THE EXPERT'S VOICE® IN JAVA

Pro
JOSF and Ajax

Building Rich Internet Components

Jonas Jacobi and Jﬂhn R. Fallows

Faveword by Adam Winer, J5F Exper! Growip Sheymber

Apress:

Pro JSF and Ajax

Building Rich Internet
Components

Jonas Jacobi and John R. Fallows

Apress*

Pro JSF and Ajax: Building Rich Internet Components
Copyright © 2006 by Jonas Jacobi and John R. Fallows

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-580-0
ISBN-10: 1-59059-580-7
Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Tony Davis

Technical Reviewers: Peter Lubbers, Kito D. Mann, Matthias Wessendorf

Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan
Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser, Matt Wade

Project Managers: Beckie Stones, Elizabeth Seymour

Copy Edit Manager: Nicole LeClerc

Copy Editor: Kim Wimpsett

Assistant Production Director: Kari Brooks-Copony

Production Editor: Laura Cheu

Compositor: Molly Sharp, ContentWorks

Proofreader: Elizabeth Berry

Indexer: Carol Burbo

Artist: Kinetic Publishing Services, LLC

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

To the love of my life, Marianne,
and our princesses, Emma and Isabelle,
for keeping my spirit up.
—Jonas Jacobi

To my wife, Nan, for her love, support, and patience,
and our son, Jack, for his natural inspiration.
—John R. Fallows

Contents at a Glance

FOrEWOrd Xiii
Aboutthe AUThOrS XV
About the Technical ReVIBWEIScc.iiiiii e Xvii
ACKNOWIBdgMENtS Xix
INtrodUCHION ... XXi

PART 1 Developing Smarter with
JavaServer™ Faces

CHAPTER 1 The Foundation of JSF: Components 3
CHAPTER 2 Defining the Date Field Component 49
CHAPTER 3 Defining the Deck Component 105

PART 2 Designing Rich Internet Components

CHAPTER 4 Using Rich Internet Technologies 173
CHAPTER 5 Loading Resources withWeblets 213
CHAPTER 6 Ajax Enabling the Deck Component 223
CHAPTER 7 Ajax Enabling the Date Field Component 267
CHAPTER 8 Providing Mozilla XUL Renderers 303
CHAPTER 9 Providing Microsoft HTC Renderers 361
CHAPTER 10 Switching RenderKits Dynamically 403

Contents

FOrEWOrd Xiii
Aboutthe AUthOr XV
About the Technical ReVIBWETo Xvii
ACKNOWIBdgMENtS Xix
INtrodUCHION ... XXi

PART 1 Developing Smarter with
JavaServer™ Faces

CHAPTER 1 The Foundation of JSF: Components 3
Overview of Application Development Technologies 4
One-Tier . 4
Two-Tier: Client-Server 5
Multitier: Web Applications 5
Exploring Application Development Today 5
Frameworks 7
Tapestry, Struts, Tiles, TopLink, Hibernate, ADFUIX... 7
Introducing JSF 8
Application Development with JSF 9
JSFArchitecture 10

A Component-Based Ul Framework 13
UlComponent 15
Converters, Validators, Events, and Listeners 22
Facets ... 23
Rendererso i 24
Renderer Types 25
RenderKits 26
Custom ActionTag Handlerscooivinns. 27
Request-Processing Lifecyclel 27
SUMMANY ... 47

vii

viii

CONTENTS

CHAPTER 2

CHAPTER 3

PART 2

CHAPTER 4

Defining the Date Field Component 49
Requirements for the Date Field Component 49
The Input Date Componento .. 51
Designing the Input Date Component Using a Blueprint 52
Step 1: Creatinga Ul Prototype 53
Step 2: Creating a Client-Specific Renderer 55
Step 3: Creating a Renderer-Specific Subclass 77
Step 4: Registering UlComponent and Renderer 82
Step 5: Creating a JSP Tag Handlerand TLD 86
Building an Application with the Input Date Component 103
SUMMANY ... 104
Defining the Deck Component 105
Requirements for the Deck Component 106
The Deck Component ..., 106
Designing the Deck Component Using a Blueprint 107
Step 1: Creatinga Ul Prototype 108
Step 2: Creating Events and Listeners 113
Step 3: Creating a Behavioral Superclass..................... 127
Step 4: Creating a Client-Specific Renderer................... 136
Step 5: Creating a Renderer-Specific Subclass 148
Step 6: Registering a UIComponent and Renderer 150
Step 7: Creating a JSP Tag Handlerand TLD 155
SUMMANY ... 169

Designing Rich Internet Components

Using Rich Internet Technologies 173
Introducing Ajaxo 174
The XMLHttpRequest Objectooii... 175
Traditional Web Application Development 177
Ajax Web Application Development 179
Building Ajax Applicationsl 181
Ajax Summary ... 187
Introducing Mozilla XULo i 187
Building XUL Applicationscoiii... 188
Creating Custom XUL Components Using XBL................. 192

XULSUMMArY ... e 199

CHAPTER 5

CHAPTER 6

CONTENTS
Introducing Microsoft Dynamic HTMLand HTC 199
HTC Structure 199
Building DHTML Applicationscccoviiin... 202
HTCSummary ... 205
Comparing XBLand HTC ... 206
Defininga Componentl 206
AddingContent 206
EventHandling 206
Attaching Componentscoi i 207
JSF—The Greatest Thing Since Sliced Bread! 207
Cross-Platform Supportl 208
Imagination As the Only Limit 209
A JSF Application Supporting Ajax, XUL,and HTG 209
SUMMArY ... 211
Loading Resources with Weblets 213
Introducing Resource Loading, 213
Using Existing Solutionsl 214
UsingWeblets ... 215
Exploring the Weblet Architecture 215
Using Weblets in Your Component Library 216
Using Weblets in a JSF Application 221
SUMMANY ... 222
Ajax Enabling the Deck Component 223
Requirements for the Deck Component’s
Ajax Implementation 223
The Ajax-Enabled Deck Component 224
Designing the Ajax-Enabled Deck Component Using a
Blueprint 226
Step 1: Creatinga Ul Prototype 227
Step 4: Creating a Client-Specific Renderer 230
Step 6: Registering a UIComponent and Renderer 238
Step 8: Creating a RenderKit and ResponseWriter 238
Step 9: Extending the JSF Implementation 249
Step 10: Registering the RenderKit and JSF Extension 262
Step 11: Registering Resources with Weblets 263

SUMMArY 265

ix

X

CONTENTS

CHAPTER 7

CHAPTER 8

CHAPTER 9

Ajax Enabling the Date Field Component 267
Requirements for the Date Component’s
Ajax Implementation 267
The Ajax-Enabled Date Component 268
Designing JSF Components Using a Blueprint................. 269
Step 1: Creatinga Ul Prototype 270
Step 4: Creating Converters and Validators 276
Step 5: Creating a Client-Specific Renderer................... 279
Step 7: Registering a UIComponent and Renderer 297
Step 8: Creating a JSP Tag Handlerand TLD 297
Step 12: Registering Your Ajax Resources with Weblets 301
SUMMArY ... 301
Providing Mozilla XUL Renderers 303
Requirements for the Deck and Date Components’ XUL
Implementations 304
What Mozilla XUL Bringsto JSF L. 304
What JSFBringstoXUL ... 304
The XUL Implementation of the Deck and
Date Components 304
Designing JSF XUL Components Using a Blueprint 306
Step 1: Creatinga Ul Prototype 307
Step 3: Creating a Behavioral Superclass..................... 322
Step 5: Creating a Client-Specific Renderer................... 324
Step 6: Creating a Renderer-Specific Subclass 341
Step 7: Registering a UlComponent and Renderer 345
Step 8: Creating a JSP Tag Handlerand TLD 347
Step 9: Creating a RenderKit and ResponseWriter 350
Step 11: Registering aRenderKit 354
Step 12: Registering Resources with Weblets 355
Building Applications with JSF XUL Components 357
SUMMArY 359
Providing Microsoft HTC Renderers 361
Requirements for the Deck and Date Components’ HTC
Implementations 362
What HTCBringsto JSF........... 362

What JSFBringstoHTC 362

CHAPTER 10

CONTENTS

The HTC Implementation of the Deck and Date Components 362

Designing JSF HTC Components Using a Blueprint 363

Step 1: Creating a Ul Prototype 363

Step 5: Creating a Client-Specific Renderer 380

Step 7: Registering a UlComponent and Renderer 396

Step 11: Registering a RenderKit and JSF Extension 396

Step 12: Registering Resources with Weblets 398

Building Applications with JSF HTC Components 398

SUMMANY ... 401

Switching RenderKits Dynamically 403
Requirements for Dynamically Switching

RenderKits o i 404

The Dynamic RenderKit Implementation 405

Syntax for Dynamic RenderKitID 405

The Dynamic RenderKit ManagedBean 406

The DynamicRenderKitViewHandler Class 409

Registering the Dynamic RenderKit Solution 411

SUMMANY .. 412

.. 413

Xi

Foreword

Does the world really and truly need another JavaServer Faces book?

I was fairly well convinced the answer could only be a resounding “no!” After all, there are
a good half-dozen books out in stores today, by a whole host of Web luminaries, and I've even
personally helped as a technical reviewer on half of those. So what more could really be said
on the subject?

But when I thought about this a bit more, it became clear that all of these books go only so
far. They’ll show you how to use what JSF gives you out of the box, throw you a bone for writing
your own components and renderers, and give you maybe even a bit more. But none that I've
seen get to the heart of why JSF is really and truly a cool and important technology; they make
JSF look like YAMVCEF (Yet Another Model-View-Controller Framework) for HTML—more pow-
erful here and there, easier to use in many places, a bit harder to use in others, but really nothing
major. And certainly nothing that takes us beyond the dull basics of building ordinary-looking
Web applications.

This book goes a lot further. It covers the basics, of course, and shows you how to build
components, but then it keeps going: on to Ajax, on to HTC, on to XUL—and how you can
wrap up this alphabet soup underneath the heart of JSE its component model, and how you
can leverage it to finally develop Web applications that don’t need radical rearchitecting every
time the winds of client technologies blow in a different direction. Along the way, you'll learn
a wide array of open source toolkits that make Web magic practical even when you’re not a
JavaScript guru.

So, heck, I'm convinced. The world does need another JSF book.

Adam Winer
JSF Expert Group Member and Java Champion

xiii

About the Authors

JONAS JACOBI is a J2EE and open source evangelist at Oracle.

A native of Sweden, Jonas has worked in the software industry for
more than 15 years. Prior to joining Oracle, Jonas worked at several major
Swedish software companies in management, consulting, development,
and project management roles.

For the past three years, Jonas has been responsible for the product
management of JavaServer Faces, Oracle ADF Faces, and Oracle ADF Faces
Rich Client in the Oracle JDeveloper team.

Jonas is a popular speaker at international conferences such as Oracle OpenWorld,
EclipseWorld, and JavaPolis, and he has written numerous articles for leading IT magazines
such as Java Developer’s Journal, JavaPro, and Oracle Magazine. Jonas has also contributed
to the online appendix of JavaServer Faces in Action, by Kito D. Mann (Manning, 2005), and
was a technical reviewer of Oracle JDeveloper 10g Handbook, by Avrom Roy-Faderman, Peter
Koletzke, and Paul Dorsey (McGraw-Hill Osborne, 2004).

Apart from spending his spare time working on open source projects such as Weblets,
Mabon, and D?, he likes golf, sailing, and fast cars (preferably driving them); he also enjoys
spending time with his wife, Marianne, and his daughters, Emma and Isabelle.

JOHN R. FALLOWS is a JavaServer Faces technology architect at Oracle.

Originally from Northern Ireland, John graduated from Cambridge
University in the United Kingdom and has worked in the software industry
for more than ten years. Prior to joining Oracle, John worked as a research
scientist for British Telecommunications Plc.

For the past four years, John has played a leading role in the Oracle
ADF Faces team to influence the architecture of the JavaServer Faces
standard and to extend the standard to provide Ajax functionality in the ADF Faces project.

John is an active participant in the open source community, contributing to both the
Apache MyFaces project and the Apache Maven project. John is also leading three new open
source projects on Java.net—Weblets, Mabon, and D>—all of which evolved while researching
the foundational technologies for this book.

Apart from spending his spare time writing articles about new and exciting technologies,
John likes to play soccer with his friends and likes to spend time with his beautiful wife, Nan,
and their wonderful son, Jack.

Xv

About the Technical Reviewers

PETER LUBBERS is an information architect at Oracle. A native of the
Netherlands, Peter served as a Special Forces commando in the Royal
Dutch Green Berets. Prior to joining Oracle, Peter architected and devel-
oped the internationalized Microsoft Office User Specialist (MOUS) testing
framework. At Oracle, Peter develops automated help-authoring solutions.
Three of these solutions are currently patent pending. He is also the author
of the award-winning Oracle Application Server Portal Configuration Guide
(Oracle, 2005).

KITO D. MANN is the editor-in-chief of JSF Central (http://www.jsfcentral.com)
and the author of JavaServer Faces in Action (Manning, 2005). He is also a
member of the JSF 1.2 and JSP 2.1 expert groups and principal consultant at
Virtua, specializing in enterprise application architecture, development, men-
toring, and JSF product strategy. Kito has consulted with several Fortune 500
clients, including Prudential Financial and J.P. Morgan Chase & Company,
and he was recently the chief architect of an educational application service
provider. He has a bachelor’s degree in computer science from Johns Hopkins University.

MATTHIAS WESSENDORF is a PMC member of the Apache MyFaces project,
a well-known JavaServer Faces implementation. Matthias is currently
working as a Java Web developer in Germany, focusing on Web technolo-
gies such as JSE Struts, Ajax, and XUL.

Matthias is the author of two developer handbooks, Struts: Websites
mit Struts 1.2 & 1.3 und Ajax effizient entwickeln and Web Services und
mobile Clients: SOARWSDL, UDDI, J2ME, MIDIlet, WAP & JSF, and he has
written numerous articles about JavaServer Faces for leading IT magazines in Germany.

Matthias is a frequent speaker at international conferences such as ApacheCon and JAX
and also lectures in the Department of Computer Science at the University of Applied Sciences
in Dortmund, Germany. During his limited spare time, he enjoys listening to electronic dance
music and reading a good book.

Xvii

Acknowledgments

After completing this book, we found ourselves wondering if we would do it again, and
sure, we would! However, anyone who believes a book project is a simple single-author or
small-team effort has never written a book. No first-time author, or authors, would be any-
thing without guidance and tremendous support from family, friends, and colleagues.

Peter Zadrozny, thank you, thank you, and thank you! You introduced us to Apress, con-
vinced Apress that this would be the book of the year, and then guided us through everything
that newbie authors, like ourselves, needed to know. Without you and your guidance, we would
never have taken the first steps toward becoming full-feathered authors.

We thank Apress and Tony Davis for giving us the opportunity to write this book and
trusting Peter Zadrozny’s instincts.

Peter Lubbers worked tirelessly to help us make this a better book. We owe you big time!
Kito D. Mann, although he has an extremely busy schedule, took time from his family to pro-
vide us with his technical knowledge. Matthias Wessendorf was there from the very first draft
to the final product, educating us about MyFaces and providing encouragement when it felt
like we would never reach the end. Adam Winer, our ADF Faces colleague and a Java Cham-
pion, answered our questions on JSF 1.2 and made sure we kept our edge.

Elizabeth Seymour patiently answered all our questions about book-related and non-book-
related issues. Kim Wimpsett helped us with grammar, spelling, and consistency throughout the
book, and for this we are forever grateful. Laura Cheu patiently let us do last-, last-, and last-
minute edits to text, code, and figures and patiently educated and guided us through the Apress
process of finalizing our book. Without you, we would probably still be working on Chapter 4.

We would also like to thank our colleagues at Oracle Server Technologies for supporting
us during this year and encouraging us to do our very best.

Jonas Jacobi and John R. Fallows

I have a list as long as any Oscar-winning actor or actress, but I only have so much space;
if I've missed someone, you have my heartfelt apologies. I would first like to thank my good
friend Peter Z'd for letting me in on the “how-to-make-your-family-happy-when-writing-a-
book” secret and for always being there whenever I had doubts about this project.

To a true friend—John R. Fallows. I don’t think my vocabulary has enough superlatives to
describe my coauthor and colleague. I will be forever in his debt for all the knowledge I pulled
out of him during long hours and for the patience and dedication he brought to this project;
without John this would not have been possible.

To the most important person in my life, my wonderful wife, Marianne, without whom I
wouldn’t have been able to complete this book! To my beautiful daughters, Emma and Isabelle,
for patiently waiting for me to come home and play.

Jonas Jacobi

Xix

XX ACKNOWLEDGMENTS

I would first like to thank my very good friend and coauthor, Jonas Jacobi, for proposing that
we work on this book together. Jonas has my deepest respect for his ability to consume highly
detailed architectural knowledge and simplify it for the reader in a practical and entertaining
way. There is no doubt that without Jonas this book would simply not have been possible.

To my amazing wife, Nan, whose endless patience and support made it possible for me
to work on this book while she was pregnant with our son, Jack, and for the first six months

of his life.
To my son, Jack, for those lovable deep laughs that made me smile no matter how tired

T'was.
To my dad, for always encouraging me to reach for the stars.

John R. Fallows

Introduction

Since JavaServer Faces first arrived on the Internet technology stage as the new standard
for building Java-based Web applications, it has gained significant attention from the Java EE
Web development community. Many developers are excited that they can use the standard
JavaServer Faces HTML Basic RenderKit to create HTML-based Web applications, much as
they did in the past with other technologies, such as Apache Struts. However, this is only the
tip of the iceberg—the true power of JavaServer Faces lies in its extensible component model,
which allows you to go far beyond those humble HTML beginnings.

Based on the recent surge in demand for improved usability in Web applications, it is
understandable that the hottest topic at the moment is Rich Internet Applications (RIAs) and
how they offer distributed, server-based Web applications with a rich interface and the inter-
action capabilities of desktop applications. Although RIAs hold significant promise, they still
have issues with compatibility, portability, usability, and reusability. Many Web application
developers are struggling to keep up with new RIA frameworks, both open source and vendor
specific, as they appear on the market. What is needed is a standard way of defining an RIA
regardless of what RIA framework is being used.

The debate over the best way to develop and deploy RIAs will not end with this book, but
looking at the software industry today more and more developers are using the Web to deploy
their applications.

User interfaces for these Web applications are often built with technologies such as HTML,
CSS, JavaScript, and the DOM. These technologies were not developed with enterprise applica-
tions in mind, and with an increasing pressure from consumers to provide applications with
features not fully described or supported by these technologies, developers are looking for
alternative solutions or to extend the standards.

JSF does not just let you pick a single RIA technology such as Ajax, Mozilla XUL, Microsoft
HTC, Macromedia Flash, and so on; it lets you pick and combine any RIA technologies you
want and use them where they make the most sense. As with any technology, each RIA tech-
nology has its own advantages and disadvantages, but as a JSF component writer, you have
the opportunity to leverage the best functionality of each RIA technology to provide the appli-
cation developer with an extremely powerful RIA solution.

We have been very much involved in the development and the use of component-based
frameworks over the past five years, starting with Oracle’s own Ul component framework,
ADF UIX, and lately with Oracle’s JSF component library, ADF Faces.

One day a very good friend asked us, “Why don’t you guys share some of your experience
and write a book about it?” What surprised us was that nobody had actually written a book
targeting developers who are interested in the same thing we are—how to develop reusable
standards-based JSF components for RIAs.

So, here we are, hoping that you will enjoy reading this book as much as we enjoyed
writing it.

XXi

XXii

INTRODUCTION

An Overview of This Book

Pro JSF and Ajax: Building Rich Internet Components is written to give you all the means to
provide your Web application developers with easy-to-use Rich Internet Components (RICs).
We decided early on that we would focus on establishing a clear blueprint that you as a devel-
oper could follow to be successful in your own JSF component development. We also decided
that we would not limit this book to “just” JSF components and that we would incorporate
everything you would need to know to be successful in developing, packaging, and deploying
your own RICs.

This book is not, and we would like to emphasize this, not an introductory level book
about JSF or about writing simple JSF components. Sure, this book introduces JSF and covers
the basics of writing JSF components, but if you have not acquainted yourself with JSF before
reading this book, we strongly encourage you to refer to a few excellent books that will introduce
you to JSF and give you the foundation needed to fully appreciate this book. We recommend JSF
in Action, by Kito D. Mann (Manning, 2005), which is an excellent and very complete book on
JSE and Core JavaServer Faces, by David Geary and Cay Horstmann (Prentice, 2004). We are
also looking forward to seeing Java Server Faces: The Complete Reference, by Ed Burns and
Chris Schalk (McGraw-Hill Osborne, 2006), in stores.

Pro JSF and Ajax: Building Rich Internet Components contains ten chapters that focus
on writing JSF components. The book’s examples are fairly extensive, so we recommend you
download the example source code from the Apress Web site to give you a better overview of
the examples discussed (see the next section for more information). We assume that, as an
experienced Web developer and JSF developer, you can extrapolate the demonstrated topic
into your own environment; thus, we avoid cluttering the text and examples with information
that is of little use.

Chapter 1 gives a fast-paced and in-depth introduction to JSE its component model, and
its lifecycle. You might have followed our recommendation to read up on JSF before buying
this book or you are already experienced working with JSF; either way, this chapter contains
crucial information about JSF and its lifecycle that is needed in order to successfully build
scalable and reusable JSF components.

Chapter 2 introduces the first JSF component: the date field component. We played with
the idea of having a component comprised of three input fields representing day, month, and
year, but this did not provide us with enough material to work with when moving forward
through the book. So instead, we focused this chapter on the essentials of building a com-
ponent, such as creating prototypes, managing resources, creating renderers, controlling
rendering of children, handling conversion, and figuring out what’s going on during post-
back. To be able to keep track of all the tasks associated with creating JSF components, this
chapter introduces the first steps in a JSF component design blueprint. The date field com-
ponent created in this chapter also introduces you to some new concepts and open source
projects when you improve its user interactivity in Chapter 7.

Chapter 3 introduces the second component: the deck component. The deck component
works like an accordion to show and hide information. This chapter discusses the JSF event
model and teaches you how to create new behavioral superclasses and new event types with
corresponding listener interfaces. By the time you finish Chapter 3, you will have enough
knowledge to start writing your own basic HTML components. During the course of this book,
you will be enhancing the deck and date field components, and you will be providing them
with extremely rich user interactivity that leverages RITs.

INTRODUCTION

Chapter 4 introduces you to three RITs (Ajax, Mozilla XUL, and Microsoft HTC) and gives
you a high-level overview of these technologies. You will use these technologies in Chapters 6,
7, 8, and 9 to build rich interactivity into the date field and deck components. Of course, some
simple applications in this chapter will highlight the core features of each technology.

As promised, to be able to successfully build and package JSF components, and especially
RICs, you need a solution that can easily package resources, such as JavaScript libraries, CSS,
and images, into the same component library as your JSF infrastructure (renderers, behavioral
superclasses, and so on) and then serve them out from the same JAR. Chapter 5 introduces a
new open source project—Weblets—that makes resource file management and versioning as
easy for Web development as it already is for desktop-based Java development.

Chapters 6, 7, 8, and 9 address the need for a smoother and richer user experience when
users interact with your components in a JSF Web application. These four chapters leverage
everything you have learned so far and guide you through the gotchas of building Ajax-enabled
JSF components with HTML, XUL, and HTC. These chapters also introduce you to one estab-
lished and two new open source projects: the Dojo toolkit, Mabon, and D?.

Finally, Chapter 10 pulls it all together. In this chapter, you will learn how to leverage all of
the aforementioned techniques to provide your Web application developers (and users) with
enterprise-class JSF components that support multiple clients.

Obtaining This Book’s Source Code

All the examples in this book are freely available from the Source Code section of the Apress
Web site. Point your browser to http://www.apress.com, click the Source Code link, and find the
Pro JSF and Ajax: Building Rich Internet Components book. You can download the source as a
zip file from this book’s home page. All source code is organized by chapter. The zip file con-
tains an application workspace, built with Oracle JDeveloper 10.1.3, and contains one project
per chapter. Each project includes a WAR file that is ready to deploy to any J2EE 1.3—compliant
application server. For more information about Oracle JDeveloper, please refer to the Oracle
Web site at http://otn.oracle.com/products/jdev/.

Obtaining Updates for This Book

There are no errors in this book. Just kidding! Despite our best efforts to avoid any errors, you
may find one or two scattered throughout the book. We apologize for those potential errors
that may be present in the text or source code. A current errata list is available from this book’s
home page on the Apress Web site (http://www.apress.com), along with information about
how to notify us of any errors you may encounter.

Contacting Us

Any feedback, questions, and comments regarding this book’s content and source examples
are extremely appreciated. You can direct your questions and comments to projsf@gmail.com.
We will try to reply to your questions and comments as soon as we can, but please remember,
we (like you!) may not be able to respond immediately.

Lastly, we would like to thank you for buying this book! We hope you will find this book to
be a valuable source of information and inspiration and that you enjoy reading it.

xxiii

PART 1

Developing Smarter with
JavaServer” Faces

JavaServer Faces (JSF) is a user interface (Ul) component framework for Java 2 Enter-
prise Edition (J2EE) Web applications that, once adopted, allows organizations to migrate
from old technologies, such as character-based platforms for virtual terminals (VTs), to
more up-to-date standard-based platforms and technologies, such as JSF and Java. Over
the past 15 years, the software industry has seen many technologies and platforms rise
and fall. Usually, the use of a particular technology declines for several reasons, including
fashion and competition. Another common reason for the fall of certain technologies is
that if they are designed and maintained by one company, then the consumers of these
technologies are forced to rely on support provided solely by the creators. Whenever a cre-
ator decides to deprecate a technology in favor of a more advanced solution, the consumer
is left with an outdated, unsupported platform. JSF allows organizations and consumers to
leverage the latest technology as it emerges, with minimal impact on existing JSF appli-
cations. JSF also brings extreme reuse of functionality and visual appearance to the
software industry. Part 1 of this book will teach you what JSF is all about, describe how to
leverage JSF by developing your own components, and open your eyes to a new horizon.

CHAPTER 1

The Foundation of JSF:
Components

JavaServer Faces (JSF) is a user interface (UI) framework for Java Web applications. It is
designed to significantly ease the burden of writing and maintaining applications that
run on a Java application server and render their Uls back to a target client.

—TJavaServer Faces specification

For those of you who have not had a chance to get acquainted with JSF before reading this
book, this chapter will give you a fast-paced introduction to its core functionality. If you are
already familiar with JSE you may still find some of the discussion of component and lifecycle
architecture to be of interest, because these topics are fundamental to your understanding of
the rest of this book. This chapter will cover application development, give an overview of JSF
and how it relates to other similar frameworks, and provide an in-depth examination of the
JSF architecture and its component model. By the end of this chapter, you should understand
the JSF architecture, its building blocks, and its request lifecycle.

Before jumping into the architecture of JSE we'll define the audience for JSF (and ulti-
mately for this book). The JSF specification defines the types of developers who make up the
core audience: page authors, application developers, component writers, tools providers, and
JSF implementers, as shown in Table 1-1.

Table 1-1. JSF Developer Types*

Type Description

Page author A page author is responsible for creating the UI and has knowledge
about markup and scripting languages, as well as the rendering
technology such as JavaServer Pages (JSP). According to the JSF
specification, this developer type is generally not familiar with
programming languages such as Java or Visual Basic.

Application developer An application developer is, according to the JSF specification, in
charge of the server-side functionality of an application that may or
may not be related to the UI The technical skills of an application
developer generally include Java, Enterprise JavaBeans (EJBs), or other
server technologies.

Continued

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

Table 1-1. Continued

Type Description

Component writer A component writer is the main provider of reusable components. This
developer is responsible for creating component libraries that can be
consumed by others, such as the page author.

Tools provider A tools provider, as implied by the name, provides tools that can
support developers who are building applications with JSE

JSF implementers A JSF implementer is a developer who provides the runtime (or
implementation of the JSF specification) for all the previously defined
developers. Examples of available implementations are the Sun
Reference Implementation (RI) (http://java.sun.com/j2ee/
javaserverfaces/) and Apache MyFaces (http://myfaces.apache.org).

*Source: The JavaServer Faces 1.1 specification

In our experience, page authors and application developers are usually the same person,
so they are knowledgeable in both UI design and programming languages, such as Java or
Visual Basic. We will focus most of our attention on component writers in this book.

Overview of Application Development
Technologies

During the relatively short history of computers and software, application development has
undergone several major evolutionary steps, all promising increased developer productivity
and flexibility. These technology improvements have progressed exponentially since the com-
puter was first introduced, and it looks like computer and software technologies will continue
to evolve at the same tremendous pace well into the future.

No exponential is forever . .. but we can delay “forever.”

—Gordon Moore (famous for Moore’s law),
Fairchild Camera and Instrument Corporation

During these evolutionary years, the deployment profile for an application, as well as the
computer and software technology used to develop such an application, has changed.

One-Tier

At the end of the 1970s and beginning of the 1980s, a fundamental shift occurred from large
and centralized computers to personal computers (PCs), which moved the power of control
from a few to many (anyone with a PC). Though most of the applications released during this
period were more powerful than anything so far developed, they were developed and designed

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

for single-user tasks and lacked collaboration over common data; at this point, no central data-
bases or email systems existed. Applications deployed or installed this way are referred to as
one-tier applications.

From a maintenance point of view, this one-tier solution is an application that resides on
an individual’s machine and that controls interaction with business logic. These one-tier appli-
cations all integrate three application layers (presentation, business logic, and data), making it
hard to maintain and almost impossible to share and scale information.

Two-Tier: Client-Server

Two-tier, or client-server, solutions took center stage in the 1980s and pushed one-tier solu-
tions into the history archives. A two-tier architecture, which enables sharing data, changed
the way applications were developed and deployed. Two-tier applications directly interact with
the end user; business and presentation logic are stored on the client, and data resides on
aremote server. This architecture allows multiple users to access centralized data with appli-
cations such as desktop email clients (such as Microsoft Outlook or Mozilla Thunderbird).
Although the two-tier solution solves the issue of having multiple users accessing the same
data source, it also has its limitations, such as the lack of flexibility of the design to later modi-
fication or porting, which in turn increases maintenance costs.

Multitier: Web Applications

The next phase in application development arrived with the Internet and the Web browser
and introduced the three-tier, or multitier, architecture. In the one-tier solution, presenta-
tion, business logic, and data are all integrated in one monolithic application. The multitier
architecture breaks this type of application into three layers, allowing developers to focus on
specific domain areas—model (data access), view (presentation), and controller (logic). This
programming paradigm, representing the split between these layers, is known as the Model-
View-Controller (MVC) architecture and was first introduced in SmallTalk and spread to the
developer community in the 1980s.

Splitting the one-tier application into layers—in combination with a standard client (for
example, the Web browser) and a standard communication protocol (for example, Hypertext
Transfer Protocol [HTTP])—suddenly gave users ubiquitous access to centralized and familiar
applications such as email via a browser (for example, Google’s browser-based Gmail). Applica-
tions are no longer something that only come on a CD or are downloaded. A multitier solution
gives the application owner centralized maintenance and administration, which allows the
application owner to provide instantaneous upgrades for everyone using the application.

Exploring Application Development Today

In this new world of multitier applications, developers need to keep up-to-date with emerg-
ing technologies and standards provided through such organizations as the World Wide Web
Consortium (W3C) and the Java Community Process (JCP). The industry is evolving, which
is good, but this also adds pressure on the application developer to always be building

CHAPTER 1 © THE FOUNDATION OF JSF: COMPONENTS

competitive multitier applications. If you look at a typical multitier software solution—serving
a retail company, for example—it might include support for multiple agents such as Web
browsers, mobile devices, and character-based Video Terminals (VT, for example, VT100).
Figure 1-1 shows a simplistic schema over the architecture for such a multitier application.

J2EE Container
% _____________ Web Application
& T (JSP/Serviet)
:E:’ -
(7]
> 8
H = Wireless
3 Application -]
-1 | I o |- (WML)
S £ EIS
Telnet Server
.]
£ i
8 |-----""""" Telnet Application
E (C++, Java, Perl, .NET)
=

Figure 1-1. Common J2EE architecture for a typical multitier software solution, serving a retail
company

In this scenario, the application developer is forced to provide not one application but
three. This architecture contains one application for the Web interface, one for the mobile
device, and finally one for the Telnet device (such as a VT terminal or handheld character-based
device). All three applications use their own technology stack, which for the administrator or
application developer will be a maintenance nightmare, and may cause issues with security
and scalability. For the application developer, it all boils down to one question: “How many
technologies do I have to learn in order to successfully build a complete solution for my
project?”

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

Frameworks

Compared to ten years ago, customers today have much higher demands and more specific
requirements for new Web application projects. They require richer and more user-friendly
Web applications with built-in security, accessibility, internationalization, portability, and so
on. Multitier applications must successfully deliver all these features, despite the increased
complexity of additional failure scenarios and increased scalability and security requirements.

The growing complexity of building applications creates a need for simplicity. So far, in
the J2EE realm, there has not been a clear choice of technology for Web applications. The
traditional application programming interfaces (APIs), such as JSP and servlets, do not really
provide enough abstraction from the underlying grunt work of implementing a multitier
application. To fulfill these requirements and to provide some level of simplicity, the industry
has evolved in a direction whereby open source communities and software companies are
providing application developers with frameworks to protect them from the complexity
introduced by multitier applications.

Tapestry, Struts, Tiles, TopLink, Hibernate, ADF UIX...

Many frameworks have the same underlying ideas but solve a problem a little differently
and in different layers of a multitier application (the view layer, the controller layer, and the
model layer). Examples of frameworks are Struts (an open source controller framework);
TopLink and Hibernate (model frameworks); and Tiles, Tapestry, XUL, and ADF UIX (so-
called view frameworks).

The benefits of application frameworks are the modularity, reusability, and inversion of
control (IoC) they provide to developers. By encapsulating implementation details, frame-
works enhance modularity and improve software quality by centralizing the impact of design
and implementation details. Thanks to the stable environment provided by frameworks, they
also enhance reusability by allowing developers to create generic components that can be
reused in new applications. This reuse of framework components improves application devel-
oper productivity and the quality of application software. By leveraging IoC, the framework
manages which application-specific methods are called in response to user events.

Note I0C means you have registered some part of your code with the framework, and the framework will
call this code when the client requests it. This is also referred to as the Hollywood principle. (“Don’t call us.
We'll call you.”)

In the previous retail software scenario (refer to Figure 1-1), frameworks can help increase
developer productivity and ease of maintenance, but the frameworks are also incompatible
with each other, which makes integration hard to handle. In contrast, JSF is a standard frame-
work that aims to solve incompatibility.

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

Introducing JSF

In short, JSF is a UI component framework for J2EE applications. Before we start covering UT
components (and by UI components we mean building blocks for application developers, not
components of the framework itself), it is worthwhile to elaborate on why you need yet another
framework. JSF is, after all, attempting to solve the same problems as the aforementioned
Apache Tapestry or Oracle ADF UIX, frameworks that have been around for quite some time
and have proved to be successful.

The differentiator that JSF brings, which other similar frameworks do not have, is the
backing of a standard specification (JSR-127). Because JSF is part of the J2EE standard specifi-
cation, it is a top priority for every major J2EE tools vendor in the market (including Oracle,
IBM, Borland, and Sun) to support it, which in turn will guarantee a wide adoption and good
tools support.

Most Web applications are stuck in the 1990s where too much effort was put into basic
plumbing and not into high-level components. Basically, when there is limited abstraction
or no abstraction over the markup, the development of Web applications becomes cumber-
some and hard to maintain. You can invest a lot of time into the application to make it rich
and interactive using various technologies from applets, plug-ins (Flex), Dynamic HTML
(DHTML), and JavaScript. Used together, these technologies can make up an interactive and
powerful Web application, but how do you maintain such an application? How do you reuse
what you have built?

Component Model

JSF brings to the table a best-of-breed J2EE framework. JSF is here to simplify life for applica-
tion developers, making it possible for them to focus on the view without needing to know the
underlying markup or scripts. They will see an improvement in productivity with JSF using

Ul components that hide most of the grunt work of integrating richer functionality into Web
applications. The goal is to provide an easy way to construct Uls from a set of reusable Ul
components.

These reusable components come in various shapes with different functionality, from
layout components (such as the layout of an entire page) to simple buttons. Application devel-
opers can use these components to construct a page and nest Ul components within each
other to get the desired effect; for example, nesting text fields and buttons within a row layout
component will render the nested UI components in a single row on the client. This structure
of nested components is often referred to as a parent-to-child relationship and visualized as a
Ul component hierarchy. This Ul component hierarchy represents a JSF page description at
runtime.

Navigation Model

JSF provides a declarative navigation model, which allows application developers to set
navigation rules to define the navigation from one view to another in a Web application. Navi-
gation rules in JSF are defined inside the JSF configuration file, faces-config.xml, and are
page-based. Code Sample 1-1 shows a navigation rule configured in faces-config.xml.

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

Code Sample 1-1. Navigation Rule Configured in faces-config.xml

<navigation-rule>
<from-view-id>/login.jspx</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/result.jspx</to-view-id>
</navigation-case>
</navigation-rule>

In Code Sample 1-1, a navigation rule is set so that from a view, login.jspx, on an out-
come of success, the user will be sent to a page called result. jspx. The outcome is the return
value from an action performed in the application such as a button being clicked. In JSE an
action is attached to the UIComponent, which allows for fine-grained control on the page. These
actions can either have their own navigation rule or share the same navigation rule.

Application Lifecycle

Another benefit that application developers will discover when using JSF is that the frame-
work helps manage Ul state across server requests. Instead of having to take care of user
selections and passing these selections from page to page, the framework will handle this for
you. The JSF framework also has built-in processes in the lifecycle to assist with validation,
conversion, and model updates. As a side bonus, JSF provides a simple model for delivering
client-generated events to server-side application code.

Application Development with JSF

One of the key differentiators with JSF is that its architecture is designed to be independent of
specific protocols and markup, and as such it allows developers to attach any rendering tech-
nology to the JSF application. In JSF it is the RenderKit that is responsible for the presentation
of the JSF application by rendering the markup to the client. You can define a RenderKit for
any type of markup (HTML, DHTML, Telnet/character mode, and eventually SVG, Flash, XUL,
and so on) and use it to display a JSF page.

This separation between the page description (UI component hierarchy) and the render-
ing of markup is a key differentiator that provides flexibility to the component developer while
protecting the application developer from changes isolated at the rendering layer. Instead of
having to learn and implement different rendering technologies to solve a common problem,
such as portability between different browsers (such as Netscape vs. Internet Explorer), appli-
cation developers can use custom JSF components to build applications targeted for different
browsers, personal digital assistants (PDAs), and so on, with a common programming
model—]JSF and Java.

Applying this new knowledge about JSF to the previous sample in Figure 1-1, the retail
solution, the architecture could look similar to Figure 1-2.

10

CHAPTER 1 © THE FOUNDATION OF JSF: COMPONENTS

J2EE Container

------- HTML
RenderKit

Adapter)

I Mobile ' Browser

? [
.= _ essaging] (] - -

e Server = WML 2 EIS

g (Resource 2 RenderKit =

D <

= [TH

(7]

-

Telnet
Server Telnet

(Resource RenderKit
Adapter)

Telnet Device

Figure 1-2. J2EE architecture using JSF for a typical multitier software solution, serving a retail
company

In this architecture, only one application is serving three different agents using three dif-
ferent RenderKits—Hypertext Markup Language (HTML), Wireless Markup Language (WML),
and Telnet. In practice, the application would probably still be three different pages but with a
main difference; they will all be built on the same technology—JSF and Java. This will both
save development time and reduce maintenance. Furthermore, and perhaps most important,
JSF establishes standards, which are designed to be leveraged by tools (such as Oracle JDevel-
oper, Sun Studio Creator, and Eclipse plug-ins such as Exadel Studio) to provide developers
with the ease of use that has long been sought in the J2EE developer community.

JSF Architecture

From a satellite view, JSF implements what is known as the Model 2 pattern, which is based on
the MVC architecture. If you look at how the Model 2 pattern is applied in a JSF application,
you can see it consists of three elements—the view, the navigation model, and the application
logic, as shown in Figure 1-3.

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

JSF Application

Controller View I Model I

HTML
Browser

Backend Code/
Managed Beans

FacesServiet |

- WML :

Page
Description

Figure 1-3. MVC architecture with JSF (Model 2)

Model

With JSE the concept of a managed bean has been introduced. The managed bean is the glue
to the application logic—backing code or backing bean. Managed beans are defined in the
faces-config.xml file and give the application developer full access to all the mapped backing
bean’s methods. This concept of IoC is successfully used in frameworks such as Spring, Hive-
Mind, and Oracle ADF model binding (JSR-227). The managed bean facility is responsible for
creating the backing beans or other beans such as Data Access Objects (DAO). In JSE a back-
ing bean is a plain old Java object (POJO) with no dependency on implementation-specific
interfaces or classes. The aforementioned JSF controller—the FacesServlet—is not aware of
what action has been taken; it is aware only of the outcome of a particular action and will use
that outcome to decide where to navigate. In JSF it is the component that is aware of which
action, or method, to call on a particular user event. Code Sample 1-2 shows a managed bean
defined in the faces-config.xml file.

Code Sample 1-2. Managed Bean Defined in the faces-config.xml File

<managed-bean>
<managed-bean-name>sample</managed-bean-name>
<managed-bean-class>
com.apress.projsf.chil.application.SampleBean
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>

1

12

CHAPTER 1 © THE FOUNDATION OF JSF: COMPONENTS

Code Sample 1-2 defines a backing bean, sample, that points to a class called com.apress.
projsf.chl.applictaion.SampleBean. The <managed-bean-scope> indicates where an instance of
this bean will be stored after it has been created—request, session, or application scope. The
code sample also has an option to set the scope to none for a bean that should not be stored in
any scope but instead be instantiated on every access. Table 1-2 lists all the available scopes.

Table 1-2. Managed Bean Scopes

Managed Bean Scope Description

None Instance created for every method invocation

Request Instance created for every request

Session Instance created on initial request and stored in the session
Application Instance created on initial request and stored in the Web application
View

The JSF view layer describes the intended layout, behavior, and rendering of the application.
One of the cornerstones of a JSF application is the UIComponent. ULComponents are the founda-
tion of the JSF view layer and represent the behavior and structure of the application. A
developer would use these UIComponents to construct an application by nesting components
within each other. This nested structure will at runtime be represented as a component hierar-
chy, as shown in Figure 1-4, which in turn represents the view or UI, much like developing a
Swing-based application.

Component Hierarchy
<fview>
<h:panelGrid columns="2">
<h:inputText/>
<h:inputSecret/>
</h:panelGrid> UlPanel
</h:form>
</fview> [unput || uinput

Figure 1-4. From page description to a JSF component hierarchy

The default page description defined by the JSF specification is JSP, but there is nothing in
the JSF specification preventing an implementer from providing an alternative page descrip-
tion, such as an Extensible Markup Language (XML)-based, WML-based, or plain HTML-based
page description. Using JSP as the page description has its good and bad sides. On the plus
side, it is a well-known and widespread solution; as such, learning how to build applications
with JSF and JSP presents a fairly shallow learning curve for most J2EE developers. In addition,

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

as a bonus, the adoption of JSF as the view technology of choice for new Web applications is
good. The consequence is that JSF has a dependency on JSB, and as such, it needs to work
around the different lifecycles of an application that is partially JSP and partially JSE Later in
this chapter (refer to the section “JSF and JSP”), we will cover these differences and the impact
they have on applications built with JSP syntax and JSF components.

Controller

JSF comes with a simple controller—the FacesServlet. The FacesServlet acts as a gatekeeper,
controlling navigation flow and dispatching requests to the appropriate JSF page.

A Component-Based UI Framework

We have set the stage for the book, so it is now time to focus on the pieces that are differentiat-
ing JSF from other technologies: UIComponents. JSF is a component-based UI framework where
components, such as HtmlDataTable and HtmlPanelGrid, can be viewed as prefabricated blocks
that allow application developers to productively build complex applications with reusable
components. It also allows application developers to focus on the application logic rather
than on building the dynamic/rich functionality themselves.

Note JSF is all about components—and reusable components at that! JSF was first released in March
2004 with a subsequent point release, 1.1, in August 2004. The initial JSR (JSR-127) has been replaced by
JSR-252, which delivers the JSF 1.2 release.

A JSF component consists of five building blocks:

e UIComponent: The UIComponent is responsible for the behavior and for accessing the
data model.

e Renderer: The Renderer is in charge of the markup rendered to the client for a specific
component family.

* RenderKit:This is a library of Renderers with a common rendering technology (for
example, HTML).

* Renderer-specific component subclass: The renderer-specific component subclass is a
convenience class and represents renderer-specific facets and attributes.

* JSP tag: The default page description language is JSP, so JSF needs to follow the contract
of JSP and provide JSP tags representing each JSF component.

JSF addresses the idea of a clear separation between the application logic and the visual
presentation by strongly separating the UI from the underlying data model. The Renderer is in
charge of the markup rendered to the client, and the UIComponent is responsible for the behav-
ior and accessing data model. Figure 1-5 shows the separation of UI, behavior, and data model.

13

14

CHAPTER 1 © THE FOUNDATION OF JSF: COMPONENTS

Presentation Behavior and Data
Client Model Application Logic

Renderer Ul Component # Q

=

Figure 1-5. Separation of UI from behavior and data model

To illustrate the benefit of separating the UI and data models, let’s look at an example of
the common HTML form element <select>. This list element has a multiple attribute that
changes the behavior from allowing a single-select option to multiple-select options. This
model has no separation of rendering and behavior. For an application developer to change
the behavior of the element from single select to multiple select, it requires just a minor
adjustment—simply setting the attribute multiple. However, this will have a bigger impact
on the underlying application logic since the values passed from the client are now struc-
tured as a list of key-value pairs instead of just a single key-value pair.

The UISelectOne and UISelectMany UI components provide a good example of clear sepa-
ration between behavior and appearance. For example, the UISelectOne component has a
distinct behavior to select a single value from many available options, and the UISelectMany
component has the behavior of selecting many values from a list of available options. The
UISelectOne component has three renderer types—Listbox, Radio, and Menu. Changing the
appearance from Radio to Menu will not affect the underlying behavior.

However, if application developers want to change the behavior to a multiple-select com-
ponent, they have to replace the entire UISelectOne JSF component with a UISelectMany JSF
component, rather than just setting an attribute in the page markup, as they would do when
using the <select> element directly. This clear separation between changing the behavior of
a JSF component and changing its appearance gives application developers a better under-
standing of the impact of their changes when modifying the page definition. Figure 1-6
illustrates the UIComponent and three Renderers with different appearances.

Figure 1-6 illustrates a component—UISelectOne—from the JSF specification that has
three different renderers attached—Listbox, Menu, and Radio. In some cases it might be neces-
sary to create new UIComponents or Renderers.

Presentation Behavior and Data
Model Application Logic

Listbox (Renderer) @ Q

UlSelectOne

(Ul Component) @

Client

=

Menu (Renderer)

Radio (Renderer)

Figure 1-6. UISelectOne and its renderers

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

A good rule to follow is before starting a component project, search the Web for already
created components. In most cases, you can probably get away with writing a new Renderer
for an already existing component, and a fair number of components already exist. If you can’t
find the component you are looking for, then it is time to build your own. To build a new com-
ponent, you should make sure it introduces a new behavior, functionality, or definition and
that the component has a distinct server-side behavior. If the component exists and you just
need a new appearance, then you need to create a new Renderer (for example, to enable Ajax
or an existing input component).

Let’s now look at the different pieces making up a JSF component.

UIComponent

The foundations of all JSF components are the abstract UIComponent and UIComponentBase
classes. The UIComponent class (javax.faces.component.UIComponent) defines the behavioral
agreement and state information for all components, and the UIComponentBase class (javax.
faces.component.UIComponentBase) is a convenience subclass that implements almost all
methods of the UIComponent class. A simplified description of a UIComponent is thatitis a
regular JavaBean with properties, events, and listeners.

The JSF specification defines a set of standard UIComponent subclasses, or behavioral super-
classes (for example, UISelectOne and UISelectMany), which all extend the UIComponentBase
class. In most cases, component writers will extend these standard UIComponent subclasses.
However, they can subclass the UIComponentBase class as well. A JSF component consists of
a UIComponent and one or more Renderers. It is important to understand that the standard
UIComponent subclasses define only non-renderer-specific behaviors, such as UISelectOne.
Table 1-3 gives an overview of the available standard behavioral UIComponents and lists their
associated convenience subclasses, renderer types, and JSP tags.

Table 1-3. Components Provided by the JSF Implementation*

Ul Component Renderer-Specific Class Renderer Type Syntax/JSP Tag
UIColumn null** <h:column>
UICommand HtmlCommandButton Button <h:commandButton>
HtmlCommandLink Link <h:commandLink>
UIData HtmlDataTable Table <h:dataTable>
UIForm HtmlForm Form <h:form>
UIGraphic HtmlGraphicImage Image <h:graphicImage>
UIInput HtmlInputHidden Hidden <h:inputHidden>
HtmlInputSecret Secret <h:inputSecret>
HtmlInputText Text <h:inputText>
HtmlInputTextArea Textarea <h:inputTextarea>
UIMessage HtmlMessage Message <h:message>
UIMessages HtmlMessages Messages <h:messages>
UIOutput HtmlOutputFormat Format <h:outputFormat>
HtmlOutputlLabel Label <h:outputlabel>

Continued

15

16 CHAPTER 1

Table 1-3. Continued

THE FOUNDATION OF JSF: COMPONENTS

Ul Component Renderer-Specific Class Renderer Type Syntax/JSP Tag
HtmlOutputLink Link <h:outputLink>
HtmlOutputText Text <h:outputText>
UIPanel HtmlPanelGrid Grid <h:panelGrid>
HtmlPanelGroup Group <h:panelGroup>
UIParameter null* <h:parameter>
UISelectOneBoolean HtmlSelectBooleanCheckbox Checkbox <h:selectBooleanCheckbox>
UISelectItem null <h:selectItem>
UISelectItems null <h:selectItems>
UISelectMany HtmlSelectManyCheckbox Checkbox <h:selectManyCheckbox>
HtmlSelectManylListbox Listbox <h:selectManylListbox>
HtmlSelectManyMenu Menu <h:selectManyMenu>
UISelectOne HtmlSelectOnelListbox Listbox <h:selectOnelistbox>
HtmlSelectOneMenu Menu <h:selectOneMenu>
HtmlSelectOneRadio Radio <h:selectOneRadio>
UIViewRoot null <f.view>

*Source: The JavaServer Faces specification 1.1
** This component has no associated renderer.

For each combination of UIComponent and Renderer, there is a renderer-specific subclass,
or convenience class. A standard JSF implementation, such as the Sun RI or the MyFaces run-
time, comes with a set of HTML renderers (provided through the standard HTML RenderKit)
and a set of HTML renderer-specific subclasses, such as Htm1SelectOneRadio.

Renderer-Specific Component Subclass

In most cases, this subclass creates an instance of the component at runtime. As defined by
its name, this subclass provides access to renderer-specific attributes on a JSF component
such as style, disabled, tooltip, and so on—providing property getters and setters for all of
these component attributes. In conjunction with the binding attribute on the JSF JSP tag, this
subclass allows application developers to use JavaBean property setters to change renderer-
specific attributes on the component at runtime.
Although this does work and is a useful tool for prototyping, we recommend that, where
possible, application developers avoid modifying the renderer-specific attributes directly from
the backing bean application logic and instead use the behavioral superclass of the compo-
nent. If application developers use the parent class instead of the convenience subclass, they
have no need to modify the backing bean code when the JSF component changes to use a dif-
ferent renderer-specific component in the page definition, such as from HtmlSelectOneRadio
to HtmlSelectOnelistbox. The backing bean code needs to change only when the behavioral
superclass also changes, such as changing from Htm1SelectOneRadio to HtmlSelectManyList.
This subclass is optional, but it is good practice to provide this subclass with the JSF com-
ponent, since sometimes application developers may like to use it for convenience, and for
component writers it is hard to know whether application developers will try to use this.

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

Since this convenience class extends the UIComponent and the behavioral subclass (for
example, UISelectOne) at runtime, the component instance will not only contain information
available in this convenience class but also contain information from the extended UIComponent
classes. If you look at the inheritance model that is used by JSF to create an instance of a com-
ponent, it will look something like Figure 1-7.

Component Hierarchy e Runtime Component

7 UlComponent .
/,/' UComponentBase)
2l UlOutput .
\\ Ullnput .

. UlSelectOne .
. HimiSelectOneRadio |

Figure 1-7. UIComponent inheritance

This model allows programmatic access to all properties and attributes defined by the dif-
ferent classes that build up the component. As mentioned earlier, the UIComponentBase class
contains behavioral agreements for all components, the UISelectOne subclass contains prop-
erties and methods specific to its behavior (for example, select one), and the renderer-specific
subclass (for example, HtmlSelectOnelListbox) contains getters and setters for all renderer-
specific attributes as well as the rendererType for that particular component.

Using a Renderer-Specific Component Subclass

Code Sample 1-3 illustrates the benefit of using the behavioral superclass instead of the con-
venience class to manipulate the page at runtime. The first bit of code illustrates a page with
a simple selectOneRadio component with three options and a commandButton.

Code Sample 1-3. JSF selectOneRadio Bound to a Renderer-Specific Subclass

<h:form>
<h:selectOneRadio binding="#{sample.selectOneRadio}" >
<f:selectItem itemLabel="Jonas" itemValue="jonas.jacobi" />
<f:selectItem itemLabel="John" itemValue="john.fallows" />
<f:selectItem itemLabel="Duke" itemValue="java.dude" />
</h:selectOneRadio>
<h:commandButton value="Select Duke"
actionListener="#{sample.onAction}" />
</h:form>

17

18

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

In the selectOneRadio JSP tag, or custom action, the binding attribute is set to a value-
binding expression—#{sample.selectOneRadio}. This expression points to a backend JavaBean
property—selectOneRadio—that in turn is wired to the component instance for the UIComponent
created by this JSP tag. Code Sample 1-4 shows the backend JavaBean, or the managed bean,
that contains the page logic that at runtime will set the default option on the selectOneRadio
component to java.dude at runtime, whenever the user clicks the command button.

Code Sample 1-4. Backing Bean Using the HtmlSelectOneRadio Subclass

package com.apress.projsft.chi.application;

import javax.faces.event.ActionEvent;
import javax.faces.component.html.HtmlSelectOneRadio;

public class SampleBean
{

public void onAction(

ActionEvent event)

{

_selectOneRadio.setValue("java.dude");

}

public void setSelectOneRadio(
HtmlSelectOneRadio selectOneRadio)
{
_selectOneRadio = selectOneRadio;

}

public HtmlSelectOneRadio getSelectOneRadio()
{
return _selectOneRadio;

}

private HtmlSelectOneRadio selectOneRadio;

In Code Sample 1-4, the managed bean is using the renderer-specific subclass
HtmlSelectOneRadio. If application developers want to change the UI and replace the
selectOneRadio component with a selectOneMenu component in the page, a class cast
exception is thrown at runtime. The application developer can avoid this by instead using
the parent class of the selectOneRadio component—UISelectOne. Code Sample 1-5 shows
how the page and the managed bean source look with the recommended approach.

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

Code Sample 1-5. JSF selectOneRadio Bound to a Behavioral Superclass

<body>
<h:form>
<h:selectOneRadio binding="#{sample.selectOne}" >
<f:selectItem itemLabel="Jonas" itemValue="jonas.jacobi" />
<f:selectItem itemLabel="John" itemValue="john.fallows" />
<f:selectItem itemLabel="Duke" itemValue="java.dude" />
</h:selectOneRadio>
<h:commandButton value="Select Duke"
actionlistener="#{sample.onAction}" />
</h:form>
</body>

Code Sample 1-5 contains the same page description except for one minor adjustment to
the value-binding expression. To be more generic, the method name in the managed bean has
been changed to selectOne instead of selectOneRadio, so the expression in the page descrip-
tion has to change to reference the more generic backing bean property name, as shown in
Code Sample 1-6.

Code Sample 1-6. New Backing Bean Using the UlSelectOne Class

package com.apress.projsf.chi.application;

import javax.faces.event.ActionEvent;
import javax.faces.component.UISelectOne;

public class SampleBean

{

public void onAction(
ActionEvent event)

{

_selectOne.setValue("java.dude");

}

public void setSelectOne(
UISelectOne selectOne)

{

_selectOne = selectOne;

}

public UISelectOne getSelectOne()
{

return _selectOne;

}

private UISelectOne selectOne;

19

20

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

The new managed bean is now leveraging the inheritance of the components to make it
more agnostic to changes in the Ul Instead of the convenience class HtmlSelectOneRadio, the
behavioral superclass UISelectOne is used. Application developers can now change to another
component within the same component family without fear of breaking the application logic.

Accessing Renderer-Specific Attributes

In the previous example, we programmatically set the value property on the UISelectOne com-
ponent, which is a property defined by the behavioral superclass. But how does an application
developer get access to the renderer-specific attributes if a renderer-specific subclass is not
provided or (as in Code Sample 1-6) is not used? All attributes and properties are accessed via
a centralized Map that can be accessible from any of the UIComponent classes and subclasses
through a property called attributes, as shown in Code Sample 1-7.

Code Sample 1-7. Using the Component Attributes Map to Update a Render-Specific Attribute

// Renderer-specific attribute example
Map attrs = selectOne.getAttributes();
attrs.put("style", "font-face:bold");

Code Sample 1-7 shows how a developer can access attributes without using a renderer-
specific subclass. Component writers can also introduce an interface for renderer-specific
attribute methods, implemented by each renderer-specific subclass.

Saving and Restoring State

One crucial part of building Web applications is state saving. Take the traditional HTML-based
shopping cart as an example. Here the application developer has to store the user product
selections and persist this information until the user finishes shopping. In most cases, a shop-
ping cart application is built up with multiple pages so the state of each page has to be saved
until the buyer has finished shopping. The state is stored in hidden form fields, stored in the
session, or passed on as a request to the next page. Those who have dealt with this know this is
not a trivial task to accomplish.

State management is one of the primary benefits of using JSF to build applications.
JSF provides automatic UI state handling through a class called StateManager, which saves
and restores state for a particular view (hierarchy of UIComponents) between requests on the
server. Each UIComponent saves and restores its own internal state when requested by the
StateManager; the StateManager itself saves and restores the state associated with the struc-
ture of the UIComponent hierarchy. If a UIComponent is marked as being transient, then it is
omitted from the structure by the StateManager, causing it to be removed from the UIComponent
tree at the end of the request.

Two alternatives exist for storing the state of a view—on the client side and server side.
By default state is saved on the server. The server-side implementation is supported by the
JSP and Servlet specifications, but JSF conceals all the details of how this works. A class called
ResponseStateManager, which is created and managed by a RenderKit, manages the client-
side state saving. Client-side state saving depends not only on the JSF implementation but
also heavily on the markup language rendered to the client and on how state can be man-
aged by that client. With HTML as markup, the state is typically stored in a hidden form field.

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

Note Although JSF 1.1 kept the name of the view state in a hidden form field as a private implementa-
tion detail, JSF 1.2 now standardizes the name as javax.faces.ViewState so that alternative postback
mechanisms, such as Ajax, can more easily be integrated with the JSF lifecycle.

One of the drawbacks of saving state in the user session on the server is memory con-
sumption. If scalability is an issue for application developers, the client-side implementation
will prevent memory consumption from shooting through the roof and will have an advan-
tage in clustered environments. But, since state will now have to be sent back and forth
between the client and the server, response time might increase. You can configure the state-
saving method, as shown in Code Sample 1-8, in the application deployment descriptor
file—WEB-INF/web.xml—by setting the parameter STATE_SAVING METHOD to client or server.

Code Sample 1-8. Setting the Method of Saving State to the Server Side in the Deployment
Descriptor

<context param>
<param-name>javax.faces.STATE SAVING METHOD</param-name>
<param-value>server</param-value>

</context param>

Component Family and Component Type

The component family is a string that represents the behavior of the component (for example,
an input component or command component). The component family is declared in the JSF
configuration file—faces-config.xml—and used to select a Renderer for a particular compo-
nent. Code Sample 1-9 shows how you associate a Renderer with a particular component
family.

Code Sample 1-9. Associating a Renderer to a Particular Component Family

<render-kit>
<renderer>
<component-family>
javax.faces.Input
</component-family>
<renderer-type>
com.apress.projst.Date
</renderer-type>
<renderer-class>
com.apress.projst.ch2.render.html.basic.HtmlInputDateRenderer
</renderer-class>

21

22

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

Note The prefix javax.faces is reserved for use by component families defined in the JSF specifica-
tion. All samples in this book use the com.apress.projst prefix for custom component families.

The component type is a string that is used as an identifier for the UIComponent subclass.
You can find information about the relationship between the component type and UIComponent
subclass in the JSF configuration file, as shown in Code Sample 1-10.

Code Sample 1-10. Mapping of Component Type and UIComponent Subclass

<component>
<component-type>
com.apress.projsf.ProInputDate
</component-type>
<component-class>
com.apress.projsf.ch2.component.pro.ProInputDate
</component-class>

In Code Sample 1-10, a UIComponent subclass—com.apress.projsf.component.pro.
ProInputDate—has been assigned com.projsf.ProInputDate as the component type. By
convention, the component type is also declared in the UIComponent subclass as a constant—
COMPONENT _TYPE. This simplifies life for developers so they don’t need to remember the
component type for every component.

Note The prefix javax. faces is reserved for use by component types defined in the JSF specification.
All samples in this book use the com.apress.projsf prefix for custom component types.

Converters, Validators, Events, and Listeners

Apart from providing UIComponents, a JSF implementation also provides helper classes for
these UIComponents. These helper classes are divided into converters, validators, and an event
and listener model. The converters provide a bidirectional type conversion between the sub-
mitted value of a component and the corresponding strongly typed object in the model tier.
The validators perform validation on the strongly typed object; for example, they can ensure
that a date is not in the past. Code Sample 1-11 shows an inputText component with attached
date converter.

Code Sample 1-11. inputText Component with Attached Date Converter

<h:inputText value="#{sample.date}" >
<f:convertDateTime pattern="yyyy-MMM-dd" />
</h:inputText>

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

JSF also provides a way to attach listeners to components and broadcast events to those
listeners, much the same way it works in AWT and Swing. For example, a commandButton is
a source of ActionEvents. When a commandButton is clicked, a postback occurs, and a new
ActionEvent is stored in an event queue. Any event listeners registered with the commandButton
are notified of this event. Code Sample 1-12 shows a commandButton with an attached Listener.

Note The JSF specification for registering listeners and broadcasting events is based on the design
patterns of the JavaBean specification, version 1.0.1.

Code Sample 1-12. commandButton with Attached Listener

<h:commandButton value="Login"
action="success"
actionListener="#{sample.onLogin}" />

In Code Sample 1-12, a commandButton component has two properties—action and
actionlistener. Both attributes take method-binding expressions, and the differences are that
the action attribute requires a method that returns a String object and the actionListener
attribute requires a method that accepts an ActionEvent that has a void return type. The
action attribute’s string value is used for navigation purposes.

When the queued ActionEvent is processed, these method-binding expressions will be
used to execute the backing bean methods referenced by action and actionlListener.

Facets

A JSF view is comprised of a component hierarchy, providing access to each parent compo-
nent’s children by index. Sometimes it is also necessary to provide an alternative way of
adding subordinate components that are not part of this ordered list.

One example is the dataTable component, where the children represent the columns to
be rendered in the table. In some cases it might be useful to identify a component that repre-
sents the header and/or footer of the entire table, separate from the usual child collection
that represents the individual columns. These header and footer child components are called
facets, referenced only by name, with no specific order. The name of a facet represents the role
that the nested component will play in the parent component. It is important to note that
a parent component can contain only one child component per named facet, but the same
parent component can contain many indexed child components.

Code Sample 1-13 shows how to add a header facet to both the dataTable component and
the column component.

Code Sample 1-13. Facets Within a dataTable Component

<h:dataTable value="#{sample.tableList}" var="rows" >
<f:facet name="header" >
<h:outputText value="Contact Information" />
</f:facet>

23

24 CHAPTER 1 © THE FOUNDATION OF JSF: COMPONENTS

<h:column>
<f:facet name="header" >
<h:outputText value="Firstname" />
</f:facet>
<h:outputText value="#{rows.firstname}" />
</h:column>

</h:dataTable>

Renderers

The JSF specification outlines two models for how a JSF component can handle values from
incoming requests (decode) and outgoing response (encode). These two models—direct
implementation and delegated implementation—have two distinct approaches; the direct
implementation relies on the UIComponent instance to handle decode and encode, and the
delegate implementation delegates these responsibilities to a Renderer. As you have seen in
Figure 1-5, the delegate approach allows application developers to work with the UIComponent
independently from what will be rendered on the client. In this book, we will discuss only the
delegate implementation approach, since our goal is to provide multiple Renderers for each
behavioral component. This approach is also what makes JSF such a powerful UI framework.

Note The direct implementation approach provides slightly better performance since there is no need to
delegate to a Renderer, but it also severely limits extensibility and portability across clients.

Renderers are responsible for the presentation of a JSF component and must generate the
appropriate client-side markup, such as HTML and JavaScript, or XUL. Renderers are also in
charge of converting information coming from the client to something understandable for
the component (for example, a string value from an HTML form POST converted to a strongly
typed Date object).

Although a Renderer introduces client-side attributes such as style, disabled, tooltip,
and so on, these attributes are actually exposed in the renderer-specific component subclass
(for example, HtmlSelectOneRadio).

One major difference between UIComponents and Renderers is the way they are defined at
runtime. Renderers are defined as singletons, so there is only one Renderer for all instances of
a UIComponent for each particular renderer type.

Caution Since individual Renderer instances will be instantiated as requested during the rendering
process and used throughout the life of a Web application, it is important to understand that each instance
may be invoked from more than one request-processing thread simultaneously. This requires that
Renderers are programmed in a thread-safe manner.

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

Renderer Types

The renderer type is an identifier that is defined by the component, and in combination with
the component family, it uniquely identifies which Renderer class to use with the component.
Combining the renderer type and the component family is extremely powerful since it allows
the reuse of the renderer type for multiple behavioral components.

Code Sample 1-14 illustrates how a component family is associated with a specific
Renderer and renderer type.

Code Sample 1-14. Renderer Type As Defined in the JSF Configuration File

<render-kit>
<renderer>
<component-family>
javax.faces.Input
</component-family>
<renderer-type>
com.apress.projsf.Date
</renderer-type>
<renderer-class>
com.apress.projst.ch2.renderer.html.HtmlInputDateRenderer
</renderer-class>

Table 1-4 contains a subset of the standard component families with their associated
components and component and renderer types.

25

Table 1-4. A Subset of All Standard Component Families and Their Components, Component Types, and

Renderer Types
Component Family” Component Component Type Renderer Type™
Command UICommand Command
HtmlCommandButton HtmlCommandButton Button
HtmlCommandLink HtmlCommandLink Link
Data UIData Data
HtmlDataTable HtmlDataTable Table
Form UIForm Form
HtmlForm Form Form
Graphic UIGraphic Graphic
HtmlGraphicImage HtmlGraphicImage Image
Input UIInput Input
HtmlInputHidden Htm1InputHidden Hidden
HtmlInputSecret HtmlInputSecret Secret
HtmlInputText HtmlInputText Text
HtmlInputTextArea HtmlInputTextArea Textarea

Continued

26 CHAPTER 1

Table 1-4. Continued

THE FOUNDATION OF JSF: COMPONENTS

Component Family Component Component Type Renderer Type™

Output UIOutput Output
HtmlOutputFormat HtmlOutputFormat Format
HtmlOutputLabel HtmlOutputLabel Label
HtmlOutputLink HtmlOutputLink Link
HtmlOutputText HtmlOutputText Text

Panel UIPanel Panel
HtmlPanelGrid HtmlPanelGrid Grid
HtmlPanelGroup HtmlPanelGroup Group

* The fully qualified name of the component family is javax.faces.<name in table>.
** The fully qualified name for renderer type is javax.faces.<name in table>.

Table 1-4 shows that the renderer type Text is used in several places—for both the
HtmlInputText component and the HtmlOutputText component. The combination of the
component family Output and the renderer type Link uses the Renderer class that would
generate a regular HTML link element—some text—to the client.

RenderKits

The functionality of a RenderKit is to support UIComponents that use the delegate imple-
mentation approach with the delegation of Renderers to the UIComponent. RenderKits group
instances of Renderers with similar markup types, and the default RenderKit provided by all
JSF implementations is the HTML Basic RenderKit containing Renderers that output HTML
4.0.1. Other possible RenderKits can have Renderers supporting view technologies such

as SVG, WML, Ajax, XUL, and so on. In this book, you'll look at additional RenderKits for
Microsoft's DHTML/HTML Components (HTC) and Mozilla’s XUL/XML Binding Language
(XBL) technologies.

The RenderKit is not responsible for creating the Renderer because it will store only a single
instance of each renderer type. Each RenderKit is associated to a view (component hierarchy)
atruntime as a UIViewRoot property. If no RenderKit has been set, the default RenderKit will be
used. When it comes to RenderKits, many times you have no need to create a new RenderKit.
Adding a custom Renderer to an already existing RenderKit is just a configuration operation.

If a RenderKit identifier is omitted, the custom Renderer is automatically added to the default
HTML Basic RenderKit. If you would like to add a RenderKit with custom Renderers, you can do
the same thing—update the JSF configuration file. Code Sample 1-15 shows how you can add a
new Renderer to the JSF configuration file.

Code Sample 1-15. New Renderer Added to the Default HTML Basic RenderKit

<render-kit>
<!-- no render-kit-id, so add this Renderer to the HTML_BASIC RenderKit --»
<renderer>

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

<component-family>
javax.faces.Input
</component-family>
<renderer-type>
com.apress..projst.Date
</renderer-type>
<renderer-class>
com.apress.projsf.ch2.renderer.html.HtmlInputDateRenderer
</renderer-class>

</render-kit>

By not adding a RenderKit identifier to the RenderKit configuration, the Renderer sample
in Code Sample 1-15—com.apress.projsf.ch2.renderer.html.HtmlInputDateRenderer—is
automatically added to the standard default HTML Basic RenderKit.

Custom Action Tag Handlers

Since the default page description language is JSB, most JSF components will have a JSP custom
action. When the JSP container encounters a custom action, it asks for the JSF tag handler asso-
ciated with this action. The main purpose of the JSF tag handler is to create an instance of the
component, using the renderer-specific subclass, and associate the component with a Renderer
at the first page request.

Request-Processing Lifecycle

As a component writer, it is essential you have a clear understanding about the lifecycle of JSE A
page constructed with JSF components will go through a well-defined request-processing lifecy-
cle. This lifecycle consists of six phases—Restore View, Apply Request Values, Process Validations,
Update Model Values, Invoke Application, and Render Response, as shown in Figure 1-8.

Client/Browser <

Restore View Apply Request Process
Values —> Validations
Render Invoke Update Model
Response <€——— Application — Values

Figure 1-8. Formal lifecycle of JSF

27

28

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

Here’s the process broken down:

1.

Restore View: This phase is responsible for restoring the component hierarchy from
the previous request and attaching it to the FacesContext. If no saved state is available,
then the Restore View phase is responsible for creating a new UIViewRoot, which is the
root node in the component hierarchy, and storing it on the FacesContext.

. Apply Request Values: In this phase, each component has the opportunity to update its

current state with information included in the current request.

. Process Validations: This phase is in charge of processing any validators or converters

attached to components in the component hierarchy.

. Update Model Values: During this phase, all suitable model data objects will have their

values updated to match the local value of the matching component, and the compo-
nent local values will be cleared.

. Invoke Application: At this phase, any remaining events broadcast to the application

need to be performed (for example, actions performed by an Htm1CommandButton).

. Render Response: This phase is responsible for rendering the response to the client and

storing the new state for processing of any subsequent requests.

To put these phases into a real-life context, we'll use a simple example where the user will
access an application built with JSF and JSP. This application contains a simple login page with
some input fields for a username and password and a button to log in. On successful login, the
user is redirected to a second page that will display the user’s username.

Building an Application Using JSF

This application contains three essential pieces—the application description (JSP), a JSF
configuration file, and a managed bean. This application has two JSP pages—1login. jspx and
result.jspx. Code Sample 1-16 shows the login page.

Code Sample 1-16. The Login Page

<?xml version="1.0" encoding="utf-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/ISP/Page" version="2.0"

xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">

<jsp:output omit-xml-declaration="true" doctype-root-element="HTML"

doctype-system="http://www.w3.0rg/TR/html4/loose.dtd"
doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>

<jsp:directive.page contentType="text/html;charset=utf-8"/>
<fiview>
<html>

<body>
<h:form>
<h:outputText value="Application Login" />
<h:inputText value="#{credentials.username}" />

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

<h:inputText value="#{credentials.password}" />
<h:commandButton value="Login"
action="success"
actionListener="#{credentials.onlLogin}" />
</h:form>
</body>
</html>
</f:view>
</jsp:root>

The structure of the page is simple and describes a page containing two input fields for a
username and password and a login button. Figure 1-9 shows what the page looks like when
rendered.

@ Mozilta Firefox mEx)

File Edit View Go Bookmarks Tools Help

@~ 5 - @ @ L] http:/{127.0.0.1:8988 /chapter 1-context-root/faceslogin.jspx M

Application Login

Done

Figure 1-9. The login page

The second page in the application, shown in Code Sample 1-17, is simple and merely
illustrates navigation and completion of the lifecycle. The page contains an <h:outputText>
component that will render the entered value from the username <h:inputText> component
on the initial page on successful login.

Code Sample 1-17. Navigation Rules and Managed Beans for the Application

<?xml version="1.0" encoding="utf-8"?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
doctype-system="http://www.w3.0rg/TR/html4/loose.dtd"
doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>
<jsp:directive.page contentType="text/html;charset=utf-8"/>
<f:view>
<html>

29

30

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

<body>
<h:form>
<h:outputText value="#{credentials.username}" />
</h:form>
</body>
</html>
</fiview>
</jsp:root>

To be able to navigate from one page to another, you have to define a navigation case in
the JSF configuration file—faces-config.xml. You also need to create a mapping to the back-
end code using a managed bean. Code Sample 1-18 shows how to do this.

Code Sample 1-18. Navigation Rules and Managed Beans for the Application

<navigation-rule>
<from-view-id>/login.jspx</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/result.jspx</to-view-id>
</navigation-case>
</navigation-rule>
<managed-bean>
<managed-bean-name>credentials</managed-bean-name>
<managed-bean-class>
com.apress.projsf.chi.application.CredentialsBean
</managed-bean-class>
<managed-bean-scope>session</managed-bean-scope>
</managed-bean>

As you can see, Code Sample 1-18 defines that from the login.jspx page, on an outcome
of success, the user of the application will be sent to the result. jspx page. It also defines a
managed bean that points to a class—CredentialsBean—containing some simple application
logic. Code Sample 1-19 shows the application logic.

Code Sample 1-19. The Application Logic

package com.apress.projsf.chi.application;

import javax.faces.event.AbortProcessingException;
import javax.faces.event.ActionEvent;

public class CredentialsBean

{
public void onLogin(
ActionEvent event)

{

CHAPTER 1

If (!"duke".equalsIgnoreCase(_username))
throw new AbortProcessingException("Unrecognized username!");
// clear out the password, for good measure!

_password = null;

}

public void setUsername(
String username)

{

_username = username;

}

public String getUsername()
{

return _username;

}

public void setPassword(
String password)

{

_password = password;

}

public String getPassword()
{

return _password;

}

private String username;
private String password;

Web Application Start-Up

THE FOUNDATION OF JSF: COMPONENTS

Upon receiving a JSF request, the JSF implementation must launch, or acquire, references to
several processes/services that must be available to a JSF Web application running in a servlet
or portlet environment. To get access to these references, the JSF implementation will call sev-
eral factories that are responsible for creating instances needed to launch the JSF application.

When a JSF Web application starts, four factories are instantiated; each of these factories
is responsible for different areas within a JSF Web application:

ApplicationFactory: The ApplicationFactory class is responsible for the creation of

the Application instance, which can be seen as a service that allows, for example, the
Lifecycle instance to create and restore JSF views (component hierarchies) on incoming
requests and to store the state of the JSF view.

31

32 CHAPTER 1 © THE FOUNDATION OF JSF: COMPONENTS

LifecycleFactory: The LifecycleFactory is in charge of returning a Lifecycle instance for
a lifecycle identifier. The default Lifecycle instance is in charge of invoking processing
logic to implement the required functionality for each phase of the JSF request-processing
lifecycle.

RenderKitFactory: The RenderKitFactory is responsible for returning a RenderKit for the
JSFWeb application. A RenderKit is a library of Renderers with a common rendering tech-
nology.

FacesContextFactory: The FacesContextFactory provides the JSF implementation with a
way to create an instance of FacesContext that is used to represent contextual informa-
tion associated with the incoming request and eventually with the response.

Figure 1-10 shows the players involved at application start-up.

Application Scope
T v
ApplicationFactory — Application
:
:
% LifecycleFactory —> Lifecycle
D
n
8 RenderKitFactory — RenderKit
i T Rn 4
FacesContextFactory -7
1 Phs
1 -7
1 -
; e Request Scope
FacesContext

Figure 1-10. Application creation

Each JSF Web application has one ApplicationFactory. This factory class is responsible
for creating and replacing the Application instance that is required by all applications utiliz-
ing JSE The Application instance will then serve other processes with services supported by
this instance. Likewise, the JSF configuration file—faces-config.xml—is read once during the
creation of the Web application and stored in the Application instance.

The RenderKitFactory is responsible for returning a RenderKit instance based on the
RenderKit identifier for this JSF Web application. For each JSF implementation, there has
to be one default RenderKit—the HTML RenderKit that is identified by a string constant—
RenderKitFactory.HTML BASIC RENDER KIT.The LifecycleFactory isin charge of creating (if
needed) and returning a Lifecycle. This Lifecycle instance is in charge of invoking process-
ing logic to implement the required functionality for each phase (refer to Figure 1-8) of the

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

request-processing lifecycle. The last factory class—FacesContextFactory—is providing the
JSF implementation with a way to create an instance of FacesContext that is used to repre-
sent contextual information associated with the incoming request and eventually creating
the response.

Initial Request

When the user accesses the application for the first time, an initial request is sent to the
FacesServlet, which dispatches the request to the JSF Lifecycle instance (refer to Figure 1-10).

Restore View Phase

The first phase of the JSF lifecycle is the Restore View phase (see Figure 1-11) whose responsi-
bility it is to check whether this page has been requested earlier or if this is a new request.

Application Scope

ViewHandler

Lifecycle

1.Restore | o . 5. |

. 3] _3
N

;s T T 0 e alai) - - I\\ 1= y— 1 PSSR aay
- i render() i 1,/ 6 <2 5 €34 i renderView() |
% L ____ 1 ')_ S, Lo L _\<_ Lecoooooooo=a
[7 <
(7] y) h)
] 7 N
8 /] AN Request Scope

/1 \\\
) FacesContext S
»> UIViewRoot
| renderResponse() | =T Thsl

Figure 1-11. Restore View phase during initial request

In Figure 1-11, you are looking at the process for an incoming request and how the first
phase—Restore View—in the JSF lifecycle is responsible for restoring a view from the server
and client state. During the first request for this view, the ViewHandler.restoreView() method
will return null, since there is no stored state.

Note The JSF lifecycle phase identifiers are part of the JSF public APl in the PhaseId class.

33

34

CHAPTER 1 © THE FOUNDATION OF JSF: COMPONENTS

If the return value is null, the Restore View phase will call renderResponse() on the
FacesContext for this request. The renderResponse() method will indicate that when this
phase is done, the render () method is called to execute phase 6—Render Response—without
proceeding with phases 2 through 5. Subsequently, the Restore View phase will call the
ViewHandler.createView() method to create the component hierarchy root—UIViewRoot—
and attach it to the FacesContext. The UIViewRoot component performs no rendering but
plays an important role in event delivery during a postback request.

Render Response Phase

When the renderResponse() method is called during the Restore View phase, the lifecycle
skips directly to the render () method, which is responsible for performing the Render
Response phase, as shown in Figure 1-12.

Application Scope

Lifecycle ViewHandler

L ____ | 6.Render

render(Response

FacesServiet

ExternalContext

dispatch() |k PR N e, N

Figure 1-12. Render Response phase during initial request

During this phase, the ViewHandler.renderView() method is called to execute the JSP doc-
ument. The renderView() method will pass the value of the viewId property acquired from the
UIViewRoot node as a context-relative path to the dispatch() method of the ExternalContext
associated with this request. The dispatch() method will forward the value of viewId property
(for example, /login.jspx as a context-relative path) to the Web container.

Since the JSF-specific mapping is not part of the forwarded request, the request is
ignored by the FacesServlet and passed to the JSP container, which in turn will locate the
JSP based on the context-relative path and execute the JSP page matching the viewId (for
example, /login.jspx). Figure 1-13 shows the processing of the JSF JSP document.

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS 35

Application Scope

RenderKit

VI createResponseWriter()
l

o Request Scope

JSP Page . FacesContext

’
’

<fview> +- -|- - | - 9> ResponseWriter

JSP Container

Figure 1-13. Setting the Responseliriter on the FacesContext

THE JSF VIEW IDENTIFIER: VIEW ID

Depending on which mapping is used—prefix or suffix—the UIViewRoot view identifier is derived slightly
differently from the request uniform resource identifier (URI). If prefix mapping is used, such as /faces/*
(which is the most common) for the FacesServlet, the viewId property is set from the path information
coming after the mapping; for example, /context-rootfaces/login.jspx will set a view identifier equal
to /1login. jspx. If suffix mapping is used, such as *. jsf, the viewId property is set from the servlet path
information of the request URI, after replacing the suffix with the value of the context initialization parameter
named by the symbolic constant ViewHandler .DEFAULT SUFFIX_NAME. For example, /context-root/
login.jsf will set a view identifier equal to /1ogin. jsp by default but can leverage the context initializa-
tion parameter to use . jspx as the default suffix instead.

Before processing and executing the JSF JSP document, the JSP runtime first determines
the content type and character encoding to use. For JSF to work in harmony with the JSP life-
cycle, the <f:view> tag needs to be present. The <f:view> tagis a JSP body tag that buffers all
the rendered output from the nested JSF components. Simply put, the <f:view> tag serves as a
container for all other JSF components. The <f:view> tag is responsible for creating and stor-
ing an instance of the Responselriter on the FacesContext.

The createResponselriter() method creates a new instance of the ResponselWriter for the
specified content type and character encoding. The ResponselWriter is responsible for writing
the generated markup to the requesting client, in this case the <f:view> body content buffer.

36 CHAPTER 1 = THE FOUNDATION OF JSF: COMPONENTS

CONTENT TYPE AND CHARACTER ENCODING

When a server sends a document to an HTTP browser client, it also passes information in the Content-Type
HTTP header about the Multipurpose Internet Mail Extensions (MIME) type, such as text/html, and the
character set, such as UTF-8 or IS0-8859-1. The client uses this information to correctly process the
incoming bytes from the server.

Alist of acceptable content types and character encodings is sent in the Accept HTTP header from the
client to the server. This can be used to dynamically select an appropriate content type for the response, or

the application developer can specify a static content type for the document.
In JSF, the <f:view> tag passes null to the RenderKitFactory as the list of acceptable content

types, even though the JSP container is aware of the complete list accepted by the requesting browser. So,
the default RenderKit—the standard HTML Basic RenderKit—must assume the content type has already
been set to text/html since it is rendering only HTML. The RenderKit uses information about the content
type and character encoding to create a ResponseWriter that can produce correctly formatted markup to

the client.

For each JSF JSP tag within <f:view> during the initial render, a JSF component is created
and attached to the component hierarchy. As you remember, the UIViewRoot was created in
the first phase and attached to the FacesContext, so you can safely assume that the compo-
nents will be attached to the component hierarchy. Figure 1-14 shows execution of the

<h:form> start tag.

Application Scope

RenderKit

HtmiForm Renderer

=k
s 1
A 1
I 'Request Scope
JSP Page _-° FacesContext |
A ![uIviewRoot
ResponseWriter | .7
1

-
-

<hform>|- -|- - - - __________
------ > [Fimirorm |

JSP Container

Figure 1-14. Writing <form> start element to the <f:view> body content buffer

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

In the login JSP document, the next JSF JSP tag to be executed is the <h:form> tag. The JSF
JSP tag calls the Application.createComponent() method that takes a string representing the
component type, for example javax.faces.HtmlForm (see the section “Component Family and
Component Type”). The component type is mapped to a class defined in the faces-config.xml
file, and an instance of the HtmlForm component is created and attached to the UIViewRoot.
Next, a Renderer for the newly created component needs to be found. A Renderer is located
by component family and renderer type, which together define a unique identifier for the

Renderer (see the section “Renderer Types”).

Note Let's use the HtmlInputText component to illustrate the relationship between the component
family and renderer type. The Htm1InputText component has the component family javax.faces.Input
and the renderer type javax.faces.Text. Together, they uniquely identify the appropriate Renderer class
within the HTML Basic RenderKit—javax.faces.renderer.html.HtmlInputText.

The renderer type is already known by the <h:form> tag, and the component family can be
located in the component’s superclass, UIForm. The tag then calls a method called encodeBegin()
on the component, which in turn calls the encodeBegin() method on the HtmlForm renderer.
The encodeBegin() method on the Renderer calls methods on the Responselriter to write the
markup for the HTML form element—<form method="" action="">. All markup output from
the Responseliriter ends up in the <f:view> body content buffer. Figure 1-15 shows the closing

process of the <h:form> tag.

Application Scope

ViewHandler RenderKit

writeState() | ---------------4 .,| HtmlForm Renderer
,

S . A
~ ’ 1
~ 7 1
N ,,' 'Request Scope

JSP Page oo/ FacesContext

A !
| ResponseWriter | P -

1

-
-

»{ HumiForm |

JSP Container

</h:form> - -|- -

Figure 1-15. Output token and closing the </form> element

37

38

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

The process continues, and all nested components within the HtmlForm component
are rendered and added to the <f:view> body content buffer. Then, the closing tag for the
<h:form> tag is executed. The <h:form> tag calls the encodeEnd() method on the Renderer,
HtmlFormRenderer, which in turn calls the writeState() method on the ViewHandler. The
writeState() method passes a token to the Responselriter, which is added to the <f:view>
body content buffer. The encodeEnd() method then calls methods on the Responseliriter to
write the closing tag for the HTML form element—</form>. Figure 1-16 shows the closing of
the <f:view> tag.

Note The viewHandler represents the view technology, and in this case the view technology is JSP.
Nothing in the JSF specification prevents anyone from implementing an alternate ViewHandler for another
view technology, such as XML.

Application Scope

StateManager RenderKit
ResponseStateManager
writeState() - {-1-|-- > writeState()
4
’
7 Request Scope
ra
,
JSP Page J
s ’
= ’
(=]
o 7|
o ’
] .’
</fview> |/

Figure 1-16. Replacing token with serialized state and closing </f:view>

By the time you get to the </f:view> closing tag, the entire component hierarchy is avail-
able. It is not until you have the complete tree that you can store the state of the component
hierarchy representing this page of the application. The </f:view> end tag calls the writeState()
method on the StateManager. Depending on the init parameter—STATE_SAVING METHOD—for
state saving (see the section “Saving and Restoring State”), the StateManager stores the state in
the session on the server or delegates to the ResponseStateManager to save state on the client
replacing the token with the serialized state. After the state has been saved, the buffer is flushed
out to the client, and execution of any remaining non-JSF JSP tags will take place. The login
page is now rendered in the browser.

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

Note In JSF 1.2, the <f:view> tag is no longer responsible for buffering the output. Instead, buffering is
achieved by using a ServletResponse wrapper. In addition, the component hierarchy is no longer created
inline during rendering. Instead, during the Render Response phase of JSF 1.2, the component hierarchy is
created first and rendered next. Therefore, during rendering, the full component hierarchy is available, so the
state is written directly into the buffered response, rather than needing to use a placeholder token to be
replaced by the real state in </f:view>.

Postback Request

So far, the only thing the user has seen is the initial rendering of the first requested page.
After receiving the page, the user enters a username and password and clicks the login but-
ton. A postback is performed, and you will now look at how JSF handles postback. Some
parts are similar to what we have already been covering in the initial request, but there are
obviously differences and additions, especially in the JSF request lifecycle. At postback,

all six phases of the JSF request lifecycle get called (unless somewhere in the process the
FacesContext.renderResponse() method is called causing the lifecycle to jump directly to
the Render Response phase). This is different from the initial request where only the first
and last phases are called.

Restore View Phase

The first part of a postback is the same as for the initial request; the Restore View phase exe-
cutes and calls the restoreView() method on the ViewHandler to restore any state available
from the previous request. Figure 1-17 shows restoring the saved state of the component
hierarchy.

Application Scope

Lifecycle ViewHandler StateManager

] rstoreiont |
J'IMI’ 1 ResponseStateManager

1.Restore | -~z
5 S~
< g
D ~
(77} <
3 -
g <
S~ Request Scope
FacesContext S
UlViewRoot
HtmlForm
[HtmlInputText | [HtmlInputText | [HtmICommandButton |

Figure 1-17. Restoring the saved state of the component hierarchy

39

40

CHAPTER 1 © THE FOUNDATION OF JSF: COMPONENTS

Here is where the similarities end; instead of returning null, the restoreView() method
will return the current state of the component hierarchy associated with a particular viewId
and FacesContext from the StateManager, and if the init parameter—STATE_SAVING METHOD—
is set to client-side state-saving, call the ResponseStateManager to retrieve the state from the
current request. The restored component hierarchy is then passed to the FacesContext by the
Restore View phase.

Apply Request Values Phase

In the Apply Request Values phase, each input component establishes the submitted value
from the request parameters, and each command component queues an event to be delivered
in the Invoke Application phase. Figure 1-18 shows how the Apply Request Values phase
passes new values to the components.

Application Scope

Lifecycle

FacesServiet

~
~

S Request Scope

~

FacesContext D

UlViewRoot

| renderResponse() | =
L

[HtmlinputText] | HtmllnputTextl | HtmICommandButtonl

Figure 1-18. Applying new values passed on the request to the components

The submitted value is at this point stored only as “submitted” on the component, and no
value has been pushed into the underlying model yet. By the time the Apply Request phase is
completed, the Renderers no longer need to observe the request parameters, since all values
have been updated on each component.

Process Validation Phase

In the Process Validations phase, conversion and validation are performed by calling the
processValidators() method on the UIViewRoot. Figure 1-19 shows conversion and validation.

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

Application Scope

Lifecycle
11 Ly 3. Process
Lo Validation
§ ———————— -==1
§ i render() [
|- L
8
i N
S Request Scope
FacesContext N
UlViewRoot

1 renderResponse() | =
L

[HtmlinputText] | HtmllnputTextl | HtmICommandButtonl

Figure 1-19. Performing conversion and validation

This process will continue calling the processValidators() method recursively on each
component in the component hierarchy. During validation of each HtmlInputText compo-
nent, type conversion will occur first on the component’s submitted value (for example, a
string to a strongly typed object). The new object is set as a local value on the component, and
the submitted value is cleared. The new strongly typed object is then validated. If there are no
errors, then the next step is to queue a YalueChangeEvent that will be delivered at the end of
the Apply Request Values phase.

If a conversion or validation error occurs, a corresponding JSF message is attached to the
FacesContext using the component clientId, and then the renderResponse() method is called
to indicate that the lifecycle should skip directly to the Render Response phase after the
Process Validations phase is complete.

Update Model Phase

At this point in the lifecycle, all submitted values have been successfully converted and vali-
dated, so it is safe to push them into the underlying data model. During the Update Model
phase, the JSF lifecycle walks over the component hierarchy, calling the processUpdates()
method on each component. Figure 1-20 shows the Update Model phase updating the under-
lying model.

To determine where to store the new value, the processUpdates() method will use the
value binding, which is defined in the value attribute on the component (for example,
#{credentials.username}). The value binding points to a property on a managed bean (for
example, username). Using the value binding, the locally stored value on the component is
pushed into the data model, and the locally stored value on the component is cleared.

Any JSF messages and errors on the model—for example, validations implemented by the
model—are attached to the FacesContext with the component’s client ID. The renderResponse()
method is then called to indicate that the lifecycle should skip directly to the Render Response
phase after the Update Model phase is complete.

41

42 CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

Application Scope

Lifecycle

B

GE, Model

<2 Values

& B

< ~- .

= NIt~ Request Scope Session Scope
FacesContext S~ DR % Sample

~

UlViewRoot Rt W \)

[HtmlinputText| [HtmlinputText| | HtmICommandButton |

Figure 1-20. Updating underlying model

Invoke Application Phase

In the Invoke Application phase, you have no need to walk the component hierarchy, since
this phase will handle only the queued events from previous phases and, depending on the
outcome, will either continue to the last phase—Render Response—or redirect to another
page. Figure 1-21 shows the broadcasting of events queued for this phase and the processing
of action method bindings.

Application Scope

Lifecycle

(Default)

ActionListener

S Application
g — N !
R ,/ Request Scope Session Scope
P i ’ FacesContext Sample

UlViewRoot 5

/
/
/
/

Vi
[HtmICommandButton|- - - -----—" -l

oot |

Figure 1-21. Performing application logic

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

As mentioned in the earlier section “Converters, Validators, Events, and Listeners,”
you have two methods that will be processed when an ActionEvent occurs. The first thing
that happens is a call to the processApplication() method on the UIViewRoot that takes
each queued event and broadcasts to the target component for the event (for example,
commandButton.broadcast(FacesEvent)). The UICommand component knows about the action
and actionlListener attributes, as well as the default ActionListener attached to the
Application object.

First all previously registered ActionListeners are called, then the actionListener method
binding is executed (for example, #{credentials.onlLogin}), and finally the component calls
the processAction() method on the default ActionListener to process the action method
binding and handle navigation. It is important that the action method binding is called at the

end of this process, since it defines possible navigation, and you don’t want to navigate before
you have processed all events.

Postback with Navigation

When the default ActionlListener is processing an ActionEvent, it invokes the action method
binding and gets the outcome, which is a String object. If the outcome returns null, then the
default ActionlListener will continue with the next queued event. After all events have been
broadcast, the Invoke Application phase is complete and lifecycle processing continues to
the last phase—Render Response. If the outcome is not null, then the default ActionListener
passes FacesContext, fromAction (which is the method-binding expression text—for example,

credentials.dologin), and outcome to the NavigationHandler. Figure 1-22 shows navigation on
postback.

