out, the object file for source.suffix in source.o, its assembler file in source.s, a precompiled header file in source.suffix.gch, and all preprocessed C source on standard output.
–v
Print (on standard error output) the commands executed to run the stages of
compilation. Also print the version number of the compiler driver program
and of the preprocessor and the compiler proper.

–###
Like –v except the commands are not executed and arguments are quoted un-
less they contain only alphanumeric characters or ./-. This is useful for shell
scripts to capture the driver-generated command lines.

–pipe
Use pipes rather than temporary files for communication between the various
stages of compilation. This fails to work on some systems, where the assembler
is unable to read from a pipe; but the GNU assembler has no trouble.

–help
Print (on the standard output) a description of the command-line options un-
derstood by gcc. If the -v option is also specified then –help will also be passed on
to the various processes invoked by gcc, so that they can display the command-
line options they accept. If the –Wextra option has also been specified (prior
to the –help option), then command-line options that have no documentation
associated with them will also be displayed.

–target-help
Print (on the standard output) a description of target-specific command-line
options for each tool. For some targets extra target-specific information may
also be printed.

–help= {class}[^[^]qualifier}[, ...]
Print (on the standard output) a description of the command-line options un-
derstood by the compiler that fit into all specified classes and qualifiers. These
are the supported classes:

optimizers
This will display all of the optimization options supported by the compi-
ler.

warnings
This will display all of the options controlling warning messages pro-
duced by the compiler.

target
This will display target-specific options. Target-specific options of the
linker and assembler will not be displayed. This is because those tools do
not currently support the extended --help= syntax.

params
This will display the values recognized by the --param option.
language

This will display the options supported for language, where language is the name of one of the languages supported in this version of GCC.

common

This will display the options that are common to all languages.

These are the supported qualifiers:

undocumented

Display only those options that are undocumented.

joined

Display options taking an argument that appears after an equal sign in the same continuous piece of text, such as: \texttt{--help=target}.

separate

Display options taking an argument that appears as a separate word following the original option, such as: \texttt{-o output-file}.

Thus for example to display all the undocumented target-specific switches supported by the compiler the following can be used:

\texttt{--help=target,undocumented}

The sense of a qualifier can be inverted by prefixing it with the \textasciitilde character, so for example to display all binary warning options (i.e., ones that are either on or off and that do not take an argument) that have a description, use:

\texttt{--help=warnings,\textasciitilde joined,\textasciitilde undocumented}

The argument to \texttt{--help=} should not consist solely of inverted qualifiers. Combining several classes is possible, although this usually restricts the output by so much that there is nothing to display. One case where it does work however, is when one of the classes is target. So for example to display all the target-specific optimization options the following can be used:

\texttt{--help=target,optimizers}

The \texttt{--help=} option can be repeated on the command line. Each successive use will display its requested class of options, skipping those that have already been displayed. If the \texttt{-Q} option appears on the command line before the \texttt{--help=} option, then the descriptive text displayed by \texttt{--help=} is changed. Instead of describing the displayed options, an indication is given as to whether the option is enabled, disabled or set to a specific value (assuming that the compiler knows this at the point where the \texttt{--help=} option is used). The output is sensitive to the effects of previous command-line options, so for example it is possible to find out which optimizations are enabled at \texttt{-O2} by using:\texttt{-Q -O2 --help=optimizers}

Alternatively you can discover which binary optimizations are enabled by \texttt{-O3} by using:
Introduction to Computational Modeling

```bash
gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
diff /tmp/O2-opts /tmp/O3-opts | grep enabled
```

--no-canonical-prefixes
Do not expand any symbolic links, resolve references to `./..` or `../`, or make the path absolute when generating a relative prefix.

--version
Display the version number and copyrights of the invoked GCC.

--wrapper
Invoke all subcommands under a wrapper program. The name of the wrapper program and its parameters are passed as a comma separated list.

gcc -c t.c -wrapper gdb,--args

This will invoke all subprograms of gcc under `gdb --args`, thus the invocation of `cc1` will be `gdb --args cc1`

--fplugin=name.so
Load the plugin code in file `name.so`, assumed to be a shared object to be `dlopen`'d by the compiler. The base name of the shared object file is used to identify the plugin for the purposes of argument parsing (See `--fplugin-arg-name-key=value` below). Each plugin should define the callback functions specified in the Plugins API.

--fplugin-arg-name-key=value
Define an argument called `key` with a value of `value` for the plugin called `name`.

--fdump-ada-spec[-slim]
For C and C++ source and include files, generate corresponding Ada specs. See Generating Ada Bindings for C and C++ headers, which provides detailed documentation on this feature.

--fdump-go-spec=file
For input files in any language, generate corresponding Go declarations in file. This generates Go `const`, `type`, `var`, and `func` declarations which may be a useful way to start writing a Go interface to code written in some other language.

@file
Read command-line options from file. The options read are inserted in place of the original `@file` option. If file does not exist, or cannot be read, then the option will be treated literally, and not removed.

Options in file are separated by whitespace. A whitespace character may be included in an option by surrounding the entire option in either single or double quotes. Any character (including a backslash) may be included by prefixing the
A.4 Options to Request or Suppress Warnings

Warnings are diagnostic messages that report constructions that are not inherently erroneous but that are risky or suggest there may have been an error.

The following language-independent options do not enable specific warnings but control the kinds of diagnostics produced by GCC.

--fsyntax-only
Check the code for syntax errors, but don’t do anything beyond that.

--fmax-errors=n
Limits the maximum number of error messages to n, at which point GCC bails out rather than attempting to continue processing the source code. If n is 0 (the default), there is no limit on the number of error messages produced. If --Wfatal-errors is also specified, then --Wfatal-errors takes precedence over this option.

-w
Inhibit all warning messages.

--Werror
Make all warnings into errors.

--Werror=
Make the specified warning into an error. The specifier for a warning is appended, for example --Werror=switch turns the warnings controlled by --Wswitch into errors. This switch takes a negative form, to be used to negate --Werror for specific warnings, for example --Wno-error=switch makes --Wswitch warnings not be errors, even when --Werror is in effect.

The warning message for each controllable warning includes the option that controls the warning. That option can then be used with --Werror= and --Wno-error= as described above. (Printing of the option in the warning message can be disabled using the --fno-diagnostics-show-option flag.)

Note that specifying --Werror=foo automatically implies --Wfoo. However, --Wno-error=foo does not imply anything.

--Wfatal-errors
This option causes the compiler to abort compilation on the first error occurred
rather than trying to keep going and printing further error messages. You can request many specific warnings with options beginning `--W', for example `--Wimplicit` to request warnings on implicit declarations. Each of these specific warning options also has a negative form beginning `--Wno-' to turn off warnings; for example, `--Wno-implicit'. This manual lists only one of the two forms, whichever is not the default. For further, language-specific options also refer to C++ Dialect Options and Objective-C and Objective-C++ Dialect Options.

When an unrecognized warning option is requested (e.g., `Wunknown-warning`), GCC will emit a diagnostic stating that the option is not recognized. However, if the `Wno-' form is used, the behavior is slightly different: No diagnostic will be produced for `Wno-unknown-warning` unless other diagnostics are being produced. This allows the use of new `Wno-' options with old compilers, but if something goes wrong, the compiler will warn that an unrecognized option was used.

`--pedantic`

Issue all the warnings demanded by strict ISO C and ISO C++; reject all programs that use forbidden extensions, and some other programs that do not follow ISO C and ISO C++. For ISO C, follows the version of the ISO C standard specified by any `--std` option used.