Application Scope
Lifecycle NavigationHandler ViewHandler
lr) handleNavigation()
| I
’ 1 [R !
L e—— ey U 1 restoreView() 1
11 e 2 o 30) Act(i?)sza::tIBner ‘\ | T rr——
2 mmo===--- | 5-Invoke N :) - - -
g L [efcle[()_ N . fi Application f‘_: t—{ processAction() !] r_elldE}rYIE}V!()_:
] N
= e \ Request Scope
-z 1
R FacesContext
e UlViewRoo
renderResponse() |“ R IO
I‘/‘/‘,”l‘ Shay :'
S DU P
L VLo VL :

Figure 1-22. Navigation on postback

43

44

CHAPTER 1 © THE FOUNDATION OF JSF: COMPONENTS

Navigation rules are defined in faces-config.xml, which is read at start-up, and all infor-
mation is stored in the Application object (see the section “Navigation Model”). The first thing
the NavigationHandler does is to check for a navigation rule that matches the combination of
fromViewId (which it will get from the FacesContext), fromAction, and outcome.

You can handle navigation in two ways. Redirecting means a new request (and as a bonus
you can bookmark the new page) and starts the JSF request lifecycle all over again; you can
also have the handleNavigation() method create a new UIViewRoot, set the new UIViewRoot
on the FacesContext, and let the default ActionListener call renderResponse() to initiate the
Render Response phase. This solution is replicating the behavior of the initial request in
the Render Response phase but with a new view identifier. Figure 1-23 shows the JSP execu-

tion during postback.

Application Scope

ViewHandler StateManager RenderKit
e
! createResponseWriter() |
. writeState() | , writeState() | HtmIForm Renderer
________________ kd A
z ‘ !
’ id 1
I 'Request Scope
JSP Page _-” FacesContext |
5 A ! uviewRoot
=
g i ResponseWriter T
(=3 » 1~
3 [<hforms - -|- - T
Py A)
= </h:form> B =
</f:view> oo T o S
| HtmlInputText | | HitmlInputText | | HtmiCommandButton

Figure 1-23. Render Response on postback

During a postback, the first part of the Render Response phase is the same as that of the
initial request until the dispatch() method call, except that you now have a complete compo-
nent hierarchy and not just the UIViewRoot (refer to Figure 1-13). After the dispatch, the JSP
page is executed, and the <f:view> start tag does the same thing as at initial request—creating
and storing an instance of the Responselriter on the FacesContext and acting as a buffer for
rendered output from the components (see Figure 1-14).

Instead of creating new components and attaching them to the UIViewRoot as in the ini-
tial request, individual component tags nested within the <f:view> tag will have to locate their
counterparts that already exist in the component hierarchy. This takes place during JSP page

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

execution, by traversing up the tag tree to find the closest enclosing parent component tag.
From the parent component tag, the child component tag can find its component counter-
part, via either the component identifier or the facet name (see the section “Facets”).

Apart from mapping components to component tags rather than creating new compo-
nent instances, the processing proceeds in the same way as the initial request—rendering
components to the <f:view> body content buffer, storing the state either at the client or in the
session at the server, and finally flushing the buffered markup to the parent JSP container for
rendering (refer to Figure 1-15).

JSF and JSP

In JSE a component writer can set a boolean property called rendersChildren on a compo-
nent. This property decides whether a component should render its children. For components
in the JSF implementation, the value of rendersChildren is set to false. This means each com-
ponent is responsible for rendering the right output to the Responselriter and buffering in
the <f:view>, not caring how its children are rendered. If rendersChildren is set to true on a
component, then the encodeBegin() method is called in the closing tag instead of the start tag
(refer to Figure 1-14) to ensure that no children are rendered to the buffer until the parent has
closed the loop on its children. Once the parent knows about its children, they will be ren-
dered to the <f:view> body content buffer. One component that uses this is the dataTable
component, because it needs to have access to all its child components before any rendered
output is generated.

Considering that some components may require that rendersChildren is set to true, this
will have an impact on how you can construct your page description. Remember the login
page? Let’s add some labels to the input fields and adjust the layout a bit so the components
will be aligned vertically instead of horizontally, as shown in Code Sample 1-20.

Code Sample 1-20. The Login Page Modified with Some JSP Tags

<?xml version='1.0"' encoding="windows-1252"'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html">
<jsp:output omit-xml-declaration="true" doctype-root-element="HTML"
doctype-system="http://www.w3.0rg/TR/html4/loose.dtd"
doctype-public="-//W3C//DTD HTML 4.01 Transitional//EN"/>
<jsp:directive.page contentType="text/html;charset=windows-1252"/>
<f:view>
<html>
<body>
<h:form>
<h:outputText value="Application Login" />
<h:panelGrid columns="2">

<jsp:text>Username</jsp:text>
<h:inputText value="#{sample.username}" />

45

46

CHAPTER 1 © THE FOUNDATION OF JSF: COMPONENTS

<jsp:text>Password</jsp:text>
<h:inputText value="#{sample.password}" />

</h:panelGrid>
<h:commandButton value="Submit" action="#{credentials.onlLogin}" />
</h:form>
</body>
</html>
</fiview>
</jsp:root>

This sample wraps the components with a <h:panelGrid> tag. The component created by
this tag renders its children in a two-dimensional grid, with two columns. The Htm1PanelGrid
component has rendersChildren set to true, so it can observe all the children before render-
ing the markup for each column. It also adds two non-JSF tags—<jsp:text>—that will add a
label to each input field. At runtime the page looks like Figure 1-24.

@ Mozitta Firefox mEx)

File Edit View Go Bookmarks Tools Help

@~ 5~ @ @ L] http:/{127.0.0.1:8988 /chapter 1-context-root/faceslogin.jspx [V]

Application LoginUsernamePassword

Done

Figure 1-24. Rendering of non-JSF content with rendersChildren set to true

As you can see, the Username and Password labels have been incorrectly placed at the top
of the page. During execution of this page, any JSF component within the HtmlPanelGrid com-
ponent will be delayed from rendering to the buffer until the closing tag of the HtmlPanelGrid
(for example, </h:panelGrid>). Note that no other arbitrary tags or text nested within the
HtmlPanelGrid component will be delayed. Therefore, <jsp:text> is rendered to the buffer
immediately. You can circumvent this behavior by wrapping an <f:verbatim> tag around non-
JSF content, as shown in Code Sample 1-21.

Code Sample 1-21. The Login Page with <f:verbatim> Tag Wrapped Around Non-JSF Content

<h:form>
<h:outputText value="Application Login"/>
<h:panelGrid columns="2">

CHAPTER 1 ©° THE FOUNDATION OF JSF: COMPONENTS

<f:verbatim><jsp:text>Username</jsp:text></f:verbatim>
<h:inputText value="#{credentials.username}" />
<f:verbatim><jsp:text>Password</jsp:text></f:verbatim>
<h:inputText value="#{credentials.password}" />

</h:panelGrid>
<h:commandButton value="Submit" action="#{credentials.onlLogin}" />
</h:form>

The <f:verbatim> tag takes non-JSF content and adds it to the component hierarchy as a
UIOutput component. At runtime the updated page looks like Figure 1-25.

& Morzilla Firefox (==

File Edit View Go Bookmarks Tools Help

& -5 - I:‘g @ L http://127.0.0.1:3988 chapter 1-context-root/faces/login.jspx | %

Application Login
Username

Password

Done

Figure 1-25. Rendering of non-JSF content using the <f:verbatim> tag

Note The issue with rendersChildren has been resolved by the JSF Expert Group (EG) in the JSF 1.2
release. The new content-interweaving feature accommodates the differences between JSF and JSP render-
ing strategies, making it no longer necessary to add the <f:verbatimy> wrapper tags.

Summary

This chapter acts as a mini-guide for the rest of the book; it also gives you a foundation for
your continued journey into the world of JSF beyond this book.

One of the key differentiators JSF has over other view technologies is its openness and
ability to adopt newly emerging technologies such as XUL, HTC, and Ajax, as well as other
future view technologies. JSF has clear benefits over other technologies because an applica-
tion built with JSF can continue to live while the surrounding technologies pass away and new
ones arise. JSF can reduce maintenance costs for application development since there is only
one programming model needed—JSF and Java—even though the systems may require differ-
ent user agents such as Telnet, instant messaging, mobile agents, browsers, and other types of
agents such as barcode readers.

47

48

CHAPTER 1 " THE FOUNDATION OF JSF: COMPONENTS

This chapter touched on details that make up a JSF application—JSF components, navi-
gation model, and backend logic via managed beans. We also explored the ins and outs of the
JSF component model and its clear separation between presentation and behavior, and we
discussed the structure of JSF components—UIComponent, Renderer, the renderer-specific sub-
class RenderKit, and the JSP tag handler. The chapter also detailed the JSF request lifecycle on
initial request and postback, including navigation.

It is crucial to understand the separation between presentation and behavior in order to
grasp the full potential of JSF components.

CHAPTER 2

Defining the Date
Field Component

By allowing the developer to separate the functionality of a solution into components,
located where it is most logical for the solution, component-based design removes many
of the constraints that used to hinder the deployment and maintenance of the solution.

—Miicrosoft Developer Network (MSDN)

Having introduced JSF in Chapter 1, this chapter will explore the concepts of component
design and its applicability in JSE

The main focus for this chapter is to get you up to speed with the building blocks needed
to design and create a reusable JSF component. Creating JSF components is not hard; you just
need to follow a well-defined blueprint, which we will provide in this chapter. Specifically, we
will cover how to create a Renderer, how to create a renderer-specific subclass, how to create a
JSP tag handler, and how to register your custom JSF component.

To illustrate this process, we will show how to create a simple date field component that
you will use throughout the book. In subsequent chapters, we will show how to enhance this
date field component until you arrive at a rich, full-fledged JSF component that supports Ajax,
XUL, and HTC. Nevertheless, at the end of this chapter, you should have your first functional
component to show to your friends and developer peers.

Requirements for the Date Field Component

You can build your own reusable component in many ways, but for JSF the most common
approach is to locate a component that already has the behavior you need and expand upon
it. So, what type of behavior is required of the component you will build in this chapter? For
example, is it for inputting values, selecting one value, selecting many values, or navigating?

Well, you'll build a component that can take a value, process that value, and then push it
back to the underlying model as a strongly typed Date object. The component should allow
an application developer to attach a converter in order to set the desired date format (such as
mm/dd/yyyy) for which the end user has to comply. Basically, you'll build a simple input com-
ponent that can convert and validate the date entered by users.

49

50

CHAPTER 2

DEFINING THE DATE FIELD COMPONENT

Having confirmed that this is what you need, it is easy to search existing components
for this particular behavior. Table 2-1 lists all the behavioral superclasses available in the JSF

specification.

Table 2-1. JSF Specification: Behavioral Superclasses*

Name**

Description

UIColumn

UICommand

UIData

UIForm

UIGraphic

UIInput

UIMessage

UIMessages

UIOutput

UIPanel

UIParameter

UISelectBoolean

UIColumn (extends UIComponentBase) is a component that represents a single
column of data with a parent UIData component. The child components of a
UIColumn will be processed once for each row in the data managed by the
parent UIData.

UICommand (extends UIComponentBase; implements ActionSource) is a control
that, when activated by the user, triggers an application-specific “command”
or “action.” Such a component is typically rendered as a button, a menu
item, or a hyperlink.

UIData (extends UIComponentBase; implements NamingContainer) is a
component that represents a data binding to a collection of data objects
represented by a DataModel instance. Only children of type UIColumn should
be processed by renderers associated with this component.

UIForm (extends UIComponentBase; implements NamingContainer) is a compo-
nent that represents an input form to be presented to the user and whose
child components (among other things) represent the input fields to be
included when the form is submitted. The encodeEnd() method of the ren-
derer for UIForm must call ViewHandler.writeState() before writing out the
markup for the closing tag of the form. This allows the state for multiple
forms to be saved.

UIGraphic (extends UIComponentBase) is a component that displays a graphi-
cal image to the user. The user cannot manipulate this component; it is for
display purposes only.

UIInput (extends UIOutput, implements EditableValueHolder) is a compo-
nent that both displays the current value of the component to the user (as

UIOutput components do) and processes request parameters on the subse-
quent request that needs to be decoded.

UIMessage (extends UIComponentBase) encapsulates the rendering of error
message(s) related to a specified input component.

UIMessage (extends UIComponentBase) encapsulates the rendering of error
message(s) not related to a specified input component or all queued mes-
sages.

UIOutput (extends UIComponentBase; implements ValueHolder) is a compo-
nent that has a value, optionally retrieved from a model tier bean via a
value-binding expression that is displayed to the user. The user cannot
directly modify the rendered value; it is for display purposes only.

UIPanel (extends UIComponentBase) is a component that manages the layout
of its child components.

UIParameter (extends UIComponentBase) is a component that represents an
optionally named configuration parameter that affects the rendering of its
parent component. UIParameter components do not generally have render-
ing behavior of their own.

UISelectBoolean (extends UIInput) is a component that represents a single
boolean (true or false) value. It is most commonly rendered as a checkbox.

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

Name** Description

UISelectItem UISelectItem (extends UIComponentBase) is a component that may be nested
inside a UISelectMany or UISelectOne component and represents exactly one
SelectIteminstance in the list of available options for that parent compo-
nent.

UISelectItems UISelectItems (extends UIComponentBase) is a component that may be
nested inside a UISelectMany or UISelectOne component and represents
zero or more SelectIteminstances for adding selection items to the list of
available options for that parent component.

UISelectMany UISelectMany (extends UIInput) is a component that represents one or more
selections from a list of available options. It is most commonly rendered as a
multiple selection list or a series of checkboxes.

UISelectOne UISelectOne (extends UIInput) is a component that represents zero or one
selections from a list of available options. It is most commonly rendered as
a combo box or a series of radio buttons.

*Source: The JSF 1.1 specification
** The full class name of this component is javax.faces.component.

The key behavior of the date field component you'll create in this chapter is for the user
to input a new date. Examining Table 2-1, you can see that one component describes the
behavior you're looking for in the date field component—the behavioral superclass UIInput.
Instead of having to create a new component that introduces existing behavior, you can use
this UIInput component from the JSF specification. Therefore, the new component will be
called an input date component and will follow the same naming conventions as standard JSF
components, such as the input text component.

USING UIINPUT

The UIInput component defines the contract for how an application interacts with your component or any
component extending this superclass. The UIInput component comes with a default renderer that will at
runtime display the component as a text input field into which the user can enter data. lts component type is
javax.faces.Input,and the default renderer type is javax.faces.Text.

The UIInput component can display values to the client in much the same way as the UIOutput com-
ponent does. In fact, the UIInput component extends the UIOutput component. The UIInput component
also processes, on a posthack, request parameters that need to be decoded and managed. If a value passed
on the request is different from the previous value, then a ValueChangeEvent event is raised by the com-
ponent. You can attach a ValueChangelistener to receive notification when the ValueChangeEvent is
broadcast by the UIInput component.

The Input Date Component

The intent with this input date component is to give you a solid foundation for more advanced
work with JSF later in the book. Visually the component will be a simple input text field with
an icon overlay to indicate it is a date field and will have some useful type conversion and date
validation functionality.

51

52

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

To comply with these new requirements, this chapter will introduce one new Renderer, a
renderer-specific subclass, and a new tag handler. The input date component also introduces
anon-Java element to your design of components—the use of a style sheet. After completing
this chapter, you should understand the JSF lifecycle and have enough knowledge to create a
new Renderer, a renderer-specific subclass, and a corresponding JSP tag handler.

Figure 2-1 shows the five classes you'll create in this chapter; they are HtmlInputDateRenderer,
ProInputDate, UIComponentTagSupport, and ProInputDateTag, as well as two you'll be extending:
Renderer and UIInput.

HtmIRenderer UlComponentTagSupport

ProlnputDate HtmllnputDateRenderer ProlnputDateTag

Figure 2-1. Class diagram showing classes created in this chapter

e The ProInputDate is the renderer-specific subclass.

e The HtmlRenderer superclass provides some convenience methods for encoding
resources.

e TheHtmlInputDateRenderer is your new custom Renderer, which is in charge of the
markup rendered to the client.

e The ProInputDateTag is the tag handler.

* And finally, the abstract UIComponentTagSupport tag handler class is a support tag
handler superclass providing functionality that is common among all components.

Designing the Input Date Component Using a Blueprint

Before creating your first custom JSF component, you need to understand the steps required
to complete a JSF component. Table 2-2 outlines the blueprint needed to successfully imple-
ment a custom JSF component. During the course of this book, we’ll expand this blueprint
with additional steps, and these first steps will be the foundation for all custom components
you'll create later. For now, you'll focus only on the steps needed to successfully implement
the input date component.

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

Table 2-2. Steps in the Blueprint for Creating a New JSF Component

Step Task Description

1 Creating a Ul prototype Create a prototype of the Ul and intended
behavior for your component using the appro-
priate markup.

2 Creating a client-specific Renderer Create the Renderer you need that will write
out the client-side markup for your JSF com-
ponent.

3 Creating a renderer-specific subclass (Optional) Create a renderer-specific subclass.

Although this is an optional step, it is good
practice to implement it.

4 Registering UIComponent and Renderer Register your new UIComponent and Renderer
in the faces-config.xml file.

5 Creating a JSP tag handler and TLD This step is needed in case you are using
JSP as your default view handler. An
alternative solution is to use Facelets
(http://facelets.dev.java.net/).

The first step in Table 2-1 is probably the most important one since that is where you will
prototype and test to see whether your ideas will work in the intended client. When you have
a prototype working, your next goal is to implement your solution in JSE which in this case
means you need to provide a new Renderer to write the intended markup to the client and
provide a renderer-specific subclass as a convenience for application developers. Finally, you
have to register the custom component and provide a JSP tag handler.

You'll start with the first step in the blueprint to define the new component, implement-
ing it in the intended markup that will eventually be sent to the client.

Step 1: Creating a UI Prototype

When developing a new component, it is a good practice to first create a prototype of the
intended markup that will need to be rendered to the client. By doing so, you will not only find
out which elements your component has to generate but also which renderer-specific attrib-
utes you will need in order to parameterize the generated markup.

As you can see in Code Sample 2-1, the prototype markup consists of an HTML form
<input> element, an element, a <div> element, and a <style> element. By examining the
HTML prototype, as shown in Code Sample 2-2, you can see that three HTML attributes—
title, name, and value—are needed to parameterize the generated markup.

Code Sample 2-1. HTML Prototype for the Input Date Component

<style type="text/css" >
.overlay
{
position:relative;
left:-10px;
bottom:-10px;
}
</style>

53

54

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

<div title="Date Field Component" >

<input name="dateField" value="26 January 2005" >

</div>

Code Sample 2-2. Parameterized HTML for the Input Date Component

<style type="text/css" >
.overlay
{
position:relative;
left:-10px;
bottom:-10px;
}
</style>

<div title="[title]">

<input name="[clientId]" value="[converted value]" >

</div>

In Code Sample 2-2, you map the HTML attributes to their corresponding UIComponent
attributes that are used during rendering.

Note For more information about HTML elements and all their supported attributes, please visit the W3C
Web site at http://www.w3.org/MarkUp/.

Figure 2-2 shows the result of your prototype, which displays a simple page with an input
field that has an icon indicating this is a date field.

@ Pro JSF: Building Rich Internet Components - Mozilla Firefox (- |[0JE3
File Edit View Go Bookmarks Tools Help

G- 8 0 | [http://127.0.0. 1:8988/chapter 2-context-root inputDate. html [V]

26 January 2005
Y s

Done

Figure 2-2. The date field component prototype implemented in HTML with an icon overlay

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

Before you create the input date component, you'll take a sneak peak at the final result
and how you will use it in a JSP page. Code Sample 2-3 uses the input date component,
<pro:inputDate>, and applies a JSF core converter, <f:convertDateTime>, that converts the
string entered by the user to a strongly typed Date object. Another <f:convertDateTime> dis-
plays the formatted date just below the submit button.

Code Sample 2-3. Sample Page with the Date Field Component

<pro:inputDate id="dateField"
title="Date Field Component"
value="#{backingBean.date}" >
<f:convertDateTime pattern="dd MMMMM yyyy" />
</pro:inputDate>

</br>
<h:message for="dateField" />

</br>
<h:commandButton value="Submit" />

</br>
<h:outputText value="#{backingBean.date}" >
<f:convertDateTime pattern="dd MMMMM yyyy" />
</h:outputText>

The code in bold is the input date component you will create in this chapter.

Step 2: Creating a Client-Specific Renderer

As discussed in Chapter 1, a Renderer is responsible for the output (presentation) to the client,
whether that is WML markup for a mobile device or traditional HTML markup for a browser
client. A Renderer also provides client-side attributes that are not supported by the behavioral
UIComponent class, such as style, width, height, and disabled.

In cases where no new behavior is needed, only a Renderer is required to create a “new”
component. The renderer-specific component subclass described later in this chapter (see
the “Step 3: Creating a Renderer-Specific Subclass” section) is merely a convenience class for
application developers. Although not strictly necessary, it is common practice to implement
the client-specific component subclass to make some aspects of application development
easier.

For this input date component, you'll reuse the UIInput component superclass because it
provides the component behavior you need. Now it is time to focus on providing the UIInput
component with a custom input date Renderer. Based on the earlier blueprint, you have now
reached the second step, and it is time to start looking at the code that comprises the Renderer.

Figure 2-3 shows the custom Renderer, HtmlInputDateRenderer, that you will create in this
chapter. The custom Renderer extends the HtmlRenderer utility superclass, which extends the
standard Renderer class (javax.faces.render.Renderer).

55

56 CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

[:l HtmlRenderer

- String STYLE RESOURCES KEY
- String _SCRIPT_RESOURCES_KEY

+void encodeBegin (FacesContext context, UIComponent component)
#void encodeResources (FacesContext context, UlComponent component)
#void writeScriptResource (FacesContext context, String resourcePath)
#void writeStyleResource (FacesContext context, String resourcePath)

- Set _getScriptResourcesAlreadyWritten (FacesContext context)

- Set _getStyleResourcesAlreadyWritten (FacesContext context)

= HtmlinputDateRenderer

+ String TITLE ATTR
+ String ONCHANGE_ATTR

+void decode (FacesContext context, UIComponent component)

+void encodeEnd (FacesContext context, UlComponent component)

+ Ohject getConvertedValue (FacesContext context, UlComponent component, Object submittedyalue)
+ boolean getRendersChildren)

Converter getConverter (FacesContext context, Ullnput input)

#void encodeResources (FacesContext context, UlComponent component)

String getValueAsString (FacesContext context, UIComponent component)

Figure 2-3. Class diagram over the HtmlInputDateRenderer class created in this chapter

The HtmIRenderer Superclass

The HtmlRenderer superclass provides some convenience methods for encoding resources
needed by the HTML Renderer. An application developer might add two or more input date
components to the page; therefore, if not taken care of, any resource (for example, a style
sheet) used by the input date component will be written to the client multiple times.

The semantics behind the methods provided by the HtmlRenderer implementation will
make sure these resources are written only once. In this chapter, you'll create the semantics,
which guarantees that style and script resources are written only once during rendering.

Code Sample 2-4 shows the convenience methods to be used by subclasses to write out
their resources.

Code Sample 2-4. Htm1Renderer Superclass Providing Convenience Methods for Other HTML
Renderers

package com.apress.projsf.ch2.render.html;
import java.io.IOException;
import java.util.HashSet;

import java.util.Map;
import java.util.Set;

import javax.faces.
import javax.faces.
import javax.faces.
import javax.faces.
import javax.faces.
import javax.faces.

/%K

CHAPTER 2

application.ViewHandler;
component.UIComponent;
context.ExternalContext;
context.FacesContext;
context.Responselriter;
render.Renderer;

DEFINING THE DATE FIELD COMPONENT

* HtmlRenderer is a base class for all Renderers that output HTML markup.

*/

public class HtmlRenderer extends Renderer

{

Jxx

* Begins the encoded output for this component.

*

* @param context

the Faces context

* @param component the Faces component

*

* @throws IOException

*/

public void encodeBegin(
FacesContext context,
UIComponent component) throws IOException

{

// write out resources
encodeResources (context, component);

}

Voo

if an I/0 error occurs during rendering

* Override hook for subclasses to write out their resources.

*

* @param context

the Faces context

* @param component the Faces component

*/

protected void encodeResources(
FacesContext context,
UIComponent component) throws IOException

{

// empty hook for subclasses to override as needed

}

The encodeResources () method is called automatically during encodeBegin() and can be
overridden by your subclass to add any HTML resources needed during rendering of this com-
ponent. Next you'll look at the writeStyleResource() method (see Code Sample 2-5), which

57

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

essentially checks to see whether this style resource has already been written to the client; if it
has, there is no need to write it again.

Code Sample 2-5. Writing Style Resources to Client
Vioio
* Writes a style sheet resource at-most-once within a single
* RenderResponse phase.

*

* @param context the Faces context

* @param resourcePath the style sheet resource path

*

* @throws IOException if an error occurs during rendering
*/
protected void writeStyleResource(

FacesContext context,

String resourcePath) throws IOException

{

Set styleResources = _getStyleResourcesAlreadyWritten(context);

// Set.add() returns true only if item was added to the set

// and returns false if item was already present in the set

if (styleResources.add(resourcePath))

{
ViewHandler handler = context.getApplication().getViewHandler();
String resourceURL = handler.getResourceURL(context, resourcePath);
Responselriter out = context.getResponseWriter();
out.startElement("style", null);
out.writeAttribute("type", "text/css", null);
out.writeText("@import url(" + resourceURL + ");", null);
out.endElement("style");

The writeStyleResource() method first calls the getStyleResourceAlreadyWritten()
method, which returns a resource set, identified by a key, containing resources written to the
client, if any. If the style resource is already present in the resource set, the styleResource.add()
returns false, and no resource is written to the client.

Although not used in this chapter, a similar method, the writeScriptResource() method
(see Code Sample 2-6), makes the same write-once guarantee for script resources.

Code Sample 2-6. Writing Script Resource to the Client

Writes a script library resource at-most-once within a single
RenderResponse phase.

@param context the Faces context

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

* @param resourcePath the script library resource path
*

* @throws IOException if an error occurs during rendering
*/

protected void writeScriptResource(

FacesContext context,
String resourcePath) throws IOException

Set scriptResources = _getScriptResourcesAlreadyWritten(context);

// Set.add() returns true only if item was added to the set

// and returns false if item was already present in the set

if (scriptResources.add(resourcePath))

{
ViewHandler handler = context.getApplication().getViewHandler();
String resourceURL = handler.getResourceURL(context, resourcePath);
Responselriter out = context.getResponselriter();
out.startElement("script”, null);
out.writeAttribute("type", "text/javascript", null);
out.writeAttribute("src", resourceURL, null);
out.endElement("script");

The getStyleResourceAlreadyWritten() method implements the at-most-once seman-

tics by adding a key— STYLE_RESOURCE_KEY—with an associated Map to the request scope. This
Map is populated by the writeStyleResource() method described in Code Sample 2-7.

Code Sample 2-7. Implements At-Most-Once Semantics for Each Style Resource

// Implements at-most-once semantics for each style resource on
// the currently rendering page
private Set _getStyleResourcesAlreadyWritten(

{

FacesContext context)

ExternalContext external = context.getExternalContext();
Map requestScope = external.getRequestMap();
Set written = (Set)requestScope.get(_STYLE_RESOURCES_KEY);

if (written == null)
{

written = new HashSet();
requestScope.put(_STYLE_RESOURCES_KEY, written);
}

return written;

59

60

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

Code Sample 2-8 shows a similar method, the getScriptResourceAlreadyWritten() method,
that creates a similar key-Map pair as the previously mentioned getStyleResourceAlreadylritten()
method and guarantees that script resources are written only once.

Code Sample 2-8. Implements At-Most-Once Semantics for Each Script Resource

// Implements at-most-once semantics for each script resource on
// the currently rendering page
private Set getScriptResourcesAlreadyWritten(
FacesContext context)
{
ExternalContext external = context.getExternalContext();
Map requestScope = external.getRequestMap();
Set written = (Set)requestScope.get(_SCRIPT_RESOURCES_KEY);

if (written == null)
{
written = new HashSet();
requestScope.put(_SCRIPT_RESOURCES_KEY, written);
}

return written;

The last part of the HtmlRenderer is the resource key implementation shown in Code
Sample 2-9. You create the keys using the fully qualified class name of the HtmlRenderer class,
com.apress.projsf.ch2.render.html.HtmlRenderer, and appending either STYLE _WRITTEN or
SCRIPTS_WRITTEN to distinguish between style and script resources.

Code Sample 2-9. The Unique Keys Used to Identify Resources

static private final String STYLE RESOURCES KEY =
HtmlRenderer.class.getName() +

static private final String SCRIPT RESOURCES KEY =
HtmlRenderer.class.getName() +

".STYLES WRITTEN";

".SCRIPTS WRITTEN";

The HtmlinputDateRenderer Class

With the utility class out of the way, you'll start with the basic foundation of writing an HTML
Renderer for the UIInput component that can handle the basic requirements for the input date
field. Code Sample 2-10 shows the import statements for the renderer package.

Code Sample 2-10. import Statements

package com.apress.projsf.ch2.renderer.html.basic;

import javax.faces.component.UIComponent;

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

import javax.faces.component.UIInput;

import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.context.Responselriter;
import javax.faces.convert.Converter;

import javax.faces.convert.ConverterException;
import javax.faces.convert.DateTimeConverter;

import com.apress.projsf.ch2.render.html.HtmlRenderer;

The UIComponent class and the Renderer class are both part of the contract when writing
client-specific Renderers. The FacesContext is part of the contract when creating the decode(),
encodeBegin(), encodeChildren(), and encodeEnd() methods, and all markup is written to the
client using a Responseliriter. The FacesContext contains all information about the per-request
state related to a JSF request process and the corresponding render response.

The UIInput class is the behavioral superclass you'll provide with a new Renderer. You also
need access to the ExternalContext to access request parameters. The ExternalContext class
allows JSF-based applications to run in either a servlet or a portlet environment and gives you
access to (for example) session instance, response object, and path information.

For the input date component, you also want to convert to a strongly typed Date object the
actual String passed on the request using a Converter and possibly throw a ConverterException
for invalid input values. In case the application developer does not specify a converter, you must
provide a default DateTimeConverter.

When you have access to all the classes needed for the input date component, it is time to
code. In this chapter, you will create an HTML-specific renderer that has the component type
set to Input and that is designated to take a value of type Date, so an appropriate name of this
class is HtmlInputDateRenderer.

Encode Begin and Encode End

During the initial request, only two phases are at work—Restore View and Render Response—
so the decode () method of the renderer will not be called since it is called in the Apply
Request Value phase. The only methods called are encodeBegin(), getRendersChildren(),
encodeChildren(), and encodeEnd():

* encodeBegin() is generally used to write the opening client markup element(s) for the
UIComponent (for example, <table>).

e encodeEnd() is generally used to write the closing client markup element(s) for the
UIComponent (for example, </table>).

e getRendersChildren() is used as a flag to indicate whether a UIComponent/Renderer is
responsible for rendering its children.

e encodeChildren() is called only if the rendersChildren property returns true. In that
case, the UIComponent (or its Renderer, if present) is responsible for rendering its child
components.

61

62

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

THE RENDERSCHILDREN PROPERTY

The previously mentioned method—encodeChildren()—depends on a read-only UIComponent property
called rendersChildren. If the component has a renderer, then the component delegates to the Renderer
to determine whether rendersChildren is true. A Renderer returns true for rendersChildren if it
needs access to its children components to correctly render the output to the client. One example from the
JSF standard is h: dataTable, where the number of column children is needed in advance to correctly ren-
der the HTML markup.

If rendersChildren is true, the Renderer controls rendering for its entire subtree of components.
This means when the JSP engine executes a tag that manages a component with rendersChildren set to
true, instead of continuing to iterate through the component hierarchy, asking each component to render, it
has to first create the component hierarchy so that the child component hierarchy is available to the parent
component and its Renderer.

An application developer can attach a custom Converter or Validator to an input compo-
nent in the JSP document. It is important not to reference either the Converter or the Validator
during rendering until encodeEnd() because a custom Converter or Validator will not be
attached to the component until after encodeBegin() has completed. Therefore, you will avoid
using encodeBegin() for your HtmlInputDateRenderer and instead do the majority of the render-
ing in encodeEnd(). Code Sample 2-11 shows the endcodeEnd () method’s two arguments.

Code Sample 2-11. The encodeEnd() Method'’s Arguments

public class HtmlInputDateRenderer extends HtmlRenderer
{
public void encodeEnd(
FacesContext context,
UIComponent component) throws IOException

{

The encodeEnd() method takes two arguments—FacesContext context and UIComponent
component. The Render Response phase will call the encodeEnd() method on the UIComponent,
which in turn will delegate to the encodeEnd() method on the Renderer, passing the FacesContext
and the UIComponent instance. In this case, you are guaranteed to be passed an instance of
UIInput, but you might also be passed a renderer-specific subclass of UIInput. If a cast is needed,
you always cast to the behavioral superclass, rather than to a renderer-specific subclass.

Looking Up Attribute Values

A component such as the one you are creating usually contains a set of renderer-specific
attributes, such as title, width, and height. For the inputDate component, you previously
determined that you needed HTML attributes—value, title, and name.

These HTML attributes are rendered using the behavioral component’s clientId
and converted value attribute. You must also render the markup-specific attributes, so in
Code Sample 2-12, you look up the renderer-specific title attribute in the UIComponent
attribute’s Map.

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

WHY NOT CAST TO A RENDERER-SPECIFIC SUBCLASS IN THE RENDERER?

Optionally, you can cast the component to a renderer-specific subclass and use the getters directly to look up
the renderer-specific attributes. However, for similar reasons as those described in Chapter 1, you need to
make sure your Renderer works even if an application developer creates a new ULInput programmati-
cally, sets the renderer type, and adds it to the component hierarchy.

The following code is an extract from a sample backing bean and illustrates how an application devel-
oper would add a UIInput component to the component hierarchy programmatically:

public void setBinding(
UIPanel panel)

{
UIInput input = new UIInput();
input.setRendererType("com.apress.projsf.Date");
Map attrs = input.getAttributes();
attrs.put("title", "Programmatic Date Field");
panel.getChildren().add(input);

This sample would cause a ClassCastException to occur if you always cast to the renderer-specific
component subclass in your Renderer, instead of casting to the UIInput behavioral superclass.

Code Sample 2-12. Getting Attribute Values from the UIComponent

Map attrs = component.getAttributes();
String title = (String)attrs.get(TITLE ATTR);
String valueString = getValueAsString(context, component);

The getAttributes() method returns a mutable Map of attributes (and properties) associ-
ated with this UIComponent, keyed by attribute name. On the Map you can then look up the
values of the attribute specified (for example, title). In Code Sample 2-12, you are using the
TITLE ATTR constant with the value title. The getValueAsString() method is defined by the
HtmlInputDateRenderer and returns either the component’s submittedValue attribute after a
previously unsuccessful postback or the component’s value attribute, formatted as a string.

Identifying Component

Since there is only one Renderer instance per Renderer class (singleton), you need to make
sure that during postback you decode the request and apply values entered by the user to the
right component. To achieve this, you must include a unique identifier in the generated com-
ponent markup. So, on encoding, before you start writing markup to the client, you need to
determine which UIComponent in the component hierarchy you are encoding. The clientIdisa
globally unique identifier for the component markup that remains consistent across postback.
In Code Sample 2-13, you calculate the clientId of a component.

63

64

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

Code Sample 2-13. UIComponent clientId Lookup
String clientId = input.getClientId(context);

The getClientId() method calculates the clientId of a component by walking up the
component hierarchy to the first N\amingContainer parent component (for example, UIForm).
The getClientId() method obtains the clientId from the UIComponent that implements
NamingContainer. The clientId of this parent component is then appended as a prefix to the
child component’s ID (for example, [NamingContainer clientId]:[id]).

Note If the application developer has not defined an ID on a component, the getClientId() method
will call the createUniqueId() method on the UIViewRoot to create a unique clientId. By default, JSF
will generate clientIds that start with _ to help to avoid conflicts with IDs specified by the application
developer (for example, id1, id2, and so on).

Figure 2-4 illustrates a simplified version of the page description shown in Figure 2-1.

<h:form id="form" >

<pro:inputDate id="dateField">

Figure 2-4. Unique IDs within NamingContainer

The identifier written to the client for the inputDate component, based on Figure 2-4, will
be form:dateField. Since the other components do not contain any user-defined IDs, a compo-
nent ID will be generated by the createUniqueId() method on UIViewRoot (for example, id1).

CHAPTER 2 © DEFINING THE DATE FIELD COMPONENT

JSF NAMINGCONTAINER

To ensure each component’s uniqueness, JSF provides a NamingContainexr marker interface. Within a com-
ponent implementing NamingContainer, each child component is required to have a locally unique identifier.
This is enforced by the renderView() method on ViewHandler, and in JSP-based applications it is also
enforced by the ULComponentTag. The only time it would be useful to implement NamingContainer for
your own component would be if your component stamped out its children in a similar fashion to the
HtmlDataTable component.

In case the JSF default-generated client ID (for example, id1, 1id2, and so on) is not understood
by the client markup, the component writer can decide to override a method called convertClientId().
If the UIComponent has a Renderer, the last call made by the getClientId() method is to the
convertClientId() method. This ensures the Renderer can make the final call about which client ID
gets sent to the client. For example, the XHTML rules for fragment identifiers are much stricter than HTML
because XHTML does not allow identifiers to start with underscores or colons. (See the XHTML 1.0 specifi-
cation at http://www.w3.0rg/TR/xhtml1/#C_8).

Note As good practice, always set IDs on <h:form> components in the JSP page description.

Writing Output to the Client

You have now verified the value, the client ID, and the additional renderer-specific attributes,
so it is time to write the necessary markup and resources back to the browser via the JSP
buffered body tag. Using the ResponseWriter class, you can leverage some convenience
methods to generate proper markup. In this sample, you will use the startElement(),
writeAttribute(), and endElement() methods. However, these are not the only methods
implemented by the ResponseWriter class. Table 2-3 lists useful methods provided by the
JSF ResponseWriter class.

Table 2-3. Useful ResponseWriter Methods*

Method Name Description

getContentType() Returns the content type used to create this ResponselWriter.

getCharacterEncoding() Returns the character encoding used to create this ResponseWriter.

startDocument() Writes appropriate characters at the beginning of the current response.
endDocument () Writes appropriate characters at the end of the current response.
startElement() Writes the beginning of a markup element, such as the < character,

followed by the element name such as table, which causes the
ResponselWriter implementation to note internally that the element

is open. This can be followed by zero or more calls to writeAttribute()
or writeURIAttribute() to append an attribute name and value to

the currently open element. The element will be closed with the
trailing > character added on any subsequent call to startElement(),
writeComment(), orwriteText().

Continued

65

66

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

Table 2-3. Continued

Method Name Description

endElement() Closes the specified element. The element name must match the
previous call to startElement.

writeComment () Writes a comment string wrapped in appropriate comment delimiters,
after converting the comment object to a String first. Any currently
opened element is closed first.

writeAttribute() Adds an attribute name-value pair to an element that was opened
with a previous call to startElement(). The writeAttribute() method
causes character encoding to be performed in the same manner as that
performed by the writeText () methods.

writeURIAttribute() Assumes that the attribute value is a URI and performs URI encoding
(such as percent encoding for HTML).

writeText() Writes text (converting from Object to String first, if necessary), per-
forming appropriate character encoding and escaping. Any currently
open element created by a call to startElement() is closed first.

*Source: The JSF 1.1 specification. For more detailed information about these methods, please refer to the
JSF specification.

From the context you can get the Responsellriter—getResponselriter ()—for this request.
The Responselriter class extends the java.io.Writer class and adds methods that generate
markup elements, such as start and end elements for HTML and XML.

You could ignore these convenience methods provided by the ResponseWriter and
instead control the output of the markup directly. However, this is not a recommended
approach for several reasons. First, you will get better performance if you don’t have to keep
your own objects in memory to handle what gets written, and when, to the client. Second,
you will also get better portability of your code between markup languages that have only
subtle differences, such as between HTML and XHTML. Finally, by using the startElement()
and endElement () API, it is easier to detect and debug the generated markup by verifying that
all startElement() and endElement() calls are balanced. You can do this by using a decorating
Responselriter class.

Note Depending on the supported content type of the client browser, JSF 1.2 will create a content-
specific ResponselWriter that will format markup such as XHTML. By using the startElement () method
and the endElement () method, a component writer will not need to provide multiple solutions for HTML
and XHTML content types; the ResponseWriter will handle this.

It is usually good practice to create helper classes for client-specific elements and attributes.
For example, the MyFaces project has a utility class—org.apache.myfaces.renderkit.html.HTML—
that contains public constants, such as HTML. INPUT_ELEM for the input element. For clarity you
will be entering the element name directly as shown in Code Sample 2-14.

CHAPTER 2 © DEFINING THE DATE FIELD COMPONENT

Code Sample 2-14. Writing Output to the JSP Buffered Body Tag

Responselriter out = context.getResponselWriter();
out.startElement("div", component);
if (title != null)
out.writeAttribute("title", title, TITLE ATTR);
out.startElement("input", component);
out.writeAttribute("name", clientId, null);
if (valueString != null)
out.writeAttribute("value", valueString, null);
out.endElement("input");

ViewHandler handler = context.getApplication().getViewHandlex();

String overlayURL = handler.getResourceURL(context,
"/projsf-ch2/inputDateOverlay.gif");

out.startElement("img", null);

out.writeAttribute("class", "ProInputDateOverlay", null);

out.writeAttribute("src", overlayURL, null);

out.endElement("img");

out.endElement("div");

The startElement() method takes the following arguments—name, UIComponent, and
componentForElement. The name parameter is the name of the element generated (for example,
"div"), and the componentForElement is the UIComponent this element represents. In Code
Sample 2-14, this is represented by the UIInput component that was passed to the encodeEnd()
method by the Render Response phase. In this section of the encodeEnd() method, you also
write the image that will be used as an overlay for the input date component.

Note The componentForElement parameter is optional and can be set to null, but the presence of the
componentForElement parameter allows visual design-time environments to track generated markup for a
specific component. This is also useful for advanced Ajax manipulation of markup at runtime. Chapter 4 cov-
ers Ajax technologies.

After adding applicable attributes, you close your elements using the endElement ()
method on the Responsellriter. You are now done with the encodeEnd() method.

Writing Out Resources

You need to override the encodeResources () method, as shown in Code Sample 2-15, to
write a reference to the CSS style sheet used by this component. This style sheet defines the
ProInputDateOverlay style used by the overlay image.

67

68

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

Code Sample 2-15. The encodeResources () Method
/**
* Write out the HtmlInputDate resources.
*
* @param context the Faces context
* @param component the Faces component
*/
protected void encodeResources(
FacesContext context,
UIComponent component) throws IOException

{

writeStyleResource(context, "/projsf-ch2/inputDate.css");

}

The writeStyleResource() method provided by the HtmlRenderer superclass guarantees
that a style resource is written only once during rendering, even if multiple ProInputDate
components appear on the same page. In Code Sample 2-15, the encodeResources () method
writes a CSS style sheet resource needed by your HtmlInputDate component—inputDate.css.

Looking Up the Value String

The getValueAsString() method, shown in Code Sample 2-16, will return the string represen-
tation of the value to be encoded. By calling the getSubmittedValue() method on the UIInput
component, you can get the submitted value, if any.

Code Sample 2-16. The getValueAsString() Method

/**

* Returns the submitted value, if present, otherwise returns
* the value attribute converted to string.

*

* @param context the Faces context

* @param component the Faces component

*

* @return the value string for the specified component
*

* @throws IOException if an I/0 exception occurs during rendering
*/
protected String getValueAsString(

FacesContext context,

UIComponent component) throws IOException
{

// look up the submitted value

UIInput input = (UIInput)component;

String valueString = (String)input.getSubmittedValue();

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

// the submitted value will be null
// on initial render (or after a successful postback)
if (valueString == null)

{
// look up the strongly typed value for this input
Object value = input.getValue();
if (value != null)
{
// if present, convert the strongly typed value
// to a string for rendering
Converter converter = getConverter(context, input);
valueString = converter.getAsString(context, component, value);
}
}

return valueString;

}

For your HtmlInputDateRenderer, the submitted value attribute represents the string value
entered by the user that needs to be converted to a strongly typed Date object. If the submitted
value is null, which it will be on initial request or after a successful postback, you call the
getValue() method on the UIInput component.

If a value is returned by the getValue() method, you need to convert the value from a
strongly typed Date object to a string representation suitable for rendering. You do this by
using the JSF Converter object returned by the getConverter() method.

In case of an unsuccessful postback, the submitted value is non-null and should be redis-
played to give the user an opportunity to address the conversion or validation error.

Converting Values

For the inputDate component, you have decided to make sure values entered by the user
always get converted properly to Date objects, whether that is with one you have implemented
or with a Converter that the application developer has attached. By adding the getConverter()
method to the HtmlInputDateRenderer class, you will be able to control the conversion of
entered values, as shown in Code Sample 2-17.

Code Sample 2-17. The getConverter () Method

private Converter getConverter(
FacesContext context,
UIInput input)
{
Converter converter = input.getConverter();
if (converter == null)
{
// default the converter
DateTimeConverter datetime = new DateTimeConverter();

69

70

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

datetime.setlocale(context.getViewRoot().getlocale());
datetime.setTimeZone(TimeZone.getDefault());
converter = datetime;

}

return converter;

}

The first task to perform is to check whether the application developer has attached
a Converter to the input date component (for example, <f:convertDateTime>). If not, then
you will create a new DateTimeConverter and from the context get the locale for the client,
getlocale(), and set it on the new Converter, setLocale(). You then set the time zone on the
new converter and return the Converter.

Controlling Rendering of Child Components

You can use the rendersChildren property of the UIComponent or Renderer as a flag to indicate
whether the UIComponent/Renderer is responsible for rendering its children. If this flag is true,
then the parent or ancestor component must render the content of its child components. In
the case of the input date component, it does not make sense to nest other components within
it, since it is a leaf component. You can solve this in two ways; one way is to not do anything
and let the rendersChildren property be set to default, which in the JSF 1.1 specification is
false. In this case, if the application developer adds a child to this component, it will be
rendered underneath it. The second way to solve this is to set rendersChildren to true and
implement an empty encodeChildren() method, as shown in Code Sample 2-18.

Code Sample 2-18. Controlling Rendering of Child Components

public boolean getRendersChildren()
{

return true;

}

public void encodeChildren(

FacesContext context,

UIComponent component) throws IOException
{

// do not render children

}

This way, any attached children will not be rendered since you are ignoring them with an
empty encodeChildren() method.

Decode on Postback

The UIInput component renderer must also manage new values entered by the user. During
postback, the JSF request lifecycle steps through all six phases, starting with the Restore View
phase followed by the Apply Request Values phase.

CHAPTER 2 © DEFINING THE DATE FIELD COMPONENT

Note If the renderResponse() method is called during any Lifecycle phase, then the Lifecycle will
jump directly to the Render Response phase after the current phase is completed. If the responseComplete()

is called during any Lifecycle phase, then the Lifecycle will not execute any more phases after the cur-
rent phase is completed.

During the Apply Request Values phase, a method—processDecodes ()—will be called on
the UIViewRoot at the top of the component hierarchy (see Figure 2-5).

Application Scope

Lifecycle
2. Apply
Request
Values
B <
< a2
O ~
(77} ~
0
8 ~
& <
S Request Scope
FacesContext SA
UlViewRoot

[ProlnputDate | [HtmIMessage | [HtmICommandButton | | HtmlOutputText |

Figure 2-5. Apply Request Values phase

The processDecodes () method on the UIViewRoot is responsible for recursively calling
processDecodes() on each UIComponent in the component hierarchy.

Note uIviewRoot is the UIComponent that represents the root of the UIComponent tree. This compo-
nent has no renderer.

For each UIComponent in the component hierarchy, the processDecodes () method
will first check to see whether any children are attached to the component. If there are, it

calls processDecodes () on its children. After that, it will call the decode() method on the
UIComponent (see Figure 2-6).

7

72

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

Figure 2-6. Apply Request Values phase—the processDecodes () and decode() methods

FacesServlet

Application Scope
Lifecycle
2. Apply
Request
Values
e Request Scope
FacesContext i ¥
UlViewRoot
processDecodes()
UlForm
processDecodes()
decode()
Ullnput UlMessage UlCommand UlOutput
processDecodes() | [processDecodes() | | processDecodes() | | processDecodes()
decode() decode() decode() decode()

If a Renderer is present for any of these components, the UIComponent will delegate the
responsibility of decoding to the Renderer. It is the Renderer decode () method’s responsibility
to observe the request parameters and set the submitted value accordingly on the UIComponent.
After the processDecodes () method is finished, the JSF lifecycle continues to the Process Valida-
tions phase. Code Sample 2-19 shows the decode() method in the HtmlInputDateRenderer class.

Code Sample 2-19. The decode() Method in the HtmlInputDateRenderer Class

public void decode(

{

FacesContext context,
UIComponent component)

ExternalContext external = context.getExternalContext();
Map requestParams = external.getRequestParameterMap();

UIInput input = (UIInput)component;
String clientId = input.getClientId(context);

String submittedValue = (String)requestParams.get(clientId);
input.setSubmittedValue(submittedValue);

CHAPTER 2 © DEFINING THE DATE FIELD COMPONENT

By adding the decode() method to the HtmlInputDateRenderer class, you can control
the decode processing of the inputDate component. To get the request parameters, you
first need to look up the external context. From the external context, you can look up the
Map containing the parameters passed on the request. You then get the client ID from the
UIComponent—getClientId(context)—and use that client ID to get the submitted request
parameter value for this component. This parameter value is then stored on the UIComponent
using setSubmittedValue() so that it can be processed further in subsequent phases of the
JSF lifecycle.

Note The setSubmittedvalue() method should be called only from the decode () method of your
component’s Renderer. Once the decode () method is completed, no other phase should be using the
ExternalContext to observe any request parameter values associated with your component. The
getSubmittedvalue() method should be called only from the encode methods of your component’s
Renderer.

Process Validation and Conversion During Postback

After the Apply Request Values phase, the application enters the Process Validation phase (see
Figure 2-7), in which conversion and validation are performed by calling the processValidators()
method on the UIViewRoot. The processValidators() method on the UIViewRoot is responsible
for recursively calling processValidators() on each UIComponent in the component hierarchy.

Application Scope

Lifecycle

3. Process

Validations
i
= S
3 I
3 <
& N

S Request Scope
AY
FacesContext 'Y
UlViewRoot

[ProinputDate | [HtmIMessage | [HtmICommandButton | [HtmlOutputText |

Figure 2-7. Process Validations phase

73

74

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

Note Generally, if a UIComponent has the property rendered set to false, then no processing, such as
calls to processDecodes () or processValidators (), will occur on the component or on any of its child
components.

During the validation of a UIInput, type conversion will first occur on the component’s sub-
mitted value. For example, a string is converted to a strongly typed object and then validated.

On each UIInput in the UIComponent tree, the processValidators() method will also call
the validate() method to type convert and validate the component’s submitted value (see
Figure 2-8). The validate() method will first call the getSubmittedValue() method on the
UIComponent, and if it returns null (when no value was submitted for the UIComponent), it
will exit without further processing. If the submitted value is not null, then the validate()
method calls the getConvertedValue() method and passes the newly submitted value from
the decode process.

Application Scope
Lifecycle
3. Process
Validations
B —~
£ e Request Scope
w ~
8 FacesContext “A
(1]
= UlViewRoot
processValidators()
UlForm
processValidators()
validate()
Ulinput UlMessage UlCommand UlOQutput
processValidators() | |processValidators() | [processValidators() | |processValidators()
validate() validate() validate() validate()

Figure 2-8. Process Validations phase—the processValidators() and validate() methods

CHAPTER 2 © DEFINING THE DATE FIELD COMPONENT

The getConvertedValue() method converts the submitted value to a strongly typed
object (for example, Date). If the UIComponent has a Renderer attached, then the UIComponent
delegates to the Renderer’s getConvertedValue() method to return the converted value. By
default, the base Renderer implementation returns the submittedvalue directly without any
conversion. Code Sample 2-20 shows the getConvertedValue() method as implemented in
the HtmlInputDateRenderer.

Code Sample 2-20. The Renderer getConvertedValue() Method

public Object getConvertedValue(
FacesContext context,
UIComponent component,
Object submittedValue) throws ConverterException
{
UIInput input = (UIInput)component;
Converter converter = getConverter(context, input);
String valueString = (String)submittedvalue;
return converter.getAsObject(context, component, valueString);

}

In the HtmlInputDateRenderer class, you will add the previous getConvertedvalue()
method so you can make sure the value passed to the underlying model is a strongly typed
object of type Date. This is similar to what you did in the encode method (see the section
“Encode Begin and Encode End”) except that you are now reversing the process. First you get
the Converter for the UIComponent in question, and then you convert the submitted value to an
Object using the getAsObject() method on the Converter.

The new object returned by the getConvertedvalue() method is set as a local value on
the component, clearing the submitted value. The new strongly typed object is then validated.
If there are no errors, a ValueChangeEvent is queued to be delivered at the end of the Process
Validations phase. If there are conversion errors, the getConvertedvalue() method throws a
ConverterException.

Note Youcanusea ValueChangelistener to capture the event raised by the ValueChangeEvent
before the new local value is pushed into the model in the Update Model Values phase.

Update Model

After the Process Validations phase, the application enters the Update Model Values phase, in
which conversion and validation are performed by calling the processUpdates() method on

the UIViewRoot (see Figure 2-9). The processUpdates() method on the UIViewRoot is responsi-
ble for recursively calling processUpdates () on each UIComponent in the component hierarchy.

75

76

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

The processUpdates () method calls the updateModel () method, which is in charge of updating
the model data associated with the UIComponent.

Application Scope Session Scope
Lifecycle
backingBean
4. Update
Model Noococoocoodl
Values S~o
B i
§ e Request Scope
8 FacesContext “~A
(1~
= UlViewRoot
processUpdates()
UIForm
processUpdates()
updateModel()
Ulinput UlMessage UlCommand UlOQutput
processUpdates() | [processUpdates() processUpdates() | [processUpdates()
updateModel() updateModel() updateModel() updateModel()

Figure 2-9. Update Model Values phase—the processUpdates () and updateModel () methods

If the value property on the UIComponent has an associated ValueBinding, the setValue()
method of that ValueBinding will be called during the Update Model Values lifecycle phase to
push the local value from the component to the underlying model. The local value is then
cleared so that any subsequent getValue() calls delegate to the ValueBinding, allowing the
most current data to be retrieved from the data model.

Render Response Phase During Postback

During the Render Response phase in the initial request, the only possible value for the
inputDate component was from the getValue() method. However, during the Render
Response phase on postback, it is possible that the submitted value was not a valid date if
conversion to the strongly typed Date object failed. In this case, the submittedValue is non-null

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

and is rendered directly as the value in the markup. When there is no submittedValue, then the
type conversion to Date was successful, and the code behaves in the same way as an initial
request. Code Sample 2-21 shows the encodeEnd () method of the HtmlInputDateRenderer class.

VALUEBINDING

To bind a component’s attribute value to a property on a bean, or to an element of another data source,
JSF leverages value-binding expressions. A value-binding expression can point to both read and write
properties on a bean. The ValueBinding class encapsulates the actual evaluation of a value binding.
Instances of ValueBinding for specific references are acquired from the Application instance by
calling the createValueBinding() method.

Code Sample 2-21. Collecting Data for Rendering

public void encodeEnd(
FacesContext context,
UIComponent component)
{
String valueString = (String)input.getSubmittedValue();
if (valueString == null)

{
Object value = input.getValue();
if (value != null)
{
Converter converter = getConverter(context, input);
valueString = converter.getAsString(context, component, value);
}
}
}

By adding the code in bold to the encodeEnd () method, you will now be able to render the
submittedValue for the input date component, even though it is an invalid date string.

Step 3: Creating a Renderer-Specific Subclass

Based on the earlier blueprint, it is time to provide a renderer-specific subclass. Although this

is an optional step, it is good practice since there might be cases when an application developer

would like to use it for convenience. The class provides getters and setters for all renderer-

specific attributes on the JSF component, such as style, disabled, readonly, and so on.
Figure 2-10 shows the ProInputDate renderer-specific subclass that you will create and its

inheritance. Code Sample 2-22 shows the source of this renderer-specific subclass.

77

78 CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

= Ullnput

+ String COMPOMNENT TYPE

+ String COMPONENT_FAMILY

+ String CONVERSION MESSAGE 1D
+ String REQUIRED MESSAGE 1D

+ Ullnput ()

+ String getFamily ()

+ Object getSubmittedValue ()
+void setSubmittedValue (Object)

= PralnputDate

+ String COMPCONENT TYPE
+ String REMDERER_TYPE

- String _onchange

- String _title

+ ProlnputDate ()

+void setOnchange (String onchange)

+ String getOnchange ()

+void setTitle (String title)

+ String getTitle)

+ Object saveState (FacesContext context)

+void restoreState (FacesContext context, Object state)

Figure 2-10. Class diagram over the ProInputDate renderer-specific subclass

Code Sample 2-22. Creating a New Renderer-Specific Subclass

package com.apress.projsf.ch2.component.pro;

import javax.faces.component.UIInput;
import javax.faces.context.FacesContext;
import javax.faces.el.ValueBinding;

Vi

* The ProInputDate component.

*/

public class ProInputDate extends UIInput
{

/x%

* The component type for this component.

*/

public static final String COMPONENT_TYPE = "com.apress.projsf.ProInputDate";

Voo

* The renderer type for this component.
*/
public static final String RENDERER TYPE = "com.apress.projsf.Date";

CHAPTER 2 © DEFINING THE DATE FIELD COMPONENT

Jxx

* Creates a new ProInputDate.
*/
public ProInputDate()
{

setRendererType (RENDERER_TYPE);
}

The first tasks you have to do is to make sure you have access to the required classes for
the input date component and extend the right component superclass, which in this case is
UIInput. After that, you define a public static final String constant named COMPONENT TYPE
to match the standard UIComponent implementation strategy defined by the JSF specification.

Caution Renderer-specific components must not define a COMPONENT FAMILY constant or override the
getFamily() method they inherit from their superclass.

The next constant is the RENDERER_TYPE, which will be used to associate the correct ren-
derer for the UIComponent when it is created. As you can see in Code Sample 2-22, you pass the
RENDERER_TYPE to the setRendererType() method in the constructor of the renderer-specific
subclass.

Renderer-Specific Attributes and ValueBinding

In the earlier section “Looking Up Attribute Values,” we covered the Renderer part of handling
markup-specific attributes, such as title. The purpose of the renderer-specific component
subclass is to provide convenience getters and setters for each renderer-specific attribute, as
shown in Code Sample 2-23.

Code Sample 2-23. Creating Properties and Accessors for Client-Side Attributes
Vi

* The title attribute value.

*/
private String title;

Vo
* Sets the title attribute value.
*
* @param title the new title attribute value
*/
public void setTitle(
String title)
{
_title = title;
}

79

80

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

Vs

* Returns the title attribute value.
*

* @return the title attribute value
*/
public String getTitle()
{

if (_title != null)

return _title;

ValueBinding binding = getValueBinding("title");

if (binding != null)

{
FacesContext context = FacesContext.getCurrentInstance();
return (String)binding.getValue(context);

}

return null;

}

Creating getters and setters for your markup-specific attributes is similar to creating a reg-
ular JavaBean with some properties. First you declare the storage fields on the ProInputDate
subclass (for example, private String title). Then you create the public accessor and muta-
tor for this attribute, setTitle() and getTitle().

The main differences from a regular JavaBean are the attribute accessors. The method sig-
nature and purpose of the method (to read a property) are the same. However, the component
attribute accessors add support for ValueBindings. The application developer can assign a
ValueBinding to attributes in order to retrieve information from an underlying model.

To handle this correctly, you first need to see whether there is a local value stored directly
in the component. This will take precedence over any ValueBinding defined for the attribute
(for example, #{sample.myAttribute}). If no local value is available, then you must call the
getValueBinding() method on the UIComponent and pass the name of the attribute. If a
ValueBinding exists, then you need to call the getValue() method on the ValueBinding to
resolve the actual value. If no local attribute value is stored directly in the component, and
no ValueBinding exists for the attribute, then null is returned.

Save and Restore State

State management is one of the primary benefits of using JSF to build applications. JSF pro-
vides automatic state handling through a class called StateManager, which saves and restores
state for a particular view (hierarchy of UIComponents) between requests on the server. Each
UIComponent controls what internal state is saved, so you need to perform some work on your
ProInputDate component to save its internal state.

CHAPTER 2 © DEFINING THE DATE FIELD COMPONENT

Note By default state saving for a UIComponent is turned on, but an application developer can opt out of
this by setting a flag—transient—to true. When a component is marked transient, it will not be present
in the component hierarchy during the next postback request.

Since you are extending the UIInput component with a client-specific subclass, you need
to manage the state saving in the saveState() method on your ProInputDate class, as shown in
Code Sample 2-24.

Code Sample 2-24. Saving State in the ProInputDate Component
/**
* Returns the saved state for this component.
ES
* @param context the Faces context
*/
public Object saveState(
FacesContext context)
{
Object values[] = new Object[2];
values[0] = super.saveState(context);
values[1] = title;
return values;

}

It is important to include the saved state from the UIInput superclass, as well as your
renderer-specific attribute value, title.

Likewise, you also need to restore the state on a subsequent postback request by adding
the restoreState() method to your ProInputDate class, as shown in Code Sample 2-25.

Code Sample 2-25. Restoring State in the ProInputDate Component
/¥*
* Restores the state of this component.
*
* @param context the Faces context
* @param state the saved state
*/
public void restoreState(
FacesContext context,
Object state)
{
Object values[] = (Object[])state;
super.restoreState(context, values[0]);
_title = (String)values[1];
}
}

81

82

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

The StateManager will pass the stored state to the restoreState() method on your
ProInputDate instance. This will allow you to extract and restore the previously stored state
for the UIInput superclass, before you restore the value of your renderer-specific attribute,
title.

Step 4: Registering UIComponent and Renderer

As discussed in Chapter 1, the Application instance will store resources defined in the JSF
configuration file—faces-config.xml—at application start-up. The JSF implementation
processes any configuration files available accordingly to the following rules—first by search-
ing for all resources named META-INF/faces-config.xml in the ClassLoader resource paths for
this web application.

Then, it checks for the existence of a context initialization parameter named javax.
faces.CONFIG_FILES. If this parameter exists, it will be treated as a comma-delimited list
of ServletContext relative resource paths (starting with /) and load each of the specified
resources into the Application instance. Finally, the JSF implementation will check for the
existence of a Web application configuration resource named /WEB-INF/faces-config.xml
and load it if the resource exists. JSF then merges the metadata definitions found in these
faces-config.xml files.

The benefit of this aggregated approach is that it allows developers to package a
faces-config.xml file with their custom component library, which in turn has the benefit of
simpler installation of custom component libraries as a single JAR file. It also allows applica-
tion developers to override component-specific configurations in the application-specific
WEB-INF/faces-config.xml file since it takes precedence over all other faces-config.xml files.

Register the Renderer

To register your new HtmlInputDateRenderer class as a renderer for JSE you need to add the
faces-config.xml file, as shown in Code Sample 2-26, in a META-INF directory somewhere on
your resource path.

Code Sample 2-26. Registration of the ProInputDateRenderer in a faces-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">

<faces-config>

<render-kit>

<!-- no renderkit-id, so these renderers are added to
the default renderkit -->
<renderer>

<component-family>
javax.faces.Input

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

</component-family>
<renderer-type>
com.apress.projsf.Date
</renderer-type>
<renderer-class>
com.apress.projsf.ch2.render.html.basic.HtmlInputDateRenderer
</renderer-class>

<!-- Renderer-specific attributes -->
<attribute>
<attribute-name>title</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
</renderer>

</faces-config>

As already covered in Chapter 1, Renderers are grouped into RenderKits. A RenderKit
is in charge of creating the markup-specific Responselriter, which is used to write markup
to the client. The RenderKit is also responsible for storing and returning the Renderers. By
default, it will store only one Renderer instance for each renderer type and component fam-
ily combination. In your previous configuration, you have omitted the <render-kit-id>
element, which will default your client-specific renderer to use the default RenderKit (with
identifier RenderKitFactory.HTML _BASIC RENDER KIT) provided by the JSF implementation.

You also set the <component-family>, which is a string—javax. faces. Input—that represents
the behavior of the component (for example, an input component), and the <renderer-type>,
which is also a string—com. apress.projsf.Date—that represents the presentation of the compo-
nent. In combination with the component family, the render type uniquely identifies which
Renderer class to use with the component—the HtmlInputDateRenderer class. For more infor-
mation about this, please refer to Chapter 1.

Register the Renderer-Specific Subclass

The ProInputDate component is registered as shown in Code Sample 2-27 in the
faces-config.xml file

Code Sample 2-27. Defining the Component Type and Component Class

<faces-config>

<component>
<component-type>
com.apress.projsf.ProInputDate
</component-type>
<component-class>
com.apress.projsf.ch2.component.pro.ProInputDate
</component-class>

83

84

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

The code in bold registers your new component by defining the component type,
com.apress.projst.ProInputDate, and the corresponding component class, com.apress.
projsf.ch2.component.pro.ProInputDate. You should add this metadata to the faces-config.xml
file you created earlier for your renderer, since they will both be included in the same JAR for
easier installation.

Note that you have not closed the <faces-config> element because you are still going to
add more metadata for your new component, as shown in Code Sample 2-28.

Code Sample 2-28. ULComponent-Inherited Attributes

<!-- UIComponent attributes -->
<attribute>
<description>
The component identifier for this component. This value must be
unique within the closest parent component that is a naming
container.
</description>
<attribute-name>id</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
<attribute>
<description>
Flag indicating whether or not this component should be rendered
(during Render Response Phase), or processed on any subsequent
form submit.
</description>
<attribute-name>rendered</attribute-name>
<attribute-class>boolean</attribute-class>
<default-value>true</default-value>
</attribute>
<attribute>
<description>
The value-binding expression linking this component to a
property in a backing bean.
</description>
<attribute-name>binding</attribute-name>
<attribute-class>javax.faces.el.ValueBinding</attribute-class>
</attribute>

Although good practice, it is not required to add these attributes to the faces-config.xml
file. If they are not added, tools will not be able to provide any additional help or information
about the component during design time. This metadata defines attributes that are inherited
from the UIComponent base class and that will be used by the application developer.

Code Sample 2-29 shows metadata that defines the UIInput-inherited attributes available
to the application developer.

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

Code Sample 2-29. UIInput-Inherited Attributes

<!-- UIInput attributes -->
<attribute>
<description>
Converter instance registered with this component.
</description>
<attribute-name>converter</attribute-name>
<attribute-class>javax.faces.convert.Converter</attribute-class>
</attribute>
<attribute>
<description>
Flag indicating that this component's value must be
converted and validated immediately (that is, during
Apply Request Values phase), rather than waiting
until Process Validations phase.
</description>
<attribute-name>immediate</attribute-name>
<attribute-class>boolean</attribute-class>
</attribute>
<attribute>
<description>
Flag indicating that the user is required to provide a submitted
value for this input component.
</description>
<attribute-name>required</attribute-name>
<attribute-class>boolean</attribute-class>
</attribute>
<attribute>
<description>
MethodBinding representing a validator method that will be called
during Process Validations to perform correctness checks on the
value of this component. The expression must evaluate to a public
method that takes FacesContext, UIComponent, and Object parameters,
with a return type of void.
</description>
<attribute-name>validator</attribute-name>
<attribute-class>javax.faces.validator.Validator</attribute-class>
</attribute>
<attribute>
<description>
The current value of this component.
</description>
<attribute-name>value</attribute-name>
<attribute-class>java.lang.Object</attribute-class>
</attribute>

85

86 CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

<attribute>
<description>
MethodBinding representing a value change listener method that will be
notified when a new value has been set for this input component. The
expression must evaluate to a public method that takes a
ValueChangeEvent parameter, with a return type of void.
</description>
<attribute-name>valueChangelistener</attribute-name>
<attribute-class>javax.faces.event.ValueChangelistener</attribute-class>
</attribute>

Finally, in Code Sample 2-30, you add the renderer-specific attribute you need for your
ProInputDate component, title. You also set the object type for the attribute, java.lang.String.

Code Sample 2-30. ProInputDate Attributes

<!-- ProInputDate attributes -->
<attribute>
<description>
The title, or tooltip, to use for the rendered markup of
this component.
</description>
<attribute-name>title</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
</component>

</faces-config>

Step 5: Creating a JSP Tag Handler and TLD

The last step in your initial blueprint is to create a JSP tag handler. To build a JSF application,
you need some way of describing the structure of your application, and the default view tech-
nology for page descriptions, which must be provided by any JSF implementation, is JSP. One
of the benefits of making JSP the default language is its broad adoption among Web applica-
tion developers, and by leveraging this broad developer knowledge about JSP, building JSF
applications using JSP as page description is increasing rapidly.

Note JSF implementations must support (although JSF-based applications need not utilize) JSP as the
page description language for JSF pages. You can enable this JSP support by providing custom actions so
that a JSF user interface can be easily defined in a JSP page by adding tags that correspond to JSF Ul com-
ponents. For JSP version 2.0 and onward, the file extension . jsf is reserved and may optionally be used
(typically by tools) to represent JSP pages containing JSF content. When running in a JSP 1.2 environment,
JSP authors must give their JSP pages that contain JSF content a filename ending in . jsp, according to the
JSF 1.2 specification.

CHAPTER 2 © DEFINING THE DATE FIELD COMPONENT

An application developer will use a custom action (a.k.a. fag) in a JSP page description to
indicate which JSF UIComponent is needed for the application. The custom action has a corre-
sponding tag handler class, which is responsible for creating the UIComponent and transferring
each declarative JSP tag attribute to the UIComponent instance. The syntax of the custom action
has both behavioral attributes and renderer-specific attributes. Therefore, each such custom
action is tied to a particular component family and renderer type combination. For example,
the standard HTML RenderKit provided by the JSF implementation supports three Renderer
types for the UIInput component (Text, TextArea, and Secret), which require three separate
custom actions (inputText, inputTextArea, and inputSecret). You are extending the UIInput
component and adding a new Renderer type—com.apress.projsf.Date—and you must there-
fore also provide a new JSP custom action, inputDate.

Figure 2-11 shows a class diagram over the tag handler and its support class that you will
create.

[:| UlComponentTagSupport

#void setStringProperty (UICompaonent companent, String attrMame, String value)

#void setBooleanProperty (UIComponent compaonent, String attrMame, String valug)

#void setValueBindingProperty (UIComponent component, String attrMame, String value)

#void setMethodBindingProperty (UIComponent component, String attrame, String value, Class[] signature)
#ValueBinding createValueBinding (String value)

MethodBinding createMethodBinding (String value, Class[] signature)

)

= ProlnputDateTag

- String _converter
- String _immediate
- String _required

+ String getCompaonentType ()

+ String getRendererType ()

+void setConverter (String converter)

+ void setimmediate (String immediate)

+void setRequired (String required)

+void setValidator (String validatar)

+void setValue (String value)

+void setValusChangeListener (String valueChangeListenar)
+void setOnchange (String onchange)

+ void setTitle (String title)

+void release ()

#void setProperties (UIComponent component)

Figure 2-11. Class diagram over the ProInputDate tag handler and its support class

The UlIComponentTagSupport Class

Before you start with the actual tag handler for your custom action, you'll learn about your
abstract UIComponentTagSupport tag handler class. If you planned to just create one compo-
nent, you would not need the support tag handler class shown in Code Sample 2-31, but since
you are planning on adding more components to your JSF component library, it makes sense
to separate what functionality is common among all components into a support tag handler
superclass.

87

88

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

Code Sample 2-31. The UIComponentTagSupport Class

package com.apress.projsf.ch2.taglib;
import java.util.Map;

import javax.faces.application.Application;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.el.MethodBinding;

import javax.faces.el.ValueBinding;

import javax.faces.webapp.UIComponentTag;

Vak

* UIComponentTagSupport provides common helper methods for

* JavaServer Faces UIComponent tag handlers.

*/

abstract public class UIComponentTagSupport extends UIComponentTag

{

The UIComponentTagSupport class extends the UIComponentTag, which is the base class for
all JSP custom actions that correspond to Ul components in a page that is rendered by JSE The
UIComponentTag handler base class manages component properties supported by all UIComponents
(for example, id, rendered, and binding). The UIComponentTagSupport class provides helper
methods to your tag handler classes that will be registered in the TLD as custom actions.

For each of the attributes available on a UIComponent, an application developer can
set either a static value or a JSF Expression Language (EL) expression of type value binding
or method binding. To ensure that you can handle the attributes for your components, you
can implement four utility methods—setStringProperty(), setBooleanProperty(),
setValueBindingProperty(), and setMethodBindingProperty().

Code Sample 2-32 shows the setStringProperty() method that is handling String
attributes and properties.

Code Sample 2-32. Method Handling String Attributes and Properties
/**

* Sets a component string property as a value binding, or string literal.
ES

* @param component the Faces component

* @param attrName the attribute name

* @param value the attribute value

*/
protected void setStringProperty(

UIComponent component,

String attrName,

String value)
{

if (value == null)

return;

CHAPTER 2 © DEFINING THE DATE FIELD COMPONENT

if (isValueReference(value))

{

component.setValueBinding(attrName, createValueBinding(value));

}

else
{
component.getAttributes().put(attrName, value);
}
}

You can use this setStringProperty() method to assign any component attribute that can
take either a static value or a value binding (for example, #{sample.Date}). If the value is null,
then you avoid explicitly storing the value in the component. To check whether the value is a
JSF EL expression, you can use a method called isValueReference(). This method is provided
by the UIComponentTag class and will return true if the specified value conforms to the syntax
requirements of a value-binding expression. When the string is a valid value-binding expres-
sion, you create and store a corresponding ValueBinding instance as the attribute value.

JSF 1.2 SETPROPERTIES

JSF 1.2 supports the direct use of JSP 2.1 ValueExpression and MethodExpression, rather than
passing a String to the tag handler and requiring it to parse the expression internally. As a result, the
UIComponentTagSupport setStringProperty() method described in this chapter would change as
follows for JSF 1.2:

protected void setStringProperty(

UIComponent component,
String attrName,
ValueExpression value)
{
if (value == null)
return;
if (lvalue.isLiteralText())
{
component.setValueExpression(attrName, value);
}
else
{
component.getAttributes().put(attrName, value.getExpressionString());
}
}

If the ValueExpression is actually just literal text, then this text is pushed directly into the component
attribute’s map. Otherwise, the ValueExpression is set on the component for this attribute for deferred
evaluation during the execution of the JSF lifecycle.

89

90

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

The setBooleanProperty() method, as shown in Code Sample 2-33, is essentially perform-
ing the same task as the aforementioned setStringProperty() method with one difference;
instead of handling String object types, it handles boolean types.

Code Sample 2-33. Method Handling Boolean Attributes and Properties
Vak
* Sets a component boolean property as a value binding, or boolean literal.
*
* @param component the Faces component
* @param attrName the attribute name
* @param value the attribute value
*/
protected void setBooleanProperty(
UIComponent component,

String attrName,
String value)
{
if (value == null)
return;
if (isValueReference(value))
{
component.setValueBinding(attrName, createValueBinding(value));
}
else
{
component.getAttributes().put(attrName, Boolean.valueOf(value));
}
}

The setValueBindingProperty() method, as shown in Code Sample 2-34, is simpler in its
construction since it will be used by only those attributes that do not support a literal value
and accept only a value-binding expression. If the value passed does not conform to EL
expression syntax, it throws an IllegalArgumentException.

Code Sample 2-34. Method Handling ValueBinding Attributes and Properties
Vs

* Sets a component property as a value binding.
ES

* @param component the Faces component

* @param attrName the attribute name

* @param value the attribute value

*/

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

protected void setValueBindingProperty(
UIComponent component,

String attrName,
String value)
{
if (value == null)
return;

if (lisValueReference(value))
throw new IllegalArgumentException();
component.setValueBinding(attrName, createValueBinding(value));

For the ProInputDate component, you want to provide support for the valueChangelListener
attribute, and therefore you need to handle method-binding expressions, as illustrated in Code
Sample 2-35.

Code Sample 2-35. Method Handling MethodBinding Attributes and Properties
Vak

* Sets a component property as a method binding.
*

* @param component the Faces component
* @param attrName the attribute name

* @param value the attribute value
* @param signature the method signature
*/

protected void setMethodBindingProperty(
UIComponent component,

String attrName,
String value,
Class[] signature)
{
if (value == null)
return;

Map attrs = component.getAttributes();
attrs.put(attrName, createMethodBinding(value, signature));

}

A major difference between a MethodBinding and a ValueBinding is that not only do you
have to provide the method expression, but you also have to provide the signature for the
method specified by the method expression. For a valueChangelListener method, this means
you need to pass the signature as a class array with one class—ValueChangeEvent.class.

91

92 CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

METHODBINDING

UICommand components use method-binding expressions to reference, for example, an Action method or
an ActionlListener method. The MethodBinding class encapsulates the actual evaluation of a method
binding. You can acquire instances of MethodBinding for specific references from the Application
instance by calling the createMethodBinding() method. Note that instances of MethodBinding are
immutable and contain no references to a FacesContext (which is passed in as a parameter when the ref-
erence binding is evaluated).

To complete the UIComponentTagSupport class, you need to add two methods that
can create and return a ValueBinding and a MethodBinding. Code Sample 2-36 shows the
createValueBinding() and createMethodBinding() methods.

Code Sample 2-36. The createValueBinding() and createMethodBinding() Methods
Vo
* Returns a ValueBinding for the string value.

*

* @param value the attribute string value
*
* @return a parsed ValueBinding
*/
protected ValueBinding createValueBinding(
String value)
{
FacesContext context = FacesContext.getCurrentInstance();
Application application = context.getApplication();
return application.createValueBinding(value);

}

Voo
* Returns a MethodBinding for the string value.
*
* @param value the attribute string value
* @param signature the method binding signature
*
* @return a parsed MethodBinding
*/
protected MethodBinding createMethodBinding(
String value,
Class[] signature)
{
FacesContext context = FacesContext.getCurrentInstance();
Application application = context.getApplication();
return application.createMethodBinding(value, signature);
}
}

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

The createMethodBinding() method evaluates the specified method-binding expression
and creates a MethodBinding instance. The method referenced by the expression is called when
the MethodBinding is executed. When the method is called, certain parameters are passed to
the backing bean method, such as a ValueChangedEvent for the MethodBinding attached to the
valueChangelistener attribute. The MethodBinding must dynamically look up the right method
signature to make sure it calls the right method.

JSF 1.2 VALUEEXPRESSION AND METHODEXPRESSION

JSF 1.2 now directly leverages JSP EL in JSP 2.1. JSP EL has native support for both immediate

${ }-syntax expressions and deferred #{ }-syntax expressions. Therefore, JSF 1.2 tag handlers use the
new JSP EL ValueExpression and MethodExpression types as parameters, letting the JSP container
take responsibility for parsing the expressions. Two new tag handler base classes, ULComponentELTag
and UIComponentELBodyTag, have been introduced in JSF 1.2 to replace UIComponentTag and
UIComponentBodyTag in JSF 1.1.

The ProlnputDateTag Class

Your new component needs a new custom action, inputDate, with a corresponding tag
handler class, ProInputDateTag. On initial rendering, the ProInputDateTag is responsible for
creating your new renderer-specific component subclass—ProInputDate—and transferring
all JSP custom action attributes from the tag handler to the component instance.

The ProInputDateTag uses the Application to create the component by defining the
component type—com.apress.projst.ProInputDate. This will create a ProInputDate instance,
which has a default renderer type of com.apress.projsf.Date. However, it is possible for the
local Web application faces-config.xml to override the component class that should be cre-
ated for this component type. Therefore, the tag handler must explicitly set the renderer type
on the newly created component instance and not rely on the default renderer type specified
in the ProInputDate constructor. This will guarantee your HtmlProInputDateRenderer is used
for the component instance created by the ProInputDateTag when using the default HTML
basic RenderKit.

The ProInputDateTag class extends your UIComponentTagSupport, which is the helper class
for all your JSP custom actions that correspond to UI components in a page that is rendered
by JSE As shown in Code Sample 2-37, the ProInputDateTag manages all other behavioral
properties and the renderer-specific attributes for your component, and you must ensure
this tag handler uses the right component type and renderer type.

Code Sample 2-37. The ProInputDateTag Class

package com.apress.projsf.ch2.taglib.pro;

import javax.faces.component.UIComponent;
import javax.faces.event.ValueChangeEvent;

import com.apress.projsf.ch2.component.pro.ProInputDate;
import com.apress.projsf.ch2.taglib.UIComponentTagSupport;

93

94

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

Vs

* ProInputDateTag component tag handler.

*/

public class ProInputDateTag extends UIComponentTagSupport
{

Voo

* Returns the component type.
*

* @return the component type
*/
public String getComponentType()

{
return ProInputDate.COMPONENT TYPE;

}

/%

* Returns the renderer type.
*

* @return the renderer type
*/
public String getRendererType()

{
return ProInputDate.RENDERER TYPE;

}

As shown in Code Sample 2-38, your ProInputDateTag provides tag attribute setters
and internal field storage for the behavioral UIInput component’s attributes (for example,
converter, validator, valueChangelistener, value, immediate, and required), as well as the
renderer-specific ProInputDate attribute (for example, title).

Code Sample 2-38. Behavioral and Renderer-Specific Attributes
Vak

* The converter attribute.

*/

private String _converter;

/**
* Sets the converter attribute value.
*
* @param converter the converter attribute value
*/
public void setConverter(
String converter)

{

_converter = converter;

}

CHAPTER 2

Vi
* The immediate attribute.
*/

private String immediate;

/Hk

* Sets the immediate attribute value.
*

* @param immediate the immediate attribute value
*/
public void setImmediate(

String immediate)

{

_immediate = immediate;

}

Vi
* The required attribute.
*/

private String required;

Vo

* Sets the required attribute value.
*
* @param required the required attribute value
*/
public void setRequired(
String required)

{
_required = required;
}
Vo
* The validator attribute.
*/

private String validator;

Vo
* Sets the validator attribute value.
*
* @param validator the validator attribute value
*/
public void setValidator(
String validator)
{

_validator = validator;

}

DEFINING THE DATE FIELD COMPONENT

95

96

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

Vi
* The value attribute.
*/
private String value;

/Hk

* Sets the value attribute value.
*
* @param value the value attribute value
*/
public void setValue(
String value)
{

_value = value;

}

Vs
* The valueChangelistener attribute.
*/
private String valueChangelistener;

Vo
* Sets the valueChangelistener attribute value.
*

* @param valueChangelistener the valueChangelistener attribute value
*/
public void setValueChangelistener(

String valueChangelistener)

{

_valueChangelistener = valueChangelistener;

}

Vo
* The title attribute.
*/
private String title;

Vo
* Sets the title attribute value.
*
* @param title the title attribute value
*/
public void setTitle(
String title)
{
_title = title;
}

CHAPTER 2 © DEFINING THE DATE FIELD COMPONENT 97

THE IMMEDIATE ATTRIBUTE

In some cases, you don’t want to go through the entire request-processing lifecycle, for example when the
user decides to cancel the current transaction. The immediate attribute gives the application developer a
way to override the PhaseId defined by the FacesEvent instance. This attribute can be set on UICommand
components and takes true or false as valid values, and by setting the immediate attribute to true,

an application developer can short-circuit the processing lifecycle, cancel a process, and navigate to
another view.

The immediate atiribute is also available on the UIInput components. If set to true, validation will
occur during decode and cause the conversion and validation processing (including the potential to fire
ValueChangeEvent events) to occur during the Apply Request Values phase instead of in the Process
Validations phase.

The setProperties() method, as shown in Code Sample 2-39, transfers properties and
attributes from this tag to the specified component, if the corresponding properties of this tag
handler instance were explicitly set.

Code Sample 2-39. The setProperties() Method
Vak
* Transfers the property values from this tag to the component.
*
* @param component the target component
*/
protected void setProperties(
UIComponent component)

{

super.setProperties(component);

// Behavioral properties
setValueBindingProperty(component, "converter", converter);
setBooleanProperty(component, "immediate", immediate);
setBooleanProperty(component, "required", required);
setValueBindingProperty(component, "validator", validator);
setStringProperty(component, "value", value);
setMethodBindingProperty(component, "valueChangelistener",
_valueChangelistener,
new Class[] { ValueChangeEvent.class });

// Renderer-specific attributes
setStringProperty(component, "title", title);

}

98

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

Any JSF tag handler subclasses that support additional properties on top of what is pro-
vided by the UIComponentTag handler must ensure that the base class setProperties() method
is still called—super.setProperties().

Code Sample 2-40 shows the release() method, which resets all the internal storage,
allowing this tag handler instance to be reused during JSP page execution.

Code Sample 2-40. The release() Method
Vioio
* Releases the internal state used by the tag.
*/
public void release()
{
_converter = null;
_immediate = null;
_required = null;
_validator = null;
_value = null;
_valueChangelistener = null;
_title = null;
}

The Tag Library Description

You have now defined the behavior of your ProInputDateTag handler class, so it is time to
register the name of the custom action and define some rules for how it can be used. A TLD
allows component providers to group custom actions to make up a JSF tag library. When
creating a tag library for JSF custom components, the TLD file defines one custom action per
Renderer. For the purposes of this chapter, the TLD, as shown in Code Sample 2-41, will define
just one custom action—<pro:inputDate>.

Code Sample 2-41. TLD

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
"http://java.sun.com/dtd/web-jsptaglibrary 1 2.dtd" >

<taglib>

<tlib-version>1.0</tlib-version>

<jsp-version>1.2</jsp-version>

<short-name>pro</short-name>

<uri>http://projsf.apress.com/tags</uri>

<description>
This tag library contains the JavaServer Faces component tag for the
ProJSF Input Date component.

</description>

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

The TLD must declare a tag library version, the JSP version that the library depends on, a
short name that will be used as the default namespace prefix for any custom actions defined in
this tag library (for example, pro), and finally a unique URI (http://projsf.apress.com/tags)
that will be used by application developers as the taglib directive.

For each custom action in the TLD, you need a <tag> element. Code Sample 2-42 shows
how the name of the custom action element is defined in the nested name element (for exam-
ple, <name>inputDate</name>), and the tag handler class is defined in the <tag-class> element.
The <body-content> element describes how this tag should be processed.

Code Sample 2-42. Custom Action

<tag>
<name>inputDate</name>
<tag-class>com.apress.projst.ch2.taglib.pro.ProInputDateTag</tag-class>
<body-content>JSP</body-content>
<description>
ProJSF Input Date component tag.
</description>

JSP 2.0 ${} EXPRESSIONS AND JSF 1.1 #{} EXPRESSIONS

JSP already has an expression language to provide dynamic values for tag attributes using the ${ }-syntax
expressions. These expressions are fully evaluated to literal values before the tag handler can observe them.
As a result, all information about the underlying data model is lost, preventing the JSF component from being
able to post back values to the data model.

Therefore, a different style of expression is required, the JSF #{ }-syntax. This syntax is ignored by the
JSP engine and passed as a String literal to the tag attribute. The JSF tag handler has an opportunity to
parse the expression and retain knowledge of the underlying data model for use during postback. If the
value is a literal, such as true, then the JSF tag handler converts this to a strongly typed literal value, such
as Boolean.TRUE, before storing it as the component attribute value. The <rtexprvalue>, or runtime
expression value, metadata is always set to false because JSP expression syntax is not supported by JSF
tag handlers, and this will cause the JSP runtime to enforce that requirement.

If the custom action has attributes, the attributes have to be defined with the <attribute>
element. For each attribute in the TLD, as shown in Code Sample 2-43, the <rtexprvalue>
element must be set to false, and the attribute class must be left unspecified, allowing it to
default to String.

Code Sample 2-43. UIComponent Attributes

<!-- UIComponent attributes -->
<attribute>
<name>id</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>

99

100 CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

The component identifier for this component. This value must be
unique within the closest parent component that is a naming
container.
</description>
</attribute>
<attribute>
<name>rendered</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
Flag indicating whether or not this component should be rendered
(during Render Response Phase), or processed on any subsequent
form submit.
</description>
</attribute>
<attribute>
<name>binding</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
The value-binding expression linking this component to a
property in a backing bean.
</description>
</attribute>

The previously listed tag attributes are inherited from the parent UIComponentTag han-
dler class, and they have to be declared in the TLD to be used with your renderer-specific
tag handler class. The tag attributes shown in Code Sample 2-44 are required to support the
behavioral UIInput attributes.

Code Sample 2-44. UIInput Attributes

<!-- UIInput attributes -->

<attribute>
<name>converter</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>

Converter instance registered with this component.

</description>

</attribute>

<attribute>
<name>immediate</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>

CHAPTER 2 ' DEFINING THE DATE FIELD COMPONENT

Flag indicating that this component's value must be
converted and validated immediately (that is, during
Apply Request Values phase), rather than waiting
until Process Validations phase.
</description>
</attribute>
<attribute>
<name>required</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
Flag indicating that the user is required to provide a submitted
value for this input component.
</description>
</attribute>
<attribute>
<name>validator</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
MethodBinding representing a validator method that will be called
during Process Validations to perform correctness checks on the
value of this component. The expression must evaluate to a public
method that takes FacesContext, UIComponent, and Object parameters,
with a return type of void.
</description>
</attribute>
<attribute>
<name>value</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
The current value of this component.
</description>
</attribute>
<attribute>
<name>valueChangelistener</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
MethodBinding representing a value change listener method that will be
notified when a new value has been set for this input component. The
expression must evaluate to a public method that takes a
ValueChangeEvent parameter, with a return type of void.
</description>
</attribute>

101

102 CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

Finally, in Code Sample 2-45, you define your ProInputDate renderer-specific attributes.

Code Sample 2-45. ProInputDate Attributes

<!-- ProInputDate attributes -->
<attribute>
<name>title</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
Advisory title information about markup elements generated
for this component.
</description>
</attribute>
</tag>
</taglib>

JSP 2.1 DEFERRED-VALUE AND DEFERRED-METHOD

JSF 1.2 now directly leverages JSP EL in JSP 2.1. JSP EL has native support for both immediate

${ }-syntax expressions and deferred #{ }-syntax expressions. A JSF 1.2 tag library can now leverage the
<deferred-value> syntax available in JSP 2.1 tag library descriptors, such as the following to indicate
that #{ }-syntax is supported by this JSP 2.1 tag attribute and that it defines the evaluation type to be
Boolean:

<deferred-value>
<type>java.lang.Boolean</type>
</deferred-value>

This will result in a ValueExpression being passed as a parameter to the JSP 2.1 tag handler setter
method for this attribute. You can also use the <deferred-method> syntax for method invocations, as fol-
lows, to indicate that #{ }-syntax is supported by this JSP 2.1 tag attribute and to define the signature of the
deferred method:

<deferred-method>
<method-signature>
void doAction(javax.faces.event.ActionEvent)
</method-signature>
</deferred-method>

This will result in a MethodExpression being passed as a parameter to the JSP 2.1 tag handler setter
method for this attribute.

This approach replaces the classic JSF 1.1 <rtexprvalue>false</rtexprvalue> and default
java.lang.String tag attribute type in JSP 2.0.

CHAPTER 2 © DEFINING THE DATE FIELD COMPONENT

Building an Application with the Input Date Component

To use the custom component in a JSP document, the application developer must use the
standard JSP taglib directive to declare the URI for your tag library. To identify the custom

action to be used within the tag library, the application developer needs to append the name-
space prefix. Note that the JSP page shown in Code Sample 2-46 is the same page described at

the beginning of this chapter.

Code Sample 2-46. JSF Document Using the <pro:inputDate> Tag

<?xml version = '1.0' encoding = 'windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2"
xmlns:pro="http://projsf.apress.com/tags"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html" >
<jsp:directive.page contentType="text/html"/>
<f:view>
<html>
<body>
<h:form>
<pro:inputDate id="dateField"
title="Date Field Component"
value="#{backingBean.date}" >
<f:convertDateTime pattern="dd MMMMM yyyy" />
</pro:inputDate>

</br>
<h:message for="dateField" />

</h:form>
</body>
</html>
</fiview>
</jsp:root>

Running this page will render the page shown in Figure 2-12 to the browser.

& ProJSF : ProlnputDate - Mozilla Firefox (=%
File Edit View Go Bookmarks Tools Help

Cﬂ B @ E’.} || http:ff127.0.0, 1:8988 fchapter 2-context-root/faces finputDate jspx IV]

Please enter a date with the pattern "d MMNMNMM yyyy"
26 January 2005 o

26 Januarv 2005

Daone

Figure 2-12. The date field component with an additional commandButton and an outputText field

103

104

CHAPTER 2 " DEFINING THE DATE FIELD COMPONENT

Summary

This chapter gave you a blueprint and an understanding of what is required to write a JSF
custom component. It covered topics including creating Renderers, creating renderer-specific
subclasses, using external resources, registering component objects, and creating JSP tag
handlers and TLDs. In later chapters, you will leverage this knowledge as the foundation for
building more advanced JSF components.

The structure of how to build components will remain the same throughout the book. First
you analyze the markup needed to create the intended behavior and user interface. Then you
create the client-specific Renderer with all attributes needed for your component. Optionally,
but recommended, you create the renderer-specific subclass that the application developer
can use to customize the component at runtime. Finally, you implement support for the
page description of choice—JSP. You should also now understand how to use ValueBinding
and MethodBinding and how to support these concepts in your own JSF tag handlers.

CHAPTER 3

Defining the Deck Component

One of the most important aspects of most nontrivial applications (especially UI type
apps) is the ability to respond to events that are generated by the various components of
the application, both in response to user interactions and other system components. . ..

—Terry Warren, SCOUG, 1999

This chapter expands on the blueprint for building components outlined in the previous
chapter. For this chapter, we will show how to create a component that can act as an accordion,
or deck, which is commonly used within applications and integrated development environ-
ments (IDEs) to show and hide information, such as information about selected files in a file
explorer or JSF components in a component palette. Figure 3-1 shows an expandable deck used
in Microsoft’s Windows Explorer.

O 8

File and Folder Tasks ¥

Other Places 2

I3 Pro J5F
Z My Pictures
§ My Computer
&3 My Network Places

Details 2

Pro JSF
File Folder

Date Modified: Monday,
November 07, 2005, 2:05PM

Figure 3-1. Expandable deck used in Microsoft Windows Explorer

A deck component has the benefit of being stackable and of being able to store more
information than the equivalent space in a traditional HTML page. From a component writer’s
point of view, this type of component introduces several key areas of component design, such
as handling events, rendering children, and loading external resources.

105

106

CHAPTER 3 " DEFINING THE DECK COMPONENT

Requirements for the Deck Component

The design of the deck component will allow a user to expose specific information that is cur-
rently hidden by clicking one of the displayed decks and exposing a set of items associated with
the clicked deck. These child items can be anything, including links, text, and even graphics.
The component should be intelligent enough to detect an already open deck and close it before
opening the one requested by the user. From an application developer’s point of view, the com-
ponent needs to be extensible, meaning the application developer can add as many decks as
needed and include any number of children within these decks. The application developer
should also be able to add any number of deck groups to a page.

The Deck Component

As you remember from the first chapter, the only reason for creating new behavioral super-
classes is if the behavior and the definition have not been introduced before. According to the
requirements in the previous section, the deck component should be able to selectively show
nested components or groups of components, based on the user selection, and only one
group will be shown at any time. To achieve this, you have to create a new Renderer to handle
the selective display and a new event type to handle the user selection with an accompanying
listener interface for that particular event type. Since the behavior of showing and hiding chil-
dren has not been introduced yet, we will cover two new behavioral superclasses to handle the
show-one-item behavior (see Table 2-1 in Chapter 2).

After completing this chapter, you should understand the JSF event model and know how
to create new behavioral superclasses and your own event type with a corresponding listener
interface. Figure 3-2 shows the 11 classes you will create in this chapter.

Java Interface

ShowListener Java Interface

ProShowCneDeckTag x EloaSouce
' .y
! |
ShowltemTag ShowAdapter !
LUIShowCne
ShowlListenerTag ShowEvent
HtmIShowOneDeckRenderer LUIShowltem ProShowCneDeck

Figure 3-2. Class diagram showing classes created in this chapter

CHAPTER 3 " DEFINING THE DECK COMPONENT

The classes are as follows:
» The ProShowOneDeckTag class represents the ProShowOneDeck component.
e The ShowItemTag class represents leaf nodes of the deck component.

e The ShowListenerTag class represents a custom action that the application developer
will use to register a ShowListener instance to a UIShowOne component.

* The HtmlShowOneDeckRenderer is the new custom Renderer, which is in charge of the
markup rendered to the client.

e The ShowListener is a Listener interface.
e The ShowAdapter supports adding a MethodBinding as a ShowListener.
¢ The ShowEvent is the custom event class.

e The UIShowItem is a behavioral superclass and represents each of the child components
to the UIShowOne component.

e The ShowSource class isolates the event listener management methods.

¢ The UIShowOne class is a behavioral superclass that acts as a top-level container,
controlling which one of its child components to display when activated.

* And finally, the ProShowOneDeck class is your renderer-specific subclass.

Designing the Deck Component Using a Blueprint

When you design a component that requires a new behavior or new functionality, it is wise to
start implementing this before creating the actual Renderer for this behavior, and as such, these
two steps precede the client-specific Renderer step in the blueprint, as shown in Table 3-1.

Table 3-1. Steps in the Blueprint for Creating a New JSF Component

Step Description

1 Creating a Ul prototype Create a prototype of the Ul and intended
behavior for your component using the
appropriate markup.

2 Creating events and listeners (Optional) Create custom events and listeners
in case your specific needs are not covered by
the JSF specification.

3 Creating a behavioral superclass (Optional) If the component behavior is not to
be found, create a new behavioral superclass
(for example, UIShowOne).

4 Creating a client-specific Renderer Create the Renderer you need that will write
out the client-side markup for your JSF com-
ponent.

5 Creating a renderer-specific subclass (Optional) Create a renderer-specific subclass.

Although this is an optional step, it is good
practice to implement it.

Continued

107

108

CHAPTER 3 " DEFINING THE DECK COMPONENT

Table 3-1. Continued

Step Description

6 Registering a UIComponent and Renderer Register your new UIComponent and Renderer
in the faces-config.xml file.

7 Creating a JSP tag handler and TLD This step is needed in case you are using JSP
as your default view handler. An alternative
solution is to use Facelets (http://facelets.
dev.java.net/).

As you can see, the blueprint has two additional steps: creating events and listeners and
creating a behavioral superclass. According to the blueprint, you still need to first implement
the component in the intended markup.

Step 1: Creating a UI Prototype

Let’s take a moment to reflect on what you want to achieve and create a prototype of the
intended markup needed for the client (in this case, a web browser). Remember, by doing so,
you will find out what elements the Renderer has to generate, what renderer-specific attributes
the application developer will need, and what behavior is expected to build an application
with the deck component.

Figure 3-3 shows the end result of the deck component implemented in HTML.

& Pro JSF : ProShowOneDeck Prototype - Mozilla Firefox (==
File Edit View Go Bookmarks Tools Help

G- 8 0 | [http://127.0.0.1:3988/chapter 3-context-root fprototype-ch3.html [V]

A

9

Pro JSE: Building Rich
Internet Components
ProEIB 3

Pro Apache Maven

Done

Figure 3-3. The deck component, implemented in HTML, showing the Java item expanded

Let’s first focus on the presentation of the prototype. As you can see in Figure 3-3, the
deck has three labels—Java, Open Source, and .NET. Each label represents an expandable
region, and in Figure 3-3 the Java region is currently expanded and shows its content. These
labels are containers, since they can hold more than just text (for example, a combination of

CHAPTER 3 " DEFINING THE DECK COMPONENT 109

images and text). Within the expanded Java region is a mix of plain text and links. Styles con-
trol the actual look and feel. Code Sample 3-1 shows the HTML needed to create the deck
component.

Code Sample 3-1. The Deck HTML Prototype Implementation

<html>
<head>
<title>Pro JSF : ProShowOneDeck Prototype</title>
<style type="text/css" >
.ProShowOne { ... }
.ProShowItem { ... }
.ProShowItemHeader { ... }
.ProShowItemContent { ... }
</style>
</head>
<body>
<div style="width:200px;" >
<div class="ProShowOne">
<div class="ProShowItem">
<div class="ProShowItemHeader"
onclick="alert('first')" »
<img src="resources/java_small.jpg"
alt="The Duke"
style="margin-right: 8px; vertical-align:bottom;" />
Java
</div>
<div class="ProShowItemContent">
<table>
<tbody>
<tr>
<td>

Pro JSF: Building Rich Internet Components

</td>
</tr>
<tr>
<td>Pro EJIB 3</td>
</tr>
<tr>
<td>Pro Apache Maven</td>
</tr>
</tbody>
</table>
</div>

110

CHAPTER 3 " DEFINING THE DECK COMPONENT

</divy
<div class="ProShowItem">
<div class="ProShowItemHeader"
onclick="alert('second")" >
Open Source
</div>
</divy
<div class="ProShowItem">
<div class="ProShowItemHeader"
onclick="alert('third"')">
NET
</div>
</divy
</div>
</div>
</body>
</html>

Asyou can see, <div ...>elements represent the label containers and their contents. The
reason for choosing <div> elements instead of anchor elements (<a href>) is so you can more
easily control the look and feel of the deck nodes. If you implemented this using anchor ele-
ments, you would have to deal with browser-specific behaviors to handle links, such as the
look of visited links, not visited links, and so on.

Apart from the obvious visual aspect, you do not need to identify which label the user
has activated, since only one node can be expanded at any time. In the prototype in Code
Sample 3-1, we have simulated this behavior by adding an alert (for example, onclick=
"alert('first')") to the <div> element representing the label of the expandable region.

By examining the HTML source in Code Sample 3-1, you can also see that you need to
expose attributes for four style classes—ProShowOne, ProShowItem, ProShowItemHeader, and
ProShowItemContent. Code Sample 3-2 show how to map some of the visible HTML attributes
to their corresponding UIComponent attributes.

Code Sample 3-2. Parameterized HTML for the showOneDeck Renderer

<div class=[showOne.styleClass]>
<div class=[showOne.itemStyleClass]>
<div class=[showOne.itemHeaderStyleClass]
onclick="alert([showItem.id])" >
<img src="resources/java_small.jpg"
alt="The Duke"
style="margin-right: 8px; vertical-align:bottom;" />
Java
</div>
<div class=[showOne.itemContentStyleClass]>
<table>
<tbody>

CHAPTER 3 " DEFINING THE DECK COMPONENT

<tr>
<td>

Pro JSF: Building Rich Internet Components

</td>
</tr>
<tr>
<td>Pro EJIB 3</td>
</tr>
<tr>
<td>Pro Apache Maven</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="[showOne.itemStyleClass]" >
class="[showOne.itemHeaderStyleClass]
onclick="alert([showItem.id])" >
Open Source
</div>
</div>
<div class="[showOne.itemStyleClass]" >
<div class="[showOne.itemHeaderStyleClass]
onclick="alert([showItem.id])" >
NET
</div>
</div>
</div>

Part of the design of the component is that it should allow the user to expand only one
item at a time. For this you need to first identify the item activated by the user; this takes place
with the alert() function attached to each item, and [showItem.id] illustrates the identifier.
In addition, you need a way to keep track of each item and to ensure that only one is expanded
at any time.

To achieve this, you need a parent container that can listen for the event identifying the
activated item and then expand it and close the previously opened item. The prototype uses
the <div class=[showOne.styleClass]> element as the logical parent container. This design of
having a logical container for multiple items is modeled after HtmlDataTable and UIColumn in
the JSF specification. The attributes in the prototype are associated with one of these compo-
nents (in other words, the parent container, showOne) or one of its children (showItem).

Itis important to note that although the prototype describes the user interface require-
ments, some attributes and functionality still might not be visible or make sense in the actual
prototype. For the HTML source in Code Sample 3-2, one attribute is not visible but still needed
by the implementation—showOne. showItemId. It will be used to set the default expanded item

111

112 CHAPTER 3 " DEFINING THE DECK COMPONENT

on the initial request. Additionally, you need to let application developers listen for events on
the component showOne. showListener and invoke application logic when an item has been
activated.

Before you start creating the deck component, take a sneak peak at the final result and
how it will be used in a JSP page, as shown in Code Sample 3-3.

Code Sample 3-3. Deck Component As It Would Be Used in a JSF JSP Document

<?xml version="1.0" encoding="UTF-8" ?>
<jsp:root ...>
<jsp:directive.page contentType="text/html" />
<f:view>

<pro:showOneDeck showItemId="first"
showListener="#{backingBean.doShow}" >
<pro:showItem id="first" >
<f:facet name="header" >
<h:panelGroup>
<h:graphicImage url="/resources/java_small.jpg"
alt="The Duke"
style="margin-right: 8px; vertical-align:bottom;" />
<h:outputText value="Java" />
</h:panelGroup>
</f:facet>
<h:panelGrid columns="1" >
<h:outputlLink value="http://www.apress.com" >
<h:outputText value="Pro JSF: Building Rich Internet Components" />
</h:outputLink>
<h:outputText value="Pro EJB 3" />
<h:outputText value="Pro Apache Maven" />
</h:panelGrid>
</pro:showItem>
<pro:showItem id="second" >
<f:facet name="header">
<h:outputText value="Open Source" />
</f:facet>
<h:panelGrid columns="1" >
<h:outputText value="Foundations of AJAX" />
<h:outputText value="Pro Apache Ant" />
<h:outputText value="Pro PHP Security" />
</h:panelGrid>
</pro:showItem>
<pro:showItem id="third" >
<f:facet name="header">

CHAPTER 3 " DEFINING THE DECK COMPONENT

<h:outputText value=".NET" />
</f:facet>

<h:panelGrid columns="1" >
<h:outputText value="Pro .NET Extreme Programming" />
<h:outputText value=".NET for Delphi Programmers" />
</h:panelGrid>
</pro:showItem>

<pro:showListener
type="com.apress.projsf.ch3.application.MyShowListener" />
</pro:showOneDeck>

</f:view>
</jsp:root>

The tags highlighted in bold represent the JSF components you will learn how to create
in this chapter. As you can see, the sample is a fairly simple application with one parent
component—<pro:showOneDeck ... >—that keeps track of which item is currently open and
which node is set to be expanded by default. In the page the parent component has three
children—<pro:showItem ... >. Each <pro:showItem ... > child component has its own
unique identifier (for example, first, second, and third). Each <pro:showItem ... >hasa
facet—<f:facet name="header">—associated with it representing the “header” of the click-
able area of the item (see Chapter 1 for more about facets).

Part of the deck component’s requirements is to allow application developers to use any
component to represent the actual clickable header, and as examples we have used regular
<h:outputText> and <h:panelGroup> components. Nested within each <pro:showItem ... >is
a set of children, which will be displayed when the user selects an item. When the user selects
any of the <pro:showItem ... > components, an event will be delivered to the event queue for
processing in the Invoke Application phase.

To be able to react to this event, a new listener—<pro:showListener ... />—listens for
the aforementioned event.

Step 2: Creating Events and Listeners

To be able to create the component, you need to understand two new behavioral superclasses—
UIShowOne and UIShowItem. The UIShowOne behavioral superclass keeps track of which node the
user has selected, and the UIShowItem acts as a clickable parent container that will either show
or hide its children. For these new UIComponents, you also need a new event type, ShowEvent,
with a corresponding event listener interface, ShowListener, to notify application developers
and to attach application code to the component. The new event instance needs to keep track
of which item the user has selected. On top of this, you need to create a new Renderer to han-
dle the selective rendering with accompanying renderer-specific subclasses and JSP tag handlers.

Figure 3-4 shows the classes needed for the event and listener implementation that you
will learn how to create in this chapter.

113

114 CHAPTER 3 " DEFINING THE DECK COMPONENT

= Java Interface
ShowlListener

+void processShow (ShowEvent event)

[+
|

I
= ShowAdapter

+ Class[] SIGNATURE
- MethodBinding _showMethod
- boolean _transient = FacesEvent

+ ShowAdapter (MethodBinding showMethod) - Phaseld phaszld

+void processShow (ShowEvent event) + FacesEvent (UlComponent)
+ Object saveState (FacesContext context) + UIComponent getComponent ()
+void restoreState (FacesContext context, Object abject) + Phaseld getPhasald ()
+ boolean isTransient () +void setPhaseld (Phaseld)
+ void setTransient (hoolean isTransient) T

] ShowEvent

- String _oldShowltemld
- String _newShowltemld

+ ShowEvent (UlComponent source, String oldShowltemld, String newShowltem|d)
+ String getOldShowltemld ()

+ String getNewShowltemld ()

+ boolean isAppropriateLlistener (FacesListener listener)

+ void processListener (FacesListener listener)

Figure 3-4. Class diagram showing all classes needed for the event and listener implementation

Event Handling Overview

This section will cover a few topics regarding the JSF event model before you see the code for
the event and listener implementation for the deck component.

If you have experience developing applications with the Swing toolkit or Oracle’s ADF
Swing framework, you will notice that the event model implemented by JSF is similar. In fact,
JSF implements a model for event notification and listener registration based on the naming
convention in the JavaBeans specification, version 1.0.1. Essentially, this means an application
developer can write application code and register it to listen for a specific event. A UIComponent
delivers the event itself (for example, when a user clicks a button, which is similar to the
approach taken in other UI toolkits). Application developers will immediately recognize the
benefits of such a model, since it has proven to be easy to maintain and develop. It allows appli-
cation developers to write application code for specific events in well-defined blocks of code
like the ones used in Microsoft Visual Basic.

The main difference between the Swing framework and JSF is that Swing operates in a
stateful mode and is always listening for events fired by the client; by contrast, JSF works in a
stateless environment. With no permanent connection between the client and the backend
server, JSF cannot always listen to events and has to rely on postbacks to be notified about any
changes on the client that might cause an event to be delivered. This limitation of HTTP has

CHAPTER 3 ' DEFINING THE DECK COMPONENT

forced JSF to implement a strict event model to handle client-generated events, based on the
JSF request-processing lifecycle described in Chapter 1.

During postback, all six phases of the JSF request lifecycle are called (unless somewhere
in the process renderResponse() is called, in which case the lifecycle will directly jump to the
Render Response phase). When the Restore View phase is executed, it restores any state avail-
able from the previous request. During the Apply Request Values phase (see Figure 3-5), the
submitted value from the request parameters is established and added to each input compo-
nent, and any events are queued.

Application Scope ART1

Lifecycle

R t
Vales
*

FacesServiet

) o Request Scope

FacesContext D
____________ UlViewRoot

n =
| NI |
ProShowOneDeck

P - S~
-- - S~

|ProShowIie;11 | |ProSh0\/NItem | [ProShowltem |

Figure 3-5. Applying new values passed on the request to the components

By default, at the end of each one of these phases, the appropriate UIViewRoot lifecycle
management method (processDecodes (), processValidators(), processUpdates(), and
processApplication()) will loop over events queued in the phase and notify any registered
listeners on the component that queued the event (for example, a ProShowOneDeck). Applica-
tion logic in these listeners can also queue events, and the UIViewRoot lifecycle management
method will continue looping through the queued list of events until it is empty before con-
tinuing to the next phase.

Note Itis important to understand that events can be queued and delivered during any of the following
request lifecycle phases: Apply Request Values, Process Validations, Update Model Values, and Invoke
Application.

115

116

CHAPTER 3 " DEFINING THE DECK COMPONENT

Events

Application developers can use event instances to be notified about changes to the UI or
underlying model. The JSF specification defines two default event types—javax.faces.
event.ActionEvent and javax.faces.event.ValueChangeEvent. The ActionEvent is usually
delivered when a user activates a UICommand component, and the ValueChangeEvent indicates
that a value has changed in any of the UIInput components.

The FacesEvent Base Class

The javax.faces.event.FacesEvent class is the abstract base class for Ul and application
events within JSF that can be delivered by UIComponents. The FacesEvent constructor takes
one argument—the UIComponent event source instance, which identifies the component from
which the event will be broadcast to interested listeners. All component event classes within
JSF—default or custom—must extend the FacesEvent class in order to be supported by the
request-processing lifecycle. The FacesEvent extends java.util.EventObject, which is the
base class for all events in the Java Standard Edition. Table 3-2 describes the structure of the
FacesEvent base class.

Table 3-2. Method Summary of the FacesEvent Base Class*

Method Return Type Description

getComponent () javax.faces.component.UIComponent Returns the source UIComponent
instance that delivered this event

getPhaseId() javax.faces.event.Phaseld Returns the identifier—phaseId—
for which phase this event is
going to be delivered

setPhaseld void Sets the PhaseId during which
this event will be delivered

isApproriatelistener() boolean Checks whether this listener is
of a listener instance that this
event supports

processListener() void Broadcasts this event to the
specified listener

queue() void Convenience method that queues

this event for broadcast at the
end of the current request-
processing lifecycle phase

*Source: The API Java documentation for the JSF specification

The phaseld Property

By default events are delivered in the phase in which they were queued, but component
authors can decide to have events delivered at any of the JSF request-processing lifecycle
phases by setting the phaseId property of the FacesEvent class, which has a data type of
Phaseld. This data type is a type-safe enumeration and stores a value representing which
request lifecycle phase should deliver the event. Table 3-3 shows the valid values.

CHAPTER 3 " DEFINING THE DECK COMPONENT

Table 3-3. Valid Phaseld Values

Phaseld value Description

PhaseId.ANY PHASE This is the default value if the component author has not
set anything. The event will be delivered in the phase in
which it was queued.

PhaseId.APPLY REQUEST VALUES Delivers the event at the end of the Apply Request Values
phase.

PhaseId.PROCESS VALIDATIONS Delivers the event at the end of the Process Validations
phase.

PhaseId.UPDATE MODEL VALUES Delivers the event at the end of the Update Model Values
phase.

PhaseId.INVOKE APPLICATION Delivers the event at the end of the Invoke Application
phase.

PhaseId.RENDER RESPONSE Delivers the event at the end of the Render Response
phase.

At the end of each phase, the UIViewRoot component will loop over all events in the
queue, starting with events that have phaseId set to ANY_PHASE and thereafter with events that
have phaselId set to that particular phase.

Broadcast Events

As described previously, at the end of each phase, the UIViewRoot component will loop over
the list of queued events, and it will “broadcast” events to any listeners registered for that par-
ticular event. In practice, it means the UIViewRoot will call a method—broadcast()—on the
UIComponent instance delivering the event, as shown in Code Sample 3-4.

Code Sample 3-4. The broadcast() Method Signature

public abstract void broadcast(
FacesEvent event) throws AbortProcessingException;

This method notifies any listeners registered for a specific event type, and it takes one
argument of type FacesEvent.

Event Subclass

In Chapter 2, the second step in the blueprint was to create a client-specific Renderer. In this
chapter, you need to extend the custom component blueprint by adding the creation of new
event types and behavioral superclasses.

Based on the analysis of the HTML source, you need to be able to handle client-side user
events and keep track of what has been expanded and what the user wants to expand next.
Before you create the new behavioral superclass, you need to define a new event class and a
new listener interface that can be used to execute application code specific to this new type of
user events. You also have to decide on a name for the new event class; the convention used in
the JavaBeans specification is to prefix the name with the actual event behavior, which in this
case is to show something (Show) followed by the name Event (for example, ShowEvent). Code
Sample 3-5 shows the new event class.

117

118

CHAPTER 3 " DEFINING THE DECK COMPONENT

CGode Sample 3-5. The ShowEvent Subclass

package com.apress.projsf.ch3.event;

import javax.faces.component.UIComponent;
import javax.faces.event.FacesEvent;
import javax.faces.event.FaceslListener;
import javax.faces.event.Phaseld;

/**

* The ShowEvent event.

*/

public class ShowEvent extends FacesEvent

{

/**

* Creates a new ShowEvent.
*

* @param source the source of the event
* @param oldShowItemId the previously showing item identifier
* @param newShowItemId the currently showing item identifier

*/

public ShowEvent(
UIComponent source,
String oldShowItemId,
String newShowItemId)

{
super(source);
setPhaseId(Phaseld.INVOKE APPLICATION);
_oldShowItemId = oldShowItemId;
_newShowItemId = newShowItemId;

}

public String get0ldShowItemId()

{
return _oldShowItemId;

}

public String getNewShowItemId()
{

return _newShowItemId;

}

public boolean isAppropriatelListener(
FacesListener listener)

{

return (listener instanceof Showlistener);

}

CHAPTER 3 " DEFINING THE DECK COMPONENT

public void processListener(
FacesListener listener)

{

((ShowListener) listener).processShow(this);

}

private String oldShowItemId;
private String newShowItemId;

When you introduce a new event class, you need to make sure it extends javax.faces.
event.FacesEvent so that the event can participate in the JSF request-processing lifecycle.

The FacesEvent base class constructor takes one argument—the source of the UIComponent
instance delivering the event. This means the new event class—ShowEvent—has to take the
UIComponent instance source as an argument and pass it on to its superclass—super (source);.
If not set, the default value for phaseld is PhaseId.ANY_ PHASE, which means the event will be
delivered in the phase in which it was queued. To ensure that the deck component’s ShowEvent
event is not delivered before the entire component hierarchy has been processed, you have
to set phaseId to PhaseId.INVOKE APPLICATION. This is important since the deck node needs to
know about its children and allow them to be updated and validated in order to render properly.

To make life easier on application developers using the ShowEvent class, you can also add
two properties—oldShowItemId and newShowItemId—with corresponding getter methods,
which are not required by the FacesEvent base class. These accessors are there for conven-
ience so that application developers can find out which item is collapsed and which item is
currently expanded.

You also override two methods in the FacesEvent base class—isApproriatelistener()
and processlListener(). The isApproriatelistener() method returns true if the listener is an
instance of ShowListener (more about this listener in a second). The isAppropriatelistener()
method allows component writers to verify that the signature of the listener associated with
the component is compatible with the event being broadcast. If the listener is compatible, the
processListener() method is called during UIComponent.broadcast() to deliver this event to
the ShowListener instance’s processShow() method, implemented by the application developer.

Listeners

For an application to react to events raised by the user, JSF supports a Listener. For each
event type (for example, ValueChangeEvent) defined by either the JSF implementation or

a custom UIComponent, there has to be a corresponding Listener interface (for example,
ValueChangelistener). The Listener implemented by the application developer implements
one or more of these Listener interfaces, along with the event handling method(s) specified
by those interfaces, which will be called during event broadcast.

The FacesListener Interface

The javax.faces.event.FacesListener interface (extends java.util.EventListener) is the
base interface for all default and custom listener interfaces in JSE The FacesListener interface
(extends java.util.EventListener) is a marker interface and is used only for type safety.
Commonly, most implementations of this listener interface take a single argument of the event

119

120

CHAPTER 3 " DEFINING THE DECK COMPONENT

type for which the listener is being created (for example, public void processShow(ShowEvent
event);).

Event Listener Interface

Any custom event type that extends the FacesEvent base class has to provide a Listener inter-
face for that event type, which makes sense since there is no meaning in delivering an event
unless there is a way to act on it.

Code Sample 3-6 extends the FacesListener interface and creates a listener interface—
ShowListener—that adds the processShow() method that takes a ShowEvent instance as an
argument. As you can see, this follows the same naming convention used for the ShowEvent
class with a prefix of the intended event name and a suffix of Listener to indicate the purpose
of this class.

Code Sample 3-6. The ShowListener Interface

package com.apress.projsf.ch3.event;

import javax.faces.event.FaceslListener;

/**
* The ShowListener listener.
*/
public interface ShowlListener extends FaceslListener
{
Vak
* Processes a ShowEvent.
*
* @param event the show event
*/
public void processShow(
ShowEvent event);

Event Listener Adapter

As described in Chapter 2, the UIInput component delivers a ValueChangeEvent to all registered
event listeners. In addition, the ValueChangeEvent is also delivered to the backing bean via a
MethodBinding stored in the UIInput’s valueChangeListener attribute. The valueChangelistener
attribute is exposed as a tag attribute on the standard input tags, such as <h:inputText
valueChangelistener="#{backingBean.doValueChange}" >.In]SF 1.2, the valueChangelListener
attribute is deprecated on the UIInput component but is still present on the JSP tag as a

JSP 2.1 MethodExpression, so an adapter class is needed to adapt the MethodExpression into
aValueChangelistener instance. This allows the backing bean to still be called when a
ValueChangeEvent occurs but without needing a separate valueChangelistener attribute

on the UIInput component. This simplifies and clarifies component development by more
closely following the JavaBeans specification while preserving MethodBinding support for
application development.

CHAPTER 3 " DEFINING THE DECK COMPONENT

We will show how to follow this design pattern to adapt a JSF 1.1 MethodBinding into a
ShowListener instance. Code Sample 3-7 shows the implementation of this design pattern,
ShowAdapter

Code Sample 3-7. The ShowAdapter Class

package com.apress.projsf.ch3.event;

import javax.faces.component.StateHolder;
import javax.faces.component.UIComponentBase;
import javax.faces.context.FacesContext;
import javax.faces.el.MethodBinding;

Vak
* The ShowAdapter calls a MethodBinding with the same signature
* as the <code>processShow</code> method.

*/
public class ShowAdapter implements ShowlListener,
StateHolder
{
/¥*

* The MethodBinding signature for Showlistener methods.
*/
public static Class[] SIGNATURE = new Class[] { ShowEvent.class };

J¥*
* Creates a new ShowAdapter.
*
* @param showMethod the MethodBinding to adapt
*/
public ShowAdapter(
MethodBinding showMethod)
{
_showMethod = showMethod;

}

/¥*
* Processes a ShowEvent.
*
* @param event the show event
*/
public void processShow(
ShowEvent event)
{
FacesContext context = FacesContext.getCurrentInstance();
_showMethod. invoke(context, new Object[]{event});

}

121

122 CHAPTER 3 " DEFINING THE DECK COMPONENT

/%

* Saves the internal state of this ShowAdapter.
*

* @param context the Faces context
*

* @return the saved state
*/

public Object saveState(
FacesContext context)

{
}

return UIComponentBase.saveAttachedState(context, _showMethod);

Voo
* Restores the internal state of this ShowAdapter.
*
* @param context the Faces context
* @param object the state to restore
*/
public void restoreState(
FacesContext context,

Object object)
{
_showMethod = (MethodBinding)
UIComponentBase.restoreAttachedState(context, object);
}
/%%

* Returns true if this ShowAdapter is transient and should

* not be state saved, otherwise false.
*

* @return the value of transient

*/
public boolean isTransient()
{
return transient;
}
/%

* Indicates whether this ShowAdapter is transient and should
* not be state saved.
*
* @param isTransient the new value for transient
*/
public void setTransient(
boolean isTransient)

{

CHAPTER 3 " DEFINING THE DECK COMPONENT

_transient = isTransient;

}

private MethodBinding _showMethod;

private boolean _transient;
}

The ShowAdapter implements the processShow method, calling the specified MethodBinding
with the ShowEvent parameter. It is important that the MethodBinding passed to the ShowAdapter
constructor matches the signature of the processShow method. Therefore, the ProShowOneDeckTag
uses the SIGNATURE constant to create the MethodBinding with the correct signature.

It is important to implement the StateHolder interface on this adapter class so that the
state can be properly saved and restored when an instance is registered as a listener on a com-
ponent in the component hierarchy.

You must provide an implementation of the saveState() method to store to the
MethodBinding state as the UIShowAdapter state, so you need to use a static method from
UIComponentBase called saveAttachedState(). This convenience method does the work of
state saving attached objects that may or may not implement the StateHolder interface.

You must also provide an implementation of the restoreState() method that takes the
FacesContext and the state object as arguments. Note that using the saveAttachedState()
method to save the MethodBinding state implies that you use the restoreAttachedState() method
to restore the MethodBinding state.

Event Delivery in Practice

Let’s use the same page as in Code Sample 3-3 to step through the event delivery mechanism
provided by JSE We will now show how to use the same code to dive into the JSF event and lis-
tener model. The page contains the source in Code Sample 3-8.

Code Sample 3-8. Page Source with the showListener Tag

<h:form>

<pro:showOneDeck showItemId="first"
showListener="#{backingBean.doShow}" >
<pro:showItem id="first" >

</pro:showItem>

<pro:showListener
type="com.apress.projsf.ch3.application.MyShowListener" />
</pro:showOneDeck>

</h:form>

The <pro:showOneDeck ...> contains one attribute that is associated with the ShowEvent
event type—ShowListener. This sample sets the <pro:showOneDeck> attribute showListener to
#{backingBean.doShow}. This is a common approach of assigning a listener to a component via
an attribute. The MethodBinding is pointing to a method—doShow()—that follows the signature

123

124

CHAPTER 3 " DEFINING THE DECK COMPONENT

of the ShowListener interface but without directly implementing it. Code Sample 3-9 shows
the source for the ShowlListener method—doShow().

Code Sample 3-9. A ShowListener Method—doShow()

package com.apress.projsf.ch3.application;

import com.apress.projsf.ch3.event.ShowEvent;

Vak

* ShowOneDeckBean is a backing bean for the showOneDeck.jspx document.
*/

public class ShowOneDeckBean

{

Vi
* The ShowlListener method binding.
*

* @param event the show event

*/

public void doShow(

ShowEvent event)

{
String oldShowItemId = event.getOldShowItemId();
String newShowItemId = event.getNewShowItemId();
System.out.println("BackingBean [oldShowItemId=" + oldShowItemId + "," +
"newShowItemId=" + newShowItemId + "]");
}
}

This way of implementing a listener is provided as a convenience for application develop-
ers. However, it is also limiting in that the showListener attribute on the <pro:showOneDeck />
takes only one method binding; by contrast, associating a listener using a specific listener
tag—such as <pro:showlListener ...>—allows application developers to associate as many
listeners as needed (for example, to log information about the event) and to associate one to
actually process the event. From an application developer’s point of view, an implementation
of the ShowListener could look something like Code Sample 3-10.

Code Sample 3-10. Implementation of the ShowListener Interface

package com.apress.projsf.ch3.application;

import com.apress.projsf.ch3.event.ShowEvent;
import com.apress.projsf.ch3.event.ShowListener;

public class MyShowListener implements ShowListener

{
public void processShow(
ShowEvent event)

CHAPTER 3 ' DEFINING THE DECK COMPONENT

{

String oldShowItemId = event.getOldShowItemId();
String newShowItemId = event.getNewShowItemId();
System.out.println("MyShowListener " +

"[oldShowItemId=" + oldShowItemId + "," +

"newShowItemId=" + newShowItemId + "]");

This listener—MyShowListener—implements the ShowListener interface and takes an
instance of ShowEvent as an argument, and it gets the IDs of the new and old items used in
the deck component from the event instance and prints them to the system log window.

Event Handling in the JSF Lifecycle

When a user interacts with the deck component (for example, expanding an item), a request
is sent to the server with information about the action performed. By now you know that the
first phase, Restore View, will restore the component hierarchy on postback. The second phase
is the interesting phase—the Apply Request Values phase (see Figure 3-6).

Application Scope | ARTI

Lifecycle

Request
Valus

FacesServiet

o S Request Scope

UlViewRoot

ProShowOneDeck

FacesContext

| renderResponse() |
L

-——- - =

|ProShowI;e;n | |ProSho;vItem | [ProShowltem |

Figure 3-6. Event handling in the Apply Request Values phase

In this phase, the incoming request parameters are decoded and mapped to their counter-
part UIComponent in the component hierarchy. When the Renderer for a component discovers
that the user has triggered an event, the component’s Renderer creates an instance of the corre-
sponding FacesEvent subclass and queues the event to the source component.

125

126

CHAPTER 3 " DEFINING THE DECK COMPONENT

For example, when the Renderer for the UIShowOne component discovers that the user has
activated, or clicked, the header of an item in the rendered markup, the UIShowOne’s Renderer
creates an instance of ShowEvent, passing the source UIShowOne component instance to the
constructor, and calls the queue () method on the newly created event instance. This causes
the ShowEvent instance to be stored in the event queue by the UIViewRoot until it is delivered
during the Invoke Application phase (see Figure 3-7).

Note If no Renderer is associated with the UIComponent, it is the responsibility of the component’s
decode () method to queue the event, usually targeting the Invoke Application phase for delivery.

Application Scope | ART1

Lifecycle

R t
Values

FacesServlet

) o Request Scope

FacesContext “SA
____________ UlviewRoot

-

1
L GET D
ProShowOneDeck

- S~
- - S~

|ProShowI;e;n | |ProSho;vItem | [ProShowitem |

Figure 3-7. Event handling in the application

After you have completed queuing any events delivered with this request, and all request
values have been applied to their UIComponents, it is time to broadcast and process events that
have phaseld set to the default value (PhaseId.ANY PHASE) or have phaseld set explicitly for this
phase (PhaseId.APPLY REQUEST VALUES)—the Apply Request Values phase. If there are events
to deliver in this phase, the processDecodes () method on the UIViewRoot is called first. This
method takes all queued events and broadcasts to each component in the component hierar-
chy. In the application, the only event fired during this request is the ShowEvent delivered by
the UIShowOne component Renderer.

The UIShowOne component has the phase identifier set to PhaseId.INVOKE APPLICATION,
which indicates to the request-processing lifecycle that this event must be delivered in the
Invoke Application phase. In this phase, the processApplication() method on the UIViewRoot is
called first. This method broadcasts any events that have been queued for the Invoke Application

CHAPTER 3 ' DEFINING THE DECK COMPONENT

phase of the request-processing lifecycle by calling the UIShowOne . broadcast (ShowEvent)
method.

If the UIShowOne has listeners attached when a ShowEvent is broadcast, each registered
ShowListener is called in turn to deliver the event. A ShowAdapter may be registered as a lis-
tener to execute a method binding (for example, #{backingBean.doShow}) that references a
public method with a void return type and a single parameter of type ShowEvent.

Step 3: Creating a Behavioral Superclass

You are now done with the Event and Listener implementation, so it is time to introduce the
two new behavioral superclasses—UIShowOne and UIShowItem. At the moment you decide you
need additional behavioral superclasses, you also need to decide what naming convention to
use for these new classes. The convention used by the JSF specification is to prefix any top-
level behavioral component with UI, followed by the actual behavior (for example, UIInput).
Internal components, such as UISelectItem, that are useful only inside a particular parent
component often use part of their parent component’s name and the suffix Item to indicate
they are not a top-level behavioral component.

During prototyping, it was decided that the deck component needs two new UIComponents.
The first new component acts as a top-level container, controlling which one of its child com-
ponents to display when activated. Following the naming conventions, this is called UIShowOne.
The second component represents each of the child components that are displayed in col-
lapsed form when inactive and in expanded form when activated. Following the naming
conventions, this is called UIShowItem.

You will now look at the UIShowOne component implementation; Figure 3-8 shows the
classes you will create for the UIShowOne component implementation.

=] UIShowOne Java Interface

+ String COMPOMENT TPE ShowSource

+ String COMPOMENT FAMILY

- String _showhemld + void setShowListener (MethodBinding showMethod)
- MethodBinding _showMethod + MethodBinding getShowListener [)

+ voicl addShowListener (ShowlListener listener)
+ LIShowOne () + voidl removeShowlistener (ShowListener listener)
+ String getFamily () + ShowlListener[] getShowListeners ()
+ void setShowttemld (String showltemld)

+ void setShowListener (MethodBinding showMethod)

+ MethodBinding getShowlistener ()

+ void addShowlListener (ShowListener listener)

+ void removeShowlListener (ShowListener listepery) @ r-—-——--------—-—-—-— !
+ ShowListener]] getShowListeners ()

+ void broadcast (FacesEvent event)

+ Object saveState (FacesContext context)

+ void restoreState (FacesCortext context, Object state)

+ void processDecodes (FacesContext context)

+ String getShowttemld () .LI\
I
|
I

= ProShowOneDeck

+ String COMPOMENT TYPE
+ String RENDERER TYPE
- String _styleClass

+ ProShowOneDeck ()

+ void setStyleClass (String styleClass)

+ String getStyleClass ()

+ Object saveState (FacesContext context)

+ void restoreState (FacesContext context, Object state)

Figure 3-8. Class diagram showing the UIShowOne implementation

127

128 CHAPTER 3 " DEFINING THE DECK COMPONENT

The classes are as follows:
e The UIShowOne class is the behavioral superclass.
e The ProShowOneDeck class is the client-specific subclass.

¢ And the ShowSource class isolates the event listener management methods.

Tip Several good resources are available in the JSF community; in particular, organizations such
as Apache MyFaces (http://myfaces.apache.org/) and community sites such as JSF Central
(http://jsfcentral.com/) are invaluable sources of information.

The ShowSource Interface

In case a component writer would like to create a component that uses ShowEvent and
ShowListener (for example, maybe for a UIShowMany component), you should follow best
practices by isolating the event listener management methods into an interface. The naming
convention for this interface is based on the event and listener names, with a Source suffix. In
this case, the listener management interface is called ShowSource, as shown in Code Sample 3-11.

Code Sample 3-11. The ShowSource Interface

import com.apress.projsf.ch3.event.ShowListener;

import javax.faces.el.MethodBinding;

/**
* A ShowSource is the source of ShowEvents.
*/
public interface ShowSource
{
/**

* Adds a ShowListener to this ShowSource component.
%

* @param listener the show listener to be added
*/
public void addShowListener(

ShowListener listener);

/**

* Removes a ShowListener to this ShowSource component.
*

* @param listener the show listener to be removed
*/

CHAPTER 3 " DEFINING THE DECK COMPONENT

public void removeShowListener(
ShowListener listener);

Vil
* Returns all ShowListeners for this ShowSource component.
*
* @return the show listener array
*/
public ShowListener[] getShowListeners();
}

The ShowSource interface will make sure you follow the standard JavaBeans design pat-
tern for EventListener registration—add<ListenerType>(<ListenerType> listener) and
remove<ListenerType>(<ListenerType> listener)—to allow application developers to program-
matically add and remove listeners from any behavioral component that needs to deliver
ShowEvents. The last method—public ShowListener[] getShowlListeners();—is added so that
anyone who might have interest in knowing which listeners are attached to this component can
find out (for example, via an IDE).

The UIShowOne Behavioral Superclass

The UIShowOne component is a behavioral superclass, and it defines the contract for how an appli-
cation interacts with the component or any component extending this superclass. It is important

to understand that behavioral UIComponent subclasses, such as UISelectOne, do not define any-

thing that is renderer-specific, so they can be reused for many different client technologies.

As you remember from Chapter 1, the component family returned by the getFamily()
method is a string that represents the component’s behavior and is used to select a Renderer
for the particular UIComponent. The component type returned by the getComponentType()
method is a string that is used by the Application object as an identifier for the UIComponent
subclass (for example, UIShowOne). Following the naming convention from the previous chap-
ters, the component family and component type are both called com.apress.projsf.ShowOne.
Code Sample 3-12 introduces the first behavioral superclass—UIShowOne.

Code Sample 3-12. Extending the UIComponentBase Class

import java.util.Iterator;
import java.util.list;

import javax.faces.component.NamingContainer;
import javax.faces.component.UIComponentBase;
import javax.faces.context.FacesContext;

import javax.faces.el.MethodBinding;

import javax.faces.el.ValueBinding;

import javax.faces.event.AbortProcessingException;
import javax.faces.event.FacesEvent;

import com.apress.projsf.ch3.event.ShowEvent;
import com.apress.projsf.ch3.event.ShowlListener;

129

130

CHAPTER 3 " DEFINING THE DECK COMPONENT

/%K

* The UIShowOne behavioral component.
*/

public class UIShowOne extends UIComponentBase

{

implements ShowSource

Vak
* The component type for this component.

*/

public static final String COMPONENT_TYPE = "com.apress.projsf.ShowOne";

/¥
* The component family for this component.

*/

public static final String COMPONENT_FAMILY = "com.apress.projsf.ShowOne";

Vil
* Creates a new UIShowOne.
*/

public UIShowOne()

{
}

/%

* Returns the component family for this component.
*

* @return the component family
*/
public String getFamily()

{
return COMPONENT FAMILY;

}

The UIComponent and UIComponentBase classes are the foundation of all JSF components,

and they define the behavioral contract and state information for all components. The
UIComponentBase class (javax.faces.component.UIComponentBase) is a convenience subclass
that implements almost all methods of the UIComponent class. The UIShowOne class extends the
UIComponentBase class, which is recommended since it will protect the UIComponent subclass—
UIShowOne—from any changes to the signature of the UIComponent implementation that might
occur in the future. The ShowSource interface is implemented to make sure you comply with
the rules for which custom listeners can be attached to the component.

Lastly, you set two constants for the UIShowOne component, one for the component family

and one for the component type.

Note You can find more information about component family and component type in Chapter 1.

CHAPTER 3 " DEFINING THE DECK COMPONENT

Next, add bean properties to handle access to the behavioral attribute, showItemId, as
shown in Code Sample 3-13. Remember that the requirement for this component is to show
one item at a time.

Code Sample 3-13. Accessor and Mutator for the showItemId Behavioral Attributes
Vak
* Sets the show item child id to show.
*
* @param showItemId the new show item child id to show.
*/
public void setShowItemId(
String showItemId)
{
_showItemId = showItemId;

}

*x
/* Returns the show item child id to show.
*
* @return the show item child id to show
*
puglic String getShowItemId()
{ if (_showItemId != null)
return _showItemld;

ValueBinding binding = getValueBinding("showItemId");

if (binding != null)

{
FacesContext context = FacesContext.getCurrentInstance();
return (String)binding.getValue(context);

}

return null;

The UIShowOne component is the parent container that will control which items to display.
The showItemId bean property will set the new item selected by the user (or set the default
identifier at the initial request) and get the showItemId for the currently showing item.

Handling of Associated Listeners

Part of the implementation of the UIShowOne component is to provide a ShowEvent that will be
delivered as a result of a user selecting an item in the deck component. Part of the contract you
have with the ShowSource interface is to implement methods to allow programmatic access to
add and remove listeners to the UIShowOne component, as shown in Code Sample 3-14.

131

132

CHAPTER 3 " DEFINING THE DECK COMPONENT

Code Sample 3-14. Implementing the ShowSource Interface
/**

* Adds a ShowListener to this UIShowOne component.
ES

* @param listener the show listener to be added
*/
public void addShowListener(

ShowListener listener)

{

addFaceslListener(listener);

}

Vo
* Removes a ShowListener to this UIShowOne component.
*

* @param listener the show listener to be removed
*/
public void removeShowlListener(

ShowListener listener)

{

removeFaceslListener(listener);

}

*ok
i Returns all ShowListeners for this UIShowOne component.

*

* @return the show listener array

*

p:blic ShowListener[] getShowListeners()

{ return (ShowlListener[])getFacesListeners(ShowlListener.class);

}

Later in this chapter (see the section “The ShowListenerTag Class”), we will show how to
build a ShowListener tag handler using the addShowListener () method, which you can use to
associate a listener to the deck component or to any custom component that implements the
ShowSource interface.

State Saving

By now you should know that JSF provides facilities to store the state of components used by
application developers. You have two alternatives for storing the state of a view—doing it on the
client side and doing it on the server side. The server-side implementation leverages the JSP and
Servlet specifications and is managed by a class called StateManager. The ResponseStateManager
class, which is part of a RenderKit, manages the client-side state saving.

CHAPTER 3 " DEFINING THE DECK COMPONENT 133

The StateManager saves and restores state for a particular view (hierarchy of UIComponents)
between requests on the server, as shown in Code Sample 3-15. The UIComponent (for exam-
ple, UIShowOne) controls which internal state to save, so the component writer has some work
to do.

Code Sample 3-15. Managing State Saving

public Object saveState(
FacesContext context)

{
Object values[] = new Object[2];
values[0] = super.saveState(context);
values[1] = _showItemId;

return values;

}

public void restoreState(
FacesContext context,
Object state)

{
Object values[] = (Object[])state;
super.restoreState(context, values[0]);
_showItemId = (String)values[1];

}

Since you are extending the UIComponentBase class, you need to manage the state of the
behavioral attributes, and you need to make sure any state for the base component is stored.

Processing Decodes

From implementing the ProInputDate component (see Chapter 2), you should have learned
that during the Apply Request Values phase the processDecodes () method will be called on the
UIViewRoot component. The processDecodes() method, on the UIViewRoot, is responsible for
recursively calling processDecodes () on each UIComponent in the component hierarchy. As
such, you need to make sure you have implemented this method in the component to make
sure you can handle any request parameters passed to the UIShowOne component, as shown in
Code Sample 3-16.

Code Sample 3-16. Processing Decodes

public void processDecodes(
FacesContext context)

{
if (context == null)
throw new NullPointerException();

134

CHAPTER 3 " DEFINING THE DECK COMPONENT

if (!isRendered())
return;

String showItemId = getShowItemId();
if (showItemId != null 8& getChildCount() > 0)
{
List children = getChildren();
for (Iterator iter = children.iterator(); iter.hasNext();)
{
UIShowItem showItem = (UIShowItem)iter.next();
if (showItemId.equals(showItem.getId()))
showItem.processDecodes(context);

}
}
// decode the showOne component last
decode(context);
}
private String _showItemId;
private MethodBinding _showMethod;

}

Components that were not previously rendered to the client should not be processed as
part of the postback. Therefore, you use the isRendered() method in the processDecodes ()
implementation to ensure that the component will not participate in the postback when
the rendered property is false. This prevents a malicious user from attacking the system by
attempting to trigger an event on a component that was not previously rendered. If UIShowOne’s
rendered property is true, you first call processDecodes () on the currently active UIShowItem
child component (if any) and then call the decode () method on the UIShowOne component
itself. If a Renderer is present for the UIShowOne component, the decode () method delegates
to the Renderer.

The UIShowltem Behavioral Superclass

The UIShowItem component is needed to allow the application developer to add labeled items
to the deck component. The UIShowItem component is similar to the UISelectItem compo-
nent provided by the JSF specification, except in this case UIShowItem acts as a container for
other JSF components added by the application developer. Figure 3-9 shows the behavioral
UIShowItem superclass.

The UIShowItem component does not render anything, so you do not need to implement a
Renderer or a renderer-specific subclass. Instead, the parent UIShowOne component is respon-
sible for rendering the header facet of each UIShowItem child component, as well as the
children of the currently active UIShowItem child component, as shown in Code Sample 3-17.

CHAPTER 3 ' DEFINING THE DECK COMPONENT

[:| UlShowltem

+ String COMPOMNENT TYPE
+ String COMPONENT FAMILY

+ UlShowltem ()

+ String getFamily ()

+ UlComponent getHeader ()

+void setHeader (UIComponent header)

Figure 3-9. Class diagram of the UIShowItem implementation

Using a header facet rather than a headerText attribute gives application developers more
flexibility to decide how best to visualize the header. For example, using a facet allows an icon
and text to both be used in the header, rather than just text.

Code Sample 3-17. UIShowItem Component

package com.apress.projsf.ch3.component;

import javax.faces.component.UIComponent;
import javax.faces.component.UIComponentBase;

public class UIShowItem extends UIComponentBase

{

/%%

* The component type for this component.

*/

public static final String COMPONENT_TYPE = "com.apress.projsf.ShowItem";
public static final String COMPONENT_FAMILY = "com.apress.projsf.ShowItem";

Vaks

* Creates a new UIShowItem.
*/

public UIShowItem()

{

}

i

* Returns the component family for this component.
*

* @return the component family
*/
public String getFamily()

{
return COMPONENT FAMILY;

}

135

136 CHAPTER 3 " DEFINING THE DECK COMPONENT

Vil
* Returns the header facet.

*

* @return the header facet
*/

public UIComponent getHeader()
{

return getFacet("header");

}

/%
* Sets a new header facet.
*
* @param header the new header facet
*/
public void setHeader(UIComponent header)
{
getFacets().put("header", header);
}
}

As mentioned, you add the component family and component type to be able to select a
Renderer and as an identifier for the UIComponent subclass. In this case, it might seem redun-
dant to have these defined in the UIShowItem component, but part of the contract when
building new behavioral components is that the new component introduces its own compo-
nent family. Basically, the component family is needed for every new behavioral component
and indicates its behavioral grouping. In addition, every component (behavioral or renderer-
specific) should have a registered component type in faces-config.xml.

As you can see, you also add convenience getter and setter methods for the header facet
using the getFacet () method inherited from UIComponentBase. The getFacet() method returns
the named facet (for example, header) if it exists; otherwise, it returns null. In general, facets
associate a child component with its parent component by a named purpose (for example,
header) without implying anything about the rendered position of this facet relative to the
other child components.

Step 4: Creating a Client-Specific Renderer

You now have a foundation for the JSF deck component with the behavioral components,
including event and listener support. It is time to start looking at rendering the deck compo-
nent. Following the naming pattern, discussed earlier in this chapter, the fully qualified class
name for the UIShowOne component’s Renderer is com.apress.projst.ch3.render.html.basic.
HtmlUIShowOneDeckRenderer.

The HtmIShowOneDeckRenderer Class

Figure 3-10 shows the Htm1ShowOneDeckRenderer extending the HtmlRenderer introduced in
Chapter 2.

CHAPTER 3 ' DEFINING THE DECK COMPONENT 137

= HtmIRenderer
- String _STYLE_RESCURCES _KEY

+void encodeBegin (FacesContext context, UlComponent component)
#void encodeResources (FacesContext context, UIComponent component)
#void writeScriptResource (FacesContext context, String resourcePath)

i

[:| HtmIShowOneDeckRenderer

+ String STYLE_CLASS_ATTR
+ String HEADER STYLE CLASS ATTR
+ String CONTENT_STYLE_CLASS_ATTR

+void decode (FacesContext context, UlComponent component)

+void encodeBegin (FacesContext context, UlComponent component)
+void encodeChildren (FacesContext context, UlComponent component)
+void encodeEnd (FacesContext context, UlComponent component)

+ boolean getRendersChildren ()

#void encodeResources (FacesContext context, UIComponent component)
- void _encodeAll (FacesContext context, UlComponent component)

- String _findFormClientld (FacesContext context, UIComponent component)

Figure 3-10. Class diagram showing the Html1ShowOneDeckRenderer extending the HtmlRenderer

Since the UIShowOne component is a container component, it needs to render its children,
so you will implement encodeBegin(), encodeChildren(), and encodeEnd() in the new Renderer.
Code Sample 3-18 shows the encodeBegin() method for the Html1ShowOneDeckRenderer.

Code Sample 3-18. The encodeBegin() Method

package com.apress.projsf.ch3.render.html.basic;

import java.io.IOException;
import java.util.Iterator;
import java.util.list;
import java.util.Map;

import javax.faces.component.UIComponent;
import javax.faces.component.UIForm;
import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.context.Responselriter;

import com.apress.projsf.ch2.render.html.HtmlRenderer;
import com.apress.projsf.ch3.component.UIShowItem;
import com.apress.projsf.ch3.component.UIShowOne;
import com.apress.projsf.ch3.event.ShowEvent;

Vak
* Renders the UIShowOne component as a Deck.

*/

public class HtmlShowOneDeckRenderer extends HtmlRenderer

138 CHAPTER 3 " DEFINING THE DECK COMPONENT

Voo

* The styleClass attribute.

*/

public static String STYLE CLASS ATTR = "styleClass";

Voo

* The itemStyleClass attribute.

*/

public static String ITEM STYLE CLASS ATTR = "itemStyleClass";

Voo

* The itemHeaderStyleClass attribute.

*/

public static String ITEM HEADER STYLE CLASS ATTR = "itemHeaderStyleClass";

Voo

* The itemContentStyleClass attribute.

*/

public static String ITEM CONTENT STYLE CLASS ATTR = "itemContentStyleClass";

public void encodeBegin(
FacesContext context,
UIComponent component) throws IOException
{
// first write out resources
super.encodeBegin(context, component);

Responsellriter out = context.getResponselriter();
out.startElement("div", component);
Map attrs = component.getAttributes();
String styleClass = (String)attrs.get(STYLE_CLASS_ATTR);
if (styleClass != null)
out.writeAttribute("class", styleClass, STYLE CLASS ATTR);

The encodeBegin() method takes two arguments—FacesContext context and
UIComponent component. The Render Response phase will call the encodeBegin() method on
the UIShowOne component, which in turn will delegate to the encodeBegin() method on the
HtmlShowOneDeckRenderer, passing the FacesContext and the UIShowOne component instance.

You get the ResponselWriter, write out the first HTML <div> element representing the
component, and attach the styleClass defined by the application developer, if any. Before you
continue to write anything to the client, you also need to get the component’s unique identi-
fier—clientId. You do this by calling the getClientId() method on the UIShowOne instance
passed as an argument to the Renderer. You then include this unique identifier in the gener-
ated markup to ensure that on a postback you will be able to decode the request and apply
any values or events to the right component. For more information about the clientId, see
Chapter 2.

CHAPTER 3 ' DEFINING THE DECK COMPONENT

According to the requirements, the UIShowOne component is controlling which item—
UIShowItem—to expand. This is managed by a JavaScript resource written to the response by
the encodeResources () method, as shown in Code Sample 3-19.

Code Sample 3-19. The encodeResources () Method
Vak
* Write out the HtmlShowOneDeck resources.
*
* @param context the Faces context
* @param component the Faces component
*/
protected void encodeResources(
FacesContext context,
UIComponent component) throws IOException
{
writeScriptResource(context, "/projsf-ch3/showOneDeck.js");
writeStyleResource(context, "/projsf-ch3/showOneDeck.css");

}

The writeScriptResource() method provided by the HtmlRenderer superclass guarantees
that a script resource is written only once during rendering, even if multiple ProShowOneDeck
components appear on the same page. In Code Sample 3-19, the encodeResources () method
writes out a JavaScript resource needed to render the ProShowOneDeck component—
showOneDeck. js. You also encode a CSS style sheet resource—showOneDeck. css—to define
the ProShowItem, ProShowItemHeader, and ProShowItemContent CSS style classes that are
shared by all ProShowOneDeck components on the same page.

Note Use the Responselriter’s startElement() and endElement () methods. This will improve your
performance, make your code more portable between markup languages that have only subtle differences
(for example, between HTML and XHTML), and make it easier to detect and debug the generated markup by
verifying that all startElement() and endElement () calls are balanced.

The JavaScript Implementation

Before you continue with encoding the children of the UIShowOne component, take a closer
look at the new JavaScript file, showOneDeck. js, as shown in Code Sample 3-20. You can see
only one function in this file, showOneDeck(); it takes three arguments:

e The formClientId argument represents the clientId of the parent UIForm component.

* The showOneClientId argument represents the clientId of the containing UIShowOne
component.

e The itemId argument is the node selected by the user.

139

140

CHAPTER 3 " DEFINING THE DECK COMPONENT

Later in the encodeChildren() method, you will see how you attach this JavaScript func-
tion to the generated HTML and pass these values to it. Using a JavaScript function, you can
respond to user actions and trigger a postback to the FacesServlet by submitting the form.

Code Sample 3-20. The Source of the showOneDeck. js File
Vi

* The onclick handler for HtmlShowOneDeckRenderer.
*

* @param formClientId the clientId of the enclosing UIForm component

* @param clientId the clientId of the ProShowOneDeck component
* @param itemId the id of the UIShowItem that was clicked
*/
function _showOneDeck_click(
formClientId,
clientId,
itemId)
{

var form = document.forms[formClientId];

var input = form[clientId];

if (linput)

{
input = document.createElement("input");
input.type = 'hidden’;
input.name = clientld;
form.appendChild(input);

}

input.value = itemId;

form.submit();

}

During rendering, after the HTML document has been fully parsed, the browser provides
array access to various collections of related HTML elements in the page (for example, images
and forms). You can use the document.forms array to access the form being submitted. Each
form also provides array access to the input fields managed by that form. In the JavaScript
implementation, you will be using a hidden form field to store the clientId of the selected
UIShowItem. When the form is submitted, this value will be passed to the server and used dur-
ing decode to detect which UIShowItem should be expanded, causing its child components to
be displayed.

Potentially, an application developer might be adding more than one HtmlShowOneDeck
component to the page, and by giving the hidden form field the same name as the clientId of
the Htm1ShowOneDeck component, you ensure you expand the correct HtmlShowOneDeck compo-
nent. You first get the form—document . forms[formClientId]. Then, knowing the form, you can
access the hidden input field, if it exists, and set the clientId of the selected UIShowItem com-
ponent—input.value = itemId.You finish the function by submitting the form and passing
the new values to the server-side component hierarchy for processing.

CHAPTER 3 ' DEFINING THE DECK COMPONENT

Tip For more information about JavaScript and the DOM, please visit http: //www.w3.org/DOM/.
Another good source if you are new to JavaScript is http://developer.mozilla.org/en/docs/
Main_Page.

This function is defined only once, in a separate JavaScript file, for all UIShowOneDeck
components on the page. We will show you how to package and leverage resources such as
JavaScript files, CSS files, and images in Chapter 5.

Encode Children

Encoding the children of the UIShowOne component is where the real grunt work takes place in
the creation of the expandable UIComponent. It is in the encodeChildren() method that you will
set styles, set images, and decide which UIShowItem component will appear “expanded,” show-
ing its children. In Code Sample 3-21, we have highlighted in bold some areas that are of
greater importance, since these are new areas not covered before or that need some extra
explanation.

Code Sample 3-21. Getting the IDs of the UIForm and UIShowOne Components

public void encodeChildren(
FacesContext context,
UIComponent component) throws IOException
{
if (component.getChildCount() > 0)
{
UIShowOne showOne = (UIShowOne)component;
String showItemId = showOne.getShowItemId();

// the renderer-specific attributes
Map attrs = showOne.getAttributes();
String itemStyleClass = (String)attrs.get(ITEM STYLE CLASS ATTR);
if (itemStyleClass == null)
itemStyleClass = "ProShowItem";
String itemHeaderStyleClass = (String)
attrs.get(ITEM HEADER STYLE CLASS ATTR);
if (itemHeaderStyleClass == null)
itemHeaderStyleClass = "ProShowItemHeader";
String itemContentStyleClass = (String)
attrs.get(ITEM CONTENT STYLE CLASS ATTR);
if (itemContentStyleClass == null)
itemContentStyleClass = "ProShowItemContent";

String formClientId = _findFormClientId(context, component);
String showOneClientId = component.getClientId(context);

141

142

CHAPTER 3 " DEFINING THE DECK COMPONENT

In the encodeChildren() method, you first check to see whether this UIShowOne compo-
nent has any children at all. If the application developer has not added any UIShowItem
children, then you do not need to do any further work in this method. You then collect infor-
mation about the CSS style classes used to display the items, as well as the default UIShowItem
identifier to display, the clientId of the actual parent UIForm component, and the clientId of
the UIShowOne component instance, as shown in Code Sample 3-21. You then collect all children
of the UIShowOne component, iterate over the list of children, and check whether each child is
an instance of UIShowItem (see Code Sample 3-22). If not, the child will not be rendered.

Code Sample 3-22. Rendering the Start of Each UIShowItem Child Component

List children = component.getChildren();
for (Iterator iter = children.iterator(); iter.hasNext();)
{
UIComponent child = (UIComponent) iter.next();
if (child instanceof UIShowItem)
{
UIShowItem showItem = (UIShowItem)child;
String id = showItem.getId();
Map attrs = showItem.getAttributes();

boolean isActive = id.equals(showItemId);
Responselriter out = context.getResponseWriter();
out.startElement("div", showItem);
out.writeAttribute("class", itemStyleClass,

ITEM STYLE CLASS ATTR);

out.startElement("div", null);
out.writeAttribute("class", itemHeaderStyleClass,
ITEM HEADER STYLE CLASS ATTR);

If the child is a UIShowItem component instance, you gather the clientId and all attributes
available on the UIShowItem component. The clientId is then used to set a flag—isActive—
to true or false to determine whether the clientId of the soon-to-be-rendered UIShowItem
component matches the showItemId. This flag will later indicate whether this UIShowItem
component should render its children. The rest of the code, shown in Code Sample 3-22, is ren-
dering the two start <div> elements, setting the style classes, and representing the UIShowItem
container and header.

Before you append any JavaScript function to the UIShowItem component, check whether
aUIFormis available; if not, you can just omit the JavaScript function so that no unnecessary
markup is rendered to the client (see Code Sample 3-23).

Code Sample 3-23. Processing Facet and Children of the UIShowItem Component

if (formClientId != null)
{

CHAPTER 3 " DEFINING THE DECK COMPONENT

out.writeAttribute("onclick",
" _showOneDeck_click('" + formClientId + "'," +

+ showOneClientId + "'," +
min + id + III)II’

null);
}

UIComponent header = showItem.getHeader();
if (header != null)
{

_encodeAll(context, header);

}

else

{

out.writeText("Header", null);

}

out.endElement("div");

if (isActive)
{
out.startElement("div", null);
out.writeAttribute("class", itemContentStyleClass,
ITEM_CONTENT STYLE_CLASS ATTR);
List kids = showItem.getChildren();
Iterator it = kids.iterator();
while (it.hasNext())
{
UIComponent kid = (UIComponent)it.next();
_encodeAll(context, kid);
}

out.endElement("div");

}

out.endElement("div");
}
}
}
}

The requirement for the component is to activate the item when clicked. By appending the
_showOneDeck_click() function to the onclick event handler of the <div> element representing
the UIShowItem header, you create a clickable <div> element. The showOneDeck click() func-
tion takes three arguments, which represent the identifier of the surrounding form component,
the identifier of the parent UIShowOne component, and the clientId of the UIShowItem instance.

You then get the header facet from the UIShowItem component by calling the getHeader ()
method. If the getHeader () method returns a non-null facet, you call the encodeAll() method
to render the facet and its child components.

143

144

CHAPTER 3 " DEFINING THE DECK COMPONENT

Note You can add code to restrict which components can be rendered within a facet, but it is good prac-
tice to allow application developers to nest any components—standard or custom—uwithin a facet. If you
need to recommend a certain type of component to application developers, you can use faces-config.xml
to list any recommended components using metadata defined by JSR-276.

After rendering the header facet, you use the isActive flag to determine whether this is
the currently expanded UIShowItem component. If it is, you use the encodeAll() method to
render each of the UIShowItem’s child components.

Encode End

With the input date component implementation, it did not make sense to handle children,
so you could combine all the rendered output into a single encodeEnd() method, as shown in
Code Sample 3-24. With the UIShowOne component, the Renderer is in charge of rendering its
children using the encodeChildren() method. This has the consequence that you also need to
implement the encodeEnd () method to write out the closing element of the component.

Code Sample 3-24. The Htm1ShowOneDeckRenderer encodeEnd() Method

public void encodeEnd(
FacesContext context,
UIComponent component) throws IOException
{
Responselriter out = context.getResponselWriter();
out.endElement("div");

}

If you take a close look at the actual output required by the deck component, you will see
that all the children that were added are at the end of the generated markup. Therefore, not
much is required for the UIShowOne component’s Renderer but to close the generated markup.

Renders Children

In the JSF 1.1 specification, the default value of the rendersChildren property is false.
For the UIShowOne component, the Renderer is responsible for rendering its children, and
thus this flag needs to be set to true, as shown in Code Sample 3-25.

Code Sample 3-25. Setting rendersChildren fo true

public boolean getRendersChildren()
{

return true;

}

CHAPTER 3 " DEFINING THE DECK COMPONENT

Locate Form ClientId

The findFormClientId method is used in the encodeChildren() method to return the clientId
of the closest enclosing UIForm component, as shown in Code Sample 3-26.

Code Sample 3-26. The findFormClientId Method

private String findFormClientId(
FacesContext context,
UIComponent component)
{
while (component != null &&
! (component instanceof UIForm))

{

component = component.getParent();

}

return (component != null) ? component.getClientId(context) : null;

}

Inthe findFormClientId() method, you first check whether the component is an
instance of UIForm; if it is not, you walk the component hierarchy to find the parent UIForm
component by calling component.getParent(). When you have the parent UIForm component,
you return the clientId. If not, you return null.

Encode Children

In the encodeChildren() method, you call the method encodeAll() to render the header facet
and each of the active UIShowItem’s child components, as shown in Code Sample 3-27. This
method takes two arguments—the FacesContext for the current request and the UIComponent
to render.

Code Sample 3-27. The encodeAll() Method
/¥
* Encodes a component and all of its children.
*
* @param context the Faces context
* @param component the Faces component
*
* @throws IOException if an I/0 error occurs during rendering
*/
private void _encodeAll(
FacesContext context,
UIComponent component) throws IOException
{
component.encodeBegin(context);
if (component.getRendersChildren())

145

146

CHAPTER 3 " DEFINING THE DECK COMPONENT

{

component.encodeChildren(context);

}

else
{
List kids = component.getChildren();
Iterator it = kids.iterator();
while (it.hasNext())
{
UIComponent kid = (UIComponent)it.next();
_encodeAll(context, kid);
}
}
component.encodeEnd(context);
}
}

The requirement for the deck component is to make it flexible enough to handle any type
of child component added to the UIShowItem component by the application developer. The
UIShowItem component itself is not responsible for rendering its children, but sometimes an
application developer has added a child container component for rendering its children (for
example, an Htm1PanelGrid component).

To be able to achieve this, you first call encodeBegin() to start rendering the generated
markup for the current component. You then check whether the component is responsible for
rendering its children. If it is, you call encodeChildren() on the component to render all of its
children. However, if the component is not responsible for rendering its children, then you
iterate over the child components and recursively call encodeAll() for each one. Finally, you
complete the generated markup by calling the encodeEnd () method on the component.

Note A new method, UIComponent.encodeAll (FacesContext), has been added to the JSF 1.2
release and implements equivalent functionality to the _encodeAll(FacesContext, UIComponent)
method shown in Code Sample 3-27.

Decode

During the Apply Request Values phase, a method—processDecodes ()—will be called on
the UIViewRoot at the top of the component hierarchy. The processDecodes () method on the
UIViewRoot will recursively call processDecodes () on each UIComponent in the component hier-
archy. If a Renderer is present for any of these components, then the UIComponent will delegate
the responsibility of decoding to the Renderer. For more information about processDecodes (),
please refer to Chapter 2. Code Sample 3-28 shows how you can manage information passed
on the request during decode.

CHAPTER 3 " DEFINING THE DECK COMPONENT

Code Sample 3-28. Decoding the Request

public void decode(
FacesContext context,
UIComponent component)
{
ExternalContext external = context.getExternalContext();
Map requestParams = external.getRequestParameterMap();
String clientId = component.getClientId(context);
String newShowItemId = (String)requestParams.get(clientId);
if (newShowItemId != null && newShowItemId.length() > 0)
{
UIShowOne showOne = (UIShowOne)component;
String oldShowItemId = showOne.getShowItemId();
if (!newShowItemId.equals(oldShowItemId))
{
showOne. setShowItemId(newShowItemId);
ShowEvent event = new ShowEvent(showOne, oldShowItemId, newShowItemId);
event.queue();
}
}
}

From the external context, you can get hold of the Map containing all the parameters passed
on this request. In the JavaScript function, you set the value of the hidden input form field,
representing the UIShowOne component, to the ID of the selected UIShowItem component. So,
by using the clientId of the UIShowOne component, you can retrieve the value stored in the hid-
den input form field passed on the request—String newShowItemId = (String)requestParams.
get(clientId). This value represents the new identifier of the UIShowItem component to be
expanded during the Render Response phase.

The requirements stated that an application developer should be able to add any number
of UIShowOneDeck components to a page. Potentially, an application developer can have any
number of forms with a UIShowOneDeck component or have multiple UIShowOneDeck compo-
nents within the same form. When you put a second deck into a form and click one of the item
headers, there will be no hidden field for the first UIShowOneDeck; therefore, the newShowItemId
will contain null, and the newShowItemId != null code path is skipped as desired. When any
other component causes a form submission for the same form, you get back "" (an empty
string), and with the additional check for nonempty string, (newShowItemId.length() > 0),
this works even in a single form. If the value is either null or the empty string "", it will do
nothing.

Passing this control, you compare the new ID—newShowItemId—with the value stored
in the showItemId property; if it matches, the user clicked the same item that was already
expanded, and there is nothing for you to do except to return. If the value passed on the
request is a new ID, you set the showItemId property on the UIShowOne component to this new
value to store the currently open UIShowItem component. After setting the new identifier, you
create a new instance of the ShowEvent event, passing the UIShowOne component instance, the

147

148

CHAPTER 3 " DEFINING THE DECK COMPONENT

old UIShowItem ID, and the new UIShowItem ID. Finally, you queue the ShowEvent event instance
for later processing in the Invoke Application phase. If application developers have used the
ShowListener, they will be able to invoke some application logic based on this user action.

Step 5: Creating a Renderer-Specific Subclass

To follow best practices, you will now learn how to create the renderer-specific subclass for the
deck component—com.apress.projst.ch3.component.pro.ProShowOneDeck (see Figure 3-11).
This class provides a getter and a setter for one renderer-specific attribute on the JSF
component—styleClass.

[:| UIShowCne

+ String COMPONENT TYPE

+ String COMPONENT FAMILY

+ UIShowOne ()

+ String getFamily ()

+void setShowltemld (String showltemld)
+ String getShowltemld ()

[:| ProShowOneDeck

+ String COMPONENT TYPE
+ String RENDERER TYPE
- String _styleClass

+ ProShowCneDeck ()

+void setStyleClass (String styleClass)

+ String getStyleClass ()

+ Object saveState (FacesContext context)

+void restoreState (FacesContext context, Object state)

Figure 3-11. Class diagram showing the ProShowOneDeck class

You can now start to see the pattern you are using to build these components; for exam-
ple, Code Sample 3-29 follows the same design as the ProInputDate subclass created in
Chapter 2.

Code Sample 3-29. The ProShowOneDeck Client-Specific Subclass

package com.apress.projsf.ch3.component.pro;

import javax.faces.context.FacesContext;
import javax.faces.el.ValueBinding;

import com.apress.projst.ch3.component.UIShowOne;

/%K

* The ProShowOneDeck renderer-specific component.
*/

CHAPTER 3 " DEFINING THE DECK COMPONENT 149

public class ProShowOneDeck extends UIShowOne{

public static final String COMPONENT_TYPE = "com.apress.projsf.ProShowOneDeck";
public static final String RENDERER_TYPE = "com.apress.projsf.Deck";

Vil
* Creates a new ProShowOneDeck.
*/

public ProShowOneDeck()

{

setRendererType (RENDERER TYPE);

}

/¥
* The styleClass attribute value.
*/

private String styleClass;

/¥
* Sets the CSS style class.
*
* @param styleClass the new style class
*/
public void setStyleClass(
String styleClass)
{
_styleClass = styleClass;
}

/%

* Returns the CSS style class.
*
* @return the style class
*/
public String getStyleClass()
{

if (_styleClass != null)
return _styleClass;

ValueBinding binding = getValueBinding("styleClass");

if (binding != null)

{
FacesContext context = FacesContext.getCurrentInstance();
return (String)binding.getValue(context);

}

150 CHAPTER 3 " DEFINING THE DECK COMPONENT

return null;

}

public Object saveState(
FacesContext context)

{
Object values[] = new Object[2];
values[0] = super.saveState(context);
values[1] = _styleClass;
return values;

}

public void restoreState(
FacesContext context,
Object state)

{
Object values[] = (Object[])state;
super.restoreState(context, values[0]);
_styleClass = (String)values[1];

}

The first thing you do is to make sure you extend the right component superclass, which
is UIShowOne. You then define constants for the component type and renderer type so that the
correct Renderer is associated with the UIComponent when it is created. The UIShowOne compo-
nent is a container only for the UIShowItem component and has only one renderer-specific
attribute—styleClass.

The UIShowItem component has no Renderer, so it has no renderer-specific facets or
attributes and requires no renderer-specific component subclass.

Step 6: Registering a UIComponent and Renderer

Registering a behavioral superclass follows the same rules as registering a renderer-specific
subclass (see Chapter 2). The UIShowOne and the UIShowItem components are registered in
faces-config.xml, as shown in Code Sample 3-30.

Code Sample 3-30. Registering UIShowOne and UIShowItem

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">

<faces-config>

CHAPTER 3 " DEFINING THE DECK COMPONENT

<component>

<component-type>com.apress.projsf.ShowOne</component-type>
<component-class>com.apress.projsf.ch3.component.UIShowOne</component-class>

<!-- UIComponent attributes -->
<attribute>
<description>
The component identifier for this component. This value must be unique
within the closest parent component that is a naming container.
</description>
<attribute-name>id</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
<attribute>
<description>
Flag indicating whether or not this component should be rendered (during
Render Response Phase), or processed on any subsequent form submit.
</description>
<attribute-name>rendered</attribute-name>
<attribute-class>boolean</attribute-class>
<default-value>true</default-value>
</attribute>
<attribute>
<description>
The value binding expression linking this component to a property in a
backing bean.
</description>
<attribute-name>binding</attribute-name>
<attribute-class>javax.faces.el.ValueBinding</attribute-class>
</attribute>

<!-- UIShowOne attributes -->
<attribute>
<description>
The currently active showItem identifier.
</description>
<attribute-name>showItemId</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>

</component>

<component>

<component-type>com.apress.projsf.ShowItem</component-type>
<component-class>com.apress.projsf.ch3.component.UIShowItem</component-class>

151

152

CHAPTER 3 " DEFINING THE DECK COMPONENT

<!-- UIShowItem facets -->
<facet>
<description>The header of the showItem component.</description>
<display-name>header</display-name>
<facet-name>header</facet-name>
<facet-extension>
<facet-metadata>
<preferred-children>h:outputText h:graphicImage</preferred-children>
</facet-metadata>
</facet-extension>
</facet>

<!-- UIComponent attributes -->
<attribute>
<description>
The component identifier for this component. This value must be unique
within the closest parent component that is a naming container.
</description>
<attribute-name>id</attribute-name>
</attribute>
<attribute>
<description>
Flag indicating whether or not this component should be rendered (during
Render Response Phase), or processed on any subsequent form submit.
</description>
<attribute-name>rendered</attribute-name>
<attribute-class>boolean</attribute-class>
<default-value>true</default-value>
</attribute>
<attribute>
<description>
The value binding expression linking this component to a property in a
backing bean.
</description>
<attribute-name>binding</attribute-name>
</attribute>
</component>
</faces-config>

The code in bold registers the new components (com.apress.projst.ShowOne and com.
apress.projst.ShowItem) by defining the component type and the corresponding component
classes (com.apress.projst.ch3.component.UIShowOne and com.apress.projst.ch3.component.
UIShowItem). The code sample also adds metadata for the UIShowItem facet—header—that can
be picked up by any IDE supporting JSF to assist application developers in adding compo-
nents to the header facet. The code sample also defines metadata for attributes inherited from
the UIComponentBase class, which will be used by application developers.

CHAPTER 3 ' DEFINING THE DECK COMPONENT

Note A JSRis currently under development (JSR-276: Design-Time Metadata for JavaServer Faces
Components) that focuses on defining a standard mechanism for associating design-time information with
JSF components.

Registering the HtmIShowOneDeckRenderer

The Htm1ShowOneDeckRenderer class is registered in faces-config.xml, as shown in Code
Sample 3-31.

Code Sample 3-31. Registering Htm1ShowOneDeckRenderer

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">

<faces-config>

<render-kit>
<!-- no renderkit-id, so these renderers are added to
the default renderkit -->
<renderer>
<component-family>
com.apress.projsf.ShowOne
</component-family>
<renderer-type>
com.apress.projsf.Deck
</renderer-type>
<renderer-class>
com.apress.projsf.ch3.render.html.basic.HtmlShowOneDeckRenderer
</renderer-class>
</renderer>
</render-kit>

</faces-config>

To register the new HtmlShowOneDeckRenderer class as a Renderer for JSE you need to
add the metadata shown in bold to the same faces-config.xml file you used to register the
UIShowOne and UIShowItem components. Code Sample 3-31 also omits the <render-kit-id>
element, which will make the client-specific Renderer use the default RenderKit (with the
identifier RenderKitFactory.HTML BASIC RENDER KIT) provided by the JSF implementation.

You also set <component-family> to com.apress.projst.ShowOne, which represents the
behavior of the UIShowOne component, and set <renderer-type> to com.apress.projsf.Deck,
which represents the presentation of the UIShowOne component. The combination of component

153

154 CHAPTER 3 " DEFINING THE DECK COMPONENT

family and render type uniquely identifies which Renderer class to use with the component—
com.apress.projst.ch3.render.html.basic.HtmlShowOneDeckRenderer. For more information
about this, please refer to Chapter 1.

Registering the ProShowOneDeck Renderer-Specific Subclass

The renderer-specific ProShowOneDeck subclass is registered in faces-config.xml, as shown in
Code Sample 3-32.

Code Sample 3-32. Registering the ProShowOneDeck Renderer-Specific Subclass

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">

<faces-config>

<component>
<component-type>
com.apress.projsf.ProShowOneDeck
</component-type>
<component-class>
com.apress.projsf.ch3.component.pro.ProShowOneDeck
</component-class>

<!-- UIComponent attributes -->
<attribute>
<attribute-name>id</attribute-name>
<description>
The component identifier for this component. This value must be
unique within the closest parent component that is a naming
container.
</description>
</attribute>
<attribute>
<attribute-name>rendered</attribute-name>
<attribute-class>boolean</attribute-class>
<default-value>true</default-value>
<description>
Flag indicating whether or not this component should be rendered
(during Render Response Phase), or processed on any subsequent
form submit.
</description>
</attribute>
<attribute>
<attribute-name>binding</attribute-name>

CHAPTER 3 " DEFINING THE DECK COMPONENT

<description>
The value binding expression linking this component to a
property in a backing bean.
</description>
</attribute>

<!-- UIShowOne attributes -->
<attribute>
<description>
The currently active showItem identifier.
</description>
<attribute-name>showItemId</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
<attribute>
<description>
MethodBinding representing a show listener method that will be
notified when the active UIShowItem changes for this UIShowOne
component. The expression must evaluate to a public method that
takes a ShowEvent parameter, with a return type of void.
</description>
<attribute-name>showlistener</attribute-name>
<attribute-class>com.apress.projsf.ch3.event.ShowlListener</attribute-class>
</attribute>

<!-- ProShowOneDeck attributes -->
<attribute>
<description>
The styleClass for this ProShowOneDeck component.
</description>
<attribute-name>styleClass</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
</component>
</faces-config>

The bold code registers the new component by defining the component type (com.apress.
projst.ProShowOneDeck) and the corresponding component class (com.apress.projsf.ch3.
component.pro.ProShowOneDeck). The metadata defines attributes that are inherited from the
UIComponent base class, which will be used by application developers.

Step 7: Creating a JSP Tag Handler and TLD

To recap from the previous chapter, a custom action has a corresponding tag handler class,
which is responsible for creating the UIComponent and transferring each declarative JSP tag
attribute to the UIComponent instance. The design of the deck component is a renderer-specific
parent component (ProShowOneDeck) that manages which child to display to the user and a

155

156

CHAPTER 3

DEFINING THE DECK COMPONENT

behavioral child component (UIShowItem) that has a header facet and contains any child
components that application developers might have added. You also have the custom event
(ShowEvent) with the associated listener interface (ShowListener). Figure 3-12 shows the three

tag handlers.

= ShowListenerTag
- String _type

+void setType (String type)

+int doStartTag ()

+void release ()

ShowListener createShowListener (String

= ProShowOneDeckTag

- String _showltemld

- String _showListener

- String _styleClass

- String _itemStyleClass

- String _itemHeaderStyleClass
- String _itemContentStyleClass

+ String getComponentType ()

+ String getRendererType ()

+void setShowltemld (String showltemld)

+void setShowListener (String showListener)

+void setStyleClass (String styleClass)

+void setltemStyleClass (String itemStyleClass)

+void setltermHeaderStyleClass (String itemHeaderStyleClass)
+void setltemContentStyleClass (String itemContentStyleClass)
+void release ()

#void setProperties (UIComponent component)

= ShowltemTag

+ String getComponentType ()
+ String getRendererType ()

Figure 3-12. Class diagram showing the three tag handlers

You need to create custom actions for the renderer-specific ProShowOneDeck component
and the behavioral UIShowItem component; in addition, you need to create a custom action for
adding a ShowListener to the ProShowOneDeck component.

The ProShowOneDeckTag Class

The ProShowOneDeck component needs a custom action, showOneDeck, with a corresponding tag
handler class, ProShowOneDeckTag. On initial render, the ProShowOneDeckTag is responsible for
creating a new instance of the new renderer-specific component subclass (ProShowOneDeck)
and transferring all JSP custom action attributes to and from the tag handler to the component
instance (see Code Sample 3-33).

Code Sample 3-33. The ProShowOneDeckTag Class

package com.apress.projst.ch3.taglib.pro;

import javax.faces.component.UIComponent;
import javax.faces.el.MethodBinding;

import com.apress.projsf.ch2.taglib.UIComponentTagSupport;
import com.apress.projst.ch3.component.UIShowOne;

import com.apress.projsf.ch3.component.pro.ProShowOneDeck;
import com.apress.projsf.ch3.event.ShowAdapter;

CHAPTER 3 " DEFINING THE DECK COMPONENT 157

Vs
* ProShowOneDeckTag component tag handler.

*/

public class ProShowOneDeckTag extends UIComponentTagSupport
{

/%

* Returns the component type.
*

* @return the component type
*/
public String getComponentType()

{
return ProShowOneDeck.COMPONENT TYPE;

}

/%

* Returns the renderer type.
*
* @return the renderer type
*/
public String getRendererType()
{
return ProShowOneDeck.RENDERER TYPE;

}

Vil
* Sets the showItemId attribute value.
*
* @param showItemId the currently showing item identifer
*/
public void setShowItemId(
String showItemId)
{
_showItemId = showItemId;
}

Vil
* Sets the showListener attribute value.
*

* @param showlListener the showlListener attribute value
*/
public void setShowListener(

String showListener)

{

_showlListener = showlListener;

}

158 CHAPTER 3 " DEFINING THE DECK COMPONENT

/%

* Sets the CSS style class.
*

* @param styleClass the new style class

*/
public void setStyleClass(String styleClass)
{
_styleClass = styleClass;
}
/%

* Sets the item CSS style class.
*
* @param itemStyleClass the new item style class
*
puglic void setItemStyleClass(
String itemStyleClass)
{ _itemStyleClass = itemStyleClass;

}

/%

* Sets the CSS style class for the item header facet.
*

* @param itemHeaderStyleClass the new style class for the item header facet
*/
public void setItemHeaderStyleClass(

String itemHeaderStyleClass)

{
_itemHeaderStyleClass = itemHeaderStyleClass;

}

/%

* Sets the CSS style class for the item content.
*

* @param itemContentStyleClass the new style class for the item content
*/
public void setItemContentStyleClass(

String itemContentStyleClass)

{
_itemContentStyleClass = itemContentStyleClass;

}

/¥
* Releases the internal state used by the tag.
*/

public void release()

{

CHAPTER 3 " DEFINING THE DECK COMPONENT

_showItemId = null;
_showlListener = null;
_styleClass = null;
_itemStyleClass = null;
_itemHeaderStyleClass = null;
_itemContentStyleClass = null;

}

protected void setProperties(
UIComponent component)

{

super.

setProperties(component);

// Behavioral properties
setStringProperty(component, "showItemId", showItemId);

// Behavioral listeners
if (_showListener != null)

{

UIShowOne showOne = (UIShowOne) component;
MethodBinding showMethod = createMethodBinding(_showListener,

ShowAdapter.SIGNATURE) ;

showOne.addShowListener(new ShowAdapter(showMethod));

}

// Renderer-specific attributes

setStringProperty(component, "styleClass", styleClass);
setStringProperty(component, "itemStyleClass", itemStyleClass);
setStringProperty(component, "itemHeaderStyleClass", itemHeaderStyleClass);
setStringProperty(component, "itemContentStyleClass", _itemContentStyleClass);

}

private
private
private
private
private
private

String showItemld;

String showlListener;

String styleClass;

String itemStyleClass;

String itemHeaderStyleClass;
String _itemContentStyleClass;

First you extend the UIComponentTagSupport tag handler class introduced in Chapter 2.
This gives you access to the setStringProperty() method, which can be used to assign any
component attribute that takes either a static value or a value binding. It also gives you access
to the createMethodBinding() method, which is used to create a MethodBinding instance from
a string expression and a Class array describing the signature of the referenced backing bean

method.

The ProShowOneDeckTag also provides tag attribute setters and internal field storage for
the ProShowOneDeck component’s attributes (for example, showItemId). The setProperties()
method transfers properties and attributes from this tag to the specified component, if the

159

160 CHAPTER 3 " DEFINING THE DECK COMPONENT

corresponding properties of this tag handler instance were explicitly set. Notice that you use
the ShowAdapter to add the showListener MethodBinding to the UIShowOne component as a
ShowListener.

Any JSF tag handler subclasses that support additional properties on top of what is pro-
vided by the UIComponentTag handler must ensure that the base class setProperties() method
is still called—super.setProperties().

The ShowltemTag Class

If the syntax of the custom action has both behavioral attributes and renderer-specific attrib-
utes, then it is tied to a particular component family and renderer type combination, which
implies you need one custom action per Renderer. This is true in most cases; however, in the
case of the UIShowItem component, no Renderer is available. The UIShowOne component’s
Renderer manages the rendering, but you still need a custom action for the UIShowItem com-
ponent so that application developers can add it as a child to the UIShowOne component (see
Code Sample 3-34).

Code Sample 3-34. The ShowItemTag Class

package com.apress.projst.ch3.taglib;

import com.apress.projsf.ch2.taglib.UIComponentTagSupport;
import com.apress.projst.ch3.component.UIShowItem;

Vs

* ShowItemTag is the UIShowItem component tag handler.
*/

public class ShowItemTag extends UIComponentTagSupport
{

Voo

* Returns the component type.
*

* @return the component type
*/
public String getComponentType()

{
return ProShowItem.COMPONENT TYPE;

}

/%

* Returns the renderer type.
*

* @return the renderer type
*/
public String getRendererType()
{

}
}

return null;

CHAPTER 3 " DEFINING THE DECK COMPONENT

It is important to note that in Code Sample 3-34 you still have to follow the contract of a
JSF custom action and provide accessors for the component type and render type. In the case
of ShowItemTag, you have set the return value for the render type to null, since this component
does not come with a Renderer. On initial render, the ShowItemTag is responsible for creating
an instance of the behavioral UIShowItem component.

The ShowListenerTag Class

The ShowListenerTag tag handler class represents the custom action showListener that will be
used by the application developer to register a ShowListener instance to a UIShowOne compo-
nent, as shown in Code Sample 3-35. It is also important to ignore any attempt by application
developers to nest children within this new ShowListenerTag, since it cannot handle children.
You also need to establish the fully qualified class name of the listener tag—com.apress.projsf.
ch3.taglib.ShowListenerTag.

Code Sample 3-35. The ShowListenerTag Class

package com.apress.projst.ch3.taglib;

import javax.faces.application.Application;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.el.ValueBinding;

import javax.faces.webapp.UIComponentTag;

import javax.servlet.jsp.JspException;
import javax.servlet.jsp.tagext.TagSupport;

import com.apress.projst.ch3.component.ShowSource;
import com.apress.projsf.ch3.event.ShowlListener;

Vs
* ShowListenerTag listener tag handler.
*/
public class ShowListenerTag extends TagSupport
{
Vo

* The fully qualified class name of the {@link ShowListener}
* instance to be created.

*/

private String type;

/%

* Sets the fully qualified class name of the
* {@link ShowListener} instance to be created.
*

* @param type the class name

*/

161

162 CHAPTER 3 " DEFINING THE DECK COMPONENT

public void setType(
String type)

{
_type = type;

}

The ShowListenerTag class extends the TagSupport class, which is a utility class intended
to be used as the base class for new tag handlers. The TagSupport class implements the Tag
interface and adds convenience methods including getter methods for the properties in Tag.
The type property represents the fully qualified class name of the ShowListener instance to be
created.

Tip For more information about the TagSupport and Tag classes, please refer to the J2EE 1.4 APl
specification.

The doStartTag() method, as shown in Code Sample 3-36, is part of the contract with the
TagSupport class and is invoked by the JSP page implementation when all properties have
been set.

Code Sample 3-36. The doStartTag() Method

public int doStartTag() throws JspException
{
UIComponentTag tag = UIComponentTag.getParentUIComponentTag(pageContext);
if (tag == null)
throw new JspException("Not inside UIComponentTag");

if (tag.getCreated())
{
UIComponent component = tag.getComponentInstance();
if (component == null)
throw new JspException("Component instance is null");

String className = _type;

if (UIComponentTag.isValueReference(_type))

{
FacesContext context = FacesContext.getCurrentInstance();
Application application = context.getApplication();
ValueBinding vb = application.createValueBinding(_type);
className = (String)vb.getValue(context);

}

ShowListener listener = createShowListener(className);

CHAPTER 3 ' DEFINING THE DECK COMPONENT

if (!(component instanceof ShowSource))
throw new JspException("Component is not a ShowSource");

showSource.addShowListener(listener);

}

return (SKIP_BODY);
}

In this case, the type property is required, so it is expected to be non-null. You
start by retrieving the parent UIComponentTag to the ShowListener custom action using
the getParentUIComponentTag() method. This method will return the nearest enclosing
UIComponentTag, if any; if no UIComponentTag is available, it will return null.

Note The UIComponentTag is an implementation of javax.servlet.jsp.tagext.Tag and must be
the base class for any JSP custom action that corresponds to a JSF UIComponent. For more information
about the UIComponentTag, please refer to the JSF 1.1 specification.

You evaluate whether the parent UIComponentTag has a matching UIComponent by invoking
the getCreated() method. This method returns true if the parent UIComponentTag created an
instance of a UIComponent during its execution, which in this case is a UIShowOne component.
This statement is implemented to avoid the case where a UIComponentTag is not creating a
new instance of a UIComponent, which happens on postback, since the component hierarchy
already exists.

The next important part of the doStartTag() method is to see whether the property
_type is a fully qualified class name (for example, com.apress.projsf.ch3.application.
MyShowListener) or whether it is a ValueBinding reference (for example, #{myBean.
returnListener}). This class name is passed as an argument to the createShowListener()
method, which returns a new instance of this ShowListener class.

Note JSF 1.2 adds a binding attribute to all standard converter, validator, and listener tags. You can use
the binding attribute on a listener tag to reference a managed bean that is also an instance of the corre-
sponding listener interface.

After this you check to see whether the component created by the UIComponentTag is
an instance of the ShowSource. You can check to see whether the component was of instance
UIShowOne, but remember that UIShowOne implements ShowSource, and you want to make sure
you can reuse tags such as the ShowListener for other components you might want to create
in the future (for example, UIShowMany). Finally, and this is important, you always return
SKIP BODY.

163

164

CHAPTER 3 " DEFINING THE DECK COMPONENT

At this point the only thing you know about the listener, defined by the application
developer, is a String representing the fully qualified class name—com.apress.projsf.ch3.
application.MyShowListener. To be able to use this class, you first need to load the class
defined in the string from the class path and then create and return a new instance of this
class. In the createShowListener() method, you first need to get hold of the ClassLoader for
this thread to be able to load the class from the class path, as shown in Code Sample 3-37. You
then invoke the loadClass() method on the ClassLoader instance, passing the fully qualified
class name defined in the String object. When you have the class, you can create a new
instance of it by invoking the newInstance() method. You then cast this new instance to
ShowListener before you return the listener instance.

Code Sample 3-37. The createShowListener Method

protected ShowListener createShowlListener(
String className) throws JspException
{
try
{
ClasslLoader loader = Thread.currentThread().getContextClassLoader();
Class clazz = loader.loadClass(className);
return ((ShowListener) clazz.newInstance());
}
catch (Exception e)
{
throw new JspException(e);
}
}
}

Note For more information about the classes java.lang.Thread and java.lang.ClasslLoader,
please refer to the J2SE 1.4 API specification (http://java.sun.com/j2se/1.4.2/docs/api/
index.html).

The release() method (see Code Sample 3-37) is part of the Tag handler contract and as
such is not a JSF-specific feature, but since the ShowListener tag handler class is directly extend-
ing the Tag handler subclass, TagSupport, it makes sense to discuss the release() method now.

Code Sample 3-38. Release Stored State

/%%

* Releases the internal state used by the tag.
*/

public void release()

{
_type = null;

}

CHAPTER 3 " DEFINING THE DECK COMPONENT

This method is called on a Tag handler to release state. The page compiler guarantees that
JSP page implementation objects will invoke this method on all tag handlers to release any
state currently stored, which in this case means setting the type property to null.

Tag Library Descriptor

You have now implemented three tag handler classes—ProShowOneDeckTag, ShowItemTag, and
ShowListenerTag—and as with all JSP tag handler classes, you need to declare them in a TLD,
as shown in Code Sample 3-39. The custom actions for the three new tag handlers will be
added to the same TLD and follow the same pattern as the ProInputDateTag tag handler
declared in Chapter 2.

Code Sample 3-39. The TLD

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
"http://java.sun.com/dtd/web-jsptaglibrary 1 2.dtd" >

<taglib>

<tlib-version>1.0</tlib-version>
<jsp-version>1.2</jsp-version>

<short-name>pro</short-name>
<uri>http://projst.apress.com/tags</uri>
<description>
This tag library contains JavaServer Faces component tags for the
ProJSF ShowOne Deck Renderer, and ShowOne Listener.
</description>

<tag>
<name>showOneDeck</name>
<tag-class>com.apress.projsf.ch3.taglib.pro.ProShowOneDeckTag</tag-class>
<body-content>JSP</body-content>
<description>
The ProShowOneDeck component tag handler.
</description>

<!-- UIComponent attributes -->
<attribute>
<name>id</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

165

166 CHAPTER 3 " DEFINING THE DECK COMPONENT

<description>
The component identifier for this component. This value must be
unique within the closest parent component that is a naming
container.
</description>
</attribute>
<attribute>
<name>rendered</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
Flag indicating whether or not this component should be rendered
(during Render Response Phase), or processed on any subsequent
form submit.
</description>
</attribute>
<attribute>
<name>binding</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
The value binding expression linking this component to a
property in a backing bean.
</description>
</attribute>

<!-- UIShowOne attributes -->

<attribute>
<name>showItemId</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>

The initial item to show.

</description>

</attribute>

<!-- ProShowOneDeck attributes -->
<attribute>
<name>styleClass</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
The CSS style class for the ProShowOneDeck component.
</description>
</attribute>

CHAPTER 3 " DEFINING THE DECK COMPONENT

<attribute>
<name>itemStyleClass</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>

The CSS style class for the UIShowItems.