Valid ISO C and ISO C++ programs should compile properly with or without this option (though a rare few will require `ansi` or a `--std` option specifying the required version of ISO C). However, without this option, certain GNU extensions and traditional C and C++ features are supported as well. With this option, they are rejected.

`--pedantic` does not cause warning messages for use of the alternate keywords whose names begin and end with _. Pedantic warnings are also disabled in the expression that follows _. However, only system header files should use these escape routes; application programs should avoid them. See Alternate Keywords.

Some users try to use `pedantic` to check programs for strict ISO C conformance. They soon find that it does not do quite what they want: it finds some non-ISO practices, but not all—only those for which ISO C requires a diagnostic, and some others for which diagnostics have been added. A feature to report any failure to conform to ISO C might be useful in some instances, but would require considerable additional work and would be quite different from `pedantic`. We don’t have plans to support such a feature in the near future. Where the standard specified with `--std` represents a GNU extended dialect of C, such as `gnu90' or `gnu99', there is a corresponding base standard, the version of ISO C on which the GNU extended dialect is based. Warnings from `pedantic` are given where they are required by the base standard. (It would not make sense for such warnings to be given only for features not in the specified
GNU C dialect, since by definition the GNU dialects of C include all features
the compiler supports with the given option, and there would be nothing to
warn about.)
This page intentionally left blank
Appendix B

Introduction to Linux

B.1 Introduction

Linux is a multi-user, multi-tasking operating system that is Unix-like and performs many of the same functions as UNIX. Linux is freely available; to acquire Linux is to purchase a Linux distribution.

A Linux distribution is an organized bundle that includes the kernel (core of the operating system), a large set of utility programs, which includes an installation utility. Some of the most widely-used Linux distributions are: Red Hat, Debian, Ubuntu, CentOS, Slackware, and others.

B.2 Operating System Interfaces

Users and application programmers can communicate with an operating system through its interfaces. There are three general levels of interfaces provided by an operating system and they are:

1. Graphical user interface (GUI), for example, Gnome, KDE, the Windows desktop and others.

2. Command line interpreter, also known as the shell.

The highest level is the graphical user interface (GUI) because the user is presented with intuitive icons, menus and other graphical objects. With these objects, the user interacts with the operating system in a relatively easy and convenient manner, for example using the click of a mouse to select an option or command.

The user at this level is completely separated from any intrinsic detail about the underlying system. This level of operating system interface is not considered an essential part of the operating system; the interface is rather an add-on system software component.
The second level of interface, the shell (or command line interpreter), is a text-oriented interface. The advanced users and the application programmers will normally directly communicate with the operating system at this level. In general, the graphical user interface and the shell are at the same level in the structure of an operating system.

The third level, the system call interface, is used by the application programs to request the various services provided by the operating system.

A user interacts with Linux using one of several available interfaces that are grouped in two categories:

- A text-based command line interface
- A graphical user interface (GUI).

Linux has several graphical user interfaces available, such as GNU Network Object Model Environment (GNOME) and the K Desktop Environment (KDE). The graphical interface or a variation of it is typically used with Linux installed in your computer.

The most common interface when connected to a remote Linux server is the command line. The Command Line Interpreter, called the shell, accepts commands in text form and executes them one after the other. This interface is also used from a Linux installed in your computer and activating the Terminal program.

When you connect to a Linux system via a network, you will need to type in your user account name and your password. After you have logged in, a command prompt will appear as a $ symbol. This prompt indicates that the shell is ready to accept a command; the line with the prompt displays:

```
[Home directory/current directory] $ 
```

A similar login procedure is normally necessary when starting a session on Linux installed in a standalone computer.

B.3 Command Line Interface

This section explains the basic use of the command line interface and the most common commands used in Linux. Each command has a name, followed by a set of parameters. In general, commands are entered using the keyboard (Standard Input) and the system response appears on the screen (Standard Output). The shell accepts and executes the commands as they are entered by the user.

The shell is the command interpreter. Linux has many different Shells available and these include:

- Bourne
• Korn
• C shell
• Bash (default on Linux)
• tcsh
• dash

While these shells vary in some of the more complex features that they provide, they all have the same basic usage. This section presents a quick introduction to using the most basic Linux commands.

B.4 Files and Directories

In Linux, there are three types of files: ordinary files, directories, and device files. A file is simply a named organized collection of data. A file can contain data or a program (in binary or in source form). The directory structure of Linux allows a convenient way to organize files and subdirectories. The top directory is the system root, denoted by / (forward slash). All other directories and files are located under the system root.

When you are working with a Linux Shell, you navigate the system’s directory structure to perform the desired operations. The Shell has the concept of the Current Directory, which is the directory that you are currently working in. When you login, the Shell will initially position you at your Home Directory, which is the unique directory provided for each user of the system. For example: /home/jgarrido is a home directory.

In addition to your Home Directory, the system usually has other directories with various system files that you may use. Some common system directories are shown in Table B.1.

<table>
<thead>
<tr>
<th>Directory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/bin</td>
<td>Contains binary or executable files</td>
</tr>
<tr>
<td>/sbin</td>
<td>Contains system binaries</td>
</tr>
<tr>
<td>/usr</td>
<td>Contains user libraries and apps</td>
</tr>
<tr>
<td>/etc</td>
<td>Typically contains configuration information</td>
</tr>
<tr>
<td>/tmp</td>
<td>Directory for temporary files</td>
</tr>
<tr>
<td>/dev</td>
<td>Contains device drivers for the hardware components</td>
</tr>
</tbody>
</table>

TABLE B.1: System directories.
B.4.1 Specifying Paths

A directory or file is specified by typing the path to the desired directory or file. A path consists of the names of directories in the directory tree structure, with a “/” between directory names. (Note that Windows uses “\” to separate directory names). If the path begins with a directory (or file) name, then the path begins at the current directory. If the path begins with a (/), then the path begins at the root of the entire directory structure on this system.

An absolute path includes the complete and hierarchical structure. To access a file with the indicated absolute path, Linux starts at the top and searches downward every directory specified. For example, an absolute path of file batch.cpp is: /home/jgarrido/psim3/batch.cpp. A relative path specifies the location of a file in relation to the current working directory.

Unlike MS Windows, Linux pathnames are case-sensitive. Thus, MyFile, myfile, and MYFILE all specify different files.

There are two special directory names (a single period, and 2 consecutive periods):

- A reference to the current directory is specified as ‘.’ In the command line.
- A reference to the parent directory one level up in the tree, is specified with ‘..’ in the command line.

Thus, the command: ls .. will display the parent directory.

B.4.2 Wildcards

When using the Bash shell, it is possible to select several files names that have some sequence of characters in common. Some commands allow you to specify more than one file or directory. The special characters that are used are wildcard characters.

There are three wildcards:

1. If you specify a ‘?’ in a directory or file name, it will match any character in that position. Thus h? will match he or hf, but not her.
2. Similarly, if you specify ‘*’ in a directory or file name, it will match any sequence of characters in that position. Thus h* will match he, hf or her.
3. A pair of square brackets ‘[]’ enclosing a list of characters allow the shell to match individual characters of the list.

The following examples show the convenience of using wildcards with the ls command:

```
ls *.dat
ls re*asd
ls *?.
ls bat{edfg}.cpp
ls [a-j]*.dat
```
B.5 Basic Linux Commands

B.5.1 The passwd Command

This command is used to change your password. It will prompt you to enter your current password and then ask you to enter your new password twice. For example:

```
passwd
Changing password for user jgarrido.
Changing password for jgarrido
{current} UNIX password:
New UNIX password:
Retype new UNIX password:
passwd: all authentication tokens updated successfully.
```

B.5.2 The man Command

To request help, if you cannot remember what the parameters to a command are, or the specific use of a command, you can type the `man` command. If you type `man commandname`, it will display manual page for that command including the parameters for that command. It accepts wildcards, so if you cannot remember exactly how the command is spelled, you can use a wildcard to have it try to match the name of the desired command. For example, the following command typed at the the shell prompt, will display the manual command page shown in next listing:

```
man passwd
```

PASSWD(1) User Commands PASSWD(1)

NAME
passwd - change user password

SYNOPSIS
passwd [options] [LOGIN]

DESCRIPTION
The `passwd` command changes passwords for user accounts. A normal user may only change the password for his/her own account, while the superuser may change the password for any account. The `passwd` command also changes the account or associated password validity period.