</description>

</attribute>

<attribute>
<name>itemHeaderStyleClass</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
The CSS style class for the header facet of the UIShowItems.
</description>
</attribute>

<attribute>
<name>itemContentStyleClass</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>

The CSS style class for the content of the UIShowItems.

</description>

</attribute>

</tag>

<tag>
<name>showItem</name>
<tag-class>com.apress.projsf.ch3.taglib.ShowItemTag</tag-class>
<body-content>JSP</body-content>
<description>

The UIShowItem component tag handler.
</description>

<!-- UIComponent attributes -->
<attribute>
<name>id</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
The component identifier for this component. This value must be
unique within the closest parent component that is a naming
container.
</description>
</attribute>

167

168 CHAPTER 3 " DEFINING THE DECK COMPONENT

<attribute>
<name>rendered</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
Flag indicating whether or not this component should be rendered
(during Render Response Phase), or processed on any subsequent
form submit.
</description>
</attribute>
<attribute>
<name>binding</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
The value binding expression linking this component to a
property in a backing bean.
</description>
</attribute>

<!-- UIShowItem attributes (none) -->
</tag>

<tag>
<name>showListener</name>
<tag-class>com.apress.projsf.ch3.taglib.ShowListenerTag</tag-class>
<body-content>JSP</body-content>
<description>
The ShowListener tag handler.
</description>

<attribute>
<name>type</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
The fully qualified class name for the show listener.
</description>
</attribute>
</tag>
</taglib>

To recap from Chapter 2, each custom action in the TLD needs a <tag> element. The
name of the custom action element is defined in the nested name element (for example,
<name>showListener</name>), and the Tag handler class is defined in the <tag-class> element.
If the custom action has attributes, they have to be defined with the <attribute> element.
Remember also that the runtime expression value—<rtexprvalue>—must be set to false, and
the attribute class must be left unspecified to avoid any conflicts with either Java or JSP EL

CHAPTER 3 " DEFINING THE DECK COMPONENT

expressions and to allow the tag handler to convert the expression to either a ValueBinding or
aMethodBinding.

This was the final touch on the HTML version of the deck component. We are aware of
the complexity of this deck component, but we thought it was necessary to show all aspects
of designing new reusable components from the bottom up, starting with the new event
ShowEvent and its corresponding Listener interface, ShowListener, followed by two new
behavioral superclasses, UIShowOne and UIShowItem. We also introduced the concept of facets
and leveraged JavaScript to give you an understanding of JSF’s power and flexibility.

You can reuse most of the work you have put into this component (for example, UIShowOne,
UIShowItem, ShowListener, and ShowEvent). Moving forward, we will show how to extend these
behavioral superclasses with new Renderers so that you can support richer functionality.

Summary

This chapter extended the blueprint given to you in Chapter 2. The blueprint now contains
seven steps covering everything from analyzing the UI prototype to writing the JSP TLD.
Remember that in most cases you will need to use only five out of these seven steps, since the
most common scenario is to extend an existing behavioral UIComponent rather than to create a
new one.

As part of the blueprint, you also created a client-specific Renderer (HtmlShowOneDeckRenderer)
with all the attributes needed for the component and a renderer-specific subclass
(ProShowOneDeck). Finally, you implemented support for the page description of choice—

JSP. All of this followed the same pattern introduced in Chapter 2; as you probably noticed,
itis not hard to create a component if you have a blueprint to follow, although there is a cer-
tain amount of repetition.

From this chapter, you also gained an understanding of the JSF event model and how to
implement support for custom events and listeners in your own JSF tag handlers.

169

PART 2

Designing Rich
Internet Components

Although the Web has gained widespread adoption as the default deployment solution
for enterprise-class applications, users increasingly demand a more interactive browser
experience and broader support for the vast array of Internet-enabled devices. This part of
the book will teach you how to deliver reusable, rich Internet components using JSF. These
are components that provide application developers with a set of building blocks for cre-
ating rich Internet applications with JSF without sacrificing productivity, and they can be
deployed to any platform.

CHAPTER 4

Using Rich Internet
Technologies

Ajax—in Greek mythology Ajax was a powerful warrior who fought in the Trojan War
and supposedly was second only to Achilles, the Greeks’ best warrior. Although charac-
terized as slow-witted, Ajax was one of the best fighters among the Greeks and was
famed for his steadfast courage in the face of adversity.

—Laboratori Nazionali di Frascati (http://www.1lnf.infn.it)

It will always be the user who will feel the effect of the technology you choose, and the first pri-
ority of any Web or desktop application developer should be the user experience. Users are not
interested in what technology is being used or whether the application is a traditional desktop
application or a Web application. Users demand a feature-rich and interactive interface.

Traditionally, desktop applications have been able to provide users with the richness
required to fulfill their demands, but an increasing number of desktop applications are migrat-
ing to the Web. Therefore, Web application developers have to provide richer Web interfaces.

To make you fully appreciate JSF and what it brings to the Internet community, you need
to understand the current status of rich Internet applications. Web application developers
today are faced with a demand for richer functionality using technologies such as HTML, CSS,
JavaScript, and the DOM. However, these technologies were not developed with enterprise
applications in mind. The increasing demand from consumers for applications with features
not fully supported by these technologies is pushing Web application developers to explore
alternative solutions.

New breeds of Web technologies that enhance the traditionally static content provided by
Web applications have evolved from these consumer requirements. These technologies are
often referred to as Rich Internet Technologies (RITs).

In the absence of a standard definition and with the lack of extensibility of the tradi-
tional Web technologies, new technologies have emerged, such as Mozilla’s XUL, Microsoft’s
HTC, Java applets, Flex, and OpenLaszlo. These technologies support application-specific
extensions to traditional HTML markup while still leveraging the benefits of deploying an
application to a central server. Another solution that has returned under a newly branded
name is Ajax (recently an acronym for Asynchronous JavaScript and XML and formerly
known as XMLHTTP). Applications built with these technologies are often referred to as
Rich Internet Applications (RIAs).

173

174

CHAPTER 4 © USING RICH INTERNET TECHNOLOGIES

In this chapter, we will introduce three RITs: Ajax, Mozilla XUL, and Microsoft HTC. This
chapter will give a high-level overview of these technologies, and it will show some simple
examples to highlight the core feature of each technology. In later chapters, you will get into
the details of each technology to improve the user experience of two JSF components—
ProInputDate and ProShowOneDeck.

The following are the four main players in this chapter:

Ajax': Ajax is the new name of an already established technology suite—the DOM,
JavaScript, and XMLHttpRequest. Ajax is used to create dynamic Web sites and to
asynchronously communicate between the client and server.

XUL: XML User Interface Language (XUL) which, pronounced zuul, was created by the
Mozilla organization (Mozilla.org) as an open source project in 1998. With XUL, developers
can build rich user interfaces that may be deployed either as “thin client” Web applica-
tions, locally on a desktop or as Internet-enabled “thick client” desktop applications.

XBL: Extensible Binding Language (XBL) is a language used by XUL to define new com-
ponents. XBL is also used to bridge the gap between XUL and HTML, making it easy to
attach behavior to traditional HTML markup.

HTC: Introduced in Microsoft Internet Explorer 5, HTCs provide a mechanism to imple-
ment components in script as DHTML behaviors. Saved with an .htc extension, an HTC
file is an HTML file that contains script and a set of HTC-specific elements that define the
component.

After reading this chapter, you should understand what these RITs are, what they provide,
and how you can create rich user interface components with them.

Introducing Ajax

Ajax has been minted as a term describing a Web development technique for creating richer
and user-friendlier Web applications. In this chapter, we will give you an overview of Ajax.

Ajax was first coined in February 2005 and has since taken the software industry by storm.
One of the reasons Ajax has gained momentum and popularity is the XMLHttpRequest object
and the way this object makes it possible for developers to asynchronously communicate with
underlying servers and any business services used by Web applications. Popular sites such as
Google GMail and Google Suggest are using Ajax techniques to provide users with rich inter-
faces that have increased the awareness of Ajax.

Although the name Ajax is new, the technologies listed as the foundation of this technique—
JavaScript, XMLHttpRequest, and the DOM—have been around for some time. In fact, the
latest addition to this suite of technologies—the XMLHttpRequest object—was introduced
by Microsoft in 1999 with the release of Internet Explorer 5.0 and was implemented as an
ActiveX component.

The XMLHttpRequest object, although widely used, is not a standard; it could at best be
called a “de facto” standard, since most modern browsers, including Firefox, Internet Explorer,

1 This term was first coined in an article by James Garrett of Adaptive Path.

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

Opera, and Safari, support it. However, a standard has been proposed that covers some of
the functionality provided by the XMLHttpRequest object—the DOM Level 3 Load and Save
specification.

Note The xMLHttpRequest object is not a W3C standard. The W3C DOM Level 3 Load and Save speci-
fication contains some similar functionality, but this is not implemented in any browsers yet. So, at the
moment, if you need to send an HTTP request from a browser, you will have to use the XMLHttpRequest
object.

With the XMLHttpRequest object, developers can now send requests to the Web server
to retrieve specific data and use JavaScript to process the response. This ability to send data
between the client and the Web server reduces the bandwidth to a minimum and saves time
on the server since most of the processing to update the user interfaces takes place on the
client using JavaScript.

The XMLHttpRequest Object

Since the XMLHttpRequest object is not a standard, each browser may implement support for
it slightly differently; thus, the behavior might vary among browsers. You will notice when
creating the sample application in this chapter that Microsoft’s Internet Explorer implements
the XMLHttpRequest object as an ActiveX object, whereas Mozilla Firefox treats it like a native
JavaScript object. However, most implementations support the same set of methods and
properties. This eases the burden on application developers, since the only difference is in
creating an instance of the XMLHttpRequest object. Creating an instance of the XMLHttpRequest
object can look like Code Sample 4-1 or Code Sample 4-2.

Code Sample 4-1. Creating an Instance of the XMLHttpRequest Object

var xmlhttp = new XMLHttpRequest();

Code Sample 4-2. Creating an Instance of the XMLHttpRequest Object Using ActiveXObject
var xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

It is also worth noting that the XMLHttpRequest object is not exclusive to standard HTML.
The XMLHttpRequest object can potentially be used by any HTML/XML-based Web technology
such as XUL or HTC.

Methods

An XMLHttpRequest object instance provides methods that can be used to asynchronously
communicate with the Web server (see Table 4-1).

175

176

CHAPTER 4 © USING RICH INTERNET TECHNOLOGIES

Table 4-1. XMLHttpRequest Object Methods

Method Description

open("method", "URL") Assigns destination URL, method, and other
optional attributes of a pending request

send(content) Transmits the request, optionally with a string that
can be posted or DOM object data

abort() Stops the current request

getResponseHeader ("headerLabel™) Returns the string value of a single header label

getAllResponseHeaders () Returns a complete set of headers (labels and val-

ues) as a string

setRequestHeader("label", "value") Assigns a label/value pair to the header to be sent
with a request

In Table 4-1, the open() and send() methods are the most common ones. The open("method",
"URL"[, "asynch"[, "username"[, "password"]]]) method sets the stage for the request and
upcoming operation. Two parameters are required; one is the HTTP method for the request
(GET or POST), and the other is the URL for the connection. The optional asynch parameter
defines the nature of this request—true being the default and indicating that this is an
asynchronous request. The other two optional parameters—username and password—allow
application developers to provide a username and password, if needed.

The send() method makes the request to the server and is called after you have set the
stage with a call to the open() method. Any content passed to this method is sent as part of the
request body.

Properties

Once an XMLHttpRequest has been sent, scripts can look to several properties that all imple-
mentations have in common (see Table 4-2).

Table 4-2. XMLHttpRequest Object Properties

Property Description

onreadystatechange Event handler for an event that fires at every state change

readyState Object status integer: 0 = uninitialized, 1 = loading, 2 = loaded,
3 = interactive, 4 = complete

responseText String version of data returned from server process

responseXML DOM-compatible document object of data returned from server
process

status Numeric code returned by server, such as 404 for “Not Found” or
200 for “OK”

statusText String message accompanying the status code

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

As with the XMLHttpRequest object methods, two properties will be used more frequently
than the others—responseText and responseXML. You can use these two properties to access
data returned with the response. The responseText property provides a string representation of
the data, which is useful in case the requested data comes in as plain text or HTML. Depending
on the context, the responseXML property offers a more extensive representation of the data.
The responseXML property will return an XML document object, which can be examined using
W3C DOM node tree methods and properties.

Traditional Web Application Development

Before getting into the details of Ajax, you need to first understand how a traditional Web
application works and what issues users, and application developers, face when a Web appli-
cation contains form elements. HTML forms are used to pass data to an underlying Web
server. You have probably encountered Web applications with forms, such as when you have
filled in a survey, ordered products online from Web sites such as eBay (http://www.ebay.com),
or filled in an expense report with a company’s HR application.

A form in a traditional Web application is defined by a special HTML tag (<form>) that has
a set of parameters—action, method, enctype, and target. The action parameter defines the
destination URL to pass the form data, the method parameter defines the HTTP method used
for the form postback, the enctype parameter defines the content type to be used for encoding
the data, and the target parameter defines the frame that should receive the response.

Regular Postback

You can use two methods when submitting a form—POST and GET. With the HTTP GET method,
the form data set is appended to the URL specified by the action attribute (for example,
http://forums.oracle.com/forums/forum.jspa?forumID=83), and this new URL is sent to the
server. In JSF the value of the action attribute is provided by ViewHandler.getActionURL(viewId)
during rendering.

Note The <h:form> tag defined by the JSF specification does not have the method and action
attributes.

With the HTTP POST method, the form data set is included in the body of the request sent
to the server. The GET method is convenient for bookmarking, but should be used only when
you do not expect form submission side effects as defined in the W3C HTTP specification
(http://www.w3.0rg/Protocols/). If the service associated with the processing of a form
causes side effects (for example, if the form modifies a database row or subscribes to a serv-
ice), you should use the POST method.

Another reason for choosing the POST method over the GET method is that it allows
browsers to send an unlimited amount of data to a Web server by adding data as the message
body after the request headers on an HTTP request. The GET method is restricted to the URL
length, which cannot be more than 2,048 characters. POST removes any limitations from the
transmitted data length.

177

178 CHAPTER 4 © USING RICH INTERNET TECHNOLOGIES

Note The GET method restricts form data set values to ASCII characters. Only the POST method (with
enctype="multipart/form-data") is specified to cover the entire [ISO10646] character set.

When the user submits a form (for example, by clicking a submit button), as shown in
Figure 4-1, the browser processes the controls within the submitted form and builds a form
data set. A form data set is a sequence of control-name/current-value pairs constructed
from controls within the form. The form data set is then encoded according to the content
type specified by the enctype attribute of the <form> element (for example, application/
X-www-form-urlencoded).

Browser Window HTMLFormElement Web Server
submit
. HTTP POST
2000k |
replace HTMLDocument - —- - ==

A

modify URL (bookmark)

A

Figure 4-1. Sequence diagram over a regular postback

The encoded data is then sent as a url-formencoded stream back to the server (HTTP
POST). The server response contains information about the response status indicating that
the request has succeeded (HTTP status code 200 “OK”) and sends a full-page response. The
browser will then parse the HTML sent on the response to the HTML DOM and render the
page in the browser window. Any resources required by the page will be reverified and possi-
bly downloaded again from the server. After the HTML document has been replaced in the
browser window, the URL in the browser location bar is also modified to reflect the page from
the previous page form action.

Alternatively, the server response can contain information indicating that the request has
failed (for example, HTTP status code 404 “Not Found”).

Side Effects of Regular Postback

The obvious undesired side effect of regular postback is that it will cause the page to flicker
when the page is reloaded in the browser window, and at worst the user will have to wait while

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

the page downloads all the required resources to the client browser again. Other less promi-
nent, but still annoying, side effects are the loss of scroll position and cursor focus.

Note Most browsers today have excellent client-side caching functionalities that work well to prevent
pages from reloading resources from the Web server, unless caching is turned off or the application is using
HTTPS, in which case content may be prevented from being cached on the client.

As part of a page design, it might be required to have multiple forms on a page. When
multiple forms are available on a page, only one form will be processed during postback, and
the data entered in other forms will be discarded.

One benefit is that bookmarking is possible with regular postbacks. However, the user is
often fooled by the URL set in the location bar, since it reflects what was last requested and
not what is returned on the response. When the user selects the bookmark, it will return to the
previously submitted page. A regular postback also allows the user to click the browser back
button to return to the previous page with the only side effect that a form post warning will
occur.

Ajax Web Application Development

Developing sophisticated Ajax-enabled applications is not something for the everyday applica-
tion developer, and just as the Trojans feared Ajax on the battlefield, even the most experienced
Web designer dreads to attack Ajax. A major part of the Ajax framework is the client-side
scripting language JavaScript. As many Web designers have experienced, JavaScript is not an
industrial-strength language and is claimed by many to lack support in professional develop-
ment tools.

However, in our opinion, at least two really good JavaScript tools are available—Microsoft’s
Visual Studio and Mozilla’s Venkman. What is true, though, is that maintaining Ajax applications
is difficult; the lack of browser consistency in JavaScript implementations makes maintaining
browser-specific code a challenge.

MOZILLA'S VENKMAN DEBUGGER

Venkman is the code name for Mozilla’s JavaScript debugger (http://www.mozilla.org/projects/
venkman/). Venkman aims to provide a powerful JavaScript debugging environment for Mozilla-based
browsers, including the Netscape 7.x series of browsers and Mozilla milestone builds. It does not include
Gecko-only browsers such as K-Meleon and Galeon. The debugger is available as an add-on package in XPI
format and has been provided as part of the Mozilla install distribution since October 3, 2001.

179

180

CHAPTER 4 ' USING RICH INTERNET TECHNOLOGIES

Ajax Postback

Now that you have familiarized yourself with regular postbacks, it is time to look at Ajax. This
section will give you an overview of how to use Ajax postbacks to handle events. You can use
Ajax to take control of the form submit action, and instead of using the regular form submit
action, you use an XMLHttpRequest object to asynchronously submit your request to the Web
server. As a side effect, when the user submits a form (for example, by clicking a submit but-
ton), no browser helps you process the controls within the submitted form. You now need to
handle any form fields that need to be part of the postback and use them to build a form data
set—control-name/current-value pairs. You then take the form data set and simulate the
encoding (url-formencoded) to provide the same syntax as a regular postback (see Figure 4-2).

Browser Window Client-Side Script Web Server
submit _ new XMLHttpRequest
- — - - .
open
send HTTP POST
200 OK
callback - === -

getResponse XML MMext
AMLDocument/String

modify HTMLDocument g-—-—-=-—=m— 1

A

Figure 4-2. Sequence diagram over an XMLHttpRequest postback

After you have created the XMLHttpRequest object, you use the open() method to set the
HTTP method—GET or POST—intended for the request and the URL for the connection. After
you have set the stage for your XMLHttpRequest operation, you send the encoded data, using
the XMLHttpRequest object, as a url-formencoded stream back to the server (HTTP POST). For
the Web server, the request will appear as a traditional HTTP POST, meaning that the Web
server cannot tell the difference between a regular postback and your Ajax postback. For a JSF
solution, this means an Ajax request can be picked up the same way as a regular postback
request, allowing server code (for example, JSF request lifecycle) to be unaffected.

If the request is successful, the ready state on your XMLHttpRequest object is set to 4,
which indicates that the loading of the response is complete. You can then use two properties
to access data returned with the response—responseText and responseXML.

The responseText property provides a string representation of the data, which is useful in
case the requested data comes in the shape of plain text or HTML. Depending on the context,
the responseXML property offers a more extensive representation of the data.

The responseXML property will return an XML document object, which is a full-fledged
document node object (a DOM nodeType of 9) that can be examined using the W3C DOM node

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

tree methods and properties. In this traditional Ajax approach, the Ajax handler is in charge of
sending the data, managing the response, and modifying the HTMLDocument object node tree.

Note DOM elements can be different types. An element’s type is stored in an integer field of nodeType
(for example, COMMENT _NODE = 8 and DOCUMENT NODE = 9). For more information about the different
nodeTypes, please visit http://www.w3.org/.

Side Effects of Ajax Postback

As with the regular postback, desired and undesired side effects exist when using Ajax for
postback. The most prominent and desired side effect is the XMLHttpRequest object’s strength
and ability to set or retrieve parts of a page. This will remove flickering when data is reloaded
and increase performance of the application, since there is no need to reload the entire page
and all its resources. The undesired side effect of this is that users will typically no longer be
able to bookmark a page or use the back button to navigate to the previous page/state.

Another important, but less immediately obvious, implication of using XMLHttpRequest in
your application is that clients such as mobile phones, PDAs, screen readers, and IM clients
lack support for this technology. Also, Ajax requires additional work to make applications
accessible; for example, screen readers expect a full-page refresh to work properly.

Note With XMLHttpRequest, you do not need the form element in an application, but one function
requires a form regardless of regular postbacks or Ajax postbacks—file upload. If you need file-upload func-
tionality in your application, you have to use form. submit (). In the context of Ajax, you can do this by using
a hidden <iframe> tag and the form.submit() function and setting target.

Ajax Is Not a Magic Wand

As you know, the XMLHttpRequest object is an important player in Ajax, since it transports data
asynchronously between the client and the server. It is important to understand that the
XMLHttpRequest is not a magic wand that automatically solves all your problems. You still need
to watch performance and scalability carefully using the XMLHttpRequest object. If you are
aware of this, it is easy to understand that it is what you send on the request, receive upon the
response, and manage on the client that will affect your performance.

Building Ajax Applications

Traditional Web applications are in most cases slower than their desktop application counter-
parts. With Ajax, you can now send requests to the Web server to retrieve only the data needed
using JavaScript to process the response, which creates a more responsive Web application.
Figure 4-3 illustrates a page using Ajax to asynchronously communicate with the back-end

181

182 CHAPTER 4 ' USING RICH INTERNET TECHNOLOGIES

and provide a Book Titles drop-down list that includes certain books based on what category
the user enters.

&) Pro JSF : Ajax - Mozilla Firefox (==
File Edit View Go Bookmarks Tools Help

@ -5~ @ @ L] http:/127.0.0.1:8988chapter4-context-root/ajax-books /prototype-ch4.html M

Book Category
Book Titles | [enter a book category] M

Done

Figure 4-3. An HTML page using Ajax to filter a list of books based on category

When the user tabs out of the Book Category field, the drop-down list is populated with
books based on the entered category without a page refresh.

Figure 4-4 shows the result of entering Ajax as the category and tabbing out of the Book
Category field.

&) Pro JSF : Ajax - Mozilla Firefox (==
File Edit View Go Bookmarks Tools Help

@ -5~ @ @ L] http:/127.0.0.1:8988chapter4-context-root/ajax-books /prototype-ch4.html M

Book Category AJAX

Book Titles | [select] i~
[select]
Pro JSF and AJAX: Building Rich Internet Components
Foundations of AJAX
Ajax Patterns and Best Practices

Done

Figure 4-4. An HTML page using Ajax to filter a list of books based on category

As you can see, the Book Titles drop-down list has been populated with books about the
related topic.

A traditional Ajax application leverages standard HTML/XHTML as the presentation layer
and JavaScript to dynamically change the DOM, which creates an effect of “richness” in the

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES 183

user interface with no dependency on a particular runtime environment. Code Sample 4-3
shows the actual HTML source behind this simple application.

Code Sample 4-3. An HTML Page Leveraging Ajax to Update a <select> Element

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<script type="text/javascript"”
src="projsf-ch4/dynamicBookList.js" >
</script>
<title>Select a book</title>
</head>
<body>
<form name="form" method="get">
<table>
<tr>
<td align="right">Book Category</td>
<td>
<input type="text" size="3" maxlength="8"
onchange="populateBookList('/chapter4-context-root/projsf-cha',
'bookListId’, this.value);" />
</td>
</tr>
<tr>
<td align="right">Book Title</td>
<td >
<select id="bookListId" >
<option value="[none]">
[enter a book category]
</option>
</select>
</td>
</tr>
</table>
</form>
</body>
</html>

At the top of this page, you have a reference to your Ajax implementation—
dynamicBookList.js. This code adds an onchange event handler to the <input> element that
will call a JavaScript function, populateBookList(), which is invoked when the cursor leaves
the input field. The populateBookList() function takes three arguments—the service URL for
retrieving the book list data, the book category entered in the input field this.value, and the
ID of the select element to populate with books ('bookListId").

184

CHAPTER 4 ' USING RICH INTERNET TECHNOLOGIES

The Ajax Book Filter Implementation

The Ajax book filter implementation consists of three JavaScript functions—
populateBookList(), createHttpRequest(), and transferListItems()—and a data source
containing information about the books. As soon as the cursor leaves the Book Category
field, the getBookList() function is invoked (see Figure 4-5).

Browser Window populateBookList() createHttpRequest() Web Server
onblur - call new | XMLHttpRequest
o _
xmihttp
‘ _________ -
open
send HTTP GET
_
200 OK

callback - - ==

getResponseText

String

modify HTMLDocument - T

A

Figure 4-5. Sequence diagram over the book filter XMLHttpRequest

The populateBooklList() function will call the createHttpRequest () function, which will
create a new instance of the XMLHttpRequest object. You then use this XMLHttpRequest object to
set the stage for your request and send the encoded data as a url-formencoded stream back to
the server (HTTP GET). If the request is successful, the XMLHttpRequest object calls your callback
function. This function will get the response text from the XMLHttpRequest object and use the
content passed (for example, a list of books) to modify the HTML document and populate the
<select> element with data. Code Sample 4-4 shows the actual code behind this book filter.

Code Sample 4-4. The populateBookList() Function
/**

* Populates the select element with a list of books in a specific book category.
ES

* @param serviceURL the service URL for retrieving JSON data files
* @param selectId the id of the target select element to populate
* @param category the book category for the populated books

*/
function populateBookList(

serviceURL,

selectld ,

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

category)
var xmlhttp = createHttpRequest();

// You can use any type of data source, but for the sample
// you are going to use a simple JSON file that contains your data.
var requestURL = serviceURL + '/booklist-' + category.tolLowerCase() + '.json';
xmlhttp.open("GET", requestURL);
xmlhttp.onreadystatechange=function()
{
if (xmlhttp.readyState == 4)
{
if (xmlhttp.state == 200)
{
transferListItems(selectId, eval(xmlhttp.responseText));
15
1
15
xmlhttp.send(null);
¥

With this code, you first create a new instance of the XMLHttpRequest object by calling a
function called createHttpRequest(). You initiate your request by calling the open("GET",
requestURL) method on the XMLHttpRequest object instance and passing two arguments. The
GET string indicates the HTTP method for this request, and the requestURL variable represents
the URL to your data source, which in this case is a simple text file. If a request is successful,
the readyState on your XMLHttpRequest object is set to 4, and the state is set to 200. You use
the onreadystatechange event handler to invoke the transferListItems() function when
readyState is set to 4, passing the responseText property from the XMLHttpRequest object. The
transferListItems() function will take the returned string and populate the <select> element
with data.

Creating an instance of the XMLHttpRequest object is simple, although as shown in Code
Sample 4-5, you have a few things to consider.

Code Sample 4-5. The createHttpRequest() Function That Creates the XMLHttpRequest Object
Vs

* Creates a new XMLHttpRequest object.

*/
function createHttpRequest()

{
var xmlhttp = null;

if (window.ActiveXObject)

{

}
else if (window.XMLHttpRequest)

xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");

185

186 CHAPTER 4 © USING RICH INTERNET TECHNOLOGIES

{

xmlhttp = new XMLHttpRequest();
}
return xmlhttp;

};

Code Sample 4-5 creates the XMLHttpRequest object, and as in many browsers with
JavaScript support, different browsers support the XMLHttpRequest object slightly differently.
This means you need to implement support for different browsers in your createHttpRequest()
function. For Microsoft Internet Explorer, you have to create the XMLHttpRequest object using
new ActiveXObject("Microsoft.XMLHTTP"). With any browser supporting the Mozilla GRE, you
can use a native call—new XMLHttpRequest()—to create an instance of the XMLHttpRequest
object.

The transferListItems() function, shown in Code Sample 4-6, returns the data requested
by the user and populates the <select> element with data.

Code Sample 4-6. The transferListItems() Function That Populates the <select> Element
/**
* Transfers the list items from the JSON array
* to options in the select element.
*
* @param selectId the id of the target select element to populate
* @param listArray the retrieved list of books
*/
function transferListItems (
selectld,
listArray)

{

var select = document.getElementById(selectId);

// reset the select options
select.length = 0;
select.options[0] = new Option('[select]');

// transfer the book list items

for(var i=0; i < listArray.length; i++)

{
// create the new Option
var option = new Option(listArray[i]);
// add the Option onto the end of the select options list
select.options[select.length] = option;

I

b

The transferListItems() function takes two arguments—selectId and 1istArray. The
listArray represents the data returned by your request, and selectId represents the <select>

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

element that is being populated with this data. Code Sample 4-7 is just showing your simple
data source, in JavaScript Object Notation (JSON) syntax, so that you can replicate the sample
application.

Code Sample 4-7. Source for Your Ajax Titles—ajax.json

['Pro JSF and Ajax: Building Rich Internet Components',
'Foundations of Ajax',
'Ajax Patterns and Best Practices']

This file contains a JavaScript expression that defines a new array of Ajax related books.

Note JSON is a lightweight data interchange format. It is based on a subset of the JavaScript program-
ming language (standard ECMA-262, third edition). JSON is a text format that is completely language
independent but uses conventions familiar to programmers of the C family of languages, including C, C++,
C#, Java, JavaScript, Perl, Python, and many others.

Ajax Summary

You should now understand what Ajax is and be familiar with the XMLHttpRequest object,
which is a vital part of the Ajax technique, and the lifecycle of a regular XMLHttpRequest. You
should also have enough knowledge to be able to create simple Ajax solutions. In the coming
chapters, you will dive deeper into Ajax.

Introducing Mozilla XUL

What is Mozilla XUL2? Is it a crossbreed between a dinosaur and an evil Ghostbuster spirit?
No, Mozilla XUL is an open source project that is known as the development platform for the
Mozilla Firefox browser and Mozilla Thunderbird email client. In the following sections of this
chapter, you will get a high-level overview of Mozilla XUL and its subcomponents. In 1998 the
Mozilla organization (Mozilla.org) created an open source project called XUL, which is an
extensible UI language based on XML and, as such, can leverage existing standards including
XSLT, XPath, the DOM, and even Web Services (SOAP).

Using XUL, developers can build rich user interfaces that can be deployed as Web appli-
cations, as desktop applications locally, or as desktop applications on other Internet-enabled
devices. XUL leverages the support of the Mozilla Gecko Runtime Environment (GRE) in order
to fully provide the consumer with a rich user interface. The Firefox browser and the Thunder-
bird email client, as well as numerous plug-ins, are available for these clients and are two good
examples of applications based on XUL and the Mozilla GRE.

One of the great features of XUL is its extensibility. Using XBL, XUL provides a declarative
way to create new and extend existing XUL components. XBL can also bridge the gap between
XUL and HTML, since it is not possible to embed XUL components directly into an HTML

187

188 CHAPTER 4 © USING RICH INTERNET TECHNOLOGIES

page. The following section introduces how to build XUL applications and some of the com-
ponents used when building XUL applications.

Tip An excellent sample to look at to get a feel for what is possible with XUL is the Mozilla Amazon
Browser (MAB) at http://www.faser.net/mab/.

Building XUL Applications

The idea behind XUL is to provide a markup for building user interfaces, much like HTML,
while leveraging technologies such as CSS for the look and feel and JavaScript for the event
and behavior. Also, APIs are available to give developers access to read from and write to file
systems over the network and give them access to Web Services. As an XML-based language,
developers can also use XUL in combination with other XML languages such as XHTML and
SVG. You can load an application built with XUL in three ways:

* You can load the XUL page the traditional way from the local file system.
* You can load it remotely using an HTTP URL to access content on a Web server.

* You can load it using the chrome URL provided by the Mozilla GRE.

XUL Components

XUL comes with a base set of components (see Table 4-3) that are available through the
Mozilla GRE, and as such, XUL does not need to download components to draw an applica-
tion in the browser. You can also design your own components with XUL; these will need to be
downloaded upon request and cached in the browser.

MOZILLA XUL'S CHROME SYSTEM

In addition to loading files from the local file system or from a Web server, the Mozilla engine has a special
way of installing and registering applications as a part of its chrome system. The chrome system allows
developers to package applications and install them as plug-ins to clients supporting the Mozilla GRE. XUL
applications deployed in this way gain read and write access to the local file system, and so on. This type of
access can be hard to achieve in a traditional Web application unless the application has been signed with a
digital certificate, and the end-user grants access permission.

An important distinction exists between accessing an application via an HTTP URL (http://) and
accessing it via a chrome URL (chrome: //). The chrome URL always refers to packages or extensions that
are installed in the chrome system of the Mozilla engine. An example of an application that can be reached
by a chrome URL is chrome: //browser/content/bookmarks/bookmarksManager . xul. This chrome
URL will open the Bookmarks Manager available in the Firefox browser.

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

Table 4-3. Subset of Available XUL Components*

Component Name

Description

<buttony

<window>

<menubar>

<menu>

<menupopup>

<menuitem>

<radio>

<radiogroup>

<checkbox>

<box>

<splitter>

<image>

A button that can be clicked by the user. Event handlers can be used to
trap mouse, keyboard, and other events. A button is typically rendered
as a gray outset rectangle. You can specify the label of the button by
using the label attribute or by placing content inside the button.

Describes the structure of a top-level window. It is the root node

of a XUL document, and it is by default a horizontally oriented box.
Because it is a box, it takes all the box attributes. By default, the window
will have a platform-specific frame around it.

A container that usually contains menu elements. On a Mac, the menu
bar is displayed along the top of the screen, and all non-menu-related
elements inside the menu bar will be ignored.

An element, much like a button, that is placed on a menu bar. When
the user clicks the <menu> element, the child <menupopup> of the menu
will be displayed. This element is also used to create submenus.

A container used to display menus. It should be placed inside a menu,
menu list, or menu-type button element. It can contain any element
but usually will contain <menuitem> elements. It is a type of box that
defaults to vertical orientation.

A single choice in a <menupopup> element. It acts much like a button, but
itis rendered on a menu.

An element that can be turned on and off. Radio buttons are almost
always grouped together in clusters. Only one radio button within the
same <radiogroup> can be selected at a time. The user can switch
which radio button is turned on by selecting it with the mouse or
keyboard. Other radio buttons in the same group are turned off. A
label, specified with the label attribute, can be added beside the radio
button to indicate its function to the user.

A group of radio buttons. Only one radio button inside the group can
be selected at a time. The radio buttons can direct either children of
the <radiogroup> or descendants. Place the <radiogroup> inside a
<groupbox> if you would like a border or caption around the group.
The <radiogroup> defaults to vertical orientation.

An element that can be turned on and off. The user can switch the state
of the check box by selecting it with the mouse. A label, specified with
the label attribute, may be added beside the check box to indicate to
the user its function.

A container element that can contain any number of child elements.

If the box has an orient attribute that is set to horizontal, the child
elements are laid out from left to right in the order they appear in the
box. If orient is set to vertical, the child elements are laid out from top
to bottom. Child elements do not overlap. The default orientation

is horizontal.

An element that should appear before or after an element inside a
container. When the splitter is dragged, the sibling elements of the
splitter are resized.

An element that displays an image, much like the HTML element.
The src attribute can be used to specify the URL of the image.

*Source: http://xulplanet.com/references/elemref/

189

190

CHAPTER 4 © USING RICH INTERNET TECHNOLOGIES

We will cover the details of XBL shortly, but the sample XUL file in Code Sample 4-8
demonstrates how to embed standard, namespaced HTML elements into base XUL controls.

Code Sample 4-8. A Simple XUL File with Embedded HTML Elements

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css" ?>
<xul:window title="Pro JSF and AJAX: Mozilla XUL" align="start"
xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns :html="http://www.w3.0rg/1999/xhtml" >
<xul:groupbox>
<xul:caption label="Search" />
<xul:hbox>
<html:input id="find-text" />
<xul:button label="Search" />
</xul:hbox>
</xul:groupbox>
</xul:window>

Code Sample 4-8 shows how to use a namespaced HTML input element—<html: input
id="find-text"/>—embedded in a XUL page and mixed with regular XUL components.

To be able to deploy and run a XUL application on a remote server, the Web server needs
to be configured to send files with the content type of application/vnd.mozilla.xul+xml. A
browser that uses the Mozilla GRE (Netscape and Firefox, in other words) will use this content
type to determine the markup used by the requesting application. A browser with the GRE
does not use the file extension unless the file is read from the file system.

Events, State, and Data

Depending on what type of client is being developed—thick or thin—the event handling will
be slightly different. This section, however, is showing XUL for Web deployment, and you use
JavaScript to handle events and application logic.

Using XUL event handling is not that different from using HTML event handling. The
GRE implementation supports DOM Level 2 (and partially DOM Level 3), which is virtually the
same for HTML and XUL. Changes to the state and events are propagated through a range of
DOM calls. XUL elements come with predefined event handlers, much like the event handlers
provided with the standard HTML elements.

Code Sample 4-9 shows a simple use case where a button will launch an alert that will
display the value entered by the user in an input field.

Code Sample 4-9. A Simple Use Case of an Event and Predefined Event Handler

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css"?>

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

<xul:window title="Pro JSF and AJAX : Mozilla XUL" align="start"
xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:html="http://www.w3.0rg/1999/xhtml" >
<xul:groupbox>
<xul:caption label="Search" />
<xul:hbox>
<html:input id="find-text" />
<xul:button label="Search"
oncommand="alert('Book choice: ' +
document.getElementById('find-text').value)" />
</xul:hbox>
</xul:groupbox>
</xul:window>

Figure 4-6 shows the aforementioned code running in Mozilla Firefox.

@ 2|E3

=

File Edit View Go Bookmarks Tools Help

@ -5 - @ @ L] http:/{127.0.0.1:8958chapter 4-context-root/xul-event/prototype-ch4.xul [V]

Search
[F’ro JSF: Building Rich |

hitp://127.0.0.1:8988

/v Book cheice: Pro J5F: Building Rich Internet Compnents

A\

Done

Figure 4-6. A simple XUL file rendered in the Firefox browser

As in HTML, developers can use JavaScript functions located in external files of the form
myScript.js. You can access these methods and functions by using the src attribute on the
<script> element or by embedding them in the page. Developers can refer to a remote server
using the http:// URL, as shown in Code Sample 4-10.

Code Sample 4-10. Script Reference Using http://

<script type="text/javascript" src="http://www.apress.com/projsf/js/myScript.js">

191

192

CHAPTER 4 © USING RICH INTERNET TECHNOLOGIES

Alarge set of event handler attributes is available, and some of them work only on specific
XUL/HTML elements. An example is the XUL <window> element that listens for DOM events
(for example, load). Table 4-4 lists a subset of the available predefined event handlers.

Table 4-4. Listing of Predefined Event Handlers Provided by the GRE DOM Implementation*

Event Handler Description

onload An event handler property for window loading. This event is being sent
when the window element is finished loading and when all objects in the
document are available in the DOM tree. This event handler can also be
used on image elements.

oncommand This event replaces the onclick event handler and is called when an
element is activated. The activation can vary from element to element,
but essentially it can be called from different user interactions such as
clicking and hitting the Enter key or shortcut keys, which is not the case
for the onclick event handler.

onblur The blur event is raised when an element loses focus.
onfocus The opposite of the onblur event. This event is raised when an element
gets focus.

*Source: http://www.xulplanet.com

Creating Custom XUL Components Using XBL

To fully understand how Mozilla XUL can provide a mechanism for JSF to use XUL as a ren-
dering technology, you have to understand XBL. XBL is an XML-based language that allows
developers to extend XUL and add “custom” components to the already extensive set of XUL
elements. In XUL, developers can change the look and feel using CSS and can attach skins,
but they have no way to change the behavior of XUL elements in XUL itself.

To do this, developers have to use another language—XBL. Developers can look at XUL
as the “implementation” that comes with a set of base components or as tag libraries that can
be used to build a user interface, much like the JSF Reference Implementation. XBL is the lan-
guage developers use to extend XUL components and enable integration with HTML, similar
to how Java is used to extend JSF components.

Creating XBL Bindings

XBL is an XML language, and a file created with XBL contains a set of bindings. These bindings
each describe the behavior of a XUL component. Besides describing the behavior, these bind-
ings also describe the XUL elements that make up the component along with properties and
methods of the component. In Code Sample 4-11, the root shows that the <bindings> element
contains one <binding> element.

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

Code Sample 4-11. An XBL File Containing One Binding—pzrojsf-bindings.xml

<?xml version="1.0"?>

<xbl:bindings xmlns:xbl="http://www.mozilla.org/xbl"
xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:html="http://www.w3.0rg/1999/xhtml" >

<xbl:binding id="welcome" >
<xbl:content>
<xul:text value="Welcome, " />
<xul:text value="Guest" xbl:inherits="value=name" />
<xul:text value="!1" />
</xbl:content>
</xbl:binding>
</xbl:bindings>

A <bindings> element can contain an infinite number of <binding> elements. The name-
space in the <bindings> element defines what syntax will be used, and in Code Sample 4-11
it is XBL—xmlns=http://www.mozilla.org/xbl. The file also contains some XUL elements:
<xul:text/>. This is extremely useful to simplify development by encapsulating several com-
ponents that later can be referred to as one component.

The xbl:inherits attribute on one of the <xul:text> elements allows the <xul:text>
element to inherit values from the bound element by defining a variable name and, in this
case, assigning it to the value attribute. If no value is defined in the bound element in the page
using this component, the text field will default to Guest.

The id attribute on the <xbl:binding> element (in Code Sample 4-11, welcome) will iden-
tify the binding.

Using the XBL Bindings

To attach an XBL component or behavior to a XUL application, XUL uses CSS. Using CSS, a
developer can assign a binding to an element by setting the -moz-binding property to a URI
pointing to the XBL document.

Note Netscape has submitted a proposal to the W3C to define how to attach custom behavior to an
HTML element in “A Modular Way of Defining Behavior for XML and HTML” (http://www.w3.0rg/TR/
NOTE-AS).

Code Sample 4-12 illustrates a CSS file that attaches a binding to the <pro:welcome>
element.

193

194

CHAPTER 4 © USING RICH INTERNET TECHNOLOGIES

Code Sample 4-12. A Sample CSS File That Has the -moz-binding Property Set—projsf.css

@namespace pro url(‘http://projsf.apress.com/tags');

pro|welcome

{
-moz-binding: url('projsf-bindings.xml#welcome");

}

In Code Sample 4-12, the selector has the -moz-binding set to point to an XBL file named
projsf-bindings.xml and uses #welcome to refer to a specific binding in the XBL file. This is
similar to how anchors are referenced in HTML files.

Note To provide a consistent sample tag throughout the chapter’s samples, Code Sample 4-12 uses
(CSS3 standard syntax to simulate the sample element—<pro:welcome>.

If the binding id is omitted when assigned to an element, XUL will default to the first
binding listed. In Code Sample 4-12, the welcome binding has been declared as the id, and the
element that has been assigned this binding is <pro:welcome>.

In Code Sample 4-13, the projsf-bindings.css style sheet has been attached to the XUL
document, and two elements (<pro:welcome id="guest" /> and <pro:welcome id="duke"
name="Duke" />) are inserted in the page. The first element displays a welcoming greeting for
the specified user, “Duke”. The second element displays the “Welcome, ” string defined in the
XBL file plus a default value user, “Guest”. One of the cool features of using encapsulation of
behavior, as provided by XBL, is that it creates a document tree within the scope of the custom
component that is separate from the XUL page. What this means is that the content of the
XBL component is not “exploded” into the main document, losing encapsulation. Figure 4-7
shows the DOM using a DOM inspector.

Code Sample 4-13. A Sample HTML File with XUL Components—prototype-ch4.xul

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css" ?>
<?xml-stylesheet href="projsf-bindings.css" type="text/css" 2>
<xul:window title="Pro JSF : Mozilla XBL" align="start"
xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:pro="http://projsf.apress.com/tags" >
<xul:groupbox>
<xul:caption label="Greeting" />
<pro:welcome id="duke" name="Duke" />
<pro:welcome id="guest" />
</xul:groupbox>
</xul:window>

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

—
[& pom Inspector E]@
File Edit Search View Help
| | #4 [http://127.0.0. 1:3988 /chapter4-context-root)xbl-handler fprototype-ch4. xul Inspect
- Document - DOM Nodes b - Object - DOM Node b~
nodeMame id dass B Node Name:
= =document SIELELE pro:welcome
) saul:window Mamespace URL: | hytin: jjnrojsf, apress, com/tags
E!--xl_:l\:grnuphnx Mode Type: i
--xul:hbc-x groupbox-title e
[=-seul:box groupbox-body
- nodeMame nodeValue B
id duke
name Duke

guest

oul:text

Greeting
Welcome, Duke!
Welcome, Guest!

Figure 4-7. A page’s DOM tree with an XBL component

The direct benefits of encapsulation are that the component author has full control over
the behavior and look and feel and that the component is not exposing internal implementa-
tion details. In Figure 4-7, the nested <xul:text> elements are shown in the DOM inspector
but never exposed in the actual main document.

Extending the XBL Bindings

Apart from creating a widget that is a collection of one or more XUL elements (as shown in the
previous sections), you can also use XBL to add new properties and methods. XBL has three
types of items that can be added to the binding—fields, properties, and methods:

e The field item is a simple container that can store a value, which can be retrieved
and set.

e The property item is slightly more complex and is used to validate values stored in
fields or values retrieved from XBL-defined element attributes. Since the property item
cannot hold a value, you have no way to set a value directly on a property item without
using the onset handler or the onget handler. Using these handlers, you can perform
precalculation or validation of the value retrieved or modified.

 Methods are object functions, such as window.open(), that allow developers to add
custom functions to custom elements.

In Code Sample 4-14, these three items are defined in an <implementation> element that
is a child element of the <binding> element.

195

196 CHAPTER 4 ' USING RICH INTERNET TECHNOLOGIES

Code Sample 4-14. Adding Properties and Methods—pro-bindings.xml

<?xml version="1.0"?>

<xbl:bindings xmlns:xbl="http://www.mozilla.org/xbl"
xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:html="http://www.w3.0rg/1999/xhtml" >

<xbl:binding id="welcome" >
<xbl:content>
<xul:text id="greeting" value="Welcome, " />
<xul:text value="Guest" xbl:inherits="value=name" />
<xul:text value="!" />
</xbl:content>
<xbl:implementation>
<xbl:constructor>
<1 [CDATA[
this. greetingNode = document.getElementById('greeting');
1>
</xbl:constructor>
<xbl:property name="greeting"
onget="return this._greetingNode.getAttribute('value');"
onset="this._greetingNode.setAttribute('value', val);" />
</xbl:implementation>
</xbl:binding>
</xbl:bindings>

In Code Sample 4-14, you have added one method and one property. The method used
in Code Sample 4-14 is a special method supported by XBL called constructor. A constructor
is called whenever the binding is attached to an element. It is used to initialize the content
such as loading preferences or setting the default values of fields. The property has been
defined with an onget handler and an onset handler, which get and set the value attribute on
your <pro:welcome> tag. To access these properties and call methods on the custom element,
developers can use the getElementById() function. In Figure 4-8, a XUL button is added that
triggers the oncommand event handler.

&) Pro JSF : Mozilla XBL - Mozilla Firefox =Jo)&d
File Edit View Go Bookmarks Tools Help

@-=-g @0 hth::fflz?.ﬂ.ﬂ.1:ﬂQSSfd'laptEM(DntExt-mntthl-pranrty,f’prDhjtypE1:h4‘xu\[V]

Greeting

‘Welcome, Duke!
Welcome, Guest!

Greet Duke

Done

Figure 4-8. A page using the welcome XBL component

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

When the button Greet Duke is clicked, the text of the first <pro:welcome> tag changes
and displays a new welcome message instead of the default message defined earlier in the
projsft-bindings.xml file. Code Sample 4-15 shows the code behind this page.

Code Sample 4-15. A Sample XUL File with XBL Components—prototype-ch4.xul

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css" ?>
<?xml-stylesheet href="projsf-bindings.css" type="text/css" ?>
<xul:window title="Pro JSF : Mozilla XBL" align="start"
xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:pro="http://projsf.apress.com/tags" >
<xul:groupbox>
<xul:caption label="Greeting" />
<pro:welcome id="duke" name="Duke" />
<pro:welcome id="guest" />
<xul:button label="Greet Duke"
oncommand="var duke = document.getElementById('duke');
duke.greeting = 'Howdy, ';" />
</xul:groupbox>
</xul:window>

In Code Sample 4-15, a XUL button has been added that triggers the oncommand event
handler. The oncommand event handler will execute the script encapsulated—var duke =
document.getElementById('duke'); duke.greeting = 'Howdy, ';.This will set the value of the
XUL element with the identifier greeting defined in your binding to “Howdy, ” instead of the
default greeting “Welcome, ” causing Duke’s greeting to change to “Howdy, Duke!” whereas the
Guest greeting remains unchanged.

Event Handling and XBL Bindings

In XBL, developers can add event handlers directly to the XUL elements listed as children
to the content element (for example, <xul:button label="Press me!" oncommand=
"alert('welcome')" />). Sometimes developers need to add an event handler for all the
child elements in the content element.

In XBL, you can do this by adding a <handler> element. The <handler> element is a child
of the <handlers> element, and it can contain one or more event handlers. Each handler
defines the action that will be taken for a particular event in the scope of the binding in
which it is defined. If an event is not captured, it will just pass to the inner elements.

In Code Sample 4-15, you had a button and an event handler in the actual page source.
Code Sample 4-16 shows how you can move this functionality into an XBL component.

Code Sample 4-16. Adding Event Handlers—projsf-bindings.xml

<?xml version="1.0"?>

<xbl:bindings xmlns:xbl="http://www.mozilla.org/xbl"
xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:html="http://www.w3.0rg/1999/xhtml" >

<xbl:binding id="welcome" >
<xbl:content>

197

198 CHAPTER 4 ' USING RICH INTERNET TECHNOLOGIES

<xul:text value="Welcome, " />
<xul:text value="Guest" xbl:inherits="value=name" />
<xul:text value="1" />
</xbl:content>
<xbl:handlers>
<xbl:handler event="click" »
if (this.hasAttribute('name'))
alert('Nice to see you again, ' + this.getAttribute('name') + '.");
</xbl:handler>
</xbl:handlers>
</xbl:binding>
</xbl:bindings>

In Code Sample 4-16, one handler has been added to capture all click events in the context
of the welcome binding. The handler will display an alert only if the attribute name has been set
on the <pro:welcome> tag. You now have a simple but well-defined and encapsulated XUL com-
ponent. Code Sample 4-17 shows a simple XUL page that is using this new <pro:welcome> tag.

Code Sample 4-17. A Simple XUL Page Using an XBL Binding with Attached Event Handler

<?xml version="1.0"?>
<?xml-stylesheet href="chrome://global/skin/" type="text/css" ?>
<?xml-stylesheet href="projsf-bindings.css" type="text/css" ?>
<xul:window align="start"
xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:pro="http://projsf.apress.com/tags" >
<xul:groupbox>
<xul:caption label="Greeting" />
<pro:welcome id="duke" name="Duke" />
<pro:welcome id="guest" />
</xul:groupbox>
</xul:window>

In this page only one <pro:welcome> tag has the name attribute defined. So, when the page
is launched in a browser (a Mozilla GRE-compliant browser), the click event will launch an
alert only when the “Welcome, Duke!” text is clicked, as shown in Figure 4-9.

@ =%
file Edit View Go Bookmarks Tools Help
@-p -5 40 | [http://127.0.0.1:8988/chapter 4-context-root/xbl-handler fprototype-ch4.xul [V]

Greeting
Welcome, Duke! http://127.0.0.1:8988

Welcome, Guest!

,..-’,"\ Nice to see you again, Duke.
‘-

Daone

Figure 4-9. Simple XUL page using a custom XBL binding with attached event handler

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

XUL Summary

After reading the previous sections, you should understand the relationship between XUL and
XBL. You should also know how to create custom XUL components using XBL and how to use
them in the context of building XUL applications. In the next chapters, you will see how to
build a new RenderKit for your JSF components by leveraging the component model provided
by XUL and XBL.

Introducing Microsoft Dynamic HTML and HTC

In your continuing quest for a rich Internet component framework, the focus of this chapter
now switches to Microsoft’s offering. Microsoft has a similar offering to the Mozilla XUL tech-
nology through DHTML and HTC. These technologies rely on an underlying platform (in
other words, Internet Explorer) to provide a foundation for extending HTML elements.

Applications built with these Microsoft technologies are deployed and downloaded from
the Web. Microsoft’s DHTML is designed to deliver an easy markup for building rich Internet
applications.

When building applications with DHTML, developers will use regular HTML pages to
describe their Web application but with the ability to dynamically change the rendering
and content of the HTML page. HTC files can create reusable components that encapsulate
dynamic behaviors, much the same way as XBL works for XUL. The following sections will give
you an overview of Microsoft’s DHTML solution and show how you can build reusable compo-
nents with HTC.

WHY HTC AND NOT XAML?

Several reasons exist for not selecting XAML. One reason is that XAML requires .NET 2.0/Avalon, which ships
with Microsoft’s Vista release and is scheduled to be released at the end of 2006. Another project, XAMLON,
provides a preview implementation of Avalon, which is the runtime engine needed to build XAML applica-
tions. This implementation provides an early look at XAML-like technologies on a .NET 1.1 runtime. The
XAMLON preview implementation of XAML has two main drawbacks. First, it requires a .NET 1.1 runtime
plug-in for Internet Explorer. Second, it does not integrate (well) with HTML pages. If you wanted to have

a plug-in, you would use something that is established and can work cross-platform, such as Macromedia
Flash, and be done.

HTC Structure

DHTML was introduced in Internet Explorer 5.0 and was Microsoft’s first attempt to supply a
medium in which to build RIAs. DHTML made it possible to transform the behavior of stan-
dard HTML elements by using the behavior attribute of a CSS entry or by using the addBehavior
method in script.

199

200

CHAPTER 4 © USING RICH INTERNET TECHNOLOGIES

Note Microsoft has submitted a proposal to add and extend HTML elements, using CSS as the
bridge. This proposal is based on Microsoft’s solution to add behavior to HTML, which is similar to the
XUL solution. The proposal has been sent to the W3C and is named “Componentizing Web Applications”
(http://www.w3.0rg/ TR/1998/NOTE-HTMLComponents-19981023), in collaboration with Netscape
to define how to best add behavior and extend HTML elements—see “Behavioral Extensions to CSS” at
http://www.w3.0rg/TR/1999/WD-becss-19990804.

HTC, as noted previously, provides a means of packaging dynamic behavior into a sepa-
rate document. With DHTML and HTC, Microsoft has taken the approach of extending the
HTML markup rather than coming up with yet another markup for RIAs. The fact that HTC
leverages the HTML markup means you can focus purely on HTC, since HTML markup should
be familiar to developers reading this book.

HTC File Structure and Elements

Plainly put, HTC is just an HTML page with the file extension .htc. The file shown in
Code Sample 4-18 contains a set of HTC-specific elements, such as <public:property>,
<public:event>, and <public:method>, that list properties, events, and methods that define
the HTC component.

Code Sample 4-18. HTC File Structure

<html>
<head>
<public:component>
<public:property ... />
<public:event ... />
<public:method ... />

</public:component>

<script language=" ">
</script>
</head>
<body>
</body>
</html>
The <public:component> is used to define two behavior types—element behavior and
attached behavior. Code Sample 4-19 illustrates an attached behavior, which will modify an
existing element by setting the color to green. The <public:attach> element couples an event

raised on the client with an underlying function. In Code Sample 4-19 the function onColor ()
is attached to the mouseover event.

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

Code Sample 4-19. A Simple HTC File

<html>
<head>
<public:component>
<public:attach event="onmouseover" onevent="onColors()" />
</public:component>
<script>
function onColors()

{

runtimeStyle.color = "green";
}
</script>
</head>
<body>
</body>
</html>

HTC comes with a set of public elements that can be used to define the component.
Table 4-5 describes a subset of the available predefined elements.

Table 4-5. HTC Public Elements*

Name Description

COMPONENT Identifies the content of the file as an HTC

PROPERTY Defines a property of the HTC to be exposed to the containing document

DEFAULT Sets default properties for an HTC

ATTACH Binds a function to an event so that the function is called whenever the event
fires on the specified object

METHOD Defines a method of the HTC to be exposed to the containing document

EVENT Defines an event of the HTC to be exposed to the containing document

* Source: Microsoft MSDN (http://msdn.microsoft.com/workshop/author/behaviors/behaviors_node_entry.asp)

Event Handling and HTC

Microsoft’s implementation of the DOM is not standard, but it provides an implementation
that is similar to DOM Level 2 event handling that includes, for example, event bubbling and
cancellations. The following scripting languages are supported by HTC: Visual Basic Scripting
Edition (VBScript), Microsoft JScript, JavaScript, and third-party scripting languages that sup-
port the Microsoft ActiveX Scripting interfaces.

Scripts are encapsulated in <script> elements the same way as in a regular HTML page.
From these scripts, developers can access each HTC element as a script object, using the value
of the HTC element's id attribute as the name of the script variable. This allows all attributes
and methods of HTC elements to be dynamically modified as properties and methods of these
objects.

201

202 CHAPTER 4 © USING RICH INTERNET TECHNOLOGIES

In the DHTML object model, developers can declare an event handler function and
assign a call to that function or do the reverse and declare event handling code to associate
the function with the event.

A developer can assign a call to a function with HTC in three ways. Code Sample 4-20
and Code Sample 4-21 illustrate traditional HTML and JavaScript assignments, and Code
Sample 4-22 illustrates an alternative solution in HTC.

Code Sample 4-20. Assigning a Call to Function

<script>
function onColor()

{
.-

</script>

<input type="button" value="Press me!" onclick="onColor();" />

In Code Sample 4-20 the assignment has been done by the actual button using the
onclick event handler. Code Sample 4-21 assigns the function in the <script> element to
the proButton button.

Code Sample 4-21. Associating Function with an Event

<script for="proButton" event="onclick" >
function onColor()

{
}...

</script>

<input id="proButton" type="button" value="Press me!" />
Developers can also use the <public:attach> element to associate an event globally in the
component and assign it to a function, as shown in Code Sample 4-22.
Code Sample 4-22. A Globally Assigned Event Handler
<public:attach event="onclick" onevent="onColors()" />

This event handler will fire on all click events within this component.

Building DHTML Applications

In 1999, Netscape and Microsoft made a submission to the W3C to add behavioral extensions
to the CSS specification. These proposals have not yet been rolled into the CSS standard (and
are still a working draft for CSS 3), so Microsoft and Mozilla have implemented their own pro-
posed solutions to add behavior to an HTML element—Microsoft via HTC and Mozilla via XBL.
When Microsoft introduced the concept of DHTML with Internet Explorer 5.0, it used CSS to

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

attach a behavior directly to an existing HTML element. This way of attaching behavior to an
HTML element is referred to as an attached behavior and can be changed programmatically.

With the release of Internet Explorer 5.5, Microsoft introduced something called element
behavior. With element behavior, developers can build custom components that can be used
the same way as regular HTML elements but with the ability to add richer functionality via
script. The default way of defining element behaviors is by using HTC files. It is important to
not confuse the DHTML behavior—attached behavior—introduced in Internet Explorer 5.0
with element behaviors. Element behavior uses a different approach to bind to elements and
has other distinctive characteristics.

Looking at the HTC solution, the element behavior is applied to a bound element using
the import processing instruction. The import processing instruction imports a tag definition
from an element behavior. Code Sample 4-23 illustrates how a behavior is bound to an ele-
ment using this instruction.

Code Sample 4-23. A Simple HTML File with Attached Behavior

<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" >
<html xmlns:pro >
<?import namespace="pro" implementation="pro.htc" ?>
<head>
<title>Pro JSF : Microsoft HTC</title>
</head>
<body>
<div><pro:welcome name="Duke" /></div>
<divy><pro:welcome/></div>
</body>
</html>

An element behavior defines a custom tag, which can be used in a Web page like a standard
HTML tag. By setting the tagName attribute on the <public:component> element, developers can
turn an HTC file into a custom tag. The <?import namespace="pro" implementation="pro.htc"
?> element imports the pro.htc implementation and sets the identifier or prefix for the custom
tags provided in the . htc file to the declared namespace—pro.

As shown in Code Sample 4-24, the tagName attribute specifies the name of the custom
tag, which is defined in the HTC file.

Code Sample 4-24. Defining Element Behavior

<html>
<head>
<public:component tagName="welcome" >
<public:property name="name" value="Guest" />
<public:attach event="oncontentready" handler=
</public:component>

_constructor" />

<script type="text/javascript" >
function constuctor()

{

203

204 CHAPTER 4 ' USING RICH INTERNET TECHNOLOGIES

nameSpan.innerText = element.name;

}
</script>
</head>
<body>
Welcome, <span id="nameSpan"
onclick="if (element.name != 'Guest')
{
alert('Nice to see you again, ' + element.name);
1" >!
</body>
</html>

Figure 4-10 shows the page running in the Internet Explorer, and you can see that it is
only when the user clicks on Duke's greeting that the additional message is displayed.

€) - OJEs
: File Edit Vie avorites Tools Help ':;'
- - -) » 1 »
) Back, 3 - [®] &) @» |) search % Favorites 42 = i Links
: Address |@ http://127.0.0.1:8988 /chapter4-contextroot/htc-event/prototype-ch4. html [V]
Welcome. Duke!
Welcome, Guest! Microsoft Internet Explorer

! E Mice to see you again, Duke

@ Done B Internet

Figure 4-10. A page using the welcome HTC component

Importing HTC element behavior into an HTML page makes the custom element a first-
class member in the DOM hierarchy and the element behavior permanently bound to the
custom element. One of the key differentiators between element behavior and attached
behavior is that an attached behavior is asynchronously bound to an element, allowing it to
be attached and detached programmatically, whereas the element behavior is bound synchro-
nously to a custom element, is seen as a regular HTML element, and cannot be detached from
its custom element.

Component Encapsulation

When using HTC, developers can encapsulate a document tree within the HTC component, or
they can decide to explode the content into the HTML page and as such expose internal imple-
mentations. In HTC, you can encapsulate a DOM tree inside the HTC component by setting the
HTC declaration <public:defaults> to <public:defaults viewlLinkContent>. By default, docu-
ment fragments that are part of an HTC file are exploded into the HTML page, so developers
will have to manually set the viewlink property on the defaults declaration.

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

Browser performance of the initial page parse should be faster with the property
viewlink set on the <public:defaults> declaration (no exploding), but general interaction
with the component might be a little slower because of the indirection. We recommend using
the viewlink property if the interactivity performance is acceptable, since it allows for encap-
sulation and attendant benefits.

In Code Sample 4-25, viewLinkContent has been added to the defaults declaration, and as
such the content of the welcome component will not be exploded into the main HTML page.

Code Sample 4-25. HTC File with viewlink Set

<html>
<head>
<public:component tagName="welcome" >
<public:defaults viewlinkcontent="true" />
<public:property name="name" value="Guest" />
<public:attach event="oncontentready" handler=
</public:component>

_constuctor" />

<script type="text/javascript" >
function constuctor()

{
nameSpan.innerText = element.name;
}
</script>
</head>
<body>
Welcome, <span id="nameSpan"
onclick="if (element.name != 'Guest')
{
alert('Nice to see you again, ' + element.name);
1" >!
</body>
</html>

Note Deploying Microsoft DHTML applications has no specific requirements except the dependency on
Microsoft’s browser Internet Explorer 5.0 and above.

HTC Summary

As with XUL, HTC comes with a well-defined component model allowing application develop-
ers to encapsulate behavior into a reusable entity. From the previous sections about Microsoft’s
DHTML and HTC, you now know about the HTC structure and about elements and event han-
dling. You know the difference between element behavior and attached behavior. Later in this
book (see Chapter 9), you will leverage this knowledge to build a set of Renderers for your JSF
components that support HTC.

205

206

CHAPTER 4 ' USING RICH INTERNET TECHNOLOGIES

Comparing XBL and HTC

The lesson learned so far is that several technologies provide almost identical functionality
although they are implemented completely differently. If you look at the semantics of XBL and
HTC, you will see many similarities:

¢ Both use CSS to attach components or behavior to an HTML element.

* Both provide encapsulation of a document tree within the component, not exposing
internal implementation details.

* Both depend on the underlying browser platform.
The critical differences are as follow:
e XBLis based on XML, whereas HTC is based on HTML.

e They support different platforms—XBL needs Mozilla GRE, and HTC needs Microsoft’s
Internet Explorer.

If you compare the pieces essential to creating a component and using it, they will fall
into these categories—defining a component, implementing event handling, adding content,
and attaching the component to the page.

Defining a Component

Although the two are similar, the way they define a component is different. In HTC the rule is
one component per HTC file, whereas in XBL the recommendation is to have all related cus-
tom components in one file. This impacts how to define the component. In the HTC case, a
developer sets the tagName attribute on <public:component tagName="welcome" > to specify the
name of the tag for that particular HTC component.

In the XBL file, the binding ID will identify the component to be used with a specific ele-
ment—<binding id="welcome" >.The element is then defined in a CSS file by using an anchor
to couple the element to the right XBL binding/component.

Adding Content

In HTC the component content is encapsulated in the <body> element, and in XBL the content
is encapsulated in the <content> element.

Event Handling

The two technologies both support DOM, although, once again, with some slight differences.
XBL supports DOM Level 2 (and some Level 3), and HTC supports only DOM Level 1 and as
such supports only bubbling of events and cancellation, not capturing or at target. (This is
because no new version of Internet Explorer has been released over the past four years.)

Note The current version of Internet Explorer is 6.0. Microsoft is currently working on version 7.0 of its
browser Internet Explorer, which is code-named Rincon. When it finally hits the shelves, it will be more than
four years since the last release.

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

If you look at how event handling takes place in HTC and XBL, you will see some more
distinct differences:

e HTC has three different approaches to event handling—a developer can use
<public:attach> to declare a global event handler for the component, define a function
using the HTML element <script for="proButton" event="onclick">, assignittoa
specific element and event, and finally declare an event handler function and assign a
call to that function (for example, onclick="proButton()").

* XBL has two ways of defining event handlers—one is using a predefined event handler
such as onclick or onmouseover on an element, and the other is defining an event han-
dler globally for the component using the <handler> element. To add custom methods,
a developer can use the <method> element to define a custom event handler for the
component.

Attaching Components

Both technologies leverage CSS to attach behavior to an element. Attaching a component to
the HTML page using XBL, developers have to use the -moz-binding: url() attribute; using
HTC they have to use the behavior: url() attribute. Both of these approaches seem compara-
ble, but the end result is poles apart. In XBL the style class name (for example, pro\:welcome)
will become the tag <pro:welcome> and be interpreted as a first class element in the DOM tree,
obscuring any internal implementations.

With HTC it is different, since the CSS approach is used to attach a behavior to an
already existing HTML element (for example, H1 {behavior:url(projsf.htc)}) thatis not
declaring a first-class element in the DOM, and therefore it will expose internal imple-
mentations of that component. To create a first-class element, developers have to use the
<?import namespace="pro" implementation="pro.htc" ?> element and the namespace
<html xmlns:pro > to uniquely identify the imported component, and as mentioned earlier,
the name of the tag is declared in the HTC file using the tagName attribute.

JSF—The Greatest Thing Since Sliced Bread!

Of the technologies described in this chapter, it is only XUL and HTC that allow developers
to reuse components in Web applications. They allow the encapsulation of HTML, CSS, and
script into components that application developers can reuse. Ajax, on the other hand, deliv-
ers asynchronous communication to the server that can be used to provide users with a
responsive UL

These technologies solve most of the requirements coming from consumers, but they are
still lacking in support for the application developer.

What the market needs is a standard way of defining an RIA that can be deployed over the
Web without vendor lock-in. A working group, called Web Hypertext Applications Technology
(WHAT), is trying to create a standard tag library for extensions to HTML that work across all
browsers by leveraging technologies such as Mozilla’s XBL to achieve this. Technologies such
as Mozilla’s XBL allow for encapsulation of HTML, CSS, and script into components that appli-
cation developers can reuse but that are not standards.

207

208

CHAPTER 4 © USING RICH INTERNET TECHNOLOGIES

Note The WHAT working group (http: //www.whatwg.org/) is addressing the need for a sound and
rational development environment extending the standard HTML elements. This will take place through a set
of technical specifications that can be used and implemented in Web browsers such as Firefox, Mozilla, and
Internet Explorer.

Meanwhile, developers are falling back to the lowest common denominator—HTML—and
using technologies such as Ajax to build dynamic Web applications. This approach of develop-
ing Web applications has one severe drawback—it has no good reuse model. Currently, this
approach has no standard way for a developer to define reusable and easy-to-integrate HTML
components that have rich functionality with existing server-side logic. Currently developers
use JSP tag libraries to create reusable HTML components that access server-side logic, but this
is still low-level and cumbersome.

What is needed is a standard that can encapsulate these RITs using components instead
of markup in an effective model that allows application developers to build Web applications
with prefabricated blocks of functionality without concern for implementation details. Prefab-
ricated blocks, or components, allow application developers to build complex applications
with reusable components. This also allows application developers to focus on the actual
application structure rather than building the actual dynamic functionality themselves.

JSF is all about these kinds of reusable components!

Cross-Platform Support

An important aspect that developers and their managers need to take into account when
building applications is cross-platform support. Consumer requirements are increasingly
supporting handheld devices, Telnet clients, desktops, and so on. For developers with com-
plete control over the consumer base and infrastructure, this may not be important, but in
most cases it is.

Initially the term cross-platform meant the operating system the application runs on
(for example, Windows, Linux, Mac OS, Unix, and so on), but the advancement of Internet-
enabled devices means the cross-platform support matrix has become far more complex.
Several cross-platform solutions such as Java are available.

In most cases, applications need to be designed to use features of a specific platform,
which in turn is time-consuming and costly. For a developer to fully support an application
on only one platform requires lengthy lifecycles for compiling and debugging. Adding more
platforms to the mix, the time spent on developing a cross-platform application can grow
exponentially.

For the technologies used in this chapter—Ajax, XUL, and HTC—Mozilla’s XUL claims
that it has cross-platform support. That is partially true; you can deploy a XUL application to
any operating system that the Mozilla platform (GRE) supports.

Note XBL is already available for Firefox on the Mac, and it is coming to Safari 1.3/2.0.

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

You could also argue that Ajax provides cross-platform support, but it is the provider
of the Ajax solution that needs to ensure that every browser-specific quirk is supported.
So, although you have plenty of environments to deploy to, no true solution has full cross-
platform support.

Imagination As the Only Limit

JSF standardizes the server side for the application developer, but you still have to wait for the
presentation layer in the browser to standardize for component developers. JSF brings plat-
form independence to the application developer by separating the user interface from the
application, which makes it possible for the component author to change the presentation
layer without tampering with the application.

This is not solving the browser inconsistency issue, the maintenance difficulties, or the
cross-platform issue of the previously mentioned technologies, but it will help application
developers build RIAs in a standard way.

The three technologies described in this chapter—Ajax, XUL, and HTC—have their
advantages and drawbacks, so wouldn't it be great if you could combine the advantages into
one reusable standard component?

A JSF component developer can use XUL or HTC for presentation and Ajax for communi-
cation and then dynamically fall back to a traditional HTML solution if the client does not
support any of the three technologies. The application developer will be able to build one
application supporting multiple rendering technologies with one common programming
model—]JSP and Java.

A JSF Application Supporting Ajax, XUL, and HTC

To finish this chapter and map back to the previously covered technologies, the JSF sample
shown in Figure 4-11 illustrates a page containing your JSF input date component. In later
chapters, you will implement the support shown in this section. This version of your compo-
nent has been extended to include a pop-up calendar from which the user can pick a date.
This improved component leverages Ajax for communication and XUL and HTC as rendering
technologies.

| @ ProJsF : ProlnputDate - Mozilla Firefox (==
File Edit View Go Bookmarks Tools Help

<:5' - B @ @ L1 htm:fle?.D.D.1:8988fd13pter8-conhextfootffacesﬁnpuﬂi).[V]

Please enter a date with the pattern "d MMMNMM vyvy".

23 March 2006

< March 2006 >
Sun Mon Tue Wed Thu Fri Sat
26 27 28 1 2 3 4

5 6 7 8 910 11
12 13 14 15 16 17 18
19 20 21 22 & 24 25
26 27 28 29 3031 1

2 3 4 5 6 7

4]

Figure 4-11. A page built with JSF components using XUL as the rendering technology

209

210

CHAPTER 4 ' USING RICH INTERNET TECHNOLOGIES

Figure 4-11 shows a JSF page—inputDate. jspx—that contains your ProInputDate compo-
nent, which is rendering XUL content to the Mozilla Firefox browser.

Figure 4-12 shows the same page—inputDate. jspx—running in Internet Explorer. The
interesting part with this simple application is that you are using the best rendering technol-
ogy for each browser, and although not visible, the ProInputDate component is using Ajax to
asynchronously communicate with the server to receive dates that are selectable.

&1 ProJSF : ProlnputDate - Microsoft Internet Explorer E]@
© Elle Edit View Favorites Tools Help ':;'
@Back -) - [¥] [2] (» S search 7 Favorites » ;Links i

: Address |@ http:((127.0.0. 1:3988/chapter 10-conhextfootffacesﬁnpuﬂ)ahe.jspo

Please enter a date with the pattern "d MNMMNMM vyvy".
23 March 2006 =

< March 2006 >
Sun Mon Tue Wed | Thu | Fri | Sat
27| 28] 1| 2| 3] 4
5 6 7 8 9 10 11
12| 13| 14| 15| 16| 17| 18
19 20 21 2| & 24 25
26 27 28 29 30 31 1

2| 3| 4] s| e 7] s

296
2o

@ Done B Internet

Figure 4-12. The same page in Internet Explorer using HTC as the rendering technology

The source of the page (see Code Sample 4-26) is not that different from what you have
seen with XUL and HTC, but the main difference is that the application developer will not
need to learn two, or even three, ways of supporting RIAs in today’s browsers.

Code Sample 4-26. JSF Page Matching the XUL and HTC Samples

<?xml version="1.0" encoding="UTF-8" ?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2"
xmlns:pro="http://projsf.apress.com/tags"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html" >
<jsp:directive.page contentType="application/x-javaserver-faces" />
<f:view>
<pro:document title="ProJSF : ProInputDate" >
<h:form>
Please enter a date with the pattern "d MMMMM yyyy".

<pro:inputDate id="dateField"
title="Date Field Component"
value="#{inputDateBean.date}" >

CHAPTER 4 " USING RICH INTERNET TECHNOLOGIES

<f:convertDateTime pattern="d MMMMM yyyy" />
<pro:validateDate availability="#{inputDateBean.getAvailability}" />
</pro:inputDate>

<h:message for="theDate" />

<h:commandButton value="Submit" />

<h:outputText value="#{inputDateBean.date}" >
<f:convertDateTime pattern="d MMMMM yyyy" />
</h:outputText>
</h:form>
</pro:document>
</fiview>
</jsp:root>

Apart from the obvious namespaces, the sample contains one namespace that maps to
a custom component library (xmlns:pro="http://projsf.apress.com/tags") and a custom
component (<pro:inputDate ..."/>). Be patient—you will see the actual JSF implementation
in the coming chapters.

Summary

This chapter gave you some insight into three of the market’s leading view technologies for
RIAs: XUL, HTC, and Ajax. These technologies have proven they are more than capable of
providing users with rich and responsive interfaces. The chapter also touched on the issues
with these technologies such as lack of standards, platform support, and maintenance.

Looking ahead, the potential for JSF as a technology is unlimited. Component developers
can provide the community with a wide range of components supporting technologies from
HTML to XUL, including wireless and even character-based solutions; your imagination is the
only limit.

The chapter showed how to build reusable components with XBL and HTC, as well as how
to implement event handling, how to implement encapsulation, and how to embed custom
components in a page using the supported implementations (CSS and import) provided by
the different technologies. You also gained knowledge about Ajax and its key player, the
XMLHttpRequest object. For more information about these technologies, please visit the Mozilla
Web site (http://waw.mozilla.org), the Microsoft MSDN Web site (http://msdn.microsoft.com/),
and Wikipedia.org (http://en.wikipedia.org/wiki/AJAX).

211

CHAPTER 5

Loading Resources
with Weblets

If we have learned one thing from the history of invention and discovery, it is that in
the long run—and often in the short one—the most daring prophecies seem laughably
conservative.

—Arthur C. Clarke (1917-), The Exploration of Space, 1951

Web applications often use many different resource files, such as images, style sheets, or
scripts, to improve the presentation and interactivity of the user interface. JSF component
libraries that want to render attractive user interfaces will also leverage resource files.

The standard approach to providing resource files for a JSF component library is to serve
them directly from the Web application root file system. These resources are usually packaged
in an archive (such as a ZIP file) and are shipped separately from the JSF component library.

This chapter will introduce a new open source project—Weblets. The goal of this project
(located at http://weblets.dev.java.net) is to provide component writers with the ability to
serve resource files from a Java archive (JAR), rather than serving them from the Web applica-
tion root file system. Unlike traditional Web applications, which have statically configured
URL mappings defined in web.xml, JSF applications need dynamically configured URL map-
pings, based on the presence of a component library JAR file.

After reading this chapter, you should understand what weblets are, how resource loading
with weblets works, and how to leverage weblets in your own JSF component library. We will
show how to package the resources for a custom JSF component library to ensure you provide
application developers with an easy way of successfully installing your custom JSF component
library, including any resources needed by your component library.

Introducing Resource Loading

As you may remember from Chapters 2 and 3, we created two components—ProShowOneDeck
and ProInputDate—that need resources served to the client. We will use both components in
this chapter to illustrate how to use weblets.

213

214

CHAPTER 5 " LOADING RESOURCES WITH WEBLETS

For this example, the HtmlShowOneDeckRenderer component uses a JavaScript file,
showOneDeck. js, to expand a UIShowItem when a user clicks the rendered component. As
described in Chapter 3, this JavaScript file is traditionally served by the Web application via a
relative path that is hard-coded into the actual HtmlShowOneDeckRenderer code. This requires
the application developer to deploy additional resources that are delivered and packaged in
a separate archive file (for example, a ZIP file), often referred to as an installables archive.

Note The JSF HTML Basic RenderKit does not have any images, styles, or scripts, so no standard solu-
tion exists for the JSF resource-packaging problem.

Code Sample 5-1 shows the encodeResources () method from the HtmlShowOneDeckRenderer
class, which illustrates that the installable JavaScript resource files—/projsf-ch3/showOneDeck. js
and /projsf-ch3/showOneDeck.css—are served from the Web application root file system.

Code Sample 5-1. The encodeResources() Method in the HtmlShowOneDeckRenderer Code
ik
* Write out the ProShowOneDeck resources.
%
* @param context the Faces context
* @param component the Faces component
*/
protected void encodeResources(
FacesContext context,
UIComponent component) throws IOException
{
writeScriptResource(context, "/projsf-ch3/showOneDeck.js");
writeStyleResource(context, "/projsf-ch3/showOneDeck.css");

}

Although the installable approach is convenient for the JSF component writer, it
increases the installation burden on the application developer, who must remember to extract
the installables archive each time the component library is upgraded to a new version. There-
fore, you need a way to package the additional resources into the same JAR file that contains
the Renderer classes, thus simplifying deployment for application developers using your com-
ponent library.

Using Existing Solutions

Some of the more advanced JSF component libraries available today, such as Apache MyFaces
and Oracle ADF Faces, provide a custom servlet or filter solution for serving the resources
needed by their specific renderers. However, each component library tends to solve the same
problem in a slightly different way. The lack of any official standard solution therefore leads to
an additional configuration and installation burden for each component library.

CHAPTER 5 " LOADING RESOURCES WITH WEBLETS

Using Weblets

The open source Weblets project aims to solve the resource-packaging problem in a generic
and extensible way so that all JSF component writers can leverage it, and it places no addi-
tional installation burden on the application developer.

A weblet acts as a mediator that intercepts requests from the client and uses short URLs to
serve resources from a JAR file. Unlike the servlet or filter approach, a weblet can be registered
and configured inside a JAR file, so the component library Renderers, their resource files, and
the weblet configuration file (weblets-config.xml) can all be packaged together in the same
JAR file. You do not need to separately deploy additional installables when the component
libraries are upgraded to new versions. For the application developer, no configuration steps
are needed.

It is important to note that all resources served up by weblets are internal resources,
used only by the Renderer. Any resources, such as images, that are provided by the applica-
tion are supplied as component attribute values and loaded from the context root as external
resources.

Exploring the Weblet Architecture

Although weblets were designed to be used by any Web client, the weblet implementation has
been integrated with JSF using a custom ViewHandler, called WebletsViewHandler, as shown in
Figure 5-1. During the rendering of the main JSF page, the WebletsViewHandler is responsible
for converting weblet-specific resource URLs into the actual URLs used by a browser to request
weblet-managed resources.

Application Scope

Lifecycle ViewHandler

WebletsViewHandler

_LdYy getResoureceURL()
6.Render | . __.--777" L’ 7
° Response 7
s -
] L’
8 - 7
& Lo Bl L2 IMETA-INF/weblets-config.xml
‘/ 4
g | getWebletURL() |

\tAI getWebletRequest() |

WebletsPhaseListener
/

*~ . /WEB-INF/weblets-config.xml

| "\

Figure 5-1. High-level overview of weblet architecture

215

216

CHAPTER 5 " LOADING RESOURCES WITH WEBLETS

After receiving the rendered markup for the main page, the browser downloads each
additional resource using a separate request. Each request for a weblet-managed resource is
intercepted by the WebletsPhaselistener, which then asks the WebletContainer to stream the
weblet-managed resource file from the component library JAR file.

The weblet container is designed to leverage the browser cache where possible. This
improves the overall rendering performance by minimizing the total number of requests
made for weblet-managed resource files.

To ensure flexibility, ensure optimization, and avoid collisions with existing web applica-
tion resources, application developers can configure weblets to override any default settings
provided by the component writer.

Using Weblets in Your Component Library

You can configure weblets using a weblets-config.xml file, which must be stored in the
/META-INF directory of the component library JAR file. Configuring a weblet is similar to con-
figuring a servlet or a filter. Each weblet entry in the weblets-config.xml file has a weblet
name, an implementation class, and initialization parameters. The weblet mapping associates
a particular URL pattern with a specific weblet name, such as com.apress.projsf.ch5. The
weblet name and default URL pattern define the public API for the weblet-managed resources
and should not be modified between releases of the component library in order to maintain
backward compatibility.

As shown in Code Sample 5-2, the example component library packages resources in the
com.apress.projst.chs.renderer.html.basic.resources Java package and makes them avail-
able to the browser using the default URL mapping of /projsf-chs5/*.

Code Sample 5-2. Weblets Configuration File—weblets-config.xml

<?xml version="1.0" encoding="UTF-8" ?>
<weblets-config xmlns="http://weblets.dev.java.net/config" >
<weblet>
<weblet-name>com.apress.projsf.ch5</weblet-name>
<weblet-class>
net.java.dev.weblets.packaged.PackagedWeblet
</weblet-class>
<init-param>
<param-name>package</param-name>
<param-value>com.apress.projsf.ch5.render.html.basic.resources</param-value>
</init-param>
</weblet>

<weblet-mapping>
<weblet-name>com.apress.projsf.ch5</weblet-name>
<url-pattern>/projsf-ch5/*</url-pattern>
</weblet-mapping>
</weblets-config>

The PackagedWeblet is a built-in weblet implementation that can read from a particular
Java package using the ClassLoader and then stream the result to the browser. The package

CHAPTER 5 " LOADING RESOURCES WITH WEBLETS

initialization parameter tells the PackagedWeblet which Java package to use as a root when
resolving weblet-managed resource requests.

Specifying Weblet MIME Types

When weblets are used to serve a JSF component resource file, it is important that the browser
is correctly informed of the corresponding MIME type so the resource file can be processed
correctly. By default, weblets have built-in knowledge of many common MIME types, such as
text/plain, for common filename extensions, such as . txt. However, in some cases, a JSF
component might need to package resources that either are not previously known by weblets
or must be served using a different extension, preventing weblets from automatically recog-
nizing the correct MIME type to use.

Code Sample 5-3 shows how to define a custom MIME type mapping for resources served
by a weblet.

Code Sample 5-3. Weblets Configuration File Defining a Custom MIME Type

<?xml version="1.0" encoding="UTF-8" ?>
<weblets-config xmlns="http://weblets.dev.java.net/config" >
<weblet>
<weblet-name>com.apress.projst.ch5</weblet-name>
<weblet-class>
net.java.dev.weblets.packaged.Packagedheblet
</weblet-class>
<init-param>
<param-name>package</param-name>
<param-value>com.apress.projsf.ch5.render.html.basic.resources</param-value>
</init-param>
<mime-mapping>
<extension>htc</extension>
<mime-type>text/x-component</mime-type>
</mime-mapping>
</weblet>

<weblet-mapping>
<weblet-name>com.apress.projst.ch5</weblet-name>
<url-pattern>/projsft-chs/*</url-pattern>
</weblet-mapping>
</weblets-config>

Code Sample 5-3 defines a custom MIME type mapping of text/x-component for all
resources with the . htc extension served by this weblet.

Specifying Weblet Versioning

Weblets also has built-in support for versioning of the component library. This allows the
browser to cache packaged resources such as showOneDeck. js when possible, preventing
unnecessary round-trips to the web server.

217

218

CHAPTER 5 " LOADING RESOURCES WITH WEBLETS

Each time the browser renders a page, the browser ensures that all resources used by that
page are available. During the initial rendering of the page, the browser populates its cache
with the contents of each resource URL by downloading a fresh copy from the Web server. As
it does so, the browser records the Last-Modified and Expires time stamps from the response
headers. The cached content is said to have expired if the current time is later than the expira-
tion time stamp or if no expiration time stamp information exists.

On the next render of the same page, the browser checks to see whether the locally
cached resource has expired. The locally cached copy is reused if it has not expired. Other-
wise, a new request is made to the web server, including the last-modified information in
the If-Modified-Since request header. The web server responds either by indicating that the
browser cache is still up-to-date or by streaming the new resource contents to the browser
with updated Last-Modified and Expires time stamps in the response headers.

Weblets use versioning to leverage the browser cache behavior so that packaged resources
can be downloaded and cached as efficiently as possible. The browser needs to check for new
updates only when the cache has been emptied or when the component library has been
upgraded at the web server.

Code Sample 5-4 illustrates this versioning feature by adding a 1.0 version to the
com.apress.projst.chs weblet.

Code Sample 5-4. Weblets Configuration File Using 1.0 Versioning for Production

<?xml version="1.0" encoding="UTF-8" ?>
<weblets-config xmlns="http://weblets.dev.java.net/config" >
<weblet>
<weblet-name>com.apress.projst.ch5</weblet-name>
<weblet-class>net.java.dev.weblets.packaged.PackagedhWeblet</weblet-class>
<weblet-version>1.0</weblet-version>
<init-param>
<param-name>package</param-name>
<param-value>com.apress.projsf.ch5.render.html.basic.resources</param-value>
</init-param>
</weblet>

<weblet-mapping>
<weblet-name>com.apress.projst.ch5</weblet-name>
<url-pattern>/projsf-chs/*</url-pattern>
</weblet-mapping>
</weblets-config>

By specifying a weblet version, you indicate that the packaged resource will not change
until the version number changes. Therefore, the version number is included as part of the
resource URL determined at runtime by the WebletsViewHandler (for example, /projsf-ch5$1.0/
showOneDeck. js). When the WebletContainer services this request, it extracts the version
number from the URL and determines that the resource should be cached and should never
expire. As soon as a new version of the component library is deployed to the web application,
the resource URL created at runtime by the WebletsViewHandler changes (for example,
/projst-ch5$2.0/showOneDeck. js); thus, the browser’s cached copy of showOneDeck. js for
version 1.0 is no longer valid because the URL is different.

CHAPTER 5 " LOADING RESOURCES WITH WEBLETS

During development, the contents of packaged resources can change frequently, so it is
important for the browser to keep checking with the web server to detect the latest resource
URL contents. This check happens by default every time the main Web page is rendered if the
weblet version is omitted from weblets-config.xml.

Alternatively, the weblet configuration allows component writers to append - SNAPSHOT to
the version number. For example, 1.0-SNAPSHOT, as shown in Code Sample 5-5, indicates that
this file is under development and should behave as though the version number has been
omitted.

Code Sample 5-5. Weblets Configuration File Using SNAPSHOT Versioning for Development

<?xml version="1.0" encoding="UTF-8" ?>
<weblets-config xmlns="http://weblets.dev.java.net/config" >
<weblet>
<weblet-name>com.apress.projst.ch5</weblet-name>
<weblet-class>net.java.dev.weblets.packaged.PackagedhWeblet</weblet-class>
<weblet-version>1.0-SNAPSHOT</weblet-version>

</weblet>
</weblets-config>

Setting Up Security

When serving packaged resources from a JAR file, you must take extra care not to make Java
class files or other sensitive information accessible by URL. In desktop Java applications,
resource files are often stored in a subpackage called resources underneath the Java imple-
mentation classes that use the resource files. The same strategy is also appropriate for
packaged resources in JSF component libraries, and this has the security benefit of ensuring
that only the resource files are accessible by URL. All the other contents of the JAR file,
including Java implementation classes, are not URL accessible because no Java classes exist
either in the resources package or in any subpackage of resources.

Using the Weblet Protocol

Having learned how to configure weblets, it is time to look at how you can reference
resources defined by the weblet in the two custom Renderers—HtmlInputDateRenderer and
HtmlShowOneDeckRenderer. Code Sample 5-6 shows the syntax, defined by the weblet contract,
for returning a proper URL to the JSF page.

Code Sample 5-6. The Weblet Protocol Syntax

weblet://<weblet name><resource>

The weblet:// prefix indicates that this is a weblet-managed resource, and this is followed
by the weblet name and the resource requested.

219

220

CHAPTER 5 "' LOADING RESOURCES WITH WEBLETS

Using Weblets in the HtmlinputDateRenderer

Previously, in the HtmlInputDateRenderer class, you saw how to pass the URL /projsf-ch2/
inputDate.css as an argument to the writeStyleResource() method. In Code Sample 5-7, you
will see how to amend this to use the weblet protocol instead.

Code Sample 5-7. Using the Weblet Protocol to Serve Up Resources
/**
* Write out the HtmlInputDate resources.
ES
* @param context the Faces context
* @param component the Faces component
*/
protected void encodeResources(
FacesContext context,
UIComponent component) throws IOException

{

writeStyleResource(context, "weblet://com.apress.projsf.ch5/inputDate.css");

}

The weblet protocol syntax is convenient and easy to understand. The syntax starts with
weblet:// followed by the weblet name (for example, com.apress.projst.chs) and finally the
path information or resource file (for example, /inputDate.css).

Note Although the Weblets project uses a protocol-like syntax to describe resources in a public way, this
is not a real protocol handler, so the new URL("weblet:://...").openStream() would not work from
Java code. However, you don’t need it to, since the client is not Java code.

Using Weblets in the HtmIShowOneDeckRenderer

As with the HtmlInputDateRenderer, in the HtmlShowOneDeckRenderer class you saw that we
passed the URLs /projsf-ch3/showOneDeck. js and /projsf-ch3/showOneDeck.css as argu-
ments to the writeStyleResource() method (see Code Sample 5-1). In Code Sample 5-8, you
will see how to amend this to use the weblet protocol instead.

Code Sample 5-8. Using the Weblet Protocol to Serve Up Resources
Vi

* Write out the HtmlShowOneDeck resources.

*

* @param context the Faces context

* @param component the Faces component

*/

CHAPTER 5 " LOADING RESOURCES WITH WEBLETS

protected void encodeResources(
FacesContext context,
UIComponent component) throws IOException
{
writeScriptResource(context, "weblet://com.apress.projsf.ch5/showOneDeck.js");
writeStyleResource(context, "weblet://com.apress.projsf.ch5/showOneDeck.css");

}

Notice that neither the URL mapping nor the version number is included in the weblet
resource syntax. The WebletsViewHandler uses the weblet URL mapping and version number
to create a resource URL that the weblet will service.

When you are not using weblets, then you would not be using the weblet:// resource path
syntax, and you would distribute a separate installable ZIP file. When you move to weblets, you
would start using the weblet:// resource path syntax in the Renderer and include the resources
in the JAR file. You get no benefit from using a mixture of these approaches for resources in the
same version of the same component library.

Using Weblets in a JSF Application

To simplify setup for the application developer, component writers should select a default
URL mapping for their component libraries. The application developer does not need to add
any weblet-specific configuration to the web.xml file, since the WebletsPhaselListener will be
invoked automatically to service incoming requests for weblet-managed resources.

Optimizing Weblets Using a Weblet Filter

Optionally, application developers can register the WebletsFilter in the /WEB-INF/web.xml file.
By performing this simple step, they ensure that the weblet-based URLs are much shorter,
such as /projsf-ch5/showOneDeck. js rather than /faces/weblets/projsf-ch5/showOneDeck. js.
Using the WebletsFilter also reduces the overhead in processing the request because
the JSF lifecycle is no longer invoked to service the weblet-managed resources via the
WebletsPhaselistener.

Code Sample 5-9 maps the weblet container to filter URLs beginning with the /projsf-chs
prefix on the context root. Using this specific URL pattern for the WebletsFilter mapping pre-
vents unnecessary overhead from being introduced by the weblet container for non-weblet
requests. If a weblet services a particular pattern, such as /projsf-ch5/*, then it services all of
/projst-chs5/*, with no fallback to the context root.

Code Sample 5-9. Weblet Container Configuration in the web.xml File

<web-app>

<filter>
<filter-name>Weblet Container</filter-name>
<filter-class>net.java.dev.weblets.WebletsFilter</filter-class>

</filter>

<filter-mapping>
<filter-name>Weblet Container</filter-name>
<url-pattern>/projsf-ch5/*</url-pattern>

221

222

CHAPTER 5 " LOADING RESOURCES WITH WEBLETS

</filter-mapping>

</web-app>

The weblet container is responsible for parsing all weblet configuration files
(weblet-config.xml). It locates them in the same way as JSF locates faces-config.xml files.
The weblet container first searches for configuration files stored in the META-INF/ directory of
each component library and then searches for /WEB-INF/weblets-config.xml in the web appli-
cation root.

This design allows application developers to override the default URL mapping defined
by the component writer in cases where the URL pattern is already used by a web application
resource, such as a servlet or filter. For example, Code Sample 5-10 overrides the default

<url-pattern> packaged with the component library and instead defines a custom mapping
(for example, /projsf-chapter5-resources/*).

Code Sample 5-10. Overriding Weblets Mapping

<?xml version="1.0" encoding="UTF-8" ?>
<weblets-config xmlns="http://weblets.dev.java.net/config" >
<weblet-mapping>
<weblet-name>com.apress.projst.ch5</weblet-name>
<url-pattern>/projsf-chapter5-resources/*</url-pattern>
</weblet-mapping>
</weblets-config>

The Renderers automatically consume this URL mapping change without the need for
any code changes or recompilation.

Summary

As a new open source project, Weblets has tremendous potential to become a de facto stan-
dard that provides a generic and configurable resource-loading facility for web clients and
the JSF component community. The key differentiators from the installables approach are
the simplified packaging of JSF components and their resources and a minimal overhead of
installing and setting up JSF component libraries for a particular web application project.

This chapter explored a new way of packaging resources with JSF components. You
should now be able to leverage weblets in your own component library by including a suitable
weblets-config.xml file and using the weblet:// protocol-style syntax to reference weblet-
managed resources.

You should now understand how weblets integrate with JSE understand the concepts
used to package additional resources, and know how to set up and optimize an application to
use these resources.

CHAPTER 6

Ajax Enabling the
Deck Component

I, not events, have the power to make me happy or unhappy today. I can choose which it
shall be. Yesterday is dead, tomorrow hasn't arrived yet. I have just one day, today, and
I'm going to be happy in it.

—TJulius Henry Marx, known as Groucho Marx

In this and Chapter 7, we will address the need for a smoother and richer user experience
when interacting with your components in a JSF Web application. As they are currently
designed, your components will work perfectly well in a traditional HTML Web application
and will perform a traditional valid form POST. As you have probably noticed, an undesired
side effect of this traditional way of building Web applications is that a form POST will cause
the Web application to perform a full-page refresh when the response returns to the client
browser. This extra flicker when the page reloads is not just annoying but also affects the per-
formance of the application. Other side effects might be lost data, lost scroll position, and lost
focus.

It is here that Ajax comes to the rescue, providing functionality to asynchronously commu-
nicate with underlying servers and any business services used by the Web application, without
forcing a reload of the page and its resources. This, in turn, reduces flicker and allows the page to
maintain scroll position and focus. By leveraging a communication channel in JavaScript called
XMLHttpRequest, developers can go beyond tweaking the DOM representation in the browser to
provide some dynamic rich features. Excellent examples of applications implementing Ajax
technology are Google GMail, Oracle Collaboration Suite, and Google Suggest; these applica-
tions prove Ajax is a valid solution for delivering rich features for current Internet platforms.

With increasing consumer awareness about the possibilities of RIA solutions, the demand
for a smoother and richer interaction is no longer optional.

Requirements for the Deck Component’s
Ajax Implementation

First, you need to ensure that your deck component’s Ajax implementation can execute a
complete JSF lifecycle on a postback (and therefore utilize all the benefits of JSF). You also

223

224

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

need to figure out what has changed during the JSF lifecycle and update the client-side DOM
representation with just those changes.

Second, you need to prevent client-side events from going back to the server unnecessar-
ily, making sure that only events affecting business logic perform round-trips to the server.
That means you need to short-circuit the user interface interactivity locally at the browser so
that potential components such as splitters, table column reorders, date pickers, and color
pop-ups are not round-tripping to the server.

Finally, and most important, you want to make it easy on the application developer by
abstracting the presentation specifics (for example, HTML, JavaScript, XUL, and HTC).

The Ajax-Enabled Deck Component

In this chapter, you will examine how to “Ajax enable” your ProShowOneDeck component and
therefore improve the user experience when interacting with this component. As mentioned
in Chapter 2, you do not need to create new UIComponents if the behavior already exists. In this
case, you have already implemented the behavioral aspects of your ProShowOneDeck compo-
nent in the UIShowOne component, so you need only to create a new Renderer that contains
your client-side DHTML/Ajax implementation and all the resources needed to Ajax enable it.

To do this, you will use Ajax and two open source frameworks—Delta DOM (D?) and the
Dojo toolkit:

Ajax: Ajax is a new name describing a Web development technique for creating richer
and more user-friendly Web applications using an already established technology suite—
the DOM, JavaScript, and XMLHttpRequest.

D?: D? (pronounced D-squared) is an open source project hosted on Java.net (http://
d2.dev.java.net/). Delta DOM is extremely useful in the context of merging DOM differ-
ences into a DOM tree.

Dojo toolkit: Dojo is an open source DHTML toolkit written in JavaScript by Alex Russel
(http://www.dojotoolkit.org). The Dojo toolkit contains Ajax features supporting a back
button, bookmarking, and file upload.

Ajax and the two open source frameworks are complementary, and in this chapter you
will learn how you can use them to handle postback events for your ProShowOneDeck compo-
nent. You will also provide a public API that can be used by all Ajax-enabled JSF components
to turn “full” postback on and off.

After reading this chapter, you should understand what Ajax solves and what issues you
might encounter when creating rich user interface components with this technology. You will
learn about D? and how to use it to build your own Rich Internet Components. Finally, you
will gain an understanding of the excellent Dojo toolkit and how to use it in the context of
JSF and component design.

Figure 6-1 shows the 12 classes you will create in this chapter.

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT 225

DeferredContentTypeResponse

1 T 1

DeferredPrintWriter
ExtendedRenderkit DeferredServietOutputStream RenderkitFactoryWrapper
g)
HtmlAjaxRenderiit ResponseWriterWrapper ExtendedRenderKitFactory
HtmlAjaxShowOneDeckRenderer FacesContextFactoryWrapper
i
FixedContentTypeResponseWriter FacesContextFactoryimpl

Figure 6-1. Class diagram showing classes created in this chapter

The classes are as follows:

* ExtendedRenderKit extends an existing RenderKit without needing to repeat the
registration of common Renderers in faces-config.xml.

e HtmlAjaxRenderKit can dynamically pick either the default Responseliriter or the
custom FixedContentTypeResponselWriter.

* HtmlAjaxShowOneDeckRenderer is your new custom Renderer, which extends the
Htm1ShowOneDeckRenderer from Chapter 3 and adds JavaScript libraries to include
Ajax support.

* DeferredContentTypeResponse is responsible for wrapping the HttpServletResponse
object to detect whether the JSP page directive indicates that the Responselriter should
define the contentType.

e DeferredPrintWriter sets the contentType header on the response just before streaming
the first character of the payload.

* DeferredServletOutputStreamsets the contentType header on the response just before
streaming the first byte of the payload.

* The ResponselriterhWrapper class is only delegating, without decorating, to the standard
Responselriter.

* FixedContentTypeResponselriter is responsible for writing out a document (content
type text/plain) on any subsequent postback performed by your Ajax-enabled
components.

226 CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

* RenderKitFactoryWrapper extends the JSF implementation’s abstract RenderKitFactory
class to provide a loose coupling to the underlying JSF implementation.

* ExtendedRenderKitFactory enhances the RenderKitFactory by adding support for creat-
ing ExtendedRenderKits.

e FacesContextFactoryWrapper is only delegating, without decorating, to the standard
FacesContextFactory and provides a loose coupling to the underlying JSF implementation.

* FacesContextFactoryImpl class intercepts HttpServletResponse and creates a new
servlet response—DeferredContentTypeResponse.

Designing the Ajax-Enabled Deck Component Using a Blueprint

The blueprint for creating a custom JSF component, from Chapter 3, contained seven steps.
Those seven steps cover most of the common use cases for designing components. However,
as you will see in Table 6-1, sometimes you will need to do more than what is covered by those
seven steps.

Table 6-1. Steps in the Blueprint for Creating a New JSF Component

Step Description

1 Creating a Ul prototype Create a prototype of the UI and intended
behavior for your component using the
appropriate markup.

2 Creating events and listeners (Optional) Create custom events and listen-
ers in the case your specific needs are not
covered by the JSF specification.

3 Creating a behavioral superclass (Optional) If the component behavior is not
to be found, create a new behavioral super-
class (for example, UIShowOne).

4 Creating a client-specific Renderer Create the Renderer you need that will write
out the client-side markup for your JSF
component.

5 Creating a renderer-specific subclass (Optional) Create a renderer-specific sub-

class. Although this is an optional step, it is
good practice to implement it.

6 Registering a UIComponent and Renderer Register your new UIComponent and Renderer
in the faces-config.xml file.

7 Creating a JSP tag handler and TLD This step is needed in the case you are
using JSP as your default view handler.
An alternative solution is to use Facelets
(http://facelets.dev.java.net/).

8 Creating a RenderKit and Responselriter (Optional) If you plan to support alternative
markup such as Mozilla XUL, then you need
to create a new RenderKit with an associating
ResponselWriter. The default RenderKit is
HTML_BASIC with the contentType set to
text/html.

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

Step Description

9 Extending the JSF implementation (Optional) This step is needed in the case
you have to provide extensions to the JSF
implementation (for example, extending JSF
factory classes or providing a custom JSF life-
cycle implementation).

10 Registering a RenderKit and JSF extension (Optional) Register your custom RenderKit
and/or extensions to the JSF implementation.

11 Registering resources with Weblets (Optional) Register your resources such as
images, JavaScript libraries, and CSS files
with Weblets so that they can be packaged
and loaded directly out of the component
library JAR file.

This chapter adds four more steps—creating a RenderKit, extending the JSF implementa-
tion, registering a RenderKit and JSF extension, and registering resources with Weblets—to the
blueprint. Fortunately, JSF is sufficiently extensible to find a way to achieve your goal, even if
not part of the standard implementation.

Before you get to steps 8, 9, 10, and 11, you need to go through the other steps to ensure
you have not missed anything; again, according to the first step, you need to define the new
component implementing it in the intended markup that will eventually be sent to the client,
so let’s look at what you want to achieve.

Step 1: Creating a UI Prototype

True to the blueprint, you first need to create a prototype of the intended markup. Remember
that creating a prototype will help you find out what elements your Renderer has to generate,
what renderer-specific attributes the application developer will need, and what resources (for
example, JavaScript, images, and so on) are needed.

Figure 6-2 shows the end result of your deck component implemented in HTML.

& ProJSF : ProShowOneDeck - Mozilla Firefox (==
File Edit View Go Bookmarks Tools Help

E&@-p -8 @ (0O htm:fle?.D.D.1:8988fd13pher6-conhext-ron[V]

&
Pro JSF: Building Rich Internet
Components

Pro EIB 3

Pro Apache Maven

Done

Figure 6-2. Decks implemented in HTML

227

228 CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

Code Sample 6-1 shows the HTML needed to create the page shown in Figure 6-2 with
your new DHTML/Ajax deck component.

Code Sample 6-1. Deck HTML Implementation

<html>
<head>
<title>Pro JSF : ProShowOneDeck Prototype</title>
<style type="text/css" >
.ProShowOne { ... }
.ProShowItem { ... }
.ProShowItemHeader { ... }
.ProShowItemContent { ... }
</style>
</head>
<body>
<div style="width:200px;" >
<div class="ProShowOne">
<div class="ProShowItem">
<div class="ProShowItemHeader"
onclick="alert('first')" »
<img src="resources/java_small.jpg"
alt="The Duke"
style="margin-right: 8px; vertical-align:bottom;" />
Java
</div>
<div class="ProShowItemContent">
<table>
<tbody>
<tr>
<td>

Pro JSF: Building Rich Internet Components

</td>
</tr>
<tr>
<td>Pro EJIB 3</td>
</tr>
<tr>
<td>Pro Apache Maven</td>
</tr>
</tbody>
</table>
</div>
</div>
<div class="ProShowItem">
<div class="ProShowItemHeader"

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

onclick="alert('second")" >
Open Source
</div>
</divy
<div class="ProShowItem">
<div class="ProShowItemHeader"
onclick="alert('third")">
NET
</div>
</div>
</div>
</div>
</body>
</html>

You are not changing the UI of your component, and as you can see, the HTML document
is identical to the page you created in Chapter 3, which leverages your HTML version of the
UIShowOne component Renderer—HtmlShowOneDeckRenderer

The JSF page source shown in Code Sample 6-2 uses the finished implementation of
your Ajax-enabled component, and as you can see, the page source does not contain any
Ajax “code,” which means no extra burden is placed on the application developer to Ajax
enable elements in the page or the application. This is what you want to achieve—simplicity
for application developers. Fortunately, with JSE it is possible!

Code Sample 6-2. JSF Page Source

<?xml version = '1.0' encoding = 'windows-1252'?>

<jsp:root ...>
<jsp:directive.page contentType="application/x-javaserver-faces"/>
<fiview>

<pro:showOneDeck showItemId="first"
showListener="#{showOneDeckBean.doShow}">
<pro:showItem id="first" >
<f:facet name="header">
<h:panelGroup>
<h:graphicImage url="/resources/java_small.jpg" alt="The Duke"
style="margin-right: 8px; vertical-align:bottom;" />
<h:outputText value="Java"/>
</h:panelGroup>
</f:facet>
<h:panelGrid columns="1">
<h:outputLink value="http://apress.com/book/bookDisplay.html?bID=10044">
<h:outputText value="Pro JSF: Building Rich Internet Components"/>

</f:view>
</jsp:root>

229

230

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

As you can see, not much in the code is different from the initial JSF implementation
(see Chapter 3), but when the user clicks one of the unexpanded nodes, you will send an
XMLHttpRequest to the server, instead of a regular form postback.

Note the differences from a regular form submit. This implementation of your JSF compo-
nent will prevent an unnecessary reload of page content that should not be affected by the user
action expanding nodes in your deck component. It also removes any flickering of the page
when expanding the new node with its content and collapsing the previously opened node.

The only step for the application developer to Ajax enable the application is to set the
right contentType, which in this case is application/x-javaserver-faces. You needed to
handle the initial request differently than subsequent postbacks with Ajax so that on the initial
request you have text/html as the contentType and text/plain for subsequent requests. By
specifying a custom contentType like in Code Sample 6-2, you can intercept it and allow JSF to
decide what contentType is going to be set on the response. Rest assured, we will discuss the
contentType and what impact it has on your component development. For now, this is all you
need to know.

DOM MUTATION SUPPORT IN FIREFOX

If you are a user of Mozilla Firefox and are currently using a version older than Mozilla Firefox 1.5, you might
experience some flickering when using the Ajax-enabled ShowOneDeck component. This is a bug in the Mozilla
Firefox browser implementation. For more information, please see https://bugzilla.mozilla.org/
show_bug.cgi?id=238493. You can download a more recent version of Mozilla Firefox from http://
www.mozilla.org/projects/firefox/.

Step 4: Creating a Client-Specific Renderer

In your solution for the UIShowOne component, you have done most of the work already in
Chapter 3, so you will need only to extend the HtmlShowOneDeckRenderer, and since this chap-
ter does not introduce any new behavior, you can skip steps 2 and 3 in your blueprint and go
straight to step 4—creating a client-specific renderer.

Ajax and JSF Architectures

Several architectural possibilities exist to provide Ajax support in a client-server environment
(for example, in JSF). In all cases, one part of Ajax will impact the architectural decision, and
that is how the Ajax solution manages updates to the DOM when processing the Ajax response.

Somewhere you have to apply changes between the current HTML document and what
has been returned from the server based on user interaction, so that you can apply changes
to the current HTML document without reloading the page. The following are two possible
architectural solutions:

Partial-Page Rendering (PPR): This is the first successful implementation of Ajax in JSF
and is currently used by a component library called ADF Faces. This type of architecture
relies on a regular form submit. The response is in fragments that contain information of
what is needed for the change. The PPR handler will then figure out where to slot in these
changes. This approach puts a burden on the application developer to figure out what

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

changed (for example, the application developer has to set partial targets to define what
components are involved in this partial update). In this architecture, the unit of update is
a UIComponent subtree, so the markup for each UIComponent subtree is replaced for each
partial target. PPR is also relying on iframes, not XMLHttpRequest, to provide asynchro-
nous communication, which has the benefit of supporting older versions of browsers.

Delta DOM Rendering (D?R): This approach puts no extra burden on the application
developer, and the unit of update is delta data (for example, attributes on the element
nodes). D?R simulates a regular form POST and sends a form data set to the server using
the XMLHttpRequest object. The server will not notice any difference between this POST
and a regular POST and will deliver with a full-page response. An Ajax handler will handle
the response, compare it with the current HTML document, and then merge in any
changes to the HTML document. You can implement D?R in two ways—on the client
or on the server side. In the client-side implementation, the Ajax handler will detect
and apply DOM deltas on the client. In the server-side implementation, before the
Responselriter writes out the markup to the client, the markup will be cached on

the server. On subsequent postback, before the ResponselWriter writes out the new
markup to the client, the server-side implementation will compare the cached version
with the new page response and send the differences as delta data over to the client
where the Ajax handler will merge it with the HTML document.

DOM Mutation

Using the DR? client-side implementation, Ajax-enabled components that rely on modifying
the DOM will lose any changes made since the last form POST, but those DOM changes would
be lost on a full-page refresh as well. At the Apply Request Values phase, any additional infor-
mation not represented by the component hierarchy will be dropped, and when the page is
rendered, the client-side Ajax handler will perform a DOM diff, replacing anything that does
not match the DOM on the response. This has the benefit of providing additional security
and preventing any malicious tampering with the application by modifying the DOM repre-
sentation in the browser.

With the server-side implementation, the security is still applied at the JSF component
level, but in this scenario the malicious script is not removed on the client as part of the
response. This is because the server has a cached version of the page dating from before the
attack, so the server is not aware of the tampering of the DOM. When the merge of the cached
and new markup is done, you are sending only delta data back to the server and are not
implicitly “removing” any malicious code on the client.

Selecting Ajax Architecture

Although PPR provides less work for the component author and some control for the appli-
cation developer, we will focus on the D?R approach for this book. Without getting into the
details of comparing the client and server-side D?R solutions, both implementations are sim-
ilar. Basically, you need to calculate the difference between the initial HTML document and
the targeted HTML document. Before the page is submitted, the start point is known only on
the client; after submit, the end point is known only on the server. So, something needs to be
transmitted to get the start point and end point both on the server or both on the client.

We have decided to use the client-side D?R since it offers maximum flexibility. This solu-
tion applies the diff between the initial HTML document and the targeted HTML document

231

232

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

on the client and also allows client-side JavaScript to perform any modifications at the client.
If no modifications are permitted by other components, then the diff could be moved to the
server by remembering what was previously rendered and be used as the start point on the
next submit.

With the client-side D?R solution, you can leverage either the responseXML property or the
responseText property of the XMLHttpRequest object (see Figure 6-3). The responseText prop-
erty returns a string representing the document sent from the server. The responseXML property
returns a proper XML DOM object representing the document. It is a completely accessible
DOM that can be manipulated and traversed in the same way as you would do with an HTML
document.

i Oracle JDeveloper 10g - RichInternet.jws : diagrams.jpr : C:\jdev\devistudio\10.1.3_3643\jdevimywork'Richlnternet\diagrams\model\com\apress... ['_][EJE

Ele Edt Yiew Search Havigate Run Debug Model Refartor bersipning Ieoks ‘indow Help

Go@gd 0-0- 90 YEE /A8 aide- - F-PEVINEINIDD

MabonAJAXRequest |EmLHoRequest Elfigret4 | [Sfigure6s | (=]
B E -]
| =
i =
1
: Browser Window Client-Side Script Web Server
| subrmit new XMLHtpRequest
————————— >
) .
I
I open
! >
|
! send HTTP POST
| 200 OK
| callback - -
I - |4
: getResponseXMLIText
! >
: AMLDocument/String
| modify HTMLDocument M-—- === ==
l -« |
: modify bookmark
|]
I
|
I
I
|
|
|

UML Sequence Diagram [4] D]

Opened nodes (32); Saved nodes(1) ‘ UML Modeling

Figure 6-3. Sequence diagram over your Ajax postback implementation

When the user clicks a component (for example, a submit button) that has been designed to
use Ajax, the regular form submit will be overridden, and a new instance of the XMLHttpRequest
object will be created. You can then use this XMLHttpRequest object to open a channel to the
server and send the encoded data as a url-formencoded stream back to the server (HTTP POST).
Since the Web server will not detect the difference between your Ajax postback and a regular
postback, this will not affect your server code.

Your implementation is to have interactive UIComponents that change their states always
perform XMLHttpRequests and to have UICommand components perform form postbacks when a
file upload is present on the page.

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

Providing File Upload Functionality

For security reasons, the only standard way a developer can provide an implementation that
gives the user access to upload files from the client file system is to use a form element or
form. submit(). This means that in Ajax a file upload requires using a form.submit() and a
hidden <iframe>, instead of XMLHttpRequest. Normally, the JSF ResponseWriter will deliver a
full-page (HTML) response, but a hidden <iframe> that receives HTML or XHTML will also
receive <script> elements. These <script> elements will be executed immediately! It is also
important to understand that these <script> elements will be executed in the context of the
hidden <iframe>, not in the main page where they would normally be executed on a full-page
response.

We have chosen to use the responseText property on the XMLHttpRequest object, whose
payload contains the HTML document in plain-text format, which has the positive side effect
that, in the presence of file upload, the returned document will not be executed as HTML or
XHTML. This will also prevent any <script> elements from being executed in the wrong con-
text. This, on the other hand, requires that you handle these <script> elements so the intended
behavior of the script gets executed in the right context and not in the hidden <iframe>.

So, if you solve the previous issue with file upload and the response for the <iframe>, you
still have one more thing to do. On the initial request, you are still expecting the content type
to be text/html. With the solution just outlined, you need to support dynamic content types
(for example, on the initial request or a regular form postback), serve up text/html, and (on
any subsequent request performed by your Ajax-enabled components) serve up text/plain.

FILE UPLOAD WITH THE DOJO TOOLKIT

Unfortunately, too often the implementation provided just covers the basic usage, and the hard parts to imple-
ment have been left to the consuming application developer to work around. After some research, we found
that the Dojo toolkit provides excellent solutions to most of the Ajax undesired side effects mentioned—back
button support, bookmarking, and file upload—out of the box.

Ajax Resources

As you know by now, implementing Ajax in any Web application means writing JavaScript,
which can be dreadful, especially when it comes to cross-browser support and accessibility.
On the other hand, with Ajax, developers can build more appealing JavaScript applications
such as Google Maps, but quite often it means more code on the client side to achieve this
richness. As a component author, you are free to choose any direction by either providing your
own client-side Ajax JavaScript or, as we recommend, searching for already available Ajax
JavaScript libraries. Several open source and commercial JavaScript libraries can help you with
the hard-core JavaScript/Ajax implementations and let you focus on the important part—
designing your JSF component.

We have decided to go with the open source JavaScript toolkit called Dojo for the
XMLHttpRequest transport mechanisms and the D? open source project for parsing and merg-
ing the source document with the target document.

233

234

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

Introducing the DOJO Toolkit

The Dojo open source project provides a modern, capable, “Webish,” and easy-to-use
DHTML toolkit. Part of that effort includes smoothing out many of the sharp edges of the
DHTML programming and user experiences. On the back of high-profile success stories such
as Google Maps and Google Suggest, Ajax and the XMLHttpRequest object have been getting

a lot of attention. In spite of all the publicity, application developers have been on their own
when it comes to solving the usability problems that come along with Ajax. The Dojo open
source project provides a DHTML toolkit written in JavaScript and aims to solve some long-
standing historical problems with DHTML, which have prevented the mass adoption of
dynamic Web application development.

The Dojo toolkit allows you to build dynamic capabilities into Web applications and any
other environment that supports JavaScript. With the Dojo toolkit, you can make Web applica-
tions more usable, responsive, and functional. Other benefits and features of the toolkit are
the lower-level APIs and compatibility layers to write portable JavaScript and simplify complex
scripts, event systems, I/0 APIs, and generic language enhancements.

The Dojo toolkit provides all these features by layering capabilities onto a small core that
provides the package system and little else. When you write scripts using the Dojo toolkit, you
can include as little or as much of the available APIs as you want to suit your needs.

Introducing the D? Open Source Project

D?is an open source project hosted on d2.dev. java.net. The D? project provides an implemen-
tation from the Change Detection in Hierarchically Structured Information research project
(see sidebar for more information about this project). The research project focuses on finding a
minimum-cost edit script that transforms one data tree to another and includes efficient algo-
rithms for computing such an edit script. The D? project contains two implementations—one
client-side JavaScript implementation and one server-side Java implementation—that are built
based on this research. This supports an incremental transformation of any JSF-rendered
HTML DOM by executing the algorithm either on the client or on the server.

CHANGE DETECTION IN HIERARCHICALLY STRUCTURED INFORMATION'

Detecting and representing changes to data is important for active databases, data warehousing, view main-
tenance, and version and configuration management. Most previous work in change management has dealt
with flat-file and relational data; we focus on hierarchically structured data. Since in many cases changes
must be computed from old and new versions of the data, we define the hierarchical change detection prob-
lem as the problem of finding a “minimum-cost edit script” that transforms one data tree to another, and we
present efficient algorithms for computing such an edit script. Our algorithms make use of some key domain
characteristics to achieve substantially better performance than previous, general-purpose algorithms. We
study the performance of our algorithms both analytically and empirically, and we describe the application of
our techniques to hierarchically structured documents.

1. Source: “Change Detection in Hierarchically Structured Information” by Sudarshan S. Chawathe,
Anand Rajaraman, Hector Garcia-Molina, and Jennifer Widom; Department of Computer Science,
Stanford University.

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

The d2. js library also contains functions needed to pass information about the user
selections, submit the form, and handle the response coming back from the server. The d2. js
library is in turn utilizing the Dojo toolkit’s built-in Ajax support to submit the form using the
XMLHttpRequest object instead of the regular form POST, as shown in Code Sample 6-3.

Code Sample 6-3. Excerpt from the d2.js Library

var d2 = new Object();

d2.submit = function (form, content)
{
var targetDocument = form.ownerDocument;
var contentType = targetDocument.contentType;

// 1E does not support document.contentType
if (contentType == null)
contentType = 'text/html’;

dojo.io.bind(

{
formNode: form,
headers: { 'X-D2-Content-Type': contentType },
content: content,
mimetype: "text/plain“,
load: d2._loadtext,
error: d2. error

1;

}

Code Sample 6-3 is an excerpt from the d2. js library and shows the submit function you
will use in the Ajax implementation. As you can see, the d2. js library is referencing the dojo.io
package, which provides portable code for XMLHttpRequest and other transport mechanisms
that are more complicated. Most of the magic of the dojo. io package is exposed through the
bind() method. The dojo.io.bind() method is a generic asynchronous request API that wraps
multiple transport layers (queues of iframes, XMLHttpRequest, mod_pubsub, LivePage, and so on).
Dojo attempts to pick the best available transport for the request at hand, and by default, only
XMLHttpRequest will ever be chosen since no other transports are rolled in.

The d2.submit() function calls the dojo.io.bind() method, passing information about
what form to submit, the content (a map of name/value pairs that will be sent to the server as
request parameters), the accepted request header, and the MIME type for this request.

The D?library also defines a callback function—d2. loadtext—that can get the response
data from the server. The d2. loadtext function replaces the targeted document’s inner HTML
with the inner HTML from the document returned on the response.

Note The D2 open source project also provides an excellent facility to compare and merge two DOM
documents.

235

236 CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

The HtmlAjaxShowOneDeckRenderer Class

With Ajax you could argue that you are implementing new behavior; however, it is only client-
side behavior and not JSF server-side behavior, so you do not need to provide a new server-side
behavioral superclass. For the application developer, there is no difference between the com-
ponent events on the server using the Htm1ShowOneDeckRenderer and your new Ajax-enabled
HtmlAjaxShowOneDeckRenderer. Figure 6-4 shows the HtmlAjaxShowOneDeckRenderer extending
the Htm1ShowOneDeckRenderer created in Chapter 3.

[:| HtmIShowOneDeckRenderer

+ String STYLE_CLASS_ATTR
+ String ITEM STYLE CLASS ATTR
+ String ITEM HEADER STYLE CLASS ATTR

+void encodeBegin (FacesContext context, UlComponent component)
+void encodeChildren (FacesContext context, UlComponent component)
+void encodeEnd (FacesContext context, UlComponent component)

+ boolean getRendersChildren ()

#void encodeResources (FacesContext context, UIComponent component)

[:| HtmlAjaxShowCneDeckRenderer

#void encodeResources (FacesContext context, UIComponent component)

Figure 6-4. Class diagram showing the HtmlAjaxShowOneDeckRenderer extending the
HtmlShowOneDeckRenderer created in Chapter 3

The only things you need to add to your new HtmlAjaxShowOneDeckRenderer are the
JavaScript libraries needed to perform your Ajax postback, as shown in Code Sample 6-4.

Code Sample 6-4. Extending the Htm1ShowOneDeckRenderer

package com.apress.projsf.ch6.render.html.ajax;
import java.io.IOException;

import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;

import com.apress.projsf.ch3.render.html.basic.HtmlShowOneDeckRenderer;

public class HtmlAjaxShowOneDeckRenderer extends HtmlShowOneDeckRenderer
{
protected void encodeResources(
FacesContext context,
UIComponent component) throws IOException

{

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

writeScriptResource(context, "weblet://org.dojotoolkit.browserio/dojo.js");
writeScriptResource(context, "weblet://net.java.dev.d2/d2.js");
writeScriptResource(context, "weblet://com.apress.projsf.ch6/showOneDeck.js");

}
}

As you can see, you extend the com.apress.projsf.ch3.render. html.HtmlShowOneDeckRenderer
and its encodeResources () method with three new calls to the dojo. js toolkit library, the d2. js
library, and your own updated showOneDeck. js for this new Renderer. An application developer
might add two or more ProShowOneDeck components to the page, but the semantics behind the
writeScriptResource() method, provided by your Renderer implementation and described in
Chapter 3, will make sure these resources are written only once.

The ShowOneDeck Ajax Implementation

The showOneDeck. js library was first introduced in Chapter 3, and this chapter will provide some
modifications to this library to complete your client-side Ajax implementation. Code Sample 6-5
shows the HTML version, and Code Sample 6-6 shows the Ajax version of the library.

Code Sample 6-5. The HTML Version of the ShowOneDeck. js Library

function _showOneDeck click(formClientId, clientId, itemId)
{
var form = document.forms[formClientId];
var input = form[clientId];
if (!input)
{
input = document.createElement("input");
input.name = clientId;
form.appendChild(input);
}
input.value = itemId;
form.submit();

Code Sample 6-6. The Ajax Version of the ShowOneDeck. js Library

function showOneDeck click(formClientId, clientId, itemId)
{

var form = document.forms[formClientId];

var content = new Object();

content[clientId] = itemId;

d2.submit(form, content);

}

As you can see, the _showOneDeck click() function (Code Sample 6-5) is similar to the one
used with the traditional HTML Renderer (Code Sample 6-6), with one exception. You are now
calling the d2.submit() function instead of the traditional form.submit() function. In this case,

237

238

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

you pass the activated form ID and the ID of the selected node to the d2.submit() function. The
d2.submit() function calls the underlying dojo.io.bind() method, passing information about
what form to submit, the content (that is, the ID of the selected component), the accepted
request header ('X-D2-Content-Type': 'text/html'), and the MIME type (text/plain) for this
request. This information will determine what item to expand and what Responseliriter to use
for this request.

Step 6: Registering a UIComponent and Renderer

This chapter does not contain any behavioral superclass, but you still have to register your
client-specific Renderer. The HtmlAjaxShowOneDeckRenderer is registered in faces-config.xml,
as shown in Code Sample 6-7.

Code Sample 6-7. Register the Ajax-Enabled Renderer and RenderKit

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">

<faces-config xmlns="http://java.sun.com/JSF/Configuration" >

<render-kit>

<render-kit-id> ... </render-kit-id>
<render-kit-class> ... </render-kit-class>
<renderer>

<component-family>com.apress.projsf.ShowOne</component-family>
<renderer-type>com.apress.projsf.Deck</renderer-type>
<renderer-class>
com.apress.projsf.ch6.render.html.ajax.HtmlAjaxShowOneDeckRenderer
</renderer-class>
</renderer>
</render-kit>

</faces-config>

The component family and renderer type are the same as defined in Chapter 3 for
the regular HTML version of the ProShowOneDeck component. This allows you to reuse the
ProShowOneDeckTag handler and the TLD defined in Chapter 3.

Step 8: Creating a RenderKit and ResponseWriter

Developers who want to include Ajax support in JSF applications have more than one strategy
to choose from, as discussed earlier. The strategy we decided to take in this chapter—D?R—
requires more than just a new Renderer to provide Ajax functionality. As discussed in the
“Providing File Upload Functionality” section, you need to control the output to the client so

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT 239

that on the initial request, or regular form postback, you write out the requested document
with the contentType set to text/html and on any subsequent Ajax postback respond with the
contentType set to text/plain.

What markup is written to the client is controlled by the ResponselWriter, which in turn is cre-
ated by the RenderKit. The default RenderKit provided by a JSF implementation is the standard
HTML RenderKit, which comes with a default Responselriter that supports only content of type
text/html. To be able to support the content type text/plain as required by your Ajax Renderer,
you have to decorate the default Responselriter with functionality to fix the contentType in
the case of an Ajax request—FixedContentTypeResponselWriter. With this new Responseliriter,
you also have to provide a custom RenderKit—HtmlAjaxRenderKit—that can dynamically pick
either the default Responseliriter or the custom FixedContentTypeResponselriter. Figure 6-5
shows how to create the right Responseliriter.

JSPX Document HitpServietResponse HtmlAjaxRenderkit FacesContext
setContentType
<fview=
create taghandler
___________ ’ X
doStartTag . createResponseWriter
ResponseWriter
.‘ _______________
setResponseWriter

A §

Figure 6-5. Creating the right Responselriter

Is this all? No, one issue when creating your own RenderKit is that application developers
are allowed to set only one default RenderKit per Web application. So, unless you want to
reimplement all the standard HTML RenderKit Renderers (or even worse, reimplement every
component library the application developer might use), you have to figure out a way to
provide access to HTML_BASIC renderers from your custom RenderKit. This is also one of the
reasons most component authors avoid creating a new RenderKit and default to the standard
HTML RenderKit. But, to implement this strategy, you need a new ResponseWriter that can
handle text/plain, and thus you also need a new RenderKit.

What you need is a way to wrap your custom RenderKit around the standard HTML
RenderKit to avoid having to implement all renderers an application developer might use.

Registering RenderKits to Wrap

Each JSF application has to have one default RenderKit, which means you need to come up
with a way to register your RenderKit so you can identify what RenderKit is to be wrapped at
application start-up.

240

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

Code Sample 6-8 provides an example of what the syntax looks like that you will
use to register your RenderKit (your.render.kit.id) and the identifier for the RenderKit
([wrapped.render.kit.id]) you are about to wrap.

Code Sample 6-8. Alternative RenderKit Registration

<render-kit>
<render-kit-id>your.render.kit.id[wrapped.render.kit.id]</render-kit-id>
<render-kit-class>your.render.kit.Class</render-kit-class>
<renderer>

</renderer>
</render-kit>

Figure 6-6 shows how the ExtendedRenderKitFactory wraps the standard HTML
RenderKit. The RenderKitFactory is responsible for returning a RenderKit instance based
on the RenderKit ID for this JSF Web application.

Application Scope
_______________ TS,
i ApplicationFactory i i Application ExtendedRenderKitFactory
e T —
LifecycleFactory . Lifecycle ‘ addRenderKit ‘
g T !
e Ty R e e e "
P FacesContextFactorylmpl HtmIRenderkKit
8 5]
i i new DeferredHttpServietResponse L =TT RenderKit
'_:_':_':_':_':_‘:_‘::I_':_':_':_':_':_‘:_‘::_‘:_‘:::_‘:_‘:_‘:_‘;‘_:,1_—"
: T
v T Request Scope
__________ b A
FacesContext

Figure 6-6. Extending the RenderKitFactory and wrapping the standard HTML RenderKit

Now when you have a way to identify what RenderKits are involved, you need to deco-
rate the default RenderKitFactory class with filtering capabilities to process RenderKit IDs
matching your syntax. Any RenderKit IDs defined in the faces-config.xml not matching your
syntax will be delegated to the standard RenderKitFactory. If a RenderKit ID matches your
syntax—your.render.kit.id[wrapped.render.kit.id]—you wrap the RenderKit defined by
the first part of the implementation—your.render.kit.id—around the RenderKit defined
between the square brackets—[wrapped.render.kit.id].

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

The ExtendedRenderKitFactory Class

To make sure your solution is agnostic to the JSF implementation used by the application
developer, you need to provide generic APIs to your application developers, as well as to com-
ponent authors. To achieve this, we have decided to provide a RenderKitFactoryWrapper that
extends the JSF implementation’s abstract RenderKitFactory class to provide you with a loose
coupling to the underlying JSF implementation.

In Figure 6-7, you can see the relationship between the default RenderKitFactory pro-
vided by the JSF implementation and your RenderKitFactoryWrapper and the decorating
ExtendedRenderKitFactory class. The RenderKitFactoryWrapper’s sole purpose is to give you
the loose coupling to the underlying implementation you need by delegating to the underly-
ing RenderKitFactory implementation.

[:| RenderkitFactoryWrapper
- RenderKitFactory _delegate

+ RenderKitFactoryWrapper (RenderkitFactory delegate)

+void addRenderkKit (String renderkitld, Renderkit renderkit)

+ Renderkit getRenderkit (FacesContext context, String renderkitld)
+ lterator getRenderkitlds ()

[:| ExtendedRenderkitF actory
- Pattern EXTENMDED_RENDERKIT_ID

+ ExtendedRenderkitFactory (RenderkitFactory delegate)
+void addRenderkKit (String renderkitld, Renderkit renderkit)

Figure 6-7. Class diagram of the DecoratingRenderKitFactory

The ExtendedRenderKitFactory is the class where you decorate the RenderKitFactory
provided by the JSF implementation with functionality to wrap one RenderKit around another,
if the RenderKit ID provided by the component author matches the syntax defined earlier—
your.render.kit.id[wrapped.render.kit.id], as shown in Code Sample 6-9.

Code Sample 6-9. The ExtendedRenderKitFactory Class

package com.apress.projst.ché.render;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

import javax.faces.render.RenderKit;
import javax.faces.render.RenderKitFactory;

/%K

* The ExtendedRenderKitFactory supports dynamic extension of
* RenderKits without needing to reregister all the renderers from the base
* RenderKit.

241

242 CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

The following syntax must be used to register the extended RenderKit.

<render-kit-id>extended-render-kit-id[base-render-kit-id]</render-kit-id>

ECEE CHEE U O

and the RenderKit implementation class must be of type ExtendedRenderKit.
*/
public class ExtendedRenderKitFactory extends RenderKitFactoryWrapper

{

Vil
* Creates a new ExtendedRenderKitFactory.
*
* @param delegate the RenderKitFactory delegate
*/
public ExtendedRenderKitFactory (
RenderKitFactory delegate)
{
super(delegate);
}

/%

Adds a new RenderKit to this RenderKitFactory.

*
*
* If the renderKitld syntax is of the form
* extended-render-kit-id[base-render-kit-id] and the RenderKit is
* and instance of ExtendedRenderKit, then the extended-render-kit-id
* is used to register the RenderKit, and the base-render-kit-id is used
* as the base RenderKit for the ExtendedRenderKit.
*

* @param renderKitId the RenderKit identifier

* @param renderKit the RenderKit implementation

*/
public void addRenderKit(

String renderKitId,

RenderKit renderKit)
{

Matcher matcher = _EXTENDED RENDERKIT_ID.matcher(renderKitId);

if (matcher.matches() &&

renderKit instanceof ExtendedRenderKit)
{
renderKitId = matcher.group(1);
String baseRenderKitId = matcher.group(2);

ExtendedRenderKit extension = (ExtendedRenderKit)renderKit;
RenderKit base = getRenderKit(null, baseRenderKitId);
extension.setRenderKit(base);

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

super.addRenderKit(renderKitId, renderKit);
}

static final private Pattern EXTENDED RENDERKIT ID =
Pattern.compile("(["\\[T+)\\[(["\\]]H)\W]");

If the syntax provided by the component author matches the pattern you have defined to
identify an extended RenderKit, then you divide the string representing the RenderKit ID into
two groups. Group 1 represents the RenderKit ID you'll be using to register the RenderKit, and
group 2 is the ID for the base RenderKit. If the RenderKit ID syntax does not match the pattern
used to define an extended RenderKit, then the ID is not modified and is still passed to the

wrapped RenderKitFactory to register the RenderKit—super.addRenderKit(renderKitId,
renderKit).

Note We have implemented a solution to wrap only one RendexKit, but this decorating RenderKitFactory

class could potentially support wrapping multiple RenderKits. For simplicity, we decided to wrap only one
RenderKit (for example, HTML BASIC).

The ExtendedRenderKit Class

The ExtendedRenderKit class provides the same benefits as the RenderKitFactoryWrapper class
(that is, a loose coupling to the underlying JSF implementation’s RenderKit class). As men-
tioned earlier, the RenderKit is responsible for providing a ResponselWriter when requested
and also represents a collection of Renderer instances that, together, know how to render
UIComponent instances for a specific client-user agent.

In Figure 6-8 you can see the relationship between the default RenderKit class and the
ExtendedRenderKit and the custom HtmlAjaxRenderKit classes shown in Code Sample 6-10.

= ExtendedRenderkit

- RenderKit _delegate
- Map _renderers

+void addRenderer (String componentFamily, String rendererType, Renderer renderer)
+ Renderer getRenderer (String componentFamily, String rendererType)
+ ResponseStream createResponseStream (OutputStream out)
+ ResponseWriter createResponseWriter (Writer writer, String contentTypeList, String charset)
+ ResponseStateManager getResponseStateManager ()
void __setRenderkit (Renderkit delegate)

- Map _getRendererTypeMap (String componentFamily, boolean createlfull)

= Html&jaxRenderkit

+ ResponseWriter createResponseWriter (Writer writer, String contentTypeList, String charset)

Figure 6-8. Class diagram of the HtmlAjaxRenderKit

243

244

CHAPTER 6

AJAX ENABLING THE DECK COMPONENT

Code Sample 6-10. The ExtendedRenderKit Class

package com.apress.projsf.ché.render;

import
import
import
import

import
import
import
import
import

/**

java.io.OutputStream;
java.io.Writer;
java.util.Map;
java.util.TreeMap;

javax.faces.
javax.faces.
javax.faces.
javax.faces.
javax.faces.

context.ResponseStream;
context.Responselriter;
render.RenderKit;
render.Renderer;
render.ResponseStateManager;

* ExtendedRenderKit supports dynamic extension of another RenderKit
* without needing to reregister all the renderers from the base
* RenderKit.

*/

public class ExtendedRenderKit extends RenderKit

{

/**

* Adds a Renderer to this RenderKit.

*

* @param componentFamily the component family

* @param rendererType the renderer type
* @param renderer the renderer implementation
*/

public void addRenderer(String componentFamily,

{

String rendererType,
Renderer renderer)

Map map = getRendererTypeMap(componentFamily, true);
map.put(rendererType, renderer);

}

Voo

* Returns a Renderer for the specified component family and renderer type.

* X X X %

If a Renderer was registered directly on this ExtendedRenderKit, then
it is returned; otherwise, the Renderer lookup is delegated to the base
RenderKit.

@param componentFamily the component family

* @param rendererType the renderer type

*

* @return the previously registered renderer implementation

*/

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT 245

public Renderer getRenderer(
String componentFamily,
String rendererType)
{
Map map = _getRenderexTypeMap(componentFamily, false);
Renderer renderer = (map != null) ? (Renderer)map.get(rendererType) : null;

if (renderer == null)
renderer = _base.getRenderer(componentFamily, rendererType);

return renderer;

}

private Map _getRendererTypeMap(
String componentFamily,
boolean createIfNull)
{
Map componentFamilyMap = (Map) renderers.get(componentFamily);
if (componentFamilyMap == null &8 createIfNull)
{
componentFamilyMap = new TreeMap();
_renderers.put(componentFamily, componentFamilyMap);

}

return componentFamilyMap;

/%

* Sets the base RenderKit, since it is not available
* when this instance is constructed.
*
* @param base the base RenderKit
*/
void setRenderKit(
RenderKit base)

{
}

_base = base;

private RenderKit _base;
private final Map _renderers = new TreeMap();

The ExtendedRenderKit is not only providing a loose coupling to the underlying imple-
mentation—the abstract RenderKit class—but it also is providing the means of looking up
renderers in your HtmlAjaxRenderKit and, if the Renderer requested is not available in the

246

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

HtmlAjaxRenderKit, calling the getRenderer() method on the base RenderKit. The afore-
mentioned ExtendedRenderKitFactory class uses the setRenderKit() method to set the base
RenderKit (for example, the standard HTML_BASIC RenderKit) at application start-up.

The HtmlAjaxRenderKit Class

You're down to the last piece in the RenderKit puzzle, your custom RenderKit—the
HtmlAjaxRenderKit class. The HtmlRenderKit class is responsible for providing the right
ResponseWriter depending on the incoming request from the client, as shown in Code
Sample 6-11.

Code Sample 6-11. The HtmlAjaxRenderKit Class

package com.apress.projsf.ché.render.html.ajax;

import java.io.Writer;
import java.util.Map;

import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.context.Responselriter;

import com.apress.projsf.ché.render.ExtendedRenderKit;
import com.apress.projsf.ché.render.FixedContentTypeResponselriter;

¥k

* HtmlAjaxRenderKit is an extended RenderKit, using HTML BASIC as the
* base RenderKit.
*/
public class HtmlAjaxRenderKit extends ExtendedRenderKit
{
/%%
* Creates the ResponseWriter, fixing the content type

* to "text/plain" for d2 Ajax requests.
*

* @param writer the writer
* @param contentTypelist the acceptable content types (q-values)
* @param charset the character encoding of the writer

*

* @return the newly created ResponseWriter
*/
public ResponseWriter createResponseWriter(
Writer writer,
String contentTypelist,
String charset)
{
FacesContext context = FacesContext.getCurrentInstance();
ExternalContext external = context.getExternalContext();

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

Map requestHeaders = external.getRequestHeaderMap();

if (contentTypelist == null)
{
contentTypelist = (String)requestHeaders.get("Accept");
// IE sends a vague Accept header of "*/*"
contentTypelList = contentTypelist.replaceFirst("(*/*)", "text/html");

}

Responseliriter out =
super.createResponselriter(writer, contentTypelist, charset);

// Detect D2 request
String d2ContentType = (String)requestHeaders.get("X-D2-Content-Type");

if ("text/html".equals(d2ContentType))
{

out = new FixedContentTypeResponseWriter(out, "text/plain");

}

return out;

To be able to know what Responseliriter to select, you need to know whether this is an ini-
tial request, a regular form postback, or an Ajax postback. If the user clicked the ProShowOneDeck
component, you pass a custom header on the XMLHttpRequest—X-D2-Content-Type. In your
custom createResponseWriter() method, you check for your custom request header; if set to
true, you create a new instance of the FixedContentTypeResponseWriter. On the initial request
or a regular form postback (for example, an h: commandButton was clicked), your custom request
header will not be present; thus, you will delegate the responsibility to create a Responselriter
to super (for example, the default RenderKit).

The FixedContentTypeResponseWriter Class

The FixedContentTypeResponselriter is responsible for writing out a document (content type
text/plain) on any subsequent postback performed by your Ajax-enabled components. This
will allow you to leverage the XMLHttpRequest response facility to retrieve the document via the
responseText property. To process the response and modify the DOM in the target document,
you will use the D? open source project.

One of the benefits of writing out a plain-text string representing your document is that,
in the presence of file upload functionality, the returned document’s innerHTML will be prop-
erly inserted in the targeted <iframe>, but not executed as HTML; this prevents any <script>
elements from being executed in the wrong context.

Figure 6-9 shows that the <f:view> tag will call the createResponseWriter() method on
the custom HtmlAjaxRenderKit during the JSF lifecycle’s Render Response phase and pass
either the default Responselriter or the custom FixedContentTypeResponseWriter to the
FacesContext based on the initial request or subsequent postback.

247

248 CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

JSPX Document HtmlAjaxRenderkit FacesContext

<fview=
create taghandler

doStartTag createResponseWriter
L

>
:

FixedContentTypeResponseWriter
‘ ___________________ -

setResponseWriter

h 4

Figure 6-9. Creating the FixedContentTypeResponseWriter during Ajax postback

Figure 6-10 illustrates the structure and dependencies of the FixedContentTypeResponselriter
class. The ResponselriterhWrapper class is only delegating, without decorating, to the standard
Responselriter, as shown in Code Sample 6-12.

[:| ResponseWriterWrapper

- ResponseWriter _delegate

+ ResponseWriterWrapper (ResponseWriter delegate)

+ String getCharacterEncoding ()

+ String getContentType ()

+void startDocument ()

+void endDocument ()

+void startElement (String name, UIComponent component)
+void writeAttribute (String name, Object value, String attrMame)
+void writeComment (Object comment)

+void writeText (charf] buffer, int offset, int length)

+void writeText (Object text, String attrMame)

+void write URIAttribute (String name, Object value, String attrMame)

[:| FixedContentTypeResponseWriter
- String _contentType

+ FixedContentTypeResponseWriter (ResponseWriter delegate, String contentType)
+ String getContentType ()

Figure 6-10. Diagram of FixedContentTypeResponseWriter

Code Sample 6-12. The FixedContentTypeResponselriter

package com.apress.projsf.ch6.render;

import javax.faces.context.Responselriter;

/**

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

* FixedContentTypeResponselriter is used to override the content type

* when delivering the response.

*/

public class FixedContentTypeResponseliriter extends ResponseWriterWrapper

{

Voo

* Creates a new FixedContentTypeResponselriter.
*

* @param delegate the ResponselWriter delegate
* @param contentType the fixed content type to be used
*/

public FixedContentTypeResponselWriter(
Responseliriter delegate,

String contentType)
{

super(delegate);

_contentType = contentType;
}
Voo

* Returns the fixed content type for this ResponseWriter.
*
* @return the fixed content type
*/
public String getContentType()
{

return _contentType;

}

private final String contentType;

The FixedContentTypeResponselriter takes two arguments—the ResponseWriter that will
be wrapped and the contentType for this request (for example, text/plain). Since you cannot
set the contentType directly on the default Responselriter, overriding the getContentType()
method of super (the delegated ResponselWriter), ensure that the content type you have
defined will be used to produce the correct output to the client.

Step 9: Extending the JSF Implementation

Up until now, you have been focusing on how to wrap the existing RenderKit and how to pro-
vide the correct Responselriter for the request based on what type of postback was performed.
This ensures that the Responselriter has the correct content type. Unfortunately, JSP typically
ignores that, so you will need to take control of the contentType set on the HttpServletResponse
object.

By default, the JSP engine will set the contentType on the HttpServletResponse object
to whatever the application developer has defined in the JSP page directive (for example,
<jsp:directive.page contentType="text/html" />) or to the JSP engine’s default value, which

249

250

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

is text/html for JSP classic and text/xml for JSP documents. This is acceptable for most tradi-
tional JSP applications, since they are targeted Web clients that support HTML; however, for a
JSF application that might support multiple contentTypes (for example, HTML and XML), this
is too restrictive.

Note For more information about the HttpServletResponse object, please refer to the Servlet specifi-
cation (http://java.sun.com/products/servlet/2.1/servlet-2.1.pdf).

The Content Type Situation

This is the situation you are facing: you don’t know what contentType is needed—text/html
or text/plain—until the <f:view> tag calls the createResponseWriter() method, but

the contentType is by default already set on the HttpServletResponse object before the
ResponseWriter is created by the <f:view> tag. Figure 6-11 shows the default processing
of the JSP document.

JSPX Document HitpServietResponse Renderkit FacesContext
setContentType
<fview=
create taghandler
___________ * X
doStartTag . | createResponseWriter
ResponseWriter
.‘ _____________
setResponseWriter

Y

Figure 6-11. Default processing of the JSP document

On the initial request, you need to know whether the ResponseWriter should control
the content type to be sent with the HttpServletResponse object to the client. You can do
this by providing a custom content type via the JSP page directive—<jsp:directive.page
contentType="application/x-javaserver-faces" />.If the application developer omits the
special contentType in the JSP page directive, the implementation will work the traditional
way of having the JSP engine default the contentType.

If the JSP page directive is set to application/x-javaserver-faces, you need to defer set-
ting the contentType on the HttpServletResponse object until after the Responselriter has
been created. This ensures that the contentType set on the HttpServletResponse matches the
markup written by the Responselriter for this request. The way you can defer setting the

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

contentType is to wrap the HttpServletResponse with your own deferred servlet response—
DeferredContentTypeResponse.

Extending the FacesContextFactory

You need to pass the servlet response to the FacesContext, and the most convenient way

is to wrap the HttpServletResponse object with your own response object just before the
FacesContext gets created for the incoming request. This avoids the need for a servlet filter
and can also work for portlets. Figure 6-12 shows the initial processing of the request.

FacesServiet FacesContextFactoryimpl
getFacesContext
> create DeferredContentTypeResponse

create (DeferredContentTypeResponse) FacesContext

Figure 6-12. Initial processing of the request

First you need to extend the FacesContextFactory with a means to create a custom
ServletResponse and wrap it around the HttpServletResponse, and then you pass the custom
ServletResponse to the FacesContext. That way, you will have control over the ServletResponse,
and you can intercept the contentType when it’s being set by the JSP engine and, if needed, defer
setting the contentType until you have access to the contentType used by the Responselriter.

Looking at the sequence of the initial process, the FacesServlet will first call the getFacesContext
on your implementation of the FacesContextFactory—FacesContextFactoryImpl. The
FacesContextFactoryImpl will first create a new servlet response, DeferredContentTypeResponse;
this will wrap the standard HttpServletResponse. You then pass the DeferredContentTypeResponse
to the FacesContext. Figure 6-13 shows the FacesContextFactory implementation in detail.

= FacesContextFactoryWrapper

- FacesContextFactory _delegate

+ FacesContextFactoryWrapper (FacesContextFactory delegate)
+ FacesContext getFacesContext (Object context, Object request, Object response, Lifecycle lifecycle)

= FacesContextFactorylmpl

+ FacesContextFactorylmpl (FacesContextFactory delegate)
+ FacesContext getFacesContext (Object context, Object request, Object response, Lifecycle lifecycle)

Figure 6-13. Diagram over the FacesContext implementation

251

252

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

First you create a FacesContextFactoryWrapper wrapper class that is only delegating,
without decorating, to the standard FacesContextFactory, and that will provide you with
aloose coupling to the JSF implementation used by the application developer. Then you
extend your wrapper class with the FacesContextFactoryImpl class to add some decora-
tions. This class intercepts the HttpServletResponse and creates a new servlet response,
DeferredContentTypeResponse; this will defer setting the contentType, if needed, until the
Responseliriter is created.

The FacesContextFactorylmpl Class

The FacesContextFactoryImpl class, on the other hand, supports additional processing of the
servlet response object, as shown in Code Sample 6-13.

Code Sample 6-13. The FacesContextFactoryImpl Class

package com.apress.projst.ché6.context;

import javax.faces.FacesException;

import javax.faces.context.FacesContext;
import javax.faces.context.FacesContextFactory;
import javax.faces.lifecycle.lLifecycle;

import javax.servlet.http.HttpServletResponse;

import com.apress.projsf.ch6.external.servlet.DeferredContentTypeResponse;

Vaks

* FacesContextFactoryImpl supports additional processing of the response.
*/

public class FacesContextFactoryImpl extends FacesContextFactoryWrapper

{

e

* Creates a new FacesContextFactoryImpl.
*

* @param delegate the FacesContextFactory delegate
*/
public FacesContextFactoryImpl(

FacesContextFactory delegate)

{
super(delegate);

}

Jxx

* Returns the new FacesContext instance.
*

* @param context the servlet or portlet context

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

* @param request the servlet or portlet request
* @param response the servlet or portlet response
* @param lifecycle the Faces lifecycle

*

* @return the new FacesContext instance
*
* @throws FacesException if an error occurs
*/
public FacesContext getFacesContext(Object context,
Object request,
Object response,
Lifecycle lifecycle) throws FacesException

{

if (response instanceof HttpServletResponse)

{

response = new DeferredContentTypeResponse((HttpServletResponse)response);

}

return super.getFacesContext(context, request, response, lifecycle);
}
}

If the response object is an instance of type HttpServletResponse, you will create a new
instance of the DeferredContentTypeResponse and pass the HttpServletResponse as an argu-
ment. If the response does not match HttpServletResponse, then you just pass it through to
super without further processing. (Note that you can support portlets using a similar tech-
nique, but we have omitted this in the example.)

Overriding the HttpServietResponse

The DeferredContentTypeResponse is not only responsible for wrapping the HttpServletResponse
object, but it is also responsible for detecting whether the JSP page directive indicates that the
contentType should be set by the Responselriter (JSF major). If the request is JSF major, you set
the contentType after the Responselriter has been created and, most important, at the first time
the response output stream is being written back to the browser over the network. Figure 6-14
shows the processing of the response object during the Render Response phase.

FacesServiet JSF Lifecycle ExternalContext RequestDispatcher
; ; (JSF) (Servlets)

render
>
dispatch
_ forward (request & deferred response)

[
>

Figure 6-14. Processing of the response object during the Render Response phase

253

254

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

At the initial processing of the Render Response phase, your DeferredContentTypeResponse
is being passed to the servlet RequestDispatcher. The RequestDispatcher forwards the JSF
viewId (for example, /projst.jspx) for this request to the JSP engine for processing, as shown
in Figure 6-15.

JSPX Document DeferredContentTypeResponse HtmlAjaxRenderkit FacesContext
setContentType
getOutputStream
ServletOutputStream
- --—-—-—- - <fview=
create taghandler
————————————— > }
doStartTag createResponseWriter
ResponseWWriter
.(_______________
setResponseVvriter

Y

Figure 6-15. Processing of JSP document

Since you have wrapped the default HttpServletResponse with the deferred servlet
response, you can now intercept the contentType to determine whether the ResponseWriter
should dictate the contentType for this request (JSF major) or if you should let the JSP engine
set the contentType immediately (JSP major).

When the JSP document is being processed, it will first try to set the content type
on the ServletResponse and get the output stream. If this is a JSF major response, the
DeferredContentTypeResponse object will defer setting the contentType until after the
Responselriter is created. Next, the <f:view> tag handler is created, which will call
createResponselriter on the HtmlAjaxRenderKit and set the returned Responselriter on
the FacesContext. The contentType will be set the first time the buffered JSP tag—<f:view>—
is writing content out to the browser over the network.

Figure 6-16 illustrates the deferred content type implementation. As you can see, two
classes are hanging off the DeferredContentTypeResponse—the DeferredPrinthWriter and the
DeferredServletOutputStream. To write any content to the browser over the network, the Java
specification and the Servlet API define two classes—ServletOutputStream and PrintWriter.
Both of these classes basically provide similar functionality and are needed since the JSP
specification does not define whether the JSP Container or the Servlet Container will be
used to convert characters to bytes and send the data to the browser over the network—
character stream (PrintWriter) or byte stream (ServletOutputStream) output.

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

[:| DeferredContentTypeResponse

- SenvletOutputStream _out

- PrintWriter _writer

- boolean _isFacesMajor

- Pattern CONTENT TYPE PATTERM

+ DeferredContentTypeResponse (HttpSenvletResponse delegate)
+void setContentType (String contentTypeAndCharset)

+ SenvletCutputStream getOutputStream ()

+ PrintWriter getWriter ()

+void onCommit ()

- boolean _isFacesMajorContentType (String contentType)

T 1 T 1
DeferredSenvletOutputStream
- SenvletOutputStream _delegate

+ DeferredSenvletOutputStream (SernvletCutputStream delegate, DeferredContentTypeResponse response)
+void flush ()

+void close ()

+void write (byte[] b)

= DeferredPrintWriter
- DeferredContentTypeResponse _response

+ DeferredPrintWriter (PrintWriter delegate, DeferredContentTypeResponse response)
+void flush ()

+void close ()

+void write (char|] buf)

Figure 6-16. Diagram over the DeferredContentType implementation

On the first attempt to write to the browser, you need to set the contentType on the
ServletResponse. To achieve this, you need to decorate the default ServletOutputStream
(DeferredServletOutputStream) and PrintWriter (DeferredPrintWriter) with functionality
to set the contentType on the first write and make sure it is done only once.

The DeferredContentTypeResponse Class

The DeferredContentTypeResponse decorates the JSP HttpServletResponse with function-
ality to support setting a JSF major content type. Code Sample 6-14 shows the deferred
HttpServletResponse.

Code Sample 6-14. The DeferredContentTypeResponse

package com.apress.projsf.ché.external.servlet;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

import javax.faces.context.FacesContext;
import javax.faces.context.Responselriter;

255

256

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpServletResponseWrapper;

/**
* DeferredContentTypeResponse manages setting the JSF major content type.
*/
public class DeferredContentTypeResponse extends HttpServletResponseWrapper
{
/¥
* Creates a new DeferredContentTypeResponse.
*
* @param delegate the HttpServletResponse delegate
*/
public DeferredContentTypeResponse(
HttpServletResponse delegate)
{
super(delegate);
}

Vil
* Attempt to set the content type as deferred.
*
* @param contentTypeAndCharset the content type and character set
* for this response
*/
public void setContentType(
String contentTypeAndCharset)
{
Matcher matcher = _CONTENT_TYPE_PATTERN.matcher(contentTypeAndCharset);
if (matcher.matches())
{
String contentType = matcher.group(1);
String charset = (matcher.groupCount() > 1) ? matcher.group(2) : null;

// remember isFacesMajor for later, during onCommit,
// after Faces ResponseWriter has been created
_isFacesMajor = isFacesMajorContentType(contentType);

if (_isFacesMajor)
{
// although we'll set the content type on onCommit,
// you need to set the charset now
// <f:view> will need charset when creating the ResponseWriter
super.setCharacterEncoding(charset);

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

else

{
// content type will not be set on onCommit,
// so set both content type and charset now
super.setContentType(contentTypeAndCharset);

}

}
}

/¥

* Returns true if the specified content type
* matches "application/x-javaserver-faces".
*

* @param contentType the response content type
*
* @return true if the content type is "application/x-javaserver-faces"
*/
private boolean isFacesMajorContentType(
String contentType)

{
return ("application/x-javaserver-faces".equals(contentType));

}

When the JSP engine calls the setContentType() method on your JSP
HttpServletResponselrapper, it passes a string representing both the contentType and
the character encoding defined by the application developer in the JSP page directive.
The setContentType() method will check the string to see whether it matches the pattern
defined by the Servlet specification. If it matches, you divide the string into two groups—
one for the content type (contentType) and one for character encoding (charset).
You can use the extracted contentType to test whether this is a JSF major request. The
isFacesMajorContentType() method will return true or false depending on the contentType
defined in the JSP page directive (for example, application/x-javaserver-faces).Ifitisa
JSF major request, you still need to set the character set—charset—on the ServletResponse,
since <f:view> needs the character set when creating the Responselriter. Code Sample 6-15
shows the DeferredContentTypeResponse class.

Code Sample 6-15. DeferredContentTypeResponse Class

public ServletOutputStream getOutputStream() throws IOException

{
if (Lout == null)
{
_out = new DeferredServletOutputStream(super.getOutputStream(), this);
}

return _out;

}

257

258 CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

public PrintWriter getWriter() throws IOException

{
if ((writer == null)
{
_writer = new DeferredPrintWriter(super.getWriter(), this);
}
return writer;
}
public void onCommit() throws IOException
{
if (_isFacesMajor)
{
FacesContext context = FacesContext.getCurrentInstance();
Responselriter out = context.getResponselriter();
String contentType = out.getContentType();
// set real content type via super.setContentType
super.setContentType(contentType);
}
}
private ServletOutputStream out;
private PrintWriter _writer;
private boolean _isFacesMajor;

static private final Pattern _CONTENT_TYPE_PATTERN =
Pattern.compile("([*;]+)(?:;charset=(.*))?");

In your DeferredContentTypeResponse class, you have two methods—getWriter() and
getOutputStream()—that, depending on the J2EE container implementation, will be used to
write out bytes, representing the markup, to the network. We will cover the deferred writers in
the “The DeferredServletOutputStream Class” and “The DeferredPrintWriter Class” sections.
The onCommit () method will be called the first time data is being written to the browser over
the network by either the ServletOutputStream or the PrintWriter. If the request is a JSF
major, the onCommit () method will get the contentType from the Responselriter and set it
on the HttpServletResponse object.

The DeferredServletOutputStream Class

Eventually the buffered JSP tag will be full, and markup will be written to the client. If this is a
JSF major request, the contentType has not yet been set, so you need to make sure that at the
first call to the write() method on the ServletOutputStream object you set the content type on
the HttpServletResponse. Figure 6-17 shows the initial processing of the request.

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

JSPX Document | | DeferredSenvietOutputStream | DeferredContentTypeResponse || Facescontext | HttpServietResponse

write(...) handieCommit (if first write) getContentType

T
r

return contentType

setContentType

Y

Figure 6-17. Initial processing of request

If this is a JSF major request, the contentType has been deferred and not yet set on
the ServletResponse. It is important to ensure that the contentType is set on the response
object before data gets written to the browser, since it needs the contentType to be able to
parse the content sent with the output stream. You can do this by overriding the default
ServletOutputStream and providing a way to call the aforementioned onCommit () method
on the DeferredContentTypeResponse and by setting a flag indicating whether the contentType
has been set on the ServletResponse.

The DeferredServletOutputStream decorates the ServletOutputStream with a method—
handleCommit()—that sets a flag indicating that the contentType has been set, and it calls
the onCommit() method on the DeferredContentTypeResponse (see Code Sample 6-16). This
ensures that the content type written to the client by the ResponselWriter is now matching
the contentType set on the response object.

Code Sample 6-16. The DeferredServletOutputStream Class

package com.apress.projsf.ch6.external.servlet;
import java.io.IOException;

import javax.servlet.ServletOutputStream;

Vioio
* DeferredServletOutputStream provides a callback when the first bytes
* are written to the output stream.
*/
public class DeferredServletOutputStream extends ServletOutputStream
{

Vioo

* Creates a new DeferredServletOutputStream.

*

* @param delegate the ServletOutputStream delegate

* @param response the callback target

*/

259

260

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

public DeferredServletOutputStream(
ServletOutputStream delegate,
DeferredContentTypeResponse response)

{
_delegate = delegate;
_response = response;

}

public void write(
byte[] b,
int off,
int len) throws IOException
{
if (!_committed)
_handleCommit();
_delegate.write(b, off, len);

}

/**
* The _handleCommit() method is called only once, when
* the first write(), print(), println(), flush(), or close() call
* is made to this ServletOutputStream.
*/
private void _handleCommit() throws IOException
{
_committed = true;
_response.onCommit();

}

private final ServletOutputStream _delegate;
private final DeferredContentTypeResponse response;

private boolean _committed;

The extended ServletOutputStream class is an abstract class that the servlet container
implements, and it provides an output stream for sending binary data to the client. Note that
the handleCommit () method is called only once, when the firstwrite() call is made to this
ServletOutputStream

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

The DeferredPrintWriter Class

The DeferredPrinthriter performs the same duty as the DeferredServletOutputStream—
writing markup to the client except that this class provides a writer for sending character data
(see Code Sample 6-17). The underlying servlet implementation performs the conversion of
the character-based stream to bytes.

Code Sample 6-17. The DeferredPrintWriter Class

package com.apress.projsf.ch6.external.servlet;

import java.io.IOException;
import java.io.PrintWriter;

/**

* DeferredPrintWriter provides a callback when the first characters
* are written to the writer.

*/

public class DeferredPrintWriter extends PrintWriter

{

/**
* Creates a new DeferredPrintWriter.
*
* @param delegate the PrintWriter delegate
* @param response the callback target
*/
public DeferredPrinthriter(
PrinthWriter delegate,
DeferredContentTypeResponse response)
{
super(delegate);
_response = response;

}

public void write(
char[] buf,
int off,
int len)
{
if (!_committed)
_handleCommit();
super.write(buf, off, len);

}

private void handleCommit()

261

262

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

{
try
{
_committed = true;
_response.onCommit();
}
catch (IOException e)
{
setError();
}
}

private boolean committed;
private final DeferredContentTypeResponse response;

}

As you can see, this class is almost identical to the ServletOutputStream with two differ-
ences—the signature of the method calls are using char instead of byte, and the methods in
this class never throw I/0 exceptions. Since methods cannot throw I/O exceptions, you are
forced to implement your handleCommit () method slightly differently than you implement the
one in the DeferredServletOutputStream class. This ensures that you handle any IOException
that might be thrown. Besides this, the handleCommit () method is called only once, when the
firstwrite() call is made to this PrintWriter.

Step 10: Registering the RenderKit and JSF Extension

As mentioned in Chapter 1, the Application instance will, at application start-up, store
resources defined in the JSF configuration file, faces-config.xml. For your JSF Ajax implemen-
tation, you need to make sure you not only register your custom Renderers and their RenderKits
but that you also register your JSF extensions (for example, the custom FacesContextFactory
and RenderKitFactory), as shown in Code Sample 6-18.

Code Sample 6-18. Register the Ajax-Enabled Renderer and RenderKit

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">

<faces-config xmlns="http://java.sun.com/JSF/Configuration” >
<factory>
<faces-context-factory>
com.apress.projsf.ch6.context.FacesContextFactoryImpl
</faces-context-factory>
<render-kit-factory>
com.apress.projsf.ch6.render.ExtendedRenderKitFactory
</render-kit-factory>
</factory>

CHAPTER 6 © AJAX ENABLING THE DECK COMPONENT

<render-kit>
<rendexr-kit-id>com.apress.projsf.html.ajax[HTML_BASIC]</render-kit-id>
<render-kit-class>
com.apress.projsf.ch6.render.html.ajax.HtmlAjaxRenderKit
</render-kit-class>
<renderer>
<component-family>com.apress.projst.ShowOne</component-family>
<renderer-type>com.apress.projsf.Deck</renderer-type>
<renderer-class>
com.apress.projst.ch6.render.html.ajax.HtmlAjaxShowOneDeckRenderer
</renderer-class>
</renderer>
</render-kit>

</faces-config>

At the top of your faces-config.xml file, you register your FacesContextFactoryImpl class
and the ExtendedRenderKitFactory class followed by your new RenderKit—HtmlAjaxRenderKit.
As you can see, you use the new pattern (see the section “Registering RenderKits to Wrap”) to
wrap your new RenderKit around the standard HTML RenderKit (for example, com.apress.
projsf.html.ajax[HTML_BASIC]).

Step 11: Registering Resources with Weblets

For the HtmlAjaxShowOneDeckRenderer, you need to register two additional JavaScript libraries—
the Dojo toolkit and the D? library—as weblets; this will enable you to package these libraries as
part of your custom JSF component library.

Note For more information about weblets, please see Chapter 5, or visit the Weblets project’s Web site at
http://weblets.dev.java.net

Registering the Dojo Toolkit

Code Sample 6-19 shows the weblet configuration for the Dojo toolkit, after we repackaged
the Dojo toolkit JavaScript into a Java package, org.dojotoolkit.browserio.

Code Sample 6-19. Weblet Configuration for the Dojo Toolkit

<?xml version="1.0" encoding="UTF-8" ?>
<weblets-config xmlns="http://weblets.dev.java.net/config" >

<weblet>
<weblet-name>org.dojotoolkit.browserio</weblet-name>
<weblet-class>net.java.dev.weblets.packaged.PackagediWeblet</weblet-class>

263

264 CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

<weblet-version>0.1</weblet-version>
<init-param>
<param-name>package</param-name>
<param-value>org.dojotoolkit.browserio</param-value>
</init-param>
</weblet>

<weblet-mapping>
<weblet-name>org.dojotoolkit.browserio</weblet-name>
<url-pattern>/dojo/*</url-pattern>

</weblet-mapping>

</weblets-config>

Registering the D? Library

Code Sample 6-20 shows the weblet configuration for the D? library. In future, the D? library
will include this weblet configuration automatically.

Code Sample 6-20. Weblet Configuration for the D? Library

<?xml version="1.0" encoding="UTF-8" ?>
<weblets-config xmlns="http://weblets.dev.java.net/config" >

<weblet>
<weblet-name>net.java.dev.d2</weblet-name>
<weblet-class>net.java.dev.weblets.packaged.PackagediWeblet</weblet-class>
<init-param>
<param-name>package</param-name>
<param-value>net.java.dev.d2</param-value>
</init-param>
</weblet>

<weblet-mapping>
<weblet-name>net.java.dev.d2</weblet-name>
<url-pattern>/d2/*</url-pattern>
</weblet-mapping>

</weblets-config>

The Packagedheblet is a built-in weblet implementation that can be read from a particu-
lar Java package using the ClassLoader and stream the result to the browser. The package
initialization parameter tells the PackagedWeblet which Java package to use as a root when
resolving weblet-managed resource requests.

CHAPTER 6 " AJAX ENABLING THE DECK COMPONENT

Summary

In this chapter, we discussed how to use Ajax in general terms and as part of JSE and we also
talked about what pros and cons it brings to the plate. We also covered different architectural
approaches implementing Ajax support in JSE—PPR and D?R. In addition, we discussed poten-
tial pitfalls of Ajax, such as file upload support, and how to solve them in the context of JSE

We explored how to use two open source projects—the Dojo toolkit and D? project—to
Ajax enable your ProShowOneDeck component and prove that providing richer functionality in
well-defined and easy-to-use JSF components is not hard. With the use of rich toolkits such as
Dojo and D?, the number of resource files is increasing, and weblet functionality provides an
easy way to package your additional resources into the same library as your components.

From this chapter, you gained an understanding of how to Ajax enable JSF components
using available resources and now have a deeper understanding of the contentType issue
between JSP and JSE You also gained knowledge about how you solve the contentType issue
and allow JSF to control the contentType, which will give you the opportunity to support mul-
tiple content types when needed.

265

CHAPTER 7

Ajax Enabling the Date
Field Component

When you innovate, you've got to be prepared for everyone telling you you're nuts.
—Larry Ellison, founder and CEOQ, Oracle

Chapter 6 introduced the concept of using Ajax and XMLHttpRequest to asynchronously com-
municate with the Web server without the Web server knowing the difference between a regular
postback and an Ajax postback. The direct benefit is that it leaves the JSF lifecycle untouched,
which allows the application developer to use Ajax-enabled components with regular JSF
Events and Listeners.

This chapter will address the need to fetch data using Ajax. The most common use cases
for fetching data using Ajax are to populate drop-down lists and add type-ahead functionality
in text fields. In contrast to using Ajax postback for events, fetching data should not affect the
surrounding components on the page. And if fetching data is not affecting other parts of the
DOM tree, then you do not need to go through the full lifecycle of JSF just to get the data, right?

Plenty of examples are available on the Web today where fetching data is improving the
usability of a Web application. The most prominent examples of asynchronous data transfer
are Google Suggest’s autosuggest feature and Google Gmail’s file upload feature.

Requirements for the Date Component’s
Ajax Implementation

The requirement for the ProInputDate component is to provide a visual calendar that can be
used to select a date. To support this visual calendar, you need to provide a pop-up window for
the actual calendar and asynchronously fetch data representing dates that can be displayed.
The visual calendar will allow the user to select only the available dates (for example, working
days). All other days (for example, holidays and weekends) should be displayed but not be
selectable. When a date is selected, it should be copied to the input field using the correct date
format. When a value is submitted back to the server, it should successfully pass validation
only if it is an available date (for example, a working day).

267

268

CHAPTER 7 I AJAX ENABLING THE DATE FIELD COMPONENT

The Ajax-Enabled Date Component

In this chapter, you will enhance the ProInputDate component created in Chapter 2. Based
on the new requirements, you have three goals to achieve in this chapter. First, you need to
provide the ProInputDate component with a visual calendar. Second, you need to create a
Validator that can be used by the application developer to provide a list of available dates.
These dates can then be validated against user entries in the ProInputDate text field. Third,
you want to be able to reuse the same managed bean defined for the Validator to fetch the
list of available dates in the visual calendar, if the validator is attached to the ProInputDate
component.

To do this, you will use Ajax, two open source frameworks (the Dojo toolkit and Mabon),
and the JSON data-interchange format. You've worked with Ajax and the Dojo toolkit before,
but the following are new:

JSON: JSON is a lightweight data-interchange format. It is based on a subset of the
JavaScript programming language (Standard ECMA-262, Third Edition). JSON is a text
format that is completely language independent but uses conventions that are familiar
to programmers of the C family of languages, including C, C++, C#, Java, JavaScript, Perl,
Python, and many others.

Mabon: Mabon is an open source project hosted on the Java.net Web site (http://mabon.
dev.java.net), and it stands for Managed Bean Object Notation. Mabon allows the com-
ponent author of Ajax-enabled components to access JSF managed beans outside the
scope of the standard JSF lifecycle by using a JSON-syntax communication channel.

In this chapter, you will look at how you can leverage Ajax, Mabon, JSON, and the Dojo
toolkit to provide a visual calendar and asynchronously fetch data for the ProInputDate
component.

After reading this chapter, you should have an understanding of the difference between
Ajax event and data fetch, as well as what issues you may run into while creating rich user
interface components with this technology. You should also gain knowledge of an open source
project called Mabon and how you can use it to build your own rich Internet components.

Figure 7-1 shows the three classes you will create in this chapter.

ValidateDateTag

DateValidator HtmlAjaxinputDateRenderer

Figure 7-1. Class diagram showing classes created in this chapter

CHAPTER 7

The classes are as follows:

AJAX ENABLING THE DATE FIELD COMPONENT

e The HtmlAjaxInputDateRenderer is the new custom Renderer, which extends the
HtmlInputDateRenderer from Chapter 2 and adds resources to include Ajax support.

e The DateValidator checks to see whether a Date value is available, according to some

rules.

* The ValidateDateTag class represents the custom action that will be used by the appli-
cation developer to register a DateValidator instance to a ProInputDate component.

Designing JSF Components Using a Blueprint

The blueprint for creating a custom JSF component, from Chapter 3, contained seven steps.
Those seven steps cover most of the common use cases for designing components. However,
as you can see in Table 7-1, this chapter adds one more step to the evolving blueprint from the
previous chapter—creating converters and validators—making a total of twelve steps.

Table 7-1. Steps in the Blueprint for Creating a New JSF Component

#

Steps

Description

1

Creating a Ul prototype

Creating events and listeners

Creating a behavioral superclass

Creating converters and validators

Creating a client-specific renderer

Creating a renderer-specific subclass

Registering a ULComponent and Renderer

Creating a JSP tag handler and TLD

Creating a RenderKit and Responselriter

Create the prototype of the Ul and
intended behavior for your component
using appropriate markup.

(Optional) Create custom events and
listeners in case your specific needs are
not covered by the JSF specification.

(Optional) If the component behavior is
not to be found, create a new behavioral
superclass (for example, UIShowOne).

(Optional) Create custom converters and
validators in case your specific needs are
not covered by the JSF specification.

Create the Renderer you need that will
write out the client-side markup for your
JSF component.

(Optional) Create a renderer-specific
subclass. Although this is an optional step,
itis good practice to implement it.

Register your new UIComponent and
Renderer in the faces-config.xml file.

This step is needed in the case you are
using JSP as your default view handler.
An alternative solution is to use Facelets
(http://facelets.dev.java.net/).

(Optional) If you plan to support
alternative markup such as Mozilla XUL,
then you need to create a new RenderKit
with an associating ResponseWriter. The
default RenderKit is HTML BASIC with the
contentType set to text/html.

Continued

269

270

CHAPTER 7 I AJAX ENABLING THE DATE FIELD COMPONENT

Table 7-1. Continued

Steps Description

10 Extending the JSF implementation (Optional) This step is needed in the case
you have to provide extensions to the JSF
implementation (for example, extending
JSF factory classes or providing a custom
JSF lifecycle implementation).

11 Registering the RenderKit and JSF extension (Optional) Register your custom RenderKit
and/or extensions to the JSF
implementation.

12 Registering resources with weblets (Optional) Register your resources such as

images, JavaScript libraries, and CSS files
with weblets so that they can be packaged
and loaded directly out of the component
library JAR file.

You have done most of the work in Chapter 2, so you only need to extend the ProInputDate
component with DHTML/Ajax functionality, and since you don’t need any new behavior, you
can start with step 1, skip steps 2 and 3 in the blueprint, and then move on to steps 4, 5, 7, 8,
and 12.

Step 1: Creating a UI Prototype

Back to the blueprint! Let’s create the prototype that will help you find out what elements,
renderer-specific attributes, and other resources (for example, images) are needed to create
a Ul for the date component.

Figure 7-2 shows the result of the prototype and displays a page with an input field, a
button with a calendar icon, and a table representing the pop-up calendar.

& Pro JSF: Building Rich Internet Components - Mozilla Firefox (=)<
File Edit View Go Bookmarks Tools Help

G- -8 0 | [http://127.0.0.1:3988/chapter7-context-root fprototype-ch7.html [V]

Please enter a date with the pattern "d MMMNMM vyvy".

23 March 2006

< March 2006 >
Sun Mon Tue Wed Thu @ Fri | Sat
26| 27| 28 1 2 3 4

5 6 7 8 9 10 11
12| 13] 14| 15) 16| 17| 18
19 20 21 2| F 24 25
26 27 28 20 30 31

2 3 4 5 6 7 8

Done

Figure 7-2. ProInputDate implemented in DHTML/Ajax

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

Figure 7-2 shows the end result of your prototype implementation. As you can see, we
have done some work on the ProInputDate component (from Chapter 2) and added a pop-up
calendar, which will appear when the button is clicked. Dates that are not selectable are
marked red, and dates outside the scope of the current month are gray.

Code Sample 7-1 shows the markup needed to create the prototype DHTML/Ajax date
component shown in Figure 7-2.

Code Sample 7-1. Input and Button Markup for Calendar

<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=windows-1252" ></meta>
<title>Pro JSF: Building Rich Internet Components</title>
<style type="text/css" >@import url(projsf-ch7/inputDate.css);</style>
</head>
<body>
<form name="form" method="post
enctype="application/x-www-form-urlencoded" >
Please enter a date with the pattern "d MMMMM yyyy".

<div title="Date Field Component" >
<input type="text" name="dateField" value="23 March 2006" />
<button type="button" name="button" class="ProInputDateButton" >

</button>
</div>
</form>
<table id="calendar" cellspacing="0" cellpadding="0"
class="ProInputDateCalendar"
style="position: absolute; visibility: visible; top: 53px; left: 8px;" >
<thead>
<tr class="toolbar" >
<td>&1t;</td>
<td colspan="5" >March 2006</td>
<td>8gt;</td>
</tr>
<tr class="headings" >
<td>Sun</td>
<td>Mon</td>
<td>Tue</td>
<td>Wed</td>
<td>Thu</td>
<td>Fri</td>
<td>Sat</td>
</tr>

27

272 CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

</thead>
<tbody>
<tr>
<td class="noselect">19</td>
<td class="">20</td>
<td class="">21</td>
<td class="">22</td>
<td class="selected">23</td>
<td class="">24</td>
<td class="noselect">25¢</td>
</tr>
</tbody>
</table>

</body>
</html>

As you can see, it is a simple prototype containing an input field that will be used to enter
a date and a regular button that will be used to launch the calendar pop-up. Finally, a table
represents your calendar pop-up as it will look when implemented in your new Ajax Renderer.
At the top of the code listing, you can see that we have referenced the inputDate.css file. This
style sheet contains information that will be used to display the availability of each date pre-
sented by the calendar.

THE @IMPORT RULE

As you may have noticed, we used this rule in the prototype to import a style sheet. Like the <1ink>
element, the @impoxt rule links an external style sheet to a document. The difference is that the <1ink>
element is defined in the head section of a page and specifies the name of the style sheet to import using its
href attribute. In practice, you can use the @impozrt rule in the document body, which allows you to encap-
sulate styles in a style sheet and import them inside any <style> element on the rendered page.

Before creating your input date component, look at the final result and how it will be used
in a JSP page. Code Sample 7-2 uses the input date component with the Ajax Renderer.

Code Sample 7-2. JSF Page Source

<?xml version = '1.0' encoding = 'windows-1252'?>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2"
xmlns:pro="http://projsf.apress.com/tags"

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

xmlns:f="http://java.sun.com/jsf/core"

xmlns:h="http://java.sun.com/jsf/html" >
<jsp:directive.page contentType="text/html"/>
<fiview>

<h:form id="form" >
<pro:inputDate id="dateField"
title="Date Field Component"
value="#{backingBean.date}" >
<f:convertDateTime pattern="d MMMMM yyyy" />
<pro:validateDate availability="#{backingBean.getAvailability}" />
</pro:inputDate>

<h:message for="theDate" />

<h:commandButton value="Submit" />
</h:form>

</fiview>
</jsp:root>

As you can see, the JSF page has no Ajax “code” in the page source, which means no extra
burden is put on the application developer to Ajax enable elements in the page. We have said
it before, and we will say it again—make it easy for the application developer!

The only thing that is different in this page from the page created in Chapter 2 is the
addition of a Validator—<pro:validateDate .. />.The Validator will be used during regular
postback to compare dates entered in the input field against information available in the back-
ing bean. This backing bean will also be used to set dates that are selectable or not in the pop-up
calendar. Remember the <f:convertDateTime pattern="d MMMMM yyyy" > Converter from
Chapter 2?2 This converter makes sure that whatever the user enters follows a format you can
convert to a Date object on the server.

Fetching Data with Ajax

In Chapter 6, you got familiar with the difference between a regular postback and an Ajax
postback to handle events. Fetching data the conventional way versus using Ajax has similar
differences, except that it should not have the side effect of changing the state of surrounding
components.

The only difference between Figure 7-3 and the Ajax sequence diagram in Chapter 6
(Figure 6-3) is the HTTP method. The W3C recommends you use the HTTP GET method to
fetch data when there are no side effects requested by the user (for example, Google Suggest).

273

274 CHAPTER 7 I AJAX ENABLING THE DATE FIELD COMPONENT

Browser Window Client-Side Script Web Server
submit new XMLHitpRequest
— N T > .
open
send HTTP POST
2000K
callback o S -
getResponseXMLIMext
AMLDocument/String
.‘ _________________

Figure 7-3. Sequence diagram of an XMLHttpRequest using the HTTP GET method

Different JSF Ajax Approaches

If you get no side effects, then there is no change to the JSF component hierarchy; thus, there
is no need to go through the JSF lifecycle. But, if you want to reuse the managed bean refer-
enced by the validator, the only way to get to it is via the JSF MethodBinding facility. Three
solutions exist to support your requirements—adding functionality to the Renderer, using

a Phaselistener, and providing a new JSF Lifecycle.

The Renderer Approach

This approach adds functionality to the Renderer to detect the Ajax request. The JSF default life-
cycle first restores the component hierarchy during the Restore View phase, and the Renderer
takes control during the Apply Request Values phase. After the Ajax request has been processed,
the Renderer calls responseComplete() on the FacesContext to terminate processing of remain-
ing phases in the Lifecycle. On the surface this may seem like the preferred approach, but it
has some severe drawbacks.

A component hierarchy is required, which can incur additional overhead for each request,
especially when client-side state saving is used. Calling the responseComplete() method will
take effect only after this phase is done processing. The Apply Request Values phase calls the
decode() method on all Renderers in the view, which can cause undesired side effects that are
out of your control, such as a commandButton set to immediate="true" by the application devel-
oper. This causes application logic to be called before the Apply Request Values phase is
complete.

Additionally, this approach typically requires HTTP POST to send the state string back to
the server.

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

The PhaseListener Approach

This approach adds a PhaselListener (PhaseId.RESTORE VIEW) that short-circuits the Lifecycle and
does all the processing in the Phaselistener itself. When it is done, it calls responseComplete()
on the FacesContext.

For this approach to work, it has to render a reference containing information about the
managed bean used by the Validator in the initial request. The PhaselListener uses this infor-
mation during postback to create a MethodBinding that can then be used to invoke logic behind
the validator and return data to the client. Since there is no component hierarchy created, and
thus no Renderers, there is no risk that command components with immediate set to true will
cause any side effects.

But, this approach has one issue; there is no way to prevent application developers from
attaching additional PhaselListeners at the same phase, which can cause undesired side effects.
Also, you have no way of knowing in which order these PhaselListeners will be executed.

The Lifecycle Approach

This approach adds a new Lifecycle that is mapped to an Ajax request and contains only

the lifecycle phases needed to process the request, invokes the application logic defined by a
MethodBinding, and renders the response. This eliminates the overhead of creating and restor-
ing the component tree, and thus no Renderers are required. You will also not encounter any
issues with immediate="true".

Another positive side effect of using a custom Lifecycle is that any PhaselListener added
by the application developer will have no impact on this solution; application developers can
even add Phaselisteners to this custom Lifecycle. However, if a custom Phaselistener is
used to place additional managed beans onto the request, you can run into issues, unless they
are registered for the custom Lifecycle as well.

Selecting a JSF Ajax Approach

In this book, we have decided to go with the Lifecycle approach, since it has no application
logic side effects and low overhead. It is here that the Mabon open source project can help you
focus on the design of your Ajax calendar component.

Issue with Relative Variables

One valid approach of defining a MethodBinding is to use relative variables in the MethodBinding
expression. This will have an unfortunate impact on both the PhaselListener approach and the
Lifecycle approach. For a data fetch to work with these two approaches, you need absolute
variables in the MethodBinding expression (for example, #{ backingBean.getValidDates}).

An example of a MethodBinding expression using relative variables would be a UIData com-
ponent (for example <h:dataTable ...>) thatis stamping out information about employees.
Each stamped row represents an Employee object. For each Employee object, a list of available
dates can be used to validate a selected date. Each stamped component has an EL expression
starting with the relative variable defined by the parent <h:dataTable ...> (for example
var="row"), as shown in Code Sample 7-3.

275

276 CHAPTER 7 = AJAX ENABLING THE DATE FIELD COMPONENT

Code Sample 7-3. Data-Bound Table Component

<h:dataTable var="row" value="#{managedBean.employeelist}">
<h:column>
<pro:inputDate id="dateField"
title="Date Field Component"
value="#{row.date}" >
<pro:validateDate availability="#{row.getValidDates}" />
</pro:inputDate>
</h:column>

The var attribute defines a relative variable row, which is used by each stamped compo-
nent to retrieve the unique data for each row. This works fine as long as you have access to the
component hierarchy during postback. On the client, each row’s expression looks the same,
so any client-side Ajax implementation depending on this expression to invoke an underlying
managed bean method is out of luck. Any attached managed beans will work during regular
postback, but an Ajax request using the PhaselListener or Lifecycle approach will not be able
to locate the right row of data. Therefore, Ajax components relying on managed beans to pro-
vide them with data (for example, to fetch available dates for a specific employee) are not
going to work properly when set up with a relative variable.

Possible Solutions to Relative Variables

You could try to solve this by implementing support for the UIData component, but you
have no guarantee that the parent component is of type UIData, since it is perfectly legal for
component authors to provide components that stamp out objects without subclassing the
UIData component. Examples of such components are the Oracle’s ADF Faces table and
treeTable components.

The best solution would be if the JSF specification provided support for converting
relative expressions to absolute expressions. Component writers could then convert relative
variables to absolute during initial render. The rendered expression could take the form of
#{managedBean.employeelList[1].getValidDates}, indicating this to be row one in the stamped
collection.

Step 4: Creating Converters and Validators

As discussed in Chapter 1, the JSF implementation provides helper classes for any type of
UIComponent. These helper classes are divided into converters, validators, and an event and lis-
tener model, each of them with its own area of expertise. In this section, you will build your
own Validator to perform validation on the strongly typed Date object to make sure a selected
date is actually available (for example, is not a weekend or a holiday).

Code Sample 7-4 uses the Validator you will design. Its purpose is to validate the
entered value and compare it with a list of dates that are flagged as “not available.” The
contract for the application developer’s backing bean provided is to return an array of
booleans—+#{managedBean.getValidDates}. The array indicates whether a date is available
(true) or not (false). This array provided by the backing bean is also used at the browser to
show which dates are available for selection.

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

Code Sample 7-4. ProInputDate Component with Attached Date Validator

<pro:inputDate id="dateField"
title="Date Field Component"
value="#{managedBean.date}" >
<pro:validateDate availability="#{managedBean.getValidDates}" />
</pro:inputDate>

Figure 7-4 shows the DateValidator class.

=] DateValidator
- MethodBinding _availability
+void validate (FacesContext context, UIComponent component, Object object)

+void setAvailability (MethodBinding availability)
+ MethodBinding getAvailability ()

Figure 7-4. Class diagram showing the DateValidator

The DateValidator Class

The DateValidator class (see Code Sample 7-5) checks to see whether the Date value is avail-
able, according to some rules, in a backing bean defined by an application developer.

Code Sample 7-5. The validate() Method

package com.apress.projsf.ch7.validate;
import java.util.Date;

import javax.faces.application.FacesMessage;
import javax.faces.component.UIComponent;

import javax.faces.context.FacesContext;

import javax.faces.el.MethodBinding;

import javax.faces.validator.Validator;

import javax.faces.validator.ValidatorException;

/%K

* DateValidator checks to see whether a Date value is available, according
* to a managed bean method binding.

*/

public class DateValidator implements Validator

{

Voo

* Validates the object value to make sure it is a Date and available.
*

* @param context the Faces context

277

278 CHAPTER 7 = AJAX ENABLING THE DATE FIELD COMPONENT

* @param component the Faces component
* @param object the object to validate
*/
public void validate(
FacesContext context,
UIComponent component,

Object object)

{
if (_ availability != null)
{

Date date = (Date)object;

long millis = date.getTime();

long millisPerDay = 1000 * 60 * 60 * 24;

Integer days = new Integer((int)(millis / millisPerDay));

Object[] args = new Object[] {days, days};

boolean[] result = (boolean[])_availability.invoke(context, args);

if (lresult[o])

{
FacesMessage message = new FacesMessage("Date is unavailable");
throw new ValidatorException(message);

}

}
}

The validate() method is called after the conversion of the entered string to Date is suc-
cessful. The reason for passing a new Object[]{days, days} is to be able to reuse it later. The
Validator has only one value, so the range is over a single day (from days to days, inclusive). It
will then call the backing bean passing the arguments needed, context and args. The backing
bean returns a boolean[] array, indicating availability for each day in the range (inclusive)
since January 1, 1970.

Code Sample 7-6 shows the accessors for the method binding of the available days with
the signature (int, int).

Code Sample 7-6. The setAvailability() and getAvailability() Methods

public void setAvailability(
MethodBinding availability)

{
_availability = availability;

}

public MethodBinding getAvailability()

{

return _availability;

}

private MethodBinding availability;

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

Although you have designed this Validator with your Ajax-enabled component in mind,
it is also fully functional with the basic HTML RenderKit.

Step 5: Creating a Client-Specific Renderer

You now know how to create your new Ajax-enabled ProInputDate component. Since you
already have an HtmlInputDateRenderer for this component, it makes sense to extend it to add
rich functionality. One of the benefits of extending a component’s client-side functionality is
that you need only to override the encodeBegin() method of the Renderer. Everything else
stays the same.

In the previous chapter, you added only Ajax functionality to your Htm1ShowOneDeckRenderer,
since the markup was already there. In this case, you have to provide some additional markup
to support the pop-up calendar.