Password Changes
The user is first prompted for his/her old password, if one is present. This password is then encrypted and compared against the stored password. The user has only one chance to enter the correct password. The superuser is permitted to bypass this step so that forgotten passwords may be changed.
After the password has been entered, password aging information is checked to see if the user is permitted to change the password at this time. If not, `passwd` refuses to change the password and exits.

The user is then prompted twice for a replacement password. The second entry is compared against the first and both are required to match in order for the password to be changed.

Then, the password is tested for complexity. As a general guideline, passwords should consist of 6 to 8 characters including one or more characters from each of the following sets:

- lower case alphabets
- digits 0 thru 9
- punctuation marks

Care must be taken not to include the system default erase or kill characters. `passwd` will reject any password which is not suitably complex.

Hints for user passwords
The security of a password depends upon the strength of the encryption algorithm and the size of the key space. The legacy UNIX System encryption method is based on the NBS DES algorithm. More recent methods are now recommended (see ENCRYPT_METHOD).

The size of the key space depends upon the randomness of the password which is selected.

Compromises in password security normally result from careless password selection or handling. For this reason, you should not select a password which appears in a dictionary or which must be written down. The password should also not be a proper name, your license number, birth date, or street address. Any of these may be used as guesses to violate system security.

You can find advice on how to choose a strong password on http://en.wikipedia.org/wiki/Password_strength

OPTIONS
The options which apply to the `passwd` command are:

- `-a, --all`
 This option can be used only with `-S` and causes show status for all users.

- `-d, --delete`
 Delete a user’s password (make it empty). This is a quick way to disable a password for an account. It will set the named account passwordless.

- `-e, --expire`
 Immediately expire an account’s password. This in effect can force a user to change his/her password at the user’s next login.

- `-h, --help`
 Display help message and exit.
-i, --inactive INACTIVE
This option is used to disable an account after the password has been expired for a number of days. After a user account has had an expired password for INACTIVE days, the user may no longer sign on to the account.

-k, --keep-tokens
Indicate password change should be performed only for expired authentication tokens (passwords). The user wishes to keep their non-expired tokens as before.

-l, --lock
Lock the password of the named account. This option disables a password by changing it to a value which matches no possible encrypted value (it adds a ‘!’ at the beginning of the password).
Note that this does not disable the account. The user may still be able to login using another authentication token (e.g. an SSH key). To disable the account, administrators should use `usermod --expiredate 1` (this set the account’s expire date to Jan 2, 1970).
Users with a locked password are not allowed to change their password.

-n, --mindays MIN_DAYS
Set the minimum number of days between password changes to MIN_DAYS. A value of zero for this field indicates that the user may change his/her password at any time.

-q, --quiet
Quiet mode.

-r, --repository REPOSITORY
change password in REPOSITORY repository

-S, --status
Display account status information. The status information consists of 7 fields. The first field is the user’s login name. The second field indicates if the user account has a locked password (L), has no password (NP), or has a usable password (P). The third field gives the date of the last password change. The next four fields are the minimum age, maximum age, warning period, and inactivity period for the password. These ages are expressed in days.

-u, --unlock
Unlock the password of the named account. This option re-enables a password by changing the password back to its previous value (to the value before using the -l option).

-w, --warndays WARN_DAYS
Set the number of days of warning before a password change is required. The WARN_DAYS option is the number of days prior to the password expiring that a user will be warned that his/her password is about to expire.
-x, --maxdays MAX_DAYS
 Set the maximum number of days a password remains valid. After
 MAX_DAYS, the password is required to be changed.

CAVEATS
Password complexity checking may vary from site to site. The user is urged to
select a password as complex as he or she feels comfortable with.

Users may not be able to change their password on a system if NIS is enabled
and they are not logged into the NIS server.

passwd uses PAM to authenticate users and to change their passwords.

FILES
/etc/passwd
User account information.

/etc/shadow
Secure user account information.

/etc/pam.d/passwd
PAM configuration for passwd.

EXIT VALUES
The passwd command exits with the following values:

0 success
1 permission denied
2 invalid combination of options
3 unexpected failure, nothing done
4 unexpected failure, passwd file missing
5 passwd file busy, try again
6 invalid argument to option

SEE ALSO passwd(5), shadow(5), usermod(8).
B.5.3 The ls Command

The ls (list directory) command is used to provide a directory listing. It has the following format:

```
ls [options] directory-name
```

This command will provide a listing of the specified directory. If directory-name is omitted, it will provide a listing of the Current Directory. The following listing shows the result of using the ls without including a directory name.

```
addrptr.c
APP_C.C
APR91.DAT
areacir.c
arrayex4.cpp
arrayex5.cpp
arraymulb.c
arrayult.c
arrmax.c
arrmult.c
AUG91.DAT
averagef.c
basic_lib.c
basic_lib.h
basic_lib.o
bool.h
```

The ls command provides several options; the most important ones are: long listing (-l), list all files (including the system files) (-a), list files by order of date and time starting with the most recent (-t). To use the long listing option, type the ls command with a hyphen and an letter l, -l. For example:

```
ls -l
```

total 1952
-rw-r--r-- 1 jgarrido jgarrido 389 Dec 31 12:07 addrptr.c
-rw-r--r-- 1 jgarrido jgarrido 889 Sep 5 10:22 APP_C.C
-rw-r--r-- 1 jgarrido jgarrido 3180 Mar 22 1993 APR91.DAT
-rw-r--r-- 1 jgarrido jgarrido 686 Dec 27 22:41 areacir.c
-rw-r--r-- 1 jgarrido jgarrido 1480 Sep 5 12:32 arrayex4.cpp
-rw-r--r-- 1 jgarrido jgarrido 1467 Sep 5 12:36 arrayex5.cpp
-rw-r--r-- 1 jgarrido jgarrido 856 Dec 31 19:26 arraymulb.c
-rw-r--r-- 1 jgarrido jgarrido 596 Dec 31 15:00 arrayult.c
-rw-r--r-- 1 jgarrido jgarrido 404 Dec 30 19:59 arrmax.c
-rw-r--r-- 1 jgarrido jgarrido 428 Dec 31 14:46 arrult.c
-rw-r--r-- 1 jgarrido jgarrido 3071 Mar 22 1993 AUG91.DAT
-rw-r--r-- 1 jgarrido jgarrido 426 Dec 30 19:42 averagef.c
-rw-r--r-- 1 jgarrido jgarrido 6581 Oct 19 09:41 basic_lib.c
-rw-r--r-- 1 jgarrido jgarrido 550 Oct 14 15:18 basic_lib.h
-rw-r--r-- 1 jgarrido jgarrido 2902 Oct 19 10:06 basic_lib.o
-rw-r--r-- 1 jgarrido jgarrido 55 Dec 20 12:22 bool.h
The command will list all the files and folders in the current directory with the long listing option. With the `long` option, detailed information about the files and subdirectories (subfolders) is shown. The listing shows the `ls` command with the long option, the additional information displayed includes the file type, the permissions mode, the owner of the file, the size, the date and time of last update, and other data about the file.

Typing the `ls` command and a name of a directory displays all the files and subdirectories in the specified directory. By typing `ls os` in the command line, the `ls` command is used with the `os` directory.

B.5.4 The `cp` Command

The `cp` command will copy one or more files from one directory to another. The original files are not changed. The command has the following format:

```
cp [options] source destination
```

This command will copy a source file on some directory to a destination directory. You can use wildcards to specify more than one file or directory to be copied. For example:

```
cp psim2/rrsched.cpp psim3
```

```
cp data/*.dat mydir/data
```

The first line copies the file `rrsched.cpp` from the `psim2` subdirectory to directory `psim3`. The second line copies all the files with an `.dat` extension to subdirectory `mydir/data`.

The most common options of the `cp` command are the following. Interactive option `-i`, which prompts the user when a file will be overwritten. Recursive option `-r`, which can copy directories and their files. Verbose `-v`, which displays the name of each file copied.

B.5.5 The `mv` Command

The `mv` command can be used to change the name of a file (or directory). This can also be done with the `cp` command. The `mv` command has the following format:

```
mv [options] source target
```

Some of the options for this command (interactive and verbose options) are similar to the ones for command `cp`. The following example illustrates the use of the `mv` command.

```
mv rrsched.cpp timesh.cpp
```

```
mv my.dat mydir/data
```

The first line of the example changed the name of file `rrsched.cpp` to `timesh.cpp`. The second line moves file `my.dat` to directory `mydir/data`.
B.5.6 The `rm` Command

The `rm` command will remove (delete) a file from the directory where it is currently located. The command has the following format:

```
rm [options] filename
```

This command will remove (delete) the specified file from the current directory. The following example shows the use of the `rm` command.

```
rm rrsched.cpp
rm mydat/*.dat
```

The first line in the example deletes file `rrsched.cpp` from the current working directory. The second line removes all the files whose names end with `.dat`. The most common options of the `rm` command are the following. Interactive option `-i`, which prompts the user when a file will be removed. Recursive option `-r`, which will remove the entire directories (all their files). Verbose `-v`, which displays the name of each file before removing it.

B.5.7 The `cd` Command

The `cd` command (Change Directory) changes the current directory to the one specified. The command has the following format:

```
cd directory-path
```

This command will change the Current Directory to the specified directory. Thus, the command line `cd ..` will move to the parent directory. When specifying a directory, be careful to include (or not include) the beginning ‘/’ depending on whether you are intending to use an absolute or relative path. If a directory name is not given, the `cd` command changes to the user’s home directory. For example:

```
cd
cd psim3/data
cd /usr/misc
```

The first line of the example changes to the user’s home directory. The second line changes to directory `psim3/data`, which is a subdirectory under the current directory. The third line changes to directory `/usr/misc`, for which an absolute path is given.

B.5.8 The `mkdir` Command

The `mkdir` command (Make Directory) creates a new directory with the specified name. The newly created directory is empty (it has no files). The command has the following format:

```
mkdir directory-name
```
This command will create a new directory with the specified name. One usually uses this with a relative path to create a sub-directory, but it is possible to specify an absolute path. For example:

```bash
mkdir data/models
```

The `mkdir` command in the example creates a new subdirectory called `models` located on the subdirectory `data`.

B.5.9 The `rmdir` Command

The `rmdir` (Remove Directory) removes a directory with the specified name. The command has the following format:

```bash
rmdir directory-name
```

This command will remove (delete) the specified subdirectory from the current directory. The following example removes directory `psim3/data` from the current working directory.

```bash
rmdir psim3/data
```

B.5.10 I/O Re-Direction and Pipe Operators

In Linux, three default files are available for most commands, standard input, standard output, and standard error. Using direction and piping the shell user can change these defaults. With **I/O Re-Direction**, the Shell can:

- Take Input from another file, called input direction.
- Send Output to another file, called output redirection.

Input redirection is carried out by using the less-than symbol (`<`). The command will take the file specified after the `<` as the input. For example, the executable file `a.out` will execute with data from the file `myfile.dat`:

```bash
a.out < myfile.dat
```

Output redirection is carried out by using the greater-than symbol (`>`). The command will take the file specified after the `>` as the output. For example, the executable file `a.out` will execute and send the results to the file `myresult.dat`:

```bash
a.out > myresult.dat
```

With pipes, the standard output of a command can be connected to the standard input of another command. Several commands can be connected with pipes, which use the pipe character (`|`) between commands. For example to pipe the `ls` command with the `more` command:
Command Action

<table>
<thead>
<tr>
<th>Command</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ls > tmp.txt</code></td>
<td>Take the Standard Output from the <code>ls</code> command and write it to the file <code>tmp.txt</code>.</td>
</tr>
<tr>
<td><code>xyz < tmp.txt</code></td>
<td>The <code>xyz</code> application will use the file <code>tmp.txt</code> as its Standard Input.</td>
</tr>
<tr>
<td>`ls</td>
<td>xyz`</td>
</tr>
</tbody>
</table>

TABLE B.2: I/O redirection.

The pipe between these two commands is useful because there will be too much data to be displayed by the `ls` command. The output of this command is sent as input to the `more` command and the data is displayed by the `more` command screen by screen. Table B.2 shows several simple examples of I/O redirection and piping.

The `tee` command sends the output of a command to a file and pipes the output to another command. For example:

```
./a.out | tee myout.txt | more
```

In this example, the first command executes the file `a.out` and sends the output to file `myout.txt` and is also displayed on the screen by the `more` command.

B.6 Shell Variables

In Linux, there are two types of variables that are used with the shell:

- System variables are created and maintained by Linux itself. This type of variable defined in CAPITAL LETTERS.
- User defined variables are created and maintained by the user. The name of this type of variable is defined in lowercase letters.

The following are examples of system variables.

```
HOME=/home/vivek
PATH=/usr/bin:/sbin:/bin:/usr/sbin
SHELL=/bin/bash
USERNAME=vivek
```
To print the content of a system variable, you must use the character $ followed by the variable name. For example, you can print the value of the variables with the echo command, as follows:

```
To print the content of variable vech, you must use the character ($) followed by the variable name. For example:

```
```
XDG_SESSION_PATH=/org/freedesktop/DisplayManager/Session0
GLADE_MODULE_PATH=/usr/share/glade3/pixmaps
GLADE_CATALOG_PATH=/usr/share/glade3/catalogs
XDG_DATA_DIRS=/usr/share/xfce:/usr/local/share/:/usr/share/
DBUS_SESSION_BUS_ADDRESS=unix:abstract=/tmp/dbus-D7rsvkglGfD,
guid=34ee11f9d27c26dd593398f34ee11f9d27c26dd593398f34ee11f9d27c26dd593398f34ee11f9d27c26dd593398f
LESSOPEN=| /usr/bin/lesspipe %s
XDG_CURRENT_DESKTOP=xfce
DISPLAY=:0.0
GLADE_CATALOG_PATH=/usr/share/glade3/catalogs
XDG_CURRENT_DESKTOP=xfce
LESSCLOSE=/usr/bin/lesspipe %s %s
An important environment variable is PATH. This environment variable has a list of directories in which the system will look for the program file whenever you request an application be executed.

**B.6.1 The `pwd` Command**

This command will print (display) the absolute name of the current working directory. The command will display the full path name of the current directory. Note that the dot (.) references the current working directory and is used in other commands that manipulate files and directories (ls, cp, mv, mkdir, rmdir among others).

**B.6.2 The `more` Command**

The `more` command will display the contents of a file one page at a time. In using this command, Linux assumes that the specified file is a text file (or a file that can be viewed on the screen). This command can also be used with a pipe to display the output of another command.