You also need to determine the date format pattern that is used by the DateTimeConverter
and the target URL for the validator managed bean, if any. One of the positive side effects
of a component model is that a component author can extend the initial functionality
of a component. For the application developer, there is no difference between using the
“simple” HtmlInputDateRenderer and using the Ajax-enabled HtmlAjaxInputDateRenderer.
Figure 7-5 shows a class diagram with the HtmlAjaxInputDateRenderer.

=] HtmlAjaxinputDateRenderer

+void encodeEnd (FacesContext context, UIComponent component)

void encodeResources (FacesContext context, UIComponent component)

- String _determineDatePattern (FacesContext context, UIComponent component)
- String _determineTargetURL (FacesContext context, UIComponent component)
- String _toJavaScript (String s)

Figure 7-5. Class diagram showing the HtmlAjaxInputDateRenderer

Before you venture into the fun stuff, working on your new Ajax Renderer, you need to
understand what Mabon is and what it can provide for component writers who are interested
in Ajax data fetch.

What Is Mabon?

Mabon is an open source project hosted on the http://mabon.dev. java.net Web site. Mabon
offers a convenient way to hook in a specially designed lifecycle that is ideal for Ajax-enabled
components that need to fetch data directly from a backing bean, without the overhead of a
full JSF lifecycle. It also provides a Mabon protocol—mabon: /—that is used to reference the
backing bean and a JavaScript convenience function that is used to send the target URL and
any arguments needed and then asynchronously receive data from the managed bean.

279

280

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

Mabon and JSON

As you know, the XMLHttpRequest provides two response types—responseText and responseXML—
that can be used to fetch data. The question to ask is, when should I use each? Answers to this
question can differ depending on whom you ask, but we can recommend one rule. Ask yourself
whether you control the syntax of the response.

The responseXML type returns a complete DOM object (which gives you ample ways of
walking the DOM tree), allowing you to find the information needed, and apply changes to the
current document. This is useful when your component will impact surrounding elements,
and you don’t control the response (for example, when you are communicating with a Web
Service).

For the date component, you do control the response, and you are looking at only fetching
data for your component, not modifying the whole page’s DOM structure.

The responseText type returns plain text, which allows you to leverage JSON syntax for
the response. For components leveraging Ajax, JSON is an extremely useful data-interchange
format, since it can be easily parsed with the eval() function.

The eval() function takes one argument, a string of JavaScript code, and parses and exe-
cutes this string in one go rather than trying to process each part separately. This is significantly
faster than any other type of parsing, such as XML DOM parsing.

This is the reason why Mabon implements JSON—you control the response, and JSON
syntax is easy and fast to parse.

Note It is also important that component writers make it clear to the application developer that any
managed beans attached to the component need to return data types supported by JSON.

VALID DATA TYPES IN JSON

JSON (http://www.json.org) has a simple data structure—objects and arrays. Objects are collections of
name/value pairs, and arrays are ordered lists of values. In JSON, they take on these forms:

e An object is an unordered set of name/value pairs. An object begins with a left brace ({) and ends with
a right brace (}). Each name is followed by a colon () and the name/value pairs are separated by a
comma (,).

e An array is an ordered collection of values. An array begins with a left bracket ([) and ends with a right
bracket (]). Commas (,) separate values.

e Avalue can be a string in double quotes, a number, true or false or null, or an object, or an array.
These structures can be nested.

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

Structure of Mabon

Mabon consists of a custom JSF Lifecycle to process Ajax data fetch requests and a custom
JSF ViewHandler used to write out the data fetch URLs (see Figure 7-6).

LifecycleFPhase ‘

MabeonLifecycle ApplyReguest'/aluesPhase InvokeApplicationPhase RenderResponsePhase

FacesLifecycleServiet LifecycleFactorylmpl Mabon'iewHandler

Figure 7-6. Class diagram of Mabon

The MabonLifecycle Class

The MabonLifecycle consists of three phases—ApplyRequestValuesPhase, InvokeApplicationPhase,
and RenderResponsePhase. The MabonLifecycle is responsible for executing these three phases.
Additionally, it is also responsible for handling any PhaselListeners attached to the MabonLifecycle.

The LifecyclePhase Class

The Mabon LifecyclePhase is the base class for all lifecycle phases.

The ApplyRequestValuesPhase, InvokeApplicationPhase, and
RenderResponsePhase Classes

Since you are only fetching data and not modifying the component hierarchy or the underly-
ing model in any way, you do not need to include the Restore View, Process Validations, and
Update Model phases. The Mabon phases are performing similar operations to the default
lifecycle equivalents, such as decoding an incoming request, invoking application logic, and
rendering the response. We will cover these three in more detail shortly.

The FacesLifecycleServlet Class

This is a reusable servlet that will initialize the FacesContextFactory and look up the
MabonLifecycle in its first request. It will create the FacesContext and then invoke the three
lifecycle phases that are part of the MabonLifecycle. The servlet mapping defined by the Web
application will direct Mabon requests to this FacesLifecycleServlet.

281

282 CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

JSF 1.2 SPECIFICATION

Atter the release of the JSF 1.2 specification, the Mabon FacesLifecycleServlet will no longer be
needed. A component developer using the Mabon project to serve data to Ajax-enabled components can
change the servlet entry for Mabon to use the JSF 1.2 javax. faces.webapp.FacesServlet class instead
of the net. java.dev.mabon.webapp.FacesLifecycleServlet class. The FacesLifecycleServlet
provided by Mabon uses the same syntax as JSF 1.2 FacesServlet to customize the Lifecycle, simplify-
ing the upgrade path to JSF 1.2 for the application developer.

The LifecycleFactoryImpl Class

This class’s only purpose is to add a second lifecycle—the MabonLifecycle.

The MabonViewHandler Class

During the initial rendering, a custom Renderer needs to provide a path to the backing bean that
can be intercepted by the FacesLifecycleServlet and used during InvokeApplicationPhase
to call the referenced backing bean. By using the Mabon protocol, a component author can
get a unique path from the MabonViewHandler that can be rendered to the client. If the com-
ponent writer passes the string shown in Code Sample 7-7 with the path argument of the
ViewHandler.getResourceURL() method, the MabonViewHandler will return the string shown
in Code Sample 7-8 that can be written to the client.

CGode Sample 7-7. The Mabon Protocol

mabon:/managedBean.getValidDates

Code Sample 7-8. String Returned After Mabon Has Evaluated the Mabon Protocol
/<context-root>/<mabon-servlet-mapping>/managedBean.getValidDates

During an Ajax request, this URL is sent on the request and intercepted by the
FaceslLifecycleServlet.

Mabon: Initial Request

The Mabon implementation is designed specifically for Ajax requests and implements a
communication channel using JSON syntax. This solution allows Ajax components that use
managed beans to fetch data and to communicate with the server without having to go
through a full JSF lifecycle. So how does it work? At application start-up (see Figure 7-7),
Mabon will add the MabonLifecycle as part of the JSF LifecycleFactory context.

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

LifecycleFactorylmpl

Lifecycle
new "DEFALLT"

MabonLifecycle
new | '"netjava.dev.mabon”
> .

new ApplyRequest'/aluesPhase
L .

new N InvokeApplicationsPhase

new N RenderResponsePhase

Figure 7-7. Sequence diagram of Mabon at application start-up

On the initial request (as shown in Figure 7-8), Mabon is just delegating through to the
underlying JSF implementation and is active only during the Render Response phase, if
needed.

JSPX Document AJAX Renderer Mabon'iewHandler Document

=prefix:ajaxTag=
create taghancdler

encodeBegin getResourcelRL
— &

target URL

write target URL

Figure 7-8. Sequence diagram of Mabon initial request

In the Figure 7-8 sequence diagram, a page that contains a custom Ajax component
is executed. To work, the Ajax component needs to get data from an underlying backing
bean. During encodeBegin(), the Ajax Renderer for that component will use the Mabon
protocol—mabon: /—to write out a target URL that references the backing bean. To get
this URL, the Renderer will call the getResourceURL() on the MabonViewHandler. It will
pass a string matching the method binding expression for the backing bean (for example,
mabon:/managedBean.getValidDates). The getResourceURL() method will return a full
path—/<context-root>/<mabon-servlet-mapping>/managedBean.getValidDates—that can
be written out to the document.

Mabon: Data Fetch Request

After the page has been rendered to the client, it contains a target URL to the backing bean
that is needed by the Ajax component to fetch data (for example, /<context-root>/<mabon =

283

284 CHAPTER 7 I AJAX ENABLING THE DATE FIELD COMPONENT

mapping>/managedBean.getValidDates). In subsequent Ajax requests, this string will be inter-
cepted by the Mabon implementation and used to invoke the backing bean and return the
result to the client (see Figure 7-9).

Client-Side Script FacesLIfecycleServiet
: (Mabon)
submit new XMLHttpRequest
4b ________ ’)
open

HTTP GET “;‘mabonf...“h execute
I e

send render
—_—

200 OK
callback I I
getResponseText

String (JSOM syntax)
.‘ _____________ —

Figure 7-9. Sequence diagram of Mabon/Ajax data fetch request

On submit, an Ajax-enabled component creates a new XMLHttpRequest object, which
asynchronously communicates with the server to get data from the managed bean. This
request is intercepted by the FacesLifecycleServlet, which routes the request through the
Mabon Lifecycle instead of the default JSF Lifecycle (see Figure 7-10).

FaceslifecycleServiet MabonLifecycle ApplyReqguest'/aluesPhase | Invoke ApplicationPhase RenderResponseFPhase

execute execute

execute

render execute

Figure 7-10. Sequence diagram over Mabon lifecycle during postback

When the FacesLifecycleServlet intercepts the request, the processing of the
request starts by calling each Mabon lifecycle phase, in sequence. First, you execute the

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

ApplyRequestValuesPhase, which will decode the request and get the managed bean refer-
ence and method arguments needed for the managed bean off the request. Second, you
execute the InvokeApplicationPhase that will create a MethodBinding based on the man-
aged bean reference, invoke this MethodBinding passing any arguments, and return the
result. Third, the RenderResponsePhase takes the result and writes it back to the client.

Mabon APIs

The following sections cover the available APIs and how to register Mabon with an application.

Mabon Servlet Configuration

If you are planning on using Mabon for your Ajax-enabled components, you should be aware
that it adds an extra step for the application developer using your JSF component library. The
application developer needs to add the entry shown in Code Sample 7-9 to the Web applica-
tion configuration file—web.xml.

Code Sample 7-9. Mabon Servlet Configuration

<servlet>
<servlet-name>Mabon Servlet</servlet-name>
<servlet-class>net.java.dev.mabon.webapp.FacesLifecycleServlet</servlet-class>
<init-param>
<param-name>javax.faces.LIFECYCLE_ID</param-name>
<param-value>net.java.dev.mabon</param-value>
</init-param>
</servlet>

<servlet-mapping>
<servlet-name>Mabon Servlet</servlet-name>
<url-pattern>/mabon/*</url-pattern>
</servlet-mapping>

The servlet class—net. java.dev.mabon.webapp.FacesLifecycleServlet—and the initial-
ization parameter (for example, net. java.dev.mabon) is part of the Mabon contract.

The application developer can decide to set the mapping to the same url-pattern(s) as
defined by default (for example, /mabon/*) or override the default URL mapping in case it is
colliding with resources used by the Web application. Mabon automatically consumes this
URL mapping change without requiring any code changes.

Mabon JavaScript APIs

The Mabon project provides a convenience JavaScript library that you can use to send your
request to the server. The Mabon send() function leverages the Dojo toolkit’s bind() function
to asynchronously communicate with the server. We discussed the Dojo toolkit in Chapter 6.
Code Sample 7-10 shows the source of the Mabon JavaScript library.

285

286

CHAPTER 7 = AJAX ENABLING THE DATE FIELD COMPONENT

Code Sample 7-10. The mabon. js Library

var mabon = new Object();

mabon.send = function (
kvparams)

{

var content = {args:'[' + kvparams.args.join(',') + ']'};

dojo.io.bind(
{
url: kvparams.url,
method: 'get',
content: content,
mimetype: "text/javascript",
load: function(type, data, evt) { kvparams.callback(eval(data)); },
error: function(type, data, evt)
{
alert('Oops! The server returned an error, please try again.');
}
IOk
}

The Mabon send() function takes one argument—a Map. To call the mabon. send() function
from your Ajax implementation, you would have to construct the Map using JavaScript Map syn-
tax, as shown in Code Sample 7-11.

Code Sample 7-11. Passing Arguments to the Mabon send() Function

mabon. send(
{ url: targetURL,
args: [item1, item2],
callback: callback_function }
);

Mabon Protocol

Now that you know how to configure Mabon, it is time to look at how you can reference man-
aged beans that are needed to fetch data.

The Mabon protocol-like syntax is convenient and easy to understand. The syntax starts
with mabon:/ followed by the managed bean name and finally the method name, as shown in
Code Sample 7-12.

Code Sample 7-12. Using the mabon:/ Syntax

ViewHandler.getResourceURL(context, "mabon:/<managed bean name>.<method>");

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

The syntax uses a prefix to indicate this is a Mabon-managed request, the managed bean
name, and the method needed. This syntax—<mabon prefix><managed bean><method>—defined
by the Mabon contract is used to return a target URL referencing the managed bean. The target
URL will be intercepted by the FacesLifecycleServlet and deciphered by the Mabon Apply
Request Values phase.

Note Aithough the Mabon project uses a protocol-like syntax to reference managed beans, this is not a
real protocol handler, so the new URL("mabon:/...").openStream() would not work from Java code—
but you don’t need it to, since the client is not Java code.

The HtmlAjaxInputDateRenderer Class

The HtmlAjaxInputDateRenderer (see Code Sample 7-13) extends the HtmlInputDateRenderer
to add a pop-up calendar and Ajax-based data fetch of available days.

Code Sample 7-13. Determine Date Pattern and Launch Calendar Pop-Up

package com.apress.projsf.ch7.render.html.ajax;

import java.io.IOException;import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Map;

import javax.faces.application.Application;
import javax.faces.application.ViewHandler;
import javax.faces.component.UIComponent;
import javax.faces.component.UIInput;

import javax.faces.context.FacesContext;
import javax.faces.context.Responselriter;
import javax.faces.convert.Converter;

import javax.faces.convert.DateTimeConverter;
import javax.faces.el.MethodBinding;

import javax.faces.validator.Validator;

import com.apress.projsf.ch2.render.html.basic.HtmlInputDateRenderer;
import com.apress.projsf.ch7.validate.DateValidator;

/x*¥

* HtmlAjaxInputDateRenderer extends the HtmlInputDateRenderer

* to add a pop-up calendar and Ajax-based data fetch of available days.
*/

public class HtmlAjaxInputDateRenderer extends HtmlInputDateRenderer

{

287

288 CHAPTER 7 = AJAX ENABLING THE DATE FIELD COMPONENT

/**
* Encodes the content of this component, including a button to
* trigger the pop-up calendar.
*
* @param context the Faces context
* @param component the Faces component
*
* @throws IOException if an I/0 exception occurs during rendering
*/
public void encodeBegin(
FacesContext context,
UIComponent component) throws IOException
{
String valueString = getValueAsString(context, component);
String clientId = component.getClientId(context);
String pattern = _determineDatePattern(context, component);
String targetURL = _determineTargetURL(context, component);

Map attrs = component.getAttributes();
String title = (String)attrs.get(TITLE _ATTR);
String onchange = (String)attrs.get(ONCHANGE ATTR);

Responselriter out = context.getResponselriter();
out.startElement("div", component);

if (title != null)
out.writeAttribute("title", title, TITLE ATTR);

// <input id="[clientId]" name="[clientId]"
// value="[converted-value]" onchange="[onchange]" />
out.startElement("input"”, component);
out.writeAttribute("style", "vertical-align:bottom;", null);
out.writeAttribute("id", clientId, null);
out.writeAttribute("name", clientId, null);
if (valueString != null)

out.writeAttribute("value", valueString, null);
if (onchange != null)

out.writeAttribute("onchange", onchange, ONCHANGE ATTR);
out.endElement("input");

// <button type="button" >

//

// </button>

ViewHandler handler = context.getApplication().getViewHandler();

String overlayURL = handler.getResourceURL(context,
"weblet://com.apress.projsf.ch7/inputDateButton.gif");

out.startElement("button", null);

out.
out.
out.

out.
out.
out.
out.

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

writeAttribute("type", "button", null);
writeAttribute("class", "ProInputDateButton", null);
writeAttribute("onclick",
"new HtmlInputDate(" + _toJavaScript(clientId) + "," +
_toJavaScript(pattern) + "," +
_toJavaScript(targetURL) +
") .showPopup()",
null);
startElement("img", null);
writeAttribute("style", "vertical-align:middle;", null);
writeAttribute("src", overlayURL, null);
endElement("img");

out.endElement("button");
out.endElement("div");
}
private String toJavaScript(
String s)
{
if (s == null)
return "null";
return "' 4 s + "'
}

First, you call the encodeBegin() method on the HtmlAjaxInputDateRenderer to get
the client ID of the ProInputDate component, which will later be used to determine where
to return the selected date. Second, you call two methods—_determineDatePattern and
_determineTargetURL. These methods get hold of the date format pattern and the target
URL for the managed bean bound to the DateValidator. Then you write out the markup for
the response. As you can see in Code Sample 7-14, you use weblets to load an image that
will be used as an icon for the button. You then write out the button with the image and the
onclick event handler that will be used to fetch data from the managed bean and to pop up
the calendar.

Code Sample 7-14. The encodeResources () Method

protected void encodeResources(
FacesContext context,
UIComponent component) throws IOException

{

writeScriptResource(context, "weblet://org.dojotoolkit.browserio/dojo.js");
writeScriptResource(context, "weblet://net.java.dev.mabon/mabon.js");
writeScriptResource(context, "weblet://com.apress.projsf.ch7/inputDate.js");

writeStyleResource(context, "weblet://com.apress.projsf.ch7/inputDate.css");

}

289

290

CHAPTER 7 = AJAX ENABLING THE DATE FIELD COMPONENT

By overriding the HtmlRenderer base class encodeResources () method, you have extended
the HtmlInputDateRenderer with three new calls to the dojo. js, the mabon.js, and your own
inputDate. js library. An application developer might add two or more ProInputDate compo-
nents to the page, but the semantics behind the writeScriptResource() method (provided by
your Renderer implementation and described in Chapter 3), HtmlRenderer, will make sure
these resources are written only once.

For your Ajax implementation to work, you need to know what date pattern has been set
on the DateTimeConverter by the application developer. The determineDatePattern() method
shown in Code Sample 7-15 will return the date pattern set by the DateTimeConverter.

Code Sample 7-15. The determineDatePattern() Method

private String determineDatePattern(
FacesContext context,
UIComponent component)
{
UIInput input = (UIInput)component;
Converter converter = getConverter(context, input);

if (converter instanceof DateTimeConverter)

{
DateTimeConverter dateTime = (DateTimeConverter)converter;
return dateTime.getPattern();

}

else
{
SimpleDateFormat dateFormat = (SimpleDateFormat)
DateFormat.getDateInstance(DateFormat.SHORT);
return dateFormat.toPattern();
}
}

This date pattern will be used in two places. First, it will parse the date entered by the user
in the input element. This parsed date will then be used to set the selected date in the calen-
dar. Second, it will make sure that the date selected in the calendar follows the correct date
format when added to the input element.

The method shown in Code Sample 7-16 is crucial to your Ajax solution, since it provides
you with the required binding reference to the backing bean. You first get all the validators
attached to this input component. You then check to see whether any of these validators are
instances of the DateValidator.

Code Sample 7-16. The determineTargetURL() Method

private String determineTargetURL(
FacesContext context,
UIComponent component)

{

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

UIInput input = (UIInput)component;
Validator[] validators = input.getValidators();

for (int i=0; i < validators.length; it++)
{
if (validators[i] instanceof DateValidator)
{
DateValidator validateDate = (DateValidator)validators[i];
MethodBinding binding = validateDate.getAvailability();
if (binding != null)
{
String expression = binding.getExpressionString();
// #{backingBean.methodName} -> backingBean.methodName
String bindingRef = expression.substring(2, expression.length()-1);

Application application = context.getApplication();
ViewHandler handler = application.getViewHandler();
return handler.getResourceURL(context, "mabon:/" + bindingRef);
}
}
}

return null;
}
}

Ifitis an instance of the DateValidator, you check to see whether you have a MethodBinding.
If you have a MethodBinding, you get the expression (for example, #{managedBean.methodName})
and strip off the #{}. This leaves you with managedBean.methodName, which you concatenate
with mabon:/. The MabonViewHandler will recognize the string and return a resource URL that
will be written to the client (for example, /context-root/mabon-servlet-mapping/managedBean.
methodName).

Ajax Resources

Since you have decided to use Mabon, you do not need to worry about fetching data from the
backing bean. You can leave this to Mabon. What you do need to be concerned about, though,
is how to handle the returned data on the XMLHttpRequest object, how to pop up the actual
calendar, and how to handle user interactions (for example, the next and previous months).

Object-Oriented JavaScript

You can leverage several good Web resources and books to provide good JavaScript solutions. In
the following sections, we will provide you with an overview of the HtmlInputDate Ajax solution.
You have created a custom HtmlInputDate JavaScript object, which uses the prototype
feature of JavaScript to properly isolate all the internal state needed by your component at the

browser.

291

292

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

Note Prototype-based programming is a style and subset of object-oriented programming in which
classes are not present, and behavior reuse (known as inheritance in class-based languages) takes place by
cloning existing objects, which serve as prototypes for new ones. It is also known as classless, prototype-
oriented, or instance-based programming (http://en.wikipedia.org).

You have three main user interactions to consider for the visual specification of your com-
ponent. You need to be able to pop up the calendar, navigate to the relevant month and year,
and then select an available date.

The inputDate.css Resource

In your ProInputDate Ajax renderer, we have decided to leverage CSS to provide you with a
very good-looking calendar and at the same time provide the ability to set and detect what
dates are selectable. Code Sample 7-17 shows an excerpt from the inputDate.css file.

Code Sample 7-17. The inputDate.css File

.ProInputDateCalendar {..}
.ProInputDateCalendar tbody .other
{

color: rgh(128,128,128);

}

.ProInputDateCalendar tbody .noselect
{

color: rgh(208,64,64);
}

.ProInputDateCalendar tbody .selected
{
background-color: rgb(32,80,255);
color: white;
font-weight: bold;

}

.ProInputDateCalendar tbody .today
{
font-weight: bold;

}

These styles use descendant selectors relative to the element with the class
ProInputDateCalendar. Descendant selectors are a way to apply styles to specific areas
of a page to reduce the need to embed classes within elements. Composed of two or more
selectors separated by whitespace, descendant selectors apply styles to elements that are
contained within other elements. For the selectors defined in Code Sample 7-17, some style
classes are defined (for example, .other, .onselect, .selected, and .today). These class

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

names will set the style on cells in the calendar’s tbody element, indicating whether a cell
is selectable. Later in your Ajax implementation, you will see how you use these class names
to determine whether the user clicked a valid date.

Note CSS 1 first introduced descendant selectors (then called contextual selectors) in 1996.

The HtmlInputDate.prototype.showPopup Method

The showPopup method is responsible for launching the calendar when the user clicks the but-
ton (see Figure 7-11). It will first create an instance of the HtmlInputDate JavaScript object that
will store the calendar’s internal state. Then, it will read the user-defined date string from the
input field and parse that date string into a Date object. If the parsing is successful, use the
Date object; otherwise, use today’s Date. Next it ensures that there is no previous selection
before calling the scroll method and passing zero as an argument to ensure fully populated
calendar day cells but staying on the current month (zero navigation). Finally, the showPopup
method, as shown in Code Sample 7-18, will select an initial date (if possible), unless the cal-
endar is dismissed.

hutton.onclick

create HtmillnputDate
showPopup
_deselect
arseDate
=
roll
=) _scro
_select

Figure 7-11. HtmlInputDate.prototype.showPopup method

Code Sample 7-18. The HtmlInputDate.prototype.showPopup Method

Vass
* Shows the pop-up calendar.

*/

HtmlInputDate.prototype.showPopup = function()
{

var tableNode = this._tableNode;

if (tableNode.style.visibility == 'hidden')

293

294 CHAPTER 7 I AJAX ENABLING THE DATE FIELD COMPONENT

{
var dateString = this. input.value;
var parsedDate = this. parseDate(dateString, this. pattern);
var activeDate = (parsedDate != null) ? parsedDate : new Date();
this._deselect();
var month = activeDate.getMonth();
var year = activeDate.getFullYear();
this. currentMonth = month;
this. currentYear = year;
this._scroll(0);
if (parsedDate)
this._select(parsedDate.getDate());
}
else
{
this. hidePopup();
}
}

The HtmlInputDate.prototype._scroll Method

This method, as shown in Code Sample 7-19, allows the user to navigate plus or minus one
month using the arrow controls in the calendar (see Figure 7-12). It is also here that you use
Mabon to determine the availability of dates defined by the managed bean attached to the
ProInputDate component.

arrowCell.onclick HtmlinputDate makeon

_scroll

calculateDate
1T

send

_display

formatDate (title
<1 (tte)

isisibl lected, tod
?I_IS isible (selected today)

Figure 7-12. HtmlInputDate.prototype. scroll method

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

Code Sample 7-19. The HtmlInputDate.prototype. scroll Method
/**
* Scrolls the visible month by +/- offset months.
*
* @param offset the number of months to scroll
* @private
*/
HtmlInputDate.prototype. scroll = function(offset)
{
this. currentMonth = this. currentMonth + offset;
this. currentYear += Math.floor(this. currentMonth / 12);
this. currentMonth = (this. currentMonth + 12) % 12;

if (this._targetURL)

{
var startDate = this. calculateDate(1);
var endDate = this. calculateDate(31);

var millisPerDay = 1000 * 60 * 60 * 24;
var startDay = Math.floor(startDate.getTime() / millisPerDay);
var endDay = Math.floor(endDate.getTime() / millisPerDay);

var self = this;
mabon. send(
{
url: this._targetURL,
args: [startDay, endDay],
callback: function(result) { self._display(result); }
D;
}
else
{
var available = [];
for (var i=0; i < 32; i++)

{
available.push(true);
}
this. display(available);
}

}

The HtmlInputDate.prototype._clickCell Method

This method, as shown in Code Sample 7-20, is called when the user clicks a cell representing
a date in the calendar. The method (see Figure 7-13) will check to see whether the user clicked

295

296

CHAPTER 7 I AJAX ENABLING THE DATE FIELD COMPONENT

a cell that is outside the range of the displayed month and if so navigate to the month for that
selected date—this. scroll(1) or this. scroll(-1).If the selection is within the boundaries
of the month, you need to see whether the date is actually available, and if it is, you can add
the selected date to the input element.

dayCell.anclick HtmlinputDate

_clickCell

isAvailakl
;I_m vailable

calculateDate
e

formatDate
e

_hidePopup
e

Figure 7-13. HtmlInputDate.prototype. clickCell method

Code Sample 7-20. The HtmlInputDate.prototype. clickCell Method
Vass

* Selects the cell when it is clicked.

*

* @param event the click event

* @private

*/
HtmlInputDate.prototype. clickCell = function(event)
{

var cellNode = (event.target || event.srcElement);

var rowNode = cellNode.parentNode;

var row = rowNode.sectionRowIndex;
var col = cellNode.cellIndex;
var day = Number(cellNode.firstChild.nodeValue);

if (row == 0 && day > 7)
{
this._scroll(-1);
}
else if (row > 3 & day < 15)

{
this._scroll(1);

}

else

{
if (this._isAvailable(day))

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

{
var selectedDate = this. calculateDate(day);

this._input.value = this._formatDate(selectedDate, this._ pattern);

this._hidePopup();
}
}
}

You can get hold of the target node invoking the event by calling event.target, but
Internet Explorer implements this slightly differently—event.srcElement. Thus, you have the
(event.target || event.srcElement) syntax, which evaluates to either event.target or
event.srcElement, whichever is defined.

Step 7: Registering a UIComponent and Renderer

For your JSF Ajax ProInputDate implementation, you need to make sure you register your cus-
tom Renderer with the Ajax RenderKit created in Chapter 6, as shown in Code Sample 7-21.

Code Sample 7-21. Registering the HtmlAjaxInputDateRenderer

<faces-config xmlns="http://java.sun.com/JSF/Configuration" >

<render-kit>
<render-kit-id>com.apress.projsf.ajax[HTML_BASIC]</render-kit-id>
<render-kit-class>
com.apress.projsf.ch6.render.html.ajax.HtmlAjaxRenderKit
</render-kit-class>

<renderer>
<component-family>javax.faces.Input</component-family>
<renderer-type>com.apress.projsf.Date</renderer-type>
<renderer-class>

com.apress.projsf.ch7.render.html.ajax.HtmlAjaxInputDateRenderer

</renderer-class>

</renderer>

</render-kit>

</faces-config>

The new HtmlAjaxInputDateRenderer is still part of the same component family and has
the same renderer type as the HtmlInputDateRenderer created in Chapter 2.

Step 8: Creating a JSP Tag Handler and TLD

You need a custom action for your validator so that an application developer can add it

as a child to a ProInputDate component. The ValidateDateTag tag handler class represents
the custom action validateDate that will be used by the application developer to register a
DateValidator instance to a ProInputDate component.

297

298 CHAPTER 7 I AJAX ENABLING THE DATE FIELD COMPONENT

The ValidateDateTag Class

Figure 7-14 shows a class diagram of your ValidateDateTag.

=] ValidateDateTag
- String availability

+void setAvailability (String availability)
Validator createValidator ()

Figure 7-14. Class diagram showing your three tag handlers

Code Sample 7-22 shows the actual code behind this ValidateDateTag class.

Code Sample 7-22. The ValidateDateTag Class

package com.apress.projsf.ch7.taglib;

import javax.faces.application.Application;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.el.MethodBinding;

import javax.faces.validator.Validator;
import javax.faces.webapp.ValidatorTag;

import javax.servlet.jsp.JspException;

import com.apress.projsf.ch7.validate.DateValidator;

/**
* ValidateDateTag listener tag handler.
*/
public class ValidateDateTag extends ValidatorTag
{
/**
* Sets the availability method binding with signature (int, int)
* returns boolean[], indicating availablilty for each day in
* range (inclusive) since January 1, 1970.
*
*

@param availability the availability method binding
*/
public void setAvailability(

String availability)
{

_availability = availability;

}

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

/**
* Create and return a new {@link DateValidator} to be registered

* on the surrounding {@link UIComponent}.
*

* @throws JspException if a new validator instance cannot be created
*/
protected Validator createValidator() throws JspException

{
DateValidator validator = new DateValidator();

if (_availability != null)
{
FacesContext context = FacesContext.getCurrentInstance();
Application application = context.getApplication();
MethodBinding binding = application.createMethodBinding(_availability,
new Class[]
{
int.class,
int.class
D;
validator.setAvailability(binding);

}

return validator;

}

private String availability;

}

The setAvailability() method sets the method binding, defined by the application
developer, with the signature (int, int) and returns a boolean[] array, indicating the avail-
ability for each day in the range (inclusive) since January 1, 1970. Code Sample 7-23 shows an
excerpt of a backing bean that could be bound to your date validator.

Code Sample 7-23. Excerpt of Backing Bean Following the Contract of Your Validator

public boolean[] getAvailability(
int startDays,
int endDays)

{

boolean[] availability = new boolean[totalDays];

return availability;

}

299

300 CHAPTER 7 = AJAX ENABLING THE DATE FIELD COMPONENT

The Tag Library Descriptor

You have defined the behavior of your ValidateDateTag tag handler class. It is now time to reg-
ister the name of the custom action and define some rules for how it can be used, as shown in
Code Sample 7-24.

Code Sample 7-24. Tag Library Descriptor

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
"http://java.sun.com/dtd/web-jsptaglibrary 1 2.dtd" >
<taglib>

<tlib-version>1.0</tlib-version>

<jsp-version>1.2</jsp-version>

<short-name>pro</short-name>

<uri>http://projsf.apress.com/tags</uri>

<description>
This tag library contains JavaServer Faces tag handlers for the
ProJSF component library.

</description>

<tag>
<name>validateDate</name>
<tag-class>com.apress.projsf.ch7.taglib.ValidateDateTag</tag-class>
<body-content>JSP</body-content>
<description>
</description>

<attribute>
<name>availability</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
The availability method binding with signature (Int, Int)
returns boolean[], indicating availablilty for each day in
range (inclusive)
</description>
</attribute>
</tag>
</taglib>

Asyou can see, this tag has only one attribute—availability. To emphasize, any method
binding defined has to follow the contract set up by the DateValidator.

CHAPTER 7 " AJAX ENABLING THE DATE FIELD COMPONENT

Step 12: Registering Your Ajax Resources with Weblets

For the HtmlAjaxInputDateRenderer, you need to register two files—inputDate. js and
inputDate.css—as weblets, which will enable you to package them as part of your custom
JSF component library (see Code Sample 7-25).

Note For more information about weblets, please see Chapter 5, or visit the Weblets project’s site at
http://weblets.dev.java.net.

Code Sample 7-25. Weblet Configuration for the HtmlAjaxInputDateRenderer Resources

<?xml version="1.0" encoding="UTF-8" 2>
<weblets-config xmlns="http://weblets.dev.java.net/config" >
<weblet>
<weblet-name>com.apress.projsf.ch7</weblet-name>
<weblet-class>net.java.dev.weblets.packaged.PackagedWeblet</weblet-class>
<init-param>
<param-name>package</param-name>
<param-value>com.apress.projsf.ch7.render.html.ajax.resources</param-value>
</init-param>
</weblet>

<weblet-mapping>
<weblet-name>com.apress.projsf.ch7</weblet-name>
<url-pattern>/projsf-ch7/*</url-pattern>
</weblet-mapping>
</weblets-config>

The PackagedWeblet is a built-in weblet implementation that can read from a particular
Java package using the ClassLoader and stream the result to the browser. The package initial-
ization parameter tells the PackagedWeblet which Java package to use as a root when resolving
weblet-managed resource requests.

Summary

This chapter discussed how you can use Ajax to fetch data and how you can leverage the JSF
managed bean facility as a data source.

The chapter also covered the different XMLHttpRequest response types—responseText and
responseXML—that you can use to return the result from the server. We also showed you how to
use the eval() function to efficiently parse JSON-syntax responses.

301

302

CHAPTER 7 = AJAX ENABLING THE DATE FIELD COMPONENT

We covered a new open source project called Mabon that extends JSF to provide a custom
lifecycle that invokes a managed bean method remotely and then transfers the result to the
client using JSON syntax.

From this chapter, we hope you have gained an understanding of how to Ajax-enable data
fetch for your JSF components; in addition, you should now have a deeper understanding of
object-oriented JavaScript programming techniques. You should now also be able to create
your own custom validator.

CHAPTER 8

Providing Mozilla
XUL Renderers

None of this was here. It was a giant space, and there were creatures, and they were
growling, and I heard a voice say ‘zuul.” It was right here!

—Dana Barrette, Ghostbusters

The more advanced Web applications become, the more they look and feel like desktop
applications. With the speed at which Internet technologies are evolving, we will soon be fac-
ing a new type of Internet application—single-page interface (SPIF) applications. These are
RIAs that behave like desktop applications, making the traditional page flow a thing of the
past. An example of a traditional page flow application is a shopping cart. In a SPIF applica-
tion, users don’t need to navigate to new pages when stepping through the online store. Great
examples of SPIF applications are the Mozilla Amazon Browser (http://www.faser.net/mab/)
and OpenlLaszlo’s Amazon Store (http://www.laszlosystems.com/1ps/sample-apps/amazon/
amazon2.1lzx?1zt=html). Both provide the user with a rich, intuitive user interface and are not
forcing the user to navigate from page to page.

Unless you are a serious JavaScript or Ajax hacker, you should think twice before choosing
Ajax to build a SPIF application. In context, a SPIF application built on top of a pure Ajax solu-
tion definitely means more client-side code. More client-side code means more work at the
browser, which means that code-intensive SPIF applications will need powerful processors to
give the user the responsiveness desired. Although computers have become faster, the proces-
sor problem with JavaScript functionality in the past has not completely disappeared—not to
mention that maintaining all that JavaScript code is not a task for the faint of heart!

If you combined the asynchronous communication channel provided by Ajax with a
feature-rich, client-side component model, you would be golden. As you learned in Chapter 4,
RITs, Mozilla XUL, and Microsoft HTC provide developers with well-confined environments
for building reusable components. With JSE it is possible to provide a solution that combines
Ajax and XUL or combines Ajax and HTC and therefore gives the component writer the best of
both worlds and gives the application developer a lightweight and responsive framework.

This chapter will focus on using XUL and show how you can leverage XULSs extensibility
and the declarative component model to enhance your JSF components. You will provide a
new XUL RenderKit for the ProInputDate and ProShowOneDeck components.

303

304

CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

Requirements for the Deck and Date Components’
XUL Implementations

The requirements for the ProInputDate and ProShowOneDeck components in this chapter are
simple—you need to leverage the declarative component model provided by Mozilla’s GRE. To
support this, you need to provide XUL-specific Renderer classes for the deck and date compo-
nents. There should be no loss of functionality supporting this client-specific component
model compared to what is provided by the deck and date components created in Chapters 6
and 7.

What Mozilla XUL Brings to JSF

Since XUL components are part of the Mozilla GRE, there is no need to “explode” the JSF page
structure into the appropriate markup on the server before sending the markup to the client.
This in turn will reduce the network payload since rendering is taken care of by the client and
not by the actual server implementation.

Another great feature of XUL is its extensibility, providing a declarative way to create new
components and extend existing XUL components. To enable this feature, XUL uses XBL. You
attach these behavioral XBL components to markup using CSS selectors.

And, of course, XUL provides out-of-the-box rich client interactivity without forcing the
component author to implement this in an alternative solution such as JavaScript.

We will show how you can combine the Ajax asynchronous communication channel—
XMLHttpRequest—with the highly interactive components provided by XUL to design reusable
and extremely interactive components based on the JSF standard.

What JSF Brings to XUL

One element that JSF brings to XUL is a common programming model—JSP and Java. You
could argue that developers interested in XUL can use XUL directly, but the point we are
making here is that not only does JSF provide a familiar programming model (at least for the
majority of J2EE developers), it also provides a server-side component model that hides the
XUL specifics without the application developer knowing or needing to know the implemen-
tation details.

Another element that JSF brings is the standard request lifecycle that includes automatic
state saving and state restoring, validation, data model, and event handling.

The XUL Implementation of the Deck and
Date Components

One noticeable benefit of using a component model such as XUL with standard JSF compo-
nents is that it provides a set of UI widgets that are not available in HTML, such as menus,
toolbars, pop-ups, and trees. This means component writers do not need to “create” these
using traditional browser techniques, which is not a trivial task. These XUL widgets are
available through the Mozilla GRE, and as such, they have the benefit of not needing to
download components to draw an application in the browser. You can also design your own

CHAPTER 8 © PROVIDING MOZILLA XUL RENDERERS

components with XUL; the browser will download these once on initial request and cache
them in the browser.

The following are the main technologies in this chapter: XUL, XBL, Ajax, Dojo Toolkit, D?,
and Mabon. Although this list of technologies is pretty extensive, we have covered most of the
technologies in previous chapters; also, in this chapter, they will play more of a supporting
role, similar to weblets (which were introduced in Chapter 5). After this chapter, you should
be able to create rich user interface components with the Mozilla XUL and XBL technologies.
Figure 8-1 shows the nine classes you will create in this chapter.

AulRenderer
A

ProDocumentTag AulDocumentRenderer

AulAjaxRenderkit UIDocument AulAjaxinputDateRenderer

)

AmIResponseWriter FroDocument AulAjaxShowOneDeckRenderer

Figure 8-1. Class diagram showing all classes created in this chapter

The classes are as follows:

ProDocumentTag is the tag handler class representing the ProDocument component.

XulAjaxRenderKit is the new custom RenderKit, which is responsible for dynamically
selecting the correct Responselriter on the incoming request.

XmlResponseWriter extends the default Responselriter with support for XML
documents.

UIDocument is a behavioral superclass representing the document component.
ProDocument is the renderer-specific subclass for the UIDocument class.
XulRenderer is a port of the HtmlRenderer created in Chapter 2.

XulDocumentRenderer is the Renderer in charge of writing the root elements in a XUL
document.

XulAjaxInputDateRenderer is a new custom Renderer for the date component, which
extends the XulRenderer and adds resources to include XUL and Ajax support.

And finally, XulAjaxShowOneDeckRenderer is a new custom Renderer for the deck compo-
nent, which extends the XulRenderer and adds resources to include XUL and Ajax
support.

305

306

CHAPTER 8

PROVIDING MOZILLA XUL RENDERERS

Designing JSF XUL Components Using a Blueprint

The blueprint defined for the HTML-based JSF components applies to XUL-based JSF compo-
nents as well. The XUL implementation is not introducing any new behavior, so you need to
provide only a new set of XUL Renderers. Whenever you introduce a new Renderer that sup-
ports alternative markup to HTML, you have to provide a new RenderKit (that is, a XUL
RenderKit). In this chapter, you will simply follow the blueprint (see Table 8-1) starting with

step 1 and skipping steps 2, 4, and 10.

Table 8-1. Steps in the Blueprint for Creating a New JSF Component

#

Steps

Description

1

10

11

12

Creating a Ul prototype

Creating events and listeners

Creating a behavioral superclass

Creating converters and validators

Creating a client-specific Renderer

Creating a renderer-specific subclass

Registering a ULComponent and Renderer

Creating a JSP tag handler and TLD

Creating a RenderKit and ResponseWriter

Extending the JSF implementation

Registering the RenderKit and JSF extension

Registering resources with Weblets

Create a prototype of the UI and intended behavior for
your component using the appropriate markup.

(Optional) Create custom events and listeners in the
case your specific needs are not covered by the JSF
specification.

(Optional) If the component behavior is not to be
found, create a new behavioral superclass (for exam-
ple, UIShowOne).

(Optional) Create custom converters and validators in
the case your specific needs are not covered by the JSF
specification.

Create the Renderer you need that will write out the
client-side markup for your JSF component.

(Optional) Create a renderer-specific subclass;
although this is an optional step, it is good practice to
implement it.

Register your new UIComponent and Renderer in the
faces-config.xml file.

This step is needed in the case you are using JSP as
your default view handler. An alternative solution is to
use Facelets (http://facelets.dev.java.net/).

(Optional) If you plan to support alternative markup
such as Mozilla XUL, then you need to create a new
RenderKit with an associating Responselriter. The
default RenderKit is HTML_BASIC with the contentType
set to text/html.

(Optional) This step is needed in the case you have to
provide extensions to the JSF implementation (for
example, extending JSF factory classes or providing a
custom JSF lifecycle implementation).

(Optional) Register your custom RenderKit and/or
extensions to the JSF implementation.

(Optional) Register your resources such as images,
JavaScript libraries, and CSS files with Weblets so that
they can be packaged and loaded directly out of the
component library JAR file.

CHAPTER 8 © PROVIDING MOZILLA XUL RENDERERS

It might seem like a lot of work to have to cover nine out of twelve steps just to provide a
XUL implementation, but you have already done most of the work in previous chapters; as
such, each step is fairly simple. Let’s start with step 1 and look at the new components’ markup.

Step 1: Creating a UI Prototype

To be able to prototype what you want to achieve in this chapter, you will have to use XUL to
find out what XUL elements, renderer-specific attributes, and other resources (for example,
JavaScript, images, and so on) you need. Since you are providing a XUL implementation for
both the date and deck components, you also have to provide two prototypes, one for each
component.

Note During our research for information about XUL and XBL, we found two really good resources on the
Internet: Mozilla (http: //www.mozilla.org/projects/xul/) and XULPlanet (http://www.xulplanet.com/).

The XUL Date Implementation Prototype
Figure 8-2 shows the end result of the <pro:inputDate> prototype implemented in XUL.

| @ Pro JSF : ProlnputDate - Mozilla Firefox (==

File Edit View Go Bookmarks Tools Help

& - B - I:‘g @ || http:/{127.0.0.1:8988/chapterd-context-root/finputDate. xul [V]

23 March 2006

< March 2006 >
Sun Mon Tue Wed Thu Fri Sat
26 27 28 1 2 3 4

5 6 7 8 910 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 303 1

2 3 4 5 6 7 8

Figure 8-2. The <pro:inputDate> component implemented in a XUL page

Code Sample 8-1 shows the XUL markup for a page using the XUL <pro:inputDate>
prototype shown in Figure 8-2.

Code Sample 8-1. The Markup Needed to Create the XUL Prototype Page

<?xml version="1.0" ?>
<?xml-stylesheet href="projsf-ch8/document.css" type="text/css"?>
<?xml-stylesheet href="projsf-ch8/pro.css" type="text/css"?>
<xul:window xmlns="http://www.w3.0rg/1999/xhtml"
xmlns :xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"

307

308 CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

xmlns:pro="http://projsf.apress.com/tags"
orient="horizontal" align="start"
title="Pro JSF : ProInputDate">
<xul:hbox align="center" flex="1">
<xul:script type="text/javascript" src="/.../faces/weblets/mabon/mabon.js"/>
<xul:script type="text/javascript">
var djConfig={preventBackButtonFix: true,
libraryScriptUri:'/.../faces/weblets/dojo/dojo.js"};
</xul:script>
<xul:script type="text/javascript" src="/.../faces/weblets/dojo/dojo.js"/>
<pro:inputDate id="dateField"
value="31 October 2005"
pattern="d MMMMM yyyy"
targetURL="projsf-ch8/sample-availability.json"/>
</xul:hbox>
</xul:window>

A XUL document requires two elements to be valid: an XML processing instruction (<?xml
version="1.0"?>) on the first line that identifies the file as XML and a window element (<window
xmlns="..." >) that defines the XUL Web page, which is similar to <html> for HTML.

Caution At the time of writing, the Dojo toolkit needs to be configured to work with XUL, and therefore
you need the preventBackButtonFix workaround. This should go away in a future release of the Dojo
toolkit.

One of the benefits of using XUL over traditional HTML is that instead of having to pro-
vide all the markup in the Renderer, XUL is interested in only one element—<pro: inputDate>.
You can also see that the prototype is similar in syntax to the JSF component implementation.
From the source you can see that the XUL element that the Renderer has to provide is the
<pro:inputDate> element with at least two attributes—pattern and targetURL.

One of the great features of XUL is its extensive component library that is part of the
Mozilla GRE. As with many good frameworks, XUL also provides a model for extending the
component set whenever a need for it arises. As discussed in Chapter 4, the language that
developers can use to extend XUL is XBL. XBL allows developers to add “custom” components
to the extensive set of existing XUL elements. In this case, the functionality you are looking for
is not available out of the box, so you will have to create your own custom XUL component
(for example, <pro:inputDate ...>) using XBL.

The XBL Date Component Prototype

Like XUL, XBL is an XML language, so it has similar syntax rules. The <bindings> element is
the root element of an XBL file and contains one or more binding elements. Each binding ele-
ment declares a single binding. You can use the id attribute to identify the binding. Code
Sample 8-2 shows the XBL file (bindings.xml) and the first binding (inputDate).

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

Code Sample 8-2. The bindings.xml File

<?xml version="1.0"?>

<bindings xmlns="http://www.mozilla.oxrg/xbl"
xmlns:xbl="http://www.mozilla.org/xbl"
xmlns:html="http://www.w3.0rg/1999/xhtml"
xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">
<binding id="inputDate">

<{resources>

<stylesheet src="styles.css" />

</resources>
<content>
<xul:hbox>

<xul:textbox id="input"

style="margin-left:0opx;margin-right:opx;"
xbl:inherits="value"
onchange="this.parentNode.parentNode.flushChanges();" />

<xul:button popup="calendar"

</xul:hbox>

image="/.../projsf-ch8/inputDateButton.gif"
style="margin-left:0px;margin-right:0px;min-width:2em;"/>

The XBL component prototype in Code Sample 8-2 shows the root <bindings> element
containing one <binding> element. The namespace in the <bindings> element defines what
syntax will be used, and in the prototype in Code Sample 8-2 it is XBL—xmlns=http://
www.mozilla.org/xbl. The id attribute on the <binding> element (that is, inputDate) identifies
the binding. Using CSS, you can assign a binding to an element by setting the -moz-binding
URI property to reference the binding inside the XBL document (for example, -moz-binding:
url('[filename].xml#inputDate")).

The prototype also contains a set of XUL elements, as shown in Table 8-2.

Table 8-2. XUL Elements Used in This Chapter*

XUL Element [xul:] Description

hbox A container element that can contain any number of child elements
and that renders its children horizontally.

vbox A container element that can contain any number of child elements
and that renders its children vertically.

textnode With the <textnode> element, the entire node is replaced with text
corresponding to the result of the value attribute.

label This element provides a label for a control element. If the user clicks
the label, the focus moves to the associated control, specified with the
control attribute.

textbox A text input field in which the user can enter text. It is similar to the

HTML <input> element. Only one line of text is displayed by default. You
can specify the multiline attribute to display a field with multiple rows.

Continued

309

310

CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

Table 8-2. Continued

XUL Element [xul:] Description

button A button that can be clicked by the user. You can use event handlers to
trap mouse events, keyboard events, and other events. It is typically
rendered as a gray outset rectangle. The popup attribute used in this
chapter is a common attribute for all XUL elements.

popupset A container for <popup> elements. You should declare all <popup>
elements as children of a <popupset>. This element does not directly
display on-screen. Child pop-ups will be displayed when asked to be
displayed by other elements.

popup A container that appears in a child window. The pop-up window does
not have any special frame. Pop-ups can be displayed when an element
is clicked by assigning the ID of the <popup> element to either the popup,
context, or tooltip attribute of the element. A pop-up is a type of box
that defaults to vertical orientation.

grid A <grid> element contains both <rows> and <columns> elements.
It is used to create a grid of elements. Both the rows and columns are
displayed at once, although only one will typically contain content,
while the other may provide size information. Whichever is last in the
grid is displayed on top.

columns Defines the columns of a grid. Each child of a <columns> element
should be a <column> element.

column A single column in a <columns> element. Each child of the <column>
element is placed in each successive cell of the grid. The column with
the most child elements determines the number of rows in each
column.

TOWS Defines the rows of a grid. Each child of a <rows> element should be a
<row> element.

oW A single row in a <rows> element. Each child of the <row> element is
placed in each successive cell of the grid. The row with the most child
elements determines the number of columns in each row.

*Source: XULPlanet (http://www.xulplanet.com)

Being able to combine XUL components (and HTML elements) is extremely useful to
simplify development because you can create a single, complex, and reusable component.
Another neat feature of using the XUL component model is the built-in pop-up support.
Instead of having to write client-side script to support a pop-up window, you can simply cre-
ate a set of pop-up windows in the XBL binding, as shown in Code Sample 8-3, and use the
common XUL popup attribute to launch a pop-up window in the Mozilla browser. In your case,
this pop-up functionality will be used for the <pro:inputDate> component’s calendar.

The XUL popup element has a set of predefined event handlers (for example, onpopupshowing)
that you can use to dynamically set the contents when the user requests to display the calen-
dar. In this case, you are calling a method called popup().

You construct the pop-up calendar with a <vbox> element as the parent container and an
<hbox> element to hold the toolbar, as shown in Code Sample 8-3. The toolbar contains two
<text> elements that are used to navigate to the previous and next months.

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

Code Sample 8-3. The bindings.xml File

<xul:popupset>
<xul:popup id="calendar" position="after_end"
onpopupshowing="document.popupNode.parentNode.parentNode.popup()">
<xul:vbox class="calendar" >
<xul:hbox class="toolbar" >
<xul:text value="8&1t;"
onclick="document.popupNode.parentNode.parentNode.scroll(-1)" />
<xul:label id="title" flex="1"
style="text-align:center;padding: 1px;" />
<xul:text value="8gt;"
onclick="document.popupNode.parentNode.parentNode.scroll(1)" />
</xul:hbox>
<xul:grid id="grid"
onclick="document.popupNode.parentNode.parentNode.clickCell(event)" >
<xul:columns>
<xul:column/>
<xul:column/>
<xul:column/>
<xul:column/>
<xul:column/>
<xul:column/>
<xul:column/>
</xul:columns>

<xul:rows>
<xul:row class="headings" >
<xul:label value="Sun" />
<xul:label value="Mon" />
<xul:label value="Tue" />
<xul:label value="Wed" />
<xul:label value="Thu" />
<xul:label value="Fri" />
<xul:label value="Sat" />
</xul:row>
<xul:row class="cells" >
<xul:label/>
. //Six empty rows with seven empty labels.
<xul:label/>
</xul:row>
</xul:rows>
</xul:grid>
</xul:vbox>
</xul:popup>
</xul:popupset>
</content>

311

312

CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

The calendar also contains a XUL <grid> element that is used to display all the days of the
month when the calendar is displayed in the browser. This implementation also supports
selecting a date by clicking in its cell (for example, onclick="... clickCell(event)").

The prototype also contains a set of XBL elements, as shown in Table 8-3.

Table 8-3. XBL Elements Used in the <pro: inputDate> Component*

XBL Element Description

children The <children> element selects certain child elements to be included at a
predefined location in the XBL component markup, much like facets in JSE

implementation Within the <implementation> element, you define individual <field>,
<property>, and <method> elements, one for each one that you want.

field A <field> element is a simple holder for values.

property The <property> element declares a JavaScript property that is added to

the element’s object. The <property> element may have a <getter> child
element and a <setter> child element to get and set the value of the property,
respectively.

method This declares a JavaScript method that is added to the element’s object. The
method can take arguments, declared with the <parameter> element.

constructor The code inside this element is called when the binding is attached to an
element. You can use this to initialize the content the binding uses. The
<constructor> element should be placed inside the <implementation>
element.

parameter This declares a parameter to a method. Each parameter has a name attribute,
which becomes a variable that is declared in the method body and has the
value that was passed in to the method.

body The content of the <body> element should be the JavaScript code to execute
when the method is called.

* Source: XULPlanet (http://www.xulplanet.com)

You define any component-specific logic, such as selection of dates and scrolling to the
next and previous months, in the <implementation> element. The <implementation> element
contains all the calendar logic including a field, a constructor, and the methods for the
inputDate binding. A <field> is a simple container for values, and Code Sample 8-4 defines
four fields: currentMonth, currentYear, selectedMillis, and monthNames.

Code Sample 8-4. The <implementation> Element in the bindings.xml File

<implementation>
<field name="currentMonth"/>
<field name="currentYear"/>
<field name="selectedMillis"/>
<field name="monthNames"/>

The script within the <constructor> element, as shown in Code Sample 8-5, is called
when the binding is attached to an element. By using a <constructor> in the <implementation>

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

element, you can initialize the content the binding uses. In this case, you prepopulate the
monthNames field with the names of the months.

Code Sample 8-5. The Constructor of the bindings.xml File

<constructor>
< [CDATA[
this.monthNames = ['January','February', 'March', 'April', 'May’',
"June', 'July', 'August', 'September’,
'October', 'November', 'December’];

var currentNode = this;
while (currentNode != null)

{
if (currentNode.localName == 'form' 88
currentNode.namespaceURI == "http://www.w3.0rg/1999/xhtml")
{
var formNode = currentNode;
var clientId = this.getAttribute('id");
var inputNode = formNode.elements[clientId];
if (inputNode == null)
{
inputNode = document.createElementNS('http://www.w3.0rg/1999/xhtml",
"input');
inputNode.type = 'hidden’;
inputNode.name = clientId;
formNode.appendChild(inputNode);
}
this.inputNode = inputNode;
break;
}
currentNode = currentNode.parentNode;
}
11>
</constructor>

XUL has no mechanism to submit forms, because XUL uses a different UI model in which
form submission is rarely applicable. It is legal to mix XHTML elements with a XUL application,
though, in this case, an application developer using JSF to build applications will not necessar-
ily know the differences between a JSF HTML component (for example, a <h:commandButton>)
and a JSF XUL component. To ensure that the JSF XUL component supports regular form sub-
mit, you have to add a hidden input field, as shown in Code Sample 8-5, that will contain data
from the <pro:inputDate>.

Compared to the HTML Ajax solution, the popup method, as shown in Code Sample 8-6,
is invoked when the calendar is launched and not by the button’s onclick handler. Another
difference is that you don’t need to keep track of the calendar’s state like you did in the HTML
Ajax solution. Figure 8-3 shows a sequence diagram of the pop-up implementation.

313

314 CHAPTER 8 /" PROVIDING MOZILLA XUL RENDERERS

calendar popup method

launch

*] parseDate
&

deselect

A

scroll

A

select

A

Figure 8-3. Sequence diagram of the XBL inputDate binding popup method

Code Sample 8-6. The popup Method in the bindings.xml File

<method name="popup">
<body>
< [CDATA[
var dateString = document.getElementById('input').value;
var parsedDate = this.parse(dateString, this.getAttribute('pattern'));
var activeDate = (parsedDate != null) ? parsedDate : new Date();

this.deselect();

var month = activeDate.getMonth();
var year = activeDate.getFullYear();
this.currentMonth = month;
this.currentYear = year;

this.scroll(0);

if (parsedDate != null)
this.select(parsedDate.getDate());
}
11>
</body>
</method>

The popup method will first read the user-defined date string from the input field and then
parse that date string into a Date object. If parsing is successful, it uses the Date object; other-
wise, it uses today’s Date. Next it ensures there is no previous selection, before calling the
scroll method, by passing zero as an argument to ensure fully populated calendar day cells
but staying on the current month (zero navigation). Finally, the popup method will select an
initial date (if possible).

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

The scroll method, as shown in Code Sample 8-7, allows the user to navigate plus or
minus one month using arrow controls in the calendar. You can use Mabon to determine the
availability of dates defined by the managed bean attached to the enhanced DateValidator.

Code Sample 8-7. The scroll Method in the bindings.xml File

<method name="scroll">

<parameter name="offset"/>

<body>
<1[CDATA[
var gridNode = document.getElementById('grid');
var month = this.currentMonth + offset;
var year = this.currentYear;
year += Math.floor(month / 12);
month = (month + 12) % 12;
this.currentMonth = month;
this.currentYear = year;

var targetURL = this.getAttribute('targetURL');

if (targetURL)

{
var startDate = new Date(year, month, 1);
var endDate = new Date(year, month, 31);

var millisPerDay = 1000 * 60 * 60 * 24;
var startDay = Math.floor(startDate.getTime() / millisPerDay);
var endDay = Math.floor(endDate.getTime() / millisPerDay);

// use Mabon to determine availability
var self = this;
mabon. send(
{
url: targetURL,
args: [startDay, endDay],
result: function(result) { self.display(result); }
D
}
else
{
var available = [];
for (var i=0; i < 32; i++)
{
available.push(true);
}
this.display(available);
}
11>
</body>
</method>

315

316

CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

The clickCell method, as shown in Code Sample 8-8, is called when the user clicks a cell
representing a date in the calendar. The method will check to see whether the user clicked a
cell that is outside the range of the displayed month and, if so, navigate to the month for that
selected date—this.scroll(1) or this.scroll(-1). If the selection is within the boundaries of
the month, you need to see whether this date is available and, if it is, add the selected date to
the <input> element.

Code Sample 8-8. The clickCell Method in the bindings.xml File

<method name="clickCell">
<parameter name="event"/>
<body>
<! [CDATA[
var cellNode = event.target;
var rowNode = cellNode.parentNode;

var row = this.getChildIndex(rowNode) - 1;
var col = this.getChildIndex(cellNode);
var day = Number(cellNode.value);

// detect other month cells
if (row == -1)
{
// header cells
return;
}
else if (row == 0 &% day > 7)
{
this.scroll(-1);
}
else if (row > 3 & day < 15)
{
this.scroll(1);
}
else
{
if (this.isAvailable(day))
{
// transfer value to input field
var input = document.getElementById('input');
var selectedDate = this.calculateDate(day);
input.value = this.format(selectedDate,
this.getAttribute('pattern’));

// hide the pop-up
document.getElementById('calendar").hidePopup();
}
}

CHAPTER 8 © PROVIDING MOZILLA XUL RENDERERS

1
</body>
</method>

</implementation>
</binding>
</bindings>

The XUL Deck Implementation Prototype

The next prototype is the <pro: showOneDeck> XUL component, as shown in Figure 8-4.

& Pro JSF : ProShowOneDeck - Mozilla Firefox (==
File Edit View Go Bookmarks Tools Help

& -5 - @ 0 | [htip://127.0.0.1:83988/chapters-context-root /showOneDeck.xul [V]

A

9

Pro JSE: Building Rich Internet Components
ProEIB 3
Pro Apache Maven

Done

Figure 8-4. The <pro:showOneDeck> component implemented in a XUL page

To be able to asynchronously communicate with the server when a deck is activated, you
have to download a set of JavaScript libraries—dojo. js and d2.js—to the page. These libraries
need to be part of the component and should be downloaded automatically to the client on
initial request. Apart from having less rendered markup and the usage of XUL elements, this
XUL page, as shown in Code Sample 8-9, is similar to the page you created in Chapter 6, which
leveraged the HTML version of the ProShowOneDeck Renderer, HtmlAjaxShowOneDeckRenderer.

Code Sample 8-9. The Markup Needed to Create the XUL Prototype Page

<?xml version="1.0" encoding="UTF-8" ?>

<?xml-stylesheet href="projsf-ch8/document.css" type="text/css"?>

<?xml-stylesheet href="projsf-ch8/pro.css" type="text/css"?>

<?xml-stylesheet href="resources/stylesheet.css" type="text/css"?>

<xul:window xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
xmlns:pro="http://projsf.apress.com/tags"
orient="horizontal"
align="start"
title="Pro JSF : ProShowOneDeck">

317

318 CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

<xul:hbox align="center" flex="1">
<table width="300px">
<tbody>
<tr>
<td>
<xul:script type="application/x-javascript">
var djConfig={preventBackButtonFix: true,
libraryScriptUri:'/faces/weblets/dojo$0.1/dojo.js"};
</xul:script>
<xul:script type="application/x-javascript"
src="/.../faces/weblets/dojo$0.1/dojo.js"/>
<xul:script type="application/x-javascript"
src="/.../faces/weblets/d2/d2.js"/>
<pro:showOneDeck showItemId="first">
<pro:showItem itemId="first"
active="true">
<pro:showItemHeader>
<img src="/.../resources/java_small.jpg"
alt="The Duke"
style="margin-right: 8px; vertical-align:bottom;"/>
Java
</pro:showItemHeader>
<table>
<tbody>
<tr>
<td>

Pro JSF: Building Rich Internet Components

</td>
</tr>

</xul:hbox>
</xul:window>

The XBL Deck Gomponent Prototype

The structure of the <pro:showOneDeck> XUL component is slightly different from the
<pro:inputDate>, since it is of a composite nature containing not one but four <binding>
elements—showOneDeck, showItem, showItemActive, and showItemHeader

The showOneDeck binding will be displayed as a XUL <vbox> element at runtime. The
<children> element selects child elements to be included at a predefined location, much like
facets in JSE The prototype in Code Sample 8-10 adds the includes attribute. This attribute
allows only certain elements to appear in the content of the <pro: showOneDeck> component
(for example, <pro:showItemy).

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

Code Sample 8-10. The showOneDeck Binding

<binding id="showOneDeck" display="xul:vbox" >
<resources>
<stylesheet src="styles.css" />
</resources>
<content>
<xul:vbox class="showOneDeck"
xbl:inherits="className=styleClass" >
<children includes="showItem" />
</xul:vbox>
</content>
</binding>

The <pro:showItem> component, as shown in Code Sample 8-11, is the part of the
<pro:showOneDeck> implementation that will expand when the user interacts with it. This
binding contains one method, expand, that is invoked when the header is clicked.

As you can see, you are using the d2. js library, passing the activated form id and the
id of the selected node to the d2.submit() function. The d2.submit() function calls the
dojo.io.bind() method, passing information about which form to submit, content (such
as the ID of the selected component), the accepted request header (' X-D2-Content-Type':
<contentType>), and the MIME type (text/xml) for this request. This information will deter-
mine which node to expand and which ResponselWriter to use for this request.

Code Sample 8-11. The showItem Binding and the expand Method

<binding id="showItem" display="xul:vbox" >
<resources>
<stylesheet src="styles.css" />
</resources>
<content>
<xul:vbox class="showItem" flex="1" >
<xul:hbox id="showItemHeader"
onclick="this.parentNode.parentNode.expand()"
class="showItemHeader"
xbl:inherits="className=headerStyleClass" >
<children includes="showItemHeader" />
</xul:hbox>
<xul:hbox style="display:none;" >
<children/>
</xul:hbox>
</xul:vbox>
</content>
<implementation>
<method name="expand" >
<body>
<! [CDATA[
var showOneNode = this.parentNode;

319

320 CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

var showOneClientId = showOneNode.getAttribute('id");
var currentNode = this;
while (currentNode != null)
{
if (currentNode.localName == 'form' &&
currentNode.namespacelURI == "http://www.w3.0rg/1999/xhtml")
{
var formNode = currentNode;
var content = new Object();
content[showOneClientId] = this.getAttribute('itemId');
d2.submit(formNode, content);
break;
}
currentNode = currentNode.parentNode;
}
11>
</body>
</method>
</implementation>
</binding>

The D? library also defines a callback function—d2. loadxml—that gets the response data
from the server. The d2. loadxml function will replace the target document’s XML nodes with
the XML nodes from the document returned on the response.

The <pro:showItemActive> component, as shown in Code Sample 8-12, is responsible
for showing the header—<children includes="showItemHeader" />—and all the children—
<children/>—that are part of the expanded showOneDeck node.

Code Sample 8-12. The showItemActive Binding

<binding id="showItemActive" display="xul:vbox" >
<resources>
<stylesheet src="styles.css" />
</resources>
<content>
<xul:vbox class="showItem" flex="1" >
<xul:hbox id="showItemHeader"
class="showItemHeader"
xbl:inherits="className=headerStyleClass" >
<children includes="showItemHeader" />
</xul:hbox>
<xul:hbox class="showItemContent"
xbl:inherits="className=contentStyleClass" >
<children/>
</xul:hbox>
</xul:vbox>
</content>
</binding>

CHAPTER 8 © PROVIDING MOZILLA XUL RENDERERS

The <pro:showItemHeader> component, as shown in Code Sample 8-13, is a container
responsible for any children representing the header of the showOneDeck component.

Code Sample 8-13. The showItemHeader Binding

<binding id="showItemHeader" display="xul:hbox" >
<content>
<children/>
</content>
</binding>
</bindings>

Figure 8-5 shows the complete structure of the bindings.xml file.

bindings.xml - Skructure
A E
B4
> ----- E‘ inputDiate binding
B¢ hinding
£ » resources
4 » content
[#}--¢ » implementation
----- E‘ showOneDeck binding
=< ¥ binding
thf 3 PESOUITES
E}< » content
----< > vbox
----- E‘ showItem binding
=< ¥ binding
-4 > FESOUFTES
¢ » content
[#}-< » implementation
----- E‘ showItemaActive binding
=< ¥ binding
< ¥ resources
-4 ¥ content
----- E‘ showItemHeader binding
=< ¥ binding
----< ¥ content

Figure 8-5. Structure of bindings.xml as shown in the Oracle JDeveloper 10.1.3 structure window

Defining the Binding Element Using a Style Sheet

The id attribute on the binding element (#inpuDate) identifies the binding. Using CSS, a devel-
oper can assign a binding to an element by setting the -moz-binding URI property to reference
the binding inside the XBL document, as shown in Code Sample 8-14.

321

322 CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

Code Sample 8-14. The pro.css File

@namespace pro url(http://projsf.apress.com/tags);

pro|inputDate
{
-moz-binding: url('bindings.xml#inputDate');

}

pro|showOneDeck

{
-moz-binding: url('bindings.xml#showOneDeck");
display: -moz-box;
-moz-box-orient: vertical;

}

pro|showItem

{
-moz-binding: url('bindings.xml#showItem');
display: -moz-box;

}

pro|showItem[active="true']

{
-moz-binding: url('bindings.xml#tshowItemActive');
display: -moz-box;

}

pro|showItemHeader

{
-moz-binding: url('bindings.xml#tshowItemHeader");
display: -moz-box;

}

In Code Sample 8-14, the CSS selector for the <pro:inputDate> element has the
-moz-binding set to point to the XBL prototype file bindings.xml and refers to a specific binding
with the ID inputDate in the XBL file. This is similar to how anchors are used in HTML files. You
also have two pro|showItem selectors in the CSS. One of them has [active="true'] attached to
it, which means any <pro:showItem> element that has an active attribute set to true should use
this XBL binding. This way, you can have one XUL element and provide multiple bindings.

Step 3: Creating a Behavioral Superclass

We need to cover one important fact before we show how to design the first JSF XUL compo-
nent—XUL is not HTML. Although much of the functionality is shared between HTML and
XUL, it is important to understand that they are different document objects. XUL is an XML
language, and the XUL document is a subtype of the more generic XML document. This dis-
tinction between the two document objects is important.

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

A regular HTML document is usually structured as shown in Code Sample 8-15.

Code Sample 8-15. HTML Document Structure

<html>
<head>
<title>Pro JSF : HTML Document</title>
</head>
<body>

</body>
</html>

A valid XUL document looks like Code Sample 8-16.

Code Sample 8-16. XUL Document Structure

<?xml version="1.0" encoding="IS0-8859-1" ?>

<xul:window

xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul"
title="Pro JSF : XUL Document">

</xul:window>

Now, you have a document type that is different from HTML and requires another
content type—application/vnd.mozilla.xul+xml—rather than the regular text/html. This
inevitably brings you back to the problem of JSP owning the content type and the default JSF
Responselriter supporting only HTML documents (see Chapter 6 for more information).
What you need to support XUL is the following:

e AResponselriter that can handle XML
* AXUL RenderKit to create the Responselriter and pass the XUL contentType

¢ A document component that can write out the proper headers (for example, window)
for a XUL page

* A custom content type in the JSP document that can be used to handle the
initial request differently from subsequent postbacks with Ajax (for example,
application/x-javaserver-faces)

The UIDocument Class

From the beginning we have emphasized that if you are not introducing a new behavior, you
don’t need to create a behavioral superclass; however, with so many rules, an exception must
exist, right? Creating a document component that will represent the shell of the page is most
likely client-side rendering and is not introducing a new server-side behavior. But, you can-
not have a Renderer without attaching it to a behavioral superclass. So, for the XUL document
Renderer to work properly, you have to introduce a UIDocument component, as shown in
Figure 8-6.

323

324

CHAPTER 8 /" PROVIDING MOZILLA XUL RENDERERS

|:| UlIDocument

+ String COMPONENT TYPE
+ String COMPONENT FAMILY

+ UlDocument ()
+ String getFamily ()

Figure 8-6. Class diagram showing the UIDocument class

Using a document component, an application developer can design JSF applications
without knowing what document type will be delivered to the client. Since no behavior exists,
this “special” behavioral superclass (see Code Sample 8-17) is acting only as a placeholder for
the document Renderer. Potentially, you could add event support in the future, but for now,
this is more than enough.

Code Sample 8-17. The UIDocument Class

package com.apress.projsf.ch8.component;

import javax.faces.component.UIComponentBase;

Vaks

* The UIDocument component.

*/

public class UIDocument extends UIComponentBase

{
public static final String COMPONENT TYPE = "com.apress.projsf.Document"”;
public static final String COMPONENT FAMILY = "com.apress.projst.Document"”;

VEi

* Creates a new UIDocument.
*/

public UIDocument()

{

}

public String getFamily()

{
return COMPONENT FAMILY;

}
}

Step 5: Creating a Client-Specific Renderer

The XUL solution contains four Renderer classes—XulRenderer, XulDocumentRenderer,
XulAjaxInputDateRenderer, and XulAjaxShowOneDeckRenderer—and the XUL resources.
Figure 8-7 shows an overview of the Renderer classes you will create.

CHAPTER 8 © PROVIDING MOZILLA XUL RENDERERS

P XulRenderer

AulDocumentRenderer

AulAjaxinputDateRenderer AulAjaxShowOneDeckRenderer

Figure 8-7. Class diagram showing the XUL Renderers

The XulRenderer is basically a port of the HtmlRenderer you created in Chapter 2. By port-
ing the HtmlRenderer code to a XUL version, you now have “at-most-once” semantics for each
script resource on the currently rendering XUL page.

The XulDocumentRenderer Class

A XUL document requires two entities to be valid: an XML processing instruction on the first
line that identifies the file as XML and a window element that defines the XUL Web page. The
window element is the root element in a XUL document and includes all other elements. The
XML processing instruction belongs to the ResponseWriter, since it is not specific to XUL. The
window element, on the other hand, is specific to XUL and belongs to a XUL RenderKit and its
components. Figure 8-8 shows the XulDocumentRenderer class as displayed in a class diagram.

|:| XulDocumentRenderer

+String TITLE ATTR
+ String STYLE CLASS ATTR
+ String STYLESHEET URI ATTR

+void encodeBegin (FacesContext context, UIComponent component)
+void encodeEnd (FacesContext context, UIComponent component)
String getTitle (Map attrs)

String getStyleClass (Map attrs)

String getStylesheetURI (FacesContext context, Map attrs)

Figure 8-8. Class diagram showing the XulDocumentRenderer class

325

326

CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

Code Sample 8-18 shows the encodeBegin() method, which takes two arguments—
FacesContext context and UIComponent component. From the component you can get a hold
of the Map containing all the available attributes. In this case, only three attributes exist on
this UIDocument component—the window title, styleClass, and stylesheetURI. These are all
renderer-specific attributes, as the UIDocument component has no behavioral attributes. The
Map is necessary since Renderers cannot cast to the renderer-specific subclass, ProDocument,
because this would fail when a behavioral UIDocument instance is used instead. According to
the JSF specification, behavioral class instances must not cause ClassCastExceptions.

Code Sample 8-18. The XulDocumentRenderer encodeBegin() Method

package com.apress.projsf.ch8.render;

import java.io.IOException;
import java.util.Map;

import javax.faces.application.ViewHandler;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.context.ResponseWriter;

import com.apress.projsf.ch8.component.UIDocument;
import com.apress.projsf.ch8.render.xul.XulRenderer;

public class XulDocumentRenderer extends XulRenderer

{

Jx%
* The title attribute.

*/

public static String TITLE_ATTR = "title";

Vi
* The styleClass attribute.

*/

public static String STYLE CLASS ATTR = "styleClass";

/x*
* The stylesheetURI attribute.

*/

public static String STYLESHEET URI_ATTR = "stylesheetURI";

public void encodeBegin(
FacesContext context,
UIComponent component) throws IOException
{
Responselriter out = context.getResponseWriter();
ViewHandler handler = context.getApplication().getViewHandler();

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

Map attrs = component.getAttributes();

String title = getTitle(attrs);

String styleClass = getStyleClass(attrs);

String stylesheetURI = getStylesheetURI(context, attrs);

out.write("<?xml-stylesheet href=\"");
out.writeText(handler.getResourceURL(context,

"weblet://com.apress.projsf.ch8/document.css"), null);
out.write("\" type=\"text/css\"?>\n");

out.write("<?xml-stylesheet href=\"");
out.writeText(handler.getResourceURL(context,

"weblet://com.apress.projsf.ch8/pro.css"), null);
out.write("\" type=\"text/css\"?>\n");

if (stylesheetURI != null)
{
out.write("<?xml-stylesheet href=\"");
out.writeText(handler.getResourceURL(context, stylesheetURI),
STYLESHEET URI ATTR);
out.write("\" type=\"text/css\"?>");
}
out.startElement("xul:window", component);
out.writeAttribute("xmlns", "http://www.w3.0rg/1999/xhtml", null);
out.writeAttribute("xmlns:xul",
"http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul",
null);
out.writeAttribute("xmlns:pro", "http://projsf.apress.com/tags", null);
out.writeAttribute("orient", "horizontal", null);
out.writeAttribute("align", "start", null);

if (title != null)
out.writeAttribute("title", title, TITLE_ATTR);

super.encodeBegin(context, component);

out.startElement("xul:hbox", null);
if (styleClass != null)

out.writeAttribute("class", styleClass, STYLE CLASS ATTR);
out.writeAttribute("align", "center", null);
out.writeAttribute("flex", "1", null);

The pro.css file (see Code Sample 8-14) might look small; however, it is more important
than might be realized at first. The pro.css file is actually the glue between the element in the
XUL document and the actual custom XBL component. Another perk from XUL is that you can
use this file to add more components, if needed. Thus, you avoid tampering with the actual
XulDocumentRenderer

327

328 CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

The startElement () method takes the arguments name and component. The name argument
is the name of the generated element (for example, xul:window), and the component argument
is the UIComponent this element represents. In Code Sample 8-18, this is represented by the
UIDocument component.

The XulDocumentRenderer encodeEnd() method (see Code Sample 8-19) is basically just
closing the XUL “body” tag and the XUL window tag. The “body” tag—<xul :hbox>—is not
required by XUL; it is something we have added to make the XUL base document similar to
aregular HTML document.

Code Sample 8-19. The encodeEnd() Method

public void encodeEnd(
FacesContext context,
UIComponent component) throws IOException

{
Responsellriter out = context.getResponseWriter();
out.endElement("xul:hbox");
out.endElement("xul:window");

}

The getTitle(), getStyleClass(), and getStylesheetURI() methods, as shown in Code
Sample 8-20, return the values of the title, styleClass, and stylesheetURI attributes.

Code Sample 8-20. The Getters for the UIDocument Attributes

protected String getTitle(
Map attrs)

{
return (String)attrs.get(TITLE ATTR);

}

protected String getStyleClass(
Map attrs)

{
return (String)attrs.get(STYLE CLASS ATTR);

}

protected String getStylesheetURI(
FacesContext context,
Map attrs)

{
String stylesheetURI = (String)attrs.get(STYLESHEET URI _ATTR);

if (stylesheetURI != null)

{
Application application = context.getApplication();

ViewHandler handler = application.getViewHandler();

CHAPTER 8 © PROVIDING MOZILLA XUL RENDERERS

stylesheetURI = handler.getResourceURL(context, stylesheetURI);
}

return stylesheetURI;

}
}

The XulAjaxInputDateRenderer Class

How will XUL make your life easier? Although XUL/XBL reduces some of the work involved in
building prototypes, you have some work to do. However, you still have to see the real gains of
using a well-defined component model to design the JSF components. So, without further
ado, Figure 8-9 shows the JSF XUL implementation.

|:| AulAjaxinputDateRenderer

+void decode (FacesContext context, UIComponent component)

+ Object getConvertedValue (FacesContext context, UIComponent component, Object submittedValue)
void encodeResources (FacesContext context, UIComponent component)

+void encodeEnd (FacesContext context, UIComponent component)

- Converter getConverter (FacesContext context, Ullnput input)

- String _determineDatePattern (FacesContext context, UIComponent component)

- String _determineTargetURL (FacesContext context, UIComponent component)

Figure 8-9. Class diagram showing the XulAjaxInputDateRenderer class

The XulAjaxInputDateRenderer really contains all the cool implementations. What is
interesting about this Renderer is that you can recognize most of the code from previous
chapters, while the actual output to the client is significantly smaller. XUL allows you to
reuse the prototype by adding the functional bindings.xml and pro.css prototype files to the
resources. The only element you need to write out to the client for this JSF XUL component is
<pro:inputDate ...>and its attributes.

By overriding the XulRenderer base class’s encodeResources() method (see Code
Sample 8-21), you extend the XulAjaxInputDateRenderer with a new call to the dojo.js and
mabon. js libraries. An application developer might add two or more ProInputDate compo-
nents to the page, but the semantics behind the writeScriptResource() method provided by
the XulRenderer implementation will make sure these resources are written only once.

Code Sample 8-21. The XulAjaxInputDateRenderer
package com.apress.projst.ch8.render.xul.ajax;
import java.io.IOException;

import java.text.DateFormat;
import java.text.SimpleDateFormat;

329

330 CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

import java.util.Map;
import java.util.TimeZone;

import javax.faces.application.Application;
import javax.faces.application.ViewHandler;
import javax.faces.component.UIComponent;
import javax.faces.component.UIInput;

import javax.faces.context.FacesContext;
import javax.faces.context.Responselriter;
import javax.faces.convert.Converter;

import javax.faces.convert.DateTimeConverter;
import javax.faces.el.MethodBinding;

import javax.faces.validator.Validator;

import com.apress.projsf.ch8.render.xul.XulRenderer;
import com.apress.projsf.ch7.validate.DateValidator;

public class XulAjaxInputDateRenderer extends XulRenderer
{
protected void encodeResources(
FacesContext context,
UIComponent component) throws IOException
{
writeScriptResource(context, "weblet://net.java.dev.mabon/mabon.js");
writeScriptResource(context, "weblet://org.dojotoolkit.browserio/dojo.js");

}

By design, the <pro:inputDate> component can have Converters added by a JSP tag.
At initial render, during the creation of the component hierarchy, a custom JSP converter tag
has not yet executed, so the Converter is not yet attached to the component, which means
the encodeBegin() method cannot get a hold of the Converter. Instead, the Renderer is using the
encodeEnd() method (see Code Sample 8-22) to write out the markup and get a hold of the
Converter (see Chapter 2 for more information about the getConverter () method).

Code Sample 8-22. The encodeEnd() Method

public void encodeEnd(
FacesContext context,
UIComponent component) throws IOException
{
String pattern = _determineDatePattern(context, component);
String targetURL = _determineTargetURL(context, component);

UIInput input = (UIInput)component;
String valueString = (String)input.getSubmittedvalue();

if (valueString == null)

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

{
Object value = input.getValue();
if (value != null)
{
Converter converter = getConverter(context, input);
valueString = converter.getAsString(context, component, value);
}
}

String clientId = input.getClientId(context);

Responselriter out = context.getResponselriter();
out.startElement("pro:inputDate", component);
out.writeAttribute("id", clientId, null);
out.writeAttribute("value", valueString, null);
out.writeAttribute("pattern”, pattern, null);
out.writeAttribute("targetURL", targetURL, null);
out.endElement("pro:inputDate");

In encodeEnd() you call two methods— determinePattern() and determineTargetURL().
These methods retrieve the date format pattern and the target URL for the managed bean
bound to the Validator. Finally, you write out the <pro:inputDate> element, including attrib-
utes, to the client. That’s it!

By adding the decode() method (see Code Sample 8-23) to the XulAjaxInputDateRenderer,
you can control the decode processing of the ProInputDate component.

Code Sample 8-23. The decode() Method

public void decode(
FacesContext context,
UIComponent component)
{
UIInput input = (UIInput)component;
String clientId = input.getClientId(context);

ExternalContext external = context.getExternalContext();
Map requestParams = external.getRequestParameterMap();
String submittedValue = (String)requestParams.get(clientId);

input.setSubmittedValue(submittedValue);

You get the client ID from the UIComponent—getClientId(context)—and use that client
ID to get the submitted request parameter value for this component. To get the request
parameters, you need to look up the external context. From the external context, you can look
up the Map that contains the parameters passed on the request. This parameter value is then
stored on the UIComponent via setSubmittedValue() to be processed further in subsequent
phases of the lifecycle.

331

332

CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

The getConvertedValue() method, as shown in Code Sample 8-24, converts the submitted
value to a strongly typed object (for example, Date). This is similar to what you did in the
HtmlInputDateRenderer (see Chapter 2).

Code Sample 8-24. The getConvertedValue() Method

public Object getConvertedValue(
FacesContext context,
UIComponent component,
Object submittedValue) throws ConverterException
{
UIInput input = (UIInput)component;
Converter converter = getConverter(context, input);
String valueString = (String)submittedvalue;
return converter.getAsObject(context, component, valueString);

}

You first get the Converter for the UIComponent in question and convert the submitted value
to an Object using the getAsObject() method on the Converter. The new object returned by the
getConvertedValue() method is set as a local value on the component, clearing the submitted
value. The new strongly typed object is then validated. If no errors exist, the next step is to queue
aValueChangeEvent that will be delivered at the end of the Process Validations phase. When a
conversion error occurs, the getConvertedValue() method throws a ConverterException.

The getConverter() method, shown in Code Sample 8-25, always returns a Converter. If the
application developer has attached a Converter, it will be used; otherwise, the getConverter()
method will use a default DateTimeConverter.

Code Sample 8-25. The getConverter () Method

private final Converter getConverter(
FacesContext context,
UIInput input)
{
Converter converter = input.getConverter();
if (converter == null)
{
DateTimeConverter datetime = new DateTimeConverter();
datetime.setlocale(context.getViewRoot().getlocale());
datetime.setTimeZone(TimeZone.getDefault());
converter = datetime;

}

return converter;

}

Code Sample 8-26 shows the determineDatePattern() method. This method is identical
to the one you used in the Ajax solution, and from a Java purist’s point of view, we should
probably have created a base class, or a utility class, for any custom Renderer that might need
this method. But, for educational purposes, we decided that it is easier for you to understand
if explained this way.

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

Code Sample 8-26. The determineDatePattern() Method

private String determineDatePattern(
FacesContext context,
UIComponent component)
{
UIInput input = (UIInput)component;
Converter converter = getConverter(context, input);

if (converter instanceof DateTimeConverter)

{
DateTimeConverter dateTime = (DateTimeConverter)converter;
return dateTime.getPattern();

}

else
{
SimpleDateFormat dateFormat = (SimpleDateFormat)
DateFormat.getDateInstance(DateFormat.SHORT);
return dateFormat.toPattern();
}
}

For the XUL implementation to work, you need to know what date pattern has been set
on the DateTimeConverter by the application developer. This date pattern will be used in two
places—first to parse the date entered by the user in the <input> element. This parsed date
will then set the selected date in the calendar. Second, it will make sure the date selected in
the calendar follows the correct date format when added to the <input> element.

Code Sample 8-27 shows the determineTargetURL(), which you saw in the previous chap-
ter, but we will cover it again since it is equally crucial to the XUL solution. It provides you with
the binding reference to the managed bean.

Code Sample 8-27. The determineTargetURL() Method

private String determineTargetURL(
FacesContext context,
UIComponent component)
{
UIInput input = (UIInput)component;
Validator[] validators = input.getValidators();

for (int i=0; i < validators.length; it++)
{
if (validators[i] instanceof DateValidator)
{
DateValidator validateDate = (DateValidator)validators[i];
MethodBinding binding = validateDate.getAvailability();
if (binding != null)
{

333

334

CHAPTER 8 /" PROVIDING MOZILLA XUL RENDERERS

String expression = binding.getExpressionString();
// #{backingBean.methodName} -> backingBean.methodName
String bindingRef = expression.substring(2, expression.length() - 1);

Application application = context.getApplication();
ViewHandler handler = application.getViewHandler();
return handler.getResourceURL(context, "mabon:/" + bindingRef);

return null;

}
}

You first get all the validators attached to this input component. You then check to see
whether one or many of these validators are instances of the DateValidator. (The
DateValidator was created in Chapter 7.)

Ifitis an instance of the DateValidator, you check to see if you have a MethodBinding. If
you have a MethodBinding, you get the expression #{managedBean.methodName} and strip off the
#{}. This leaves you with managedBean.methodName, which you concatenate with mabon:/. The
MabonViewHandler will recognize the string and return a resource URL that will be written to
the client (for example, /context-root/mabon-servlet-mapping/managedBean.methodName).

The XulAjaxShowOneDeckRenderer Class

Since the UIShowOne component is a container component, it needs to render its children; as
such, you have to implement encodeBegin(), encodeChildren(), and encodeEnd() in the new
Renderer—XulAjaxShowOneDeckRenderer. Figure 8-10 shows the XulAjaxShowOneDeckRenderer
in a class diagram.

|:| AulAjaxShowOneDeckRenderer

+ String STYLE CLASS ATTR

+String TEM _STYLE CLASS ATTR

+ String [TEM _HEADER STYLE CLASS ATTR
+ String [TEM _CONTEMNT STYLE CLASS ATTR

+void encodeBegin (FacesContext context, UIComponent component)
#void encodeResources (FacesContext context, UIComponent component)
+void encodeChildren (FacesContext context, UIComponent component)
+void encodeEnd (FacesContext context, UIComponent component)

+ boolean getRendersChildren ()

-void _encodeAll (FacesContext context, UIComponent component)
+void decode (FacesContext context, UIComponent component)

String getStyleClass (Map attrs)

String getltemStyleClass (Map attrs)

String getltemHeaderStyleClass (Map attrs)

String getitemContentStyleClass (Map attrs)

Figure 8-10. Class diagram showing the XulAjaxShowOneDeckRenderer class

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

Let's start with the XulAjaxShowOneDeckRenderer class’s encodeBegin() method, as shown
in Code Sample 8-28.

Code Sample 8-28. The XulAjaxShowOneDeckRenderer encodeBegin() Method

package com.apress.projsf.ch8.render.xul.ajax;

import
import
import
import

import
import
import
import

import
import
import
import

public
{

ass

java.io.IOException;
java.util.Iterator;
java.util.list;
java.util.Map;

javax.faces.component.UIComponent;
javax.faces.context.ExternalContext;
javax.faces.context.FacesContext;
javax.faces.context.Responselriter;

com.apress.projst.ch3.component.UIShowItem;
com.apress.projst.ch3.component.UIShowOne;
com.apress.projsf.ch3.event.ShowEvent;
com.apress.projsf.ch8.render.xul.XulRenderer;

class XulAjaxShowOneDeckRenderer extends XulRenderer

* The styleClass attribute.

*/

public static String STYLE_CLASS_ATTR = "styleClass";

Jx*

* The itemStyleClass attribute.

*/

public static String ITEM_STYLE_CLASS ATTR = "itemStyleClass";

ass

* The itemHeaderStyleClass attribute.

*/

public static String ITEM HEADER STYLE CLASS ATTR = "itemHeaderStyleClass";

i

* The itemContentStyleClass attribute.

*/

public static String ITEM CONTENT STYLE CLASS ATTR = "itemContentStyleClass";

public void encodeBegin(
FacesContext context,
UIComponent component) throws IOException

335

336

CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

UIShowOne showOne = (UIShowOne)component;
String clientId = showOne.getClientId(context);
String showItemId = showOne.getShowItemId();

Responselriter out = context.getResponselriter();
out.startElement("pro:showOneDeck", component);
out.writeAttribute("id", clientId, null);
out.writeAttribute("showItemId", showItemId, "showItemId");

Map attrs = component.getAttributes();
String styleClass = (String)attrs.get(STYLE CLASS ATTR);
if (styleClass != null)
out.writeAttribute("class", styleClass, STYLE CLASS ATTR);

super.encodeBegin(context, component);

}

The encodeBegin() method takes two arguments—FacesContext context and
UIComponent component. The Render Response phase will call the encodeBegin() method on
the UIShowOne component, which in turn will delegate to the encodeBegin() method on the
XulAjaxShowOneDeckRenderer, passing the FacesContext and the UIShowOne component
instance.

Before you continue to write anything to the client, you also need to get hold of the com-
ponent’s unique identifier—clientId. You do this by calling the getClientId() method on
the UIShowOne instance passed as an argument to the Renderer. You then include this unique
identifier in the generated markup to ensure that you will be able to decode the request and
apply any values or events to the right component on postback. For more information about
clientId, see Chapter 2. The showItemId is the attribute for the node that is by default
expanded on initial request.

You get the ResponseWriter and write out the first XUL element—<pro: showOneDeck>—
that represents the component.

The <pro:showOneDeck> component relies on the Dojo toolkit and D? project to be able
to asynchronously communicate with the server. To ensure that these resources are written
only once, you will use the semantics behind the writeScriptResource() method (see Code
Sample 8-29).

Code Sample 8-29. The XulAjaxShowOneDeckRenderer encodeResources () Method

protected void encodeResources(
FacesContext context,
UIComponent component) throws IOException
{
writeScriptResource(context, "weblet://org.dojotoolkit.browserio/dojo.js");
writeScriptResource(context, "weblet://net.java.dev.d2/d2.js");

}

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

Code Sample 8-30 shows the encodeChildren() method. In the encodeChildren() method,
you check whether the UIShowOne component has any children.

Code Sample 8-30. The encodeChildren() Method

public void encodeChildren(
FacesContext context,
UIComponent component) throws IOException
{
if (component.getChildCount() > 0)
{
UIShowOne showOne = (UIShowOne)component;
String showItemId = showOne.getShowItemId();

Map attrs = showOne.getAttributes();

String styleClass = getItemStyleClass(attrs);

String headerStyleClass = getItemHeaderStyleClass(attrs);
String contentStyleClass = getItemContentStyleClass(attrs);

If the application developer has not added any children, you do not need to render this
instance of the UIShowOne component to the client.

If the application developer has added children to the UIShowOne component, you check
whether each child is an instance of UIShowItem (see Code Sample 8-31). If not, the child will
not be rendered.

Code Sample 8-31. The encodeChildren() Method

List children = component.getChildren();
for (Iterator iter = children.iterator(); iter.hasNext();)
{
UIComponent child = (UIComponent) iter.next();
if (child instanceof UIShowItem)
{
UIShowItem showItem = (UIShowItem)child;
String id = showItem.getId();
boolean active = (id.equals(showItemId));

Responselriter out = context.getResponselriter();
out.startElement("pro:showItem", showItem);
out.writeAttribute("itemId", id, null);
if (styleClass != null)

out.writeAttribute("styleClass", styleClass, ITEM STYLE CLASS ATTR);
if (headerStyleClass != null)

out.writeAttribute("headerStyleClass", headerStyleClass,

ITEM_HEADER STYLE CLASS ATTR);

337

338

CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

if (contentStyleClass != null)
out.writeAttribute("contentStyleClass", contentStyleClass,
ITEM_CONTENT STYLE_CLASS ATTR);
if (active)
out.writeAttribute("active", Boolean.toString(active), null);

If the child is a UIShowItem component instance, you gather the clientId and all attributes
available on the UIShowItem component. The showItemId is then compared with the ID of the
current UIShowItem component, and based on the outcome of this comparison, the active
variable is set to true or false. The active variable is used to set the active attribute on the
<pro:showItem> element and indicate whether this UIShowItem component should render its
children.

After this, you write out the start element <pro:showItem>, as shown in Code Sample 8-32,
and any attributes defined by the application developer.

Code Sample 8-32. The encodeChildren() Method

// the header facet

UIComponent header = showItem.getHeadex();

if (header != null)

{
out.startElement("pro:showItemHeader", null);
processEncodes(context, header);
out.endElement("pro:showItemHeader");

} // the expanded item contents

if (active)

{

_encodeAll(context, showItem);

}

out.endElement("pro:showItem");

You then get the header facet from the UIShowItem component by calling the getFacet()
method. This convenience method returns the named facet (for example, header) if it exists; oth-
erwise, it will return null. If the getFacet() method returned a facet, you call the encodeAll()
method to process any children of this facet. You use the active flag to determine whether this
is the “active” UIShowItem component. If it is, you call the encodeAll() method to start the
encode process of any children to the UIShowItem component.

If you take a close look at the actual output required by the deck component, you will
see that any children that are added are located at the end of the generated markup. So, the
UIShowOne component’s Renderer does not need much to close the generated markup (see
Code Sample 8-33).

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

Code Sample 8-33. The encodeEnd() Method

public void encodeEnd(
FacesContext context,
UIComponent component) throws IOException
{
Responselriter out = context.getResponselriter();
out.endElement("pro:showOneDeck");

}

Code Sample 8-34 shows the getRendersChildren() method. For the UIShowOne compo-
nent, the Renderer is responsible for rendering its children, so this flag needs to be set to true.