```
more mydata.dat
ls | more
```

The first line of the example lists the contents of file `mydata.dat` one page at a time. The second line displays a listing of the current directory one page at a time.

**B.6.3 The `script` Command**

The `script` command is useful when record a complete (or partial) Linux session. For example, the following command line starts recording or logging a session and all commands used in the session including the system responses are stored in the specified text file `mysession1.txt`.

```
script mysession1.txt
```

When you are done recording a session, the `exit` command can be used.

**B.6.4 The `exit` Command**

The `exit` command can be used to logout of Linux. When you are finished using Linux, type the `exit` command. This will cause the shell to terminate and you will be logged off the system. This command is normally used in a script file (a command file) to exit with an optional integer error code.
B.7 Text Editing

There are several text editors available for Linux. With the command level interface, the three most popular are *vi*, *nano*, and *emacs*. When using the graphical interfaces, *gedit* and *kedit* may also be used. Figure B.1 shows the screen that appears when using *nano*. To start *nano* to edit a file, one simply types the following command:

```
nano filename
```

In the command line, `filename` is the name of the file to be edited. The top part of the screen in Figure B.1 shows part of the file being edited. The last 2 lines of the screen show the editing commands that one can use. The ( ^ ) character refers to the Ctrl key. Thus, `Ctrl-G` is the editing command that will open the help pages and `Ctrl-X` will exit the editor. Refer to the Help screen (by using `Ctrl-G`) for a complete discussion of the available editing commands.

![Nano text editor screen](image)

FIGURE B.1: Nano text editor screen.

B.8 File Access Permissions

A user may deny or allow access to files and directories; these are normally called permission modes. The following types of permission modes are allowed for files and directories:

- Read (r)
• Write (w)
• Execute (x)

In Linux, there are three types of users for file access:

1. Owner of the file or directory (user)
2. Group, users in the same group as the owner
3. Others, all other users

A user can change the file permissions on one or more files and directories by using the *chmod* command. The following example changes the permission mode to give read access permission to all users for file *batch.cpp* and changes the permission mode to remove write permission to other users.

```bash
chmod a+r batch.cpp
chmod o-w batch.cpp
```

When writing a shell script, it is necessary to change permission and enable execute permission of the script file to the user or owner of the file. The following example gives execute permission to the user for the (script) file *myscript*.

```bash
chmod u+x myscript
```

### B.9 Chaining Files

The *cat* command is to display the contents of a text file. If the file is too big, only the last part will be shown on the screen; in this case, the *more* command would be more appropriate. For example, to display on the screen the contents of file *mytasks.txt*, the following command line is needed.

```bash
cat mytasks.txt
```

An important purpose of the *cat* command is to join two or more files one after the other. In the following example, three files are chained together, *alpha*, *beta*, and *gamma*. The redirection operator is required to create the output file

```bash
cat alpha beta gamma > myfile
```

The *cat* command can also be used to append data to a file using the append (`>>`) operator. The following example illustrates the use of the append operator (`>>`) to append data to the end of an existing file. The example shows that data from file *res.h* is appended to the end of file *batch.txt*.

```bash
cat res.h >> batch.txt
more batch.txt
```
B.10 Commands for Process Control

A shell command can be internal (built-in) or external. Internal commands are part of the Linux system. The external commands are the utilities in Linux, application programs, or script files. Linux creates a new process for every external command that is started and assigns a Process ID number (PID) to every process created.

The `ps` command lists the active processes of the user. With the `-l` option, this command displays a long listing of the data about the processes.

```
/home/jgarrido ~ $ps
PID TTY TIME CMD
4618 pts/3 00:00:00 bash
4644 pts/3 00:00:00 ps
/home/jgarrido ~ $

/home/jgarrido ~ $ps -l
F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY
 TIME CMD
0 S 1374 5279 5277 0 75 0 - 13493 wait pts/3
 00:00:00 bash
0 R 1374 5318 5279 0 76 0 - 1093 - pts/3
 00:00:00 ps
/home/jgarrido ~ $
```

The `ps` commands with the `-l` option display the attribute values of the processes; the most important of these are the PID and the process state (S).

When a user needs to force the termination of a process, he or she can use the `kill` command. The command sends a signal to terminate the specified process. The user can terminate only processes that he or she owns. The general syntax for this command is:

```
nkill [options] pid
```

For example, in the first of the following lines the shell will terminate process 15097. The second line will terminate process 15083 by sending it signal with number 9.

```
nkill 15097
nkill -9 15063
```
B.11 Foreground and Background Processes

When a process is started in a Linux shell, the user waits until the process terminates and Linux displays the shell prompt. Processes that execute in this manner, run in the foreground. For long-running processes, Linux allows the user to start a process so it will execute in the background. Processes that run in the background have a lower priority compared to the foreground processes.

For processes to start execution in the background, the user needs to type the name of the command followed by the ampersand (&) symbol. To start a process called myjob as a background process:

```
myjob &
```

The following example shows the start of a script file psim3 in the background.

```
./psim3 batch.cpp &
[1] 5325
```

The Linux shell returns two numbers when a background process is started by the user; the job number (in brackets) for the process, and its PID. In the second command line of the previous example, 1 is the job number and 5325 is its PID.

A background job (a process running in the background) can be brought to run in the foreground with the fg command. The job number has to be specified as an argument to the command.

```
nano tarea.kpl &
[1] 15165
fg %1
nano tarea.kpl
```

In this example, the nano editor is started as a background job with job number 1. The next command makes the shell bring the background job to the foreground. The nano screen will be shown with the file tarea.kpl and editing can proceed normally.

Another use of the fg command is to resume a suspended process. A process running in the foreground can be suspended by the Ctrl-Z keys combination. It can later be resumed by using the fg command and the job number of the process. A suspended process can be resumed to run in the background using the bg command and the job number.

B.12 Script Commands

A shell script is basically a text file with shell commands. The shell executes the script by reading and executing the commands line by line. The syntax of scripts is relatively simple, similar to that of invoking and chaining together utilities at the command line.
A shell script is a quick and dirty method of prototyping a complex application. Achieving a limited subset of the functionality to work in a shell script is often a useful first stage in project development. Shell scripting provides the user with the ability to decompose complex projects into simpler subtasks, of chaining together components and utilities.

A shell script file must be readable and executable to the user of the script. The `chmod` command must be used to change these permissions modes of the script file.

**B.12.1 Comments in Scripts**

Comments lines are lines that begin with a # symbol. Comments may also occur following the end of a command. Comments may also follow a white space at the beginning of a line. For example:

```bash
This line is a comment.
echo "A comment will follow." # Comment here.
" Note whitespace before
A tab precedes this comment.
```

**B.12.2 Positional Parameters**

The Shell uses these parameters to store the values of command-line arguments, and are used as read-only variables in the script. A $ symbol precedes the parameter number. The parameters in the script are numbered 0–9. In addition to positional parameters, a script file normally uses system and user variables. The following two command lines are included in a script file.