Code Sample 8-34. The getRendersChildren() Method

public boolean getRendersChildren()
{

return true;

}

Code Sample 8-35 shows the _encodeAll() method. The requirement has not changed
since we first introduced the deck component. It has to be flexible enough to handle any type
of child component added to the UIShowItem component by the application developer. The
UIShowItem component itself is not responsible for rendering its children, but sometimes an
application developer has added a child container component in charge of rendering its chil-
dren (for example, an HtmlPanelGroup component).

Code Sample 8-35. The encodeAll() Method

private void _encodeAll(

FacesContext context,

UIComponent component) throws IOException
{

component.encodeBegin(context);

if (component.getRendersChildren())

{

component.encodeChildren(context);

}

else
{
List kids = component.getChildren();
Tterator it = kids.iterator();
while (it.hasNext())
{
UIComponent kid = (UIComponent)it.next();
_encodeAll(context, kid);
}
}

component.encodeEnd(context);

339

340

CHAPTER 8 /" PROVIDING MOZILLA XUL RENDERERS

To be able to achieve this, you first render the beginning of the current state of this
UIComponent to the response contained in the specified FacesContext. You then check whether
the component is responsible for rendering its children. If it is, you call encodeChildren() on
the component to start rendering its children. If the component is not responsible for render-
ing its children, you call getChildren() on the component. The getChildren() method returns
a List over all children of this UIComponent. If this component has no children, an empty List is
returned, and you close the generated markup by calling the encodeEnd() method on the compo-
nent. If it has children, you recursively call the encodeAll() until all children have been rendered.

Note A new method, UIComponent.encodeAll(FacesContext), has been added to the JSF 1.2
release and implements equivalent functionality to the _encodeAll(FacesContext, UIComponent)
method shown in Code Sample 8-35.

Code Sample 8-36 is identical to the decode () method in the first Htm1ShowOneDeckRenderer
introduced in Chapter 3. During the Apply Request Values phase, the method—processDecodes ()—
will be called on the UIViewRoot at the top of the component tree. The processDecodes ()
method on the UIViewRoot will recursively call processDecodes () for each UIComponent in
the component tree. If a Renderer is present for any of these components, the UIComponent
will delegate the responsibility of decoding to the Renderer. For more information about
processDecodes (), please refer to Chapter 2.

Code Sample 8-36. The decode() Method

public void decode(
FacesContext context,
UIComponent component)
{
ExternalContext external = context.getExternalContext();
Map requestParams = external.getRequestParameterMap();
String clientId = component.getClientId(context);
String newShowItemId = (String)requestParams.get(clientId);
if (newShowItemId != null && newShowItemId.length() > 0)
{
UIShowOne showOne = (UIShowOne)component;
String oldShowItemId = showOne.getShowItemId();
if (!newShowItemId.equals(oldShowItemId))
{
showOne. setShowItemId(newShowItemId);
ShowEvent event = new ShowEvent(showOne, oldShowItemId, newShowItemId);
event.queue();
}
}
}

Code Sample 8-37 shows all the getters for the different style classes supported by the
XulAjaxShowOneDeckRenderer.

CHAPTER 8 © PROVIDING MOZILLA XUL RENDERERS

Code Sample 8-37. Getters for the XulAjaxShowOneDeckRenderer Attributes

protected String getStyleClass(

Map attrs)
{

return (String)attrs.get(STYLE CLASS ATTR);
}

protected String getItemStyleClass(

Map attrs)
{

return (String)attrs.get(ITEM STYLE CLASS ATTR);
}

protected String getItemHeaderStyleClass(

Map attrs)
{

return (String)attrs.get(ITEM HEADER STYLE CLASS ATTR);
}

protected String getItemContentStyleClass(
Map attrs)
{
return (String)attrs.get(ITEM CONTENT STYLE CLASS ATTR);
}
}

Step 6: Creating a Renderer-Specific Subclass

To follow best practices, you will create a renderer-specific subclass for the document com-
ponent—com.apress.projsf.ch8.component.pro.ProDocument. This class provides getters
and setters for three renderer-specific attributes on the JSF component—stylesheetURI,
styleClass, and title. Figure 8-11 shows a class diagram with the ProDocument class.

= ProDocument

+ String COMPOMNENT TYPE
+ String RENDERFR TYPE

- String _stylesheetURI

- String _styleClass

- String _title

+ ProDocument ()

+void setStyleClass (String styleClass)

+ String getStyleClass ()

+void setTitle (String title)

+ String getTitle ()

+void setStylesheetURI (String stylesheetURI)

+ String getStyleshestURI ()

+ Object saveState (FacesContext context)

+void restoreState (FacesContext context, Object state)

Figure 8-11. Class diagram showing the ProDocument class

34

342

CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

As you can see, you are using the same pattern to build this component; for example,
Code Sample 8-38 follows the same design as the ProInputDate subclass you created in
Chapter 2.

Code Sample 8-38. The ProDocument Class

package com.apress.projsf.ch8.component.pro;

import javax.faces.context.FacesContext;
import javax.faces.el.ValueBinding;

import com.apress.projsf.ch8.component.UIDocument;

public class ProDocument extends UIDocument

{

/**

* The component type for this component.

*/

public static final String COMPONENT_TYPE = "com.apress.projsf.ProDocument"”;

Vi
* The renderer type for this component.

*/

public static final String RENDERER_TYPE = "com.apress.projsf.Document";

public ProDocument()

{
}

setRendererType (RENDERER_TYPE);

public void setStyleClass(
String styleClass)

{
_styleClass = styleClass;

}

public String getStyleClass()
{
if (_styleClass != null)
return _styleClass;

ValueBinding binding = getValueBinding("styleClass");

if (binding != null)

{
FacesContext context = FacesContext.getCurrentInstance();
return (String)binding.getValue(context);

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

}

return null;

}

public void setTitle(
String title)

{
_title = title;

}

public String getTitle()

{
if (_title != null)
return _title;

ValueBinding binding = getValueBinding("title");

if (binding != null)

{
FacesContext context = FacesContext.getCurrentInstance();
return (String)binding.getValue(context);

}

return null;

}

public void setStylesheetURI(
String stylesheetURI)

{
_stylesheetURI = stylesheetURI;

}

public String getStylesheetURI()

{
if (_stylesheetURI != null)

return _stylesheetURI;

ValueBinding binding = getValueBinding("stylesheetURI");

if (binding != null)

{
FacesContext context = FacesContext.getCurrentInstance();
return (String)binding.getValue(context);

}

return null;

}

343

344

CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

Vil
* Returns the saved state for this component.
*

* @param context the Faces context

*/
public Object saveState(

FacesContext context)

{
Object values[] = new Object[4];
values[0] = super.saveState(context);
values[1] = _title;
values[2] = _styleClass;
values[3] = _stylesheetURI;
return values;

}

/%

* Restores the state of this component.
*
* @param context the Faces context
* @param state the saved state
*/
public void restoreState(
FacesContext context,
Object state)
{
Object values[] = (Object[])state;
super.restoreState(context, values[0]);
_title = (String)values[1];
_styleClass = (String)values[2];
_stylesheetURI = (String)values[3];
}

private String stylesheetURI;
private String styleClass;
private String title;

The first thing you do is make sure you extend the right component superclass, which is
UIDocument. You then define constants for the component type and renderer type so that the
correct renderer is associated with the component when it is created. This convenience sub-
class provides getters and setters and provides state saving for the three renderer-specific
attributes—styleSheetURI, styleClass, and title

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

Step 7: Registering a UIComponent and Renderer

You need to make sure you register your renderer-specific subclass ProDocument,
the XulDocumentRenderer class, the XulAjaxInputDateRenderer class, and the
XulAjaxShowOneDeckRenderer class in the faces-config.xml file, as shown in Code
Sample 8-39.

Code Sample 8-39. Registering the JSF XUL Implementation in faces-config.xml

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">

<faces-config xmlns="http://java.sun.com/JSF/Configuration" >

<component>
<component-type>
com.apress.projsf.ProDocument
</component-type>
<component-class>
com.apress.projsf.ch8.component.pro.ProDocument
</component-class>

<!-- UIComponent attributes -->
<attribute>
<description>
The component identifier for this component. This value must be
unique within the closest parent component that is a naming
container.
</description>
<attribute-name>id</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
<attribute>
<description>
Flag indicating whether or not this component should be rendered
(during Render Response Phase), or processed on any subsequent
form submit.
</description>
<attribute-name>rendered</attribute-name>
<attribute-class>boolean</attribute-class>
<default-value>true</default-value>
</attribute>

345

346 CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

<attribute>
<description>
The value binding expression linking this component to a
property in a backing bean.
</description>
<attribute-name>binding</attribute-name>
<attribute-class>javax.faces.el.ValueBinding</attribute-class>
</attribute>

<!-- ProDocument attributes --»>
<attribute>
<attribute-name>title</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>

<attribute>
<attribute-name>stylesheetURI</attribute-name>
<attribute-class>java.lang.String</attribute-class>
</attribute>
</component>

<renderer>
<component-family>com.apress.projst.Document</component-family>
<renderer-type>com.apress.projsf.Document</renderer-type>
<renderer-class>
com.apress.projsf.ch8.render.xul.basic.XulDocumentRenderer
</renderer-class>
</renderer>
<renderer>
<component-family>javax.faces.Input</component-family>
<renderer-type>com.apress.projsf.Date</renderer-type>
<renderer-class>
com.apress.projsf.ch8.render.xul.ajax.XulAjaxInputDateRenderer
</renderer-class>
</renderer>
<renderer>
<component-family>com.apress.projst.ShowOne</component-family>
<renderer-type>com.apress.projsf.Deck</renderer-type>
<renderer-class>

com.apress.projsf.ch8.render.xul.ajax.XulAjaxShowOneDeckRenderer

</renderer-class>
</renderer>
</render-kit>
</faces-config>

CHAPTER 8 © PROVIDING MOZILLA XUL RENDERERS

Step 8: Creating a JSP Tag Handler and TLD

The UIDocument component needs a new custom action, <pro:document>, with a correspon-
ding tag handler class, ProDocumentTag. On initial render, the ProDocumentTag is responsible for
transferring all JSP custom action attributes from the tag handler to the component instance.

The ProDocumentTag Class

The ProDocumentTag, as shown in Code Sample 8-40, creates the component using the defined
component type, com.apress.projst.Document, which will create a ProDocument instance with
a default renderer type of com.apress.projst.Document. However, it is possible for the Web
application faces-config.xml to override the component class that should be created for this
component type. Therefore, the tag handler must explicitly set the renderer type on the newly
created component instance. This will guarantee that the XulDocumentRenderer is used for the
component instance created by the ProDocumentTag. Figure 8-12 shows the ProDocumentTag as
viewed in a class diagram.

=] ProDocumentTag

- String _title
- String _styleClass
- String _stylesheetURI

+ String getComponentType ()

+ String getRendererType ()

+void setStylesheetlURI (String stylesheetUR)
+void setTitle (String title)

+void setStyleClass (String styleClass)

+void release ()

void setProperties (UIComponent component)

Figure 8-12. Class diagram showing the ProDocumentTag class

Code Sample 8-40. The JSP Tag Handler

package com.apress.projsf.ch8.taglib.pro
import javax.faces.component.UIComponent;

import com.apress.projsf.ch8.component.pro.ProDocument;
import com.apress.projsf.ch2.taglib.UIComponentTagSupport;

Vak

* ProDocumentTag component tag handler.

*/

public class ProDocumentTag extends UIComponentTagSupport

{

347

348 CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

/%

* Returns the component type.
*

* @return the component type
*/
public String getComponentType()

{
return ProDocument.COMPONENT TYPE;

}

/%

* Returns the renderer type.
*

* @return the renderer type
*/
public String getRendererType()

{
return ProDocument.RENDERER TYPE;

}

public void setStylesheetURI(String stylesheetURI)

{
_stylesheetURI = stylesheetURI;

}

public void setTitle(String title)
{

_title = title;
}

public void setStyleClass(String styleClass)

{
_styleClass = styleClass;

}

public void release()

{
_title = null;
_styleClass = null;
_stylesheetURI = null;

}

protected void setProperties(
UIComponent component)

{

super.setProperties(component);

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

// Renderer-specific attributes

setStringProperty(component, "title", title);

setStringProperty(component, "styleClass", styleClass);

setStringProperty(component, "stylesheetURI", stylesheetURI);
}

private String title;
private String styleClass;
private String stylesheetURI;

The ProDocumentTag provides tag attribute setters and internal field storage for the
renderer-specific XulDocumentRenderer attributes (title, styleClass, and stylesheetsURI).
The setProperties() method transfers properties and attributes from this tag to the specified
component if the corresponding properties of this tag handler instance are explicitly set.

Tag Library Descriptor

You have now defined the behavior of the ProDocumentTag handler. It is time to register the
name of the custom action and set some rules for how it can be used. When creating a tag
library for JSF custom components, the TLD file defines one custom action per Renderer. In this
chapter, you need to define only one custom action—document—as shown in Code Sample 8-41.

Code Sample 8-41. The TLD

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE taglib
PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN"
"http://java.sun.com/dtd/web-jsptaglibrary 1 2.dtd" >

<taglib>

<uri>http://projsf.apress.com/tags</uri>

<tag>
<name>document</name>
<tag-class>com.apress.projsf.ch8.taglib.pro.ProDocumentTag</tag-class>
<body-content>JSP</body-content>
<description>

The document tag handler represents a ProDocument component that is used

as the top component in the hierarchy, directly under the UIViewRoot.
</description>

<!-- UIComponent attributes -->
<attribute>
<name>id</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>

349

350

CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

<description>
The component identifier for this component. This value must be
unique within the closest parent component that is a naming
container.
</description>
</attribute>

<!-- ProDocument attributes -->
<attribute>
<name>title</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
Advisory title information about markup elements generated
for this component.
</description>
</attribute>
<attribute>
<name>stylesheetURI</name>
<required>false</required>
<rtexprvalue>false</rtexprvalue>
<description>
User-defined stylesheet.
</description>
</attribute>
</tag>

</taglib>

For each custom action in the TLD, you need a <tag> element. The name of the custom
action element is defined in the nested <name> element (for example, <name>document</name>),
and the tag handler class is defined in the <tag-class> element. The <body-content> element
describes how this tag should be processed. If the custom action has attributes, they have to
be defined with the <attribute> element. For each attribute in the TLD, the <rtexprvalue>

element must be set to false, and the attribute class must be left unspecified, allowing it to
default to String. For more information about the <rtexprvalue> element, see Chapter 2.

Step 9: Creating a RenderKit and ResponseWriter

For the solution to work, you need to control the output to the client so that you write out the
requested XML document with the contentType set to application/vnd.mozilla.xul+xml on
initial request and on regular form postback; on any subsequent Ajax postback, you respond
with the contentType set to application/xml

To be able to support the content type application/vnd.mozilla.xul+xml as required by the
XUL Renderer classes, you have to extend the default Responselriter—XMLResponselWriter—with
support for XML documents. This XMLResponseWriter will be used during the initial request and
regular form postback.

CHAPTER 8 © PROVIDING MOZILLA XUL RENDERERS

The XulAjaxRenderKit Class

With the XUL Ajax postback, you face the same contentType issues discussed in Chapter 6.
The good thing is that you took care of the problem in Chapter 6 by providing the
FixedContentTypeResponselriter, and since there is nothing special about using Ajax in
XUL, you can reuse this FixedContentTypeResponseWriter for the XUL Ajax solution. The
only requirement is that the application developer needs to set the correct content type,
so that the Responseliriter gets a chance to define the content type for the response.

With the new XMLResponselriter, you also have to provide a custom RenderKit—
XulAjaxRenderKit—that can dynamically pick either the XMLResponseWriter or the custom
FixedContentTypeResponseWriter (see Figure 8-13).

JSPX Document AulAjaxRenderkKit FacesContext
<fview=

create ViewTag

doStartTag createResponseWriter
—

»
>

AMLResponseWriter

setResponseWriter

h J

Figure 8-13. Sequence diagram of creating the right ResponseWriter for the response

You are probably asking yourself, do I have to reimplement every component library
that an application developer might use? The answer is no! You use the strategy you used in

Chapter 6, wrapping the XulAjaxRenderKit around the standard HTML RenderKit to avoid all
that extra work.

Figure 8-14 shows the XulAjaxRenderKit in a class diagram.

=] XulAjaxRenderkit
+ String COMTENT TYPE

+ ResponseWriter createResponseWriter (Writer writer, String contentTypeList, String charset)

Figure 8-14. Class diagram showing the XulAjaxRenderKit class

In the XulAjaxRenderKit class, as shown in Code Sample 8-42, you set the CONTENT TYPE
variable to the accepted XUL contentType—application/vnd.mozilla.xul+xml. To find out
which Responseliriter to select, you need to know whether this is an initial request, a regular
form postback, or an Ajax postback. If the user clicks the pro: showOneDeck component, the
d2.submit function passes a custom header to the XMLHttpRequest—X-D2-Content-Type.

351

352

CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

You check for the custom request header, and if it is set, you create a new instance of the
FixedContentTypeResponselriter. On initial request or a regular form postback (for example,
an h:commandButton is clicked), the custom request header will not be present, and you will
return the XMLResponselWriter.

Code Sample 8-42. The XulAjaxRenderKit

package com.apress.projsf.ch8.render.xul.ajax;

import java.io.Writer;
import java.util.Map;

import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.context.Responselriter;

import com.apress.projsf.ché.render.ExtendedRenderKit;
import com.apress.projsf.ché.render.FixedContentTypeResponselriter;
import com.apress.projsf.ch8.render.XmlResponselriter;

public class XulAjaxRenderKit extends ExtendedRenderKit

{

public static final String CONTENT_TYPE = "application/vnd.mozilla.xul+xml";

public ResponseWriter createResponseWriter(
Writer writer,
String contentTypelist,
String charset)

{

Responseliriter out = new XmlResponseWriter(writer, charset, CONTENT TYPE);

FacesContext context = FacesContext.getCurrentInstance();
ExternalContext external = context.getExternalContext();
Map requestHeaders = external.getRequestHeaderMap();

// Detect D2 request
String d2ContentType = (String)requestHeaders.get("X-D2-Content-Type");
if (d2ContentType != null)

{

out = new FixedContentTypeResponsellriter(out, "application/xml");

}

return out;

CHAPTER 8 © PROVIDING MOZILLA XUL RENDERERS

The XMLResponseWriter Class

The XMLResponseWriter is the piece in the puzzle that writes the required XML markup to the
requesting client (see Figure 8-15). If you did not create a new ResponseWriter for the XUL solu-
tion, it would produce the wrong output, because it would be HTML, not XML (XUL) syntax.

= ¥mIResponseWriter

- PrintWriter _out

- String _contentType

- String _documentType

- String _encoding

- boolean _closeStart

- boolean _verboseEmptyElements

+ XmlResponseWriter (Writer writer, String encoding)
+ XmlResponseWriter (Writer writer, String encoding, String contentType)
+ XmlResponseWriter (Writer writer, String encoding, String contentType, String documentType)

- XmlResponseWriter (String contentType, String documentType, Whiter writer, String encoding, boolean verboseEmptyElements)
+ String getCharacterEncoding ()

+ String getContentType ()

+void setVerboseEmptyElements (boolean verboseEmptyElements)
+void startDocument ()

+void endDocument ()

+void startElement (String name, UIComponent component)

+void writeAttribute (String name, Object value, String attrMame)
+void writeComment (Object comment)

+void writeText (charf] buffer, int offset, int length)

+void writeText (Object text, String attrMame)

+void write URIAttribute (String name, Object value, String attrMame)
+void endElement (String name)

+ ResponseWriter cloneWithWriter (Writer writer)

Figure 8-15. Class diagram showing the XMLResponseWriter class

The only real difference between this XMLResponseWriter, as shown in Code Sample 8-43,
and the default HTML Responselriter is that the ResponseWriter writes out proper XML pro-
cessing instructions and always makes sure to close elements with a close tag (for example,

</br>). The Responseliriter is not specific to XUL and can also be used to support other
XML languages.

Code Sample 8-43. The XMLResponseWriter

package com.apress.projst.ch8.render;
import java.io.IOException;
import java.io.PrintWriter;

import java.io.Writer;

import javax.faces.component.UIComponent;
import javax.faces.context.Responselriter;

public class XmlResponseWriter extends ResponseWriter

353

354 CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

public XmlResponseWriter(
Writer writer,
String encoding,
String contentType)

{
this(writer, encoding, contentType, null);
}
public String getCharacterEncoding()
{
return _encoding;
}
public void startDocument() throws IOException
{
String charset = this.getCharacterEncoding();
if (charset != null)
{
_out.write("<?xml version=\"1.0\" ");
_out.write("encoding=\"");
_out.write(charset);
_out.write("\" ?>\n");
}
else
{
_out.write("<?xml version=\"1.0\" ?>\n");
}
}
}

Step 11: Registering a RenderKit

For the XUL Ajax implementation, you need to make sure you register the custom Renderers
with the XulAjaxRenderKit, as shown in Code Sample 8-44.

Code Sample 8-44. The XUL Registration in faces-config.xml

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">
<faces-config xmlns="http://java.sun.com/JSF/Configuration” >

CHAPTER 8 © PROVIDING MOZILLA XUL RENDERERS

<render-kit>
<rendexr-kit-id>com.apress.projsf.xul.ajax[HTML_BASIC]</render-kit-id>
<render-kit-class>
com.apress.projsf.ch8.render.xul.ajax.XulAjaxRenderKit
</render-kit-class>
<renderer>
<component-family>com.apress.projst.Document</component-family>
<renderer-type>com.apress.projsf.Document</renderer-type>
<renderer-class>
com.apress.projst.ch8.render.xul.basic.XulDocumentRenderer
</renderer-class>
</renderer>
<renderer>
<component-family>javax.faces.Input</component-family>
<renderer-type>com.apress.projsf.Date</renderer-type>
<renderer-class>
com.apress.projst.ch8.render.xul.ajax.XulAjaxInputDateRenderer
</renderer-class>
</renderer>
<renderer>
<component-family>com.apress.projst.ShowOne</component-family>
<renderer-type>com.apress.projsf.Deck</renderer-type>
<renderer-class>
com.apress.projst.ch8.render.xul.ajax.XulAjaxShowOneDeckRenderer
</renderer-class>
</renderer>
</render-kit>
</faces-config>

Step 12: Registering Resources with Weblets

First, you need to register the XUL resources (pro.css, bindings.xml, styles.css) as weblets,
which will enable you to package these resources as part of the custom JSF component library
(see Code Sample 8-45). Second, you need to make sure you use weblets to load the image for
the ProInputDate component’s button (see Code Sample 8-46).

Note For more information about weblets, please see Chapter 5, or visit the Weblets project’s site at
http://weblets.dev.java.net

Code Sample 8-45. The Weblets Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<weblets-config xmlns="http://weblets.dev.java.net/config" >

355

356 CHAPTER 8 ©* PROVIDING MOZILLA XUL RENDERERS

<weblet>
<weblet-name>com.apress.projst.ch8</weblet-name>
<weblet-class>net.java.dev.weblets.packaged.PackagedhWeblet</weblet-class>
<init-param>
<param-name>package</param-name>
<param-value>com.apress.projst.ch8.render.xul.ajax.resources</param-value>
</init-param>
</weblet>

<weblet-mapping>
<weblet-name>com.apress.projst.ch8</weblet-name>
<url-pattern>/projsf-ch8/*</url-pattern>
</weblet-mapping>

</weblets-config>

In Code Sample 8-46, you use weblets to serve resources from the JAR file. Note the
difference between the style.css file and the inputDateButton.gif file. The styles.css file is
automatically processed relative to the bindings.xml file by the XBL runtime, but the XUL but-
ton’s image URL is processed relative to the main document. This will cause the image URL
to not render, since the image is stored relative to the bindings.xml file and not to the main
document. To solve this, you use the weblet:/ relative protocol syntax to make it absolute at
runtime but relative during design time.

Code Sample 8-46. Using Relative weblet:/ Protocol Syntax

<?xml version="1.0"?>
<bindings xmlns="http://www.mozilla.org/xbl"
xmlns:xbl="http://www.mozilla.org/xbl"
xmlns:html="http://www.w3.0rg/1999/xhtml"
xmlns:xul="http://www.mozilla.org/keymaster/gatekeeper/there.is.only.xul">
<binding id="inputDate">
<resources>
<stylesheet src="styles.css" />
</resources>
<content>
<xul:hbox>
<xul:textbox id="input"
style="margin-left:0Opx;margin-right:opx;"
xbl:inherits="value"
onchange="this.parentNode.parentNode.flushChanges();" />
<xul:button pop-up="calendar"
image="weblet:/inputDateButton.gif"
style="margin-left:0Opx;margin-right:0opx;min-width:2em;"/>
</xul:hbox>

CHAPTER 8 © PROVIDING MOZILLA XUL RENDERERS

Building Applications with JSF XUL Components

Figure 8-16 shows the final result of the JSF XUL implementation and how it will be used in
JSP pages. The first page contains the <pro:inputDate> component tag and looks the same as
the one you created previously (see Chapter 7), except this page uses a XUL RenderKit. This
XUL implementation provides the same functionality as the Ajax implementation where dates
that are not selectable are marked red and dates outside the scope of the current month are
disabled. When the user enters a date and clicks a submit button, a full postback will occur,
and the attached validator, if any, will be invoked. Code Sample 8-47 uses the input date com-

ponent with the XUL Renderer.

| @ ProJsF : ProlnputDate - Mozilla Firefox (==
File Edit View Go Bookmarks Tools Help

& -5 - @ 0 | [http://127.0.0.1:83988 chaptera-context-root faces/inputDate. jspx [V]

Please enter a date with the pattern "d MMMNMM vyvy".

26 Jamary 2005

< January 2005 >
Sun Mon Tue Wed Thu |Fri Sat
27 28 29 3031 1
2 3 4 5 6 7 8
9 10 11 12 1314 15
16 17 18 19 20 21 22
23 24 258 27 28 29
30 3N 1 2 3 4 5

296
2o

Figure 8-16. JSF page rendered using the XUL RenderKit and the ProInputDate component

Code Sample 8-47. JSF Page Source for XUL Implementation

<?xml version="1.0" encoding="UTF-8" 2>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="1.2"
xmlns:bobh="http://www.bob.org/jsf/html"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html" >
<jsp:directive.page contentType="application/x-javaserver-faces"/>
<frview>
<pro:document title="Pro JSF : ProInputDate" >
<h:form id="form" >
<pro:inputDate id="dateField"
title="Date Field Component"
value="#{inputDateBean.date}" >
<f:convertDateTime pattern="d MMMMM yyyy" />
<pro:validateDate availability="#{inputDateBean.getAvailability}" />
</pro:inputDate>

357

358

CHAPTER 8 /" PROVIDING MOZILLA XUL RENDERERS

<h:message for="dateField" />

<h:commandButton value="Submit" />

<h:outputText value="#{inputDateBean.date}" >
<f:convertDateTime pattern="d MMMMM yyyy" />
</h:outputText>
</h:form>
</pro:document>
</fiview>
</jsp:root>

The only step for the application developer to Ajax enable the application is to ensure to
set the right contentType, which in this case is application/x-javaserver-faces. By specifying
a custom contentType like the one in Code Sample 8-47 and Code Sample 8-48, you can inter-
cept it and allow the Responselriter to decide what contentType is going to be set on the
response.

Figure 8-17 shows the result of the second page. Code Sample 8-48 shows the source of
the second page, which contains the showOneDeck component source. The page looks the same
as the previous implementations of the showOneDeck component (see Chapter 6), except this
page uses a XUL RenderKit.

& ProJSF : ProShowOneDeck - Mozilla Firefox (==
File Edit View Go Bookmarks Tools Help

@ -5 - I:‘g @ L] http:/{127.0.0.1:8988chapter8-context-root/faces showOneDeck. jspx [V]

A

9

Pro JSF: Building Rich Internet Components
Pro EIB 3
Pro Apache Maven

Done

Figure 8-17. JSF page rendered using the XUL RenderKit and the ProShowOneDeck component

Code Sample 8-48. JSF Page Source for XUL Implementation

<?xml version="1.0" encoding="UTF-8" ?>

<jsp:root ...>
<jsp:directive.page contentType="application/x-javaserver-faces"/>
<fiview>

CHAPTER 8 ©" PROVIDING MOZILLA XUL RENDERERS

<pro:showOneDeck showItemId="first"
showListener="#{showOneDeckBean.doShow}">
<pro:showItem id="first" styleClass="showItem" >
<f:facet name="header">
<h:panelGroup>
<h:graphicImage url="/resources/java_small.jpg" alt="The Duke"
style="margin-right: 8px; vertical-align:bottom;" />
<h:outputText value="Java"/>
</h:panelGroup>
</f:facet>
<h:panelGrid columns="1">
<h:outputlLink value="http://apress.com/book/bookDisplay.html?bID=10044">
<h:outputText value="Pro JSF: Building Rich Internet Components"/>

</fiview>

</jsp:root>
You might be asking yourself, “What’s so cool about this? I have seen the exact same page
sources in two other solutions.” You are right, and that’s the beauty of JSF! Without impacting
the application developer, you can change a RenderKit ID to use other Renderers that support

client-specific markup (XUL in this case) for optimized performance and responsiveness in
the Mozilla browser.

Summary

The Mozilla Web site says it best: XUL is cool! We definitely recommend that component
developers look at XUL as an alternative rendering technology for rich Web clients. Although
initially it may seem overwhelming to create JSF components using XUL, it is actually pretty
straightforward as long as you follow a well-defined blueprint.

A direct benefit of using XUL is the declarative component model you have at your dis-
posal. XUL also enhances performance and reduces the amount of JavaScript you have to
create and maintain.

We hope this chapter gave you a clear understanding that HTML is not the end of the
road and that the limits of what we can do with the J2EE framework are sometimes in our
own heads!

359

CHAPTER 9

Providing Microsoft HTC
Renderers

If we value the pursuit of knowledge, we must be free to follow wherever that search may
lead us. The free mind is not a barking dog to be tethered on a ten-foot chain.

—Adlai E. Stevenson Jr. (1900-1965)

In the previous chapter, we introduced the concept of SPIF applications and how component
writers can leverage XUL to quickly and easily build standard JSF components for any browser
supporting the Mozilla GRE (such as Firefox and Netscape). This provides an excellent solution;
however, Firefox makes up less than 20 percent! of the browser market, which is dominated by
Microsoft Internet Explorer.

Microsoft has often been seen as the evil empire among non-Microsoft developers, but
you should recognize that Microsoft has contributed several bright ideas to standards organi-
zations such as the W3C. Microsoft also introduced the now widely known XMLHttpRequest
object. All of the pieces of Ajax—DHTML, JavaScript, and XMLHttpRequest—are available in
Microsoft Internet Explorer, and the Microsoft Outlook Web Access solution has used these
technologies to deliver a richer browser solution since 1998.

To be able to give application developers the freedom to deploy to both browser platforms
(Microsoft’s and Mozilla’s), you have to include support for Microsoft Internet Explorer as well.

You could, of course, argue that you have already provided support for Internet Explorer
with the HTML Ajax solution you created earlier, but that solution is still not leveraging Inter-
net Explorer’s full potential as a client platform.

In this chapter, you will leverage Microsoft’s component model, which is similar to the
one provided by Mozilla XUL. Microsoft’s component model is called DHTML behaviors and
allows developers to encapsulate regular DHTML in a separate file type: an HTC file. This file
type allows developers to create reusable components that encapsulate dynamic behaviors,
much the same way as XBL works for XUL. You should note that HTC defines only one ele-
ment behavior per HTC file.

1. This is an approximate percentage of browser market at the time this book was written.

361

362

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

Requirements for the Deck and Date Components’
HTC Implementations

The requirements for the ProInputDate and ProShowOneDeck components in this chapter are
simple—you need to leverage the declarative component model provided by Microsoft Inter-
net Explorer. To support this, you need to provide HTC-specific Renderer classes for the deck
and date components. There should be no loss of functionality supporting this client-specific
component model compared to what is provided by the deck and date components created in
Chapters 6 and 7.

After this chapter, you should understand the difference between DHTML behaviors and
HTC, what benefits you will gain, and what issues you can run into when creating rich user
interface components with these technologies.

What HTC Brings to JSF

HTC provides similar benefits to component writers as XUL does. However, Internet Explorer
is not providing any built-in HTC visual components. The HTC component model is part of
the Internet Explorer runtime engine, so there is no need to “explode” the JSF page structure
into the appropriate markup on the server before sending it to the client. This in turn will
reduce the network payload, since rendering is taken care of by the client and not the actual
server implementation.

And, of course, HTC also provides out-of-the-box rich client interactivity, such as pop-up
functionality, eliminating the need for the component writer to implement this in an alterna-
tive solution such as Ajax.

In this chapter, you will learn how to combine the Ajax asynchronous communication
channel—XMLHttpRequest—with the component model provided by HTC to design reusable
and extremely interactive standard JSF components.

What JSF Brings to HTC

JSF brings the same benefit to HTC as it does to XUL: the common application programming
model of JSP and Java. And, you can apply the same arguments about XUL to HTC; developers
interested in HTC could use HTC directly, but the point is that JSF provides a familiar pro-
gramming model and a standard request lifecycle that includes automatic state saving and
restoring of state, validation, data model, and event handling.

The HTC Implementation of the Deck and Date
Components

For JSF component writers, the fact that Microsoft is leveraging HTML markup in its HTC
component model provides them with a simple encapsulation technique—a regular HTML
file with the .htc extension. Therefore, the main player in this chapter is HTC.

CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS

Introduced in Microsoft Internet Explorer 5, HTC provides a mechanism to implement
components in script as DHTML behaviors. Saved with an .htc extension, an HTC file is an
HTML file that contains scripts and a set of HTC-specific elements that publish the HTML
document as a component.

After this chapter, you should be able to create rich user interface components with
Microsoft’s DHTML behavior technology.

Figure 9-1 shows the three classes you will create in this chapter.

HtmIDocumentRenderer HtcAjaxShowOneDeckRenderer HtcAjaxinputDateRenderer

Figure 9-1. Class diagram showing all classes created in this chapter

The classes are as follows:

e HtmlDocumentRenderer is the Renderer in charge of writing the root elements in an
HTML document.

e HtcAjaxInputDateRenderer is a new custom Renderer for the date component that
extends the HtmlInputDateRenderer created in Chapter 2 and adds resources to include
HTC and Ajax support.

e HtcAjaxShowOneDeckRenderer is a new custom Renderer for the deck component that
extends the HtmlRenderer superclass created in Chapter 2 and adds resources to include
HTC and Ajax support.

Designing JSF HTC Components Using a Blueprint

Blueprint, blueprint, blueprint! The blueprint for creating JSF components is created in such
a way that it works for any markup. Because HTC is leveraging HTML markup, it can use the
default HTML RenderKit provided by the JSF implementation. Alternatively, you can leverage
the Htm1AjaxRenderKit you created in Chapter 6. The reason for using the HtmlAjaxRenderKit
is that it is already designed for HTML and supports Ajax postback. In this chapter, you will
simply follow the same blueprint finalized in Chapter 7, specifically steps 1, 5, 7, 11, and 12.

We'll show how to define the new component by implementing it in the intended markup
that will eventually be sent to the client.

Step 1: Creating a UI Prototype

To be able to prototype what you want to achieve in this chapter, you have to use HTML,
DHTML behaviors, and HTC file types to find out what elements, renderer-specific attributes,
and other resources (for example, JavaScript, images, and so on) are needed.

363

364 CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS

Note For more information about DHTML behaviors and HTC, please visit Microsoft’s MSDN Web site at
http://msdn.microsoft.com.

The HTML Date Implementation Prototype
Figure 9-2 shows the page that includes the <pro:inputDate> prototype implemented in HTC.

&1 ProJSF : ProlnputDate - Microsoft Internet Explorer E]@
© Ele Edit View Favorites Tools Help :’

@ http:/f127.0.0, 1:8988 /chapterd-context-root/finputDate. himl [V]

o EE] >] ;.-‘a\gldress

Please enter a date with the pattern "d MMMNMM vyvy".

& January 2006 B
< January 2006 >
Sun Mon Tue |Wed Thu Fri |Sat
1| 2| 3| 4] s| e 7

B ° 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
20 30 3 A 3

5 6 7 8

M
3
iy

w0

) 10

@ Done B Internet

Figure 9-2. The <pro:inputDate> component implemented in HTML and HTC

Code Sample 9-1 shows the markup needed to create a page using the HTC
<pro:inputDate> prototype shown in Figure 9-2.

Code Sample 9-1. HTML Markup Needed for the <pro:inputDate> HTC Implementation

<html xmlns:pro="http://projsf.apress.com/tags" >
<head>
<title>Pro JSF : ProInputDate</title>
</head>
<body>
<form method="post">
Please enter a date with the pattern "d MMMMM yyyy".

</br>
<script type="text/javascript"”
src="/.../faces/weblets/mabon/mabon.js" >
</script>

CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS

<script type="text/javascript"
src="/.../faces/weblets/dojo/dojo.js" >
</script>
<?import namespace="pro"
implementation="/.../projsf-ch9/inputDate.htc" ?>
<pro:inputDate id="dateField"
value="26 January 2006"
pattern="d MMMMM yyyy"
targetURL="/.../projsf-ch9/sample-availability.json">
</pro:inputDate>
</form>
</body>
</html>

The first noticeable change from XUL is that HTC uses HTML as the delivery vehicle
instead of XML. You are also defining the namespace prefix pro in the <html> element. You can
then import and bind the HTC component, or element behavior as it is called, to a specific tag
name in the pro namespace. You define the tag name inside the HTC component, and once
you import the HTC component, you can use the element behavior in the page with the prefix
pro (for example, <pro:inputDate>).

You can also see the benefits of using HTC over traditional HTML when HTC needs only
one element: <pro:inputDate>. HTML would have been a lot more verbose. This means the
Renderer has to provide only the <pro:inputDate> HTC element with the accompanying attrib-
utes: id, value, pattern, and targetURL.

Note In Code Sample 9-1, the <pro: inputDate> element represents an HTC component, not a JSF
component.

To be able to asynchronously communicate with the server when the <pro:inputDate>
element is activated, you have to download two JavaScript libraries—dojo. js and mabon.js—
to the page.

The HTC Date Element Behavior

Similar to XBL, developers can encapsulate a document hierarchy within the HTC compo-
nent, or they can decide to explode the content into the HTML page and as such expose
internal implementations.

Apart from encapsulation, another obvious benefit of using HTC is the familiarity with the
syntax, since Internet Explorer parses the file as an HTML document. Deploying Microsoft
DHTML applications has no specific requirements, except for the dependency on Microsoft
Internet Explorer 5.0 and newer. You should also remember that with HTC you define one ele-
ment behavior per HTC file.

365

366

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

A typical HTC file is usually structured as an HTML document with <html>, <head>, and
<body> elements. It also contains scripts and HTC-specific elements (see Table 9-1) that define
the component.

Table 9-1. HTC-Specific Elements*

Name Description

document Represents the HTML document in a given browser window

element Returns a reference to the tag in the primary document to which the
element behavior is attached

public:component Identifies the content of the file as an HTC component

public:property Defines a property of the HTC component to be exposed to the
containing document

public:default Sets the default properties for an HTC component

public:attach Binds a function to an event so that the function is called whenever
the event fires on the specified object

public:method Defines an HTC component method to be exposed to the containing
document

public:event Defines an HTC component event to be exposed to the containing
document

*Source: http://msdn.microsoft.com/workshop/author/behaviors/behaviors_node_entry.asp

When you create an element behavior, it usually contains an enclosing <public:component>
element and scripts in the <head> element and contains a <body> element that defines the actual
markup for the element behavior. The file itself is saved with an . htc extension. Code Sample 9-2
shows the <body> section of the HTC file, inputDate.htc, since that will give you an understand-
ing of how this component is constructed.

Code Sample 9-2. The <body> Element of the <pro:inputDate> HTC Component

<html>

<body>
<input id="input" type="text" style="margin:opx"
onchange="_flushChanges()" >
<button type="button" style="margin:0px;width:2em;"
onclick="_popup()" >

</button>

The <body> element defines two form elements: <input> and <button>. Since Internet
Explorer parses the HTC file as an encapsulated HTML document, any input fields in the HTC
document will not participate in the parent document’s form submit. This means you need to
provide a way to transfer the value of the input field to a placeholder on the parent document
(for example, flushChanges()). The button is responsible for launching the actual pop-up
calendar.

CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS 367

Caution Itis illegal to have nested <form> elements in an HTML document, and since you cannot con-
trol where this component is going to end up, it is wise to not add any <form> elements to the element
behavior.

A useful feature in Internet Explorer is XML data islands. You access an XML data island
through an id attribute, and you can use them to embed “islands” of data inside HTML pages
or, as in this case, inside an HTC file. More precisely, you will use this technique to embed
markup for the pop-up calendar, as shown in Code Sample 9-3, so that you don’t have to
dynamically create the calendar using scripts.

Code Sample 9-3. The XML Data Island for the <pro:inputDate> Calendar

<!-- IE XML Data Island -->
<xml id="inputDatePopup" >
<style type="text/css" >
@import url("/.../projsf-ch9/inputDate.css");
</style>
<table id="tableNode"
class="inputDate"
cellspacing="0px"
cellpadding="0px" >
<thead>
<tr class="toolbar"s
<td id="prevNode" >&1t;</td>
<td id="titleNode" colspan="5" ></td>
<td id="nextNode" >></td>
</tr>
<tr class="headings" >
<td>Sun</td>
<td>Mon</td>
<td>Tue</td>
<td>Wed</td>
<td>Thu</td>
<td>Fri</td>
<td>Sat</td>
</tr>
</thead>
<tbody>
<tr><tdy></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><tdy></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><tdy></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><tdy></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><tdy></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><tdy></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
</tbody>

368

CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS

</table>
</xml>
</body>

The XML data island created in Code Sample 9-3 contains markup defining the inner
HTML of the calendar component. The calendar is an ordinary HTML <table> element with a
header for the title, a row for the navigation controls, and several rows and cells making up the
actual calendar month.

In the <head> section of the HTC file, as shown in Code Sample 9-4, you define the element
behavior prototype using the HTC-specific <public:component> element.

Code Sample 9-4. The <head> Element in the <pro:inputDate> HTC Component

<head>
<public:component tagName="inputDate" >
<public:defaults viewlinkcontent="true" />

<public:property name="value" />
<public:property name="pattern" />
<public:property name="targetURL" />
<public:attach event="ondocumentready" handler="
</public:component>

_constuctor” />

The enclosing <public:component> element has the name and tagName attributes set to
inputDate. The name attribute identifies the element behavior, and the tagName attribute specifies
the name of the custom tag. The code also has the <public:default> element’s viewlinkcontent
attribute set to true. This means the content of the element behavior is not exploded into the
HTML document. Also, three public attributes (value, pattern, and targetURL)—or properties
as they are called in HTC—are defined on the element behavior.

Although no <constructor> element exists like you had in XUL, other facilities initialize
content that the element behavior uses. In Code Sample 9-4, you are using the <public:attach>
element to bind an event handler (_constructor) to an HTC-specific event (oncontentready or
ondocumentready). In this case we chose ondocumentready to work around a bug in Internet
Explorer. Table 9-2 lists the HTC-specific events.

Caution Usually we prefer to use oncontentready to initialize the HTC component as soon as the
browser has parsed its definition. In some cases, we must use ondocumentready instead, causing the HTC
component to delay initialization until the main HTML document has been completely parsed by the browser.
If the main HTML DOM is manipulated before the main document has finished loading, then Internet Explorer
will produce a blank page with an Operation Aborted error dialog box. We found that having more than one
HTC component on the same page, where one of the HTC components manipulates the private HTC viewlLink
DOM in response to oncontentready, produces the same Operation Aborted error dialog box. Changing the
HTC behavior to use ondocumentready provides a workaround for this problem.

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

Table 9-2. HTC-Specific Events*

Name Description

oncontentready Fires when the content of the element, to which the behavior is
attached, has been completely parsed

oncontentsave Fires just before the content of an element that is attached to an
element behavior is saved or copied

ondetach Fires before a behavior is detached from an element

ondocumentready Fires when the behavior’s containing document has been completely
parsed

*Source: MSDN (http://msdn.microsoft.com/library/default.asp?url=/workshop/components/htc/
reference/htcref.asp)

Local Variables and the _constructor() Function

In the <script> element, as shown in Code Sample 9-5, you first declare some local variables
for this instance of <pro:inputDate> to hold information of the day names of a week and the
month names of a year. You are also declaring a variable, internalState, to hold the inner
state of this pop-up calendar, such as the current day and table title.

The constructor() function is called as soon as the content has been delivered (for
example, when the <pro:inputDate> element has been written to the client browser). In this
case, the constructor() function initializes the content of the pop-up calendar and sets the
event handlers for the click event on the previous and next nodes; in addition, the actual table
cells contain the currently selected month’s dates.

Code Sample 9-5. The constructor() Function

<script>
var DAY NAMES = ['Sun', 'Mon', 'Tue',
"Wed', 'Thu', 'Fri', 'Sat'];
var MONTH NAMES = ['January', 'February', 'March’',
"April', 'May', 'June’,
"July', '"August', 'September’,
'October', 'November', 'December'];

var internalState = [];
var popup = window.createPopup();

function _constuctor()

{
popup.document.open();
popup.document.writeln('<html>");
// eliminate scrollbars and spaces around the edges
popup.document.writeln('<body style="margin:0Opx;padding:0px;overflow:auto;" >');
popup .document.writeln(inputDatePopup.innerHTML);
popup.document.writeln('</body>");

369

370 CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

popup.document.writeln('</html>");
popup.document.close();

var prevNode = popup.document.getElementById('prevNode');
var nextNode = popup.document.getElementById('nextNode');
var tableNode = popup.document.getElementById('tableNode');
var titleNode = popup.document.getElementById('titleNode');

prevNode.onclick = _scollPrev;
nextNode.onclick = _scrollNext;
tableNode.tBodies[0].onclick = _clickCell;

internalState.tableNode
internalState.titleNode

tableNode;
titleNode;

if (element.value)
input.value = element.value;

if (element.id)
{

input.name = element.id;

var currentNode = this;
while (currentNode != null)
{
if (currentNode.tagName.tolLowerCase() == 'form' 8&&
currentNode.scopeName == "HTML")
{
var formNode = currentNode;
var clientId = element.id;
var inputNode = formNode.elements[clientId];
if (inputNode == null)
{
inputNode = document.createElement('input');
inputNode.type = 'hidden’;
inputNode.name = clientId;
formNode.appendChild(inputNode);
}
internalState.inputNode = inputNode;
break;

}

currentNode = currentNode.parentNode;

}

CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS 3N

The _popup() Function

This _popup() function is more or less the same as the one used in the HTML Ajax solution
with one minor difference—with HTC you do not need to handle the closing of the pop-up
(see Figure 9-3). The Internet Explorer implementation handles this.

button.onclick inputDate
: (element behavior)

_popup

s arseDate
P

_deselect

scroll
T —

_select

Figure 9-3. HTC <pro:inputDate> popup function

The popup() function, as shown in Code Sample 9-6, is responsible for launching the cal-
endar when the user clicks the button. It will first read the user-defined date string from the
input field and then parse that date string into a Date object. If parse was successful, you will
use the Date object; otherwise, you will use today’s Date.

Next you ensure that no previous selection is calling the deselect() function. From the
Date object, you get the active month and year, which you store on the internal state of this
<pro:inputDate> instance. Finally, you call the scroll() function, passing zero as an argu-
ment to ensure the fully populated calendar day cells but staying on the current month (zero
navigation).

Code Sample 9-6. The popup Function in the HTC File

function _popup()
{
var dateString = input.value;
var parsedDate = parseDate(dateString, element.pattern);
var activeDate = (parsedDate != null) ? parsedDate : new Date();

_deselect();

var month = activeDate.getMonth();
var year = activeDate.getFullYear();
internalState._currentMonth = month;
internalState._currentYear = year;

372 CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS

_scroll(0);

if (parsedDate != null)
_select(parsedDate.getDate());

The _scroll() Function

The scroll() function, as shown in Code Sample 9-7, allows the users to navigate plus or
minus one month using arrow controls in the calendar. It is also here you use Mabon to deter-
mine the availability of dates defined by the managed bean attached to the HtcAjaxInputDate
component. Figure 9-4 shows the sequence of function calls in the _scroll() function.

arrowCell.onclick inputDate mabon
; (element behavior) ;

_scroll

Y

z_calculateDate

send

_display

>
%

formatDate (title)

T —
= _isVisible (selected, today)

Figure 9-4. HTC <pro:inputDate> scroll() function

Code Sample 9-7. The scroll Function in the HTC File

function scroll(offset)

{
// scroll months, updating year as necessary
internalState. currentMonth = internalState. currentMonth + offset;
internalState. currentYear += Math.floor(internalState. currentMonth / 12);
internalState. currentMonth = (internalState. currentMonth + 12) % 12;

// use Mabon to retrieve availability
if (element.targetURL)
{
var startDate = calculateDate(1);
var endDate = calculateDate(31);

CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS

var millisPerDay = 1000 * 60 * 60 * 24;
var startDay = Math.floor(startDate.getTime() / millisPerDay);
var endDay = Math.floor(endDate.getTime() / millisPerDay);

// use Mabon to determine availability
mabon. send(
{
url: element.targetURL,
args: [startDay, endDay],
callback: function(result) { _display(result); }
D;
}
else
{
var available = [];
for (var i=0; i < 32; i++)
{
available.push(true);
}
_display(available);
}
}

The _clickCell() Function

The clickCell() function, as shown in Code Sample 9-8, is called when the user clicks a
cell representing a date in the calendar. Figure 9-5 shows the sequence of function calls in
the clickCell() function.

dayCell onclick inputDate
: (element behavior)
_clickCell
- _scroll
]
_isAvailable
=m
_calculateDate
a
_formatDate
m|
popup hide
i=m|

Figure 9-5. HTC <pro:inputDate> clickCell function

373

374

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

You can obtain the target node invoking the event by calling event.srcElement (see Code
Sample 9-8). When you have the target node, you can check to see whether the user clicked a
cell that is outside the range of the displayed month and, if so, navigate to the month for that
selected date: _scrollNext() or scrollPrev().If the selection is within the boundaries of the
month, you need to see whether this date is available; if it is, add the selected date to the input
element.

Code Sample 9-8. The clickCell() Function

function _clickCell()

{
var event = popup.document.parentWindow.event
var cellNode = event.srcElement;
var rowNode = cellNode.parentNode;

var row = rowNode.sectionRowIndex;
var col = cellNode.cellIndex;
var day = Number(cellNode.innerText);

if (row == -1)

{

return;

}
else if (row == 0 &% day > 7)

{

_scrollPrev();

}
else if (row > 3 & day < 15)

{
_scrollNext();

}

else

{
if (_isAvailable(day))

{

var selectedDate = calculateDate(day);
input.value = _formatDate(selectedDate, element.pattern);

// flush the changes for next postback
_flushChanges();

popup.hide();

CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS 375

The HTML Deck Implementation Prototype
Figure 9-6 shows a page that includes the <pro:showOneDeck> prototype implemented in HTC.

@ ProJSF : ProShowOneDeck - Microsoft Internet Explorer Q@
© Elle Edit View Favorites Tools Help :,'

~IE e €]) Address |@ http:/f127.0.0. 1:8988;"d13pher9-conhext-i'oot."sthOneDed(.hM

Pro JSF: Building Rich Internet
Components

Pro EIB 3

Pro Apache Maven

@ Done B Internet

Figure 9-6. The <pro:showOneDeck> component implemented in HTML and HTC

Code Sample 9-9 shows the markup needed to create a page using the HTC
<pro:showOneDeck> prototype shown in Figure 9-6.

Code Sample 9-9. Markup to Create a Page Using the <pro:showOneDeck> HTC Prototype

<html xmlns:pro="http://projsf.apress.com/tags" >
<head>
<title>ProJSF : ProShowOneDeck</title>
<link rel="stylesheet" href="/.../resources/stylesheet.css"/> </head>
<body>
<form id="form" method="post" >

<?import namespace="pro"
implementation="/.../projsf-ch9/showItem.htc" ?>
<pro:showOneDeck id="form:showOneDeck" style="display:block;">
<pro:showItem itemId="first"
active="true"
style="display:block;">
<pro:headerFacet>
<img src="/.../resources/java_small.jpg"
alt="The Duke"
style="margin-right: 8px; vertical-align:bottom;" />
Java
</pro:headerFacet>

376

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

<table>
<tbody>
<tr>
<td>

Pro JSF: Building Rich Internet Components

</td>
</tr>
</form>
</body>
</html>

First you need to define the namespace prefix pro in the <html> element, which allows
you to import and bind the element behavior (showItem.htc) to a specific tag name in the pro
namespace. The tag name is defined inside the HTC component; once the HTC component
is imported, you can use the element behavior in the page with the prefix pro (for example,
<pro:showItem>).

The HTC Deck Element Behavior

The structure of the <pro: showOneDeck> component is slightly different from the <pro:inputDate>
component, since it is of a composite nature. If you look at what is needed to create the deck
component in a JSP page, you need three JSP tag handlers: <pro: showOneDeck>, <pro:showItem,
and <f:facet name="header">. <pro:showOneDeck> is a container for <pro:showItem> and defines
which <pro:showItem> should be expanded by default. <pro:showItem> is also a container and
defines what should be displayed when interacted with. <f:facet name="header"> defines the
clickable header of <pro:showItem>.

The problem you are facing is that HTC does not recognize JSF facets, and therefore you
will have to come up with a way to define facets using HTC syntax. Also, HTC components are
treated as encapsulated documents; for example, an HTC file is basically an HTML file parsed
by Internet Explorer.

The first obvious approach is to define one HTC element behavior for each JSF tag (that
is, showOneDeck.htc, showItem.htc, and headerFacet.htc), but from an HTC view only one will
include actual behavior—showItem. The <pro:showItem> component is the one expanding and
collapsing, not the <pro:showOneDeck> or the <pro:headerFacet>; thus, you should create only
one HTC element behavior: showItem.htc.

Code Sample 9-10 shows the <body> section of the HTC file, showItem.htc, since that will
give you an understanding of how this component is constructed.

Code Sample 9-10. The <body> of the <pro:showItem> Component

<html>

<body style="display:block" class="showItem" >
<div id="header" ></div>
<div id="content" style="display:none;'

></div>

CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS

</body>
</html>

This is a simple component in its structure. It contains only two <div> elements: one for
the header of the <pro:showItem> and one for the actual content of the <pro:showItem>. You
leverage CSS to make sure that elements outside the <pro:showItem> will wrap properly by
setting the style attribute on the <body> element to display:block; in other words, other
<pro:showItem> components will be stacked either above or below. You also set the content
<div> element’s style to display:none by default. This value causes the <div> element to take
no space at all in the browser.

Note For more information about visual formatting using block boxes, please visit the W3C Web site at
http://www.w3.0rg/TR/REC-CSS2/visuren.html#initial-containing-block.

In the <head> section of the HTC file, as shown in Code Sample 9-11, you define the ele-
ment behavior prototype using the HTC-specific <public:component> element.

Code Sample 9-11. The <head> Element in the <pro:showItem> HTC Component

<head>
<public:component tagName="showItem" >

<public:property name="itemId" />
<public:property name="styleClass" />
<public:property name="headerStyleClass" />
<public:property name="contentStyleClass" />
<public:property name="active" />
<public:attach event="oncontentready" handler="

</public:component>

_constructor” />

The enclosing <public:component> element has the tagName attribute set to showItem. The
tagName attribute specifies the name of the custom tag.

Also, five public properties (itemId, styleClass, headerStyleClass, contentStyleClass,
and active) are defined on the element behavior. The previous code sample uses the
<public:attach> element to bind an event handler, constructor, to the HTC-specific event
oncontentready. The constructor() function will initialize the internal state of the element
behavior.

The _constructor() Function

The constructor() function, as shown in Code Sample 9-12, is the core piece of the HTC
element behavior. The oncontentready event will fire when the content of the <pro:showItem>
element, to which the behavior is attached, has been parsed completely. This will invoke the
_constructor() function, which will set the internal state of the <pro:showItem> tag based on
the content written to the browser.

377

378

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

Code Sample 9-12. The constructor() Function

<script type="text/javascript" >
function constructor()
{
header.className = (element.headerStyleClass || 'showItemHeader');
header.onclick = _expand;

for (var i=0; i < childNodes.length; i++)
{
var childNode = childNodes[i];
if (childNode.scopeName == 'pro' &&
childNode.nodeName == "headerFacet")
{
// set header on showItem
header.innerHTML = childNode.innerHTML;
}

else
{
// set content inside showItem
switch (childNode.nodeType)
{
case 1: // Element
content.insertAdjacentHTML("beforeEnd", childNode.outerHTML);
break;
case 3: // Text
content.insertAdjacentHTML("beforekEnd", childNode.nodeValue);
break;
}
}
}

// show the contents if active

if (element.active == 'true')

{
content.className = (element.contentStyleClass || 'showItemContent');
content.style.display = 'block’;

}

defaults.viewlLink = document;

}

The source of the _constructor() function is simple. You first set the onclick event han-
dler on the HTC component’s header to use the _expand function so that this function will be
invoked whenever the header is clicked. You then loop over all children of the <pro:showItem>
tag listed in the parent document. If a child node is a <pro:headerFacet>, you then add its
innerHTML to the header element in the HTC component body; otherwise, you add it to the

CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS

content element. If the child node is being added to the content element, you have to check
to see whether it is another element or just plain text.

If the active attribute on the <pro:showItem> tagis set to true, the content of the
<pro:showItem> element behavior will be displayed. Before the constructor() is done execut-
ing and the content of the HTC element behavior is displayed in the browser, you have to
create a viewLink between the root element of the document fragment in the HTC file to the
master element, <pro:showItem>, in the primary document. You can define a viewLink using a
script shown previously or by inserting the appropriate declaration in the component section
of the HTC file (see Code Sample 9-4).

Note The insertAdjacentHTML method is specific to Internet Explorer and appends the given HTML to
the HTML content of the DOM element. The first argument on the insertAdjacentHTML method takes one
of four string values: beforeBegin, afterBegin, beforeknd, and afterEnd. The beforeEnd string tells
the method to insert the HTML markup immediately before the end of the DOM element, after all the other
content in the DOM element.

The _expand() Function

As shown in Figure 9-7, when the element behavior is bound to the pro namespace and
attached to the <pro:showItem ...>tag, an _expand() function, as shown in Code Sample 9-13,
is added as the event handler and will be invoked when the header is clicked.

click header showltem d2
; (element behavior) ;

click

h 4

_expand

submit

Figure 9-7. HTC <pro:showItem> expand function

Code Sample 9-13. The expand() Function

function _expand()

{

var showOneNode = element.parentNode;
var showOneClientId = showOneNode.id;

var currentNode = element;
while (currentNode != null)

379

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

{

var method = currentNode.method;

if (method != null &&
(method.tolLowerCase() == 'get' ||
method.toLowerCase() == 'post'))

//The following function call to d2 is needed to perform
//an Ajax postback when implemented in the JSF HTC
//ProShowOneDeck component.

var formNode = currentNode;

var content = new Object();

content[showOneClientId] = element.itemlId;
d2.submit(formNode, content);

break;

}

currentNode = currentNode.parentNode;

}
}

</script>

In the prototype you are constructing only the UI, but for Code Sample 9-13 the d2. submit()
function has been added, passing the activated form id and the id of the selected node to the
d2.submit() function. The d2.submit() function calls the dojo.io0.bind() method, passing
information about what form to submit, content (that is, the ID of the selected component),
the accepted request header (' X-D2-Content-Type': <contentType>), and the MIME type
(text/plain) for this request.

This information will determine which node to expand and which Responselriter to
use for this request in your JSF implementation of the JSF HTC deck component.

The D? library also defines a callback function, d2. loadtext, that is used to get the
response data from the server. The d2. loadtext function will replace the target document
with the document returned on the response. This will cause the HTC <pro: showItem> compo-
nent to invoke the _constructor() again and cause the <pro:showItem> to be updated with
new content sent from the server.

To be able to asynchronously communicate with the server when a deck is activated,
you also have to download a set of JavaScript libraries (dojo.js and d2. js) to the page. These
libraries need to be part of your component and should be downloaded automatically to the
client on initial request.

Step 5: Creating a Client-Specific Renderer

Your HTC solution contains three new Renderer classes: HtmlDocumentRenderer,
HtcAjaxInputDateRenderer, and HtcAjaxShowOneDeckRenderer. Let’s start by looking at the
HtmlDocumentRenderer class.

CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS

The HtmIDocumentRenderer Class

The HtmlDocumentRenderer class (see Figure 9-8) is basically a port of the XulDocumentRenderer
you created in Chapter 8. By porting the XulDocumentRenderer code to an HTML version, you

can now provide application developers with one complete solution, allowing the component
writer to switch the RenderKit without any changes to the actual application page description.

|:| HtmIDocumentRenderer

+String TITLE ATTR
+ String STYLE CLASS ATTR
+ String STYLESHEET URI ATTR

+void encodeBegin (FacesContext context, UIComponent component)
+void encodeEnd (FacesContext context, UIComponent component)

void encodeHead (FacesContext context, ResponseWriter out, Map attrs)
String getTitle (Map attrs)

String getStylesheetURI (FacesContext context, Map attrs)

Figure 9-8. Class diagram showing the HtmlDocumentRenderer class

Another freebie is the “at-most-once” semantics for script resources you get when extend-
ing the HtmlRenderer.

The only requirement that the HTML document Renderer has is to support running
applications on different clients, without forcing application developers to provide different
solutions for each client. The HtmlDocumentRenderer, a top-level component that controls the
root element rendered to the client, provides enormous possibilities and provides total con-
trol over the markup for the component writer.

You can use HtmlDocumentRenderer as the root component by any Renderer (for example,
HtmlInputDateRenderer, HtmlAjaxInputDateRenderer, and HtcAjaxInputDateRenderer) thatis
targeting HTML as the default markup. Code Sample 9-14 shows the encodeBegin() method
of the HtmlDocumentRenderer.

Code Sample 9-14. The Htm1DocumentRenderer encodeBegin() Method

package com.apress.projsf.ch9.render.html.basic;

import java.io.IOException;
import java.util.Map;

import javax.faces.application.Application;
import javax.faces.application.ViewHandler;
import javax.faces.component.UIComponent;
import javax.faces.context.FacesContext;
import javax.faces.context.Responselriter;

import com.apress.projsf.ch2.render.html.HtmlRenderer;

381

382 CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

publ

{
/*
*

/
pu
/*

*

/
pu
/*

*

*

pu

pu

{

comp

an a

ic class HtmlDocumentRenderer extends HtmlRenderer

*
The title attribute.

blic static String TITLE ATTR = "title";

The styleClass attribute.

blic static String STYLE CLASS ATTR = "styleClass";

The stylesheetURI attribute.
/
blic static String STYLESHEET URI_ATTR = "stylesheetURI";

blic void encodeBegin(
FacesContext context,
UIComponent component) throws IOException

Responselriter out = context.getResponselriter();
Map attrs = component.getAttributes();
String styleClass = getStyleClass(attrs);

out.startElement("html", component);
out.startElement("head", null);
encodeHead(context, out, attrs);
out.endElement("head");
out.startElement("body", null);

if (styleClass != null)

out.writeAttribute("class", styleClass, STYLE CLASS ATTR);

The encodeBegin() method takes two arguments: FacesContext context and UIComponent
onent. From the component, you can obtain a Map containing all the available attributes.
In this case, the application developer can set three attributes in his JSP document or backing
bean (the title, the styleClass and the stylesheetURI), and the attribute map is passed as

rgument to the encodeHead() method.

The startElement () method takes the following arguments: name and component. The name
argument is the name of the element generated (for example, html), and the component argu-
ment is the UIComponent that this element represents. In Code Sample 9-14, this is represented

with the component UIDocument.

<bod

The encodeEnd() method, as shown in Code Sample 9-15, is basically just closing the HTML

y> and <html> tags.

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

Code Sample 9-15. The encodeEnd() Method

public void encodeEnd(
FacesContext context,
UIComponent component) throws IOException
{
Responselriter out = context.getResponselriter();
out.endElement("body");
out.endElement("html");

}

The encodeHead() method, as shown in Code Sample 9-16, is responsible for writing out
the <head> element. The <head> element contains information about the document, and in
this case it is the title and style sheet.

Code Sample 9-16. The encodeHead() Method

protected void encodeHead(
FacesContext context,
Responselriter out,
Map attrs) throws IOException
{
String title = getTitle(attrs);
String stylesheetURI = getStylesheetURI(context, attrs);

if (title != null)

{
out.startElement("title", null);
out.writeText(title, TITLE_ATTR);
out.endElement("title");

}

if (stylesheetURI != null)

{
out.startElement("link", null);
out.writeAttribute("rel", "stylesheet", null);
out.writeAttribute("href", stylesheetURI, STYLESHEET URI_ATTR);
out.endElement("1ink");

}

}

The getTitle() and getStylesheetURI() methods, as shown in Code Sample 9-17, return
the values of the title and stylesheetURI attributes.
Code Sample 9-17. The Getters for the UIDocument Attributes

protected String getTitle(
Map attrs)

383

384 CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS

{
return (String)attrs.get(TITLE ATTR);
}

protected String getStyleClass(

Map attrs)
{

return (String)attrs.get(STYLE CLASS ATTR);
}

protected String getStylesheetURI(
FacesContext context,
Map attrs)

{

String stylesheetURI = (String)attrs.get(STYLESHEET URI_ATTR);

if (stylesheetURI != null)

{
Application application = context.getApplication();
ViewHandler handler = application.getViewHandler();

stylesheetURI = handler.getResourceURL(context, stylesheetURI);
}

return stylesheetURI;
}
}

The HtcAjaxinputDateRenderer Class

You already know that XUL can make a JSF component writer’s life easier, but how about HTC?
Microsoft’s HTC components provide a similar level of abstraction as Mozilla's XUL/XBL. So,
without further ado, let’s look at the JSF HTC implementation (see Figure 9-9).

=] HicAjaxinputDateRenderer

+void encodeEnd (FacesContext context, UIComponent component)

void encodeResources (FacesContext context, UIComponent component)

- String _determineDatePattern (FacesContext context, UIComponent component)
- String _determineTargetURL (FacesContext context, UIComponent compaonent)

Figure 9-9. Class diagram showing the HtcAjaxInputDateRenderer class

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

Even in the HtcAjaxInputDateRenderer, you will recognize most of the code from previ-
ous chapters, except that the actual output to the client is a mix of regular HTML and HTC.
As with XUL, HTC allows you to reuse the UI prototype. By adding the element behavior—the
inputDate.htc prototype file—to your resources, the only element you need to write out for
this JSF HTC component is <pro:inputDate ...> and its attributes.

By extending the HtmlInputDateRenderer, you get access to the writeScriptInline()
method, as shown in Code Sample 9-18. The writeScriptInline() method provides the same
“at-most-once” semantics for inline scripts as the writeScriptResource() method does for
external resources. An application developer might add two or more ProInputDate compo-
nents to the page, but the semantics behind the writeScriptInline() method, provided by
the Renderer implementation, will make sure this inline script is written only once.

The writeScriptInline() method writes out a script that will add a namespace (http://
projst.apress.com/tags) and will set the namespace prefix to pro. When the namespace is
added, you can import the element behavior (inputDate.htc) and attach it to the namespace
prefix.

Code Sample 9-18. The HtcAjaxInputDateRenderer

package com.apress.projsf.ch9.render.htc.ajax;
import java.io.IOException;

import java.text.DateFormat;
import java.text.SimpleDateFormat;

import javax.faces.application.Application;
import javax.faces.application.ViewHandler;
import javax.faces.component.UIComponent;
import javax.faces.component.UIInput;

import javax.faces.context.FacesContext;
import javax.faces.context.Responselriter;
import javax.faces.convert.Converter;

import javax.faces.convert.DateTimeConverter;
import javax.faces.el.MethodBinding;

import javax.faces.validator.Validator;

import com.apress.projsf.ch5.render.html.basic.HtmlInputDateRenderer;
import com.apress.projsf.ch7.validate.DateValidator;

public class HtcAjaxInputDateRenderer extends HtmlInputDateRenderer

{

protected void encodeResources(FacesContext context,
UIComponent component) throws IOException

{

super.encodeResources(context, component);

385

386 CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

ViewHandler handler = context.getApplication().getViewHandler();
String behaviorURL = handler.getResourceURL(context,
"weblet://com.apress.projsf.ch9/inputDate.htc");
writeScriptInline(context,
"document.namespaces
.add('pro', 'http://projsf.apress.com/tags');\n" +
"document.namespaces
.item('pro"').doImport(

+ behaviorURL + "');

");

By design, the <pro:inputDate> component can have a Converter added by a JSP tag. At
initial render, during the creation of the component hierarchy, a custom JSP converter tag
has not yet been executed, so the Converter is not yet attached to the component inside the
encodeBegin() method. Instead, the Renderer is using the encodeEnd() method, as shown in
Code Sample 9-19, to write out the markup and to obtain the Converter.

Code Sample 9-19. The encodeEnd() Method

public void encodeEnd(
FacesContext context,
UIComponent component) throws IOException
{
String pattern = _determineDatePattern(context, component);
String targetURL = _determineTargetURL(context, component);

UIInput input = (UIInput)component;
String valueString = (String)input.getSubmittedvalue();

if (valueString == null)

{
Object value = input.getValue();
if (value != null)
{
Converter converter = getConverter(context, input);
valueString = converter.getAsString(context, component, value);
}
}

String clientId = input.getClientId(context);

Responselriter out = context.getResponselWriter();

out.startElement("pro:inputDate", component);

out.writeAttribute("id", clientId, null);

if (valueString != null)
out.writeAttribute("value", valueString, null);

if (pattern != null)

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

out.writeAttribute("pattern”, pattern, null);
if (targetURL != null)
out.writeAttribute("targetURL", targetURL, null);
out.endElement("pro:inputDate");

}

In encodeEnd(), you call two methods— determineDatePattern() and
_determineTargetURL(). These methods obtain the date format pattern, and the target URL
for the managed bean is bound to the Validator. Finally, you write out the <pro:inputDate>
component with its attribute to the client.

The determineDatePattern() method, as shown in Code Sample 9-20, is identical to the
one you used in both the XUL Ajax and HTML Ajax solutions, and you could have created a
base class, or utility class, for any custom Renderer that might need this method. But for edu-
cational purposes we decided that it is easier to understand when it is explained this way.

For the HTC implementation to work, you need to know what date pattern has been set
on the DateTimeConverter by the application developer. This date pattern will be used in two
places. First, it parses the date entered by the user in the <input> element. This parsed date
will then be used to set the selected date in the calendar. Second, it makes sure the date
selected in the calendar follows the correct date format when added to the <input> element.

Code Sample 9-20. The determineDatePattern() Method

private String determineDatePattern(
FacesContext context,
UIComponent component)
{
UIInput input = (UIInput)component;
Converter converter = getConverter(context, input);

if (converter instanceof DateTimeConverter)

{
DateTimeConverter dateTime = (DateTimeConverter)converter;
return dateTime.getPattern();

}

else
{
SimpleDateFormat dateFormat = (SimpleDateFormat)
DateFormat.getDateInstance(DateFormat.SHORT);
return dateFormat.toPattern();
}
}

You may have seen the determineTargetURL() method, as shown in Code Sample 9-21, in
previous chapters. It provides you with the needed binding reference to the managed bean. You
first get all the validators attached to this input component. You then check to see whether one
or many of these validators are an instance of the DateValidator. (The DateValidator was cre-
ated in Chapter 7.)

387

388 CHAPTER 9

PROVIDING MICROSOFT HTC RENDERERS

Code Sample 9-21. The determineTargetURL() Method

private

String determineTargetURL(

FacesContext context,
UIComponent component)

{

UIInput input = (UIInput)component;
Validator[] validators = input.getValidators();

for (int i=0; i < validators.length; i++)

{

if (validators[i] instanceof DateValidator)

{

DateValidator validateDate = (DateValidator)validators[i];
MethodBinding binding = validateDate.getAvailability();
if (binding != null)

{

}

}
}

String expression = binding.getExpressionString();
// #{backingBean.methodName} -> backingBean.methodName
String bindingRef = expression.substring(2, expression.length(): 1);

Application application = context.getApplication();
ViewHandler handler = application.getViewHandler();
return handler.getResourceURL(context, "mabon:/" + bindingRef);

return null;

}
}

If it is an instance of the DateValidator, you check to see whether you have a MethodBinding.
If a MethodBinding exists, you get the expression (for example, #{managedBean.methodName}) and
strip off the #{}. This leaves you with managedBean.methodName, which you concatenate with
mabon:/. The MabonViewHandler will recognize the string and return a resource URL that will
be written to the client (for example, /context-root/mabon-servlet-mapping/managedBean.
methodName).

The HtcAjaxShowOneDeckRenderer Class

You are getting close! Since the UIShowOne component is a container component, it needs to
render its children, and as such you have to implement encodeBegin(), encodeChildren(), and
encodeEnd() in the new renderer (see Figure 9-10).

CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS

|:| HtcAjaxShowOneDeckRenderer

+ String STYLE CLASS ATTR

+ String [TEM STYLE CLASS ATTR

+ String [TEM HEADER STYLE CLASS ATIR
+ String [TEM CONTENT STYLE CLASS ATTR

+void encodeBegin (FacesContext context, UIComponent component)

void encodeResources (FacesContext context, UIComponent component)
+void encodeChildren (FacesContext context, UIComponent component)
+void encodeEnd (FacesContext context, UIComponent component)

+ boolean getRendersChildren ()

-void _encodeAll (FacesContext context, UICompaonent component)

+void decode (FacesContext context, UIComponent component)

Figure 9-10. Class diagram showing the HtcAjaxShowOneDeckRenderer class

We'll first cover the encodeBegin() method for the HtcAjaxShowOneDeckRenderer, as shown
in Code Sample 9-22. The encodeBegin() method takes two arguments: FacesContext and
UIComponent. The Render Response phase will call encodeBegin() on the UIShowOne component,
which in turn will delegate to the encodeBegin() method on the HtcAjaxShowOneDeckRenderer,
passing the FacesContext and the UIShowOne component instance.

Code Sample 9-22. The HtcAjaxShowOneDeckRenderer encodeBegin() Method

package com.apress.projsft.ch9.render.htc.ajax;

import java.io.IOException;
import java.util.Iterator;
import java.util.list;
import java.util.Map;

import javax.faces.application.ViewHandler;
import javax.faces.component.UIComponent;
import javax.faces.context.ExternalContext;
import javax.faces.context.FacesContext;
import javax.faces.context.Responselriter;

import com.apress.projsf.ch2.render.html.HtmlRenderer;
import com.apress.projsf.ch3.component.UIShowItem;
import com.apress.projsf.ch3.component.UIShowOne;
import com.apress.projsf.ch3.event.ShowEvent;

public class HtcAjaxShowOneDeckRenderer extends HtmlRenderer

{

389

390 CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

Vil
* The styleClass attribute.

*/

public static String STYLE CLASS ATTR = "styleClass";

Voo

* The itemStyleClass attribute.

*/

public static String ITEM STYLE CLASS ATTR = "itemStyleClass";

Vil
* The itemHeaderStyleClass attribute.

*/

public static String ITEM HEADER STYLE CLASS ATTR = "itemHeaderStyleClass";

/¥
* The itemContentStyleClass attribute.

*/

public static String ITEM CONTENT STYLE CLASS ATTR = "itemContentStyleClass";

public void encodeBegin(
FacesContext context,
UIComponent component) throws IOException

{

super.encodeBegin(context, component);

UIShowOne showOne = (UIShowOne)component;
String clientId = showOne.getClientId(context);

ViewHandler handler = context.getApplication().getViewHandler();
String showItemURL = handler.getResourceURL(context,
"weblet://com.apress.projsf.ch9/showItem.htc");

Responselriter out = context.getResponselriter();
writeScriptInline(context, "document.namespaces.add('pro’,
"http://projsf.apress.com/tags');");
out.write("<?import namespace=\"pro\"
implementation=\"" + showItemURL + "\" 2>");

out.startElement("pro:showOneDeck", component);
out.writeAttribute("id", clientId, null);
out.writeAttribute("style", "display:block;", null);

}

Before you write anything to the client, you need to obtain the component’s unique iden-
tifier: clientId. You do this by calling the getClientId() method on the UIShowOne instance

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

passed as an argument to the Renderer. You include this unique identifier in the generated
markup to ensure that you will be able to decode the request and apply any values or events
to the right component on postback. For more information about the clientId, see Chapter 2.

You then use weblets to obtain the resource URL of the <pro:showItem> HTC component
that will be used to set the implementation attribute on the <?import> processing instruction.
This is an alternative solution to the doImport() method used in the HtcAjaxInputDateRenderer
(see Code Sample 9-18) to import an element behavior.

You get the ResponseWriter and write out the first element (<pro:showOneDeck>) represent-
ing the component.

The <pro:showOneDeck> component relies on the Dojo toolkit and D? project to be able to
asynchronously communicate with the server. To ensure that these resources are loaded to the
client and written only once, you will use the semantics behind the writeScriptResource()
method, as shown in Code Sample 9-23.

Code Sample 9-23. The HtcAjaxShowOneDeckRenderer encodeResources () Method

protected void encodeResources(
FacesContext context,
UIComponent component) throws IOException

{

super.encodeResources(context, component);

writeScriptResource(context, "weblet://org.dojotoolkit.browserio/dojo.js");
writeScriptResource(context, "weblet://net.java.dev.d2/d2.js");

}

In the encodeChildren() method, as shown in Code Sample 9-24, you check to see whether
this UIShowOne component has any children at all. If the application developer has not added
any children, you do not need to render this instance of the UIShowOne component to the client.
You then collect information about which default UIShowItem id to display and which style
classes to use for the child items.

Code Sample 9-24. The encodeChildren() Method

public void encodeChildren(
FacesContext context,
UIComponent component) throws IOException
{
if (component.getChildCount() > 0)
{
UIShowOne showOne = (UIShowOne)component;
String showItemId = showOne.getShowItemId();

Map attrs = showOne.getAttributes();

String styleClass = getItemStyleClass(attrs);

String headerStyleClass = getItemHeaderStyleClass(attrs);
String contentStyleClass = getItemContentStyleClass(attrs);

391

392

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

After that, you collect all children of the UIShowOne component, iterate over the list of chil-
dren, and check whether each child is an instance of UIShowItem, as shown in Code Sample 9-25.
If not, the child will not be rendered. If the child is a UIShowItem component instance, you gather
the clientId and all attributes available on the UIShowItem component. The showItemId is then
compared with the id of the current UIShowItem component, and based on the result, the active
variable will be used as a true or false flag. This flag will later be used to set the active attrib-
ute on the <pro:showItem> tag to indicate whether this UIShowItem component should render
its children.

Code Sample 9-25. The encodeChildren() Method

List children = component.getChildren();
for (Tterator iter = children.iterator(); iter.hasNext();)
{
UIComponent child = (UIComponent) iter.next();
if (child instanceof UIShowItem)
{
UIShowItem showItem = (UIShowItem)child;
Map attrs = showItem.getAttributes();

String id = showItem.getId();
boolean active = (id.equals(showItemId));

Responseliriter out = context.getResponselWriter();
out.startElement("pro:showItem", showItem);
out.writeAttribute("itemId", id, null);
if (styleClass != null)
out.writeAttribute("styleClass", styleClass, ITEM STYLE CLASS ATTR);
if (headerStyleClass != null)
out.writeAttribute("headerStyleClass", headerStyleClass,
ITEM HEADER STYLE CLASS ATTR);
if (contentStyleClass != null)
out.writeAttribute("contentStyleClass", contentStyleClass,
ITEM CONTENT STYLE CLASS ATTR);
if (active)
out.writeAttribute("active", Boolean.toString(active), null);
out.writeAttribute("style", "display:block;", null);

In Code Sample 9-26, you then get the header facet from the UIShowItem component by
calling the getHeader () method. This convenience method returns the named facet, header,
if it exists; otherwise, it returns null. If the getHeader () method returns a facet, you call the
_encodeAll() method to process any children of this facet. After the facet control, you use the
active flag to determine whether this is the “active” UIShowItem component. If it is, you call
the encodeAll() method to start the encode process of any children to the UIShowItem
component.

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

Code Sample 9-26. The encodeChildren() Method

// the header facet

UIComponent header = showItem.getHeader();

if (header != null)

{
out.startElement("pro:headerFacet”, null);
_encodeAll(context, header);
out.endElement("pro:headerFacet");

}

// the expanded item contents
if (active)
{

_encodeAll (context, showItem);

}

out.endElement("pro:showItem");

If you take a close look at the actual output required by the deck component, any children
added will be at the end of the generated markup. This way, the UIShowOne component’s ren-
derer can quickly close the generated markup, as shown in Code Sample 9-27.

Code Sample 9-27. The encodeEnd() Method

public void encodeEnd(
FacesContext context,
UIComponent component) throws IOException

{
Responsellriter out = context.getResponseWriter();
out.endElement("pro:showOneDeck");

}

For the UIShowOne component, the Renderer is responsible for rendering its children, and
thus this flag needs to be set to true, as shown in Code Sample 9-28.

Code Sample 9-28. The getRendersChildren() Method

public boolean getRendersChildren()
{

return true;

}

393

394

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

The requirement has not changed since we first introduced the deck component. It has to
be flexible enough to handle any type of child component that the application developer adds
to the UIShowItem component. The UIShowItem component itself is not responsible for render-
ing its children, but an application developer may add a child container component in charge
of rendering its children (for example, an HtmlPanelGroup component).

To be able to achieve this, you first render the beginning of the current state of this
UIComponent to the ResponselWriter attached to the specified FacesContext. You then check
whether the component is responsible for rendering its children. If it is, you call encodeChildren()
on the component to start rendering its children. If the component is not responsible for
rendering its children, you call getChildren() on the component. The getChildren() method
returns a List of all children of the UIComponent. If this component has no children, an empty
List is returned, and you close the generated markup by calling the encodeEnd() method on
the component. If it has children, you recursively call the encodeAll(), as shown in Code
Sample 9-29, until all children have been rendered, and then you close the generated markup
by calling the encodeEnd() method on the component.

Code Sample 9-29. The encodeAll() Method

private void _encodeAll(

FacesContext context,

UIComponent component) throws IOException
{

component.encodeBegin(context);

if (component.getRendersChildren())

{
component.encodeChildren(context);
}
else
{
List kids = component.getChildren();
Tterator it = kids.iterator();
while (it.hasNext())
{
UIComponent kid = (UIComponent)it.next();
_encodeAll(context, kid);
}
}

component.encodeEnd(context);

Remember, during the Apply Request Values phase, a method, processDecodes (), will
be called on the UIViewRoot at the top of the component hierarchy. This processDecodes ()
method on the UIViewRoot will recursively call processDecodes () of each UIComponent in the
component hierarchy. If a Renderer is present for any of these components, the UIComponent
will delegate the responsibility of decoding to the Renderer. Code Sample 9-30 is identical to
the encode () method in the first HtmlShowOneDeckRenderer introduced in Chapter 3. For more
information about processDecodes (), please refer to Chapter 2.

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS 395

Code Sample 9-30. The decode () Method

public void decode(
FacesContext context,
UIComponent component)

ExternalContext external = context.getExternalContext();
Map requestParams = external.getRequestParameterMap();
String clientId = component.getClientId(context);
String newShowItemId = (String)requestParams.get(clientId);
if (newShowItemId != null & newShowItemId.length() > 0)
{
UIShowOne showOne = (UIShowOne)component;
String oldShowItemId = showOne.getShowItemId();
if (!'newShowItemId.equals(oldShowItemId))
{
showOne. setShowItemId(newShowItemId);
ShowEvent event = new ShowEvent(showOne, oldShowItemId, newShowItemId);
event.queue();
}
}
}

Code Sample 9-31 shows all the getters for the different style classes supported by the
HtcAjaxShowOneDeckRenderer

Code Sample 9-31. Getters for the HtcAjaxShowOneDeckRenderer Attributes

protected String getStyleClass(

Map attrs)
{

return (String)attrs.get(STYLE CLASS ATTR);
}

protected String getItemStyleClass(

Map attrs)
{

return (String)attrs.get(ITEM STYLE CLASS ATTR);
}

protected String getItemHeaderStyleClass(

Map attrs)
{

return (String)attrs.get(ITEM HEADER STYLE CLASS ATTR);
}

protected String getItemContentStyleClass(
Map attrs)

{

396 CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

return (String)attrs.get(ITEM CONTENT STYLE CLASS ATTR);

}
}

Step 7: Registering a UIComponent and Renderer

For the HTC-Ajax implementation to work, you need to register the custom Renderers, as
shown in Code Sample 9-32.

Code Sample 9-32. The HTC Registration in the faces-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">
<faces-config xmlns="http://java.sun.com/JSF/Configuration" >
<render-kit»
<renderer>
<component-family>com.apress.projst.Document</component-family>
<renderer-type>com.apress.projst.Document</renderer-type>
<renderer-class>
com.apress.projsf.ch9.render.html.basic.HtmlDocumentRenderer
</renderer-class>
</renderer>
</render-kit>

<render-kit>

<renderer>
<component-family>javax.faces.Input</component-family>
<renderer-type>com.apress.projsf.Date</renderer-type>
<renderer-class>
com.apress.projsf.chg.render.htc.ajax.HtcAjaxInputDateRenderer
</renderer-class>
</renderer>
<renderer>
<component-family>com.apress.projsf.ShowOne</component-family>
<renderer-type>com.apress.projsf.Deck</renderer-type>
<renderer-class>
com.apress.projsf.ch9.render.htc.ajax.HtcAjaxShowOneDeckRenderer
</renderer-class>
</renderer>
</render-kit>
</faces-config>

Step 11: Registering a RenderKit and JSF Extension

Although you did not need to create a new RenderKit for the HTC solution, you still need to
register a RenderKit with a unique RenderKit ID, as shown in Code Sample 9-33. You need this

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

to ensure that you don’t mix the HTC components with regular HTML components that work
across multiple browsers.

Code Sample 9-33. The HTC Registration in the faces-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">
<faces-config xmlns="http://java.sun.com/JSF/Configuration" >

<render-kit>
<!-- no renderkit-id, so these renderers are added to
the default renderkit -->
<renderer>
<component-family>com.apress.projst.Document</component-family>
<renderer-type>com.apress.projst.Document</renderer-type>
<renderer-class>
com.apress.projst.chg.render.html.basic.HtmlDocumentRenderer
</renderer-class>
</renderer>
</render-kit>

<render-kit>
<render-kit-id>com.apress.projsf.htc.ajax[HTML_BASIC]</render-kit-id>
<render-kit-class>
com.apress.projsf.ch6.render.html.ajax.HtmlAjaxRenderKit
</render-kit-class>
<renderer>
<component-family>javax.faces.Input</component-family>
<renderer-type>com.apress.projst.Date</renderer-type>
<renderer-class>
com.apress.projst.chg.render.htc.ajax.HtcAjaxInputDateRenderer
</renderer-class>
</renderer>
<renderer>
<component-family>com.apress.projst.ShowOne</component-family>
<renderer-type>com.apress.projst.Deck</renderer-type>
<renderer-class>
com.apress.projst.chg.render.htc.ajax.HtcAjaxShowOneDeckRenderer
</renderer-class>
</renderer>
</render-kit>
</faces-config>

397

398

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

As you can see, the HtmlDocumentRenderer is defaulted to use the basic HTML
RenderKit since it is a basic HTML Renderer, whereas the HtcAjaxInputDateRenderer and
HtcAjaxShowOneDeckRenderer are added to the HtmlAjaxRenderKit. Notice that you are reusing
the HtmlAjaxRenderKit created in Chapter 6 but assigning it a new RenderKit ID (that is,
com.apress.projsf.htc.ajax[HTML_BASIC]) to ensure that you are not mixing HTC-specific
renderers with plain HTML renderers.

Step 12: Registering Resources with Weblets

You need to register the HTC resources (inputDate.css, inputDate.htc, showOneDeck.css, and
showOneDeck.htc) as weblets, as shown in Code Sample 9-34, which will enable you to package
these resources as part of the custom JSF component library.

Code Sample 9-34. The Weblets Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<weblets-config xmlns="http://weblets.dev.java.net/config" >

<weblet>
<weblet-name>com.apress.projst.ch9</weblet-name>
<weblet-class>net.java.dev.weblets.packaged.PackagedWeblet</weblet-class>
<init-param>
<param-name>package</param-name>
<param-value>com.apress.projsf.ch9.render.htc.ajax.resources</param-value>
</init-param>
<mime-mapping>
<extension>htc</extension>
<mime-type>text/x-component</mime-type>
</mime-mapping>
</weblet>

<weblet-mapping>
<weblet-name>com.apress.projst.ch9</weblet-name>
<url-pattern>/projsf-ch9/*</url-pattern>
</weblet-mapping>

</weblets-config>

Building Applications with JSF HTC Components

Figure 9-11 shows the end result of the JSF HTC ProInputDate implementation. As you can
see, the page looks the same as the one you created in previous chapters, except that this
page uses an HTC Renderer. This HTC Ajax implementation provides the same functionality
as both the HTML Ajax and XUL Ajax implementations, where dates that are not selectable
are marked red and dates outside the scope of the current month are gray. When the user
enters a date and clicks a submit button, a full postback will occur, and the attached valida-
tor, if any, will be invoked.

CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS 399

#1ProJSF : ProlnputDate - Microsoft Internet Explorer E]@
: Fle Edit Vview Favorites Tools Help :'l'

» B E QO >] éﬁﬂdI'E55|@ http://127.0.0.1:8988 chapterS-contextroot/faces inputDate. jspx M

Please enter a date with the pattern "d MMMMM vyvy".

8 January 2006
< January EOEE >
Sun |Mon | Tue Wed Thu | Fri | Sat
1 2 3 4 5 6 7
BE o 0 11 12 13 14
15 16| 17 18| 19 20 21
22 23 24 25 26 27 28

29 30 3 2 3 4
5| 6 7| 8| 9 10 11
@ Done O Internet

Figure 9-11. The <pro:inputDate> component implemented in HTC

Code Sample 9-35 shows the actual code behind this JSF page.

Code Sample 9-35. JSF Page Source for HTC Implementation

<?xml version="1.0" encoding="UTF-8" ?>
<jsp:root xmlns:jsp="http://java.sun.com/ISP/Page" version="1.2"
xmlns:pro="http://projsf.apress.com/tags"
xmlns:f="http://java.sun.com/jsf/core"
xmlns:h="http://java.sun.com/jsf/html" >
<jsp:directive.page contentType="application/x-javaserver-faces"/>
<f:view>
<pro:document title="Pro JSF : ProInputDate" >
<h:form>
<pro:inputDate id="dateField"
title="Date Field Component"
value="#{inputDateBean.date}" >
<f:convertDateTime pattern="d MMMMM yyyy" />
<pro:validateDate availability="#{inputDateBean.getAvailability}" />
</pro:inputDate>

<h:message for="dateField" />

<h:commandButton value="Submit" />

<h:outputText value="#{inputDateBean.date}" >
<f:convertDateTime pattern="d MMMMM yyyy" />
</h:outputText>
</h:form>
</pro:document>
</f:view>
</Jjsp:root>

400 CHAPTER 9 © PROVIDING MICROSOFT HTC RENDERERS

No changes to the application logic are required whatsoever! This is the same page you

used for the XUL solution.
Figure 9-12 shows the end result of the JSF HTC <pro:showOneDeck> implementation. It

looks the same as the previous implementations of the <pro: showOneDeck> component, except
that this page uses an HTC Renderer.

@ ProJSF : ProShowOneDeck - Microsoft Internet Explorer g@
ar

: File Edit Vview Favorites Tools Help

‘HEE ¢] | Address |@ht‘lp:;’,u’llT.D‘D.1:BQSS,i'd'laptErg-cuntext-mutﬁacesfsthOHEDEck.jspxM

Pro JSF: Building Rich Internet

Components
Pro EIB 3

Pro Apache Maven

@ Done 4 Internet

Figure 9-12. <pro: showOneDeck> implemented in HTC

Code Sample 9-36 shows the actual code behind this JSF page.

Code Sample 9-36. JSF Page Source for HTC Implementation

<?xml version="1.0" encoding="UTF-8" ?>

<jsp:root ...»
<jsp:directive.page contentType="application/x-javaserver-faces"/>
<fiview>

<pro:showOneDeck showItemId="first"
showListener="#{backingBean.doShow}">
<pro:showItem id="first" >
<f:facet name="header">
<h:panelGroup>
<h:graphicImage url="/resources/java_small.jpg" alt="The Duke"
style="margin-right: 8px; vertical-align:bottom;" />
<h:outputText value="Java"/>
</h:panelGroup>
</f:facet>

<h:panelGrid columns="1">
<h:outputlLink value="http://apress.com/book/bookDisplay.html?bID=10044">

<h:outputText value="Pro JSF: Building Rich Internet Components"/>

</frviews
</jsp:root>

CHAPTER 9 = PROVIDING MICROSOFT HTC RENDERERS

You are probably now telling yourself, “This is way cool! I have the same page source in
three other solutions!” You are right, and that’s the beauty of JSF! As we have said on multiple
occasions, without impacting the application developer, you can create Rich Internet Compo-
nents that support client-specific markup for optimized performance and responsiveness.

Summary

You have now completed four different solutions for the ProInputDate and ProShowOneDeck
components. You used traditional HTML Renderers, HTML Ajax Renderers, XUL Ajax Renderers,
and HTC Ajax Renderers. Who said JSF is not a rich client development platform?

With the experience you have gained so far, it is important to keep in mind that an appli-
cation developer might be using your component in combination with other technologies
that you did not even consider. You need to keep the abstraction for the application developer,
and although tempting, you should not design your component with a dependency on the
client-side rendered markup, since you do not have control over other components’ generated
markup.

One of things you want you to take from this chapter is that you should stay open to new
and controversial suggestions; do not get locked into one technology stack because it is what
you know or is what others tell you is the latest and greatest. Always ask yourself, “How can
this solve my problems?”

After reading this chapter, you should have a clear understanding of what HTC is and how
you can leverage it in your component design.

401

CHAPTER 10

Switching RenderKits
Dynamically

Get used to working in components and only components, and you're future-proofed.
Stick to JSF plus HTML hybrids, and someone is going to hate you in five years’ time. . ..

—Duncan Mills, Java Evangelist, Oracle

Welcome to the last chapter of Pro JSF and Ajax: Building Rich Internet Components. This
book has covered how JSF lets component writers mix and match technologies to streamline
packaging and increase richness and user interactivity for their components. We have proven
that JSF’'s component model can provide an abstraction layer on top of the underlying client-
specific markup, which increases an application developer’s productivity. We have also shown
you that component writers can manually switch RenderKits without impacting the applica-
tion developer or the actual application logic.

Now that you have a set of rich Internet components that support multiple client technolo-
gies at your disposal, only one question is left: how can you automatically select a RenderKit to
deliver the proper markup to any user agent?

The main technology covered in this chapter is Oracle ADF Faces, which is a rich set of
standard JSF components introduced in the fall of 2004. The Oracle ADF Faces component
library provides various user interface components with built-in functionality, such as data
tables, hierarchical tables, and color and date pickers. ADF Faces also includes many of the
framework features most needed by JSF developers today.

After reading this chapter, you should be able to dynamically switch RenderKits and know
how to set them up to detect different user agents, such as Mozilla GRE and Microsoft Internet
Explorer.

Note At the time of writing this chapter, Oracle has completed the first step of donating the ADF Faces
source code to the Apache Software Foundation. By the time this book hits the shelves, the Apache MyFaces
community should be actively evolving the Oracle ADF Faces source code donation. For more information
about the Apache MyFaces open source project, please visit http://myfaces.apache.org.

403

404

CHAPTER 10 " SWITCHING RENDERKITS DYNAMICALLY

Requirements for Dynamically Switching
RenderKits

The requirement is clear—the application developer wants to be able to dynamically change
RenderKits, at runtime, based on the user agent. For example, if it is the Firefox browser
requesting the page, the solution should serve XUL markup to the client.

A RenderKit’s function is to help out with the delegation of Renderer to the UIComponent. A
RenderKit groups instances of renderers of similar markup types, and in this book, you created
RenderKits for HTML Ajax, Microsoft’s DHTML/HTC, and Mozilla’s XUL/XBL technologies.
Each RenderKit is associated with a view (component hierarchy) as a UIViewRoot property at
runtime. If an application developer wants to add a RenderKit with custom Renderers to the
application, a RenderKit ID must be added to the application’s JSF configuration file, as shown
in Code Sample 10-1.

Code Sample 10-1. Setting the Default RenderKit ID

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE faces-config PUBLIC
"-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">
<faces-config xmlns="http://java.sun.com/JSF/Configuration">

<application>
<default-render-kit-id>com.apress.projsf.xul.ajax</default-render-kit-id>
</application>

</faces-config>

This code sample shows the faces-config.xml file with the <default-render-kit-id> set
to your custom XUL RenderKit. The faces-config.xml file is read once when the Web applica-
tion is created and stored in the Application instance. The ViewHandler is responsible for
returning the renderKitId for the current and subsequent requests from the client. It is impor-
tant to understand that there can be only one default RenderKit per Web application, which is
identified by a string (for example, com.apress.projsf.xul.ajax).

To solve the requirement of enabling access to the application with any browser and to
provide a different RenderKit implementation for each browser, you have three tasks to com-
plete in this chapter. First, you need to define the default RenderKit ID in the faces-config.xml
file in such a way that you can dynamically set it at runtime. Second, you need to detect
the user agent requesting the application. Third, you need to set the RenderKit ID using a
ViewHandler. The custom ViewHandler is required if you want to have multiple RenderKit
instances for the same application.

Note JSF 1.1 applications require a custom javax.faces.application.ViewHandler instance to
dynamically select a RenderKit. However, JSF 1.2 adds support for directly specifying the RenderKit ID
on the <f:view> tag of individual pages in a Web application.

CHAPTER 10 " SWITCHING RENDERKITS DYNAMICALLY 405

The Dynamic RenderKit Implementation

Figure 10-1 shows the dynamic RenderKit solution.

ViewHandlerWrapper

ApplicationBean DynamicRenderKitViewHandler

Figure 10-1. Structure of dynamic RenderKit implementation

The dynamic RenderKit solution contains three classes:

* ViewHandlerWrapper is a wrapper class that provides a loose coupling between the
solution and the JSF implementation.

* ApplicationBean is a managed bean that contains logic to detect what agent has been
used to request the application and contains information about what renderKitId
to use.

e DynamicRenderKitViewHandler overrides the default ViewHandler’s calculateRenderKitId()
method in order to get the correct ID from the ApplicationBean.

Syntax for Dynamic RenderKit ID

A feature in JSF that is often underutilized is the managed bean facility. This facility is not only
useful for providing application logic, but you can also use it to initialize settings before launch-
ing the actual application. In this case, you will use the JSF EL syntax in the faces-config.xml
file to set a pointer to the managed bean (for example, the ApplicationBean), which will be
invoked and will return the correct renderKitId to the ViewHandler (see Code Sample 10-2).

Code Sample 10-2. Setting the Default RenderKit ID

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE faces-config PUBLIC
"-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">
<faces-config xmlns="http://java.sun.com/JSF/Configuration">

406 CHAPTER 10 " SWITCHING RENDERKITS DYNAMICALLY

<application>
<default-render-kit-id>#{[managedBean].[property]}</default-render-kit-id>
</application>
</faces-config>
With an explicit syntax shown in Code Sample 10-2, you can use the ViewHandler to first
check the pattern of the string and then use the string to create a ValueBinding for the man-
aged bean defined by the expression. In this case, the completed configuration would look
something like Code Sample 10-3.
Code Sample 10-3. Setting the Default RenderKit ID Using a Managed Bean

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE faces-config PUBLIC
"-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">
<faces-config xmlns="http://java.sun.com/JSF/Configuration">

<application>
<default-render-kit-id>#{projsf.renderKitId}</default-render-kit-id>

</application>

</faces-config>

In this case, the renderKitId is a JavaBean property of the ApplicationBean that returns
the correct RenderKit identifier for the requesting user agent.

The Dynamic RenderKit Managed Bean

Let’s look at the actual ApplicationBean class. Figure 10-2 shows the ApplicationBean in a class
diagram, and in Code Sample 10-4, you can observe the User-Agent request header for choos-
ing an appropriate RenderKit.

[=] ApplicationBean

+ String getRenderkitld ()

Figure 10-2. Class diagram showing the ApplicationBean class

Code Sample 10-4. The getRenderKitId() Method with User-Agent Request Header

package com.apress.projsf.chi10.application;

import java.util.Map;

CHAPTER 10 " SWITCHING RENDERKITS DYNAMICALLY

import javax.faces.render.RenderKitFactory;
import javax.faces.context.FacesContext;
import javax.faces.context.ExternalContext;

/**
* The ApplicationBean returns a dynamic RenderKit identifier, based on
* the value of the User-Agent request header.
*/
public class ApplicationBean
{
public String getRenderKitId()
{
FacesContext context = FacesContext.getCurrentInstance();
ExternalContext external = context.getExternalContext();
Map requestHeaders = getRequestHeaderMap();
String userAgent = (String) requestHeaders.get("User-Agent");

// Mozilla Firefox 1.0.7
// Mozilla/5.0 (Windows; U; Windows NT 5.0; en-US; rv:1.7.12)
// Gecko/20050915 Firefox/1.0.7
if (userAgent.index0f("Gecko/") != -1)
{
return "com.apress.projsf.xul.ajax";
}
// MS Internet Explorer 6.0
// Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)
else if (userAgent.startsWith("Mozilla") &8&
userAgent.indexOf("MSIE") != -1)
{

return "com.apress.projst.htc.ajax";
}
// Safari
// Mozilla/5.0 (Macintosh; U; PPC Mac 0S X; en-us)
/7 AppleWebKit/XX (KHTML, like Gecko) Safari/YY
else if ((userAgent.indexOf("AppleWebKit") != -1) ||
(userAgent.index0Of("Safari") != -1))
{

return "com.apress.projst.html.ajax";

}

else
{
// default to standard HTML Basic for PDAs, etc.
return RenderKitFactory.HTML_BASIC_RENDER_KIT;
}
}
}

407

408

CHAPTER 10 " SWITCHING RENDERKITS DYNAMICALLY

In Code Sample 10-4, you are testing the User-Agent request header directly against known
user agent identifiers to decide which RenderKit is appropriate to use in the response. Notice
that some of the syntax for user agents can overlap, such as Mozilla appearing in the user agent
header for Firefox, Internet Explorer, and Safari. Given the complexity of accurately parsing the
wide range of possible User-Agent headers, it is best to reuse a common implementation rather
than repeating the agent detection code each time it is needed.

Oracle ADF Faces provides a User-Agent abstraction to handle this case, and in Code
Sample 10-5 we have simplified the ApplicationBean by leveraging some of the Oracle ADF
Faces public APIs to obtain the user agent.

Code Sample 10-5. The getRenderKitId() Method

package com.apress.projsf.chi10.application;
import javax.faces.render.RenderKitFactory;

import oracle.adf.view.faces.context.AdfFacesContext;
import oracle.adf.view.faces.context.Agent;

Yk
* The ApplicationBean returns a dynamic RenderKit identifier, based on
* the ADF Faces Agent name.
*/
public class ApplicationBean
{
public String getRenderKitId()
{
AdfFacesContext afc = AdfFacesContext.getCurrentInstance();
Agent agent = afc.getAgent();

if (Agent.AGENT_GECKO.equals(agent.getAgentName()))
{
return "com.apress.projsf.xul.ajax";
}
else if (Agent.AGENT IE.equals(agent.getAgentName()) 8&
Agent.TYPE DESKTOP.equals(agent.getType()))

{

return "com.apress.projsf.htc.ajax";

}
else if (Agent.AGENT WEBKIT.equals(agent.getAgentName()))

{

return "com.apress.projsf.html.ajax";

}

else

{
// default to standard HTML Basic for PDAs, etc.

CHAPTER 10 " SWITCHING RENDERKITS DYNAMICALLY

return RenderKitFactory.HTML_BASIC_RENDER_KIT;
}
}
}

From the AdfFacesContext, you can obtain the user agent by calling the getAgent () method.
ADF Faces also comes with a set of predefined keys for each available Web client (for example,
Microsoft Internet Explorer, Mozilla GRE, and so on). By comparing the agent name to these
keys, you can determine which renderKitId to return.

The DynamicRenderKitViewHandler Class

Let’s now look at the DynamicRenderKitViewHandler class. Figure 10-3 shows the
DynamicRenderKitViewHandler in a class diagram, and in Code Sample 10-6, you can see
how it uses the default RenderKit identifier as a base to locate agent-specific RenderKits
for the incoming request.

=] ViewHandlerWrapper

- ViewHandler _delegate

+ ViewHandlerWrapper (ViewHandler delegate)
+ Locale calculateLocale (FacesContext context)

|:| DynamicRenderKitViewHandler
- Pattern DYNAMIC RENDER KIT ID

+ DynamicRenderKitViewHandler (ViewHandler handler)
+ String calculateRenderkitld (FacesContext context)

Figure 10-3. Class diagram showing the DynamicRenderKitViewHandler implementation

Code Sample 10-6. The DynamicRenderKitViewHandler Class

package com.apress.projsf.chi0.application;

import java.util.regex.Matcher;
import java.util.regex.Pattern;

import javax.faces.application.Application;
import javax.faces.application.ViewHandler;
import javax.faces.context.FacesContext;
import javax.faces.el.ValueBinding;

409

410

CHAPTER 10 " SWITCHING RENDERKITS DYNAMICALLY

/**
* The DynamicRenderKitViewHandler provides EL support
* for the <default-render-kit-id> element in faces-config.xml.
*/
public class DynamicRenderKitViewHandler extends ViewHandlerWrapper
{
public DynamicRenderKitViewHandler(
ViewHandler handler)
{
super(handler);
}

public String calculateRenderKitId(
FacesContext context)

{
String renderKitId = super.calculateRenderKitId(context);

Matcher matcher = _DYNAMIC_RENDER_KIT_ID.matcher(renderKitId);
if (matcher.matches())
{
String expression = matcher.group(1);
Application application = context.getApplication();
ValueBinding binding = application.createValueBinding(expression);
if (binding.getType(context) == String.class)
renderKitId = (String)binding.getValue(context);
}

// return either the calculated or dynamic RenderKit ID
return renderKitId;

}

// Matches RenderKit identifier of the form "#{...}"
static private final Pattern DYNAMIC RENDER KIT ID =
Pattern.compile(" (\\Q#{\\E[*\\}]+\\OI\\E)");

The DynamicRenderKitViewHandler overrides only one method, calculateRenderKitId(),
which is used to calculate the RenderKit identifier to use for this request. You first calculate
the RenderKit identifier by calling super. Then you detect whether the identifier is an expres-
sion that can be used to evaluate the dynamic RenderKit identifier. If it matches the EL-like
syntax, you use the expression to create a ValueBinding that returns the value representing
the renderKitId for this request. In practice, this will pick the right RenderKit for the
browser accessing the application by following the dynamic RenderKit selection logic in
your ApplicationBean.

CHAPTER 10 " SWITCHING RENDERKITS DYNAMICALLY

Registering the Dynamic RenderKit Solution

You need to register the DynamicRenderKitViewHandler and the managed bean
ApplicationBean with the component library in order for the dynamic switching to
work (see Code Sample 10-7).

Code Sample 10-7. Registering the Dynamic RenderKit Implementation

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE faces-config
PUBLIC "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
"http://java.sun.com/dtd/web-facesconfig 1 1.dtd">

<faces-config xmlns="http://java.sun.com/JSF/Configuration" >
<factory>

</factory>

<application>
<view-handler>
com.apress.projsf.ch10.application.DynamicRenderKitViewHandler
</view-handler>
</application>

<managed-bean>
<managed-bean-name>projsf</managed-bean-name>
<managed-bean-class>
com.apress.projsf.ch10.application.ApplicationBean
</managed-bean-class>
<managed-bean-scope>application</managed-bean-scope>
</managed-bean>

<faces-config>

First you set the <view-handler> to point to the custom ViewHandler—
DynamicRenderKitViewHandler. Then you define the ApplicationBean in the same way
most application developers would define their own managed beans. Notice that you
set the managed bean on the application scope so that there will be only one instance
for all Web applications.

You have now reached the end of this chapter—and the end of the book. You should
now be able to dynamically switch RenderKits at runtime. This solution to switch RenderKits
is not specific to the components created in this book; any component library can use the
same technique with multiple RenderKits. Figure 10-4 shows how the deck component cre-
ated in this book would look in three different devices.

41

412

CHAPTER 10 " SWITCHING RENDERKITS DYNAMICALLY

{1 Palm 0 Simulator - [Simulator_F... = | O]

&1 ProJSF : ProShowOneDeck - Microsoft Internet Explorer B |ProJSF : ProShowOneDeck
Fle Edit View Favorites Tools Help @@ @ http//127001898@
AR e] >} : Address |@ http://127.0.0. 1:3988 chapter 10
- Java
fg} @ ProJSF : ProShowOneDeck - Mozilla Firefox El'o éﬁ; :?uildimq Rich Internet Components
ro
Pro 1SF: Build E.”E E.dit View Go Bookmarks Tools Help Pro Apache Maven
Pro EIB 3 G- -8 O @ |0 rtip127.00.1:8988/d| [T

Pro Apache M & =

Pro JSF: Building Rich Internet
Pro EJB 3
Pro Apache Maven

@ Done

Done

<+ | Full Size

|» EEXIETDE oF /|

Figure 10-4. ProShowOneDeck running in multiple clients using client-specific markup

Summary

In this chapter, we showed you how easy it is to provide dynamic RenderKit switching with JSE
By using a component-driven design, application developers can build applications for any
type of user agent without being impacted by the underlying client markup.

In the previous chapters, we demonstrated how you can write Renderers that support
regular HTML, Ajax, XUL, and HTC. Some component writers are already looking at even
more client technologies to provide application developers with a common programming
model regardless of the user agent. A good example of this is the Oracle ADF Faces compo-
nent library. It has built-in support for HTML, RIAs, character-based solutions, instant
messenger clients such as Gaim and Yahoo, PDAs, and so on. The MyFaces open source
project also provides an alternative RenderKit to HTML—the WML RenderKit.

Now that you know how to create reusable rich Internet components with JSF and how to
use multiple RenderKits, we hope you will apply the techniques you have learned in this book
to create your own custom components and build RIAs with JSE

Index

A

“A Modular Way of Defining Behavior for XML
and HTML” (Netscape), Web site
address for, 193
abort() method, XMLHttpRequest object, 176
action parameter, function of with <form> tag,
177
addShowListener() method, for associating a
listener to the deck component, 132
ADF UIX, as JSF component, 7
Ajax (Asynchronous JavaScript and XML)
fetching data with, 273-274
formerly known as XMLHTTP 173-174
overview of, 174-187
providing file upload functionality in, 233
question of cross-platform support in, 209
resources, 233-235
sequence diagram over your postback
implementation, 232
Web development technique, 224
Ajax and JSF architectures, architectural
solutions for applying changes,
230-232
Ajax applications
book filter implementation, 184-187
building, 181-187
vs. traditional Web applications, 181
Ajax architecture, selecting, 231-232
Ajax book filter, implementation of, 184-187
Ajax implementation, requirements for deck
component’s, 223-224
Ajax postback, overview of, 180-181
Ajax Renderer, creating, 279-297
Ajax resources
introducing the Dojo toolkit, 234
object-orented JavaScript, 291-292
registering with Weblets, 301
Ajax resources and Weblets, registering, 263-264
Ajax Web application development, 179-181
Ajax-enabled deck component, designing using
a blueprint, 226-227
Apache MyFaces, Web site address for, 128
Apache MyFaces open source project, Web site
address for information about, 403
application developer, 3
application development, exploring today, 5-7
application development technologies,
overview of, 4-5
application lifecycle, when using JSE 9
application managed bean scope, 12

ApplicationBean class
class diagram showing, 406
function of, 405
Application.createComponent() method,
function of, 37
ApplicationFactory class, function of, 31-32
Apply Request Values phase
applying new values passed on the request
to the components, 115
event handling in, 125-127
function of, 71-72
how it passes new values to the components,
40
the processDecodes() and decode()
methods, 72
in request-processing lifecycle, 27-28
ApplyRequestValuesPhase class, in Mabon, 281
arrays, function of in JSON, 280
Asynchronous JavaScript and XML. See Ajax
(Asynchronous JavaScript and XML)
ATTACH element, in HTC, 201
attached behavior, released with Internet
Explorer 5.0, 203
attribute values, looking up, 62-63

B
backing bean, as plain old Java object (POJO) in
JSE 11-12
“Behavioral Extensions to CSS”, Web site
address for, 200
behavioral superclass, creating, 127-136, 322-324
behavioral superclasses, available in JSF
specification, 50-51
binding element, defining using a style sheet,
321-322
<bindings> element, containing one <binding>
element, 192-193
bindings.xml file
with a <vbox> element as a parent container
and <hbox> element to hold the
toolbar, 311
code sample for XBL date component
prototype, 309
code sample of the <implementation>
element in, 312
code sample of the clickCell method in,
316-317
code sample of the popup method in, 314
code sample of the scroll method in, 315
structure of as shown in the Oracle
JDeveloper 10.1.3 structure window, 321

413

414

INDEX

block boxes, Web site address for information
about visual formatting using, 377
blueprint
needed to successfully implement a custom
JSF component, 53
steps in for creating a new JSF component,
269-270
<body> HTC element, function of, 366
<body> XBL element, function of, 312
<box> component, Mozilla XUL, 189
broadcast events, function of, 117
broadcast() method signature, code sample, 117
<button> component, Mozilla XUL, 189

H

calendar pop-up, code sample for input and
button markup needed for, 271-272
Change Detection in Hierarchically Structured
Information research project, function
of, 234
<checkbox> component, Mozilla XUL, 189
child components, controlling rendering of, 70
<children> XBL element, function of, 312
chrome system, Mozilla XULs, 188
chrome URL vs. HTTP URL, 188
class diagram
creating the
FixedContentTypeResponseWriter
during Ajax postback, 248
of the DecoratingRenderKitFactory class, 241
for DynamicRenderKitViewHandler class, 409
of the HtmlAjaxRenderKit, 243
of Mabon, 281
over the HtmlInputDateRenderer created in
Chapter 2, 56
over the ProlnputDate tag handler and its
support class, 87
show the HtcAjaxShowOneDeckRenderer
class, 389
showing all classes created in “Providing
Microsoft HTC Renderers” chapter, 363
showing all classes created in “Providing
Mozilla XUL Renderers” chapter, 305
showing all classes needed for the event and
listener implementation, 114
showing classes created for the Ajax-enabled
date component, 268
showing classes created for the Ajax-enabled
deck component, 225
showing date field component classes
created in Chapter 2, 52
showing deck component classes created in
Chapter 3, 106
showing the ApplicationBean class, 406
showing the DateValidator, 277
showing the HtcAjaxInputDateRenderer
class, 384
showing the HtmlAjaxInputDateRenderer,
279

showing the HtmlDocumentRenderer class,
381
showing the HtmlShowOneDeckRenderer
extending the HtmlRenderer, 137
showing the ProDocument class, 341
showing the ProDocumentTag class, 347
showing the ProShowOneDeck class, 148
showing the UIDocument class, 324
showing the UIShowOne implementation,
127
showing the XMLResponseWriter class, 353
showing the XulAjaxInputDateRenderer
class, 329
showing the XulAjaxRenderKit class, 351
showing the XulDocumentRenderer class,
325
showing the XUL Renderers, 325
showing three tag handlers for the deck
component, 156
of the UIShowItem implementation, 135
for the ValidateDateTag class, 298
for the XulAjaxShowOneDeckRenderer class,
334
classless programming. See prototype-based
programming
_clickCell() function, function of, 373-374
clientld
calling the createUniqueld() method to
create, 64
obtaining for the
HtcAjaxShowOneDeckRenderer class,
390-391
using the _findFormClientld method to
locate, 145
client-side attributes, provided by a Renderer,
55
client-specific renderer
creating for Ajax-enabled deck components,
230-238
creating the HtmlInputDate, 55-77
creating to provide some additional markup
to support the pop-up calendar,
279-297
creating XulAjaxInput, D
creating XulAjaxShowOneDeckRenderer
classes, 324-341
providing Microsoft HTC, 380-396
code sample
the _clickCell() function, 374
the _constructor() function, 369-370, 378
the _determineDatePattern() method, 290
the _determineTargetURL() method,
290-291
the _expand() function, 379-380
the _popup() function in the HTC file,
371-372
the _scroll() function in the HTC file, 372-373
the <body> element of the <pro:inputDate>
HTC component, 366

the <body> of the <pro:showltem>
component of the HTC file, 376-377

of the <constructor> element in the
bindings.xml file, 313

the <head> element in the <pro:inputDate>
HTC component, 368

the <head> element in the <pro:showItem>
HTC component, 377

the <implementation> element in the
bindings.xml file, 312

for accessor and mutator for the showltemId
behavioral attributes, 131

actual code behind the ValidateDateTag
class, 298-299

for adapting a JSF 1.1 MethodBinding into a
ShowListener instance, 121-123

adding a header facet within a dataTable
component, 23-24

adding event handlers—projsf-bindings.xml
into and XBL component, 197-198

adding properties and methods—pro-
bindings.xml, 196

for adding the decode() method to the
XulAjaxInputDateRenderer, 331

the Ajax version of the showOneDeck.js
library, 237

alternative RenderKit registration, 240

the application logic for the JSF application,
30-31

assigning a call to a function with HTC, 202

associating a function with an event in HTC,
202

associating a renderer to a particular
component family, 21

for attaching the onColor() function to the
mouseover event, 201

backing bean using the HtmlSelectOneRadio
subclass, 18

behavioral and renderer-specific attributes
for ProInputDateTag class, 94-96

the bindings.xml file, 311

the broadcast() method signature, 117

building the Login page for a JSF application,
28-29

for building the ProDocument class, 342-344

calling the encodeAll() method until all
children have been rendered, 394

changes to UIComponentTagSupport
setStringProperty() method in for JSF
1.2,89

for checking whether each child is an
instance of UIShowItem, 337-338

of the clickCell method in the bindings.xml
file, 316-317

collecting data for rendering, 77

combining all rendered output into a single
encodeEnd() method, 144

commandButton with attached listener, 23

INDEX

constucting the pop-up calendar with a
<vbox> element as a parent container,
310-311

for controlling rendering of child
components, 70

for coupling an event raised on the client
with an underlying function, 201

the createHttpRequest() function that
creates the XMLHttpRequest object,
185-186

for the createShowListener method, 164

creating an instance of the XMLHttpRequest
object, 175

creating an instance of the XMLHttpRequest
object using ActiveXObject, 175

creating properties and accessors for client-
side attributes, 79-80

creating the ShowListener interface, 120

data-bound table component, 276

deck component as it would be used in a JSF
JSP document, 112-113

deck HTML implementation, 228-229

the decode() method, 395

the decode() method in the
HtmlInputDateRenderer class, 72-73

decoding the request, 147

of the DeferredContentTypeResponse,
255-257

of the DeferredContentTypeResponse class,
257-258

for the DeferredPrintWriter class, 261-262

the DeferredServletOutputStream class,
259-260

defining a navigation case in JSF
configuration file, 30

defining element behavior, 203-204

defining the component type and
component class, 83-84

for defining your ProInputDate renderer-
specific attributes, 102

to determine date pattern and launch
calendar pop-up, 287-289

the _determineDatePattern() method, 387

for the doShow() ShowListener method, 124

for doStartTag() method, 162-163

the DynamicRenderKitViewHandler class,
409-410

the encodeChildren() method for getting the
header facet from the UIShowlItem
component, 392-393

the encodeChildren() method to iterate over
the list of children, 392

the encodeChildren() method to see if
UIShowOne has any children, 391

the encodeEnd() method for closing the
HTML <body> and <html> tags, 383

the encodeEnd() method for closing the
UIShowOne component’s renderer, 393

415

I
>
o
=t
—
QO
n
L
@D
=
V)
=
=
=3
=
=
wn
=
=}
D
=
=}
(=X
D
i3
[2Y)
=}
=
D
[72]
»n
(]
(=]
3
~

INDEX

code sample (continued)

the encodeEnd() method to write out the
markup and obtain the Converter,
386-387

the encodeHead() method, 383

the encodeResources() method for Ajax
enabling the date field component,
289-290

the encodeResources() method for the deck
component, 139

the encodeResources() method in the
HtmlShowOneDeckRenderer code, 214

encodeResources() method to write a
reference to the CSS style sheet, 68

excerpt from the d2.js library, 235

excerpt from the inputDate.css file, 292

excerpt of backing bean following the
contract of your Validator, 299

of the ExtendedRenderKit class, 244-245

of the ExtendedRenderKitFactory class,
241-243

extending the HtmlShowOneDeckRenderer
class, 235-236

extending the UIComponentBase class,
129-130

the FacesContextFactorylmpl class, 252-253

the _findFormClientld method, 145

the FixedContentTypeResponseWriter,
248-249

the getConverter() method, 69-70

the getRenderKitld() method for getting the
dynamic RenderKit ID, 408-409

the getRenderKitld() method with User-
Agent request header, 406-407

getters for the
HTCAjaxShowOneDeckRenderer
attributes, 395-396

the getters for the UIDocument attributes,
328-329, 383-384

getters for the
XulAjaxShowOneDeckRenderer
attributes, 340-341

for getting attribute values from the
UlIComponent, 63

getting the IDs of the UIForm and
UIShowOne components, 141

getValueAsString() method, 68-69

a globally assigned event handler in HTC,
202

for handling child components added to
UIShowOne component, 339

HTC file structure, 200

HTC file with viewlink set, 205

the HTC registration in the faces-config.xml
file, 396, 397

the HtcAjaxInputDateRenderer class,
385-386

HTML markup needed for the
<pro:inputDate> HTC implementation,
364-365

an HTML page leveraging Ajax to update a
<select> element, 183

HTML prototype for the input date
component, 53-54

the HTML version of the showOneDeck.js
library, 237

HtmlAjaxRenderKit class, 246247

HtmlInputDate.prototype._clickCell
method, 296-297

HtmlInputDate.prototype._scroll method,
295

the HtmlInputDate.prototype.showPopup
method, 293-294

HtmlRenderer superclass providing
convenience methods for other HTML
Renderers, 56-57

for implementation of the ShowListener
interface, 124-125

for implementing at-most-one semantics for
each script resource, 60

for implementing at-most-one semantics for
each style resource, 59

implementing the ShowSource interface, 132

import statements for the renderer package,
60-61

input and button markup needed for
calendar pop-up, 271-272

inputText component with attached date
converter, 22

introducing the UIShowOne behavioral
superclass, 129-130

JSF document using the <pro:inputDate>
tag, 103

JSF page matching the XUL and HTC
samples, 210-211

JSF page source, 272-273

JSF page source for HTC implementation,
399, 400

JSF page source for the Ajax-enabling deck
component, 229

JSF page source for XUL implementation,
357-358, 358-359

JSFE selectOneRadio bound to a behavioral
superclass, 19

JSF selectOneRadio bound to a renderer-
specific subclass, 17-18

for the JSP tag handler, 347-349

the Login page modified with some JSP tags,
45-46

login page with <f:verbatim> tag wrapped
around non-JSF content, 46-47

the Mabon protocol, 282

Mabon servlet configuration, 285

the mabon.js library, 286

managed bean defined in the faces-
config.xml file, 11

managing state saving, 133

mapping of component type and
UIComponent subclass, 22

the markup needed to create the XUL date
implementation prototype page,
307-308

the markup needed to create the XUL deck
implementation prototype page,
317-318

markup to create a page using the
<pro:showOneDeck> HTC prototype,
375-376

method handling boolean attributes and
properties, 90

method handling MethodBinding attributes
and properties, 91

method handling string attributes and
properties, 88-89

method handling ValueBinding attributes
and properties, 90-91

of method to close the generated markup for
the UIShowOne components Renderer,
339

navigation rule configured in faces-
config.xml, 9

navigation rules and managed beans for the
JSF application, 29-30

new backing bean using the UlSelectOne
class, 19

new renderer added to the default HTML
basic RenderKit, 26-27

overriding weblets mapping, 222

page source with the showListener tag, 123

parameterized HTML for the input date
component, 54

for parameterized HTML for the
showOneDeck renderer, 110-111

passing arguments to the Mabon send()
function, 286

the populateBookList() function, 184-185

the popup method in the bindings.xml file,
314

processing decodes, 133-134

processing facet and children of the
UIShowltem component, 142-143

of the pro.css file for defining the binding
element, 322

ProlnputDate attributes, 86

ProInputDate component with attached date
Validator, 277

ProInputDateTag class, 93-94

the ProShowOneDeck client-specific
subclass, 148-150

the ProShowOneDeckTag class, 156-159

for referring to a remote server using the
http:// URL, 191

register the Ajax-enabled Renderer and
RenderKit, 238

to register the Ajax-enabled Renderer and
RenderKit, 262-263

registering ProShowOneDeck renderer-
specific class, 154-155

INDEX

registering the dynamic RenderKit
implementation, 411

registering the HtmlAjaxInputDateRenderer,
297

for registering the JSF XUL implementation
of the ProDocument class, 345-346

registering UIShowOne and UIShowItem,
150-152

registration of the ProInputDateRenderer in
a faces-config.xml file, 82-83

of a regular HTML document structure, 323

the release() method, 98

the Renderer getConvertedValue() method,
75

renderer type as defined in the JSF
configuration file, 25

rendering the start of each UIShowItem child
component, 142

restoring state in the ProlnputDate
component, 81-82

a sample CSS file that has the -moz-binding
property set—projsf.css, 194

a sample HTML file with XUL components—
prototype-ch4.xul, 194

sample page with the date field component,
55

saving state in the ProInputDate component,
81

script reference using http://, 191

of the scroll method in the bindings.xml file,
315

for the setAvailability() and getAvailability()
methods, 278

setProperties() method, 97

setting rendersChildren property flag to true,
144

for setting the CONTENT_TYPE variable to
the accepted XUL contentType, 352

for setting the default RenderKit ID, 404

setting the default RenderKit ID, 405-406

setting the default RenderKit ID using the
managed bean, 406

setting the method of saving state to the
server side in the deployment
descriptor, 21

the ShowEvent subclass, 118-119

showing how the name of a custom action
element is defined, 99

showing the createValueBinding() and
createMethodBinding() methods,
92-93

showing the deck HTML prototype
implementation, 109-110

showing the encodeBegin() method for the
HtmlShowOneDeckRenderer, 137-138

showing XBL file (bindings.xml) and the first
binding (inputDate), 309

the showltem binding and the expand
method, 319-320

417

I
>
o
=t
—
QO
n
L
@D
=
V)
=
=
=3
=
=
wn
=
=}
D
=
=}
(=X
D
i3
[2Y)
=}
=
D
[72]
»n
(]
(=]
3
~

INDEX

code sample (continued)

the showltemActive binding, 320-321

the showltemHeader binding, 321

for the ShowItemTag class, 160-161

for the ShowListenerTag class, 161-162

the showOneDeck binding component, 319

the ShowSource interface, 128-129

a simple HTC file, 201

of a simple HTML file with attached
behavior, 203

a simple use case of an event and predefined
event handler, 190-191

a simple XUL file with embedded HTML
elements, 190

a simple XUL page using an XBL binding
with attached event handler, 198

source for your Ajax titles<em
dash>ajax.json, 187

the source of the showOneDeck js file, 140

string returned after Mabon has evaluated
the Mabon protocol, 282

tag attributes to support the behavioral
Ullnput attributes, 100-101

Tag Library Descriptor (TLD), 165-168, 300

the _determineTargetURL() method, 388

for TLD defining just one custom action,
98-99

the transferListItems() function that
populates the <select> element, 186

turning an HTC file into a custom tag,
203-204

UIComponent attributes, 99-100

UlIComponent clientld lookup, 64

UlIComponent-inherited attributes, 84

the UIComponentTagSupport class, 88

the UIDocument class, 324

Ullnput-inherited attributes, 85-86

UIShowlItem component, 135-136

for the unique keys used to identify
resources, 60

using <deferred-method> syntax, 102

using <deferred-value> syntax, 102

using a managed bean for creating and
mapping to backend code, 30

using getRendersChildren() method for the
UIShowOne component, 393

using relative weblet:/ protocol syntax, 356

using the _determineDatePattern() method,
333

using the _determineTargetURL() method,
333-334

using the component attributes map to
update a renderer-specific attribute, 20

using the decode() method, 340

using the encodeChildren() method, 337

using the encodeChildren() method for
writing out the start element and any
attributes, 338

using the encodeEnd() method to get hold of

the Converter, 330-331

using the getConvertedValue() method, 332

using the getConverter() method, 332

using the getRendersChildren() method for
the UIShowOne component, 339

using the input date component with the
Ajax Renderer, 272-273

using the input date component with the
XUL Renderer, 357-358

using the mabon:/ syntax, 286

using the release() method to release stored
state, 164

using the weblet protocol to serve up
resources, 220

using weblets to serve resources from the
JAR file, 356

of a valid XUL document structure, 323

the validate() method, 277-278

Weblet configuration for the D? library, 264

Weblet configuration for the Dojo toolkit,
263-264

Weblet configuration for the
HtmlAjaxInputDateRenderer
resources, 301

weblet container configuration in the
web.xml file, 221-222

for the weblet protocol syntax, 219

weblets configuration file defining a custom
MIME type, 217

of the weblets configuration file for HTC
resources, 398

the weblets configuration file for packaging
XUL resources, 355-356

weblets configuration file using 1.0
versioning for production, 218

weblets configuration file using SNAPSHOT
versioning for development, 219

weblets configuration file, weblets-
config.xml, 216

writing output to the JSP buffered body tag,
67

for writing style resources to the client, 58

an XBL file containing one binding—projsf-
bindings.xml, 193

the XML data island for the <pro:inputDate>
calendar, 367-368

the XmlResponseWriter, 353-354

a XUL file with XBL components—
prototype-ch4.xul, 197

XUL registration in faces-config.xml,
354-355

the XulAjaxInputDateRenderer extending
XulRenderer, 329-330

for the XulAjaxShowOneDeckRenderer class
encodeBegin() method, 335-336

for the XulDocumentRenderer
encodeBegin() method, 326-327

for the XulDocumentRenderer encodeEnd()
method, 328

com.apress.projsf prefix, use of in samples in

book, 22

commandButton component, properties of, 23
component, defining in XBL vs. HTC, 206
COMPONENT element, in HTC, 201
component encapsulation, in HTC, 204-205
component families, a subset of all standard
and their components, component
types, and rendered types, 25-26
component family, associating a renderer to a
particular one, 21
component library, weblets built-in support for
versioning of, 217-219
component model, JSF (JavaServer Faces), 8
component type, mapping of it and
UIComponent subclass, 22
component type and component class, code
sample defining, 85-86
component writer, 4
component-based Ul framework, JSF as, 13-15
componentForElement parameter, function of,
67
“Componentizing Web Applications”, Web site
address for proposal sent to W3C, 200
components
attaching in XBL vs. in HTC, 207
as the foundation of JSE 3-48
overview of those provided by the JSF
implementation, 15-16
_constructor() function
as core piece of the HTC element behavior,
377-379
local variables and, 369-370
constructor method, supported by XBL, 196
<constructor> XBL element
code sample in the bindings.xml file, 313
function of, 312
content type
dealing with, 250-251
providing a custom via the JSP page
directive, 250-251
content type and character encoding, 36
controller, FacesServlet that comes with JSE 13
conversion errors, ConverterException thrown
by getConvertedValue() method, 75
converters, function of, 22
converters and validators, creating, 276-279
converters, validators, events, and listeners,
helper classes provided by JSF
implementations, 22-23
createHttpRequest() function, that creates the
XMLHttpRequest object, 185-186
createMethodBinding() method
code sample for, 92
function of, 93
createResponseWriter() method, function of, 35
createShowListener method, code sample for,
164
createUniqueld() method, calling to create a
clientld, 64
createValueBinding() method, code sample for,
92

INDEX

cross-platform support, importance of in
developing RIAs, 208-209
CSS (Cascading Style Sheets), attaching an XBL
component or behavior to a XUL
application with, 193-195
CSS (Cascading Style Sheets) file
a sample that has the -moz-binding property
set, 194
using to define the binding element, 321-322
custom action element, code showing how the
name is defined, 99
custom action tag handlers, function of, 27

D

D? (D-squared) framework, function of in the
Ajax-enabled deck component, 224
D? library, registering, 264
D? open source project
introducing, 234-235
using to process a response and modify the
DOM in the target document, 247-248
d2_loadtext callback function, defined by D?
library, 235
d2.js library
code showing excerpt from, 235
functions in, 235
d2.submit() function, dojo.io.bind() method
called by, 235
data fetch request, sequence diagram of
Mabon/Ajax, 284
data islands. See XML data islands
data-bound table component, code sample for,
276
dataTable component, adding a header facet to,
23-24
date component
requirements for HTC implementations, 362
XUL implementation of, 304-359
date field component
Ajax enabling, 267-302
defining, 49-104
requirements for, 49-51
sample page with, 55
DateValidator class
function of, 269, 277-279
function of in HTC Renderers, 387-388
deck component
Ajax enabling, 223-265
creating a Ul prototype, 108-113
creating a Ul prototype for an Ajax-enabled,
227-230
defining, 105-169
designing an Ajax-enabled using a blueprint,
226-227
designing using a blueprint, 107-169
diagram showing classes created in
Chapter 3, 106
event handling overview, 114-115
implemented in HTML, 227

419

I
>
o
=t
—
QO
n
L
@D
=
V)
=
=
=3
=
=
(%2)
=
=}
D
=
=
(=X
D
i3
Q0
=}
=
D
[72]
(7]
()
(=]
3
~

420

INDEX

deck component (continued)
implemented in HTML showing the Java
item expanded, 108
as it would be used in a JSF JSP document,
112-113
list of classes, 107
requirements for, 106
requirements for Ajax implementation,
223-224
requirements for HTC implementations, 362
ShowItemTag class that represents leaf nodes
of, 107
use of the alert() function attached to each
item, 111
XUL implementation of, 304-359
decode() method
adding to the XulAjaxInputDateRenderer,
331
code sample for
HtcAjaxShowOneDeckRenderer class,
395
code sample of, 340
decodes, processing of, 133-134
DecoratingRenderKitFactory class, class
diagram of, 241
DEFAULT element, in HTC, 201
default page description, defined by the JSF
specification, 12-13
DeferredContentType implementation,
diagram over, 255
DeferredContentTypeResponse
code sample showing, 255-257
creating, 252
DeferredContentTypeResponse class
code sample showing, 257-258
decoration of the JSP HttpServletResponse
with, 255-258
function of, 225
<deferred-method> syntax, function of, 102
DeferredPrintWriter class
code sample for, 261-262
function of, 225, 261-262
DeferredServletOutputStream class
code sample for, 259-260
function of, 225, 258-260
initial processing of the request to set the
content type on HttpServletResponse,
259
<deferred-value> syntax, function of, 102
Delta DOM (D?) framework, function of in the
Ajax-enabled deck component, 224
Delta DOM Rendering (D?R), as architectural
solution for applying changes in Ajax,
231
descendant selectors, function of, 292-293
_determineDatePattern() method
code sample for, 290
code showing use of for XUL
implementation, 333

for obtaining the date format pattern for the
managed bean bound to the Validator,
387
_determinePattern() method, calling in
encodeEnd() method, 331
_determineTargetURL() method
calling in encodeEnd() method, 331
code sample for, 290-291
code showing use of for XUL solution,
333-334
for obtaining the target URL for the managed
bean bound to the Validator, 387
DHTML (dynamic HTML). See also Microsoft
Dynamic HTML and HTC
for building rich Internet applications, 199
DHTML applications, building, 202-205
DHTML behaviors, 361
DHTML behaviors and HTC, Web site address
for information about, 364-365
DHTML (dynamic HTML) toolkit, Dojo toolkit
as, 234
direct and delegated implementation, for
handling decode and encode, 24
dispatch() method, function of in Restore View
phase in JSF lifecycle, 34
Dojo toolkit
code sample of Weblet configuration for,
263-264
providing file upload functionality in Ajax
with, 233
registering, 263-264
Web site address for, 224
dojo.io.bind() method, function of, 235
DOM Inspector, a page’s DOM tree with and
XBL component, 195
DOM mutation, loss of changes made since last
form POST in, 231
doShow() method, for ShowListener interface,
124
doStartTag() method, code sample for, 162-163
dynamic HTML (DHTML). See Microsoft
Dynamic HTML and HTC
dynamic RenderKit ID, syntax for, 405-406
dynamic RenderKit implementation, structure
of, 405
dynamic RenderKit managed bean, function of,
406-409
dynamic RenderKit solution, registering,
411-412
DynamicRenderKitViewHandler class
class diagram for, 409
function of, 405

E
element behavior, released with Internet
Explorer 5.5, 203
_encodeAll() method
calling to render the header facet, 145-146

for handling any kind of child component
added to the UIShowOne component,
339
encodeAll() method, recursively calling until all
children have been rendered, 394
encodeBegin() method
arguments taken by, 138
arguments taken by for the
XulDocumentRenderer, 326-327
function of, 37, 45
function of in client-specific renderer, 61
for the HtcAjaxShowOneDeckRenderer class,
389-391
of the HtmlDocumentRenderer class,
381-382
for the HtmlShowOneDeckRenderer,
137-138
obtaining a Map containing all available
attributes from UIComponent, 382
for the XulAjaxShowOneDeckRenderer class,
335-336
encodeChildren() method
calling the _encodeAll() method to render
the header facet, 145-146
for checking whether the UIShowOne
component has any children, 337
code for checking whether each child is an
instance of UIShowItem, 337-338
code for writing out the start element and
any attributes, 338
function of in client-specific renderer, 61
for the HtcAjaxShowOneDeckRenderer class,
391-393
rendering the start of each UIShowlItem child
component, 142
of UIShowOne component, 141-144
encodeEnd() method
arguments, 62
for closing the generated markup for the
UIShowOne components Renderer,
338-339
for closing the HTML <body> and <html>
tags, 382-383
code sample using to get hold of the
Converter, 330-331
combining all rendered output into a single,
144
function of, 38
function of in client-specific renderer, 61
of the HtmlInputDateRenderer class, 77
methods called to retrieve the date format
pattern and the target URL, 331
encodeHead() method, responsible for writing
out the <head> element, 383
encodeResources() method
automatic calling of during encodeBegin(),
57
code sample, 68
code sample for, 139, 289-290

INDEX

code showing use of in
XulAjaxShowOneDeckRenderer class,
336
for the HtcAjaxShowOneDeckRenderer class,
391
for the HtmlShowOneDeckRenderer class, 214
overriding to write a reference to the CSS
style sheet, 67
enctype parameter, function of with <form> tag,
177
endDocument() method, provided by the JSF
ResponseWriter class, 65
endElement() method
provided by the JSF ResponseWriter class,
65-66
using ResponseWriter’s to improve
performance, 139
eval() function, function of, 280
event and listener implementations, class
diagram showing all classes needed for,
114
event delivery, in practice, 123-125
EVENT element, in HTC, 201
event handlers, predefined provided by the GRE
DOM implementation, 192
event handling
comparing in XBL and HTC, 206-207
and HTC, 201-202
overview, 114-115
and XBL bindings, 197-198
event listener adapter, function of, 120-123
event listener interface, function of, 120
event subclass, creating, 117-119
EventListener registration, following the standard
JavaBeans design pattern for, 129
events, using to be notified about changes to
the UT or underlying model, 116
events and listeners, creating for deck
components, 113-127
_expand() function, function of, 379-380
ExtendedRenderKit class
code sample of, 244-245
function of, 225
ExtendedRenderKitFactory class
code sample of, 241-243
function of, 226, 241-246

F

faces-config.xml file
code sample for the HTC registration in, 396,
397
managed bean defined in, 11
XUL registration in for XUL Ajax
implementation, 354-355
FacesContext context argument, for
encodeEnd() method, 62
FacesContextFactory
extending, 251-252
function of, 32-33

421

I
>
o
=t
—
QO
n
L
@D
=
V)
=
=
=3
=
=
wn
=
=}
D
=
=}
(=X
D
i3
[2Y)
=}
=
D
[72]
»n
(]
(=]
3
~

422

INDEX

FacesContextFactory implementation, diagram
over the FacesContext implementation,
251
FacesContextFactoryImpl class
function of, 226
support for additional processing of the
servlet response object, 252-253
FacesContextFactoryWrapper class, function of,
226
FacesEvent base class, structure and method
summary of, 116
FacesLifecycleServlet class, in Mabon, 281
FacesListener interface, as base interface for all
default and custom listener interfaces
inJSE 119-120
FacesServlet
controller for JSE 13
function of in JSF lifecycle, 33-34
facets
within a dataTable component, 23-24
processing facet and children of the
UIShowlItem component, 142-143
factories. See ApplicationFactory class;
FacesContextFactory; LifecycleFactory;
RenderKitFactory
field item, that can be added to the binding, 195
<field> XBL element, function of, 312
file upload, providing functionality for in Ajax,
233
_findFormClientld method, code sample, 145
Firefox, DOM mutation support in, 230
FixedContentTypeResponseWriter class
class diagram for creating during Ajax
postback, 248
diagram illustrating the structure and
dependencies of, 248
function of, 225
responsibility of, 247
<form> elements, illegality of nested in an
HTML document, 367
<form> tag, parameters in a traditional Web
application, 177
formClientld argument, to showOneDeck(), 139
frameworks, as JSF components, 7
<fiverbatim> tag
using to render non-JSF content, 47
wrapping around non-JSF content, 46-47
<f:view> tag
function of, 35-36
illustration showing the closing of, 38

G
GET method
length restriction for, 177
using when submitting a form, 177-178
getAgent() method, calling from the
AdfFacesContext to obtain the user
agent, 408-409

getAllResponseHeaders() method,
XMLHttpRequest object, 176
getAttributes() method, for getting attribute
values from the UIComponent, 63
getAvailability() method, code sample for with
setAvailability() method, 278
getCharacterEncoding() method, provided by
the JSF ResponseWriter class, 65
getClientld() method
for getting a component’s unique identifier,
336
for obtaining clientld from the
UIComponent that implements
NamingContainer, 64
for obtaining the clientId for the
HtcAjaxShowOneDeckRenderer class,
390-391
getComponent() method, of the FacesEvent
base class, 116
getContentTpe() method, provided by the JSF
ResponseWriter class, 65
getConvertedValue() method
for converting the submitted value to a
strongly typed object, 332
exception thrown if there are conversion
errors, 75
function of, 74-75
getConverter() method
adding to the HtmlInputDateRenderer class
to control value conversion, 69-70
function of, 332
getCreated() method, for evaluating if parent
UlIComponentTag has a matching
UIComponent, 163
getFacet() method
adding getter and setter methods for the
header facet with, 136
calling to get the header facet from the
UIShowlItem component, 338
getHeader() method
for getting the header facet from the
UlIShowlItem component, 392-393
getting the header facet from the
UIShowItem component with, 143
getOutputStream() method, in the
DeferredContentTypeResponse class,
258
getPhaseld() method, of the FacesEvent base
class, 116
getRenderKitld() method, code sample with
Use-Agent request header, 406-407
getRendersChildren() method
code sample using, 393
function of in client-specific renderer, 61
using for rendering children for the
UIShowOne component, 339
getResponseHeader(“headerLabel”) method,
XMLHttpRequest object, 176

_getScriptResourceAlreadyWritten() method,
for implementing at-most-one
semantics for each script resource, 60

_getStyleResourceAlreadyWritten() method, for
implementing at-most-one semantics
for each style resource, 59

getStylesheetURI() method, for returning the
value of the stylesheetURI attribute,
383-384

getTitle() method, for returning the value of the
title attribute, 383-384

getValueAsString() method, for returning the
string representation of the value to be
encoded, 68-69

getWriter() method, in the
DeferredContentTypeResponse class,
258

handleCommit() method, function of, 259-260
handleNavigation() method, use of in Invoke
Application phase, 44-45
<handler> element, as child of the <handlers>
element, 197-198
<handlers> element, function of, 197-198
<head> element, defining the element behavior
prototype using <public:component>
element, 368
header facet
adding to both a dataTable component and a
column component, 23-24
getting from the UIShowItem component,
338
using rather than a headerText attribute, 135
<h:form> tag
execution of, 36-37
output token and closing process of, 37-38
Hibernate, as JSF component, 7
Hollywood principle, meaning of, 7
<h:panelGrid> tag, use of in Invoke Application
phase, 46-47
HTC. See also Microsoft HTC
adding content in vs. XBL, 206
assigning a call to a function with, 202
associating a function with an event in, 202
attaching components in vs. XBL, 207
comparing XBL and, 206-207
defining a component in vs. XBL, 206
and event handling, 201-202
event handling in vs. XBL, 207
a globally assigned event handler in, 202
page in Internet Explorer using HTC as a
rendering technology, 210
scripting languages supported by, 201
summary, 205
what it brings to JSE 362
vs. XAML, 199
HTC <pro:inputDate> _clickCell() function,
sequence of function calls in, 373

INDEX

HTC <pro:inputDate> _popup() function,
responsible for launching the calendar
when user clicks the button, 371-372
HTC <pro:inputDate> _scroll() function,
sequence of function calls in, 372
HTC <pro:showItem> _expand() function,
diagram of, 379
HTC components, using oncontentready vs.
ondocumentready to initialize, 368
HTC date element behavior, 365-374
HTC deck element behavior, 376-380
HTC file structure
and elements, 200-201
typical, 366
HTC implementation
of the deck and date components, 362-401
JSF page source for, 399
HTC implementations, deck and date
components’ requirements for, 362
HTC public elements, used by HTC to define
components, 201
HTC Renderers, providing, 361-401
HTC resources, registering with weblets, 398
HTC structure, 199-202
HtcAjaxDateRenderer class, function of,
384-388
HtcAjaxInputDateRenderer class
class diagram for, 384
function of, 363
HtcAjaxShowOneDeckRenderer class
class diagram showing, 389
the encodeBegin() method for, 389-391
encodeResources() method, 391
function of, 363, 388-396
HTC-specific elements, table of, 366
HTC-specific events, table of, 369
HTML date implementation prototype,
implemented in HTC, 364-365
HTML deck implementation prototype,
implemented in HTC, 375-376
HTML file, sample with XUL components, 194
HTML pages, using Ajax to filter a list of books
based on category in, 182
HtmlAjaxInputDateRenderer
class diagram showing, 279
registering, 297
HtmlAjaxInputDateRenderer class
ending the HtmlInputDateRenderer to add a
pop-up calendar, 287-289
function of, 269
HtmlAjaxInputDateRenderer resources, code
for Weblet configuration for, 301
HtmlAjaxRenderKit class
class diagram of, 243
code sample of, 246-247
function of, 225, 246-247
HtmlAjaxShowOneDeckRenderer class
class diagram showing it extending the
HtmlIShowOneDeckRenderer, 235
function of, 225

423

I
>
=%
=
—h
QO
n
—
@D
=
QO
—
=
=
=
=
(%2)
=
=]
@
=3
=
=%
@
P
Q0
=
=
@
(2]
7]
o
=}
3
S~

424

INDEX

HtmlDocumentRenderer class
encodeBegin() method of, 381-382
function of, 363
a port of the XulDocumentRenderer, 381-382
HtmlInputDate.prototype._clickCell method
diagram of, 296
function of, 295-297
HtmlInputDate.prototype._scroll method,
allowing the user to navigate plus or
minus one month in the calendar,
294-295
HtmlInputDate.prototype.showPopup method,
function of, 293-294
HtmlInputDateRenderer, using weblets in, 220
HtmlInputDateRenderer class
in charge of markup rendered to the client,
52
code sample showing the encodeEnd()
method of, 77
import statements for, 60-61
registering as a renderer for JSE 82-83
HtmlInputText component, illustrating the
relationship between the component
family and renderer type, 37
HtmlRenderer class
convenience methods provided by, 56-60
creating for encoding resources, 52
diagram showing
HtmlShowOneDeckRenderer
extending, 137
HtmlShowOneDeckRenderer class
in charge of the markup rendered to the
client, 107
class diagram showing
HtmlAjaxShowOneDeckRenderer class
extending, 235
code sample extending, 235-236
encodeBegin() method for, 137-138
extending the HtmlRenderer, 136-148
registering in faces-config.xml, 153
using weblets in, 220-221
HTTP GET method. See GET method
HTTP POST method. See POST method
HttpServletResponse, overriding, 253-262

IllegalArgumentException, thrown if value
passed doesn’t conform to EL
expression syntax, 90-91

<image> component, Mozilla XUL, 189

immediate attribute, setting on UICommand
components, 97

<implementation> XBL element

code sample of in the bindings.xml file, 312
function of, 312
@import rule, function of, 272
input date component
building an application with, 103
code using with the Ajax Renderer, 272-273

designing using a blueprint, 52-53
HTML prototype for, 53-54
intent of, 51-52
using with the XUL Renderer, 357-358
InputDate component, controlling the
decoding process of, 73
inputDate.css file, code excerpt from, 292
inputDate.css resource, 292-293
insertAdjacentHTML method, specific to
Internet Explorer, 379
instance-based programming. See prototype-
based programming
Internet Technologies. See Rich Internet
Technologies (RITs)
Invoke Application phase
event handling in the application, 126
performing application logic in, 42-43
in request-processing lifecycle, 27-28
InvokeApplicationPhase class, in Mabon, 281
IoC, meaning of, 7
isActive flag, setting, 142
isAppropriateListener() method, of the
FacesEvent base class, 116
isValueReference() method, for checking if a
values is a JSF EL expression, 89
itemld argument, to showOneDeck(), 139

J

J2EE 1.4 API specification, for more information
about the TagSupport and Tag classes,
162
J2EE architecture, common for a typical
multitier software solution serving a
retail company, 6, 10
Java Community Process (JCP), keeping up-to-
date with emerging technologies and
standards through, 5-7
JavaWeb applications, JavaServer Faces as user
interface framework for, 3
JavaScript and the DOM, Web site address for
information about, 141
JavaScript debugger, Mozilla’s Venkman, 179
JavaServer Faces (JSF). See JSF (JavaServer
Faces)
JavaServer Faces 1.1 specification, list of
developer types from, 3-4
javax.faces, reserved for use by component
families and component types, 22
JSF (JavaServer Faces)
application development with, 9-10
backing bean as plain old Java object (POJO)
in, 11-12
component model, 8
declarative navigation model, 8-9
developer types, 3-4
developing smarter, 1-48
FacesServlet controller for, 13
formal lifecycle of, 27
the foundation of, 3-48

the greatest thing since sliced bread, 207-211
introducing, 8-47
page built with components using XUL as
the rendering technology, 209
vs. Swing framework, 114-115
using to build an application, 28-31
what HTC brings to, 362
what it brings to HTC, 362
what Mozilla XUL brings to, 304
JSF 1.1 #{} expressions and JSF 2.0 ${}
expressions, 99
JSF 1.1 specification, for more information
about the UIComponentTag, 163
JSF1.2
binding attribute added to all standard
converter, validator, and listener tags
by, 163
changes in to UIComponentTagSupport
setStringProperty() method in, 89
changes in specification, 282
UIComponent.encodeAll(FacesContext)
method added to, 146
JSF 1.2 tag handlers, use of JSP ValueExpression
and MethodExpression types as
parameters, 93
JSF Ajax
different approaches, 274-275
selecting an approach, 275-276
JSF and JSB, 45-47
JSF applications
including Ajax support in, 238-249
using weblets in, 221-222
JSF (JavaServer Faces) architecture, Model 2
pattern in, 10-11
JSF Central, Web site address for, 128
JSF community, resources available in, 128
JSF component
blueprint for creating a new date field
component, 53
blueprint for creating a new deck
component, 107-108
building blocks, 13
designing using a blueprint, 269-270
steps for creating a new Ajax-enabled deck
component, 226-227
steps in blueprint for creating new, 306-307
JSF component libraries, custom servlet or filter
solutions provided by, 214
JSF configuration file
adding a new renderer to, 26-27
code sample for renderer type as defined in,
25
navigation rules in JSF defined inside of, 8-9
JSF developer types, table of, 3-4
JSF EL syntax, using in the faces-config.xml file
to set pointers to the managed bean,
405-406
JSF Expression Language (EL) expression, using,

INDEX

JSF HTC components
building applications with, 398-401
designing using a blueprint, 363-398
JSF implementations
extending, 249-262
helper classes provided by for
UIComponents, 22-23
overview of components provided by, 15-16
JSF implementers, 4
JSF JSP document, deck component as it would
be used in, 112-113
JSF Lifecycle, event handling in, 125-127
JSF NamingContainer marker interface. See
NamingContainer marker interface
JSF pages, enabling JSP support for, 86
JSF page source, for HTC implementation,
399-400
JSF specification
behavioral superclasses available in, 50-51
default page description defined by, 12-13
JSF tag handler, main purpose of, 27
JSF view identifier, viewID, 35
JSF view layer, function of, 12-13
JSF Web application
factory classes instantiated upon startup,
31-33
initial request, 33-39
players involved at application start-up, 32
JSF XUL components
building applications with, 357-359
using a blueprint for designing, 306-307
JSON (JavaScript Object Notation)
defined, 268
and Mabon, 280
syntax for showing the simple data source, 187
valid data types in, 280
JSP 2.0 ${} expressions and JSF 1.1 #{}
expressions, 99
JSP 2.1, <deferred-value> and <deferred-
method>, 102
JSP document
default processing of, 250
diagram showing processing of, 254
JSP page directive, providing a custom content
type via, 250-251
JSP tag, as JSF component building block, 13
JSP tag handler
code sample for, 347-349
JSP tag handler and TLD
creating for defining the date field
component, 86-102
creating for the date field component,
297-300
creating for the deck component, 155-169
creating for the ProDocument class, 347-350
<jsp:text> tag, for adding a label to each input
field, 46
JSR-276: Design-Time Metadata for JavaServer
Faces Components, currently under
development, 153

425

I
>
o
=t
—
QO
n
L
@D
=
V)
=
=
=3
=
=
wn
=
=}
D
=
=}
(=X
D
i3
[2Y)
=}
=
D
[72]
»n
(]
(=]
3
~

426

INDEX

L

Lifecycle approach, function of in Ajax enabling
of the date field component, 275
Lifecycle phase
effect of calling renderResponse() method
during any, 71
effect of calling responseComplete() method
during any, 71
LifecycleFactory, function of, 32-33
LifecycleFactorylmpl class, for adding the
MabonlLifecycle, 282
LifecyclePhase class, in Mabon, 281
listArray argument, for the transferListItems()
function, 186-187
Listbox renderer type, for UISelectOne
component, 14
listener management interface, ShowSource
interface, 128-129
Listeners, supported by JSE 119-120
listeners and events, creating for deck
components, 113-127
Login page
code sample for building for a JSF
application, 28-29
example of, 29
login.jspx page, building, 28-29

Mabon (Managed Bean Object Notation)
classes in, 281-282
data fetch request, 283-285
defined, 268
initial request, 282-283
and JSON, 280
sequence diagram of at application start-up,
283
sequence diagram of initial request, 283
sequence diagram over Mabon lifecycle
during postback, 284
structure of, 281-282
Web site address for, 268
what it is, 279
Mabon APIs and how to register Mabon with an
application, 285-291
Mabon JavaScript APIs, 285-286
Mabon lifecycle, sequence diagram over during
postback, 284
Mabon protocol
code sample of, 282
code showing string returned after Mabon
has evaluated it, 282
used to reference the backing bean and a
JavaScript convenience function, 279
using, 286-287
Mabon send() function, passing arguments to,
286
Mabon servlet configuration, adding to the Web
application configuration file, 285

Mabon/Ajax data fetch request, sequence
diagram of, 284
mabon.js library, code sample, 286
MabonlLifecycle class, phases in and function
of, 281
MabonViewHandler class, function of, 282
managed bean, defined in the faces-config.xml
file, 11
managed bean scopes, table of, 12
markup elements, leveraging some
convenience methods to generate
proper, 65-67
Menu renderer type, for UISelectOne
component, 14
<menu> component, Mozilla XUL, 189
<menubar> component, Mozilla XUL, 189
<menuitem> component, Mozilla XUL, 189
<menupopup> component, Mozilla XUL, 189
METHOD element, in HTC, 201
method parameter, function of with <form> tag,
177
<method> XBL element, function of, 312
MethodBinding class
use of by UICommand components, 92
vs. ValueBinding class, 91
methods, that can be added to the binding, 195
Microsoft Dynamic HTML and HTC. See also
DHTML; HTC
introduction to, 199-205
Microsoft HTC. See HTC
Microsoft HTC Renderers. See HTC Renderers
Microsoft Internet Explorer, all of the Ajax
pieces available in, 361
Microsoft Windows Explorer, expandable deck
used in, 105
MIME type, weblets configuration file defining
a custom, 217
Model 2 pattern, elements in, 10-11
Model-View-Controller (MVC) architecture,
defined, 5
Moore, Gordon (Fairchild Camera and
Instrument Corporation), quotation by,
4
Mozilla Amazon Browser, as example of SPIF
application, 303
Mozilla Firefox browser, Mozilla XUL as
development platform for, 187-199
Mozilla Thunderbird email client, Mozilla XUL
as development platform for, 187-199
Mozilla XUL (XML User Interface Language).
See also XUL applications; XUL
components
chrome system, 188
creation of, 174
deck implementation prototype, 317-318
introduction to, 187-199
what is needed to support, 323
what JSF brings to, 304
Mozilla XUL renderers, providing, 303-359

Mozilla’s Venkman JavaScript debugger, Web
site address for, 179

multiple attribute, of <select> element, 14

MVC architecture, with JSF Model 2, 10-11

namespaced HTML elements, how to embed
into base XUL controls, 190

NamingContainer, example of unique IDs
within, 64

NamingContainer marker interface, function of,
65

navigation model, JSF (JavaServer Faces), 8-9

newlnstance() method, for creating a new
instance of a class, 164

nodeTypes, Web site address for information
about, 181

0
objects, function of in JSON, 280
onblur event handler, function of, 192
oncommand event handler, function of, 192
onCommit() method
calling on the DeferredContentTypeResponse,
259-260
function of, 258
oncontentready HTC-specific event, function
of, 369
oncontentsave HTC-specific event, function of,
369
ondetach HTC-specific event, function of, 369
ondocumentready HTC-specific event, function
of, 369
one-tier applications, history of, 4-5
onfocus event handler, function of, 192
onget event handler, for getting the value
attribute on your <pro:welcome> tag,
196
onload event handler, function of, 192
onreadystatechange property, XMLHttpRequest
object, 176
onset event handler, for setting the value
attribute on your <pro:welcome> tag,
196
open(“method”, “URL”) method,
XMLHttpRequest object, 176
OpenlLaszlo’s Amazon Store, as example of SPIF
application, 303
Oracle ADF Faces
getting information about the Apache
MyFaces open source project, 403
User-Agent abstraction provided by, 408

P
PackagedWeblet, function of, 216-217
page author, 3
<parameter> XBL element, function of, 312
Partial-Page Rendering (PPR), as first successful
implementation of Ajax in JSE 230-231

INDEX

phaseld property, setting, 116-117
Phaseld values, table of valid, 117
PhaseListener approach, function of in Ajax
enabling of the date field component,
275
POJO (plain old Java object), backing bean as,
11-12
populateBookList() function, in Ajax book filter
implementation, 184-185
_popup() function, function of, 371-372
POST method
length restriction for, 177
using when submitting a form, 177-178
postback. See also Ajax postback; regular
postback
Ajax, 180-181
decode on, 70-73
form required for file upload functionality,
181
with navigation in Invoke Application phase,
43-45
process validation and conversion during,
73-75
regular in traditional Web application
development, 177-178
render response on, 44
postback request, how JSF handles, 39-45
postback with navigation, in Invoke Application
phase, 43-45
preventBackButtonFix workaround, for Dojo
toolkit to be configured to work with
XUL, 308
pro-bindings.xml, code sample for adding
properties and methods, 196
process validation and conversion, during
postback, 73-75
Process Validations phase
conversion and validation, 40-41
entered after the Apply Request Values
phase, 73
in request-processing lifecycle, 27-28
use of the processValidators() and validate()
methods in, 74
processApplication() method
function of in Invoke Application phase,
126-127
use of in Invoke Application phase, 42-43
processDecodes() method
called on the UIViewRoot during the Apply
Request Values phase, 71-72
function of in Invoke Application phase, 126
for processing decodes on the UIViewRoot,
133-134
recursively calling for each UIComponent in
the component hierarchy, 394
use of during the Apply Request Values
phase, 146-148
processListener() method, of the FacesEvent
base class, 116

427

I
>
=%
=
—h
QO
n
—
@D
=
QO
—
=
=
=
=
(%2)
=
=]
@
=3
=
=%
@
P
Q0
=
=
@
(2]
7]
o
=}
3
S~

428

INDEX

processUpdates() method
calling on each UIComponent in the
component hierarchy, 75-76
function of in Update Model phase, 41-42
processValidators() method
calling on the UIViewRoot, 40-41
conversion and validation performed by
calling on the UIViewRoot, 73
ProDocument class
class diagram for, 341
code sample for building, 342-344
ProDocument component, ProDocumentTag
class representing, 305
ProDocument renderer-specific subclass, for
the UIDocument class, 305
ProDocumentTag class
class diagram showing, 347
for creating the component that will create a
ProDocument instance, 347-350
representing the ProDocument component,
305
Tag Library Descriptor (TLD) for, 349-350
ProDocumentTag handler, code for registering
and setting rules for, 349-350
ProInputDate attributes, code sample, 86
ProlnputDate class, as renderer-specific
subclass, 52
ProlnputDate component
with attached date Validator, 277
implemented in DHTML/Ajax, 270
providing support for the
valueChangeListener attribute, 91
requirements for Ajax implementation of,
267
requirements for HTC implementation, 362
requirements for XUL implementation, 304
restoring and saving state in, 81-82
ProInputDate renderer-specific attributes, code
for defining, 102
ProlnputDate renderer-specific subclass, class
diagram over, 78
<pro:inputDate> component
code using the HTC <body> element, 366
HTML markup needed for the HTC
implementation of, 364-365
implemented in HTC, 398-401
implemented in HTML and HTC, 364
JSF page rendered using the XUL RenderKit
and, 357
<pro:inputDate> tag, code showing JSF
document using, 103
ProInputDateTag class
code sample, 93-94
function of, 93-98
tag handler for the date field component, 52
projsf-bindings.xml, code showing an XBL file
containing one binding, 193
projsf.css, a sample CSS file that has the -moz-
binding property set, 194
PROPERTY element, in HTC, 201

property item, that can be added to the binding,
195
<property> XBL element, function of, 312
<pro:showDeckOne> component, JSF page
rendered using the XUL RenderKit and,
358
<pro:showltem> component, as part of the
<pro:showOneDeck> component, 319
<pro:showltemActive> component, function of,
320-321
<pro:showltemHeader> component, function
of, 321
ProShowOneDeck class
class diagram showing, 148
client-specific subclass, 128
renderer-specific subclass, 107
ProShowOneDeck client-specific subclass, code
sample for, 148-150
ProShowOneDeck component
examining how to Ajax enable, 224-264
ProShowOneDeckTag class that represents,
107
requirements for HTC implementation, 362
requirements for XUL implementation, 304
running in multiple clients using client-
specific markup, 412
ProShowOneDeck renderer-specific class,
registering, 154-155
<pro:showOneDeck> component
implemented in HTC, 400
implemented in XUL, 317
prototype implemented in HTML and HTC,
375
ProShowOneDeckTag class
code sample for, 156-159
that represents ProShowOneDeck
component, 107
prototype-based programming, defined, 292
prototype-ch4.xul
code sample of a XUL file with XBL
components, 197
a sample HTML file with XUL components,
194
prototype-oriented programming. See
prototype-based programming
<public:attach> element, coupling an event
raised on the client with an underlying
function with, 200-201
<public:component>, used to define element
and attached behavior types, 200
<public:event> HTC-specific element, for listing
events that define the HTC component,
200
<public:method> HTC-specific element, for
listing methods that define the HTC
component, 200
<public:property> HTC-specific element, for
listing properties that define the HTC
component, 200

Q-R
queue() method, of the FacesEvent base class,
116

Radio renderer type, for UlSelectOne
component, 14
<radio> component, Mozilla XUL, 189
<radiogroup> component, Mozilla XUL, 189
readyState property, XMLHttpRequest object,
176
registering
HtmlInputDateRenderer class as a renderer
for JSE 82-83
the HtmlShowOneDeckRenderer class in
faces-config.xml, 153
ProShowOneDeck renderer-specific class,
154-155
render-specific subclass in the faces-
config.xml file, 83-86
a UIComponent and Renderer, 82-86
UIShowOne and UIShowItem, 150-155
regular postback
obvious undesired side effects of, 178-179
sequence diagram over, 178
in traditional Web application development,
177-178
relative variables
issues with, 275-276
possible solutions to, 276
release() method
for releasing the internal state used by a tag,
164
for resetting all the internal storage, 98
render() method, function of in Restore View
phase in JSF lifecycle, 34
Render Response phase
during initial request in the JSF lifecycle, 34
during postback, 76-77
processing of the response object during,
253
in request-processing lifecycle, 27-28
Renderer
adding functionality to for detecting the Ajax
request, 274
client-side attributes provided by, 55
registering UIComponent and, 82-86
Renderer and RenderKit, code sample to
register the Ajax-enabled, 262-263
renderer types, function of, 25-26
RENDERER_TYPE, passing to the
setRendererType() method, 78-79
Renderers
function of, 24
as JSF component building blocks, 13
vs. UlIComponents, 24
renderer-specific attributes
accessing, 20
providing convenience getters and setters for
each, 79-80

INDEX

renderer-specific component subclass
creating, 77-82
creating a new, 78-79
creating for the document component,
341-344
function of, 16-17
as JSF component building block, 13
using, 17-20
renderer-specific subclass, creating for the deck
component, 148-150
RenderKit, registering to wrap, 239-240
RenderKit and JSF extension
registering, 262-263
registering for the HTC solution, 396-398
RenderKit and Renderer, code sample to
register the Ajax-enabled, 262-263
RenderKit and ResponseWriter
creating to provide Ajax functionality,
238-249
creating to provide support for XML
documents, 350-354
RenderKit ID
code for setting the default, 405-406
using the managed bean to set the default,
406
RenderKit identifier, using default as a base to
locate agent-specific RenderKits for
incoming requests, 409-410
RenderKitFactory class
extending and wrapping the standard HTML
RenderKit, 240
function of, 32
RenderKitFactoryWrapper class, function of, 226
RenderKits
function of, 404
functionality of, 26-27
as JSF component building block, 13
registering, 354-355
registering the dynamic RenderKit solution,
411-412
requirements for dynamically switching, 404
responsibility of in JSE 9-10
structure of dynamic implementation of, 405
switching dynamically, 403-412
renderResponse() method
calling to skip directly to the Render
Response phase, 41-42
effect of calling during any Lifecycle phase,
71
function of in Restore View phase in JSF
lifecycle, 34
RenderResponsePhase class, in Mabon, 281
rendersChildren property
calling on a component, 45
controlling rendering of child components
with, 70
function of in client-specific renderer, 62
rendering of non-JSF content with it set to
true, 46
setting flag to true, 144

429

I
>
=%
=
—h
QO
n
—
@D
=
QO
—
=
=
=
=
(%2)
=
=]
@
=3
=
=%
@
P
Q0
=
=
@
(2]
7]
o
=}
3
S~

430

INDEX

render-specific subclass, registering in the
faces-config.xml file, 83-86
renderView() method, function of in Restore
View phase in JSF lifecycle, 34
request managed bean scope, 12
request-processing lifecycle
of JSE 27-47
navigation and completion of, 29-30
phases of, 27
resource loading, introduction to, 213-215
resources, code for the unique keys used to
identify, 60
responseComplete() method, effect of calling
during any Lifecycle phase, 71
ResponseStateManager class, management of
client-side state saving by, 132-133
responseText property, XMLHttpRequest
object, 176-177
responseText type, function of, 280
ResponseWriter
creating the right one to provide Ajax
functionality, 239
sequence diagram of creating the right one
for the response, 351
ResponseWriter (JSF major), determining when
the contentType should be set by, 254
ResponseWriter class
creating and storing an instance of on the
FacesContext, 35
table of useful methods, 65-66
using to leverage some convenience method
to generate proper markup, 65-67
using to write output to the client, 65-67
ResponseWriterWrapper class, function of, 225
responseXML property, XMLHttpRequest
object, 176-177
responseXML type, function of, 280
Restore View phase
during initial request in the JSF lifecycle,
33-34
in request-processing lifecycle, 27-28
restoring the saved state of the component
hierarchy, 39-40
restoreView() method, using in the Restore View
phase, 39-40
result.jspx page, 28-29
Rich Internet Applications (RIAs), 173-174
importance of cross-platform support in
developing, 208-209
Rich Internet Technologies (RITs), using,
173-211
RITs. See Rich Internet Technologies (RITs)
Russel, Alex, Dojo toolkit written in JavaScript

by, 224
S
<script> elements, encapsulation of scripts in,
201

scripting languages, supported by HTC, 201

_scroll() function, allowing user navigation plus
or minus one month in the calendar,
372-373

security, setting up for weblets, 219

<select> element, function of multiple attribute
of, 14

selectld argument, for the transferListItems()
function, 186-187

send(content) method, XMLHttpRequest
object, 176

sequence diagram

over regular postback, 178
over the book filter XMLHttpRequest, 184
over XMLHttpRequest postback, 180-181

Servlet specification, Web site address, 250

session managed bean scope, 12

setAvailability() method

code sample for with getAvailability()
method, 278
for setting the method binding, 299
setBooleanProperty() method
code sample method handling boolean
attributes and properties, 90
implementing for UIComponents, 838
setMethodBindingProperty() method,
implementing for UIComponents, 88
setPhaseld method, of the FacesEvent base
class, 116

setProperties() method, code sample, 97

setRendererType() method, passing the
RENDERER_TYPE to, 78-79

setRequestHeader(“label”, “value”) method,
XMLHttpRequest object, 176
setStringProperty() method, implementing for
UIComponents, 88-89
setSubmittedValue() method, calling only from
the decode() method of components
Renderer, 73
setValueBindingProperty() method
code sample method handling ValueBinding
attributes and properties, 90-91
implementing for UIComponents, 88
shopping cart application, saving and restoring
state, 20-21
ShowAdapter class
for adapting a JSF 1.1 MethodBinding into a
ShowlListener instance, 121-123
supports adding a MethodBinding as a
ShowListener, 107
ShowEvent class
custom event class, 107
needed for the new UIComponents for the
deck component, 113

showlItemlId behavioral attributes, code for
accessor and mutator for, 131

ShowltemTag class

code sample for, 160-161
that represents leaf nodes of the deck
component, 107

ShowListener class
a Listener interface, 107
needed for the new UIComponents for the
deck component, 113
ShowListener interface
code sample for, 120
implementation of, 124-125
showListener tag, page source with, 123
ShowListenerTag class
code sample for, 161-162
representing a custom action for registering
a ShowListener instance, 107
showOneClientId argument, to
showOneDeck(), 139
showOneDeck(), arguments taken by, 139
showOneDeck Ajax implementation, 237-238
showOneDeck binding component, code
sample of, 319
showOneDeck renderer, code for parameterized
HTML for, 110-111
showOneDeck js file, the source of, 140
showOneDeck.js library
the Ajax version of, 237
the HTML version of, 237
ShowSource class
isolates the event listener management
methods, 128-129
for isolating the event listener management
methods, 107
ShowSource interface, code for implementing,
132
single-page interface (SPIF) applications. See
SPIF applications
SmallTalk, introduction of Model-View-
Controller (MVC) architecture in, 5
SPIF applications
examples of, 303
RIAs that behave like desktop applications,
303
<splitter> component, Mozilla XUL, 189
startDocument() method, provided by the JSF
ResponseWriter class, 65
startElement() method
arguments taken by, 328, 382
provided by the JSF ResponseWriter class, 65
using ResponseWriter’s to improve
performance, 139
state, saving and restoring, 20-21, 80-82
state management, as benefit of using JSF to
build applications, 20-21, 80-82
state saving
drawbacks of on the server, 21
managing, 132-133
and restoring, 80-82
StateManager class
automatic state handling through, 80-82
function of, 20-21
management of server-side state saving by,
132-133

INDEX

status property, XMLHttpRequest object, 176

statusText property, XMLHttpRequest object,
176

Struts, as JSF component, 7

style sheet, using to define the binding element,
321-322

Swing framework vs. JSE 114-115

T

Tag Library Descriptor (TLD)
code for registering and setting rules for the
ProDocumentTag handler, 349-350
code sample for, 165-168, 300
for grouping custom actions to make up a
JSF tag library, 98-99
Tapestry, Struts, Tiles, TopLink, Hibernate, ADF
UIX, as JSF components, 7
target parameter, function of with <form> tag,
177
three-tier or multitier (Web) applications,
development of, 5
Tiles, as JSF components, 7
tools provider, 4
TopLink, as JSF component, 7
transferListItems() function, that returns the
data requested and populates the
<select> element, 186
two-tier or client-server applications, history
and limitations of, 5

U
Ul prototype
creating, 53-55, 108-113, 270-276
creating using HTML, DHTML behaviors,
and HTC file types, 363-380
UIColumn component
available in JSF specification, 50
provided by the JSF implementation, 15
UICommand component
available in JSF specification, 50
provided by the JSF implementation, 15
setting immediate attribute on, 97
use of method-binding expressions to
reference, 92
UIComponent
as JSF component building block, 13
separation of from behavior and data model,
14
UIComponent and Renderer, registering,
150-155, 238
UIComponent and renderer
registering, 297
registering the JSF XUL implementation,
345-346
UIComponent attributes, code sample, 99-100
UIComponent component argument, for
encodeEnd() method, 62
UIComponent inheritance, example of, 17

431

I
>
o
=t
—
QO
n
L
@D
=
V)
=
=
=3
=
=
(%2)
=
=}
D
=
=
(=X
D
i3
Q0
=}
=
D
[72]
(7]
()
(=]
3
~

432

INDEX

UIComponentBase class
code sample for, 129-130
subclass that implements almost all
methods of UIComponent class, 15
UIComponent.encodeAll(FacesContext)
method, added to the JSF 1.2 release,
146, 340
UIComponent-inherited attributes, code
sample, 84
UIComponents
as cornerstones of a JSF application, 12-13
identifying, 63-64
registering, 82-86
vs. Renderers, 24
that differentiate JSF from other
technologies, 13-15
utility methods for handling attributes for, 88
UlIComponentTagSupport class, code sample
for, 88
UIComponentTagSupport setStringProperty()
method, changes in for JSF 1.2, 89
UIComponentTagSupport tag handler class
creating, 87-98
for providing functionality that is common
among all components, 52
UlIData component
available in JSF specification, 50
as example of a MethodBinding expression
using relative variables, 275-276
provided by the JSF implementation, 15
UIDocument attributes, code sample of the
getters for, 328-329
UIDocument class
function of, 305
introducing, 323-324
UIForm component
available in JSF specification, 50
getting the ID of, 141
provided by the JSF implementation, 15
UlGraphic component
available in JSF specification, 50
provided by the JSF implementation, 15
Ullnput component
available in JSF specification, 50
provided by the JSF implementation, 15
setting immediate attribute on, 97
using, 51
Ullnput-inherited attributes, code sample,
85-86
UIMessage component
available in JSF specification, 50
provided by the JSF implementation, 15
UIMessages component
available in JSF specification, 50
provided by the JSF implementation, 15
UIOutput component
available in JSF specification, 50
provided by the JSF implementation, 15-16

UIPanel component
available in JSF specification, 50
provided by the JSF implementation, 16
UIParameter component
available in JSF specification, 50
provided by the JSF implementation, 16
UlSelectBoolean component, available in JSF
specification, 50
UlSelectltem component
available in JSF specification, 51
provided by the JSF implementation, 16
UlSelectltems component
available in JSF specification, 51
provided by the JSF implementation, 16
UlSelectMany component
available in JSF specification, 51
behavior of, 14
provided by the JSF implementation, 16
UlSelectOne component
available in JSF specification, 51
behavior of, 14
and its renderers, 14
provided by the JSF implementation, 16
renderer types, 14
UlSelectOneBoolean component, provided by
the JSF implementation, 16
UIShowltem behavioral superclass
acts as a clickable parent container that
shows or hides its children, 113
for adding labeled items to the deck
component, 134-136
class diagram of the implementation, 135
representing each child component to the
UIShowOne component, 107
UIShowlItem component
code for processing facet and children of,
142-143
processing facet and children of, 142-143
UIShowOne behavioral superclass
acts as a top-level container controlling
which child component to display, 107
class diagram showing implementation of,
127
function of, 129-134
handling of associated listeners, 131-132
for keeping track of which node the user has
selected, 113
UIShowOne component
encoding the children of, 141-144
getting the ID of, 141
JavaScript implementation of, 139-141
UlViewRoot component
method for processing decodes on, 133-134
provided by the JSF implementation, 16
responsible for calling processDecodes() on
each UIComponent, 71-72
UlViewRoot view identifier, 35
Update Model phase, updating the underlying
model in, 41-42

Update Model Values phase

entering after the Process Validations phase,

75-76
the processUpdates() and updateModel()
methods in, 76
in request-processing lifecycle, 27-28
UxlAjaxShowOneDeckRenderer class, function
of, 305

'}

validate() method, code sample for, 277-278
ValidateDateTag class
actual code behind, 298-299
class diagram for, 298
function of, 269
Validator
creating to perform validation on a strongly
typed Date object, 276-279
use of for Ajax enabling the date field
component, 273
validators, function of, 22
validators and converters, creating, 276-279
ValueBinding class
function of, 77
vs. MethodBinding class, 91
and renderer-specific attributes, 79-80
valueChangeListener attribute, providing
support for, 91
values
converting, 69-70
in JSON, 280
Venkman JavaScript debugger, Mozilla’s, 179
video terminals (VTs), 6
view layer. See JSF view layer
viewHandler, function of, 38

ViewHandler.renderView() method, function of

in Restore View phase in JSF lifecycle,
34

ViewHandlerWrapper class, function of, 405

viewlink property, manually setting on the
defaults declaration, 204-205

visual calendar, requirement for Ajax
implementation of ProlnputDate
component, 267

VTs (video terminals), 6

w

W3C HTTP specification, Web site address for,
177

Web application. See JSF Web application

Web applications, traditional development of,
177-179

Web application startup, upon receiving a JSF
request, 31-33

Web Hypertext Applications Technology
(WHAT), working to create a standard
tag library for extensions to HTML,
207-208

INDEX

Web site address
for “A Modular Way of Defining Behavior for
XML and HTML” (Netscape), 193
for Apache MyFaces, 128
for “Behavioral Extensions to CSS”, 200
for “Componentizing Web Applications”
proposal sent to W3C, 200
for Dojo toolkit written in JavaScript by Alex
Russel, 224
for HttpServletResponse object Servlet
specification, 250
for information about DHTML behaviors
and HTC, 364
for information about HTML elements and
their supported attributes, 54
for information about JavaScript and the
DOM, 141
for information about JSON, 280
for information about Mabon open source
project, 279
for information about nodeTypes, 181
for information about visual formatting
using block boxes, 377
for JSF Central, 128
for Mabon information, 268
for Mozilla Amazon Browser, 303
for Mozilla’s Venkman JavaScript debugger,
179
for OpenlLaszlo’s Amazon Store, 303
for subset of available XUL components, 189
for W3C HTTP specification, 177
for weblets open source project, 213
for the Weblets project, 263
for WHAT, 208
for wikipedia, 292
for XHTML 1.0 specification, 65
for XULPlanet, 312
Web technologies, emergence of new, 173-174
weblet architecture, exploring, 215-222
Weblet configuration
for the D? library, 264
for the Dojo toolkit, 264
weblet filter, using to optimize weblets, 221-222
weblet protocol
syntax for, 219
using to serve up resources, 220
WebletContainer, function of, 216
weblets
configuration file using 1.0 versioning for
production, 218
configuration file using SNAPSHOT
versioning for development, 219
exploring the architecture of, 215-222
loading resources with, 213-222
registering HTC resources with, 398
registering XUL resources with, 355-356
registering your Ajax resources with, 301
setting up security for, 219
specifying MIME types, 217

433

I
>
=%
=
—h
QO
n
—
@D
=
QO
—
=
=
=
=
(%2)
=
=]
@
=3
=
=%
@
P
Q0
=
=
@
(2]
7]
o
=}
3
S~

INDEX

weblets (continued)
specifying versioning of the component
library, 217-219
using as a mediator that intercepts requests
from the client, 215
using in the HtmlInputDateRenderer, 220
using in the HtmlShowOneDeckRenderer,
220-221
using in your component library, 216-221
using the weblet protocol, 219
Web site address for information about, 213,
355
weblets mapping
overriding, 222
Weblets project, Web site address for
information about, 263
WebletsPhaseListener, function of, 216
WebletsViewHandler, function of, 215
web.xml file, weblet container configuration in,
221-222
welcome HTC component, example of a page
using, 204
welcome XBL component, example of a page
using, 196
WHAT. See Web Hypertext Applications
Technology (WHAT)
wikipedia, Web site address, 292
<window> component, Mozilla XUL, 189
World Wide Web Consortium (W3C), keeping
up-to-date with emerging technologies
and standards through, 5-7
writeAttribute() method, provided by the JSF
ResponseWriter class, 65, 66
writeComment() method, provided by the JSF
ResponseWriter class, 66
writeScriptInline() method, function of, 386
writeScriptResource() method
function of, 386
for guaranteeing script resourse is written
only once during rendering, 139
for writing script resource to the client, 58-59
writeState() method, called by the </f:view> end
tag, 38
writeStyleResource() method
guarantees a style resource is written only
once during rendering, 68
for writing style resources to the client, 58
writeText() method, provided by the JSF
ResponseWriter class, 66
writeURIAttribute() method, provided by the
JSF ResponseWriter class, 66

X

XAML vs. HTC, 199

XBL (Extensible Binding Language)
adding content in vs. HTC, 206
attaching components in vs. HTC, 207
comparing HTC and, 206-207
deck component prototype, 318-321
defined, 192

defining a component in vs. HTC, 206
elements used in the <pro:inputDate>
component, 312
event handling in vs. HTC, 207
function of, 174
sequence diagram of the inputDate binding
popup method, 314
types of items that can be added to the
binding, 195
using to add new properties and methods,
195-197
using to create custom XUL components,
192-198
XBL bindings
creating, 192-193
event handling and, 197-198
extending, 195-197
a simple XUL page using with attached event
handler, 198
using, 193-195
XBL component, a page’s DOM tree with, 195
XBL Date component prototype, function of,
308-318
XHTML 1.0 specification, Website address for,
65
XML data islands, in Internet Explorer, 367-368
XMLHTTP See Ajax (Asynchronous JavaScript
and XML)
XMLHttpRequest object
in Ajax, 174-187
creating, 185-186
creating an instance of, 175
introduced by Microsoft, 361
methods provided by, 175-176
properties common to all implementations,
176-177
sequence diagram of using the HTTP GET
method, 274
XMLHttpRequest object methods, parameters
required by, 176
XMLHttpRequest postback, sequence diagram
over, 180-181
XMLResponseWriter, code sample for, 353-354
XMLResponseWriter class
function of, 305
for writing the required XML markup to the
requesting client, 353-354
XUL. See Mozilla XUL (XML User Interface
Language)
XUL applications. See also Mozilla XUL (XML
User Interface Language)
building, 188-192
deploying and running on a remote server,
190
XUL button. See also Mozilla XUL (XML User
Interface Language)
adding one that triggers the oncommand
event handler, 196-197
XUL components. See also Mozilla XUL (XML
User Interface Language)

base set of available through the Mozilla
GRE, 188-189
creating custom using XBL, 192-198
XUL date implementation prototype. See also
Mozilla XUL (XML User Interface
Language)
the <pro:inputDate> component
implemented in XUL, 307
XUL elements. See also Mozilla XUL (XML User
Interface Language)
used in the “Providing Mozilla XUL
Renderers” chapter, 309-310
XUL event handling. See also Mozilla XUL (XML
User Interface Language)
events, state, and data, 190-192
XUL file. See also Mozilla XUL (XML User
Interface Language)
a simple rendered in the Firefox browser, 191
a simple with embedded HTML elements,
190
XUL for Web development. See also Mozilla XUL
(XML User Interface Language)
events, state, and data, 190-192
XUL implementations. See also Mozilla XUL
(XML User Interface Language)
requirements for the Deck and Date
components’, 304
XUL Renderers, class diagram showing, 325
XUL resources, registering with Weblets,
355-356
XulAjaxInputDateRenderer class
class diagram showing, 329
code sample extending the XulRenderer,
329-330
function of, 305

INDEX 435

XulAjaxRenderKit class
class diagram showing, 351
function of, 305, 351-352
setting the CONTENT_TYPE variable to the
accepted XUL contentType, 352
XulAjaxShowOneDeckRenderer class
arguments taken by the encodeBegin()
method, 336
class diagram for, 334
encodeResources() method, 336
function of, 334-341
getters from the different style classes
supported by, 340-341
<xul:button> element, function of, 310
<xul:column> element, function of, 310
<xul:columns> element
function of, 310
XulDocumentRenderer class
arguments taken by the startElement()
method, 328
class diagram showing, 325
encodeBegin() method, 326-327
function of, 305, 325-329
<xul:grid> element, function of, 310
<xul:hbox> element, function of, 309
<xul:label> element, function of, 309
<xul:popup> element, function of, 310
<xul:popupset> element, function of, 310
XulRenderer class, function of, 305
<xul:row> element, function of, 310
<xul:rows> element, function of, 310
<xul:textnode> element, function of, 309
<xul:vbox> element, function of, 309

I
>
o
=t
—
QO
n
L
@D
=
V)
=
=
=3
=
=
wn
=
=}
D
=
=}
(=X
D
i3
[2Y)
=}
=
D
[72]
»n
(]
(=]
3
~

FIND IT FAST
with the APress Superindex

Quickly Find Out What the Experts Know

eading by innovation, Apress now offers you its Superindex™, a turbocharged
L companion to the fine index in this book. The Apress Superindex™ is a keyword
and phrase-enabled search tool that lets you search through the entire Apress library.
Powered by dtSearchm, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic
of your choice from a vast array of Apress titles. The Apress Superindex™ is the
perfect tool to find critical snippets of code or an obscure reference. The Apress
Superindex™ enables all users to harmness essential information and data from the
best minds in technology.

No registration is required, and the Apress Superindex™ is free to use.

© Thorough and comprehensive searches of over 300 titles
@ No registration required

© Instantaneous results

O A single destination to find what you need

@ Engineered for speed and accuracy

0O Wil spare your time, application, and anxiety level

Search now: http://superindex.apress.com

€] Index)

ApPress

HE EXPERT'S VOICE™

You Need the Companion eBook

Your purchase of this book entitles you to its

companion eBook for only $10.

e believe this Apress title will prove so indispensable that you'll want to carry
Wit with you everywhere, which is why we are offering the companion eBook
for $10 to customers who purchase this book now. Convenient and fully searchable,
the eBook version of any content-rich, page-heavy Apress book makes a valuable
addition to your programming library. You can easily find, copy, and apply code—and
then perform examples by quickly toggling between instructions and the application.
Even simultaneously tackling a donut, diet soda, and complex code becomes
simplified with hands-free eBooks!

Once you purchase this book, getting the $10 companion eBook is simple:

© Visit www.apress.com/promo/tendollars/.

O Complete a basic registration form to receive a randomly
generated guestion about this title.

© Answer the question correctly in 60 seconds and you will
receive a promotional code to redeem for the $10 eBook.

APIESS ASPIRXENl APIESS
T

HE EXPERT'S VOICE™

All Apress eBooks subject to copyright protection. No part may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher. The purchaser may print
the work in full or in part for their own non-commercial use. The purchaser may place the eBook title on any of their
personal computers for their own personal reading and reference.

Offer valid through 8/20/06.

C forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You'll find discussions that cover topics
of interest to [T professionals, programmers, and enthusiasts just like you. If you post a query to one of our
forums, you can expect that some of the best minds in the business—especially Apress authors, who all write
with The Expert's Voice™ —will chime in to help you. Why not aim to become one of our most valuable partic-
ipants (MVPs) and win cool stuff? Here's a sampling of what you'll find:

DATABASES PROGRAMMING/BUSINESS

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

INTERNET TECHNOLOGIES AND NETWORKING WEB DEVELOPMENT/DESIGN

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

Ugly doesn’t cut it anymore, and CGl is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

JAVA SECURITY

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don't let
anyone else know the answers!

MAC OS X TECHNOLOGY IN ACTION

All about the Zen of 0S X.

0S X'is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

Cool things. Fun things.

It's after hours. It's time to play. Whether you're into LEGO®
MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

OPEN SOURCE (winoows ____________|

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

HOW TO PARTICIPATE:

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

	Pro JSF and Ajax: Building Rich Internet Components
	Table of Content
	PART 1 Developing Smarter with JavaServerTM Faces
	Chapter 1 The Foundation of JSF: Components
	Chapter 2 Defining the Date Field Component
	Chapter 3 Defining the Deck Component

	PART 2 Designing Rich Internet Components
	Chapter 4 Using Rich Internet Technologies
	Chapter 5 Loading Resources with Weblets
	Chapter 6 Ajax Enabling the Deck Component
	Chapter 7 Ajax Enabling the Date Field Component
	Chapter 8 Providing Mozilla XUL Renderers
	Chapter 9 Providing Microsoft HTC Renderers
	Chapter 10 Switching RenderKits Dynamically

	Index