```bash
rm $1 # remove file $1
echo $1 $2
```

**B.12.3 Command Substitution**

Command substitution evaluates a command and makes available the output of the command for assignment to a variable. The format of this is notation `'(command)'`; this notation is known as backquotes or backticks. An alternative notation is `$(command)`. For example:

```bash
echo Current date is: 'date'
echo Today is: $(date)
mydate='date'
```

**B.12.4 The test Command**

Use the `test` command is used to test or evaluate the conditions you formulate in loops and branches. The command is used to:

- Compare numbers
- Compare strings
• Check files

The `test` command has two syntaxes:

• Uses the keyword `test` before the expression to be evaluated
• Uses brackets to enclose the expression to be evaluated

The test command supports several operators testing files and integers testing and comparing strings logically connecting two or more expressions to form complex expressions.

Table B.3 shows several operators used in the `test` command that evaluate expressions with numbers. Table B.4 shows several operators used in the `test` command that evaluate expression with strings. Table B.5 shows several operators used in the `test` command that evaluate expression with files.

<table>
<thead>
<tr>
<th>Operator</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>n1 -eq n2</code></td>
<td>Evaluates to True if <code>n1</code> and <code>n2</code> are equal</td>
</tr>
<tr>
<td><code>n1 -le n2</code></td>
<td>Evaluates to True if <code>n1</code> is less than or equal to <code>n2</code></td>
</tr>
<tr>
<td><code>n1 ge n2</code></td>
<td>Evaluates to True if <code>n1</code> is greater than or equal to <code>n2</code></td>
</tr>
<tr>
<td><code>n1 gt n2</code></td>
<td>Evaluates to True if <code>n1</code> is greater than <code>n2</code></td>
</tr>
<tr>
<td><code>n1 ne n2</code></td>
<td>Evaluates to True if <code>n1</code> and <code>n2</code> are not equal</td>
</tr>
</tbody>
</table>

**TABLE B.3: Test command operators for expressions with numbers.**

**B.12.5 The if with the test Commands**

The basic form of the `if` command is used for two-way branching in the flow of control of the execution of the script. The expression in the `if` statement can

<table>
<thead>
<tr>
<th>Operator</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>str1</code></td>
<td>Evaluates to True if <code>str1</code> is not an empty string</td>
</tr>
<tr>
<td><code>str1 = str2</code></td>
<td>Evaluates to True if <code>str1</code> and <code>str2</code> are equal</td>
</tr>
<tr>
<td><code>str1 != str2</code></td>
<td>Evaluates to True if <code>str1</code> and <code>str2</code> are not equal</td>
</tr>
<tr>
<td><code>n str1</code></td>
<td>Evaluates to True if the length of <code>str1</code> is greater than zero</td>
</tr>
<tr>
<td><code>z str1</code></td>
<td>Evaluates to True if the length of <code>str1</code> is zero</td>
</tr>
</tbody>
</table>

**TABLE B.4: Test command operators for expressions with strings.**
be evaluated with the `test` command, which returns true or false after evaluating the expression. The following example illustrates the use of the `if` and `test` commands.

```bash
if test $# -ne 1 # number of arguments is not 1
then
 echo Error in number of arguments
 exit 1
fi

f [-f $1]
then
 echo File is: $1
else
 echo File $1 is not an ordinary file
 exit 1
fi
```

The following shell script file, called `psim3`, uses most of the commands discussed previously. This shell script file is used to compile and link C programs with the GSL.

```bash
#!/bin/bash
echo "script for compiling and linking a C program with the GSL"
if [$# == 0]
then
 echo "No source file"
 exit 1
fi
if test -e "$1"
then
 echo "Source file: $1"
else
 echo "File: $1 does not exist"
 exit 1
fi
if test $# -eq 2
then
```
Introduction to Computational Modeling

```bash
if [-f $1]
then
 echo File $1 is an ordinary file
 exit 0
elif [-d $1]
 nfiles = $(ls $1 | wc w)
 echo The number of files in $1 is: $nfiles
 exit 0
else
 echo Argument $1 is not file or directory
 exit 1
fi
```

B.12.6 The `set` Command

When used with arguments, the `set` command allows one to reset the positional parameters. After resetting the parameters, the old parameters are lost. The positional
parameters can be saved in a variable. Command substitution can be used with the \texttt{set} command. The following script file includes several examples using the \texttt{set} command.

```bash
Script name: posparam
Example script using set command
echo "Total number of arguments: " $#
echo "All arguments: " $*
echo "1st is: " $1
echo "2nd is: " $2
prevargs=$* # save arguments
set V W X Y Z # resetting positional parameters
echo "New parameters are: " $*
echo "Number of new parameters: " $#
set 'date' # Reset parameters with command
 # could also be typed as $(date)
echo $* # display new parameters
echo "Today is: " $2 $3 $6
set $prevargs
echo $3 $1 $2 $4
exit 0
```

The following command lines execute the script file and show the output produced by the script.

```
/home/jgarrido ~ $./posparam a b c d
Total number of arguments: 4
All arguments: a b c d
1st is: a
2nd is: b
New parameters are: V W X Y Z
Number of new parameters: 5
Fri Sep 15 13:39:06 EDT 2006
Today is: Sep 15 2006
Old parameters are: a b c d c a b d
/home/jgarrido ~ $
```

### B.12.7 Repetition

The \texttt{for} is used for repetitive execution of a block of commands in a shell script. The repetitions of a block of commands are normally known as loops. The number of times the block of commands is repeated depends on the number of words in the argument list. These words are assigned to the specified variable one by one and the commands in the command block are executed for every assignment. The general syntax of this command follows.
for variable [in argument list]  
do   command block  
done

The following example shows a short script file with a for loop.

```
File: loopex1. Example of for-loop
for system in Linux Windows Solaris OS2 MacOSX
do
 echo $system
done
```

The execution of the script file is shown in the following listing:

```
./loopex1
Linux
Windows
Solaris
OS2
MacOSX
```

The while loop allows repeated execution of a block of commands based on a condition of an expression. The general syntax of the while command follows.

```
while expression
do command-block
done
```

The expression in the while command is evaluated and if true, the command block is executed and the expression is again evaluated. The sequence is repeated until the expression evaluates to false. The following example of a script file shows a while loop.

```
while example
#secret code
secretcode=Jose
echo n "Enter guess:
read yguess
while [$secretcode != $yguess]
do
 echo "Wrong guess"
 echo n "Enter guess again:
 read yguess
done
echo "Good guess"
e 0
```

The loop command is often used with the break and continue commands, which are used to interrupt the sequential execution of the loop body. The break command transfers control to the command following done, terminating the loop prematurely. The continue command transfers control to done, which results in the evaluation of the condition again.
B.13 Searching Data in Files

For searching for lines with specific data in text lines, Linux provides several utilities. These utilities are `grep`, `egrep`, and `fgrep`. For example, the following command line uses the `grep` command and will search for the lines in file `pwrap.cpp` that contain the string `include`.

```
/home/jgarrido ˜ $grep -n include pwrap.cpp
42:#include "pthread.h"
43:#include <iostream.h>
165://include <unistd.h> //included to test sleep(), usleep(),
 wait();
210: /*this is included to adjust
```

As the following example shows, the `grep` command also allows the search of a string in multiple files, using a wildcard.

```
/home/jgarrido ˜ $grep -n include *.cpp
dscann.cpp:10:// A disk service includes the rotational delay,
 seek delay, and
 dscann.cpp:18:#include "proc.h"
 dscann.cpp:19:#include "queue.h" // additional library classes
 dscsstfn.cpp:10:// A disk service includes the rotational delay,
 seek delay, and
 dscsstfn.cpp:19:#include "proc.h"
 dscsstfn.cpp:20:#include "queue.h" // additional library classes
```

The `grep` command can also list names of files. The following uses the `grep` command with the `-l` option to display the names of the files where string `include` is found.

```
/home/jgarrido ˜ $grep -l include *.cpp
dscann.cpp
dscsstfn.cpp
dscfs.cpp
dscfscn.cpp
dsscan.cpp
dssstf.cpp
pwrap.cpp
```

Regular expressions can be used with the `grep` command. For example, the following command line uses the `grep` command to display lines in file `dscan.cpp` that start with letters `d` through `f`.

```
```
Introduction to Computational Modeling

/home/jgarrido ˜ $grep ^[d-f]$ dsscan.cpp
double rev_time = 4; // revolution time (msec.)
double transfer_rate = 3; // in Mb/sec (Kb/msec)
double seek_tpc = 15.6; // seek time per cylinder (msec.)
double simperiod; // simulation period

The following command lines provide more examples using the grep command with regular expressions.

grep ^[a-f]{6}$ pwrap.cpp
grep ^<cl\myfile.dat
grep ^et\myfile.dat
egrep n "lass|object" pwrap.cpp
egrep v "class|object" pwrap.cpp
egrep "O" pwrap.cpp
egrep "O|C" pwrap.cpp

The egrep command does not directly accept a string as input, it accepts files. When there is no file specified, the egrep command takes input from standard input. The following script file takes two input strings as parameters and checks if one string is a substring of the other. The script file converts the first string into a file with the echo command. The file created by executing the echo command is piped into the egrep command.

```
An example script file that locates a substring using egrep
Script file: testegrep
#
if [$# != 2]
then
 echo "Two parameters are required"
 exit 1
fi
#
egrep does not directly accept a string as input
if echo $1 | egrep $2 > myfile
then
 echo "$2 is in $1"
else
 echo "Not found"
fi
exit 0
```

The command line shows the execution of the testegrep script file and the output produced.

```
/home/jgarrido ˜ $./testegrep September emb
emb is in September
/home/jgarrido ˜ $```
B.14 Evaluating Expressions

The `expr` command evaluates an expression and sends the result to standard output. The expressions can be used to manipulate numbers and strings. The following operators used with the `expr` command to manipulate strings.

With `arg1 :arg2`, the `expr` command searches for the pattern `arg2` (a regular expression) in `arg1`. The result is the number of characters that match. The following examples show the use of the `:` operator.

```sh
# number of lowercase letters at the beginning of var1
expr $var1 : '^[a-z]*'

#Match the lowercase letters at the beginning of var1
expr $var1 : \([a-z]*\)'

#Truncate var1 if it contains five or more chars
Expr $var1 : \(\(\end{linebreak}

#Rename file to its first five letters
Mv $mf 'expr $mf : \(\(\end{linebreak}
```

With the `index` string character-list format, the `expr` command searches the string for the first possible character in the character list. The following example illustrates the use of the `index` operator of the `expr` command.

```
/home/jgarrido ˜ $expr index "jose" def
4
```

With the `length` string format, the `expr` command gets the length of the string variable. The following example illustrates the use of the `length` operator of the `expr` command.

```
/home/jgarrido ˜ $expr length "kennesaw"
8
```

With the `substr` string start length format, the `expr` command searches for the portion of the string variable starting at the specified location. The following example illustrates the use of the `substr` operator of the `expr` command.

```
/home/jgarrido ˜ $expr substr "kennesaw" 5 3
esa
```

Writing more powerful shell scripts is possible with additional external commands (shell utilities), such as `sed` and `awk`.
Bibliography

Introduction to Computational Modeling

This page intentionally left blank
Index

abstraction, 3, 58, 168
accumulator, 88
accuracy, 42
activity, 364
address, 117
address operator, 118
adjacent solution, 305
algorithm, 1, 57, 88
algorithm notation, 2, 58
alternation, 71
analytical methods, 161
approximation error, 43
approximations, 44
arc, 357
area, 267
argument, 37
argument passing, 119
arguments, 33
arithmetic, 64
array, 99
array elements, 235
array index, 101
array operation, 107
array size, 100
array slicing, 228
artificial arc, 358
assignment, 63
assignment operator, 21
assignment problem, 352
assignment statement, 21
assumption, 162
assumptions, 168
average, 166
backward difference, 263
balanced problem, 342
basic variables, 304
binding constraint, 302
bits, 41, 42
boolean, 19
built-in functions, 37
bytecode, 13
C struct, 125
capacity, 361
case structure, 79, 80
casting, 119
central difference, 263
character, 19
character array, 154
coefficients vector, 195, 198
cofactor, 237
column, 99
column vector, 219, 222, 236
commands, 58
compilation, 13
compiler directives, 20
complex condition, 82
complex roots, 199
complex variable, 229
complex vectors, 229
computational model, 2, 57
computational science, 3
computational thinking, 3
computations, 17
computer implementation, 2, 58
computer tools, 3
conceptual model, 5
condition, 73, 85, 87
conditional expressions, 73
conditions, 71
conjugate matrix, 238
conjugate transpose, 238
constant, 100
Introduction to Computational Modeling

constraints, 293
continuous model, 8, 261
counter, 87, 92
creating matrices, 240
critical activity, 364
cubic spline interpolation, 207
curve fitting, 203, 211, 215
data, 22, 30
data decreases, 183
data definitions, 17
data increases, 183
data points, 203
data structure, 219
data transfer, 31
data type, 18
data values, 18
decision variables, 293
declaring arrays, 100
decomposition, 29
demand constraints, 340
demand points, 339
derivative, 262
design structure, 71
design structures, 57, 60
destination point, 358
deterministic model, 10, 53
difference equation, 177
differences, 164, 171, 172
differential equation, 271
differential equations, 272
discrete data, 162
discrete instants, 9
discrete model, 8
distance, 47
domain, 7
dot division, 225
dot multiplication, 225
double, 19
double precision, 43
dual problem, 332
dual value, 326
dummy demand, 343, 344
dynamic behavior, 52
dynamic memory, 124
dynamic structure, 131
eyearly event, 364
element matrix division, 243
element matrix multiplication, 243
element multiplication, 237
elements, 99
errors, 43
estimate, 203
estimate data, 204
estimates, 203, 215
evaluate polynomial, 193
excess supply, 344
excess variable, 303
exponent, 42
exponential growth, 190
expressions, 64
factor, 183
factorial, 94
feasible region, 302
feasible solution, 305
FIFO, 148
finish event, 364
finite differences, 263
float, 19
flowchart, 58
flowcharts, 2, 58
for loop, 92
forward difference, 263
fraction, 42
function, 7, 44, 262
function call, 31
function domain, 195
function library, 21
function prototype, 21
function range, 195
functional equation, 175, 190
geometric growth, 183
given data, 203
global declarations, 20
graph, 357
graphical methods, 161
graphical representation, 193
growth factor, 183
<table>
<thead>
<tr>
<th>term</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>head</td>
<td>148</td>
</tr>
<tr>
<td>head node</td>
<td>134</td>
</tr>
<tr>
<td>high-level programming language</td>
<td>12</td>
</tr>
<tr>
<td>home directory</td>
<td>399</td>
</tr>
<tr>
<td>I/O redirection</td>
<td>408</td>
</tr>
<tr>
<td>identifier</td>
<td>18</td>
</tr>
<tr>
<td>identifiers</td>
<td>18, 62</td>
</tr>
<tr>
<td>identity matrix</td>
<td>236</td>
</tr>
<tr>
<td>if statement</td>
<td>72</td>
</tr>
<tr>
<td>implementation</td>
<td>5</td>
</tr>
<tr>
<td>independent variable</td>
<td>44, 163, 194, 262</td>
</tr>
<tr>
<td>index</td>
<td>99</td>
</tr>
<tr>
<td>indicator row</td>
<td>306</td>
</tr>
<tr>
<td>infeasible region</td>
<td>302</td>
</tr>
<tr>
<td>input</td>
<td>59, 66</td>
</tr>
<tr>
<td>input-output</td>
<td>60</td>
</tr>
<tr>
<td>input/output</td>
<td>71</td>
</tr>
<tr>
<td>instruction</td>
<td>2</td>
</tr>
<tr>
<td>instructions</td>
<td>17, 23</td>
</tr>
<tr>
<td>integer</td>
<td>19</td>
</tr>
<tr>
<td>intermediate</td>
<td>203</td>
</tr>
<tr>
<td>intermediate data</td>
<td>204</td>
</tr>
<tr>
<td>intermediate points</td>
<td>348</td>
</tr>
<tr>
<td>interpolation</td>
<td>203</td>
</tr>
<tr>
<td>interval of x</td>
<td>195</td>
</tr>
<tr>
<td>iteration error</td>
<td>43</td>
</tr>
<tr>
<td>iterations</td>
<td>87</td>
</tr>
<tr>
<td>job constraints</td>
<td>352</td>
</tr>
<tr>
<td>keywords</td>
<td>18</td>
</tr>
<tr>
<td>languages</td>
<td>62</td>
</tr>
<tr>
<td>late event</td>
<td>364</td>
</tr>
<tr>
<td>least squares</td>
<td>211</td>
</tr>
<tr>
<td>library function</td>
<td>172</td>
</tr>
<tr>
<td>line slope</td>
<td>45</td>
</tr>
<tr>
<td>linear change</td>
<td>172</td>
</tr>
<tr>
<td>linear interpolation</td>
<td>203, 204</td>
</tr>
<tr>
<td>linear model</td>
<td>164</td>
</tr>
<tr>
<td>linear optimization</td>
<td>293</td>
</tr>
<tr>
<td>linear regression</td>
<td>211</td>
</tr>
<tr>
<td>linear search</td>
<td>113</td>
</tr>
<tr>
<td>linked list</td>
<td>117</td>
</tr>
<tr>
<td>linking</td>
<td>13</td>
</tr>
<tr>
<td>links</td>
<td>131</td>
</tr>
<tr>
<td>Linux</td>
<td>398</td>
</tr>
<tr>
<td>list node</td>
<td>131</td>
</tr>
<tr>
<td>local data</td>
<td>22, 23, 30</td>
</tr>
<tr>
<td>loop condition</td>
<td>86</td>
</tr>
<tr>
<td>loop termination</td>
<td>86</td>
</tr>
<tr>
<td>loops</td>
<td>85</td>
</tr>
<tr>
<td>low-level structures</td>
<td>131</td>
</tr>
<tr>
<td>lower bound</td>
<td>195</td>
</tr>
<tr>
<td>LP general form</td>
<td>301</td>
</tr>
<tr>
<td>machine code</td>
<td>13</td>
</tr>
<tr>
<td>main diagonal</td>
<td>236</td>
</tr>
<tr>
<td>main function</td>
<td>20</td>
</tr>
<tr>
<td>maintenance</td>
<td>11</td>
</tr>
<tr>
<td>mantissa</td>
<td>42</td>
</tr>
<tr>
<td>marginal value</td>
<td>327</td>
</tr>
<tr>
<td>mathematical expression</td>
<td>175</td>
</tr>
<tr>
<td>mathematical methods</td>
<td>161</td>
</tr>
<tr>
<td>mathematical model</td>
<td>2, 5</td>
</tr>
<tr>
<td>mathematical optimization</td>
<td>293</td>
</tr>
<tr>
<td>mathematical representation</td>
<td>7, 25</td>
</tr>
<tr>
<td>matrix</td>
<td>99, 107, 219, 235</td>
</tr>
<tr>
<td>matrix addition</td>
<td>237, 243</td>
</tr>
<tr>
<td>matrix determinant</td>
<td>237</td>
</tr>
<tr>
<td>matrix functions</td>
<td>245</td>
</tr>
<tr>
<td>matrix indices</td>
<td>236</td>
</tr>
<tr>
<td>matrix inverse</td>
<td>239</td>
</tr>
<tr>
<td>matrix manipulation</td>
<td>240</td>
</tr>
<tr>
<td>matrix multiplication</td>
<td>238</td>
</tr>
<tr>
<td>matrix operations</td>
<td>236, 242</td>
</tr>
<tr>
<td>matrix scalar multiplication</td>
<td>243</td>
</tr>
<tr>
<td>matrix subtraction</td>
<td>243</td>
</tr>
<tr>
<td>matrix transpose</td>
<td>238</td>
</tr>
<tr>
<td>matrix views</td>
<td>250</td>
</tr>
<tr>
<td>maximum flow</td>
<td>361</td>
</tr>
<tr>
<td>model</td>
<td>2, 75</td>
</tr>
<tr>
<td>model development</td>
<td>4</td>
</tr>
<tr>
<td>modeling</td>
<td>2</td>
</tr>
<tr>
<td>modules</td>
<td>29</td>
</tr>
<tr>
<td>multi-dimension array</td>
<td>107</td>
</tr>
<tr>
<td>node</td>
<td>131, 132</td>
</tr>
<tr>
<td>nodes</td>
<td>357</td>
</tr>
<tr>
<td>non-linear interpolation</td>
<td>207</td>
</tr>
</tbody>
</table>
Index

sequence, 60, 61, 71, 162, 171, 174
shadow price, 326, 327
shadow prices, 335
shortest path, 357
significand, 42
significant digits, 42
simplex algorithm, 301
simplex tableau, 305
simulation, 51
simulation model, 41, 51
simulation run, 53
slack variable, 302
slope of line, 45
software, 17
solve polynomial, 193
source point, 358
source program, 13
specification, 5
spiral model, 12
spline interpolation, 203
square matrix, 235
stack, 145
stacks, 131
standard form, 302
start event, 364
start symbol, 58
state equations, 273
state vector, 272
statements, 62
stiffness, 279
stochastic model, 10, 53
stop symbol, 59
string, 19
string concatenation, 156
strings, 153
subproblem, 29
substring, 156
summation, 93, 232
supply constraints, 340
supply points, 339
symmetric matrix, 239
syntax rules, 12
tail, 148
tangent, 46
testing, 11
text characters, 153
time-dependent behavior, 272
top of stack, 145
total float, 364
trace, 54
transformation, 59
transportation problem, 339
transporting cost, 358
transshipment constraint, 349
transshipment points, 348, 358
trapezoid, 232, 267
Trapezoid method, 268
traversing list, 135
triangular matrix, 239
two-dimensional, 219
two-dimensional array, 235
UML, 6
unbalanced problem, 343
unbounded solution, 305
underflow, 42
unmet demand, 346
upper bound, 195
validation, 5
vector addition, 220, 224
vector functions, 225
vector operations, 220, 224
vector subtraction, 224
velocity, 47
verification, 5
vertices, 357
waterfall model, 11
weak duality, 335
while loop, 61, 85, 88
while statement, 86
INTRODUCTION TO COMPUTATIONAL MODELING USING C AND OPEN-SOURCE TOOLS

Introduction to Computational Modeling Using C and Open-Source Tools presents the fundamental principles of computational models from a computer science perspective. It explains how to implement these models using the C programming language. The software tools used in the book include the Gnu Scientific Library (GSL), which is a free software library of C functions, and the versatile, open-source GnuPlot for visualizing the data.

The book first presents an overview of problem solving and the introductory concepts, principles, and development of computational models before covering the programming principles of the C programming language. The author then applies programming principles and basic numerical techniques, such as polynomial evaluation, regression, and other numerical methods, to implement computational models. He also discusses more advanced concepts needed for modeling dynamical systems and explains how to generate numerical solutions. The book concludes with the modeling of linear optimization problems.

Emphasizing analytical skill development and problem solving, this book helps you understand how to reason about and conceptualize the problems, generate mathematical formulations, and computationally visualize and solve the problems. It provides you with the foundation to understand more advanced scientific computing, including parallel computing using MPI, grid computing, and other techniques in high-performance computing.